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There is increasing interest in how the pupil dynamics of the eye reflect underlying

cognitive processes and brain states. Problematic, however, is that pupil changes can

be due to non-cognitive factors, for example luminance changes in the environment,

accommodation and movement. In this paper we consider how by modeling the

response of the pupil in real-world environments we can capture the non-cognitive

related changes and remove these to extract a residual signal which is a better index of

cognition and performance. Specifically, we utilize sequence measures such as fixation

position, duration, saccades, and blink-related information as inputs to a deep recurrent

neural network (RNN) model for predicting subsequent pupil diameter. We build and

evaluate the model for a task where subjects are watching educational videos and

subsequently asked questions based on the content. Compared to commonly-used

models for this task, the RNN had the lowest errors rates in predicting subsequent pupil

dilation given sequence data. Most importantly was how the model output related to

subjects’ cognitive performance as assessed by a post-viewing test. Consistent with

our hypothesis that the model captures non-cognitive pupil dynamics, we found (1)

the model’s root-mean square error was less for lower performing subjects than for

those having better performance on the post-viewing test, (2) the residuals of the RNN

(LSTM) model had the highest correlation with subject post-viewing test scores and (3)

the residuals had the highest discriminability (assessed via area under the ROC curve,

AUC) for classifying high and low test performers, compared to the true pupil size or

the RNN model predictions. This suggests that deep learning sequence models may be

good for separating components of pupil responses that are linked to luminance and

accommodation from those that are linked to cognition and arousal.

Keywords: recurrent neural network, pupil diameter, eye tracking, video viewing, pupil response

1. INTRODUCTION

1.1. Pupillary Response
Physiological measures during cognitive processing have been extensively studied with pupillary
dilation, in particular, having been explored as an index of learning, cognitive load, attention
and memory (Sibley et al., 2011; Wang, 2011; Fridman et al., 2018). Dilation is generally
understood to be mediated by increased sympathetic activity or inhibition of the parasympathetic
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response (Karatekin, 2007) and reflected by activity in the
brain’s locus coeruleus-norepinephrine system (LC-NE), which
controls physiological arousal and attention. LC-NE activity has
been correlated with subjective task difficulty, cognitive effort,
and neural gain (Eckstein et al., 2017). Mechanistically, the
responsiveness of the pupil is driven by antagonistic actions of
the iris dilator and sphincter muscles (Joos and Melson, 2012).
Specific cognitive influences include pupil dilation in response
to error in risk prediction and decision making (de Gee et al.,
2014; Buettner et al., 2018), to emotional arousal (Hess, 1972),
and in the presence of a known visual target (Privitera et al.,
2010). In addition, the pupil has been shown to dilate to increased
processing load in language tasks (Wang, 2011).

Pupil dilation is also important for regulating light entering
the eye (Winn et al., 1994) and thus measures of cognitive
processes linked to the pupil are confounded by: (1) the natural
dilation changes due to luminance, (2) the photometric measure
of light entering the eye, or (3) accommodation, the process
by which the eye keeps focus on an object across varying
distances. It is established that the pupil constricts with increasing
luminance (Raiturkar et al., 2016), as the former is modulated
by the pretectal nucleus. In fact, multiple studies have shown
that luminance conditions take priority over cognitive demands
in pupil diameter changes, across task difficulty and modality
(Xu et al., 2011; Kun et al., 2012; Peysakhovich et al., 2015).
Accommodation also effects pupil diameter to a lesser extent
and appears to be limited as a driver in younger populations
(Mathur et al., 2014).

1.2. Learning and Eye Tracking
In addition to pupillary response reflecting cognitive processing,
past work has examined how other eye movements, such as
fixations, can be indicators of cognitive processing when viewing
educational content. Eye movements are more variable and less
restricted by content boundaries in a younger audience while
viewing Sesame Street, and video comprehension increases with
age (Kirkorian et al., 2012). As visual and auditory saliency has
strong direct impacts on visual exploration (which is captured
by eye movement) and therefore indirect impacts on learning
(Coutrot et al., 2014), eye movement information can be used to
predict subjects’ attention to viewing content.

The use of eye tracking data to help understand how
students process content derived from different modalities has
been employed to study how attention on PowerPoint slides
changes with or without relevant narration (Slykhuis et al.,
2005). Furthermore, viewing behavior has been used to assist in
prediction of learning styles, using post-viewing assessments and
viewing ratios (Cao and Nishihara, 2012) and, more recently,
gaze behaviors such as fixations have been shown to vary with
perceived relevance and presentation modalities of instructional
content (Wiedbusch and Azevedo, 2020).

Simple eye tracking models have been employed to predict
attention usingmeasures such as total fixation duration (Xu et al.,
2008). In our case, we seek to model how the input space predicts
pupil dilation, using fixational and pupil features from eye
tracking data along with contextual features from instructional
video. While pupil dilation is most strongly affected by

luminance-driven changes, recent work has yielded encouraging
results in using pupil diameter to track lapses in attention
(van den Brink et al., 2016), cognitive load (Wang, 2011) and as
an index of learning (Sibley et al., 2011). One possible approach
to distinguish between attention and luminance-driven effects
is through comparison of model accuracy between above- and
below-average performers in learning tasks. We hypothesize that
in such a comparison, pupil diameter will be more variable and
thus harder to predict in above-average performers, who may be
more driven by pupil-linked arousal fluctuations.

1.3. Modeling Eye Tracking Data
To detect eye tracking events of interest, random forest models
have previously been employed to detect fixations, saccades,
and post-saccadic oscillations, yielding close-to-human level
annotations (Buettner et al., 2018). Visual attention modeling
has utilized video-level features, mapping these features to spatial
and temporal saliency maps (Fang et al., 2017) in order to
model gaze preferences. Bayesian networks and hidden Markov
models have been used to learn patterns in eye movements
to recognize facial expressions (Bagci et al., 2004; Datcu and
Rothkrantz, 2004). Recent work has also analyzed still video
frames through convolutional neural networks to analyze gaze
data with the purpose of classifying groups (Dalrymple et al.,
2019). However, sequences of fixations over areas of interest
may also be useful in distinguishing individuals and groups
(Çöltekin et al., 2010). In general, linear models, including those
that employ regularized regression (ridge and lasso) (Papoutsaki
et al., 2016) are simple and typically less likely to overfit the data.
Non-linear models, including recurrent neural networks (RNNs)
are interesting to consider as an alternative to linear models.
For example, though RNNs are more complex and typically
have more parameters then their linear counterparts, they can
learn state sequence information over multiple timescales and
feature dimensions. The long short-termmemory model (LSTM)
is a form of recurrent neural network that learns parameters
over large amounts of sequence data efficiently (Hochreiter and
Schmidhuber, 1997). LSTMs are used in language modeling, for
example, as they are particularly suited to sequence data, and have
been shown to outperform traditional deep learning network
architectures (Sundermeyer et al., 2012; Koorathota et al., 2020).
Because of this, the use of a sequence model such as an LSTM is a
natural next step in analyzing gaze sequences.

1.4. The Present Study
The primary aim of the this study was to assess the prediction
of pupil diameter in groups of participants whose performance
varied on post-viewing assessments of educational content. We
hypothesize that, due to the viewing dynamics, the realistic
content, and the fact that information conveyed in the video is
sparse compared to the length of the videos, a model that predicts
pupil dynamics will tend to learn non-cognitive components, e.g.,
dynamics due to luminance changes, motion, accommodation.
In this case we expect the residuals of the pupil dynamics under
the model, i.e., those dynamics which are not predictable by the
model, to be more informative of cognitive performance.
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Toward that end, we initially compared accuracy of linear,
non-linear, and RNNs when predicting pupil diameter. We
further varied the type of input features we used as input to
our models, to parse the usefulness of various eye movements
and events when predicting pupil diameter. We then correlated
the residuals from the most accurate models with performance
on the post-viewing assessments to understand how accuracy of
prediction varies across performers. We found that, compared
to other models, the RNN (LSTM) (1) had root-mean square
error (RMSE) that was less for lower performing subjects than for
those having better performance on the post-viewing test, (2) the
residuals of the model had the highest correlation with subject
post-viewing test scores and (3) the residuals had the highest
discriminability (assessed via area under the ROC curve, AUC)
for classifying high and low test performers.

2. METHODS SUMMARY

2.1. Study Summary
61 healthy subjects (47 female, ages 18–35 with a mean of 25)
participated in this study. Informed consent was obtained from
all volunteers and the Columbia University Institutional Review
Board approved all experiments. Participants were randomly
assigned into three modality conditions to watch three 5-
min-long lecture videos, with their eye movements recorded.
After each video, they were instructed to answer a set of 7
multiple-choice questions, with a single correct answer, assessing
comprehension of the video content just shown.

The lecture videos consisted of slides with images and bullet-
point lists, presented by a professor in an academic classroom
setting. Videos were produced to closely mimic the type of
lecture students were likely to encounter in a real-life college-
level academic setting as well as to provide sufficient context so
that no subject-specific familiarity and expertise with the topic is
required to answer the questions. The specific selection criteria
for the lectures were as follows:

1. They had to be complex in content and be on topics that the
participants were unlikely to be very familiar with but were
also likely to find interesting,

2. They had to have visuo-spatial content that would allow for
both images and a diverse set of gestures.

We chose the following three topics: the history of tarmac road
paving, the use of perspectives in drawing, and the history of
bicycles (Figure 1A). Additionally, speaker style and movement,
as well as video editing techniques (cuts, edits, graphics, and
sound effects) were also controlled in the video production using
pre-specified scripts.

Of the questions assessing comprehension, 6 were slide-
specific, in that the information used to answer each question
was contained in one slide, and the remaining question required
information across the presentation. The validity of questions
were tested in a pilot study with 7 additional subjects so that
ambiguous or unclear wording was clarified and items too
difficult or easy were revised to have the proper discriminability
to evaluate understanding.

The three modality conditions (i.e., video types) were
produced with the same audio content but different types of
visual content, including single (full-screen slides), dual (slides
and audio lecture), and full (professor with upper body view
visible on the lecture video, with slides present) versions. Using
a between-subject design, each subject was shown the same
modality version for all three topics—controlling for luminance
across viewing sessions. The topics were always presented in
the same order: history of road paving, visual perspectives, and
history of bicycles.

2.2. Eye Movements and Pupil Dilation
Eye tracking was performed with an Eyelink 1000 in Tower
Mount, at a sampling rate of 1 kHz. Eye tracking data contained
X and Y coordinates of each fixation (pixels), fixation duration
(ms), pupil diameter (µm), saccades, blinks and associated
timestamps (Figure 1B).

Subjects were instructed to watch videos presented on a 30-
inch screen from 40 inches away without wearing glasses. The
study was conducted in a Faraday’s cage with low-light, sound-
proof conditions that remained constant during video watching.
Before each of the three videos, the eye tracker was calibrated for
each recruited subject. In the calibration procedure, subjects were
asked to focus their gaze on nine points presented consecutively
at specific positions across the diagonals and centers of the side
edges of the display screen. Moreover, subjects were instructed
not to move their heads and to pay attention to the lecture
content presented on the screen throughout video watching.

For each subject, we filtered for fixations out of the video
frame boundary and systematic drifts. 3 participants were found
to spend a non-negligible amount of time (>6%) blinking or
fixating outside of the center rectangle video frame boundary
and were excluded as outliers, leaving a total of 58 subjects for
further analysis.

Classifications of eye events, including fixations, saccades,
and blinks were exported from the SR Research software, which
uses video-oculography based classification algorithms and pupil
diameter calculations.

2.3. Problem Types
The prediction problems or inputs varied across two dimensions:
(1) the amount of time, relative to the input, used in the
generation of the output label and (2) the types of input features
used for predictions.

We utilized five categories of input features for the models:

• Fixations: positions, durations, start times, and respective
differences from fixation to fixation,

• Pupil diameter: per fixation,
• Areas of interest: a mapping of sequence of AOI to 50-

dimensional embeddings learned during training process,
• Saccades: saccade-related positions, durations, start times and

respective differences,
• Blinks: blink times and differences.

We investigated the effect of various combinations of the types
of inputs: {fixations, fixations + pupil diameter, fixations +
saccades + blinks fixations + pupil diameter + saccades + blinks}.
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FIGURE 1 | Overview of methods. (A) Participants viewed videos on three topics while eye tracking data was collected: visual perspective, bicycles, and road paving.

They were randomized to one of three modalities: full, dual or single. Colorized in the image are the areas of interest (AOI) used in training several of the models we

consider. Subjects did not see this colorization nor were they explicitly aware of the AOIs. (B) The video spanned 300 s, while the eye tracking data was split into 10 or

15 s blocks over the course of viewing. The first 10 s was used as input data toward the model, with various types of features. (C) The blocks of eye tracking data

were split into training, validation and test data for model fitting and testing. Predictions were derived from the model frameworks, e.g., the deep learning model, and

the mean of the input pupil diameter, for a naive estimate.

Because eye tracking data can be sourced from web cameras,
infrared devices, or human annotations, each with varying level
of accuracy for labeling eye movements and events, our aim
was to assess the minimal amount of data that yields accurate
predictions of pupil diameter. We were not able to find similar
iterative approaches to predicting pupil diameter using different
types of input data and hypothesized historical fixation and input
pupil diameter to be the best predictors of future pupil diameter.

In addition, for baseline reference, we report the error rates in
models that are most commonly used toward prediction of eye
tracking data:

• Linear regression: simple linear fit of input features,
• Regularized regression: linear regression with penalization of

large weights through L1 (Lasso) and L2 (Ridge) norms,
• Decision-tree based: ensemble learning methods relying on

majority vote by weak models (gradient boosting) or mean of
trees (random forest),

• Input mean: a naive estimate of the mean pupil diameter in the
input.

Hyperparameters for the reference models were selected from
default recommendations from scikit-learn, a popular machine
learning framework in Python (Pedregosa et al., 2011).

2.4. Data Aggregation
Because this study was supplementary to a larger one focusing on
the effects of gestures on learning, we were presented the option
to use data from single or multiple modalities. The justification
for using all available modalities for prediction of pupil diameter

was twofold: to allow for a large enough amount of data to utilize
deep learning models that we predicted would perform well, and
to increase the robustness of prediction of pupil diameter under
different modalities of learning. Because, in a natural learning
environment, students may be presented with video and audio
but may not necessarily attend to it (Chen and Wu, 2015), this
dataset provided a unique opportunity to predict pupil diameter
and assess model accuracy under mixed modalities.

As a first step for analysis, eye tracking streams were split into
15-s blocks, across all participants, modalities and topics, and
randomized. The first 10 s in each block were used to sequence
input data, while pupil diameters in fixations in the succeeding 5
s of the block were averaged to yield the associated output label. In
another method of analysis, eye tracking streams were split into
20-s blocks, with features collected over the first 10 s as input and
the succeeding 10-s fixation pupil diameter as output.

Subsequent analyses are reported from the best-performing
model using 10 s of input to predict 5 s of output. We made
this selection in order to maximize the number of samples and
use typical output durations studied in past eye fixation work
(Just and Carpenter, 1976).

Due to this method of data aggregation, the number
of fixations, saccades and blinks varied across and within
participants. Thus, the input region required feature-specific,
mean padding to the maximum length of fixations. The output
was always a single-dimensional, average, fixation pupil diameter
gathered from the output region. Thus, the deep learning models
can be thought of as regression problems utilizing a non-
linear framework.
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FIGURE 2 | LSTM architecture included two bidirectional layers as the core component. Numerical features were normalized and the areas of interest were

embedded to a higher dimensional vector trained using the training samples. Embeddings are trained using categorical representations of fixation data.
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TABLE 1 | Network hyperparameters.

Param Value

Epochs 5,000

Early stopping 500 epochs (loss)

Optimizer Adam

Learning rate 0.0001

Training split 70%

Validation split 10%

Test split 20%

2.5. AOI Embeddings
We defined three, distinct, areas of interest (AOI) in the full
video type, across all topics, corresponding to the instructor,
text in slides and images in slides. Other types (dual and single)
contained only text and image AOI.

We mapped X and Y coordinates from fixations in input
regions to AOI. This allowed us to generate a sequence of AOIs
for fixations during a specified input region, which we used to
train 50-dimensional embeddings during the training process
(Figure 2). We hypothesized that this process will achieve a
similar goal as in natural language applications of capturing
context of categorical information with respect to other input
features (Melamud et al., 2016).

2.6. Network Architecture
We used a bi-directional LSTM network to model eye tracking
input (Figure 2). For each problem type, data was split into
training, validation and test samples (Figure 1C). The network
was trained and validated on estimates of pupil diameter
and assessed through mean-squared error using the Adam
optimizer (Table 1). Each LSTM layer used recurrent dropout to
prevent overfitting.

We compared our network’s results to the mean pupil
diameter as calculated from the fixations in the input region
and with other, reported linear and non-linear approaches. In
addition, we compared our LSTM network results to a gated
recurrent unit (GRU), an RNN variant (Chung et al., 2014),
with the same network hyperparameters and without recurrent
dropout. Neural models were implemented in Tensorflow 2.2 on
Google Cloud and trained using a NVIDIA Tesla K80 GPU.

2.7. Data Analysis
We hypothesized that predictability of pupil diameter would
vary across four dimensions: (1) as a ratio of input time
(used in the aggregation of input features) and output time
(used to calculate for ground truth pupil diameter), (2) use of
different physiological measures in the network, (3) addition
of AOI embeddings in the neural network, and (4) participant
performance on the post-viewing assessments.

To test the hypothesis that predictability varied across the four
dimensions, we first split the data into 15-s blocks. We designed a
baseline comparison through averaging the pupil diameter across
fixations during the first 10 s of each block. This served as the
naive, input mean, estimate.

Using the first 10 s in each block to aggregate input features,
we randomly separated the data into training, validation and test
sets, calculated the RMSE to study the prediction errors in the
test set. We repeated the process a total of 10 times (i.e., runs)
for each problem type and using different input features in the
best-performing model to account for variability of accuracy due
to the training and test separation of the data. Furthermore, we
repeated the process above after separately splitting the data into
20-s blocks first, predicting 10 s of output. We summarize the
reported RMSE measure

RMSEM,I,O =
1

l

l
∑

t=1

(

√

√

√

√

1

n

n
∑

s=1

(ŷs − ys)2
)

,

where ŷs is the predicted pupil diameter, ys is the ground truth,
output pupil diameter, n is the number of training samples, and
l is the number of random, training, validation and test splits
RMSE was averaged over (always 10). This value was calculated
for each model type, M, for different sets of input features, I,
and output period length O over which fixation pupil diameters
were averaged.

The aggregation and split of the data led to reusing the same
15- or 20-s blocks across the 10 runs. These were treated as
independent samples, regardless of the video type, condition or
participant they originated from.

2.8. Participant Performance
To study model accuracy in groups with different levels of
cognitive effort, we split the test blocks by mean performance
on post-viewing assessments (i.e., into “Greater Than Mean” and
“Lesser ThanMean” bins).We report model results separately for
these groups, using aMann–WhitneyU-test for significant, mean
differences in model errors.

Using residuals from the most accurate model, we report
Spearman correlation coefficients in the test samples between
the ground truth pupil diameter, the estimate from the model,
residuals (ground truth minus model estimate) and performance.
To assess the predictive accuracy directly, we designed a simple
binary classification task using the ground truth pupil diameter,
model estimate and residuals to classify participants as belonging
to the lowest or highest tertile group by performance. We used
an ROC analysis, which consists of a plot of the sensitivity and 1-
specificity pairs that are produced as a single decision threshold
is moved from the lowest (i.e., all participants classified in the
lowest tertile) to the highest (i.e., all participants classified in the
highest tertile) possible value (Fawcett, 2006). The area under
the ROC curve (AUC) corresponds to the probability that a
randomly selected participant will have been assessed by the
measure (e.g., residuals) as performing better than a randomly
selected participant, and varies from 0.5 (i.e., accuracy is not
improved over chance) to 1.00 (i.e., perfect accuracy).

Thus, we used group-level RMSE differences to quantify
how model accuracy varies with levels of cognitive effort and
residuals to understand the relation between the accuracy of
model predictions and participant performance.
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TABLE 2 | Prediction errors (RMSE) for linear, regularized linear, decision-tree

based, and RNN (GRU, LSTM) model types.

Inputs Model type RMSE

Fixation

+ Diameter

+ Saccades

+ Blinks

Linear regression >5000

Ridge regression 332.72 (5.11)

Gradient boosting 319.14 (12.05)

Input mean 312.93 (13.32)

GRU 300.91 (20.64)

Lasso regression 295.10 (9.18)

Random forest 292.79 (12.26)

LSTM 285.65 (9.69)

Fixation

+ Diameter

+ Saccades

+ Blinks

+ Embeddings

Linear regression >5,000

Ridge regression 332.35 (13.38)

Gradient boosting 323.56 (13.34)

Input mean 306.45 (11.13)

Lasso regression 304.34 (9.61)

Random forest 298.05 (11.45)

GRU 288.38 (12.30)

LSTM 249.87 (8.65)

Inputs from 10 s of each block was used to predict 5 s of subsequent, average, fixation

pupil diameter. Input mean refers to the naive estimate of using the mean pupil diameter

in the input data as a prediction of the pupil diameter.

Mean (SD).

3. RESULTS

A total of 2,379, 20-s blocks and 3,249, 15-s blocks were analyzed,
with an average pupil diameter of 2126.42 µm (SD = 916.04 µm)
and 2134.33 µm (SD = 934.20 µm) respectively.

3.1. Model Comparisons
We first report the mean error metrics, averaged over 10 runs, for
each model type in Table 2. The use of embeddings improves the
model accuracy only for the LSTM, which also outperforms the
other model types we tested in average RMSE. For the remaining
results, we utilized the best performing model, the LSTM.

3.2. Input Feature Comparisons
We report the aggregate accuracy, in terms of RMSE with respect
to ground truth pupil diameter, of the LSTM models and the
input mean (Table 3). When pupil diameter was used as an
input, RMSE was significantly lower than the input mean model
(312.93 µm). The best performing model used only fixation and
pupil diameter measures as input, with 10 s of input predicting
mean pupil diameter for 10 s of output. This had a mean RMSE
of 252.97 µm.

Generally, when pupil diameter was used as an input, accuracy
significantly improved as output length increased from 5 to 10 s.

3.3. Addition of Embeddings
Next, we report the change in RMSE as a result of adding the
AOI embeddings (Table 3). When using pupil diameter as an
input, adding AOI embeddings significantly reduced the RMSE.
In these cases, the drop in RMSE was significantly more than
35 µm, with a more pronounced effect when predicting output

pupil diameter in 5 s. The effect of AOI was less pronounced
when predicting pupil diameter averaged over the longer time
span of 10 s, indicated by less reduced RMSE and non-significant
reductions even in the condition utilizing the full set of input
features (−9.68 µm, p > 0.05). Note, subsequent analyses is
reported only for the 5 s output condition.

3.4. Performance Differences
The average, post-lecture, performance on the assessment was
determined to be 59% across participants, video types and
conditions. Thus, we report the accuracy of the LSTM and input
mean models in participants who performed greater or lesser
than this mean.

In all cases, model accuracy was relatively better in
participants who scored below the mean (Table 4). In the best-
performing case (using fixation and pupil diameter as input),
the RMSE, on average, decreased by 31.13 µm (p < 0.01) when
using the same model for below-average compared to above-
average performers.

The input features whose associated accuracy resulted in the
greatest difference between groups, surprisingly, was the input
mean pupil diameter, showing a significant difference of 64.53 µm
(p < 0.01) between below- and above-average performers. All
other frameworks, using different input features, experienced
better prediction in the below-average performers (p < 0.01).

We found a similar pattern of reduction as in the case
of aggregate analysis (Table 3) in RMSE after adding in AOI
embeddings for both above- and below-average performers.

We also computed the correlation between ground truth,
estimated, and residual (ground truth minus estimate)
pupil diameter with participant performance (Figure 3A).
Performance correlated significantly (at the 0.01 significance
level) with the residuals from the LSTM model (r = 0.33), but
not the true pupil diameter (r = 0.24) or the LSTM estimate (r =
0.21) at the 0.05 level. A Fisher Z-test showed that the difference
between the correlations derived from the residuals and true
pupil diameter were not significantly different at the 0.05 level
(z = 0.66). We plot the distributions, by modality, of the true
pupil diameter (mean± SD): 2285.57± 1237.60 µm full, 2024.77
± 677.94 µm dual, 1981.92 ± 758.19 µm single; LSTM estimate:
2252.86 ± 1031.46 µm full, 2018.38 ± 544.00 µm dual, 1979.03
± 609.66 µm single; and residual: 32.72 ± 357.61 µm full, 6.39
± 271.39 µm dual, 2.89 ± 315.49 µm single in the test samples
(Figure 3B). Interesting to note is that the residuals of the model
are more invariant to the variations in modality type, then the
actual pupil measures or the models predictions. This is likely to
reflect variation in non-cognitive measures across modality that
are captured by the model and are attenuated in the residuals.

As a further analysis, we computed the separation between
performance group classes (i.e., highest and lowest tertile of mean
post-viewing test scores) using AUC measures (see Figure 4).
AUC was largest for the model residuals compared to the model
prediction and true pupil diametermeasurements (AUCresiduals =

0.74, AUCLSTM = 0.63, AUCpupil = 0.65). To construct a null
for significance testing, we performed 10, 000 permutations of
class labels and found residuals-derived AUC (p < 0.01) and true
pupil diameter-derived AUC (p = 0.05) were significantly greater
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TABLE 3 | RMSE test accuracy for given set of input features using the LSTM framework, including a simple comparison using the mean pupil diameter across fixations.

Input features 10 s input predicting 5 s output 10 s input predicting 10 s output

RMSE 1RMSEAOI n RMSE 1RMSEAOI n

Fixation 711.77*** (14.06) 7.7 650 723.45*** (32.06) −15.19 476

Fixation + Saccades + Blinks 652.74*** (20.66) −13.71 650 661.81*** (33.00) −9.05 476

Mean Input Diameter 312.93 (13.32) - 650 302.98 (14.19) - 476

Fixation + Diameter + Saccades + Blinks 285.65** (9.69) −35.78*** 650 266.27*** (12.65) −9.68 476

Fixation + Diameter 270.71*** (10.74) −35.12*** 650 252.97*** (9.35) −16.91*** 476

Metrics are reported as mean (SD) and were averaged across 10 random test splits. Differences between the input mean to other models were assessed using Mann–Whitney U-Test.

Deltas indicate differences in test accuracy measures after adding AOI embeddings to models, assessed using the Mann–Whitney U-test.

* ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001.

TABLE 4 | Mean (SD) accuracy differences after splitting data into above- and below- average (0.59) performers on the post-viewing assessments using the LSTM

framework.

Input features Greater Than Mean Lesser Than Mean

RMSE 1RMSEAOI n 1RMSE RMSE 1RMSEAOI n

Fixation 736.68*** (34.78) 30.70 281 ** 692.04*** (22.98) −8.43 368

Fixation + Saccades + Blinks 679.21*** (38.70) −7.84 284 ** 632.6*** (18.46) −18.34* 366

Mean input diameter 347.48 (24.60) - 284 ** 282.95 (10.13) - 366

Fixation + Diameter + Saccades + Blinks 296.26*** (14.00) −29.52*** 284 ** 277.19*** (11.91) −40.71*** 366

Fixation + Diameter 288.21*** (16.02) −34.23*** 284 ** 257.08*** (15.10) −36.00*** 365

Significance assessed using the Mann–Whitney U-test for mean differences in RMSE (across 10 random, test data splits or model runs) between sets of input features and mean input

pupil diameter, and separately for delta scores after addition of AOI (1RMSEAOI ) within groups. We also report differences in between the above- and below-average performers using

various input features (1 RMSE).

* ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001.

than chance while the model prediction-derived AUC was not.
This provides further evidence that the residuals of the model are
informative of cognitive performance.

4. DISCUSSION

Using viewing instructional video as a test case, we found that
an LSTM recurrent network was able to indirectly disentangle
luminance and cognitive processes that affect pupil dilation. The
effect is indirect in that the LSTM appears to better model non-
cognitive components of the pupil dynamics. For example we see
higher RMSE for subjects performing better on the post-lecture
assessments, while conversely, lower RMSE for those performing
less well.

Since the model was trained just to predict pupil response and
not cognitive effort, it is reasonable to assume most of the pupil
dynamics will be attributable to non-cognitive factors given the
information presented in the video is temporally sparse relative
to the length of the video. Thus, under our assumptions that:

1. Higher performance in the post-viewing assessments
correlates with increased cognitive performance or effort and

2. Cognitive effort is more difficult to model than lower-level
drivers of pupil diameters like luminance,

we believe our sequence networks are modeling changes in the
pupil dilation that reflect luminance changes, and thus model the

confound that researchers often try to control for when studying
attention through eye tracking data.

This finding is strengthened by the significance of correlation
between LSTM residuals and performance. The LSTM thus may
act as a filter to attenuate non-cognitive information in the pupil
dynamics, with the residuals of the resulting signal reflecting
cognitive components of the pupillary response. AUC measures
followed similar trends, with a simple, binary classifier yielding
better accuracy in separating performance groups using the
residuals over the true pupil diameter and LSTM estimates. We
recommend future paradigms use more extensive assessments to
improve statistical power in related tasks.

4.1. Pupil Diameter Prediction
Under constant, 15.9 lux ambient illumination, pupil sizes for
males and females aged 19 have been reported to vary around
a mean of approximately 7,100 µm by 900 µm (one SD)
(MacLachlan and Howland, 2002). Given this fact, even the
simple, input mean is a reasonable predictor of pupil diameter
during video viewing (Table 3). However, the best performing
model (LSTM using fixation + diameter + saccades + blinks +
AOI) provides a much more narrow estimate (235.59 µm) of
pupil diameter across all participants. We attribute this increased
accuracy to the non-linear learning capability of LSTMs, which
appear to successfully learn relationships between the input
features and, especially using the contextual information stored
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FIGURE 3 | (A) Correlational relationships in test samples, averaged by participant, between the true (ground truth) pupil diameter, the estimate from the LSTM model,

and the residual (ground truth minus model estimate) with participant performance. True pupil diameter (green) and the LSTM estimate (orange) values use the left axis

scale, while residual values (blue) use the right axis scale. (B) Distributions of true pupil diameter, LSTM estimates, and residuals by video modality.

FIGURE 4 | Histograms of true pupil diameter, LSTM estimates and residuals of the bottom (purple, n = 13) and top (gray, n = 13) tertile of participant performance on

post-viewing assessments. The AUC is calculated for each measure. (AUCresiduals = 0.74, AUCLSTM = 0.63, AUCpupil = 0.65).

in AOI embeddings, predict pupil diameter with relatively
low error in the test sets. While the GRU counterpart also
had reduced prediction errors relative to the linear models,
we note that the average RMSE was greater than the LSTM,
and the variability in performance was larger. Furthermore,
the GRU model performs worse, relative to the LSTM, when
AOI embeddings are not used as input (Table 2). This may be
due to the relatively increased control that the LSTM network
architecture provides, which in this case may have improved the
modeling of input eye events. In fact, this finding is consistent
with existing literature showing RNN results vary with the
complexity of sequences in a dataset (Chung et al., 2014).

Other non-linear models we evaluated for prediction of
pupil diameter included random forests and gradient boosted
regression trees. We hypothesized, due to the aforementioned
benefits of non-linear models, that errors would be reduced for
non-linear models compared to their linear counterparts. This
was generally true, but the linear methods with regularization
(i.e., Lasso and Ridge Regression) were similar in their error rates
to non-linear methods.

We interpret the findings from reduced error rates using
recurrent methods, relative to the naive, input mean estimate,
to support the view that temporal memory is critical for
accurate prediction of pupil diameter using eye tracking data.
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This accurate prediction may provide more opportunities
for human-computer interaction through inferring cognitive
state (Medathati et al., 2020). While, our videos’ intrinsic
characteristics (e.g., luminance, hue) may be highly correlated
with video AOIs and this may extend to correlation with pupil
diameter for bottom-up processes that rely on stimuli saliency,
we believe this extension complements the goal of our study. In
fact, we train our models on data from multiple modalities for
this reason precisely—because we believe that a video’s intrinsic
characteristics might be confounds for pupil dynamics and not
assessment performance, and modeling approaches may work
better for saliency-driven pupil changes and not cognitively-
driven changes.

4.2. Improvement From AOIs
We fixed AOIs to be constant across videos, since we wanted
to isolate regions most relevant to information processing in
the given task. By controlling where and how information
is presented in the videos, we attempted to study the
effect of information presentation (e.g., through controlled
text placements and instructor gestures) on pupil diameter.
Our sequence model approach generally worked best when
including not just eye tracking features but also context (via
AOI embeddings). In all cases, adding AOI reduces RMSE—
significantly in cases where pupil diameter is used as an input.
Our findings indicate that pupil diameter, paired with fixational
positions, provide a richer context of viewing patterns that
allow accurate predictions of pupil diameter. We found a
greater decrease in error when adding AOI embeddings as input
predicting 5 s of average fixation pupil diameter. However, we
believe this may be due to a floor effect since the difference yields
RMSEs that are relative close in magnitude to the fixation +
diameter input features from the 10 s output problem type.

While the information contained in embeddings is
redundant with the fixation positions, we believe the categorical
representation of continuous data (i.e., three AOIs from the
large space of possible fixation coordinates) improved LSTM
learning to yield lower error rates. In fact, architectures designed
with characteristics of sparse data in mind during design tend to
optimize faster and avoid local minima (Duchi et al., 2013).

4.3. Input Features
In our tested cases, we did not find significant improvements
to our model after including saccade and blink sequences to
fixation and pupil diameter inputs. We believe this may be
because saccades and blinks are not related to pupil diameter in
a task that requires focus such as in instructional video viewing.
Despite a lack of human research related to our finding, we note
animal research where microstimulation affected pupil dilation
independently of saccades (Wang et al., 2012), highlighting the
limited association of covert attention to pupil dilation. Because
we partly sought a study of the minimum amount of eye tracking
data required to accurately predict pupil diameter, our findings
show that input features like saccades and blinks are not as critical
as fixation and pupil diameter data when predicting future pupil
diameter. We expect this finding to be helpful when focusing
efforts for algorithms modeling pupillary mechanisms.

We note that our framework allows for prediction of other
averages of eye tracking measures, such as fixation duration
during the output region, blink rate, AOI-specific measures, etc.
In addition, a framework such as ours allows for prediction
of sequences of data—for example, fixation positions or pupil
diameters. In fact, these types of problems mirror those faced
in natural language processing, where deep learning, sequence
models have performed relatively better than other linear or non-
linear models for sequence outputs. Future work is required in
applying this to viewing patterns.

4.4. Limitations
The primary limitation of our study is the lack of interpretability
for the best-performing (LSTM) model, a common problem in
deep learning studies. In this case, however, we attempted to
solve the problem of not being able to understand the precise
importance of input features by studying the effect of various
models with modular inputs. We believe that this approach,
paired with multiple runs of models to get average accuracy,
addresses issues of interpretability and can be expanded upon in
future work.

Additionally, we acknowledge that the LSTM model may
be difficult to generalize to some training sequences. Our
results on model accuracy, given modular inputs, allows some
generalizability to sensors that are unable to extract pupil
diameters or classification models unable to specify eye events
such as saccades. However, a limitation of our approach is
the lack of specificity of which LSTM hyperparameters or
characteristics of eye events may be contributing to better
accuracy of prediction. While our focus was on studying the
effectiveness of RNNs in improving pupil prediction accuracy,
and how student performance differences may be related to
model accuracy, future work in this area should apply the
same modularity within RNNs to further understand why deep
learning models more effectively capture behavioral variations
relative to their non-linear counterparts.

5. CONCLUSION

Our evaluation shows that, using AOI embeddings and fixation
and pupil sequence history, a deep learning, sequence model
predicts pupil diameter better than a naive mean-based estimate.
Prediction is better for subjects who perform relatively poorly
on post-lecture assessments, and model errors correlate with
performance as a trend. This latter finding may indicate that
those individuals were less engaged and thus had less expression
of their cognition in their pupil dilation, allowing the model to
capture luminance-influenced variations.
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The performance and the success of a group working as a team on a common goal
depends on the individuals’ skills and the collective coordination of their abilities. On a
perceptual level, individual gaze behavior is reasonably well investigated. However, the
coordination of visual skills in a team has been investigated only in laboratory studies
and the practical examination and knowledge transfer to field studies or the applicability
in real-life situations have so far been neglected. This is mainly due to the fact that
a methodological approach along with a suitable evaluation procedure to analyze the
gaze coordination within a team in highly dynamic events outside the lab, is still missing.
Thus, this study was conducted to develop a tool to investigate the coordinated gaze
behavior within a team of three human beings acting with a common goal in a dynamic
real-world scenario. This team was a (three-person) basketball referee team adjudicating
a game. Using mobile eye-tracking devices and an indigenously designed software tool
for the simultaneous analysis of the gaze data of three participants, allowed, for the first
time, the simultaneous investigation of the coordinated gaze behavior of three people in
a highly dynamic setting. Overall, the study provides a new and innovative method to
investigate the coordinated gaze behavior of a three-person team in specific tasks. This
method is also applicable to investigate research questions about teams in dynamic
real-world scenarios and get a deeper look at interactions and behavior patterns of
human beings in group settings (for example, in team sports).

Keywords: team sports, officials, gaze behavior, teamwork, eye-tracking

INTRODUCTION

If a group of human beings tries to fulfill the requirements of a specific task, e.g., to solve a problem,
or to reach a specific performance criterion, the members of this group can coordinate their abilities
and skills to optimize their behavior and/or performance. For instance, lifeguards coordinating
scanning of water surfaces to minimize the risk of a failure to perceive a drowning person, or in
a dangerous situation during rush hour traffic on the road, the role of co-driver in observing the
traffic to minimize the risk of a road accident. Similarly, in team sports, coordination of visual skills
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could be relevant for the overall performance of both, a team of
sportspeople and/or referees.

The coordination of gaze among group members or within
a team has almost exclusively been studied only in different
experimental laboratory investigations. In a police-training
simulation (on computer screens), for example, Neider et al.
(2010) showed that different options for sharing information
(verbal communication, shared gaze via gaze cursors of partners
fixations), can influence performance in spatial referencing. The
authors stated that verbal and visual information can be helpful
for interpersonal coordination. An earlier study showed that in
simple perceptual search tasks, the coordination of gazes through
the observation of a partner’s gaze leads to superior performances
compared to individual search (Brennan et al., 2008). Bahrami
et al. (2010) demonstrated in a low-level perceptual task (visual
detection of a target stimulus) that team (dyads, i.e., two
individuals) decisions are better than the decisions made by just
one observer. A necessary condition for better performance is the
opportunity of free communication within the dyads.

Other than the aforementioned studies, Macdonald and Tatler
(2018) provided a description of the non-verbal communication
cues that people use in real-world situations. They investigated
the synchronized gaze behavior of a pair engaged in the activity
of making a cake and observed how the roles of the subjects
(chef and gatherer) influence the gaze behavior in this (social)
interaction task (Macdonald and Tatler, 2018). Other than this
study, almost no research concerning the interaction of gazes
or the gaze coordination of people working in a team setting
has been published so far. In particular, there has been no
application-oriented method which is presented to analyze teams’
gaze behavior, even though, the meta-analyses by Mann et al.
(2007) as well as by Gegenfurtner et al. (2011) has suggested
that specific cognitive abilities are better investigated in natural
environments. Risko et al. (2016) additionally noted the absence
of applicability of laboratory studies to real-world environments
in the area of social attention.

Over the last few decades, technological advances in mobile
eye tracking systems have made it easier to conduct field studies
on gaze behavior [Kredel et al., 2017, also see Wan et al.
(2019)]. In recent times, software solutions for (automated) data
analyses have been widely available (e.g., Panetta et al., 2019,
2020). However, there is almost no procedure to evaluate the
synchronized tracking of gaze behavior within teams (through
eye tracking) in more or less dynamic situations. This shows
that although the analysis of individual gaze behavior has been
facilitated, it has not led to an increase of research on gaze
behavior within groups.

Interestingly, this is also the case in research in areas like sports
science and sports psychology, where eye tracking has become
an often-used method to analyze athletes’ or referees’ gaze
behavior. Recent reviews about gaze behavior in sports (Kredel
et al., 2017; Hüttermann et al., 2018) have given an extensive
overview on contents, methods, and practical applications which
have been used in the past decades. Notably, all the studies
included in the reviews, focused on individual parameters and
joint activities of groups or team members. Considering that
the performance in team sports (athletes and officials/referees) is

primarily based on the coordination and interaction of individual
skills performed by each team member, the lack of research on the
subject is surprising.

However, there has been one study which investigated the
coordinated gaze behavior of handball referees adjudicating a
game (Fasold et al., 2018). While Fasold et al. (2018) showed
that the analysis of the coordinated gaze of a dyad can be done
well by using available software tools (e.g., eye-tracking device
application, KINOVEA), it was evident that the observation
of more than one person at the same time requires a well-
structured experimental set-up. Furthermore, this procedure is
associated with extensive processing of high volumes of data,
especially considering that analyzing data of gaze behavior in
highly dynamic situations is mainly done manually as a frame-
by-frame analysis. Manual analysis is possibly the main reason for
the research gap with regard to the analysis of the gaze behavior
of two or more individuals in a natural environment. This is
also related to the fact that a method to technically analyze the
gazes of more than two people in a time-effective way is missing
[considering that freeware solutions, most often, only allow the
analysis of a dyad, see Fasold et al. (2018)].

The current study expands the approach of Fasold et al.
(2018) by analyzing the synchronized gaze behavior of three
individuals working together in a team. In contrast to lab-
based studies, which allow high-frequency data collection and
algorithmic based data analyses (Mele and Federici, 2012), in
field studies it is often not possible to use automated analyses
due to the dynamic movements, the accelerations, and the
three-dimensional and ever changing areas of interest (AOI).
While previous approaches for automated analyses of individual
gaze behaviors in more or less dynamic environments do exist
(e.g., Panetta et al., 2019), a manual frame-by-frame analysis
is necessary to investigate the simultaneous gaze behavior of
three referees. This kind of analysis, although time-consuming,
is reliable and functional for sports practice (cf. Fasold et al.,
2018). Therefore, the main focus of the current study was on
the development of a reasonable way of analyzing data and
figuring out a way to handle the large dataset (three eye-
tracking devices).

Study
In investigating performances in team sports, usually, it is mainly
the athletes who are the primary focus. But referees, who play
a vital role in successfully conducting a game, have to deliver
high performances in judging a large number of interactions
in highly dynamic situations involving a lot of cues/athletes
(e.g., Plessner and MacMahon, 2013). The relevance of the
visual system in conducting refereeing tasks is well known, as
documented by MacMahon et al. (2015, p. 47): “Perceiving,
and in most cases seeing, is at the root of any judgment and
decision in refereeing in sports.” The assumption that groups of
people can perceive more than an individual would, is derived
from the refereeing regulations of various sports. The regulations
of a multitude of (professional) sports demand the presence
of a team of referees, rather than an individual referee (e.g.,
two referees in volleyball or team handball, three referees in
basketball or ice hockey). Thus, for our study, we chose to
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simultaneously observe the gaze behavior of three basketball
referees by means of three individual mobile eye-tracking systems
for each of them during a preparation game. In professional
basketball, usually the 3-Person Officiating system (3PO) is used,
meaning three referees are systematically assigned to the court in
order to avoid as little action as possible (FIBA, 2016). Almost
always, it’s the FIBA which defines the zone/area which has to
be covered by a specific referee (see Figure 1), and thus, it
also determines how the referees should coordinate their gaze
behavior (FIBA, 2016).

Despite these clear guidelines, it is actually unclear if a team
of referees is able to simultaneously cover the court in the most
optimum manner. To test the applicability of a new method
to analyze the simultaneous gaze behavior of three people, we
analyzed the referees’ gaze behavior and compared it to the
FIBA guidelines for refereeing. It is noteworthy that FIBA (2016)
clarifies that the ground coverage by referees in an active game is
not static and has to be adapted according to the dynamic flow of
the game. Overlapping and/or dual coverage of some areas is not
necessarily wrong and may be indicative of the functioning of the
way that the referee team works.

METHODS

This study is the starting point of a larger project which evaluates
the on-court visual behavior and social interaction among the
referees in the team. The simultaneous coordination of gazes
is one part of this application-oriented investigation, the other
being the large amount of data resulting from such interaction. So
far, a method to observe this interaction or measure the data has
not been developed. Therefore, we developed a tool to facilitate a
frame-by-frame analyses of simultaneous gaze behavior of several
observers and tested it on a representative data set.

FIGURE 1 | Coverage of gaze areas of the three referees’ positions (L, lead; T,
trail; C, center) in the 3PO system, predefined by the guidelines for referees
[modified figure according to FIBA (2016), p. 178)].

Tool Development
In order to analyze the simultaneous video streams (gaze data)
of two people working as a team in a natural environment, a
software named KINOVEA was applied in the study by Fasold
et al. (2018). However, that method only allows the simultaneous
analysis of two video streams. Moreover, while analyzing data,
frame-by-frame video players’ analysis is not sufficient because
it only allows watching recordings of the several gazes frame-by-
frame, without any options to save the results of such analyses.
That is, all data must be separately entered and saved by means
of an additional computer program. Such a procedure–switching
from one video stream to another or watching several gaze
recordings of the same situation in succession and switching
from one computer program to another in order to enter data–is
time-consuming and prone to errors.

Initially for the current project, but with a practical
applicability beyond that for many future eye-tracking projects,
we developed a tool enabling the simultaneous analysis of four
video streams. This tool allows observation of three video streams
of gaze data recorded with the eye-tracking devices (Referees
A, B, and C) and a fourth stream showing the complete scene
video, in the current case, recorded from the stand in the
middle of the playing field (just for the validation of the game
situations). This tool offers the possibility to play the videos frame
by frame with the inserted gaze points extracted from the eye-
tracking software (Pupil Player). We developed the tool using
components of Delphi XE3, PasLibVlc1 and the commercial TMS
Component Studio2. The complete source code is available in a
public GIT repository3. From the TMS Component Studio, we
used only the components of the feature-rich user interface to
create a modern user interface for our tool. Some features of
the PasLibVlc are also used in the well-known VLC-Player. This
ensures that for the purpose of our tool, most video formats can
be played back seamlessly and this can also be used with other
eye-tracking systems.

Our main goal for the software-user interface was to create a
simple and efficient collection of the relevant data from various
observers. Therefore, we developed a project structure to save
all the necessary data of the used video files in one repository.
The project properties included, among other things, the video
file location, the position of each window of the video streams,
and the synchronized start frame of the video streams. These
properties were saved in a separate project file. After saving the
files, an analysis could be started again after an interruption
without much effort by simply loading the project property file.
In order to avoid any data loss, the current status of the analysis
was saved after editing each frame. For each gaze data stream,
the analyst could choose the AOI of the referee who was being
observed and see if the referee covered his/her primary AOI.
Afterward, with a press of a button, save all entries could be saved
into a csv file, followed by the next frame appearing automatically
for all four videos (Figure 2). In the end, this csv file could be
exported and used for further analyses.

1https://prog.olsztyn.pl/paslibvlc/
2https://www.tmssoftware.com
3https://github.com/Seifriz/AFVS
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FIGURE 2 | Screenshot of the user interface of the analysis tool enabling the analysis of four video streams at the same time.

Case Study
Participants and Design
A single-case study with a team of expert referees was chosen for
this study. This team (all males) adjudicated a preparation game
of the German Basketball Bundesliga (Ref A, age = 29, experience
on German expert level = 9; Ref B, age = 36, experience = 10;
Ref C, age = 44, experience = 17; all with experience at the
international level). All of them had normal or corrected-to-
normal vision.

Ethics Statement
All participants provided written informed consent prior to their
participation, in accordance to the principles outlined by the
World Medical Association’s Declaration of Helsinki and the
Office of Research Ethics at the German Sport University Cologne
(ethics proposal number: 141/2018). Participants were initially
told that the study would investigate their communication
strategy after a call during a game. After the game, they were
informed about the real aim of the study.

Apparatus
Three Pupil Core mobile eye-tracking systems (Pupil Labs
GmbH, Berlin, Germany) were used in this study. We used the
binocular mobile eye-tracking headset connected to the mobile
bundle which composed of a Motorola Moto Z2 or Z3 Play with
an USBC-USBC cable. The eye movements were recorded with
200 Hz and were matched to the simultaneously captured scene
videos recorded at 30 Hz (30 frames per second).

Procedure
Prior to testing, the referees were informed about the procedure.
It was explained to them how eye tracking devices work, and
they were given instructions on how to handle them. One hour
before the game, the eye tracking headsets were adjusted to the

participants. Thereafter, the referees conducted their normal pre-
game warm-up without the eye tracking systems until 5 min
before the start of the game. Then, the referees and examiners
met in front of the scorer’s table. The eye tracking systems were
returned to the referees and the Manual Marker Calibration
was conducted (Kassner et al., 2014). The referees then placed
themselves on the free-throw line and looked toward the basket.
One of the examiners held a Pupil Calibration Marker v0.4 in
his/her hand and placed himself/herself 1 m in front of the
referees. The referees were told not to move their heads and to
follow the route of the marker only with their eyes. A predefined
route was used to calibrate every single eye-tracker. At half-
time, the recordings were stopped and 5 min before the second
half, the same calibration procedure was repeated. Shortly before
these calibration processes, the eye trackers were synchronized
by time via a visual signal. The recordings were saved on
an SD-card and calibrated post hoc using the Pupil Player
application (version 1.17, Pupil Labs GmbH, Berlin, Germany;
Kassner et al., 2014).

Data
To test the new developed analysis tool, this case study was
conducted in line with a game specific task–in this case, the
behaviors of the referees in critical foul situations according
the guidelines. An expert–a 52-years-old basketball professional
with experience as a player, a coach and a referee on national
level–reviewed the whole game and rated 23 scenes as highly
challenging foul situations with critical decisions. The scenes
were shortlisted based on the choice of the expert on relevant
time periods before the call/decision. For every frame, the
experimenter determined whether the referees’ gaze was inside
the primary observation area (according to FIBA guidebook)
or not. Furthermore, for every frame, the coordinated gaze
behavior was assessed on the basis of whether the referees
looked at the same AOI or not. The AOI were defined
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FIGURE 3 | Flow chart of the working process for analyzing gaze coordination in dynamic events using the new tool.

as the ball, the basket, another referee, the scorer’s table,
defending or attacking players, the zone, and the three-
point line.

Data Analysis by Using the New Tool
Data Integration and Synchronization
After launching the analysis tool, the control (base) window
and four other smaller windows (called view0, view1, view2,
and view3) are displayed on the screen. After saving a new
project, a window appears where the path name of the video files
needs to be inserted. In addition to the selection of the video
file, the analyst has to insert the videos’ frame rate in ms (e.g.,
40 ms = 25 Hz; 33.33 ms = 30 Hz). He/she can also select whether
the audio track of the video file is played or not and the way the
windows (view0–3) are arranged. The program also allows the
synchronization of videos.

Steps of Analysis
After clicking on the analysis button, the program will start
with the first frame. For the recordings of the gazes (of the
referees), the appropriate AOI (ball, basket, scores table or
shot clock) or player (attacking or defending, including the
jersey number) can be chosen. In our study, we could also
record if the referees covered the primary area of responsibility.
Moreover, an additional insert field to add comments for each
column is available. After the analyst completes entries for
one frame, all the relevant information is saved automatically
followed by access to the next frame. In the end, a csv file

is available with all the data and can be exported and used
for further analyses. Figure 3 represents a flowchart of the
working process, highlighting how the simultaneous analysis of
multiple persons’ gaze behavior is possible using the new tool
in dynamic events.

RESULTS AND DISCUSSION

The primary aim of this study was to develop and apply, for
the first time, a method to investigate the simultaneous gaze
behavior of a team of three people operating in a highly dynamic
environment. One major challenge in such an investigation is
the large amount of data generated. Our method provides a
solution for this problem by presenting a procedure which allows
easy classification of large datasets and subsequently, makes
analyses easier.

The method we have developed is not only economical, but
also offers a potential for wide applicability. Using mobile eye-
tracking devices in highly dynamic and specialized situations
could affect the natural behavior of the participants. However, in
our study, the participants did not report any sizeable constraints
during the process of data collection despite the game activity.
They all reported that they needed a short period of time to
familiarize themselves with the eye-tracking device and after a
few minutes, they didn’t feel any constraints.

The recording of the gaze behaviors of the participants
during the chosen scenes within the basketball game, did not
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present any major problems either and the gaze points of all
the participants were clearly visible. The use of the analysis tool
makes frame-by-frame analysis of gaze recordings of multiple
participants feasible, because all the three videos (of the referees)
could be analyzed simultaneously, and no additional computer
program was needed for manually transferring the data from
the recorded videos. Previous studies have presented approaches
to analyze simultaneous gazes of dyads in laboratory studies
(e.g., Neider et al., 2010) or the simultaneous gazes of even
bigger groups in a digital classroom (Nyström et al., 2017).
The highly technical demands of investigating gaze of a group
has been the focus of these investigations and past results have
shown that such paradigms work well with acceptable deviations
in different technical parameters (e.g., latency, Nyström et al.,
2017). Based on these results, Scurr et al. (2014) have stated
that several studies show methodologies for simultaneous gaze
analysis, but none of them has been applied in highly dynamic
situations. As an innovative extension of these investigations
and research methods, the methodological approach presented
in this study, allows an analysis of teams’ gaze behavior in
dynamic actions. Even beyond that, it can be applied to other
research fields, such as social cognition in which the presence of
another person has been found to affect the gaze of an observer
(e.g., Nasiopoulos et al., 2015); or this approach could help to
assess how social attention is distributed in multi-agent contexts
(cf. Dalmaso et al., 2020).

Results of the case study: The analysis included 2,339 video
frames synchronized per referee. The mean duration of the
scenes lasted 106.31 frames (SD = 40.36). In 47.07% of the
analyzed scenes, the referees looked at a point in their primary
observation area (with a high SD = 24.35%). This distribution
of the coverage of the primary observation area varied as a
function of the referees’ positions (trail 54.58%, SD = 21.30; lead
39.03%, SD = 24.85; center 47.67, SD = 26.14). Analyzing the
coordination of the referees’ gaze, in just 5.61% of all analyzed
frames, all three referees fixated their gaze on the same area.
In 31.94% of all analyzed frames, two referees fixated their gaze
on the same area (center + lead 13.34%; center + trail 10.90%;
lead + trail 7.70%). The results showed that the referee team
under observation followed the FIBA guidelines in approximately
half of all included cases (playing situations). Interestingly, in
majority of the analyzed frames (>90%), they distributed their
gaze to different AOI to cover as many aspects of game actions as
possible. In contrast, the single case study of Fasold et al. (2018)
showed that the novice referees in handball did not coordinate
their gaze behavior in an appropriate manner, i.e., both referees
focused on areas close to the ball in about 80% of the analyzed
data. Considering that in our study the tested team of referees
was highly experienced, it does seem surprising that deviations
from the guidelines occur here as well.

CONCLUSION

The method of analyzing synchronized gaze behavior of
three individuals seems promising for future efforts in
various other scenarios involving many individuals who try

to work together as a team (e.g., personal protection, traffic
monitoring). Furthermore, it could be used to replicate findings
of basic experimental research on gaze behavior of teams
(e.g., Bahrami et al., 2010; Neider et al., 2010) in natural
environments or settings.

We were able to show that similar simultaneous gaze
evaluation with more than one or two participants is possible in
dynamic situations, enabling new possibilities in studying social
and functional coordinated interactions in future. We extended
the approach by Fasold et al. (2018) to three referees working
together as a team, with the aim of perceiving as much of
the relevant game actions as possible in a very information-
rich environment. This study shows that using mobile eye-
tracking devices (Pupil Labs) and a new analysis tool does
make simultaneous gaze analyses in dynamic environments
possible and even more efficient. To develop the analysis tool we
utilized commonly used components (e.g., PubLibVlc) because
these components guarantee high performance, stability and
compatibility with all available video formats. The manual
frame-by-frame analysis is still time consuming but, it can
be conducted much faster considering the availability of
software that facilitates the analytical process. This manual
method may be necessary until machine-learning processes allow
algorithmic-based data analysis in highly dynamic scenarios.
In our case, we expect that the manual analysis will allow
the report of frequencies next as a qualitative observation
of the recorded data (game actions) and this could result
in a step toward automated analysis. Although, the tool we
developed is available on GIThub, we recommend adjusting
the program to the specific needs of every researcher’s
own project. Furthermore, we suggest advancements to the
new analysis tool by integrating keyboard short cuts or the
development of a specialized keyboard like the ones used
for video editing. These adaptations could further optimize
the user interface of the analysis tool and could optimize
manual data analysis.

To conclude, the current status of our software should be
seen as a starting point for investigations into coordination
of visual skills in groups, not only in sports, but also in
everyday tasks where acting as a team is required to achieve the
defined objectives.
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How vision guides gaze in realistic settings has been researched for decades. Human
gaze behavior is typically measured in laboratory settings that are well controlled but
feature-reduced and movement-constrained, in sharp contrast to real-life gaze control
that combines eye, head, and body movements. Previous real-world research has
shown environmental factors such as terrain difficulty to affect gaze; however, real-world
settings are difficult to control or replicate. Virtual reality (VR) offers the experimental
control of a laboratory, yet approximates freedom and visual complexity of the real world
(RW). We measured gaze data in 8 healthy young adults during walking in the RW
and simulated locomotion in VR. Participants walked along a pre-defined path inside
an office building, which included different terrains such as long corridors and flights of
stairs. In VR, participants followed the same path in a detailed virtual reconstruction of
the building. We devised a novel hybrid control strategy for movement in VR: participants
did not actually translate: forward movements were controlled by a hand-held device,
rotational movements were executed physically and transferred to the VR. We found
significant effects of terrain type (flat corridor, staircase up, and staircase down) on gaze
direction, on the spatial spread of gaze direction, and on the angular distribution of gaze-
direction changes. The factor world (RW and VR) affected the angular distribution of
gaze-direction changes, saccade frequency, and head-centered vertical gaze direction.
The latter effect vanished when referencing gaze to a world-fixed coordinate system,
and was likely due to specifics of headset placement, which cannot confound any other
analyzed measure. Importantly, we did not observe a significant interaction between
the factors world and terrain for any of the tested measures. This indicates that
differences between terrain types are not modulated by the world. The overall dwell
time on navigational markers did not differ between worlds. The similar dependence
of gaze behavior on terrain in the RW and in VR indicates that our VR captures real-
world constraints remarkably well. High-fidelity VR combined with naturalistic movement
control therefore has the potential to narrow the gap between the experimental control
of a lab and ecologically valid settings.
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INTRODUCTION

The question what guides our gaze in realistic settings has
been of interest to researchers for decades. Since the pioneering
studies of Buswell (1935) and Yarbus (1967), this issue has
long been reduced to eye movements during scene viewing;
that is, observers looking at pictures of natural scenes with
little to no head and body movements. Since the turn of
the millennium, many computational models that predict gaze
allocation for such scene viewing have been developed. Since,
Itti et al. (1998) adapted Koch and Ullman (1985) “saliency
map” to predict fixated locations in a natural scene, many
models followed the idea to combine (low-level) image features
using increasingly sophisticated schemes or optimality principles
(e.g., Bruce and Tsotsos, 2006; Harel et al., 2006; Zhang et al.,
2008; Garcia-Diaz et al., 2012). As such models presumably
built-in some implicit (proto-)object representation and objects
are crucial for gaze guidance (Stoll et al., 2015), it comes
as no surprise that models that use deep neural networks
that share their lower-levels with object recognition models
(e.g., Kümmerer et al., 2015), have become most successful
and close to the theoretical image-computable optimum in
predicting gaze during free viewing of natural scenes. However,
such image-computable models do not explicitly include other
factors that are crucial for gaze guidance in natural scenes
(Tatler et al., 2011), such as the task (Buswell, 1935; Yarbus,
1967; Hayhoe and Ballard, 2005; Underwood and Foulsham,
2006; Henderson et al., 2007; Einhäuser et al., 2008), semantics
(Henderson and Hayes, 2017) or interindividual differences (de
Haas et al., 2019). Crucially, most modeling and experimental
studies alike, have used scene viewing with the head-fixed, which
provides good experimental control, but the transfer to real-
world scenarios is less clear.

In typical laboratory settings, where the movement of head
and body is highly constrained, eye movements typically consist
mainly of saccades – rapid shifts of gaze – and fixations –
times in which the eyes are relatively stable and only small
fixational eye movements [drift, microsaccades and tremor,
Rolfs (2009) and Martinez-Conde et al. (2004) for reviews]
occur. When a target moves though the visual field, it can be
followed by smooth pursuit eye movements (Ilg, 2002; Spering
and Montagnini, 2011); when the whole visual field moves, an
optokinetic nystagmus is induced that stabilizes the image on
the retina through slow eye-movement phases, whose dynamics
is similar to pursuit (Magnusson et al., 1986), and resets the
eyes in their orbit by fast phases, whose dynamics is similar
to saccades (e.g., Garbutt et al., 2001). If the head is moved,
the vestibular ocular reflex (VOR) quickly stabilizes gaze by
counterrotating the eyes relative to the head (Fetter, 2007).
While these classes of eye movements can be distinguished
based on their dynamics and use in part different neuronal
circuitry (Ilg, 1997; Kowler, 2011 for reviews), during real-
world behaviors these movements interact and their conceptual
separation becomes less clear (Steinman and Collewijn, 1980).
For example, if an observer tracks an object that is stationary
in the world while they are moving in the world, conceptually,
this would be close to a fixation, while the eyes are clearly

moving relative to their orbit. Hence for complex scenarios it is
often critical to carefully distinguish between separate coordinate
systems (e.g., eye movements relative to the head – hereafter
referred to as “eye-in-head,” head movements relative to the
world – “head in world,” or eye movements relative to the
world, hereafter “gaze-in-world”) and to consider variables of
interest, such as eye movement velocity in either coordinate
frame, rather as a continuum than as means of distinguishing
eye-movement classes strictly. Nonetheless, we still identify
saccades based on velocity criteria (Engbert and Kliegl, 2003)
for analysis purposes, while we do not separate any other classes
further. Besides the mentioned convergent eye movements (both
eyes move in unison), there are also divergent (vergence) eye
movements, which we do not consider here, as in most cases
objects of interest are at a considerable distance making the
size of vergence movements small to negligible relative to
other movements.

Even without an explicit task, participants exploring the real
world (RW) at least need to navigate their environment and
maintain a stable gait. Indeed, eye-movement behavior differs
qualitatively, when walking through a natural world as compared
to watching the same visual input as videos or series of stills
with the head fixed (’t Hart et al., 2009; Foulsham et al., 2011).
Moreover, gaze is affected by the difficulty of the terrain to be
negotiated (’t Hart and Einhäuser, 2012; Thomas et al., 2020)
and critical to guide an individual’s steps (Matthis et al., 2018).
Consequently, the constraints and implicit tasks imposed by
the environment along with the freedom to move not only the
eyes but also the head and the body to allocate gaze, limit the
transfer from laboratory studies to real-world settings. At the
same time, when aiming for general results beyond a specific
application setting – such as sports (e.g., Land and McLeod,
2000; Hayhoe et al., 2012, for a review see Kredel et al., 2017),
interface design (Thoma and Dodd, 2019), customer evaluation
(Zhang et al., 2018) or driving (Land, 1992; Chapman and
Underwood, 1998; Kapitaniak et al., 2015) to name just a few
areas where eye-tracking has become a widely used tool – the
degree of experimental control in a real-world setting is severely
limited. This may become even more crucial when specific tasks
such as search shall be studied, rather than free exploration or
free viewing. Here, virtual reality (VR) has recently emerged as
a viable alternative to overcome the gap between the limited
ecological validity of the lab and the limited experimental control
of the “wild.”

VR, especially when displayed through head-mounted
displays (HMDs) has some intrinsic limitations, such as
a restricted field of view or limited resolution. Moreover,
physiological factors such as the vergence/accommodation
conflict (Kramida, 2016; Iskander et al., 2019), may lead to
increased visual stress (Mon-Williams et al., 1998). However,
thanks to ever improving display technology, decreasing costs
and ease-of-use, over the recent years, VR systems have become
a research tool in many fields. This includes – besides the
entertainment market – highly regulated fields like medicine
[e.g., Dentistry (Huang et al., 2018), education and training
(Bernardo, 2017; Izard et al., 2018), simulation, diagnosis
and rehabilitation of visual impairments (Baheux et al., 2005;
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Jones et al., 2020)] and psychotherapy (e.g., autism therapy:
Georgescu et al., 2014; Lahiri et al., 2015, fear and anxiety
disorders: Hong et al., 2017; Kim et al., 2018; Matthis et al.,
2018), as well as in areas directly relevant to psychophysical
research such as attentional allocation (Helbing et al., 2020).
As fears of long-term negative effects of VR use have so far
not been confirmed (e.g., Turnbull and Phillips, 2017), and the
recent VR goggles approach photorealistic capabilities while
being more and more comfortable to wear, we are now in a
position to ask, to what extent a HMD can be used as a proxy for
a real-world setting in the context of gaze tracking – a question
that has previously only been addressed in a limited scope.
Pioneering the use of VR in eye-tracking research, Rothkopf
et al. (2007) and Rothkopf and Ballard (2009) demonstrated
that with identical visual environments the task – in their
case collecting or avoiding obstacles – drastically alters gaze
behavior relative to the objects of relevance. Meißner et al.
(2017) made use of VR-based gaze tracking in the context of
an augmented-reality shopping experience. Anderson et al.
(2020) showed that both hand movements and gaze behavior
in VR follow the same principles as in real life, at least while
watching static natural scenes. VR and gaze tracking are also
seeing widespread use in the field of driving simulation, allowing
for test scenarios that would be dangerous or difficult to realize
in the RW (e.g., Konstantopoulos et al., 2010; Zhang et al., 2017;
Swan et al., 2020).

In spite of the increasing use of VR as display technology
for eye-tracking experiments, the question as to how faithfully
a VR setting mimics real-world constraints with respect to gaze
allocation has remained largely unaddressed. Here, we address
this issue for walking through a virtual and a real space. For
such a direct comparison between gaze allocation when walking
through the real and the virtual world, however, participants need
to be tested in a sufficiently complex and large environment to
allow actual locomotion, which needs to be closely and faithfully
matched by a virtual copy of the same environment.

In the present study, we compare gaze while walking on a pre-
defined path through three storeys of an office building to gaze
while moving on a virtual high-fidelity copy of the same path
(Figure 1 and sample videos in the Supplementary Material).
In VR, participants control their translational movement by a
handheld controller (and do not actually translate), while they
do execute rotational movements that are transformed into
the matching rotational movement in the VR. We predefine
different zones on the path (factor “sector” with levels “corridors,”
“ascending stairs,” and “descending stairs”) and assess robust
measures of eye-movement behavior for both the RW and the
VR (factor “world” with levels “VR” and “RW”). Assuming
that the movement in VR is a good proxy for locomotion
in the RW (with respect to gaze measurements), we would
expect that differences in these measures found in the RW
are also found in the VR, and remain largely unaffected
by the choice of world. That is, under the hypothesis that
VR faithfully approximates the RW, we expect main effects
of the factor sector, but no interaction between sector and
world for dependent variables characterizing relevant aspects of
gaze allocation.

MATERIALS AND METHODS

Comparing Different Worlds
To compare gaze behavior between VR and RW, it is desirable
to expose the participants to VR-generated surroundings that
are as closely matched to the RW surroundings as possible. For
practical reasons, the Physics building of Chemnitz University of
Technology was chosen as the real-world location for this study
and also modeled in VR.

Real World
Participants were instructed to walk through the building
on a pre-defined route (Figure 1) at “their usual walking
speed without unnecessary stopping.” To enable participants to
follow the route without actively engaging them at every turn,
landmarks were placed at critical spots pointing in the correct
direction. To avoid making the landmarks overly salient by falling
out of the building context, a type of office chair abundantly
available throughout the building was chosen. A plain white
A4-sized paper with a black printed arrow was attached to the
backrest, pointing the way (Figure 2).

The route started in the basement in the laboratory’s commons
area, and went through several corridors, lobbies and staircases
until it returned on a different route to the same commons area.
A detailed route description can be seen from Figure 1, including
the segmentation into types of sectors (terrain) for the analysis.
The route was inspected before each session, unforeseen obstacles
were removed and any doors possibly interfering with the route
were blocked open, such that participants did not have to interact
with any object in their path. At the end of each session, the route
was inspected again, and each recorded scene cam video was also
manually inspected for such anomalies.

The experiment was conducted in the early evening hours
of the European summer (ca. 18–21 h CEST), as these hours
afforded both good natural illumination and minimal traffic
within the building. Nonetheless, on occasion there were
unforeseen obstacles in the path of the participant, and in 10
instances (max. 1 per individual) participants encountered other
persons or doors not part of the walking route left open during
the trial. Even though participants reported to believe that those
incidents were part of the experiment, the corresponding periods
during which the disturbance persisted (i. e., was visible) were
excluded from gaze-data analysis to avoid data contamination.

Virtual Reality
To achieve best possible comparability between VR and reality,
a high-fidelity 3D model of the entire physics building was
developed, allowing identical walking routes in VR as well
as reality (for a sample screenshot comparing RW and VR,
see Figure 2; sample movies depicting both virtual and RW
are available as Supplementary Material1). No human-like
characters or avatars were placed in the virtual scenario. The
software packages Blender (v. 2.79) and Unity (v. 2018.3.0f2)

1High quality versions of the videos in the Supplementary Material can be found
at https://doi.org/10.6084/m9.figshare.14553738 and https://doi.org/10.6084/m9.
figshare.14553759.
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FIGURE 1 | Layout of the three floors (top panel: basement, middle panel: street level; and bottom panel: one floor above street level); of the experimental site
and the selected walkway. Different sections are classified by color coding (see legend) and numbered in order of passing. Interior walls and structures irrelevant to
the experiment grayed out for data-protection reasons. Map is to scale, scale bar corresponds to 10 m.

were used for developing and rendering the VR model. The
internal details of the building were represented in the VR
with great attention to detail and quality, including physical
objects such as door handles, fire extinguishers, air vents, plants,
and readable posters and showcases with objects inside. As a
result, the virtual environment consists of 1,607 objects, whose

total polygon number adds up to 4,453,370. Three hundred and
forty different materials were used to texturize these objects.
To limit the hardware load caused by the high polygon count
of the model, a combination of culling operations offered by
the Unity engine were used to minimize drawing operations
without compromising visual quality. The main components of
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FIGURE 2 | Comparison of simulation and reality. Pairs of corresponding sample frames taken from the real world (left) and the virtual reality (right) recordings. VR
rendering quality settings were as used during the experiment, (image quality can appear lower in the article pdf due to compression) RW were cut from the SMI
glasses scene-camera recordings. (A) A corridor without windows. (B) Descending staircase. (C) A corridor with windows. (D) Parts of the lobby (not used in the
analysis) and the entrance to an ascending staircase.

the model are the publicly accessible areas (corridors, staircases)
of the reference building. They extend over five floors, which
are connected by 242 steps and a virtual elevator that stops on
four floors (elevator was not used in the present experiment).
There are more than 200 doors and a similar number of scientific
posters located along the corridors. Besides the public areas of the
building, the laboratory where the virtual part of the experiment
took place was also modeled. It served as starting and ending
point of the predefined path in the experiment and made it easier
for the test persons to switch between the RW and the virtual
environment, because they started (finished) in the same position
in VR where they put on (off) the headset in the RW. One seminar
room and one office also were modeled in their entirety – for
demonstration purposes and for use in follow-up experiments.

Matching Simulation and Reality
Within the VR, the height of origin of the participant’s field of
view (i.e., the virtual camera position) was adjusted individually
to the physical height of each participant, to optimally match the
visual appearances of the virtual and the RW. Proper camera
height is also helpful to assist participants in fully immersing
themselves in the VR, including the perceived ownership of
their virtual bodies (van der Veer et al., 2019). The route that
participants were to take during the experiment was marked with
virtual copies of the marker chairs described above. Every chair’s
location and orientation from the real-world trials were copied
faithfully to the VR, including the attached paper with the printed
arrows (Figure 2).

Navigation in VR
Participants viewed the virtual building from a first-person
perspective while moving their virtual body (“avatar”) through
the building. To avoid cyber sickness (or motion sickness,
Golding and Gresty, 2005; Mazloumi Gavgani et al., 2018) while

maintaining a naturalistic mode of navigation, a hybrid between
physical tracking and joypad navigation was implemented.
Forward (and if needed, backward) movement was controlled
by means of the joypad on top of a VR controller. Rotational
movements, in contrast, were actually executed by the participant
and transformed to VR by tracking the VR controller held close
to the body. When a participant pressed forward, the avatar
would accelerate smoothly to a top speed of 1 m/s (equivalent)
in the direction the participant’s body was facing. Participants
were instructed to rotate their whole body (and thus the VR
controller with it) to determine the orientation of their avatar in
the VR world. Through this, head movements were independent
of motion direction, allowing for natural viewing behavior while
at the same time allowing for an intuitive, semi-naturalistic
navigation through the VR space. The top speed of 1 m/s was
chosen to minimize the probability of motion/simulator sickness
during the course of the experiment. The overall walking time
was also relatively short (expected < 10 min), which should
also help to avoid cyber sickness during the course of the
experiment (Dużmańska et al., 2018; Mazloumi Gavgani et al.,
2018). Indeed, no cases of cyber sickness were reported by
the participants.

Experimental Setup and Gaze Recording
Real World
Real-world eye tracking was performed with a wearable
eye tracker manufactured by SensoMotoric Instruments (SMI
Eyetracking Glasses, ETG 2.1). Gaze data and scene camera video
were recorded with a specially modified cell phone (Samsung
Galaxy S5), which participants carried in a belt pocket. Gaze
data were initially recorded at 60 Hz, while scene video was
recorded at 25 Hz at a manufacturer-defined field of view of
60◦ horizontally and 46◦ vertically, which corresponds to the
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gaze tracking range of the device. The manufacturer’s built-
in calibration was used to achieve a correct mapping between
gaze and scene video. Calibration markers (3 × 3, spaced at
10◦ horizontally and vertically) were attached to a wall, and
participants were instructed to fixate each marker for at least 2 s,
once before walking along the path for manual inspection of the
calibration prior to recording as well as once at the end of the
experiment to allow for drift estimation.

Virtual Reality
For VR presentation and interaction, an HTC Vive VR headset
was used in combination with a Vive hand controller. The
headset offers a stereo display with a physical resolution of
1,080 × 1,200 pixels per eye at a refresh rate of 90 Hz, and a
field of view of approx. 100◦ horizontally and 110◦ vertically.
Position and rotation of the headset in space is tracked by
means of 2 “Lighthouses” (laser scanners). While the VR and
tracking capabilities of the headset were unchanged from the
standard commercial package, eye tracking was realized through
an aftermarket add-on manufactured by Pupil-Labs (Pupil Labs
GmbH, Berlin, using Pupil Capture v. 1.11-4), consisting of two
infrared cameras mounted inside the head set, tracking one eye
each with a nominal frequency of 120 Hz at a camera resolution
of 640 × 480 pixels. Eye tracking and VR computations were
performed on a laptop (ASUS GL502VS, Intel Core i7 6700HQ,
Nvidia GeForce GTX1070 GPU), allowing for time-synchronized
data recording of both VR and eye/gaze events. The cables
leading to the VR headset were loosely suspended from the
ceiling above the participant to avoid exerting forces on the
participants’ head and neck.

To achieve a correct mapping between measured pupil
position and gaze position in VR, the built-in calibration routine
of the Pupil Labs eye tracker was followed by a custom calibration
sequence, consisting of 3 × 3 calibration markers positioned at a
grid spacing of 10◦ vertically and 11.5◦ horizontally. Participants
were cued which marker to fixate by a change in marker color,
and were requested to maintain fixation until the next marker
was highlighted in random order by the operator (at least 3 s of
fixation time each). The recorded raw data was then projected
onto the known positions of the calibration grid using a 2-
dimensional polynomial fitting procedure (Drewes et al., 2014).
At the end of the VR recording session, the procedure was
repeated to allow for drift evaluation.

Procedure and Participants
The order of conditions (VR vs. RW) was balanced across
participants. Including briefing, data collection and debriefing,
the experiment lasted about 40 min, depending on individual
walking speed. Twelve individuals participated in the experiment
(9 women, 2 men, and 1 unreported) with an average age of 22.8
years (18–33). Visual acuity was tested by means of a Snellen
chart; all participants reported to be healthy and being able to
walk and climb stairs without any restrictions or aid. Participants
were explicitly instructed prior to the experiment that they should
abort the experiment, if they experienced any motion sickness
or discomfort; when asked informally in debriefing, no one
indicated any signs of either motion sickness or discomfort.

Participants were remunerated for their participation by 6€/h
or course credit.

All procedures were performed in accordance with the
Declaration of Helsinki, and were evaluated by the applicable
ethics board (Ethikkommission der Fakultät HSW, TU Chemnitz)
who ruled that no in-depth evaluation was necessary (case-no.:
V-274-PHKP-WET-Augenb-11062018).

Data Processing and Analysis
For eye movements recorded in VR, as a first step the calibration
solution as described above was applied. Three participants
had to be excluded, as data quality did not allow for proper
calibration. For one additional participant, data recording failed
due to technical issues. For the remaining eight participants,
those samples were marked invalid where the corresponding
pupil size was zero, as this indicated no visible pupil; for example,
due to lid closure or because the pupil was outside the tracking
area. For eye movements recorded in the RW, no additional
calibration was required, and no further participants had to be
excluded. Gaze data is generally expressed in calibrated degree
visual field, with increasing values from top (gaze up) to bottom
(gaze down) and left to right.

In order to relate gaze patterns with different sections of
the route through the building, the continuous gaze data for
both RW and VR were cut into segments according to the
location of the participant along the walking route at a given
time. Three different types of segments were identified for the
analysis: straight walkways (“corridors”), staircases leading up
(“ascending stairs”) and staircases leading down (“descending
stairs”). In the selected routing, the staircases leading up are
interrupted by a platform with an about-turn in the middle
between two floors, resulting in two stair segments per floor,
whereas the descending staircases lead straight through to the
next lower floor. Connecting areas and areas that could not be
classified as one of the three sector types were excluded from
the analysis (e. g., the turns between corridors, and a large
lobby). In total, there were 6 corridors, 4 ascending stair segments
and 2 descending stair segments, covering a walkway length of
approximately 285 meters.

Generally, the demands of navigating the RW compared to the
VR may differ, even in the most sophisticated VR model. As one
possible marker of such differences, we analyzed the amount of
time spent attending navigational aids, i.e., the duration the chairs
with directional arrows placed among the walking route were
looked at. This required us to determine the position of the chairs
in the participants’ field of view for each recorded frame. While
in principle there exist methods in VR to conveniently identify
objects hit by the observer’s gaze (e.g., ray casting, Watson et al.,
2019), these methods cannot be applied in the RW. To achieve
comparability between the data generated from the VR and RW
recordings, we chose the following method: for the real-world
scene videos, we trained a deep learning algorithm (Mathis et al.,
2018; Nath et al., 2019) to recognize the chairs. The algorithm
delivers the 4 corner coordinates of the most likely position of
a chair in each frame, together with a confidence value for its
estimate. Visual inspection revealed that those positions with
confidence values above 0.9 (on a scale from 0 to 1) indeed
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reliably identified chair positions; positions with a confidence
value below this threshold were discarded.

In VR, locating chair positions was realized by re-rendering
each frame for each participant from the recorded coordinates,
such that all pixels in the frame were black, except for the
chairs, which were rendered blue. The identified blue pixels were
then fitted with a trapezoidal shape, resulting in the 4 corner
coordinates of each chair, comparable to the data obtained from
the RW scene videos.

In both worlds, the distance of the current gaze from the
nearest pixel contained in the chair trapezoid was then computed,
and samples were considered to be on a chair whenever the
distance was no larger than 1 degree. As the tracking range of the
VR system is much larger than that of the RW system, chairs may
be visible at distances further from the current gaze point than the
maximum of the RW system. This might exaggerate the average
gaze-to-chair distance in the VR world. To avoid this, the VR
analysis was limited to those frames where both chair and gaze
were within the corresponding tracking range of the RW system.

To visualize gaze distribution patterns in both RW and VR,
heat maps were computed from gaze position data. Sample data
was accumulated in 2D-histograms with a bin size of 1◦, spanning
a range of ±50◦. Data outside this range was accumulated
in the outermost bins. For display purposes, histograms were
then normalized to a common range for each participant, and
smoothed with a Gaussian low-pass filter (FWHH radius of 1
bin). To accommodate zero values on the logarithmic plotting
scale, a regularization (+ 5% of the scale) was performed
on all histograms.

The RW headset does not feature sensors for head movement
recording; in VR, however, these sensors are integrated in the
headset functionality as they are essential for the automatic
updating of the virtual perspective. The zero-point of the headset
orientation depends on the precise way in which the headset is
positioned on each individual participant; we therefore chose the
average position of the headset during the corridor sectors as the
zero reference to allow for a comparison of head position data
between sectors within the VR.

In order to improve gaze comparison between devices, we
chose the visual horizon as a common point of reference for some
analysis (eye-in-world). In the VR system, the horizon as well
as the head angle relative to the horizon can readily be tracked.
In the RW setting, however, the eye tracker used does not offer
head tracking capability, and the position of the horizon in the
visual field is not known. The horizon in the recorded scene
video was therefore tracked by a hybrid between manual marking
and a correlation-based tracking algorithm (utilizing MATLAB’s
xcorr2 function). Every nine frames, the horizon was marked
manually in the current video frame, and the marked position
was used as a reference point for the correlation tracker, which
then provided the movement of the reference point for the both
the following and the previous 4 frames as output. This approach
for the RW scenario requires a clearly visible and identifiable
horizon, at a far enough distance such that the different physical
heights of the participants would not affect the angle of view at
which the horizon was found in the image. One long corridor
(section number 5 in Figure 1) with a large window at the end

allowed for a reliable tracking of the far horizon and was thus
chosen as the reference sector for this analysis. The vertical gaze
position while passing through this sector was then subtracted
from the position of the horizon on a frame-by-frame basis to
achieve “eye-in-world” coordinates.

Histograms of eye-movement directions were created to
profile general eye movement behavior. For each sample, the
difference in gaze position relative to the previous sample was
computed. Non-zero differences were then binned by direction
of gaze movement, in bins of 45◦, centered on the cardinal and
oblique axes (resulting in a total of eight bins: [−22.5◦ 22.5◦],
[22.5◦ 67.5◦], [67. 5◦ 112.5◦], [112.5◦ 157.5◦], [157.5◦ 202.5◦],
[202.5◦ 247.5◦], [247.5◦ 292.5◦], [292.5◦ 337.5◦]). Histogram
data was then normalized per individual to unit integral before
averaging across participants.

Gaze velocity histograms were computed from gaze velocity
values as defined by the absolute position difference between
two neighboring valid gaze samples, normalized by the sample
time difference. Gaze samples without valid neighbors were
excluded from analysis. Samples were then accounted for in
logarithmically spaced bins (in octaves, i.e., < 1◦/s, 1–2◦/s, 2–
4◦/s, 4–8◦/s, 8–16◦/s, 16–32◦/s, 32–64◦/s, 64–128◦/s, 128–256◦/s,
256–512◦/s, > 512◦/s).

We computed saccade rate (number of saccades per second)
for each participant, in both RW and VR, separately for each
sector, according to the method proposed by Engbert and Kliegl
(2003), manually adjusting their algorithm’s noise threshold
(Lambda) individually for each participant and world.

Data was analyzed in GNU Octave (v4.4.1 and v5.2.0,
Eaton et al., 2020), MATLAB (MATLAB R2019b, 2019), and
R (v3.6.1, R Core Team, 2020). Repeated measures ANOVAs
with factors “world” and “sector” were performed using the
ezANOVA function in R (Lawrence, 2016), and Greenhouse-
Geisser corrected p-values are reported along with uncorrected
degrees of freedom and the Greenhouse-Geisser ε (εGG) when
Mauchly’s test indicated a significant violation of sphericity at
a 5% level. Kolmogorov-Smirnov tests did not indicate any
deviation from normality, although the sensitivity of this test
(and any test for normality) is limited by the comparably
low sample size.

RESULTS

For the included 8 participants (see section “Materials and
Methods”) data quality in the VR condition was in general better
for the left than for the right eye. The left-eye data of the VR
condition was thus chosen for further analysis. Sample data was
mapped to degree visual field as described in the “Materials and
Methods” section.

The median rendering frame rate of the VR was 73 Hz, with
95% of all frames rendered at 35 Hz or faster (this lower 5%
percentile varied between 32 and 40 Hz across participants). The
gaze sampling frequency of the VR tracker measured 119.1 Hz
(120 Hz nominal) for 96% of all samples, with a minimum of
94% and a maximum of 99% across participants. For the VR
condition, we on average recorded 400 s (SD 46 s) of data
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per participant, amounting to a total of 355718 data points.
Of those, 99.5% (SD 1.2%) were valid samples. Of those, all
fell within the tracking window specified by the manufacturer
(110◦ vertically and 100◦ horizontally, Figure 3). In the RW,
we recorded 333 s (SD 17 s) of data, amounting to a total of
160220 data points, of which 85.5% (SD 6.6%) were valid samples,
falling within the range (60◦ horizontally, 46◦ vertically) for
which the manufacturer specifies tracking quality (Figure 3B).
However, it is still reliable in which direction they are outside the
tracked range (left/right and up/down). We therefore included
data points outside the manufacturer-defined range in the
computation of the median position and inter-quartile ranges,
where their exact position does not influence these measures
(given that no more than 50% of data fall outside on one side).

Real world and VR parts of the experiment did not generally
last the same time (see above, paired t-test, t(7) =−3.91, p = 0.006,
including the entire walking route). However, the order of the
path segments was always the same as the routing through the
real and virtual buildings was identical. Pairwise tests show that
time spent differs significantly in the “Corridor” sectors [means:
VR 167.5 s (SD 12.6), RW 123.0 s (SD 12.6), t(7) = −8.92,
p < 0.001] and the “Ascending Stairs” sectors [VR 29.1 s (SD
3.2 s), RW 25.1 s (SD 1.2), t(7) =−3.54, p = 0.009], but not in the
“Descending Stairs” sectors [VR 23.13 s (SD 2.5), RW 24.3 s (SD
2.5), t(7) = 0.82, p = 0.439]. In summary, participants were slower
in VR for corridors and ascending stairs, but not descending
stairs (Figure 4).

At the end of the measurement in each world, we estimated the
calibration error using the same grid as used for calibration at the
start for validation. This analysis revealed substantial amounts
of drift (VR: 6.4◦ ± 5.7◦, RW: 10.8◦ ± 2.6◦) over the course
of the recording, but no significant bias in drift direction for
neither the VR [mean and SD, horizontal: 0.9◦ ± 2.0◦, t(7) = 1.35,
p = 0.219; vertical: −0.5◦ ± 8.6, t(7) = −0.15, p = 0.885] or
the RW [horizontal: 0.1◦ ± 1.3◦, t(7) = 0.28, p = 0.791; vertical:
3.3◦ ± 6.0◦, t(7) = 1.55, p = 0.166]. No significant differences
were found for the drift direction biases between VR and RW
[horizontal: t(7) = −1.15, p = 0.285; vertical: t(7) = −0.89,
p = 0.402]. Qualitative inspection of the data showed that within
each individual all nine validation points are offset by about the
same direction and magnitude, indicating that the main source
of error was indeed drift, which likely resulted from movement
of the headset relative to the head. Importantly, this implies that
measures that are not based on absolute position – such as spread
[inter-quartile-range (IQR)] and velocity – remained unaffected
by this measurement error.

Gaze Distribution (Eye-in-Head)
Average eye-in-head orientation was computed separately for the
three different sector types. Per participant, we characterized the
gaze distribution by its median in the horizontal and vertical
dimensions (Figure 5). Repeated measures ANOVAs with factors
world (levels: VR and RW) and sector (levels: corridor, ascending
stairs, and descending stairs) revealed significant main effects
of vertical gaze direction for both the factor world (VR vs.
RW, positive values represent downward gaze; mean of medians
across participants and standard deviation: 8.59◦ ± 7.52◦ vs.

0.86◦ ± 9.51◦, F(1,7) = 7.34, p = 0.030) and the factor sector
(F(2,14) = 33.61, p < 0.001), but no significant interaction
(F(2,14) = 1.77, p = 0.206). Follow-up paired t-tests (Table 1)
show all sectors to differ from each other [corridor vs. ascending
stairs, t(7) = −3.60, p = 0.009; corridor vs. descending stairs,
t(7) = −6.97, p < 0.001; ascending vs. descending stairs,
t(7) = −5.21, p = 0.001]. A significant main effect for the factor
world was also found for horizontal gaze, although numerically
the absolute difference was much smaller [−1.82◦ ± 2.18◦
vs. 2.40◦ ± 3.04◦, F(1,7) = 38.8, p < 0.001; positive values
represent rightward gaze direction]. There was no significant
main effect for the factor sector on the horizontal gaze direction
[F(2,14) = 2.11, p = 0.158, see Table 1], and no interaction
[F(2,14) = 0.56, p = 0.491, εGG = 0.54]. These data show that
the sector significantly influences gaze behavior; importantly,
the lack of a significant interaction indicates that this influence
is independent of whether the terrain is actually negotiated
in the RW or just virtually in VR. The main effect of world
in the vertical direction is somewhat surprising (if anything,
one would have predicted a lower gaze in the RW). This may
however be influenced by differences between the gaze recording
devices or posture-related differences, as such systematic offsets
are unavoidable when considering eye-in-head position data (see
section “Eye-in-World. . .” below).

While the median location is a measure that is robust
to outliers, in particular against points falling outside the
manufacturer-specified tracking range, it is susceptible to
systematic offsets and does not capture the overall distribution of
the data. Consequently, we also considered a measure of spread in
the horizontal and vertical dimension. The IQR is robust to both
outliers (as long as outliers constitute less than 25% on either side)
and offsets and thus well suited as an additional means to describe
the data at hand. We computed the IQR for each participant
and sector (Figure 6). In the horizontal direction, we found
a significant main effect for the factor sector [F(2,14) = 7.12,
p = 0.007], but not the factor world [F(1,7) = 0.75, p = 0.415] with
no significant interaction [F(2,14) = 0.95, p = 0.410]. Similarly, in
the vertical direction, we found a significant main effect for the
factor sector [F(2,14) = 9.69, p = 0.002], but not the factor world
[F(1,7) = 3.23, p = 0.115] with again no significant interaction
[F(2,14) = 2.68, p = 0.104]. This corroborates the findings of
the median position data: gaze distributions are influenced by
the sector and this influence does not depend on whether the
locomotion takes place in the RW or is simulated in VR.

To illustrate the individual gaze patterns visually, heat maps
were generated from normalized 2D-histograms (Figure 7). By
visual inspection, gaze patterns show substantial inter-individual
differences, ranging from a narrow, focused appearance (e.g., S2)
to a wide-spread pattern (e.g., S6). Participants differ both in
horizontal and vertical spread. For the average of the corridor
condition in the RW, an apparent two-peak pattern emerges,
which is not apparent in the VR condition. Visual inspection
reveals this to be due to different peak locations across individual
participants rather than within. Some of the resulting distribution
patterns (e.g., participant S3, Figure 7) resemble the T-shape
previously reported in natural gaze behavior (Calow and Lappe,
2008; ’t Hart et al., 2009). The T-shaped pattern is thought to
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FIGURE 3 | 2D-Distribution of calibrated gaze position in head-centered coordinates, one sample participant shown. Dashed boxes indicate the
manufacturer-specified tracking limits (Pupil Labs/VR: 100 × 110◦, SMI/RW: 60 × 46◦), red data points are outside the specified tracking limits, but the side
(left/right and up/down) relative to the limits is still well-defined.

FIGURE 4 | Comparison of time spent in different sectors. Mean and SEM
across participants, with significant differences indicated above (***p < 0.001,
**p < 0.01).

represent gaze behavior during navigation, the T-trunk resulting
from gaze directed toward the terrain immediately ahead,
perhaps to verify navigability, and the T-bar representing gaze
directed further up and looking toward the sides, perhaps to
register the surroundings or to plan further ahead. To identify
possible differences in this T-shaped gaze allocation between
the different worlds, we quantified the degree of T-shaped gaze
distribution in each participant: the gaze data was split at the
vertical median, leaving an upper and a lower half containing
equally many data points. For each of these halves, the horizontal
IQR was then computed, and the result of the upper half was
divided by the result of the lower half. The resulting ratio was
then used as input to an ANOVA with factors world and sector,
as above. The difference in IQR ratios was significant only for

FIGURE 5 | Median of calibrated gaze positions in head-centered
coordinates, separated by sector and world. Individual colored dots represent
individual participants (matched across panels), black crosses represent mean
and SEM across participants.

the factor sector [F(2,14) = 14,51, p < 0.001], but not the factor
world [F(1,7) = 3.28, p = 0.110] and there was no significant
interaction [F(2,14) = 3.29, p = 0.068]. As there was a trend to
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TABLE 1 | Comparison of average gaze between sectors.

Sector Coordinate VR RW t-score p-value

Corridor X −2.62◦ ± 1.97◦ 2.4◦ ± 3.04◦

Y 4.43◦ ± 4.91◦ −4.15◦ ± 9.11◦ 3.11 0.017*

Ascending stairs X −1.92◦ ± 1.64◦ 2.69◦ ± 2.98◦

Y 6.17◦ ± 5.71◦ 1.46◦ ± 8.92◦ 1.37 0.212

Descending stairs X −0.93◦ ± 2.73◦ 2.49◦ ± 2.72◦

Y 15.16◦ ± 7.28◦ 5.27◦ ± 9.13◦ 2.73 0.029*

Mean of medians and standard deviation across participants, as well as follow-up statistics (paired t-test, VR vs. RW, df = 7) for the Y-coordinate where the factor sector
had a significant main effect. Significant values (p < 0.05) are marked by an asterisk.

an interaction, we decided to analyze these data separately by
sector. While the ratios averaged across participants were almost
identical for corridors (VR: 1.16 SD 0.32; RW: 1.15 SD 0.40), the
ratios on the stairs were larger in the RW, suggesting a more
pronounced T-shape (ascending, VR: 1.27 SD 0.38; RW 1.58 SD
0.48; descending, VR: 1.54 SD 0.74; RW, 2.77, SD 1.42). This is
an indication that for specific terrains where information from
the ground is particularly relevant for foot placement (as the
stairs in our case), subtle differences between VR and RW may
start to emerge.

Eye-in-World: Relating Eye-in-Head
Coordinates to the Horizon
The results reported so far are in head-centered (eye in head)
coordinates, where position data as such may include offsets due
to the different eye trackers used in the RW and VR condition.
To compensate for this effect and to estimate gaze relative to
the world, we computed eye-in-world coordinates by referencing
gaze orientation relative to the horizon (see “Materials and
Methods”). For the RW, this analysis requires the horizon to
be identifiable, but at greater distance. Hence, we restricted
this analysis to one corridor, where the horizon was visible
through a window at the end of the hallway. No other sector
shared this property, making this analysis feasible only for the
chosen corridor.

On average, gaze in the VR condition was 2.2◦ below the
horizon (SD = 7.2◦) and 4.2◦ in the RW condition (SD = 7.0◦).
This difference was not significant [paired t-test, t(7) = 0.55,
p = 0.600; Figure 8]. In sum, contrary to the eye-in-head data,
we found no evidence for systematic differences for eye-in-world
position. This makes it likely that the observed difference for
eye-in-head coordinates, for which no absolute straight-ahead
reference is available in VR, is primarily a consequence of headset
placement relative to the participants’ head. Importantly, all
relative measures – spread and velocity – are insensitive to
this placement as well as to its possible drift over the course
of the experiment.

Head Movements
As head movement data was generally not available for the RW,
we analyzed head-in-world movements in detail only for the
VR. Horizontal orientation (heading) of the headset depended
strongly on the position along the walking route. This stemmed
on the one hand from different sectors having different compass

alignments (lead heading); on the other hand, at each transition
from one sector to the next, participants were physically required
to turn. Due to the rectangular layout of the building, the
angle of the change in route direction most often measured
90◦, although the turn between segments of the upward stairs
measured 180◦ (see Figure 1). Most sectors therefore start and
end with a turn of at least 90◦, which lead participants to
make anticipating head movements in the direction of the turn
as they approached the end of each sector. As the length of
the individual sector types differs strongly (see Figures 1, 4),
head movements in the horizontal direction (yaw) for each
sector type are thus contaminated to different degrees with
the initiation and termination of the turns executed by the
participants. We therefore limited our analysis to vertical (pitch)
and roll head movements, analyzing both the mean angle and
the IQR of the angular distribution in an ANOVA with the
factor sector only. Average vertical head position relative to
the corridors was downward 0.55◦ ± 2.77◦ for ascending stairs
and downward 14.6◦ ± 3.64◦ for descending stairs; average
roll relative to corridors was 0.34◦ ± 1.04◦ to the right for
ascending stairs and 0.27◦± 2.08◦ to the left for descending stairs.
We found a significant effect on average vertical head position
[F(2,14) = 86.49, p < 0.001], but not on roll [F(2,14) = 0.40,
p = 0.681], with no significant effect on the IQR for either vertical
position [F(2,14) = 2.86, p = 0.091] or roll [F(2,14) = 0.61,
p = 0.559].

Angular Distribution of Gaze Direction
Changes
Eye movements during free, explorative behavior are generally
highly variable. Differences in this behavior may signify
differences in the processing of the visual environment. To
profile these eye movements and identify possible differences
between RW and VR, we assessed the directional distribution
of gaze differences between recorded samples as well as the
corresponding distribution of absolute gaze velocities. Similar to
previous research (Einhäuser et al., 2007; Meißner et al., 2017),
we find cardinal directions (horizontal/vertical) more abundant
than oblique directions (Figure 9). To quantify this difference,
we computed the ratio between the sum of the fraction of
movements in cardinal directions (here defined as 45◦ wedges
around the cardinal axes, Figure 9) and oblique directions and
used it as input to an ANOVA with the factors world and sector.
We found a significant effect for the factors world [F(1,7) = 40.31,
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FIGURE 6 | Inter-quartile-range (IQR) comparison between RW and VR. IQRs were computed as a measure of gaze spread, separately for the three sector types.
(A) Horizontal gaze IQR. (B) Vertical gaze IQR. Mean and SEM across participants.

p < 0.001] and sector [F(2,14) = 5.36, p = 0.047, εGG = 0.56],
without significant interaction [F(2,14) = 0.36, p = 0.706].

Distribution of Gaze Velocities
Gaze velocities were computed and averaged across participants
(Figure 10). The velocity distributions for RW and VR are similar
in that they peak between 16 and 64◦/s, but differ in that the RW
measurements contained more slow velocities (<16◦/s) and the
VR measurements contained more fast velocities (>128◦/s).

We computed an ANOVA on the per-participant medians
of the velocities, with factors world and sector. We found
a significant main effect for the factor world [F(1,7) = 7.92,
p = 0.026], but not the factor sector [F(2,14) = 1.89, p = 0.209,
εGG = 0.55], without significant interaction [F(2,14) = 1.02,
p = 0.352, εGG = 0.55]. When separating this analysis by
horizontal and vertical gaze component, for the horizontal
component we find a significant effect for the factor world
[F(1,7) = 16.94, p < 0.001] but not the factor sector
[F(2,14) = 2.87, p = 0.124, εGG = 0.60], again with no significant
interaction [F(2,14) = 1.92, p = 0.184]; We found no significant
main effect or interaction for the vertical component [world:
F(1,7) = 3.26, p = 0.114; sector: F(2,14) = 1.76, p = 0.226,
εGG = 0.51; interaction: F(2,14) = 0.47, p = 0.52, εGG = 0.51].

Comparison of Saccade Frequency
The mean saccade rates were computed for each participant:
2.03± 0.35 s−1 for the VR (Corridors: 1.64± 0.29 s−1, Ascending
stairs: 2.28 ± 0.49 s−1, Descending stairs: 2.21 ± 0.70 s−1) and
3.46 ± 0.18 s−1 for the RW (Corridors: 3.48 ± 0.29 s−1,
Ascending stairs: 3.63 ± 1.45 s−1, Descending stairs:

3.27 ± 1.55 s−1). When computing an ANOVA on the per-
participant saccade rates with factors world and sector, we found
a significant effect for the factor world [F(1,7) = 25.93, p = 0.001],
but not the factor sector [F(2,14) = 0.91, p = 0.426] with no
significant interaction [F(2,14) = 0.63, p = 0.545, εGG = 0.58].

Dwell Time on Navigational Aids
When walking through corridors, navigation chairs were visible
almost continuously, be it at the far end or nearby. However,
when ascending or descending stairs, participants did not need
to be directed in the proper direction due to lack of directional
options. Chairs were therefore rarely within view when passing
through those sectors, forcing us to limit this analysis to the
corridor sectors. Average gaze dwell time on navigational chairs
was 1.8% (SD = 1.4%) of the overall time spent on the walking
route for the RW and 3.5% (SD = 2.3%) for VR. This difference
was not significant [paired t-test, t(7) =−1.61, p = 0.151]. Average
overall gaze-to-chair distance in the virtual world was 13.2◦
(SD = 5.8◦) and in the RW 11.8◦ (SD = 3.3◦). The difference was
not significant [paired t-test, t(7) = 0.59, p = 0.570].

DISCUSSION

In the present study, we investigated how well gaze behavior in
the RW can be approximated by measuring gaze in a high-fidelity
VR setting. For basic measures like eye position and its spread,
we found that differences between sectors (corridors, ascending
stairs, and descending stairs) translated from the RW to the
virtual setting, with little difference between the worlds.
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FIGURE 7 | Heat maps of gaze distribution, separated by world (virtual reality vs. real world) and sector type. Data normalized for each participant (S1 . . . S8) and
displayed with a logarithmic scale (with a slight regularization to accommodate zero values), see color bar. Average data across participants in column (AVG). Outer
margin in each panel represents data points outside of the specified tracking area, squares span ±50◦ in each dimension.

Comparison Between VR and the RW
The appearance of the simulated environment of the VR in
principle cannot match the RW in all completeness. Focusing
on the visual aspects of the VR employed in this study, the
visual resolution of the VR system may be very high compared
to previously available systems; however, it is still significantly
lower than the resolution of the human visual system. The virtual
copy of the chosen building, while implemented in great detail
(see Supplementary Material), still cannot capture the richness
of visual features found in the RW. As a result, a person immersed
in the VR will generally be able to tell that they are not looking
at the RW. The greatest benefit of the VR is the high degree of
control offered by the artificial nature of the virtual surroundings.
Environmental factors like the weather or third parties passing
through the scenario will not affect the VR, unless desired so by
the experimenter. An artificial environment has no practical size
limit, and allows for arbitrary (near) real-time manipulations that
would be impossible or dangerous in the RW.

Navigation in VR
In the RW, participants were required to actively walk through
the setting. Natural walking behavior can support immersion
in the VR (Aldaba and Moussavi, 2020; Cherep et al., 2020;

Lim et al., 2020). Navigational self-localization in VR is generally
enhanced if participants are allowed to move naturally while
immersed in the VR (Klatzky et al., 1998; Aldaba and Moussavi,
2020). The most obvious restriction here was the need for
the participants to stay physically within the range of the
VR tracking range, while still promoting natural navigational
behavior. However, the integration of complex VR settings with
treadmills remains challenging, as it requires real-time feedback
from motion capture to avoid latencies that disturb immersion.
Moreover, walking in such settings is usually restricted to a small
range or one linear dimension, as omnidirectional treadmills
are far from widespread use as compared to the off-the-shelf
head mounted display used here. Technical limitations therefore
required us to keep participants within the tracking range of
the VR equipment. Hence, we designed the navigation in VR
as natural as possible, while participants physically remained
within the tracking range, without requiring a VR cave the
same size as the real-world building or a multi-directional
treadmill. We exploited the observation that being able to orient
the body physically appears to be important for immersion
in the VR even in the absence of actual walking movement
(Cherep et al., 2020; Lim et al., 2020). The solution developed
here utilized the system controller, held close to the body, to
orient the virtual body of the participant by orienting their
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FIGURE 8 | Gaze distribution relative to the horizon for the corridor for which head-in-world direction was determined (the one depicted in Figure 2C, see text).
(A) Individual participants (mean and SD) and averaged across participants (mean and SEM). (B) Difference between VR and RW (VR-RW) for each participant and
averaged across participants (mean and SEM).

FIGURE 9 | Histograms of eye-movement directions as polar plots. Non-zero differences in gaze position between consecutive samples were accounted by direction
of gaze movement in bins of 45◦ centered on the cardinal and oblique axes (see top–left panel). Data was normalized per individual to unit integral before averaging
across participants. Directions as shown correspond to directions of gaze movements (0◦ corresponds to rightward, 90◦ to upward gaze movements, etc.).

real-world bodies in their chosen walking direction. Forward
motion was controlled by pressing a button on the controller.
This presents a solution to the navigation problem that minimizes
the difference to the RW (Klatzky et al., 1998; Waller et al.,
2004; Cherep et al., 2020; Lim et al., 2020), as orientation and
navigation are still very intuitive and natural, aside from the lack
of actual translational (bipedal) movement. Indeed, the analysis
of the time spent looking at navigational aids (the chairs with
arrows placed along the route) failed to find any significant

difference between VR and RW, suggesting that there was likely
no principled difference in navigational demands. The analysis
of head movement data in VR shows participants moved their
head down when negotiating stairs. Stairs are situations where
enhanced control of foot placement would be required in the RW,
but is not physically necessary in VR. The presence of said head
movements is one more point suggesting that the presentation of
the virtual world was convincing enough to encourage behavior
that would be plausible also in the RW. The naturalness of the
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FIGURE 10 | Gaze velocity histograms. Velocity bins are log-spaced (in octaves) and labeled by the velocity contained each bin.

navigational solution may also have helped to avoid simulator
sickness (no incidences were reported by our participants), which
can otherwise be a problem when moving in virtual realities
(Golding and Gresty, 2005; Dużmańska et al., 2018).

A simple extension to this approach would be to physically
attach the controller to the body of the participant, possible at
the hip, which would free one hand and allow for an even more
natural posture during exposure to the VR. Our participants did
not report any subjective difficulties with the employed method
of navigation, and there was no occurrence of cyber sickness.
The usage of the standard VR controller for this purpose helps
not only to reduce the cost of acquisition of the VR setup,
but also cuts down the complexity of the required software
development, which will facilitate further experimentation in
the future. Generally, while current methods of navigating a
virtual environment differ in many cases from the natural
means of bipedal movement, this may also offer new chances
and opportunities, e.g., in medical rehabilitation training, where
patients may be unable to execute the full range of movements
available to healthy controls.

Gaze in VR and RW
Drift – i.e., a growing offset between actual and measured gaze
direction that applies uniformly to the whole measured field –
is a significant and well-documented factor in head-mounted
eye tracking equipment (Sugano and Bulling, 2015; Müller et al.,
2019); indeed, the absolute drift in our experiments was quite
substantial as compared to stationary eye-tracking equipment.
However, there was no significant bias in drift direction for either
VR or RW, as well as no significant difference between the RW
and VR. This suggests that the results presented here were not
systematically affected by changes in position of the measurement
equipment during the course of the experiment. Moreover, all
measures but the eye-in-head direction, are by construction

insensitive against these drifts. Where we did consider eye-in-
head directions, especially in the gaze-distribution maps of figure
7, the sizes of the observed patterns were large compared to
the effects of drift, such that drift is unlikely to have affected
these patterns qualitatively. This also applies to individual
differences among these gaze maps, which are substantial, a
pattern consistent with previous observations on natural scene
viewing (e.g., Yarbus, 1967; de Haas et al., 2019).

When real-world gaze allocation is compared to standard
laboratory eye-tracking settings, profound differences are found,
in particular with respect to gaze in direction of the ground
(’t Hart et al., 2009). However, there are multiple differences
between walking through the RW and watching the same visual
input on a screen: the visual input on the screen is limited
in visual field and resolution, head and body are restrained
and there is no need to actively navigate or walk through the
environment. To isolate the component of safe walking from
the other differences, we here attempted to approximate the
natural situation with respect to its visual appearance and its
navigational requirements as closely as technically possible in
VR. As expected from real-world studies (’t Hart and Einhäuser,
2012), we found profound differences between different terrains
(sectors) for nearly all of the measures tested. One might have
also expected differences between the worlds or an interaction of
the world with terrain (if the VR had been perceived as entirely
unconvincing by the participants, gaze patterns in VR might
have differed less between the different sectors than in RW). In
particular, one might assume that the additional requirement to
place one’s feet carefully in the RW as compared to VR (Matthis
et al., 2018; Kopiske et al., 2020; Thomas et al., 2020) would be
accompanied by significant changes in gaze behavior, especially
when negotiating the stairs. Surprisingly, however, we found no
interactions between the factors world and sector for any of
the measures tested. Effects of the world were found for the
vertical gaze direction in eye-in-head coordinates, the vertical
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head orientation in VR, the number of saccades made and a
subtle difference in the angular distribution of gaze-direction
changes. The direction of the former effect – gaze was lower in
VR on average than in the RW – was contrary to expectations
(’t Hart et al., 2009; ’t Hart and Einhäuser, 2012): one would
expect virtual locomotion to require fewer looks to the ground
where the information for foot placement is gathered in the RW
(Marigold and Patla, 2007) and also during actual walking in
VR (Kopiske et al., 2020). However, this effect is likely explained
by headset placement and absent (numerically even reversed)
when gaze is referenced to the horizon. As a measure that is
insensitive to offsets in the headset placement, we quantified
the spread of eye movements by using the IQR (Figure 6). As
before, we found significant differences only between the sectors,
not between the worlds, and importantly no interaction between
the factors. This underlines the observation that the differences
between sectors translate well from the RW to the VR, and –
for our setting – differences between the worlds are minute.
The differences in angular distribution of gaze-direction changes
between the worlds are also subtle, provided the comparably large
differences found between different real-world environments
(Einhäuser et al., 2007), which in turn are comparable to the
differences between sectors in the present study. It is tempting
to speculate that similar factors generate the differences and are
related to the requirements of the environment, with more liberal
(less navigation-driven) exploration in the VR generating more
cardinal eye movements. Generally, fixations and smooth pursuit
are not trivial to tell apart in head-free scenarios, as what looks
like pursuit in gaze angle velocities may indeed be a fixation on a
physically stationary object in the presence of head movements.
Additionally, a physically stationary object such as a light switch
on a wall may move through the observer’s field of view on a path
consistent with the optical flow as the observer moves forward.
The gaze velocity analysis indicates relatively more saccades in
the RW, suggesting more exploratory saccades, perhaps due
to a more navigation-driven exploratory behavior. This is also
supported by the relative increase of higher velocities in the gaze
velocity analysis, which in turn finds more slow eye movements
in the VR. This would be well explained by an increased number
of optic flow linked fixations as a counterpoint to the increased
number of saccades in RW.

For the “T-shape” previously described in the RW (Calow
and Lappe, 2008; ’t Hart et al., 2009), we find a trend to an
interaction between world and sector, so we cannot exclude that
differences between VR and RW will start to emerge when more
sophisticated measures or more difficult terrain (as compared to
the smooth floor surface of an office building) are concerned.
Explicitly modeling difficult and irregular terrain in VR will
therefore become an interesting line for further research (cf.
Kopiske et al., 2020).

CONCLUSION

In summary, we found surprisingly little difference between
gaze behavior in VR and RW for our setting; to the contrary,
virtual locomotion seems to capture the major differences
between different environmental constraints (the factor “sector”

in our experiment) remarkably well. The effects of world (VR
vs. RW) we found were either well-explainable by equipment
particularities, as for the vertical eye-in-head position, or subtle
compared to previously reported differences between different
real-world settings, as in the case of the cardinal preferences.
This opens up an avenue of possibility for research that would
previously have been possible only in real-world settings, but with
the enhanced control over environmental factors offered by VR
that would otherwise be largely left at random. Gaze analysis
in life-like settings, but still under highly controlled conditions,
has therefore now become a tangible reality. Remaining factors
that may affect the depth of immersion and thus also the
similarity of the gaze behavior in simulated environments may
be addressed through improved VR devices, such as treadmills
to allow for even more realistic navigation (Kopiske et al., 2020)
or improvements in available computational power for even
more visual details.
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It has been shown that conclusions about the humanmental state can be drawn from eye

gaze behavior by several previous studies. For this reason, eye tracking recordings are

suitable as input data for attentional state classifiers. In current state-of-the-art studies,

the extracted eye tracking feature set usually consists of descriptive statistics about

specific eye movement characteristics (i.e., fixations, saccades, blinks, vergence, and

pupil dilation). We suggest an Imaging Time Series approach for eye tracking data

followed by classification using a convolutional neural net to improve the classification

accuracy. We compared multiple algorithms that used the one-dimensional statistical

summary feature set as input with two different implementations of the newly suggested

method for three different data sets that target different aspects of attention. The

results show that our two-dimensional image features with the convolutional neural net

outperform the classical classifiers for most analyses, especially regarding generalization

over participants and tasks. We conclude that current attentional state classifiers that

are based on eye tracking can be optimized by adjusting the feature set while requiring

less feature engineering and our future work will focus on a more detailed and suited

investigation of this approach for other scenarios and data sets.

Keywords: convolutional neural network, eye tracking, classification, Imaging Time Series, Augmented Reality,

Gramian Angular Fields, Markov Transition Fields, attention

1. INTRODUCTION

Scientists’ fascination for human eye gaze behavior started as early as in the 19th century when it
was observed that the eyes don’t move in one fluent motion while reading. Instead, they stop and
focus often but only briefly. This observation led to many questions: When do they stop?Where do
they focus and how long? And most importantly, why? In 1908, Edmund Huey published the first
version of his book “The psychology and pedagogy of reading” (Huey, 1908) in which he discussed
these observations and introduced one of the first versions of an eye tracking device. It consisted of a
special contact lens that was connected to an aluminum pointer. Since then, the field of eye tracking
has flourished and continuously improved eye tracking devices. In 1980, Marcel Adam Just and
Patricia A. Carpenter proposed their Eye-Mind assumption, stating that “there is no appreciable
lag between what is being fixated and what is being processed” (Just and Carpenter, 1980). While,
this statement is restricted to eye fixations, it can be assumed that gaze behavior, in general, is closely
tied to mental processes. Our knowledge about saccades and fixations, their cause and reason, and
their connection to the current mental state of the observed person has increased immensely since
then and the practice of eye tracking has found many applications. In addition to the mentioned
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research interests, human gaze tracking is widely used in
consumer andmarketing research (Wedel and Pieters, 2008) or as
an input mechanism for technical devices, such as smartphones
(Paletta et al., 2014) and Augmented and Virtual Reality glasses
(Miller, 2020).

Some applications are mainly interested in the direction of the
gaze (i.e., to predict salient regions of web pages as in Buscher
et al., 2009). Others, however, make use of implications about the
mental state that can be drawn from the eye tracking data. One
famous and possibly life-saving use of eye tracking is to detect
a high cognitive workload (Palinko et al., 2010), or high level of
fatigue (Horng et al., 2004) in car drivers. Di Stasi et al. (2013)
suggested that ocular instability increases with mental fatigue,
meaning that saccadic and microsaccadic velocity decreases and
drift velocity increases. If this movement behavior is observed in
a driver, they can be advised to take a break from driving.

Another interesting application field for mental state
classification that is gaining interest in the current Covid-19
pandemic is digital learning settings. The learning system could
for example detect phases of mind-wandering. This information
about the mental state of the learner can then be used to
later present the corresponding content again during phases
of concentration and thus, improve the chances of a better
learning rate and greater learning success (Conati et al., 2013).
The aspects of the human mental state that can be classified
or detected are manifold. Besides the mentioned workload,
fatigue, and mind-wandering, further cognitive and affective
states can be modeled, such as internally and externally directed
attention, attentional shifts, emotions, the direction of attention,
goal-directed and task-related internal attention, or alertness.

In many studies, mental state classification is based on
data from other biosignals, such as brain activity. Often,
electroencephalography (EEG) is chosen for its good temporal
resolution and low cost (in comparison to fMRI), as for example
in Zeng et al. (2018), Dehais et al. (2018), Vézard et al.
(2015), Benedek et al. (2014), Ceh et al. (2020), and Vortmann
et al. (2019a). However, compared to eye tracking devices, the
setup time highly depends on the number of electrodes and
usually requires qualified assistance for the user. In comparison,
eye tracking has the obvious advantages of a fast setup, easy
calibration, and the fact that eye tracking glasses promise a better
usability experience in the wild than tight EEG-caps.

The movement of the eyes is typically recorded as a time
series of gaze point coordinates from both eyes. Some systems
additionally record pupil diameters or blinks. Once this data is
acquired, it needs to be processed so the important information
can be extracted and used to draw conclusions about the mental
state of the user. Typical features that are calculated on the
data include the number and length of fixations, saccades, and
microsaccades, the gaze velocity, the pupil size, the frequency of
blinks, or the covered gaze distance. With this set of features,
a supervised machine learning algorithm can learn to model
the mental states of interest and detect these states in the user.
One major challenge in improving the accuracy of mental state
classification based on eye tracking data is finding and optimizing
the right features and algorithms. In recent years, the machine
learning community has solved more and more problems using

deep learning approaches and neural nets because they require
less feature engineering and are thus more suitable if there is
a lack of domain understanding. They are used in a variety
of scenarios from forecasting to fraud detection and financial
services or image recognition.

Wang and Oates (2015) suggested that time series data could
be represented as images or matrices (Imaging Time Series,
ITS) and then these can be classified by Convolutional Neural
Networks (CNN) which have proven to be successful in image
classification in the past. To transform the variables from one-
dimensional time series to two-dimensional images, they suggest
two different algorithms: Gramian Angular Fields (GAF) which
represent the temporal correlation between time points, and
Markov Transition Fields (MTF) which calculate a matrix based
on transition probabilities (see section 2.2.2).

In this work, we compare one-dimensional (1D) statistical
summary feature set based approaches with ITS approaches for
the detection of attentional states on three different eye tracking
data sets related to attention. The first data set contains phases of
internally and externally directed attention during several screen-
based tasks (see section 2.1.1). The second data set is on the same
aspect of attention but was collected in an Augmented Reality
scenario (see section 2.1.2). Likewise, the third data set was
collected during anAugmented Reality task but consists of phases
on attention on real and phases of attention on virtual objects (see
section 2.1.3). The aim is to improve the classification accuracy
for multiple aspects of attention for both person-dependently
and person-independently trained models. To the best of our
knowledge, no previous study has performed such a comparison
with the suggested methods on eye tracking data.

1.1. Related Work on Mental State
Classification From Eye Behavior
Related studies that aimed at classifying mental states and
especially attentional states from eye tracking data guided us in
finding state-of-the-art features for our 1D statistical summary
feature set and gave us an overview over which algorithms
should be used for the comparison. Additionally, their results
show that it is possible to reliably detect these states in eye
tracking data.

The popular topic of eye movements during reading tasks was
picked up again in a study by Faber et al. (2018) who detected
phases of mind wandering based on fixations, saccades, blinks,
and pupil size. They mention that these content-independent
features work best for 12-s windows. Bixler and D’Mello (2016)
compared the same features in a reading task with more task and
content-specific features, such as repeated fixations on words.
However, the general features performed better which allows
for the conclusion that the general task-independent features
could reach a good performance in other mind wandering
and attention contexts as well. Several studies concentrated on
gaining a further understanding on how fixations (Foulsham
et al., 2013; Frank et al., 2015), saccades (Li et al., 2016), and
eye blinks (Oh et al., 2012) are influenced by mental states.
Features that were often extracted for the feature sets in the
respective time interval include the number of fixations, saccades,
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and blinks, as well as their average length, standard deviation,
median, minimum, and maximum of the length, as well as
angles between saccades and the ratio of fixations and saccades.
Additionally, mean, standard deviation, median, minimum, and
maximum were also calculated for the pupil diameter. However,
Bixler and D’Mello (2016) note that the pupil diameter is very
sensitive to luminance changes in the surroundings and requires
a very careful and controlled setup. Nonetheless, the connection
between mental states and the pupil diameter is also assessed
in the studies by Franklin et al. (2013), Pfleging et al. (2016),
Unsworth and Robison (2016), and Toker and Conati (2017).
Mills et al. (2016) extended the mind wandering experiments to
free viewing of films and found the same results for content-
independent features compared to content-dependent features.
The fixation and saccade features were also used in Hutt et al.
(2017) who classified mind wandering during lecture viewing
using a Bayes Net. In the mentioned studies by Faber et al. (2018)
and Bixler and D’Mello (2016) many different algorithms were
compared to find the best performance for the feature sets. For
Faber et al. (2018) the highest performance was achieved with a
Logistic Regression and for Bixler and D’Mello (2016) the best
results were achieved by a Bayes Net and aNaïve Bayes algorithm.

A different feature set was tested by Xuelin Huang et al.
(2019) who wanted to detect internal thought from eye
vergence behavior features in three different tasks (math,
watching a lecture video, and a daily activity like reading
or browsing the internet). They used information from two
different measures: pair-based vergence features and fixation-
based vergence features. Their vergence feature set was compared
to a feature set containing the previously mentioned features and
the performance reached a similar level or even better results.
If the features were combined, the best results were achieved.
A comparison of several classification algorithms showed that
a random forest yields the best results. It was suggested in
Puig et al. (2013) that distinguishable eye vergence features
are mainly related to covert visual attention tasks. In the
literature, eye vergence features were found to be related to
covert visual attention (Puig et al., 2013), imagination (Laeng and
Sulutvedt, 2014) and internally and externally directed cognition
(Benedek et al., 2017; Annerer-Walcher et al., 2020). Hence, eye
vergence features are interesting features for the classification of
attentional states.

Two of the data sets that are analyzed in this work focus on
the classification of internal and external attention. Internally
directed attention refers to attention that is independent of
stimuli from the surroundings such as memory recall or mental
arithmetic. Externally directed attention instead means focusing
on sensory input, for example, visual search tasks or auditory
attention to one of many speakers (Chun et al., 2011). Several
studies found differences in eye behavior between internally and
externally directed attention, especially for various features of
pupil diameter, eye vergence, blinks, saccades, microsaccades,
and fixations (e.g., Salvi et al., 2015; Unsworth and Robison,
2016; Benedek et al., 2017; Annerer-Walcher et al., 2020). Some
features were more consistently associated with internally and
externally directed cognition than others. It is hypothesized
that two mechanisms mainly lead to the differences in eye

behavior between internally and externally directed attention:
decoupling of eye behavior from external stimuli (Smallwood
and Schooler, 2006) and coupling of eye behavior to internal
representations and processes (e.g., luminance and distance,
Laeng and Sulutvedt, 2014). A detailed review of the general
occulometric features that werementioned before during internal
and external attention was described in Annerer-Walcher et al.
(2021). In Vortmann et al. (2019b), the authors implemented
a real-time system that classifies internal and external attention
based on multimodal EEG and eye tracking data. For the
eye tracking data they used the previously described standard
features (fixations, saccades, blinks, and pupil diameter), and
classified short sequences of 3 s using a Linear Discriminant
Analysis (LDA). This real-time classifier was later implemented
in an attention-aware smart home system to improve the usability
(Vortmann and Putze, 2020).

1.2. Related Work on Deep Learning for
Eye Tracking
In more recent advances, deep learning approaches are used to
improve different areas of eye tracking. Most of these studies
do not focus on differentiating mental states from the data
but rather improving the gaze estimation itself, unsupervised
feature extractions, or predictions about the demographics of the
participants. The use cases for the applications are many-fold,
such as websites (Yin et al., 2018) or Augmented and Virtual
Reality (Lemley et al., 2018).

As mentioned in the previous related work, the feature
engineering for eye tracking classification remains a main
research area. In Lohr et al. (2020), the authors explore
using a metric learning approach to extract eye gaze features.
They trained a set of three multilayer perceptrons to find
fixations, saccades, and post-saccadic oscillations and reached
benchmark performance for the detection. However, Bautista
and Naval (2020) argue that extracting features based on
fixations and saccades does not represent the richness of
information available in eye tracking data. They suggest using
deep unsupervised learning instead of feature engineering.
Two autoencoders (AE) are trained on position and velocity
information to extract macro-scale and micro-scale information
and fitted the representations using a linear classifier. Their
classification accuracy to discriminate gender and age groups
reaches competitive levels compared to supervised feature
extraction methods. Zhang and Le Meur (2018), instead,
classified scanpaths using a one-dimensional CNN to predict the
age of the participant.

Overall, using the scanpaths in the classification process
instead of extracted statistical features can be observed in several
recent studies. Assens et al. (2018) and Bao and Chen (2020)
predict visual scanpaths using GANs and a deep convolutional
saccadic model. In Fuhl et al. (2019), the scanpaths are
represented by emojis in the first step. These representations were
learned by a generative adversarial network (GAN). In a second
step, the emojis are classified using a Convolutional Neural
Network (CNN) to predict the stimulus. The authors argue that
by adding the intermediate step of the emoji representation, they
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increase the classification accuracy compared to classification
simply based on scanpaths.

Sims and Conati (2020) used a combination of a Recurrent
Neural Network (RNN) and a CNN to detect user confusion
from eye tracking data. They argue that the parallel use of
the neural nets allows keeping temporal information (using the
RNN) and visuo-spatial information (using the CNN) and that
their approach outperforms state-of-the-art classifiers. They used
a 1-layer Gated Recurrent Unit (GRU) for the sequential eye
tracking data and supplied the CNNs with scanpath images.

Another approach without explicit feature extraction was
implemented by Zhang et al. (2019). They used a Deep
Neural Network that was made up of several Long-Short-
Term-Memories (LSTMs) to accurately detect Fetal Alcohol
Spectrum Disorder in young children based on their natural
viewing behavior.

Moving away from designated eye tracking devices, several
studies have explored using other cameras for gaze detection.
Different deep learning strategies have been applied in these
studies to increase the tracking and classification accuracies of
such systems. For example, Meng and Zhao (2017) used webcams
and proposed to use five eye feature points for the tracking
instead of only the iris center. These five points are detected
using a CNN and afterward, another CNN is used to recognize
different eye movement patterns. The iTracker by Krafka et al.
(2016) is a CNN trained on a large-scale eye tracking dataset to
predict gaze points without calibration based on the camera of
a mobile device. It reaches state-of-the-art accuracy. CNN-based
feature extraction for eye tracking using mobile devices was also
assessed in Brousseau et al. (2020), where the authors suggest the
combination of the camera with a 3D infrared model.

As mentioned before, Wang and Oates (2015) proposed to
encode time series data as images and classify these images using
CNNs. The resulting images could be a well-suited alternative
to classical feature engineering for eye tracking, scanpaths,
or raw data. The authors suggest two different approaches:
Gramian Angular Fields and Markov Transition Fields. The
two approaches are described in more detail in section 2.2.2.
In their paper, they tested these two approaches as well as
their combination on the twelve standard benchmark time-series
datasets of language data and vital signs used in Oates et al.
(2012) and compared them to state-of-the-art classifiers. The
analysis showed that the new approaches reach similar results.
Since then, their suggested methods have been applied in several
other studies. In Thanaraj et al. (2020), the authors used the GAF
successfully to classify EEG data for epilepsy diagnosis and in
Bragin and Spitsyn (2019) GAF was used for motion imagery
classification fromEEG.We are not aware of eye tracking datasets
that have been analyzed with MTF or GAF images.

2. METHODS

Pursuing the goal of a general assessment of the usability of
the imaging time-series approach for eye tracking classification
of attentional states, we decided to compare multiple classifiers
on multiple data sets for their classification results. The datasets

cover different aspects of attention and were either recorded
for screen-based tasks or in Augmented Reality. Especially
Augmented Reality devices with head-mounted displays offer a
good opportunity to include an eye tracker in the headset and
add an explicit or implicit option for user interaction. The latest
generations of Augmented Reality devices even have built-in
eye tracking. Available relevant work was used as a guideline to
decide on the classifiers to compare. The general occulometric
features that were mentioned in section 1.1 in combination with
different classifiers that we found in earlier studies will be called
“Statistical Summary Approaches” (see section 2.2.1). These 1D
statistical summary approaches as classification algorithms will
be compared with each other as well as with two different neural
nets that were trained on a feature set that was generated by the
Imaging Time Series approach fromWang and Oates (2015) (see
section 2.2.2). Further, we evaluate different settings for the ITS
approach as well as person- and task-dependence.

2.1. Data Sets
The three chosen data sets are different with regard to evoked
attentional focus, mode of task presentation, tasks, number
of recorded participants, and total number of trials and trial
lengths. They were all recorded specifically targeting a binary
classification between two states of attention. Two of the data
sets were recorded during experiments that were controlled
for internally and externally directed attention—two modes of
attention that are usually alternated unconsciously in everyday
life. The third data set contains trials of only externally directed
visual attention. This visual attention is either directed toward
real objects or virtual objects that are displayed by an Augmented
Reality device. All three experimental tasks and setups will briefly
be described in the following. All experiments were approved by
their local ethics committees. Please refer to the original articles
for a more detailed description. An overview of the data sets can
be found in Table 1.

2.1.1. Switch-Task
The original research article of the switch-task data set was
published in Annerer-Walcher et al. (2021). It was recorded as a
cooperation of the University of Graz, Austria, and the University
of Bremen, Germany. During the experiment, the participants
were presented with 6 different types of tasks on a computer
screen (see Figure 1A for task types). Each task was either
numerical, verbal, or visuo-spatial and required either internally
or externally directed attention. Participants were advised to
keep their eyes open and focused on the screen, independent
of the task. A task description was displayed before each trial.
After a button press, a drift correction was performed while the
participants focused on a fixation cross. For external attentional
focus trials, it was necessary to attend the visual input on the
screen and count the number of times the task could be answered
with “yes.” The shown stimulus always consisted of the elements
necessary for all three external tasks and did not depend on the
current task type (see Figure 1B). The trials lasted 10–14 s each
and consisted of 8–11 stimulus screens of the same category.
The trial length and type were chosen randomly. The stimulus
screen (800 ms) was alternated with a masked screen (400 ms)
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TABLE 1 | Overview of the three data sets including information about the tasks and scope.

Data set Attention Task presentation Participants Total trials Trial length (s)

Switch Internal/external Screen-based 172 Approx. 15,000 10

Align Internal/external Augmented Reality 14 Approx. 900 15

Pairs Real/virtual Augmented Reality 13 Approx. 400 20

FIGURE 1 | The switch-task: (A) Categorization of the 6 different tasks with examples for each category. (B) Schematic description of the procedure of one trial,

including example stimuli and timing information. Taken from Annerer-Walcher et al. (2021).

between the single tasks. For example, for an external numerical
trial, the task was to count how many times the shown number
comparison was correct (i.e., 9 < 7). By always displaying a
very similar visual stimulus, the differences between trials were
minimized and restricted to the explicit task. Accordingly, the
same presentation of visual stimulus screens was chosen for
internal tasks even though their content was irrelevant for the
tasks. An exemplary internal task was to generate as many words
as possible starting with the letter D, without saying them out
loud. Performance checks were randomly presented in 1/4 of
the trials. A full data set of one participant consisted of two
experiment blocks with 8 trials of each task in a randomized order
(96 trials in total). Incomplete data sets were also included in
our analysis.

For the binocular eye data recording an SMI RED250mobile
system (SensoMotoric Instruments, Germany) with a temporal
resolution of 250Hz, spatial resolution of 0.03◦, and gaze position
accuracy of 0.4◦ visual angle was used. The participants’ heads
were stabilized using a chin rest.

2.1.2. Alignment-Task
In Vortmann et al. (2019a), the alignment-task of the second data
set was described. In this study, internally and externally directed
attention was evoked during an Augmented Reality scenario.
The task of the participants was to visually align a virtual ball
(red) and a virtual tube (green) that can be seen in Figure 2A.
During the trials with externally directed attention, the ball kept
moving in slow steady motions with direction changes every 5
s within a small distance from the center of the tube to keep the
participant focused for 20 s. The tube was in a fixed position while
the ball moved on a plane that was parallel to the surface of the
tube but closer to the participant than the tube. The alignment
was achieved by movement of the upper body and head. For
the trials of internally directed attention, the participants learned
to imagine the movement pattern of the ball based on a series
of numbers. In a tutorial, the ball and/or a number pad were
displayed in front of the tube (see schematic representation in
Figure 2B). In the real internal trials, this number pad and ball
had to be imagined by the participant. Before such a trial, a
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FIGURE 2 | The alignment-task: (A) Example scene from the HoloLens,

showing green tube and unaligned red ball in front of a white wall. (B)

Schematic display of the tube and the ball together with the imagined number

pad for internal trials. The blue line indicates a ball movement from 4 to 5.

Taken from Vortmann et al. (2019a).

sequence of 3 numbers between 1 and 9 was played as audio
(i.e., 1-6-8). This sequence described the motion pattern of the
imagined ball (i.e., upper left–middle right, lower middle). The
participant’s task was to imagine themovement and always slowly
adjust their current position to keep the ball and tube aligned.
They were advised to take approximately 5 s to imagine the
movement of the ball from one number to the next number,
resulting in a total trial time for internal trials of 15 s. Taken
together, the task was always to keep the visual or imagined ball
“inside” the tube by adjusting one’s position. This task design was
chosen to have two identical conditions regardingmovement and
visual input type while differing in the state of attention.

Participants performed 36 internal and 36 external alternating
trials in total, split up into 3 blocks with breaks in between.
The holograms and sounds were displayed using a Microsoft
HoloLens 1. A binocular PupilLabs eye tracker with a sampling
rate of 120 Hz was attached to the screen of the HoloLens to
record the eye gaze. The average eye tracker accuracy is not
available for this dataset.

2.1.3. Pairs-Task
The third data set was recorded during the performance of a
pairs-task that was described in Vortmann et al. (2021). For
this experiment, the participants had to play the children’s game
“pairs” with two different conditions in Augmented Reality.
During the game, the participants have tomemorize the positions
of several cards. Each picture is present twice. These two cards
are a pair and have to be identified as such while the cards are
turned over to their neutral side with no pictures on them. In
the first condition, the cards are real wooden cards while some of
the surrounding elements are augmented content. In the second
condition, the same cards with similar symbols are virtually
added to the scene (see Figure 3). During the “memory”-phase,
the participants see a deck of cards with the picture side up for
20 s and have time to memorize as many of the pairs as possible
(varying deck sizes for different difficulties). Afterward, in the
“remember”-phase, the participants can choose the pairs that
they remembered. For the classification task, only the “memory”-
phase will be regarded. During these 20 s, it can be assumed that
the participants exclusively pay attention to the real or virtual
cards, depending on the condition. Because the task is exactly

the same in both conditions, the same viewing strategy would be
assumed.With this data set, the goal is to see whether it is possible
to classify attention on real vs. on virtual objects in Augmented
Reality settings based on eye tracking data.

The same setup of the HoloLens 1 and the PupilLabs eye
tracker as in the alignment task was used in this setup. The
participants performed 20 trials of each condition. Trials with
technical problems were excluded from the analysis. The average
eye tracking accuracy after the calibrationwas 2.49± 0.51 degrees
and on average 0.4 trials were excluded.

2.2. Classification Algorithms
To classify the different trial conditions in the presented data
sets, different features, feature sets, and classification algorithms
can be combined to optimize the classification performance. The
goal of this study is to improve attentional state classification
accuracy based on eye tracking data by following a new Imaging
Time Series approach for the feature extraction. We will first
describe which features were extracted for the statistical summary
approach that was inspired by state-of-the-art related studies
and will be used as a benchmark to compare the new approach
to. This 1D feature set will be used to train several different
classification algorithms. The ITS approach will contain a feature
matrix of several generated images that will be used to train two
different convolutional neural networks, which we will describe
in section 2.2.2. No further preprocessing was applied to any
of the datasets and no trials were excluded, other than already
mentioned in section 2.1.3.

2.2.1. Statistical Summary Approaches
The general task-independent eye tracking features that are
usually extracted were described in section 1.1. Which features
can be extracted from the data sets is restricted by the format of
the variables and values that were recorded by the eye trackers
during the experiments. For some of the vergence features
suggested by Xuelin Huang et al. (2019) information about the
distance between the eyes and the distance between the focused
object and the eyes is necessary. However, these are not given for
all our data sets and thus we decided to combine the statistical
summary feature set from fixations, saccades, blinks, remaining
vergence features, and pupillometric data. For the extraction of
these features, the data sequences of X and Y coordinates were
evaluated for fixations, saccades, and blinks using the PyGaze
Toolbox (Dalmaijer et al., 2014). The threshold value for the blink
detection algorithm was 50 ms. Fixations were detected following
the dispersion threshold identification algorithm (I-DT) by
Salvucci and Goldberg (2000) (Implementation on github1).
The dispersion threshold was set to 1 degree, as suggested by
Blignaut (2009). The remaining vergence features were extracted
as described in Xuelin Huang et al. (2019) and the minimal
bounding circles were calculated with the python script from
the nayuki-project2. As a feature, we either used the total value
of the calculated variable, if possible (i.e., number of saccades),

1https://github.com/ecekt/eyegaze (assessed December, 2020).
2https://www.nayuki.io/page/smallest-enclosing-circle (assessed December,

2020).
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FIGURE 3 | The pairs-task: screenshots from the HoloLens showing the setup of the game. Virtual marbles and a deck of cards are always visible. On the left image

the pairs cards are virtual, on the right image the cards are real. Taken from Vortmann et al. (2021).

or calculated statistical measures to describe the variable during
the trial (i.e., mean, standard deviation, median, maximum,
minimum, range, kurtosis, and skewness of the distribution
of saccade lengths). For a complete list of all 76 features see
the Appendix.

After feature extraction, all features are normalized using a
z-score normalization. Features are ranked using an ANOVA
estimator and a non-parametric mutual information estimator.
These feature selection approaches were implemented using
the scikit-learn toolbox by Pedregosa et al. (2011). As a
hyperparameter optimization, we used the 10, 20, 30, 40, 50, 60,
and 70 highest ranked features of both estimators.

The classification algorithms were also implemented using
the default implementations from scikit-learn. We implemented
the pipeline with the following algorithms:

• Naïve Bayes (NB)
• Logistic Regression (LogReg)
• Random Forest (RF)
• k-Nearest-Neighbor (knn)
• Linear Support Vector Machine (linSVM)
• Multi Layer Perceptron (MLP)
• and AdaBoost

The best feature set was chosen for each classifier individually by
computing the average classification accuracy of all folds during
five-fold cross-validation. The whole pipeline can be seen in
Figure 8 in the counter-clockwise path. This approach is used
to gain optimal performance out of the classical approach, not
considering any side-effects that could be caused by multiple
testing of many classifier and feature set combinations (as they
can only be beneficial for the classifiers and you are mainly
interested in an upper bound).

2.2.2. Imaging Time Series
For the ITS approach, the continuous X and Y coordinate
variables were transformed into images and classified using a
neural net. In a preliminary step, phases during which blinks
were detected were filtered from the data, because no information
about the X and Y coordinates is available. A detailed description
of the methods can be found in Wang and Oates (2015).

We decided to generate the images separately for the right
and the left eye with one image representing the X coordinate
and one image representing the Y coordinate recorded by the eye
tracker. This way, we stay closest to visualizing the raw data and
give the neural net the additional possibility to detect and learn
from the differences and similarities between the eyes (following
the idea of using vergence features). The first algorithm used
for the transformation is the Markov Transition Field (MTF)
which generates a matrix using transition probabilities. Based on
the magnitude of the values, the data sequence S is split into Q
quantiles. Each data point xi is assigned to a quantile and a Q
× Q weighed adjacency matrix W is constructed by counting
the transitions from sample to sample between quantiles through
a first-order Markov chain along the time axis. This Markov
transition matrix W is then normalized and spread out among
the magnitude axis considering the temporal positions, resulting
in the MTF M. The main diagonal Mii shows the self-transition
probability at each time step (see Figure 4).

Additionally, we will work with two different versions of
the Gramian Angular Field transformation algorithm. The first
is called Gramian Angular Summation Field (GASF) and the
second is called Gramian Angular Difference Field (GADF).
For both methods, the data sequence X is rescaled to [−1, 1]
and then represented in polar coordinates by encoding the data
values x as the angular cosine and the according timestamp as the
radius. Thus, the data sequence is transferred from the Cartesian
coordinate system into the polar coordinate system which has the
advantage that for all points we preserve the absolute temporal
relation. In the final step, we calculate the trigonometric sum
(using cosine for the GASF) or the trigonometric difference
(using sine for the GADF) pairwise between the points to identify
the temporal correlation within time intervals. Accordingly, the
Gramian matrix G has a size of n x n with n = length of
raw time series. Each cell gij of G represents the trigonometric
difference/sum of the points xi and xj with respect to the time
interval. On the main diagonal, each cell gii contains the original
value/angular information and could be used to reconstruct the
original time seriesX. The steps of this algorithm are visualized in
Figure 5, where8 represents the time series in polar coordinates.

To reduce the size of the generated images, Piecewise
Aggregation Approximation (PAA) can be applied for blurring
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FIGURE 4 | Flowchart representing the main steps of the MTF algorithm. Adapted from Wang and Oates (2015).

FIGURE 5 | Flowchart representing the main steps of the GAF algorithm. Adapted from Wang and Oates (2015).

(Keogh and Pazzani, 2000). The effect of blurring will be
discussed in section 3.1.1.

The transformations of the data sequences into the MTF,
GASF, and GADF images were implemented using the pyts-
toolbox for python (Faouzi and Janati, 2020). The image size was
set to 48x48 pixels and all pixel values were normalized between
[−1, 1] for individual images. Afterward, all generated images (3
transformations × 2 eyes × X/Y-coordinates = 12 images) were
combined into an imagematrix of size 3x4. This image generation
process was applied to valid (non-blink) data of single trials per
condition. An example of the images representing the feature
matrix for an external trial of the switch-task data set can be seen
in Figure 6A.

For the classification of the resulting images, we chose two
CNNs with different complexities. The first CNN will be called
SimpleNet and was implemented following the suggestions of
Yang et al. (2020). It is made up of two convolutional layers
with a kernel size of 5x5, two Max Pooling layers with a window
size of 2x2 pixels, and two fully connected layers as well as the
output layer. The number of units of the output layer is identical
to the number of possible classification labels (in our cases:
2). Additionally, a dropout layer was included that temporarily

freezes learned weights to avoid overfitting (see Figure 7 for a
schematic representation of the SimpleNet).

The second CNN is the AlexNet (Krizhevsky et al., 2017) that
won the ImageNet Large Scale Visual Recognition Competition
in 2012 (trained from scratch). It is more complex than
the SimpleNet as it consists of 5 convolutional, 3 max-
pooling, and 3 fully connected layers that are initialized with
more channels/units. The learnable parameters in the AlexNet
(57,081,730) are 41 times as many as in the SimpleNet
(1,364,942). As in the statistical summary approach, the CNNs
were trained in a five-fold cross-validation.

2.3. Analysis
For the classification, all trials of one data set were cut to
the same length to avoid that the classifiers learn length-
related information instead of attention-related information.
That means, all trials of the switch data set were cut off after 10 s
(equal task contribution was given) and the alignment-task data
was shortened to 15-s windows for both conditions. The trials
in the pairs data set were all equal in length and were thus kept
at 20 s.
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FIGURE 6 | (A) Exemplary feature matrix (3 × 4) made up of 12 images generated during the ITS approach as described in section 2.2.2. An external numeric trial

from the switch-task is represented. Each row represents one of the transformation algorithms with one image for each eye/axis combination. (B) Heatmap of the

gaze points representing the same trial.

FIGURE 7 | Schematic description of the SimpleNet structure indicating layer size and number of channels/units.

The full pipeline—from the data sets to the comparison of the
classifiers—can be seen in Figure 8. The counter-clockwise path
shows the statistical summary approach and the clockwise path
shows the ITS approach. As a performance metric, we chose to
compare the resulting classification accuracies. This is possible
because the attentional states were represented equally in the
data sets. Accordingly, the chance level accuracy of guessing
the correct attentional state for the binary classification tasks
was 0.5.

For comparison of the classification accuracies, we want to
determine whether one algorithm offers a statistically significant
improvement over another approach. Therefore, we used a

Wilcoxon-Signed Rank Test with a significance level of α = 0.05.
Paired data sets were assured by using reproducible training-
test-splits across classifiers. Since we want to test whether one
algorithm is not just different, but actually better (in this case
returning lower values) than the other algorithm, we use the
one-tailed version.

In the following, all comparisons will be presented in tables
displaying the p-values of the one-tailed Wilcoxon-Signed-Rank
Test. If a p < 0.05 is reported, that means that the classifier
in that row performed significantly better than the classifier in
that column. All values were rounded to 3 decimal places, thus,
values of 1 and 0 are possible (0 meaning highly significant
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FIGURE 8 | Combined pipelines of the statistical summary and the ITS approach. Explaining step by step what was done to get from the continuous eye tracking

data to the performed comparisons. Clockwise, ITS approach; Counter-Clockwise, statistical summary approach.

improvement). It follows that, if there is no p < 0.05 in one
row, the classifier in that row did not perform significantly
better than any other classifier. A “better” performance means
a more accurate classification. Additionally, we report the mean
classification accuracies for all classifiers in the tables.

For the training and testing splits, we followed three
different strategies to answer three different research questions
regarding the generalizability of the data. First, we train and
test individually on data from the same participant (person-
dependent, section 2.3.1). Afterwards, we test how well the data
generalizes over participants (person-independent, section 2.3.2)
and over tasks (task-generalizability, section 2.3.3).

2.3.1. Person-Dependent Classification
A person-dependent classifier is trained on data from one person
and used to classify other data of the same person. For this
approach, we took a participant’s data from one dataset and
performed a five-fold cross-validation with each of the suggested
classification algorithms. For the statistical comparisons, the

mean classification accuracy over the folds per participant
was compared.

For reasons of computational time, only the SimpleNet was
used with the ITS features during this analysis. The results are
reported in section 3.2 and Table 2.

2.3.2. Person-Independent Classification
The person-independent version of the classifiers is trained on
data that is independent of the participants whose data it is tested
on. For this analysis, a combined data set over all participants
per task is split and trained/tested using a group-five-fold cross-
validation. That means the five-folds are chosen in a way that the
data from one participant can never be in the training and in the
testing data subset of that fold. The statistical comparisons are
performed on the accuracy results of the individual folds.

The results are reported in section 3.3 and Table 3.

2.3.3. Task-Generalization
The switch-task data set contains an equal share of trials from
6 different tasks, 3 of which require internally directed attention
and 3 of which require externally directed attention. As a final
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TABLE 2 | Person-dependent: Average classification accuracies over all participants if the classifier was trained in a person-dependent manner; bold and italic, highest

average accuracy for this task; bold, p-value of the one-sided Wilcoxon Signed Rank Test above 0.05, thus no statistical difference between this and the best performing

classifier.

simpNet knn linSVM RF MLP AdaBoost NB LogReg

Switch 0.694 0.609 0.619 0.58 0.571 0.559 0.612 0.604

Align 0.707 0.667 0.633 0.579 0.628 0.617 0.632 0.601

Pairs 0.662 0.589 0.647 0.585 0.614 0.524 0.652 0.582

TABLE 3 | Person-independent: Average classification accuracies over all folds of the group-five-fold cross-validation for the person-independent classifier; bold and

italic, highest accuracy for this task; bold, p-value of the one-sided Wilcoxon Signed Rank Test above 0.05, thus no statistical difference between this and the best

performing classifier.

simpNet alexNet knn linSVM RF MLP AdaBoost NB LogReg

Switch 0.743 0.73 0.642 0.685 0.674 0.688 0.69 0.619 0.689

Align 0.619 0.705 0.602 0.596 0.609 0.641 0.606 0.555 0.603

Pairs 0.52 0.5 0.778 0.783 0.793 0.806 0.802 0.715 0.808

TABLE 4 | Switch-task results, task-generalization: Average classification accuracies over all participants if the classifier was trained in using a LOOCV for each task in the

switch dataset; bold and italic, highest average accuracy; bold, p-value of the one-sided Wilcoxon Signed Rank Test above 0.05, thus no statistical difference between

this and the best performing classifier.

simpNet alexNet knn linSVM RF MLP AdaBoost NB LogReg

LOOCV 0.783 0.764 0.663 0.69 0.681 0.707 0.7 0.62 0.693

analysis, we wanted to test how the classifiers perform when
they have to generalize over tasks. Analogously to the person-
independent approach, we test the classifier on a task that it
has not been trained on in a leave-one-out cross-validation
(LOOCV). For example, we train the classifier using all trials, over
all participants from the three external tasks and the numeric
and verbal internal tasks but we test whether it correctly classifies
all trials from the internal visuo-spatial task as internal. To do
this, we chose a leave-one-task-out cross-validation. Again, the
statistical analyses are performed on the accuracies of the folds.

The results can be seen in section 3.4 and Table 4.

3. RESULTS

Before the final comparison of all classifier implementations as
described in section 2.3, we performed some preliminary tests
to verify our approach and test the configurations regarding the
optimal resolution of the images for the ITS approach.

3.1. Preliminary Tests
As suggested by Wang and Oates (2015), a blurring kernel can
be used to decrease the resolution of the resulting images of the
MTF, GASF, and GADF transformations. We were interested in
how far a smaller image would lessen the classification accuracy
because smaller images would lead to a reduced computation
time (see section 3.1.1). Additionally, aiming at explainable AI,
we had a look at the learned filters of the CNNs to assess
whether the learned information is comparable to what is learned
during image classification of real-world objects and whether

we can understand what the CNN learns (see section 3.1.2).
To test the hypothesis that the classifiers learn something about
the differences between the conditions simply from different
placements of the tasks in the visual field, we also trained our
SimpleNet using heatmaps of the gaze coordinates and compared
the results to the ITS approach (see section 3.1.3).

3.1.1. Image Resolution
To test the effect of the image resolution, we chose the same
training and testing approach as described to the person-
independent classifier (see section 2.3.2). We compared an image
size of 12 × 12, 24 × 24, 36 × 36, and 48 × 48 pixels on the
switch- and the alignment-task data sets as examples. Because the
overall results of the pairs-data set were not significantly better
than chance, we did not perform this comparison on this data set.

For both data sets, we find a better classification performance
for a higher image resolution. For the switch-task data set,
the classification accuracy improves significantly with a higher
resolution up to a resolution of 36 × 36 pixels (p = 0.0156
compared to 24 × 24 pixels). Images with a resolution of
48 × 48 pixels lead to a higher mean accuracy with a lower
variance, however, this improvement was not significant for
our comparison.

For the alignment-task data set, the classification performance
does not improve significantly for resolutions higher than 24 ×

24 pixels. However, the mean accuracy still increases and the
variance decreases with higher resolutions.

For the following analyses, we used an image resolution
of 48 × 48 pixels because our computation time was of
minor importance. However, if this approach is used in other
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FIGURE 9 | Excerpt from the visualization of the filters learned by the first convolutional layer of (A) the AlexNet trained on an image data set of real objects (i.e.,

animals and fruit) where X.0-X.2 represent the RGB-channels, and (B) the SimpleNet trained on ITS features, where X.0-X.3 represent the MTF images, X.4-X.7

represent the GASF images and X.8-X.11 represent the GADF images.

studies, smaller image sizes can be chosen without significant
performance loss.

3.1.2. Feature Analysis
The main reasoning behind using images that represent
information from the raw data is that the Neural Net can abstract
features that would not have been represented by an explicitly
defined feature set. However, this is often argued to be a black box
approach because it only tells us that there is a difference in the
data but not what that difference is. Learning from clearly defined
feature sets often allows for a detailed analysis on the importance
of single features and thus, which features contain information
about the differences between the conditions.

If a CNN is trained on images with real objects, the
learned features often represent lines, edges, and other shapes
(Krizhevsky et al., 2017). We visualized the features that were
learned by the SimpleNet and found no such clear shapes or any

other pattern that would explain what the CNN is learning from
the ITS feature matrices (see Figure 9).

3.1.3. Heatmap Analysis
To shine some light on the question of whether the CNN
abstracts pure spatial information from the ITS features, we
generated heat maps for all the trials of all data sets and compared
the achieved classification accuracies for the person-independent
approach using the SimpleNet. An exemplary heatmap can
be seen in Figure 6B. For the alignment- and the pairs-task
data set, the classification performance was not significantly
different from chance level (0.5). For the switch task data set the
classification reached an average over all folds of 0.631 which
suggests that there is some spatial information in the data set
that allows for a differentiation between the internal and external
condition. These results will be discussed further in section 4.
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3.2. Person-Dependence
For the switch-task data set, the person-dependent classifiers
were trained on approximately 70 trials in each fold. The highest
mean classification accuracy of 69.4% across all participants
was reached by the ITS-SimpleNet classifier. This result is
significantly better than all statistical summary approaches.
The second-best classification result was achieved by the linear
Support Vector Machine (SVM) classifier with 61.9%.

The training subsets for the alignment task contained
approximately 55 trials. Again, the highest classification accuracy
was reached by the SimpleNet with 70.7% correctly classified
trials on average. In this case, it was not significantly better than
the best performing statistical summary classifier, which was the
k-Nearest Neighbors approach with 66.7%. The SimpleNet is
significantly better than all other tested classifiers.

In the pairs-task data set, the training subset for the person-
dependent classifiers includes approximately 30 trials. As for the
other two data sets, the highest classification accuracy is reported
for the SimpleNet (66.2%) but with no significant improvement
compared to the Naïve Bayes algorithm (65.2%) and the linear
SVM (64.7%) (see Table 2).

Taken together, the SimpleNet reached the highest average
accuracy for all three data sets if tested person-dependently with
a significant improvement over all other statistical summary
classifiers for the switch-task.

3.3. Person-Independence
Due to the combined data of the participants, the training subsets
of the switch-task data set comprised approximately 12,000
trials for every fold in the person-independent approach. The
classifiers that were trained on the ITS feature set performed
significantly better than any of the statistical summary classifiers.
The SimpleNet outperformed the AlexNet significantly with an
accuracy of 74.3% compared to 73%. Of the statistical summary
approaches, the linear SVM, the Random Forest, the Multi
Layer Perceptron, the AdaBoost, and the Logistic Regression
all classified approximately 68% of the trials correctly with no
significant improvement over each other.

For the alignment data set, the combined trials result in
training subsets of approximately 720 trials. The AlexNet had the
highest classification accuracy of 70.5% on average over the folds.
Only the Multi Layer Perceptron was not significantly worse with
an accuracy of 64%.

The person-independent data set of the pairs-task resulted
in approximately 320 training trials for each fold. The
statistical summary approaches—except for the Naïve Bayes—
reached accuracies of up to 80% with no significant statistical
improvements over each other. The SimpleNet and the AlexNet
only reached accuracies around 50% which is comparable to
guessing (see Table 3).

The results show, that it is possible for all three data sets
to generalize over all participants. However, which feature set
captures the differences and similarities best is highly dependent
on the attentional states that are to be classified.

3.4. Task-Generalizability
For the last analysis, the task independence of the features was
tested by combining the switch-task trials of all participants and
testing on only one of the six tasks. This resulted in approximately
12,500 trials in the training set. The best classification accuracy
was achieved using the SimpleNet. It classified on average 78.3%
of the trials correctly as internal or external attention even
though it had never learned on trials from that task. This was
significantly better than all the other classifiers. The second best
classifier was the AlexNet with an accuracy of 76.4% which
was significantly better than all statistical summary approaches.
The best statistical summary approaches were the Multi Layer
Perceptron, AdaBoost, and the Logistic Regression with up to
70.9% (see Table 4).

4. DISCUSSION

To optimize the accuracy of attentional state classification based
on eye tracking data, different methods of feature extraction
for various feature sets in combination with several classifiers
have been tested in the past. In this work, we followed a new
path by using an Imaging Time Series approach to visualize
the raw eye tracking data and to classify the resulting images
using convolutional neural networks. We compared the results
with classical state-of-the-art approaches and found that our
ITS approach outperforms the other classifiers. This difference
can not be an advantage of deep learning in general, because
the Multi Layer Perceptron that was trained on the statistical
summary feature set was also significantly worse than the ITS
approaches. However, a comparison between different image
generation algorithms as features for the same deep learning
classifier has yet to be assessed.

Even though the smallest amount of training data was
used for person-dependently trained classifiers, the CNNs
outperformed the general feature set classifiers in all three
data sets. Interestingly, for the pairs data set, the CNNs that
were trained person-independently on the ITS features did not
achieve accuracies better than chance level, despite the bigger
training data set. Since the classification was significantly better
for the person-dependent classification, we assume that the ITS
approach captures some characteristics of the eye gaze behavior
that are different between the attention on real and virtual
objects. However, the bad person-independent results suggest
that the information that is captured in the ITS features is very
individual between participants regarding viewing behavior. The
statistical summary features and classifiers reached accuracies up
to 80% for this task, thus, there are person-independent eye gaze
feature differences during attention on real and virtual objects,
these are just not learned in the ITS approach. Understanding
this result requires further insight into the information that is
encoded into the images and which filters were learned by the
convolutional neural net. So far, the only conclusion we can
draw from this is that the statistical features contain information
that is missing in the ITS approach but would be important
to classify attention on real and virtual objects in a person-
independent manner. We excluded poorly randomized training
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and testing data as the reason for the low classification accuracy
by using the same splits across classification approaches. Also,
the comparatively small amount of available data has a low
probability of causing the low performance because the person-
dependent classification for the pairs task was performed on even
fewer data and reached a better performance.

For the two internal/external data sets the highest accuracy for
the approach that generalizes over participants was again reached
by one of the suggested new classification approaches over the
statistical summary approaches. What can be noted is that in
the switch data set, the SimpleNet performs significantly better
than the AlexNet, while for the alignment data set it is the other
way around. The results between the two CNNs are similar for
the pairs- and the switch-task (< 2%) but the accuracy for the
SimpleNet used on the alignment data set is almost 9% worse
than the AlexNet.

An interesting question that could be followed here is in
how far the different complexities of the two models require
different amounts of training data to reach similar results. The
effect of more training data for CNNs was also discussed in
Zhu et al. (2016) where they investigate the saturation threshold
for the models. They conclude that while bigger data sets are
almost always better, the real improvement happens when the
representations of the data and the learning algorithms improve
and are capable of profiting from larger data sets. While, a more
complex model with more learnable parameters is more prone to
overfitting if the amount of data is too small, it is also capable of
capturing more complex structures. However, adding parameter
complexity beyond the optimum reduces model quality. More
training data is desirable because it reduces the variance in the
model and displays more accurately which aspects of the data are
general and which are the noise of specific trials. In our current
analysis, we have not yet identified which characteristics of the
two compared CNNs are responsible for the differences in the
achieved classification accuracies. We assume, that the required
complexity of the model is dependent on the attentional or in
general mental states that are to be classified. This topic will need
further investigation.

A very noticeable achievement is that the classification
accuracies with the ITS approach for internal and external
attention do not decrease for person-independent classification
(74.3 and 70.2%) compared to person-dependent classification
(69.4 and 70.7%) and for the pairs dataset it even increased
(80.8% compared to 66.2%) when the Logistic Regression was
chosen. For user applications that make real-time use of the
classification results, a person-independent classifier eliminates
the need for a long session of recordings just to train the classifier.
This helps to develop real-time training-free use case scenarios
where eye tracking data can be used to detect internally and
externally directed attention in the user and if the attention
is directed externally in Augmented reality settings, it can be
classified whether the focus lies on real or virtual objects.

Another promising result is the high accuracy achieved for
the task generalizability analysis. Using the ITS features together
with the SimpleNet resulted in 78.3% correctly classified trials
on average even though the classifier was not trained on data
from that task. In Annerer-Walcher et al. (2021), the authors

reported an accuracy of approximately 61% for their task
transfer classification approach using an LSTMwith the standard
features. One difference is that they trained on two internal and
two external tasks and tested on the remaining two. However,
the classification accuracy reached by our approach is remarkably
higher and we assume that not all of this difference can be
explained by the different test/training split. We propose that the
characteristics of the gaze behavior that are represented in the
Imaging Time Series features are a good representation of what
is shared over tasks during certain attentional states.

The trial lengths that were analyzed in this study (10–20 s)
were adopted from the original studies for better comparability.
To use the proposed methods in an online real-time system
or for a temporally detailed offline classification, the approach
should be adapted to either use smaller windows or sliding
windows. While, smaller windows also reduce the available data
for each decision, this is not the case for overlapping sliding
windows. Appropriate window lengths or window overlaps for
sliding windows highly depend on the context. While, some
research questions might require a fine-grained analysis of
attention switches (e.g., to study the exact steps of a single
cognitive process), most applications would rather benefit from
the detection of robust attention changes for longer periods
(e.g., adapting a user interface to the attentional state, where too
frequent changes would be more distracting than helpful).

Our study was the first to assess this classification approach for
attentional states based on eye tracking. We were able to show
an improvement in classification accuracy and are optimistic
that further optimization can be achieved. A shortcoming of the
presented analysis is that all the implemented classifiers were
implemented in their default settings. Our goal was to use the
same classifiers on all data sets and thus not optimize each
classifier independently for each data set and classifier training
variant. We are aware that the classification accuracy of the
statistical summary approaches could be increased by performing
further hyperparameter optimization additionally to the feature
selection criteria. On the other hand, the CNNs that were used
to classify the ITS features were also taken “out of the box” and
were not optimized and designed specifically for this analysis.
Typically, neural nets require a large amount of training data,
which could be assessed in further experiments. We conclude
that their results could be improved in the same dimensions
that the statistical summary algorithms could be improved. Our
goal was to show that this feature set is an interesting alternative
that requires further attention because it might lead to better
classifier performances.

A bigger challenge for the new approach is the interpretation
of the model. While, the feature importance and differences
can easily be analyzed for the statistical summary features,
the parameters that are learned during the training of the
CNNs with the images are harder to interpret. A pitfall of
the ITS approach is its dependency on the gaze coordinates if
these are the main difference for the learned conditions in the
training data set. In the switch-task there seem to be differences
between the conditions regarding the gaze heatmaps. A classifier
should not learn that internally directed attention is present
whenever the participants look to the left and externally directed
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attention is present whenever the participants look to the right
because it is not task and location independent. The statistical
summary features do not fall for this information. In our case,
the results of the person-independent ITS classification (74.3%)
are significantly better than the results using a heatmap of
the gaze coordinates (63.1%) which shows that the classifier
learns significantly more from the Imaging Time Series than
the “location.”

All in all, the results of this first exploration of Imaging Time
Series for eye tracking classification show that it is promising to
further test and optimize in this direction, exploring other feature
extraction and combination methods.

4.1. Future Work
In this work, the Imaging Time Series approach was tested on
three different datasets. In the next step, other available eye
tracking data sets of attentional states will be classified using this
feature set. If possible, these data sets should contain other tasks
and attentional states. The analyses will focus on understanding
and optimizing the necessary complexity of the CNNs while
keeping task- and person-independence inmind as a central goal.

After comparing the ITS approach to classical statistical gaze
features, future comparisons will focus on other deep learning
approaches that have been used on eye tracking data by related
studies. In particular, we would be interested in a comparison of
our suggested ITS approach with the approach from Sims and
Conati (2020) where the CNNswere trained on the scanpaths and
the temporal dimension was analyzed using GRUs.

Further, we want to investigate how well a combination of
the statistical summary features and the ITS techniques mix.
The statistical summary features contain a lot of information
that is well-understood and can be explained by results from
cognitive science research. However, with the statistical summary
feature extraction and generation algorithms, a lot of information
about the data is lost, especially with regard to the temporal
dynamics within a trial. One idea would be to visualize some
of the statistical summary features using Imaging Time Series.
For example, the statistical summary features that describe the
length of the saccades within a trial are often represented by
statistical values that describe their distribution: Mean, standard
deviation,minimum, andmaximum. The saccade lengths are also
a time series that could be transformed into an image with less

information loss than the descriptive statistics. This could be an
efficient combination of both approaches.

One last topic that was not addressed until now in this study is
the window length of the classified data. With follow-up studies,
we want to examine which effect the chosen time interval has on
the classification accuracy. Precisely, shorter windows are desired
if the accuracy loss is not significant because shorter trials would
allow attentional state detection closer to real-time.

The overall goal will be an end-to-end system that can classify
multiple aspects of the attentional state of a user without person-
dependent training as fast and accurate as possible and use the
information for adaptations of the interface or as implicit input.
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APPENDIX

Complete list of features for the statistical summary feature set.
sd, standard deviation; min, minimum; max, maximum.

• Distance between gaze points of both eyes mean
• Distance between gaze points of both eyes sd
• Angle between gaze points of both eyes mean
• Angle between gaze points of both eyes sd
• Distance between centroids of both eyes
• Angle between centroids of both eyes
• Distance between minimal bounding circles of both eyes
• Angle between minimal bounding circles of both eyes
• Normalized distance between minimal bounding circles of

both eyes
• Minimal bounding circle radius left eye
• Minimal bounding circle radius right eye
• Fixation duration mean
• Fixation duration sd
• Fixation duration median
• Fixation duration min
• Fixation duration max
• Fixation duration range
• Fixation duration kurtosis
• Fixation duration skewness
• Fixation quantity
• Fixations total duration
• Saccade duration mean
• Saccade duration sd
• Saccade duration median
• Saccade duration min
• Saccade duration max
• Saccade duration range
• Saccade duration kurtosis
• Saccade duration skewness
• Saccade length mean
• Saccade length sd
• Saccade length median
• Saccade length min
• Saccade length max
• Saccade length range

• Saccade length kurtosis
• Saccade length skewness
• Saccade velocity mean
• Saccade velocity sd
• Saccade velocity median
• Saccade velocity min
• Saccade velocity max
• Saccade velocity range
• Saccade velocity kurtosis
• Saccade velocity skewness
• Saccade quantity
• Saccades total duration
• Angles between saccade and x-axis mean
• Angles between saccade and x-axis sd
• Angles between saccade and x-axis median
• Angles between saccade and x-axis min
• Angles between saccade and x-axis max
• Angles between saccade and x-axis range
• Angles between saccade and x-axis kurtosis
• Angles between saccade and x-axis skewness
• Angles between saccades mean
• Angles between saccades sd
• Angles between saccades median
• Angles between saccades min
• Angles between saccades max
• Angles between saccades range
• Angles between saccades kurtosis
• Angles between saccades skewness
• Fixation/saccade duration ratio
• Blink duration mean
• Blink duration sd
• Blink quantity
• Blinks total duration
• Pupil diameter mean
• Pupil diameter sd
• Pupil diameter median
• Pupil diameter min
• Pupil diameter max
• Pupil diameter range
• Pupil diameter kurtosis
• Pupil diameter skewness
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Music performance can be cognitively and physically demanding. These demands

vary across the course of a performance as the content of the music changes. More

demanding passages require performers to focus their attentionmore intensity, or expend

greater “mental effort.” To date, it remains unclear what effect different cognitive-motor

demands have on performers’ mental effort. It is likewise unclear how fluctuations

in mental effort compare between performers and perceivers of the same music.

We used pupillometry to examine the effects of different cognitive-motor demands

on the mental effort used by performers and perceivers of classical string quartet

music. We collected pupillometry, motion capture, and audio-video recordings of a

string quartet as they performed a rehearsal and concert (for live audience) in our

lab. We then collected pupillometry data from a remote sample of musically-trained

listeners, who heard the audio recordings (without video) that we captured during the

concert. We used a modelling approach to assess the effects of performers’ bodily

effort (head and arm motion; sound level; performers’ ratings of technical difficulty),

musical complexity (performers’ ratings of harmonic complexity; a score-based measure

of harmonic tension), and expressive difficulty (performers’ ratings of expressive difficulty)

on performers’ and listeners’ pupil diameters. Our results show stimulating effects of

bodily effort and expressive difficulty on performers’ pupil diameters, and stimulating

effects of expressive difficulty on listeners’ pupil diameters. We also observed negative

effects of musical complexity on both performers and listeners, and negative effects

of performers’ bodily effort on listeners, which we suggest may reflect the complex

relationships that these features share with other aspects of musical structure. Looking

across the concert, we found that both of the quartet violinists (who exchanged places

halfway through the concert) showed more dilated pupils during their turns as 1st violinist

than when playing as 2nd violinist, suggesting that they experienced greater arousal when

“leading” the quartet in the 1st violin role. This study shows how eye tracking and motion

capture technologies can be used in combination in an ecological setting to investigate

cognitive processing in music performance.

Keywords: pupillometry, mental effort, music performance, music listening, musical expression, arousal
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1. INTRODUCTION

Music performance is a cognitively demanding activity
that requires many processes to be carried out in parallel,
including overt motor production, covert processing of musical
information, monitoring of musical output, and monitoring
of audience responses (Bishop and Keller, 2021)1. There are
additional demands during ensemble performance; for example,
performers must divide attention between their own playing and
their co-performers’ playing (Keller, 2001).

A hallmark of skilled performance is the ability to manage
cognitive resources effectively so that accuracy, expressivity,
and (in ensemble settings) coordination are maintained.
Performances by skilled musicians may seem rather effortless
to audience members, but they actually draw on a combination
of effortful and automatic processes. These processes involve
performers’ anticipation of each other’s playing (including more
effortful imagery and simulation and more automatic melodic
expectancies), adaptation to each other’s playing (including
more effortful period correction and more automatic phase
correction), and control of attention (including more effortful
directed listening and more automatic passive monitoring).

Skilled performers are able to prioritize one process over
another, focusing attention on the prioritized process while non-
prioritized processes run automatically. To facilitate attention
regulation, musicians may identify landmarks in the music that
can serve as cues to attention, drawing their focus to specific
technical or expressive processes (Chaffin and Logan, 2006;
Chaffin et al., 2010). Less skilled performers may lack attention
regulation abilities and, as a result, distribute attention non-
optimally—for instance, by focusing on their own playing when
they should be listening to their co-performers, or sacrificing
expressivity to focus on note accuracy.

In this study, we examine the relationships between the
cognitive-motor demands of string quartet performance and
attention fluctuations in both performers (Experiment 1) and
listeners (Experiment 2). We used the psychophysiological
method of pupillometry to gauge changes in the intensity
of attention (Kahneman, 1973; Laeng and Alnæs, 2019). In
Experiment 1, we collected pupillometry, motion capture, and
audio-video data from a string quartet as they performed
selections of classical repertoire in our lab in rehearsal and
concert/exam conditions. In Experiment 2, we collected pupil
data from musically-trained listeners as they heard recordings
of the quartet’s concert performance. We then analysed how
changes in performers’ and listeners’ pupil diameters related to
features of the performers’ physical performance (e.g., quantity
of motion) and features of the music (e.g., tonal tension and
expressivity). In the sections below, we develop some predictions
for how these features draw on attention.

1.1. Pupil Size as an Index of Mental Effort
Pupil size is commonly used as an index of attention and mental
effort in cognitive tasks (van der Wel and van Steenbergen,

1Bishop, L., and Keller, P. (forthcoming). “Instrumental ensembles,” in The Oxford

Handbook of Music Performance, ed G. McPherson.

2018; Laeng and Alnæs, 2019). Pupil size is tightly coupled
to the release of norepinephrine by the locus coeruleus, which
modulates attention and cognitive arousal (e.g., Sara, 2009; Alnæs
et al., 2014; Joshi et al., 2016). Pupil dilations occur reliably as part
of an orienting response to salient, attention-grabbing stimuli
across modalities (Murphy et al., 2016; Marois et al., 2018) or
whenever an individual is focused on a challenging task (Laeng
et al., 2011). These dilations, described as psychosensory pupil
responses (Mathôt, 2018), can be sampled at a fine resolution
with modern eye-trackers and act as a gauge of moment-to-
moment attention fluctuations.

A number of factorsmay contribute to how intensely attention
is focused at any given moment during a music performance,
including the complexity of the music and how technically
difficult it is to play. This intensity of cognitive processing is
referred to as “mental effort” regardless of the type of task
being performed (Kahneman, 1973). Studies of mental effort
have shown that pupil dilations occur during complex tasks such
as comprehending sentences with higher linguistic complexity
(Just et al., 2003), during tasks carried out under interference
(O’Shea and Moran, 2019), and when working memory load
is high (Kahneman and Beatty, 1966; Klingner et al., 2011; see
also Zekveld et al., 2018). Conversely, pupil constriction occurs
during periods of distraction and mind wandering (Konishi
et al., 2017). Individual differences in cognitive abilities such as
working memory capacity also contribute to attention control
(Unsworth and Robison, 2017; Endestad et al., 2020).

In a musical context, patterns of pupil dilations reflect
listeners’ entrainment with musical rhythms (Fink et al., 2018)
and listeners’ attention to deviations from strict rhythmic
regularity. These deviations are referred to as “microtiming” in
the context of groove-based jazz music (Skaansar et al., 2019), but
are also a common feature of expressively-performed music in
many traditions. A pupil response is also observed when listeners
hear pitches that deviate from an established tonal context, or
in general, when they are surprising (Liao et al., 2016; Bianco
et al., 2020). Musical features that capture attention tend to do
so reliably across listeners who are familiar with the musical
tradition, and as a result, similar patterns of pupil dilation occur
among listeners who hear the same musical material (Kang and
Wheatley, 2015; Kang and Banaji, 2020).

1.2. Mental Effort and Musical Complexity
Music performance and listening involves continual processing
of tonal and timing information (Huron, 2006). Music that
violates listeners’ expectations for tonality or timing can trigger
an increase in mental effort. Fluctuations in mental effort might
also occur in response to the complexity of the music that is
performed. Musical complexity can be described as a property
of a musical stimulus that increases as the degree of uncertainty
or unpredictability of pitch, timing, and other features increases.
For example, a piece in which many pitch classes have an equal
probability of occurring could be deemed more complex than
a piece in which few pitch classes are more probable. The
complexity of a musical stimulus can also be said to relate to the
amount of change that occurs over time (Mauch and Levy, 2011)
or the number of events per part or layer.
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From a psychological perspective, it is important to account
for how listeners perceive music when assessing its complexity.
Listeners’ perceptions of complexity are influenced by their
long-term musical knowledge, which develops through their
exposure to different kinds of music. Studies have shown
an inverted U-shaped relationship between complexity and
preference (Burke and Gridley, 1990; Gordon and Gridley,
2013), and a relationship between working memory capacity and
preference for complexity, mediated by musical training (Vuvan
et al., 2020). Marin and Leder (2013) found that arousal mediated
a relationship between musical complexity and listeners’ ratings
of pleasantness.

For the present study, we estimated harmonic complexity,
a subcomponent of musical complexity, using a measure
of harmonic tension. Harmonic tension and complexity are
overlapping phenomena. Both are aggregate constructs that draw
on a combination of psychoacoustic features including tonal,
temporal, and timbral information. We chose to focus on the
tonal component because tonality is particularly relevant in the
repertoire that was performed by our quartet. In Western tonal
music, moment-to-moment changes in harmonic complexity
contribute to listeners’ perceptions of harmonic tension, which
is usually defined in qualitative terms, with increasing tension
described as a feeling of rising intensity and decreasing tension
described as a feeling of resolution.

One of our measures of harmonic complexity, “Cloud
diameter,” derives from the spiral array model of tonality that was
proposed for tonal music by Chew (2000). This model is a 3D
extension of the circle of fifths, in which pitch classes that are
tonally close (e.g., a perfect fifth) are in close spatial proximity
to each other. Cloud diameter is computed from musical scores.
It represents the tonal distance within a cluster of notes and is
given in terms of the spatial distance between their pitch classes
in the spiral array (Herremans and Chew, 2016). We predicted
that increased Cloud diameter (i.e., increased dissonance) would
require increased mental effort to process, resulting in greater
pupil size among performers and listeners.

We also obtained ratings of changes in harmonic complexity
throughout the pieces from the quartet, which they gave
individually per bar for their own parts. These ratings were
expected to correlate moderately with Cloud diameter, and were
predicted to relate to increased pupil diameter in both performers
and listeners.

1.3. Bodily Effort and Mental Effort
Playing music is physically effortful. The processes of carrying
out and controlling body motion involves some mental effort. It
is therefore important to consider bodily effort when assessing
mental effort in performers. In sports, pupil dilations have been
shown to occur at the onset of “quiet eye”—the prolonged
fixation that expert athletes make on a target immediately prior to
initiating a goal-directed action—suggesting heightened mental
effort is involved in action preparation (Vickers, 2009; Campbell
et al., 2019; Piras et al., 2020). However, the relationship
between sustained bodily effort and mental effort generally
remains unclear.

For musicians, the physical demands of performance can
be described in terms of two components: physical force (or
exertion) and control. Force is an important dimension of bodily
effort for acoustic instrument performers, as it is the primary
means of controlling sound intensity (Olsen and Dean, 2016).
Control is central to effective playing technique and relates to
how precisely a performer can achieve their intended timing,
intonation, timbre, and dynamic level (Palmer, 1997; Bishop
and Goebl, 2017). These components of bodily effort can vary
independently; for example, performing rapid notes at a low
dynamic level requires little force but high control, and can be
technically demanding.

In a study by Zénon et al. (2014), pupil size related to the
intensity of bodily effort (the amount of force exerted in a power
grip task) as well as to participants’ perceptions of effort. van der
Wel and van Steenbergen (2018) additionally argue that task
demands and the amount of effort that participants actually
invest in a task can diverge. A recent study of mental effort in
imagined and overt piano playing showed a divergence between
task demands and measures of mental effort when the difficulty
of the task exceeded the capacities of the participants (e.g., when
complex movements had to be imagined at a fast tempo; or
when imagery had to be carried out with interference; O’Shea
and Moran, 2019). Interestingly, even though pupils constricted
during the most difficult conditions in this study, participants
reported increased mental effort, indicating a dissociation
between pupil size and perceptions of effort.

In contrast, a recent study by Endestad et al. (2020), also using
pupillometry, showed a clear relationship between pupil size and
degrees of mental effort during overt and imagined piano playing
for a professional pianist as well as for listeners. This study also
showed, using fMRI, differences in locus ceruleous activity for
the same pianist as she played (in the scanner) two pieces of
different difficulty.

The bodily effort that is involved in playing music affects
listeners’ experiences of the music as well as performers’.
The embodied music cognition framework posits that music
perception is a body-based cognitive process that draws on
listeners’ motor systems in various ways (Maes et al., 2014).
Some supporting evidence comes from neuroimaging studies,
which have shown that listening tomusic activates motor circuits,
even when the listener makes no overt motion (e.g., Abrams
et al., 2013; Gordon et al., 2018). The patterns of activity across
motor regions may be especially similar between performers and
listeners when they share instrument-specific expertise (Haueisen
and Knösche, 2001; Taylor and Witt, 2014).

The activation of motor circuits during music listening may
allow listeners to covertly simulate features of the actions that
were involved in playing the music (Wilson and Knoblich,
2005; Repp and Knoblich, 2007). This real-time simulation
of music performance actions may help listeners to generate
predictions that shape their perception of the music. Motor
activation may also occur at a more general level, allowing for
simulation of features of actions that listeners have no experience
in performing, or remapping of action features to familiar action
sequences (e.g., allowing a listener to covertly sing along with
a melody played by a violin, despite having no violin-playing
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experience; Godøy et al., 2005; Eitan and Timmers, 2010; Maes
et al., 2014; Kelkar and Jensenius, 2018). Motor activation during
music listening may furthermore help listeners to construct
expressive interpretations of the music they hear and relate to the
performer(s) on an emotional level (Molnar-Szakacs et al., 2011;
Olsen and Dean, 2016).

In the current study, we assessed the effect of bodily effort on
pupil changes during string quartet performance and listening.
We predicted that the bodily effort that performers invested
in their playing would engage increased mental effort. We also
predicted that the bodily effort that listeners heard in recordings
of the quartet’s performances would engage increased mental
effort, especially in the case of string musicians, who would
be most familiar with the sound-producing actions involved in
quartet playing. Bodily effort was operationalized in terms of
several different measures, which we selected to capture different
aspects of the physical demands of playing a stringed instrument.
These included measures of overt head and armmotion, acoustic
intensity (taken as a correlate of physical force), and the
performers’ subjective, per-bar ratings of technical difficulty.

1.4. Expressivity, Arousal, and Mental Effort
Attention-related modulations of pupil size also reflect changes
in arousal. For both performing musicians and listeners, local
fluctuations in arousal can occur in relation to expressive changes
in the music (Schubert, 2004; Lundqvist et al., 2009; Egermann
et al., 2015). Musical expression is a construct that arises from
interactions between different musical parameters, including
pitch, timing, dynamics, timbre, and various body features,
among others (Juslin, 2003; Jensenius et al., 2010; Cancino-
Chacón et al., 2017). For music in the Western classical tradition,
expressivity is to a large extent tied to certain key structural
features that are given in a score (Palmer, 1997). Performers
may interpret these features in different ways, thus producing
performances that are expressively distinct.

One component ofmusical expression is emotional expression
(Juslin, 2003). Music can be emotionally expressive in different
ways, including through extramusical associations and through
perceptual expectations that arise from familiar harmonic
relationships (Egermann et al., 2013; Pearce, 2018). The
emotional qualities of music are commonly described in terms
of arousal and valence (e.g., Schubert, 2004). Many of the basic
emotions that people report associating with music can be readily
placed in a two-dimensional space that crosses arousal with
valence (e.g., happiness, peacefulness, fear, etc.), though this is
not the case for some more complex emotions, such as being
moved (kamamuta) or awe, which contain elements of seemingly
contradictory emotional states (e.g., awe is described as including
aspects of both sadness and joy; Konecni, 2005; Menninghaus
et al., 2015; Zickfeld et al., 2019).

A few studies have investigated the relationship between
pupil size and emotional arousal in either music performers or
listeners. Gingras et al. (2015) showed a positive relationship
between pupil dilation and ratings of emotional arousal and
tension in listeners who heard brief (6-s) excerpts of Romantic-
style piano trios. In another study, pupil dilations were shown
to occur in close temporal proximity to listeners’ reported chills

(i.e., peak emotional experiences; Laeng et al., 2016). In a
study investigating the arousal elicited by vocal vs. instrumental
melodies, listeners displayed a more dilated pupil when hearing
vocal melodies than when hearing the same melodies played on a
piano, suggesting that the human voice is treated as a “privileged
signal” (Weiss et al., 2016). In the same study, listeners also
showed amore dilated pupil when hearing familiar melodies than
when hearing novel melodies.

The current study contributes to this literature with an
investigation of how local fluctuations in expressivity relate
to pupil size. Expressivity was quantified through performers’
per-bar ratings of expressive/interpretive difficulty. It should
be noted that we did not ask for performers’ ratings of
music-related arousal or expressive intensity, although we
expect that these factored into the ratings that they gave
(see Methods for our exact wording). Their ratings may also
reflect their judgements of musical complexity and technical
difficulty, which also contribute to how readily performers realize
their expressive goals. In short, our measure of expressive
difficulty probably constitutes a higher-order indication of the
performers’ relationships with the music. We predicted that
higher ratings of expressive difficulty would correspond to higher
emotional arousal and, correspondingly, larger pupil size for both
performers and listeners.

1.5. Arousal and Attention Regulation
During Music Performance
Changes in performers’ arousal can occur across relatively
long timeframes (e.g., across the course of a concert). These
changes occur in addition to the local fluctuations that relate to
musical expression, and can be assessed with pre-trial “baseline”
pupil measurements. For performers, baseline levels of arousal
are likely to depend on the conditions surrounding their
performance (e.g., who is in the audience, how well-prepared
the performers are, etc.) and their individual response to those
conditions. Elevated arousal prior to public performance is
common, and often associated with performance anxiety (Kenny,
2011). Performances are given optimally under moderate levels
of arousal (Papageorgi et al., 2007). Physiological correlates of
autonomic arousal, including increased heart rate, increased
motor excitability, and sweating, can themselves be detrimental
to performance, impairing fine motor control and increasing
the bodily effort that is required to maintain technical accuracy.
Musicians may have to deviate from their practiced playing
technique in order to compensate and maintain control of their
movements (Yoshie et al., 2009). This makes performance more
difficult and adds to musicians’ mental workload. Absorption
(sometimes described in terms of flow) is noted to emerge
predominately under moderate levels of arousal (Peifer et al.,
2014; Vroegh, 2019).

Effective attention regulation is also thought to require
a moderate level of arousal (Unsworth and Robison, 2017).
Lenartowicz et al. (2013) suggest that high and low levels
of arousal pave the way for different types of distractibility.
They posit a “landscape” of attention control states based on
crossing high and low arousal levels with internal and external
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attention orientations. If arousal is low, and internal focus can
lead to mind wandering and zoning out, while an external
focus leads to behaviour comprising predominately automatic
responses to salient stimuli. If arousal is high, an inwards focus
can result in mind-racing, while an external focus leads to
excessive and nondiscriminating responses to both relevant and
irrelevant stimuli.

For ensembles like a classical string quartet, baseline arousal
levels might be expected to differ between performers according
to their individual roles in the ensemble. Traditionally, the 1st
violinist is the leader of the group. This is particularly the case
for repertoire from the classical period (e.g., including works by
Haydn and Mozart), where the 2nd violinist, violist, and cellist
typically have more supporting roles. The 1st violinist is also
often responsible for giving cues to the other musicians to help
keep the group together. While string quartets may operate more
democratically in other ways (e.g., jointly making interpretative
decision), anecdotal evidence suggests that some 1st violinists
feel heightened stress in performance due to their leadership role
(Davidson and Good, 2002). If this is heightened stress occurs, it
is likely reflected in the 1st violinist’s pupil dilations.We predicted
that the 1st violinist would show more dilated pupils than the
other musicians. We also predicted that the musicians would
show more dilated pupils in the baseline measurement taken just
before the start of the concert performance than in the baseline
measurements taken before the rehearsal performances, earlier in
the same recording session.

1.6. Current Study
This study made a novel assessment of how musical complexity,
bodily effort, expressive difficulty, and situational factors
(including rehearsal vs. concert setting, piece order, and musical
role) contribute to mental effort in performers and listeners of
string quartet music. In Experiment 1, we invited a student
string quartet from a local music academy to record some
performances of their current repertoire at our lab. The quartet
gave five performances of an excerpt from one of their pieces
in rehearsal conditions (i.e., with no audience). We manipulated
the configuration of the quartet across rehearsal performances in
order to partially or completely disrupt visual communication
between musicians. Bishop et al. (2021)2 reports on how these
manipulations affected interperformer communication during
the rehearsal performances. The current paper does not consider
these manipulations further.

Following the rehearsal performances, the quartet played the
full set of pieces for a live audience (which included an examiner)
in a concert/exam condition. We collected pupillometry, gaze,
motion capture, and audio/video data from the musicians.
The performers later individually provided per-bar ratings
of Harmonic complexity, Technical difficulty, and Expressive
difficulty. In Experiment 2, we collected pupillometry data from
16 trainedmusicians as they listened to recordings of the quartet’s
concert performance.

2Bishop, L., Gonzalez Sanchez, V., Laeng, B., Jensenius, A. R., and Høffding, S.

(submitted). Variability of head motion and gaze across social contexts in string

quartet performance.

Musical complexity, bodily effort, and expressive difficulty
were subdivided into a combination of predictors that included
ratings provided by the performers and measurements of
score information and performance data (Figure 1). With
this combination of predictors, we aimed to capture the
effects of perceived effort, allocated effort, and task difficulty.
The overarching prediction was that subjective and objective
measures of both musical complexity and bodily effort would
relate to increased pupil dilations. We predicted a similar pattern
of results for performers and listeners, although we expected a
larger effect of predictors relating to performers’ bodily effort on
performers than on listeners.

As predictors relating to musical complexity, we included
Cloud diameter as a measure of harmonic tension, and
performers’ ratings of Harmonic complexity. As predictors
relating to bodily effort, we included quantity of head and
arm motion, energy (acoustic intensity) of the musical sound
signal, and performers’ ratings of technical difficulty. For string
musicians, head motion is not directly involved in sound
production, but may be representative of musicians’ expressive
engagement with the music (see Glowinski et al., 2013a,b) and
communication with co-performers (Bishop and Goebl, 2018)2.
Sound intensity can be considered a correlate of physical force, as
more forceful movement is required to produce higher-intensity
audio signals on string instruments. Our measure of expressive
difficulty, which we posited incorporated aspects of arousal,
musical complexity, and technical difficulty, constituted ratings
provided by the performers.

We additionally made several predictions relating to
situational factors, which were tested in Experiment 1. First,
we predicted that arousal would be greater at the start of
the concert than at the start of the rehearsal period. We also
predicted that during the course of the concert, some global
changes in performers’ tonic arousal would occur as their
initial anxiety reduces. We tested for differences in mean
pupil size between the four pieces that the quartet played
in the concert, expecting that a gradual decline in arousal
would occur. We also predicted that levels of arousal would
be tied to the different musical roles of the quartet members.
The violinists switched roles halfway through the concert,
so that each played the 1st violin part for two of the four
pieces. This gave us an opportunity to test the prediction that
the 1st violinist would have heightened arousal due to their
leadership role.

2. EXPERIMENT 1: MENTAL EFFORT IN
STRING QUARTET REHEARSAL AND
CONCERT PERFORMANCE

2.1. Participants
A student string quartet from a local music academy took
part in the experiment (1 female, 3 males; ages 19–20; 13–
16 years of music training). They had established themselves
as a group 6 months prior to the experiment, but had
occasionally played together in various ensembles before this,
having attended the same music school as children. The 2nd
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FIGURE 1 | List of predictors relating to bodily effort, musical complexity, and expressive difficulty.

violinist and cellist had played together in a quartet for 11
years. At the time of the experiment, the quartet had been
rehearsing the Haydn piece for 3 months and the Debussy
piece for 2 months. The musicians all provided written
informed consent.

2.2. Materials and Equipment
Motion data were recorded using a Qualisys system with 12 Oqus
300 cameras (performances 1–6) and an OptiTrack system with 8
Flex 13 cameras (performance 7); see Figure 23. The musicians
wore jackets and caps with six reflective markers attached (1
on the head, 1 on the upper back, and 2 on each arm above
and below the elbow). Marker positions were sampled at 120
Hz. Pupil and gaze data were collected using SMI Wireless Eye
Tracking Glasses, which recorded at 60 Hz. To synchronize
motion and eye data, we recorded an audiovisual signal using
a clapperboard with 2 reflective markers affixed at the start of
each performance. Recordings were aligned retrospectively from
this point. Additional details on our equipment set-up relating to
measures that are not reported here are given by2.

The experiment was carried out in our lab, which has
moderately bright lighting and black curtains covering the walls
and windows. To avoid adding noise to the pupillometry data, we
did not use any spotlights or stage lighting.

During the rehearsal performances, the musicians played the
first 68 bars of the first movement of the String Quartet in B-flat
major, Op. 76, No. 4, by Haydn. For the concert, they played the
full first and secondmovements of this work as well as the full first
and second movements of the String Quartet in G minor, Op. 10,
by Debussy. Hereafter, we will refer to these pieces as Haydn I and
II and Debussy I and II.

2.3. Procedure
The musicians warmed up briefly and were then positioned for
the first performance. They completed a 1-min baseline pupil
recording before playing, for which they were instructed to sit
still and focus their gaze on a single score note. The performance
was then recorded, and the musicians were repositioned for
the next condition. Baseline recordings were made every time

3Both systems actually recorded the full experiment, and (Bishop and Jensenius,

2020) shows that they were comparable in recording quality. We used OptiTrack

data for performance 7 because the Qualisys recording was started a few

seconds late.

FIGURE 2 | Photos showing the eye-tracking glasses and locations of body

markers on the musicians. Photo credit: Annica Thomsson.

the musicians were repositioned. Following the Replication-
rehearsal, we paused so that the musicians could take a break
and the lab could be set up with audience seating for the concert.
A final baseline and then the concert were recorded. In total,
including setup and breaks, the experiment took around 4 h.

In the weeks following the recording session, the musicians
made per-bar ratings of perceived difficulty for the music
that they played during the concert. They rated the
music on three measures, using a scale of 1—7: technical
difficulty (how technically challenging was the bar to play?);
expressive/interpretative difficulty (how difficult was it to
express the intended meaning, idea, or emotion?); and harmonic
tension/complexity (how harmonically complex or tense was
the material in the bar?). The rating task was done separately
and individually and the musicians submitted scanned and rated
copies of their scores when they had finished.

2.4. Analysis
2.4.1. Preprocessing of Pupil, Motion, and Musical

Data

2.4.1.1. Pupil Data
We used binocular pupil diameters (in mm) for our analysis,
which we obtained by averaging the values that were recorded
for left and right eyes. We used binocular rather than monocular
values in order to minimize any effects of any outliers that
might occur in one eye or the other (especially in moments
where participants were looking at more extreme angles). A
multi-step procedure was developed for cleaning and filtering
binocular pupil data. First, to eliminate blinks, we discarded
any observations where the recorded diameter was more than 2
standard deviations below the mean diameter for the trial. We
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found that it was also necessary to discard some non-zero values
at the edges of the “gaps” that occurred because of blinks, where
the eye was captured partially closed. These values were identified
on the basis of velocity, which was calculated as the first derivative
(rate of change) of the series of pupil diameters. Observations
where the velocity of diameter change was more than 2 standard
deviations from the mean velocity of the trial were discarded.
A Savitzky-Golay filter was used to smooth the remaining data
(order = 3, window = 11), and gaps in the data were filled
using a linear interpolation. Finally, blinks were removed from
baseline data, and smoothed performance data were calculated as
differences from mean baseline diameters.

Since the ratings provided by the performers were given per
bar, we downsampled the processed pupil data to obtain an
average diameter per bar. To do this, we interpolated a series of
bar onset times using the audio recordings. Bars were assumed
to be evenly spaced in time. Although we acknowledge that
this introduces some imprecision into our alignments, a more
precise audio-to-score mapping would have been a substantial
task and beyond the scope of this project. Pupil data and bar
numbers were then aligned based on their timestamps, and we
calculated an average pupil diameter per bar. These averaged,
per-bar diameters were analysed in the linear mixed effects
models (see below).

2.4.1.2. Motion Data
Head and arm data were used for the analyses presented here.We
chose to focus on velocity rather than a higher order kinematic
feature (e.g., smoothness) because velocity provides a more
direct measure of the mechanical energy that is expended by
a performer and is related to momentum. Smoothed velocities
were derived using a Savitzky-Golay filter (order = 3, window
= 41; “savitzkyGolay” function from the “prospectr” package in
R, which optionally outputs smoothed derivatives of the input
data). The norm of smoothed 3D velocities was then computed.
Using the bar onset times that we describe above (see Pupil data),
we aligned the motion data with bar numbers based on their
timestamps. “Quantity of motion” (QoM) was then calculated as
the sum of velocities per bar of each piece.

2.4.1.3. Audio Data
Root mean square (RMS) values were extracted from audio
recordings as a measure of acoustic intensity. This was done in
Python using the package Madmom (Böck et al., 2016), with a
frame size of 2048 samples and 50% overlap. RMS curves were
smoothed using a convolution-based method, with a Hamming
window of 50 samples. The resulting RMS values were averaged
per bar for the linear mixed effects model analysis. Hereafter we
refer to these values as “sound level.”

2.4.1.4. Cloud Diameter
Cloud diameters were calculated for the score of each piece in
Python, using the package Partitura (Grachten et al., 2019), at
increments of 1 bar. The algorithm requires scores in musicXML
format. We obtained MIDI files for all of the pieces online4,
hand-corrected them for pitch spelling (with reference to the

4kunstderfuge.com

scores that were used by the quartet), and converted them to
musicXML in MuseScore5. Output Cloud diameters are given in
units of a perfect fifth in Chew (2000)’s spiral array.

2.4.2. Linear Mixed Effects Modelling of Pupil

Diameter
Linear mixed effects models (LMMs) were used to test the
contribution of predictors relating to musical complexity,
bodily effort, and expressive difficulty to baseline-normalized
pupil diameter. This was done using the “glmmTRB”
package in R.

We tested two models, one which included head motion
as an index of bodily effort, and one that included arm
motion instead. Model 2 (with arm motion) included fewer
data points than Model 1 (with head motion) because some
of the arm markers, especially for the 2nd violinist and violist,
were not as well tracked as the head markers were. As a
result, we could only include arm data for 1–2 pieces for
these performers. Nonetheless, it was important to consider arm
motion as a measure of bodily effort because it is directly tied to
sound production.

• Model 1 included seven fixed effects: quantity of Head
motion, Sound level, Technical difficulty ratings, Cloud
diameter, Harmonic complexity ratings, and Expressive
difficulty ratings.

• Model 2 included quantity of Arm motion (instead of
Head motion), Sound level, Technical difficulty ratings,
Cloud diameter, Harmonic complexity ratings, and Expressive
difficulty ratings.

For both models, musician and performance were
included as crossed random effects. Since our predicted
variable constituted time series data, we also specified an
autocorrelation structure (order = 1) with time (in bars)
as a covariate and the same grouping structure as our
random effects.

The formulation of Model 1 was as follows:
Pupil size∼ Cloud diameter + Harmonic complexity ratings +

Head motion + Sound level + Technical difficulty
ratings + Expressive difficulty ratings +
(1|piece) + (1|ID) + ar1(bars + 0|piece:ID)

The formulation of Model 2 was as follows:
Pupil size∼ Cloud diameter + Harmonic complexity ratings +

Arm motion + Sound level + Technical difficulty
ratings + Expressive difficulty ratings +
(1|piece) + (1|ID) + ar1(bars + 0|piece:ID)

To estimate effect sizes, we used a hierarchical modelling
procedure in which significant predictors from Models 1 and
2 were added incrementally one by one to a null model
containing only the intercept term and random effects. Predictors
were entered in decreasing order of absolute estimate size
(i.e., in the order they are listed in Table 1; see Data Sheet 1
in Supplementary Material). These hierarchically constructed
models were then compared against the null model. We report
χ
2 tests and Bayesian Information Criterion (BIC) values

5musescore.com
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as indications of effect size. BIC is commonly used as a
criterion for model selection. To protect against overfitting, it
incorporates a penalty for the number of predictors that are
included in a model. Lower BIC indicates better support for a
given model.

2.4.3. Effects of Rehearsal vs. Concert Setting,

Musical Role, and Piece/Concert Time
To test for differences in levels of baseline arousal between the
start of the rehearsal and the start of the concert, we compared the
pupil diameters that were recorded in the first rehearsal baseline
with the pupil diameters that were recorded in the baseline before
the concert performance, using a Wilcoxon Signed Rank test.

We also compared average pupil diameters between the four
concert pieces for each performer individually. Only data from
the concert were used in this part of the analysis. Series of LMMs
were run for each performer individually that included concert
piece as a fixed effect. Concert piece was also included as a
random effect in each model, and we specified an autocorrelation
structure (order = 1) with time in concert piece as a covariate.
We ran three models per performer with different concert pieces
set as the base level for contrasts, so that we could get the full set
of between-piece contrasts (6 total). We tested for significance
at α = .008, following Bonferroni adjustment. Importantly, the
“effect of concert piece” that we tested with these models reflects
not only differences in musical material, but also the passing of
concert time, and in some cases changes in musical role (the
violinists exchanged places after Haydn II).

2.5. Results
2.5.1. Linear Mixed Effects Modelling of Pupil

Diameter
The reader is referred to Figure 1 for a reminder of which
predictors we tested. The results of the LMMs are given in
Table 1. Model 1 showed positive effects of Technical difficulty
and Expressive difficulty on pupil size, and negative effects of
Cloud diameter and Harmonic complexity. Head motion and
Sound level did not yield significant effects. Models containing
the four significant predictors were compared against a null
model, and all predictors yielded significant χ

2 values. However,
only the model containing Technical difficulty and the model
containing Technical difficulty and Cloud diameter improved
the BIC, suggesting that the effects of Harmonic complexity and
Expressive difficulty on pupil diameter were weak.

Model 2 showed positive effects of Armmotion and Technical
difficulty on pupil size, and negative effects of Cloud diameter
and Harmonic complexity. Sound level and Expressive difficulty
did not yield significant effects. When we compared a null
model against a hierarchical series of models containing the four
significant predictors, all predictors yielded significant χ

2 values
and reduced the BIC relative to the null model.

In summary, both models showed stimulating effects of bodily
effort (Technical difficulty, Arm motion) and negative effects
of musical complexity (Harmonic complexity, Cloud diameter).
Only Model 1 showed a stimulating effect of Expressive difficulty.
Descriptive plots for significant predictors are given in the
Supplementary Figures 1–5.

TABLE 1 | Results of linear mixed effects modelling for performers.

Model Fixed effect Estimate SE z-value χ
2 BIC

Model 1

(null model) — — — — –1240.7

Technical difficulty 0.0316 0.0038 8.21*** 102.37*** –1334.8

Cloud diameter –0.0192 0.0029 6.56*** 51.74*** –1378.4

Harmonic complexity –0.0120 0.0041 2.95** 6.88** –1377.0

Expressive difficulty 0.0098 0.0039 2.51* 5.42* –1374.2

QoM head 0.0003 0.0003 1.24 — —

Sound level 1.4e-5 1.4e-5 1.05 — —

Model 2

(null model) — — — — –907.40

Technical difficulty 0.0216 0.0045 4.80*** 33.53*** –933.10

Harmonic complexity –0.0188 0.0049 3.81*** 21.22*** –946.48

Cloud diameter –0.0159 0.0033 4.80*** 19.63*** –958.28

QoM arms 0.0009 0.0001 6.49*** 43.68*** –994.12

Expressive difficulty 0.0057 0.0046 1.25 — —

Sound level 2.2e-5 1.59e-5 1.39 — —

Predictors are listed in descending order of absolute estimate size. Negative estimates

indicate predictors that had a negative effect on pupil diameter. SE indicates standard

error. *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 2 | Correlations between performers’ rating measures.

Harmonic complexity Technical difficulty

Technical difficulty 0.43* —

Expressive difficulty 0.41* 0.58*

*p < 0.001.

TABLE 3 | Correlations between measures relating to bodily effort.

Technical difficulty ratings Sound level

Head motion –0.001 0.31*

Arm motion 0.02 0.41*

Sound level 0.08* —

*p < 0.001.

We also evaluated the similarity between predictors that could
be expected to overlap. Table 2 lists the correlations between
performers’ rating measures. Table 3 lists the correlations
between measures relating to bodily effort. The correlation
between musical complexity measures (Harmonic complexity
ratings and Cloud diameter) was slight, r = .28, p < .001.

2.5.2. Effects of Rehearsal vs. Concert Setting,

Musical Role, and Piece/Concert Time
Figure 3 shows mean pupil diameters for each performer/piece
combination. Our comparison of baseline pupil size captured
before the first rehearsal with baseline pupil size captured before
the first concert performances showed no significant difference,
M = 3.72 mm, SD = 1.05 mm (rehearsal); M = 4.08 mm,
SD = .96 mm (concert);W = 4, p = .34.

Results of the LMMs testing within-performer/between-piece
difference in pupil diameter are shown in Table 4. For the 1st
violinist, pupil dilation was greatest in the first piece (Haydn I).
For the 2nd violinist, pupil dilation was greater in the Debussy
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TABLE 4 | Results of the LMMs testing within-performer/between-piece

differences in pupil diameter.

Performer Contrast Estimate SE z-value

1st Violin

Haydn I vs. Haydn II –0.3331 0.0566 5.89**

Haydn I vs. Debussy I –0.3781 0.0494 7.65**

Haydn I vs. Debussy II –0.3327 0.0499 6.67**

Haydn II vs. Debussy I –0.0450 0.0564 0.80

Haydn II vs. Debussy II 0.0004 0.0571 1.00

Debussy I vs. Debussy II 0.0453 0.0499 0.36

2nd Violin

Haydn I vs. Haydn II –0.0065 0.0556 0.012

Haydn I vs. Debussy I 0.2653 0.0469 5.66**

Haydn I vs. Debussy II 0.3363 0.0475 7.08**

Haydn II vs. Debussy I 0.2718 0.0554 4.90**

Haydn II vs. Debussy II 0.3428 0.0560 6.13**

Debussy I vs. Debussy II 0.0710 0.0474 1.50

Viola

Haydn I vs. Haydn II 0.1322 0.0541 2.44

Haydn I vs. Debussy I 0.0335 0.0452 .74

Haydn I vs. Debussy II 0.1547 0.0458 3.38**

Haydn II vs. Debussy I –0.0987 0.0537 1.84

Haydn II vs. Debussy II 0.0225 0.0539 0.42

Debussy I vs. Debussy II 0.1212 0.0456 2.66*

Cello

Haydn I vs. Haydn II –0.0460 0.0505 0.91

Haydn I vs. Debussy I 0.0828 0.0417 1.99

Haydn I vs. Debussy II 0.1110 0.0423 2.63

Haydn II vs. Debussy I 0.1288 0.0505 2.55

Haydn II vs. Debussy II 0.1569 0.0509 3.08*

Debussy I vs. Debussy II 0.0281 0.0421 0.67

**p < 0.001, *p < 0.008.

pieces than in the Haydn pieces. This is notable because the 2nd
violinist played as 1st violinist for the Debussy pieces. The violist
showed greater pupil dilation in Debussy II than in Haydn I or
Debussy I. The cellist showed greater pupil dilation in Debussy II
than in Haydn II.

During the quartet’s concert performance of Haydn I, an
unexpected event occurred: the 1st violinist mishandled a page
turn and, as a result, had to play the last page from memory.
The sudden uptake in arousal and prolonged increase in mental
effort are clear in the timecourse of his pupil diameter curve
(Figure 4). We would note that this incident does not entirely
account for the 1st Violinist’s high average pupil diameter during
that performance. As can be seen from the plot, the 1st Violinist’s
pupil was dilated (relative to the other musicians) from the start.
We would also note that the 1st violinist’s response to the page
turn incident had no noticeable effect on the results that are
presented in section 2.5.1. Models 1 and 2 were rerun on a data
subset that excluded the 1st violinist after themoment of the error
and the pattern of significant and nonsignificant effects remained
the same.

2.6. Discussion
This experiment evaluated the contributions of musical
complexity, bodily effort, and expressive difficulty to pupil
size in performing musicians. In this section, we will focus on
the effects of bodily effort, musical complexity, and expressive
difficulty, which informed our decision to carry out Experiment

2. We will also discuss the effects of situational factors, including
within-performer/between-piece differences in pupil size.

2.6.1. Effects of Bodily Effort, Musical Complexity,

and Expressive Difficulty on Pupil Size
Both Models 1 and 2 showed negative effects of Harmonic
complexity and Cloud diameter on pupil size. We included
Cloud diameter in our analysis as a more systematic measure
of harmonic complexity to complement performers’ subjective
ratings. As we explained in the Introduction, Cloud diameter
provides an indication of the degree of dissonance in each
chord. It is notable that Cloud diameter and ratings of Harmonic
complexity were only slightly correlated. The performers may
have accounted for other aspects of harmonic complexity in their
ratings (e.g., number of distinct tones, or amount of chord-to-
chord change). Performers might also have weighted the relative
complexity of chords within each bar less systematically than
we achieved by calculating per-bar Cloud diameters. Despite
the limited overlap between Cloud diameter and Harmonic
complexity ratings, both measures yielded similar, unexpectedly
negative effects on pupil size.

We had predicted that increased musical complexity would
demand more effortful music processing and prompt increased
pupil dilation, so this result was unexpected. Harmonic
complexity is one component of the broader construct of musical
complexity, and may share a complex relationship with other
components, such as metric or rhythmic complexity, which also
place (potentially competing) demands on attention. Thus, a
potentially stimulating effect of Harmonic complexity might have
been masked by other musical factors.

Harmonic complexity might also be less relevant to the
experience of mental effort in string quartet performance than
we originally predicted. Most quartets have spent a lot of
time rehearsing by the time they perform in concert, and
therefore have a close familiarity with the music. This familiarity
might change the way they process the harmonic information
that is contained in the music, perhaps reducing the mental
effort that processing requires. In order to determine whether
harmonic complexity affects performers and listeners differently,
we designed Experiment 2 especially with the aim of examining
the relationship between harmonic complexity and mental effort
in listeners.

Performers’ ratings of Technical difficulty had a positive effect
on pupil size for both models. Indeed, for both models, Technical
difficulty yielded a larger absolute estimate size than the other
significant effects. These results are in line with our prediction
that increased technical difficulty would engage increased mental
effort. The Haydn and Debussy String Quartets are stylistically
different and present performers with a variety of challenges.
The performers used a large range of technical difficulty ratings
for all pieces (1–6 for Haydn I, 1–5 for Haydn II, 1–7 for
Debussy I, 1–6 for Debussy II), suggesting that they considered
these variety of challenges in their evaluations. It is interesting
that perceived technical difficulty seems to have a continued
effect on mental effort when the musicians are playing well-
practiced music and likely have many aspects of their bodily
performance automatized.
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FIGURE 3 | Boxplots showing pupil diameters across concert performances for each musician. Note that the violinists switched places for the Debussy pieces, so the

1st Violin played the 2nd Violin part and vice versa. **p < 0.001, *p < 0.008.

Model 1 showed no effect of Head motion, while Model 2
showed a positive effect of Arm motion. For string musicians,
head motion is primarily expressive. This is in contrast to arm
motion, which is more directly involved in sound production.
Arm motion happens at a much faster pace and must be
controlled at a much finer level than is the case for head motion.
In particular, control is needed for carrying out correct fingering
and positioning the left hand so as to maintain intonation, as well
as for carrying out appropriate bowing technique (Dalmazzo and
Ramírez, 2019; D’Amato et al., 2020) and achieving coordination
between the two hands. As a result, arm motion likely requires
more substantial bodily effort than does head motion, and may
have a more arousing effect on the body because it requires more
physical exertion.

Model 1 showed a positive effect of Expressive difficulty on
pupil size, in line with our prediction, though the effect was weak,
and was not significant in Model 2. We presume that expressive
difficulty incorporates a combination of demands relating to
technical difficulty, complexity, emotional engagement, and
perhaps coordination difficulty (which we did not evaluate here;
see General Discussion). The positive effect that we observed in
Model 1 suggests that this higher-order measure explains some
variance in pupil diameter, above and beyond that explained by
the other predictors relating to bodily effort and complexity.

In summary, both models showed positive effects of technical
difficulty ratings and negative effects of Harmonic complexity
ratings and Cloud diameter. The models differed in their results
for body motion (quantity of arm motion had a positive effect
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FIGURE 4 | Timecourse of pupil diameters for the quartet across the course

of the 1st movement of the Haydn String Quartet. The black vertical line

indicates the location of the 1st violinist’s failed page turn.

on pupil size; quantity of head motion was nonsignificant) and
expressive difficulty. As we have discussed, the difference in
effects of head and arm motion likely has to do with the different
musical functions that these parts of the body have, as well as
the degree of exertion and control that they require. The effect
of expressive difficulty in Model 1 was significant but weak. The
lack of effect of expressive difficulty in Model 2 might be due to
inclusion of arm motion instead of head motion. Perhaps arm
motion overlaps with expressive difficulty to a greater extent than
does head motion. Model 2 also used a reduced dataset due to the
poor tracking of some arm markers, which may have rendered
the already-weak effect of expressive difficulty less clear.

2.6.2. Effects of Situational Factors on Pupil Size
While performers demonstrated a slightly larger pupil diameter
at the start of the concert than at the start of the rehearsal, this
difference was not significant. This lack of effect is in contrast to
our prediction that arousal would be higher before the concert.
The quartet may have been anxious at the start of the rehearsal,
since they had not performed in our lab before, and had to
get used to the unusual setting, the motion capture and eye
tracking equipment, and the non-optimal acoustics. Therefore,
they may have experienced a high baseline arousal at the very
beginning of the session, which reduced as they acclimatized to
the lab environment.

The lack of effect here reminds us that performance always
occurs in the context of some social and material environment
(van der Schyff et al., 2018), which unavoidably has some effect
on performers’ arousal. We should also be wary of blindly
categorizing concert and rehearsal performances as high and
low arousal. Performers may feel more pressure to perform
well under some rehearsal conditions (e.g., when playing in an
unfamiliar place, when rehearsing for the last time before an
important concert) than in some concert conditions (especially
if the concert is relatively low stakes). In future research, studies
of arousal during public performance in ecological settings
should take into account the performance environment and

performers’ goals andmindset, to showmore clearly how changes
in arousal relate to the performers’ placement in a specific
concert situation. This could be done with a mixed-methods
approach that includes physiological/behavioural measures and
interviews/questionnaires, similar to the paradigm proposed by
Bojner Horwitz et al. (2020).

Our within-subject/between-piece analysis yielded some
notable findings. The first violinist exhibited a very dilated
pupil during the first piece (Haydn I). Based on our debriefing
discussions with the musicians, we understand that he was
feeling anxious at the start of the concert. This anxiety was
exacerbated by a failed page turn partway through Haydn I,
which necessitated him to play the last pages of the piece by
memory. Although his pupils remained dilated through the rest
of the concert relative to the other quartet members, we did see
a significant reduction in his pupil size between Haydn I and
Haydn II. The second violinist showed smaller pupil sizes during
the Haydn pieces, when he was playing as second violin, than
during the Debussy pieces, when he was playing as first violin.
Thus, both violinists showed greater arousal when playing as first
violin than when playing as second violin. This is in line with
the prediction that the first violin leadership role comes with
additional demands (Davidson and Good, 2002; Timmers et al.,
2014; Glowinski et al., 2015). As we have previously reported,
during the rehearsal performances, the first violinist was distinct
in his visual attention, and almost never looked at any of the other
musicians2. In contrast, the other musicians looked at him more
than they looked at any other quartet member. Combined with
the current results, it seems that the whole quartet recognized the
first violinist as the leader, and that this had substantial effects on
how everyone interacted with each other.

3. EXPERIMENT 2: MENTAL EFFORT IN
MUSIC LISTENING

Experiment 2 was designed to follow up on some of the findings
from Experiment 1. Given the small sample size in Experiment
1 (n = 4), we wanted to test whether the effects that we
observed there would reemerge in a larger sample. A follow-up
experiment with listeners would also allow us to shed some light
on how mental effort and arousal compare across performance
and listening tasks. An especially interesting question is how
much performers’ bodily effort contributes to the experiences
of musically-trained listeners. Does technical difficulty also
demand increased mental effort among listeners? Another
interesting question is how strongly performers’ subjective
ratings of difficulty and complexity contribute to listeners’
experiences. While we would expect some widespread agreement
on what is complex or difficult, performers differ in their
skills and anatomical/physiological constraints (e.g., hand size,
strength, ability to move rapidly, etc.), so they necessarily show
some variability when rating these factors. If the subjective
ratings given by a small sample of four performers contribute
significantly to listeners’ mental effort, then this will indicate
some generalizability to those ratings.
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3.1. Participants
Sixteen trained musicians (8 female/8 male) completed the
listening task. Five of the musicians were violinists (3), violists
(1), or cellists (1), and rest of the musicians played a variety
of other instruments (guitar–3, piano–3, flute–1, percussion–1,
sitar–1, trombone–1, voice–1). Separate analyses were run for
string and non-string musicians, but revealed no between-group
differences, so we merged all participants together into a single
group. The musicians were on average 26.4 years old (SD = 5.7)
and had on average 13.3 years of musical training (SD = 6.7).

We asked the musicians to rank their familiarity with each
piece on a scale of 1-4 (1 = “Never heard it before"; 2 = “I think
I’ve heard it before"; 3 = “I’ve heard it before"; 4 = “I’ve played it
before"). Scores averaged across listeners indicated low familiarity
with themusic (1.94 and 2.00 for Haydnmovements I and II; 1.88
and 1.56 for Debussy movements I and II).

3.2. Materials and Equipment
Listeners heard the music from Creative A50 speakers, adjusted
to a comfortable volume, while pupil data was collected from
a stationary eye tracker (SMI iView RED) at 60 Hz. Listeners
rested their chin and forehead on a chinrest positioned 70 cm
from a computer screen. The experiment was run through SMI
Experiment Center, which collected pupil data and presented
audio/visual stimuli. During listening trials, the screen featured a
white background with a black outline of a circle. Listeners were
instructed to keep their eyes fixated within the circle.

3.3. Procedure
Participants listened to the recordings in the same order that they
were performed (Haydn 1st movement, Haydn 2nd movement,
Debussy 1st movement, Debussy 2nd movement). They were
given the name and composer of each piece and asked to
keep their eyes open and fixated on the computer screen while
listening. A 60-s baseline pupil measurement was taken prior to
each listening trial. Following each trial, the participants were
asked to rate their familiarity with the piece they had just heard,
and then allowed to take a break before continuing. Following
the final listening trial, they answered some questions about their
musical background.

3.4. Analysis
3.4.1. Preprocessing of Pupil Data
We used the same preprocessing procedure as in
Experiment 1 (Section 2.4.1).

3.4.2. Linear Mixed Effects Modelling of Pupil

Diameter
We used the same modelling procedure as in Experiment 1.
For ratings of Technical difficulty, Harmonic complexity, and
Expressive difficulty, we averaged the performers’ ratings at each
bar to get a single series of values per predictor. Similarly, for
Head and Arm, we averaged quantity of motion values across
performers at each bar. Effect sizes for significant predictors were
estimated using the same hierarchically modelling procedure as
in Experiment 1.

TABLE 5 | Results of linear mixed effects modelling for listeners.

Model Fixed effect Estimate SE z-value χ
2 BIC

Model 1

(null model) — — — — –3164.9

Harmonic complexity –0.0426 0.0040 10.60*** 126.00*** –3281.7

Expressive difficulty 0.0347 0.0041 8.52*** 98.94*** –3371.4

Technical difficulty –0.0100 0.0002 2.50* 9.64** –3371.9

QoM head –0.0023 0.0002 10.31*** 103.47*** –3466.1

Cloud diameter –0.0008 0.0017 0.45 — —

Sound level 1.4e-5 9.3e-6 1.53 — —

Model 2

(null model) — — — — –3164.9

Harmonic complexity –0.0456 0.0040 11.36*** 126.00*** –3281.7

Expressive difficulty 0.0372 0.0041 9.13*** 98.94*** –3371.4

Technical difficulty –0.0101 0.0040 2.51* 9.64** –3371.9

QoM arms –0.0006 9.7e-5 6.20*** 37.95*** –3400.6

Cloud diameter –9.7e-5 0.0017 0.06 — —

Sound level 6.8e-6 0.0040 0.73 — —

*p < 0.05, **p < 0.01, and ***p < 0.001.

3.5. Results
The results of the LMM are given in Table 5. Both models
showed a positive effect of Expressive difficulty and negative
effects of Harmonic complexity and Technical difficulty on
pupil diameter. Model 1 showed a negative effect of Head
motion, and Model 2 showed a negative effect of Arm motion.
Cloud diameter and Sound level did not yield significant effects
for either model. The four significant predictors also showed
significant χ

2 values when added to a null model and reduced
the BIC (although the reduction by technical difficulty was very
small). Descriptive plots for significant predictors are given in the
Supplementary Figures 1–3,5,6.

3.6. Discussion
This experiment tested the effects of musical complexity,
performers’ bodily effort, and performers’ ratings of expressive
difficulty on pupil size in musically-trained listeners. In line with
Experiment 1, we observed negative effects of musical complexity
and a positive effect of expressive difficulty. In contrast to
Experiment 1, this experiment showed significant negative effects
of quantity of head and arm motion and performers’ ratings of
technical difficulty on listeners’ pupil sizes. This result was not in
line with our prediction that “traces” of performers’ bodily effort
would “sound” through the music and demand increased mental
effort and arousal during listening.

In the literature, there is convergent evidence frommany brain
imaging and behavioural studies that music listening engages
motor circuits (Novembre and Keller, 2014). However, questions
remain regarding the extent to which this motor engagement is
necessarily an active, attention-drawing process. We presented
our participants with a passive listening task about 20 min in
duration. Though all of our participants were trained musicians,
their musical background and interests varied and several of
them were not familiar with string quartet repertoire. Thus,
some of our participants may not have been very actively
engaged in listening. Furthermore, to maximize quality of pupil
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data, we did not include video in the stimulus presentation.
Visual presentation of performers’ gestures can activate covert
simulationmechanisms in observers, andmight have encouraged
motor engagement from our participants (Haslinger et al., 2005;
Wöllner and Cañal-Bruland, 2010; Su and Pöppel, 2012; Taylor
and Witt, 2014).

We observed a negative effect of performers’ ratings of
Harmonic complexity on pupil size. The effect of Cloud diameter
was also negative, but nonsignificant. This finding is in line with
the results of Experiment 1, and in conflict with our original
prediction that harmonic complexity would have a stimulating
effect on mental effort. We propose an explanation for these
findings in the General Discussion.

Finally, we observed a positive effect of expressive difficulty for
listeners. This is in line with our prediction, though in contrast
to our findings in Experiment 1, where expressive difficulty
showed no effect. The larger sample size in Experiment 2 may
have allowed this effect to come through. Expressive difficulty
or intensity may also account for more of the variance in pupil
size duringmusic listening than duringmusic performance, since
there are fewer demands on the motor system. We explore this
effect in greater depth in the General Discussion.

4. GENERAL DISCUSSION

This study investigated the effects of harmonic complexity, bodily
effort, and expressive difficulty on mental effort and arousal
during music performance and listening. Pupil diameter was
used to estimate mental effort and arousal. In Experiment 1, we
collected pupil data from the members of a student string quartet
as they performed in rehearsal and concert settings in our lab. In
Experiment 2, we collected pupil data from a sample of trained
musicians as they listened to the quartet’s concert recordings.

Our results revealed stimulating effects of bodily effort and
expressive difficulty on performers’ pupil size, and stimulating
effects of expressive difficulty on listeners’ pupil size, in line with
our predictions. Contrary to our predictions, we also observed
consistently negative effects of Harmonic complexity and Cloud
diameter (i.e., harmonic dissonance) for both performers and
listeners, and negative effects of performers’ bodily effort on
listeners. Finally, we saw elevated levels of arousal in both
violinists during their turns as 1st violinist. These findings are
discussed in more detail below.

4.1. Body Motion, Technical Difficulty, and
Sound Level
Performers’ arm motion and perceived technical difficulty
had stimulating effects on their pupil diameter. These effects
supported our prediction that bodily effort would contribute
to mental effort and arousal. Our results showed that arm
motion improved the fit of a model that already included
technical difficulty, suggesting that it accounted for a unique
part of the variance. These findings are in line with previous
studies of musical effort, which show greater pupil dilation in
overt performance than in listening or imagined performance,
suggesting an increased demand on cognitive resources (O’Shea

and Moran, 2019; Endestad et al., 2020). A remaining question is
whether we can identify unique effects of motor exertion and the
mental effort involved in motor control on pupil size. The design
of the current study did not enable us to make this distinction;
however, future studies might present performers with a task that
independently varies exertion and complexity.

Our other two measures of bodily effort—quantity of sound
level and head motion—did not yield significant effects. The
lack of effect for sound level suggests that this is not a strong
predictor of mental effort, despite the relationship between sound
level and physical force. Head motion, for string players, is
primarily expressive and does not generally require as much
motor control or physical strength as does arm motion, which
is directly involved in sound production (see Discussion 1). This
could partially explain the lack of stimulating effect of head
motion on pupil size.

Expressive non-sound-producing head or body motion might
indeed require relatively little mental effort overall, especially for
experienced musicians who are playing well-practiced repertoire,
and might even facilitate structuring of the performance.
Expressive body motion is an integral component of expressive
performance (Glowinski et al., 2013b; Chang et al., 2019). Skilled
musicians reduce their body motion substantially when asked
to play deadpan, even if no specific instructions regarding body
motion are given (Davidson, 2007; Thompson and Luck, 2012).
When asked to given an “immobile” performance, however, some
slight expressive motion persists (Wanderley, 2002; Wanderley
et al., 2005). Thus, to some degree, expressive body motion
may occur automatically as a result of the performer’s embodied
relationship with the music (van der Schyff et al., 2018; Høffding
and Satne, 2019). Still, further research is needed to show
under what conditions expressive body motion requires more
mental effort. In particular, it would be interesting to test
whether expressive body motion reduces when other aspects of
performing increase in difficulty.

For listeners, performers’ head and arm motion and ratings
of technical difficulty had a negative effect on pupil size. As
we explained in the Discussion of Experiment 2, the lack of
positive effect might be attributable to participants adopting a
passive listening style during the experiment. Listeners might also
not have perceived such substantial variability in the technical
demands that were presented by the Haydn and Debussy
selections, or they might have perceived difficulty across longer
timeframes than we accounted for. For example, perhaps we
would see different responses to music with long alternating
periods of greater and lesser technical difficulty. Our measures
of performers’ bodily effort might also co-vary with another
aspect of musical structure that our analysis did not capture
(e.g., changes in timbre or tone quality, or phrase structure), that
had a stronger effect on mental effort, resulting in a seemingly
negative relationship between bodily effort and pupil size. While
it might be useful in this case to consider other variables
relating to musical structure as possible co-predictors, with the
modelling approach that we used, care must be taken to avoid
overfitting. A more effective approach might be to compare pupil
responses to stimuli that vary more strongly in their physical and
technical demands.
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4.2. Harmonic Complexity, Tonal Tension,
and Expressivity
Both experiments revealed negative effects of harmonic
complexity (measured using performers’ ratings and Cloud
diameter) on pupil size, in contrast to our predictions. Harmonic
complexity is just one component of musical complexity.
While it might substantially engage listeners’ attention when
all other components are constant, this does not happen in
real music; instead, different structural components might vary
simultaneously, forming combined demands on attention that
fluctuate over time. Thus, the negative effect that we saw on
pupil size may reflect the relationships that harmonic complexity
shares with other (untested) components of musical structure.

We should also note that for repertoire in theWestern classical
music tradition prior to the early twentieth century, harmonic
complexity varies within fairly strict bounds (although these
bounds changed over time, and differ between the Haydn and
Debussy selections that we studied). In some music, periods
of extreme harmonic complexity (e.g., as we see in some
contemporary classical music that makes use of atonality) might
make heightened demands on attention that outweigh the
demands made by other structural features. In such cases, we
might see a clear relationship between harmonic complexity
and pupil size, despite the fact that harmony is embedded
in a larger musical structure (and despite the passive rather
than active/analytical listening task). However, even the more
varied harmony present in Debussy’s music is unlikely to achieve
these extremes. During periods of high complexity, we might
alternatively expect to see effects of listeners “zoning out” (mind
wandering) if following the music proves too difficult or effortful
(Unsworth and Robison, 2017; O’Shea and Moran, 2019). This
would cause a reduction in pupil size. However, we would expect
this reduction to endure over a relatively long period of time, not
fluctuate from bar to bar.

Overall, we interpret these results as suggesting that
individual low-level components of musical structure may not
provide useful predictions of mental effort for performers or
listeners. Higher-order predictors, which represent combinations
of structural components, may be more effective. Indeed,
performers’ ratings of expressive difficulty—a measure which we
presume is informed by musical complexity, technical difficulty,
and emotional intensity—did predict pupil size for performers
and listeners. The effect was slightly weaker for performers
(significant only in Model 2), possibly because of conflicting
demands by the motor system.

For ensemble players, an additional higher-order variable that
might relate to pupil size is subjective ratings of coordination
difficulty (how difficult is it for the ensemble to play together
as a unit?). This variable would draw on factors relating to
complexity, expressivity, and technical difficulty, as well as the
relationships between parts in the ensemble (Keller et al., 2014)1.
For classical ensembles playing well-practiced music, most of
the major interpretive decisions have already been made, but
coordination can still be challenging if the performers vary
aspects of their practiced performance. Certain musical passages
may continue to pose a challenge even after some practice;
for example, long pauses followed by synchronized chords may

continue to require effortful coordination (Bishop et al., 2019b).
Future research could use pupillometry measures to investigate
the relationship between coordination demands resulting from
different structural contexts and mental effort.

The results of this study could be interpreted in terms of
the adaptive-gain theory, which posits that exploitative and
explorative control states underlie optimal performance on
behavioural tasks (Aston-Jones and Cohen, 2011). These control
states are mediated by the locus coeruleus-norepinephrine
system. Exploitation is associated with phasic LC activity,
intermediate pupil sizes, and increased responsivity to task-
relevant stimuli, while exploration is associated with tonic LC
activity, large pupil sizes, and facilitated processing of task-
irrelevant stimuli or behaviour (Jepma and Nieuwenhuis, 2011).
Musicians may switch between exploitative and explorative
modes during performance as the musical demands change,
resulting in fluctuations in pupil size.

4.3. Use of Mobile Eye Tracking in Music
Performance Settings
This study is the first to use pupillometry to explore the
relationships between cognitive-motor task demands and mental
effort during ensemble performance in an ecological setting.
Outside of a controlled lab environment, there are several factors
that may add noise to pupil data. Three primary types of pupil
response have been described in the literature: the pupil light
response, which involves a pupil constriction in response to
increased brightness; the pupil near response, which involves a
pupil constriction when gaze shifts from a further-away object
to a nearer object; and the psychosensory pupil response, which
involves a pupil dilation in response to increased arousal or
mental effort (Mathôt, 2018).

In our data collection, the performers unavoidably
encountered changes in brightness and shifted their focus
between nearer and further-away objects as their gaze moved
between different parts of the visual scene. We attempted to
minimize the effects of brightness by controlling the lighting
of the performance space (i.e., using a constant, moderately
bright level of room lighting instead of any stage lighting) and
by covering the walls and windows with black curtains, to avoid
any stray lights shining into the space and lighting contrasts
between the white walls and dark floor. These controlled lighting
conditions were also needed to minimize extraneous reflections
for motion capture. The musicians played from scores, which
allowed for some consistency in terms of brightness and distance
in the visual display; however, they did not look exclusively at
their scores throughout the performances. Ensemble musicians
often spend some playing time watching their co-performers
(Vandemoortele et al., 2018; Bishop et al., 2019a), and this was
also the case in the current study (see results in2).

Of course, our attempts to control the performance space
did have some effect on the musicians’ experience, reducing
the ecological validity of the performance. In particular, the
musicians struggled with the dry acoustics of the space. In
future studies of mental effort in music performance, we would
recommend having musicians play from a score or fix their eyes
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on an empty screen or stand, although we would also note that
instructing performers to restrict their gaze to the score can have
some unintended effects on how they behave. Our analysis of the
quartet’s body motion showed lower quantity of motion in two
rehearsal performances where they could look only at the score
than in the other “free gaze” conditions see2.

The lack of control in Experiment 1 might have introduced
noise into our pupil data. More concerning is the possibility of
systematic effects. For example, the musicians might have looked
away from the score during “easier” passages, and returned
their gaze to the score during more “difficult” passages. In
such cases, pupil constrictions (triggered by looking at the
relatively bright and nearby score) might occur in association
with increasing piece difficulty. Our results showed the opposite
effect for technical and expressive difficulty, which stimulated
pupil dilation rather than constriction.We did observe a negative
relationship between pupil dilation and harmonic complexity
measures; however, the same negative effect occurred for listeners
in Experiment 2.

We did not attempt to compensate for effects of brightness
or distance in our data analysis. We might have removed data
segments where performers were not looking at the score, for
example, but this would have reduced our dataset dramatically,
and much more for some musicians than others. The musicians
differed greatly in what percentage of performance time they
spent looking at the score vs. at their co-performers. The cellist,
in particular, sometimes spent as little as 40% of performance
time looking at the score. Instead, we chose to complement
our performance experiment with a listening experiment, which
included a larger sample of remote participants, who completed
their task in controlled conditions in the laboratory. With the
listening experiment, we were able to confirm some of the
results suggested by our performers’ data as well as address some
additional predictions.

As we showed in this study, overt body motion has an effect
on pupil size. Pupillometry studies using music performance (or
sports performance, etc.) paradigms have a unique opportunity to
examine this relationship. In our case, we organized a recording
set-up that would allow us to collect synchronized motion
capture and eye tracking/pupillometry data.Withmotion capture
data for performers heads and arms, we were able to show
how these different types of movement have different effects. As
we mentioned above, difficulties in distinguishing between the
effects of body motion and the effects of other task demands
on pupil size can also be problematic for researchers who want
to measure these effects in isolation. In such cases, careful
construction of an experimental paradigm that controls for
different task demands would be needed.

Our ecological data capture gave us the unique opportunity
to document a performance disruption: the 1st Violinist’s missed
page turn during the concert performance of the 1st movement of
theHaydn StringQuartet, which necessitated him to play the final
page bymemory. His pupils remained dilated throughout the rest
of the piece, indicating heightened demands on mental effort.
This type of performance disruption, along with the performer’s
natural reaction, would be hard to capture (or trigger) under
more controlled, less ecological conditions. Our capture of this
disruption shows how the violinist was able to successfully

cope with the disruption by continuing to play from memory,
without overt acknowledgment of the error. His individual
coping response made the group resilient to greater disruption
from the error (Glowinski et al., 2016).

4.4. Conclusions
This study shows an overlap in how performers and listeners
attend to string quartet music from the Western classical
repertoire. Both performers and listeners responded to changes
in expressivity and musical structure, and performers’ arousal
levels were predicted by their sound-producing arm motion.
The violinists in the quartet also both showed heightened
arousal when performing as first violinist, suggesting that
heightened stress may be associated with this role. Our study also
demonstrates how mental effort and arousal can be successfully
assessed using eye tracking and motion capture technologies
in a relatively naturalistic concert setting. In the future, it
would be valuable to build on our findings with studies of how
coordination difficulty contributes to mental effort in ensemble
performance, and to distinguish between the effects of overt
motion and the mental effort associated with motor control on
performers’ pupil size.
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In recent years, studies have increasingly dealt with the interaction of gaze behavior and

decision making of team sports athletes. However, there is still a variety of important

game situations, for example, in the case of penalty corners in field hockey, in which

this interaction has not been investigated in detail yet. Penalty corners present a

meaningful goal scoring opportunity by providing a relatively free shot. This paper

considers two studies. The first study investigated a possible connection between the

gaze behavior and the quality of decisions of experienced field hockey players and

evaluated the level of success of different gaze strategies. A preliminary study (Study

1) was designed as a survey questionnaire with the aim of preparing for the main study

by obtaining subjective assessments of the individual gaze behavior and decision making

of professional athletes. In the second and the main study (Study 2), the gaze behavior

of experienced field hockey players was recorded using mobile eye-tracking systems

to analyze different strategical approaches in associated gaze behavior and decision

making. Study 1 showed that players consider reacting to the defenders’ behavior

during a penalty corner a promising avenue for improving success at penalty corner

attempts. It also indicated that such defense-dependent strategies are currently only

rarely employed. Study 2 demonstrated how gaze behavior differs between different

strategical approaches of the offense. It was shown that the gaze direction on the ball,

the stopper, and the goal area is important to allow for a more optimal adaptation to

the tactical behavior of defense. It can be concluded that adaptive decision making (i.e.,

choosing which variation will be carried out just after the “injection” of the ball) seems

promising but requires further training to improve the success rate of penalty corner.

Keywords: drag-flick, eye-tracking, performance, sport expertise, tactical decision

Nowadays, a lot of games are decided by penalty corners in field hockey. For example, during the
2018 World Cup, the four group winners scored 38% of their goals through penalty corners in the
preliminary rounds, while about a third of the goals scored against the four teams eliminated in the
preliminary rounds were scored through penalty corners. Surprisingly however, there is currently
little research on arguably the most important action in field hockey (for a study on indoor field
hockey see Vinson et al., 2013). Only recently some studies have mainly addressed the role of the
goalkeeper in defending penalty corners (Morris-Binelli et al., 2020, 2021). Our study addresses
this game situation and tries to scrutinize if more (online) adaptation on offense can be considered
a promising future development of behavior during penalty corner by questioning (Study 1) and
testing (Study 2) expert field hockey players.
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During a field hockey game, the penalty corner (or short
corner) is considered a highly complex strategic part (Laird
and Sutherland, 2003). It is awarded for fouls committed by
the defending team within the goal-scoring circle or for serious
fouls outside of this circle (intentional rule violations). Before
the penalty corner is carried out, four defending players and the
goalkeeper position themselves behind the backline, either next
to or inside the goal. All other defending players must be beyond
the centerline. Any number of players of the attacking team can
position themselves outside the circle with sticks, hand, and feet
not touching the ground inside the circle. One player from the
attacking team, the “injector,” passes the ball from the backline at
least 10 meters from the goalpost, usually to a player stopping the
ball (stopper) for another player (striker) who either shoots the
ball directly or passes it to yet another player (who may or may
not take a shot). After the ball has been played by the injector,
the defending players and the goalkeeper are allowed to enter the
circle. The stopper of the attacking team must receive the ball
outside of the shooting circle or else, briefly leave the circle after
receiving the ball before any other actions can be taken.

Even though it seems that straight shots at the goal by the
striker promise the greatest rate of success, there will possibly be
a much greater demand for various penalty corner variations that
demand online strategical decision making in the next few years
due to adaptations in defenders’ behaviors and lower success rates
(average conversion rate World Cup 2018≈ 20.5%, Rowe, 2019).
Defensive behavior and play calling are now increasingly taking
into account that on offense in most cases a straight shot is called.
Various analyses of penalty corners during past international
tournaments (World Cups and Olympic Games) have shown
that the penalty corner effectiveness depends on the fit between
strategical approaches of the offense and defense, that is, whether
a direct shot or a pass is performed (cf. Vizcaya, 2015) and how
defensive players run-out to prevent goal scoring. This implies
that the strikers could have an advantage if they were able to
recognize the defensive behavior of the opponent’s team early in
order to choose a more promising option for the penalty corner.

This is also done in comparable situations in other team sports
as the penalty kick in soccer. In this situation, the penalty taker
can choose to decide on kick direction prior to running-up the
ball and stay with that decision regardless of what the goalkeeper
subsequently does. This strategy is termed keeper-independent
strategy (Kuhn, 1988; van der Kamp, 2006). However, strikers can
also choose to employ a keeper-dependent strategy in which they
decide for a temporal target but mainly wait for the goalkeeper
to commit to one side only to kick to the opposite side of
the goal (Kuhn, 1988; van der Kamp, 2006; Noël et al., 2014).
Importantly, both strategies are associated with fundamentally
different patterns of gaze behavior probably reflecting the fact
that penalty takers employing a keeper-dependent strategy rely
on information on the goalkeeper’ behavior (Noël and van
Der Kamp, 2012). Furthermore, it was shown recently that
the likelihood of scoring depends on the combination of the
goalkeepers’ behavior and the strategic approach of penalty takers
(Noël et al., 2021).

In field hockey, an approach similar to the keeper-dependent
strategy would create the opportunity to adapt to the run-up

behavior of the defensive players after the ball is in play in
order to choose either a straight shot or another penalty corner
variation (even though, in penalty corners, it is not only the
striker who has to adapt, but also his/her teammates). In this
regard, it is important to consider which general variations are
usually played and with which defensive tactics (see also Study
1). Therefore, the following offensive and defensive tactics are
basic schemes that are subject to a high degree of variability.
Due to the different possible variants, the positions and routes
of the players differ according to the situation and rarely follow
an exactly identical structure.

In international field hockey, the direct shot at goal is the
variation that is most often played. By using the drag-flick, where
the ball is dragged on the shaft of the hockey stick and flung at the
goal, the striker can reach high velocity of the ball (Baker et al.,
2009). Furthermore, the drag-flick allows to raise the ball over
460mm (backboard height; Ibrahim et al., 2017), which is the
critical height for hits (striking by using a swinging movement
of the stick toward the ball) in penalty corners. Another option
that is regularly chosen is the 90◦ variation. Here, the striker
hooks the ball into the stick head during the initial movement
of the flick. Instead of releasing the ball in front of the body in
the direction of the goal, the striker rotates 90◦ to the left to a
teammate who receives the ball and shoots it at the goal. Thereby
the 90◦ variation is an offensive tactic allowing a different striker
to shoot from a closer position to the goal with slightly more time
to do so. This variation belongs to the general category of “pass
to the left.” For the deflection variation, the ball is brought into
play by the injector, while an attacker runs into the zone between
the penalty spot and the backline and lays down his/her hockey
stick on the ground to deflect the ball. The striker takes a low
shot at the goal using a drag-flick or a hit. The hockey stick that
has been laid down by the other attacker deflects the ball either
high or into another direction or both, so that the goalkeeper and
the defensive players at the goal-line only have a very short time
to react.

In general, two different defensive tactics are commonly
chosen by the defense, both of which are initiated from the same
starting formation in order not to provide the opponents with
any cues for their decisions before the ball is in play. In the
commonly used starting formation, three defenders stand to the
right and one defender stands to the left of the goalkeeper (from
the perspective of the offensive players looking at the goal)1.
This formation is referred to as 3:1. Two options arise from this
situation: 3:1 3:1 and 3:1 2:2. In the 3:1 3:1 situation, one defender
(first runner) of the block of three runs up to the striker in order
to cover the right corner of the goal as soon as the ball is brought
into play by the injector. Another one of the players (trailer) on
this side remains positioned slightly offset behind in order to
defend possible deflection variations. The remaining player on
this side stays on the goal line to be able to parry the shots that
cannot be prevented by the first defender. The defender to the left
of the goalkeeper positions himself/herself between the penalty
spot and the goal-line to be able to clear possible rebounds from

1For depictions of the tactical approaches on offense and defense see

Supplementary Figures 1–4.
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the zone in front of the goalkeeper. Due to the fact that the
right corner of the goal is defended directly by two players, the
goalkeeper has the possibility of taking a step toward the left
goalpost and of focusing more strongly on this corner of the goal.
In the end position, three defenders stand to the right and one
defender stands to the left of the goalkeeper (3:1).

In the 3:1 2:2 situation, from the starting formation, the
defender standing to the left of the goalkeeper runs toward the
pass to the left of the striker. One defender of the block of three
to the right of the goalkeeper runs up to the striker to cover the
right corner of the goal. Another one of the players moves behind
the goalkeeper to the left side and positions himself/herself in the
zone between the penalty spot and the goal line. His/her task is to
clear possible rebounds from the zone in front of the goalkeeper
and defend variations. The remaining defender on the right side
stays on the goal line in order to parry shots that cannot be
prevented by the first defender. In the end position, two defenders
are standing to the left and two to the right of the goalkeeper (2:2).

The two defense variations each prevent another possible
attack strategy, respectively. By using the 3:1 3:1 the defenders
are positioned closely around the penalty spot and supposed to
defend possible deflection strategies. The 3:1 2:2 is supposed to
defend the pass to the left (here 90◦ variation). Regardless of the
defense variation, the drag-flick (direct shot) always represents a
reasonable variant and an effective shooting technique when it
comes to the penalty corner (Piñeiro et al., 2007; Rosalie et al.,
2017), although, it cannot always be considered optimal because
of the defenders’ positioning at the goal-line. For the defense
variation 3:1 the 90◦ variation represents an optimal counter
strategy, because no defender is directly assigned to the attacker
who receives the ball from the striker. Whereas, for the 2:2
variation, it represents a less appropriate counter strategy because
in this case the player on the 90◦ position is directly defended. In
contrast, the deflection variation is the optimal solution for the
2:2 variation, because of the relatively wide-open zone between
the two defenders who are defending the attackers at the top of
the circle and the two defenders focusing more on the zone close
to the goal. While the defense is using a 3:1 variation a deflection
variation seems ineffective in comparison to the 90◦ variation
referring to the higher number of defenders around the penalty
spot possibly interfere the execution of the variation.

However, in reacting on the defensive players’ run-out, strikers
would probably also have to deal with the same problems as
penalty takers in soccer employing a keeper-dependent strategy.
On the hand, they have to focus on the behavior of the defensive
players but on the other hand they also have to prepare for/focus
on the execution of their own actions (Noël and van Der Kamp,
2012). However, currently it is not known if and how often
offensive players try to employ a “defense-dependent” strategy,
but it appears that in the majority of the cases a “defense-
independent” strategy is employed. It is also not known if it
is possible to focus on aspects of defenders’ behaviors while
also preparing and coordinating self-actions given that it takes
<2,000ms from the ball being injected till the ball leaves the
strikers stick. Furthermore, in penalty corners it is not only the
striker who has to come to a reasonable decision in time, but
also the teammates have to perceive the situation correctly to act

accordingly. It is certainly possible that play callers consider these
demands on the gaze behavior of players a major problem and
therefore rely on a defense-independent strategy only in which
every player on offense knows prior to the injection of the ball
which variant (e.g., a direct shot) will be played.

Although, in general, a number of investigations of the
combined gaze and decision-making behavior in high-
performance sports is available (for reviews, see Kredel
et al., 2017; Hüttermann et al., 2018), focusing on predominantly
foveal (e.g., Noël and van Der Kamp, 2012) as well as peripheral
vision (Vater et al., 2017), in field hockey, only Roth et al.
(2007) have evaluated the gaze behavior of strikers so far. It was
found that, as the ball is put into play, the defensive players
running out of the circle had their gaze fixated by the striker
in order for them to choose their action accordingly. As soon
as the ball was stopped, only the ball was fixated by the striker.
Thus, anticipatory processes may play a role in action selection
since the strikers subsequently did not fixate on the space or
the defenders anymore. Alternatively, peripheral vision can
potentially be used by strikers through this process. Here,
strikers may predominantly focus on the ball while monitoring
other important aspects, like the stopper, peripherally (cf. Klatt
and Smeeton, 2021a,b). In this way, such patterns of gaze may
function as a gaze anchor (cf. Vater et al., 2016). However,
because only two athletes were tested within the scope of these
investigations by Roth et al. (2007) and the quality of the
decision-making behavior was not considered, the meaningful
relationship between gaze behavior and decision-making
behavior remains unclear. Particularly this aspect, however, is of
vital importance for the success or failure of penalty corners as
the decision for an offensive play call that matches well with the
opponent’s defense strategy significantly increases the success
rates of penalty corners (cf. Vinson et al., 2013).

Because of the explorative nature of this research, a
questionnaire was developed in Study 1 which was designed to
collect information about penalty corners from the perspective of
expert players. That is, wemainly wanted to get basic information
on the current state of penalty corners while also finding out how
expert players think about application of a defense-dependent
strategy in penalty corner situations, if they have already had
some experience with these kinds of approaches and how they
would describe their own gaze behavior and demands on their
own gaze behavior (though reliability of self-reports on gaze
behavior is limited, e.g., Kok et al., 2017; vanWermeskerken et al.,
2018).

In the main study (Study 2), we scrutinized to what extent
different strategical approaches are associated with different
patterns of gaze and if strikers are able to distribute their
allocation in a way that allows them to gain information on
defenders’ behavior on the one hand and focus on the execution
of their own actions until the ball has reached the stopper,
on the other. Furthermore, a fundamental difference between
successful and less successful athletes across a range of different
types of sports and sports situations is the ability to apply their
visual perceptual skills in a targeted manner in order to be
able to operate, anticipate, and react successfully (cf. Williams
et al., 1999; Starks and Ericsson, 2003). Thus, Study 2 was
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also aimed at investigating decision-making behavior (decision
quality: optimal vs. less appropriate) as a function of gaze
behavior during employing defense-dependent and -independent
strategies in the penalty corner in field hockey.

STUDY 1

Study 1 was conducted as a preliminary study for Study 2. Given
the explorative nature of this current research, it was important
to generate subjective assessments about experts’ behavior
during penalty corners. In general, the following questions were
answered by the participants through the questionnaire: (1)
What is the importance of penalty corners during training for
professional teams? (2) Which offense and defense tactics are
preferable in professional teams and do they validate our initial
assumptions? (3) How do experts behave during penalty corners
from a tactical perspective? (4) How can defense-dependent
strategies be implemented, i.e., where and when do players think
one should gain information on the defenders’ strategic behavior?

Method
Participants
In total, 48 (31 male, 17 female) participants completed the
questionnaire. About 19% of all participants actively played field
hockey in the highest German league and 81% in the second
highest league at the time of data collection. About 17% of the
participants reported having <1 year of playing experience in the
two highest German leagues, about 50% had 1–5 years, 25% 5–10
years, and 8% more than 10 years of playing experience.

Materials and Procedure
The questionnaire2 included 29 questions and was created online
using the EFS Survey program (Questback GmbH, Germany).
First, questions were asked about the preparation of penalty
corners for the specific match in order to find out about
the importance of penalty corner training in general. The
survey also indicated whether the implementation of defense-
dependent strategies seems promising from a player’s perspective.
Second, questions were asked about the theoretical preparation.
Subsequently, participants answered questions concerning their
(gaze) behavior during the match.Here the focus was on assessing
individual gaze strategies and possible gaze strategies in defense-
dependent approaches.

Results
Forty-eight participants indicated that they performed a penalty
corner training at least once a week at the time of the data
collection. More than half of the participants reported to train for
penalty corners in a second session per week in addition to their
regular practice. More than 70% of the participants took part
in at least one training session specifically designed to improve
penalty corner performance. Almost 80% of the respondents
indicated that a penalty corner training during a team training
unit usually lasted 15–30min. The duration of the additional

2The German questionnaire can be found in the Supplementary Material.

penalty corner training was around 30–45min for approximately
half of the respondents.

Players indicated that the penalty corner drag-flick is indeed
the variation they most often choose and train for, followed by
the 90◦ and deflection variations. Almost all the participants
prepared for these variations using video analyses of the players
from opposing teams. They indicated that countering the defense
variation 3:1 3:1 with the 90◦ variation is the most appropriate
solution, while the efforts do not match well with the 3:1
2:2 variation. They also supported our initial assumption that
the deflection variation is optimal for countering the 3:1 2:2
variation, while being largely ineffective for the 3:1 variation.

Usually, with prior training, players decided on the variation
to use either before the match or just before the penalty corner
based on the knowledge of the tendencies of the opposing team.
Though it was found that approximately 40% of the participants,
at least once tried to adapt their strategical approach to the run-
up behavior of the defensive players during the penalty corner,
players also indicated that in the vast majority of the cases, they
employed a defense-independent strategy (Figure 1).

With regard to the individual gaze strategies of the striker, 60%
of the participants indicated that they had consulted with their
coach about gaze behavior before. Regarding the time when gaze
could be directed at the defenders to identify their strategy, “just
after the ball was injected,” and “just before the ball is stopped”
were the most common responses by the participants (Figure 2).
They emphasized that in these situations, but not while drag-
flicking, there usually would be sufficient time to react to the
run-out of the defenders, i.e., the preparation of the variation
and the movement execution as a response to the strategy of the
defenders. Unsurprisingly, most of the players named parts of the
defense (“position trailer,” “position first runner”) or the “whole
defense block” as information rich areas they would focus on to
identify defensive strategies.Moreover, they named the deflection
and 90◦ variations as the most suitable variations to react to the
defenders’ behavior.

Discussion
The results of the questionnaire indicated that there are frequent
and regular penalty corner trainings in the first German division
in field hockey. With a total duration of 2 h of training and an
average of 15–30min of specific penalty corner training, almost
a quarter of the training is used exclusively for penalty corners.
Many teams perform an additional penalty corner training to
improve their success rate. In order to be prepared for the
opponent, penalty corners as well as the opponent’s team tactics
are discussed during competition preparation. Based on these
discussions, the penalty corner training is adapted and the
different variants are determined before the actual match or
penalty corner. The results of the questionnaire also illustrate that
the offense variation is chosen shortly before the penalty corner
in most cases, i.e., seemingly, the defense-independent strategy is
employed much more often than the defense-dependent strategy
even though the participants’ level of expertise was relatively
high. This may help to explain why in the past years, many teams
have been able to lower the success rates of very good strikers
through planned and purposeful defense behavior: they were able
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FIGURE 1 | Distribution of answers to the question when a decision is made for a certain penalty corner variation during competition by offensive players and

defensive players. Participants were allowed to give multiple answers.

FIGURE 2 | Hockey players’ opinion on when it is reasonable to acquire information on the defenders’ run-out behavior/formation during penalty corners on a

five-point-scale (1 = not possible/reasonable at all, 5 = very well possible/reasonable) in order to react to it by choosing a well-matching offensive variant.

to know what to expect and tried to employ a more promising
counter strategy. If offense players more often employed defense-
dependent decision making instead of the currently prevailing

defense-independent decision making, it could help to select the
offense strategy that fits best with the defenders’ strategy. This
would make it nearly impossible to prepare an effective counter
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strategy for defense players as well. The players themselves
considered this as a promising development. They indicated that
the pass to the left (90◦ variation) and the deflection variation are
the most suitable for short-term changes during actual penalty
corner attempts, supporting our initial assumptions on which
areas of interest may play a more important role in defense-
dependent compared to defense-independent strategy.

STUDY 2

Based on the results of Study 1, and because self-reports on
gaze behavior are not always reliable (cf. Kok et al., 2017; van
Wermeskerken et al., 2018), Study 2 was designed as a field
study with the goal of analyzing gaze and decision-making
behaviors of strikers in field hockey. We aimed to scrutinize
if (and how far) the gaze behavior differs between attempts
in which the players know which variant they will play and
attempts in which they try to counter the defending team’s tactical
approach (defense-dependent vs. defense-independent strategy).
Thereby, the defense-independent strategy may be considered
the players’ natural (normally employed) strategy, based on what
they reported in Study 1. In line with the information provided by
the players in Study 1, we hypothesized that identifying tactical
approaches of the defense requires looking longer at the goal
area, especially early on (i.e., roughly until the ball reaches the
stopper). This is so because later, the attention has to be directed
to the stopper and the ball to guarantee optimal execution while
possibly also perceiving information from other areas of interest
(e.g., the stopper) peripherally (cf. Hüttermann et al., 2013;
Klostermann et al., 2020). In contrast, while employing a defense-
independent strategy, strikers theoretically can exclusively focus
on offense related aspects of the penalty corner, such as the
injecting player, stopper, and ball, early on because regardless of
the defenders’ run-out they would follow the same action plan
anyway. So, there is a much lesser need to gain information
on the defenders’ behavior at that point. Furthermore, we also
wanted to test if successfully identifying the defenders’ tactical
approach benefits from certain patterns of gaze behavior. We
analyzed if and in how far gaze behavior during attempts in
which players tried to identify and react to the defender’s behavior
differs between successful and unsuccessful trials. We expected
that relatively more time will be spent looking at the seemingly
more informative areas of interests (i.e., goal area and ball) in
the cases the strikers made an optimal decision compared to an
appropriate decision. Because of the results of Study 1 and also
because several areas of interest (the injector, stopper, and goal
area) are spatially far apart, we did not expect strikers to focus on
areas in between until the ball had reached the stopper.

Method
Participants
In total, 14 strikers (3 female, 11 male) took part in the
experiment. Due to technical difficulties, the eye-tracking data of
one participant could not be evaluated and had to be excluded.
The average age of the participants was 21.93 years (SD = 3.95
years). At the time of the experiment, the participants had been
active as field hockey players for 16.71 years on average (SD

= 2.53 years). Six of the participants (3 female, 3 male) had
experience in the first German Division (M = 3.33; SD = 2.34).
Nine of the players indicated experience in the second German
Division (M = 2.67; SD = 2.29). Two of the participants also
had experience as a striker in senior national teams (5 years)
and another three where part of a youth national team for
1.67 years on average (SD = 0.58). The experiment was carried
out in accordance with the Helsinki Declaration of 1975, and
the participants signed a consent form approved by the local
ethics committee.

Materials
The gaze behavior of each participant was recorded using
a mobile eye-tracking system (Pupil Labs GmbH, Berlin,
Germany). A mobile eye-tracking headset connected to a mobile
bundle consisting of a Motorola Moto Z2 or Z3 Play with an
USBC-USBC cable was used. The two eye cameras of the eye
tracker had to be configured to record the full scope of the
movement of the pupil in all movement directions. The front
camera of the eye-tracking system had to be adjusted so that
the entire visual field of the striker was recorded (120 frames
per second). The gaze information of both eyes was recorded at
200Hz and matched with a simultaneously captured scene video
recorded at 30 Hz.

The game situations were recorded by two cameras (GoPro
Hero 8 black, GoPro, Sam Mateo) from behind the striker and
from a lateral perspective, to be able to view and assess all
movements from two different viewing positions.

Procedure
The testing of each participant took around 30min including
the instruction, a warmup, and the actual testing. Initially, the
test setup and procedure were explained, and the eye-tracking
glasses were adjusted for each participant individually. After
configuring the mobile recording devices (Moto Z2 or Z3 Play
with Pupil Mobile App), they were connected, and the calibration
was performed prior to the start of the testing.

Each participant performed 20 penalty corners as the striker
(see Figure 3). In half of these penalty corners, the penalty
corner variations were given beforehand (defense-independent
strategy). The combination of penalty corner variations (shot,
90◦, or deflection) were chosen in random order. In the other half
players were asked to react to the run-out behavior of defenders
(defense-dependent strategy). Importantly, defenders’ strategy
was always unknown to the offense and thus had to be identified
during the penalty corner attempt (see Supplementary Table 1).
Each defense variation was played five times in random order
(5x 3:1 3:1, 5x 3:1 2:2) and defense variations were kept
the same between both conditions. The striker’s task was to
find an optimal solution for the situation. To this end, three
solution possibilities were available: penalty corner drag-flick,
90◦ variation, and deflection variation but it was emphasized
that only the latter two were considered optimal solution
depending on the run-out behavior of the defenders whereas
the direct shot (penalty corner drag-flick) was considered
a fallback option (which is never completely inappropriate
to use).
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FIGURE 3 | Depiction of field testing from the perspective behind the striker showing the striker (standing) and stopper of the offensive team in the foreground and the

defenders and goalkeeper inside the goal before running out just after the injector (far left from the goal) has played the ball.

The experimental differentiation between the defense-
dependent and defense-independent situations served to
distinguish varying demands on gaze behavior. That way, both
visual sources of information for the successful execution of an
action (shot, pass) as well as sources of information for making
correct decisions in the penalty corner situation were meant to
be identified.

Data Analysis
First, the recordings of those cameras that recorded the
individual shots were sifted through entirely. The video
recordings served to identify the running behavior of the defense
and, thereby, reconstruct the participants’ decision-making
behavior. The execution of the penalty corners was divided based
on the decision quality (optimal vs. less appropriate) in this
context by choosing the 90◦ variation as the optimal solution for
3:1 3:1 and the deflection variation as the optimal solution for
3:1 2:2. Respectively, the deflection variation was less appropriate
for the 3:1 3:1 defensive variation and the 90◦ variation was less
appropriate for the 3:1 2:2 variation.

Next, the video material of the eye-tracking system was
calibrated offline in order to monitor the visual foci of the
participants during the execution of the penalty corners. A
manual frame-by-frame analysis was used to analyze the strikers’
gaze behavior using the software Kinovea (Version 0.8.15; for
a similar procedure, see Fasold et al., 2018). We only focused
on the analysis of gaze duration and left out analyses of other
gaze parameters (but see Di Nocera et al., 2007; Noël and van
Der Kamp, 2012). Thereby, as common in velocity algorithms
(Holmqvist et al., 2011) we included smooth pursuits of moving

areas of interest, for example the ball, in our count of gaze
durations (cf. Dicks et al., 2010; Aksum et al., 2020). Only if an
area of interest was focused for 4 consecutive frames (120ms)
this was counted as gaze at a certain location. A second rater
rated 10% of the trials in order to gain information on the
reliability of the first rater’s work. Cohen’s Kappa was found to
be 0.77 (“substantial agreement,” cf. Landis and Koch, 1977).
In order to be able to draw conclusions about the gaze and
decision-making behavior of the participants, areas of interest
were defined for the penalty corners, which could be observed
by the striker during the shooting process. The ball, the injector,
the stopper, the goal area, the shooting players in 90◦ variation,
and the deflection variation were defined as such areas of interest.
The starting point of a scene was defined as the moment
when the ball is injected, and the end of the shooting process
was defined as the moment when the ball has been passed
or shot directly by the striker. For a more detailed analysis
of the scenes and also to allow testing whether differences
between condition occur mainly during the initial phase of a
penalty corner or not, the sequence of a penalty corner was
divided into three phases: Phase 1 is the period starting from
the moment the ball is injected (at this point the defense is
allowed to move) until the stopper’s stick contact. Phase 2 has
been marked as the period from the moment the ball leaves
the stopper’s stick until the striker receives the ball. Phase 3
ended at the moment the pass to the teammate was played or
ball was shot (see Figure 4). Finally, data was analyzed using
a 2 (condition: defense-dependent, defense-independent) × 3
(phase: phase 1, phase 2, phase 3) MANOVA with repeated
measures for both factors and gaze duration at the different
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FIGURE 4 | Pictures of a penalty corner attempt from phase 1 (top) to phase 3 (bottom). Phase 1 starts the moment the ball is injected and ends when the ball

reaches the stopper’s stick. Phase 2 has been defined as the period from the moment the ball leaves the stopper’s stick until the striker receives the ball. Phase 3

ended at the moment the pass to the teammate was played or ball was shot.

areas of interest (ball, injector, stopper, goal area, deflecting
player, 90◦ player) as dependent variables. Subsequently, data
collected for the “defense-dependent” condition was analyzed by
means of a 2 (decision quality: optimal; less appropriate) × 3
(phase: phase 1; phase 2; phase 3) × 2 (variation: deflection; 90◦)

MANOVA3 with repeated measures for all factors and again gaze
duration at the different areas of interest (ball, injector, stopper,

3Mean values that were submitted to both MANOVAs can be found in the

Supplementary Material.
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TABLE 1 | Summary of univariate analyses of gaze durations in defense-dependent and independent strategy for the three phases of the penalty corner process.

Effect Dependent variable F (dfs) p ηp²

Condition Ball 14.035 (1, 12) 0.003 0.539

Injector 17.923 (1, 12) <0.001 0.599

Stopper 0.131 (1, 12) 0.724 0.011

Goal area 43.772 (1, 12) <0.001 0.785

Deflecting player 0.99 (1, 12) 0.337 0.077

Phase Ball 9.898 (2, 24) 0.001 0.452

Injector 41.773 (1.039, 12.473) <0.001 0.777

Stopper 36.539 (2, 24) <0.001 0.753

Goal area 59.372 (1.125, 13.497) <0.001 0.832

Deflecting player 0.99 (2, 24) 0.383 0.077

Condition*Phase Ball 13.660 (2, 24) <0.001 0.532

Injector 10.736 (1.312, 15.740) 0.003 0.472

Stopper 2.022 (1.271, 15,256) 0.154 0.144

Goal area 52.095 (1.066, 12.786) <0.001 0.813

Deflecting player 0.99 (2, 24) 0.337 0.077

These were used following a MANOVA in order to detect for which dependent variables differences exist. The columns including p values < 0.05 are in bold.

goal area, deflecting player, 90◦ player) as dependent variables.
Assumptions for calculating a MANOVA were tested and in case
of any violations of sphericity, Greenhouse-Geisser correction
was applied. We followed both MANOVAs up with (univariate)
ANOVAs in order to relate significant multivariate effects to
single dependent variables.

Results
The data of a total of 253 penalty corners could be used
for the analyses of gaze. Seven penalty corners could not be
included in the data analysis due to technical problems. In
total, the recordings consisted of 15,443 frames, of which 11,434
(74.04%) were included in the data analysis, as in 3,999 frames
(25.9%), gaze was not detected. From Phase 1, there were 7,497
frames, of which 6,937 frames (92.53%) were included in the
analysis. In phase 2, 4,047 frames were recorded, of which 2,426
frames (59.95%) showed no gaze marker. From the last phase,
2,080 frames (53.31%) of 3,902 frames could be considered for
data analysis.

Differences Between Conditions
Results of the MANOVA showed a main effect of phase, V =

1.761; F(10, 42) = 30.981, p < 0.001, ηp² = 0.881, of condition,
V = 0.873; F(5, 8) = 10.964, p = 0.002, ηp² = 0.873, and an
interaction of phase and condition, V = 0.955; F(10, 42) = 3.835, p
= 0.001, ηp² = 0.477, on the participants’ distribution of gaze on
the different areas of interest.

Results of subsequent univariate analyses are shown in
Table 1. Participants looked longer at the ball and injector (M
= 51.971, SE = 4.494, 95% CI [42.179; 61.762]; M = 5.832, SE
= 0.743, 95% CI [4.212; 7.452]) in the cases where a defense-
independent strategy was adopted than in cases of a defense-
dependent strategy (M = 40.294, SE = 3.730, 95% CI [32.166;
48.422]; M = 3.493, SE = 0.607, 95% CI [2.171; 4.816]). The

opposite was true with regard to gaze durations on the goal area
(defense-dependent: M = 13.940, SE = 1.444, 95% CI [10.793;
17.087]; defense-independent: M = 3.722, SE = 0.859, 95% CI
[1.850; 5.595]).

However, while gaze duration at the ball during the defense-
dependent and defense-independent conditions was roughly the
same in phase 2 (M= 39.267, SE= 6.020, 95%CI [26.150; 52.384]
vs. M = 36.977, SE = 6.932, 95% CI [21.873; 52.082]) and phase
3 (M = 69.518, SE = 8.696, 95% CI [50.571; 88.465] vs. M =

68.914, SE = 9.023, 95% CI [49.254; 88.575]), during phase 1,
players focused on the ball longer in the defense-independent
compared to the defense-dependent condition (M = 47.127, SE
= 5.785, 95% CI [34.523; 59.732] vs. M = 14.990, SE = 4.137,
95% CI [5.976; 24.004]). In phase 1, players looked longer at
the injector in cases they already knew how to carry out the
penalty corner compared to the defense-dependent condition (M
= 16.237, SE = 2.258, 95% CI [11.316; 21.157] vs. M = 10.385,
SE = 1.854, 95% CI [6.346; 14.424]). However, this difference
between conditions got smaller during phase 2 (M = 1.260, SE
= 0.702, 95% CI [−0.271; 2.790] vs. M = 0.095, SE= 0.095,
95% CI [−0.112; 0.302]) and during phase 3, players in both
the situations never looked at the injector. The gaze durations
at the goal area during phase 1 (M = 39.123, SE = 4.221, 95%
CI [29.925; 48.320] vs. M = 9.276, SE= 2.478, 95% CI [3,878;
14.674]) and phase 2 (M = 2.697, SE = 1.044, 95% CI [0.424;
4.971] vs. M = 0.870, SE = 0.490, 95% CI [−0 to 197; 1.937])
were longer in the defense-dependent compared to the defense-
independent condition. But in phase 3, the goal area was only
sparsely looked at in the defense-independent condition (M =

1.021, SE= 1.044, 95% CI [-0.846; 2.888]) (Figure 5).
The scoring rates of both conditions were rather similar. In

the defense-dependent condition, the offense scored in 15.87%
of the attempts whereas scoring rate was 16.54% in the defense-
independent condition.
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FIGURE 5 | Mean distribution (and SD) of gaze durations at the areas of interest (ball, injector, goal area) for both conditions (defense-independent;

defense-dependent) as a function of time (Phase 1, Phase 2; Phase 3) and in relation to the length of a phase.

TABLE 2 | Summary of univariate analyses of gaze in defense-dependent strategy as a function of decision quality (optimal vs. less appropriate) and phase of the penalty

corner.

Effect Dependent variable F (dfs) p ηp²

Decision quality Ball 24.075 (1, 12) <0.001 0.667

Injector 3.898 (1, 12) 0.072 0.245

Stopper 20.055 (1, 12) 0.001 0.626

Goal area 25.116 (1, 12) <0.001 0.677

Decision quality*Phase Ball 9.319 (2, 24) 0.001 0.437

Injector 3.406 (1.007, 12.088) 0.089 0.221

Stopper 11.828 (2, 24) <0.001 0.496

Goal area 20.216 (1.247, 14.960) p < 0.001 0.628

Variant*Phase Ball 0.191 (2, 24) 0.828 0.016

Injector 7.406 (1.034, 12.404) 0.017 0.382

Stopper 3.193 (1.034, 12.432) 0.09 0.21

Goal area 0.795 (1.238, 14.858) 0.413 0.062

These were used following a MANOVA in order to detect for which dependent variables differences exist. The columns including p values < 0.05 are in bold.

Differences Within Defense-Dependent Condition
In 65.08% of the trials, the striker chose the optimal strategy to
counter the defenders’ run out. Results of the second MANOVA
showed again that gaze differed between the phases of the penalty
corner, V = 1.556; F(8, 44) = 19.296, p < 0.001, ηp² = 0.778, but
also that gaze was different for penalty corners in which players
were able to respond to the behavior of the defense in an optimal
compared to a less optimal way, V = 0.756; F(4, 9) = 6.971, p
= 0.008, ηp² = 0.756. Furthermore, there was an interaction
between both factors, V = 1.196; F(8, 44) = 8.174, p < 0.001,
ηp² = 0.598, whereas gaze differences between phases weren’t
the same for deflection and 90◦ variations, V = 0.595; F(8, 44)
= 2.327, p = 0.035, ηp² = 0.297. Gaze did not differ between
both penalty corner variants, though, V = 0.421; F(4, 9) = 1.634,
p= 0.248.

Results of subsequent, univariate analyses are shown in
Table 2. In the cases where the players’ behavior optimally
matched the tactical formation of the defense, they spent more
time looking at the ball (M= 40.429, SE= 3.720, 95% CI [32.324;
48.534] vs. M = 16.187, SE = 5.183, 95% CI [4.894; 27.481]; p <

0.001), the stopper (M= 3.463, SE= 0.763, 95% CI [1.800; 5.127]
vs.M= 7.597, SE= 2.118, 95%CI [2.982; 12.212]; p= 0.001), and
the goal area (M = 14.399, SE = 1.437, 95% CI [11.269; 17.530]
vs.M = 6.071, SE= 1.777, 95% CI [2.199; 9.942]; p < 0.001).

However, these differences based on the appropriateness of
the chosen tactical approach, appeared to be inconsistent across
the different phases of the penalty corner (Figure 6). In the cases
where the variant of the penalty corner matched the defensive
formation optimally, players spent more time looking at the ball
(optimal: M = 13.376, SE = 4.411, 95% CI [3.765; 22.987] vs.
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FIGURE 6 | Mean distribution (and SD) of gaze duration at the areas of interest (ball, stopper, goal area) for the evaluation of how well an offensive strategy has

matched the run-out of defenders (optimal; less appropriate) as a function of time (Phase 1, Phase 2; Phase 3) and in relation to the length of a phase.

less appropriate:M = 6.223, SE = 2.173, 95% CI [1.490;10.957]),
the stopper (optimal: M = 21.245, SE = 4.429, 95% CI [11.596;
30.894] vs. less appropriate: M = 6.702, SE = 2.179, 95% CI
[1.955; 11.448]), and the goal area (optimal: M = 40.127, SE =

4.407, 95% CI [30.525; 49.728] vs. less appropriate: M = 16.717,
SE = 4.924, 95% CI [5.988; 27.445]) in phase 1 than in the cases
where the chosen play design was less appropriate.

Regarding gaze spent at the ball, this difference got bigger
in phase 2 (optimal: M = 36.817, SE = 7.848, 95% CI [19.718;
53.915] vs. less appropriate: M = 15.962, SE = 7.116, 95%
CI [0.457; 31.466]), and was biggest in phase 3 (optimal:
M = 71.095, SE = 9.040, 95% CI [51.398; 90.793] vs. less
appropriate: M = 26.377, SE = 9.221, 95% CI [6.286; 46.468]).
This pattern was different for other areas of interest. Although,
the differences in gaze duration for the stopper were biggest in
phase 2 (optimal: M = 45.260, SE = 7.177, 95% CI [29.622;
60.897] vs. less appropriate: M = 16.090, SE = 5.295, 95% CI
[4.552; 27.627]), players hardly looked at the stopper in the third
phase. Differences in relation to gaze durations for the goal area
disappeared after phase 1 (after which the goal area was hardly
focused on at all).

Discussion
In Study 2, the gaze behavior of strikers was recorded in defense-
dependent and -independent conditions. The results show that
both strategies differ in important aspects of their gaze behavior,
mainly in phase 1. This is in line with the descriptions of
gaze behavior of players in Study 1 which was unexpected
because the self-reports on gaze are not always reliable. In
this case, however, players’ temporal and spatial description of
acquiring information on defenders’ behavior matched well with
what we actually observed in Study 2. This pattern of gaze
allowed players to choose the strategy that matched the run-
out of defenders optimally in almost two out of three penalty

corners. Players in the defense-dependent condition appear to
spend more time looking at the goal area at the expense of
gaze durations on the ball and injector (until the ball has
reached the stopper and the strikers have to initiate their own
actions). In fact, the ball was fixated considerably less (∼15%)
compared to the defense-independent condition (∼47%). In the
defense-dependent condition, on the other hand, the goal area
was fixated longer (∼39%) than in the defense-independent
condition (∼9%). That is, as hypothesized players in the defense-
dependent condition had to manage two sources of information,
one providing information on the defense (i.e., which variation
to choose) and one providing information that seemed necessary
for more optimal execution of their following actions (shot, pass).
In contrast, players in the defense-independent strategy knew
the offensive variation already before the injection of the ball
what allowed them to mainly focus on the ball (and stopper)
throughout the initial course of the penalty corner attempt.
Rothkopf et al. (2007) emphasized that areas of high interest
are focused on at the beginning of a phase or a sequence.
But probably because the players in the defense-dependent
condition needed sufficient time to not only perceive the pattern
of defenders’ run-out behavior, but also to react to it in an
appropriate way, differences between conditions mainly vanished
after phase 1. However, during the penalty corner process,
strategies did not lead to different patterns of gaze because the
focus shifted predominantly on movement execution.

In phase 2, this involves gaze at the stopper who indicates
the striker where to pick up the ball, whereas in phase 3,
gaze was almost exclusively directed at the ball to guide the
execution of strikers’ actions. The latter is also supported by
a study by Kurz et al. (2018), which showed that focusing
the ball is important for a good technical execution. Similar
to the current interaction finding Noël and van Der Kamp
(2012) revealed that penalty takers paid more visual attention

Frontiers in Psychology | www.frontiersin.org 11 August 2021 | Volume 12 | Article 67451186

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Klatt et al. Gaze Behavior in Field Hockey

to the goalkeeper in the beginning of their run-up when they
were asked to employ a keeper-dependent strategy. Importantly,
they also stopped collecting information on the goalkeeper’s
behavior (jump direction, movement onset of dive) before foot-
to-ball contact during their run-up because it would not have
been possible to consider very late sources of information on
the goalkeeper and successfully react to them anyway. Taken
together, the current results indicate that participants indeed
tried to react to the defense using adapted gaze strategies to
decide on early parts of the defenders run-out behavior (cf.
Roth et al., 2007). However, the current results also show that it
probably will not be possible to take later aspects of defenders’
run-out into account.

Furthermore, the differentiation between gaze behaviors when
decision making was considered optimal or less appropriate
during the defense-dependent condition, points to the
importance of three areas of interest for adaptive decision
making: the goal area, the stopper, and the ball. When choosing
the optimal variant to counter defenders’ behavior, the strikers
spent more time looking at each of these areas. Probably,
the longer gaze times on the ball and stopper, mainly in the
second and third phase respectively, are a consequence of
having identified the defenders’ strategy in time (in phase 1)
after which they can solely focus on the execution of their own
actions. In case they have more problems recognizing defenders’
strategies, they probably still have to focus on other potentially
informative areas before shifting their focus to guidance of their
own movements. Spending sufficient time on the goal area,
though, seems to be most the important factor during phase 1 to
recognize the defenders’ behavior correctly. If the strikers chose
the optimal strategy, they would spend more than twice as much
time looking at the goal area than in the cases where they chose
the less appropriate option.

In this current study, participants almost never spent time
looking in between areas of interest. This is probably related to
the fact that some of the areas of interest are very far apart and
also a consequence of the decision to not differentiate between
sources of information in the goal area. It seems likely that within
this area of interest, participants made use of peripheral vision
to perceive several defenders, the goalkeeper, and the target area
in the goal, at the same time (cf. Hüttermann and Memmert,
2017). However, given the relatively long distance between the
striker and the goal, the short distance between defenders and the
fact that the goal and the goalkeeper were right behind them, it
seemed impossible to reliably differentiate between gazes to these
sources of information. It remains a question for future research,
though, to examine the extent to which strikers make use of
peripheral vision, especially during defense-dependent strategy
where the need to perceive different sources of information seems
stronger (cf. Hüttermann et al., 2014).

Furthermore, the strikers were not trained to employ defense-
dependent strategy though. That is why it seems reasonable that
gaze behavior in this condition would potentially look somewhat
different after players/teams have gathered more experience with
this strategy. However, despite this fact, the strikers were able to
choose an optimal strategy in 65.08% of the cases. This strongly
points to adaptive offensive play calling (i.e., providing offenses

with at least two variants of which they can choose based on
how the defenders run out) as a promising future development
to improve penalty corner success. This is supported by the
players’ self-evaluation provided in Study 1. Furthermore, goal
scoring rate was similar in both conditions, but comparisons
of percentages of goals scores seems rather problematic. First,
the focus of the current study was mainly on gaze behavior
and decision making of the striker. However, goal scoring does
not only depend on his/her decision making but also on the
perception and performance of his/her teammates (especially in
case he/she opts to pass and not to shoot directly). Second, goal
scoring does not only depend the defense tactical approach but
also on other aspects of the players’ behavior and performance
(cf. Vinson et al., 2013). For instance, a similar shot on the goal
will sometimes result in a goal, but sometimes be saved by the
goalkeeper. Finally, as stated above, the strikers and also the other
offensive players were not trained to adapt their behavior during a
penalty corner. That is, goal scoring rate would probably increase
after proper training sessions.

GENERAL DISCUSSION

In recent years, various studies have dealt with different
gaze strategies whose application is meant to benefit players’
decision making and performance in sports games (e.g., Wilson
et al., 2015). However, patterns of gaze behavior likely differ
between different sports and probably also within different
situations/tasks within one sport (Cañal-Bruland and Mann,
2015). This is so because transfer of knowledge in one sport
(e.g., gaze behavior in soccer penalty kicks, e.g., Wilson et al.,
2009) is not easy and therefore, cannot replace research in other
sports, such as field hockey, that have received less attention
by sport scientists/sport psychologists in the past. However, the
general principles and observations from one sport can indeed
help to improve or better understand decision-making behavior
in another sport. In the current paper, we tried to scrutinize
if and to what extent can strikers in hockey penalty corners
also consider the actions of their opponents (as e.g., in soccer
penalty kicks, cf. van der Kamp, 2006, 2011). We asked how
far a reaction (to an opponent) is be more effective than a self-
initiated, already planned action. To this end, previous research
on the relationship between action and reaction has mainly
focused on movement times (e.g., Welchman et al., 2010). Those
findings indicate that reactive movements are usually faster
than self-initiated movements (Pinto et al., 2011) and that this
holds across different levels of within-task expertise (Martinez
de Quel and Bennett, 2014). However, there also seem to be
other benefits of choosing to react to an opponents’ behavior (cf.
Noël et al., 2021). It allows to ultimately choose a strategy that is
more promising because decisions are based on more (reliable)
information of the opponents’ behavior. In contrast, it causes
extra problems like time constraints, the need to synchronize
more complex processes as a team, and additional demands on
gaze behavior, too.

The present study was focused on the investigation of the
gaze behavior and decision making of experienced field hockey
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players during penalty corners. We were interested in how far the
offensive players can adapt their strategy to the run-out behavior
of the defenders, thus in how far it is reasonable to base their own
actions on the perceptions of the opponents’ behavior. In Study
1, a questionnaire was used with the goal of obtaining subjective
experiences with and opinions on adaptive offensive behavior
during penalty corners and its associated gaze behavior mainly
in order to subsequently examine gaze behavior of defense-
dependent and -independent strategy within the scope of a field
study (Study 2). That was necessary because of the explorative
nature of the current research and missing information on many
basic relationships in this context.

Both the studies together show that adapting to the behavior
of the defenders seems possible and is considered a promising
future development by most players. Furthermore, a look at
the decision-making performance of one of the players with
experience as striker in the German senior national team
illustrates that especially high-class players after more intensive
training are very well capable of reacting to the defenders’ run-up
in the first phase of the penalty corner. This particular participant
always chose the optimal tactic to counter the approach of
the defense.

However, it remains to be seen in what way adaptive behavior
during penalty corners can be trained because rapid reactions
to the defenders run-out do not only afford good decision
making by an individual but also communication between
offensive players and coordination of their gaze behavior and
movements (cf. Fasold et al., 2018, 2021). That is, after strikers
have learnt/established a certain pattern of gaze behavior over
the course of several training sessions, they are probably able
to focus on the right place at the right time (cf. Magill,
1998) and know the more informative areas enabling good
decision making (Abernethy, 2001). But implementing of clear
arrangements concerning the routes and positions of the
other offensive players and how they get informed on the
strikers’ final decision seems to be al longer learning process.
Furthermore, it certainly requires very good technical skills of
all attackers to allow for error-free employment of defense-
dependent strategy.

Taken together, the current results point to the benefits of
employing a defense-dependent strategy (or in more general
terms: reacting instead of acting completely self-planed) at least
from time to time also to keep defenses uncertain about which
variations they should expect. However, employment of such
a strategy seemingly requires intense training and a certain
skill set among the offensive players allowing them to rapidly
change and coordinate their behavior. Furthermore, on a more
strategical level, play designers have to determine out of which
more specific variations strikers should chose while observing the
run-out of defenders. That is, the current study can be considered
a first step toward implementing adaptive decision making by
the offense, but there is much work left for coaches, players,
and researchers to find out under which circumstances defense-
dependent strategies work best. For example, it remains to be
investigated for future scientific work to what extent the analysis
of other parameters of gaze behavior can be used. In this context,

it would also be interesting to analyze to what extent the current
results can be replicated (if for example it is made use of a
dispersion-based algorithm to identify fixations, see e.g., Blignaut
and Beelders, 2009) or to what extent other gaze data can support
the current results.

Nevertheless, adaptation to the defenders’ formation and
behavior during game play is also found in other sports as
American Football when, for example, a receiver modifies
his/her route according to previous instructions based on
his interpretation of the defense strategy. Though learning
how to adapt during penalty corners appears relatively
extensive, employing defense-dependent strategies seems very
well implementable. This appears to also be the case in other
sports in which a player or a team has to decide between self-
initiated actions and waiting for an action of the opponent
in order to choose a reaction that matches the opponents’
behavior well.
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Eye tracking has been an essential tool within the vision science community for many

years. However, the majority of studies involving eye-tracking technology employ a

relatively passive approach through the use of static imagery, prescribed motion, or

video stimuli. This is in contrast to our everyday interaction with the natural world

where we navigate our environment while actively seeking and using task-relevant visual

information. For this reason, an increasing number of vision researchers are employing

virtual environment platforms, which offer interactive, realistic visual environments while

maintaining a substantial level of experimental control. Here, we recorded eye movement

behavior while subjects freely navigated through a rich, open-world virtual environment.

Within this environment, subjects completed a visual search task where they were

asked to find and count occurrence of specific targets among numerous distractor

items. We assigned each participant into one of four target conditions: Humvees,

motorcycles, aircraft, or furniture. Our results show a statistically significant relationship

between gaze behavior and target objects across Target Conditions with increased

visual attention toward assigned targets. Specifically, we see an increase in the number

of fixations and an increase in dwell time on target relative to distractor objects. In

addition, we included a divided attention task to investigate how search changed with

the addition of a secondary task. With increased cognitive load, subjects slowed their

speed, decreased gaze on objects, and increased the number of objects scanned in

the environment. Overall, our results confirm previous findings and support that complex

virtual environments can be used for active visual search experimentation, maintaining

a high level of precision in the quantification of gaze information and visual attention.

This study contributes to our understanding of how individuals search for information

in a naturalistic (open-world) virtual environment. Likewise, our paradigm provides an

intriguing look into the heterogeneity of individual behaviors when completing an un-timed

visual search task while actively navigating.

Keywords: visual search, virtual environment, eye tracking, distractors, dwell time, divided attention
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INTRODUCTION

Active, unconstrained visual exploration is the sensory

foundation of how the majority of individuals interact with

the natural world, continually seeking information from their

environment. This often includes coordinated body, head, and
eye movement activity. In contrast, the majority of studies

that seek to understand human visual perception employ a
relatively passive approach through the presentation of stimuli,
whether synthetic or natural. Likewise, body, head, and even
eye movements are often constrained, either explicitly or by the
nature of the experimental paradigm. These factors help control
the manifold sources of variability, enabling the meaningful
interpretation of finite empirical data. However, as both our
understanding of perception and experimental capabilities
expand, an increasing number of studies have sought to explore
visual processes under more natural conditions; enhancing
ecological validity while maintaining construct validity (Diaz
et al., 2013; Foulsham and Kingstone, 2017).

Here, we build upon a body of work that has used
virtual environments to understand perceptual and cognitive
processes related to visual search and navigation. Previous
work investigating visual search in virtual environments have
examined eye movements during object search and memory
tasks (Draschkow et al., 2014; Kit et al., 2014; Li et al., 2016;
Helbing et al., 2020) and have examined visual attention toward
distractors (Olk et al., 2018) using timed task paradigms in
traditional indoor virtual environments where items are placed
in-context with surrounding environments. Previous work in
the areas of spatial cognition and navigation, have created
virtual maze environments to investigate visual attention during
employment of allocentric and egocentric navigation strategies
(Livingstone-Lee et al., 2011) and to understand the role of
gender in landmark utilization (Andersen et al., 2012). In
addition, virtual environments have been used to test the
effectiveness of a guidance system during navigation of a
train station (Schrom-Feiertag et al., 2017), and to examine
spatial knowledge (Clay et al., 2019) and change detection
(Karacan et al., 2010) during navigation of outdoor virtual
environments. Other predecessors in this area of work have laid
the ground work to integrate open sourced game engines with
eye tracking to create naturalistic environments for multimodal
neurophysiological research (Jangraw et al., 2014). Despite these
efforts, additional work is needed to understand how visual
search generalizes in a variety of real-world contexts, such
as navigation and how targets are found during navigation
with limited spatial (contextual) dependencies. Likewise, the
capability to link gaze behavior in these complex environments,
to neurophysiological processes, remains an open challenge for
the field.

Measuring eye movement activity, including saccades,
fixations, and blinks, has provided researchers a non-invasive
way to gain valuable insight into perceptual, attentional, and
cognitive processes during visual search tasks (Hoffman and
Subramaniam, 1995; Kowler et al., 1995; Deubel and Schneider,
1996; Williams and Castelhano, 2019). Examining fixation
metrics (e.g., number of fixations or dwell time) can indicate

how individuals process visual information. For example,
previous work has shown that individuals increase the number
of fixations and dwell time (summation of all individual fixation
durations) on informative visual objects within a scene (Loftus
and Mackworth, 1978) and in the detection of changes of an
object’s location within a scene (Võ et al., 2010). Improved
memory recall and recognition on tasks is associated with
increased number of fixations (Kafkas and Montaldi, 2011; Tatler
and Tatler, 2013) and increased dwell time (Hollingworth and
Henderson, 2002; Draschkow et al., 2014; Helbing et al., 2020).
Specifically, increased number of fixations and increased dwell
time on objects during visual search tasks are linked to improved
memory for those objects (Hollingworth and Henderson,
2002; Tatler and Tatler, 2013; Draschkow et al., 2014; Helbing
et al., 2020). This also appears to be the case when comparing
how individuals visually attend to target objects compared to
distractors in the environment. Horstmann et al. (2019) found
that the average number of fixations on visual targets (about
1.55) was higher compared to the average number of fixations
on similar looking distractors (about 1.20) during a search task
with static images. Watson et al. (2019) reported that the number
of fixations on targets ranged from about 3.3–4 compared to
around 2.8–3.8 fixations on distractors, during a free visual
search, and reward learning task in a virtual environment. In
terms of dwell time, Draschkow et al. (2014) found subjects
looked about 0.6 s longer at targets as compared to distractors
during visual search of static natural scenes.

Previous work suggests that visual search tasks using
traditional stimuli such as static pictures may yield different
findings than those incorporating real world scenarios
(Kingstone et al., 2003). Research has shown notable differences
in gaze metrics between simple static vs. complex dynamic visual
search tasks, arguing for the increasing utilization of dynamic
scenes. For instance, Smith and Mital (2013) found increased
dwell time on visual objects and increased saccade amplitude
during a viewing and identification task in a dynamic scene
compared to a static scene. We live in a visually complex world
that includes many visual points of interest, depth, motion, and
contextual scene information. Therefore, real-life environments
are seemingly the optimal stimuli to study naturalistic eye
movement during visual search.

To this end, researchers have employed free navigation visual
tasks in real-life scenarios such as walking outdoors (Foulsham
et al., 2011; Davoudian and Raynham, 2012; Matthis et al., 2018;
Liao et al., 2019), walking indoors (Kothari et al., 2020), driving
(Land and Lee, 1994; Dukic et al., 2013; Grüner and Ansorge,
2017; Lappi et al., 2017), and shopping in a grocery store (Gidlöf
et al., 2013), to name a few. Although eye tracking in a real-
life scenario allows free body movement, conducting studies in
real environments can be difficult if not impossible to control;
every subject’s unique actions makes a comparative analysis
difficult. Fotios et al. (2015) noted this challenge in a study that
examined eyemovement for pedestrians walking down the street.
Examining eye movement metrics in real life environments also
limits the design of the study in terms of the availability of targets
and distractors (i.e., extant objects or limited by budget) and may
be limited on the ability to gather neurophysiological measures
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such as electroencephalogram (EEG) recordings. Furthermore,
real-world paradigms are often limited to only locally accessible
environments and restrict researchers from studying more
consequential scenarios where there are high demands for visual
attention during a search task (e.g., looking for threat targets in a
combat zone).

The use of virtual environments in perception research
is an ecologically valid approach that provides the ability
to conduct studies in an interactive but controlled dynamic
environment (Parsons, 2015). Since eye-tracking systems can
now be readily integrated with 3D rendering software (i.e.,
game engines), researchers can conduct eye movement studies
in more realistic and immersive environments (Watson et al.,
2019). Virtual environments also allow for research designs that
may otherwise not be practical for a real-world implementation.
For example, Karacan et al. (2010) utilized a 3D rendered
virtual environment to examine shifts in gaze patterns as
subjects repeatedly walked a loop path looking for isolated
changes in the environment during each lap (e.g., a new object
appearing, changing, and/or disappearing). The use of the virtual
environment allowed for uninterrupted “physical” and visual
inspection of an environment with tightly controlled visual
changes. Virtual environments can accommodate research in
attentional control and even allow for quantifiable interactions
with objects in the scene. Helbing et al. (2020) utilized a
virtual reality environment to examine memory encoding during
target search of 10 different complex and naturalistic indoor
rooms. Furthermore, utilizing game engines as Unity3D (Unity
Technologies), can allow for the subjects to remain stationary
during visual exploration of an environment and for researchers
to perform synchronous acquisition of multiple physiological
modalities, including respiration, electrocardiography (EKG),
and EEG (Jangraw et al., 2014) that would otherwise be difficult
in an ambulatory condition.

Similar to previous work in our field, the current study
seeks to isolate distinct gaze behaviors associated with target
objects during an active visual search of a complex environment.
Here, subjects freely navigate through a virtual world while
completing a self-paced visual search task identifying assigned
targets placed amongst many distractors (all other objects in the
virtual environment other than targets). These distractors include
a wide variety of objects that are, in some cases, similar in shape,
or color to the assigned target object. Additionally, objects in
the world appear to be inconsistently placed along the path (e.g.,
laying on their side or standing upright) and randomly placed
among one another with little to no scene context in regards to
surrounding items or, in some cases, to the environment itself
(e.g., a tuba next to a washing machine next to an airplane).
This is particularly interesting since more traditional work with
static scenes, has shown the importance of scene context on eye
movement, memory, and search time for visual targets (Loftus
and Mackworth, 1978; Henderson et al., 1999; Castelhano and
Heaven, 2010; Draschkow et al., 2014). Lastly, some of the
subjects are assigned a Target Condition that includes more than
one particular target object in the environment. This study also
includes an auditory divided attention task to increase subjects’
cognitive load during a portion of the visual search task, which

enables us to further investigate how subjects compensate visual
attention during a self-paced task in a complex environment.

The primary aim of this study is to quantify visual search
behavior during navigation of an open virtual environment and
identify similarities and differences between related work that
usedmore traditional fixed, static scenes. To this end, we quantify
the difference in gaze metrics between task-relevant targets
and task-irrelevant distractors (that do not provide context
for locating a target) and during high and low cognitive load
conditions, comparing the results to previous studies which
utilized more traditional visual search and encoding paradigms.
Specifically, we expect there to be an increased number of
fixations and dwell time on targets, as compared to distractors
(Draschkow et al., 2014; Horstmann et al., 2019; Watson et al.,
2019).We likewise expect subjects will visually explore targets at a
closer distance as compared to other objects in the environment.
Finally, we anticipate that auditory math task will elicit changes
in saccade or fixation activity, such as increased visual attention
on scanned objects in the environment (Pomplun et al., 2001;
King, 2009; Buettner, 2013; Zagermann et al., 2018) or a
change in exploratory behavior (i.e., reduction in speed and
number of objects viewed) of the environment, due to increased
cognitive load.

MATERIALS AND METHODS

Subjects
Forty-Five subjects, recruited from the Los Angeles area,
participated in this study [17 females with mean age ± standard
deviation (SD) = 36.8 ± 12.3 years, 28 males with mean age ±
SD = 41.6 ± 14.4 years]. All subjects were at least 18 years
of age or older and able to speak, read, and write English. All
subjects signed an Institutional Review Board approved informed
consent form prior to participation (ARL 19–122) and were
compensated for their time. All subjects had normal hearing
and normal or corrected-to-normal vision and had normal
color vision. All subjects completed a web-based pre-screen
questionnaire containing eligibility, demographic, and game-use
questions. Additional color vision and visual acuity screening was
conducted in-lab to ensure a minimum of 20/40 vision, using a
standard Snellen Chart, and normal color vision, assessed with
a 14-plate Ishihara color test. Any subject who did not pass
the screening process was not included in the study. Subjects
completed a simulator sickness screening questionnaire, the
Simulator Sickness Questionnaire (SSQ) (Kennedy et al., 1993),
before and after Pre-Test training (see below) and then again after
the main study task. The mean and SD for the Total Weighted
Score from the SSQ was 12.6 ± 16.4 before the system training
task, 32.1 ± 30.7 after the training task, and 38.1 ± 37.5 after the
main study task. As part of the questionnaire, subjects answered
questions relating to video game experiences and weekly usage of
video games. The average number of years playing video games
was 28.0± 11.4 years. The mean age when subjects began playing
video games was 12.8 ± 7.1 years. Over half of subjects (51%)
reported playing video games <2 h a week. Almost a third (29%)
of the subjects reported playing video games 2–7 h a week. The
remaining 20% of subjects reported playing video games for>8 h
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FIGURE 1 | First person point of view near the beginning of the task. Trail

makers (yellow circles with direction indicator) were placed on trees throughout

the environment. Targets were assigned to each Target Condition to count:

Humvee, motorcycle (shown), aircraft, and furniture. Distractors were any

object in the environment not assigned to the subject (e.g., tires, dumpster,

Humvees for anyone not in the Humvee Condition). Inset (not visible during

experiment) shows the current position on the complete map.

a week. Six subjects were later removed from the main study
analysis (N = 39) and an additional one subject was not included
in the Math Task analysis (N = 38) due to reasons detailed below.

Procedure
During the experimental session, subjects participated in four
separate tasks: a go/no-go serial visual presentation, an old/new
recognition task, and two virtual environment tasks. However,
only results from the virtual environment training and navigation
tasks are described here. The stimuli in the other tasks were
unrelated to the virtual environment.

Overview
Subjects were asked to freely navigate the virtual environment
with the goal of searching for and counting their assigned
target objects. All subjects were randomly assigned to one of
four Target Conditions: Humvee Condition (N = 15 subjects),
Motorcycle Condition (N = 14 subjects), Aircraft Condition (N
= 9 subjects), or Furniture Condition (N = 7 subjects). The
Aircraft and Furniture Conditions were introduced later in the
data collection, which was eventually halted due to restrictions on
in-person studies, hence the lower subject numbers. The aircraft
and furniture targets were already present in the environment
prior to introduction of the two new Conditions, thus, all subjects
in every Target Condition navigated the same environment with
the same objects in the same order (Figure 1). Natural landscape
features and trail markers provided a suggested path through the
virtual environment (although subjects could freely explore in
any chosen direction).

System Training Task
A training task was used to acclimate subjects to navigation in
the virtual environment via the keyboard and mouse. Movement
was controlled with the W/A/S/D keys: “W” moved the subject
in the forward direction, “A” allowed the subject to move left,
“S” moved the subject backwards, and “D” allowed the subject to

move right. A computer mouse was used to control the camera
orientation or viewport (i.e., first person perspective) while in the
virtual environment. This training environment was similar to
the virtual environment used during the main task but contained
different objects. This training task also ensured subjects were not
acutely susceptible to simulator sickness.

Testing Setup
The experimental setup for this study combined multiple
physiological modalities: eye-tracking, EEG, electrocardiography
(EKG). Here, we described the relationship between task features,
performance, and eye movement behavior. Other modalities,
such as EEG and EKG, will be discussed in future reports and
are not included in the current study.

All tasks were run using custom software built in the Unity 3D
environment (Unity Technologies) run on the standard Tobii Pro
Spectrum monitor (EIZO FlexScan EV2451) with a resolution
of 1,920 x 1,080 pixels. Subjects were seated at a distance of
∼70 cm from the monitor. Eye tracking data were collected with
a Tobii Pro Spectrum (300Hz). In addition to obtaining gaze
position and pupil size, the Tobii Pro SDK was used to calculate
the 3D gaze vector (invisible ray representing the instantaneous
gaze direction) and identify the gaze vector collision object
(first object in the Unity environment that collides with the 3D
gaze vector) for each valid sample. The eye tracking data were
synchronized with the game state, keyboard, mouse, and EEG
data using the Lab Streaming Layer protocol (Kothe, 2014). A
standard 5-point calibration protocol was used to calibrate the
eye tracker. The Tobii Pro Spectrum has an average binocular
accuracy of 0.3◦, binocular precision (root mean square) of
0.07◦, and detects 98.8% of gazes (Tobii Pro, 2018). However, no
verification of these error metrics was performed for this study.
Head movement was not restricted in terms of head support
or a chin rest. However, subjects were asked to maintain an
upright, yet comfortable posture to minimize large upper body
movements and maintain proper alignment with the eye tracker.

Virtual Environment Description
Targets were placed in a random sequence at semi-regular
intervals along the path in the virtual environment. The location
of all targets and objects in the environment were the same
for all subjects. A general layout of the environment, indicating
all target locations, is shown in Figure 2 and target examples
are shown in Figure 3. As stated previously, all objects were
embedded in the environment in such a way that each appeared
randomly placed with no context gained from neighboring
objects. Thus, targets (and distractors) appeared along the path
and could not be anticipated by surrounding objects that may
give the subjects an indication that a target was visually missed,
present, or forthcoming. Subjects all started at the same point
on the virtual environment. Trail markers (N = 19) were placed
along the trail for general navigational guidance. There were
15 targets total for each Target Condition. The same model of
Humvee was used for all the Humvee targets and the same model
of motorcycle was used for themotorcycle targets. For the aircraft
targets, models varied and included helicopters, bi-planes, and
one glider. For the furniture targets, objects included variations
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FIGURE 2 | General layout of the virtual environment map. The black

checkered line represents an example subject’s path from the starting area to

the finish. Target icons are as follows: furniture (light blue circle), motorcycle

(dark blue diamond), aircraft (yellow triangle), and Humvee (red square). Trail

markers are present throughout the path and are indicated by a white “T.”

such as beds, grandfather clocks, tables, and a variety of seating
furniture (e.g., sofa, dining chair). Sizes varied for the furniture
with the chair being the smallest and the bed being the largest
furniture target. Around 166 additional objects were included
in the virtual environment that were not an assigned target to
any Target Condition. These additional objects included, but
were not limited to, cars, trucks, tanks, an oven, a drum set, a
Ferris wheel, a pile of tires, dumpsters, and shipping containers.
For analysis, a distractor was defined as any visual object in the
environment not belonging to the specified Target Condition and
included objects assigned as targets to other Target Conditions
(e.g., Humvees were considered distractors for the Motorcycle
Condition). Terrain (e.g., trees, hillside, grass, path) and the sky
were not included in the analysis unless explicitly mentioned.

Subject Instruction and Navigation
Subjects were instructed to search and count (mentally) when
they saw a target assigned to their Target Condition. Subjects were
encouraged to stay on or near the trail (and at times were verbally
reminded by research staff) to make sure they encountered all
objects, but were free to navigate as desired. Midway (8min) into
the session an auditory Math Task (divided attention task) was
administered (see below for details). Subjects had up to 20min
to progress through the virtual environment and reach the finish.
If subjects did not complete the task in 20min, and if they did
not encounter (as determined by their gaze vectors) at least 10
targets in the virtual environment, then their data was removed
from statistical analysis. For this reason, data from two people
in the Furniture Condition were removed from all analysis. In

FIGURE 3 | Example pictures of the targets for each Target Condition as they

appear in the virtual environment. Motorcycles and Humvees (top row) did not

vary in model but did vary in how they were positioned on the trail (i.e.,

motorcycle against a tree or at an angle by a rock). Both aircrafts (middle row)

and furniture (third row) targets varied in shape, size, and positioning on

the trail.

addition, one subject in the Humvee Condition reported feeling
unwell during testing and experienced difficulty in navigating the
environment (i.e., did not follow the path) and thus, their data
was also removed from the analysis. The average time to complete
navigation of the virtual environment was about 12 (± 2) min.
After completion, subjects were asked to recall how many targets
they saw during the navigation task.

Additional Math Task
Starting at the 8min mark, an auditory math problem was
presented to the subjects. An auditory recording of a set of 3
to 4 numbers, with values between 0 and 9, was played for the
subject through headphones (e.g., “4,” pause, “2,” pause, “8,” tone,
subject reports “14”). A pause of 3–4 s separated each number
in a set, and each set was followed by a tone. After the tone,
subjects verbally reported the sum of numbers aloud to the
experimenter. During the Math Task, subjects were instructed
to continue navigating through the virtual environment and
continue searching and mentally counting their targets. This
Math Task was repeated two more times (with different sets of
numbers), for a total of three summation responses. There was an
8–30 s break between each set of numbers. Because the primary
search task was self-paced, it is possible that a subject would
finish exploring the virtual environment (reach the end of the
path) without completing the Math Task. Only one subject (in
the Humvee Condition) did not complete the Math Task prior to
finishing the navigation task and for this reason, their data was
removed from the Math Task analysis.

Data Extraction and Analysis
Fixation Detection and Object Labeling
Blinks were identified from stereotyped gaps in the gaze
position data (Holmqvist et al., 2011) while saccades (and
corresponding fixations) were detected using a standard velocity-
based algorithm (Engbert and Kliegl, 2003; Engbert and
Mergenthaler, 2006; Dimigen et al., 2011) adapted from the
EYE-EEG plugin (http://www2.hu-berlin.de/eyetracking-eeg).
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FIGURE 4 | Saccade main sequence (in log-log coordinates) (A) and angle distribution (B) from a sample of the first 500 saccades from five representative subjects.

The saccade angle distribution histogram has a one-degree resolution, with the radial axis showing average number and the angular axis showing average angle

across all five subjects.

Specifically, velocity thresholds for saccade detection were based
on the median of the velocity time series, smoothed over a 5-
sample window, for each subject. Thresholds were computed
independently for horizontal and vertical components. In this
study, we used a velocity factor of six (six times the median
velocity), a minimum saccade duration of 12ms, and a minimum
fixation duration (i.e., inter-saccadic interval) of 50ms. We
kept only the largest saccade and subsequent fixation if two
or more saccades were detected within the minimum fixation
duration window. Visual inspection of the saccades shows the
expected relationship between saccade peak velocity and saccade
magnitude (i.e., main sequence; Figure 4A). Only the first 500
saccades of 5 subjects are shown in this figure due to the
large amount of saccades generated by each subject (∼8–20min
of eye tracking). These 5 subjects were chosen randomly and
are representative of the entire subject data set. These saccade
distributions excluded blinks, dropouts, saccades with a duration
shorter than 12 and >100ms, and peak velocities outside of a
range of 25 and 1,200 degrees per second. The distribution of the
saccade angle showed a strong tendency for subjects to scan the
horizon (Figure 4B). Finally, blinks were defined as gaps with a
duration ranging from 50 to 500ms and dropouts were defined as
any gap with a duration<50 or>500ms (any gap not considered
a blink). While the detection algorithm used in this study was
developed for ballistic saccades, visual inspection revealed that
it was reasonably successful at separating saccades from other
eye movement features such as smooth pursuit and optokinetic
responses (Figure 5A).

After initial saccade detection, fixations of <100ms were
discarded and not used in any subsequent analysis (Ouerhani
et al., 2004;Mueller et al., 2008; Andersen et al., 2012). In addition
to standard metrics associated with fixations (e.g., duration),
each fixation was assigned a virtual environment object label
using the following approach. Every valid gaze sample returned
a corresponding object that was the result of the gaze vector

collision. The object with the highest percentage of collisions
over the fixation epoch was assigned as the “fixation object”
(Figure 5A). Target fixations were labeled as such if the highest
percentage of collisions were on a target (e.g., motorcycles for
the Motorcycle Condition) and this number amounted to at least
10% of all gaze samples for that fixation. Distractor fixations
were labeled using the same metric; receiving a distractor
designation label if at least 10% of the gaze samples included
the same distractor object. This 10% threshold was utilized
to identify the primary fixation object and reduce the chance
of including adjacent or background objects. Objects could
be erroneously included in a fixation epoch from either gaze
vector estimation error or having a relative position directly
behind the primary fixation object. We selected the 10% value
by assessing fixation labels at a range of thresholds: 0, 1, 10,
20, and 50% (Figures 5B,C). The 10% threshold appeared to
be a middle ground between reducing the chance of erroneous
fixations without removing a large number of meaningful
fixations. Fixation data from three subjects (two from the Aircraft
Condition and one from the Humvee Condition) had a high
dropout rate (high number of invalid samples). Thus, these three
subjects were removed from the analysis.

Calculation of Fixation Variables for the Main Study

Analysis
From the fixation data for the targets, the following variables
in Table 1, were calculated. The Self-Reported Target Count
and the Gaze-Validated Target Count (the instances where the
ray cast at the fixation intersected with the object using the
above fixation labeling approach) were calculated to compare
subjective inventory with detected target fixations. To identify
if our approach was sensitive enough to detect increased visual
attention on targets, the Mean Number of Fixations, Mean Dwell
Time, and Mean Distance were compared. Distance is included
to provide a relative measure of how “close” subjects approached
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FIGURE 5 | Fixation labeling approach. Saccades and fixations are detected from the raw X/Y gaze position time series. Note, that the inter-saccadic intervals

(fixations) exhibit a range of velocities and include stable fixations, smooth pursuit movements, and optokinetic responses. However, these velocities were significantly

lower than the ballistic threshold of the saccade detection algorithm. Each valid gaze sample is associated with an object via gaze vector collision. Fixations are then

associated with objects if the dominant object (excluding terrain and sky) is contained in at least 10% of the samples of the epoch. (A) Alternative thresholds were

examined and the 10% threshold appeared to filter out erroneous labels without excluding large amounts of meaningful data. The impact of the threshold value on the

number of (B) and distance to (C) objects with all fixation epochs.

objects in the environment. Importantly, although the units
here are given in meters, we acknowledge that this metric is
not an equivalent analog to the real world (i.e., meters in the
virtual environment may not reflect an actual meter in real life).
Variation in object size and structural diversity impacted these
particular fixation metrics. For instance, object surface area in
the virtual environment was shown to be a large covariate with
Mean Number of Fixations (Spearman’s rho= 0.719, p= 0.000),
Mean Dwell Time (Spearman’s rho = 0.630, p = 0.000), and
Mean Distance (Spearman’s rho = 0.558, p = 0.000). The larger
the object, the increased chance a subject has to see it at any given
viewing point, regardless of attentional focus. To help account
for this bias, three additional variables, Normalized Number of
Fixations, Normalized Dwell Time, and Normalized Distance
were calculated utilizing the Global Number of Fixations, Global
Dwell Time, and Global Distance variables. The global values
were then used to normalize the means associated with the
diversity of Target for each Target Condition. Because of the
large size disparity between objects in the virtual environment,
normalization by dividing gaze data by object size (utilizing either
the 3D volume or 2D profile) resulted in a large bias toward the
smaller targets.

As an additional analysis, we included a comparison of gaze
data between just the Humvee and Motorcycle Conditions to

identify differences in gaze behavior between the Humvee and
motorcycle objects. This analysis provided evidence of how
subjects in two different Target Conditions examined these two
particular objects differently and how target assignment impacted
gaze metrics. The Humvee and the Motorcycle Conditions
were utilized in this way because these two conditions were
comparable in subject numbers (N = 13 and 14, respectively)
and target attributes (i.e., same object model throughout the
environment). In addition, these two conditions had targets that
differed greatly in size and, as previously stated, we expected there
to be differences in non-normalized gaze metrics, simply due to
size of the object alone.

For the Math Task, fixation data from the following two
time periods was compared: outside (before and after) and
during the Math Task. To see if subjects changed the rate at
which they fixated objects due to the Math Task, the Mean
Duration of Individual Fixations on objects and Fixation Rate
were compared between these time periods. To determine if
subjects compensated for divided attention during the Math Task
by reducing the overall amount of visual attention devoted to
each object, the Mean Number of Fixations per each object and
Mean Dwell Time per each object was compared between the two
time periods. Object Rate, the number of distinct objects that
were fixated per unit time, was compared across the two time
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TABLE 1 | Dependent and independent variable list and definitions.

Variable Definition

Target condition Each subject was randomly assigned to one of four

groups, named for the target they were assigned (i.e.,

Humvee Group assigned to look for Humvee targets)

Self-reported target

count

Total count of targets that the subject reported seeing

during exploration of the virtual environment

Gaze-validated

target count

Total number of targets having at least one qualifying

fixation associated with that target

Mean number of

fixations

Average number of qualifying fixations per each object

Mean dwell time Average total duration of fixations per each object

Mean distance Average distance from the object when each

associated fixation occurred

Global number of

fixations

Average number of fixations for that particular object

across all subjects

Global dwell time Average dwell time for that particular object across all

subjects

Global distance Average distance from where that object was fixated

across all subjects

Normalized number

of fixations

Mean Number of Fixations subtracted from the Global

Number of Fixations

Normalized dwell

time

Mean Dwell Time subtracted from the Global Dwell

Time

Normalized distance Mean Distance subtracted from the Global Distance

Mean duration of

individual fixations

Average of all individual fixations across all Target

Conditions and objects (targets and distractors) in the

environment

Fixation rate Summation of all fixations during the Math Task (or

outside of the Math Task) divided by the total time

spent in that time period

Object rate Total number of distinct objects that were fixated per

unit time

Blink rate Summation of all blinks during the Math Task (or

outside of the Math Task) divided by the total time

spent in that time period

Proportion of

fixations on objects

Summation of fixations on objects (as opposed to

terrain or sky) divided by sum of all fixations overall

Position velocity Average change in position over time

periods to capture differences in visual scanning behavior. To
understand if subjects compensated for divided attention during
the Math Task by reducing visual attention on particular objects
and instead focused on background scenery, the Proportion
of Fixations on Objects was compared between the two time
periods. To examine if subjects speed up or slowed down their
navigating through the environment, the Position Velocity was
compared between the two time periods. Lastly, Blink Rate
examined if subjects changed the number of blinks per unit of
time with increased cognitive load.

Statistical Analysis
To summarize, data from three subjects were removed due a
high dropout rate, data from two subjects were removed due to
not encountering the minimum threshold of targets, and data
from one subject (who reported feeling ill during the testing) had
navigational issues was removed, bringing the final inclusion of

N = 39 subjects for analysis. In addition, one subject finished
navigating the environment prior to the completion of the
Math Task, for a total of N = 38 for that analysis. For the
remaining subjects’, a normal distribution was assessed for all
fixation variables using Kolmogorov-Smirnov and Shapiro-Wilk
tests for normality. Parametric tests (i.e., Paired Samples t-test,
MANOVA) were used for variables with normal distributions
and non-parametric tests (i.e., Related-Samples Wilcoxon Signed
Rank Test, Friedman Test) for non-normal distributions. For
this reason, non-parametric statistical methods were utilized
for the measures of Self-Reported Target Count, the Gaze-
Validated Target Count, Blink Rate, and Position Velocity. All
other variables had a normal distribution and parametric tests
were used for comparative analysis. Outliers in the data were
designated as samples/observations that were greater or less than
three standard deviations from the mean. Outliers were removed
from the data prior to analysis and includes one person’s data for
Mean Distance and Normalized Dwell Time (N = 38 for analysis
with these measures) and one person’s data for Mean Duration of
Individual Fixations on objects, Mean Dwell Time per object, and
Blink Rate during the Math Task analysis (N = 37 for analysis
with these measures). In addition, Self-Reported Target Count
was missing for six additional individuals (who did not report
an answer when prompted) and one outlier was removed from
the Self-Reported Target Count for a total of N = 32 for analysis
with this measure. A p < 0.05 was considered significant for all
analyses and all analysis was conducted with IBM SPSS Statistics
for Windows (Version 22, Armonk, NY: IBM Corp, Released
2013) software.

RESULTS

Confirmation of Fixated Targets
On average, subjects reported the correct number of targets
observed in the environment. A Related-Samples Wilcoxon
Signed Rank Test compared the Self-Reported Target Count
and the Gaze-Validated Target Count. There was no statistical
difference between the two counts of the targets by subjects
or identified by the system (Z = −0.573, p = 0.567). Median
target counts were 15 for the Self-Reported and 14 for
the Gaze-Validated.

General Eye-Gaze Measurement Outcomes
On average, individual fixations had a median duration of about
0.30 s (300ms) and a mean Fixation Rate of ∼2.06 fixations-
per-second throughout the main task when short fixations were
removed. If short fixations were included (removal of the 100 ms
cut-off threshold), the median duration decreases to 0.29 seconds
(∼4%). Therefore, we have determined that the removal of those
fixations with a duration of less than 100ms has a minimal
effect on the individual duration of fixations outcome. Subjects
looked at objects (e.g., motorcycle, dumpster, trail markers) in
the virtual environment, with a Mean Number of Fixations of 7.1
and for a Mean Dwell Time of 2.60 s per each object. We found
that fixations on the surrounding terrain and sky comprised, on
average, about 47% of all fixations.
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Two separate one-way multivariate analysis of variances
(MANOVAs) determined the effect of Fixation Object (target
or distractor) on the normalized and non-normalized Mean
Number of Fixations and Mean Dwell Time. There was a
significant effect of Fixation Object for both non-normalized
[F(2,37) = 23.84, p = 0.000] and normalized gaze data [F(2,36) =
22.54, p = 0.000; Figures 6A–C, D–F]. Two separate Univariate
analysis of variances (ANOVAs) examined howMean Number of
Fixations and Mean Dwell Time differed depending on Fixation
Object. Subjects significantly increased both theMeanNumber of
Fixations [F(1,38) = 35.73, p = 0.000] and the Mean Dwell Time
[F(1,38) = 48.84, p = 0.000] for targets compared to distractors
(Figures 6A,B). Two additional Univariate ANOVAs showed
that Normalized Number of Fixations [F(1,37) = 44.48, p =

0.000] and Normalized Dwell Time [F(1,37) = 42.54, p = 0.000]
also increased significantly for targets compared to distractors
(Figures 6D,E). Mean Distance was compared between Fixation
Objects using a Univariate ANOVA (Figure 6C). Subjects were
significantly closer (less distance) to fixated targets compared to
fixated distractors in the virtual environment [F(1,37) = 12.99, p=
0.001]. A separate Univariate ANOVA showed that Normalized
Distance [F(1, 38) = 18.53, p = 0.000] was also significantly less,
on average, for targets (Figure 6F).

Fixation Differences for the Humvee
Condition and Motorcycle Condition
Gaze data from the Humvee Condition and the Motorcycle
Condition was used to quantify differences in the fixation metrics
for the two target objects that were similar in terms of number,
consistency, and dispersion along the path. Two separate two-
way MANOVAs determined the effect of Target Condition and
Fixation Object (limited to Humvees and motorcycles for this
analysis) and the interaction of Target Condition and Fixation
Object on the normalized and non-normalized Mean Number of
Fixations and Mean Dwell Time. Overall, both non-normalized
and normalized Mean Number of Fixations and Mean Dwell
Time were significantly dependent upon the main effect of
Fixation Object and the interaction between Target Condition
and Fixation Object (Figure 7 and Table 2). Four separate
Univariate ANOVAs determined that for the main effect of
Fixation Object, only the Mean Number of Fixations (non-
normalized) was significantly higher overall for the Humvee
object compared to the motorcycle (Table 2). Four other separate
Univariate ANOVAs determined that the interaction between
Target Condition and Fixation Object was significantly different
for non-normalized and normalized variables (Table 3). We
found a significant main effect of Fixation Object for the Mean
Number of Fixations, where there was an overall greater number
of fixations for the Humvees compared to motorcycles (Table 3).
Fixation Object was not a significant main effect for Mean
Dwell Time, Normalized Number of Fixations, or Normalized
Dwell Time. Tukey Post-hoc determined significant differences
in those interactions. Both Target Conditions had significantly
greater Mean Number of Fixations and greater Mean Dwell
Time devoted to their targets, compared to the other object (p
< 0.01, Tukey Post-hoc). Both Target Conditions had increased

Mean Number of Fixations and Mean Dwell Time on their
respective targets compared to that object for the other Target
Condition (i.e., the Humvee Condition focused on the Humvees
significantly more than the Motorcycle Condition focused on
Humvees) (p < 0.01, Tukey Post-hoc). For these comparisons,
the same pattern of Post-hoc analysis statistical significance
was found for the Normalized Mean Number of Fixations
and Normalized Dwell Time (p < 0.05). The Mean Number
of Fixations for the Motorcycle Condition was significantly
greater for the Humvee target compared to the Mean Number
of Fixations for the Humvee Condition and the motorcycle
target (p < 0.05, Tukey Post-hoc). No other differences were
statistically significant.

Effect of Cognitive Load
The total time spent on the Math Task was ∼150 s (∼2.5min),
compared to the time spent outside of the Math Task (before
and after) 713 s (∼12min). Paired samples t-test determined
that subjects did not significantly change the Mean Duration
of Individual Fixations on objects (t36 = 0.03, p = 0.979)
during the Math Task compared to outside of the Math
Task. However, Paired samples t-tests showed that subjects
significantly decreased their Fixation Rate (t37 = −2.91, p =

0.006; Figure 8C). This discrepancy was explained by the relative
increase in Blink Rate during the Math Task (Related-Sample
Wilcoxon Signed Rank Test, Z = 3.78, p = 0.000; Figure 8E).
There was also a significant reduction in the Mean Number of
Fixations (t37 = −5.67, p = 0.000) per object and the Mean
Dwell Time (t36 = −4.51, p = 0.000) per object during the Math
Task, as compared to outside the Math Task (Figures 8A,B). In
contrast, Object Rate increased significantly during the Math
Task compared to outside the Math Task (t37 = 3.44, p =

0.001; Figure 8D). Interestingly, a Paired samples t-test showed
that the Proportion of Fixations on Objects in the virtual
environment (as opposed to fixations on terrain or sky) did not
significantly change during the Math Task portion compared to
outside of the Math Task (t37 = 0.16, p = 0.873). Additionally,
a Related-Sample Wilcoxon Signed Rank Test showed that
subjects significantly reduced their Position velocity, the speed
at which they progressed through the environment, during the
Math Task compared to outside the Math Task (Z = −4.87,
p= 0.000; Figure 8F).

DISCUSSION

In this study, we demonstrate how an open-world, virtual
environment can be used to identify task-relevant gaze
behavior during navigation. Our approach enables us to collect
meaningful, object-centered, gaze information during visual
search in a cluttered landscape without restricting virtual head
movement (i.e., camera position and orientation). Consistent
with previous studies, we show a clear distinction in gaze
behavior between target and distractor objects. Moreover, we
quantify how this gaze behavior changes when subjects’ attention
is divided between visual search and secondary auditory task.
Our results build on previous work using virtual environments
(Karacan et al., 2010; Livingstone-Lee et al., 2011; Andersen et al.,
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FIGURE 6 | The Mean Number of Fixations (A), Mean Dwell Time (B), Mean Distance (C), Normalized Number of Fixations (D), Normalized Dwell Time (E), and

Normalized Distance (F) were significantly greater for targets compared to distractors. Mean ± SD (error bars) are shown on graph. *p<0.05.

2012; Draschkow et al., 2014; Jangraw et al., 2014; Kit et al., 2014;
Li et al., 2016; Schrom-Feiertag et al., 2017; Olk et al., 2018; Clay
et al., 2019; Helbing et al., 2020), extending the search space and
incorporating a secondary task while maintaining the temporal
and spatial precision needed for neurophysiological analysis.

General Discussion
Here, we observed a direct link between gaze activity and specific
objects within the virtual environment. Overall, subjects looked
at targets significantly more often and longer than distractors.
This confirms our initial hypothesis, based on previous studies
in more restricted experimental contexts, and demonstrates the
feasibility of gaze analysis in dynamic (constantly changing)
environments. This study is unique in that we acquired data
from a relatively large number of subjects (N = 39) navigating
a detailed and complex virtual environment, but were still able
to identify distinct condition-level gaze dynamics. This fixation
and object-level precision enables meaningful inferences from
the concurrent use of EEG (not reported here).

Comparable General Outcomes to
Literature
Overall, the basic eye movement outcomes were comparable to
those found in literature with a few notable differences.We found

that individual fixations had a duration of about 320ms with a
Fixation Rate of 2.06 fixations-per-second. This is comparable to
a Foulsham et al. (2011), who found an average of 2 fixations-per-
second and an individual fixation duration of 441ms for subjects
who watched a video of path they previously navigated. Subjects
looked at objects (including targets and distractors) in the virtual
environment, on average, about 7.1 times, comparable but higher
than the number of Mean Number of Fixations reported by
Zelinksy (2008) who found an average of 4.8 fixations to detect
and locate military tanks in a realistic scene. In terms of dwell
time, Clay et al. (2019) reported a Mean Dwell Time of 5.53 s
on visual objects for subjects who freely navigated and observed
houses (large objects) in a virtual town. This was higher than our
reported Mean Dwell Time of 2.60 s per each object, perhaps due
to the fact that the objects in our world were considerably smaller
on average than the houses in the Clay et al. (2019) study and
in that study subjects were freely exploring without searching
for specific targets. Finally, ∼47% of all our fixations were on
the sky or terrain (path) surrounding the environment, which is
comparably within range of what others have also noted on visual
attention when walking. Foulsham et al. (2011) found that about
29% of fixations focused on the path ahead of where subjects were
walking and Davoudian and Raynham (2012) who found about
50% of fixations were focused on the walking path. Overall, our

Frontiers in Psychology | www.frontiersin.org 10 August 2021 | Volume 12 | Article 681042100

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Enders et al. Gaze Behavior During Virtual Navigation

FIGURE 7 | Both Target Conditions significantly increased Mean Number of Fixations (A), Normalized Mean Number of Fixations (B), Mean Dwell Time (C), and

Normalized Dwell Time (D) for their respective targets. Subject’s increased visual attention toward their respective targets compared to the Fixation Object (a

distractor). Mean ± SD (error bars) are shown on graph. *p<0.05.

general outcomes showed reasonable comparison to those found
in previous work.

Increased Number of Fixations and Dwell
Time on Targets Compared to Distractors
In our study, we found subjects increased their visual attention
(as measured by Mean Number of Fixations and Mean Dwell
Time) on targets as compared to distractors. The Number
of Fixations was significantly greater for targets compared to
distractors. This 47% increase in fixations on targets over
distractors was comparable to previous work. In a traditional
visual search task with static images, Horstmann et al. (2019)
found an approximate increase of 33% in Mean Number of
Fixations for targets compared to target-similar distractors.
Watson et al. (2019) found approximately a 10% increase overall
in fixations for targets compared distractors in a study using a
reward learning visual search task. We observed 41% increase
in Mean Dwell Time for targets compared to distractors. This
outcome was comparable to work by Draschkow et al. (2014)
who observed around a 30% increase in Mean Dwell Time on
targets compared to distractors during a timed visual search
task of complex static naturalistic scenes. Our result, showing
increased overt visual attention on targets, supports our claim
that subtle changes in visual search behavior can be quantified in

complex and dynamic virtual environments. Overall, our results
were in line with previous studies, supporting the validity to our
approach and processing methods.

It should be noted that the overall Mean Number of Fixations
for both targets and distractors reported here, is greater than what
has generally been found in many of the previous studies. This
could be due to the task design and nature of the environment
and task. Even though subjects were given a maximum time of
20min to complete the task, subjects were not instructed to find
their targets as quickly as possible, as is the case in many visual
search studies. Thus, subjects had more time to visually inspect
all objects in the environment, without feeling rushed. Our
environment contained 15 targets for each condition and ∼211
distractors (including other Target Conditions’ targets, a ratio of
targets to distractors of about 1:14). Increasing the number of
search items or the number of distractors can impact the working
memory load and reduce visual search efficiency (Palmer, 1995;
Wolfe, 2007, 2012; Zelinsky, 2008; Gidlöf et al., 2013), especially
in complex naturalistic environments (Wolfe, 1994a; Gidlöf
et al., 2013). Therefore, the increased number of fixations
observed in our study could be due to the subject’s self-pace
progression through the environment and the particular target
to distractor ratio. Alternatively, movement through virtual
environments generate a more diverse set of eye movements (e.g.,
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TABLE 2 | MANOVA for the non-normalized and normalized gaze data.

Wilks lambda

F, df (2,24)

P-value Effect size, ηp
2

Non-normalized gaze data (Mean number of fixations and mean

dwell time)

Target

condition

0.08 0.928 0.006

Fixation object 6.68 0.005* 0.357

Target

condition ×

fixation object

19.64 0.000** 0.621

Normalized gaze data (Normalized number of fixations and

normalized dwell time)

Target

condition

0.07 0.93 0.006

Fixation object 0.47 0.632 0.038

Target

condition ×

fixation object

20.6 0.000** 0.632

**p < 0.01, *p < 0.05.

smooth pursuit and optokinetic responses) which can impact
the detection and labeling of ballistic saccades and inter-saccadic
intervals (i.e., fixations).

Additionally, for some of our Target Conditions, target
characteristics could have led to an overall high mean Number
of Fixations on targets and distractors. For instance, distractors
in some cases looked similar to the targets, especially at longer
distances (i.e., Humvee vs. another large vehicle). The effect
of target-distractor similarity could have led to the need for
increased visual attention to confidently distinguish between
targets and distractors and decreased search efficiency (Duncan
and Humphreys, 1989; Wolfe, 1994b, 2007; Zelinsky, 2008;
Horstmann et al., 2019). It should also be noted that novelty
of an object could have increased frequency of fixations. For
instance, we would expect to see a difference in theMeanNumber
of Fixations and Mean Dwell Time for the Aircraft Condition
and the Furniture Condition who had targets that varied in
characteristics and models compared to the Humvee Condition
and Motorcycle Condition with a target that stayed the same
throughout the environment and only change in position and
orientation in the environment. Subjects with a variable target
may have fixated on more objects in general to determine if
they should be included in their target count. Previous work
has shown a disproportionate increase in visual attention on
distractors for searches involving multiple targets compared
single, static targets (Menneer et al., 2012). Novelty of the
target can increase the time it takes to identify the object as a
target among (varied) distractors (Lubow and Kaplan, 1997). The
effect of target variation was not assessed in the current report
due to low subject recruitment numbers in Target Conditions
with a varied target. However, similar to previous work with
multiple targets, we would expect that those with variable targets
may have heightened attention toward distractors, negatively
impacting their visual search efficiency throughout the task.

TABLE 3 | Univariate ANOVAs for the non-normalized and normalized gaze data.

Wilks lambda

F, df (1,25)

P-value Effect size, ηp
2

Non-normalized gaze data (Mean number of fixations and mean

dwell time)

Mean number of fixations

Target

condition

0.11 0.748 0.004

Fixation object 7.49 0.011* 0.22

Target

condition ×

fixation object

38.56 0.000** 0.607

Mean dwell time

Target

condition

0.02 0.902 0.001

Fixation object 0.9 0.352 0.035

Target

condition ×

fixation object

36.75 0.000** 0.595

Normalized gaze data (Normalized number of fixations and normalized

dwell time)

Mean number of fixations

Target

condition

0.14 0.707 0.006

Fixation object 0.62 0.438 0.024

Target

condition ×

fixation object

41.38 0.000** 0.623

Mean dwell time

Target

condition

0.07 0.796 0.003

Fixation object 0.96 0.336 0.037

Target

condition ×

fixation object

38.19 0.000** 0.604

**p < 0.01, *p < 0.05.

Target characteristics, such as target variation and target-
distractor similarity, may have been contributing factors to the
large Number of Fixations reported overall.

Consideration of Contributing Factors Due
to Task Design
Inherent differences in visual objects’ shape, color, and size
should have impacted visual attention toward specific objects in
the virtual environment. However, rather than seeing these as
limitations we argue that these are opportunities for additional,
more nuanced research to better understand how: size, shape,
color, visibility, context, etc. interplay with gaze behavior in
ecologically valid environments. One would expect a greater
Number of Fixations (and therefore greater Dwell Time) on
the larger objects (e.g., Humvee, larger aircrafts, trucks, and
buildings) compared to the smaller objects (e.g., furniture,
motorcycles) due to being potentially visible at further distances.
In contrast, a smaller object may be occluded by other larger
objects or scenery until the subject is close to that object. In
fact, we found that increased object surface size in the virtual
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FIGURE 8 | During the Math Task subjects significantly decreased the Mean Number of Fixations (A), Mean Dwell Time (B), and Fixation Rate on objects (C), but

increased the number of unique objects fixated on per unit of time, Object Rate (D) and Blink Rate (E). Subjects significantly decreased their velocity navigating the

environment (F) during the Math Task. The duration of individual fixations and the proportion of fixations on objects as opposed to terrain or sky, did not significantly

change between time periods (not shown in figure). Mean ± Standard Deviation (error bars) shown on figures (A–D) and Median ± Interquartile Range (error bars) on

figure (E,F). *p<0.05.

environment was significantly and positively correlated with
the Mean Number of Fixations, the Mean Dwell Time, and
the Mean Distance from the object when the fixation occurred
(see Materials and Methods). This was also evident in our
additional analysis looking specifically how the Humvee and
Motorcycle Conditions looked at Humvees and motorcycles.
Overall, Humvees had significantly greater Number of Fixations
compared to motorcycles. Furthermore, it is interesting to note
that those in theMotorcycle Condition devoted a greater Number
of Fixations to this large distractor object compared to what
the Humvee Condition devoted to the smaller distractor object.
Although there were a greater Number of Fixations devoted to
the Humvee target overall, it is also interesting to note that there
was not a significant difference in overall Mean Dwell Time.
It appears that the duration of these additional fixations was

rather short and, perhaps, unintentional or the object was not of
real visual interest. Therefore, it could be that subjects naturally
fixated more on the larger objects, even if such objects were not
the target assigned to them and not relevant to their assigned task
(Võ andWolfe, 2012). This may have also given those assigned to
Target Conditions with the larger targets, the Aircraft Condition
and the Humvee Condition, a distinct advantage in seeing their
targets due to visibility.

Along with size, visibility in terms of where the object was
physically placed in the environment, may have also driven
visual attention toward or away from some objects. Objects
were sporadically placed throughout the environment and items
placed at the end of long stretches of the path may have been
central to subjects’ attentional locus while navigating down the
path toward trail markers. These items, especially ones that
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were centrally located along the horizontal plane, may have
naturally drawn more visual attention (Karacan et al., 2010;
Foulsham et al., 2011), especially if they were a larger object.
For example, we found a surprisingly high number of fixations
(∼16.5 fixations) and dwell time (∼5.9 s) on a particular GMC
truck located at the end of a long canyon before a tight turn
(compared to 7.1 fixations and 2.6 s averaged for all objects).
When examined further, this particular object also had the
highest Mean Distance (∼107m) compared to the overall Mean
Distance all objects in the environment (∼40m). Therefore,
some subjects could have fixated items due to their semi-random
placement in the virtual environment rather than the due to the
attributes of the item itself.

Scene context may also have impacted gaze toward certain
objects in the virtual environment. For instance, the virtual
environment was modeled as an arid and mountainous outdoor
environment, but included some out of context items such as
indoor furniture, musical instruments, a pool table, and a Ferris
wheel. Scene context has shown to impact eye movement such as
search time (Loftus andMackworth, 1978; Henderson et al., 1999;
Castelhano and Heaven, 2010) and memory recall (Draschkow
et al., 2014). Items such as these may have garnered more visual
attention due to their unexpected inclusion in the landscape
(especially at the onset of the task) and/or could have been filtered
as non-relevant visual objects if not assigned as a target that
included those objects.

To help account for expected visual bias toward larger
objects, random placement, or out of context objects in the
virtual environment, we “normalized” each fixation metric for
every object by subtracting the global mean for that object
(the averaged value across all subjects for that particular
object in the virtual environment). Normalization by simply
dividing each gaze data point by the size of object (either
3D volume or 2D profile) in the virtual environment, resulted
in a large bias toward the smaller targets. In contrast, our
method of normalization enabled us to investigate object-
centered gaze behavior for individuals compared to the
mean across all conditions for any particular object. If in
fact such bias was the cause of the increase in Mean
Number of Fixations in the additional Humvee and Motorcycle
Condition analysis for the Humvee object compared to the
Motorcycle Condition, the normalization technique appeared
to correct for such bias as differences were not present when
using the Normalized Number of Fixations metric (Figure 7
and Table 3).

Discrepancy With Virtual Environment and
Real Life Walking Scenario in Distance of
Focus
Mean distance in the virtual environment was around 40m,
with fixations on targets occurring at closer distances than
distractors. As noted previously, our virtual environment allowed
subjects to view objects down the path or to look around
to their surroundings. Here, subjects appeared to fixate on
objects relatively further away in their environment, which was
previously noted for studies measuring gaze in a virtual setting

(Clay et al., 2019). However, we would expect there to be some
discrepancy between our findings and what occurs in real-world
ambulation. Foulsham et al. (2011) found that people focus on
objects further away in the view field when watching a first
person video walking through an environment, compared to
when they walked that environment in real life. In an ambulatory
scenario, gaze is more often focused on near-field objects or
terrain that could potentially affect gait. In a virtual environment
navigation, gait perturbation is not a factor, thus near-field
obstacles may be “under viewed” compared to what would occur
in the real world.

Effect of a Divided Attention Task on Gaze
Data
During the Math Task, there was a significant shift in subjects’
eye movement behavior resulting from the increase in cognitive
load. We found that subjects focused on more objects per second
during Math Task, not by increasing Fixation Rate or shortening
duration of each individual fixation, but by decreasing the Mean
Number of Fixations on each object and therefore, total time
spent on processing each object. Subjects also slowed down
their navigation speed (∼24% decrease) and increased their
Blink Rate (∼46%) during the Math Task. Additionally, the
Proportion of Fixations on Objects in the virtual environment
as opposed to those fixations on terrain or sky did not change
significantly when the auditory task was present. Therefore,
subjects did not appear to alter their visual attention away
from objects and drift toward more background items in the
environment (terrain and sky). Together these results suggests
that subjects appeared to compensate for increased cognitive load
by reducing the object processing time, slowing their physical
pace of progression through the environment, and increasing
their Blink Rate.

The change in subjects’ eye movement behavior are consistent
with previous work showing a tendency to give attentional
preference to auditory stimuli, potentially at the cost of one’s
visual processing capabilities (Robinson and Sloutsky, 2010;
Dunifon et al., 2016) and an increase in Blink Rate (Magliacano
et al., 2020). Neurophysiological work with EEG has shown
that when auditory stimuli are paired with a visual task (cross-
modal processing) there is a latency in the visual P300 response
but no negative impact on the processing of auditory stimuli
(Robinson et al., 2010). Buetti and Lleras (2016) found that when
subjects were asked to complete an auditory math task while
looking at a screen passively, that subjects showed a decreased
response to visual events (appearance of an image) on the
screen, suggesting a decreased sensitivity to visual events. These
findings are consistent with the decrease in object processing
(decreased Number of Fixations and Dwell Time) found in
the current study. One reason we may have seen a decrease
in the Number of Fixations during the Math Task, was that
the number of blinks increased. The increase in Blink Rate is
consistent with findings from Magliacano et al. (2020) where
they found an increase in Blink Rate accompanying an auditory
counting task with the absence of any visual task. Increased Blink
Rate has also been found to coincide with visual scenes that
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require less attention and blinks are suppressed to reduce the
chance of missing important information when visual attention
is in demand (Nakano et al., 2009). Therefore, it is possible
in our study that subjects disengaged from the visual task
during the auditory math task, as evidence particularly by our
significantly increased Blink Rate, due to the attention demand
being comparatively low in the untimed visual search task. Due
to the task design, we did not examine search efficiency in terms
of a difference in fixations on targets and distractors during the
Math Task, due to the auditory task occurring based on time in
the environment (∼8min mark) and not physical place in the
environment where target and distractor appearance could be
controlled for all subjects.

Visual attentional demands during the task due appear
to be important in attentional compensation strategy when
an auditory math task is simultaneously introduced. When
combining an auditory divided attention task with a visual
mismatch detection task (find the mismatch as soon as possible),
Pomplun et al. (2001) found reduced efficiency in completing
the visual task when the auditory task was also present, seen as
increased task reaction time (detection of mismatch), Number
of Fixations and Dwell Time. Thus, the visual compensation
strategy adopted when the auditory stimuli is present, may
depend on the degree of continuous response required for
the visual task at hand. Our findings may contradict those
found by Pomplun et al. (2001) study, perhaps due low visual
attentional demands required during our task compared to a
more timed and speeded-response task. Our active navigation
(exploratory and self-paced) visual search task required the
identification of targets from distractor objects and only required
subjects to continually identify and keep a mental count, not
provide a continuous response within a tight time constraint.
Thus, in our study, subjects could shift task priority from
performance in the visual search task to the Math Task without
any immediate negative consequence. However, verbal responses
from some subjects post-study did indicate they were challenged
in remembering multiple mental summations simultaneously
(summation of the Math Task problems and keeping the target
count) indicating that the co-occurrence of the Math Task
with the visual search task did have an impact on cognitive
load overall.

It should also be noted that our findings differ from previous
work where cognitive workload was increased by adding to
the difficulty of the visual task itself (with no auditory input).
Others have found that as a visual task becomes more complex
and difficult, there is an increase in the Mean Number of
Fixations (King, 2009; Buettner, 2013; Zagermann et al., 2018),
an increase in Dwell Time (duration of fixations) (King, 2009;
Meghanathan et al., 2015), an increase in the number of
saccades (Zelinsky and Sheinberg, 1997; Zagermann et al., 2018),
an increase in saccade rate (Buettner, 2013), and a decrease
in Blink Rate (Benedetto et al., 2011; Maffei and Angrilli,
2018) during the completion of that visual task. Therefore,
how cognitive load is increased in the study design is, once
again, important to consider when examining the effects of
increased cognitive load on eye movement metrics. Overall, our
findings provide additional insight into the effect of an additional

auditory task during a self-paced visual search task in a natural
virtual environment.

Limitations
We would like to recognize several potential limitations to
our study. One limitation was a restriction in data collection
efforts due to public health concerns; we had to cease data
collection earlier than planned and so were unable to have a
balanced number of subjects in each Target Condition. This
resulted in limited capabilities for comparison among the Target
Conditions and their targets during the analysis. Second, while
our experimental setup is similar to that of other studies,
we utilized a desktop virtual environment instead of a virtual
reality (VR) experience with a head mounted display. Although
a VR system would provide a more immersive environment
and allow for more free range in head and body movement
compared to the current configuration, VR technology impose
additional constraints when combining with other physiological
measures, such as EEG. Likewise, simulator sickness is a common
problem with immersive environments and our simulator
sickness scores were relatively high overall. Simulator sickness
could have impacted subject’s natural viewing process through
an environment and act as an unintended distractor from the
task. Additionally, during the Math task it was observed that
some subjects paused navigation when listening to the auditory
number presentation (∼1–5 s), contrary to instruction and
encouragement from experimenters. Therefore, gazed behavior
during this time would be a reflection of cognitive processing
and not necessarily the visual search and navigation task.
Furthermore, there was no auditory simulation provided outside
of that provided during the Math Task. Therefore, differences
in eye movement could also be attributed to simple auditory
processing and not necessarily due to increased cognitive load
from the Math Task itself. Therefore, future work in with
this study design should include a passive auditory stimulation
throughout the navigation to truly examine cognitive load
effects on this virtual search task in this virtual environment.
Finally, in the current study we did not investigate any temporal
patterns in gaze metrics, such as the change in number of
re-fixations and Dwell Time on targets and distractors over
time as subjects progressed through the virtual environment.
Such temporal patterns have previously been investigated when
investigating efficiency during hybrid target search in static
scenes (Drew et al., 2017). It may also be interesting to see
how gaze metrics change temporally as a function of physical
distance from the object in the environment (i.e., the distribution
of fixations with respect to distance from the object). Such
future work would provide a more complete picture of how
subjects’ search efficiency changed over time and space in
the environment.

CONCLUSION

In conclusion, we found that even during a self-paced
navigation of a complex virtual environment, eye movement
data can be used to robustly identify task-relevant gaze
behaviors. There was a significant relationship between a subject’s
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gaze behavior (Number of Fixations and Dwell Time), their
Target Condition, and objects in the environment. When
an additional auditory Math Task was introduced, subjects
slowed their speed, decreased the Number of Fixations and
Dwell Time on objects in the environment, increased Blink
Rate, and increased the number of objects scanned in the
environment. The present study adds to our understanding of
how individuals actively search for information while navigating
a naturalistic environment.
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Madeira, Funchal, Portugal

Research on pupillometry provides an increasing evidence for associations between
pupil activity and memory processing. The most consistent finding is related to an
increase in pupil size for old items compared with novel items, suggesting that pupil
activity is associated with the strength of memory signal. However, the time course
of these changes is not completely known, specifically, when items are presented in
a running recognition task maximizing interference by requiring the recognition of the
most recent items from a sequence of old/new items. The sample comprised 42 healthy
participants who performed a visual word recognition task under varying conditions of
retention interval. Recognition responses were evaluated using behavioral variables for
discrimination accuracy, reaction time, and confidence in recognition decisions. Pupil
activity was recorded continuously during the entire experiment. The results suggest a
decrease in recognition performance with increasing study-test retention interval. Pupil
size decreased across retention intervals, while pupil old/new effects were found only
for words recognized at the shortest retention interval. Pupillary responses consisted
of a pronounced early pupil constriction at retrieval under longer study-test lags
corresponding to weaker memory signals. However, the pupil size was also sensitive
to the subjective feeling of familiarity as shown by pupil dilation to false alarms (new
items judged as old). These results suggest that the pupil size is related not only to the
strength of memory signal but also to subjective familiarity decisions in a continuous
recognition memory paradigm.

Keywords: pupillary response, recognition memory, memory strength, eye tracking, pupillometry

INTRODUCTION

Pupillometry has long been used in cognitive science as a measure of cognitive activity (Sirois
and Brisson, 2014). This relationship was established in the 1960s, with evidence for associations
between pupillary response and psychological processes such as arousal (Hess and Polt, 1960) and
short-term memory (Kahneman et al., 1968). This interest has increased rapidly ever since, mainly
not only due to its recording simplicity and non-intrusiveness compared with electrophysiological
measurements but also due to the automaticity of pupillary response, which is associated with
autonomous nervous system activity (Steinhauer et al., 2004) being controlled in the brain by the
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superior colliculus (Wang and Munoz, 2015) and the
locus coeruleus norepinephrine system (Joshi et al., 2016;
Lewandowska et al., 2019).

The increasing interest on the relationship between pupil
activity and memory processing is found in more recent debates
(Brocher and Graf, 2017; Kafkas and Montaldi, 2017), which is
revealed by a pupil dilation effect to familiar stimuli compared
with unfamiliar stimuli.

In recognition memory designs, stimuli are encoded in a
learning or study phase, being subsequently recognized in a
test phase, where the (old) stimuli are intermingled with (new)
interference stimuli. Studies using pupillary activity as an index
for memory typically found an increase in pupil size for correctly
recognized “old” stimuli relative to correct rejections of “new”
stimuli in study-test procedures (Heaver and Hutton, 2011;
Kafkas and Montaldi, 2012). This is known as the pupil old/new
effect (Võ et al., 2008; for a review, van der Wel and van
Steenbergen, 2018), which is considered as an outcome of
the strength of memory signal associated with the retrieval of
declarative memory (Papesh et al., 2012).

Otero et al. (2011) aimed at understanding the cognitive
processes underlying pupil old/new effects in recognition
memory by conducting various experiments manipulating the
strength of memory signal for deep vs. shallow encoded
items. The results revealed that the pupil old/new effect was
more pronounced for remembered words (deeper encoding)
compared with known words (shallow encoding). Brocher and
Graf (2016) also demonstrated pupil old/new effects irrespective
of lexicality, word valence, and frequency. More importantly,
weakening the memory trace across these experiments, either
by repeating legal vs. pseudowords or asking participants to
make speeded responses, led to a reduction in pupil old/new
effects, suggesting that conditions weakening memory signal
would affect pupillary response.

Kucewicz et al. (2018) measured pupil size during encoding
and recall of word lists. The lists consisted of 12-word items that
were sequentially presented on a computer screen in the study
phase. A distractor task was included between the study and
test phases for interference. In the test phase, the participants
were asked to verbally recall the word lists as fast as possible
within 30 s. The authors studied the time course of pupillary
response throughout the experimental task to examine the pupil
dynamics for successfully recalled items compared with forgotten
items. At the encoding phase, the results revealed an initial
constriction followed by a pupil dilation, which increased as
the word items were actively retained in memory. Moreover,
an increase in pupillary response was found during word recall
with the following decrease in pupil size as word items were
being recalled, described as being related to the retrieval of
information from memory.

Magliero (1983) and van Rijn et al. (2012) have conducted
pupillometry studies manipulating the retention interval to
evaluate the association with memory strength, where they
found that longer retention levels increased task-evoked pupil
responses. van Rijn et al. (2012) repeated the presentation of word
lists with retrieval cues of paired associates in four repetitions
of test trials to study the effects of repetition on the pupillary

response. The results were intriguing, suggesting that repetition
of word lists decreased pupillary response at retrieval. The
differences between short and long retention intervals decreased
with the repetition of word lists. The overall results suggest an
association with retrieval effort given the effects of retention
interval and repetition of word lists, supporting the hypothesis
that the magnitude of pupil dilation is associated with memory
strength for individual items, but in a reversed pattern than the
one observed in pupil old/new effect studies.

To further explore the pupil old/new effects, Kafkas and
Montaldi (2015) found that pupil activity distinguished between
objective (i.e., veridical old/new status of the item) and
subjective (i.e., subjective old/new decision) familiarity and
novelty in two distinct temporal components. One early
component was found for the objective status, while a late
component near the recognition response was found for the
subjective status of items, which indicates that pupil activity
may be sensitive to both explicit and implicit components of
recognition memory.

This study evaluates the relationship between pupil activity
and recognition memory in a running recognition task (Shepard
and Teghtsoonian, 1961) with varying retention intervals to
assess pupil activity during explicit manipulations of memory
strength. In such a task, participants should retain information
that is presented in a continuous sequence of items until
the test trial for memory retrieval. This task may provide a
more ecological way to assess human memory processing while
maximizing interference compared with recognition memory
of word lists where the study-test phases are separated by
isolated interference tasks. This paradigm was used earlier
in behavioral studies to manipulate the retention interval
in visual word recognition (e.g., Shepard and Teghtsoonian,
1961; Coney and MacDonald, 1988; Federmeier and Benjamin,
2005), but this is the first study to use the continuous
recognition memory paradigm in pupil research. According
to the strength account, we would expect the recognition
performance and pupil dilation to decrease as the retention
interval increases. Our intent is also to explore the pupil
dynamics in a continuous recognition memory design by
assessing pupillary responses to the objective and subjective
old/new status of word items.

MATERIALS AND METHODS

Participants
The sample comprised 42 adult Portuguese native speakers who
had normal vision or corrected-to-normal vision, mostly women
(n = 23) with a mean age of 26 years (SD = 6.79) and no less than
12 years of formal education. The participants were selected in a
university campus for voluntary participation in a study related
to “visual perception and memory.” The exclusion criterion
was history of psychiatric disorder or medication/drug use. The
initial pool comprised 47 participants, but five participants were
excluded due to low quality (more than 50% of data loss) of
pupillary recordings or due to problems in the collection of
behavioral responses.
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Materials and Design
The stimulus words were collected from a database of validated
Portuguese words from a sample of undergraduate students
(Marques et al., 2007). For this study, we selected 107 words of
4 to 7 letters in length: 64 of these were used as study words
and 43 as “new” test words. Both lists of words were matched for
psycholinguistic variables of familiarity and age of acquisition.

Design and Procedure
This study was approved by the ethics committee of the
host institution where it was carried out. The experiment was
conducted in a soundproof booth with a constant low-bright
room during only one session. The visual word recognition
task was based on a continuous recognition memory paradigm
originally from Shepard and Teghtsoonian (1961), with study
words presented two times in a study-test procedure. In our
task, study words were repeated in the test phase, intermingled
with (new) interference words with different retention intervals.
All participants were tested with words presented at four
different interval levels manipulated through the number of
words between study and test: lag 1 (immediate repetition), lag
4 (4 words separating study-test phases), lag 8 (8 words), and lag
32 (longest lag with 32 words between the study-test phases).

Each trial in the study phase began with a fixation cross for
250 ms preceding the word stimulus that was on the screen
for 1,750 ms. In the test phase, each trial began with a mask
consisting of a row of seven symbols (“&&&&&&&”) for 250 ms,
being replaced by the word stimulus (1,750 ms), according to the
design of Heaver and Hutton (2011). All stimuli were presented
at the center of the screen. The word stimulus in the test phase
was followed by the mask that remained on the screen until
a response was given. The recognition responses were given
at this stage. The participants were instructed to respond with
the keypress only when the word stimulus was replaced by
the mask and during the time, the mask was visible on the
screen. Following each word in the test phase, the participants
also had to indicate their level of confidence in the decision
(1, not at all confident to 5, very confident). Each trial of
the study phase consisted of the mask and the word stimulus,
whereas in the test phase, word stimuli were replaced by the
mask (where recognition response was given) followed by the
confidence level screen. The interstimulus interval was 1,000 ms
for both the study and test phases. This procedure was the same
between the different retention intervals. The only difference
between retention conditions was the number of intervening
items between the study and test phases. Intervening items were
the number of words in a continuous sequence that comprised
study words and “old” and “new” test or interference words.
An example of the continuous recognition memory procedure is
shown in the following sequence, where each letter describes a
different word and the question mark the test phase:

a b c a? c?

In this sequence, “a” is tested at a lag of 3 and “c” is tested at
a lag of 2 words between the study and test phases. This design is
also illustrated in Figure 1.

The words were presented in black capital letters (38-point
Arial font) over a gray background screen (Red = 128, Blue = 128,
and Green = 128).

After informed consent, each participant was seated at a
distance of 60 cm from the infrared eye-tracking system (Tobii
T60, Tobii Technology AB, Danderyd, Stockholm, Sweden;
instrument noise, 0.06 RMS). The calibration of the eye
tracker was carried out for each participant using a five-point
calibration setup.

Participants were instructed to keep still to minimize data loss
due to head and body movements during the task. Following this
stage, the participants completed a 5-min preliminary practice
stage using proper nouns as stimuli before the recognition task.
They were instructed to indicate in the keyboard whether a
word was old (previously seen during the experiment) or not, as
fast as possible.

The visual word recognition task was designed in
Superlab (version 1.0.2; Cedrus Corporation, San Pedro,
CA, United States) and presented through the 17-inch monitor
of the eye tracker with a 1,280 × 1,024 resolution. The behavioral
measures were collected using Superlab, and pupil responses
were registered in Tobii Studio (version 3.0; Tobii Technology
AB, Sweden), which is the native application of Tobii eye trackers.
Eye data of both eyes were collected at a sampling rate of 60 Hz.

Data Pre-processing
Raw pupil data were exported from Tobii Studio version 3.3.2
software to SPSS (Version 25.0. Armonk, NY: IBM Corp.) for
data reduction. The proportion of the missing values was first
analyzed to assess the noise in pupil data (missing data = 3.97%).
Missing pupil data were randomly distributed across trials.
Pupil amplitude artifacts (<1 or >9 mm), as well as drifts
and blinks, were coded as missing values (Rosa et al., 2015).
Pupil diameters of zero lasting between 100 and 600 ms were
considered blinks (Cosme et al., 2021), and replaced using linear
interpolation (Carvalho and Rosa, 2020). Finally, a seven-point
weighted average filter was applied to smooth data. The data
file was then exported to Vision Analyzer software (version 2.1;
Brain Products GmbH, Germany) for data segmentation and
estimation of evoked pupil responses. The epochs were created
for each stimulus category with stimulus-locked segments of
4,000 ms in length (i.e., from −250 to 3,750 ms at stimulus
onset). This segmentation resulted in 64 segments, 16 segments
for the study words tested at each of the four retention levels, plus
43 segments for the “new” test words (interference words were
presented only during the test phase), in a total of 107 segments.
The words at retrieval were visible during the first 1,750 ms of this
time window. The remaining interval between 1,750 and 3,750 ms
comprised the recognition response.

Pupil responses were calculated within each time bin of 250 ms
for a time window of 3,750 ms. The baseline was set at −250 ms
before the stimulus onset. The percentage of variation relative
to baseline was calculated to depict the amplitude of pupillary
responses to each experimental condition.

The behavioral measures consisted of accuracy from the
signal detection theory (SDT), which comprises hits, correct
rejections, false alarms, and misses. According to the SDT, hits
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FIGURE 1 | Design of the experimental task.

and correct rejections depict correct decisions, whereas false
alarms and misses are incorrect decisions that may be due to
internal/external factors affecting human perception. Reaction
times and confidence ratings were also assessed during this task.

RESULTS

Behavioral Measures
The analysis on behavioral measures was conducted for
discrimination ability, reaction times, and confidence ratings
in recognition responses. These variables were analyzed
by retention intervals using repeated-measures ANOVA.
Confidence levels were also assessed with receiver-operating
characteristics (ROC) for determining the ability to distinguish
recognition responses.

Recognition Accuracy
Recognition accuracy was calculated according to the SDT
through d-prime (d’) in which higher values describe better
memory performance, which is given by the following expression:
d’ Z(H)-Z(FA). Participants had an average hit rate (correct
recognition) of 81% (ranging from 37 to 100%) and a false alarm
rate of 11% (ranging from 0 to 29%).

The effect of retention interval on recognition accuracy
was analyzed with a single-factor repeated measures ANOVA
with four levels (retention level: 1, 4, 8, and 32 items). The
ANOVA showed significant differences with Greenhouse-Geisser

correction in recognition accuracy between retention levels
[F (1.430, 58.611) = 16.947; p < 0.001; η2

p = 0.292], suggesting a
significant decrease (Bonferroni corrected pairwise comparisons)
from lag 1 to lag 4 (p = 0.020) and from lag 4 to lag 8 (p = 0.002).
Table 1 describes recognition performance in the running
recognition task through d-prime, hits, false alarms, confidence
levels, and reaction times across lag conditions. Table 2 depicts
the inference statistics for these analyses. The same pattern
of results was observed for hits [F (2.551, 107.159) = 10.591;
p < 0.001; η2

p = 0.201] and false alarms [F (2.740, 115.86) = 3.698;
p < 0.05; η2

p = 0.081].

Confidence Ratings
The confidence levels in each of the recognition decisions were
rated on a five-point Likert scale. The same design was used
for the ANOVA that showed a similar pattern to that of the
d-prime. These results indicated a decrease in confidence level
for longer retention levels [F (2.168, 88.905) = 27.006; p < 0.001;
η2

p = 0.397]. Pairwise comparisons with Bonferroni correction
indicated that the confidence level was highest in lag 1 and lowest
in lag 32. Confidence level decreased from lag 1 to lag 4 (p = 0.001)
and from lag 8 to lag 32 (p < 0.001).

A descriptive analysis on confidence ratings showed that
most responses were extreme-confident responses. This pattern
has limited further analyses between pupil data and confidence
ratings, given the lack of valid cases in each cell for
factorial designs. We have conducted a ROC analysis on
confidence ratings to understand whether confidence would
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TABLE 1 | Descriptive statistics for behavioral measures.

Lag 1 Lag 4 Lag 8 Lag 32

M SE M SE M SE M SE

d’ 3.19 0.19 2.35 0.20 1.98 0.18 1.97 0.16

Hits 0.87 0.03 0.82 0.03 0.81 0.03 0.72 0.03

FA 0.14 0.02 0.15 0.03 0.20 0.03 0.19 0.02

CR 4.78 0.48 4.56 0.67 4.56 0.62 4.21 0.09

RT 1305.84 130.78 1613.07 142.80 1619.71 139.15 1612.46 147.53

M, mean; SE, standard error for the mean; d’, d-prime for accuracy; CR, confidence ratings; RT, reaction times; and FA, false alarms.

TABLE 2 | Inference statistics for behavioral measures.

MSE η2
p Fa Pairwiseb

d’ 29.007 0.292 16.947*** l1 > l4 > l8,l32

Hits 0.190 0.201 10.591*** l1,l4 > l8,l32

FA 0.039 0.081 3.698* l1,l4 < l8,l32

CR 3.190 0.397 27.006*** l1 > l4,l8 > l32

RT 1473240.24 0.143 6.836** l1 < l4,l8,l32

MSE, mean square error; η2
p, effect size through partial eta squared; and F,

analysis of variance statistic; l1, lag 1; l4, lag 4; l8, lag 8; l32, lag 32.
aGreenhouse-Geisser correction. bBonferroni corrected pairwise comparisons.
*p < 0.05; **p < 0.01; ***p < 0.001.

discriminate successful recognition. This analysis showed a poor
discriminant ability of confidence ratings on the recognition
ability (AUC = 0.546; SE = 0.040; p = 0.249).

Reaction Time
Reaction time was also assessed through the same ANOVA to test
the significant differences between lag conditions. The ANOVA
revealed a significant difference in reaction times across retention
levels [F (2.056, 84.298) = 6.836; p = 0.002; η2

p = 0.143], with
faster responses for words tested immediately at lag 1 that differed
from the remaining conditions (all p’s < 0.05).

Pupillometry
Pupil size analysis was performed in different steps. First, the
analysis was conducted for pupillary responses to each lag
condition. Second, the pupil old/new effect was calculated by
comparing correct recognition responses to “old” words with
correct rejections of “new” test words. Following these analyses,
the pupillary responses were analyzed for recognition errors,
namely, false alarms, i.e., incorrect rejections of new test words
and misses, i.e., omissions in recognizing old words. The factor
related to confidence levels in recognition was not included
in the factorial design due to the insufficient number of trials
for low confidence conditions, but this factor was controlled
in further analyses by dividing the five-point Likert scale in
a dichotomous variable for low and high confident decisions.
Therefore, pupillary responses to false alarms were analyzed by
confidence (low vs. high) to study whether the pupil activity is
also associated with subjective familiarity (i.e., evaluating “new”
test items as “old”). Finally, the pupillary responses across lag
conditions were also studied for extreme-confident decisions (i.e.,
confidence rating equal to 5).

Pupil Dynamics by Retention Interval
Evoked pupillary responses for correct recognition decisions
were analyzed to each retention condition (study-test lag) by
plotting peak activity at 250 ms bins of the 3,750 ms time windows
with a two-factor ANOVA. The retention level (4 levels) and bin
(16 levels) were entered in this analysis as factors within-subjects.

The ANOVA revealed significant main effects for lag [F
(1.718, 189.211) = 33.896; p < 0.001; η2

p = 0.453] and bin [F
(2.776, 189.211) = 23.939; p < 0.001; η2

p = 0.369]. The main
effect of lag described a decrease in pupil dilation for longer
retention spans, whereas the main effect of bin described a pupil
constriction at the initial stage of memory retrieval followed by a
later dilation. This analysis also showed a significant interaction
effect between factors [F (4.605, 189.211) = 5.949; p < 0.001;
η2

p = 0.127], suggesting a different pattern of pupil dynamics
according to the retention condition. Pairwise comparisons
(Bonferroni corrected) for retention level suggested a stronger
pupil constriction for lags (all p’s < 0.05) other than lag 1, and
a later dilation for all retention conditions (all p’s < 0.05). The
differences were found mostly between lag 1 and the remaining
lag conditions. This pattern is illustrated in Figure 2.

Pupil Old/New Effect
To further explore these results, the differences between evoked
pupillary responses to “old” test words and “new” test words
were calculated for studying the pupil old/new effect observed
previously in recognition memory studies. The pupillary
responses to each retention condition were compared with
interference test words through a separate repeated measures
ANOVA. The ANOVAs revealed the pupil old/new effect only at
lag 1 [F (2.948, 120.883) = 6.972; p < 0.001; η2

p = 0.145]. The
results were also significant for the remaining retention levels
but revealing a pupil constriction to “old” words compared with
“new” words for lag 4 [F (3.123, 128.040) = 3.035; p = 0.030;
η2

p = 0.069], lag 8 [F (2.286, 93.725) = 4.169; p = 0.014;
η2

p = 0.092], and lag 32 [F (2.964, 121.504) = 3.343; p = 0.022;
η2

p = 0.075], as depicted in Figure 3.

Pupil Dynamics to Recognition Errors
Pupil activity was also analyzed for recognition errors. According
to the SDT, the failure in detecting an item presented previously
at the learning phase is defined as a miss, whereas the failure
to reject a new item (interference word) is defined as a false
alarm. The comparison with the repeated measures two-factor
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FIGURE 2 | Pupil dynamics by retention interval.

(type of recognition error and bin) ANOVA revealed a significant
main effect, suggesting an overall difference in pupil dilation
between misses and false alarms, with increased pupil dilation
for false alarms [F (1, 77.123) = 6.806; p = 0.023; η2

p = 0.233].
No interaction effects were found indicating that the pattern of
pupil activity is not different between the two types of recognition
errors (Figure 4).

Pupil Dynamics for False Alarms in High
vs. Low Confident Decisions
Given the increased response to false alarms, in which the mean
percentage of pupil dilation to the baseline was 2.10%, being very
similar to the mean dilation observed for words tested at lag
1 (2.49%), we have conducted a further analysis by confidence
levels (low vs. high) for false alarms to analyze pupil activity in
subjective familiarity decisions. The comparisons between high-
confident responses (confidence rating of 5) and less-confident
responses (confidence rating below 5) in false alarms show a
marginally significant difference [F (1, 34.965) = 4.663; p = 0.054;
η2

p = 0.298] between the mean dilation to high-confident

responses (2.9%) and less-confident responses (−0.78%), as
depicted in Figure 5.

Pupil Dynamics by Retention Interval for
High-Confident Decisions
The above results suggest that pupil activity may be sensitive
to subjective familiarity, which may occur when the participant
rejects a “new” interference item probably being influenced by
the subjective feeling of knowing that such an item was old.
This may have been the case for extreme-confident decisions
in false alarms. Therefore, the pupillary response by retention
condition was reanalyzed only for extreme-confident decisions.
The same two-factor ANOVA detected a main effect of retention
condition [F (2.534, 101.376) = 20.328; p < 0.001; η2

p = 0.337],
showing the same temporal pattern across lag conditions.
A main effect of bin was observed [F (3.068, 122.705) = 27.740;
p < 0.001; η2

p = 0.410], while the interaction effect [F (6.896,
275.846) = 4.868; p < 0.001; η2

p = 0.108] revealed a decrease
(Bonferroni corrected) in evoked pupillary responses across lag
conditions providing similar results to that of the ANOVA
without controlling for confidence ratings (Figure 6).

Pupillary Response by Retention Interval
According to the Number of Interference
Items
In this experimental task, the intervening items separating study-
test trials comprised both study words, “old” studied words and
“new” test (interference) words. Interference varied according to
the number of “new” test words separating the study-test trials.
This variable related to interference was divided according to
the median for trials with low interference vs. high interference.
This analysis was conducted with a two-factor repeated-measures
ANOVA (retention level with 3 levels: 4, 8, and 32 items
and interference: low vs. high). The retention level 1 was not
included as this condition consisted of immediate recognition.
The ANOVA did not reveal significant effects of interference in
pupil dilation (all p’s > 0.05), although the visual inspection to
Figure 7 suggests an interaction between interference and lag
condition on pupil activity.

DISCUSSION

This study aimed to investigate the relationship between
pupil activity and recognition memory according to explicit
manipulations of memory strength in a continuous recognition

FIGURE 3 | Pupil old/new effect.
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FIGURE 4 | Pupil dynamics to recognition errors.

FIGURE 5 | Pupil dynamics for false alarms in high vs. low confident
decisions.

memory design. This goal was achieved by exploring pupil
dynamics across different retention intervals to objective
and subjective old/new status of word items in a running
recognition task.

FIGURE 6 | Pupil dynamics by retention interval for high confident decisions.

FIGURE 7 | Pupillary response by retention interval according to the number
of interference items.

The behavioral data show a decrease in recognition
performance with increasing retention intervals in recognition.
The discrimination ability decreased with an increasing lag
between study and test items, mostly in the transition from
shorter retention (lag 1) to moderate retention (lag 4 and lag
8). Confidence ratings also decreased at longer retention levels,
which distinguished shorter (lag 1), moderate (lag 4 and lag 8),
and longer (lag 32) retention intervals. The results from reaction
time were in the same direction but indicated an earlier impact
in recognition performance from lag 1 to lag 4. Altogether, the
behavioral results suggest that the recognition task was effective
in manipulating memory strength as recognition performance
decreased with an increasing lag between study and test of word
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items, but the increase in reaction times also indicates that effort
may have increased across the retention intervals.

The pupil data revealed increased pupil dilation for words
tested at lag 1. Likewise, the pupil old/new effect was found
only for words tested at the shortest retention interval. The
comparison between lag 1 and the remaining lag conditions
showed that mean pupil dilation decreased as retention levels
increased. These data contradict previous studies on working
memory that suggest an increase in pupillary response when the
number of items maintained into memory increased up to 4–5
items (Unsworth and Robison, 2018). Therefore, if the current
results depicted working memory processing, we should expect
an increase in pupillary response at least until lag 4 (i.e., four
words between study and test), instead of the decrease observed
from lag 1 to lag 4.

Our data also revealed that differences in the pattern of pupil
activity across lag conditions were evident mainly by stronger
pupil constrictions to items recognized at longer retention
intervals. Considering that each study trial lasts approximately
2 s, the retention interval between the study and test phases for
a stimulus tested at lag 4 is about 8 s, at lag 8 is about 16 s, and at
lag 32 is about 64 s. Pupillary responses at lag 1 may correspond to
a condition when the stimulus is still active in memory endorsing
larger pupil dilations, comparing with longer retention levels
when other memory processes may occur as an active rehearsal
for long-term memory storage. This early constriction is not
likely to be related to light reflex during the baseline period
because in our study pupil baseline was calculated at 250 ms
before the stimulus onset corresponding to a string of symbols
to minimize the influence of luminance during the transition
to the target stimulus while also preventing the accommodation
effects on pupil size.

The study by van Rijn et al. (2012) also revealed an initial
pupil constriction during word retrieval, but in our study, the size
of this initial constriction seems to be associated with memory
strength as this was more pronounced for items that were
recognized at longer retention levels. In a previous study, using
temporal analysis for pupillary response to complex stimuli (i.e.,
scenes) revealed that the initial constriction of pupil size during
memory retrieval was related to novelty, where novel scenes
elicited stronger pupil constrictions compared with familiar
scenes in high confident decisions (Naber et al., 2013). In this
study, this prediction was not possible to investigate as this would
require novel items that were not familiar to the participants. In
our study, we selected only high familiarity words to control for
familiarity effects. A post hoc analysis to familiarity by splitting
the data according to the median level of familiarity did not reveal
significant effects on pupil data, although this result should be
interpreted with caution given the low range of familiarity levels
for item words used in this study, which varied from 1.1 to 3.5 for
4–7 letter words (Marques et al., 2007).

The decrease in pupil dilation across lag conditions
contradicts the effort accounting that memory effort increases
pupil dilation (e.g., Granholm and Steinhauer, 2004; van Rijn
et al., 2012), as the increase in effort revealed by an increase
in reaction times should have produced increased pupil
dilations, but the reverse was found in our study. Another study

found increased pupil dilation for study lists repeated once
corresponding to a more effortful condition compared with
items retrieved after more repetitions (van Rijn et al., 2012).
One possible explanation for these differences may be related to
the nature of the task employed in our study. In this running
recognition task, performance at each retention interval may
be affected not only by decay (time) but also by interference in
an overall effect, which differs from tasks employing single lists
of items that study words in isolation. The decrease found in
pupil dilation across retention levels may be related to decay and
interference as longer retention intervals imply more intervening
items and longer periods of time between the study and test
phases. The intervening items were words in a continuous
sequence that comprised both study words, “old” studied words
and “new” test or interference words, being the latter used to
fill the sequence at each retention condition. To investigate
whether interference through the number of interference
words influenced pupil dilation, the test trials for each of the
retention conditions were divided by the median number of
interference items, which did not show significant effects on
pupillary response. It is advisable that the future studies have to
distinguish between the effects of decay (time) and the number
of interference words in the recognition task. Moreover, the
manipulation of repetition of test trials in an adapted version
of this continuous recognition memory design will be crucial
to study in more detail the effects of memory effort across lag
conditions. The assessment of vigilance and fatigue levels will be
also an important consideration for further studies. Despite this,
recognition design may minimize the potential effects of fatigue,
as the retention interval was randomly manipulated across
the continuous recognition procedure, future studies should
consider both online measures as eye blink analysis and offline
self-reports for assessing fatigue levels in continuous recognition
memory designs to better describe pupil activity.

Furthermore, the results were also explored regarding
recognition errors. The data revealed that false alarms (new items
judged as old) elicited an increased pupil dilation compared
with misses (old items judged as new). These data are aligned
with the results from Kafkas and Montaldi (2015) that found
increased pupil dilations for false alarms compared with misses,
which discriminated between an early component of pupil data
reflecting the objective veridical status of old/new items and
a late component reflecting the subjective status of old/new
items. To explore whether the subjective recognition decision
modulates pupillary response, our data were analyzed according
to the confidence level in false alarms. The results indicate that
pupils dilated more when participants believed a new item was
previously seen during the sequence mainly for high-confident
incorrect decisions. Nevertheless, the analysis of confidence
effects in pupil size across the retention interval did not seem
to modulate pupil response for correct decisions. This latter
analysis may have been affected by the lack of sensitivity as
most correct responses were accompanied by extreme-confident
decisions. In fact, the ROC analysis shows that this variable did
not discriminate recognition responses. Future studies should
also use feasible confidence scales to distinguish confidence in
recognition decisions more effectively.
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In sum, these results point to a relationship between pupillary
response with the strength of the underlying memory signal
in light of the following data: (1) The increase in retention
interval decreased overall pupil dilation; (2) the pupil old/new
effect was evident only for the shortest retention level; and (3)
the analysis on the dynamics of pupillary response revealed a
different pattern of pupil activity across the retention interval.
However, it is also important to note that this response may
be dependent on the subjective feeling of familiarity to a given
item, as pupil size was also modulated by incorrect recognition
decisions to “new” interference words especially those with
high confidence.

Given the simplicity and non-intrusiveness of a pupil
size measurement, the development of reliable methods for
assessing pupil activity may provide an ecologically valid
measure for assessing human memory and behavior in complex
environments. The integration of pupil size measurement in
virtual reality environments need not wait for further research.
For instance, Juvrud et al. (2018) have demonstrated that
it is possible to have a method based on a virtual reality
scenario for assessing pupillary responses not depending on low-
level stimulus features. In such virtual reality environments,
it will be interesting to explore the current results under
naturalistic contexts using stimuli other than words (i.e., objects,
faces) and test whether pupillary responses are associated
with the strength of memory in conditions that resemble
real-life situations. Likewise, the study of false memory in
virtual reality environments will be also intriguing given
the current results suggesting the sensitivity of pupillary
response not only to the objective oldness of the items
but also to the subjective feeling of familiarity that drives
recognition decisions.
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Lewandowska, K., Gągol, A., Sikora-Wachowicz, B., Marek, T., and Fąfrowicz,
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Pupil size is influenced by cognitive and non-cognitive factors. One of the strongest 
modulators of pupil size is scene luminance, which complicates studies of cognitive 
pupillometry in environments with complex patterns of visual stimulation. To help understand 
how dynamic visual scene statistics influence pupil size during an active visual search 
task in a visually rich 3D virtual environment (VE), we analyzed the correlation between 
pupil size and intensity changes of image pixels in the red, green, and blue (RGB) channels 
within a large window (~14 degrees) surrounding the gaze position over time. Overall, 
blue and green channels had a stronger influence on pupil size than the red channel. The 
correlation maps were not consistent with the hypothesis of a foveal bias for luminance, 
instead revealing a significant contextual effect, whereby pixels above the gaze point in 
the green/blue channels had a disproportionate impact on pupil size. We hypothesized 
this differential sensitivity of pupil responsiveness to blue light from above as a “blue sky 
effect,” and confirmed this finding with a follow-on experiment with a controlled laboratory 
task. Pupillary constrictions were significantly stronger when blue was presented above 
fixation (paired with luminance-matched gray on bottom) compared to below fixation. 
This effect was specific for the blue color channel and this stimulus orientation. These 
results highlight the differential sensitivity of pupillary responses to scene statistics in 
studies or applications that involve complex visual environments and suggest blue light 
as a predominant factor influencing pupil size.

Keywords: pupil size, luminance, pupillary light response, pupillometry, active visual search, virtual environment

INTRODUCTION

In classic cognitive pupillometry studies, it has been critical to equate luminance across stimuli 
and/or experimental conditions to isolate cognitive influences on pupil size and ensure that 
results are not driven by confounds due to variable luminance. While this careful control of 
luminance has led to a great deal of knowledge about the relationship between pupil size and 
cognition (Aston-Jones and Cohen, 2005; Sirois and Brisson, 2014; Mathôt, 2018; Hoffing 
et  al., 2020; Joshi and Gold, 2020), it also limits the ability to generalize research findings to 
contexts in which luminance cannot be  controlled. For example, it would be  unfeasible to 
control for luminance in real-world tasks and would impede the study of naturalistic gaze 
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behavior in experiments using complex stimuli, to replicate 
the spatial variation in local contrast and luminance that occurs 
in the natural world (Frazor and Geisler, 2006).

The pupillary light response (PLR) represents a predictable, 
ballistic change in pupil size whenever there is a sudden change 
in luminance (Korn and Bach, 2016). As a rule, the pupil 
constricts and reduces in size whenever there is a sufficient 
increase in brightness and it dilates whenever there is a sufficient 
decrease in brightness, albeit more slowly than constrictions. 
The PLR is also a characteristically sluggish response that 
reaches its peak between 500 and 1,000 ms after a change in 
luminance (Mathôt, 2018), and only gradually returns to 
pre-stimulus baseline after several seconds. Gaps remain, however, 
in the understanding of how the pupil responds to light because 
it is still unclear how output from rods, cones, and intrinsically 
photosensitive retinal ganglion cells (ipRGC) are integrated to 
drive pupil size changes. For example, evidence from individuals 
with nonfunctioning rod and cone photoreceptors (Czeisler 
et  al., 1995; Lockley et  al., 1997) and transgenic mice without 
photosensitive RGCs (Lucas et  al., 2001, 2003) suggest that 
both types of retinal cells contribute to the PLR; however, 
much less is understood about their relative contributions to 
the PLR, especially in uncontrolled settings with naturalistic 
and dynamic visual scenes.

It is well known that each type of photoreceptor has a 
different spectral sensitivity (Stockman et  al., 1993; Do and 
Yau, 2010; Neitz and Neitz, 2011) and that these light-sensitive 
cells are non-uniformly distributed across the retina (Curcio 
et  al., 1991; McDougal and Gamlin, 2010; Lee et  al., 2017). 
Recent work leveraging the silent substitution method, which 
can selectively modulate the excitation of ipRGCs, rods, and 
the three cones separately (or combined), suggests that color 
signals influence the pupil response differently (Barrionuevo 
et al., 2014; Barrionuevo and Cao, 2016). For example, Bonmati-
Carrion et al. (2018) found that monochromatic and combined 
monochromatic light had a differential influence on the strength 
of the PLR depending on the wavelength. Specifically, blue 
light (479 nm) resulted in a significantly faster velocity of 
constriction than purple (437 nm) or red (627 nm) light. Further 
complicating the matter, the PLR can also be  modulated by 
contextual information, such as the expectation of a luminance 
increase, where participants showed increased PLRs to brightness 
illusions, such as the Helmholtz-Kohlrausch effect (Laeng and 
Endestad, 2012; Wood, 2012; Zavagno et  al., 2017; Suzuki 
et  al., 2019) and pictures of the sun (Naber and Nakayama, 
2013; Castellotti et al., 2020), despite stimuli being equiluminant. 
By furthering our understanding of how dynamic visual scene 
statistics, such as luminance, spectral content (i.e., color), and 
context influence pupil size, it may be possible to better account 
for their contribution to the pupillary signal and improve 
estimation of residual cognitive-based effects on pupil size.

The present study aims to further our understanding of 
pupillary dynamics in a visually rich environment that involves 
an unconstrained navigation and visual search task in a 3D 
virtual environment (VE). Specifically, we focus on understanding 
how visual patterns modulate pupil size, where luminance 
changes dynamically over time even while behaviors and 

cognitive processes may also be concomitantly influencing pupil 
size. We  investigated the influence of the spatial location of 
luminance in relation to the fovea as well as the spectral 
wavelength on pupil size changes. We  hypothesized that the 
influence of luminance on pupil size would be  greatest for 
pixels near the fovea and would reduce with eccentricity in 
a radial manner. This hypothesis is consistent with previous 
work indicating that the strength of the PLR is reduced as a 
function of eccentricity (Crawford and Parsons, 1936; Legras 
et  al., 2018; Hu et  al., 2020), which may be  attributed to the 
diminishing distribution of photoreceptors farther away from 
the fovea. We  also hypothesized that the relationship between 
luminance and pupil size would vary by wavelength, consistent 
with prior work indicating that blue colored light is perceived 
as being brighter (Suzuki et  al., 2019) and can have a distinct 
influence on the PLR (Bonmati-Carrion et  al., 2016). To 
investigate both hypotheses, we examined correlations between 
pupil size and intensities in the red, green, and blue (RGB) 
color channels derived from the sequence of images seen on 
the screen throughout the task. We  computed pixel-wise 
correlation maps to visualize the correlation between pupil 
size and every pixel in a broad window (approximately 14 
degrees visual angle) surrounding gaze position.

Foreshadowing our results from Experiment 1, the correlation 
maps surprisingly revealed that pixels closest to fixation actually 
varied the least with pupil size, contrary to our hypothesis of 
a foveal bias. The maps instead uncovered a distinct spatial 
pattern to indicate a significant contextual effect in which blue 
pixels, specifically located above the gaze position, had a 
disproportionate influence on pupil size. These results were 
interpreted to be  related to a blue light from above or “blue 
sky effect,” reasoning that from an ecological perspective it 
would make sense for the brain to anticipate a brightness 
change whenever there is a visual pattern resembling a blue 
sky overhead due to its association with daytime and sunlight 
(Laeng and Endestad, 2012; Naber and Nakayama, 2013; 
Castellotti et  al., 2020). In Experiment 2, we  performed a 
controlled laboratory experiment that paired a gray patch with 
luminance-matched red, green, and blue patches located either 
on the top, bottom, left, or right relative to the control (gray). 
Results of this follow-on study confirmed our hypothesis, 
demonstrating a significant and highly specific “blue sky effect” 
on the PLR.

Participants
Thirty-eight subjects were recruited from the Los Angeles area 
to participate in this study (Enders et  al., 2021). Four subjects 
were missing a majority of eye-tracking data due to miscalibration 
or some technical error and were not included in this analysis, 
leaving a final sample of 34 subjects for this report (12 females, 
22 males, age range = 19–64 years, mean = 39.5 ± 14.6 years). All 
subjects were at least 18 years of age or older and able to 
speak, read, and write English. All subjects signed an Institutional 
Review Board approved informed consent form prior to 
participation (ARL 19–122) and completed a web-based 
pre-screen questionnaire containing eligibility, demographic, 
and game-use questions. All subjects had normal hearing and 
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reported normal or corrected-to-normal visual acuity and color 
vision. Additional visual acuity screening was conducted in-lab 
to ensure better than 20/40 vision using a standard Snellen 
Chart. Subjects were asked to read the 20/40 line of the Snellen 
chart and were allowed to participate if they made one mistake 
or less (the clinical Snellen test allows patients to make up 
to two mistakes on a line to be  classified as that level of 
visual acuity). Normal color vision was assessed with a 14-plate 
Ishihara color test. Any subject who did not pass the entire 
screening process was not included in the study.

Task and Procedure
Subjects completed demographic and survey questionnaires 
while being fit with an EEG cap prior to entering a whisper 
room (WhisperRoom Inc. MDL 4284 E) to undergo eye-tracking 
calibration and completed additional questionnaires pre- and 
post-tasks. The whisper room is a sound- and light-controlled 
chamber, where the only ambient lighting was provided by 
the computer screen. During the experimental session, subjects 
participated in four separate tasks including (i) classic rapid 
serial visual presentation (RSVP) target detection task (20 min), 
(ii) free viewing task to familiarize subjects with navigating 
the virtual environment (up to 12 min), (iii) the main free 
viewing visual search and navigation task (up to 20 min), and 
(iv) memory recall task (up to 15 min). All tasks were run 
with custom software using Unity 3D (Unity Technologies). 
Further documentation of the task and experimental design 
is described in previously published work (Enders et al., 2021). 
However, only results from pupillometry during the visual 
search and navigation task (iii) are described here.

In the visual search and navigation task, subjects were asked 
to freely navigate a virtual environment with the goal of 
searching for, and mentally counting, target objects from one 
of four categories that was randomly assigned to them (i.e., 
Aircraft, Motorcycle, Humvee, or Furniture). Subjects started 
at the same position in the virtual environment and all of 
the possible targets (15 total for each condition) were evenly 
distributed throughout the environment by experimenters to 
control the density of objects in each area (Figure 1A). Subjects 
had up to 20 min to identify and mentally keep count of the 
number of targets encountered using w/a/s/d keys for movement 
through the environment, and the mouse to control camera 
orientation to change heading direction and simulate head 
rotations. The task was performed on a computer monitor 
with a resolution of 1,920 × 1,080 pixels. Subjects were seated 
in a chair without a head or chin restraint and were asked 
to limit chair and body movements throughout the task. We used 
distance estimates from the eye-tracking system to confirm 
that subjects complied with this instruction. We  found that 
subjects were positioned on average 62.1 cm from the screen 
(range = 55.0–78.0 cm) with a mean SD of 1.3 cm 
(range = 0.3–3.3 cm) over time.

About 8 min into the session an auditory Math Task was 
administered in which subjects were instructed to remember 
and report the sum of the numbers. Data collected during 
the math task, corresponding to 2.0 s (+0.47 s) on average, was 
cut from the time series data and omitted from analysis in 

order to reduce confounds associated with cognitive load and 
multi-tasking. Therefore, the main task during which we analyzed 
data in this report consisted of only the active visual search 
task, which had a mean duration of 10.4 min (+2.53 min). In 
this report, we leveraged this unique data set and the capability 
of replaying the entire set of visual scenes experienced by 
each subject to examine the relationship between pupil size 
and dynamic scene statistics irrespective of task-related cognition 
and behavior.

Luminance Measurements
Screen luminance measurements were obtained with a 
SpectraScan Spectroradiometer PR-745. We  wrote a program 
in Matlab (2019a, The MathWorks, Natick, MA) using the 
Psychophysics Toolbox 3.0.16 (Brainard, 1997; Pelli, 1997) to 
step through each of the 8-bit RGB color channels from 0 to 
255  in increments of 3, displaying the color on the full screen 
until the spectroradiometer collected luminance measurements 
in units of cd/m2. When recording with the spectroradiometer, 
we matched the experimental setup to when subjects performed 
the task, and the distance of the device to the computer screen 
was positioned to match the average subject eye height and 
distance (62 cm) from the monitor. We fit the screen luminance 
data with an exponential function to estimate the best gamma 
parameter for transforming RGB color space into luminance 
space. Each color channel was best-fit by a slightly different 
gamma value (red gamma = 2.24, green gamma = 2.23, and blue 
gamma = 2.22). Prior to the experiment, we  did not gamma 
correct the monitor by linearizing the color lookup table; 
instead, we applied this transformation post hoc to pixel intensities 
in each color channel, converting the images from 8-bit (0–255) 
color space to luminance space as a first step prior to subsequent 
analyses. We  will use the term RGB luminance to reference 
this transformed image data.

Eye-Tracking Data Collection
Binocular eye-tracking data (300 Hz) were collected with a 
Tobii Pro Spectrum mounted on the bottom of the computer 
monitor. Prior to the main task, we  used a standard five-point 
calibration procedure to ensure proper calibration of the 
eye-tracking system. The Tobii Pro Spectrum recorded binocular 
estimates of pupil size and gaze position, while eye-tracking 
data were synchronized with game state (i.e., positions of players 
and objects in the Unity environment), keyboard, and mouse 
data using the Lab Streaming Layer (LSL) protocol (Delorme 
et  al., 2011; Preuschoff et  al., 2011; Kothe and Makeig, 2013; 
Kothe, 2014). The Tobii Pro Spectrum is reported to have an 
average binocular accuracy of 0.3° and binocular precision 
(root mean square) of 0.07° (Tobii Pro, 2018).

Data Preprocessing
Post hoc data analysis involved generating the sequence of 
full-screen “snapshots” to replay the sequence of visual stimulation 
on the screen as subjects freely explored the virtual environment 
(Figure  1B). We  generated the snapshot associated with every 
10th frame for an effective temporal resolution of 12 Hz (screen 
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refresh rate was 120 Hz), exporting the images in .png format. 
To save disk space, the sequence of images was then compressed 
in Matlab using the built-in MPEG video encoder, reducing 
the file size footprint by about 100x from ~100 gb for all .png 
images to a video of ~1 gb per subject. To ensure that video 
encoding did not introduce significant artifacts to the image 
data, we compared RGB pixel values of the original .png images 
to the compressed video frames and found that over 99% of 
pixel intensity differences were within a range of +12, a criterion 
that corresponds to 5% of the entire 8-bit color spectrum 
(0–255).

We used gaze position data output from the Tobii Pro 
Spectrum to extract local image statistics in relation to gaze 
position over time. Signal loss due to blinks and dropouts in 
the gaze position data corresponded to 13.9% (STD = 11%) of 
the data overall. The range of missing data due to signal loss 
across subjects was 2.4–41.1%. To investigate whether this data 
loss influenced the reported pattern of results, we  analyzed 
data from the subset of 29 subjects that had less than 25% 
data loss (omitting the five subjects with greater than 25% 
data loss) and the overall pattern and statistical significance 
of group results were not affected whether including or excluding 
these subjects. Thus, these subjects were included in the 
presented results.

Instead of averaging pupil size data from the two eyes, 
which can introduce artifacts (e.g., abrupt discontinuities) when 
data are missing from one eye but not the other (due to 
baseline differences between the two eyes), we selected a priori 
to analyze the eye with the least amount of missing data (e.g., 

due to blinks and signal dropout due to eye/head rotations). 
Estimates of pupil size from commercial eye trackers can 
be  noisy due to challenges in fitting the pupil region with an 
ellipse in the presence of eye lashes, partial eye closures, 
squinting, eye rotations, and other factors. These factors can 
sometimes introduce artifacts that appear as very abrupt and 
large changes in pupil size from one sample to another that 
are physiologically unrealistic. To reduce these artifacts in the 
pupil time series, we  used an iterative velocity-based approach 
that examined the overall distribution of velocities over time 
and first identified all values that were greater than +2 SDs 
away from the mean and replaced them with not a number 
(NaN). It then used a more stringent criterion on the second 
iteration to remove values greater than +2.5 SDs from the 
mean to remove any remaining large outliers. These missing 
data points were then filled-in using linear interpolation of 
nearby data points.

A blink causes the eyelid to momentarily occlude the eye 
and causes a brief signal dropout because the eye is no longer 
visible to the tracker. Blinks were defined by short sequences 
of signal dropout that ranged from 50 to 500 ms of contiguously 
missing data. Missing data due to blinking were linearly 
interpolated using the best practice of also removing several 
data points (up to 50 ms) pre-blink and post-blink to remove 
potential artifacts due to partial eye closure surrounding each 
blink. We  used the procedure published in the PRET toolbox 
(Denison et al., 2020), which is based on the technique published 
by Mathôt (2013). This technique first smooths the data with 
an 11 ms Hanning window and uses a velocity-based threshold 

A B

FIGURE 1 | Overhead view of the task environment during the active visual search and navigation task (A), with symbols representing the location of various target 
types (Humvee, Motorcycle, Aircraft, or Furniture). For further illustration, (B) shows selected snapshots of the first person view during the task with a 700 × 700 pixel 
box surrounding fixation.
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to detect the onset and offset of each blink within a time 
window of +50 ms surrounding the epoch of missing data. 
The interpolated pupil size data and raw gaze position data 
were then downsampled to the same temporal resolution as 
the snapshot images (12 Hz) for subsequent analyses.

Data Analysis
We computed correlation maps representing the Pearson 
correlation coefficient between pupil size and every pixel within 
a large region (700 × 700 pixels) centered on gaze position 
(+350 pixels, or approximately 7.6 deg. in each direction) derived 
from the snapshot images. To account for the expected time 
delay between changes in brightness/darkness and changes in 
pupil size due to the well documented sluggishness of the 
PLR (Mathôt, 2018; Denison et al., 2020), we used an empirical 
approach to estimate an appropriate time delay by cross-
correlating pupil size with the RGB time series, and examining 
the peak temporal offset that maximized the correlation. 
We  repeated this for every color channel (three channels) and 
subject (34 subjects), which resulted in a normal distribution 
of time lags with a mean = 469.4 + 140 ms and median = 500 ms 
(i.e., six frames at 12 Hz). This value is within the range of 
expectations according to prior literature (Ellis, 1981). Based 
on these results, we decided to fix the temporal offset at 500 ms 
for all subsequent analyses prior to computing correlation 
coefficients by shifting the pupil time series forward by six 
frames (500 ms) relative to RGB luminance. Of note, 
we  performed follow-up analyses to investigate the influence 
of temporal offsets by varying the length of the temporal offset 
between 0 (no pupil lag) and 1,000 ms and found that the 
overall pattern of results was highly robust to the choice of 
lag value.

For computational tractability with these rather large image 
stacks, we  downsampled the images by a factor of 10, from 
70 0× 700 to 70 × 70 pixels, where each pixel in the correlation 
map was associated with the average intensity of a 10 × 10 
block of pixels (approximately 0.2 deg.) with reference to the 
original resolution. When the gaze position was too close to 
the edge of the screen (i.e., within 350 pixels), we  replaced 
pixels in the square window that would have fallen off-screen 
as NaNs in the image stack so they would not be  incorporated 
into the correlation analysis. The total amount of missing image 
data (NaN values) due to fixations near the edge of the screen 
was 6.47%, and the percentage reached a maximum of 18% 
for pixels at the very top of the images. A figure representing 
the proportion of NaN values across space resulting from this 
procedure is shown in Supplementary File 1.

Because correlation coefficients are distributed non-normally, 
we performed a Fisher Z transform prior to computing group-
level statistics (Dunn and Clark, 1969; Lenhard and Lenhard, 
2014). We  examined the consistency of spatial patterns in the 
correlation maps at the group level by averaging Fisher 
Z-transformed correlation maps across subjects and performing 
one-sample t-tests on a pixel-by-pixel basis comparing the 
distribution of values to the null hypothesis of 0 (no correlation). 
Due to the large number of pixels (4,900) included in this 
analysis, we used the procedure from Benjamini and Hochberg 

(1995) commonly used in fMRI to control the false discovery 
rate (FDR). We  set a conservative criterion of FDR = 0.01 for 
analysis of pixels in the correlation maps.

To compare between each pair of color channels directly, 
we  computed dependent-samples correlations (Williams, 1959; 
Steiger, 1980), as recommended by Steiger (1980), which tested 
the hypothesis that a pair of color channels was equally correlated 
with pupil size using a t-distribution. This statistical test is 
appropriate in such cases when two repeated-measures variables 
(i.e., two color channels) derived from the same individual 
are correlated with a third variable (i.e., pupil size). High 
t-values provide evidence to reject the null hypothesis and 
indicate a significant difference in the strength of the correlation 
between pupil size and one color channel vs. another 
color channel.

Due to the inverse relationship between luminance and pupil 
size, where an increase in brightness causes a pupillary 
constriction and a decrease causes dilation, we  expected a 
negative relationship between pupil size and RGB luminance 
and therefore that pixels with a stronger influence on pupil 
size would show larger negative correlations. Similar to other 
research areas, for example, that use reverse correlation to 
construct maps that reveal the influence of patterns of stimulus 
information on behavior (Gosselin and Schyns, 2001; Thurman 
et  al., 2010; Thurman and Lu, 2013), we  expected that the 
correlation map technique used here would be powerful enough 
to uncover fine-scale spatial patterns to characterize the influence 
of individual pixel intensities on pupil size. Consistent with 
research showing an effect of eccentricity such that the strength 
of the PLR is strongest for stimuli presented near the fovea 
and is systematically weaker for stimuli presented farther away, 
we hypothesized a foveal bias in the correlation maps (Figure 2) 
indicating that the visual system would pool luminance 
information from a focal region surrounding gaze position to 
modulate pupil size. An alternative possibility, however, would 
be that pixels were weighted in an anisometric pattern reflecting 
a broader contextual influence of luminance information on 
pupil size. In the absence of a specific theoretical prediction, 
an unexpected pattern, such as this would be  interesting and 
informative, but would require post hoc analysis for interpretation.

Results
Behavior
The analyses presented in this paper were focused on 
characterizing the relationship between pupil size and RGB 
scene statistics over the course of a visual search task in a 
virtual environment. Though our analyses are agnostic to 
behavioral performance in this task per se, it is relevant to 
report whether subjects were on-task and successful in reporting 
the correct number of target objects to be  identified, and the 
correct answers to the mental math questions (see Task and 
Procedure). In terms of identifying and recollecting the number 
of targets (there were 15 target objects total for each condition), 
25% of subjects reported exactly 15 targets but 71.9% of subjects 
did report at least 14 targets (range 5–32 targets). The variance 
could have been due to a misunderstanding by some subjects 
regarding which objects seen were supposed to be  part of the 
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target class they were assigned (Humvees, Motorcycles, Aircraft, 
or Furniture). On average, subjects had a mean accuracy of 
75.2% in reporting the correct sum for the mental math 
questions and 94.3% of subjects got at least one of the three 
math questions correct. The behavioral results indicate that a 
majority of subjects were on-task in performing the visual 
search and mental math tasks as instructed.

Correlation Maps
The correlation map analysis allowed us to explore how different 
regions (at the pixel level) surrounding gaze position contributed 
to pupil size fluctuations relative to other regions. Critically, it 
does not assume a particular spatial pattern underlying the 
relationship between color luminance and pupil size; rather, 
the correlation maps allow us to discover patterns in the data. 
Figure  3 shows mean group-level correlation maps (left) for 
each color channel as well as thresholded statistical maps  
(t-scores; middle) highlighting pixels in which the distribution 
of correlation values between-subjects was significantly different 
from zero (FDR < 0.01). The subpanels in Figure 3 (right) show 
correlation maps derived from each individual subject to help 
visualize consistency of results between-subjects. We  observed 
that the spatial patterns of these individual correlation maps 
were not as consistent from subject to subject for the red channel 
(Figure  3, top row), but were much more consistent for the 
green and blue channels (Figure  3, middle and bottom rows). 
In particular, the green and blue channels revealed a systematic 

bias showing a much stronger negative correlation for pixels 
above fixation compared to pixels below fixation. To evaluate 
this apparent upper bias in the blue channel for each subject 
statistically, we  performed a t-test comparing the distribution 
of correlations above fixation to those below and found that 
33/34 subjects showed a statistically significant difference (p < 0.05). 
There was no such consistency in the red channel across subjects, 
indicating a blue-green specificity for this upper visual field bias.

Contrary to the foveal bias hypothesis that predicted pixels 
nearest to fixation would correlate the most with pupil size 
(Figure  2), the correlation maps did not reveal an isometric 
influence of pixels in a circular region around fixation, nor 
did it show a pattern consistent with a non-linear weighting 
of pixels as a function of the distance from fixation (e.g., a 
Gaussian blob). Instead, the correlation maps showed the 
opposite pattern in which pixels closer to fixation were relatively 
less correlated with pupil size as evidenced by the statistically 
non-significant (n.s.) regions nearest to fixation in the thresholded 
t-score maps (Figure 3, middle column). Inspecting the individual 
subject maps, this result appears to be  driven by inconsistency 
between-subjects in the central region, in which some subjects 
actually showed a positive relationship between pixel luminance 
and pupil size (yellow areas of the individual maps) and other 
subjects showed the opposite effect or, in most cases, a weak 
relationship in the central region. These results provide evidence 
decidedly against the foveal bias hypothesis and strongly support 
that contextual information outside the fovea can significantly 
modulate pupil size.

In the analyses presented above, the correlation maps illustrated 
pixels that were significantly correlated with pupil size with 
reference to the null hypothesis of no correlation (e.g., r = 0), 
but do not indicate whether the correlation for one color channel 
was significantly greater than another color channel. To compare 
between pairs of color channels, we  performed a comparison 
of correlations for dependent samples that takes into account 
the within-subjects correlation of two variables (i.e., color 
channels) with a third variable (i.e., pupil size) as well as the 
correlation between the two variables (Williams, 1959; Steiger, 
1980). As shown in Figure  4, the comparison of Blue-Red 
(left) and Green-Red (middle) revealed that the correlation of 
pixels in the upper part of the visual field was significantly 
more negative for both Blue and Green in comparison to Red. 
The comparison of Blue-Green (right) further showed that blue 
was significantly more correlated with pupil size than green 
for a smaller subset of pixels at the very top of the map. There 
were no significant differences among the color channels for 
pixels in the lower part of the visual field. This result further 
demonstrates that information in the blue and green channels, 
specifically located above fixation, had a dominant and 
disproportionate influence on pupil size that was much stronger 
than the red channel throughout the active visual search task.

Green and blue showed a similar pattern of results in the 
correlation maps, in part, because they were strongly correlated 
over time, specifically for pixels located in the sky region. In 
an attempt to isolate the influence of green vs. blue, we performed 
a follow-on analysis that converted the images from 8-bit RGB 
image space to CIELAB space, which is an alternative representation 

FIGURE 2 | Visual representation of the foveal bias hypothesis for the 
correlation map analysis of Experiment 1. Due to the density of 
photoreceptors and sensitivity of the pupillary light response (PLR) to foveal 
vs. peripheral light stimulation, we predicted that pixels nearest fixation would 
correlate the most negatively with pupil size over time, and pixels further away 
would correlate less. The predicted negative correlation is due to the inverse 
relationship between light intensity and pupil size in which increases in 
luminance induce constrictions of the pupil.
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of an image in a three dimensional space that is more aligned 
with human perception. The three channels of CIELAB space 
include L* which is a representation of luminance on a scale 
of 0 (lowest luminance) to 100 (highest luminance), a* which 
is a representation of red-green chromaticity on a scale of −100 
(more red) to 100 (more green), and b* which is a representation 
of blue-yellow chromaticity on a scale of −100 (more blue) to 
100 (more yellow). We  computed correlation maps using the 
same procedure as before, except in this case, we  used pixel 
values represented in the three channels of L*a*b* space.

Results of this analysis are shown in Figure 5. The correlation 
map associated with the luminance channel (top row) showed 
a similar pattern to green and blue from the original analysis, 
in which the luminance of pixels above fixation had a statistically 

significant and disproportionate influence on pupil size. Figure 5 
(middle row) shows that information in the a* channel was not 
very strongly correlated with pupil size, indicating that chromaticity 
along the red-green dimension was not a predominant signal 
influencing pupil size. By contrast, Figure 5 (bottom row) shows 
that information in the b* channel, representing chromaticity 
along the blue-yellow dimension, had a striking association with 
pupil size, particularly for pixels above fixation. The significant 
positive correlations in this map indicate that pupillary constrictions 
(reductions in pupil size) were associated strongly with increases 
in blue chromaticity (more negative values in b* space). This 
result provides additional clarity to the RGB results, and further 
evidence to suggest that there is a highly specific sensitivity of 
the PLR to visual patterns that indicate a blue sky is overhead.

FIGURE 3 | Results of the correlation map analysis for the red (top row), green (middle row), and blue (bottom row) channels, illustrating the correlation between 
fluctuations in pupil size and pixel intensity in a 700 × 700 pixel square region surrounding fixation. Group mean correlation maps (left) are shown with a black circle 
as a reference to indicate the center of gaze. We computed the t-score on Fisher Z-transformed correlation values for each pixel to derive statistical maps (center) 
and applied a false discovery rate threshold (FDR = 0.01) with non-significant pixels (n.s.) represented as white. Individual maps for each of 34 subjects (right) are 
shown to visually inspect the consistency of results across subjects.
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EXPERIMENT 2

In Experiment 1, we  found that there was a stronger negative 
correlation between pupil size and blue pixels located in the 
top portion of images relative to fixation. We  hypothesized 
this result as being associated with a “blue sky effect,” or a 
blue light from above effect (Suzuki et al., 2019). This hypothesis 
is motivated by three features of the visual system; first, that 
it is biased toward perceiving blue light as brighter; second, 
that it incorporates expectations (i.e., priors) of the structure 
of the environment such that visual patterns associated with 
sunlight from above are associated with an expectation of 
increased brightness; third, that the PLR has adapted to have 
increased sensitivity (indexed by a stronger PLR) to such 
patterns associated with sunlight from above (e.g., a blue sky).

To test whether the aforementioned effect can be explained 
by increased sensitivity to blue light above fixation, we designed 
a follow-up experiment that presented luminance-matched 
color stimuli (red, green, and blue) separated by either the 
horizontal or vertical meridian of the computer screen and 
paired with luminance-matched gray on the other side of 
the screen. We  hypothesized that (i) blue would result in a 
larger constriction of pupil size due to a general bias or 
sensitivity to blue light, (ii) that blue light above would induce 
larger pupillary constrictions compared to blue light below, 
and (iii) that this effect would be specific for the blue channel 
and this orientation. These hypotheses are consistent with 

data presented in Experiment 1, and an ecological perspective 
that years of experience in the world with a blue sky (correlated 
with sun brightness) has adapted the system to anticipate 
or exaggerate the PLR specifically when blue is overhead.

Participants
Thirty subjects with reported normal vision participated in 
this study. Due to the fact that interpolation introduces significant 
distortions in the shape of the PLR, we  excluded trials in 
which a blink occurred in the first 1,500 ms following stimulus 
onset. Accordingly, we  removed subjects from analysis if they 
had too many trials discarded due to ill-timed blinks according 
to the following criterium: (1) they must have had at least 
one valid (non-blink) trial for each condition (12 total conditions) 
and (2) at least 50% of trials overall must have been valid 
(non-blink). In total, 15 subjects (five females, 10 males, 
mean = 20.3 + 3.46 years) met these criteria and were included 
in the analysis. All subjects signed an informed consent form 
approved by the Institutional Review Board (ARL 20–014) 
prior to participation and completed a demographics 
questionnaire. The experimental protocol and human subjects 
procedures were in compliance with the Declaration of Helsinki.

Task and Procedure
This data set was collected as a part of a larger data collection 
effort, where subjects first completed an attentional cueing task 

FIGURE 4 | Maps showing pixel-wise t-scores (top row) for the comparison of correlations for dependent samples, comparing blue-red channel (left), green-red 
channel (middle), and blue-green (right). Thresholded versions of the same maps (bottom row) showing significant pixels (FDR < 0.01) colored by t-score according 
to the color map and non-significant pixels represented as white.
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prior to completing the light from above task. The study had 
a total duration of 40 min and the task (described below) had 
a duration of 7 min. Only data from this specific task is reported 
here. After realizing that several early subjects were blinking 
too often during the first 1,500 ms of each trial, we  modified 
our instructions asking subjects explicitly to withhold blinks 
for the first several seconds following stimulus onset. This 
resulted in less blinks during the critical period of the PLR 
for subsequent subjects.

In this task, we  split the computer screen along either the 
horizontal or vertical meridian, with one half of the screen 

colored gray and the other size colored with luminance-matched 
red, green, or blue. The order of stimulus presentation was 
pseudorandomized and counterbalanced by three color conditions 
(red, blue, and green), and four location conditions (top, bottom, 
left, or right) resulting in a total of 12 conditions (Figure  6A). 
A white fixation circle of 0.1 degrees was always present on 
the screen to help subjects maintain fixation. Each condition 
was repeated five times for a total of 60 stimulus presentations. 
Stimuli were presented for 300 ms followed by a black screen 
presented during the inter-stimulus-intervals (ISI) with a 
randomly jittered ISI between 3,000 and 5,000 ms (Figure  6B). 

FIGURE 5 | Results of the correlation map analysis for images transformed to CIELAB space with L* (top row), a* (middle row), and b* (bottom row) channels, 
illustrating the correlation with pupil size of each of the three dimensions in a 700 × 700 pixel square region surrounding fixation (similar to Figure 3). In CIELAB 
space, L* represents luminance on a scale of 0–100, a* represents chromaticity along the red (−100) and green (+100) axis, and b* represents chromaticity along 
the blue (−100) and yellow (+100) axis. Group mean correlation maps (left) are shown with a black circle as a reference to indicate the center of gaze. We computed 
the t-score on Fisher Z-transformed correlation values for each pixel to derive statistical maps (center) and applied a false discovery rate threshold (FDR = 0.01) with 
non-significant pixels (n.s.) represented as white. The positive correlation for pixels above fixation in the b* channel (bottom) indicates that decreases in pupil size 
(e.g., light-induced pupillary constrictions) were strongly associated with more negative values in b* space (e.g., increases in blue chromaticity). Individual maps for 
each of 34 subjects (right) are shown to visually inspect the consistency of results across subjects.
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The luminance of the stimuli was measured using the same 
spectrophotometer (SpectraScan Spectroradiometer PR-745) and 
protocol as in Experiment 1.

As shown in Figure  6C, all colors fell within the range of 
16.6–19.4 cd/m2 [red (135,0,0) = 16.59 cd/m2, green (0,77,0) =  
18.23 cd/m2, blue (0,0,255) = 19.28 cd/m2, and gray (66,66,66) =  
19.43 cd/m2]. We  chose this range of luminance on the basis 
of maximizing luminance in the blue channel to evoke the 
strongest possible PLRs; then, finding the RGB triplet in each 
color channel that was the best match to the maximum luminance 
of blue (19.28 cd/m2) based on our measurements with the 
spectroradiometer. Figure  6D shows the color spectrum plot 
for each stimulus used in the experiment.

The task was programmed in Matlab (2014a, The MathWorks, 
Natick, MA) and the Psychophysics Toolbox (3.0.14) was used 
for stimulus presentation (Brainard, 1997; Pelli, 1997). Stimuli 
were presented on a 2,560 × 1,440 Acer XB271HU monitor 
with a 120 Hz refresh (Windows 7 64-bit, Nvidia GeForce GTX 
660 video card, Intel i7-4770K 4-core 3.5 GHz CPU, 16 GB RAM).

Eye-Tracking Data Collection
Eye-tracking data were acquired in pupil-corneal reflection 
tracking mode (centroid pupil tracking) from the left eye, 
sampled at 1,000 Hz using the EyeLink 1,000 Plus eye tracker 
(SR Research, Ontario, Canada). Subjects were seated 75 cm 
from the monitor, while positioned in a chin rest to minimize 
head movements, and underwent a nine-point calibration 
procedure. Subjects recalibrated until an average validity error 
less than 1 deg. was obtained.

Data Preprocessing
Pupil size data output from the EyeLink device is recorded 
in arbitrary units, so we  first normalized pupil size on each 
trial to percent signal change by subtracting the pre-stimulus 
baseline, and then dividing by the baseline and multiplying 
by 100. The baseline was defined as the mean pupil size in 
the interval of 500 ms prior to stimulus onsets. We then averaged 
all valid trials (trials without blinks) associated with each 
condition within-subjects for subsequent group-level analyses.

A

C D

B

FIGURE 6 | Illustration of all 12 stimuli in the experiment (A) sorted by color in rows and location in columns. Schematic of the task procedure (B) shows that 
subjects fixated on a white dot and were presented each stimulus for 300 ms followed by an inter-stimulus interval (ISI) with a black screen for 3–5 s. Stimuli were 
luminance matched using measurements from a spectroradiometer (C) to evaluate the specific influence of color and location on the PLR, while controlling for 
overall luminance between conditions, which ranged from 16.6 to 19.4 cd/m2. The color spectrum plot (D) shows radiance as a function of wavelength derived from 
the spectroradiometer for each color stimulus.

128

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Thurman et al. Blue Sky Effect on Pupil

Frontiers in Psychology | www.frontiersin.org 11 December 2021 | Volume 12 | Article 748539

Data Analysis
Our analysis focused on characterizing and comparing the 
strength of the PLR, which is a ballistic constriction of the 
pupil initiated by the onset of a relatively brighter stimulus. 
Stimuli on each trial were always paired such that a colored 
stimulus (red, green, or blue) was presented with a luminance-
matched gray (Figure  6A), so mean luminance across the 
entire screen (and between color conditions) was near constant 
(ranged from 16.6 to 19.4 cd/m2). Therefore, any difference 
in the strength of the PLR would be  the result of differential 
sensitivities related to color spectrum, visual field location 
(top, bottom, left, and right), and/or an interaction between 
these two factors.

We quantified the strength of the PLR by identifying the 
minimum value (PLRmin = peak pupillary constriction) in the 
time interval from 0 to 2 s post-stimulus onset. We  ran a 
repeated-measures ANOVA on PLRmin values with two factors 
including color (red, green, and blue) and color location 
(top, bottom, left, and right) to evaluate main effects and 
interaction effects between these factors. We  corrected any 
violations from the assumption of sphericity with the 
Greenhouse-Geisser correction. Planned comparisons were 
also performed to assess the strength of the PLR specifically 
for top – bottom and left – right conditions to derive a set 
of difference scores for each color channel. We  evaluated 
one-sample t-tests on these difference scores to assess whether 
the distribution was significantly different from the null 
hypothesis of zero. A difference score of zero would indicate 
that the relative location of the color did not impact the 
strength of the PLR, whereas a score significantly different 
from zero would indicate an effect due to the location of 
color (top compared to bottom or left compared to right). 
To correct for multiple comparisons (six total, two difference 
scores by three colors), we report adjusted p-values for t-tests 
using the Benjamini and Hochberg (1995) procedure to control 
the false discovery rate (FDR = 0.05).

Results
Pupillary light response waveforms for each condition are shown 
in Figure  7 (top), organized by color and orientation. The 
repeated-measures ANOVA revealed a significant main effect 
of color [F(2,28) = 43.67, p < 0.001, η2 = 0.56] due to blue being 
associated with a much stronger PLR (mean = −44.3%, SE = 2.0%) 
by comparison to red (mean = −37.7%, SE = 2.0%) and green 
(mean = −37.2%, SE = 2.0%). The main effect of location was 
not significant [F(3,43) = 0.76, p = 0.52], but we  did find a 
significant interaction effect between color and location 
[F(6,84) = 2.72, p = 0.018, η2 = 0.03] indicating that the influence 
of color was also modulated by its location on the PLR.

To further probe this interaction effect, we  conducted 
one-sample t-tests on the PLRmin difference scores for each 
color channel and orientation type (vertical or horizontal; 
Figure  7, bottom). Blue-top – blue-bottom was the only 
comparison that was significantly different from zero 
[t(14) = −3.60, p = 0.003, FDR < 0.05] indicating that the PLR 
was significantly greater specifically when blue was located 

on top compared to when blue was located on bottom. All 
other comparisons (red/top-red/bottom, red/left-red/right, 
green/top-green/bottom, green/left-green/right, and blue/left-
blue/right) were non-significant (all values of p > 0.05, 
FDR > 0.05). This effect could not be  explained by baseline 
differences in pupil size prior to the stimulus, as the 500 ms 
mean pre-stimulus baseline pupil size for blue-top was 913 a.u. 
(SD = 256 a.u.) and for blue-bottom was 926 a.u. (SD = 282 a.u.), 
and the t-test indicated a non-significant difference in baseline 
pupil size, t(14) = 0.53, p = 0.6. In fact, there was a 
non-significant difference in baseline pupil size for all 
comparison pairs (p > 0.05), ensuring that differences in 
baseline pupil size could not explain this pattern of results. 
This highly specific effect for blue was consistent with our 
hypotheses that the response of the pupil to blue light would 
be  greater than red and green, and also that blue on top 
would induce a significantly larger PLR than blue on bottom. 
The specificity of this result is consistent with the hypothesized 
blue sky effect and provides a potential explanation for the 
significant contextual effect in Experiment 1, in which blue 
pixels above fixation had the strongest modulatory effect on 
pupil size.

DISCUSSION

In this study, we  leveraged a unique data set in which subjects 
performed a navigation and active visual search task in a 
complex 3D virtual environment to examine the relationship 
between fluctuations in pupil size and dynamic visual scene 
statistics. Our primary goal was to better characterize how 
the pupil is influenced by rapid changes in complex luminance 
patterns associated with realistic scenes. We did this by correlating 
pupil size and pixel intensities in the RGB channels of the 
image in relation to the center of gaze as subjects actively 
performed the task. A primary motivation for this work is 
that while there are many published studies that have 
characterized the PLR in controlled laboratory experiments, 
most of these studies use simplistic stimuli and longer stimulus 
durations that do not match the complexity and high temporal 
rate of change of luminance in realistic visual scenes. It is 
unknown the extent to which findings from these studies will 
generalize to complex environments to enable effective use of 
cognitive pupillometry in less constrained task environments 
and real-world applications. We  tested whether three findings 
from previous literature on the relationship between pupil size 
and luminance would generalize to a naturalistic task: (i) pupil 
size is more strongly influenced by luminance inputs near the 
fovea, (ii) pupillary responses to light are modulated by color 
spectrum effects (given equal luminance), with a specific 
sensitivity to blue light, and in Experiment 2, and (iii) that 
pupil size is more strongly influenced by blue light, specifically 
when it is located above fixation.

No Fovea Bias
We hypothesized a foveal bias in the correlation maps, consistent 
with research showing that stimuli nearer to fovea induce 

129

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Thurman et al. Blue Sky Effect on Pupil

Frontiers in Psychology | www.frontiersin.org 12 December 2021 | Volume 12 | Article 748539

stronger PLRs than stimuli in the periphery (Crawford and 
Parsons, 1936; Legras et  al., 2018; Hu et  al., 2020). This 
prediction is also related to the structure of the human visual 
system as the distribution of photoreceptors changes 
dramatically as a function of distance from the fovea, and 
there are significant differences in visual function between 
foveal, parafoveal, and the peripheral regions (Preuschoff et al., 
2011; Strasburger et  al., 2011). Previous research has shown 
that cone mediated pupil responses to photopic light (i.e., 
simple circular patches of light stimulus) are maximal up to 
7 degrees of visual angle, and has reasoned that the decrease 
in response may be  due to the drop off in cone density after 
7 degrees (Legras et  al., 2018; Kelbsch et  al., 2019). Our 
data, however, did not support this hypothesis, instead revealing 
a robust and unpredicted pattern in the correlation maps. 
Pixels very close to gaze position actually tended to correlate 
the least strongly with pupil size. This pattern was most 
prominent for the red channel, in which all of the pixels 
within about 2–3 degrees from fixation were not significantly 
associated with pupil size, but it was also apparent in the 
blue and green channels.

Blue Sky Effect
The correlation maps instead showed evidence to support a 
strong contextual influence on pupil size associated with the 
presence of blue occurring above fixation in the environment, 
that we  refer to as the “blue sky effect.” Our finding that blue 
varies more strongly with pupil size compared with red or 
green (Figure  4) is consistent with previous research. For 
example, the Helmholtz-Kohlrausch effect indicates that color 
saturated light is perceived as being brighter than light that 
is less saturated at equiluminance, and that this effect is increased 
for particular wavelengths including blue (Wood, 2012; Suzuki 
et al., 2019). Likewise, eye-tracking studies find that a perceived 
increase in brightness coincides with pupillary changes (Sulutvedt 
et  al., 2021), with a stronger effect for blue light (Suzuki 
et  al., 2019).

In addition to the finding that blue light enhances the PLR, 
we found that this effect was specific to occurring above fixation. 
This result was highly consistent across subjects as observed 
in the individual correlation maps for the green and blue 
channels (Figure  3, right). While location of fixation was not 
experimentally manipulated or controlled in this analysis, these 

FIGURE 7 | Results of Experiment 2 showing the PLR for each condition (top), organized by color and orientation (i.e., horizontal and vertical) along the x-axis. 
Statistical tests were conducted on the distribution of PLRmin difference scores (bottom) across subjects (i.e., individual dots) for each planned comparison of each 
type of color/orientation combination. The only significant effect (p < 0.02, FDR < 0.05) was the comparison of blue on top minus blue on bottom (indicated with *) 
showing that blue on top induced a significantly larger PLR than blue on bottom.
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results indicate that fixations toward the horizon may have 
comprised the majority of fixations. When this well-matched 
visual pattern of blue on top and terrain on bottom fell onto 
the retina, it induced robust pupillary responses that accounted 
for a large degree of variance in the pupil signal by comparison 
to other areas or features of the environment. One surprising 
aspect to this finding is that the blue sky itself had lower 
luminance intensity compared to the terrain below, which was 
composed of more red and green hues that tend to carry 
stronger luminance signals (See Supplementary File 1). So 
while the strength of the luminance signal tended to be stronger 
below fixation, it was the specific temporal pattern of blue 
luminance above fixation that correlated most with pupil size, 
indicating the strength of this contextual effect.

Confirming the “Blue Sky Effect”
To confirm this finding and evaluate whether the “blue sky 
effect” has a more generalized effect on the PLR, we  ran a 
second experiment with a controlled task to assess whether 
the PLR is indeed stronger, specifically, when blue is seen 
above fixation. The experimental procedure was careful to 
match the luminance level across color stimuli (gray, blue, 
red, and green). The only variables that were manipulated on 
each trial were the color presented (paired with gray) and its 
location (on top, bottom, left, or right). Results showed that 
the PLR was indeed stronger for blue stimuli in comparison 
to green and red, which replicates results from prior studies 
(Suzuki et  al., 2019). Importantly, the results also showed a 
specific effect in which the PLR was strongest when blue was 
presented on top compared to on bottom. There were no other 
statistically significant effects associated with the relative location 
of other color stimuli. This result provides additional support 
to the blue sky hypothesis, suggesting that the PLR is influenced 
most strongly by blue light, and in particular, when blue light 
is present above fixation.

An evolutionary and ecological perspective can provide a 
speculative explanation of the observed blue sky effect on the 
PLR. A primary function of the pupil is to constrict in response 
to a sudden bright stimulus and to dilate in response to relatively 
dark stimuli in order to maintain optimal acuity under a wide 
range of visual conditions, and perhaps also to protect the 
photosensitive retina from very strong levels of brightness 
(Mathôt, 2018). Through lifetimes of experience on earth, a 
mechanism may have evolved within the circuit that controls 
the PLR to be  particularly sensitive to visual patterns that 
indicate a person is outdoors in sunny, daytime conditions, 
and to constrict in anticipation of the subsequent strong levels 
of brightness (Laeng and Endestad, 2012; Zavagno et  al., 2017; 
Suzuki et  al., 2019). While the present study cannot shed light 
on the purpose or specific mechanisms supporting the observed 
heightened sensitivity of the pupillary system to blue light from 
above, future studies may be  designed to better ascertain the 
underlying mechanisms driving this effect. For example, it would 
be  informative to test whether other species show a similar 
sensitivity to blue light from above or to examine the strength 
of this effect in special populations, such as those with color 
blindness or other visual disorders. If instead this effect were 

merely due to unequal distributions of short wavelength sensitive 
photoreceptor cells in the retina, then we might expect between 
subject variability in receptor density to correlate with the 
strength of the blue light from above effect on the PLR.

Practical Implications
There remain substantial challenges to enabling reliable inference 
of pupil-linked states in complex or uncontrolled visual 
environments outside the laboratory due to the fact that multiple 
neural systems combine to influence the unitary pupillary signal 
(the sequence of constrictions and dilations over time). Change 
in pupil size can reflect mental states over a range of temporal 
scales, from transient processes related to attention (Nieuwenhuis 
et  al., 2011; Preuschoff et  al., 2011; Geva et  al., 2013; van den 
Brink et al., 2016) and decision making (Einhauser et al., 2010; 
Cavanagh et  al., 2014; Hoffing et  al., 2020) that unfold over 
a few seconds, to more general arousal and fatigue states 
(Franklin et  al., 2013; Hopstaken et  al., 2015; Unsworth and 
Robison, 2018) that unfold over a longer time period (Aston-
Jones and Cohen, 2005). As a result, it is difficult to disentangle 
whether the pupillary signal at any given point in time reflects 
the influence of a cognitive or non-cognitive factor (Mathôt, 
2018). One potential approach to tackle this challenge is to 
develop appropriate models to best account for complex luminance 
signals on pupil size and then examine the residual unaccounted 
for variance to better estimate cognitive-based effects.

The observed blue light from above effect on pupil size has 
practical implications for analysis of pupillary data in complex 
virtual environments and in real-world scenarios. For future, 
real-world systems that aim to measure environmental light 
to account for the influence of non-cognitive luminance effects 
on pupil size, it may be  pertinent to ensure that blue light is 
captured and modeled appropriately relative to other wavelengths 
to ensure the best prediction of light-induced pupillary 
fluctuations. It could also be  the case that a sensor specifically 
tuned to blue wavelength light may be  sufficient for some 
applications. There is, however, still much work to fully understand 
the efficacy of subtractive models that attempt to better 
characterize cognitive influences on the pupil by subtracting 
or factoring out estimates of non-cognitive influences. We believe 
that a major contribution of this work is in rejecting the foveal 
bias hypothesis for estimating the influence of luminance on 
pupil size in complex visual environments. It does not appear 
to be  the case that the visual system uses an area around the 
high density fovea as a sensor to pool luminance information 
for driving the PLR. The system instead seems more sensitive 
to global patterns of information and contextual cues, like the 
blue sky effect and perhaps others, in determining the appropriate 
pupil response to light in a given environment.

For controlled studies in cognitive pupillometry, this also 
suggests a prime importance for controlling the level (and visual 
patterns) associated with blue light in particular. Experimenters 
should be  careful to counterbalance conditions if color stimuli 
are used with variation along the color spectrum to avoid 
confounds that might influence interpretation of phasic pupillary 
responses to cognitive events. Such color spectrum effects should 
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also be  accounted for (or anticipated in the analysis) in these 
studies as equating luminance alone may not have the desired 
effect of equating the strength of the pupillary light response 
to differently colored stimuli. As shown here, the pupil response 
to a blue stimulus is significantly larger than to a red stimulus 
with well-matched luminance. As our data show, even the relative 
location of the blue stimulus (above or below fixation) can 
impact the strength of the pupil response. Further care should 
be taken in interpreting pupillary data, especially when examining 
pupillary responses to naturalistic or more complex stimuli that 
match the spatial structure of the blue light from above effect 
(e.g., blue predominantly in the upper part of the image).

Limitations
There are some limitations associated with the current study. 
The analyses in Experiment 1 focused on examining correlations 
(i.e., linear associations) between pupil size and RGB luminance 
over a rather long period of time (up to 15 min of data or 
8,000–10,000 contiguous data points). While this approach is 
well-suited for capturing longer timescale relational trends in 
the data, this analysis technique does not have sufficient temporal 
resolution to capture how momentary changes in luminance 
and/or scene characteristics influence ballistic changes in pupil 
size at short timescales (e.g., on the order of seconds or 
milliseconds). Our correlational analysis does show that increases 
in RGB luminance tend to be  associated with reductions in 
pupil size (and vice versa), as expected, but this approach 
does not shed light on the precise relationship between sudden 
changes in complex luminance patterns, whether due to eye 
movements or image dynamics, and the precise shape of the 
PLR. It is unclear the extent to which existing parametric 
models of the PLR to single transient changes in luminance, 
such as the gamma function (Korn and Bach, 2016), would 
extend to the rich, dynamic image sequences seen in a virtual 
environment like the one used in the current experiment. 
We did incorporate the expected time delay between luminance 
and pupil size (empirically derived to be  about 500 ms) in our 
correlational analyses, but did not convolve dynamic luminance 
patterns with a specific parametric impulse response function. 
It is unclear whether such models would better account for 
short timescale pupillary fluctuations and impact results of the 
current study, but poses an interesting question for future research.

Because the task was performed in a virtual environment of 
our design, which can be  described as a mountainous desert 
wasteland landscape, the set of images seen by subjects on the 
computer screen tended to have a particular spatial structure 
and spectral composition. The pattern of results we  observed in 
Experiment 1 are clearly influenced by this structure. For example, 
the correlation maps show correlation values that vary primarily 
in the vertical direction, but not the horizontal direction, likely 
due to the structure of the images themselves. In a horizontal 
slice of the image near the bottom there will tend to be  more 
red, brown, and grayish colors associated with the terrain and 
less variability from left to right. A horizontal slice in the upper 
part of many images would often consist predominantly of blue 
color associated with the sky, as long as subjects are looking 
toward the horizon (which was likely a common focal point for 

subjects as they navigated the virtual environment). If the 
experiment were run in a different virtual environment or even 
a real-world environment, it is likely that the structure of the 
correlation maps would change to reflect the prevailing spatial 
and spectral structure of those images. While this does not greatly 
impact the main finding in this paper that supported the contextual 
effect of the blue sky on pupil size, we  would expect differences 
in the structure of correlation maps depending on properties of 
the visual environment if future studies use this same approach.

Related to the complexity of the task, there is no doubt 
that various cognitive processes related to visual search, 
navigation, covert attention, working memory, etc., were 
ongoing throughout the task that lasted several minutes. 
Because, we  did not control these factors in the experimental 
design, as it was designed to be a free and active task, we had 
no way to account for such factors as covariates in the analysis 
– a situation that is pervasive in real-world cognitive 
pupillometry. The perspective of our correlation analysis was 
to essentially treat these cognitive processes as “noise” in the 
pupillary signal that would influence pupil size independently 
(and likely to a lesser extent) with respect to luminance 
information. We  do not believe that cognitive effects could 
explain the robust negative association we  found between 
pixel luminance and pupil size in this task, nor can they 
explain the reported blue sky effect in the correlation maps. 
If anything, the correlations we  measured are likely an 
underestimate of the actual strength of the influence of 
luminance on pupil size because of the unaccounted for 
“noise” introduced by continuous cognitive processes.

A subset of our participants were older than 60 years 
(n = 4), and with age there is a tendency for yellowing of 
the eye’s lens and changes in the perception of color, particularly 
blue light (Gaillard et  al., 2000; Michael and Bron, 2011). 
We  re-ran our analyses only for subjects with ages less than 
60 years (n = 30) and found that the pattern of results and 
level of statistical significance was not greatly impacted. In 
fact, all four of the subjects over 60 years showed a blue 
sky effect (significantly stronger negative correlation for blue 
pixels above fixation versus below). A recent study by Rukmini 
et  al. (2017) showed that while the strength of the pupillary 
light response is reduced overall with aging, the amount of 
reduction was similar for red (631 nm) and blue (469 nm) 
wavelength light. They concluded that yellowing of the lens 
does not selectively reduce melanopsin-dependent light 
responses as reflected by the pupillary light response for 
people over 60 years old. Our data are consistent with 
this finding.

Lastly, in Experiment 2, we were not able to perfectly equate 
luminance across colored stimuli (Figure  6C). Based on the 
measurements, we  obtained with the spectroradiometer in the 
lab, we  were only able to match luminance in a range from 
16.6 to 19.4 cd/m2, which is a very narrow range compared 
to the full spectrum (which ranges from 0–240  cd/m2), but 
the possibility remains that the response to blue stimuli was 
larger than red in Experiment 2 because of the luminance 
difference of 2.8 cd/m2. The dose-response curve is not well 
mapped out for PLR amplitude and incremental changes in 
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luminance for different wavelengths of light, so we  believe the 
possibility remains that the difference between red and blue 
could be  due to luminance per se, and not a color specific 
phenomenon in Experiment 2. We  will note that this potential 
confound does not affect our interpretation of the orientation-
specific blue sky effect because we  compared PLRs to stimuli 
within each color that were equiluminant and only varied by 
the location of the color.

CONCLUSION

In this study, we  examined correlations between pupil size 
and dynamic image statistics in the context of a free visual 
search and navigation task in a 3D virtual environment. 
We  found that blue and green pixel intensities had a 
disproportionately large impact on pupil size in comparison 
with the red color channel. Furthermore, we  found that visual 
scenes in which blue was predominantly overhead had the 
strongest influence on pupil size, which led us to hypothesize 
a “blue sky effect.” We  conducted a follow-up controlled 
laboratory experiment and found evidence consistent with our 
hypothesis, showing a specific sensitivity of the PLR to blue 
light when it is located above fixation. From an ecological 
perspective, we  speculate that the heightened sensitivity of the 
pupillary system to this visual pattern may be a useful adaptive 
response due to the persistent association between sunlight, 
large increases in brightness, and the blue sky in our daily 
lives. From a practical standpoint in terms of pupillometry 
research, the findings of this report suggest that equating 
luminance alone may be  insufficient to account for luminance 
effects on pupil size if multi-colored stimuli and/or naturalistic 
images are used in psychological research. More research is 
necessary to fully understand how best to account for the 
influence of light on pupil size for studies or applications in 
complex visual environments outside the laboratory.
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Using head mounted displays (HMDs) in conjunction with virtual reality (VR), vision 
researchers are able to capture more naturalistic vision in an experimentally controlled 
setting. Namely, eye movements can be accurately tracked as they occur in concert with 
head movements as subjects navigate virtual environments. A benefit of this approach is 
that, unlike other mobile eye tracking (ET) set-ups in unconstrained settings, the 
experimenter has precise control over the location and timing of stimulus presentation, 
making it easier to compare findings between HMD studies and those that use monitor 
displays, which account for the bulk of previous work in eye movement research and 
vision sciences more generally. Here, a visual discrimination paradigm is presented as a 
proof of concept to demonstrate the applicability of collecting eye and head tracking data 
from an HMD in VR for vision research. The current work’s contribution is 3-fold: firstly, 
results demonstrating both the strengths and the weaknesses of recording and classifying 
eye and head tracking data in VR, secondly, a highly flexible graphical user interface (GUI) 
used to generate the current experiment, is offered to lower the software development 
start-up cost of future researchers transitioning to a VR space, and finally, the dataset 
analyzed here of behavioral, eye and head tracking data synchronized with environmental 
variables from a task specifically designed to elicit a variety of eye and head movements 
could be an asset in testing future eye movement classification algorithms.

Keywords: head mounted display, eye tracking, eye movement analysis, virtual reality, smooth pursuit

INTRODUCTION

Understanding how the visual system operates in the natural environment is a fundamental 
goal of cognitive psychology and has consequences for a variety of other research fields such 
as human factors and advertising. The natural environment offers a complex and uncontrolled 
input of visual information, making it is difficult to isolate variables of interest and determine 
their effect on behavior. Alternatively, constrained laboratory experimentation offers precise 
control, while potentially limiting the generalizability to less confined environments. To this 
end, vision researchers have begun to strike a balance between the lab and real world by 
running experiments in virtual reality (VR) using head mounted displays (HMDs). Experimentation 
in VR enables research paradigms that allow for more naturalistic behavior in subjects,  
while still providing experimental control over stimulus presentation (Clay et  al., 2019).  
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For purposes of clarity, we  refer to the three-dimensional 
virtual environment, the digital X, Y, Z space in which one 
can present stimuli, via game engines such as Unity or Unreal, 
as VR (Watson et  al., 2019). HMD refers specifically to the 
video display worn on the head, where subjects are immersed 
in a 360° virtual environment. Using VR in combination with 
HMDs allows experimenters precise control over stimulus 
timing and location, while offering subjects superior (when 
compared to traditional computer monitor setups) depth 
perception, a wider field of view, and the ability to move 
the eyes and head as they would in the real world (see 
Discussion for a more nuanced discussion of the limitations 
of VR and HMDs).

Integrating eye tracking (ET) with HMDs has further 
extended the research potential for this technology (Jangraw 
et  al., 2014). Eye tracking has been an essential component 
in understanding how the visual system acquires information 
from a scene to build our internal perception. Measuring 
where the eyes foveate in a scene has been demonstrated in 
VR with HMD systems (Clay et  al., 2019) and has given 
insight into how scene gist influences eye fixations during 
search (Boettcher et  al., 2018) as well as how bottom-up and 
top-down influences guide the deployment of attention 
(Anderson et  al., 2015; Harada and Ohyama, 2019). How 
the eyes move around a scene also provides important insight 
into cognitive processes (Williams and Castelhano, 2019) as 
well as clinical applications (Baloh et  al., 1975; Terao et  al., 
2017; Ward and Kapoula, 2020). However, the vast majority 
of this research has been performed using a camera-based 
eye tracker and a two-dimensional monitor, which restricts 
the space stimuli are presented in and the subsequent behavior 
they induce. Newer technologies such eye tracking enabled 
HMDs, in addition to eye tracking glasses (ETGs), provide 
access to similar data but with the added benefit of tracking 
gaze in a 360° environment.

A growing effort has been made to study vision using 
more naturalistic scenes (Henderson et al., 2007; Dorr et al., 
2010; Wolfe et al., 2011; O'Connell and Chun, 2018). However, 
equally important to exploring vision in the context of 
natural input (i.e., real-world scenes), is to explore vision 
in tandem with natural movement. Both HMD with VR 
and ETGs offer the freedom to move the head and torso 
when viewing the environment. ETGs have the added benefit 
of also allowing the subject to walk around the environment 
unrestricted, whereas subjects are typically more limited in 
HMDs, having to rely on unnatural modes of transport 
such as teleportation to avoid collisions with physical objects 
and to maintain a position within the headset-tracking 
volume. However, HMDs do allow more natural movement 
on smaller scales (e.g., room-size) and ETGs do not control 
for stimulus presentation that can be variable and unpredictable 
in real environments and may be  less viable in situations 
such as training, where in situ exposure could be  dangerous 
and/or costly (e.g., a simulated battlefield). In either 
circumstance, the ability to quantify more complex and 
dynamic eye movement patterns observed is limited as the 
majority of classification algorithms were developed with 

static 2D stimuli, and do not generalized to naturalistic 
contexts (Agtzidis et  al., 2020).

The current work uses a visual discrimination task with 
unrestricted eye and head movement. Elicited patterns of 
activity are then classified based on the thresholds of I-S5T, 
which thresholds eye, head, and gaze (eye + head) speed 
(Agtzidis et  al., 2019). The original thresholding system 
was simplified to classify the following types of eye movements: 
saccades (a high-speed ballistic eye movement), fixation (a 
period of low to no eye speed), smooth pursuit (a period 
where the eyes are moving to foveate a moving stimulus), 
VOR (a period of low to no gaze speed but the eyes are 
moving in the head to compensate for head motion), and 
head pursuit (a period of low to no eye speed but gaze is 
moving, driven by head motion in order to foveate a moving 
stimuli). A secondary form of smooth pursuit was also 
classified as smooth pursuit with compensatory VOR (a 
period where gaze is moving to foveate a moving target 
and the eyes are moving relative to the head to compensate 
for head motion). This classification is tested during temporal 
epochs when smooth pursuit eye movements are likely (i.e., 
when subjects must track a moving stimulus) and compared 
to other epochs when smooth pursuit is unlikely (i.e., when 
the eyes must foveate a static object). As opposed to previous 
work that has used eye tracking with HMDs, presenting 
more complex or naturalistic scenes (e.g., 360° videos; Rai 
et  al., 2017; Haskins et  al., 2020; Kim et  al., 2020), here, 
stimulus presentation is strictly controlled while viewing 
behavior (i.e., the movement of the eyes and head) is not. 
The use of simplified stimuli, similar to those used in 
previous, 2D display paradigms, allows for an easier 
comparison to previous results in order to explore how 
head movements may interact with the execution of eye 
movements or underlying cognitive processes. The paradigm 
presented here is generated using a graphical user interface 
(GUI) specifically designed to allow future researchers to 
adapt stimulus parameters such as eccentricity and motion 
speed, in the continued effort to understand how well-studied 
eye movement phenomena may or may not change when 
subjects’ viewing is less restricted. The strict control of 
stimulus presentation is meant to elicit predictable eye 
movements such as saccades and smooth pursuit in the 
presence of head motion. This, coupled with the ground 
truth knowledge of the location of stimuli relative to the 
viewer’s gaze direction, makes this dataset uniquely beneficial 
to the development of more automated eye movement 
classification algorithms.

MATERIALS AND METHODS

Ethics Statement
This experiment was approved by the Institutional Review 
Board at the United  States Air Force Academy (USAFA) and 
United  States Army Research Laboratory (ARL) under Project 
Number ARL 19–122. All procedures were in accordance with 
the Declaration of Helsinki.
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Subjects
Twenty-four subjects (United States Air Force Academy cadets; 
nine female, average age 19.3 years) were tested and received 
course credit for their participation. Subjects were recruited 
through Sona Systems and provided written informed consent 
prior to experimentation. All subjects had normal or corrected 
to normal vision.

Apparatus
Experimental procedures were designed using the Unity gaming 
engine.1 Stimuli were presented to an HTC Vive VR headset 
(1,080 × 1,200 pixels per eye, 90 Hz refresh rate, 110° field 
of view) with integrated eye tracking from Tobii Technologies 
(120 Hz sampling rate, Tobii Pro SDK) using a Corsair One 
PC (Windows 10, Intel Core i9 CPU @ 3.6GHz, 64-bit, Nvidia 
GeForce RTX 2080Ti, 32 GB RAM) and two external lighthouses 
used for tracking head position. Subjects were given instructions 
and practiced to correctly position the VR headset prior to 
experimentation. Subjects were comfortably seated in a fixed 
position chair. The Tobii Vive was used here as it is a fully 
integrated system with an estimated accuracy of 0.5°. Other 
systems such as the Pupil Labs eye tracker can be  added to 
HMD systems and offer higher tracking frequency (200 Hz); 
however, there is slightly poorer tracking accuracy 
tracking (1.0°).

Lab Streaming Layer (LSL; available here: https://github.com/
labstreaminglayer/LSL4Unity) was used to synchronize eye and 
head tracking data with button responses and stimulus 
presentation. LSL is a network-based recording software designed 
to integrate multiple data streams with sub millisecond precision 
(Kothe, 2014).

Calibration
The standard five-point calibration contained in the Tobii 
Pro SDK was implemented before each block of trials. 
Calibration points were sequentially presented, one each at 
the four corners of an imaginary square and the middle 
point centered on the subjects forward gaze position (in 
Unity meters: corner points +/−0.3x, +/−0.15y, 1.2z, middle 
point 0, 0, 1.2). Subjects fixated the center of each point, 
which started at 0.1 m (4.77 degrees of visual angle, dva) 
in diameter, and shrunk down over the course of fixation 
until it became invisible, indicating a successfully registered 
calibration point. Each of the four calibration points was 
positioned 15.62 dva relative to the middle point. All points 
were presented in an orthogonal plane at a fixed distance 
of 1.2 m. If fixation was interrupted during calibration or 
the calibration point did not disappear, calibration was 
restarted. While, we did not record the number of calibration 
attempts or subsequent validation of the calibration, trials 
did not start until a successful calibration (i.e., all five points 
were fixated and registered by the software as completed) 
was accomplished. No subjects were removed due to 
poor calibration.

1 U. Technologies. Unity – game engine. http://unity3d.com/

Units of Measurement in Virtual 
Environments
Unity objects (stimuli) are defined in world coordinate using 
notional or approximate meters. However, a more precise and 
useful metric for vision scientists is dva. As such, both are 
reported in this paper. It is important to note that the degrees 
of visual angle are approximate. The screen inside the headset 
does not fully cover the natural human field of view, leading 
to a small binocular effect. The fields of view of the virtual 
cameras are manipulated to counter this effect to make using 
the headset more comfortable, at the cost of some slight 
size distortion.

Graphical User Interface for Paradigm 
Creation
To make this paradigm adaptable for future research, the GUI 
was included in the software development (Figure  1A). 
Researchers using the supplied code can leverage a GUI to 
change multiple parameters related to target size, target position, 
movement speed, quantity, randomization, trial numbers, and 
temporal contingencies.2 For example, researchers can set the 
size and rotation of targets. Likewise, researchers can change 
the perceived motion from an observer moving through a 
space of static disks to the disks moving past a static observer 
by changing whether the background moves with the participant 
or with the disks. Additionally, the GUI provides a number 
of status checks such as indicators that the eye tracker and 
hand controllers are connected. The intention behind the creation 
of this GUI was to lower the bar of entry for future researchers 
and provide a highly flexible generator of visual search or 
discrimination tasks. The parameters, cited below, were those 
used in the data reported here. Additionally, all parameters 
available in the GUI as well as a list of recorded data can 
be  found in the Supplementary Materials.

Visual Parameters and Trial Structure
In the virtual environment, a directional light (RGB: 1, 0.95, 
and 0.84) was used, rotated 50° in the x-axis and −30° in 
the y-axis in the Unity coordinate system. This had the effect 
of lighting the scene from over the subject’s right shoulder, 
directed toward their left foot. This ensured all target surfaces 
were lit. Furthermore, the light created shadows from surrounding 
objects to provide a sense of depth and create a realistic 
perception of motion in Dynamic trials (see details below).

Subjects performed 288 trials of a cued, two-alternative 
forced choice, target discrimination task. On each trial, subjects 
were instructed to foveate a recentering cross (0.18 m; 0.94 dva) 
placed 11 m in front of them. The recentering cross was 
surrounded by an array of white disks (RGB: 1,1,1), each 1 m 
in diameter evenly spaced on an imaginary circle (Figure  1B). 
Each of the surrounding white disks had the letter “O” at its 
center (RGB: 0,0,0). On each trial, one of the white disks was 
cued by turning yellow (RGB: 1, 0.92, and 0.016). Upon the 
appearance of the cue, subjects were instructed to make a 

2 https://osf.io/p8g94/
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saccade to the “O” in the center of the yellow disk as quickly 
as possible and foveate the center until a subsequent target 
was presented. The presentation of the cue was not gaze-
contingent meaning it would occur even if the subject’s eyes 
were not on the recentering cross. Simultaneously with the 
yellow cue presentation, a counterpart disk, at a diametrically 
opposite point along the ring relative to the cued disk, turned 

cyan (RGB: 0,1,1; Figure  1C). The cyan distractor disk was 
included for the purposes of piloting for a follow-up study 
using EEG in order to control sensory input between visual 
fields and prevent reflexive saccades. Our analyses focus only 
on the target disk and thus the counterpart cyan disk is not 
discussed further in this paper. After 600–1,600 ms the yellow 
disk turned red (RGB: 1,0,0) and simultaneously the “O” label 

A

B C D

FIGURE 1 | Paradigm schematic. (A) Graphical user interface (GUI) presented at the start of the experiment. Here, the researcher can input a number of parameters to alter 
stimulus presentation. This list includes target parameters such as size as well as the motion (or lack thereof) of the participant through the environment. A list of available 
parameters and the values set in the current experiment is included in the Supplementary Materials. (B) Start of a trial. Subjects foveate the recentering cross ahead of 
them. (C) Target indication phase. Subjects are told to saccade to the yellow disk in preparation for the target and ignore the cyan disk. (D) Target presentation. Subjects 
must maintain fixation on the yellow disk until the target is presented, at which time the yellow disk turns red and the “O” at the center of the disk is replaced with a “C” facing 
either the left or the right. Subjects report the direction of the “C” using the virtual reality (VR) controls and return their gaze to the recentering cross to await the next trial.
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was replaced with the target, a “C,” faced either to the left 
or right (Figure  1D). The interval between cue (yellow disk) 
and target (red with “C”) was used to allow subjects enough 
time to locate and saccade to the disk as well as provide 
variable of tracking the disk, relative to target onset. Subjects 
were told to use the VR controllers, one in each hand, to 
report if the “C” was open to the left or the right, an equally 
probable occurrence that required responses from the left and 
right controllers, respectively. The “C” was present for 1,000 ms. 
Subjects were instructed to return their gaze to the recentering 
cross as soon as a response was given. There was an average 
total of 6.4 s between the start of one trial (the onset of the 
cue) and the next. Responses were counted as valid if they 
occurred between the presentation of the target and the onset 
of the cue in the next trial. Only first responses were analyzed.

Subjects experienced both Static and Dynamic trials. In 
Dynamic trials, subjects “moved” through the environment at 
5 m/s. This movement was strictly in the virtual environment 
as subjects remained stationary in their chair throughout the 
experiment. The perception of motion was induced by controlling 
the lighting/shadows in the environment and moving the point 
of view camera through space. Dynamic trials were included 
in order to elicit smooth pursuit eye movements. The speed 
was chosen as a balance between wanting the eyes to move 
quickly enough to elicit smooth pursuit but not so fast that 
there was not ample tracking time before a cued disk passed 
out of view of the participant.

Disks were always cued (turned yellow) 32 m from the 
subject in the Dynamic trials. In the Static condition trials, 
the disks were stationary and were cued either 13 or 32 m 
from subjects. This translated to the disk being approximately 
4.4 dva when cued at its closest (13 m) location and 1.8 dva 
at the farthest (32 m), relative to the subject. Consequently, 
the “O” (and subsequent “C”) on the disks were then 1.89 dva 
at 13 m from participants and 0.77 dva at 32 ms from participants. 
The two cueing distances were used to make Static trials more 
comparable to Dynamic where the cue traveled closer to the 
subject throughout the trial. Disks were cued in the periphery 
(20 dva from the recentering cross) and the parafovea (6 dva 
from the recentering cross) in both Dynamic and Static trials. 
Target disks and cue durations were randomly selected using 
a random seed generator. All subjects performed the task using 
the same seed. That is, each subject experienced the same 
random order. Subjects performed two blocks of 48 trials in 
the Static condition, where the cued disk was 13 m from the 
subject, the Static condition where the cued disk was 32 m 
from the subject, and the Dynamic condition. The block order 
was counterbalanced. Calibration was performed prior to each 
block. Data from each participant can be  found online at 
https://osf.io/p8g94/.

Simulator Sickness Questionnaire
A concern in VR with HMD experimentation is inducing simulator 
sickness in subjects due to the discrepancy between task-induced 
motion in the virtual environments and the lack of motion in 
the real environment. Simulation sickness was measured using 
the Simulator Sickness Questionnaire (SSQ; Kennedy et al., 1993) 

before and after the experiment. While the SSQ was designed 
to measure simulator sickness in flight simulators many researchers 
have adopted its use in VR environments (see Saredakis et  al., 
2020, for a review). Subjects rated 16 symptoms on a four-point 
scale (0–3), which were factored into three categories (Oculomotor, 
Disorientation, and Nausea) and computed into a Total score.

Eye Movement Classification and 
Validation
Tobii interpolates eye position coordinates for dropped samples 
(e.g., blinks or missing eye image) but does not interpolate 
pupil recordings. Therefore, valid eye position values were 
defined as timepoints, which had corresponding valid pupil 
samples. Only valid eye position samples were included in 
analysis. Blinks were not explicitly defined other than as dropped 
or invalid samples. All invalid epochs, as well as 40 ms before 
and after the invalid epoch, were considered noise (i.e., invalid) 
and excluded from classification.

Here, the term eye speed refers to the angular velocity of 
the eye, relative to the head. Gaze speed refers to angular 
velocity of foveation relative to the world (the combined eye 
and head speed). Before classifications of eye movements were 
made, a five-sample (40 ms) median filter was applied to smooth 
both eye and head speed data (Engbert and Kiegl, 2003; Engbert 
and Mergenthaler, 2006; Dimigen et al., 2011). Eye movements 
were classified by applying a dynamic threshold to gaze and 
eye speed that is scaled by the current head speed: 
thresholdscaled = (1 + vhead/60)*threshold, where vhead is the velocity 
of the head at a given time point (see Agtzidis et  al., 2019, 
for details). Saccade detection was performed first. The label 
“saccade” was applied to all time points in windows of 20 ms 
or longer, where eye speed exceeded the scaled velocity threshold 
[for saccades this would be  (1 + vhead/60)*θSaccade, where θSaccade 
is the saccade threshold when the head is stationary, 35 deg/s; 
see Figure  2]. For analysis, only saccades over 3° in amplitude 
with a peak velocity under 1,000  deg./s were included. This 
velocity cutoff was based on previous research (Holmqvist 
et  al., 2011; Ries et  al., 2018) to exclude improbable eye 
movements, and 3° was used to exclude small eye movements 
around the recentering cross.

Intersaccadic intervals were classified in 100 ms epochs based 
on a set of thresholds (see Figure  2) for the gaze speed and 
head speed. The implementation of thresholding here has been 
outlined in the flow chart of Figure  2. If gaze speed was 
below the scaled low gaze threshold [that would be  calculated 
as (1 + vhead/60)*θlowgaze, where θlowgaze is the lower bound gaze 
threshold when the head is stationary, 10 deg./s] then the 
window was assigned a label of “VOR” or “fixation” depending 
on if the head above threshold (7 deg./s). If gaze was moving 
(above scaled low threshold), the epoch was classified as a 
“head pursuit” if the eye speed was below threshold, “smooth 
pursuit” if the head speed was below threshold, or “smooth 
pursuit with compensatory VOR” if both head and eye speed 
were above threshold.

The classification algorithm was compared against ray-casts 
of each gaze sample. Ray-casting is when an imaginary ray 

140

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://osf.io/p8g94/


Callahan-Flintoft et al. Naturalistic Eye Movements in VR

Frontiers in Psychology | www.frontiersin.org 6 December 2021 | Volume 12 | Article 650693

is generated based on the instantaneously estimated gaze 
vector and projected until it collides with an object in the 
virtual environment. This offers an estimation of what stimulus 
the eyes were foveating at a given time (Watson et  al., 2019). 
Due to the experimental control of VR, location and speed 
information of each stimulus is known. Combined, this 
information can be  used to identify epochs, where the 
participant was foveating on either a particular moving or 
stationary stimulus. To quantify the classification accuracy 
of our data, we computed the percentage of time points when 
the eye was foveating a stationary object (the recentering 
cross or static target) that were erroneously classified as 
smooth pursuit (including smooth pursuit with compensatory 
VOR) or head pursuit. This was compared to the percentage 
of pursuit labeled time points when the eyes were foveating 
moving objects (i.e., targets in the Dynamic condition). VOR 
was more difficult to test for as, unlike pursuit, no part of 
the paradigm necessarily demanded the subject engage in 
VOR to complete the task. For exploratory purposes, 
we  compared situations when VOR may have been more 
likely (i.e., just after a saccade to a peripheral static target 
disk, where the eyes would be  left at a more extreme angle 
and therefore encourage head rotation while maintain gaze 
on a fixed point) to situations, where VOR may have been 
less likely (i.e., just after a saccade to a parafoveal static 
target disk, where perhaps head rotation is less necessary to 
ensure comfortable gaze position, or during a fixation on 
the recentering cross).

RESULTS

Simulator Sickness
No subjects experienced symptoms severe enough to withdraw 
voluntarily from the study. SSQ scores were evaluated using 
a 2 × 3 repeated measures ANOVA with time (Pre, Post) and 
category (Oculomotor, Disorientation, and Nausea) as factors. 
Greenhouse-Geisser values are reported for the interaction 
between time and category, which violated sphericity assumptions 
(Mauchly’s W = 0.741, p = 0.037). Sidak corrections were used 
for multiple comparisons adjustment. There was a main effect 
for time F(1,23) = 14.67, p = 0.001, η2 = 0.39 indicating higher 
average ratings post experiment (12.9, SE 2.5) compared with 
the start (3.89, SE 1.2) of the experiment. There was a significant 
main effect for category, F(2,46) = 11.99, p < 0.001, η2 = 0.34, with 
Oculomotor (12.95, SE 2.4) ratings higher than Disorientation 
(6.67, SE 1.7) and Nausea (5.57, SE 1.2); both p < 0.01. The 
time by category interaction was also significant F(2,46) = 5.76, 
p = 0.01, η2 = 0.2 indicating larger post-pre differences in the 
Oculomotor with respect to the other two categories. An 
additional paired-samples t-test examined the pre/post difference 
for the Total scores with significantly higher Total scores at 
the end (15.9, SE 3) compared to the beginning (4.83, SE 1.5) 
of the experiment t(23) = 3.8, p = 0.001.

It should be  noted that while simulator sickness increased 
from the start of the experiment to the end, there was no 
significant difference between saccadic reaction times, 
F(1,23) = 0.5, p = 0.45, or button press reaction times, F(1,23) = 2, 

FIGURE 2 | Flow chart of the threshold classification. Intersaccadic intervals were divided into 100 ms windows for classification. Threshold in blue font are 
thresholds that are scaled by the current speed of the head. The table at the bottom contains the complete set of threshold values used.
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p = 0.16, between the first and last block of the experiment 
indicating simulator sickness did not have a significant effect 
on performance.

Eye and Head Responses to Targets at 
Parafovea and Peripheral Eccentricities
On average, 94% (SD = 4%) of eye data samples were valid in 
each subject’s datafile. This high percentage of valid data can 
be attributed in part to the eye tracker cameras being embedded 
inside the headset. This prevents the head and eyes from 
moving outside the tracking box causing dropped samples, 
which can occurs in monitor tracking systems when the eyes 
move outside the confines of the eye tracker (Hessels et  al., 
2015). This is a feature shared across mobile eye tracking 
systems more generally (e.g., ETGs and augmented 
reality devices).

An average of 365 detected saccades (SE = 28) were excluded 
from each participant’s data for having an amplitude under 
3° and an average of 28 detected saccades (SE = 2) were excluded 
for having a peak velocity over 1,000° deg./s. In total this 
averaged to 15% of detected saccades being excluded from 
analysis. Scan paths for the first saccade in each trial are 
plotted in Figure  3 as an example of a low (subject 29) and 
high (subject 22) scan path variability. During the Dynamic 
condition an average of 1.36 saccades (SE = 0.06) were made 
in parafovea (6° of visual angle from the recentering cross) 
trials and 1.60 saccades (SE = 0.09) in periphery (20° of visual 
angle from the recentering cross) trials. An average of 1.18 
(SE = 0.04) saccades were made in parafovea trials and 1.32 
(SE = 0.06) saccades in periphery trials during the Static condition. 
The main sequence shown in Figure  3 exhibits the saccade 
amplitude by peak velocity relationship for the first saccade 
in each trial separated by parafoveal and peripheral trials. The 
mean amplitude of saccades to peripheral cue locations was 
17° (SE = 0.25) and 18° (SE = 0.39) in Static and Dynamic trials, 
respectively (Figure  4). For trials, where the cue appeared in 
the parafovea the mean saccade amplitude was 6° (SE = 0.15) 
and 6° (SE = 0.17) in Static and Dynamic trials, respectively. 
The skewness and kurtosis were also calculated for Dynamic 
parafoveal trials (γ = 2.53, k = 13.50), Dynamic peripheral trials 
(γ = −0.89, k = 5.45), Static parafoveal trials (γ = 1.06, k = 5.51), 
and Static peripheral trials (γ = −0.15, k = 4.01).

Subjects made a combination of eye and head movements 
to shift their gaze to the cued target disk (Figure  5). 
Unsurprisingly, larger and faster eye and head movements were 
made when the cue appeared in the periphery. The time course 
of head and eye speed shows that, on average, head rotational 
speed peaks about 200 ms after peak saccadic movement. 
Together, the head and eye movement measurements in response 
to the cue onset serve as a quality control check of the eye 
tracking data collected from HMDs.

Eye Movement Classification
Example trials with classification labels are plotted over eye 
position in Figure 6. VOR classification was rare in this dataset 
(2% of time points on average) with 1% for parafoveal targets 

and 3% for peripheral targets. When the ray-cast gaze vector 
was on the recentering cross, 10% of time points were classified 
as smooth pursuit in both Static and Dynamic trials. When 
the gaze vector was on the target, 11% of time points were 
classified as smooth pursuit in the Static trials compared to 
19% in Dynamic trials (where smooth pursuit is likely to occur).

As a follow-up analysis, the average gaze speed was calculated 
for the longest intersaccadic interval, where the mode ray-cast 
label of time samples was the target (this was done as some 
trials contained multiple intersaccadic intervals, where the eyes 
were foveating on the target). To limit the influence of potential 
smaller or catch-up saccades on the average gaze speed, time 
points in which the eye speed exceeded 20 deg./s were excluded 
from this calculation. This average gaze speed was then plotted 
against the target’s speed relative to the head (Figure 7). Plotting 
the distribution of gaze speeds for each condition, it is apparent 
that, with a lower gaze threshold, smooth pursuit classification 
may improve for Dynamic trials in which the target disk was 
cued in the periphery as the average gaze speed was 9.1 deg./s 
(SE = 0.2 deg./s, Median = 9.1 deg./s). However, Dynamic trials 
in which the target disk was cued in the parafovea elicit a 
gaze speed (M = 5.7 deg./s, SE = 0.3 deg./s, Median = 5.3 deg./s) 
that is difficult to isolate from Static parafovea trials 
(M = 5.5 deg./s, SE = 0.2 deg./s, Median = 5.2 deg./s) and Static 
peripheral trials (M = 6.6 deg./s, SE = 0.3 deg./s, 
Median = 6.4 deg./s). Repeating the validation procedure outlined 
above and separating peripheral and parafoveal targets in the 
Dynamic conditions shows a smooth pursuit classification of 
33 and 10%, respectively (as a reminder 11% of time points 
were classified as smooth pursuit for static targets). This suggests 
that the target speed (and associated gaze speed) in Dynamic 
parafoveal trials was too slow to classify as smooth pursuit 
using the thresholds in the classification algorithm (Figure  8).

Effects of Target Eccentricity and Motion 
on Task Performance
Saccade and button reaction time to the cue and target, 
respectively, were analyzed to explore whether target motion 
or eccentricity affected the speed of subject responses. There 
was no significant main effect of motion, F(1,23) = 1.8, p = 0.19, 
eccentricity, F(1,23) = 1.7, p = 0.20, or interaction between motion 
and eccentricity, F(1,69) = 1.2, p = 0.3, on button press response 
times. However, first saccades (as defined by the first saccade 
made after the onset of the target disk cue that measured 
over 3° in amplitude) were initiated earlier when the target 
was in the parafovea compared to the periphery, F(1,23) = 27, 
p < 0.001 (Figure  7). There was no significant effect of motion 
on saccadic reaction time, F(1,23) = 3.9, p = 0.06 or interaction 
between motion and eccentricity, F(1,69) = 0.7, p = 0.4. We  also 
performed a more conservative analysis, where only trials in 
which the eyes successfully executed a saccade that went from 
the recentering cross to the target disk were included. This 
criterion limited the number of valid trials as subjects often 
made multiple saccades from the recentering cross to the target 
disk. As such, 14 subjects had at least 100 trials meeting the 
criterion and were included in this secondary analysis which 
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also found a significant effect of eccentricity on saccadic reaction 
times, F(1,13) = 41, p < 0.001, but not of motion, F(1,13) = 2.8, 
p = 0.11, nor any interaction, F(1,13) = 1.9, p = 0.19. For button 
reaction times, there was not significant main effects or 
interactions with the more conservative criterion.

Subjects were instructed to return their gaze back to the 
recentering cross immediately after button response. This 
disengagement time, defined as the time between target 
presentation and the time at which the eyes left the target, 
was also evaluated. Both eccentricity, F(1,23) = 87, p < 0.001, 
and motion, F(1,23) = 69, p < 0.001 significantly influenced the 
disengagement time with the eyes leaving dynamic targets and 
those cued in the periphery earlier (Figure  8). There was no 
significant interaction between motion and eccentricity, 
F(1.69) = 0.55, p = 0.5.

DISCUSSION

A fundamental goal of vision researchers is to understand 
how the human visual system operates in the natural 
environment. While requirements for experimental control 

and technological limitations may have necessitated the use 
of simplified stimuli presented on 2D monitors, the aim has 
always been to use these results to elucidate mechanisms of 
real-world vision. While these previous findings have provided 
an important foundational knowledge, it is essential to ensure 
that effects seen in the laboratory do in fact translate to the 
outside world and examine cases in which they do not. For 
instance, subjects do not exhibit the same detriment in 
recognition of a scene from a new viewpoint when they 
themselves have moved to the new viewpoint compared to 
when the scene is presented in rotated form (as is typical 
in 2D display experiments; Simons and Wang, 1998). Such 
findings demonstrate that there are components of natural 
vision, such as body movement, that are fundamentally 
integrated with cognition, but are often missed in classic 
monitor-based experiments. With this in mind, we  used a 
VR HMD with eye tracking technology to study dynamic 
eye and head movement patterns within a visual discrimination 
paradigm to induce naturalistic gaze patterns within an 
immersive yet controlled environment.

The purpose of this work was to demonstrate the capabilities 
and possible applications of this system as well as to encourage 

FIGURE 3 | Scan paths of first saccade made in each trial for subjects 22 (top row) and 29 (bottom row). Trials where the cue appeared in the parafovea and 
periphery are plotted in magenta and cyan, respectively.
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future researchers to incorporate head movements in their 
exploration of the visual system. To that end, we  provided 
the GUI to lower the bar of entry for vision researchers new 
to developing paradigms within VR. This GUI allows researchers 
to quickly and easily set-up a variety paradigms, altering 

characteristics of the stimuli as well as the relative motion 
between the participant and the stimulus of background. The 
intent here is to provide a jumping off point for researchers 
that may want to move in to the VR with HMD space but 
hesitate at the upfront programming cost.

FIGURE 4 | Main sequence scatter plot of saccade amplitude vs. peak amplitude for Dynamic (left) and Static (right) trials. Frequency histograms are plotted on the 
right y-axis.

FIGURE 5 | Grand average waveforms for eye speed (transparent, dotted lines; y-axis on the left) and head rotational speed (bold lines; y-axis on the right) for 
Dynamic (left) and Static (right) trials.
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The current work used a previously published threshold 
algorithm designed for use in 360 deg. viewing environments 
to classify various eye movements such as saccades, fixations, 
smooth pursuit, and VOR (Agtzidis et al., 2019). To test smooth 
pursuit classification the current work used the ground truth 
data about the position of virtual objects to estimate time periods, 
in which the gaze should be  stationary (i.e., when foveating on 
static objects) compared to when gaze should be  engaged in 

smooth pursuit (i.e., when foveating on moving objects). Separating 
parafoveal vs. peripheral trials showed that one of the potential 
contributors to the poor classification accuracy of smooth pursuit 
was the fact that the relative movement of the disks was too 
slow to elicit the minimum gaze speed necessary to achieve a 
“moving” gaze designation. Smooth pursuit classification improved 
in Dynamic trials, where the target disk was cued in the periphery 
because targets in the periphery have a higher angular velocity 

FIGURE 6 | Example trial plots of the eye unit vector along the x-axis for Static and Dynamic trials (top section). In the bottom section, two trials from the top 
(subject 15, trial 120 and subject 12, trial 142) have been expanded to include the log linear transform of gaze speed plotted with scaled high and low thresholds 
(grey lines) in addition to the log linear transform of eye and head speed (bottom row). These transformations were done in order to plot instances of high speed 
without losing detail in slower speed time periods. In each graph, time zero marks the time of the cue (yellow disk) onset and the grey vertical line indicates the time 
the target was presented. Red lines indicate time windows labeled saccade and blue lines indicate time windows labeled fixation. Yellow and green lines indicate 
windows in of smooth pursuit and head pursuit, respectively.
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relative to the head. Conversely, in Dynamic trials where the 
target was cued in the parafovea, tracking the target did not 
elicit gaze speeds that were faster than those of static targets 
(see an example trial video at https://osf.io/p8g94/). It should 
be  noted that these thresholds were originally set based off an 
annotated dataset collected by Agtzidis et al. (2016) and therefore 
could require adjustments based on the speed characteristics of 
the current stimuli. Smooth pursuit is generally difficult to classify 
without information about the environment (Agtzidis et  al., 
2016); however, ideally a classification system does not need to 
be  tailored the specific dataset. Using the directional change of 
gaze may improve smooth pursuit classification as presumably 

there would be more coherence in the direction of eye movements 
when the eyes are tracking a moving stimulus compared to 
when they are moving around while foveating a static stimulus.

Of course, a limitation of our approach is that it only examines 
time points in which the eyes are foveating a moving object to 
test for smooth pursuit, while smooth pursuit can occur without 
the target object being in the fovea, often necessitating catch-up 
saccades (de Brouwer et  al., 2002). However, using the ray-cast 
data to isolate when the eyes foveate the target, while not the 
most conservative approach, should provide a measure of ground 
truth. It should be  noted that on trials where the target was 
moving faster (Dyanmic, peripheral trials) the accuracy rate 

FIGURE 7 | Scatter plot of average gaze speed compared to average target speed (left). Histogram of gaze speed for Dynamic trials (right, top) and Static trials 
(right, bottom).

FIGURE 8 | Swarm plots of subject averages in saccadic reaction times, button press reaction times, and disengagement times. It is important to note that 
saccadic reaction times are calculated as the difference between the time of saccade onset and the time of the cue onset. Button press reaction times are 
calculated as the difference between when the button was pressed and the time of target onset. Disengagement time is the difference between the time the eyes 
first left the target and the time of target onset.
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(33%) was comparable to rates found in the original thresholding 
paper (29–38%; Agtzidis et al., 2019). The results of this technique 
indicate that strict thresholding is not always sufficient for detecting 
when the eyes are tracking a moving target at slower speeds. 
Together, our results demonstrate the complementary benefit of 
having the ground truth knowledge of stimulus trajectories in 
VR to similar datasets which use 360° video (David et al., 2018).

Considerations and Limitations of Building 
Experiments Using HMDs With VR
While there are a number of advantages in using HMD with 
VR to explore visual processes there are also limitations to 
consider. For example, given the results obtained using the 
SSQ, VR researchers should consider ways to mitigate simulation 
sickness such as smaller fields of view and higher frame rates 
(e.g., Draper et al., 2001; Keshavarz and Hecht, 2011). Simulator 
sickness is of special consideration when setting up paradigms 
meant to elicit specific eye movements. For instance, a potential 
takeaway from the current findings is that faster moving stimuli 
should be  used in order to reliably classify smooth pursuit. 
However, this may enhance feelings of simulator sickness and 
require more frequent breaks or other remedial measures.

Another consideration is that the computer running the game 
engine will experience fluctuating load levels while rendering 
the environment. This can be  due to visual complexity (e.g., 
dynamic lighting) or gameplay (e.g., simulation of physical 
interactor) or other background processes. During periods of 
low load, the computer can render the environment at sufficiently 
high frame rates (>100 frames per second). However, as complexity 
increases, the frame rate can drop substantially depending on 
the processing capacity of the computer. Importantly, the game 
engine generates many of the metrics, including position and 
rotation measures, during each frame refresh. Therefore, the 
majority of data streams can have a variable sampling rate, not 
under the direct control of the experimenter, and great care 
needs to be  taken to optimize the simulations performance. It 
is advisable to set a target frame rate that the simulation will 
not fall below and to use a computer that is powerful enough 
to maintain a stable rate. If the environment is not optimized 
appropriately, rendering can still drop below this target frame rate.

While VR platforms allow for more natural movement, they 
are restricted in large-scale movement, requiring subjects to 
teleport themselves through larger virtual environments or 
incorporate a treadmill. Mobile eye tracking systems avoid 
this limitation, allowing subjects to navigate the world as they 
normally would. Another benefit to mobile eye tracking systems 
is that objects in the environment have real, not simulated, 
depth, potentially resulting in more natural vergence and 
accommodation responses.

The VR HMD used here offers eye tracking with a 120 Hz 
sampling rate. This the low- to mid-range of sampling frequencies 
necessary to detect and classify eye movements (Holmqvist 
et  al., 2011). The lower sampling rate of the eye trackers in 
VR may result in less accuracy for measuring small saccades 
(e.g., microsaccades) and their associated peak velocities. 
Additionally, lower sampling rates may impair the ability to 

effectively use certain gaze-contingent interaction, thus preventing 
adequate online stimulus display changes. Sampling rate of in 
HMD eye trackers should then be  considered not only when 
designing paradigms but also when comparing results to other 
eye tracking systems that may have higher sampling 
rates available.

Another limitation that should be considered is in relating 
ray-casting to perception. Ray-casting can be  a helpful way 
of labeling an object within foveal vision during a fixation. 
However, due to noise in the gaze vector estimation and to 
decreased accuracy compared to desktop eye trackers, it is 
difficult to accurately classify what object is being foveated 
if objects in the environment are too close to one another. 
Watson et  al. (2019) offers an alternative to this approach 
with a “shotgun” ray-cast that returns a list of objects contained 
in the area surrounding gaze position. However importantly, 
neither a pin-point or shotgun ray-cast gives explicit insight 
into what objects in the visual field are actually attended 
to or encoded into memory and this should be  kept in 
mind when drawing conclusions of perception from 
ray-cast data.

Lastly, the HMD used here utilizes “Outside In” tracking, 
requiring external lighthouses containing infrared scanners 
to be  mounted in opposing corners of the tracking area. 
These lighthouses contain spinning mirrors, and so are 
susceptible to vibrations if not firmly mounted. Also, reflective 
surfaces could potentially disrupt the headset’s ability to 
track the lighthouses. It is important to reduce reflective 
surfaces and firmly mount lighthouses when using a headset 
with Outside In tracking. Additionally, newer versions of 
this technology, such as the Tobii Vive Pro, allow for the 
installation of two additional lighthouses (which is the 
maximum number available with the system used here) 
which may help to address tracking issues (Niehorster 
et  al., 2017).

CONCLUSION

Virtual reality used in conjunction with HMD offers a potential 
solution to vision researchers by offering a balance between 
allowing more naturalistic behavior in participants without 
sacrificing strict experimental control. Here, we  offer a 
demonstration of some of the capabilities of this system as 
well as the GUI for future researchers to be  able to quickly 
launch a variety of visual search paradigms to suit research 
needs. There are a number of technological hurdles to consider 
when experimenting within VR which we  have outlined above. 
However, overall this technology offers a promising space for 
understanding how vision is performed in the natural  
environment.
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Spontaneous eye blink rate (sEBR) has been linked to attention and memory, specifically 
working memory (WM). sEBR is also related to striatal dopamine (DA) activity with 
schizophrenia and Parkinson’s disease showing increases and decreases, respectively, 
in sEBR. A weakness of past studies of sEBR and WM is that correlations have been 
reported using blink rates taken at baseline either before or after performance of the tasks 
used to assess WM. The goal of the present study was to understand how fluctuations 
in sEBR during different phases of a visual WM task predict task accuracy. In two 
experiments, with recordings of sEBR collected inside and outside of a magnetic resonance 
imaging bore, we observed sEBR to be positively correlated with WM task accuracy 
during the WM delay period. We also found task-related modulation of sEBR, including 
higher sEBR during the delay period compared to rest, and lower sEBR during task phases 
(e.g., stimulus encoding) that place demands on visual attention. These results provide 
further evidence that sEBR could be an important predictor of WM task performance with 
the changes during the delay period suggesting a role in WM maintenance. The relationship 
of sEBR to DA activity and WM maintenance is discussed.

Keywords: spontaneous eye blink rate, working memory, delay period, dopamine, attention

INTRODUCTION

The healthy human blinks around 15–20 times per minute (Tsubota et  al., 1996), however 
the precorneal tear film, which lubricates the eye, only begins drying up approximately 25 s 
after a blink ends (Norn, 1969). This suggests that we  blink more often than needed to 
maintain a lubricated precorneal tear film. Previous research has found task-related modulation 
of spontaneous eye blink rate (sEBR), which indicates that blinking could be  reflective of 
cognitive factors (Siegle et  al., 2008; Oh et  al., 2012). For example, reading is accompanied 
by low levels of sEBR, while high levels of sEBR have been reported during conversation 
(Bentivoglio et  al., 1997). More recent studies have found that sEBR correlates with attentional 
load and fatigue (Maffei and Angrilli, 2018), attentional control (Colzato et  al., 2009; Unsworth 
et  al., 2019a), can track working memory updating and gating (Rac-Lubashevsky et  al., 2017), 
and can predict differences in exploration during reinforcement learning (Van Slooten et  al., 
2019). In addition, a growing body of literature continues to provide evidence supporting 

150

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2022.788231&domain=pdf&date_stamp=2022-02-15
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2022.788231
https://creativecommons.org/licenses/by/4.0/
mailto:tellmore@ccny.cuny.edu
https://doi.org/10.3389/fpsyg.2022.788231
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.788231/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.788231/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.788231/full


Ortega et al. Working Memory Spontaneous Eye Blinks

Frontiers in Psychology | www.frontiersin.org 2 February 2022 | Volume 13 | Article 788231

sEBR as an effective measure of striatal dopamine (DA) activity 
(Jongkees and Colzato, 2016). However, whether sEBR does 
indeed reflect DA activity is still debated today (Dang et  al., 
2017; Sescousse et  al., 2018).

The connection between sEBR and DA first came from 
observations of neurological and psychiatric disorders that 
found decreased sEBR in patients with Parkinson’s (Hall, 1945; 
Reddy et  al., 2013), a neurodegenerative disorder that affects 
the dopaminergic system in the brain, causing symptoms like 
rigidity (Dauer and Przedborski, 2003). Schizophrenia has also 
been suggested to provide evidence for a connection between 
sEBR and DA due to excessive DA activity in the striatum 
(Howes et  al., 2015) and increased sEBR in schizophrenia 
patients (Adamson, 1995; Swarztrauber and Fujikawa, 1998). 
Additionally, sEBR and DA has previously been investigated 
in pharmacological studies, which have observed an increase 
in sEBR after administration of DA agonists, while DA antagonists 
decreased sEBR in primates (Elsworth et  al., 1991; Jutkiewicz 
and Bergman, 2004). In one study, researchers found sEBR 
was correlated with dopamine levels specifically in the caudate 
nucleus in monkeys, suggesting that DA could regulate blink 
rate (Taylor et  al., 1999). This is further supported by another 
study that found sEBR to be  closely related to in vivo and 
positron emission tomography measures of striatal D2 receptor 
density in the ventral striatum and caudate nucleus of adult 
male vervet monkeys (Groman et  al., 2014). These findings 
provide valuable evidence for sEBR being a viable measure of 
striatal DA activity and have led to many researchers to adopt 
sEBR as a measure of DA activity. Moreover, sEBR is an easy-
to-record physiological measure that is non-invasive 
and affordable.

One cognitive process of interest, that is also closely related 
to DA activity, is working memory (WM) which is the process 
of actively holding information online and manipulating it to 
meet task demands (Baddeley, 1992). Prior research has found 
substantial evidence that demonstrates the importance of 
dopaminergic neurotransmission and the role of the prefrontal 
cortex during WM function (Fuster and Alexander, 1971; Funahashi 
et  al., 1989; Courtney et  al., 1998; Wager and Smith, 2003; 
Cools and Robbins, 2004), especially during WM maintenance 
(Fuster and Alexander, 1971; Funahashi et al., 1989; Constantinidis 
et  al., 2018). Specifically, human studies investigating DA in 
WM tasks have found both caudate dopamine activity during 
WM maintenance and DA synthesis capacity to be  positively 
correlated with WM capacity, a measure of the amount of 
information that can be held in WM (Cools et al., 2008; Landau 
et  al., 2009). Though it is widely accepted that the PFC plays 
an important role in WM function (Roberts et  al., 1998), many 
researchers still debate the PFC’s role in WM (Seamans and 
Yang, 2004). One model that attempts to elucidate the PFC’s 
role in WM function is the prefrontal cortex basal ganglia WM 
model (PBWM; Frank et  al., 2001; Hazy et  al., 2006). PBWN 
is a computational neural network model that suggests that WM 
requires robust maintenance and rapid selective updating. This 
model states that the frontal cortex facilitates robust, active 
maintenance through recurrent excitation in frontal neurons, 
while the basal ganglia orchestrates a gating mechanism that 

controls the flow of information into WM (Frank et  al., 2001). 
Previous research has pointed toward DA being important for 
this sustained firing activity in the PFC during WM maintenance 
(Sawaguchi, 2001; Durstewitz and Seamans, 2008; De Frias et al., 
2010). The relationship between DA and WM performance is 
believed to follow an inverted U-shape, in which too little or 
too much dopamine impairs performance, as seen in 
psychopharmacological studies (Stewart and Plenz, 2006). In one 
study, the effects of administered dopaminergic drugs on PFC 
function depended on baseline levels of performance, whereas 
administration of bromocriptine, a dopamine agonist, impaired 
performance for individuals with higher working memory abilities 
while improving performance for individuals with lower working 
memory abilities (Kimberg et  al., 1997).

Although sEBR has been used in prior research to investigate 
cognitive functions like WM, many of these studies relied on 
baseline levels of sEBR to investigate these relationships (Tharp 
and Pickering, 2011; Zhang et al., 2015; Unsworth et al., 2019b). 
Few studies have investigated the relationship between phasic 
sEBR during a WM task. Phasic sEBR refers to the measuring 
of sEBR in response to stimulus conditions while tonic sEBR 
refers to baseline levels of blinking (Bacher and Allen, 2009). 
To the best of our knowledge, only one other study has examined 
sEBR as a function of the different task phases (e.g., stimulus 
encoding, maintenance during the delay period, and stimulus 
probe periods) of a WM task (Bacher et  al., 2017). Bacher 
et  al. (2017) found modulation of sEBR across these different 
phases are developed in infants as young as 10 months, indicating 
that sEBR can reflect dopamine function in early human 
development. They also observed higher sEBR during the Hide 
(delay) phase of the task in relation to the Reveal phase, which 
is when the experimenter revealed the toy’s location to the 
child. This modulation of sEBR was suggested to reflect the 
engagement of cognitive resources that have become available 
during the Hide phase and transiently elevated DA activity 
that is needed to update and maintain mental representations 
(Bacher et  al., 2017).

The goal of the current study was to investigate how 
fluctuations in sEBR during different phases of a Sternberg 
visual WM task (Figure  1) relate to performance, and how 
sEBR fluctuations change across task demands. First, 
we hypothesized that sEBR during the WM Delay period, when 
stimuli are being maintained, would be  positively correlated 
with task performance and that there would be  a non-linear 
relationship such that low and high sEBR would correlate with 
worse performance. Second, we  hypothesized differences in 
sEBR across phases of the WM task with differences between 
phasic sEBR during the WM delay and tonic sEBR during 
non-task rest periods.

MATERIALS AND METHODS

Participants
The experiments were conducted under a protocol approved by 
the Institutional Review Board of the City University of New York 
Human Research Protection Program (CUNY HRPP IRB).  
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All methods were carried out in accordance with the relevant 
guidelines and regulations of the CUNY HRPP IRB committee. 
All participants were recruited either by flyers posted throughout 
the City College of New  York campus or by web postings on 
the City College of New  York SONA online experimental 
scheduling system. All participants had normal or corrected-
to-normal vision with no reported neurological or psychiatric 
disorders. Participants were either compensated $15 per hour 
or received one psychology course credit per hour of participation 
in the study. Written informed consent was obtained from all 
participants in the study.

Participants selected for Experiment 1 and Experiment 2 
were part of a larger study. Nineteen healthy participants (8 
males; M = 23.79; SD = 7.72) were recruited for Experiment 1. 
In Experiment 1, sEBR was measured inside a 3 tesla Siemens 
Prisma MRI scanner. In Experiment 2, sEBR was recorded in 
a sound attenuated EEG booth during acquisition of EEG data 
while participants sat upright. Fifty-three healthy participants 
(29 males; M = 23.58; SD = 5.79) were recruited for Experiment 
2. Three participants were removed from Experiment 1 including 
one participant who was removed for noisy data and two who 
were removed for task performance below or close to chance. 
A total of 19 participants were removed from Experiment 2 
for multiple reasons including 11 participants who were removed 
due to bad EOG channel quality, four participants who were 
removed because of a stimulus marker malfunction, three 
participants who were removed due to outlier detection, and 
two who were removed for failing to adhere to the protocol. 
The final sample for the analysis in Experiment 1 was 16 
subjects, and for Experiment 2 was 34 subjects.

Task and Procedure
Prior to the start of the task, participants completed a 5-min 
Rest period which consisted of staring at a black fixation cross 
that was shown on a gray background. Participants completed 
another 5-min Rest period after completing three runs of the 

task. This fixation cross was also used during the delay period 
of the task. Participants completed three runs, each run containing 
54 trials, of a modified version of the Sternberg WM task 
(Sternberg, 1966). Naturalistic scenes were used as stimuli and 
were sampled from the SUN database (Xiao et  al., 2010). The 
task consisted of a stimulus encoding period, delay period, probe 
period, and post-probe scrambled stimulus period (which served 
as a visual baseline and to signal end of trial). During the 
encoding period, participants were shown three subsequent novel 
scenes for 1400 ms each. During the delay period, a black fixation 
cross was shown on a gray background for varied lengths (either 
2, 5, or 9 s long). The delay period duration was randomized 
from trial to trial to engage subjects’ attention consistently across 
trials because they could not predict when the delay period 
would end. Each three runs of the task had 18 trials of each 
delay duration with order of presentation randomized. The probe 
was presented for 1400 ms after the delay period and consisted 
of a new image (one that has not been presented yet) or an 
old image (one that was shown during encoding). The chance 
of receiving a new probe was 50%. Participants indicated whether 
the image presented was either a new or an old image with a 
button press. After the probe, a Fourier phase-scrambled scene 
was shown for 2000 ms, indicating the end of the current trial 
followed by a jittered period of blank screen.

sEBR Recording
Participants were not given instructions about when to blink 
during the experiment. Previous studies have found blink rate 
to be  stable between 10 am and 5 pm (Barbato et  al., 2000; 
Doughty and Naase, 2006). For both Experiment 1 and 
Experiment 2, sEBR was recorded between 10:00 am and 3:00 pm. 
During Experiment 1, eye blinks were recorded inside a three 
tesla Siemens Prisma MRI scanner using an MRI compatible 
EyeLink 1,000 Eye Tracker (SR Research) and was recorded 
at 500 Hz. In Experiment 2, eye blinks were recorded using 
an electrooculogram (EOG) that was recorded during 64-channel 

FIGURE 1 | Task design. Each trial began with an encoding period where three novel complex scenes were presented for 1,400 ms each. The encoding period 
was followed by a delay period where a fixation cross was presented on a gray background for a varied amount of time (2 s, 5 s, or 9 s). After the delay period, the 
probe was presented for 1,400 ms and participants had to identify whether the image was a new image or one of the previously presented images with a button 
press. After the probe, a scrambled image was presented for 2,000 ms which indicated the end of the trial followed by jittered blank space before the start of the 
next trial.
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scalp electroencephalogram using a Brain Products cap and 
active electrode recording system. EOGs were placed above 
the left eye and below the right eye to track blinking. Blink 
detection was performed using MNE Python via the function 
“find_eog_events” (Gramfort et  al., 2013). Blink epochs were 
evaluated for each run of the task for all participants. Runs 
with blink epochs which did not resemble the standard blink 
shape were removed from the analysis. Only participants with 
2 or more runs of good eye-tracking data were used in the 
analysis. The first 2 s of all delay periods were used in the 
analysis. In Experiment 1 and 2, sEBR was computed by 
dividing the total number of blinks by the total period duration 
for any given phase resulting in units of blinks per minute:

 
sEBR total blinks

total period duration
=

 
  

Statistical Analysis
Statistical analyses were computed using JASP Version 0.16. 
sEBR and task accuracy data were checked for outliers prior 
to analysis and were removed. Because the relationship between 
sEBR and WM performance is believed to follow an “inverted 
U-shape,” we  did not consider Pearson’s r the optimal measure 
for this analysis because it is limited to evaluating only a 
linear relationship between two variables. Instead, we computed 
Spearman’s rho, which can describe monotonic functions, 
whereas the value of one variable changes the other variable 
changes but not necessarily at a constant rate. We  also used 
polynomial regression analysis, which is more appropriate for 
quantifying non-linear associations. Specifically, we investigated 

the non-linear relationship between task accuracy and sEBR 
during the Delay period of the task for both Experiment 1 
and Experiment 2 using a second order polynomial regression 
model. Unidimensional reliability analyses were computed using 
task accuracy and sEBR as input variables and Cronbach’s α 
as the frequentist scale reliability statistic. Post-hoc statistical 
power calculations were computed for each experiment and 
the combined samples of both experiments with G*Power 
Version 3.1.9.6 using the correlation between sEBR during the 
Delay period and task accuracy. Parameters included the Exact 
test family, Correlation: Bivariate normal model with an α 
error probability of 0.05, the sample size, and the correlation 
coefficient as the effect size.

RESULTS

Experiment 1
In Experiment 1, we  examined the relationship between sEBR 
and WM task performance while the duration of the WM 
delay period interval was varied. The first 2 s of all Delay 
periods were used in the analysis. First, because of the previously 
reported non-linear relationship between DA and WM task 
performance (Cools and D'Esposito, 2011), Spearman’s rho 
correlation coefficient (rs) was used to analyze the relationship 
between sEBR and task accuracy. After performing Bonferroni 
multiple comparisons correction on values of p, we  found no 
significant relationship between sEBR during the phases of 
the task and task accuracy (Figure  2A). However, there was 
a strong positive correlation between sEBR during the Delay 
period and task accuracy (rs = 0.526, p = 0.036; Figure  2A). 

A B

FIGURE 2 | Correlation between sEBR during different phases of the task and task accuracy in Experiment 1. Correlation plots show sEBR (blinks/min) on the 
x-axis and task accuracy on the y-axis. (A) These four plots are encoding (top left), the first 2 s of the delay (top right), probe (bottom left), and scrambled (bottom 
right) periods. The delay period shows a positive correlation (p = 0.036 but not significant after multiple comparisons correction) between task accuracy and sEBR 
during the first 2 s of the delay period. (B) This plot represents the relationship between sEBR during the whole trial and task accuracy. Fitted line represents linear 
regression model fit. Shaded region depicts 95% confidence interval.
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We  then examined the correlation between sEBR during the 
whole trial period and task accuracy to make sure that this 
relationship was not driving the relationship between sEBR 
during the Delay and task accuracy. There was no significant 
relationship between sEBR during the whole trial and task 
accuracy (rs = 0.149, p = 0.582; Figure  2B). Descriptive statistics 
and reliability measures for Experiment 1 are presented in 
Table  1. Second, we  computed a repeated measures ANOVA 
test to compare participants’ sEBR across the task phases. A 
Mauchly’s test of sphericity was first computed to check the 
assumption of sphericity in the data and was found to 
be significant (p = 0.012). Greenhouse-Geisser and Huynh-Feldt 
ε values were smaller than 0.75 so a Greenhouse-Geisser 
correction was performed. There were significant differences 
in sEBR between group means [F (1.948, 29.213) = 33.196, 
p < 0.001]. A post-hoc test using the Holm correction revealed 
that sEBR was significantly lower during Encoding (18.9 ± 11.0 
sEBR, p < 0.001) and Probe (11.3 ± 8.0 sEBR, p < 0.001) periods 
compared to the Delay period (39.4 ± 19.5 sEBR; Figure  3). 
There was no significant difference in sEBR between the Delay 
and Scrambled period (p =  0.682). sEBR was also significantly 
lower during Encoding (18.9 ± 11.0 sEBR, p < 0.001) and Probe 
(11.3 ± 8.0 sEBR, p < 0.001) periods compared to the Scrambled 
period (40.9 ± 15.2 sEBR; Figure  3). Finally, we  investigated 
the difference between phasic sEBR during the Delay period 
and tonic sEBR during the Rest period. We performed a paired 
samples T test to compare sEBR during the Delay and during 
Rest. We  observed sEBR to be  significantly higher during the 
Delay period (39.4 ± 19.5 sEBR) compared to the Rest period 
(28.6 ± 14.7 sEBR), t(15) = 2.885, p = 0.0011 (Figure 4A). We then 
investigated the correlation between tonic sEBR during the 
Rest period and task accuracy. There was no significant correlation 
between sEBR during the Rest period and task accuracy 
(rs = 0.259, p = 0.333; Figure  4B).

Experiment 2
Experiment 2 included a larger sample of subjects with a task 
design identical to Experiment 1. First, we  examined the 
relationship between sEBR during each WM task phase and 
task accuracy. After performing Bonferroni correction on values 
of p, we  found that sEBR during the WM delay period was 
correlated positively with task performance (rs = 0.508, p = 0.002), 
with no significant relationships observed between sEBR in 
other task periods and task performance (Figure 5A). We then 

examined the relationship between sEBR during the whole 
trial and task accuracy to make sure that the significant 
relationship between Delay sEBR and task accuracy was not 
driven by sEBR during the whole trial. We found no significant 
relationship between whole trial sEBR and task accuracy 
(rs = 0.192, p = 0.278; Figure  5B). Descriptive statistics and 
reliability measures for Experiment 2 are presented in Table 2. 
We  then repeated the same analysis of comparing sEBR across 
the task phases by computing a repeated measures ANOVA 
test. A Mauchly’s test of sphericity was first computed to check 
the assumption of sphericity in the data and was found to 
be  significant (p < 0.001). Greenhouse-Geisser and the Huynh-
Feldt ε values were smaller than 0.75 so a Greenhouse-Geisser 
correction was performed. There were significant differences 
in sEBR between group means [F (1.578,52.058) = 66.958, 
p < 0.001]. A post-hoc test using the Holm correction revealed 
that sEBR was significantly lower during Encoding (11.6 ± 8.0 
sEBR, p < 0.001), Probe (7.3 ± 4.1 sEBR, p < 0.001), and Scrambled 
(19.5 ± 10.6 sEBR, p < 0.001) periods compared to the Delay 
period (35.6 ± 18.3 sEBR; Figure 6). sEBR was also significantly 
lower during the Encoding (11.6 ± 8.0 sEBR, p < 0.001) and 
Probe (7.3 ± 4.1 sEBR, p < 0.001), periods compared to the 
Scrambled period (19.5 ± 10.6 sEBR; Figure  6). Additionally, 
sEBR was significantly lower during the Probe (7.3 ± 4.1 sEBR, 
p = 0.047), period compared to the Encoding period (11.6 ± 8.0 
sEBR; Figure  6). We  then investigated the difference between 
sEBR during the Delay period and sEBR during the Rest 
period. We  performed a paired samples T test to compare 
sEBR during the Delay and during Rest. We  observed sEBR 
to be  significantly higher during the Delay period (35.6 ± 18.3 
sEBR) compared to the Rest period (17.7 ± 11.1 sEBR), 
t(33) = 6.005, p < 0.001 (Figure  7A). We  then investigated the 
correlation between tonic sEBR during the Rest period and 
task accuracy. There was no significant correlation between 
sEBR during the Rest period and task performance (rs = −0.053, 
p = 0.768; Figure  7B).

Polynomial Regression Model
To investigate whether sEBR during the Delay varies non-linearly 
with task performance, we  computed a quadratic polynomial 
regression model between sEBR during the Delay period of 
Experiment 1 and Experiment 2 and task accuracy. There was 
no significant polynomial regression relationship found between 

TABLE 1 | Descriptive statistics and split-half reliability for Experiment 1.

Variable n M SD Skewness Kurtosis Split-half coefficient

Task Accuracy (%) 16 89.43 10.34 −1.41 2.15 0.944
Whole Trial sEBR 16 20.07 9.40 0.62 −0.60 0.906
Encoding sEBR 16 18.89 10.95 0.39 −0.54 0.965
Delay sEBR 16 39.44 19.45 1.06 1.73 0.974
Probe sEBR 16 11.29 7.97 1.17 0.83 0.903
Scrambled sEBR 16 40.94 15.18 0.45 −0.62 0.961
Rest sEBR 16 28.59 14.68 1.05 0.73

M and SD represent mean and standard deviation, respectively. Split-half reliability based on 1,000 bootstrap replicates.
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task accuracy and the first 2 s of the Delay in Experiment 1 
(β = 0.324, p = 0.741) nor between task accuracy and the first 
2 s of the Delay in Experiment 2 (β = −0.568, p = 0.322; Figure 8).

Reliability and Statistical Power
Reliability of each measure was computed using a split-half 
analysis procedure. Each measure was divided into two subsets, 
at random, by trial and recomputed. Correlation coefficients 
were then calculated on both subsets across participants. The 
split-half reliability correlation coefficient was permuted 1,000 

times and the average of the correlations is reported for each 
independent measure. Before averaging, all correlations were 
Fisher Z-transformed and then transformed back after averaging. 
In order to correct for underestimation resulting from splitting 
the number of observations in half, the Spearman-Brown 
correction was applied (Parsons et  al., 2019). Reliability was 
not computed for sEBR during the rest period since it contained 
no trials. Descriptive statistics and split-half reliability measures 
are summarized in Tables 1 and 2 for experiment 1 and 
experiment 2, respectively. Correlations between sEBR and 
performance with associated values of p and confidence intervals 
are summarized in Tables 3 and 4 for experiment 1 and 
experiment 2, respectively. Post-hoc statistical power calculations 
using as the effect size the correlation between sEBR during 
the Delay period and task accuracy showed inadequate power 
for experiment 1 (N = 16, 1-β error probability = 0.53, critical 
r = 0.49). Power for experiment 2 was good (N = 34, 1-β error 
probability = 0.87, critical r = 0.33). Given that experiments 1 
and 2 utilized different methods of quantifying blinks (camera 
based vs. EOG) but a similar task design, the two sample 
sizes were combined with very good power obtained (N = 50, 
1-β error probability = 0.96, critical r = 0.27).

DISCUSSION

In the present study, we  investigated the temporal fluctuations 
in sEBR across a WM paradigm and its relation to WM task 
accuracy in two experiments, inside and outside an MRI scanner, 
and using two methods of collecting sEBR. Using the same 
Sternberg working memory paradigm, we  observed a strong 
positive relationship between sEBR and task performance only 

FIGURE 3 | ANOVA test of sEBR across task periods in Experiment 1. Bar 
plots show task period on the x-axis and sEBR (blinks/min) on the y-axis. 
Delay period sEBR was significantly greater than Encoding and Probe sEBR. 
Scrambled sEBR was also significantly greater than Encoding and Probe 
sEBR. Error bars depict 95% confidence interval. Each colored circle 
represents an individual participant; some colors may be presented twice in 
one bar due to limited primary colors available for display. Values of p were 
adjusted for comparing a family of 4. ***p < 0.001.

A B

FIGURE 4 | Paired T tests between Delay period sEBR and Rest sEBR and correlation between Rest sEBR and task accuracy in Experiment 1. (A) Bar plots show 
task period on the x-axis and sEBR on the y-axis. Delay period sEBR was significantly higher than Rest sEBR. Error bars depict 95% confidence interval. 
(B) Correlation plot of sEBR during the Rest period on the x-axis and task accuracy on the y-axis. Fitted line represents linear regression model fit. Shaded region 
depicts 95% confidence interval. **p < 0.01.

155

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Ortega et al. Working Memory Spontaneous Eye Blinks

Frontiers in Psychology | www.frontiersin.org 7 February 2022 | Volume 13 | Article 788231

during the WM task delay in both experiments. We also found 
a significant difference in sEBR between task phases and a 
difference between Delay period sEBR and baseline sEBR.

Our first hypothesis was that phasic sEBR during the Delay 
period of the WM task would be  positively correlated with 
task accuracy and that we  would also observe a non-linear 
relationship where high and low sEBR would be  predictive of 
low performance. We  observed a strong positive correlation 
between sEBR during the Delay period in both Experiment 
1 and Experiment 2 with task accuracy. However, only in 
Experiment 2 was this relationship significant. We  believe that 
the lack of significance in Experiment 1 is due to the smaller 
sample size and thus lack of power, which our formal post-hoc 
power analyses confirmed. While the sample size in Experiment 
2 was also small, we observed a similar correlation and reliability 
statistic as well as higher power while recording sEBR using 
a different method (electrooculogram instead of camera-based 
eye-tracking hardware). Nevertheless, a correlation between 

sEBR and task performance of approximately 0.50 is a very 
high correlation in psychology, especially between a behavioral 
measure and a physiological measure (Gignac and Szodorai, 
2016). The replication of a similar correlation between Delay 
period sEBR and WM performance across two separate 
experiments strengthens our findings but with the confidence 
interval being so wide with the relatively small sample size 
one cannot be  certain the true correlation is so large. Previous 
research has found that correlations begin to stabilize at even 
larger sample sizes (Schönbrodt and Perugini, 2013). Thus, 
future studies should include an additional experiment with 
high statistical power to replicate these findings and to determine 
whether the observed effect stabilizes with even larger 
sample sizes.

If we  interpret sEBR as an indirect measure of striatal DA 
activity, as other studies have postulated, we  can speculate 
that higher sEBR during the WM delay was correlated with 
task accuracy due to DA regulating the maintenance and 

A B

FIGURE 5 | Correlation between sEBR during different phases of the task and task accuracy in Experiment 2. Correlation plots show sEBR on the x-axis and task 
accuracy on the y-axis. (A) These four plots are encoding (top left), the first 2 s of the delay (top right), probe (bottom left), and scrambled (bottom right) periods. The 
delay period shows a strong positive correlation (p = 0.002, significant after a multiple comparison correction) between task accuracy and sEBR during the first 2 s of 
the delay period. (B) This plot represents the relationship between sEBR during the whole trial and task accuracy. Fitted line represents linear regression model fit. 
Shaded region depicts 95% confidence interval. Values of p for (A) after Bonferroni correction: **p < 0.0025.

TABLE 2 | Descriptive statistics and split-half reliability for Experiment 2.

Variable n M SD Skewness Kurtosis Split-half coefficient

Task Accuracy (%) 34 92.30 6.956 −1.266 0.765 0.678
Whole Trial sEBR 34 18.486 9.843 1.453 3.023 0.992
Encoding sEBR 34 11.63 7.979 1.153 1.433 0.971
Delay sEBR 34 35.605 18.336 0.918 1.127 0.987
Probe sEBR 34 7.298 4.112 1.67 4.208 0.992
Scrambled sEBR 34 19.474 10.582 1.092 2.72 0.992
Rest sEBR 34 17.721 11.121 0.911 0.256

M and SD represent mean and standard deviation, respectively. Split-half reliability based on 1,000 bootstrap replicates.
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updating of representations in WM (Westbrook and Braver, 
2016). The other results support this idea since no other task 
period was significantly correlated with task accuracy. Many 
studies that have investigated the relationship between sEBR 
and cognitive functions have used baseline levels of sEBR taken 
before or after tasks in their analysis (Tharp and Pickering, 
2011; Zhang et  al., 2015; Unsworth et  al., 2019b). However, 
we  show that while the WM task Delay period sEBR was 
correlated positively with task accuracy, baseline levels of sEBR 

were not. Our results highlight the importance of examining 
phasic and tonic sEBR when investigating the relationships 
between sEBR and other cognitive functions. The results also 
highlight that blinking may be  an important component of 
working memory function; however, future studies, including 
within-subject analyses using larger number of trials, are needed 
to understand the role of blinking during WM maintenance. 
Additionally, future studies should investigate whether higher 
blink rates during the WM delay lead to a correct response. 
Since task difficulty was not controlled for in this study, 
participants’ task performance in both experiments was relatively 
high (see Tables 1 and 2). These limitations make our current 
dataset incapable of investigating these questions.

We also investigated the proposed “Inverted U-shape” 
relationship between DA and WM performance by computing 
a polynomial regression model on sEBR during the delay and 
task accuracy (Cools and D’Esposito, 2011). Though the model 
showed a non-linear trend in Experiment 2, the model was 
not significant. We  believe that failure to achieve non-linear 
model significance was due to lack of extreme (sub- and 
supraoptimal) sEBRs observed in the pool of participants, which 
are typically found in clinical populations (e.g., with 
Schizophrenia; Adamson, 1995; Swarztrauber and Fujikawa, 
1998). Future studies should investigate sEBR with healthy 
subjects and with subjects that have been observed to have 
extreme sEBR in order to have a wider variety of sEBRs and 
to better understand its connection with DA. Additionally, 
other methods of DA measures could be  used to investigate 
DA during the delay period, such as correlations with 
neuromelanin-sensitive MRI, which can detect neuromelanin, 
a product of dopamine metabolism (Cassidy et  al., 2019).

FIGURE 6 | ANOVA test of sEBR across task periods in Experiment 2. Bar 
plots show task period on the x-axis and sEBR on the y-axis. Delay period 
sEBR was significantly greater than Encoding, Probe, and Scrambled sEBR. 
Scrambled sEBR was also significantly greater than Encoding and Probe 
sEBR. Encoding sEBR was significantly greater than Probe sEBR. Error bars 
depict 95% confidence interval. Each colored circle represents an individual 
participant; some colors may be presented twice in one bar due to limited 
primary colors available for display. Values of p were adjusted for comparing a 
family of 4. *p < 0.05, and ***p < 0.001.

A B

FIGURE 7 | Paired T tests between Delay period sEBR and Rest sEBR and correlation between Rest sEBR and task accuracy in Experiment 2. (A) Bar plots show 
task period on the x-axis and sEBR on the y-axis. Delay period sEBR was significantly higher than Rest sEBR. Error bars depict 95% confidence interval. 
(B) Correlation plot of sEBR during the Rest period on the x-axis and task accuracy on the y-axis. Fitted line represents linear regression model fit. Shaded region 
depicts 95% confidence interval. ***p < 0.001.
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Our second hypothesis was that we  would see significant 
differences in sEBR across the WM task as well as between 
sEBR during Rest and during the Delay period. We  found 
sEBR to be  the lowest during periods like Encoding and Probe 
in both Experiments, while sEBR during the Delay was the 
highest. Our results support previous findings which found 
task-related modulation of sEBR (Siegle et  al., 2008; Oh et  al., 
2012). Prior work has found sEBR to be  lower during tasks 
that require visual attention (Fukuda et  al., 2005; Oh et  al., 
2012). This would explain the lower sEBR’s observed during 
the Encoding period when participants are encoding information 
into WM and during the Probe period where participants are 
retrieving information from WM. We  also found that sEBR 
was the highest during the Delay period when participants 
were maintaining information in WM. This was also 
demonstrated in a different study which investigated sEBR 
during an A-not-B WM task where infants had to search for 
a hidden toy by making an eye movement to one of two 
locations (Bacher et  al., 2017). Higher sEBR during the WM 

delay could be  due to DA regulating the maintenance and 
updating of representations in WM (Westbrook and Braver, 
2016), but this remains speculation until further studies directly 
measure dopaminergic activity during task performance. Our 
results further support this interpretation since Delay period 
sEBR was significantly higher than baseline sEBR during the 
Rest period. Lower sEBR during the Rest period could 
be  explained since there is no need to update or maintain 
WM during this period.

To conclude, we  investigated temporal changes of sEBR 
during different phases of a WM task and its relation to WM 
performance. We  observed a significant positive correlation 
between sEBR and WM task performance during the Delay 
period, but not during the other phases of the task. Additionally, 
we  found evidence for an association of sEBR during both 
stimulus encoding and WM probe retrieval, potential reflecting 
visual attention. To the best of our knowledge, this is the first 
study to investigate phasic and tonic sEBR during different 
phases of a WM task using complex visual scenes. Future studies 

A B

FIGURE 8 | Polynomial regression model between task accuracy and sEBR during the first 2 s of the delay for Experiment 1 and Experiment 2. Regression plots 
show sEBR during the first 2 s of the Delay on the x-axis and task accuracy on the y-axis. (A) Polynomial regression model fitted on sEBR during the Delay and task 
accuracy in Experiment 1. (B) Polynomial regression model fitted on sEBR during the Delay and task accuracy in Experiment 2. Fitted red line represents polynomial 
regression model fit. The relationship between sEBR and WM performance appears to be non-linear and explains about 20% of the variance in Experiment 2 but 
does not reach significance.

TABLE 3 | Correlations between sEBR and performance for Experiment 1.

Variable Spearman’s rho Value of p 95% CI

Encoding sEBR −0.078 0.774 [−0.569, 0.490]
Delay sEBR 0.526 0.036 [0.121, 0.783]
Probe sEBR −0.187 0.488 [−0.699, 0.401]
Scrambled sEBR 0.054 0.843 [−0.477, 0.623]
Rest sEBR 0.259 0.333 [−0.285, 0.740]
Whole trial sEBR 0.149 0.582 [−0.369, 0.676]

CI, confidence intervals. CIs based on 1,000 bootstrap replicates.

TABLE 4 | Correlations between sEBR and performance for Experiment 2.

Variable Spearman’s rho Value of p Confidence 
Intervals

Encoding sEBR −0.118 0.508 [−0.418, 0.224]
Delay sEBR 0.508 0.002 [0.213, 0.699]
Probe sEBR −0.246 0.16 [−0.527, 0.082]
Scrambled sEBR 0.111 0.533 [−0.228, 0.423]
Rest sEBR −0.053 0.768 [−0.400, 0.310]
Whole trial sEBR 0.192 0.278 [−0.148, 506]

CI, confidence intervals. CIs based on 1,000 bootstrap replicates.
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should continue to investigate sEBRs in relation to direct measures 
of cortical (especially PFC) and subcortical dopamine and assess 
linear and non-linear relationships to task performance in  
healthy and clinical populations (e.g., Schizophrenia and 
Parkinson’s disease).
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