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Editorial on the Research Topic

Artificial Intelligence in Positron Emission Tomography

Smartphones, smart homes, and intelligent navigation are all examples of important applications
of artificial intelligence (AI) in our daily life. AI was initially introduced in the 1950s, with the
development of understanding and redefinition. AI is currently defined as a new technological
science that studies and develops theorems, methods, technologies, and application systems that
are used to simulate, extend, and enhance human intelligence (1).

We have witnessed the rapid advancement of AI, and its research and application in medical
care, especially processing and analysizing the medical images is in the ascendant. In comparison
to computed tomography (CT) and magnetic resonance imaging (MRI), which are more accessible
and easier to standardize the acquisition processes, the positron emission tomography (PET) is
more expensive and less broadly accessible, and its more complicated technical operation process
poses difficulty on standardizing the image acquisition. Though the research and application of AI
in PET is relatively slower, since PET is such an essential field of molecular imaging, AI in PET
imaging is attracting substantial research attention and becoming a research hotspot. At the level
of technology, image post-processing, including image standardization, normalization, wavelet
transformation, Gaussian transformation, and feature preprocessing, have been studied with aims
to solve the challenges posed by the parameter and quality variations and differences when imaging
with PET scanners from different manufacturers, instrument models, and imaging technologies.
The AI-empowered segmentation techniques have further improved the stability of AI features
and the repeatability of AI researches (2, 3). To address the needs of clinical applications, by
mining deeply into image features, combining population and clinical evidence, and constructing
machine learning models, AI in PET has been developed for lesion detection and boundary
delineation, diagnosis and differential diagnosis, risk prediction and prognostic evaluation, and
even the prediction of clinical gene or molecular typing (1, 4–7).

This Research Topic comprises 11 publications that emphasized how AI supports PET image
processing and analysis. Recently, numerous research groups have been focusing on the use of AI in
PET image interpretation, such as lesion detection. Kawakami et al. applied an object deep learning
(DL) detection model, You Only Look Once Version 2 (YOLOv2), to detect the physiological
and abnormal uptake in 18F-FDG PET. Results showed that the physiological uptake on MIP
images was recognized quickly and precisely (Kawakami et al.). The abnormal uptake detected by
YOLOv2 was with a high coverage rate of that manually identified (Kawakami et al.). The precise
detection and fast response would be a useful tool in disease diagnosis. The maximal standardized
uptake value (SUVmax) is the most commonly used parameter to interpret images and evaluate
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lesions in the daily diagnostic reports. In a preliminary study,
Hirata et al. sought to define a precise SUVmax as an identifier to
locate lesions. Although it is difficult to identify the lesions when
the SUVmax< 2 in 18F-FDGPET scans, this approach could help
for the construction of the AI training dataset (Hirata et al.).

In oncology, AI has been used for diagnosis, differential
diagnosis, and cancer staging. Satoh et al. used texture analysis
in a retrospective study to compare the diagnosis ability of
breast cancer between the high-resolution dedicated breast
PET (dbPET) and whole-body PET/CT. They demonstrated
that both PET-based texture analysis of dbPET and whole-
body PET/CT had comparable classification power for the
diagnosis of breast cancer (Satoh et al.). Fan et al. evaluated
the value of texture analysis in the differential diagnosis of
spinal metastases of 18F-FDG PET/CT, and indicated that the
combination of machine learning and texture parameters was
more accurate than manual diagnosis. Zheng et al. applied a
radiomics model in 18F-FDG PET/CT to predict pathological
mediastinal lymph node (pN) staging in patients with non-small
cell lung cancer (NSCLC), and demonstrated an encouraging
conclusion, suggesting that the pN staging and prediction have
the potential to help with therapeutic planning. Apart from
PET/CT, another nuclear medicine imaging method—single-
photon emission computed tomography/computed tomography
(SPECT/CT) also plays a role in the differentiation of benign
and malignant tumors. Jin et al. investigated the feasibility of
SPECT/CT images based on radiomics in differentiating bone
metastases from benign bone lesions in patients with tumors.
Both SPECT and SPECT/CT models showed better diagnostic
accuracy than manual classification in the training and validation
groups of patients diagnosed with vertebral bone metastases or
benign bone lesions, indicating a new way in disease staging and
treatment planning (Jin et al.).

In neurology, AI has also been applied to help for the
distinguishment and mechanism research of neurodegenerative
diseases. Xie et al. revealed a pattern of changes in β-
amyloid (Aβ) deposition in cognitively normal healthy
aging, which could be used to distinguish physiological
changes from pathophysiological changes and help investigate
the mechanism of Alzheimer’s disease (AD). Zhou et al.
presented a new deep learning model based on rate-
distortion theory and an extreme learning machine model
to distinguish AD, mild cognitive impairment (MCI), and
normal controls (NC) in 18F-AV45 PET/MR. This new
deep learning model achieved higher accuracy, sensitivity,
specificity, and area under curve (AUC) to separate AD, MCI,
and NC groups than the previous models assessed (Zhou
et al.).

The applications of AI are more than image processing,
analysis, and interpretation, and also embrace searching
for electronic health records, laboratory tests, and other
information related to patients, which could assist physicians
make optimal and personalized medical decisions for patients.
With such abilities, AI provides more opportunities for assessing
therapeutic responses and predicting survival rates. Tang et al.
investigated the metabolic profiles of extratemporal in drug-
resistant temporal lobe epilepsy (TLE) and efficiently predicted

the surgery failure of TLE patients through PET, which could
be used as predictive models for epilepsy surgery. Pinochet
et al. evaluated the performance of a research prototype
called PET Assisted Reporting System (PARS), which is based
on a convolutional neural network, in clinical research. The
PARS, determined total tumor metabolic volumes (TMTVs)
on 18F-FDG PET, was predictive of prognosis in patients with
diffuse large B-cell lymphoma (DLBCL), but the evaluation
efficacy was still needed to be enhanced and validated in
miscellaneous cancers (Pinochet et al.). Yang et al. developed a
radiomics score using the least absolute shrinkage and selection
operator (LASSO) regression analysis in 18F-FDG PET/CT-
derived radiomic features, which proved to be a useful tool
for predicting overall survival (OS) in adult hemophagocytic
lymphohistiocytosis (HLH). Combining the radiomics score with
the clinical parameters even performed better for predicting 6-
month survival (Yang et al.). Apart from the above studies, AI can
also assist to evaluate therapeutic responses and predict prognosis
in other emerging treatments, including immunotherapy (8) and
peptide radio receptor therapy (PRRT) (9).

Furthermore, with the powerful searching ability, AI can
optimize the workflow and provide more detailed and organized
information of patients, making it convenient for doctors to
assess patient status more efficiently and precisely. Improtantly,
AI plays a supportive role to relieve the physicians from labor-
intensive but less cognitively demanding routine tasks, allowing
them to focus on more mental work, such as patient care
and image interpretation (1). Another step that is inseparable
from AI in PET is imaging data processing, especially when it
comes to standardizing imaging acquisition and reconstruction
procedures. The repeatability of AI analysis in multicenter
settings is essential to clinical translation. Zwanenburg
performed a meta-analysis to evaluate the repeatability of
PET imaging biomarkers (10). Based on the results, variations
in the image acquisition, reconstruction, segmentation, and
processing strongly affect the reliability of image biomarkers in
models of different PET centers (10).

Although AI has tremendous potential in PET, it is critically
important to be aware of its limitations. First, the reproducibility
and reliability of AI algorithms are required. With the modeling
becoming more and more complicated, the “black box” nature
of AI makes it difficult to understand and explain the results
of many AI models, especially in some DL models (11). The
current trustworthy AI for health care prefers the explainability
and stability of diverse and unknown data (12). Second, AI needs
massive annotated data for learning and growing, which makes
AI less reliable in small datasets. Currently, standard datasets,
such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
that is available to the public, are still relatively rare and in
high demands. More open standard datasets will promote the
development of AI. Last but not the least, there are still many
ethical issues that need to be discussed, such as who is responsible
for the legal and ethical issues if the AI diagnosis turns out to
be wrong?

Despite the above limitations, it is obvious that AI plays
a unique role in every step of PET, including patient
information management, drug synthesis and administration,
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image acquisition and processing, as well as report interpretation.
AI can not only be used for helping make clinical decisions,
but also as a research helper for discovering and investigating
novel molecular biomarkers and their mechanisms in various
diseases (13).With the powerful impact of AI inmedical imaging,
many physicians, especially radiologists, are concerned to be
replaced by AI in the future. In fact, as Nensa et al. said, we
should perceive the change as an opportunity rather than a
threat (1). In the near future, or even at the moment, medical
imaging physicians should not only simply focus on describing
what images showing, but also need to pay more attention
to all available information and data of patients, and conduct
comprehensive analysis and interpretation to diseases diagnosis
and therapeutic efficacy assessment or prediction, which greatly

assist in providing more precise and personalized medical care
for every individual patient.
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Objective: Metabolic abnormality in the extratemporal area on fluorine-18-

fluorodeoxyglucose positron emission tomography (FDG-PET) is not an uncommon

finding in drug-resistant temporal lobe epilepsy (TLE), however the correlation between

extratemporal metabolic abnormalities and surgical long-term prognosis has not been

fully elucidated. We aim to investigate FDG-PET extratemporal metabolic profiles

predictive of failure in surgery for TLE patients.

Methods: Eighty-two patients with unilateral TLE (48 female, 34 male; 25.6 ± 10.6

years old; 37 left TLE, 45 right TLE) and 30 healthy age-matched controls were enrolled.

Patients were classified either as experiencing seizure-recurrence (SZR, Engel class II

through IV) or seizure-free (SZF, Engel class I) at least 1 year after surgery. Regional

cerebral metabolism was evaluated by FDG-PET with statistical parametric mapping

(SPM12). Abnormal metabolic profiles and patterns on FDG-PET in SZR group were

evaluated and compared with those of healthy control and SZF subjects on SPM12.

Volume and intensity as well as special brain areas of abnormal metabolism in temporal

and extratemporal regions were quantified and visualized.

Results: With a median follow-up of 1.5 years, 60% of patients achieved Engel

class I (SZF). SZR was associated with left TLE and widespread hypometabolism

in FDG-PET visual assessment (both p < 0.05). All patients had hypometabolism

in the ipsilateral temporal lobe but SZR was not correlated with volume or intensity

of temporal hypometabolism (median, 1,456 vs. 1,040 mm3; p > 0.05). SZR

was correlated with extratemporal metabolic abnormalities that differed according

to lateralization: in right TLE, SZR exhibited larger volume in extratemporal areas

compared to SZF (median, 11,060 vs. 2,112 mm3; p < 0.05). Surgical failure

was characterized by Cingulum_Ant_R/L, Frontal_Inf_Orb_R abnormal metabolism

in extratemporal regions. In left TLE, SZR presented a larger involvement of

extratemporal areas similar to right TLE but with no significant (median, 5,873

vs. 3,464 mm3; p > 0.05), Cingulum_Ant_ R/L, Parietal_Inf_L, Postcentral_L,

and Precuneus_R involved metabolic abnormalities were correlated with SZR.
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Conclusions: Extratemporal metabolic profiles detected by FDG-PET may indicate a

prominent cause of TLE surgery failure and should be considered in predictive models

for epilepsy surgery. Seizure control after surgery might be improved by investigating

extratemporal areas as candidates for resection or neuromodulation.

Keywords: PET in epilepsy, prognosis, epilepsy, image processing, PET

INTRODUCTION

The goal of epilepsy surgery is to render the patient seizure-
free. Surgical treatment of drug-resistant temporal lobe epilepsy
(TLE) has proven superior to medical management of the disease
(1). However, the proportion of seizure-free following TLE
surgery remains suboptimal (2, 3). In ∼50% of cases in which
surgery fails to achieve seizure freedom, patients who continue to
experience seizures after surgery are directly associated with an
even lower quality of life (4). It has proven difficult to identify
from existing literature independent biomarker highly predictive
of TLE surgery failure. Therefore, understanding the prominent
reasons for surgical failure and identifying effective indicators to
facilitate early evaluation remain of paramount importance in the
context of epilepsy care (3, 5–7).

Evidence from neuroimaging and electrophysiology studies
has consistently shown that epilepsy is a disease affecting neural
networks, with abnormalities occurring well-beyond the locus
of ictogenesis (8). While recurrent seizures following surgery
suggested that some epileptogenic tissue distinct from the
primary temporal lobe epileptogenic zone has not been resected,
and those areas might reflect dual pathology beyond seizure
onset zone, but usually negative in magnetic resonance imaging
(MRI) or impossibility of whole brain electrocorticogram
(ECoG) coverage (5, 7), thus posing a difficult diagnostic
challenge. Emerging evidence suggests that temporal lobe
hypometabolism on fluorine-18-fluorodeoxyglucose positron
emission tomography (FDG-PET) can provide relevant
information on the epileptogenic zone extent and surgical
outcome (9–11). The highest clinical benefit of FDG-PET can
be achieved in patients with MRI-negative TLE (12). However,
metabolic abnormality in the extratemporal cortex on FDG-PET
is not an uncommon finding and seems to be associated with
surgical outcome in TLE (13, 14), but the correlation between
extratemporal metabolic abnormalities and surgical long-term
prognosis has not been fully elucidated. Moreover, it is not
clear which profiles of temporal or extratemporal metabolic
abnormalities are more important for TLE surgical failure.

In this study, we analyzed patients with unilateral TLE who
had undergone identical surgical resections. Long-term seizure

Abbreviations: AAL, automated anatomical labeling; AMTR, anteromedial

temporal resection; EEG, electroencephalogram; FDG-PET, fluorine-18

fluorodeoxyglucose positron emission tomography; HS, hippocampal sclerosis;

ILAE, International League Against Epilepsy; IQR, interquartile range; LTLE, left

temporal lobe epilepsy; MNI, Montreal Neurological Institute; MRI, magnetic

resonance imaging; ROC, receiver operating characteristic; RTLE, right temporal

lobe epilepsy; SD, standard deviation; SPECT, single photon emission computed

tomography; SPM 12, statistical parametric mapping; SZF, seizure free; SZR,

seizure recurrence; TLE, temporal lobe epilepsy; TPE, temporal plus epilepsy.

outcomes were analyzed to determine the potential usefulness
of FDG-PET temporal and extratemporal metabolic intensity,
volume and/or specific brain areas for predicting postoperative
seizure recurrence in TLE patients. Imaging processing was
performed with statistical parametric mapping (SPM 12).

MATERIALS AND METHODS

Patients and Healthy Controls
We retrospectively reviewed 82 drug-resistant unilateral TLE
patients (45 right TLE [RTLE], 37 left TLE [LTLE]) who
had received preoperative FDG-PET between April 2014 and
April 2018. Diagnosis of drug-resistant unilateral TLE was
based upon comprehensive clinical assessment and criteria of
the International League Against Epilepsy (ILAE) (15). Each
patient was surgically treated by identical anteromedial temporal
resection (AMTR) without extratemporal resections as described
by Spencer et al. (16). Pathology was assessed from postoperative
pathology reports. The determination of postsurgical outcome
was based on in-person interviews and patient assessment during
clinic follow-up. Patients without 1-year follow-up were excluded
from analysis.

Thirty healthy age-matched volunteers were recruited as
normal controls. None had a history of head injury or a major
neurological, physical, or psychiatric disorder, including drug
and alcohol misuse.

Ethical Approval and Patient Consent
Study protocols was approved by the Ethical Commission
of Medical Research Involving Human Subjects at Region of
Xiangya Hospital, Central South University, China [IBR{C}NO.
(201412455)]. Written informed consent was provided by all
participants (patients and controls) in accordance with the
Helsinki Declaration.

Clinical Data
In addition to undergoing FDG-PET, patients completed
a pre-surgical assessment consisting of a detailed clinical
history and examination, video electroencephalogram (EEG)
monitoring, brain MRI, neuropsychiatric testing and intracranial
EEG monitoring when indicated. FDG-PET classification was
defined as previously described (17) and classified into
two subtypes according to the visual assessment: focal or
widespread hypometabolism.

Outcome assessments were performed 3 and 12 months after
surgery and at yearly intervals thereafter. All patients were
interviewed in detail for seizure recurrence, if any, and date of
recurrence. Surgical outcomes were classified based on the Engel
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Surgical Outcome scale (18, 19) as either seizure-free (SZF; Engel
class I) or seizure-recurrence (SZR; Engel class II through IV).

FDG-PET Image Acquisition and
Processing
FDG-PET was acquired using a Discovery Elite PET/CT
scanner (GE Healthcare) prior to surgical resection. FDG
was injected intravenously at a mean dose of 148 MBq.
Images were acquired in three dimensions over a 60min
time period, following scanning protocol described by Tang
et al. (11). Image processing was performed using the SPM12
(Wellcome Department of Cognitive Neurology, London, UK).
Individual FDG-PET image volumes were spatially normalized
into standard stereotactic Montreal Neurological Institute
(MNI) space with voxel sizes of 2×2×2. An 8-mm full-
width-half-maximum Gaussian kernel was used to improve
between-participant spatial alignment and smooth data for
statistical analysis. The right and left hemispheres were analyzed
separately to detect lateralization effects on surgical outcomes
(20). Image intensity between participants was normalized to
prevent interparticipant variability in cerebral tracer uptake from
masking regional changes. Increased or decreased metabolism
was considered statistically significant when uncorrected p =
0.001 with cluster level above 20 contiguous voxels. After data
preprocessing using SPM significant clusters were visualized,
reported and anatomically labeled using the xjView (http://
www.alivelearn.net/xjview), REST and BrainNet Viewer Toolkit
(21, 22). Data include metabolic profile information about the
clusters, including number of voxels (or volumes), anatomical
term of Automated Anatomical Labeling (AAL) areas and peak
intensity of each cluster.

Statistical Analysis
All data were analyzed using SPSS software (IBM SPSS Statistics,
Version 18.0). Numerical data are presented as mean ± SD or
Median (IQR). Student t-tests orMann-Witney tests and Pearson
χ
2 test were used for continuous and categorical variables

in between-group comparisons, as appropriate. For FDG-PET
image SPM analysis, the general linear model was used to
carry out the appropriate voxel-by-voxel univariate statistical
tests. Individual TLE SPM analysis was firstly performed using
30 healthy controls. The volume of metabolism changing in
temporal, extratemporal areas and whole brain for each patient
was then calculated as well as peak intensity for the ipsilateral
temporal lobe. Abnormal metabolic volume in RTLE and
LTLE was compared between two outcome groups using the
Mann-Whitney test. Then, individual SZR SPM analysis was
performed using SZF group, increased and decreasedmetabolism
of extratemporal brain area were visualized and frequency was
calculated. We then compared baseline glucose uptake values
of each outcome group (SZR and SZF separately) and healthy
controls in RTLE and LTLE using an analysis of covariance
(ANCOVA) with group as the between-subject factor and age and
sex as confounding covariates (23, 24). A two-sample t-test was
used to compared the different groups. Other comparisons were
performed between two outcome groups in both sides of TLE.
Statistical significance was defined as p < 0.05.

RESULTS

Clinical Data
Eighty-two refractory TLE patients (48 female, 59%) met the
inclusion criteria of isolated AMTR with 1 or more years of
follow-up. Median follow-up time was 1.5 years (IQR 1.2–2.3)
with a maximum follow-up time of 5 years. Patient clinical
characteristics are shown in Table 1. Briefly, 49 of 82 patients
(60%) obtained an Engle class I outcome. SZF was more
frequently obtained in RTLE (73%) than in LTLE (43%) and the
difference was significant (p = 0.006). The main clinical variable
differing significantly between SZF and SZR outcome groups
were seen for focal or widespread hypometabolism on FDG-
PET in RTLE. SZF group patients exhibited a narrower range
of hypometabolism in FDG-PET analysis by visual assessment
in RTLE (85.2% at focal hypometabolism vs. 55.6% widespread
hypometabolism, p = 0.028). Regardless of whether there was
hippocampal sclerosis(HS) in the postoperative histopathology
or MRI, there was no difference in their surgical outcomes (both
p > 0.05).

Volume of Metabolic Abnormalities in
Temporal and Extratemporal Areas
All patients exhibited hypometabolism in the temporal
cortex ipsilateral to the epileptogenic region (Figure 1).
Hypometabolism predominated in the temporal lobe in the
SZF cohort, with some patients also exhibiting minimal
hypometabolism or hypermetabolism outside the temporal lobe.
By contrast, larger differences were observed in extratemporal
areas in SZR cohort patients. Compared to healthy controls,
volume of metabolic abnormalities measured in temporal areas,
extratemporal areas and whole brain have differently correlated
with surgical outcome, and relative to lateralization of TLE. In
RTLE, relative to the SZF cohort, SZR cohort showed larger
volume metabolic abnormalities in extratemporal areas (median,
11,060 vs. 2,112 mm3; p = 0.02). The metabolic abnormality
volumes for temporal lobe and whole brain were larger in SZR
(median, 3,356 and 14,252 mm3) than in SZF cases (median, 936
and 4,200 mm3) but the differences were not significant (both p
> 0.05). In LTLE, the same trend was seen as in RTLE patients
but no significant volume differences were found in temporal
lobe, extratemporal areas and whole brain between SZR and
SZF abnormal cerebral metabolism (temporal lobe: 1,056 vs.
1,040 mm3; extratemporal areas: 5,872 vs. 2,560 mm3; whole
brain: 5,872 vs. 3,464 mm3; all p > 0.05). These results were
in part consistent with focal or widespread hypometabolism
classification by visual assessment on FDG-PET. No significant
difference in volume of ipsilateral temporal hypometabolism
was observed in both sides TLE (Mann-Witney test, p > 0.05)
(Table 1). Those suggest that hypometabolism volume in TLE
foci had no effect on surgical outcome, while the volume of
extratemporal metabolic abnormalities could affect surgical
outcome especially in RTLE. Larger volume of extratemporal
metabolic change correlated with worse surgical prognosis.
The critical volume of metabolic change outside RTLE foci
(calculated from ROC curve) was 12,580 mm3.
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TABLE 1 | Patient clinical characteristics and surgical outcomes.

LTLE patients (n = 37) RTLE patients (n = 45) All patients (n = 82)

SZF SZR p SZF SZR P SZF SZR p

Gender (male/female), n 10/6 11/10 NS 20/13 7/5 NS 30/19 18/15 NS

Age (mean ± SD), y 24.8 ± 8.2 27.0 ± 12.1 NS 25.8 ± 11.2 23.8 ± 9.7 NS 25.5 ± 10.3 25.8 ± 11.3 NS

Age at onset (mean ± SD), y 10.7 ± 7.7 11.7 ± 8.3 NS 14.9 ± 11.1 9.7 ± 6.9 NS 13.5 ± 10.2 11.0 ± 7.8 NS

Duration of epilepsy (mean ± SD), y 14.4 ± 8.9 15.2 ± 8.6 NS 11.0 ± 7.7 14.2 ± 7.6 NS 12.1 ± 8.2 14.8 ± 8.1 NS

Surgicalside (L/R) 16 (43%) 21 (57%) - 33 (73%) 12 (27%) - 16/33(60%) 2112 (40%) p < 0.05

Histopathology, n (%) NS NS NS

HS 10 (27) 12 (32) 21 (47) 5 (11) 31 (38) 17 (21)

Non-HS 6 (16) 9 (25) 12 (27) 7 (15) 18 (21) 16 (20)

Handedness (L/R) 1/15 0/21 NS 1/32 0/12 NS 2/47 0/33 NS

History, n (%) NS NS NS

Febrile seizures. 4 (11) 2 (5) 4 (9) 2 (5) 8 (10) 4 (5)

Brain injury 1 (3) 4 (11) 1 (2) 0 (0) 2 (2) 4 (5)

Without 10 (27) 15 (40) 24 (53) 9 (20) 34 (41) 24 (29)

Encephalitis 1 (3) 0 (0) 4 (9) 1 (2) 5 (7) 1 (1)

Psychiatric complication (with/without) 1/15 1/20 NS 0/33 1/11 NS 1/48 2/31 NS

Arua (with/without) 7/9 12/9 NS 18/15 6/6 NS 25/24 18/15 NS

Family history of epilepsy (with/without) 0/16 0/21 NS 0/33 1/11 NS 0/49 1/32 NS

Visual evaluation of PET (local/wide) 7/9 8/13 NS 23/10 4/8 0.028 30/19 12/21 0.027

Result of MRI (positive/negative) 13/3 14/7 NS 28/5 10/2 NS 41/8 24/9 NS

Volume of metabolic change

Temporal areas, median (IQR) 1,040 1,056 NS 936 3,356 NS 1,040 1,456 NS

(62–4,428) (0–7,328) (52–5,076) (64–11,000) (52–4,896) (0–9580)

Extratemporal areas, median (IQR) 3,464 5,872 NS 2,112 11,060 p < 0.05 2,112 8,424 p < 0.05

(1,048–11,502) (672–30,140) (176–36,284) (930–22,290) (176–6,708) (732–23,884)

p-value is derived from the univariable association analyses between each of the clinicopathologic variables and surgical outcome.

HS, hippocampal sclerosis; LTLE, left temporal lobe epilepsy; MRI, magnetic resonance imaging; NS, not significant; PET, positron emission tomography; RTLE, right temporal lobe

epilepsy; SD, standard deviation; SZF, seizure-free (Engel class I); SZR, seizure recurrence (Engel class II through IV).

Bold values indicates significant difference (p < 0.05).

Intensity of Metabolic Abnormalities in
Temporal and Extratemporal Areas
Compared to healthy controls, hypometabolism was

predominant in the ipsilateral temporal lobe (mesial, lateral and
polemesial, lateral and pole). Peak intensity of hypometabolism
in RTLE was−7.61 for SZR,−7.14 for SZF. Values of LTLE were

−6.78 for SZR and −7.98 for SZF. When comparing SZR to SZF

groups, differences in temporal lobe area were insufficient for
detection on SPM images in either RTLE or LTLE even if the

threshold was adjusted to p= 0.005 (Figure 2).
In addition to hypometabolism in temporal lobe foci, SZR

cohort might show multiple hypo- or hyper-metabolism areas
outside the temporal lobe. Compared to healthy controls,
LTLE patients exhibited the most severe abnormalities
in Parietal_Inf_L, Postcentral_L (hypometabolism, peak
intensity −5.16, −4.58) and Cingulum_Ant_R, Precuneus_R
(hypermetabolism, peak intensity 5.74, 4.62) in the SZR cohort.
In RTLE patients, the greatest discrepancy was found in the
Frontal_Inf_Orb_R (hypometabolism, peak intensity −3.67)
and Cingulum_Ant_R/L (hypermetabolism, peak intensity 4.88,
4.17) in the SZR cohort (Figure 1).

TLE patients had hypometabolism in the temporal cortex
ipsilateral to the epileptogenic region, but surgical outcomes were
not associated with volume and intensity of ipsilateral temporal
hypometabolism. SZR correlated with extratemporal metabolic
profile that differed according to TLE lateralization.

Special Extratemporal Brain Areas of
Metabolic Abnormalities
Comparing each SZR patient to the SZF cohort revealed the
frequency of involvement of each extratemporal region of
all SZR patients. In both LTLE and RTLE, the frequencies
of bilateral frontal lobe and left parietal lobe involvement
figured in the top three areas. Other areas included cingulate
gyrus, bilateral occipital lobe, contralateral temporal lobe,
insula, and caudate nucleus (Figure 3). However, comparing
glucose uptake values between the two surgical outcome
cohorts, we found that the peak intensity of metabolic
changes in SZR patients differed with respect to comparisons
with healthy controls. SZR vs. SZF differences were not
strong enough to be visualized on SPM images at the fixed
threshold. Lowering the threshold to p = 0.005 revealed
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FIGURE 1 | Metabolic data from 45 right (R) and 37 left (L) temporal lobe epilepsy (TLE) according to surgical outcome. Comparison with 30 healthy controls (SPM12,

p < 0.001). In RTLE, hypometabolism (blue) was predominant in the temporal cortex ipsilateral to the epileptogenic region, with mild extratemporal involvement in the

seizure-free group (SZF, Engel class I). In contrast, a larger volume involvement of nearby brain areas of foci and other perisylvian regions, as well as the

Frontal_Inf_Orb_R and Cingulum_Ant_R/L, were found in the seizure recurrence group (SZR, Engel class II through IV). In LTLE, the difference between SZR and SZF

outcome groups was much less marked. Parietal_Inf_L, Postcentral_L (hypometabolism, blue), and Cingulum_Ant_R, Precuneus_R (hypermetabolism, red)

associated with an unfavorable outcome.

FIGURE 2 | Metabolic differences according to outcome in right (R) and left (L) temporal lobe epilepsy (TLE) (p < 0.005). Areas of significant hypermetabolism in

seizure recurrence (SZR) compared to seizure-free (SZF) differed between RTLE and LTLE. Differences in temporal lobe and extratemporal region were not strong

enough to be visualized on SPM images in both RTLE and LTLE. Differences in temporal lobe area were insufficient for detection on SPM images in either RTLE or

LTLE even when the threshold was lowered to p = 0.005. Hypermetabolism (red) in Precuneus_R, Frontal_Sup_Orb_R/L of LTLE and Cingulum_Ant_L/R of RTLE was

evident when the threshold was set to p = 0.005.
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LTLE hypermetabolism in Precuneus_R, Frontal_Sup_Orb_R/L,
and RTLE hypermetabolism in Cingulum_Ant_L/R, but the
difference in temporal lobe area was insufficient for detection
(Figure 2).

DISCUSSION

Here we describe a large group of patients with a homogeneous
clinicopathologic syndrome undergoing standard AMTR for TLE
at a single center with a long postoperative follow-up. Metabolic
abnormalities both in temporal and extratemporal areas were
visualized and quantified using FDG-PET. We showed that the
volume and intensity of metabolic changes in extratemporal areas
and special brain areas assessed by FDG-PET correlated with
a substantial proportion of surgical failures. We went further,
to explore surgical outcomes in TLE with specific combinations
of clinical characteristics. Hemispheric asymmetry was found
to correlate with surgical results. Histopathology and MRI
assessment of HS, as previously described (14, 25), may have little
to do with the prognosis of surgery.

At the epilepsy center where this study was undertaken,
an MRI normal hippocampus is an indication for FDG-PET
evaluation even when other non-invasive evaluations lateralize to
one temporal lobe foci. In this study, for some cases in which ictal
onset localized to temporal lobe and an AMTR was performed,
the neuronal loss in non-HS was milder than typically observed
for mesial temporal sclerosis, but it does not indicate a higher
rate of post-operation seizure control (26), on the contrary,
sometimes negative MRI could prevent epilepsy surgeons from
discovering temporal lobe epileptic foci. In TLE that is resistant
to surgery, our glucose metabolism study has suggested an
epileptogenic involvement of cortical areas outside temporal
structures, both in cases with HS and non-HS. Accordingly, we
showed that the volume and intensity of metabolic changes in
temporal lobe foci had no effect on surgical outcomes. Previously,
TLE patients with greater maximal temporal asymmetries were
found to be less likely to achieve seizure-free status (27), but
this analysis did not consider effects of epileptic foci and other
brain regions on the contralateral temporal lobe, resulting in
a reduction of the asymmetry index. Altogether, our results
and other multivariate studies suggest that ipsilateral temporal
hypometabolism may not be a prognostic factor, but rather a
diagnostic indicator (13, 28).

The reasons for surgery failure are complex and variable, but
emerging evidence points to failure to resect epileptogenic areas
either within or outside the operated temporal lobe (7, 29–31).
This situation can be defined as a dual pathology combining an
extratemporal epileptogenic lesion and temporal epileptogenic
zone (32, 33). Our results may be better explained by attributing
epileptogenic potential to sites of metabolic abnormalities in
extratemporal areas that were not included in resection. Several
studies have reported extratemporal involvement associated with
poor postoperative outcome, including nearby structures outside
the standard resective margins or distant neocortical areas (13,
14, 25, 34). We found worse postoperative outcomes, especially
among RTLE patients, correlated with larger volume or visual

assessment range of metabolic changes in extratemporal areas
detected by FDG-PET imaging.

Surgical failures in TLE have pointed to a subset of patients
with primary seizure onset in the temporal lobe plus an
“epileptogenic zone” that extends to nearby structures outside
the standard resective margins, termed temporal-plus epilepsy
(TPE) (5, 7, 34). Generally, extra-temporal targets are selected
on the basis of alternative hypotheses formulated regarding the
location(s) and extent of the epileptogenic zone(s) (35). The
most frequently investigated brain regions are the temporo-
parieto-occipital junction, fronto-basal and orbito-frontal cortex,
suprasylvian operculum, and insula. Similarities in seizure
recurrence rates as well as visual assessment of FDG-PET images
between the extensive hypometabolism described in this study
and TPE subgroups (7) suggest the same factors behind failed
RTLE surgery. Except for nearby brain areas of foci, however,
almost all other cortical areas could be targeted (34). In addition,
for LTLE we found that while FDG-PET visual assessment and
volume of metabolic change in extratemporal areas did not
predict surgical outcomes, special cortical metabolic change in
extratemporal areas could be predictive. Outcome predictions for
LTLE patients were more challenging than for RTLE patients,
related to ranges of predictive factors and this may account for
the hemispheric asymmetry in metabolic patterns with respect
to outcomes.

Such an explanation for surgical failure implies that
a distributed epileptogenic network rather than a single
epileptogenic focus may underlie surgically refractory epilepsy.
Identification of epileptogenic foci and influences on networked
extra-focal areas responsible for continued or recurrent
postoperative seizures remain at the forefront of research
to improve outcomes (36, 37). In addition to larger volume
metabolic abnormalities in extratemporal areas linked to
unfavorable outcomes, we describe special patterns associated
with TLE surgical failure ranging from the frontal, parietal
to occipital lobe and contralateral networks; some of which
are consistent with electroclinical patterns corresponding
to anterior and posterior spread (25). The present study’s
data support potential network theory of epileptogenicity in
which nodes outside the seizure onset zone are implicated in
seizure generation (37, 38). In TLE, the profile of metabolic
abnormalities in extratemporal areas including volume, intensity
and involvement of special brain areas assessed by FDG-PET,
may indicate that these extratemporal limbic nodes are critical
for epileptogenic network onset (39). Going forward, these
should be sampled when an intracranial electroencephalography
study of presumed temporal onset is performed. A shift toward
treating the seizure network rather than a seizure-onset focus
could alter the surgical and neuromodulatory management of
focal epilepsy and guide electrode placement.

To address this issue therapeutically, extending resection
to include nearby structures is one possible approach, when
the metabolic pattern includes dispensable cortical areas such
as the non-dominant lateral temporal cortex. When extended
resection is not possible (e.g., dominant temporal lobe, frontal
neocortex, or cerebral cortex motor area), treatment might
involve placement of responsive neurostimulation electrodes at
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FIGURE 3 | Involvement frequency of extratemporal region in all seizure recurrence (SZR) patients compared to the seizure-free (SZF) group. We compared the

frequency of involvement of each extratemporal region of all patients in the SZR group. In both right (R) and left (L) temporal lobe epilepsy (TLE), the bilateral frontal

lobe and left parietal lobe involvement frequencies were in the top three. Other areas included cingulate gyrus, bilateral occipital lobe, contralateral temporal lobe,

insula, and caudate nucleus.

these extratemporal limbic nodes. Responsive neurostimulation
electrodes would allow long-term recordings to validate nodes
that are responsible for recurrent seizures as well as determine
whether these sites are responsive to neuromodulation (40).
When extratemporal areas such as the parietal motor area or
occipital lobe (RTLE: Cingulum_Ant_R/L, Frontal_Inf_Orb_R;
LTLE: Cingulum_Ant_L/R, Parietal_Inf_L, Postcentral_L, and
Precuneus_R) are identified as metabolic change network nodes,
it is essential to carefully consider possible adverse outcomes of
resection, ablation or neurostimulation. While AMTR may likely
fail for such patients, the effectiveness of possible alternative
approaches is not yet clear. Advanced functional neuroimaging
techniques have identified different phenotypes within the
TLE spectrum, and specific metabolic patterns have poor
surgical outcomes (41). Both extended resection and responsive
neurostimulation treatment approaches will require FDG-PET
neuroimaging for treatment planning and clear definition of
projected network nodes.

This study had several limitations. First, this was a
retrospective analysis and all patients underwent FDG-PET scan,
leading to a low proportion of class I Engel outcomes (60%)
especially among LTLE patients (43%). As patients without FDG-
PET imaging were not included, which might have led to some
selection and ascertainment biases. The decision to undergo
surgery for epilepsy is complex, and involves consideration of
the patient’s baseline disease burden and overall clinical picture.
It is not solely based on the probability of achieving freedom
from seizures. Our findings are not meant to replace clinical
judgment, but rather to assist decision making by providing

an objective estimate of one key decision-driving factor-
postoperative seizure-recurrence. Finally, preoperative video-
EEG data, structural MRI neuroimaging and results of more
sophisticated diagnostic tests such as ictal SPECT and invasive
electroencephalogram were not analyzed in study patients who
failed TLE surgery.

In conclusion, Extratemporal metabolic profiles detected by
FDG-PET, in particular volume and intensity and affected
special extratemporal brain areas may be associated with
unfavorable postoperative seizure outcome in TLE and should
therefore be considered in predictive models for epilepsy surgery.
For TLE confirmed to have specific extratemporal metabolic
abnormalities on FDG-PET, AMTR appears very unlikely to
control seizures and should not be advised.
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Deep learning technology is now used for medical imaging. YOLOv2 is an object

detection model using deep learning. Here, we applied YOLOv2 to FDG-PET images

to detect the physiological uptake on the images. We also investigated the detection

precision of abnormal uptake by a combined technique with YOLOv2. Using 3,500

maximum intensity projection (MIP) images of 500 cases of whole-body FDG-PET

examinations, we manually drew rectangular regions of interest with the size of each

physiological uptake to create a dataset. Using YOLOv2, we performed image training as

transfer learning by initial weight. We evaluated YOLOv2’s physiological uptake detection

by determining the intersection over union (IoU), average precision (AP), mean average

precision (mAP), and frames per second (FPS).We also developed a combinationmethod

for detecting abnormal uptake by subtracting the YOLOv2-detected physiological

uptake. We calculated the coverage rate, false-positive rate, and false-negative rate by

comparing the combination method-generated color map with the abnormal findings

identified by experienced radiologists. The APs for physiological uptakes were: brain,

0.993; liver, 0.913; and bladder, 0.879. The mAP was 0.831 for all classes with

the IoU threshold value 0.5. Each subset’s average FPS was 31.60 ± 4.66. The

combination method’s coverage rate, false-positive rate, and false-negative rate for

detecting abnormal uptake were 0.9205 ± 0.0312, 0.3704 ± 0.0213, and 0.1000

± 0.0774, respectively. The physiological uptake of FDG-PET on MIP images was

quickly and precisely detected using YOLOv2. The combination method, which can be

utilized the characteristics of the detector by YOLOv2, detected the radiologist-identified

abnormalities with a high coverage rate. The detectability and fast response would thus

be useful as a diagnostic tool.

Keywords: object detection, deep learning, positron emission tomography, YOLOv2, computer vision
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INTRODUCTION

Deep learning technology has developed rapidly and is now
used in real-world settings such as automated driving, games,
image processing, and voice recognition (1–4). Deep learning
has also been applied to the field of medical imaging; e.g.,
in the classification of computed tomography (CT) images
in different slice positions (5) and its training algorithm (6),
research concerning the diagnosis and processing of pulmonary
nodules by deep learning for feature extraction, detection, false-
positive reduction, and benign malignant classification (7), and
a study using deep learning to improve the performance of the
automatic detection of lesions on mammograms (8). In such
applications, knowledge of anatomy is required to process and
diagnose medical images, and an inexperienced person may
not be able to process and diagnose the images appropriately.
However, if automatic object detection using deep learning (9–
14) can be used for medical imaging, it could be possible to
perform highly reproducible processing without the requirement
of the knowledge and experience of physicians and radiologists.

Fluorodeoxyglucose-positron emission tomography (FDG-
PET) (15) is an imaging method in which FDG labeled with
fluorine-18 (F-18) is injected into the body, and two 511 keV
annihilation photons which are produced by the positron decay
of F-18 are simultaneously injected into the opposing detectors
and reconstructed. FDG is an analog of glucose and accumulates
in tumors with increased glucose metabolism as well as in organs
in vivo, such as the brain, where glucose consumption as energy
is high. It is therefore necessary to determine whether each site
of high FDG uptake is a physiological uptake or an abnormal
uptake. It has been demonstrated that a convolutional neural
network (CNN) was useful for classifying FDG-PET images into
normal, abnormal, and equivocal uptakes (16). In the present
study, we investigated the precision of an object detection model,
You Only Look Once version 2 (YOLOv2) (17), which uses deep
learning to automatically detect the physiological uptakes on
maximum intensity projection (MIP) images of FDG-PET in a
rectangular region. We also developed a combination method
to generate images in which abnormal uptakes were enhanced
by subtracting only the detected physiological uptakes from the
original MIP images. For an evaluation of the potential clinical
uses of this combination method, we calculated the coverage rate
by comparing the generated images to the abnormal uptakes that
were identified by previous imaging findings.

MATERIALS AND METHODS

Subject and PET-CT Scans
The study included a total of 500 patients (287 males and 213
females, age 61.3 ± 17.0 years [mean ± SD]) who underwent
a whole-body FDG-PET examination for the screening of
malignant tumors between January andMay 2016 at our institute.
All MIP images were acquired using either a GEMINI TF64
PET-CT scanner (Philips Healthcare, Cleveland, OH, USA), or
a Biograph64 PET-CT scanner (Siemens Healthcare, Erlangen,
Germany). This study was approved by our institute’s Ethics
Committee [#017-0365].

Automatic Detection
The Creation of the Datasets
A total of 3,500 MIP images of the 500 patients (seven images
per patient at every 10◦ to ±30◦ from the front) were generated
in the workstation equipped with the PET-CT scanners. We
defined five classes of physiological uptake to be automatically
detected: brain, heart, liver, kidney, and bladder. All image data
were converted from Digital Imaging and Communications in
Medicine (DICOM) files to Joint Photographic Experts Group
(JPEG) files for further use.

The JPEG files were loaded into the in-house MATLAB
software program (MATLAB2019b, The MathWorks, Natick,
MA, USA), and this program was used to draw rectangular
regions of interest (ROIs) to enclose each physiological uptake
(Figure 1). The ROI data were outputted as a text file, which
included the object name, the coordinates, and the size of each
ROI. We divided the supervised data into five subsets for nested
cross-validation (18). Each 100 patients contributed 700 images;
we used 2,800 images from 400 patients for training, and the
remaining 700 images for testing (Figure 2). Each subset was an
independent combination of 400 patients for training and 100
patients for test images, to prevent the mixing of patient images
between the training and testing images within the subsets. To
effectively learn for the training dataset, we performed data
augmentation (19, 20) using image rotation from −15◦ to 15◦ in
3◦ steps and a zoom rate from 0.9 to 1.1 in 0.1 steps.

Training Images for Model Creation
We developed a software program for object detection with a
deep learning technique via the in-house MATLAB software; we
used a deep learning-optimized machine with an Nvidia Quadro
P5000 graphics card (Nvidia Corp., Santa Clara, CA), which
provides 8.9 Tera floating-point single-precision operations
per sec, 288 GB/sec memory bandwidth, and 16 GB memory
per board. We performed the image training as transfer learning
by initial weight using YOLOv2, with the MATLAB deep
learning Toolbox and Computer Vision System Toolbox. The
training model hyperparameters were as follows: maximum
training epochs, 10; initial learning rate, 0.00001; mini-batch size,
96. We used stochastic gradient descent with momentum for
optimization with an initial learning rate. We set the momentum
and L2 regulation to 0.9 and 0.0001, respectively. We performed
image training five times based on the training subsets shown in
Figure 2.

Evaluation of the Created Models
We incorporated the predicted bounding boxes into the
MATLAB software in order to reveal the region of each
physiological uptake as a bounding box. We also evaluated
each physiological uptake by determining the average precision
(AP), the mean average precision (mAP) (21), and the frames
per second (FPS) for an estimation of the efficiency of the
created model. The AP and mAP values were calculated
by each intersection over union (IoU). We examined the
bounding boxes based on the supervised ROI according to the
“evaluateDetectionPrecision” and “evaluateDetectionMissRate”
functions in the MATLAB Computer Vision Toolbox.
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FIGURE 1 | The software for training outlined ROIs over the physiological uptakes. The yellow bounding boxes enclose physiological uptakes.

FIGURE 2 | A total of 3,500 images were divided into five subsets to complete a nested cross-validation.
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FIGURE 3 | The process of the combination method. (A) The detection of physiological uptake by YOLOv2. (B) Only physiological uptakes detected by YOLOv2 were

subtracted from the original images. (C) A color map is generated by coloring the pixels above the threshold.

Combination Method
The Creation of Color Maps
Each physiological uptake (brain, heart, liver, kidney, and
bladder) detected by the created model described above in
section Automatic Detection (Figure 3A) was cropped from
the original MIP image with a five-pixel margin on the
coordinate information of the bounding boxes. For the clipped
physiological uptake images, we performed threshold processing
to set <50% of the maximum pixel values to zero, and we
applied a two-dimensional (2D) Gaussian smoothing kernel
with a standard deviation of 1.2. The images generated by
this process were subtracted from the original MIP images
(Figure 3B); the histogram of the images was drawn, and the
mode of frequency was determined. The threshold was defined
as the value of the pixel value plus 100. Higher uptakes other
than physiological uptakes were emphasized in the image by
displaying red pixels above the threshold value (Figure 3C). Our
new combination method was thus defined as the generation of
these images as a color map derived from the series of methods
described above.

Evaluation of the Created Color Maps
We evaluated the combination method by comparing the
abnormal imaging findings between the abnormal findings
obtained by two experienced radiologists (SF, 5 years; KH, 18
years) and the color maps generated by the combination method.
The radiologist’s findings were evaluated according to the
presence/absence of abnormalities in each of the seven regions
(brain, head/neck, chest, abdomen, pelvis, heart, intestine).When
the region colored on the color map corresponded to the region
diagnosed as abnormal by the radiologist, it was considered to be
correctly detected.

We defined the coverage rate as the percentage of correctly
detected abnormalities relative to the radiologist’s findings of the
presence of abnormalities. A false-positive result was defined as
when a site with no abnormalities on the radiologist’s findings
was colored on the color map. And also, a false-negative
result was defined as when the site noted as abnormal by the

radiologist was not colored on the color map. We defined
the false-positive rate as the ratio of false-positive results to
the radiologist’s findings of no abnormalities and the false-
negative rate as the ratio of false-negative results to the site
of colored on the color map. In addition, we obtained false-
positive and false-negative rates for each site. These values were
calculated for the evaluation of the detection precision of the
combination method.

RESULTS

Average Precision of Each Class
The average precision of each class automatically detected by
YOLOv2 is shown in Figure 4. At the IoU of 0.5, physiological
uptakes in the brain were detected with rather high precision (AP:
0.993), followed by high APs in the liver (0.913), bladder (0.879),
and kidneys (0.843). The detection of the cardiac uptakes were
the worst, with an AP of 0.527 at the IoU of 0.5.

Figure 5 shows the mean average precision of each
physiological uptake (brain, heart, liver, kidney, and bladder)
detected by YOLOv2. The mAP value was decreased over the
threshold IoU of 0.5. The mAP was 0.831 with the threshold IoU
of 0.5. The average FPS for each subset was 31.60± 4.66.

Coverage Rate, False Positive Rate, and
False Negative Rate of the Combination
Method
Table 1 shows the coverage and false-positive rate of the color
maps generated by the combination method. The coverage rate,
false-positive rate, and false-negative rate for detecting abnormal
uptake were 0.9205 ± 0.0312, 0.3704 ± 0.0213, and 0.1000 ±

0.0774, respectively.
Table 2 shows the false-positive rate and false-negative rate

by site by the combination method. The false-positive rate was
highest in the head/neck, at 0.7629 ± 0.0385. The false-negative
rates were higher in the abdomen and head/neck, 0.2047 ±

0.1254 and 0.2000± 0.4472, respectively.
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FIGURE 4 | Average precision of each physiological uptake.

FIGURE 5 | The mAP values of the physiological uptakes.

DISCUSSION

We evaluated the precision of a network model of deep learning
for object detection (i.e., YOLOv2) for detecting physiological
uptakes on FDG-PET images with a rectangular region, and we
developed a combinationmethod using YOLOv2 and subtraction

processing for the detection of abnormal uptakes. The detector
was created by training with a dataset of 3,500 MIP images with
data augmentation processes (such as rotation and zooming) and
the mAP of 0.831 with the IoU of 0.5. The average FPS was >30.
The results demonstrated high detection precision and a high
speed for the detection of physiological uptakes. In particular, the
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TABLE 1 | Coverage rate, false-positive rate, and false-negative rate of the new

combination method.

Coverage rate False positive rate False negative rate

Subset A 0.8719 0.3796 0.2310

Subset B 0.9343 0.3356 0.0543

Subset C 0.9554 0.3684 0.0329

Subset D 0.9129 0.3857 0.0970

Subset E 0.9279 0.3828 0.0851

Mean ± SD 0.9205 ± 0.0312 0.3704 ± 0.0213 0.1000 ± 0.0774

physiological uptakes of the brain could be detected with fairly
high precision, with an AP of 0.993 with the IoU of 0.5. The next-
highest values were found for the liver, bladder and kidneys at
0.913, 0.879, and 0.843, respectively.

However, as shown in Figure 4, the detection of physiological
uptakes in the heart resulted in lower APs compared to those
in the other classes. One possible reason for the very high APs
(>0.9) in physiological uptakes in the brain and liver compared
to the slightly lower APs in other classes is that FDG-PET
provides metabolic images rather than anatomical images like
CT or magnetic resonance imaging (MRI). The brain and liver
showed no differences in the MIP images due to the minimal
differences in metabolism between individuals. However, the
shape and degree of uptakes of the bladder and kidneys varied
greatly on the images, as there were large individual differences
in uptakes depending on the degree of urination. In addition,
normal heart uptakes were more difficult to diagnose than the
other four classes because of the variety of uptake patterns (22),
which may have contributed to the low AP for the heart.

With regard to limitations of the detection of physiological
uptakes, the number of features for the detector that was
necessary for the training of the created models was limited.
In other words, for the further improvement of the detection
precision, we have to consider increasing the number of training
images and the number of patterns of data augmentation because
the present study was performed with rotation and zooming of
the images. However, our findings demonstrated that higher AP
and mAP values could be obtained by varying the degree of
rotation and the zoom rate as data augmentation. In addition,
regarding the pixel data, the raw data of the DICOM files (which
had the dynamic range of pixel values) would be taken into
account for the evaluation of the new method’s precision because
the present study was performed using JPEG images. Moreover,
it has been reported that the mAP was improved by color
operations and geometric operations (23), and the precision of
the mAP could be changed by performing procedures other than
those used in the present study.

Regarding the CNN models, although our results showed
sufficient precision and response speed for the real-time
detection, further improvements of the detection precision
and speed may be obtained by using a network model for
object detection other than YOLOv2, such as DetectNet (24),
Single Shot MultiBox Detector (25), and Faster R-CNN (26).
New network models such as Feature Pyramid Networks (27)

TABLE 2 | False-positive rate and false-negative rate by site.

False positive rate False negative rate

Brain 0.0137 ± 0.0254 0.2000 ± 0.4472

Head/neck 0.7629 ± 0.0385 0

Chest 0.3523 ± 0.1460 0.0331 ± 0.0197

Abdomen 0.3326 ± 0.1873 0.2047 ± 0.1254

Pelvis 0.1674 ± 0.0341 0.0667 ± 0.0726

Heart 0.0331 ± 0.0296 0.0761 ± 0.0288

Intestine 0.3754 ± 0.0602 0.1198 ± 0.1539

and Mask R-CNN (28), which are based on Faster R-CNN
with additional technologies, have been reported to improve
processing speed and average precision. There is also an
improved version of YOLOv2 with a deeper network model,
YOLOv3 (29). However, the detection precision shown as
the mAP was 0.831 with the IoU of 0.5, and the average
FPS was over 30 FPS in the present study. These results
demonstrated that the detection was sufficiently accurate and
faster compared to other studies aimed at real-time detection
(30). Therefore, although there is room for further improvement
in the detection performance due to factors such as the number
of training images, data augmentation, and different network
models, we observed that the detection performance obtained
herein (including the speed response) was sufficient for use in
image diagnoses.

We took advantage of the detection of physiological uptake by
the detector created using YOLOv2, an object detection model
based on deep learning technology. The combination method
was our newly developed method for detecting abnormal uptakes
by combining YOLOv2 and a subtraction process. The color
maps generated by the combination method showed great merit,
with a very high coverage rate of>92% for the abnormal findings
identified by the highly experienced radiologist. We used MIP
data in this study because of the smaller size of the data and
the ability to evaluate the whole body in a single image. The
use of MIP images not only reduced the learning time even
when the number of images was increased but also provides
more information in one image than can be obtained when
using tomographic images. For example, because it is often
difficult to distinguish between normal and abnormal uptakes
in a single tomographic image, the diagnosis is usually made by
examining both the upper and lower slices. For these reasons,
there are advantages to using MIP images for diagnoses using
deep learning.

However, the false-positive rate obtained by this detector was
∼37%, which is not very low; this result might be due to the
use of MIP images with 2D data. The generation of a false high
uptake might be caused by overlapping of low uptake when
the three-dimensional (3D) structure of the body was rendered
into a 2D image, and this effect might be the reason for the
increase of false-positive results. It was thus difficult to reduce
the number of false positives with MIP images, and there was
a limit to the precision of the combination method with MIP
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data. Incorporating tomographic data could be one solution.
Moreover, the false-positive rate by site was the highest in the
head/neck. As for the neck region, Purohit BS reported (31) that
FDG uptake by normal lymphoid tissue act as a confounding
factor for the diagnosis of neck tumors. This was the reason we
did not define the uptakes at this site as a physiological uptake.
As a result, the false-positive rate was higher than any other site
due to detecting physiological uptakes incorrectly. However, the
head/neck was the only site with a false-negative rate of zero and
did not miss the lesion. Regarding to the false-negative rate, it
was higher in the abdomen and brain because abnormal uptakes
within physiological uptakes were more common in these sites
than in other sites, and these uptakes could not be detected.

Although we applied the dataset to the 2D network model
as YOLOv2 due to the limitation of computer resources, there
are 3D network models (32–36) that can be used with one-
time training with the whole data. We have also considered
these 3D network models for the evaluation of precision in a
future study. Furthermore, we have to take into consideration
changing window width of the MIP images to distinguish
between physiological uptakes and tumors because the MIP
technique has a limitation to detect abnormal uptakes within
physiological uptakes. However, in light of the accurate detection
of the physiological uptakes observed herein and the coverage
rate for abnormal uptake indicated by a radiologist, our present
results have established this combination method as a useful
diagnostic tool with real-time detection.

CONCLUSIONS

We investigated the precision of the detection of physiological
uptakes and developed a combination method for diagnoses
based on FDG-PET images. With the use of using YOLOv2, the
physiological uptake of FDG on MIP images was automatically
detected with high precision and high speed. In addition,
the combination method, which utilizes the characteristics of

the detector by YOLOv2, detected abnormalities identified by
the experienced radiologist with a high coverage rate. The
combination method’s detection performance and fast response
demonstrated its usefulness as a diagnostic aid tool.
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Texture Analysis in the Diagnosis of
Primary Breast Cancer: Comparison
of High-Resolution Dedicated Breast
Positron Emission Tomography
(dbPET) and Whole-Body PET/CT
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1 Yamanashi PET Imaging Clinic, Yamanashi, Japan, 2Department of Radiology, University of Yamanashi, Yamanashi, Japan,
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Objective: This retrospective study aimed to compare the ability to classify tumor

characteristics of breast cancer (BC) of positron emission tomography (PET)-derived

texture features between dedicated breast PET (dbPET) and whole-body PET/computed

tomography (CT).

Methods: Forty-four BCs scanned by both high-resolution ring-shaped dbPET and

whole-body PET/CT were analyzed. The primary BC was extracted with a standardized

uptake value (SUV) threshold segmentation method. On both dbPET and PET/CT

images, 38 texture features were computed; their ability to classify tumor characteristics

such as tumor (T)-category, lymph node (N)-category, molecular subtype, and Ki67

levels was compared. The texture features were evaluated using univariate and

multivariate analyses following principal component analysis (PCA). AUC values were

used to evaluate the diagnostic power of the computed texture features to classify

BC characteristics.

Results: Some texture features of dbPET and PET/CT were different between Tis-1

and T2-4 and between Luminal A and other groups, respectively. No association with

texture features was found in the N-category or Ki67 level. In contrast, receiver-operating

characteristic analysis using texture features’ principal components showed that the

AUC for classification of any BC characteristics were equally good for both dbPET and

whole-body PET/CT.

Conclusions: PET-based texture analysis of dbPET and whole-body PET/CT may have

equally good classification power for BC.

Keywords: dedicated breast positron emission tomography (dbPET), positron emission tomography/computed

tomography (PET/CT), texture analysis, breast cancer, 18F-FDG
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INTRODUCTION

Due to the recent advances in BC treatment, neo-adjuvant
systemic chemotherapy is often performed before surgery.
Therefore, highly accurate staging before treatment is essential.
However, because BC is characterized by heterogeneity, it is
difficult to predict tumor characteristics and prognosis from
small specimens biopsied from a limited number of lesions. 18F-
fluorodeoxyglucose (FDG) positron emission tomography (PET)
can assess metabolic information on various tumors—a difficult
task with conventional imaging modalities—and evaluate a
wide range of pathological conditions in a minimally invasive
manner. For this reason, PET is now widely used for benign vs.
malignant lesion differentiation, staging, recurrence diagnosis,
and prediction of prognosis in various types of cancer, including
BC (1).

Until recently, the usefulness of local evaluation by whole-
body PET/computed tomography (CT) has been limited by
its limited spatial resolution and the physiological background
accumulation in mammary glands (2). However, in more recent
years, the performance of whole-body PET/CT scanners has
increased along with their diagnostic ability in local evaluation
due to the widespread use of devices using time-of-flight
(TOF) or point-spread-function (PSF) methods for image
reconstruction (3). Furthermore, high-resolution breast PET
scanners have been developed to detect BC lesions smaller than
those detectable by whole-body PET (4–6). By using the two
devices in combination, it has been possible to accurately and
more rapidly evaluate local and metastatic BC lesions.

In the past few years, research on radiomics has focused
particularly on texture analysis using various imaging modalities,
including BC studies utilizing MRI and US (7, 8). Some studies
reported that PET images’ texture features are associated with
BC subtypes and prognosis (9–11). Texture analysis, which
assesses intra-tumoral heterogeneity to compute image-specific
information, is highly reproducible, has little variation among
diagnostic radiologists, and will help mitigate the shortage of
said radiologists who are excellent at diagnosing BC imaging. Its
usefulness suggests that PET may contribute more widely to the
diagnosis, treatment, and post-treatment management of BC.

Regarding the comparison between dbPET and whole-body
PET/CT, there have been reports on the evaluation of the
standard performance of the scanners and detectability of BC
(12, 13), but none on the comparison of their diagnostic
ability using texture analysis. This study aimed to compare the
classifying ability of PET-derived texture features for BC’s tumor
characteristics between dbPET and whole-body PET/CT.

Abbreviations: AUC, area under the curve; AJCC, American Joint Committee

on Cancer; BC, breast cancer; CT, computed tomography; dbPET, dedicated

breast tomography PET; ER, estrogen receptor; FDG, fluorodeoxyglucose; FOV,

field-of-view; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run

length matrix; GLZSM, gray-level zone size matrix; HER2, human epidermal

growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization;

MTV, metabolic tumor volume; N, lymph node staging; NGLDM, neighborhood

gray-level difference matrix; PCA, principal component analysis; PET, positron

emission tomography; PR, progesterone receptor; PSF, point-spread-function;

ROC, receiver-operating characteristic; SUV, standardized uptake value; TLG, total

lesion glycolysis; T, tumor staging; VOI, volume of interest.

MATERIALS AND METHODS

This single-institute, retrospective study was approved by the
Institutional Review Board and the Ethics Committee of our
institute and was carried out in accordance with the Declaration
of Helsinki. Written informed consent for future access and
anonymous use of their data was obtained from each patient.

Patients
We enrolled 798 consecutive women who underwent dbPET
and whole-body PET/CT at our institute between April 2015
and March 2018. BCs that were selected fulfilled the following
inclusion criteria: (1) the molecular subtype of BC had been
determined; (2) patient clinical history was available. The
exclusion criteria were as follows: (1) patients with a history
of other malignancies; (2) missing or incomplete clinical data;
(3) patients undergoing chemotherapy or within 1 year after its
completion; (4) BC not successfully extracted in both dbPET and
PET/CT because the SUV of the background mammary gland
was higher than 40% of the BC SUVmax.

Subtype Classification
BC diagnoses through tumor histology and
immunohistochemistry were made using surgical or
biopsy specimens of core needle biopsy before neoadjuvant
chemotherapy. Tumor, lymph nodes, and metastasis (TMN)
categorization of malignant tumors was established following
the 8th edition of the American Joint Committee on Cancer
(AJCC) staging system (14). The molecular markers examined
included estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor 2 amplified (HER2)
expression. ER and PR status was considered positive for
tumors showing at least 10% of positive cells. HER2 status was
assessed by immunohistochemistry (IHC): Tumors scored as
3+ were classified as HER2 positive; those scored as 0 or 1+
were classified as HER2 negative. For tumors scored as 2+,
further confirmation using molecular tests [in situ hybridization
(ISH)] was obtained. ISH non-amplified tumors were classified
as HER2 negative, and ISH amplified ones as HER2 positive.
IHC classification followed the 13th St. Gallen International
Breast Cancer Conference (2013) recommendations, with a Ki67
threshold of 20% (15). BCs were classified into four subtypes:
(1) luminal A: ER and/or PR positive, HER2 negative, and low
expression of Ki67 (<20%); (2) luminal B: (a) ER and/or PR
positive, HER2 negative and high expression of Ki67 (20%≤), or
(b) ER and/or PR positive, HER2 positive; (3) HER2: ER and PR
negative, and HER2 positive; and (4) triple-negative: ER, PR, and
HER2 negative.

Ring-Shaped dbPET Scanner
The ring-shaped dbPET scanner (Elmammo, Shimadzu
Corporation, Kyoto, Japan) comprises a total of 36 detector
modules (12 per ring) arranged in three continuous rings, has
a diameter of 195mm and axial length of 156.5mm, and has
depth-of-interactionmeasurement capability (16). The transaxial
effective field-of-view (FOV) is 185 × 156.5 mm2. Each detector
block consists of a four-layered 32 × 32 array of lutetium
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oxyorthosilicate crystals coupled to a 64-channel positron-
sensitive photomultiplier tube via a light guide. Attenuation
correction was calculated using a uniform attenuation map with
object boundaries obtained from emission data (17). Scatter
correction was performed using the convolution-subtraction
method (18) with kernels obtained by background tail fitting.

This scanner’s characteristics and standard performance have
been previously reported in detail (5).

Whole-Body PET/CT Scanner
Whole-body PET/CT scans were obtained using a Biograph
Horizon TrueV FDG-PET/CT system (Siemens Medical

FIGURE 1 | Inclusion and exclusion criteria. FDG, fluorodeoxyglucose; PET, positron emission tomography; dbPET, dedicated breast positron emission tomography;

CT, computed tomography.

FIGURE 2 | Successfully (A) and unsuccessfully (B) extracted breast cancers with dbPET and whole-body PET/CT. (A) Invasive ductal carcinoma in the left breast of

an 84-year-old woman. BC (arrow) was successfully extracted with both dbPET and whole-body PET/CT (two images at the bottom) and clearly separated from the

physiological uptake of the myocardium (*) with whole-body PET/CT. (B) Invasive ductal carcinoma in the left breast of a 74-year-old woman. It was successfully

extracted with dbPET but failed with whole-body PET/CT; therefore, it was excluded from this study. BC, breast cancer; CE-CT, contrast-enhanced computed

tomography; dbPET, dedicated breast positron emission tomography.
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Solutions, Knoxville, TN, USA). This system has 52 detector
rings consisting of 160 blocks. Each block containing an array
of 13 × 13 lutetium oxyorthosilicate crystals (4mm × 4mm ×

20mm) covering an axial FOV of 221mm and transaxial FOV
of 690mm. A CT scan was performed for attenuation correction
(130 kV; 15–70mA; tube rotation time, 0.6 s per rotation; pitch,
1; transaxial FOV, 700mm; and section thickness, 5 mm).

Data Acquisition and Image
Reconstruction
All patients fasted for at least 6 h before administration of
18F-FDG (3 MBq/kg). Sixty min after the injection, patients
underwent whole-body PET/CT scanning prior to dbPET. The
PET/CT images were reconstructed using the ordered subset
expectation maximization method and time-of-flight algorithm
with 4 iterations and 10 subsets. The CT data were resized from
a 512 × 512 matrix to a 180 × 180 matrix to match the PET
data and construct CT-based transmission maps for attenuation
correction of the PET data with a post-reconstruction smoothing
Gaussian filter (5mm FWHM). The voxel size was 4.11 x 4.11 x
5 mm3.

Approximately 90min after FDG injection, after the whole-
body PET/CT scan, dbPET scanning was performed for 7min
for each breast. The dbPET images were reconstructed using
a three-dimensional list mode dynamic row-action maximum-
likelihood algorithm with one iteration and 128 subsets, a
relaxation control parameter of β = 20, and a matrix size in
the axial view of 236 × 200 × 236. Reconstruction was done
with a post-reconstruction smoothing Gaussian filter (1.17-mm
FWHM). Attenuation correction using a uniform attenuation
map with object boundaries obtained from the emission data was
performed on phantom or clinical dbPET images, respectively.
The convolution subtraction method was the scatter correction
method used, with kernels obtained by background tailfitting
(18). The voxel size was 0.78× 0.78× 2.34 mm3.

Image Analysis
The SUV of each tumor was measured by a spherical volume
of interest (VOI). The SUV was a dose- and body-weight-
corrected value of tissue tracer concentration. The delineation
method used a relative threshold set to 40% of the maximum
standardized uptake value (SUVmax) in the lesion to identify
the VOI according to a previous report (19). Compared with
previous studies, metabolic tumor volume (MTV) and total
lesion glycolysis (TLG) were calculated for reference. The MTV
was defined as the VOI volume, and TLG was calculated by
multiplying the MTV by the mean SUV (SUVmean). The
SUVmean was defined as the average of all voxels in the VOI.
All processes were performed using Metavol (PMID: 25162396).

Texture Analysis
The SUV was resampled using 64 discrete values from the lowest
to highest SUV.We used the PTexture package that we developed
in a previous study (20). PTexture is a package using Python to
compute texture features from voxel lists. The entire source codes
of PTexture are available at https://github.com/metavol/ptexture.
Further details regarding texture analysis have been previously

reported (21). Texture features were computed only from PET
images and not CT because dbPET is not attached to a CT.

Statistical Analysis
Wilcoxon signed-rank test was used for the inter-group
comparison of texture features for each BC characteristic.
Because of the large number of texture features extracted

TABLE 1 | Patient and tumor characteristics.

Number of lesions (n = 44) in 44 breasts of

44 patients

Age, years

(median,

range)

59, 37–87

Tumor (T)-category

Tis 4

T1 12

T2 25

T3 3

T4 0

Lymph node (N)-category

N0 22

N1 13

N2 6

N3 3

Stage

0 4

I 9

II 22

III 8

IV 1

Histology

Non-invasive

ductal

4

Invasive carcinoma

Ductal 37

Lobular 1

Ductal and

lobular

1

Apocrine 1

Ki67 level

20%> 14

≥ 20% 26

Not specified 4

Tumor subtype

Luminal A 19

Luminal

B/HER2-

15

Luminal

B/HER2+

2

HER2 3

Triple-

negative

5

HER2, human epidermal growth factor receptor 2 amplified.
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from PET components and their high correlation with each
other, feature reduction was performed by principal component
analysis (PCA). PCA was performed on 38 texture features.
Because PCA can extract features without reducing the number
of features in advance, all the obtained texture features were
used for PCA. The predictive performance of each feature in
classifying patients according to Tumor (T)-category, Lymph
node (N)-category, molecular subtype, and Ki67 level was
evaluated and quantified using the area under the curve (AUC)
in receiver-operating characteristic (ROC) analysis. A p-value <

0.05 was considered to indicate statistical significance. JMP R©15
(SAS Institute Inc., Cary, NC, USA) was used for the analyses.

RESULTS

Patient Characteristics
Of 798 enrolled consecutive women, 127 had abnormal findings
on dbPET, and 60 BCs in 59 breasts of 55 women were
histopathologically proven before or within 3 months after PET
examination. Of 60 BCs that could be visually detected as
showing abnormal FDG uptake with dbPET, 10 could not be
identified with whole-body PET/CT. The visual detection rate
of BC with PET/CT was 83% (50/60) of dbPET. Of 50 BCs
that could be detected by both dbPET and whole-body PET/CT,
6 [ductal carcinoma in situ (DCIS): 1; T1b: 4; and T1c: 1]
could not be successfully extracted with PET/CT. In addition, 10
(DCIS: 6; T1a: 2; T1b: 1 and T1c: 1) could not be successfully
extracted with either dbPET or PET/CT because the lesion-to-
background SUV ratio was low. Therefore, they were excluded
from this study. Some BCs were false-negative with dbPET even
in the FOV, but they could not be detected with whole-body
PET/CT either. Finally, 44 BCs in 44 breasts of 44 women with
a median age of 59 years (range: 37–87) were included in this
study (Figure 1). Figure 2 shows representative BCs that were
successfully extracted and failed to be extracted. Forty of these
were invasive BCs, and four were non-invasive. Four, 9, 22, 8,
and 1 BC patients were diagnosed with BC stage 0, I, II, III, and
IV, respectively. Patient and tumor characteristics are shown in
Table 1.

Comparison of the Ability to Predict Tumor
Characteristics Using Texture Features of
dbPET and Whole-Body PET/CT
We calculated a total of 38 texture features. Five features
were computed from a histogram. Four matrices, comprised
of gray-level co-occurrence matrix (GLCM), gray-level run
length matrix (GLRLM), gray-level zone size matrix (GLZSM),
and neighborhood gray-level difference matrix (NGLDM), were
generated. Thirty-one features were computed from these four
matrices. The number of voxels and sum of SUV were added
to the 36 calculated texture features, and a total of 38 features
were finally used in the analysis. These texture features are
generally applied to the previous PET studies of various cancers
(21). Twenty-three dbPET and 17 PET/CT texture features were
significantly different between the Tis-1 and T2-4 groups. In
addition, four dbPET and four PET/CT texture features were
significantly different between Luminal A and the other groups.

TABLE 2 | Associations (p-value) between texture PET parameters and tumor

characteristics.

dbPET PET/CT

Tis-1 vs.

T2-4

Luminal A

vs. Others

Tis-1 vs.

T2-4

Luminal A

vs. Others

Num of Voxels NS NS 0.0179 NS

SUVsum NS NS 0.0047 0.0284

SDhist <0.0001 NS NS NS

Skewness 0.0003 NS 0.0084 NS

Kurtosis <0.0001 NS 0.0104 0.0152

EnergyHist 0.0003 NS <0.0001 NS

EntropyHist 0.0006 NS <0.0001 NS

HomogeneityGLCM NS NS NS NS

EnergyGLCM NS NS 0.0157 NS

CorrelationGLCM NS NS 0.0359 NS

ContrastGLCM NS NS NS NS

EntropyGLCM <0.0001 0.0404 0.0157 NS

DissimilarityGLCM <0.0001 NS NS NS

SRE 0.0005 NS NS NS

LRE <0.0001 NS NS NS

LGRE <0.0001 NS 0.009 NS

HGRE <0.0001 NS NS NS

SRLGE <0.0001 0.0302 0.0073 NS

SRHGE <0.0001 0.036 NS NS

LRLGE NS NS 0.0097 NS

LRHGE NS NS NS NS

GLNUr NS NS NS NS

RLNU NS NS 0.0147 NS

RP NS NS NS NS

SZE NS NS NS NS

LZE <0.0001 NS NS NS

LGZE <0.0001 NS 0.0058 NS

HGZE <0.0001 NS NS 0.0302

SZLGE <0.0001 NS 0.0128 NS

SZHGE <0.0001 0.032 NS NS

LZLGE NS NS NS NS

LZHGE NS NS NS 0.0196

GLNUz NS NS NS NS

ZSNU 0.0073 NS 0.0084 NS

ZP 0.0318 NS NS NS

CoarsenessNGLDM 0.0032 NS NS NS

ContrastNGLDM <0.0001 NS NS NS

BusynessNGLDM <0.0001 NS 0.0233 NS

Numbers are p-values when there was a significant difference. NS not significant.

SUV, standardized uptake value; SUVsum, sum of SUV; SDhist, standard deviation

from a histogram; EnergyHist, energy from a histogram; EntropyHist, entropy from a

histogram; GLCM, gray-level cooccurence matrix; SRE, short-run emphasis; LRE, long-

run emphasis; LGRE, low gray-level run emphasis; HGRE, high gray-level run emphasis;

SRLGE, short-run low gray-level emphasis; SRHGE, short-run high gray-level emphasis;

LRLGE, long-run low gray-level emphasis; LRHGE, long-run high gray-level emphasis;

GLNUr, gray-level non-uniformity for run; RLNU, run-length non-uniformity; RP, run

percentage; SZE, short-zone emphasis; LZE, long-zone emphasis; LGZE, low gray-level

zone emphasis; HGZE, high gray-level zone emphasis; SZLGE, short-zone low gray-

level emphasis; SZHGE, short-zone high gray-level emphasis; LZLGE, long-zone low

gray-level emphasis; LZHGE, long-zone high gray-level emphasis; GLNUz, gray-level

non-uniformity for zone; ZSNU, zone-size nonuniformity; ZP, zone percentage; NGLDM,

neighborhood gray-level different matrix; CoarsenessNGLDM, coarseness from a NGLDM;

ContrastNGLDM, contrast from a NGLDM; BusynessNGLDM, busyness from a NGLDM.
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TABLE 3 | ROC analysis for classification of tumor characteristics by texture

features using principal component analysis.

Tumor

characteristic

AUC SensitivitySpecificityAccuracy

dbPET T-category T1 vs. T2-4 0.89 0.82 0.94 0.86

N-category Negative vs.

Positive

0.66 0.85 0.54 0.68

Molecular

subtype

Luminal A vs.

Others

0.73 0.52 0.89 0.68

Ki67 level 20%> vs.

20%≤

0.75 0.72 0.79 0.74

PET/CT T-category T1 vs. T2-4 0.94 0.93 0.88 0.91

N-category Negative vs.

Positive

0.71 0.70 0.75 0.73

Molecular

subtype

Luminal A vs.

Others

0.82 0.68 0.84 0.75

Ki67 level 20%> vs.

20%≤

0.86 0.76 0.86 0.79

ROC, receiver operating characteristic; dbPET, dedicated breast positron emission

tomography; PET/CT, positron emission tomography/computed tomography; AUC, area

under the curve.

Other texture features of dbPET or PET/CT were not associated
with any BC characteristics (Table 2).

We decided to use the first PCs with eigenvalues >1. As
a result, 5 PCs were used for each of dbPET and whole-body
PET/CT, and they explained 94 and 92.2% of the variance in
dbPET and whole-body PET/CT, respectively. Scree plots and
factor loadings of the PCs in the PCA of texture features are
shown in Supplementary Figure 1 and Supplementary Table 1,
respectively. The PCs of the 38 textural features obtained from
dbPET and PET/CT using PCA were excellent in predicting T-
category (AUC = 0.89 and 0.94, respectively) and good to fair in
predicting N-category (AUC= 0.66 and 0.71), molecular subtype
(AUC = 0.73 and 0.82), and Ki67 levels (AUC = 0.75 and 0.86,
Table 3). The ROC curves of dbPET and PET/CT, shown in
Figure 3, were similar, and there was no statistically significant
difference in predictive power between them.

Table 4 summarizes the associations between conventional
PET parameters and tumor characteristics. MTV and TLG of
both dbPET and PET/CT were associated with the T-category.
TLG of PET/CT was associated with tumor subtype; however,
no other parameters were associated with BC characteristics
(Table 4).

DISCUSSION

This is the first study comparing the texture features derived
fromPET images of BC between dbPET andwhole-body PET/CT
to the best of our knowledge. Although no individual feature
among the 38 texture features calculated from dbPET and
whole-body PET/CT BC images was significantly associated with
all tumor characteristics of interest, the PCs derived by PCA
of these texture features obtained with both modalities had
good predictive power for T-category, N-category, molecular

subtype (Luminal A vs. others), and Ki67 level. Our results
suggest that the texture features derived from PET/CT images
of histopathologically proven BC, which has enough volume
to be successfully extracted, may apply to the evaluation of
neoadjuvant chemotherapy and prognosis prediction. However,
PET/CT is inferior in spatial resolution to dbPET.

Moscoso et al. have reported that some texture features
of dbPET (Dissimilarity, Entropy, Homogeneity, ZP) were
associated with tumor size and molecular subtype (22). We
calculated and analyzed 38 texture features, including the
first- and higher-order statistical features, thus considering
spatial position information. Previous experimental and clinical
results demonstrated the importance of using higher-order
statistical features in texture analysis (23, 24). Our results also
demonstrated the good diagnostic ability of texture features
for all the tumor characteristics in this study. However, it was
impossible to identify specific features as predictors of every
tumor characteristic.

Recently, due to the increased interest and number of
published studies, several issues on the use of radiomics have
emerged. First, because the number of parameters considered has
gradually increased, and the analyses have become increasingly
complex, it is difficult to determine the most effective features
associated with BC characteristics. Second, there is no consensus
on the radiomics method using PET images of BC; therefore, the
results differ slightly among studies.

In this study, the texture analysis of dbPET could predict
BC characteristics with the same accuracy as that of whole-
body PET/CT. However, six BCs, all early-stage, were excluded
from the whole-body PET/CT analysis as they could not be
successfully extracted on PET/CT images. In previous studies
comparing dbPET and whole-body PET/CT, the analysis of
standard performance differences between the two scanners in
phantom tests and some clinical trials have shown the superiority
of dbPET over whole-body PET/CT (12, 13). The significance of
dbPET may be demonstrated in the diagnosis of early, small BCs.
Texture analyses with a large number of early-stage BCs may also
show the efficacy of dbPET.

Another issue was that some BCs, even though they could
be visually confirmed to be abnormal on dbPET images, were
excluded from this study. This issue may suggest a challenge
worth future investigation. The issue is to determine the most
suitable tumor extraction method (e.g., gradient methods) for
dbPET texture analysis instead of the VOI setting’s optimal
thresholds. The effect of the image reconstructionmethods on the
texture analysis of dbPET should also be clarified in the future.
High-resolution reconstruction of PET/CT images has been
reported to change the textural features compared to standard
reconstructed clinical PET images (11, 25). It is necessary to
assess how the texture features of dbPET change compared to
that of the whole-body PET/CT image due to the differences in
the reconstruction method.

Our study has several limitations. The primary limitations
include the retrospective nature of the study and small cohort.
The evaluation of the association between PET parameters and
BC characteristics such as molecular subtype, histopathological
grade, and Ki-67 expression could, therefore, not be fully
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FIGURE 3 | Comparison of ROC analysis for classifying breast cancer characteristics by texture features of dbPET (red line) and whole-body PET/CT (blue line). The

AUC values in PCA with texture features of both dbPET and PET/CT were not significantly different. AUC, area under the curve; dbPET, dedicated breast positron

emission tomography; CT, computed tomography; PCA, principal component analysis; ROC, receiver-operating-characteristic.

TABLE 4 | Associations (p-value) between conventional PET parameters and tumor characteristics.

dbPET PET/CT

Tumor

characteristic

T-category N-category Molecular

subtype

Ki67 level T-category N-category Molecular

subtype

Ki67 level

Tis-1 vs. 2-4 Negative vs.

Positive

Luminal A

vs. Others

>20% vs.

≤20%

Tis-1 vs.

T2-4

Negative vs.

Positive

Luminal A

vs. Others

>20% vs.

20%≤

SUVmax 0.053 0.0886 0.078 0.0901 0.1078 0.3402 0.0666 0.0741

MTV <0.0001* 0.9295 0.078 0.4309 0.0208* 0.7691 0.2873 0.3797

TLG <0.0001* 0.456 0.0504 0.2253 0.0077* 0.4484 0.0376* 0.0841

*Statistically significant. dbPET, dedicated breast positron emission tomography; PET/CT, positron emission tomography/computed tomography; SUVmax, maximum standardized

uptake value; MTV, metabolic tumor volume; TLG, total lesion glycolysis.

conducted in the context of an associated prognosis. We tried
to apply some machine learning classifiers (Support Vector
Machine and Random Forest). However, a classifier with high
generalization performance could not be obtained. Further
studies following the accumulation of a larger number of clinical
cases are needed. With more data, the utility of texture analysis
could be further generalized by creating classifiers with higher
generalization performance. Second, the images analyzed in this
study were acquired at 60min for whole-body PET/CT and
90min for dbPET after FDG injection. FDG uptake in BC lesions
is known to increase over time, which might affect the results.
However, it is difficult to change the order of the scans in a clinical
setting; thus, this issue needs future investigations.

In conclusion, dbPET was overall superior for detection of
BC. However, for BCs that could be successfully extracted, whole-
body PET/CT showed the equivalent predictive ability of tumor
characteristics using texture analysis to that of dbPET.
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The aim of this study was to determine a pattern associated with longitudinal changes

of β-amyloid (Aβ) deposition during cognitively normal(CN) healthy aging. We used
18F-florbetapir (AV-45) PET images of the brains of 207 cognitively normal subjects (CN1),

obtained through the Alzheimer’s Disease Neuroimaging Initiative (ADNI), to identify

the healthy aging pattern and 76 cognitively normal healthy subjects (CN2), obtained

through the Xuanwu Hospital of Capital Medical University, Beijing, China, to verify it. A

voxel-based correlation analysis of standardized uptake value ratio (SUVR) map image

and age was conducted using the DPABI (Data Processing & Analysis of Brain Imaging)

software to identify the pattern. The sum of squares due to errors (SSE), R-square (R2)

and the root-mean-square error (RMSE) were calculated to assess the quality of curve

fitting. Among them, R2 was proposed as the coherence coefficient, which was as an

index to assess the correlation between SUVR value of the pattern and subjects’ age.

The pattern characterized by age-associated longitudinal changes of Aβ deposition was

mainly distributed in the right middle and inferior temporal gyrus, the right temporal

pole: middle temporal gyrus, the right inferior occipital gyrus, the right inferior frontal

gyrus (triangular portion), and the right precentral gyrus. There were a significant positive

correlation between the SUVR value of the pattern and age for each CN group (CN1:

R2
= 0.120, p < 0.001 for quadratic model; CN2: R2

= 0.152, p = 0.002 for quadratic

model). These findings suggest a pattern of changes in Aβ deposition that can be used to

distinguish physiological changes from pathophysiological changes, constituting a new

method for elucidating the neuropathological mechanism of Alzheimer’s disease.

Keywords: healthy aging, 18F-AV-45 PET, β-amyloid deposition, brain, pattern

33

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2020.617173
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2020.617173&domain=pdf&date_stamp=2021-01-13
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jiangjiehui@shu.edu.cn
mailto:hanying@xwh.ccmu.edu.cn
https://doi.org/10.3389/fmed.2020.617173
https://www.frontiersin.org/articles/10.3389/fmed.2020.617173/full


Xie et al. Health-Aging Pattern With β-Amyloid Deposition

INTRODUCTION

Brain aging, which is influenced by various pathological and
psychosocial factors (1), comprises two categories: healthy and
pathological aging. According to clinical neurology, healthy aging
is defined as “the cognitively normal (CN) subjects who maintain
their normal cognitive level and ability of daily living as they
grow older, without neurological diseases” (2). Pathological aging,
which is characterized by the accumulation of extracellular Aβ

deposition (3), is considered a major pathological element of
Alzheimer’s disease (AD) (4). However, the presence of Aβ in
the AD brain may also signal a physiological age-associated
phenomenon depending on its extent and distribution pattern
(5–8). Research evidence suggests that Aβ deposition occurs in
the brains of cognitively normal older individuals (9–12). The
prevalence of the amyloid burden among cognitively normal
older individuals has been estimated to be more than 25% than
younger individuals based on the findings of autopsy studies
(9, 13, 14). However, given limited knowledge regarding the
extent and distribution of Aβ deposition during the healthy aging
process, an assessment of changes in Aβ deposition with age is
essential for advancing understanding of healthy aging.

Some studies that have measured amyloid deposition in the
course of normal aging found a significant linear increase in
global Aβ deposition with age (3, 12, 15). One study found
a highly significant correlation between increasing age and a
reduction in Aβ turnover rates (16). Significant linear increases
with age have been observed in the precuneus, temporal cortex,
and the anterior and posterior cingulate (3) as well as in the
frontal, cingulate and parietal areas, with primary sensory/visual
areas being relatively protected from amyloid deposition (17).
The findings of the above studies indicate that there may be
a linear pattern of brain aging associated with changes in Aβ

deposition during healthy aging in cognitively normal adults.
However, all above studies were based on western datasets and
the repeatability of results was not verified among different
ethnic cohorts.

18F-florbetapir (AV-45) is a safe tracer demonstrating high
levels of sensitivity and specificity for Aβ detection (18). Aβ

deposition in the brain can be quantified within a clinical
environment through positron emission computed tomography
(PET) scans conducted with 18F-AV-45 (19). Moreover, this
technique can be used to study Aβ distribution in vivo, enabling
the formation and progression of Aβ aggregates in the brain to
be monitored (20, 21). Thus, there were two main objectives in
this study: (1) to explore a pattern associated with longitudinal
changes of Aβ deposition during healthy aging using 18F-AV-
45 PET images to quantify Aβ deposition in vivo. (2) to verify
the repeatability of the healthy aging pattern among western and
Chinese cohorts.

MATERIALS AND METHODS

Materials
Two cohorts of neuroimaging data were collected from two
independent centers: Cohort A (N = 207, right-handed, CN1)
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (http://adni.loni.usc.edu/) and cohort B (N = 76, right-
handed, CN2) from the Department of Neurology, Xuanwu
Hospital of Capital Medical University. Both clinical (Sex, Age,
Education, Mini-Mental State Examination (MMSE)) and image
(18F-AV-45 PET and MRI image) information were selected for
the two cohorts. Montreal Cognitive Assessment (MoCA) and
Clinical Dementia Rating Sum of Boxes (CDR-SB) were also
selected for Cohort A. Notablly, in total 378 images were included
for Cohort A because part of subjects had more than one scan
(1.83 ± 0.83 scan times per subject), while each subject had only
one scan in Cohort B.

Figure 1 shows the exclusion and inclusion criteria applied to
CN subjects of Cohort A. The following inclusion criteria were
applied: (1) subjects had no history of stroke, hypertension, brain
disease, or mental illness. (2) The PET scan results of individuals
were Aβ-negative (Aβ-), with a cerebral-to-whole cerebellar
florbetapir SUVR value below 1.18 (22). (3) Mini-Mental State
Examination (MMSE) scores for individuals were above or equal
to 28, and their Clinical Dementia Rating Sum of Boxes (CDR-
SB) scores were all 0. Inclusion criteria for subjects in Cohort B
were consistent with those for Cohort A. This study was approved
by the institutional review boards of ADNI and the Research
Ethics Committee of Xuanwu Hospital, Beijing, China.Written,
informed consent had been obtained from each subject.

Image Acquisition Protocol
The process of acquiring data for the CN1 group is described
in detail in the imaging protocol column of the ADNI
database (http://adni.loni.usc.edu/). PET and T1 MRI data
were simultaneously obtained for each participant in the CN2
group. All of the participants were invited to undergo optional
18F-florbetapir (AV-45) PET scans in the three-dimensional
acquisitionmode. A dynamic scan, lasting 35min, was performed
approximately 40min after participants received an intravenous
injection of 7–10 mCi [18F] florbetapir. The PET scan images
were analytically reconstructed using a time-of-flight ordered
subset expectation maximization (TOF OSEM) algorithm with
the following parameters: eight iterations, 32 subsets matrix =

192 × 192, field of view (FOV) = 350 × 350, half-width height
= 3.

Three-dimensional T1-weighted magnetization-prepared
rapid gradient echo scans were performed using an integrated
TOF-capable PET/MR 3.0T imaging device (SIGNA PET/MR,
GE Healthcare, Milwaukee, Wisconsin, USA) available at the
Xuanwu Hospital of Capital Medical University. The following
parameters were applied: SPGR sequence, FOV = 256 × 256
mm2, matrix= 256× 256, slice thickness= 1mm, gap= 0, slice
number = 192, repetition time (TR) = 6.9ms, echo time (TE)
= 2.98ms, inversion time (TI) = 450ms, flip angle = 12◦, voxel
size= 1× 1× 1 mm3.

Image Preprocessing
All 18F-AV-45 PET scan images and corresponding T1 images
were preprocessed using statistical parametric mapping software
(SPM12; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/)
in MATLAB (Version R2014a; MathWorks, Natick, MA,
United States). We first used the realigning method to ensure
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FIGURE 1 | Inclusion and exclusion criteria applied to the ADNI data.

that all frames in the dynamic scans were motion-corrected to
the first frame and processed the output single average functional
image, reducing system, or head motion errors. Next, we
performed a voxel-based partial volume effect (PVE) correction
of the functional image using the Müller-Gärtner method (MG),
with parameters of white matter (WM), gray matter (GM),
and cerebrospinal fluid (CSF) obtained through T1 image
segmentation. Then, PVE-corrected image was then normalized
with reference to the standard Montreal Neurological Institute
(MNI) brain space using the deformation field from the MRI
image to the MNI space and smoothed to reduce noise and
improve image quality using an isotropic Gaussian smoothing
kernel with a gaussian filter of 8mm full-width at half-maximum
(FWHM). Lastly, the smoothed functional image was intensity
normalized to the mean uptake of whole cerebellum to obtain
SUVR map image.

Voxel-Wise PET Analysis
To explore the effect of age on Aβ deposition in the brains of
cognitively normal subjects, a voxel-wise correlation analysis of
SUVR map iamges was conducted for CN1, with age applied as
the seed series and GM, sex, and years of education considered
as the covariates. The DPABI software in MATLAB R2014a was
used for the analysis. Accordingly, we obtained a statistical map
(false discovery rate (FDR) corrected with q < 0.01) reflecting
the change trend and degree of Aβ deposition in the aging brain.
Thereby voxels relating to aging were obtaining with the absolute
value of the correlation coefficient ≥ 0.3. As a final step, we
mapped the voxels on to the MNI standard space to obtain
statistical brain regions as ROIs. To verify that ROIs actually
reflect the effect of aging on Aβ deposition in cognitively normal
individuals, we examined the correlations between the SUVR
values of the healthy aging pattern and age for individuals in the
CN1 group and compared the results with the SUVR value for the
whole brain. SUVR values were plotted against subjects’ ages and

fitted using three separate models, namely a linear model:

y = at + b, (1)

a quadratic model:

y = at2 + bt + c, (2)

and an exponential model:

y = aebt + c, (3)

where t denotes age and a, b, and c are the parameters to be
estimated from the data plotted for the SUVR values and ages
of subjects in the CN1 group. The sum of squares due to errors
(SSE), R-square (R2), and the root-mean-square error (RMSE)
values were calculated to assess the quality of fit. Among them, R2

was proposed as the coherence coefficient, which was as an index
to assess the correlation between SUVR value of the pattern and
subjects’ age. Subsequently, the model with the best quality of fit
was assigned to the plotted SUVR and age obtained for the CN1
group to evaluate the change trend of Aβ deposition with aging.
Forward validation was performed on the CN2 group.

Statistical Analysis
The quantitative results obtained with MATLAB were subjected
to a statistical analysis using the SPSS software, version 18.0 (SPSS
Inc., IBM Corporation, Chicago, USA). A two-sample t-test was
performed to examine differences in continuous variables, and
a Chi-square test was conducted to assess categorical variables.
p < 0.05 was considered statistically significant. The Gramm
toolbox in MATLAB was used for plotting and visualizing all of
the statistical data presented in this paper (23).
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TABLE 1 | Demographic and clinical characteristics of participants.

CN1 CN2 P-value

N 378 76 –

Age (years) 74.8 ± 5.6 65.2 ± 5.2 <0.001

Sex (F/M) 192/186 48/28 0.049

Education (years) 16.6 ± 2.5 12.8 ± 3.4 <0.001

MMSE 29.4 ± 0.8 29.2 ± 0.7 0.119

MoCA 26.2 ± 2.3 – –

CDR-SB 0.0 ± 0.0 – –

MMSE, mini-mental state examination; MoCA, montreal cognitive assessment; CDR-SB, clinical dementia rating sum of boxes.

RESULTS

Demographic Characteristics of the
Participants
Cohort A contained 378 time ponts of 207 CN subjects (1.83 ±

0.83 time points per subject). Cohort B included 76 time poits of
76 CN subjects (one time point per subject). Table 1 shows the
demographic and clinical details of the two cohorts. As shown
in Table 1, significant differences between cohort A and cohort B
are observed in age (p < 0.001), sex (p = 0.0488) and education
(p < 0.001). A slight difference is observed in sex(p = 0.049)
and no significant difference in MMSE (p = 0.119). Considering
the impact of brain atrophy and differences relating to the sex
and education levels of the participants, we reported the results
obtained after regressing the covariates of GM, sex, and the
number of years of education.

Voxel-Wise PET Analysis
Healthy Aging Pattern
The health aging pattern was identified in CN1 group. The results
of the correlation analysis revealed that there was a healthy aging
pattern characterized by age-associated longitudinal changes of
Aβ deposition was mainly distributed in the right middle and
inferior temporal gyrus, the right temporal pole: middle temporal
gyrus, the right inferior occipital gyrus, the right inferior
frontal gyrus (triangular portion), and the right precentral
gyrus (Figure 2). No areas of the brain evidenced significantly
decreased Aβ deposition (see Table 2 for details).

Pattern Validation
The health aging pattern was further validated in CN2 group.
Following the regression of the covariates of GM, sex, and years
of education, SUVR value of the pattern showed a significant
positive correlation with age (Figure 3), whereas SUVR value
of global brain showed a weaker positive correlation with age
(Figure 3) in the CN1 group. Table 3 shows the curve fit results
for the SUVR of the pattern and age of the three models. Specific
results were as follows: SSE = 18.549, R2

= 0.118, and RMSE
= 0.222 for the linear model; SSE = 18.505, R2

= 0.120, and
RMSE = 0.222 for the quadratic model; and SSE = 18.592, R2

=

0.116, and RMSE= 0.222 for the exponential model. The curve fit
results for the SUVR of global brain and age for the three models
were as follows: SSE= 12.459, R2

= 0.018, and RMSE= 0.182 for

the linear model; SSE = 12.452, R2
= 0.019, and RMSE = 0.182

for the quadratic model; and SSE= 12.461, R2
= 0.018 and RMSE

= 0.182 for the exponential model.
Following the regression of the covariates of GM, sex, and

educational years, the SUVR value of the pattern showed a
significant positive correlation with age (Figure 4), whereas
SUVR value of global brain showed no significant correlation
with age (Figure 4) in the CN2 group. Table 4 shows the curve
fit results for SUVR of the pattern and age for the three models.
Specific results were as follows: SSE = 0.534, R2

= 0.127 and
RMSE= 0.085 for the linear model; SSE= 0.526, R2

= 0.152 and
RMSE= 0.085 for the quadratic model; SSE= 0.535, R2

= 0.136,
and RMSE= 0.085 for the exponential model. The results for the
curve fit of the SUVR of global brain and age were as follows: SSE
= 0.502, R2

= 0.010, and RMSE = 0.082 for the linear model;
SSE = 0.501, R2

= 0.011, and RMSE = 0.083 for the quadratic
model; and SSE = 0.502, R2

= 0.010, and RMSE = 0.082 for the
exponential model.

DISCUSSION

During the healthy aging of cognitively normal adults, SUVR
value of a healthy aging pattern increased significantly. The
pattern was mainly distributed in the right middle and inferior
temporal gyrus, the right temporal pole: middle temporal gyrus,
the right inferior occipital gyrus, the right inferior frontal gyrus
(triangular portion), and the right precentral gyrus. A weak
positive correlation was found between SUVR of global brain and
age for the CN1 group, with no significant correlation existing
for the CN2 group. These results indicate that during the healthy
aging process of cognitively normal people, the increase in Aβ

deposition is concentrated in specific brain regions rather than
being distributed throughout the brain. In addition, the pattern
shows a characteristic of asymmetric amyloid accumulation.
Alteration in hemispheric asymmetry has been referenced in
studies of healthy aging (24, 25). The Right hemi-aging model
proposes that the right hemisphere presents greater aging than
the left hemisphere (26, 27), so our results were consistent with
previous studies.

The best fit curves for the SUVR value of the healthy aging
pattern and age within each CN group reflected a change trend
of increasing Aβ deposition on the pattern with increasing age
and a subsequent decrease in the growth rate of Aβ deposition.
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FIGURE 2 | Pattern associated with longitudinal changes of Aβ deposition in cognitively normal adults (CN1) during the healthy aging. The red areas are those with

significant increases in Aβ deposition associated with advancing age. No voxels were found that indicated significant decreases in Aβ deposition associated with

advancing age.

TABLE 2 | Pattern associated with longitudinal changes of Aβ deposition in cognitively normal adults (CN1) during healthy aging.

Region Laterality Cluster extent Peak Voxel

T X Y Z

Middle temporal gyrus Right 870 0.37 58 4 −24

Inferior temporal gyrus Right

Temporal pole: middle temporal gyrus Right

Middle temporal gyrus Right 229 0.33 68 −42 6

Inferior temporal gyrus Right

Inferior occipital gyrus Right 159 0.34 48 −82 −10

Inferior frontal gyrus (triangular portion) Right 117 0.34 56 20 14

Precentral gyrus Right 133 0.34 54 10 30

This indicated significant changes in Aβ deposition in aging
adults with normal cognition. However, when accumulated
deposits of Aβ exceeded a certain threshold, leading to cognitive
impairment, aging had weaker effect on Aβ deposition. This
finding suggests that the baseline level of Aβ may differ for
patients with AD. Moreover, as indicated by the findings of
other studies, with the advancement of pathological conditions,
Aβ deposition may reach a saturation point and will no longer
exhibit a linear relationship with age (17, 28). This finding
is supported by that of another study, which revealed that
Aβ increases significantly in individuals with normal cognitive

functions but that the rate of increase of Aβ slows down following
the onset of cognitive impairment (16).

Considering our results together with the findings reported in
the literature, we posit that the healthy aging pattern associated
with longitudinal changes of Aβ deposition and characteristic
regions associated with AD partially overlap, mainly including
the middle and inferior temporal gyrus (29, 30) (Figure 5). The
temporal lobe and occipital cortex are associated with auditory
and visual functions (31). The rapid deposition of Aβ in the
middle and inferior occipital gyrus and in the middle and
inferior temporal gyrus may be one of the reasons why the
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FIGURE 3 | The findings of a correlation analysis of age and the SUVR values of the pattern (A,C,E) and the whole brain (B,D,F) of individuals in the CN1 group using

linear, quadratic, and exponential model fitting, respectively.

auditory and visual fields are influenced by age-associated and
neurochemical factors (32) and may reflect a decline in the
multisensory integration capacity of older individuals (33). It
may account for the importance of age as an influencing factor
affecting the diagnosis of AD or early AD.

Moreover, our results on age-associated changes of Aβ

deposition could be explained from the perspective of molecular
cytology. During the aging process, over-activated microglia may
release neurotoxic molecules and pro-inflammatory cytokines,
leading to neuronal death and inflammation and an accelerated
process of Aβ deposition and accumulation (34, 35). Age-
associated increases in microglial activation may contribute to
the age-associated increase on Aβ deposition. Past research
showed that significant age-associated increases in the total
numbers of activated IL-1α+ microglia occurred in mesial
temporal lobe (36). And the density of amyloid plaques in the
temporal lobe is not related to memory level (37). Our findings

on the healthy aging pattern were consistent with previous
studies, suggesting that the increase in Aβ deposition promoted
by normal aging in the temporal lobe were not caused from
cognitive decline.

It should be noted that this study had some limitations. First,
the datasets used for the study were limited. Although the pattern
were identified and validated using data sourced from the ADNI
and Xuanwu Hospital, multicenter research and autopsy results
are required to confirm their universality. Second, age differences
could be observed between the ADNI and Xuanwu Hospital in
this study, and the average age of subjects from Xuanwu hospital
was 9.4 years younger than ADNI. Although the correlation
between SUVR of pattern and age were found in both cohorts,
whether this correlation exsited in older Chinese CN population
need be verified in the future. Third, this study was evidently a
cross-sectional study, although follow-up data was available for
its subjects. A longitudinal study should also be conducted in the
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TABLE 3 | The curve-fitting characteristics of SUVR value and age for the CN1 group.

SUVR of the pattern SUVR of global brain

Linear model Quadratic model Exponential model Linear model Quadratic model Exponential model

SSE 18.549 18.505 18.592 12.459 12.452 12.461

R2 0.118 0.120 0.116 0.018 0.019 0.018

RMSE 0.222 0.222 0.222 0.182 0.182 0.182

p-value <0.001 <0.001 < 0.001 0.009 0.031 0.021

SSE, sum of squares due to errors; R2 R-square; RMSE, the root-mean-square error.

FIGURE 4 | The findings of a correlation analysis of age and the SUVR values of the pattern (A,C,E) and the whole brain (B,D,F) of individuals in the CN2 group using

linear, quadratic, and exponential model fitting respectively.

future. In addition, the similarities and differences between AD-
associated and healthy aging patterns merit further study. Finally,
although we chose the entire cerebellum as the reference region
for calculating the SUVR values, the selection of the reference

region has long been a methodologically challenging issue within
studies entailing PET imaging analysis. Future comparative
studies of different reference regions are urgently required to
develop a comprehensive understanding of this compound.
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TABLE 4 | The curve-fitting characteristics of SUVR value and age for the CN2 group.

SUVR of the pattern SUVR of global brain

Linear model Quadratic model Exponential model Linear model Quadratic model Exponential model

SSE 0.534 0.526 0.535 0.502 0.501 0.502

R2 0.127 0.152 0.136 0.010 0.011 0.010

RMSE 0.085 0.085 0.085 0.082 0.083 0.082

p-value 0.001 0.002 0.001 0.408 0.677 0.471

SSE, sum of squares due to errors; R2 R-square; RMSE, the root-mean-square error.

FIGURE 5 | The overlap between our proposed pattern and AD parttern in previous studies.

CONCLUSION

In summary, we performed a voxel-wise correlation analysis

to identify a pattern associated with changes in β-amyloid
deposition in cognitively normal adults during healthy aging. An
assessment of the pattern advances understanding of processual

changes entailed in brain aging. The changes in Aβ deposition
associated with healthy aging that are reflected in age-associated
longitudinal changes of Aβ deposition on specific brain regions
are indicative of opportunities for diagnosis and strategies
for decelerating aging. More generally, this study may reveal
a pattern of changes in Aβ deposition that can be used to
distinguish physiological changes from pathophysiological ones.
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Purpose: To evaluate the value of texture analysis for the differential

diagnosis of spinal metastases and to improve the diagnostic performance of

2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography/computed

tomography (18F-FDG PET/CT) for spinal metastases.

Methods: This retrospective analysis of patients who underwent PET/CT between

December 2015 and January 2020 at Shanghai Tenth People’s Hospital due to high

FDG uptake lesions in the spine included 45 cases of spinal metastases and 44 cases

of benign high FDG uptake lesions in the spine. The patients were randomly divided

into a training group of 65 and a test group of 24. Seventy-two PET texture features

were extracted from each lesion, and the Mann-Whitney U-test was used to screen the

training set for texture parameters that differed between the two groups in the presence

or absence of spinal metastases. Then, the diagnostic performance of the texture

parameters was screened out by receiver operating characteristic (ROC) curve analysis.

Texture parameters with higher area under the curve (AUC) values than maximum

standardized uptake values (SUVmax) were selected to construct classification models

using logistic regression, support vector machines, and decision trees. The probability

output of the model with high classification accuracy in the training set was used to

compare the diagnostic performance of the classification model and SUVmax using the

ROC curve. For all patients with spinal metastases, survival analysis was performed using

the Kaplan-Meier method and Cox regression.

Results: There were 51 texture parameters that differed meaningfully between

benign and malignant lesions, of which four had higher AUC than SUVmax.

The texture parameters were input to build a classification model using

logistic regression, support vector machine, and decision tree. The accuracy

of classification was 87.5, 83.34, and 75%, respectively. The accuracy of

the manual diagnosis was 84.27%. Single-factor survival analysis using the

Kaplan-Meier method showed that intensity was correlated with patient survival.
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Conclusion: Partial texture features showed higher diagnostic value for spinal

metastases than SUVmax. The machine learning part of the model combined with

the texture parameters was more accurate than manual diagnosis. Therefore, texture

analysis may be useful to assist in the diagnosis of spinal metastases.

Keywords: spinal metastases, texture analysis, PET/CT, diagnosis, machine learning

INTRODUCTION

The spine is the third most common site of metastatic disease
after the lungs and liver, with ∼60–70% of patients with
systemic cancer developing spinal metastases (1). Early and
correct diagnosis of spinal metastases is helpful to guide clinical
treatment, improve prognosis, and increase the survival rate.
Computed tomography (CT) and magnetic resonance imaging
(MRI) have their own advantages and disadvantages with regards
to the diagnosis of spinal metastases. Two-deoxy-2-[fluorine-
18]fluoro-D-glucose (18F-FDG) imaging is more sensitive than
conventional imaging examinations. It can facilitate early
detection of the lesion by monitoring changes in glucose
metabolism and can determine metastases of both the whole
body skeletal system and soft tissues in a single examination.
However, there is a certain degree of false-positive influence on
the diagnosis, such as trauma-induced vertebral fractures, bone
hyperplasia, and metabolic bone disease, which may interfere
with the diagnosis.

The maximum standardized uptake value (SUVmax) is an
intuitive quantitative measure of tissue 18F-FDG uptake in
current positron emission tomography/computed tomography
(PET/CT) diagnostics. However, the currently established
SUVmax diagnostic threshold has no clear criteria for spinal
metastases. SUVmax is easy to use but does not fully reflect tumor
size or tumor heterogeneity (2). Therefore, it is important to use
texture analysis to extract more parameters in order to improve
the diagnostic accuracy of metastatic lesions.

Texture analysis is a set of computational methods that
extracts information regarding the relationship between adjacent
pixels or voxels and assesses inhomogeneity, which can reflect
the degree of benign or malignant properties and pathological
features of the tissue (3, 4). Current applications are mainly
based on CT and MRI, while lesser applications are applied
to texture analysis using PET. Texture analysis using PET is
more closely related to biological activity than texture parameters
derived from CT and MRI. Furthermore, recent studies have
shown that the grayscale texture variation characteristics of
tumors in PET images can be used to evaluate the amount and
unevenness of FDG uptake, which can be used to quantify the
degree of tumor heterogeneity. For example, several studies have
demonstrated that texture analysis can be used to find more
powerful imaging biomarkers highly relevant to modern cancer
therapy. Moreover, personalized treatment can be achieved
through non-invasive molecular and genomic mapping of
tumors (5–7).

In this study, spinal metastases or benign high 18F-FDG
uptake lesions were selected to analyze the diagnostic value

of texture parameters derived from adjunctive PET/CT for
spinal metastases. The purpose of this study was to initially
verify whether texture analysis has a diagnostic value for spinal
metastases and to screen out texture parameters that have better
clinical guidance for the diagnosis of spinal metastases than those
of traditional diagnostic methods.

MATERIALS AND METHODS

Study Population
This retrospective analysis was approved by the Ethics
Committee of the Shanghai Tenth People’s Hospital (SHSY-
IEC-4.1/20-150/01) and registered with the Chinese Clinical
Trials Registry (ChiCTR2000038089). We collected 18F-FDG
PET/CT image data of patients who had a positive spinal
uptake of FDG and were admitted to the Shanghai Tenth
People’s Hospital between December 2015 and January 2020.
Inclusion criteria were as following: complete electronic
medical records or clear histopathological confirmation of
spinal metastases, PET/CT image quality meeting diagnostic
requirements, and basic clinical information available. Exclusion
criteria were as following: primary spinal tumor, treated
patients, tumor margins too difficult to delineate, incomplete
clinical information, image quality not meeting diagnostic
requirements, irregular spine, and inability to complete the
follow-up. Patients with confirmed metastases all had not
received antineoplastic therapy and either had undergone at
least 6 months of follow-up or ended in death, moreover,
patients with benign spinal uptake of FDG had no history
of tumor.

Scanner and Acquisition Protocol
Image acquisition was performed using uMI 510 PET/CT. 18F-
FDG was manufactured by the Shanghai Xinke Pharmaceutical
Company. The patient was fasted for more than 6 h before
the examination, and the blood glucose was controlled <11.0
mmol/L, patients were administered 18F-FDG at a dose
of 0.10–0.15 mCi/Kg as the standard, and rested calmly
for 60min after intravenous injection of 18F-FDG. The
patient was placed in supine position during the scan, and
the scanning range was from the skull base to the upper
1/3 of the femur. The PET images were reconstructed
using the ordered subset maximum expected value iterative
method (OS-EM), with image attenuation correction
using CT scan data. The images were transferred to an
Ulead workstation for frame-to-frame image alignment and
fusion display.
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Image Analysis
Data Grouping
The gold standard for the diagnosis of spinal metastases was
clinical follow-up or pathologic confirmation of the lesion. The
diagnosis was made by two nuclear medicine physicians with
more than 10 years experiences in PET/CT diagnosis, without
providing the patient’s medical history or clinical data. The
main criteria for manual diagnosis were osteolytic, osteogenic,
or mixed bone lesions on PET/CT fusion images, partially
accompanied by soft tissue mass formation, and abnormal
increasing of FDG metabolism in the corresponding areas.

Extraction and Analysis of Texture Features
A nuclear medicine physician with more than 5 years of
experience in PET/CT diagnosis sketched the high FDG
metabolic lesions. A total of 6,408 heterogeneity indices were
extracted from 72 PET texture features to evaluate the diagnostic
value of PET texture analysis for spinal metastases. Six belonged
to the co-occurrence matrix (C), 11 to the Voxel-alignment
matrix, five to the neighborhood intensity-difference (NID), 11
to the intensity-size-difference zone matrix (ISZ), seven to the
normalized co-occurrence (NC), 13 to the voxel statistics, two
to the texture spectrum, three to the texture feature coding,
nine to the texture feature coding co-occurrence, five to the
neighborhood gray level dependence (NGLD) matrix. Detailed
characterizations have been reported in previous studies (8).

Diagnostic Model Construction and Evaluation
We randomly divided the patients into a training group and a
test group using the R 4.0.2 and set the seed number to 300.
The construction of the machine learning model was based on
the Python 6.3 platform. Moreover, the three machine learning
models, logistic regression, support vector machine, and decision
tree were trained and tested using the sklearn package. In both
training group and testing group, the logistic regression model
was compared with the diagnostic performance of SUVmax
by plotting receiver operating characteristics (ROC) on the
probability output of the training group.

Statistical Analysis
Analysis was performed using the SPSS 23.0 (IBM Statistics,
New York, USA) and MedCalc Statistical Software version
15.2.2 (MedCalc Software bvba, Ostend, Belgium; http://
www.medcalc.org; 2015) for analysis. Data conforming to a
normal distribution are described as mean ± standard deviation
(SD) of the overall distribution, otherwise as interquartile
range (IQR). Data from the texture analysis were subjected
to the Mann-Whitney U-test, and parameters with statistically
significant differences were selected to plot the ROC curve
and calculate the area under the curve (AUC). Spearman’s
test was used to analyze the correlation between texture
parameters. DeLong’s test was used to determine the difference
between the ROC curves. The Kaplan-Meier method and Cox
regression were used for single-factor and multi-factor survival
analysis, respectively, and P < 0.05 was considered to be
statistically significant.

Survival Analysis
The follow-up cutoff date was August 10, 2020; the endpoint
event was patient death, and the follow-up period ranged from
3 to 40 months with an average follow-up time of 10.7 months.
Single-factor and multi-factor survival analysis and mapping
were performed using the R 4.0.2.

RESULT

Basic Patient Information
A total of 45 patients with confirmed spinal metastases and
44 patients with positive spinal uptake of FDG were analyzed,
outlining a total of 89 lesions. After randomization into either
the training or test group, the basic information and statistical
differences between the two groups were compared, as shown
in Table 1.

Distinction Between Tumor and Normal
Group
After examining the normal distribution of the 72 texture
features, we analyzed the differences between the two groups of
texture parameters by Mann-Whitney U-test. Fifty-one texture
parameters with different significance were selected and pre-
processed. According to the heat map results, different colored
partitions between the benign and malignant could be found
(Figure 1).

For the texture parameters with statistically significant
differences, we performed the ROC curve analysis. Finally, we
took out the five parameters with diagnostic values better than
SUVmax and performed correlation analysis on six parameters
including SUVmax. Spearman’s rank correlation coefficient was
used to evaluate the correlation, and the results showed that
SUV Variance was strongly correlated with SUV SD, so we
eliminated SUV SD. The overall situation and distribution of
the remaining five parameters in the training and testing groups
are shown in Table 2. Finally, the optimal diagnostic threshold
and its corresponding diagnostic sensitivity and specificity were
found based on the Youden index (Table 3). The highest AUC
value was the SUL peak, and the higher the value, the greater
the degree of malignancy of the lesion, which is called a positive
correlation, whereas the intensity value was inversely correlated
with the degree of malignancy of the lesion.

Diagnostic Modeling and Performance
Analysis
The jointly selected texture parameters were used to build a
diagnostic model from the training group, which was constructed
using three machine learning methods, logistic regression,
decision tree, and support vector machine. The accuracy of
classification in the test set was 87.5, 83.34, and 75%, respectively.
The accuracy of the manual diagnosis was 84.27%. The combined
model from logistic regression was used to plot the ROC curve
with the probability output from the training group, and an AUC
= 0.902 (95% CI= 0.803–0.962) was calculated. The DeLong test
was used to compare the ROC curves of the combined model and
SUVmax by logistic regression, and the results showed that the
ROCs of the two groups were different (P = 0.0345), indicating
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TABLE 1 | Clinical characteristics of patients in training and test groups.

Training cohort (n = 65) Test cohort (n = 24)

Tumor (n = 33) Normal (n = 32) P Tumor (n = 12) Normal (n = 12) P Pa Pb

Age (years) 0.106 0.181 0.100 0.399

Mean ± SD 64.67 ± 8.324 59.44 ± 16.274 60.25 ± 5.956 63.67 ± 8.669

Range 39–80 27–84 52–73 52–81

Sex 0.015 0.041 0.787 0.323

Male 26 16 9 4

Female 7 16 3 8

The Pa was derived from the Student’s t or chi-square test of tumor groups between the training and test cohorts and the Pb was derived from that of normal groups between the

training and test cohorts.

FIGURE 1 | Heat map of texture parameters with differential significance between benign and malignant lesions in the training group.

that the diagnostic model constructed jointly with the texture
analysis parameters had a better diagnostic value than SUVmax
(Figure 2) (9).

Survival Analysis
The 45 patients with spinal metastases were followed for 3–
40 months, with a median follow-up time of 8 months. By the
last follow-up, 37 of the 45 patients with spinal metastases had
died, and the median survival time for patients with metastatic
spinal tumors was 8 months. The 1- and 2-year survival rates
of patients were 48.9 ± 7.5% and 19.4 ± 6.0%, respectively
(Figure 3). We performed a single-factor survival analysis of the
five texture parameters and survival by classifying the five texture

parameters into low and high groups based on the median of
the texture parameters as the criterion, and the results showed
that patients in the low intensity group had shorter survival (P =

0.041) (Figure 3). The multi-factor survival analysis showed that
none of the five texture parameters and survival outcomes were
statistically significant (P > 0.05).

DISCUSSION

Our study demonstrates the significance of PET/CT texture
analysis for the analysis of spinal positive FDG uptake lesions
for the identification and diagnosis of spinal metastases. We
selected five texture parameters of diagnostic significance, four
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TABLE 2 | Differences in the overall distribution of parameters with good diagnostic value between the benign and malignant groups.

Training cohort Test cohort

Tumor (n = 33)

Median (IQR)

Normal (n = 32)

Median (IQR)

P Tumor (n = 12)

Median (IQR)

Normal (n = 12)

Median (IQR)

P Pa Pb

SUL peak 5.97 (3.98, 8.10) 3.19 (2.70, 4.07) 0.001 6.82 (5.03, 8.61) 2.89 (2.49, 3.16) 0.001 0.603 0.095

Correlation 0.81 (0.74, 0.84) 0.69 (0.63, 0.74) 0.001 0.82 (0.78, 0.83) 0.62 (0.56, 069) 0.001 0.676 0.040

Intensity* 255.69 (247.10, 263.64) 278.10 (267.26, 289.10) 0.001 246.35 (234.49, 264.29) 258.00 (272.93, 297.01) 0.001 0.291 0.118

SUV Variance 2.42 (0.75, 4.61) 0.31 (0.21, 0.80) 0.001 3.23 (1.15, 5.89) 0.29 (0.22, 0.38) 0.001 0.568 0.328

Maximum SUV 10.06 (6.37, 12.69) 5.61 (4.50, 6.82) 0.001 11.64 (7.18, 14.31) 4.97 (4.45, 5.71) 0.001 0.409 0.131

The Pa was derived from the Mann-Whitney U-test of tumor groups between the training and test cohorts and the Pb was derived from that of normal groups between the training and

test cohorts.

TABLE 3 | AUC values of five texture parameters and associated diagnostic

performance parameters incorporated into the model.

Texture feature AUC CI 95% Cut-off Se (%) Sp (%)

SUL peak 0.831 0.728, 0.935 3.582 90.9 65.6

Correlation 0.827 0.719, 0.935 0.738 84.8 75.0

Intensity* 0.820 0.715, 0.925 263.577 75.8 81.2

SUV variance 0.817 0.709, 0.926 0.649 78.8 75.0

Maximum SUV 0.806 0.696, 0.915 7.40 69.7 84.4

with a better diagnostic performance than current diagnostic
modalities, and established a diagnostic model with a greater
diagnostic performance than manual diagnosis. It shows
the texture analysis can assist in the differential diagnosis
spinal metastases and may have better diagnostic value than
current methods.

There are two highlights of our study. Firstly, all the patients
enrolled were patients with spinal metastases confirmed by
definite pathological findings or follow-up results, and complete
follow-up data on survival time were available. Secondly, to the
best of our knowledge, this is the first time report that PET texture
analysis has been used in the diagnosis of spinal metastases.

Radiomics is achieved progressively through segmentation of
lesions, feature data extraction, database creation, and analysis
of individualized data, while texture analysis is a class of feature
data extraction with objective descriptive features. Most of
the traditional imaging distributions of lesions are subjectively
described, and correlating the results of texture analysis with
the subjectively described features can make the diagnostic
conclusions more convincing. 18F-FDG PET/CT texture analysis
can provide more detail regarding tumor spatial information
and tumor heterogeneity than clinically used parameters such
as SUVmax, metabolic tumor volume (MTV), and total lesion
glycolysis (TLG). Although PET/CT is superior to bone scan and
CT for the diagnosis of spinal metastases (10), it is currently still
prone to false positives for the diagnosis of spinal metastases.
The SUVmax of Schmorl’s nodes is similar to that of spinal
metastases (11). High FDG uptake also occurs at different times
after a benign fracture, so false-positive results may occur when
performing 18F-FDG PET/CT imaging to assess metastases,

although different uptake modalities and clinical correlations
usually allow accurate differentiation of fractures from skeletal
metastases (12). In addition, spinal metastases need to be
differentiated from discontinuous spinal tuberculosis and spinal
degenerative diseases (13, 14).

The robustness of the texture analysis software we use

to measure texture values has been verified previously (8).

PET/CT texture analysis has been shown to be effective in

diagnosing and predicting prognosis in a variety of diseases.

Bianconi et al. found a significant correlation between PET

features, CT features, and histological type in non-small cell
lung cancer (NSCLC) and texture analysis shows the potential
for differentiating histological types in NSCLC (15). Feliciani et
al. found that texture analysis of 18F-FDG PET has predictive

value for the effectiveness of treatment of primary head and
neck squamous cell carcinoma (HNSCC) treated with concurrent

chemoradiotherapy (16). Lovinfosse et al. analyzed the SUVmax
and mean standard uptake value (SUVmean), MTV, TLG, and

13 global, local, and regional texture features of 63 NSCLC
patients undergoing stereotactic body radiotherapy (SBRT) who
underwent 18F-FDG PET/CT prior to treatment. They found
that differences in texture features measured at baseline 18F-

FDG PET/CT appeared to be a strong independent predictor of

prognosis in SBRT-treated NSCLC patients (17). Xu et al. found
that the texture fractionation method of PET is useful for the
differential diagnosis of benign and malignant bone and soft

tissue lesions, in which the texture parameters coarseness and
entropy have better diagnostic performance than SUV (18).

Gao et al. extracted the texture parameters from PET/CT

images to build a support vector machine that can identify benign

and malignant mediastinal lymph nodes in NSCLC patients

(19). Oh et al. successfully evaluated the efficacy and survival of
70 patients with hypopharyngeal cancer after radiotherapy and
chemotherapy by roughness in pre-treatment texture parameters
(20). Pyka et al. found that texture analysis on PET images not
only allowed some assessment of the local recurrence of NSCLC
patients after radiotherapy, but also predicted their long-term
survival (21).

Most tumors develop spinal metastases earlier; therefore, the
characteristics of spinal metastases correlate with the overall
survival prognosis of patients. The survival time of patients with
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FIGURE 2 | (A) ROC curves for four parameters with good diagnostic value (B) ROC curves for texture analysis parameters with inverse proportion of size and degree

of malignancy (C) ROC curves for combined model diagnostic parameters vs. maximum SUV.

FIGURE 3 | (A) Survival analysis curves for 45 patients with spinal metastases (B) Survival analysis of patients in different intensity groups.

metastases is related to a greater degree with the primary tumor
and the location and number of metastases. Moreover, the only
set of texture parameters with low intensities was found in the
single-factor analysis. Patients in low intensity group had a worse
prognosis, and multi-factor Cox regression analysis remained
insignificant. It is possible that this texture parameter can be
used to predict patient prognosis, but a large, prospective study
is needed for further validation. The pathological diagnosis of
spinal metastases in clinical practice is limited by inadequate
access to tissue; it is more traumatic and unacceptable to most
patients. Currently, there are three main approaches to the
treatment of spinal metastases, chemotherapy, radiation therapy,
and surgery. The goals of both medical and surgical treatment of
metastases are to maximize the improvement in quality of life.
Once a diagnosis of metastasis is established, the role of surgery
or surgery in combination with other treatments can relieve
pain, improve or maintain neurological function, and restore the
structural integrity of the spine (22, 23).

Limitations
There are certain limitations to our study. Only the relationship
between texture analysis and character of the disease was

analyzed, which can be followed by further refinement of
the molecular type of the disease and the classification of
the serologic examination indexes to evaluate the value of
texture analysis. In addition, this is a single-center study,
and the data from different centers may have some influence
on the stability of texture analysis due to the different
methods of PET image reconstruction, which can be used
to study large samples of texture analysis data according to
different machines and diseases to explore the stability value of
texture analysis.

CONCLUSIONS

We evaluated the feasibility of using texture analysis for
the differential diagnosis of spinal metastases by analyzing
and quantifying the overall distribution and heterogeneity
of high FDG uptake spinal lesions, which can be effective
in the diagnosis of spinal metastases. By carefully and
objectively selecting out the PET texture parameters and
deriving the optimal threshold to diagnose spinal metastases,
certain texture features showed better diagnostic value than
SUVmax. Thus, texture analysis in 18F-FDG PET/CT images
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may play a role in the differential diagnosis of spinal metastases,
which provide more accurate and comprehensive guidance to
clinical treatment.
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In recent years, interest has grown in using computer-aided diagnosis (CAD) for

Alzheimer’s disease (AD) and its prodromal stage, mild cognitive impairment (MCI).

However, existing CAD technologies often overfit data and have poor generalizability. In

this study, we proposed a sparse-response deep belief network (SR-DBN) model based

on rate distortion (RD) theory and an extreme learningmachine (ELM)model to distinguish

AD, MCI, and normal controls (NC). We used [18F]-AV45 positron emission computed

tomography (PET) and magnetic resonance imaging (MRI) images from 340 subjects

enrolled in the ADNI database, including 116 AD, 82 MCI, and 142 NC subjects. The

model was evaluated using five-fold cross-validation. In the whole model, fast principal

component analysis (PCA) served as a dimension reduction algorithm. An SR-DBN

extracted features from the images, and an ELM obtained the classification. Furthermore,

to evaluate the effectiveness of our method, we performed comparative trials. In contrast

experiment 1, the ELM was replaced by a support vector machine (SVM). Contrast

experiment 2 adopted DBN without sparsity. Contrast experiment 3 consisted of fast

PCA and an ELM. Contrast experiment 4 used a classic convolutional neural network

(CNN) to classify AD. Accuracy, sensitivity, specificity, and area under the curve (AUC)

were examined to validate the results. Our model achieved 91.68% accuracy, 95.47%

sensitivity, 86.68% specificity, and an AUC of 0.87 separating between AD and NC

groups; 87.25% accuracy, 79.74% sensitivity, 91.58% specificity, and an AUC of 0.79

separating MCI and NC groups; and 80.35% accuracy, 85.65% sensitivity, 72.98%

specificity, and an AUC of 0.71 separating AD and MCI groups, which gave better

classification than other models assessed.

Keywords: computer-aided diagnosis, Alzheimer’s disease, mild cognitive impairment, sparse-response deep

belief network, extreme learning machine
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by cognitive dysfunction and associated with
advanced age. Because there are currently no therapies that can
reverse the course of AD, it is important to diagnose AD and its
prodromal stage, mild cognitive impairment (MCI) as early as
possible (1).

In recent years, neuroimaging techniques have been
shown to be effective tools for the diagnosis of AD. Magnetic
resonance imaging (MRI) and positron emission tomography
(PET) are two common neuroimaging methods. For example,
Hua et al. proposed a powerful tool to monitor structural
atrophy in incipient stages of AD using MR images (2).
Mosconi et al. demonstrated that PET scans may provide
objective and sensitive support to clinical diagnosis in
early dementia (3). In addition, deep learning methods
have shown great promise for image analysis and disease
prediction. For instance, Hu et al. utilized a targeted
autoencoder network to classify functional connectivity
matrices across brain regions, which was able to distinguish
MCI from NC with 87.5% accuracy (4). Liu et al. designed
a deep learning architecture to more accurately differentiate
AD, MCI, and normal controls (NC). The architecture,
including stacked autoencoders and a softmax output
layer, achieved 87.76% accuracy, 88.57% sensitivity, and
87.22% specificity distinguishing AD from NC and exhibited
76.92% accuracy, 74.29% sensitivity, and 78.13% specificity
distinguishing MCI from NC (5). In addition, a few of
deep learning studies based on PET/MRI could also be
observed (6, 7).

However, the methods mentioned above had some
disadvantages. For instance, gradient diffusion and gradient
explosion may emerge with deepening of the autoencoder
stack depth, resulting in decreased classification accuracy. To
mitigate this limitation, we proposed a sparse-response deep
belief network (SR-DBN) based on the rate distortion (RD)
theory model. Our SR-DBN used the contrastive divergence
algorithm to maximize the retention of data distribution, in
case gradient diffusion and gradient explosion became factors.
In addition, the SR-DBN model included sparsity. Compared
to DBN models without sparsity, sparse representations allow
changing the significant bits for each example in a fixed-size
representation, which are more efficient from the point of
view of information theory (8). Subsequently, we used an
extreme learning machine (ELM) as a classifier to get the
performance of the classification. Meanwhile, to evaluate the
effectiveness of our method, we compared our model with
other models.

Abbreviations:AD, Alzheimer’s disease; ADNI, Alzheimer’s disease neuroimaging

initiative; AUC, area under curve; CAD, computer-aided diagnosis; CNN,

convolutional neural network; ELM, extreme learning machine; GM, gray matter;

MCI, mild cognitive impairment; MRI, magnetic resonance imaging; NC, normal

controls; PCA, principal components analysis; PET, positron emission computed

tomography; RBM, restricted Boltzmann machine; RD, rate distortion; SR-

DBN, sparse-response deep belief network; SVM, support vector machine; WM,

white matter.

MODEL DESIGN

Model Framework
As shown in Figure 1, the framework of the model
consists of four parts: (1) original image data underwent
standard preprocessing; (2) data dimensionality was
reduced using fast principal component analysis (PCA); (3)
features were extracted by three SR-DBNs based on rate
distortion theory; and (4) processed data were classified by
the ELM.

Mathematical Fundamentals of the
Proposed Model
SR-DBN Model Based on RD Theory
Restricted Boltzmann machines (RBM) are neural perceptrons
composed of a visible layer and a hidden layer. Several RBMs
can form a DBN. Similar to the structure of a DBN, the
SR-DBN also consists of several sparse-response restricted
Boltzmann machines (SR-RBMs). In the model, the Kullback–
Leibler divergence KL(p0‖p∞

θ
) (9) between the original data’s

distribution p0 and the equilibrium distribution p∞
θ

defined by
RBM served as a distortion function. Considering the RD theory,
we can deduce the following formulation:
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simplify calculations (10). Suppose w is the weight matrix
of RBM, b is the bias vector of the input layer, and c
is the bias vector of the output layer, giving the updated
rules below:
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where ǫ denotes a learning rate. Additionally, we added another
update with the gradient of the regularization term in each
iteration. The term is as follows:
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FIGURE 1 | The framework of this study.

where p
(l)
j = sigmoid

(

∑

i
v
(l)
i wij + bj

)

, and sigmoid(.)

represents the sigmoid function.
In this study, we employed one input layer, three hidden layers

and one output layer.

ELM Model for Classification
An ELM is a neural network algorithm for a single hidden layer
feedforward neural network. Its input weights and hidn node bias
are generated randomly within a given range. The only optimal
solution can be obtained by setting the number of hidden layer
neurons (11). When the input weights and hidden layer bias are
determined randomly, the output matrix of the hidden layer, H is
also determined (12):

ˆβ = H+T (5)

where H+ is the Moore–Penrose pseudoinverse matrix of H and
the T notes the expected output.

MATERIALS AND METHODS

Materials
The data used in this study were access through the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) public database. ADNI
is a consortium study initiated in 2004 by the National Institute
on Aging, the National Institute of Biomedical Imaging and
Bioengineering, the Food and Drug Administration, private
pharmaceutical companies, and nonprofit organizations
(13). For additional information about ADNI, please
see www.adni-info.org.

TABLE 1 | The clinical data of three cohorts.

AD (n = 116) MCI (n = 82) NC (n = 142)

Gender (M/F) 68/48 50/32 52/90

Ages (years) 75.37 ± 5.61 75.6 ± 5.87 73.86 ± 7.06

MMSE 21.63 ± 3.97 23.8 ± 5.98 28.92 ± 1.27

MOCA 15.89 ± 5.85 18.8 ± 6.49 26.01 ± 2.76

In this study, we selected AV45 PET and structural MRI
images of 340 subjects enrolled in ADNI, including 116 AD, 82
MCI, and 142 NC subjects. The clinical data for each of these
diagnostic groups is shown in Table 1.

Image Preprocessing
MRI data were acquired on multiple 3T MRI scanners using
scanner-specific T1-weighted sagittal 3D MPRAGE sequences.
In order to increase signal uniformity across the multicenter
scanner platforms, original MPRAGE acquisitions underwent
standardized image preprocessing steps. The current study
implemented the following steps: (1) segmentation of the images
into gray matter (GM), white matter (WM) and cerebrospinal
fluid (14), of which gray matter and white matter were used
for further analysis; (2) normalization of all GM and WM
images intoMontreal Neurological Institute space; and (3) spatial
smoothing using a Gaussian kernel of 4 mm3.

[18F]-AV45 PET data were acquired on multiple instruments
of varying resolutions and following different platform-specific
acquisition protocols. Similar to the MRI data, ADNI PET data
underwent standardized image preprocessing steps aimed at
increasing data uniformity across the multicenter acquisitions
(15). The preprocessing steps included realignment, spatial
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normalization to MNI space, and smoothing using a 7-mm3

Gaussian kernel. We performed a voxel-based partial volume
effects correction of the normalized functional image using
the Müller-Gärtner method. Lastly, the partial volume effect-
corrected functional image was smoothed to reduce noise and
improve image quality using an isotropic Gaussian smoothing
kernel with a full width at half maximum setting of 7 mm3. The
image was scaled up to obtain a standard uptake value rate map
of the entire cerebellum.

Both MRI and 18F-AV45 PET images were preprocessed using
statistical parametric mapping software (SPM12, https://www.fil.
ion.ucl.ac.uk/spm/software/spm12/) on Matlab 2016b.

Dimension Reduction and Feature
Extraction
Fast PCA was used to describe the data with a small number of
linearly independent features under the principle of ensuring the
minimum loss of data information.

In the study, the SR-DBNmodel undertook feature extraction.
Compared with DBN, the SR-DBN is more efficient from
the perspective of information theory, which allows changing
the effective number of bits per example in a fixed size
representation (8).

The SR-DBNmodel used in the study wasmade up of multiple
basic SR-RBMs with the same numbers of nodes. The output
of each SR-RBM was the input of the next basic SR-RBM at
successive levels. In the last layer of the SR-DBN model, a
back propagation network was set, receiving the output feature
vector of SR-RBM as learned features, and adopting a gradient
descent algorithm to fine-tune the weight of the whole network,
thereby coordinating and optimizing the parameters of the
whole SR-DBN.

Classification & Comparative Experiments
Three kinds of images were used as input: [18F]-AV45 PET, and
GM and WM segmentations from the MRI. Correspondingly,
we used three SR-DBNs to extract features. Following feature
extraction, the ELM classified the three diagnostic groups.
After obtaining the predicted labels, the accuracy, sensitivity,
specificity, and area under curve (AUC) were calculated to
evaluate the practicability of the model.

The model was evaluated using five-fold cross-validation,
repeated 200 times. In the case of “lucky trails,” we randomly
sampled the training and testing instances from each class to
ensure they had similar distributions as the original dataset. The
entire network was trained and fine-tuned with 80% of the data
and then tested with the remaining 20% of the samples in each
validation trial.

To evaluate the effectiveness of our method, we performed
several comparative trials. In contrast experiment 1, ELM
was replaced by a support vector machine (SVM). Contrast
experiment 2 utilized DBNwithout sparsity. Contrast experiment
3 consisted of fast PCA and ELM. Contrast experiment 4 used a
classic convolutional neural network (CNN) to classify AD, MCI,
and NC. The experimental platform is based on Matlab 2016b.

FIGURE 2 | The feature importance of fast PCA.

RESULTS

Results of Dimension Reduction
Figure 2 shows feature importance. We extracted the top 20
features which represent 90% information of the original data.

Results of Classification
The classification and comparative results are shown in Table 2

and Figure 3. In the classification of AD and NC, our model
achieved 91.68% accuracy, 95.47% sensitivity, 86.68% specificity,
and an AUC of 0.87. In the classification between MCI and
NC, the model achieved 87.25% accuracy, 79.74% sensitivity,
91.58% specificity, and anAUC of 0.79.When separating between
AD and MCI, the model achieved 80.35% accuracy, 85.65%
sensitivity, 72.98% specificity, and an AUC of 0.71. Moreover,
the time cost for image processing and classification in our
proposedmethod and four comparedmethods were 36.2 s, 37.4 s,
491.7 s, 25 s, and 1,386.5 s. This result means that our method
is faster than the classical CNN model, and similar to machine
learning models.

Table 3 shows the comparative results of our model and
results from the literature, including Hu’s model, Liu’s model,
and Suk’s model (4, 5, 16). Specifically, Hu’s model used a single
image modality (MRI) and Liu’s model used both MRI and PET.
Our proposed model achieved the best classification result of all
models compared.

DISCUSSION

In this paper, we used a SR-DBN and ELM for the classification of
AD,MCI, and CN. In Table 2 and Figure 3, the superiority of our
model compared to other models can be seen, as evidenced by the
highest values for accuracy, sensitivity, specificity, and AUC.

Table 3 presents a comparison of our model with previous
deep learning models from the literature. Hu’s model, Liu’s
model, and Suk’s model adopted the stacked autoencoders and
softmax classifier to classify AD. The thickness of the method
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TABLE 2 | Results of the experiment.

Proposed Experiment 1 Experiment 2 Experiment 3 Experiment 4

AD vs. NC ACC (%) 91.68 ± 1.09 85.68 ± 1.6 86.28 ± 1.02 76.43 ± 0.5 77.12 ± 0.04

SEN (%) 95.47 ± 1.73 90.58 ± 2.43 90.92 ± 1.19 80.01 ± 0.62 74.02 ± 0.08

SPE (%) 86.68 ± 2.61 79.6 ± 3.81 80.31 ± 2.24 71.99 ± 0.76 79.53 ± 0.13

AUC 0.87 ± 0.01 0.82 ± 0.01 0.83 ± 0.02 0.75 ± 0.02 0.77 ± 0.03

MCIvsNC ACC (%) 88.25 ± 1.38 80.34 ± 1.79 80.18 ± 1.03 67.64 ± 0.54 63.15 ± 0.02

SEN (%) 79.74 ± 3.44 68.85 ± 4.77 68.33 ± 3.16 45.72 ± 1.1 78 ± 0.09

SPE (%) 91.58 ± 2.14 87.19 ± 2.73 87.22 ± 1.55 80.05 ± 0.53 41.96 ± 0.11

AUC 0.79 ± 0.01 0.72 ± 0.03 0.73 ± 0.03 0.60 ± 0.04 0.60 ± 0.02

ADvs MCI ACC (%) 80.35 ± 1.8 73.07 ± 2.52 71.95 ± 1.61 65.77 ± 0.6 63.71 ± 0.03

SEN (%) 85.65 ± 3.63 76.3 ± 3.93 78.51 ± 2.42 74.49 ± 0.72 79.44 ± 0.08

SPE (%) 72.98 ± 4.71 69.41 ± 5.79 63.33 ± 4.06 54.15 ± 1.07 41.27 ± 0.09

AUC 0.71 ± 0.08 0.69 ± 0.01 0.68 ± 0.02 0.59 ± 0.04 0.6 ± 0.02

FIGURE 3 | The ROC curves of five models in the three experiments. (A) Shows the ROC curves of the classification of AD and NC; (B) shows the ROC curves of the

classification of MCI and NC; (C) shows the ROC curves of the classification of AD and MCI.
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TABLE 3 | Comparison of classification performances (%).

AD vs. NC MCI vs. NC

ACC (%) SEN (%) SPE (%) ACC (%) SEN (%) SPE (%)

Our model 91.68 95.47 86.68 88.25 79.74 91.58

Hu’s model - - - 87.5 - -

Liu’s model 87.76 88.57 87.22 76.92 74.29 78.13

Suk’s model 83.2 - - 70.1 - -

likely contributed to gradient diffusion and gradient explosion,
which was successfully avoided by using CD in our model. In
addition, Hu’s model used a single imaging modality (MRI) and
Liu’s model was a multimodal example. As shown in Table 3,
the performance of our model was superior to the two models,
reflecting the potential utility of our model to aid in early
AD diagnosis.

However, the study has several limitations. Firstly, the
parameters of the model ought to be modified to obtain better
performance. Secondly, the method is based on multimodal data,
but subjects withmissing image data points are excluded, limiting
the sample size. Thirdly, we only compared classification results
among our proposed SR-DBN model, machine learning models,
and classical CNN models in our dataset. Other deep learning
models, such as recurrent neural networks, and deep neural
network models were not compared in the same dataset. They
will be implemented and compared in the future. Finally, the
data used were from Western patients, which could potentially
affect the results. Data from Eastern patients should be included
in future studies to optimize the model and make it more
generalizable to Eastern populations.

CONCLUSION

In the study, we proposed a SR-DBN combined with ELM to
classify AD, MCI, and NC. Our model achieved 91.68% accuracy,
95.47% sensitivity, 86.68% specificity, and an AUC of 0.87 on the
classification between AD and NC participants; 87.25% accuracy,
79.74% sensitivity, 91.58% specificity, and an AUC of 0.79 on
classification between MCI and NC participants; and 80.35%
accuracy, 85.65% sensitivity, 72.98% specificity, and an AUC
of 0.71 on the classification between AD and MCI patients.
Our model obtained better classification compared other models
examined, indicating its effectiveness.
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Introduction: Our aim was to evaluate the performance in clinical research and in

clinical routine of a research prototype, called positron emission tomography (PET)

Assisted Reporting System (PARS) (Siemens Healthineers) and based on a convolutional

neural network (CNN), which is designed to detect suspected cancer sites in fluorine-18

fluorodeoxyglucose (18F-FDG) PET/computed tomography (CT).

Method: We retrospectively studied two cohorts of patients. The first cohort consisted of

research-based patients who underwent PET scans as part of the initial workup for diffuse

large B-cell lymphoma (DLBCL). The second cohort consisted of patients who underwent

PET scans as part of the evaluation of miscellaneous cancers in clinical routine. In both

cohorts, we assessed the correlation between manually and automatically segmented

total metabolic tumor volumes (TMTVs), and the overlap between both segmentations

(Dice score). For the research cohort, we also compared the prognostic value for

progression-free survival (PFS) and overall survival (OS) of manually and automatically

obtained TMTVs.

Results: For the first cohort (research cohort), data from 119 patients were

retrospectively analyzed. The median Dice score between automatic and manual

segmentations was 0.65. The intraclass correlation coefficient between automatically and

manually obtained TMTVs was 0.68. Both TMTV results were predictive of PFS (hazard

ratio: 2.1 and 3.3 for automatically based and manually based TMTVs, respectively)

and OS (hazard ratio: 2.4 and 3.1 for automatically based and manually based

TMTVs, respectively). For the second cohort (routine cohort), data from 430 patients

were retrospectively analyzed. The median Dice score between automatic and manual

segmentations was 0.48. The intraclass correlation coefficient between automatically and

manually obtained TMTVs was 0.61.
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Conclusion: The TMTVs determined for the research cohort remain predictive of total

and PFS for DLBCL. However, the segmentations and TMTVs determined automatically

by the algorithm need to be verified and, sometimes, corrected to be similar to the

manual segmentation.

Keywords: positron emission tomography, convolutional neural network, diffuse large B cell lymphoma (DLBCL),

artificial intelligence-AI, fluorodeoxyglucose (18F-FDG)

INTRODUCTION

Positron emission tomography (PET) with fluorine-18 (18F)
fluorodeoxyglucose (FDG) has an important contribution in the
diagnosis and the management of oncological pathologies by
highlighting regions with a high glucidic metabolism (1).

PET can establish an initial staging of tumor lesions (2), enable
treatment optimization, and evaluate treatment effectiveness or
possible relapse (3–8). It also provides prognostic parameters in
certain types of cancer, in particular in onco-hematology, such as
the Deauville score, which evaluates the therapeutic response and
is used in clinical routine, or the total metabolic tumor volume
(TMTV) (9).

TMTV represents, generally on FDG PET, the volume of
the entire cancerous disease. It is obtained by segmenting each
diagnosed lesion. TMTV has been shown to be an independent
prognostic factor in lymphoma (10). Recently, Albano et al. have
shown its predictive nature on progression-free survival (PFS)
in elderly Hodgkin’s lymphoma (11) and mantle cell lymphoma
(12), but also on total and PFS in Burkitt lymphoma (13) and
cerebral lymphoma (14). However, this parameter has some
limitations. The first is that the measurement is time-consuming
to make, explained by the fact that each lesionmust be segmented
individually, a task that cannot be performed manually in clinical
practice. The second is the absence of a standard method for
the segmentation of hypermetabolic lesions, which is responsible
for some variability in the determination of TMTV. Thus, a
fixed threshold of SUVmax (for example 41% for lymphomas) for
each lesion is frequently used (15). However, this may not be
appropriate for all pathological foci, particularly in the case of
heterogeneous tumor fixation and adjacent physiological volume
with high uptake (16).

A problem frequently encountered during the interpretation
and segmentation of the images is differentiating between benign
physiological (e.g., brain, heart, liver, kidney, and bladder) or
inflammatory foci, and pathological foci suspicious for cancerous
lesions. This is particularly true for malignant tumors with a
low avidity for glucose, unusual location, or small size or in the
presence of attenuation and/or motion artifacts (17). Moreover,
inflammatory or infectious foci, or even foci with a high
physiological consumption of glucose may have a sufficiently
high FDG uptake to make it not possible to eliminate a cancerous
origin (18, 19).

Intra- and interobserver interpretation of FDG
PET/computed tomography (CT) findings has a high level
of agreement in studies involving single site and experienced
readers for lymphoma, lung, and head and neck cancers (20–22).

Widespread adoption of TMTV would be facilitated by tools to
assist image interpretation and standardize results. Automatic
segmentation has also proven to be a prerequisite for certain
studies, particularly in the field of radiomics.

In recent years, several automatic segmentation methods have
been developed. They can be divided into two main groups.
The first is based on an ROI placed manually by the physician
within which a threshold relative to SUVmax is applied (23–25).
The resulting segmentation depends on the defined ROI and is
generally not optimal. A second approach, which is less time-
consuming and observer-independent, uses supervised machine
learning to analyze PET/CT images (26). A research software
prototype called PET Assisted Reporting System (PARS), based
on convolutional neural networks (CNNs), has recently been
developed by Siemens Healthineers to classify hypermetabolic
foci into benign and malignant and to provide parameters
such as TMTV, total lesion glycolysis (TLG), and Deauville
score (27). With this algorithm, PET volumes of interest are
first segmented by using a fixed thresholding algorithm. Each
volume of interest is then evaluated independently by using a
combination of PET and CT multiplanar reconstructions, PET
maximum intensity projections (MIPs), and atlas positions to
predict the anatomic localization of FDG foci. These are input
to a CNN that determines whether a focus is suspicious for
malignancy. The training and validation sets were carried out
on cohorts of patients with either lung cancer or lymphoma.
A first, internal evaluation of this tool showed good accuracy
of the automatic segmentation of FDG positive foci, and also
good sensitivity and specificity of the classification in staging
patients with lung cancer and lymphoma compared with manual
segmentation (27).

The aim of this study was to verify the performance of PARS in
order to determine its usefulness in research and clinical routine.

METHOD

Study Design
This retrospective monocentric study included patients treated at
the Henri Becquerel Cancer Center, Rouen, France. Two patient
cohorts were analyzed: a first clinical research cohort composed
of patients with diffuse large B-cell lymphoma (DLBCL), as
TMTV is a well-known prognostic factor for this disease (10), and
a second clinical routine cohort composed of patients selected at
random and followed up for miscellaneous cancers to evaluate
if an automatic measurement of TMTV can be performed in
routine. All patients were over 18 years of age. The baseline
PET/CT was analyzed for the DLBCL clinical research cohort.

Frontiers in Medicine | www.frontiersin.org 2 February 2021 | Volume 8 | Article 62817959

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pinochet et al. Automatic FDG PET Classification

For the routine clinical cohort, including patients with suspected
or confirmed cancer, a baseline or a follow-up PET/CT was
analyzed. The study was approved by the institutional review
board (no. 1901B). Patients were informed about the use of
anonymized data for research and their right to oppose this
use. Fully anonymized data were used, and explicit consent
was waived.

Research Cohort
Concerning the research cohort, 119 patients followed up for
DLBCL were included between November 2004 and September
2014, and their initial FDG PET/CT was analyzed.

PET/CT scans were acquired on a Biograph 16 (Siemens
Healthineers, Knoxville, TN, USA). Patients fasted for at least
4 h and were injected with FDG at an activity of 3.5 MBq/kg
of body weight. Images were acquired 60min after injection at
2.5min per bed position. Themanual segmentation of lesions was
performed using semiautomatic software (Planet Onco, version
2.0, DOSIsoft R©, Cachan, France). A volume of interest was set
around each lesion on the PET images. Then a fixed threshold
value of 41% of SUVmax was applied to define the volume for
each segmented lesion. The volumes of all suspicious lesions
in a particular patient were added to compute the TMTV. The
manual segmentation was performed by two nuclear physicians
for each patient (MT and FE). One of the manual segmentations
(MT), chosen arbitrarily, was used for the calculation of the
Dice scores. The average of the two TMTVs was used for all
other calculations.

Five-year follow-up, including PFS and overall survival (OS),
was available for this cohort.

Routine Cohort
Concerning the routine cohort, 430 patients referred for
cancer assessment underwent routine thoraco-abdomino-pelvic
or whole body PET/CT (according to the indication), and with
at least one tumoral uptake, were included between August 2018
and February 2020.

PET/CT scans were acquired on GE 710 (General Electric,
Milwaukee, WI, USA) or Biograph Vision 600 (Siemens
Healthineers, Knoxville, TN, USA). Patients fasted for at least
4 h and were injected with FDG at a dose of 3.0 MBq/kg of
body weight. Images were acquired 60min after injection at
2min per bed position (GE 710) or by continuous bed motion
(Biograph Vision).

The manual segmentation of lesions was performed using
another semiautomatic software (PETVCAR, General Electric R©)
during routine clinical activity by two different nuclear medicine
physicians (PD and PP). A volume of interest was set around each
lesion on the PET images according to an adaptive thresholding
(28), manually adapted if necessary according to medical advice.
After the database was gathered, a second reading was done
in order to check and confirm the suspicious character of the
different segmented foci. These values were added to compute
the TMTV.

Data of the two cohorts of patients are summarized in Table 1.

Convolutional Neural Network Use
PET/CT images were analyzed using a software prototype called
PARS (Siemens Healthineers, Knoxville, TN, USA). A cylindrical
reference region was automatically placed in the center of
descending thoracic aorta to measure the mean blood pool
uptake (SUVBP). Regions on PET images with SUVpeak greater
than SUVBP + 2 stdSUVBP were identified and segmented using
42% of local SUVmax. Only segmentations with volumes over 2ml
(research cohort) or 1ml (routine cohort) were selected to be
processed by the CNN, which specifies location and physiological
or suspicious character of the different foci.

Statistical Analysis
For both cohorts, agreement between automatic and manual
segmentations was characterized using the Dice score.
Differences between TMTVs from PARS and manual
segmentation were determined using intraclass correlation
coefficient (ICC), notably for subgroups of more than 30 patients.
Comparisons were also made by way of Bland–Altman plots.

The prognostic value for PFS and OS for both automatic
and manual TMTVs was analyzed in the research cohort.
Hazard ratios were calculated on continuous data. Receiver
operating characteristic (ROC) curves were used to determine
TMTV cutoff thresholds by Youden’s index. Survival functions
were computed by Kaplan–Meier analyses and used to estimate
survival time statistics for low and high TMTV groups with
log-rank tests.

RESULTS

Research Cohort
Concerning the research cohort, 119 patients were included
in the analysis. The median age was 65.8 years. Ninety-three
patients had stage 3 or 4 DLBCL according to the Ann
Arbor classification. Thirty received first-line treatment with R-
ACVBP (doxorubicin, cyclophosphamide, vindesine, bleomycin,
prednisone regimen) and 89 with R-CHOP (cyclophosphamide,
doxorubicin, vincristine, and prednisone regimen). The ICC
between the two manual TMTVs was 0.86 (p < 0.001),
confirming the reproducibility of the segmentations. The median
Dice score across all patients between the set of PARS ROI’s
labeled as suspicious and the set of manual ROI’s was 0.65.
The average Dice score was 0.52. The median TMTVPARS was
194.79ml, maximum 1,821ml, and minimum 0ml. The median
TMTVmanual was 313.34ml, maximum 3,304ml, and minimum
8ml (Table 1 and Supplementary Figure 1). The ICC between
PARS and manual TMTVs was 0.68 (Table 1). Concerning
the Bland–Altman plot, the deviation from the mean between
TMTVmanual and TMTVPARS was +204ml with a confidence
interval of−554 to+963ml (see Figure 1A).

After a median follow-up of 5 years, 60 patients presented a
recurrence of the disease and 54 deceased. The 5-year survival
rates were 49.6% for PFS and 54.6% for OS.

The area under the ROC curve for predicting PFS was
0.62 for TMTVPARS and 0.71 for TMTVmanual (Figures 2A,B).
The optimal cutoffs for predicting PFS were 223.09ml for
TMTVPARS and 327.14ml for TMTVmanual. The 5-year PFS
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TABLE 1 | Summary results from two patient cohorts.

Cancer type Number Frequency

(%)

Mean Dice

score

Median Dice

score

Minimal Dice

score

Maximal Dice

score

ICC

(p-value)

Clinical research database

Lymphoma (DLBCL) 119 100 0.52 0.65 0 0.93 0.68

(p < 0.001)

Clinical routine database

Lung 150 34.88 0.51 0.59 0 0.94 0.71

(p < 0.001)

Lymphoma 71 16.51 0.40 0.45 0 0.97 0.56

(p < 0.001)

Breast 28 6.51 0.21 0 0 0.87

Unknown 26 6.05 0.30 0.04 0 0.93

Colorectal 25 5.81 0.46 0.56 0 0.88

Melanoma 23 5.35 0.37 0.50 0 0.85

Head and neck 23 5.35 0.40 0.36 0 0.93

Esophagus 19 4.42 0.54 0.74 0 0.90

Ovary 8 1.86 0.51 0.61 0 0.94

Anal 5 1.16 0.10 0 0 0.46

Kidney 5 1.16 0.24 0.22 0 0.61

Sarcoma 5 1.16 0.22 0 0 0.63

Carcinoma of unknown primary (CUP) 4 0.93 0.28 0.30 0 0.51

Cervix 4 0.93 0.16 0 0 0.64

Endometrium 4 0.93 0.18 0.02 0 0.66

Pancreas 4 0.93 0.35 0.27 0 0.86

Prostate 4 0.93 0.24 0.07 0 0.82

Pleural 3 0.70 0.21 0 0 0.63

Adrenal 3 0.70 0.18 0 0 0.54

Testis 3 0.70 0.19 0 0 0.56

Skin 2 0.47 0.40 0.40 0 0.79

Stomach 2 0.47 0.42 0.42 0.03 0.81

Myeloma 2 0.47 0.43 0.43 0 0.87

Bladder 2 0.47 0.85 0.85 0.85 0.85

Liver 1 0.23 0.53 0.53 0.53 0.53

Leukemia 1 0.23 0.74 0.74 0.74 0.74

Paraganglioma 1 0.23 0.70 0.70 0.70 0.70

Thymus 1 0.23 0.94 0.94 0.94 0.94

Thyroid 1 0.23 0.20 0.20 0.20 0.20

Miscellaneous 430 100.00 0.42 0.48 0 0.97 0.61

(p < 0.001)

DLBCL, diffuse large B-cell lymphoma.

rates were 61.5 and 35.2% for the low- and high-TMTVPARS

groups and 69.8% and 26.8% for the low- and high-TMTVmanual

groups, respectively (Figures 3A,B). The log-rank test indicated
a significantly longer PFS time in the low-TMTV group for both
TMTV estimation methods (p= 0.0034 for TMTVPARS and p <

0.0001 for TMTVmanual). Hazard ratios (high-TMTV group vs.
low-TMTV group) were 2.1 (range 1.3–3.5) for TMTVPARS and
3.3 (range 2.0–5.6) for TMTVmanual.

For OS, the area under the ROC curve was 0.66 for TMTVPARS

and 0.71 for TMTVmanual (Figures 2C,D). The optimal cutoffs
for predicting OS were 220.80ml for TMTVPARS and 327.14ml
for TMTVmanual. The 5-year OS rates were 68.3 and 39.3% for the
low- and high-TMTVPARS groups and 73.0% and 33.9% for the

low- and high-TMTVmanual groups, respectively (Figures 3C,D).
The log-rank test indicated a significantly longer PFS time in
the low-TMTV group for both TMTV estimation methods (p =
0.0016 for TMTVPARS and p = 0.0001 for TMTVmanual). Hazard
ratios (high-TMTV group vs. low-TMTV group) were 2.4 (range
1.4–4.1) for TMTVPARS and 3.1 (range 1.8–5.3) for TMTVmanual.

Routine Cohort
Concerning the routine cohort, 430 patients were analyzed; 35%
of them had lung cancer, 17% lymphoma, 7% breast cancer, 6%
colorectal cancer, 5% melanoma, 5% head and neck cancer, 4%
esophageal cancer, and 15% another cancer. In 6% of the cases,
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FIGURE 1 | Bland–Altman analysis between manually and automatically obtained total metabolic tumor volumes (TMTVs) for the clinical research cohort (A) and the

clinical routine database (B).

FIGURE 2 | Receiver operating characteristic (ROC) curve analysis of the population of diffuse large B-cell lymphomas (clinical research database) for progression-free

survival (PFS) for manually obtained total metabolic tumor volumes (TMTVs) (A) and automatically obtained TMTVs (B) and for overall survival (OS) for manually

obtained TMTVs (C) and automatically obtained TMTVs (D).
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FIGURE 3 | Kaplan–Meier analysis of the population of diffuse large B-cell lymphomas (clinical research database) for progression-free survival (PFS) for manually

obtained total metabolic tumor volumes (TMTVs) (A) and automatically obtained TMTVs (B) and for overall survival (OS) for manually obtained TMTVs (C) and

automatically obtained TMTVs (D).

the patients were followed up in another center, and we did not
have the proven cancer origin.

The median Dice score across all patients between the
suspicious PARS ROIs and the manual ROIs was 0.48. The
average Dice score was 0.42. For automatic segmentation,
median TMTV was 7.37ml, maximum TMTV was 1,626.97ml,
and minimum TMTVs was 0.00ml. For manual segmentation,
median TMTV was 20.09ml, maximum TMTV was
4,076.63ml, and minimum TMTV was 1.00ml (Table 1 and
Supplementary Figure 1). The intraclass coefficient between
PARS andmanual TMTVwas 0.61 (Table 1). Concerning Bland–
Altman plot, the deviation from the mean between TMTVmanual

and TMTVPARS was +60ml with a confidence interval of −386
to+506ml (see Figure 1B).

DISCUSSION

We analyzed an automatic segmentation software prototype
using CNN in PET to distinguish hypermetabolic foci suspicious

for cancer from nonsuspicious foci in two distinct cohorts
of patients.

The first of these cohorts consisted of 119 patients with
DLBCL, a disease used for the training of the model and
for which the prognostic value of TMTV is well known
(10). The median overlapping score of automatic and manual
segmentation estimated by the Dice coefficient was 0.65. The
ICC between automatically and manually determined TMTVs
was 0.68. As follow-up was available for this cohort, survival
analysis based on volume thresholds determined by the ROC
curves showed that automatically determined TMTVs remained
a predictive factor for PFS and OS, but hazard ratios were
however lower than for manually determined TMTVs.

The second cohort consisted of 430 patients with a variety of
cancers who were referred for PET/CT evaluation. The aim of the
analysis of this cohort was to determine the possible utility of the
algorithm for clinical routine, in terms of speed and reliability
of the analysis of the different foci, and the estimation of the
TMTVs. The median overlapping score of automatic and manual
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FIGURE 4 | Examples in axial and sagittal views of limitations of the automatic segmentation. (A) Pathological testicular mass labeled as physiological by positron

emission tomography Assisted Reporting System (PARS) (false negative). For this patient, the manually and automatically obtained total metabolic tumor volumes

(TMTVs) were 281.18 and 5.18ml, respectively. (B) Pathological mesenteric mass was erroneously labeled as physiological by PARS (false negative). For this patient,

the manually and automatically obtained TMTVs were 2,125.38 and 89.35ml, respectively. (C) Physiological urinary bladder focus was erroneously labeled as

pathological by PARS (false positive). For this patient, the manually and automatically obtained TMTVs were 816.94 and 661.08ml, respectively. (D) Pathological

mesenteric mass was correctly labeled as pathological by PARS (true positive). For this patient, the manually and automatically obtained TMTVs were 1,369.19 and

1,343.88ml, respectively.

segmentation estimated by the Dice coefficient was 0.48. The
ICC between automatically and manually determined TMTVs
was 0.61.

The scanner type and acquisition parameters were different
between the two cohorts. However, the results obtained were
relatively similar despite these differences. Moreover, the manual
segmentation methods differed (fixed threshold for the clinical
research cohort and adaptive threshold for the routine cohort),
but this did not greatly influence the results. The use of the 41%
SUVmax thresholding method has been published in the context
of DLBCLs and is a standard in clinical research (15), although
much discussed (16). In particular, this method is difficult to
use in clinical routine where tumor lesions are often smaller
than those observed in DLBCL where a threshold of 41% of the
SUVmax becomes unsuitable because of the partial volume effect
for small lesions (29).

Finally, in the PARS configuration, to limit the computation
time without impacting the TMTV measurement, only
segmentations with volumes over 1ml in the routine cohort were
analyzed, as potentially small tumors were observed while the
limit of 2ml was used in the research cohort, as DLBCLs present
generally large tumors.

In recent years, a number of algorithms have been
developed that focus on PET segmentation, mainly in
lymphoma, using different branches of artificial intelligence
(30–32). In particular, machine learning using CNNs is a

major advance in medical imaging. In PET, this technology
stands to assist the nuclear physician’s interpretation by
facilitating, or even refining, the analysis. Concerning
lymphomas, and DLBCL particularly, TMTV is usually not
calculated during pretherapeutic PET/CT because it takes too
long to determine using manual segmentation. Automatic
or semiautomatic determination of TMTV could enable
clinicians to integrate it in the determination of prognosis and
therapeutic adaptation.

PARS is among the first published and validated CNN
algorithms for PET/CT lesion classification (21). It was developed
to detect FDG foci, and to predict the anatomic location and the
expert classification (i.e., suspicious or not suspicious for cancer).
It was trained on 380 examinations of patients with lung cancer
or lymphoma with a validation set of 126 examinations and a test
set of 123 patients (21).

In a recent study (33), the PARS software prototype was tested
on a cohort of 280 patients with DLBCL. As with this study, we
have established the ability to determine the prognosis of DLBCL
using automatic segmentation. The authors however obtained
a better lymphomatous lesion recovery coefficient (Dice) of
0.73 and a better TMTV correlation of 0.76. The automatically
determined TMTVs were, as in our study, predictive of total and
PFS with hazard ratios of 2.8 and 2.4, respectively. The difference
in Dice coefficients and TMTV correlation could be explained by
the difference in the populations.
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Our results are consistent with a recent study (34), in which
the performances of a CNN model, based on nnU-Net, were
investigated to automatically segment TMTV in patients with
DLBCL. A first cohort of 639 patients with pretherapeutic FDG
PET/CT was used to train the model. In this cohort, the mean
Dice score and Jaccard coefficients for manual and automatic
segmentations were 0.73 and 0.68, respectively. There was amean
underestimation of automatic TMTV by 12ml (p = 0.27). An
external validation was done on a second cohort of 94 patients.
In this testing set, the mean underestimation of automatically
determined TMTV was 116ml, which was statistically significant
(p= 0.01).

Concerning the clinical routine database, we chose to
analyze the examinations of patients followed for any cancerous
pathology, whereas the model was trained only on lung
cancer and lymphomas. This approach corresponds well to
the clinical routine where the pathology is variable, and the
results remain consistent with those of the research cohort.
Nevertheless, the results are more similar to those obtained for
the research cohort, which is closer to the training conditions of
the algorithm.

Although promising, the PARS software prototype tends,
in this study, to underestimate the number of cancerous
foci, leading to some false-negative cases (see Figure 4). For
both clinical research and clinical routine cohorts, the results
obtained suggest that a manual check is still needed after the
automatic segmentation.

CONCLUSION

The purpose of our study was to evaluate the software
prototype PARS, which applies CNNs to detect carcinologically
suspicious foci of hypermetabolism in FDG PET scans.
The total tumor metabolic volumes determined by PARS
were predictive of OS and PFS for patients belonging

to the DLBCL research cohort. The segmentations and
TMTVs determined automatically by the algorithm need
to be verified and, sometimes, corrected to be similar
to the manual segmentation in both clinical research and
clinical routine.
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Background: Diagnostic reports contribute not only to the particular patient, but also to

constructing massive training dataset in the era of artificial intelligence (AI). The maximum

standardized uptake value (SUVmax) is often described in daily diagnostic reports of [18F]

fluorodeoxyglucose (FDG) positron emission tomography (PET) – computed tomography

(CT). If SUVmax can be used as an identifier of lesion, that would greatly help AI

interpret diagnostic reports. We aimed to clarify whether the lesion can be localized using

SUVmax strings.

Methods: The institutional review board approved this retrospective study. We

investigated a total of 112 lesions from 30 FDG PET-CT images acquired with 3 different

scanners. SUVmax was calculated from DICOM files based on the latest Quantitative

Imaging Biomarkers Alliance (QIBA) publication. The voxels showing the given SUVmax

were exhaustively searched in the whole-body images and counted. SUVmax was

provided with 5 different degrees of precision: integer (e.g., 3), 1st decimal places (DP)

(3.1), 2nd DP (3.14), 3rd DP (3.142), and 4th DP (3.1416). For instance, when SUVmax

= 3.14 was given, the voxels with 3.135 ≤ SUVmax < 3.145 were extracted. We also

evaluated whether local maximum restriction could improve the identifying performance,

where only the voxels showing the highest intensity within some neighborhood were

considered. We defined that “identical detection” was achieved when only single voxel

satisfied the criterion.

Results: A total of 112 lesions from 30 FDG PET-CT images were investigated. SUVmax

ranged from 1.3 to 49.1 (median = 5.6). Generally, when larger and more precise

SUVmax values were given, fewer voxels satisfied the criterion. The local maximum

restriction was very effective. When SUVmax was determined to 4 decimal places (e.g.,

3.1416) and the local maximum restriction was applied, identical detection was achieved

in 33.3% (lesions with SUVmax< 2), 79.5% (2≤ SUVmax< 5), and 97.8% (5≤ SUVmax)

of lesions.
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Conclusion: In this preliminary study, SUVmax of FDG PET-CT could be used as

an identifier to localize the lesion if precise SUVmax is provided and local maximum

restriction was applied, although the lesions showing SUVmax < 2 were difficult to

identify. The proposed method may have potential to make use of diagnostic reports

retrospectively for constructing training datasets for AI.

Keywords: maximum of standardized uptake value, SUVmax, identifier, FDG PET, diagnostic report, artificial

intelligence

INTRODUCTION

The clinical usefulness of positron emission tomography (PET)
using [18F]-fluorodeoxyglucose (FDG) has been well-established
in oncology (1, 2). In addition to visual assessment (qualitative
analysis), several quantitative measurements have been used
to express the degree of FDG uptake. Among them, the
standardized uptake value (SUV) has long been used as
the de facto standard. To our knowledge, SUV was first
extensively used around 1991 (3). In the initial years of its
use, SUV was also known as the differential uptake ratio (4)
or dose uptake ratio (5). The in-lesion maximum of SUV,
or SUVmax, has frequently been used since 1999. By 2009

Abbreviations: DP, decimal places; FDG, fluorodeoxyglucose; IQR, interquartile

range; OSEM, ordered subsets expectation maximization; QIBA, Quantitative

Imaging Biomarkers Alliance; SUV, standardized uptake value; VOI,

volume of interest.

FIGURE 1 | A conceptual image of AI generating the visual summary of the report of FDG PET. SUVmax in the sentence appearing in the report text is used for

localization. In this case, the primary lesion (right palatine tonsil) and metastatic nodes show high FDG uptakes. Note that SUVmax should be round before attending

physicians read the report.

SUVmax had become the most frequently used measurement
by far, with 6-fold more frequent use compared to the next
most-often used measurement, according to a comprehensive
review (6). Although SUV is most commonly calculated as
the radioactivity concentration normalized to injection dosage
and body weight, other definitions include the radioactivity
concentration normalized to the body surface area (7), to lean
body mass (6), and to blood glucose (8). In addition to SUVmax,
metabolic tumor volume and total lesion glycolysis have been
extensively investigated in recent studies and the evidence
has been increasingly accumulated (9, 10). These volumetric
measurements are, however, affected by the method of tumor
boundary delineation, degrading inter-operator reproducibility.
In contrast, SUVmax has theoretically highest inter-operator
reproducibility. Many lines of evidence have demonstrated
the usefulness of SUVmax for differential diagnosis, treatment
response prediction, and prognosis (11).
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A total of 0.6 million FDG PET studies were performed in
Japan in 2017 (12), and we think that diagnostic reports were
written for most of them. Describing intensity of FDG uptake
either using SUVmax or qualitatively has been recommended
(13). Diagnostic reports not only contribute greatly to helping the
attending physician interpret the image and diagnose the disease,
but also prevent important findings from being overlooked.More
recently, in the era of artificial intelligence (AI), the importance of
training data is increasing. Collectively, diagnostic reports form a
highly useful and efficient training database (14–18).

We hypothesized that if the SUVmax described in diagnostic
reports was sufficiently precise, it might contribute to localization
of the lesion, because there should be a limited number of voxels
showing the same SUVmax in the entire image. In other words,
we thought that SUVmax could be used as an identifier of the
lesion. Thus, in this study, we aimed to clarify whether it would be
possible to identify the lesion location using the SUVmax under
various conditions by varying the degree of SUVmax precision
and applying local maximum restriction. Such a technique could
also be used to realize an automated system to generate a visual
summary of the diagnostic report (Figure 1).

MATERIALS AND METHODS

Study Subjects
This retrospective observation study was approved by the
institutional review board (approval no. 017-0454). The
requirement of written informed consent from each patient
was waived because of the study’s retrospective nature. We
confirmed that all methods were carried out in line with the
relevant guidelines and regulations. A total of 30 PET-CT scans
(sequential examinations for each scanner) were investigated in
this study. No more than one scan was included for each patient.
All the images were acquired between April 2019 and November
2019. Images were evaluated visually, and included to the study
population if there were any pathological FDG uptakes in visual
analysis until the number of scans reached 10 for each scanner.
When all the FDG accumulation masses were considered
physiological, the case was excluded. Note that not only uptake
due to pathological malignancy but also malignancy-suspected
and inflammatory uptakes were included in the analysis. In cases
more than 5 uptakes were found, a maximum of 5 uptakes that
showed highest values were recorded for a patient, based on

FIGURE 2 | The findings for a patient who underwent FDG PET-CT for lung nodules. The true SUVmax of the nodule in the left upper lobe was 2.97177 (arrow). When

local maximum restriction was not applied, 21031, 2176, 210, 33, and 33 voxels were extracted for 3, 3.0, 2.97, 2.972, and 2.9718, respectively. When 3 × 3 × 3

local maximum restriction was applied, 254, 32, 4, 2, and 2 voxels were extracted. When 5 × 5 × 5 local maximum restriction was applied, 126, 14, 1, 1, and 1

voxel(s) were extracted, achieving identical detection.

Frontiers in Medicine | www.frontiersin.org 3 April 2021 | Volume 8 | Article 64756269

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Hirata et al. SUVmax as Identifier

RECIST 1.1 (19). Two experienced nuclear medicine physicians
visually evaluated all the images. In case the interpretations of
the two physicians differed, the final interpretation was reached
by discussion.

PET-CT Image Acquisition and

Reconstruction
In this study, we investigated images acquired with 3 different
PET-CT scanners made by 2 different manufacturers.

Scanner 1 was a Biograph 64 True Point PET-CT (Siemens,
Munich, Germany). The transaxial and axial fields of view were
68.4 and 21.6 cm, respectively. Emission data was acquired for
180 s per bed. Images were reconstructed using the OSEM
algorithm with point spread function correction. Time-of-
flight of photons was not measurable with the scanner. The
reconstructed images had a matrix size of 168 × 168 and a voxel
size of 4.1× 4.1× 2.0 mm.

Scanner 2 was a GEMINI TF64 PET-CT (Philips, Amsterdam,
Netherlands). The transaxial and axial fields of view were
57.6 and 18.0 cm, respectively. Emission data was acquired for

60–180 s per bed depending on patient weight and injected
dosage. Images were reconstructed using the OSEM algorithm
reinforced with the time-of-flight algorithm. Point spread
function correction was not applied. The reconstructed images
had a matrix size of 144 × 144 and a voxel size of 4.0 × 4.0 ×

4.0 mm.
Scanner 3 was a Vereos PET-CT (Philips, Amsterdam,

Netherlands), which was the newest scanner of the three and
equipped with digital photon counting detectors (20). The
transaxial and axial fields of view were 67.6 and 16.4 cm,
respectively (20). Emission data was acquired for 120–180 s per
bed depending on patient weight and injected dosage. Images
were reconstructed using the OSEM algorithm. Both the time-
of-flight algorithm and point spread function correction were
applied. The reconstructed images had a matrix size of 256× 256
and a voxel size of 2.0× 2.0× 2.0 mm.

The number of voxels in the z-direction (i.e., cranio-caudal
direction) ranged from 234 to 553, resulting in the final number
of voxels ranging from 4.85 × 106 to 4.41 × 107. CT images
were used for attenuation correction for all the scanners and

FIGURE 3 | The same case as depicted in Figure 2. The true SUVmax of the nodule in the right upper lobe was 1.53924 (arrow). When local maximum restriction

was not applied, 74952, 13442, 1427, 198, and 198 voxels were extracted for 2, 1.5, 1.54, 1.539, and 1.5392, respectively. When 3 × 3 × 3 local maximum

restriction was applied, 782, 104, 6, 2, and 2 voxels were extracted. When 5 × 5 × 5 local maximum restriction was applied, 410, 60, 4, 2, and 2 voxels were

extracted. Thus, identical detection was not achieved for this lesion.
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for visual assessment, but were not analyzed quantitatively
in the current study. All patients fasted for ≥6 h before the
injection of FDG (∼4 MBq/kg), and the emission scanning
was initiated basically around 60min post-injection. One scan
was acquired 95min post-injection due to mechanical troubles.
Fasting blood sugar was confirmed to be smaller than 200 mg/dl
in each study.

SUVmax Calculation
Commercially available DICOM viewers/PET viewers do not
display SUVmax to 4 decimal places (DP) or higher. In order
to obtain the ground truth of SUVmax, we modified Metavol
software package, which we previously developed for PET-CT
volumetric analysis (21). We used Windows 10, Microsoft Visual
Studio Community 2019 Version 16.4.0, C# 8.0 language, .NET
Core 3.1, and fo-dicom 4.0.3 formodifyingMetavol. For instance,
in the case that the true SUVmax is 3.14159, themodifiedMetavol
will display it as it is, whereas XTREK VIEW software (J-MAC
SYSTEM, Sapporo, Japan) will display it as 3.142. A nuclear

medicine physician measured SUVmax by placing a spherical
volume of interest (VOI) whose diameter can be changed by
the operator. Another nuclear medicine physician independently
confirmed all the values of SUVmax.

After the VOI definition, SUVmax was calculated based on
the newest QIBA publication (22). Briefly, in Biograph64 and
Vereos, the radioactivity concentration c (Bq/ml) was calculated
as follows:

c = ρ · s+ i.

Here, ρ represents the raw pixel value that was stored with
DICOM tag of (7FE0,0010) with each voxel expressed in a 16-bit
integer. s represents the rescale slope, which is stored as a float
value at (0028, 1053). i represents the rescale intercept, which
is stored as a float value at (0028, 1052). Next, decay-corrected
injection dosage Dc was calculated as follows:

Dc = D0 · (1/2)
(Ta−Ti)/h.

FIGURE 4 | The findings for a patient who underwent FDG PET-CT for a spinal code lesion. The true SUVmax of the nodule in the spinal code lesion was 5.56218

(arrow). When local maximum restriction was not applied, 21116, 1953, 186, 25, and 5 voxels were extracted for 6, 5.6, 5.56, 5.562, and 5.5622, respectively. When

3 × 3 × 3 local maximum restriction was applied, 12, 3, 1, 1, and 1 voxel(s) were extracted. When 5 × 5 × 5 local maximum restriction was applied, 8, 2, 1, 1, and 1

voxel(s) were extracted, achieving identical detection.
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Here, D0 represents the radionuclide total dose (i.e., injected
dosage of FDG) (Bq) stored as a float value at (0018, 1074). Ta

represents acquisition time stored at (0008, 0032). Ti represents
the radiopharmaceutical start time (i.e., injection time) stored
at (0018, 1072). Both times are stored in a “hhmmss” form
string, and thus conversion to second is needed. h represents
the radionuclide half-life (second) stored as a float value at
(0018, 1075).

Finally, SUV was calculated as follows:

SUV = c · w/Dc.

Here, w represents the patient’s weight (g), which is stored in
kilograms at (0010, 1030) and thus must be multiplied by 1000.

The SUV calculation was much simpler in GEMINI TF64,
as follows:

SUV = (ρ · s+ i) · p.

Here, p represents the Philips Factor (float) stored as a float value
at (7053, 1000). The value of i was 0 for all the GEMINI TF64
examinations investigated in the current study.

Lesion Localization
We implemented a function that searches voxels satisfying the
given SUV range and illustrate the locations in the whole body
image (Figures 2–4). The SUV range was determined as follows.
When “3” was provided by the operator, the range was considered
to be 2.5 ≤ SUV < 3.5. When “3.1” was provided, the voxels
satisfying 3.05 ≤ SUV < 3.15 were picked out, and so forth.
Thus, the more precise the provided value of SUVmax (i.e., more
digits) was, the narrower the range of SUV applied to extract
voxels was. We compared the results from integer precision to
4th DP precision. Note that we do not show the results of 5th DP
precision because there were no cases in which 5th DP precision
improved the identification rate compared to 4th DP precision.

We performed experiments in different settings. First, the
voxels within the range were extracted simply. Then, local
maximum restriction was added to discard the voxel that was
adjacent to the higher-value voxel, because such a voxel cannot
have SUVmax. For local maximum restriction, milder restriction
and stricter restriction were tested. Milder restriction was a
condition under which the voxel must be highest in the 3 × 3 ×
3 cube. Stricter restriction was a condition under which the voxel
must be highest in the 5× 5× 5 cube.

Here, we defined that “identical detection” was achieved when
only 1 voxel satisfied the criterion.

Statistical Analysis
The relationship between SUVmax vs. the number of voxels
detected (N) was estimated using Pearson’s correlation coefficient
of the log of SUVmax vs. the log of N. The effects of the precision
of SUVmax, i.e., the number of digits after the decimal point, and
local maximum restriction on the rate of identical detection were
tested using a chi-square test. P-values < 0.05 were considered
statistically significant.

RESULTS

Patient characteristics are summarized in Table 1. Diagnosis
and lesion locations are summarized in Table 2. In this study

TABLE 1 | Patient characteristics.

Minimum 25-

percentile

50-

percentile

(median)

75-

percentile

Maximum

Age (year)* 11 62.25 69 75 86

Body

weight (kg)

35.6 50.75 54.5 65.7 78.5

Fasting

blood

sugar

(mg/dl)**

82 92.25 100.5 107 182

Injected

dosage

(MBq/body)

140.1 226.6 242.4 287.4 348.0

Injected

dosage

(MBq/kg)

2.97 4.33 4.41 4.47 4.74

Fasting

time (hour)

5.5 7.0 15.5 17.0 22.0

Uptake

time

(min)***

53 55 56 60.5 95

*1 (3%) patient was younger than 20 years old.

**4 (13%) patients were diagnosed as having diabetes.

***Time duration between FDG injection and image acquisition start.

TABLE 2 | Diagnosis and lesion sites.

Diagnosis Number of

patients

Site Number

of lesions

Head and neck

cancer

11 Mediastinal and hilar

nodes

29

Lung cancer 5 Bone 20

Colorectal cancer 4 Neck and subclavian

nodes

17

Malignant lymphoma 2 Lung 16

Primary unknown

cancer

2 Abdominal nodes 6

Spinal cord tumor 2 Nasal cavity and

pharynx

4

Myelitis 1 Intestine 4

Hepatobiliary cancer 1 Breast 3

Mediastinal tumor 1 Spinal cord 3

Sarcoidosis 1 Other soft tissues 3

Axillary nodes 2

Liver 1

Inguinal nodes 1

Adrenal gland 1

Parotid gland 1

Peripheral nerve 1

Total 30 112
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population, head-and-neck cancer was the most common
diagnosis, and the mediastinal and hilar lymph nodes were
the most frequent locations. In the 112 lesions investigated,
SUVmax ranged from 1.3 to 49.1, with median and interquartile
range (IQR) values of 5.6 and 5.2, respectively. SUVmax was
significantly higher for Vereos than for Biograph64 and TF64
(P < 0.01 and P < 0.05, respectively; Supplementary Figure 1),
which could be due to variability of diseases and scanner
characteristics. The numbers of lesions for Biograph64, GEMINI
TF64, and Vereos were 37, 37, and 38, respectively.

First, local maximum restriction was not applied. A number
of voxels were identified corresponding to the given SUVmax
(Figure 5, top row). Generally, when a larger SUVmax was given,
a smaller number of voxels was detected (0.83 < |r| < 0.84, P
< 10−28). When the SUVmax was given with 10-fold greater
precision, an ∼0.1-fold number of voxels were extracted, as
expected theoretically.

Next, local maximum restriction was applied. Both 3 × 3
× 3 and 5 × 5 × 5 local maximum restriction reduced the
number of extracted voxels up to 1/1000 (Figure 5, middle and
bottom rows). More specifically, the rate of identical detection
increased when the given SUVmax was more precise and local
maximum restriction was stricter (Figure 6). For instance, while
identical detection was successful only in 2.7% of patients when
integer precision and no restriction were used, the success rate
was elevated to 86.6% when 4th DP precision and 5× 5× 5 local
maximum restriction were used. The effects of 5 × 5 × 5 over

3 × 3 × 3 local maximum restriction were observed as shown
in Figure 6, except for integer precision, although none of the
differences between 5 × 5 × 5 vs. 3 × 3 × 3 local maximum
restriction reached the level of statistical significance (P > 0.05).

For sub-analysis, all lesions were categorized as low (SUVmax
< 2, N = 6), medium (2 ≤ SUVmax < 5, N = 44), or high (5 ≤
SUVmax, N = 62) uptake lesions. The rate of identical detection
was low (33.3%) for the low uptake group even under the best
conditions, although the medium (79.5%) and high (96.8%)
uptake groups achieved high rates (Figure 7). To investigate the
underlying mechanisms for this difference, we drew a histogram
of SUV over the whole-body image of a patient (Figure 8). In
this case, the frequency exponentially decreased when SUVmax
increased, as 98.13% of voxels showed 0 ≤ SUV < 1, 1.28%
showed 1 ≤ SUV < 2, 0.37% showed 2 ≤ SUV < 5, and 0.21%
showed 5 ≤ SUV.

In addition, Table 3 summarizes the statistical analysis to
search variables affecting the rate of identical detection of the
lesion. In this analysis, all the lesions were categorized into
2 groups using the median of the variable as the cut-off. As
the results, young age (p = 0.01) and large injected dosage
(MBq/kg, p = 0.005) were significant factors for high rate of
identical detection of the lesion. Note that injected dosage per
body (MBq/body) was not a significant factor. We found that
there were no significant correlations between SUVmax and
patient age (r = −0.01) or between SUVmax and injected
dosage (MBq/kg, r = 0.17).

FIGURE 5 | The number of voxels extracted by a given SUVmax with various levels of precision. Top row, local maximum restriction was not applied; middle row, 3 ×

3 × 3 local maximum restriction was applied; bottom row, 5 × 5 × 5 local maximum restriction was applied.
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DISCUSSION

In this retrospective study, we aimed to clarify whether SUVmax
can be used as a lesion identifier to localize the voxel in the
whole-body image of FDG PET. We observed that SUVmax
successfully localized the voxel for >80% examinations in the
case that SUVmax was given to the 3rd or higher DP and local
maximum restriction (5 × 5 × 5) was applied. However, the
sub-analysis showed that the lesions having SUVmax < 2 were
difficult to localize using SUVmax only. To our knowledge, this
is the first report to show the use of SUVmax as an identifier of
lesion on FDG PET-CT.

FIGURE 6 | The overall rate of identical detection of the lesion. DP, decimal

places. Free, 3 × 3 × 3, and 5 × 5 × 5 express no restriction and each local

maximum restriction.

The pixel data was stored in DICOM files in a 16-bit integer
form for all 3 scanners investigated. A 16-bit integer can express
65,536 different values. Since the number of voxels in the whole-
body image may be around 107, theoretically > 100 voxels on
average may have exactly the same value. In fact, however, the
distribution of SUV was quite skewed, as shown in Figure 8.
It is reasonable that many voxels were detected when a smaller
SUVmax was given, whereas only single voxel was detected when
a larger SUV (e.g., >5) was given. In Figure 5, the number of
voxels suddenly dropped once SUVmax became larger than 10.
This can be explained as follows. In this study, we usedDP instead
of significant figures. They are slightly but clearly different. DP
means the number of digits located to the right of the decimal
point. Significant figures refers to the total number of digits
irrespective of the decimal point location. For example, 9.8 is
1st DP and 2 significant figures, whereas 12.3 is 1st DP and 3
significant figures. Since 12.3 has more information than 9.8,
fewer voxels were included within the range.

The effect of local maximum restriction was significant. The
number of voxels that can become local maxima depends on
the noise level of the image. Mathematically, when 3 × 3 × 3
restriction was applied, at most 1 of 2 voxels in each axis could
become local maxima, indicating that 1/8 or a smaller number
of voxels could become local maxima. Similarly, when 5 × 5
× 5 restriction was applied, at most 1 of 3 voxels in each axis
and thus 1/27 or a smaller number of voxels could become
local maxima. We did not try 7 × 7 × 7 restriction because we
were worried that it might prevent identification of the voxel of
SUVmax, considering that a single voxel size is 4mm, and its
diagonal is 4

√

3 = 6.9 mm, and thus 7 voxels account for as
large as 48.5 mm.

Some may argue that use of the 3rd or higher DP for SUVmax
is redundant for daily radiological reports. That is true. SUV
calculation uses body weight and the precision of body weight
measurement may be 3 significant figures (e.g., 56.7 kg) or
less. Radioactivity dosage measurements may introduce some
errors. Furthermore, SUV varies depending on various technical

FIGURE 7 | The results of sub-group analysis of the rate of identical detection of the lesions with SUVmax < 2 (A, N = 6), 2 < SUVmax < 5 (B, N = 44), and 5 <

SUVmax (C, N = 62). DP, decimal places. Free, 3 × 3 × 3, and 5 × 5 × 5 express no restriction and each local maximum restriction.
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(e.g., scanner, acquisition protocol, reconstruction protocol) and
physiological (e.g., fasting conditions) factors. Therefore, the
number excessive fine number is meaningless in diagnosis and
treatment planning. Those may be why SUVmax is often written
to the 1st DP (e.g., 3.1). However, in order to permit the future
use of SUVmax as an identifier, we would like to propose that
SUVmax be written as precisely as the PET-CT viewer allows.
As mentioned before, this use of SUVmax would allow the
diagnostic report to be summarized as a single image (Figure 1).
In addition, it may also help radiologists to locate a lesion
mentioned in a previous report so as to compare between past
and present images. Our ultimate goal is to build a massive
training dataset based on diagnostic reports and corresponding
images. Writing the coordinate values (x, y, z) in the reports
will be the best way to transfer the information to artificial
intelligence. Currently, that may not be possible in most viewers
and reporting systems. Also, the appearance of such information
in the middle of a report may distract readers, and thus an

FIGURE 8 | A histogram of SUV over the whole-body image of a patient

(semi-log plot).

automated system is needed to hide this information when
humans read the report.

In the sub-analysis, we observed that the success rate was
affected by some other factors. More specifically, the success
rate was higher when the patient was younger or the injected
dosage (MBq/kg) was larger. To reveal the reasons, we calculated
Pearson’s correlation coefficients between SUVmax vs. these
factors, but there were no significant correlations. Thus, the
underlying mechanisms remain unclear and will be investigated
in future studies.

Although some radiological reports may be written with
SUVmean, we did not try using SUVmean as a lesion identifier.
Technically, SUVmean can be used instead of SUVmax for
our current method; however, SUVmean calculation for every
location is a time-consuming process and thus may not
be practical. In addition, the range of SUVmean is smaller
than SUVmax, which makes SUVmean less feasible for a
lesion identifier.

The use of SUVmax is specific for PET. Although the
maximum voxel value may not often be useful for CT orMRI, the
idea could be applied to the apparent diffusion coefficient (ADC)
images derived from diffusion weighted imaging of MRI, because
the minimum of ADC is meaningful for diagnosis.

As limitations of the current study, we did not investigate
the SUVmax shown in different image viewers. In some viewers,
PET volumes are reconstructed (resliced) in the CT alignment,
making slight changes to SUVmax. Secondly, we did not directly
use the diagnostic reports but reviewed the images to re-measure
SUVmax. Thus, we could not estimate the number of actual cases
in which the SUVmax written in the reports could successfully
locate the lesion. Such a study needs to be carried out. Thirdly,
we investigated only 30 cases for this preliminary study. A larger
study will be needed to confirm the results. In addition, head and
neck cancer accounted for a large portion of the current study
population, which does not necessarily reflect general population
undergoing PET-CT. Finally, diagnostic reports often provide
anatomical terms in the same sentence with SUVmax. This would

TABLE 3 | Variables affecting the rate of identical detection of the lesion.

<Median ≥Median p*

Number of

lesions (A)

Number of identical

detection (B)

Rate (B/A) Number of

lesions (A)

Number of identical

detection (B)

Rate (B/A)

Age (year) 59 56 94.9% 53 41 77.4% 0.01

Body weight (kg) 58 52 89.7% 54 45 83.3% 0.41

Fasting blood sugar

(mg/dl)

53 48 90.6% 59 49 83.1% 0.28

Injected dosage

(MBq/body)

54 49 90.7% 58 48 82.8% 0.27

Injected dosage

(MBq/kg)

51 39 76.5% 61 58 95.1% 0.005

Fasting time (hour) 47 41 87.2% 65 56 86.2% 1.0

Uptake time (min)** 36 30 83.3% 76 67 88.2% 0.56

*p-values were calculated Fisher’s exact test.

**Time duration between FDG injection and image acquisition start.
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be great information for selecting the appropriate location when
SUVmax suggests several candidates, as in Figure 3. Such a
method will be tested in future studies.

CONCLUSION

The data suggested that SUVmax can be used as an identifier
of lesion on FDG PET-CT. For this purpose, it is important
that SUVmax is given precisely (3rd DP or more) and that local
maximum restriction is applied to identify the voxel. The lesions
showing SUVmax < 2 were difficult to identify. As this is a
preliminary study investigating a small population from a single
center, a larger study with many more patients will be needed to
validate the results. The proposed method may have potential to
make use of diagnostic reports retrospectively for constructing
training datasets for AI.
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Purpose: We investigated whether a fluorine-18-fluorodeoxy glucose positron emission

tomography/computed tomography (18F-FDG PET/CT)-based radiomics model (RM)

could predict the pathological mediastinal lymph node staging (pN staging) in patients

with non-small cell lung cancer (NSCLC) undergoing surgery.

Methods: A total of 716 patients with a clinicopathological diagnosis of NSCLC

were included in this retrospective study. The prediction model was developed in a

training cohort that consisted of 501 patients. Radiomics features were extracted from

the 18F-FDG PET/CT of the primary tumor. Support vector machine and extremely

randomized trees were used to build the RM. Internal validation was assessed. An

independent testing cohort contained the remaining 215 patients. The performances

of the RM and clinical node staging (cN staging) in predicting pN staging (pN0 vs. pN1

and N2) were compared for each cohort. The area under the curve (AUC) of the receiver

operating characteristic curve was applied to assess the model’s performance.

Results: The AUC of the RM [0.81 (95% CI, 0.771–0.848); sensitivity: 0.794; specificity:

0.704] for the predictive performance of pN1 and N2 was significantly better than that

of cN in the training cohort [0.685 (95% CI, 0.644–0.728); sensitivity: 0.804; specificity:

0.568], (P-value = 8.29e-07, as assessed by the Delong test). In the testing cohort, the

AUC of the RM [0.766 (95% CI, 0.702–0.830); sensitivity: 0.688; specificity: 0.704] was

also significantly higher than that of cN [0.685 (95% CI, 0.619–0.747); sensitivity: 0.799;

specificity: 0.568], (P = 0.0371, Delong test).

Conclusions: The RM based on 18F-FDG PET/CT has a potential for the pN staging in

patients with NSCLC, suggesting that therapeutic planning could be tailored according

to the predictions.

Keywords: non-small cell lung cancer, 18F-FDG PET/CT, radiomics analysis, lymph node staging, predict, primary

tumor
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INTRODUCTION

Among all cancers, lung cancer remains the most commonly
diagnosed (11.6% of the total cases) and leading cause of cancer
death (18.4% of the total cancer deaths). Non-small cell lung
cancer (NSCLC) accounts for 85% of the cases (1, 2). For
patients newly diagnosed with NSCLC, the exact evaluation of
the pathological lymph node (LN) status plays an important
role in the choice of therapy regimen. There is a consensus
that lobectomy combined with systemic nodal dissection is
the recommended surgical treatment for early-stage NSCLC;
however, sublobar resection and stereotactic body radiation
therapy (SBRT) are possible alternatives for patients who are
ineligible for lobectomy (3–5). Thus, accurate differentiation of
pathological node-negative from positive is critical for selecting
the optimal therapeutic plan.

Currently, one of the most widespread modalities used for the
clinical LN (cN) staging of patients with NSCLC is fluorine-18-
fluorodeoxyglucose positron emission tomography/computed
tomography (18F-FDG PET/CT) (6, 7). Unfortunately, the
accuracy of 18F-FDG PET for the direct evaluation of each
mediastinal LN for the presence of metastasis is inherently
limited by an avid FDG uptake that can be caused by
inflammation due to infectious or non-infectious etiologies
such as tuberculosis, pneumoconiosis, or chronic obstructive
pulmonary disease (8–10). To improve the diagnostic ability of
false-positive signs, several studies have analyzed the differences
in parameters such as morphology, density, metabolism,
and radiomics between benign and malignant LNs (11, 12).
Nevertheless, because of the low FDG uptake, occult LN
metastasis (OLM) in patients with NSCLC fails to be detected by
18F-FDG PET (13) and, hence, imaging is prone to false-negative
signs. Accordingly, some researchers have tried to predict OLM
by analyzing the 18F-FDG metabolic parameters of the primary
tumor in NSCLC (14, 15). To the best of our knowledge, few
researchers have dealt with both problems of false-positive signs
and OLM in mediastinal LN staging. Furthermore, few studies
have investigated whether radiomics features derived from the
primary lesion of NSCLC might provide useful information for
mediastinal LN staging.

Therefore, we constructed and validated a radiomics model
(RM) to predict the pathological mediastinal LN staging (pN0 vs.
pN1 and pN2) based on the 18F-FDG PET/CT imaging of NSCLC
primary tumors.

MATERIALS AND METHODS

Patients
This study involving human participants was reviewed and
approved by the Ethical Commission of Medical Research
Involving Human Subjects at the Region of Xiangya Hospital,
Central South University, China, and the requirement for
informed consent was waived. We reviewed the electronic
medical records of 716 consecutive patients with NSCLC
[adenocarcinoma (ADC) and squamous cell carcinoma (SCC)]
who underwent both 18F-FDG PET/CT staging and surgical
resection with a curative intent from February 2007 to November

2019. All the patients underwent surgical resection with
systematic mediastinal (N2) and hilar (N1) LN dissections within
2 weeks of 18F-FDG PET/CT examination. Pre-operative cN
staging and post-operative pN staging of the patients were
performed and recorded according to the eighth edition of the
Union for International Cancer Control TNM classification (16).
Histological types were diagnosed according to theWorld Health
Organization classification. We excluded patients from the study
if they had (i) histology other than ADC or SCC, (ii) history
of other cancer, (iii) received any treatment before 18F-FDG
PET/CT, and (iv) undergone pre-operative lung biopsy.

18F-FDG PET/CT Acquisition and
Reconstruction
All 18F-FDG PET/CT scans were performed on a dedicated
PET/CT scanner (Discovery ST8, GE Healthcare, Chicago, IL).
All patients fasted for at least 6 h before imaging, and a
blood glucose level of <110 mg/dL was confirmed before the
administration of 18F-FDG. PET/CT was performed ∼60min
after the intravenous injection of 370 MBq/kg of 18F-FDG. First,
a low-dose CT scan without contrast enhancement (120mA, 150
kV, 512 × 512 matrix, the pitch of 1.75, reconstruction thickness
and interval of 3.75mm) for a precise anatomical localization and
attenuation correction was performed. Next, a three-dimensional
PET scan (thickness of 3.27mm) was performed from the skull
base to the proximal thighs with an acquisition time of 3min per
bed position.

The PET data sets were iteratively reconstructed using an
ordered-subset expectation maximization (OSEM) algorithm
with attenuation correction. All collected images were displayed
on the GE Healthcare Xeleris 3.0 to reconstruct the PET, CT, and
PET/CT fusion images.

Image Interpretation and Lesion Segment
Two experienced nuclear medicine physicians who were blinded
to the patient’s clinical information retrospectively reviewed the
18F-FDG PET/CT scans. Any difference of opinion was resolved
by consensus. Mediastinal and hilar LNs with a short axis of
≥10mm in the short axis on CT and with a high accumulation of
18F-FDG compared with that of the adjacent mediastinal tissue
were considered as cN2 or cN1 at our institution. Fused PET/CT
images were viewed on the Advantage Workstation (version AW
4.7, GE Healthcare).

The region of interest (ROI) for each patient was delineated
initially around the tumor outline for the largest cross-sectional
area of the primary lung lesion on both the CT and PET images.
The ROIs were segmented manually by a single experienced
nuclear medicine physician, and the final ROIs were checked
by another nuclear medicine physician with more than 10 years
of experience in PET/CT diagnosis. The open-source imaging
platform ITK-SNAP software (version 3.6; www.itksnap.org) was
used to plot the ROIs of the corresponding lesions (17). The
feature data were extracted, pre-processed, modeled, evaluated,
and validated using the scikit-learn (sklearn, scikit-learn.org)
packages in the python platform (18).
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Radiomics Feature Extraction
Data pre-processing: to ensure that the features were comparable,
training/testing cohort division, missing-value filling, and
data standardization were performed. First, to maintain the
distribution of the original data, a stratified samplingmethod was
applied to identify the training (501 samples, 70%) and testing
cohorts (215 samples, 30%) (19). Moreover, the missing values
(0 and 5) were filled with the median in the training and testing
cohorts, respectively, and then, the same normalization was used
for the data.

There were 1,438 features of primary tumors that were
automatically extracted using the sklearn packages. The
Spearman rank order correlation coefficient was used to calculate
the relationship between features, and the redundant features
were eliminated with an average absolute correlation of 0.85
as the threshold. Support vector machine–recursive feature
elimination, and the extremely randomized trees were applied
to reduce the dimensions and select optimized features for
the radiomics model (RM) to avoid the impact of redundant
and unconnected features. The relevance of the association
between each radiomics feature was established using heat maps
(Figure 1). Consequently, a total of 25 principal correlative
features, obtained through dimension reduction, were identified
for inclusion in the RM to distinguish pN0 from pN1 and pN2.
The results of the feature selection are shown in Table 1.

Radiomics Modeling and Evaluation
Extremely randomized trees was used as a classifier to model and
optimize the radiomics signature in the modeling process. The
25 selected features were put into the classifier to build the RM to
predict the pathological status of mediastinal LNs in the training
cohort. Thereafter, a five-fold cross-validation of the training
cohort was used to identify differences in the results. The training
model was applied to the testing cohort for model validation.
The area under the curve (AUC) of the receiver operating
characteristic (ROC) curve was used as a means of quantitatively
identifying the effective performance of the RM. The confusion
matrix in the testing cohort was calculated (Figure 2).

Statistical Analysis
Statistical analyses were conducted using the SPSS software,
version 23.0 (IBM Corm., Armonk, NY), and P-values < 0.05
were deemed statistically significant.

The predictive abilities of the RM and cN were investigated
using ROC analysis. The statistical significance of the
improvement in the AUC after adding an explanatory factor was
evaluated using the Delong test (20).

The clinicopathologic characteristics of the patients with a
pN0 status were compared with those of the patients with
pN1 and pN2. The training and testing data cohorts were
compared to identify factors contributing to nodal metastasis

FIGURE 1 | Heat map showing the correlation of radiomics features in the training cohort. The intensity of the relevance of each feature is displayed as a certain color.

The darker the color, the higher the relevance, and the lighter the color, the lower the relevance.
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TABLE 1 | The list of selected radiomics features.

Characteristic type Description Selected features

Histogram feature Histogram parameters are related to the properties of individual pixels. They describe

the distribution of voxel intensities within the images through the commonly used and

basic metrics. Let X denote the 3D image matrix with voxels and the first-order

histogram divided by discrete intensity levels.

PET_original_firstorder_Minimum

Textural phenotype

features

Texture is one of the important characteristics used in identifying objects or regions of

interest in an image. Texture represents the appearance of the surface and how its

elements are distributed. It is considered an important concept in machine vision; in a

sense, it assists in predicting the feeling of the surface (e.g., smoothness,

coarseness, etc.) from image.

PET_textural_phenotype_level_H

Intra-peri-nodular

textural transition

features

Intra-peri-nodular textural transition features represents a minimal set of quantitative

measurements which attempt to capture the transitional heterogeneity from the intra-

to the peri-nodular space.

PET_Ipris_shell0_ge_mean

Partial local pattern

binary feature

Partial local pattern binary feature is a local descriptor of the image based on the

neighborhood for any given pixel. The neighborhood of a pixel is given in the form of

P number of neighbors within a radius of R.

PET_PLBP_hist_tumor_orient6_0

CT_PLBP_hist_tumor_orient2_7

CT_PLBP_hist_tumor_orient2_3

PET_PLBP_hist_tumor_orient3_1

PET_PLBP_hist_tumor_orient4_3

CT_PLBP_hist_tumor_orient1_2

High order texture

feature based on

wavelet transform

By using a family of functions localized in terms of time and frequency, wavelet

transforms can centralize the energy of the original image within only a few

coefficients after wavelet decomposition. These coefficients have high local relativity

in three directions of different sub-band images: horizontal, vertical, and diagonal.

CT_wavelet-LHL_lbp-3D-

m2_firstorder_90Percentile

CT_wavelet-LLL_lbp-3D-

m2_firstorder_InterquartileRange

PET_wavelet-HLL_lbp-3D-

m2_firstorder_Median

PET_wavelet-HHL_lbp-3D-

m1_firstorder_Skewness

CT_wavelet-LHH_lbp-3D-

m1_firstorder_Median

PET_wavelet-LHL_lbp-3D-

m1_firstorder_Median

CT_wavelet-HLL_lbp-3D-

m1_firstorder_90Percentile

CT_WL_lbp_hist_cH1_1

PET_WL_lbp_hist_cD1_4

PET_wavelet-HLL_lbp-3D-

m1_firstorder_Median

CT_wavelet-HLL_lbp-3D-

m2_firstorder_Range

PET_wavelet-HHL_lbp-3D-

k_firstorder_Minimum

PET_WL_lbp_hist_cH2_2

CT_wavelet-LLL_lbp-3D-

m1_firstorder_Median

CT_WL_lbp_hist_cV2_7

using the χ
2-test for categorical data and the one-sample t-test

for continuous variables.

RESULTS

Characteristics of All Patients
The clinicopathological characteristics of the 716 patients
enrolled in the study are shown in Table 2. Figure 3 shows the

patient recruitment pathway. Among them, 220 were female and
496 were male, with an age range from 25 to 78 years. ADC was
the most common histological type of NSCLC (417/716). The
number of patients with SCC was 329. In the training cohort, the
number of patients with pN0, pN1, and pN2 were 315, 74, and
112, respectively. In the testing cohort, the number of patients
with pN0, pN1, and pN2 were 135, 43, and 37, respectively.
The age of the training cohort, sex of the testing cohort, and
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FIGURE 2 | Confusion matrix of the radiomics model in the testing cohort. The abscissas and ordinates represent the true and predictive labels, respectively.

TABLE 2 | Clinical characteristics.

Characteristic Training cohort P Testing cohort P

pN0 (n = 315) pN1&2 (n = 186) pN0 (n = 135) pN1&2 (n = 80)

Age, mean ± SD, years 60 ± 9 58 ± 9 0.005a 60 ± 9 58 ± 9 0.152a

Gender, No. (%) 0.627 0.041

Male 212 128 90 66

Female 103 58 45 14

Smoking history 0.810 0.206

Yes 181 108 78 52

No 134 78 57 28

Lobar distribution 0.214 0.385

LUL 77 45 40 25

LLL 46 28 25 15

RUL 57 52 17 21

RML 28 13 11 1

RLL 107 48 42 18

Anatomical classification 0.02 0.008

Central lung cancer 53 52 25 27

Peripheral lung cancer 263 133 110 53

Histologic cell type 0.696 0.697

SCC 109 67 52 38

ADC 207 119 83 42

RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe.
aone sample T-test.

anatomical classification of the two cohorts were statistically
significantly different between the pN0 status and pN1 and
pN2 status (P < 0.050). However, no significant difference was
observed in the age of the testing cohort and in the sex of
the training cohort (P > 0.050). Moreover, smoking history,
lobar distribution, and histologic cell type were not significantly
different between the two cohorts.

RM Performance
The diagnostic efficiency of the RM and cN were evaluated
by the ROC curve. The AUC of the RM [0.81 (95% CI,
0.771–0.848); sensitivity: 0.794; specificity: 0.704] for the
predictive performance of the pathological node status
was significantly better than that of the cN in the training
cohort [0.685 (95% CI, 0.644–0.728); sensitivity: 0.804;
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FIGURE 3 | Flow diagram shows patient selection details.

specificity: 0.568], (P = 8.29e-07, as assessed using the
Delong test).

In the testing cohort, the AUC of the RM [0.766 (95%
CI, 0.702–0.830); sensitivity: 0.688; specificity: 0.704] was also
significantly higher than that of the cN [0.685 (95% CI, 0.619–
0.747); sensitivity: 0.799; specificity: 0.568], (P = 0.0371, as
assessed using the Delong test).

The above-mentioned nuclear medicine physicians excluded
the patients with LNs significant enlargement and intense 18F-
FDG uptake in PET/CT, and confirmed N1 or N2 by pathology
from the whole population. The remaining 634 patients were
defined as the cN ± group. Then, the sensitivity, specificity,
and AUC of the cN and the RM in the cN ± group were
calculated, respectively.

The RM showed the AUC of 0.802 (95%CI, 0.683–0.921)
for the prediction of mediastinal LNs malignancy using the
optimum cutoff value of 0.382 in the cN± group. The sensitivity
and specificity of the RM were 0.718 and 0.767, respectively.
In comparison, the cN showed the AUC of 0.611 (95%CI,
0.572–0.650) using the optimum cutoff value of 0.500. The
sensitivity and specificity of the cN were 0.819 and 0.404,
respectively. The results demonstrated that the performance of
the RM was effective in discriminating pN0 from pN1 and
pN2 using the 18F-FDG PET/CT images. The performances
of the RM and cN in the training and testing cohorts
and the cN ± group are displayed in detail in Figures 4,
5, respectively, and the representative cases are presented
in Figure 6.

DISCUSSION

In cases of NSCLC with a chance of cure, the standard surgical
procedure is a pulmonary lobectomy with systemic mediastinal
nodal dissection. However, some patients are not eligible for this
therapy because of their advanced age or the presence of severe
medical diseases, and some patients refuse surgical treatment.
Limited surgery (wedge resection or segmentectomy) or SBRT
would be alternatives for such patients. Sublobar resection helps
preserve more healthy lung tissue, shortens the operative time,
and improves the post-operative quality of life. Perioperative
mortality and operative complication morbidity do not differ
significantly between lobar and sublobar resection (3). SBRT
has emerged as the preferred management strategy for patients
who are not surgical candidates; however, for the selection of
SBRT or restrictive surgery, accurate prediction of a pathological
LN-negative status is a pre-requisite.

The diagnosis of NSCLC mediastinal LN metastasis is
generally based on several parameters such as metabolism,
size, morphology, and attenuation, which leads to dependence
on clinical experience. In other words, the traditional practice
involves treating medical images as pictures intended solely for
visual interpretation (21). False-positive findings of mediastinal
LNs are not uncommon in functional imaging with 18F-
FDG PET/CT because the modality can mistakenly identify
inflammation in patients with NSCLC due to infection,
inflammation, or granulomatous diseases (8–10). The main
molecular and pathological mechanisms of an avid FDG uptake
in benign mediastinal LNs are lymphoid follicular hyperplasia
and histiocyte infiltration associated with glucose transporter-1
overexpression (22). When benign mediastinal LNs manifest as a
false-positive finding on PET imaging, and the CT morphology
is not informative enough to support a judgment, there is an
increased risk of an incorrect diagnosis. Benign high-uptake LNs
can coexist with occult metastasis, making an accurate cN staging
more difficult. In the clinical practice of mediastinal LN staging in
NSCLC, nuclear medicine physicians are faced with the challenge
of suspected positive LNs and possible OLM almost every day,
which is difficult to deal with by relying solely on experience.

In the existing studies, for the accuracy of the cN staging
in NSCLC, radiologists and nuclear physicians often analyzed
parameters such as morphology and glucose metabolism or
radiomic features of visible mediastinal LNs to improve the
diagnostic ability of 18F-FDG PET/CT for metastasis (23–25).
Gao et al. researched the method and efficacy of support vector
machine classifiers based on texture features and a multi-
resolution histogram to evaluate mediastinal LNs (11). Flechsig
et al. used density as a threshold for the detection of malignant
LN infiltration in a radiomics analysis of patients with NSCLC
(12). Likewise, Lee et al.’s research indicated that the risk of
mediastinal LN metastasis in NSCLC patients could be further
stratified using both 18F-FDG uptake and LN density (24). Cho
et al. attempted to determine the optimal cut-off values of the
mediastinal LN standardized uptake values (SUV-LN)/primary
tumor SUV (SUV-T) ratio to discriminate metastatic LNs from
benign LNs (26). However, these researchers faced the common
problem of an unpredictable OLM. Some algorithms for the
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FIGURE 4 | ROC curves of the training and testing cohorts. (A) ROC curves for the RM and cN of the training cohort. (B) ROC curves for the RM and cN of the

testing cohort.

FIGURE 5 | ROC curves of the cN ± group. (A) ROC curve for the RM. (B) ROC curve for the cN.

analysis of parameters based on 18F-FDG uptake have been
proposed in light of these limitations. Ouyang et al. used the
primary tumor-to-blood SUV ratio and metabolic parameters
in clinical N0 lung ADC to predict OLM (14). Kim et al.

investigated the OLM’s predictability using SUV, metabolic
tumor volume (MTV), and total lesion glycolysis (TLG) in
patients with cN0 lung SCC before surgery (15). There are
no current studies of 18F-FDG PET/CT primary tumor-based
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FIGURE 6 | Patient 1: male, 55 years old, ADC, PET/CT showed lymph nodes

in 4R (yellow arrow) with an intense FDG uptake, which was evaluated as cN2,

predicted as N0 by the RM, and confirmed as pN0 after radical resection. The

red arrow indicates the tumor in the right lower lobe (CT, PET) and the

segmentation on ITK-SNAP. Patient 2: male, 66 years old, ADC, evaluated as

cN0, but predicted as N+ by the RM, and confirmed as pN1 after radical

resection. The black arrow indicates the primary lesion in the left upper lobe

(CT, PET) and the segmentation on ITK-SNAP.

radiomics classifiers of the LN staging (N0 vs. N1 and N2)
in NSCLC. Therefore, if our solution proves to be feasible, it
can be used to either differentiate benign and malignant LNs
or determine OLM, thus leading to an informed therapeutic
decision-making in the face of the challenge of false-positive and
false-negative images.

Huang et al. have developed and validated a radiomics
nomogram based on the primary tumor in a contrast-enhanced
CT for pre-operative LN metastasis prediction in colorectal
cancer (27). Inspired by their research achievement, we aim to
introduce the radiomics modeling approach based on the 18F-
FDG PET-CT images of the primary lesion into the LN staging in
NSCLC. On the basis of the radiomics hypothesis, intratumoral
heterogeneity detected by imaging could be the expression of
genomic heterogeneity, which implies a worse prognosis because
tumors with more genomic heterogeneity are more likely to be
resistant to treatment metastasis (28). Mediastinal LN staging
in NSCLC is highly correlated with prognosis; therefore, we
assumed that LN metastasis information may be obtained from
intratumoral heterogeneity. Some studies had discovered pre-
therapy 18F-FDG PET/CT or CT-based radiomics classifiers of
survival or response in patients with NSCLC (29–32). Therefore,
it can obtain information from the primary lesion that is helpful
for diagnosis or prognosis.

Nevertheless, the present study has several limitations too.
Due to its retrospective design and performance at a single
center, there is a risk of selection bias. A larger, multi-
institutional prospective randomized study is needed to confirm
these results.

CONCLUSIONS

A Radiomics Model based on the 18F-FDG PET/CT analysis
provided useful information for mediastinal LN staging in
patients with NSCLC. Therefore, therapeutic planning could be
tailored according to predictions, and limited surgery or SBRT
could be helpful in patients with cN0.
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18F-Labeled blood pool agents (BPAs) have attracted great attention for identifying

bleeding sites. However, many BPAs are not sufficiently evaluated partially due to the

limitations of labeling methods. In our previous work, we noticed that 18F-PEG1-vinyl

sulfone (18F-VS) could efficiently label red blood cells (RBCs) ex vivo and in situ. However,

its application as BPA is not fully evaluated. In this study, we systematically explored

the feasibility of using 18F-VS-labeled RBCs as a positron emission tomography (PET)

BPA for intra-abdominal bleeding diagnosis. In brief, we first optimized the labeling

conditions, which lead to an 80% labeling yield of RBCs after incubating with 18F-VS in

phosphate-buffered saline (PBS) at 37◦C for 20min. 18F-VS-labeled RBCs were found to

be stable in vitro, which could simplify its transportation/storage for in vivo applications.

In normal rat PET study, the cardiovascular system could be clearly imaged up to 5 h post

injection (p.i.). An intra-abdominal hemorrhage rat model demonstrated that the 18F-VS-

labeled RBCs clearly showed the dynamic changes of extravascular radioactivity due to

intra-abdominal hemorrhage. Validation in the model of gastrointestinal bleeding clearly

demonstrated the great potential of using 18F-VS-labeled RBCs as a BPA, which could

be further evaluated in future studies.

Keywords: 18F-vinyl sulfone, red blood cell, blood pool imaging, intra-abdominal hemorrhage, positron emission

tomography (PET)

INTRODUCTION

Blood pool imaging (BPI) is widely used in preclinical and clinical research including the detection
of gastrointestinal bleeding (1), blood volume measurement (2), evaluation of cardiac function
(3, 4), localization of hemangiomas (5), cerebral blood flow (6, 7), detection of infection (8), or
lymphoma (9). Various kinds of BPI agents have been developed, including 18F-FDG-, 111In-oxine
(8), or 99mTc-HMPAO-labeled leukocytes (10); 68Ga-NOTA-NEB-(9) and 111In-oxine-labeled
platelets (11); 99mTc-PYP-labeled red blood cells (RBCs) (12); radionuclide-labeled peptides (13);
and magnetic resonance angiography-based BPI agents (14). RBCs represent promising BPI agents
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due to their good stability and easy availability. In fact,
radionuclide-labeled RBCs have been used to obtain functional
information of the cardiovascular system through quantitative
analysis of BPI. During the past few decades, radionuclide-labeled
RBCs [such as 51Cr-RBCs (15), 99mTc-PYP-RBCs (16), and 68Ga-
oxine-RBCs (17)] have shown great progress in preclinical and
clinical research applications. They have been used for cardiac
function evaluation, diagnosis of hemangioma and digestive tract
bleeding, cerebral blood flow measurement, and spleen imaging
and positioning. Despite the progress, limitations of these BPI-
agents include 1) unstable labeling yield: for example, the labeling
rate of 99mTc-PYP-RBCs was greatly affected by the type and dose
of the drug applied (18) and 2) the resolution of single-photon
emission nuclide 99mTc often resulted in reduced image quality
compared with the positron emission tomography (PET) nuclide
(19). Therefore, researchers have been trying to develop BPI
agents based on PET nuclides. 11C, 13N, and 68Ga have been used
to label RBCs, but their short half-lives or image resolution still
limited their widespread clinical application to a certain extent
(20, 21).

The positron nuclide 18F has the advantages of good image
quality and suitable half-life (109.8min) for commercialization
and transportation compared with other positron nuclides.
Moreover, the resulting carbon–fluorine bonds generally have
reasonable stability, which could be advantageous for BPI (22).
However, there are only a few 18F-labeled RBCs reported as BPI
agents partially due to the limitation of the labeling method (23).
Therefore, there is a need to find new methods that could lead to
easily prepared 18F-labeled BPI agents for preclinical and clinical
diagnosis applications.

Previously, we established a new method for site-specific
labeling of thiol groups based on 18F-labeled vinyl sulfone (18F-
VS). Both peptides and proteins were found to react with 18F-
VS through the Michael addition in an aqueous system (24).
Moreover, the resulting conjugates are stable in the aqueous
solution and would not be hydrolyzed in a neutral solution
like maleimide conjugates (25). Recently, it was also found that
18F-VS could react with amino groups in addition to thiol
groups even though the reaction is slower (26). Interestingly, we
observed that 18F-VS could efficiently label RBCs in vitro and in
vivo. Despite the observation, the conditions to label RBCs were
not optimized, and its application as BPI was not studied.

In this study, we evaluate the use of 18F-((2-(2-
fluoroethoxy)ethyl)sulfonyl)ethene (18F-PEG1-vinyl sulfone
[18F-VS]) for RBC labeling, which are then applied as a new BPI
agent for abdominal hemorrhage imaging in animal models.

MATERIALS AND METHODS

All chemicals involved in the synthesis were of reagent grade
and purchased from Aladdin Bio-Chem Technology (Shanghai,
China) or Sigma. The radiochemical purity was documented
by high-performance liquid chromatography (LC-16). A gamma
counter (CAPRAC-t, Huaruisen Technology Development Co.,
Ltd., Beijing, China) and a dose calibrator (CRC-15R, Capintec
Inc., Florham Park, NJ) were used to measure the radioactivity

of the samples. Mouse and rat data acquisitions were performed
with a micro-PET/computed tomography (CT) scanner (Inveon,
Siemens, Munich, Germany). Healthy Kunming mice (20 g ±

2 g) and Sprague-Dawley (SD) rats (120 g ± 12 g) were provided
by the Animal Experimental Center of Southwestern Medical
University (Animal License SCXK 2018-17), and all studies
were approved by the Ethics Committee of Southwest Medical
University. The precursor 2-(2-(vinyl sulfonyl)ethoxy)ethyl 4-
nitrobenzene sulfonate was synthesized and characterized using
the method described in the literature (24).

Synthesis of Intermediate Synthon [18F]-

((2-(2-Fluoroethoxy)Ethyl)Sulfonyl)Ethene
The [18F]F− produced from cyclotron was trapped on a
QMA cartridge and then eluted by a tetrabutyl ammonium
bicarbonate (TBAB) solution in water and acetonitrile. The
resulting tetrabutylammonium fluoride ([18F]TBAF) solution
was thoroughly dried by heating with anhydrous acetonitrile
with N2 blow three times and then redissolved in anhydrous
acetonitrile. [18F]TBAF (150 mCi in acetonitrile) was added to
the solution of 2-(2-(vinyl sulfonyl)ethoxy)ethyl 4-nitrobenzene
sulfonate (5mg) in anhydride acetonitrile (80 µl) in a cap-sealed
v-vial. The reaction mixture was heated at 85◦C for 15min.
After cooling down, 1.0ml of water was added, and the reaction
mixture was loaded on HPLC for purification (column: type, AQ
5µm; size, 4.6mm × 250mm, col. no. A6AD 10292; solvent A:
0.1% trifluoroacetic acid water; solvent B: 0.1% trifluoroacetic
acid acetonitrile; 0–2 min: isocratic elution of 15% solvent B;
2–22min, 15–95% of solvent B; flow rate: 3 ml/min). The
desired product 18F-VS has a retention time of 11min, and
the average radiochemical yield is 31%. The acetonitrile in the
product was removed under vacuum, and the final product was
reformulated with 1× phosphate-buffered saline (PBS, pH 7.3).
The radiochemical purity analysis of 18F-VS was performed using
HPLC (Supplementary Figure 2).

RBCs Preparation
The rats were anesthetized with isoflurane, and 4ml of blood was
collected from the heart using an injection needle. Heparin (1,000
IU/kg body weight) was used to prevent blood clotting. After
centrifugation (400 g for 10min at 20◦C), RBCs were located at
the bottom of the tube. The plasma was separated from RBCs and
stored for subsequent post-labeling stability studies. The buffy
coating, which contains most of white blood cells and platelets,
was removed, leaving the RBC layer undisturbed.

Optimization of Labeling Conditions
The separated RBCs and 18F-VS solution (74 MBq, 600 µl)
were mixed thoroughly and then divided into eight tubes and
incubated separately at 0◦C and 37◦C (n = 4 in a group).
The incubation time varied from 0 to 60min, with 10-min
intervals. At the corresponding incubation timepoint, 20 µl of
the corresponding suspension was removed and mixed with an
additional 100 µl PBS solution. Then, the mixture was subjected
to centrifugation. Radioactivity of the supernatant and that of
the erythrocyte sediment were measured separately. Optimal
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conditions for labeling RBCs with 18F-VS were determined and
used thereafter for further evaluation.

Post-Labeling Stability of 18F-VS-RBCs
Post-labeling stability was evaluated by calculating the
radioactivity released from 18F-VS-RBCs. The optimized
labeling condition was detailed below: the centrifugal-washed
RBC suspension (3ml) and 18F-VS solution (74 MBq in 600 µl)
were mixed thoroughly and incubated at 37◦C for 30min. Then
18F-VS-RBCs were washed three times with PBS (8ml), and
18F-VS-RBCs was isolated. To the purified 18F-VS-RBCs, plasma
solution was added and mixed. 18F-VS-RBC suspension was
divided into two tubes and incubated for 0 to 180min (30-min
intervals) at 0◦ and 37◦C, respectively. After the corresponding
incubation time, 18F-VS-RBC suspension was cooled and
uniformly resuspended. Then, the radioactivity of 18F-VS-RBC
suspension (10 µl) was measured (n = 4). The remaining 18F-
VS-RBC suspension was centrifuged at 450 g for 2min, and the
supernatant (10 µl) was sampled (n = 4). Radioactivity counts
of the RBC suspension and supernatant were simultaneously
measured. The release fraction was calculated according to the
following formula: release fraction (%) = (radioactivity of the
supernatant/radioactivity of initial RBC pellet) × 100%. The
supernatant at 30 and 120min timepoints were also analyzed by
radio-HPLC. For the sample at the 120min timepoint, elution
from HPLC was collected per minute and counted by a gamma
counter due to the low radioactivity.

Incubation of 19F-VS With RBCs
19F-VS was prepared with the previously reported method (26),
which was then added to 5 µl RBCs in 2ml saline to form a final
concentration of 19F-VS at 10 and 100µM. No 19F-VS was added
in the blank control. All RBCs in the Petri dishes were incubated
at 4◦C, and the shape of RBCs was observed at the 2, 6, 12, and
24 h timepoints.

PET Imaging of Normal Rats
Normal SD rats (120 ± 12 g) were used in this study. All
rats were anesthetized by inhalation of isoflurane, which was
maintained throughout the imaging procedure. The imaging
study was performed using a small-animal PET system. SD
rats were placed on a fixed plate in the supine position for
scanning. 18F-VS-RBCs (24.8 ± 2.6 MBq and 400 µl) was
injected through the tail vein. At the same time, images were
continuously acquired for 60min using the list mode. The list
mode data were reconstructed using a dynamic sequence (30
frames, 60 s). After reconstruction, regions of interest (ROIs,
mm3) of the heart, blood vessels, and spleen were obtained
using the software provided by the supplier (Inveon Research
Workplace 4.2, Siemens). The values were presented as dose per
gram of organ (% ID/g).

Imaging Study of the Rat Intra-Abdominal

Hemorrhage Model
A glycerin enema was injected into the colon through the anus
of rats to promote defecation about 30min before the image
acquisition. Then, 22.5 MBq of tracer (18F-VS-RBCs with 1,000

IU/kg body weight heparin for anticoagulation) was injected
through the tail vein and the PET/CT dynamic acquisition
was started simultaneously. List mode data were acquired for
60min. Under steady-state BPI conditions (10–15min after
injection), a 12-gauge lumbar puncture needle was used to
manually puncture the colon wall through the anus to cause
abdominal bleeding.

Image Analysis
For the abdominal hemorrhage model, the data acquisition and
reconstruction were performed using the procedures described
above. The ROI was drawn in the corresponding bleeding
area. Radioactivity was presented using %ID/g, which was then
then used to obtain the corresponding time–activity curve.
The post-bleeding image (58–60min after injection) and pre-
bleeding image (10–20min after injection) were subtracted
with the PMOD software (Zurich, Switzerland) to measure
the radioactivity of the bleeding site in the abdominal
hemorrhage model. Negative values of the pixels in the
subtracted image were replaced with zero values. Then, the
total radioactivity of the abdominal hemorrhage image was
presented as the percentage of the injected dose after excluding
bladder radioactivity.

Statistical Analysis
Quantitative data were presented as mean ± standard deviation.
Statistical analyses were performed using the SPSS Statistics 20.0
software package (IBM, Chicago, IL). The significance level was
set to 0.05.

RESULTS AND DISCUSSION

18F-VS Preparation
Similar to previous reports, the 18F-VS was obtained
through a nucleophile substitution of VS-ONs with
[18F]TBAF. The reaction mixture was purified using HPLC
(Supplementary Figure 1), and the resulting 18F-VS was
obtained in 25–40% yield with ≥99% radiochemical purity and a
retention time of 12.2min (Supplementary Figure 2).

Evaluation Labeling Efficiency of
18F-VS-RBCs
As a new BPI agent, it is important to optimize the labeling
conditions to maximize the yield of 18F-VS-RBCs. It is also
important to understand the release profile from RBCs under
different conditions (Figure 1).

The labeling efficiency (LE) of 18F-VS on RBCs was higher
with an incubation temperature of 37◦C compared with 0◦C.
Prolonging the incubation time would increase the LE steadily,
which would then reach a plateau. At 37◦C, the LE is 76.93%
(±1.66%), 80.10% (±1.08%), and 79.11% (±1.63%) at 10,
20, and 30min, respectively. At 0◦C, the yield is 58.17%
(±2.18%), 63.12% (±5.67%), and 64.23% (±1.70%) at 10, 20,
and 30min, respectively. Further increasing the incubation time
led to a decreased non-decay-corrected yield. Considering the
increased radioactivity decay over time, we concluded that
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FIGURE 1 | The LE and its influencing factors. Relationship between labeling

temperature, incubation time, and the LE of 18F-VS-RBCs (n = 4).

FIGURE 2 | Post-labeling stability analysis. The released radioactive fraction of
18F-VS-RBCs when incubated in plasma at 37◦ or 0◦C for 0–180min (n = 4).

the optimal labeling condition for 18F-VS-RBCs is 20min
incubation at 37◦C.

Evaluation in vitro Stability of 18F-VS-RBCs
To evaluate the in vitro stability of 18F-VS-RBCs, a post-labeling
stability experiment involving different storage temperatures
was performed (Figure 2). In this study, the released 18F-
containing fraction from 18F-VS-RBCs was evaluated for
180min. Samples were incubated at 37◦ and 0◦C, respectively,
to simulate the temperature of the human body and the potential
transportation/storage conditions using ice packs. 18F-VS-RBC
suspension (10 µl) was then taken for analysis at different
incubation timepoints.

The release of 18F was relatively small but noticeable.
Incubation at 37◦C for 0, 60, 120, and 180min resulted in release
fractions of 0.94% (±0.09%), 1.71% (±0.18%), 2.62% (±0.36%),
and 2.65% (±0.48%), respectively. The corresponding samples
incubated at 0◦C had release fractions of 0.86% (±0.15%), 1.27%
(±0.26%), 1.35% (±0.16%), and 1.44% (±0.29%), respectively.
18F-VS-RBCs showed better stability when stored at 0◦C
compared with 37◦C. This indicated that 18F-VS-RBCs should be
stored at 0◦C between preparation and injection. The agent could
be rewarmed before injection for in vivo research.

Overall, the released fractions of 18F-VS-RBCs in the in vitro
study were rather low. Thus, we concluded that 18F-VS-RBCs

were relatively stable in vitro. Moreover, HPLC analysis of the
supernatant indicated that the released fraction only had a small
amount of 18F-VS in addition to some unknown radioactive
fractions (Supplementary Figure 3). This observation indicated
that 18F-VS likely reacted with RBC through a covalent bond
instead of passive absorption. As the released radioactive fraction
may be excreted in the urine or absorbed by extravascular
tissue after injection, imaging should be performed at an early
timepoint if possible.

Evaluate the Toxicity of 19F-VS on RBCs
To evaluate the toxicity of the tracer, the 19F-VS was prepared
and incubated with RBCs at 4◦C in saline. The shape of
RBCs was observed, and images of RBCs were recorded
at each timepoint (Supplementary Figure 5). As shown in
Supplementary Figure 5, the shape of RBCs stayed complete,
and there was no obvious broken RBCs observed, indicating that
18F-VS has no apparent toxicity on RBCs.

Evaluation of 18F-VS-RBCs for PET

Imaging
Under optimal conditions, the average time from drawing
blood to intravenously injecting 18F-VS-RBCs was ∼60min.
Microscopic examination showed that the morphology of 18F-
VS-labeled RBCs was normal without abnormal aggregation. The
final 18F-VS-RBC suspension (400 µl) had a radioactivity of 25.9
MBq (±3.7 MBq) and an LE of 70.09% (±0.61%) (n= 4).

PET Imaging of Normal Rats
In order to evaluate the distribution of 18F-VS-RBCs in the
cardiovascular system and the changes of radioactivity in the
blood pool, we performed 18F-VS-RBC imaging in normal rats.
The maximum-intensity projection image and biodistribution of
18F-VS-RBCs within 60min after injection are shown in Figure 3

and Table 1, respectively. The cardiovascular system in normal
rats had a strong uptake of 18F-VS-RBCs. A high uptake was
obtained within 20min, which was maintained stably at late
time-points. Compared with that at 10min, cardiac radioactivity
at 60min only decreased by ∼0.7%. The radioactivity of most
organs remained relatively constant within 60min. The results
indicated that 18F-VS-RBCs had a good stability in vivo. Within
60min after tracer injection, atrium and spleen radioactivity
was higher than that in the liver and lung. Urine excretion
was observed. The PET imaging of the cardiovascular system
in rats was clearly visualized with a low background ratio
using 18F-VS-RBCs. As shown in Figure 3, 18F-VS-RBCs mainly
stayed in the blood pool, suggesting good stability in vivo.
At a late timepoint, urine activity was observed. As shown
in Supplementary Figure 3, a small percentage of activity was
released to the supernatant, which contains a hydrophilic motif.
This may lead to the observed urine activity. Nonetheless,
additional characterization would be done in a future study to
further confirm it. Overall, 18F-VS-RBCs hold a great potential to
imaging the cardiovascular system considering its slow clearance
and stability profile.
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FIGURE 3 | Dynamic scan of normal rats using micro-PET/CT after injection with 18F-VS-RBCs.

TABLE 1 | Biodistribution of 18F-VS-RBCs at 60min after injection in normal rats (n = 5/group).

Organ/tissue Percentage of injected dose per gram of organ (%ID/g)

10 min 20 min 30 min 40 min 50 min 60 min

Atrium 7.79 ± 0.17 8.28 ± 0.18 8.16 ± 0.22 7.94 ± 0.18 7.91 ± 0.17 7.72 ± 0.16

Spleen 3.05 ± 0.11 2.83 ± 0.16 2.98 ± 0.16 2.99 ± 0.17 2.87 ± 0.15 2.82 ± 0.11

Lung 1.03 ± 0.07 1.09 ± 0.08 1.18 ± 0.09 0.98 ± 0.09 0.95 ± 0.07 0.93 ± 0.06

Liver 1.75 ± 0.03 1.63 ± 0.03 1.53 ± 0.04 1.50 ± 0.04 1.39 ± 0.02 1.36 ± 0.02

Kidney 1.62 ± 0.04 1.50 ± 0.05 1.43 ± 0.02 1.37 ± 0.02 1.38 ± 0.02 1.29 ± 0.03

Bladder 0.92 ± 0.14 2.96 ± 0.16 3.17 ± 0.18 4.91 ± 0.19 5.02 ± 0.17 7.37 ± 0.17

FIGURE 4 | The application of 18F-VS-RBCs for PET imaging of the intra-abdominal hemorrhage model. The maximum-density projection image before (A) and after

(B) bleeding and the subtraction image between the two (C). The subtracted image showed heavy bleeding in the right abdomen (arrowheads). The time–activity

curve of extravascular radioactivity in the abdominal hemorrhage area. Radioactivity continued to increase after manual puncture of the colon wall (18min) (D).

Imaging Study of the Intra-Abdominal Hemorrhage

Model on Rats
A dynamic PET scan was performed on rats to evaluate the
feasibility of using this BPI agent for the diagnosis of intra-
abdominal hemorrhage. Dynamic PET imaging of the rat
gastrointestinal bleeding model showed that shortly after the
colon wall puncture, a high aggregation site appeared in the
abdomen, indicating the tracer had extravasated due to bleeding
(Figures 4A–C). Time–activity curves showed that the agent
increased steadily at the bleeding site: radioactivity was stable
within 10min and continued to increase thereafter (Figure 4D).
18F-VS-labeled RBCs successfully found the location and
direction of abdominal bleeding over time. Although this
study did not quantify the amount of bleeding, it can
provide a rough estimation based on the blood radioactivity

curve. Clearly, PET imaging of the rat intra-abdominal
hemorrhage model demonstrated that 18F-VS-RBCs hold a
great potential for applications in gastrointestinal bleeding.
Furthermore, without dietary restrictions, the labeling procedure
of 18F-VS-RBCs is simpler and shorter than the reported
18F-FDG-RBCs. We would also like to point out that the
potential limitations of 18F-VS-RBCs include the requirement
of clean space due to blood collection and in vitro labeling
procedures. The radiation exposure toward operators could
be high. Further improvements may focus on simplifying
the labeling step by reducing the number of washing and
streamlining the production process. Nonetheless, 18F-VS-
RBC PET of normal animal and intra-abdominal hemorrhage
model suggested that the agent could represent a new
BPI agent.
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CONCLUSION

In this study, 18F-VS was synthesized and successfully labeled
RBCs for BPI. The resulting 18F-VS-RBCs clearly visualized the
cardiovascular system and extravascular blood in the abdominal
hemorrhage model. Compared with existing cardiac blood pool
agents, 18F-VS-RBCs could be prepared using a readily available
precursor and simple procedure. The agent has prolonged
retention time in cardiac blood pool with a high-quality image.
The agent’s uptake was not affected by blood sugar, which
eliminated the need of fasting. Because 18F-VS-RBCs cannot
penetrate the blood–brain barrier, it would be interesting to test
its application in detecting bleeding in the brain in future studies.
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Purpose: Hemophagocytic lymphohistiocytosis (HLH) is a rare and severe disease

with a poor prognosis. We aimed to determine if 18F-fluorodeoxyglucose (18F-FDG)

PET/CT-derived radiomic features alone or combination with clinical parameters could

predict survival in adult HLH.

Methods: This study included 70 adults with HLH (training cohort, n = 50; validation

cohort, n = 20) who underwent pretherapeutic 18F-FDG PET/CT scans between August

2016 and June 2020. Radiomic features were extracted from the liver and spleen on

CT and PET images. For evaluation of 6-month survival, the features exhibiting p <

0.1 in the univariate analysis between non-survivors and survivors were selected. The

least absolute shrinkage and selection operator (LASSO) regression analysis was used

to develop a radiomics score (Rad-score). A nomogram was built by the multivariate

regression analysis to visualize the predictive model for 3-month, 6-month, and 1-year

survival, while the performance and usefulness of themodel were evaluated by calibration

curves, the receiver operating characteristic (ROC) curves, and decision curves.

Results: The Rad-score was able to predict 6-month survival in adult HLH, with

area under the ROC curves (AUCs) of 0.927 (95% CI: 0.878–0.974) and 0.869 (95%

CI: 0.697–1.000) in the training and validation cohorts, respectively. The radiomics

nomogram combining the Rad-score with the clinical parameters resulted in better

performance for predicting 6-month survival than the clinical model or the Rad-score

alone. Moreover, the nomogram displayed superior discrimination, calibration, and

clinical usefulness in both the cohorts.

Conclusion: The newly developed Rad-score is a powerful predictor for overall survival

(OS) in adults with HLH. The nomogram has great potential for predicting 3-month,

6-month, and 1-year survival, which may timely guide personalized treatments for

adult HLH.
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INTRODUCTION

Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of
severe immune activation and dysregulation characterized by
hyperactive cytotoxic T lymphocytes, natural killer (NK) cells,
and macrophages leading to cytokine storm and immune-
mediated multiple organ failure (1, 2). Historically, HLH
has been classified as primary or familial HLH driven by
underlying genetic defects in cytotoxic immune function or as
secondary or reactive HLH caused by infections [e.g., Epstein-
Barr virus (EBV), cytomegalovirus (CMV), HIV, and coronavirus
disease 2019 (COVID-19)], malignancies (e.g., hematologic
malignancies), and autoimmune diseases (e.g., macrophage
activation syndrome) (1). Emerging evidence demonstrated that
HLH may occur in patients of any age and is most often driven
by an integration of genetic defects and acquired exposures (3, 4).
Primary HLH occurs in 1/50,000–1/100,000 live-born children,
while secondary HLH occurs in older children and adults (1). The
precise incidence of adult HLH is still unknown, but it accounts
for ∼40% of all HLH (1, 5). The frequent manifestations are
intermittent fever, hepatosplenomegaly, lymphadenopathy, liver
injury, cytopenia, hypertriglyceridemia, hyperferritinemia, and
hemophagocytosis (1). Because of few data and/or no prospective
studies for adult HLH, pediatric data are often generalized to
guide diagnostic, therapeutic, and prognostic decision-making
in adults (1, 6). In general, adults have poorer outcome than
children even with aggressive therapy, with a median survival of
4 months (1). The principal reasons for mortality are multiorgan
failure, hemorrhage, and sepsis, which can be treated properly
if diagnosed early (7). Therefore, identifying poor prognosis
in adult HLH is crucial for risk stratification and therapeutic
decision-making. Recently, it has been reported that clinical
and laboratory markers are correlated with survival in adult
HLH including age, platelet, fibrinogen, albumin, serum ferritin,
alanine aminotransferase (ALT), and malignancy (1, 2, 8, 9). But
none of them can be a single effective prognostic factor as a
result of poor sensitivity and/or specificity. Hence, it would be
of great utility to build a predictive model to precisely evaluate
the prognosis in adult HLH based on multiple indictors.

18F-fluorodeoxyglucose (18F-FDG) PET/CT has been
employed for detecting underlying malignancy and predicting
prognosis of adult HLH (10–12). One of the most common
PET/CT finding is hepatosplenomegaly with diffusely increased
FDG uptake, which contains a great deal of information
reflecting disease status in adult HLH (13, 14). Radiomics can
convert medical images into quantitative data and subsequently
analyze these data for prognosis prediction by high-throughput
computing. PET/CT radiomic features have been explored to
predict outcome in malignancies such as lymphoma and lung
cancer (15–17). It has been suggested that the quantitative
PET parameters of spleen are independent prognostic factors
(11, 12), but whether PET/CT radiomic features extracted from
liver and spleen can be applied for outcome prognostication
in adult HLH is unclear yet. Therefore, the first aim of this
study was to establish a PET/CT radiomics score (Rad-score) for

predicting 6-month survival in adult HLH and the second aim

was to combine the Rad-score with clinical parameters, in order

to develop a nomogram for predicting individual prognosis
accurately and reliably.

MATERIALS AND METHODS

Patients
This retrospective study was approved by Institutional Review
Board of Beijing Friendship Hospital of Capital Medical
University and the requirement of a written informed consent
was waived. The medical records of 185 consecutive adult
patients (age ≥ 18 years) with a diagnosis of HLH were reviewed
from August 2016 to June 2020. The diagnostic criteria of HLH
were in accordance with HLH-2004 protocol, which requires
five of the following eight criteria: (1) fever; (2) splenomegaly;
(3) cytopenia affecting ≥ 2 lineages (Hemoglobin (HGB) < 9
g/dl, platelets < 100 × 109/L, neutrophils < 1.0 × 109/L); (4)
serum triglyceride ≥ 265 mg/dl and/or fibrinogen ≤ 150 mg/dl;
(5) hemophagocytosis in bone marrow, spleen, lymph nodes,
or liver; (6) low or absent NK cell activity; (7) Ferritin ≥ 500
µg/l; and (8) soluble interleukin-2 receptor (soluble CD25) ≥
2,400 U/ml (18). The exclusion criteria included: patients with
receiving chemotherapy before 18F-FDG PET/CT scan (n= 114)
or incomplete follow-up (n = 1). Consequently, a total of 70
patients were included in this study. All the patients received
personalized treatments in the Department of Hematology and
were followed-up for at least 180 days with a median of 353 days.
These cases were randomly divided into the training (n= 50) and
validation cohorts (n= 20) with a ratio of 5:2.

Clinical Data Collection
Clinical parameters including age, gender, malignancy, EBV
infection, hemophagocytosis, and laboratory variables [white
blood cell, absolute neutrophil, hemoglobin, platelet, C-
reactive protein (CRP), ALT, aspartate aminotransferase
(AST), triglycerides, serum ferritin, fibrinogen, erythrocyte
sedimentation rate, and lactate dehydrogenase] were obtained
from medical records (Table 1). All the laboratory and
radiological data were collected before initial HLH-specific
therapy. The most likely trigger of secondary HLH (malignancy,
infection, autoimmune, and idiopathic) was determined by
assessment and medical evidence of physician.

18F-Fluorodeoxyglucose PET/CT Imaging
Acquisition, Segmentation, and Feature
Extraction
18F-fluorodeoxyglucose PET/CT was performed on a Siemens
biography mCT PET/CT scanner (Siemens Healthineers,
Erlangen, Germany). Patients were instructed to fast for at
least 6 h, accompanied by blood glucose <11.1 mmol/l. Then,
18F-FDG (4.4 MBq/kg) was injected intravenously. After a
60-min uptake time, low-dose CT scan was executed for
visualization of anatomic structures and attenuation correction,
with 140 keV, automatic mAs, and a slice thickness of 3mm.
The whole-body PET scan was carried out with 2.5min per
bed position using three-dimensional (3D) mode immediately
after a whole-body CT scan. Images were reconstructed with an
iterative reconstruction algorithm.
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TABLE 1 | Clinical characteristics of patients in the training and validation cohorts.

Variables Overall (n = 70) Training cohort (n = 50) Validation cohort (n = 20) p value

Gender

Male 36 (51.4%) 23 (46.0%) 13 (65.0%) 0.151

Female 34 (48.6%) 27 (54.0%) 7 (35.0%)

Age (years) 38 (27–55) 36(24–53) 44(32–60) 0.194

Malignancy

Yes 22 (31.4%) 15 (30.0%) 7 (35.0%) 0.684

No 48 (68.6%) 35 (70.0%) 13 (65.0%)

T cell neoplasms

Yes 11 (15.7%) 8 (16.0%) 3 (15.0%) 0.917

No 59 (84.3%) 42 (84.0%) 17 (85.0%)

EBV infection

Positive 34 (48.6%) 23 (46.0%) 11 (55.0%) 0.496

Negative 36 (51.4%) 27 (54.0%) 9 (45.0%)

Hemophagocytosis

Yes 48 (68.6%) 34 (68.0%) 14 (70.0%) 0.871

No 22 (31.4%) 16 (32.0%) 6 (30.0%)

WBC (×109/L) 4.11 (1.63–6.9) 3.92(1.63–6.02) 5.47 (1.91–10.16) 0.101

ANC (×109/L) 2.17 (0.94–4.41) 2.13 (0.98–3.82) 2.99 (1.10–6.77) 0.108

HGB (g/L) 92.5 (73.3–108.5) 93 (80–105) 90 (72–111) 0.691

PLT (×109/L) 85.5 (55.0–179.5) 86 (55–150) 137 (56–194) 0.179

CRP (mg/L) 26 (5–56) 26 (5–49) 34 (11–53) 0.824

ALT (U/L) 53 (32–102) 45 (25–102) 69 (49–96) 0.487

AST (U/L) 68 (33–122) 63 (33–124) 70 (45-118) 0.460

TG (mmol/L) 1.97 (1.43–2.61) 1.79 (1.38–2.47) 2.25 (1.89–3.00) 0.107

SF (ng/ml) 1714.0 (625.6–4075.0) 1450.5 (773.1–3428.5) 3356.5 (1031.3–5359.0) 0.915

FBG (g/L) 2.23 (1.43–3.24) 2.19 (1.42–3.20) 2.63 (1.70–3.13) 0.562

ESR (mm/h) 22 (10–44) 22 (10–38) 24 (12–49) 0.342

LDH (U/L) 547 (343–940) 616 (343–926) 499 (398–764) 0.606

Data are expressed as median (interquartile range) or number (the proportion of sample size).

EBV, Epstein-Barr virus; WBC, white blood cell; ANC, absolute neutrophil count; HGB, hemoglobin; PLT, platelet count; CRP, C-reactive protein; ALT, alanine aminotransferase; AST,

aspartate aminotransferase; TGs, triglycerides; SF, serum ferritin; FBG, fibrinogen; ESR, erythrocyte sedimentation rate; LDH, lactate dehydrogenase.

The entire liver and spleen on CT images were defined as
the regions of interest (ROIs), which were delineated by two
experienced nuclear radiologists with a validated semi-automatic
approach using (3D SlicerTM software, Boston, Massachusetts,
United States) (version 4.10.0, http://www.slicer.org) (Figure 1)
(19). Moreover, the ROIs were resampled exploiting B-spline
interpolation in order for mapping those onto the PET images.
In consequence, the ROIs had the matching pixel spacing with
the PET images.

Radiomic Feature Extraction
Radiomic features were extracted from 18F-FDG PET and
CT images separately, using pyradiomics that is an open-
source Python package (20). These included first-order features
(n = 18), shape features (n = 14), gray level co-occurrence
matrix (GLCM) features (n = 24), gray level run length
matrix (GLRLM) features (n = 16), gray level size zone matrix
(GLSZM) features (n = 16), neighboring gray tone difference
matrix (NGTDM) features (n = 5), and gray level dependence
matrix (GLDM) features (n = 14). Image processing utilized

wavelet filtering, square, square root, logarithm, exponential,
and gradient. Overall, a total of 5,264 radiomic features (4
× 1,317) were obtained from liver and spleen on PET and
CT images.

Radiomic Feature Selection and the
Rad-Score Construction
Our workflow is shown in Figure 1. Firstly, the univariate
analysis (t-test for normally distributed variables or the Mann–
Whitney U test for skewed distributed variables) was used
to compare differences of radiomic features between non-
survivors and survivors at 180 days in the training set.
The total of 384 features with p-values < 0.1 were retained
for further analysis. Next, the least absolute shrinkage and
selection operator (LASSO) algorithm was applied to select
the optimal features among 384 features in the training set,
adding L1 regularization term to a least square algorithm
for data dimension reduction. Because of imbalanced datasets,
the synthetic minority oversampling technique (SMOTE) was
used to improve random oversampling in the training set.
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FIGURE 1 | Workflow of radiomics analysis.

FIGURE 2 | Feature selection for the prediction using the least absolute shrinkage and selection operator (LASSO) regression model, tuning parameter (λ) selection in

the LASSO model involved the use of tenfold cross-validation (A). In the coefficient profiles of the radiomics features for OS prediction, a value of Lambda = 0.044668

was selected as the optimal value (B).

An individualized Rad-score was calculated from a linear
combination of the selected features weighted by their respective
coefficients. The receiver operating characteristic (ROC) curve
was employed to evaluate the prediction accuracy and determine
the optimal threshold of the Rad-score. All the patients were

divided into high- and low-risk groups according to the
maximum Youden index of the ROC curve. The potential
association of the Rad-score with overall survival (OS) was
evaluated by the Kaplan–Meier survival analysis and the log-rank
test in the training and validation cohorts.
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TABLE 2 | Comparison of the radiomics features between 180-day survivors and non-survivors in the training cohort.

Radiomic features Survivors (n = 33) Non-survivors (n = 17) p value

spleen_CT_wavelet-LHL_ngtdm_Contrast 0.0024 (0.0016–0.0045) 0.0037 (0.0020–0.0050) 0.072

spleen_CT_wavelet-HHH_glszm_Gray Level Non-Uniformity Normalized 0.4259 (0.3884–0.5000) 0.4102 (0.3333–0.4404) 0.045

spleen_PET_squareroot_firstorder_Kurtosis 4.8251 (3.9777–6.1500) 5.7335 (4.1330–7.8258) 0.035

spleen_PET_wavelet-LHL_glszm_Size Zone Non-Uniformity Normalized 0.1927 (0.1641–0.2355) 0.2388 (0.2000–0.2800) 0.004

liver_CT_wavelet-HHH_glcm_Imc2 0.0712 (0.0682–0.0725) 0.4500 (0.4222–0.5185) 0.082

liver_PET_wavelet-HHL_glszm_Small Area Emphasis 0.3890 (0.2778–0.5284) 0.3890 (0.2778–0.5284) 0.084

Data are expressed as median (interquartile range).

TABLE 3 | Comparison of the Rad-score between 180-day survivors and non-survivors in both the training and validation cohorts.

Training cohort (n = 50) p value

Survivors (n = 33) Non-survivors (n = 17)

Rad-score −1.0608 (−1.9723–−0.6384) 1.6386 (0.5678–2.9977) <0.001

Validation cohort (n = 20) p value

Survivors (n = 14) Non-survivors (n = 6)

Rad-score −1.3595 (−2.1365–0.0290) 1.3763 (−0.0232–2.9420) 0.011

Data are expressed as median (interquartile range).

Clinical Variables Selection and Nomogram
Creation
To build a powerful model and a robust nomogram for
the survival prediction, the clinical prognostic factors were
chosen by the univariate Cox regression analyses (p < 0.05).
Then, the Rad-score and the strong clinical indicators were
incorporated to establish the multivariate Cox regression
model that was visualized by a nomogram. The Harrell’s
concordance-index (C-index) was employed to assess the model
performance and calibration curves were plotted to enhance the
predictive precision of nomogram. Similarly, a clinical model was
established with clinical information alone by the multivariate
Cox regression analysis. Three different types of predictive
models (clinical variables, the Rad-score, and their combinations)
were evaluated by the C-index. Decision curve analysis (DCA)
was utilized to assess the clinical usefulness of the models.

Statistical Analyses
Continuous variables are presented as medians with interquartile
ranges and categorical variables are presented as frequencies and
percentages. OS was defined as the time from the initial diagnosis
of HLH to the date of death from any cause or deadline of follow-
up. All the p-values were two-sided, with a significant level of
<0.05. Statistical analyses were performed with Python (version
3.7.8, www.python.org) and R (version 4.0.3, www.r-project.org).
The Python packages “sklearn,” “numpy,” and “pandas” were
used for the LASSO binary logistic regression and the ROC
curve; the “scipy” was for analyzing statistical properties; and the
“imblearn” was for analyzing SMOTE. The R package “rms” was
employed to create nomograms.

RESULTS

Baseline Clinical Characteristics of
Patients
A total of 70 adults with HLH were included in this study who
fulfilled the inclusion criteria. There were 36males and 34 females
and the median age at diagnosis was 38 years (range: 18–79
years). The baseline characteristics of all the patients are shown
in Table 1.

The possible triggers of HLH in these patients were as
follows: 35 (50.0%) infections, 22 (31.4%) malignancies, 7 (10%)
autoimmune diseases, and 6 (8.6%) unknown disorders. In the
35 cases with infectious disorders, viral infections were the most
common cause with 23 (65.7%) EBV, 3 (8.6%) CMV, and 5
(14.3%) other viruses. Bacterial infections were identified in 4
(11.4%) patients. Among 22 malignancy-associated HLH cases,
diffuse large B-cell lymphoma (n = 6, 27.3%) and NK/T-cell
lymphoma (n = 6, 27.3%) were the most frequent triggers.
The other malignancy-associated patients with HLH were two
classical Hodgkin’s lymphoma, two peripheral T-cell lymphoma,
two unclassified T-cell lymphoma, one follicular lymphoma,
one non-Hodgkin B cell lymphoma, one anaplastic large cell
lymphoma, and one acute lymphocytic leukemia. Concomitant
malignancies and EBV infection were found in 11 (15.7%)
patients. Adult Still’s disease (n = 5, 71.4%) was the most
common diagnosis among autoimmune diseases and the other
two patients were diagnosed with systemic lupus erythematosus
and undifferentiated systemic rheumatic disease, respectively.

The baseline characteristics in the training and validation
cohorts are also given in Table 1. Obviously, the clinical variables
had no differences between the two cohorts (p > 0.05). After a
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FIGURE 3 | Rad-score of patients in the training and validation cohorts (A,B) and time-dependent ROC analysis of Rad-score at 180 days (C). Kaplan-Meier survival

analysis with the best cutoff value of the Rad-score in the training cohort (D) and validation cohort (E). We calculated p values using the log-rank test.

median follow-up of 353 days (range: 9–1,216 days), 30 patients
(42.8%) had died.

Radiomic Feature Selection and the
Rad-Score Construction and Evaluation
The optimal radiomic features were selected by the LASSO
algorithm and 10-fold cross-validation (Figure 2). Eventually,
six features were extracted to construct the Rad-score in
the training set, which included 3 CT features and 3 PET
features. The selected features were spleen_CT_wavelet-
HHH_GLSZM_gray level non-uniformity normalized,
spleen_CT_wavelet-LHL_NGTDM_contrast, liver_CT_wavelet-
HHH_GLCM_informational measure of correlation
(IMC) 2, spleen_PET_square root_first order_kurtosis,
spleen_PET_wavelet-LHL_GLSZM_size zone non-uniformity
normalized, and liver_PET_wavelet-HHL_GLSZM_small area
emphasis. Among these features, there were four from spleen
and two were from liver. The Rad-score for each patient was
calculated by the following formula:

Rad-score = 13.762 + 300.60 × spleen_CT_wavelet-
LHL_NGTDM_contrast – 9.1753 × spleen_CT_wavelet-
HHH_GLSZM_gray level non-uniformity normalized – 0.17938
× spleen_PET_square root_first order_kurtosis + 13.305 ×

spleen_PET_wavelet-LHL_GLSZM_size zone non-uniformity
normalized – 246.77 × liver_CT_wavelet-HHH_GLCM_IMC
2 + 4.2599 × liver_PET_wavelet-HHL_GLSZM_small
area emphasis.

The median and the interquartile range for the selected
radiomics features in the training cohort are shown in Table 2.
The Rad-score in the training and validation cohorts are shown
inTable 3. Not surprisingly, the Rad-score had notable difference
between non-survivors and survivors in the training (p < 0.001)
and validation cohorts (p = 0.011). Particularly, non-survivors
had the higher Rad-score than survivors in the training (Rad-
score = 1.6386 vs. −1.0608) and validation cohorts (Rad-score
= 1.3763 vs.−1.3595). The Rad-score for individuals in the both
the cohorts is shown in Figures 3A,B.

In addition, the Rad-score had good predictive power for
survival forecast at 180 days and its area under the ROC curves
(AUCs) in distinguish high-risk status were 0.927 (95%CI: 0.879–
0.975) in the training set and 0.869 (95% CI: 0.684–1.000) in
the validation set (Figure 3C). The best cutoff with maximum
Youden index was −0.3 and, therefore, patients were divided
into high- and low-risk groups according to the Rad-score in the
both the cohorts. The Kaplan–Meier curves and the log-rank test
found that patients in low-risk category had a better prognosis
than those in high-risk category in the training and validation
cohorts (p < 0.05) (Figures 3D,E).

Strong Predictor Selection and Model
Establishment and Assessment
The univariate Cox regression analysis showed that 6 parameters
were significantly associated with OS including the Rad-score,
T-cell neoplasms, white blood cell, hemoglobin, platelet count,
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TABLE 4 | The univariate and multivariate Cox hazards regression analysis of OS in the training cohort.

Variables Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Rad-score 1.683 (1.312–2.158) <0.001 1.522 (1.221–1.896) <0.001

Gender 1.930 (0.844–4.412) 0.119

Age 1.017 (0.992–1.044) 0.185

Malignancy 1.569 (0.676–3.640) 0.295

T cell neoplasms 3.304 (1.292–8.448) 0.013

EBV infection 2.240 (0.966–5.195) 0.060

Hemophagocytosis 1.176 (0.483–2.861) 0.721

WBC 0.790 (0.661–0.945) 0.010 0.796 (0.661–0.957) 0.015

ANC 0.825 (0.656–1.039) 0.102

HGB 0.971 (0.951–0.992) 0.006

PLT 0.991 (0.984–0.997) 0.007

CRP 1.007 (1.002–1.013) 0.009 1.018 (1.010–1.027) <0.001

ALT 0.996 (0.990–1.002) 0.230

AST 0.999 (0.997–1.001) 0.518

TG 0.827 (0.500–1.366) 0.458

SF 1.000 (1.000–1.000) 0.202

FBG 0.900 (0.662–1.224) 0.502

ESR 0.997 (0.981–1.013) 0.702

LDH 1.000 (0.999–1.001) 0.756

OS, overall survival; EBV, Epstein-Barr virus; WBC, white blood cell; ANC, absolute neutrophil count; HGB, hemoglobin; PLT, platelet count; CRP, C-reactive protein; ALT, alanine

aminotransferase; AST, aspartate aminotransferase; TGs, triglycerides; SF, serum ferritin; FBG, fibrinogen; ESR, erythrocyte sedimentation rate; LDH, lactate dehydrogenase.

TABLE 5 | The multivariate Cox hazards regression analysis of OS in the training

cohort without the Rad-score.

Variables Hazard ratio (95% CI) p value

T cell neoplasms 5.800 (1.957–17.187) 0.002

HGB 0.999 (0.946–0.986) <0.001

PLT 0.994 (0.987–1.000) 0.050

HGB, hemoglobin; PLT, platelet count.

TABLE 6 | Model performance.

Model Training cohort Validation cohort

C-index 95% CI C-index 95% CI

Rad-score 0.795 0.695–0.895 0.752 0.591–0.913

Clinical model 0.765 0.665–0.865 0.762 0.527–0.997

Combined radiomics model 0.831 0.749–0.913 0.810 0.657–0.963

C-index: Harrell’s concordance-index.

and CRP (p < 0.05; Table 4). The multivariate analysis displayed
that the Rad-score, white blood cell, and CRP were consistently
strong predictors (Table 4), which were used to build the
combined model. When the Rad-score was excluded, three
variables (T-cell neoplasms, hemoglobin, and platelet count)
were independent prognostic factors among clinical parameters
(Table 5). Likewise, these three prognostic factors were used to
build the clinical model.

To assess the performance of models in predicting prognosis,
the C-indices of three types of models were shown in Table 6.

The Rad-score model had acceptable predictive ability with C-
indices of 0.795 (95% CI: 0.695–0.895) and 0.752 (95% CI: 0.591–
0.913) in the training and validation cohorts, respectively. The C-
indices of the clinical model were of 0.765 (95% CI: 0.665–0.865)
and 0.762 (0.527–0.997) in the training and validation cohorts,
respectively. It was noticeable that the combined radiomics
model had the highest C-indices, with 0.831 (95% CI: 0.749–
0.913) and 0.810 (95% CI: 0.657–0.963) in both the training and
validation cohorts, sequentially. The curves of decision-curve
analysis (DCAs) indicated that the combined radiomics model
provided more net clinical benefit than clinical model with a
threshold > 0.25 (Figure 4).

Personalized Nomogram Establishment
and Validation
Given that the combined model possessed synergetic power for
survival prediction, the personalized nomogram was constructed
by incorporating all the three independent prognostic factors
(the Rad-score, white blood cell, and CRP) (Figure 5A), which
can visualize the prediction outcome and the proportion of each
factor. The calibration curves demonstrated good agreements
between the predicted and observed values in the training and
validation cohorts, indicating that the nomogram was able to
precisely predict 6-month survival (Figures 5B,C).

DISCUSSION

Timely diagnosis and prognosis are critical for HLH considering
that the early and proper administration of an efficacious
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FIGURE 4 | Decision-curve analysis for the radiomics model and clinical model. The threshold probability represents the predicted 180-day risk of death for

recommending aggressive treatment.

therapy can improve survival. In this study, the novel prognostic
factors and predictive models associated with 6-month survival
in adult patients with HLH are reported via pretherapeutic
18F-FDG PET/CT radiomics analysis. The Rad-score and the
combined prediction model (the Rad-score and clinical variable
combination) have been developed for quantitative identification
of the adults with HLH at high risk of death within 6 months in
70 patients.

18F-fluorodeoxyglucose PET/CT is a whole-body scan
containing both the metabolic and anatomical information,
which has been recommended for identifying possible triggers
and suitable biopsy sites in secondary HLH (6). However,
18F-FDG PET/CT findings are non-specific, since inflammatory
response and malignant lesions have the same manifestation
that is hypermetabolism. In HLH, 18F-FDG PET/CT often
shows diffusely increased FDG uptake in spleen, liver, and bone
marrow with or without focal lesions and hypermetabolic lymph
nodes. Increasing evidence demonstrated that these non-specific
presentations can be used to assess systemic inflammatory
response and have potential for prognosis prediction in HLH
(21). For instance, the FDG uptake of spleen and bone marrow
has been considered as prognostic factors in adult patients
with HLH (11, 12, 22). More importantly, spleen and liver,
components of the reticuloendothelial system, are the most
frequent abnormal signs in HLH (23). Our data proved that
6 radiomic features from spleen and liver were linked with

the prognosis of adult HLH, thus utilized for establishment
of the Rad-score. Among six radiomic features, two-thirds
(4/6) were derived from spleen including GLSZM size zone
non-uniformity normalized feature and kurtosis of spleen PET
and GLSZM gray level non-uniformity normalized feature and
NGTDM contrast of spleen CT. It is well-known that spleen is
the largest secondary lymphoid organ and a site where immune
responses can be controlled by activated immune cells. As
splenomegaly is one of the diagnostic criteria of HLH, the
hypermetabolic spleen has been discovered to be correlated
with high inflammatory response and cytokine activity (24, 25).
One recent report suggested that spleen FDG uptake may
provide useful information for predicting in-hospital mortality
in autoimmune diseases including HLH (26). Another study of
43 patients with secondary HLH found that the ratio of spleen
to mediastinum in the average standardized uptake value (SUV)
was an independent predictor for survival (12). In consistent
with these statements, our findings indicated that radiomic
features of spleen possessed a powerful predictive ability for
6-month survival in adult patients with HLH. The rest of two
radiomic features were extracted from liver including GLCM
IMC2 (Informational Measure of Correlation) of liver CT and
GLSZM small area emphasis of liver PET. Radiomics have
showed great value in characterization of diffuse liver diseases
such as non-alcoholic steatohepatitis and chronic hepatitis
B (27). In addition, the well-known liver enzymes, AST and
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FIGURE 5 | The radiomics nomogram for predicting overall survival for adult HLH patients (A). Points for Rad-score, WBC, and CRP can be obtained by calibrating

with the point caliper, and then combined to obtain a total score that can be calibrated with the patient’s probability of survival at different time. Calibration curves of

the radiomics nomogram in the training cohort (B) and validation cohort (C). Nomogram-estimated OS is plotted on the x-axis; the observed OS is plotted on the

y-axis. The diagonal dotted line is a perfect estimation by an ideal model, in which the estimated outcome perfectly corresponds to the actual outcome. The solid red

line represents performance of the nomogram: A smaller distance of the scatter points from the dotted line indicates better calibration.

ALT, are identified as indicators of various diseases including
HLH. High ALT and AST/ALT ratio have been found to act as
adverse prognostic factors in adult HLH (8, 28). Furthermore,
hepatic involvement and hepatomegaly reveal poor prognostic
indicators and early death predictors in HLH (8, 28). In line
with these studies, our results illustrated that the radiomic
features of spleen and liver presented great prognostic values for
adult HLH.

Radiomics is a high-throughput extraction of quantitative
information frommedical images as well as subtle manifestations
that are difficult to recognize or quantify by human eyes.
Compared with the traditional PET/CT metrics, the radiomic
features may reflect the pathological process much more
sufficiently in the spleen and liver of patients with HLH. In
this study, the majority of the selected radiomic features (5/6)
were derived from wavelet decomposition images, indicating
that wavelet transforms emphasize image details. It is very

likely that wavelet decomposition images contain inconspicuous
prognostic information (29, 30). GLSZM quantifies the number
of groups of interconnected neighboring voxels with the same
gray level intensity. NGTDM represents contrast, quantifying
the difference between the gray level of a voxel and the average
level of its neighbors within a distance. GLCM captures spatial
relationships of pairs of voxels, while kurtosis is a first-order
feature expressing the peak of the distribution of values in the
ROI. All the selected features describe the texture of the spleen
and liver quantitatively, reflecting uniformity or heterogeneity
in both the organs (31). Previous studies found that intratumor
heterogeneity was associated with poor outcome in various
malignancies (15, 17, 30, 32, 33). HLH is a heterogeneous disease
with various etiological components and complex underlying
genetic variant types (3). Each possible etiology has distinct
clinical characteristics and prognosis. Even in lymphoma-
associated HLH that has the worst prognosis, the treatment
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response is diverse (34). HLH could occur in EBV-associated T-
/NK-cell lymphoproliferative disorders, which is a spectrum of
disease from infection to malignancy. The histological features
and immunophenotype are markedly heterogeneous. As in
children, multiple gene mutations are linked to the development
of HLH in adults, especially with the EBV-driven lymphoma,
which requires hematopoietic cell transplant (6, 35, 36). The 18F-
FDG appearance of the liver and spleen came in various sizes,
densities, and metabolisms, which reflected the heterogeneity
of HLH. Radiomics quantified the spatial complexity of them.
This study exhibited that the heterogeneity of spleen and liver
may reveal overproliferation of immune cells accompanied with
inflammatory infiltration triggered by EBV infection (37–40). On
the other hand, the heterogeneous distribution of metabolism or
density may also suggest the involvement of tumor cells (41–
43). Both the malignancy and EBV infection seemed to link an
inferior prognosis in adult HLH (9, 34, 44, 45). Additionally, the
radiomic features have the possibilities associated with genetic
signatures (3, 46); however, the underlying biological significance
of these radiomic features has not been fully studied and the
relationships among radiomic features, genetic signatures, and
prognosis need further exploration in HLH.

Recent studies pointed out that a number of clinical
parameters play a role in the prognosis of HLH such as lymphoid
malignancy, hemoglobin, platelets, CRP, and cytopenia [(8, 9,
50, 51)]. It is well-documented that lymphoid malignancy is
negatively associated with survival. Typically, T-cell lymphoma
is acknowledged to have a more severe survival due to poor
response to chemotherapy, in comparison with B-cell lymphoma
(47). In a large-scale Japanese study, the 5-year OS was the
worst in T-/NK-cell lymphoma-associated HLH compared with
other types of HLH including primary HLH, B-cell lymphoma-
associated HLH, and infection-associated HLH (48). Lower
hemoglobin and platelet have been reported to be the more
consistent negative prognostic biomarkers in HLH (8, 49). This
study consistently showed that these 3 clinical parameters were
involved in the clinical prediction model. However, the two
clinical variables incorporated in the nomogram were white
blood cell and CRP. Cytopenia is one of the major presentation
in HLH. Serious cytopenia may mark the severity of a cytokine
storm and lead to hemorrhage and sepsis, suggesting to be an
inferior factor (7). CRP is the prototypical acute phase serum
protein, increasing rapidly during inflammation (50). It has
been highlighted that CRP is markedly enhanced in patients
with secondary HLH compared to primary ones. High CRP
levels have been correlated with increased risk of infection and
overall mortality in HLH, suggested to be indices of disease
severity (51). CRP probably serves as a predictor of 18F-
FDG PET/CT effectiveness due to the fact that the diagnostic
accuracy of PET/CT is positively linked with CRP > 60 mg/l in
HLH (12).

Interestingly, T-cell neoplasms were not retained in the
predictive model when the Rad-score was incorporated. A
possible explanation was that the Rad-score contained partial
pathological information. The inclusion of the Rad-score
not only improved the prognostic performance, but also
simplified the prediction model. DCA demonstrated that the

nomogram with the Rad-score and two clinical parameters
was superior to the clinical model in terms of clinical
application. Overall, the nomogram was successfully built
to predict 3-month, 6-month, and 1-year survival of adults
with HLH and the accuracy and clinical applicability of
the model were verified through C-index, calibration curve,
and DCA.

This study has several limitations. First, patients may
have been missed for inclusion in a single-center study
and selection bias may occur because of the retrospective
nature of the study design. Second, the heterogeneity of
the patients and treatments may affect our results. Third,
gene, transcript, and protein signatures become increasingly
important for the prognosis of adult HLH (3), but these
data were not collected. Finally, the Rad-score was calculated
using ROIs that were manually delineated in 3D slicer. It
was time-consuming and inconvenient for clinical practice,
so automatic or semi-automatic image segmentation will be
needed. Notably, a multicenter and prospective study with
larger cohort will be required to validate our findings in
the future.

CONCLUSION

This preliminary study indicated that the pretherapeutic
18F-FDG PET/CT radiomic features of spleen and liver
are independent prognostic factors in adult HLH, with the
heterogeneity of spleen and liver associated with inferior
prognosis. Integrating radiomic features with clinical parameters
show synergetic power for 6-month survival prediction
compared to other models with radiomics features or clinical
parameters alone. The nomogram has great potential for
predicting individualized 3-month, 6-month, and 1-year
survival, which may timely guide personalized treatments for
adult HLH.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Institutional Review Board of Beijing Friendship
Hospital of Capital Medical University. Written informed
consent for participation was not required for this study in
accordance with the national legislation and the institutional
requirements. No potentially identifiable human images or data
are presented in the manuscript.

AUTHOR CONTRIBUTIONS

JY, YK, and HZ contributed to the study design, decision-
making, and coordination of the study. XY, JLiu, XL, WW,
and SZ contributed to the management of registration of cases

Frontiers in Medicine | www.frontiersin.org 10 December 2021 | Volume 8 | Article 792677103

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Yang et al. PET/CT Radiomics in Hemophagocytic Lymphohistiocytosis

and collected PET/CT image data. XY, JLiu, XL, WW, and YK
contributed to the image quality control, analysis, and data
interpretation. LL and HZ contributed to the statistical analysis.
XY, JLi, and JY contributed to the drafting and revising the
manuscript. All the authors read, revised, and approved the final
version of the manuscript.

FUNDING

This study was supported by the National Natural Science
Foundation of China (Nos: 81971642 and 81771860), the Beijing
Natural Science Foundation (No: 7192041), and the National Key
Research and Development Plan (No: 2020YFC0122000).

REFERENCES

1. Al-Samkari H, Berliner N. Hemophagocytic lymphohistiocytosis. Annu Rev

Pathol. (2018) 13:27–49. doi: 10.1146/annurev-pathol-020117-043625

2. Birndt S, Schenk T, Heinevetter B, Brunkhorst FM,Maschmeyer G, Rothmann

F, et al. Hemophagocytic lymphohistiocytosis in adults: collaborative analysis

of 137 cases of a nationwide German registry. J Cancer Res Clin Oncol. (2020)

146:1065–77. doi: 10.1007/s00432-020-03139-4

3. Zhang J, Sun Y, Shi X, Zhang R, Wang Y, Xiao J, et al. Genotype characteristics

and immunological indicator evaluation of 311 hemophagocytic

lymphohistiocytosis cases in China. Orphanet J Rare Dis. (2020)

15:112. doi: 10.1186/s13023-020-01390-z

4. Canna SW, Marsh RA. Pediatric hemophagocytic lymphohistiocytosis. Blood.

(2020) 135:1332–43. doi: 10.1182/blood.2019000936

5. Ramos-Casals M, Brito-Zeron P, Lopez-Guillermo A, Khamashta MA,

Bosch X. Adult haemophagocytic syndrome. Lancet. (2014) 383:1503–

16. doi: 10.1016/S0140-6736(13)61048-X

6. La Rosée P, Horne A, Hines M, von Bahr Greenwood T, Machowicz

R, Berliner N, et al. Recommendations for the management

of hemophagocytic lymphohistiocytosis in adults. Blood. (2019)

133:2465–77. doi: 10.1182/blood.2018894618

7. Merrill SA, Naik R, Streiff MB, Shanbhag S, Lanzkron S, Braunstein EM,

et al. A prospective quality improvement initiative in adult hemophagocytic

lymphohistiocytosis to improve testing and a framework to facilitate trigger

identification and mitigate hemorrhage from retrospective analysis. Medicine

(Baltimore). (2018) 97:e11579. doi: 10.1097/MD.0000000000011579

8. Zhou J, Zhou J, Wu ZQ, Goyal H, Xu HG. A novel prognostic model for

adult patients with hemophagocytic lymphohistiocytosis.Orphanet J Rare Dis.

(2020) 15:215. doi: 10.1186/s13023-020-01496-4

9. Yoon SE, Eun Y, Huh K, Chung CR, Yoo IY, Cho J, et al. A

comprehensive analysis of adult patients with secondary hemophagocytic

lymphohistiocytosis: a prospective cohort study. Ann Hematol. (2020)

99:2095–104. doi: 10.1007/s00277-020-04083-6

10. Yuan L, Kan Y, Meeks JK, Ma D, Yang J. 18F-FDG PET/CT

for identifying the potential causes and extent of secondary

hemophagocytic lymphohistiocytosis. Diagn Interv Radiol. (2016)

22:471–5. doi: 10.5152/dir.2016.15226

11. Kim J, Yoo SW, Kang SR, Bom HS, Song HC, Min JJ. Clinical

implication of F-18 FDG PET/CT in patients with secondary

hemophagocytic lymphohistiocytosis. Ann Hematol. (2014)

93:661–7. doi: 10.1007/s00277-013-1906-y

12. Zheng Y, Hu G, Liu Y, Ma Y, Dang Y, Li F, et al. The role

of (18)F-FDG PET/CT in the management of patients with

secondary haemophagocytic lymphohistiocytosis. Clin Radiol. (2016)

71:1248–54. doi: 10.1016/j.crad.2016.05.011

13. Shieh AC, Guler E, Smith DA, Tirumani SH, Beck RC, Ramaiya NH.

Hemophagocytic lymphohistiocytosis: a primer for radiologists. AJR Am J

Roentgenol. (2020) 214:W11–W9. doi: 10.2214/AJR.19.21788

14. Abou Shaar R, Eby CS, van Dorp S, de Witte T, Otrock ZK. Increasing ferritin

predicts early death in adult hemophagocytic lymphohistiocytosis. Int J Lab

Hematol. (2021) 43:1024–31. doi: 10.1111/ijlh.13489

15. Wang H, Zhao S, Li L, Tian R. Development and validation of an (18)F-

FDG PET radiomic model for prognosis prediction in patients with nasal-

type extranodal natural killer/T cell lymphoma. Eur Radiol. (2020) 30:5578–

87. doi: 10.1007/s00330-020-06943-1

16. Cottereau AS, Nioche C, Dirand AS, Clerc J, Morschhauser F, Casasnovas

O, et al. (18)F-FDG PET dissemination features in diffuse large B-cell

lymphoma are predictive of outcome. J Nucl Med. (2020) 61:40–

5. doi: 10.2967/jnumed.119.229450

17. Arshad MA, Thornton A, Lu H, Tam H, Wallitt K, Rodgers N, et

al. Discovery of pre-therapy 2-deoxy-2-(18)F-fluoro-D-glucose positron

emission tomography-based radiomics classifiers of survival outcome in non-

small-cell lung cancer patients. Eur J Nucl Med Mol Imaging. (2019) 46:455–

66. doi: 10.1007/s00259-018-4139-4

18. Henter JI, Horne A, Arico M, Egeler RM, Filipovich AH, Imashuku

S, et al. HLH-2004: diagnostic and therapeutic guidelines for

hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. (2007)

48:124–31. doi: 10.1002/pbc.21039

19. Kikinis R, Pieper SD, Vosburgh KG. 3D Slicer: a platform for subject-

specific image analysis, visualization, and clinical support. In: Jolesz FA, editor.

Intraoperative Imaging and Image-Guided Therapy. New York, NY: Springer

New York (2014). p. 277-89. doi: 10.1007/978-1-4614-7657-3_19

20. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V,

et al. Computational radiomics system to decode the radiographic phenotype.

Cancer Res. (2017) 77:e104–e7. doi: 10.1158/0008-5472.CAN-17-0339

21. Liu J, Yang X, Yang J. Prognosis predicting value of semiquantitative

parameters of visceral adipose tissue and subcutaneous adipose

tissue of (18)F-FDG PET/CT in newly diagnosed secondary

hemophagocytic lymphohistiocytosis. Ann Nucl Med. (2021)

35:386–96. doi: 10.1007/s12149-021-01577-9

22. Yang YQ, Ding CY, Xu J, Fan L, Wang L, Tian T, et al. Exploring the

role of bone marrow increased FDG uptake on PET/CT in patients with

lymphoma-associated hemophagocytic lymphohistiocytosis: a reflection of

bone marrow involvement or cytokine storm? Leuk Lymphoma. (2016)

57:291–8. doi: 10.3109/10428194.2015.1048442

23. Bronte V, Pittet MJ. The spleen in local and systemic regulation of immunity.

Immunity. (2013) 39:806–18. doi: 10.1016/j.immuni.2013.10.010

24. Pijl JP, Kwee TC, Slart R, Yakar D, Wouthuyzen-Bakker M, Glaudemans A.

Clinical implications of increased uptake in bone marrow and spleen on

FDG-PET in patients with bacteremia. Eur J Nucl Med Mol Imaging. (2020)

48:1467–77. doi: 10.1007/s00259-020-05071-8

25. Kalkanis A, Kalkanis D, Drougas D, Vavougios GD, Datseris I, Judson

MA, et al. Correlation of spleen metabolism assessed by 18F-FDG

PET with serum interleukin-2 receptor levels and other biomarkers in

patients with untreated sarcoidosis. Nucl Med Commun. (2016) 37:273–

7. doi: 10.1097/MNM.0000000000000431

26. Ahn SS, Hwang SH, Jung SM, Lee SW, Park YB, Yun M, et al.

Evaluation of spleen glucose metabolism using (18)F-FDG PET/CT in

patients with febrile autoimmune disease. J Nucl Med. (2017) 58:507–

13. doi: 10.2967/jnumed.116.180729

27. Wei J, Jiang H, Gu D, Niu M, Fu F, Han Y, et al. Radiomics in liver

diseases: current progress and future opportunities. Liver Int. (2020) 40:2050–

63. doi: 10.1111/liv.14555

28. Yin G, Man C, Liao S, Qiu H. The prognosis role of AST/ALT (De Ritis)

ratio in patients with adult secondary hemophagocytic lymphohistiocytosis.

Mediators Inflamm. (2020) 2020:5719751. doi: 10.1155/2020/5719751

29. Chaddad A, Daniel P, Niazi T. Radiomics evaluation of histological

heterogeneity using multiscale textures derived from 3D wavelet

transformation of multispectral images. Front Oncol. (2018)

8:96. doi: 10.3389/fonc.2018.00096

30. Jiang Y, Yuan Q, Lv W, Xi S, Huang W, Sun Z, et al. Radiomic

signature of (18)F fluorodeoxyglucose PET/CT for prediction of gastric

cancer survival and chemotherapeutic benefits. Theranostics. (2018) 8:5915–

28. doi: 10.7150/thno.28018

Frontiers in Medicine | www.frontiersin.org 11 December 2021 | Volume 8 | Article 792677104

https://doi.org/10.1146/annurev-pathol-020117-043625
https://doi.org/10.1007/s00432-020-03139-4
https://doi.org/10.1186/s13023-020-01390-z
https://doi.org/10.1182/blood.2019000936
https://doi.org/10.1016/S0140-6736(13)61048-X
https://doi.org/10.1182/blood.2018894618
https://doi.org/10.1097/MD.0000000000011579
https://doi.org/10.1186/s13023-020-01496-4
https://doi.org/10.1007/s00277-020-04083-6
https://doi.org/10.5152/dir.2016.15226
https://doi.org/10.1007/s00277-013-1906-y
https://doi.org/10.1016/j.crad.2016.05.011
https://doi.org/10.2214/AJR.19.21788
https://doi.org/10.1111/ijlh.13489
https://doi.org/10.1007/s00330-020-06943-1
https://doi.org/10.2967/jnumed.119.229450
https://doi.org/10.1007/s00259-018-4139-4
https://doi.org/10.1002/pbc.21039
https://doi.org/10.1007/978-1-4614-7657-3_19
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1007/s12149-021-01577-9
https://doi.org/10.3109/10428194.2015.1048442
https://doi.org/10.1016/j.immuni.2013.10.010
https://doi.org/10.1007/s00259-020-05071-8
https://doi.org/10.1097/MNM.0000000000000431
https://doi.org/10.2967/jnumed.116.180729
https://doi.org/10.1111/liv.14555
https://doi.org/10.1155/2020/5719751
https://doi.org/10.3389/fonc.2018.00096
https://doi.org/10.7150/thno.28018
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Yang et al. PET/CT Radiomics in Hemophagocytic Lymphohistiocytosis

31. Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P,

Gibbs P, et al. Introduction to radiomics. J Nucl Med. (2020) 61:488–

95. doi: 10.2967/jnumed.118.222893

32. Lv W, Yuan Q, Wang Q, Ma J, Feng Q, Chen W, et al. Radiomics

analysis of PET and CT components of PET/CT imaging integrated

with clinical parameters: application to prognosis for nasopharyngeal

carcinoma. Mol Imaging Biol. (2019) 21:954–64. doi: 10.1007/s11307-01

8-01304-3

33. Lue KH, Wu YF, Liu SH, Hsieh TC, Chuang KS, Lin HH, et al.

Prognostic value of pretreatment radiomic features of 18F-FDG PET

in patients with hodgkin lymphoma. Clin Nucl Med. (2019) 44:e559–

e65. doi: 10.1097/RLU.0000000000002732

34. Li B, Guo J, Li T, Gu J, Zeng C, Xiao M, et al. Clinical characteristics

of hemophagocytic lymphohistiocytosis associated with non-Hodgkin B-cell

lymphoma: a multicenter retrospective study. Clin LymphomaMyeloma Leuk.

(2021) 21:e198–205. doi: 10.1016/S2152-2650(21)02106-6

35. Jin Z, Wang Y, Wei N, Wang Z. Adult primary hemophagocytic

lymphohistocytosis associated with lymphoma. Ann Hematol. (2020) 99:663–

5. doi: 10.1007/s00277-020-03924-8

36. Ghosh S, Köstel Bal S, Edwards ESJ, Pillay B, Jiménez Heredia R,

Erol Cipe F, et al. Extended clinical and immunological phenotype and

transplant outcome in CD27 and CD70 deficiency. Blood. (2020) 136:2638–

55. doi: 10.1182/blood.2020006738

37. Lu J, Fang Q,Ma C, Su F, Chen G, HuangM, et al. Atypical Epstein-Barr virus-

associated hemophagocytic lymphohistiocytosis simulating lymphadenitis on

(18)F-FDG PET/CT and its differential diagnosis. Hell J Nucl Med. (2017)

20:254–7. doi: 10.1967/s002449910612

38. Hao R, Yang X, Liu Z, Yang J. EBV-Associated T-cell lymphoproliferative

disorders demonstrated on FDG PET/CT in a patient with

hemophagocytic lymphohistiocytosis. Clin Nucl Med. (2019)

44:829–30. doi: 10.1097/RLU.0000000000002649

39. Pan Q, Luo Y, Wu H, Ma Y, Li F. Epstein-Barr Virus-

associated hemophagocytic lymphohistiocytosis mimicking

lymphoma on FDG PET/CT. Clin Nucl Med. (2018) 43:125–

7. doi: 10.1097/RLU.0000000000001923

40. Thomas DL, Syrbu S, Graham MM. Epstein-Barr virus mimicking

lymphoma on FDG-PET/CT. Clin Nucl Med. (2009) 34:891–

3. doi: 10.1097/RLU.0b013e3181bed135

41. Suga K, Kawakami Y, Hiyama A, Matsunaga N, Imoto S, Fukuda N, et

al. F-18 FDG PET/CT findings in a case of T-cell lymphoma-associated

hemophagocytic syndrome with liver involvement. Clin Nucl Med. (2010)

35:116–20. doi: 10.1097/RLU.0b013e3181c7bf20

42. Harada S, Shinohara T, Naruse K,Machida H. Diffuse 18F-fluorodeoxyglucose

accumulation in the bone marrow of a patient with haemophagocytic

lymphohistiocytosis due to Hodgkin lymphoma. BMJ Case Rep. (2016)

2016:bcr2016217555. doi: 10.1136/bcr-2016-217555

43. Donald JS, Barnthouse N, Chen DL. Rare variant of intravascular large

B-cell lymphoma with hemophagocytic syndrome. Clin Nucl Med. (2018)

43:e125–e6. doi: 10.1097/RLU.0000000000001969

44. Otrock ZK, Eby CS. Clinical characteristics, prognostic factors, and outcomes

of adult patients with hemophagocytic lymphohistiocytosis. Am J Hematol.

(2015) 90:220–4. doi: 10.1002/ajh.23911

45. Wang J, Wang D, Zhang Q, Duan L, Tian T, Zhang X, et al. The significance of

pre-therapeutic F-18-FDG PET-CT in lymphoma-associated hemophagocytic

lymphohistiocytosis when pathological evidence is unavailable. J Cancer Res

Clin Oncol. (2016) 142:859–71. doi: 10.1007/s00432-015-2094-z

46. Tang Y, Tan H, Hu S. Is there any potential of FDG PET/CT in monitoring

disease activity in familial hemophagocytic lymphohistiocytosis? Clin Nucl

Med. (2018) 43:296–8. doi: 10.1097/RLU.0000000000002008

47. Jaffe ES. The 2008 WHO classification of lymphomas: implications for

clinical practice and translational research.Hematology Am Soc Hematol Educ

Program. (2009) 2009:523–31. doi: 10.1182/asheducation-2009.1.523

48. Ishii E, Ohga S, Imashuku S, Yasukawa M, Tsuda H, Miura I, et al. Nationwide

survey of hemophagocytic lymphohistiocytosis in Japan. Int J Hematol. (2007)

86:58–65. doi: 10.1532/IJH97.07012

49. Pan H, Huo Y, Sun L. Comparison between clinical features

and prognosis of malignancy- and non-malignancy-associated

pediatric hemophagocytic lymphohistiocytosis. BMC Pediatr. (2019)

19:468. doi: 10.1186/s12887-019-1702-5

50. Marnell L, Mold C, Du Clos TW. C-reactive protein: ligands,

receptors and role in inflammation. Clin Immunol. (2005)

117:104–11. doi: 10.1016/j.clim.2005.08.004

51. Ozen S, Dai A, Coskun E, Oztuzcu S, Ergun S, Aktekin E, et al.

Importance of hyperbilirubinemia in differentiation of primary and secondary

hemophagocytic lymphohistiocytosis in pediatric cases. Mediterr J Hematol

Infect Dis. (2014) 6:e2014067. doi: 10.4084/mjhid.2014.067

Conflict of Interest: LL was employed by SinounionMedical Technology (Beijing)

Corporation, Ltd.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Yang, Liu, Lu, Kan, Wang, Zhang, Liu, Zhang, Li and Yang.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Medicine | www.frontiersin.org 12 December 2021 | Volume 8 | Article 792677105

https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.1007/s11307-018-01304-3
https://doi.org/10.1097/RLU.0000000000002732
https://doi.org/10.1016/S2152-2650(21)02106-6
https://doi.org/10.1007/s00277-020-03924-8
https://doi.org/10.1182/blood.2020006738
https://doi.org/10.1967/s002449910612
https://doi.org/10.1097/RLU.0000000000002649
https://doi.org/10.1097/RLU.0000000000001923
https://doi.org/10.1097/RLU.0b013e3181bed135
https://doi.org/10.1097/RLU.0b013e3181c7bf20
https://doi.org/10.1136/bcr-2016-217555
https://doi.org/10.1097/RLU.0000000000001969
https://doi.org/10.1002/ajh.23911
https://doi.org/10.1007/s00432-015-2094-z
https://doi.org/10.1097/RLU.0000000000002008
https://doi.org/10.1182/asheducation-2009.1.523
https://doi.org/10.1532/IJH97.07012
https://doi.org/10.1186/s12887-019-1702-5
https://doi.org/10.1016/j.clim.2005.08.004
https://doi.org/10.4084/mjhid.2014.067~
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


ORIGINAL RESEARCH
published: 04 January 2022

doi: 10.3389/fmed.2021.792581

Frontiers in Medicine | www.frontiersin.org 1 January 2022 | Volume 8 | Article 792581

Edited by:

Chuantao Zuo,

Fudan University, China

Reviewed by:

Salvatore Annunziata,

Catholic University of the Sacred

Heart, Italy

Virginia Liberini,

University of Turin, Italy

*Correspondence:

Jing Yu

yujing_2020@dmu.edu.cn

Meiyan Chen

117075894@qq.com

Specialty section:

This article was submitted to

Nuclear Medicine,

a section of the journal

Frontiers in Medicine

Received: 10 October 2021

Accepted: 22 November 2021

Published: 04 January 2022

Citation:

Jin Z, Zhang F, Wang Y, Tian A,

Zhang J, Chen M and Yu J (2022)

Single-Photon Emission Computed

Tomography/Computed Tomography

Image-Based Radiomics for

Discriminating Vertebral Bone

Metastases From Benign Bone

Lesions in Patients With Tumors.

Front. Med. 8:792581.

doi: 10.3389/fmed.2021.792581

Single-Photon Emission Computed
Tomography/Computed Tomography
Image-Based Radiomics for
Discriminating Vertebral Bone
Metastases From Benign Bone
Lesions in Patients With Tumors
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Jing Yu*

Department of Nuclear Medicine, The Second Hospital of Dalian Medical University, Dalian, China

Purpose: The purpose of this study was to investigate the feasibility of Single-Photon

Emission Computed Tomography/Computed Tomography (SPECT/CT) image-based

radiomics in differentiating bone metastases from benign bone lesions in patients

with tumors.

Methods: A total of 192 lesions from 132 patients (134 in the training group, 58 in the

validation group) diagnosed with vertebral bone metastases or benign bone lesions were

enrolled. All images were evaluated and diagnosed independently by two physicians with

more than 20 years of diagnostic experience for qualitative classification, the images were

imported into MaZda software in Bitmap (BMP) format for feature extraction. All radiomics

features were selected by least absolute shrinkage and selection operator (LASSO)

regression and 10-fold cross-validation algorithms after the process of normalization and

correlation analysis. Based on these selected features, two models were established:

The CT model and SPECT model (radiomics features were derived from CT and SPECT

images, respectively). In addition, a combination model (ComModel) combined CT and

SPECT features was developed in order to better evaluate the predictive performance of

radiomics models. Subsequently, the diagnostic performance between each model was

separately evaluated by a confusion matrix.

Results: There were 12, 13, and 18 features contained within the CT, SPECT,

and ComModel, respectively. The constructed radiomics models based on SPECT/CT

images to discriminate between bone metastases and benign bone lesions not only had

high diagnostic efficacy in the training group (AUC of 0.894, 0.914, 0.951 for CT model,

SPECT model, and ComModel, respectively), but also performed well in the validation

group (AUC; 0.844, 0.871, 0.926). The AUC value of the human experts was 0.849

and 0.839 in the training and validation groups, respectively. Furthermore, both SPECT

model and ComModel show higher classification performance than human experts in

the training group (P = 0.021 and P = 0.001, respectively) and the validation group

106

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.792581
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.792581&domain=pdf&date_stamp=2022-01-04
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yujing_2020@dmu.edu.cn
mailto:117075894@qq.com
https://doi.org/10.3389/fmed.2021.792581
https://www.frontiersin.org/articles/10.3389/fmed.2021.792581/full


Jin et al. SPECT/CT and Radiomics

(P = 0.037 and P = 0.007, respectively). All models showed better diagnostic accuracy

than human experts in the training group and the validation group.

Conclusion: Radiomics derived from SPECT/CT images could effectively discriminate

between bone metastases and benign bone lesions. This technique may be a new

non-invasive way to help prevent unnecessary delays in diagnosis and a potential

contribution in disease staging and treatment planning.

Keywords: radiomics, bone metastases, benign bone lesions, SPECT/CT, diagnosis

1. INTRODUCTION

Bone metastases were a common event in cancer evolution.
Studies had shown that nearly 70% of cancer patients had
metastases at autopsy, and 80% of the primary tumors were a
prostate, breast, and lung cancers, bone-related events associated
with bone metastases which can seriously affect patients’ quality
of life (1). Among patients with primary tumors with bone
metastases or benign bone diseases, the early diagnosis was
important for individualized patient treatment as treatment
options vary widely (2). Although bone biopsy was the gold
standard for identifying benign and malignant lesions, it was not
widely used in clinical diagnosis and treatment because of the
invasive procedure. A noninvasive method to distinguish bone
metastases from benign bone lesions was urgently needed.

99mTc-labeled methylene diphosphonate (99mTc-MDP)
whole-body scan (WBS) was frequently used in patients with
bone lesions and had high sensitivity but low specificity. The
radioactive tracer 99mTc-MDP was deposited in the bone by
chemisorption and ion exchange, the abnormal uptake of
the tracer reflected the osteogenic activity and local blood
flow of the lesion (3). Single-Photon Emission Computed
Tomography/Computed Tomography (SPECT/CT) combined
anatomic and metabolic functions to improve the accuracy
of anatomic localization of lesions and the specificity of bone
imaging (4, 5). However, several researchers had indicated that
bone metastases and benign bone lesions had similar imaging
features, particularly for patients with already known cancer
(6–8), it remained difficult to discriminate bone metastases and
benign bone lesions as studies had shown that 14.3% of patients
still had an equivocal diagnosis after SPECT/CT examination
(9, 10). Moreover, SPECT/CT diagnosis mainly depended on
physicians’ personal experience, which inevitably had subjective
factors, and it was difficult to quantify the intensity, uniformity,
and heterogeneity of lesion distribution (11).

Radiomics convert digital images into mineable data through
automated or semi-automatic and high-throughput methods.
Radiomics could analyze the heterogeneity of tumors as a
whole through hundreds of quantitative features and also
analyze the quantitative relationship between tumor biological
features and imaging features, which could construct models for
tumor diagnosis, efficacy evaluation and prediction, and provide
valuable references for clinical treatment of tumors (12, 13).
The current research on radiomics mainly focused on CT and
MRI (14–16). The pathological mechanism of bone metastasis
was based on the disruption of the metabolic balance between

osteoclasts and osteoblasts by the molecular action of cancer
cells. In contrast, the benign bone disease showed inflammation
and tissue remodeling of the periosteal cartilage tissue. Different
osteoblastic and osteolytic mechanisms had the potential to cause
different heterogeneity and distribution of radioactive tracer
(17, 18). Furthermore, different from the anatomical information
of the lesion provided by traditional imaging, SPECT/CT
radiomics combined the anatomical information and metabolic
information of the lesion to quantify the tumor heterogeneity,
which had the potential to improve the diagnostic performance.

To the best of our knowledge, there were few studies related
to bone diseases based on radiomics of SPECT/CT images.
Therefore, the purpose of this study was to investigate the
feasibility of SPECT/CT image-based radiomics in differentiating
and improving diagnostic performance for bone metastases from
benign bone lesions in patients with tumors.

2. MATERIALS AND METHODS

2.1. Patients
Participants between January 2019 and October 2020 were
enrolled in this study according to the following inclusion
criteria: 1) Patients a had history of the primary tumor; 2) Patients
received SPECT/CT for further diagnosis because of abnormal
uptake of vertebral radioactive tracer in 99mTc-MDP WBS; 3)
Complete pathological, imaging, or clinical follow-up records
and diagnosed with bone metastases or benign bone lesions;
4) At least one lesion in the spine and larger than 1 cm. In
addition, the exclusion criteria included the following: 1) The
shape of the lesion was irregular and difficult to delineate; 2)
Abnormal uptake of radioactive tracer in SPECT images without
lesions in CT images; 3) Had undergone surgery or medical
treatment. The enrolled patients were randomly divided into the
training and validation groups at the ratio of 7:3. The details of
the participant’s selection process were shown in Figure 1. This
retrospective study was approved by the hospital ethics review
committee and the requirement for informed patient consent
was waived.

2.2. Image Acquisition
All the acquisition procedures were completed on SPECT/CT
scanner equipped with a high resolution low energy parallel hole
collimator (GE Healthcare Discovery NM/CT670 pro, USA).
WBS was acquired within 2–5 h after intravenous administration
of 15–25 mCi 99mTc-MDP (Beijing Atomic Hi-tech Co., LTD,
China), then SPECT/CT was performed immediately for further

Frontiers in Medicine | www.frontiersin.org 2 January 2022 | Volume 8 | Article 792581107

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Jin et al. SPECT/CT and Radiomics

FIGURE 1 | The inclusion and exclusion criteria of our study.

diagnosis if a suspicious lesion was found on the WBS. The
SPECT acquisition parameters were as follows: double probe
parallel acquisition, rotation 180 respectively, 15 s per frame, and
a 128×128 matrix. CT scan parameters are as follows: 120 KV, 80
mA, window width of 15%, the pitch of 1.25, and slice thickness
of 2.5 mm. The image reconstruction program was carried out
in the XELERIS workstation (GE Medical Systems, USA), and
the image fusion program was carried out in the procedure of
Volumetrix MI Evolution Bone.

2.3. Image Analysis and Human Expert’s
Qualitative Classification
After summarizing all the clinical information available for
diagnosis, we concluded that the diagnostic criteria for this study
were based on either pathological biopsy, follow-up imaging, or
progression of the clinical course. All images were evaluated and
diagnosed independently by two human experts (AJT and JY)
with more than 20 years of diagnostic experience for qualitative
classification. The human experts made the diagnosis without
being provided with clinical information but were informed that
the lesion was either bone metastasis or benign bone lesion.
The diagnostic results of the human experts were evaluated by
weighted kappa statistics for interobserver agreement. The main
criteria for the human expert’s qualitative classification of bone
metastases were osteolytic, osteoblastic, and mixed bone changes

on SPECT/CT images and abnormal uptake of 99mTc-MDP in the
corresponding area.

2.4. Lesion Segmentation and Feature
Extraction
All images were imported into MaZda software (version 4.6,
www.eletel.p.lodz.pl) in BMP format for feature extraction,
and at most two lesions were taken from each patient if the
number of eligible lesions on the vertebral body was greater
than three. MaZda software had been reported in previous
studies to be available for radiomics image feature extraction,
and it was confirmed that the radiomic features extracted by
MaZda software satisfied the criteria of the Image Biomarker
Standardization Initiative (IBSI) (19, 20). Before extracting
features, images were normalized by using the method of µ ±

3σ (µ is the average value of the image gray value, σ is the SD
of the image gray value) to reduce the influence of brightness
and contrast on the gray value of the image. Two physicians
(MYC and JNZ) with 5 years of diagnostic experience checked
the area of abnormal uptake of 99mTc-MDP as Region of Interest
(ROI) without knowing the clear diagnosis of the lesion. The ROI
was delineated on the largest cross-section of the lesion in CT
and SPECT images using 2D texture sketching mode and then
copied to corresponding images as needed. If the location of the
lesion changes due to respiratory movement, the ROI was fine-
tuned to ensure that the ROI is roughly in the same position. To
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ensure consistency in outlining ROI between the two physicians
and to maintain stability and reproducibility of the features,
30 lesions were randomly selected for secondary outlining.
Features can be divided into the following categories: gray-
level histogram, gray-level absolute gradient (GrM), gray-level
run-length matrix (GLRLM), gray-level co-occurrence matrix
(GLCM), autoregressive model (ARM), and wavelet. Detailed
information about radiomics features had been explained in
previous research (21). Altogether 279 radiomics parameters
were included in 6 common feature groups.

2.5. Feature Selection and Model
Establishment
All features were normalized using the method of Z-score
(value of feature subtract the mean value and divided by
the SD) before selection. We calculate inter-texture correlation
by the method of Pearson correlation and remove features
with a correlation coefficient greater than 0.9 to achieve data
stability and repeatability as well as to eliminate the effect of
multicollinearity. In our study, if the correlation coefficient
between two features is greater than 0.9, the average absolute
correlation between this feature is correlation coefficient and the
remaining features was compared, and the feature coefficient
with the larger correlation was removed. The least absolute
shrinkage and selection operator (LASSO) regression was
performed on the training group for further data selection. Then
the features were selected by 10-fold cross-validation based on
the criteria of binomial deviance minimization. For the final
selected non-zero features, we constructed a classification model
by the method of multiple logistic regression. Based on these
selected features, two models were established: The CT model
(texture parameters were derived from CT images only) and
SPECT model (texture parameters were derived from SPECT
images only). In addition, a combination model (ComModel)
combined with CT and SPECT features was developed in order
to better evaluate the predictive value of radiomics models. The
flowchart of our study was shown in Figure 2.

2.6. Diagnostic Efficacy of Models and
Comparison
The diagnostic efficacy of all models was evaluated by the area
under the curve (AUC) of the receiver operating characteristic
(ROC). The confusion matrix was used to calculate the overall
accuracy of the models as well as the sensitivity, specificity,
negative predictive value, and positive predictive value of each
model. The DeLong test was used to compare the diagnostic
efficacy between each model. Calibration curves and Brier score
were used to evaluate the calibration of the categorical prediction
models and the good of fitness. In addition, decision curve
analysis (DCA) was used to evaluate the clinical benefit of the
categorical prediction models.

2.7. Statistical Analysis
Descriptive data were represented as the mean ± SEM.
Continuous variables were compared between groups of bone
metastatic and benign bone lesions with the Independent-
Samples t-Test or the Mann Whitney U-test for non-normal
distribution. Categorical variables between the two groups were
assessed using the chi-square test or the Fisher exact test and
weighted Kappa statistics were used to evaluate the interobserver
agreement. All feature screening, model construction, and
evaluation of the radiomics model diagnostic efficacy were
performed in R software (version 4.1.1) and Python (version
3.8.1). Other statistical analyses of clinical data were performed
with IBM SPSS (version 21.0) and MedCalc software (version
20.0), and P < 0.05 was considered as statistically significant.

3. RESULTS

3.1. Basic Patient Information
A total of 192 lesions from 132 patients were enrolled in this
study, which included 79 patients who were classified as bone
metastasis (46 men, 33 women), while the remaining 53 patients
were classified as benign bone lesions (32 men, 21 women).
Among all of the basic clinical factors for patients in the training

FIGURE 2 | The flowchart of our study.
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TABLE 1 | Basic information for patients in the training and validation cohorts.

The training cohort The validation cohort

Bone metastases Benign lesions P Bone metastases Benign lesions P

Gender 0.461 0.653

Female 19 10 13 11

Male 35 26 11 7

Age 59.13 ± 11.4 61.35 ± 12.32 0.508 58.46 ± 10.97 60.45 ± 11.65 0.632

Range 30–72 35–79 35–67 34–78

Lesion form 0.839 0.801

Osteolytic 8 4 4 1

Osteoblastic 53 24 23 11

Mixed 33 12 14 5

Confirmed 0.658 0.896

Biopsy 18 9 9 4

Follow-up 76 31 32 13

P < 0.05 was considered to be statistically significant.

and validation cohorts, including gender, age, lesion form, and
methods of lesions confirmation showed no significant difference
between bone metastases and benign bone lesion (all P > 0.05).
The basic information of the patient was detailed in Table 1. The
primary malignancies of the 132 patients were as follows: breast
cancer, n= 27; lung cancer, n= 50; prostate cancer, n= 25; colon
cancer, n = 5; renal carcinoma, n = 5; thyroid cancer, n = 5;
stomach cancer, n = 4; cervical cancer, n = 3; hepatocellular
cancer, n = 3; pancreatic cancer, n = 2; nasopharyngeal cancer,
n = 2; ureteral cancer, n = 1. The diagnosis of the 53 patients
with benign lesions is as follows: degenerative lesions, n = 23;
fractures, n= 15; osteoarthritis, n= 8; spinal tuberculosis, n= 7.

3.2. Prediction Models Building and
Validation
After correlation analysis between feature groups and elimination
of features with a correlation greater than 0.9, 203, and 234
features were obtained from CT and SPECT images in the
training group, respectively, and then the lasso algorithm and
10-fold cross-validation were used to classify bone metastases
and benign bone lesions, and finally, 12, 13, and 18 features
were obtained based on CT images and SPECT images
for construction of classification models, respectively, the
selected features were shown in Supplementary Tables A,B. The
specific process of LASSO screening features was illustrated
as detailed in Figure 3. The details of the selected features
obtained were demonstrated with boxplots and heatmaps in
Supplementary Figures S1–S4. In the training group, the CT
model, the SPECT model, and the ComModel obtained high
AUC values of 0.894 (95%CI: 0.829–0.941), 0.914 (95%CI:
0.853–0.956), and 0.951 (95%CI: 0.899–0.981), respectively.
ComModel have better predictive performance than CT and
SPECT and there was no statistical difference between the three
models after DeLong test (P = 0.622 between SPECT model
and CT model, P = 0.193 between SPECT and ComModel
model, P = 0.072 between ComModel and CT model). In

the validation group, ComModel (0.926; 95% CI: 0.827–0.978)
indicted better predictive performance than SPECT model
(0.871; 95% CI:0.757–0.945) and significant increase than CT
model (0.844; 95% CI: 0.725–0.026) (P = 0.063 and P = 0.024,
respectively). In addition, SPECTmodel also demonstrated better
predictive performance than the CT model (P = 0.042).

3.3. Diagnostic Performance Between the
CT Model, SPECT Model, ComModel, and
Human Experts
After the Kappa test, the weighted k-value of the inter-observer
agreement was 0.814 (95% CI: 0.713–0.895), indicating a good
inter-observer agreement. The AUC value of the human experts’
qualitative classification was 0.849 (95% CI: 0.775–0.907) and
0.839 (95% CI: 0.753–0.906) in the training and validation
groups, respectively. In the training group, the SPECTmodel and
the ComModel showed statistically significant differences over
the human experts (P= 0.021 and P= 0.001, respectively), while
the CT model showed no significant differences over the human
experts (P = 0.091). In the validation group, the ComModel
and SPECT model demonstrated greater diagnostic effectiveness
over the human experts (P = 0.007 and P = 0.037 respectively),
while the CTmodel showed no significant difference (P= 0.094).
As for the calibration curves, all three model’s curves were
closed to ideal curves, indicating that the models had superior
fitness and predictive ability. The calibration curve was shown
in Figure 4. ComModel has a better model fitness than the CT
model and SPECTmodel with a lower value of Brier score (0.082,
0.126, and 0.110 for ComModel, CT model and SPECT model,
respectively). In the decision curves, when the threshold was 0–
1, the ComModel always had a better overall net clinical gain
than the other models. The SPECT model also had a slightly
higher clinical gain than the human experts, and there was no
significant difference between the CT model and the human
experts. The decision curve was shown in Figure 5. The difficult
differential diagnosis of bone metastases and benign bone lesions
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FIGURE 3 | (A–F) demonstrated the specific process of least absolute shrinkage and selection operator (LASSO) regression analysis screening features for CT model,

SPECT model, and ComModel, respectively. (A,C,E) showed the process of features selection. The vertical line was plotted at the optimal λ of 0.064, 0.025, and

0.035 for CT, SPECT, and ComModel, respectively. Twelve, thirteen, and eighteen factors with non-zero coefficients were finally selected for CT, SPECT, and

ComModel, respectively. (B,D,F) showed that features selection was performed by 10-fold cross-validation with the criterion of minimum deviance.

in clinical work was demonstrated in Figures 6, 7, respectively. A
comparison of diagnostic performance between each model was
shown in Table 2. The ROC curves of all models were illustrated
in Figure 8.

4. DISCUSSION

In this study, we constructed and validated SPECT/CT image-
based radiomics model, which achieved satisfactory classification
performance and outperformed human experts’ qualitative
classification. Radiomics model had the potential to provide
additional value distinct from CT and MRI as a noninvasive and

more accessible imaging method to differentiate bone metastases
from benign bone disease and reduce unnecessary invasive
examinations and adjustments in treatment decisions.

Previous studies had indicated that bone metastases tend to
involve the pedicle rather than the vertebral body and rarely
invade the extremity bone compared to benign bone disease,
which tends to affect the small intervertebral joints (22). In a
study of characterization of 84 solitary lesions in the extremities,
Peng et al. (23) pointed out that benign bone lesions were
predominant in the proximal and distal extremity bones, whereas
bone metastases were predominant in the diaphyses extremity
bones, but there was no significant difference in osteoblast
activity between bone metastases and benign lesions (24).
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FIGURE 4 | Comparison of the calibration curve and Brier score of different models. All three model’s calibration curves were closed to ideal curves, indicating that the

models had good fitness and predictive ability. The following figure shows the distribution of the probability of diagnosis for different models.

Although SPECT/CT had significantly improved the diagnostic
efficiency of spinal lesions and could diagnose bone metastases
based on the criteria of osteolytic, osteoblastic, and mixed
bone changes on SPECT/CT images and abnormal uptake of
99mTc-MDP in the corresponding area, some benign lesions
such as fractures, degenerative changes, spinal tuberculosis, and
osteoarthritis can also show similar bone changes in CT and
abnormal uptake of radioactive tracer, furthermore, atypical
bone lesions also contributed to the challenge of differentiating
between the bone metastases and benign bone disease (25).
In addition, these traditional imaging features were assessed
through visualization and relied on the physician’s subjective
evaluation and diagnostic experience, despite that lesions were
not always typical in the clinical work.

Considering the limitations of traditional imaging diagnosis,
the semi-quantitative analysis of bone lesions had made

great progress in recent years. Kuji et al. (26) used the
method of conjugate gradient reconstruction with tissue zoning,
attenuation, and scatter corrections applied (CGZAS) based on
WBS image to prove that SUVmax is a reliable osteoblastic
biomarker for differentiating bone metastasis from degenerative
changes in patients with prostate cancer. In their study,
SUVmax in patients with bone metastasis was significantly
higher compared with degenerative changes (40.90 ± 33.46
vs. 16.73 ± 6.74). In addition, their study also showed
that SUVmax was related to bone disease progression. Le
et al. (27) showed that the differential of malignant bone
metastases also achieved satisfactory diagnostic performance
based on the factor of PSMA-RADS rating, SUVmax, and
SUVmax ratio of the lesion to blood pool by 68Ga-PSMA-11
PET/CT image. In fact, SUVmax only reflects the metabolic
information of the tumor within a single pixel in the image
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FIGURE 5 | Comparison of decision curve analysis (DCA) of different models. When the threshold was 0–1, the ComModel always had a better overall net clinical gain

than the other models, the SPECT model also had higher clinical gain than the human experts, and there was no significant difference between the CT model and the

human experts.

FIGURE 6 | Clinical cases SPECT/CT images of bone metastases (A) and benign bone lesions (B). The images shown are WBS image, axial CT, SPECT, fusion

image, and sagittal CT (a–e, respectively). (A) bone metastases: a 53-year-old female with an adenocarcinoma of the left lung. Wedge-like changes of the T8 vertebral

body with an abnormal concentration of radioactive tracer (arrows). (B) benign bone lesions: a 68-year-old female with breast cancer. Wedge-like changes of the L1

vertebral body with higher bone density and increased radioactive tracer distribution (arrows). It was difficult to determine whether lesions were metastasis with

conventional images only. Lesion (A) was confirmed as pathological fracture due to bone metastases by pathological examination and showed systemic bone

metastases at subsequent imaging follow-up. Lesion (B) was confirmed to be a benign compression fracture by imaging follow-up and clinical information.

and cannot quantify the spatial heterogeneity of the overall
metabolic distribution.

Compared to traditional image assessment, radiomics
was a new tool that extracted image information through

high-throughput methods to provide useful information for
disease typing and grading, gene localization, early treatment,
and prognostic assessment; Some studies had shown that
radiomics had better diagnostic performance than traditional
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FIGURE 7 | (A) bone metastases: a 76-year-old male with prostate cancer. Nodular high-density shadow on the right lower edge of the L2 vertebral body with a

concentrated radioactive tracer (arrows). (B) benign bone lesions: a 60-year-old male with prostate cancer. Nodular high-density shadow on the right upper edge of

the T12 vertebral body with increased radioactive tracer distribution (arrows). The cluster of radioactive tracer concentrations in the left rib(a), with fusion images

suggesting bone metastasis. Lesion (A) showed increased concentration of tracer and increased extent of concentration with systemic bone metastases at

subsequent imaging follow-up. Lesion (B) was confirmed not a metastasis from prostate cancer at several subsequent imaging follow-ups.

TABLE 2 | The diagnostic ability of each model for discriminating vertebral bone metastases from benign bone lesions.

AUC Accuracy Sensitivity Specificity PPV NPV

CT model

Training cohort 0.894 0.851 0.949 0.696 0.872 0.821

Validation cohort 0.844 0.828 0.648 0.925 0.853 0.792

SPECT model

Training cohort 0.914 0.866 0.885 0.821 0.885 0.839

Validation cohort 0.871 0.845 0.870 0.750 0.853 0.833

ComModel

Training cohort 0.951 0.903 0.923 0.893 0.912 0.893

Validation cohort 0.926 0.879 0.852 0.925 0.882 0.875

Human experts

Training cohort 0.849 0.836 0.821 0.857 0.821 0.857

Validation cohort 0.839 0.828 0.870 0.825 0.882 0.750

AUC, the area under the ROC curve; PPV, postive predictive value; NPV, negative predictive value.

clinical in the non-invasive classification and diagnosis of
diseases. Veres et al. (28) showed that SPECT radiomics could
identify microscopic lesions in the rat liver and suggested that
the radiomics feature skewness could identify liver tumor lesions
before they exhibit altered tissue function. Carabelli et al. (29)
demonstrated that the entropy of radiomic features in SPECT
myocardial perfusion imaging (MPI) could evaluate coronary
vascular microcirculation noninvasively and suggested that the
improvement of left ventricular functional status by liraglutide
would not improve the induction of coronary microvascular
dysfunction in type 2 diabetes. The study of Rahmim et al. (30)
combined with radiomic analysis in the routine measurement of
DAT SPECT significantly improved the diagnosis of Parkinson’s
outcome and believed that radiomics were expected to become
an effective biomarker for Parkinson’s diagnosis. However,
most of these SPECT radiomics studies focus on the brain
and cardiovascular aspects, and there were few studies on
bone diseases.

Our research showed that the radiomics models constructed
based on SPECT/CT images to discriminate between bone
metastases and benign bone lesions not only had high diagnostic
efficacy in the training group, with AUC of 0.894, 0.914, and 0.951
for CT model, SPECT model, and ComModel, respectively but
also performed well in the validation group, with AUC of 0.844,
0.871, and 0.926 for CT model, SPECT model, and ComModel,
respectively. Furthermore, both SPECT model, and ComModel
showed higher classification performance than human experts,
which reflected the superiority of radiomics in non-invasive
classification for disease diagnosis. Another finding was that the
SPECT model had better diagnostic efficacy for identifying bone
metastases and benign bone lesions than the CT model. We
speculated that these SPECT images represent radioactive tracer
uptake andmetabolic information of the lesion and can detect the
lesion earlier than conventional imaging, which brings additional
value to the identification of the lesion and tissue specificity.
In addition, SPECT radiomics may have the potential to play a
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FIGURE 8 | Comparison of the diagnostic performance of different models. (A) Receiver operating characteristic for training cohort. (B) Receiver operating

characteristic for validation cohort.

crucial role in finding the optimal dose for the targeted treatment
of bone lesions with radioactive nuclides and in assessing the

effectiveness of treatment.
Our study showed that the feature of entropy and correlation,

which were both derived fromGLCM and appeared several times

in the feature extracted from CT images and SPECT images,

were closely related to the identification of lesions. GLCM

described the spatial relationship of pixels between features and

the heterogeneity of lesions, which had been reported several

times in previous studies (31, 32). Previous studies had found

that the feature of entropy and correlation was related to the

malignancy of lesions and helped to determine lymph node

metastasis (33–35). In addition, increased heterogeneity within

the images may be related to the local cellular composition,
proliferation, fibrillation, angiogenesis, and necrosis of the tumor,

as well as the impact of continued progressive invasion and
destruction of bone metastatic disease (36, 37).

For patients considering multiple lesions, we do not

automatically consider that all lesions in that patient were

metastatic or benign based on biopsy or follow-up data of

individual lesions, and the coexistence of bone metastases and
benign bone disease in multiple lesions of the spine was relatively

common in clinical work. We confirmed as metastases or

benign lesions by biopsy or follow-up data for each individual
lesion, and if the final diagnosis of the lesion was inconclusive,

the lesion was simply eliminated, although this process took
substantial time, it ensured the rigor of this study. Finally,
we excluded treated patients because a proportion of patients
will have flare phenomenon and osteoblastic reactions after

chemotherapy or radiotherapy, which could also affect the uptake
of radioactive tracer.

Our study has several limitations. First, our study had an
inherent limitation with a retrospective design, thus, losing a
large number of follow-up results, therefore, more standardized
prospective studies are needed before the method can be
used in the clinic. Second, our study is single-centered, and
therefore, no external validation was performed, which may have
some implications in terms of model stability. Third, detailed
histopathological analysis was not always possible in each case,
and we confirmed bone metastases and benign bone lesions on
the basis of pathological biopsy, radiological imaging follow-up,
and progression of the clinical course.

5. CONCLUSION

Radiomics models based on CT and SPECT images derived from
SPECT/CT can effectively discriminate between vertebral bone
metastases and benign bone disease. This technique may be a
new non-invasive way to help prevent unnecessary delays in
diagnosis and a potential contribution in disease staging and
treatment planning.
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21. Szczypiński P, Strzelecki M, Materka A, Klepaczko A. MaZda-A software

package for image texture analysis. Comput Methods Programs Biomed. (2008)

94:66–76. doi: 10.1016/j.cmpb.2008.08.005

22. Even-Sapir E, Martin RH, Barnes DC, Pringle CR, Iles SE, Mitchell

MJ. Role of SPECT in differentiating malignant from benign lesions

in the lower thoracic and lumbar vertebrae. Radiology. (1993) 187:193.

doi: 10.1148/radiology.187.1.8451412

23. Peng H, Zhang L, Zhou T, Li W, Li W, Ma L, et al. Characterization

of solitary lesions in the extremities on whole-body bone scan in

patients with known cancer: contribution of single-photon emission

computed tomography/computed tomography. Front Oncol. (2007) 9:607.

doi: 10.3389/fonc.2019.00607

24. Wedin R, Hansen BH, Laitinen M, Trovik C, Weiss RJ. Complications and

survival after surgical treatment of 214 metastatic lesions of the humerus. J

Shoulder Elbow Surgery. (2011) 21:1049–55. doi: 10.1016/j.jse.2011.06.019

25. Qian X, Wenqi Z, Shi G, Bin C, Qingjie M, Tianji L, et al. Indeterminate

solitary vertebral lesions on planar scintigraphy. Nuklearmedizin. (2018)

57:216–23. doi: 10.3413/Nukmed-0973-18-04

26. Kuji I, Yamane T, Seto A, Yasumizu Y, Shirotake S, Oyama M. Skeletal

standardized uptake values obtained by quantitative SPECT/CT as

an osteoblastic biomarker for the discrimination of active bone

metastasis in prostate cancer. Eur J Hybrid Imaging. (2017) 1:2.

doi: 10.1186/s41824-017-0006-y

27. Le WC, Lawhn-Heath C, Behr SC, Juarez R, Flavell RR. Factors

predicting metastatic disease in 68 Ga-PSMA-11 PET–positive osseous

lesions in prostate cancer. J Nuclear Med. (2020) 61:jnumed.119.241174.

doi: 10.2967/jnumed.119.241174

Frontiers in Medicine | www.frontiersin.org 11 January 2022 | Volume 8 | Article 792581116

https://www.frontiersin.org/articles/10.3389/fmed.2021.792581/full#supplementary-material
https://doi.org/10.1053/ctrv.2000.0210
https://doi.org/10.1158/1078-0432.CCR-06-0931
https://doi.org/10.1097/MNM.0000000000001455
https://doi.org/10.1148/radiol.2373041358
https://doi.org/10.1007/s00259-009-1334-3
https://doi.org/10.1097/RLU.0000000000001042
https://doi.org/10.1186/s12880-017-0218-4
https://doi.org/10.1097/MD.0000000000003868
https://doi.org/10.4329/wjr.v7.i8.202
https://doi.org/10.1186/s40644-017-0118-4
https://doi.org/10.1007/s00259-011-1770-8
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1007/s11307-019-01423-5
https://doi.org/10.1007/s00261-020-02576-6
https://doi.org/10.1016/j.canlet.2019.11.036
https://doi.org/10.1007/s00259-016-3386-5
https://doi.org/10.1371/journal.pone.0075787
https://doi.org/10.1016/j.ejca.2021.06.053
https://doi.org/10.1038/s41598-021-96600-4
https://doi.org/10.1016/j.cmpb.2008.08.005
https://doi.org/10.1148/radiology.187.1.8451412
https://doi.org/10.3389/fonc.2019.00607
https://doi.org/10.1016/j.jse.2011.06.019
https://doi.org/10.3413/Nukmed-0973-18-04
https://doi.org/10.1186/s41824-017-0006-y
https://doi.org/10.2967/jnumed.119.241174
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Jin et al. SPECT/CT and Radiomics

28. Veres DS, Mathe D, Hegedus N, Horvath I, Kiss FJ, Taba G, et al. Radiomic

detection of microscopic tumorous lesions in small animal liver SPECT

imaging. EJNMMI Res. (2019) 9:67. doi: 10.1186/s13550-019-0532-7

29. Carabelli A, Canu M, de Fondaumiere M, Debiossat M, Leenhardt J, Broisat

A, et al. Noninvasive assessment of coronary microvascular dysfunction using

SPECT myocardial perfusion imaging and myocardial perfusion entropy

quantification in a rodent model of type 2 diabetes. Eur J Nuclear Med Mol

Imaging. (2021) doi: 10.1007/s00259-021-05511-z. [Epub ahead of print].

30. Rahmim A, Huang P, Shenkov N, Fotouhi S, Davoodi BE, Lu L, et al.

Improved prediction of outcome in Parkinson’s disease using radiomics

analysis of longitudinal DAT SPECT images. NeuroImage Clin. (2017) 16:

539–44. doi: 10.1016/j.nicl.2017.08.021

31. Huang Z, Mou L, He D, Wei Y, Yu H, Wang Y, et al. Two-dimensional

texture analysis based on CT images to differentiate pancreatic lymphoma

and pancreatic adenocarcinoma: a preliminary study.Academic Radiol. (2019)

26:S1076633218303969. doi: 10.1016/j.acra.2018.07.021

32. Feng M, Zhang M, Liu Y, Jiang N, Meng Q, Wang J, et al. Texture

analysis of MR images to identify the differentiated degree in

hepatocellular carcinoma: a retrospective study. BMC Cancer. (2020)

20:611. doi: 10.1186/s12885-020-07094-8

33. Zhu H, Xu Y, Liang N, Sun H, Wang W. Assessment of clinical stage IA

lung adenocarcinoma with pN1/N2 metastasis using CT quantitative texture

analysis. Cancer Manag Res. (2020) 2:6421–30. doi: 10.2147/CMAR.S251598

34. Beckers R, Trebeschi S, Maas M, Schnerr RS, Sijmons J, Beets GL, et al.

CT texture analysis in colorectal liver metastases and the surrounding

liver parenchyma and its potential as an imaging biomarker of disease

aggressiveness, response and survival. Eur J Radiol. (2018) 102:15–21.

doi: 10.1016/j.ejrad.2018.02.031

35. Moscoso A, Ruibal, Domínguez-Prado I, Fernández-Ferreiro A, Herranz

M, Albaina L, et al. Texture analysis of high-resolution dedicated breast

18 F-FDG PET images correlates with immunohistochemical factors and

subtype of breast cancer. Eur J Nuclear Med Mol Imaging. (2018) 45:196–206.

doi: 10.1007/s00259-017-3830-1

36. Tixier F, Rest C, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor

heterogeneity characterized by textural features on baseline 18F-FDG PET

images predicts response to concomitant radiochemotherapy in esophageal

cancer. J Nuclear Med. (2011) 52:369–78. doi: 10.2967/jnumed.110.082404

37. Diessner J, Wischnewsky M, Stüber T, Stein R, Krockenberger M, Usler

HS, et al. Evaluation of clinical parameters influencing the development

of bone metastasis in breast cancer. BMC Cancer. (2016) 16:307.

doi: 10.1186/s12885-016-2345-7

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Jin, Zhang, Wang, Tian, Zhang, Chen and Yu. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Medicine | www.frontiersin.org 12 January 2022 | Volume 8 | Article 792581117

https://doi.org/10.1186/s13550-019-0532-7
https://doi.org/10.1007/s00259-021-05511-z
https://doi.org/10.1016/j.nicl.2017.08.021
https://doi.org/10.1016/j.acra.2018.07.021
https://doi.org/10.1186/s12885-020-07094-8
https://doi.org/10.2147/CMAR.S251598
https://doi.org/10.1016/j.ejrad.2018.02.031
https://doi.org/10.1007/s00259-017-3830-1
https://doi.org/10.2967/jnumed.110.082404
https://doi.org/10.1186/s12885-016-2345-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Artificial Intelligence in Positron Emission Tomography
	Table of Contents
	Editorial: Artificial Intelligence in Positron Emission Tomography
	Author Contributions
	Funding
	References

	FDG-PET Profiles of Extratemporal Metabolism as a Predictor of Surgical Failure in Temporal Lobe Epilepsy
	Introduction
	Materials and Methods
	Patients and Healthy Controls
	Ethical Approval and Patient Consent
	Clinical Data
	FDG-PET Image Acquisition and Processing
	Statistical Analysis

	Results
	Clinical Data
	Volume of Metabolic Abnormalities in Temporal and Extratemporal Areas
	Intensity of Metabolic Abnormalities in Temporal and Extratemporal Areas
	Special Extratemporal Brain Areas of Metabolic Abnormalities

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Development of Combination Methods for Detecting Malignant Uptakes Based on Physiological Uptake Detection Using Object Detection With PET-CT MIP Images
	Introduction
	Materials and Methods
	Subject and PET-CT Scans
	Automatic Detection
	The Creation of the Datasets
	Training Images for Model Creation
	Evaluation of the Created Models

	Combination Method
	The Creation of Color Maps
	Evaluation of the Created Color Maps


	Results
	Average Precision of Each Class
	Coverage Rate, False Positive Rate, and False Negative Rate of the Combination Method

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Texture Analysis in the Diagnosis of Primary Breast Cancer: Comparison of High-Resolution Dedicated Breast Positron Emission Tomography (dbPET) and Whole-Body PET/CT
	Introduction
	Materials and Methods
	Patients
	Subtype Classification
	Ring-Shaped dbPET Scanner
	Whole-Body PET/CT Scanner
	Data Acquisition and Image Reconstruction
	Image Analysis
	Texture Analysis
	Statistical Analysis

	Results
	Patient Characteristics
	Comparison of the Ability to Predict Tumor Characteristics Using Texture Features of dbPET and Whole-Body PET/CT

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Supplementary Material
	References

	Exploring the Pattern Associated With Longitudinal Changes of β-Amyloid Deposition During Cognitively Normal Healthy Aging
	Introduction
	Materials and Methods
	Materials
	Image Acquisition Protocol
	Image Preprocessing
	Voxel-Wise PET Analysis
	Statistical Analysis

	Results
	Demographic Characteristics of the Participants
	Voxel-Wise PET Analysis
	Healthy Aging Pattern
	Pattern Validation


	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Texture Analysis of 18F-FDG PET/CT for Differential Diagnosis Spinal Metastases
	Introduction
	Materials and Methods
	Study Population
	Scanner and Acquisition Protocol
	Image Analysis
	Data Grouping
	Extraction and Analysis of Texture Features
	Diagnostic Model Construction and Evaluation

	Statistical Analysis
	Survival Analysis

	Result
	Basic Patient Information
	Distinction Between Tumor and Normal Group
	Diagnostic Modeling and Performance Analysis
	Survival Analysis

	Discussion
	Limitations

	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Use of a Sparse-Response Deep Belief Network and Extreme Learning Machine to Discriminate Alzheimer's Disease, Mild Cognitive Impairment, and Normal Controls Based on Amyloid PET/MRI Images
	Introduction
	Model Design
	Model Framework
	Mathematical Fundamentals of the Proposed Model
	SR-DBN Model Based on RD Theory
	ELM Model for Classification


	Materials and Methods
	Materials
	Image Preprocessing
	Dimension Reduction and Feature Extraction
	Classification & Comparative Experiments

	Results
	Results of Dimension Reduction
	Results of Classification

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Evaluation of an Automatic Classification Algorithm Using Convolutional Neural Networks in Oncological Positron Emission Tomography
	Introduction
	Method
	Study Design
	Research Cohort
	Routine Cohort
	Convolutional Neural Network Use
	Statistical Analysis

	Results
	Research Cohort
	Routine Cohort

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Supplementary Material
	References

	A Preliminary Study to Use SUVmax of FDG PET-CT as an Identifier of Lesion for Artificial Intelligence
	Introduction
	Materials and Methods
	Study Subjects
	PET-CT Image Acquisition and Reconstruction
	SUVmax Calculation
	Lesion Localization
	Statistical Analysis

	Results
	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Pre-Operative Prediction of Mediastinal Node Metastasis Using Radiomics Model Based on 18F-FDG PET/CT of the Primary Tumor in Non-Small Cell Lung Cancer Patients
	Introduction
	Materials and Methods
	Patients
	18F-FDG PET/CT Acquisition and Reconstruction
	Image Interpretation and Lesion Segment
	Radiomics Feature Extraction
	Radiomics Modeling and Evaluation
	Statistical Analysis

	Results
	Characteristics of All Patients
	RM Performance

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	18F-PEG1-Vinyl Sulfone-Labeled Red Blood Cells as Positron Emission Tomography Agent to Image Intra-Abdominal Bleeding
	Introduction
	Materials and Methods
	Synthesis of Intermediate Synthon [18F]-((2-(2-Fluoroethoxy)Ethyl)Sulfonyl)Ethene
	RBCs Preparation
	Optimization of Labeling Conditions
	Post-Labeling Stability of 18F-VS-RBCs
	Incubation of 19F-VS With RBCs
	PET Imaging of Normal Rats
	Imaging Study of the Rat Intra-Abdominal Hemorrhage Model
	Image Analysis
	Statistical Analysis

	Results and Discussion
	18F-VS Preparation
	Evaluation Labeling Efficiency of 18F-VS-RBCs
	Evaluation in vitro Stability of 18F-VS-RBCs
	Evaluate the Toxicity of 19F-VS on RBCs
	Evaluation of 18F-VS-RBCs for PET Imaging
	PET Imaging of Normal Rats
	Imaging Study of the Intra-Abdominal Hemorrhage Model on Rats


	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Development and Validation of a Nomogram Based on 18F-FDG PET/CT Radiomics to Predict the Overall Survival in Adult Hemophagocytic Lymphohistiocytosis
	Introduction
	Materials and Methods
	Patients
	Clinical Data Collection
	18F-Fluorodeoxyglucose PET/CT Imaging Acquisition, Segmentation, and Feature Extraction
	Radiomic Feature Extraction
	Radiomic Feature Selection and the Rad-Score Construction
	Clinical Variables Selection and Nomogram Creation
	Statistical Analyses

	Results
	Baseline Clinical Characteristics of Patients
	Radiomic Feature Selection and the Rad-Score Construction and Evaluation
	Strong Predictor Selection and Model Establishment and Assessment
	Personalized Nomogram Establishment and Validation

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Single-Photon Emission Computed Tomography/Computed Tomography Image-Based Radiomics for Discriminating Vertebral Bone Metastases From Benign Bone Lesions in Patients With Tumors
	1. Introduction
	2. Materials and Methods
	2.1. Patients
	2.2. Image Acquisition
	2.3. Image Analysis and Human Expert's Qualitative Classification
	2.4. Lesion Segmentation and Feature Extraction
	2.5. Feature Selection and Model Establishment
	2.6. Diagnostic Efficacy of Models and Comparison
	2.7. Statistical Analysis

	3. Results
	3.1. Basic Patient Information
	3.2. Prediction Models Building and Validation
	3.3. Diagnostic Performance Between the CT Model, SPECT Model, ComModel, and Human Experts

	4. Discussion
	5. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Back cover



