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Pomelo is an important agricultural product in southern China. Near-infrared

hyperspectral imaging (NIRHI) technology is applied to the rapid detection of pomelo fruit

quality. Advanced chemometric methods have been investigated for the optimization of

the NIRHI spectral calibration model. The partial least squares (PLS) method is improved

for non-linear regression by combining it with the kernel Gaussian radial basis function

(RBF). In this study, the core parameters of the PLS latent variables and the RBF kernel

width were designed for grid search selection to observe the minimum prediction error

and a relatively high correlation coefficient. A deep learning architecture was proposed

for the parametric scaling optimization of the RBF-PLS modeling process for NIRHI data

in the spectral dimension. The RBF-PLS models were established for the quantitative

prediction of the sugar (SU), vitamin C (VC), and organic acid (OA) contents in pomelo

samples. Experimental results showed that the proposed RBF-PLS method performed

well in the parameter deep search progress for the prediction of the target contents.

The predictive errors for model training were 1.076% for SU, 41.381 mg/kg for VC, and

1.136 g/kg for OA, which were under 15% of their reference chemical measurements.

The corresponding model testing results were acceptably good. Therefore, the NIRHI

technology combined with the study of chemometric methods is applicable for the rapid

quantitative detection of pomelo fruit quality, and the proposed algorithmic framework

may be promoted for the detection of other agricultural products.

Keywords: near-infrared hyperspectral imaging (NIRHI), pomelo fruit quality, agricultural product, chemometric

method, partial least squares (PLS), Gaussian radial basis function (RBF)

INTRODUCTION

Pomelo is one of the special agricultural fruit products that is popular in southern China. Its
scientific name is Citrus maxima (Brum.) Merr. Ripe pomelo fruits are picked, stored, and served
for eating. The fruit peel has functional curative effects in traditional Chinese medicine (Jiang et al.,
2014). The flesh is edible and tastes delicious, sweet, and slightly sour; it is rich in sugar, vitamin
C, and organic acids, which provide a variety of nutrients for the human body (Sirisomboon
and Lapcharoensuk, 2012). People’s health can be partially improved from the consumption of
good-quality pomelo fruits. Eating pomelo can help maintain good stomach digestion ability and
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exerts an auxiliary effect of preventing influenza (Anlamlert et al.,
2015). Thus, the pomelo fruit quality should be determined
during the picking and storage process. Conventional laboratory
methods for detecting chemical contents are tedious and
time consuming. Rapid detection technology is appreciably on
demand (Xu et al., 2020).

Hyperspectral imaging (HI) is regarded as an emerging
advanced analytical technology for the non-destructive rapid
determination of agricultural product quality (ElMasry et al.,
2012; Barreto et al., 2018). HI generates two-dimensional spatial
digital imagery accompanied with spectroscopic records for the
analysis of spectral features in the ultraviolet, visible, near-
infrared, or infrared regions. It technically supports signal
processing in the field of computer vision (Lorente et al., 2012).
The near-infrared (NIR) spectral region (around 800–2,500 nm)
provides a versatile range of light frequencies to analyze the
molecule structure and quantify their substantial contents (Pojić
and Mastilović, 2013). The recognition of informative features
from the natural overlapping signals requires the investigation
of smart chemometric methods in the modern intelligent world
(Sciutto et al., 2014; Cheng and Sun, 2015). On this basis, HI
technology originating from the NIR region (denoted as NIRHI
for short) facilitates the combination analysis of the imaging
pixels and the NIR-range spectral data (Costa et al., 2011; Cheng
et al., 2014). This technology is used as an advanced tool for
qualitative and quantitative analyses in the fields of agriculture,
food, and industry (Wu and Sun, 2013; Verdú et al., 2016;
Arendse et al., 2018). Research on the quality detection of
bakery food, meat, and fresh vegetables (Kamruzzaman et al.,
2016; Erkinbaev et al., 2017) has been published, but quality
assessments for fruits are a brand-new emerging application
(Munera et al., 2017).

In NIRHI analysis, the spatial pixels include rich spectral
information, and the spectral signals can be used for the
rapid quantitative determination of any nutrient content in
agricultural products. The selection of the spatial region of
interest (ROI) and studies on chemometric methods to extract
informative latent variables in the spectral dimension are both
significant for NIRHI technology. Given that the selection of
ROI has been studied extensively (Chen et al., 2019), feature
extraction in the spectral dimension is the main focus of
this study.

For the analysis of spectral data, partial least square (PLS)
regression is a classical method in finding the latent variables
that reflect most of the information of the target analytes. PLS
performs principle component extraction, followed by linear
regression on the component variables (Wold et al., 2001; Jin and
Wang, 2019). However, for NIRHI analysis of complex objects
such as pomelo fruit, the spectral dimension contains signal
responses from all chemical compositions. The regression model
does not stand as a linear formula for a few target analytes.
A non-linear kernel function should then be introduced as an
algorithmic embedment of PLS (Kim et al., 2005). The Gaussian
radial basis function (RBF) is most commonly used for mapping
data into a higher dimensional data space for linear fitting
(Sandberg, 2003). Its effectiveness and fast tuning of the kernel
width ensure that RBF is a successful algorithm application in the

kernel PLS method (Shariati-Rad and Hasani, 2013; de Almeida
et al., 2018).

In this work, NIRHI technology was applied for the rapid
detection of the pomelo fruit quality during its picking
and storage processes. The RBF-implemented PLS (RBF-PLS)
method was investigated as an advanced chemometric method
for the quantitative determination of the sugar (SU), vitamin
C (VC), and organic acid (OA) contents. A deep learning
architecture was built for parametric scaling optimizations. The
model training procedure was launched by automatically tuning
the PLS parameters in combination with the machine learning of
the RBF kernel width, and the optimal model was tested based
on the assumed pseudo-unknown samples. In this way, NIRHI
may be considered a modern popular technology for detecting
the fruit quality of agricultural products.

MATERIALS AND METHODS

Hyperspectral System
As shown in Figure 1, the NIRHI optical system was constructed
under laboratory conditions with constant temperature and
humidity (25 ± 1◦C and 47 ± 1%RH). The NIR lights were
originally generated from a 500W-powered halogen light source.
The halogen light was transformed into a series of parallel lights
via a convex lens (with 30mm focal length). The ImSpector N25E
hyperspectral imager (Spectral Imaging Ltd., Oulu, Finland) is
the main optical part, which splits the source halogen light into
a single frequency and produces a batch of NIR wavelengths
according to the system pre-settings. The N25E imager generates
the full-length NIR waveband of 1,000–2,500 nm with the
common resolution of 8 nm.

The NIR lights are further delivered to the pomelo samples
through a pushbroom scanner. The scanner includes a flat
mirror and a transflective mirror as its main optical parts. The
pushbroom scanner uses a horizontally movable back-and-forth
motion to form the spatial dimensions of the hyperspectral
image. It is steadily set 20 cm away from the surface plane of
the sample pool in the vertical direction. The reflectance lights
that come out from the sample enter an MT-CT image detector,
which includes a CCD unit and some necessary fundamental
optical parts. The NIRHI spectral data are finally recorded
at the data output segment, where there is always a high-
performance computer.

Sample Preparation and Data Acquisition
A total of 300 mature pomelo fruits were collected from a pomelo
forest in southern China. An elementary pre-experimental
selection was made before measuring contents. Some fruits with
a homogeneous peel surface were reserved for further detection.
Some fruits with flesh that had minimal moisture were removed
from the experiments. A total of 248 pomelo fruits were selected
as the target samples for NIRHI measurements and conventional
chemical detection.

Each of the 248 target fruits was cut into two halves along its
central longitudinal surface. One half of each fruit was sent to
quantify its contents of SU, VC, and OA contents. These three
analytes should be detected on the cutting interface via different
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FIGURE 1 | The construction of the NIRHI optical system.

TABLE 1 | The descriptive statistics for the SU, VC, and OA of the 248 pomelo

fruit samples.

Maximum Minimum Average Standard

deviation

Sugar (SU, %) 14.52 8.63 11.51 1.78

Vitamin C (VC, mg/kg) 623.02 347.51 487.71 82.91

Organic acid (OA, g/kg) 13.68 8.91 11.12 1.39

chemical experiments. These chemically measured contents were
supposed to be the reference values for NIRHI modeling because
the analyte fruit flesh samples were from the same cutting
surface. The SU content was identified by 3,5-dinitrosalicylic
acid colorimetry (China’s agricultural industry standard, NY/T
2742-2015). The VC content was determined by 2,6-dichloro-
indophenol titration (China’s national standard, GB 5009.86-
2016). The OA content was detected by ion chromatography
(China’s national standard, GB 5009.157-2016). The descriptive
statistics for the SU, VC, and OA contents of the 248 pomelo fruit
samples are shown in Table 1.

The half was equipped in the sample pool accessory. As
shown in Figure 2A, the halved pomelo fruit was placed into
the cuboid sample pool (the gray frame). The interspace between
the fruit and the box was filled with plasticine (the green
part). The filled sample pool was equipped to the constructed
hyperspectral system, and the NIRHI spectral data of this sample
were collected by pushbroom scanning. The NIRHI data have
two spatial dimensions and one spectral dimension. In the
spatial dimensions, the selection of ROI was studied in our
previous work (Chen et al., 2019), which reported that the 5 × 5

FIGURE 2 | The central longitudinal cut view of the equipped pomelo sample

(A) and the selected ROI areas (B).

square-size data extracted from the core spatial pixel area provide
optimal spectroscopy calibration results. Thus, we selected two
ROIs of 5 × 5 pixels from the main flesh areas around the fruit-
shaped equatorial plane (see the two blue boxes in Figure 2B).
The spectral data within these two ROI areas were extracted from
the NIRHI spatial-spectral data cube. Fifty pixels of NIR spectra
were acquired for each pomelo fruit sample. The average of these
50 spectral data was calculated as the spectral information of each
sample for further chemometric modeling. Finally, the average
spectra of all 248 pomelo samples were obtained, and the spectral
curves are illustrated in Figure 3.

The RBF-PLS Method
The RBF-implemented PLS method is a provoked kernel PLS
regression algorithm extended from the common PLS regression.
It uses the RBF kernel function to transform raw non-linear
complex data into a new defined feature space, in which the data
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can be linearly predicted with the tuning of the number of PLS
latent variables (Chakraborty, 2012; Goudarzi, 2016). The RBF
kernel is defined as follows (Ring and Eskofier, 2016):

K
(

xi, xj
)

= exp

(

−
∥

∥xi − xj
∥

∥

2

σ 2

)

, i, j = 1, 2 . . . n

where σ represents the kernel width. Different values of σ would
lead to diverse kernel mapping results in the new data space.
For a fixed value of σ , the function K

(

xi, xj
)

obtains different
computing values for varying training data of xi and xj, thereby
generating the kernel matrix for the n training samples, which is
constructed as

K =















K (x1, x1) K (x1, x2)
K (x2, x1) K (x2, x2)

· · · K (x1, xn)
· · · K (x2, xn)

...
...

K (xn, x1) K (xn, x2)

. . .
...

· · · K (xn, xn)















,

Successively, the matrix K is transformed toM,

M = K −
1

n
InK −

1

n
KIn +

1

n2
InKIn,

where In is an n-dimensional square all-one matrix. To make
the method smart and data-driven, the algorithm of RBF-PLS
training can be operated in an iteration process as follows:

Step 1: E=M, F = Y ;
Step 2: Randomly initialize U (a matrix consists of s latent
variables);
Step 3: V = KU, V ← V/ ‖V‖;
Step 4: C = YTV ;
Step 5: U = YC, U ← U/ ‖U‖;
Step 6: Repeat Steps 3–6 until convergence occurs;
Step 7: Residual matrix E and F were computed,
E← (I − VVT)E(I − VVT), F← F − VVTY ,
where I is an n-dimensional identity matrix;
Step 8: Turn to Step 3 until the convergence occurs for the
residuals E and F.

The predicted data of training set are evaluated by
the equation

Y ′ = MU(VTMU)
− 1

VTY ,

where V is formed by the columns of latent vector v; U is formed
by the columns of latent vector u; and Y is the predictor matrix.
The training process shows that the optimization of the RBF-PLS
calibration model is mainly controlled by tuning the RBF kernel
width (i.e., σ ) and the number of PLS latent variables (i.e., s).
The combined optimization of σ and s should be an applicable
machine learning mode for advanced parameter training.

Furthermore, for the testing sample set, the kernel matrix
Ktest is computed and constructed similar to constructing K, and

FIGURE 3 | The extracted average spectra of the 248 pomelo samples in the

NIRHI spectral dimension.

Ktest is (t × n)-dimensional. Each element of Ktest is obtained
by computing the kernel function between the t testing samples
and the n training samples. Successively, we will have Ktest

transformed toMtest:

Mtest = Ktest −
1

n
ItK −

1

n
KtestIn +

1

n2
ItKIn,

where It is a t× n all-onematrix. The algorithm of the testing part
is similar to that of the training part, and the prediction equation
of the testing set has the same structure as that of the training set.

The RBF-PLS model is developed by regression of the
response matrix X against the predictor matrix Y. The model
based on experimental data is established to quantitatively
estimate the pseudo-unknown samples based on their measured
features. RBF-PLS regression and prediction were carried out
using the MATLAB coding platform (ver. R2018a) accompanied
with its toolboxes. The parametric scaling on the kernel
function can be launched in a deep learning mode, and
the selection of latent variables can be embedded for deep
combined optimization.

Model Evaluation Indicators
The chemometric study for the NIRHI analytical model requires
the method to be intelligently adjusted to the detected data.
Thus, the data knowledge should be recognized in a self-adaptive
machine learning mode. On this basis, the NIRHI spectral data
of all 248 pomelo fruit samples should be primarily divided into
the training set and the testing set. The training samples are
used to establish and optimize the model. By contrast, the testing
samples, which are not involved in the model training process,
aim to evaluate the best-trained calibration model. The model
optimization effects need to be validated during the training
process, so the training sample set should be further divided
into two subsets: the calibration set and the validation set. The
calibration set is for model establishment, and the validation set
is for model optimization.

Experimental evidence showed that the samples divided for
calibration, validation, and testing are usually in the ratio of 2:1:1
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(Chen et al., 2015). Of the total 248 samples, we randomly chose
120 samples for calibration, 64 samples for validation, and 64
samples for testing.

The model prediction effects are generally quantified using
two important indicators. One is the root mean square error
(RMSE), which is used to estimate the model prediction bias.
The other one is the correlation coefficient (CC), which is
a statistical metric representing the closeness of the NIRHI
predicted values to the chemically measured reference contents.
These two indicators are formulated as follows:

RMSE =

√

√

√

√

1

n− 1

n
∑

i=1

(yi − ŷi)
2,

CC =

∑n
i=1 (yi − yave)(ŷi − ŷave)

√

∑

(yi − yave)
2∑ (ŷi − ŷave)

2
,

where ŷi and yi are the NIRHI predicted value and its chemically
measured reference value of the i-th sample, respectively. ŷave and
yave are the average predicted value and average reference value of
n samples, respectively. n is the total number of target samples.

As the best optimal model was identified by the validation
samples and evaluated by the testing samples, the model
indicators were denoted as RMSEV and CCV for the validation
sample set and denoted as RMSET and CCT for the testing
sample set.

RESULTS AND DISCUSSIONS

Parametric Scaling Deep Learning Results
of the RBF-PLS Model
The extracted NIRHI spectra of the 248 pomelo fruit samples
were used to establish calibration models by using the proposed

FIGURE 4 | The combined deep tuning of RBF kernel width (σ ) and the number of PLS latent variables (s) for the optimization of the NIRHI calibration model (A–C are

for the prediction of SU, VC, and OA, respectively).

TABLE 2 | The optimal RBF-PLS models for NIRHI prediction of SU, VC, and OA contents in pomelo fruit samples.

RBR-PLS model PLS model

Kernel parameters RMSEV CCV RMSEV CCV

SU (%) σ = 38.97; s = 8 1.076% 0.921 1.361% 0.895

VC (mg/kg) σ = 44.38; s = 14 41.381 mg/kg 0.913 50.672 mg/kg 0.862

OA (g/kg) σ = 27.20; s = 11 1.136 g/kg 0.902 1.475 g/kg 0.875

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 January 2021 | Volume 8 | Article 6169438

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Chen et al. NIRHI Detection on Pomelo Quality

FIGURE 5 | The iterative optimization of the RBF-PLS models for the NIRHI data training (A–C are for the prediction of SU, VC, and OA, respectively).

RBF-PLS method. A deep learning architecture was built for
parametric scaling search of the optimal RBF-PLS parameters.
The models for predicting the SU, VC, and OA contents were
trained based on the 128 calibration samples, and the modeling
parameters were tunable for deep searching of their optimal
combination values. For the RBF kernel, the kernel width (σ ) is
commonly set as 2i (i = 0,±1,±2 . . .) (Menezes et al., 2019).
For statistical convenience, we set σ to change from 0.01 to 64
with the step of 0.01, which included the close estimation of
2i with i = 0,±1,±2,±3,±4,±5,±6. Thus, there were 6,400
candidate values of σ for the kernel width scaling. Meanwhile,
the PLS latent variable queues in the front were considered
the most informative for spectral data interpretation (Shariati-
Rad and Hasani, 2010). The number of latent variables (s) was
set as integers from 1 to 20, which indicated that the most

important latent variables were used for model optimization.

The predictive RMSEV of the validation samples was used as
the main indicator to identify the appreciating model with
its optimal parameter combination of (σ , s). The grid search
of the RMSEV corresponding to each combination is shown
in Figure 4. In Figure 4, the two-dimensional axes represent
the parametric tuning of σ and s, respectively. The predictive
RMSEV values of each model were demonstrated as contour
color mappings. Figures 4A–C show the validation results for
the SU, VC, and OA contents, respectively. The most optimal
training results could be found at the dark blue digit locations,
so the optimal combination of (σ , s) was identified (see Table 2).
The corresponding modeling results (RMSEV and CCV) were
also listed in the table. For comparison, the classical PLS model

was established in model training, and the results are listed in
Table 2. The prediction results in Table 2 indicated that the RBF-
PLS models performed better than the PLS model during the
training process. Therefore, the RBF-PLS models are feasible for
the NIRHI quantitative determination of the designated contents
related to the quality of pomelo fruits.

Iteration Progress for the Selection of PLS
Latent Variables
The RBF-PLS model was optimized by iterative updating of the
matrix of latent variables (i.e., the matrix U). For a fixed value of
s, the applied latent variables were randomly initialized and then
gradually alternated. The progress of updating the latent variables
was iteratively set for 200 times. For example, the optimal model
for the prediction of the SU content was determined with eight
latent variables. The eight latent variables were randomly chosen
at the beginning, and they gave the initial predictive RMSEV
of 2.807%. The 200-time iteration model made the prediction
more accurate as the RMSEV curve went down and became
stable (see Figure 5A). Finally, the prediction on the SU content
with eight latent variables observed its optimal result of RMSEV
equal to 1.076%, which was captured within the 200 iteration
time. Similarly, the iterative optimization trends of the RBF-PLS
models for the prediction of the VC and OA contents are shown
in Figures 5B,C. As shown in Figure 5, the iteration mechanism
during the PLS process is feasible to enhance the optimization
ability of the RBF-PLS calibration model for the NIRHI spectral
analysis of pomelo fruit samples.
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FIGURE 6 | The regression plots of the NIRHI predictions and the reference chemical measurements for the testing samples (A–C are for the prediction of SU, VC,

and OA, respectively).

Model Evaluation Based on the Testing
Samples
To verify the effectiveness of the RBF-PLS model applied
to the NIRHI spectral analysis of pomelo fruit samples, the
well-trained models for the prediction of the SU, VC, and
OA contents were evaluated by the testing samples, which
were not involved in the modeling process. The testing
models were re-established by using the optimally selected
parameter combination of (σ , s), as shown in Table 2. The
regression plots of the NIRHI predictions and the reference
chemical measurements are shown in Figure 6. The predicted
RMSET values were obtained as 1.404%, 61.540 mg/kg, and
1.573 g/kg for the model testing on the SU, VC, and OA
contents, respectively, which were under 15% of their reference
chemical measurements. The acquired CCT was larger than
0.85, which seemed to be acceptable for model evaluation of
agricultural products.

CONCLUSIONS

The RBF-PLS method was proposed to extract the spectral
features from the NIRHI data for the quantitative determination
of the SU, VC, and OA contents in pomelo samples. The
NIRHI spatial properties were pre-determined based on previous

research results. The spectral calibration models were trained in
the deep search of the combined parameters (σ , s), where σ was
screened from 6,400 possible candidate values changing from
0.01 to 64 with a step of 0.01, and s was changed as an integer
from 1 to 20. To observe the minimum RMSEV and CCV, the
grid values of (σ , s) were all tested, and the optimal parameters
were identified. The optimal models were found during the
calibration and validation processes, with the predictive results
of RMSEV equal to 1.076% for SU, 41.381 mg/kg for VC, and
1.136 g/kg for OA. All of the three CCV exceeded 0.9. The
selected models were evaluated based on the testing samples, and
the prediction results were also appreciable. The experimental
results indicated that the proposed parametric scaling RBF-
PLS method is feasible to determine some pomelo fruit quality
targeting contents in combination with the NIRHI technology.
Studies on NIRHI chemometric methods are essential to
improve the calibration models in the rapid determination of
agricultural products.
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Food scarcity, population growth, and global climate change have propelled crop yield

growth driven by high-throughput phenotyping into the era of big data. However, access

to large-scale phenotypic data has now become a critical barrier that phenomics urgently

must overcome. Fortunately, the high-throughput plant phenotyping platform (HT3P),

employing advanced sensors and data collection systems, can take full advantage

of non-destructive and high-throughput methods to monitor, quantify, and evaluate

specific phenotypes for large-scale agricultural experiments, and it can effectively

perform phenotypic tasks that traditional phenotyping could not do. In this way, HT3Ps

are novel and powerful tools, for which various commercial, customized, and even

self-developed ones have been recently introduced in rising numbers. Here, we review

these HT3Ps in nearly 7 years from greenhouses and growth chambers to the field,

and from ground-based proximal phenotyping to aerial large-scale remote sensing.

Platform configurations, novelties, operating modes, current developments, as well

the strengths and weaknesses of diverse types of HT3Ps are thoroughly and clearly

described. Then, miscellaneous combinations of HT3Ps for comparative validation and

comprehensive analysis are systematically present, for the first time. Finally, we consider

current phenotypic challenges and provide fresh perspectives on future development

trends of HT3Ps. This review aims to provide ideas, thoughts, and insights for the optimal

selection, exploitation, and utilization of HT3Ps, and thereby pave the way to break

through current phenotyping bottlenecks in botany.

Keywords: crop improvement, high-throughput, phenomics, phenotyping platform, plant science, remote sensing,

sensors
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INTRODUCTION

The growth and development of plants, involving their
photosynthesis, transpiration, flowering, and fruiting processes,
are the basis of life on earth, and support 7.5 billion people
(Pieruschka and Schurr, 2019). Unfortunately, the agriculture
that sustains humanity is now facing three stark challenges at
once: climate change, resource depletion, and population growth
(Kim, 2020). In the next 30 years, the global population is
expected to grow by 25% to 10 billion (Hickey et al., 2019). One
of the greatest challenges in the twenty-first century will be to
quickly expand crop production tomeet this growing demand for
food, clothing, and fuel. Salinization and erosion of agricultural
land around the world, coupled to declining phosphate reserves,
pose a grave threat to growth in the global production of
crops. On April 21, 2020, the World Food Programme (WFP)
announced that as new coronavirus pandemic spreads and
batters the global economy, the number of people facing severe
food crisis in the world could increase to 265 million within the
year. In the past decade, cheaper and faster sequencing methods
have fostered increasing crop yields and generated an enormous
increase in plant genomic data. The costs of sequencing have
fallen dramatically, from $0.52 per Mb of DNA sequence in 2010
to just $0.010 in 2019, while the cost of sequencing a human-
sized genome has decreased from $46 774 to a relatively paltry
$942 (National Human Research Institute). Although high-
throughput genotyping is expanding exponentially, the collection
and processing of plant phenotypes constrain our ability to
analyze the genetics of quantitative traits and limit the use of
breeding for crop yield improvement (Mccouch et al., 2013).

The phenotype arises from interactions between genotype
and environment (Hickey et al., 2019), and the essence is the
temporal expression of the plants’ gene map in characteristic
geographic regions (Zhao, 2019). Phenotyping applies specific
methods and protocols to measure morphological structural
traits, physiological functional traits, and component content
traits of cells, tissues, organs, canopy, whole plants, or even
populations. However, traditional breeders perform artificial
phenotyping based on the appearance, taste, and touch of the
crop, undoubtedly a time-consuming, labor-intensive, and even
destructive method that requires immense human resources
to sample large population of crop plants. The limitation
of phenotyping efficiency is increasingly recognized as a key
constraint of progress in applied genetics, especially the time
interval for acquiring traits in different environments (Guzman
et al., 2015). Further, conventional phenotyping methods also
make it difficult to capture physiological and biochemical
phenotypes at the level of plant basic mechanisms that reveal
patterns of genetics and biology. So, to alleviate this bottleneck,
since 2000 a variety of phenotyping platforms have been
developed which are now common tools in commercial or
research teams (Granier and Vile, 2014).

An image-based, high-throughput phenotyping platform
(HT3P) is defined as a platform that can image at least
hundreds of plants daily (Fahlgren et al., 2015b). Given that
some HT3Ps currently not only rely on images but also are
based on contact (albeit non-destructive), “HT3P” is defined here

as a platform that can collect massive amounts of phenotypic
data from hundreds of plants every day with a high degree of
automation. HT3P is a novel and powerful tool allowing us
to monitor and quantify crop growth and production-related
phenotypic traits in a non-destructive, fast, and high-throughput
manner, and then to achieve genomics-assisted breeding (GAB)
through genomic approaches of quantitative trait loci (QTL)
mapping, marker assisted selection (MAS), genomic selection
(GS), and genome-wide association studies (GWAS), thereby
assisting crop growers to adapt to changing climate conditions
and market demand for yield. When genomics and high-
throughput phenotypic data are robustly linked together, this
fusion will also greatly promote the development of phenotyping.
Furthermore, as Figure 1 shows, various types of HT3Ps
contribute to the phenotyping of plant morphological structure,
physiological function, and fractional content, and they can
further promote the developments of multi-omics and reveal the
regulatory networks and biological patterns of plants’ growth
and development.

Nevertheless, because the large phenotyping platforms mostly
are developed by professional commercial companies, the
underlying hardware and software are protected by patents,
so they cannot be modified to meet specific research needs
(Czedik-Eysenberg et al., 2018). Consequently, a diversified
range of commercial phenotyping platforms, as well as those
either customized or self-developed, are continuously emerging.
In this context, this paper reviews HT3Ps (root phenotyping
not included) under three scenarios: (1) greenhouses and
growth chambers under strictly controlled conditions; (2)
ground-based proximal phenotyping in the field, and; (3)
aerial, large-scale remote sensing, with an emphasis on
platform novelties, sensor configurations, operation modes, and
applications. Then, we innovatively propose ways to combine
HT3Ps for their comparative validation or comprehensive
analysis. Finally, we discuss some prevailing issues in current
high-throughput phenotyping and also highlight the prospects
for future development of HT3P. We hope this review
enables researchers on plant phenotyping to make more
informed choices when employing HT3P, provides fresh ideas
and thoughts for intrepid developers of HT3P, and that
ultimately hastens the next green revolution in crop breeding.

HT3P FOR INDOOR PHENOTYPING
UNDER STRICTLY CONTROLLED
ENVIRONMENTAL CONDITIONS

High-throughput plant phenotyping in the growth chamber
or greenhouse entails the precise control of environmental
factors—temperature, humidity, gas concentration, air volume,
wind speed, light intensity, spectral range, photoperiod, and
nutrient content—and a high-throughput, non-destructive,
highly repeatable, fast, and accurate capture of the plant response
to a specific environment. This can be done using model crops
or representative plants as research objects, and the analysis
of plants’ structure, physiology, and biochemical characteristics
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FIGURE 1 | HT3Ps employed for phenotyping plant phenotypes of genotype, environment, and management (G×E×M) interactions advance phenomics; sequencing

platforms employed for researching genotypes and transcripts assist in genomics and transcriptomics; mass spectrometry platforms employed for researching

proteins, and metabolites promote proteomics and metabolomics; -omics platforms further progress multi-omics in systems biology.
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with assistance of HT3P can reveal adaptive mechanisms related
to environmental signals, with a view to eventually elucidating
their genetic control.

Given the mechanical structure of the platform and
movement mode between the sensors and plants, an indoor
HT3P can be categorized as either a benchtop type or a
conveyor type. Table 1 shows specific examples and details
of these two types of HT3P. No matter which type it is,
the phenotyping platform integrates common cameras,
supplemental light sources, automatic watering, and weighing
devices, to automatically collect plant phenotypic data. Available
cameras include those capable of capturing RGB, infrared
(IR), fluorescence (FLUO), near-infrared (NIR), multispectral,
or hyperspectral images. For example, the FLUO imager
is used to obtain chlorophyll or photosynthesis-related
characteristics (Choudhury et al., 2019). Hyperspectral
imaging in particular provides access to crucial metrics,
such as those for photosynthesis, chlorophyll, and nitrogen
content. See Figure 2 for detailed information on the diverse
sensors now available to monitor, quantify, and evaluate key
agronomic traits.

Compared with field conditions, although indoor experiments
cannot provide the authenticity of soil system and the
complexity of biological and abiotic stress for plants, the
purpose of indoor HT3P experiment is to study qualitatively or
quantitatively the response of representative or interesting plants
to specific environment. Environmental control platform avoids
the unpredictable phenotypic variation caused by the interaction
between genotype and natural environment (G × E). Therefore,
considering uncontrollable factors in the field, HT3P deployed
in greenhouse or growth chamber is widely used to study the
response of plants to specific growth conditions, and accurately
capture the morphological structural, physiological functional or
component content phenotypic indicators.

Conveyor-Type Indoor HT3P
The conveyor-type HT3P operates in the “plant-to-sensor”
mode. Potted plants are transported into an imaging room with
cameras, passing through an automatic door on the conveyor
that is controlled by computer for automatic imaging, after
which plants are returned to their original growth positions.
Cameras are typically installed on the top and side of the

TABLE 1 | Overview of HT3Ps used in greenhouses and growth chambers under environmentally controlled conditions.

Indoor HT3P Model Sensors Throughput

(pots)

Plants Traits Location References

Conveyor

type

LemnaTec

Scanalyzer

3D

RGB, NIR, FLUO 312 Barley Biomass, plant height,

width, compactness,

drought stress

Germany Chen et al., 2014;

Neumann et al., 2015

LemnaTec

Scanalyzer

3D

RGB, NIR, FLUO,

hyperspectral

672 Sorghum,

maize, barley

Biomass, leaf water

content

USA Miao et al., 2020

LemnaTec

Scanalyzer

3D

RGB, NIR, FLUO,

hyperspectral

2,400 Chickpea,

wheat

Nutrient stress, salt

stress, water content,

nitrogen content

Australia Neilson et al., 2015;

Atieno et al., 2017;

Bruning et al., 2019

Bellwether RGB, NIR, FLUO 1,140 Setaria Plant height, biomass,

water-use efficiency,

water content

USA Fahlgren et al., 2015a

– Hyperspectral 100 Maize PLA, NDVI, perimeter,

major axis length, minor

axis length, eccentricity

USA Ma et al., 2019

HRPF RGB, CT 5,472 Rice Drought stress, tiller

number

China Yang et al., 2014; Duan

et al., 2018

Benchtop

type

Phenovator Monochrome 1,440 Arabidopsis

thaliana

PLA, PSII efficiency The

Netherlands

Flood et al., 2016

Phenoscope RGB 735 Arabidopsis

thaliana

Rosette size, expansion

rate, evaporation

France Tisne et al., 2013

– RGB 350 Arabidopsis

thaliana

Radiation dosage

stress, projected area,

convex hull area,

perimeter length

Korea Chang et al., 2020

Phenoarch RGB – Maize Growth rate of ear and

silk

France Brichet et al., 2017

Glyph RGB 120 Soybean Water use efficiency,

drought stress

Argentina Peirone et al., 2018

LemnaTec

Scanalyzer

HTS

RGB, FPUO, NIR – Arabidopsis

thaliana

Water stress USA Acosta-Gamboa et al.,

2017
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FIGURE 2 | Sensors currently available to monitor, quantify, and estimate key morphological structural traits (e.g., plant height, biomass, canopy coverage, lodging),

physiological functional traits (e.g., FAPAR, staygreen/senescence, light-use efficiency, disease/pests), and component content traits (e.g., chlorophyll content,

nitrogen content, water content) of plants.

darkroom to perform this imaging, and/or the plants are
rotated for data acquisition. The automatic door eliminates the
interference of ambient light, and there are halogen lamps to
provide illumination.

Scanalyzer 3D, a typical conveyor-type HT3P developed
by LemnaTec GmbH (Aachen, Germany), has been adopted
by some international organizations, covering the following
versions (Yang et al., 2020). The Plant Accelerator of the
Australian Plant Phenomics Facility (APPF) is a leading
international plant phenotyping research institution. Its
conveyor HT3P can handle 2,400 plants and is equipped
with multiple imaging stations (RGB, NIR, FLUO, and

hyperspectral), and this has been used successfully to study
the nutrient deficiency of crops (Neilson et al., 2015) and
salt tolerance of chickpea (Atieno et al., 2017). The four
imaging chambers are separated and function independently
of each other. Recently, Bruning et al. (2019) used just
two hyperspectral imagers in its hyperspectral imaging
room to evaluate the concentration and spatial distribution
of water content and nitrogen level in wheat. In another
example, the conveyor belt system in the Smarthouse (APPF,
University of Adelaide) was used to study the effects of zinc
(Zn) and an arbuscular mycorrhizal fungus upon tomato
(Brien et al., 2020).
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Similarly, Scanalyzer 3D, in the Greenhouse Innovation
Center of University of Nebraska-Lincoln, allows the
phenotyping of 672 plants with a height of up to 2.5m,
being able to collect RGB, FLUO, IR, NIR, and hyperspectral
images from the top and side view of plants (Choudhury et al.,
2016). Each imaging room is equipped with a rotating elevator
that permits 360 side-views of a given plant (Choudhury et al.,
2018). There are three watering stations with balance, which
can apply watering to meet the target weight of the pot or in
specific volume, for which the amounts of water added are
recorded. Since the imaging chamber is self-contained, this
HT3P unit allows the employed sensors to be adjusted according
to research needs. For example, RGB, NIR, and FLUO cameras
are used to analyze the spatiotemporal biomass accumulation of
barley under drought stress (Neumann et al., 2015). In studying
maize, Ge et al. (2016) used RGB and hyperspectral imaging
rooms to analyze this crop’s growth and water-use dynamics,
in addition to quantifying its leaf water content. To measure
the nutrient concentration and water content of plants, Pandey
et al. (2017) relied solely on the hyperspectral imaging room
of the Scanalyzer 3D, this being the first time hyperspectral
data was used to detect the nutrient content of living plants in
vivo. Furthermore, Miao et al. (2020) segmented the generated
hyperspectral images of sorghum and maize, at the organ level,
to identify genetic associations, which let them measure plant
properties more broadly.

The bellwether phenotyping platform, at the Donald Danforth
Plant Science Center, including a Convion (Winnipeg, Canada)
growth chamber and an imaging station (LemnaTec Scanalyzer)
(Fahlgren et al., 2015a). Plant barcodes on the pots are used for
radiofrequency identification (RFID), to match up image data
with the metadata. The 180-m-long conveyor belt system can
accommodate 1,140 plants, which are transported into FLUO,
VIS, andNIR imaging stations through dark adaptation channels.
Interestingly, this conveyor system is divided into four modules
that can run independently, or as a whole, which increases
the research flexibility and scope of potential experiments. To
sum up, as a widespread conveyor-belt HT3P for large-sized
plants, Scanalyzer 3D is effective in studies of plant biology and
plant breeding.

The purpose of the greenhouse is to provide a uniform,
controlled environment. But since most conveyor HT3Ps often
need to transport plants to the specific imaging room, this
introduced microclimatic heterogeneity likely influences the
plants’ growth and response to environmental changes, rendering
the phenotypic data collected inaccurate. Fortunately, the HT3P
built by Purdue University overcomes this interference of a
differential microclimate (Ma et al., 2019), in that plants are
grown on cyclic conveyor belts throughout their whole growth
cycle, thus exposing them to the same heat and radiation
conditions. Huazhong University of Science and Technology
and Huazhong Agricultural University (Wuhan, China) jointly
developed a high-throughput rice phenotyping facility (HRPF)
with an image analysis pipeline, able to perform color imaging
and X-ray computed tomography (CT); it can monitor 15
agronomic traits of 1,920 rice plants (Yang et al., 2014). This
HRPF was used to quantify the dynamic response of rice to

drought (Duan et al., 2018). However, the investment cost of
conveyor HT3Ps is high, and further improvement is needed to
enhance flexibility.

The CT platform can high-throughput visualize and
quantify external and internal geometric features, which offers
the opportunity to collect morphological and anatomical
characteristics of plants. There are two general types of CT
platforms used in plant sciences: industrial CT scanners and
medical CT. Industrial CT scanners with a higher resolution
than medical CT, also known as micro-CT,µCT, or nano-CT, can
be applied for the subtle phenotypic traits of plants. For example,
Tracy et al. (2017) used µCT scanning to obtain detailed three-
dimensional phenotypes of Arabidopsis thaliana and barley,
which allows the measurement of spike size and further accurate
staging at the flower and anther stages. This rapid and non-
destructive method overcomes the traditional tedious steps in
cytological microscopy, such as fixation, sectioning, staining, and
microanalysis. Compared to µCT, medical CT can faster scan
larger samples and larger numbers of samples, despite its lower
resolution. Gomez et al. (2018) used a medical CT platform to
study the geometric characteristics of sorghum stem, finding that
medical CT estimates were highly predictive of morphological
traits and moderately predictive of anatomical traits.

The conveyor-type HT3P (excluding CT) can carry samples of
large size (e.g., sorghum and corn) and large capacity, but it may
affect those plants with fragile stems due to shaking of the belt.
And since spectral information is not collected in situ, there are
environmental differences between the plants’ growth location
and the imaging room, which may lead to inaccurate phenotypic
data. The CT platform enables the acquisition of meticulous
morphological and anatomical traits of plant, which has great
application prospects. The future conveyor-type HT3P will aim
for high operational stability and environmental homogeneity,
providing smooth plant transportation and accurate climate
control for plant science research, and enabling complete precise
phenotyping of plant traits throughout reproductive period.

Benchtop-Type Indoor HT3P
In measuring phenotypic traits susceptible to environmental
changes (temperature, wind, to name a few), especially for small
species with fragile stems, it is a wise choice to keep plants
still while the sensors are moving about. This is exactly how a
benchtop HT3P works, for which the operation mode is one of
“sensor-to-plant.” The imaging head is integrated with multiple
sensors, driven by a computer-controlled mechanical arm, which
automatically locates the position where a plant is growing and
collects its phenotypic data in situ. In general, the benchtop
HT3P also features a precisely controlled irrigation and weighing
system, with supplemental light sources.

Arabidopsis thaliana is a primemodel plant because of its wide
distribution, fast life cycle, and relatively small genome (Kaul
et al., 2000), making an ideal study species for the benchtop
HT3P. The platform for measuring photosynthetic parameters
(PSII, photosystem II), named Phenovator, can accommodate
1440 A. thaliana plants (Flood et al., 2016). Driven by an
XY camera-movement system, the imaging head carrying the
cameras measures photosynthesis and projected leaf area (PLA)
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at eight wavelengths, via an eight-position filter wheel installed
on the monochrome camera. For the Phenoscope platform, its
imaging system consists of digital camera only (Tisne et al.,
2013), but it can carry 735 individual pots. Its ingenious feature
is that it can continuously rotate each pot, so the sampled
plant experiences the same external conditions, thus minimizing
micro-environmental variation at the individual plant level and
providing high spatial uniformity.

Similarly, the LemnaTec Scanalyzer HTS is equipped with a
robotic arm that houses VIS, FLUO, and NIR cameras to take
top views of small plants. It is has been used to study the time-
dependent effect of water stress on A. thaliana (Acosta-Gamboa
et al., 2017). Although the number of samples it can process is
relatively small, it provides sufficiently rich spectral information.
In mutation breeding, the phenotype discovery of many mutants
is rapidly posing a limitation to molecular plant physiology
research (Fraas and Lüthen, 2015). Recently, Chang et al. (2020)
collected the growth images of 350 A. thaliana and compared the
subtle morphological effects of different radiation dosages during
its growing period, obtaining not only dynamic growth behavior
information (such as the plant growth rate post-radiation) but
also the phenotypic characteristics of dose effects.

Plant silk is normally difficult to detect and quantify because
of its unique features. To overcome this, Phenoarch (INRA,
Montpellier, France) made a breakthrough, when Brichet et al.
(2017) used it to monitor the growth dynamics of corn ears and
silks. That HT3P unit has two imaging cabins. First, the plants
are rotated at a constant speed, and RGB cameras determine the
spatial coordinates of the ears on them. Then the robotic arm
assists in the automatic positioning of the camera at a 30-cm
distance from the ear, to continue collecting of high-resolution
images of silks. In this way, the daily growth of ear and silk of
hundreds of plants can be tracked. Crop 3D, developed by the
Chinese Academy of Sciences (Guo et al., 2016), takes LiDAR
as the core sensor and integrates a high-resolution RGB camera
with a thermal and hyperspectral imager, applying one key trigger
to synchronously acquire multi-source data and extract plant
morphology parameters. Specifically, the sensors adopt a vertical
downward or overhead mode, to mount and shoot, carrying
out single row scanning, multi-row scanning, and fixed-point
positioning scanning.

Although a low-cost and non-commercial platform has a
small sample capacity, it could also generate high-throughput
phenotypic data. Glyph, as a representative, consists of four
bridge-like structures, whose drip irrigation equipment and
digital camera form a gantry that moves on the track between
pair of rows. It has been successfully used for predicting the field
drought tolerance in soybeans (Peirone et al., 2018). The SITIS
platform, which consists of PVC pipes with irrigation points,
was used to evaluate water stress tolerance of cotton cultivars
(Guimarães et al., 2017), and it also enables the evaluation of
plant roots. However, this platform is not an image-based, non-
destructive one to measure plant traits, so it still requires much
manual operation and experimental processing. The human-
like robotic platform is a newer method to measure plant
phenotypic traits instead of doing such manual operations. The
vivo robotic system, consisting of a four degree of freedom

(DOF)manipulator, a time-of-flight (TOF) camera, and a gripper
integrated with an optical fiber cable and thermistor, can be used
for the automatic measurement of maize and sorghum leaf traits
(Atefi et al., 2019). More specifically, the TOF camera acts as
the vision system, and the gripper can measure VIS-NIR spectral
reflectance and temperature; however, its capture speed, as well
as its capture success rate (78% for maize and 48% for sorghum),
need further improvement. The rapid development of such a
robot system can provide reference data and supplementary
support for image-based plant phenotyping.

Strictly benchtop-type HT3Ps tend to focus on model
plants of small size (e.g., A. thaliana) and allow for the
collection of trait data associated with subtle phenotypic
changes, and their situ extraction also ensures homogeneity of
growth environment and undisturbed development. However,
sophisticated commercial HT3Ps tend to be capital-intensive,
while low-cost self-developed platforms have small sample
capacity and low throughput, whose quality, credibility, and
abundance of phenotypic data can be somewhat reduced.
Fortunately, artificially intelligent plant growth chambers, plant
factories, and rapid iterative breeding have opened new avenues
for indoor HT3Ps. The future benchtop-type HT3P may be
able to omnidirectionally monitor, capture, and track subtle
morphological and physiological changes of multi-level traits in
a wide range of model plants, with high-throughput and full-
automation, to reveal functional gene expression and biogenetic
regulation patterns.

HT3P FOR FIELD PHENOTYPING IN
NOTORIOUSLY HETEROGENEOUS
CONDITIONS AND RELATIVELY
UNCONTROLLABLE ENVIRONMENTAL
FACTORS

Plants that grow naturally in the field are affected by weather
(e.g., rain, frost, snow), biotic and abiotic stresses (e.g., drought,
low-temperature, low-nitrogen, pests), as well as soil properties
(e.g., nutrient gradients, heterogeneity, micro-environment),
all of which are extremely distinct from the environment of
greenhouse and growth room, making the field crop phenotype
an intricate one. Whereas controlled environment, image-
based phenotyping platforms are almost universally popularized
worldwide, the majority of crop breeding appears in the
field with little if any selection in controlled environments
(Furbank et al., 2019). And the indoor environment can only
simulate but not recreate the real field setting. These factors
stimulated the exponential increase of a wide variety of HT3Ps
in fields.

Apparently, field HT3Ps operate in the “sensor-to-plant”
mode. According to their usage scenarios and imaging distance,
field HT3Ps can be categorized into ground-based and aerial
platforms. The relationship between a platform’s characteristics
and field crop traits determines the efficiency of the phenotype
platform to a certain extent (Kuijken et al., 2015). Based on this,
ground-based platforms can be further classified as pole/tower-
based, mobile, gantry-based, and cable-suspended. Likewise,
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aerial platforms could be categorized further, as the unmanned
aerial platform (UAP), manned aerial platform (MAP), and
satellite platform. Figure 3 shows specific scenarios of various
types of applied HT3Ps.

Despite the complex interactions of genotype, environment,
and management (G×E×M), the proliferation of a wide variety
of HT3Ps in recent years has greatly assisted researchers in
understanding the genetic structure of crops, obtaining high-
quality genetic gains, and improving the ability to genetically
analyze crop traits related to yield and stress resistance.
However, the diversity of HT3Ps also brings with considerations
of availability, feasibility, standardization, big data,
and reliability.

Ground-Based Field HT3P
Ground-based HT3P means proximal phenotyping that can
provide higher resolution data than aerial remote sensing. It is
convenient to collect phenotypic data of time series and analyze
the dynamic response and time dependence of phenotypes.
However, the ground-based HT3P is not suitable for large-scale
phenotyping tasks. Table 2 shows specific examples and details of
these four types.

Pole/Tower-Based Field HT3P
The pole/tower-based HT3P is formed when sensors are
mounted directly atop a pole or tower made of aluminum,
steel, or plastic fibers, which can be of stationary or mobile

FIGURE 3 | The various types of HT3Ps mentioned in this review (partial display) including HT3Ps in the greenhouse/growth chamber (i.e., benchtop-type and

conveyor-type), field ground-based HT3Ps (i.e., pole/tower-based, mobile, gantry-based, and cable-suspended) and aerial HT3Ps (i.e., UAP, MAP, and satellite).
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TABLE 2 | Overview of ground-based HT3Ps used in the field under real uncontrolled environmental conditions.

Field HT3P Designation Sensors Feature Plants Traits Country References

Pole/tower-based – Terrestrial

laser scanner

Maximum load of

50 kg, 3.8m high,

covers 120m

Maize,

soybean,

wheat

Canopy height Switzerland Friedli et al., 2016

CropQuant RGB, NIR Combined with IoT Crop Crop growth rate UK Zhou et al., 2017

PhenoCam RGB Large phenotyping

network

Ecosystem Canopy greenness USA Richardson et al., 2018

– Hemispherical

video camera

Automatic camera

track system

Wheat, oat,

barley

Crop lodging USA Susko et al., 2018

– Laser-

Induced

Fluorescence

Transient

(LIFT)

Covers 50m Barley, Sugar

Beet

Photosynthesis Germany Raesch et al., 2014

– RGB, NIR Consists of two

8-m high towers

Rice Shoot biomass, panicle

number, grain weight

Colombia Naito et al., 2017

Mobile – LiDAR, RGB,

thermal IR, IR

thermometer,

hyperspectral

Speed of 1 m/s Wheat Canopy height, leaf

angular distribution,

leaf area, leaf volume,

spike number, VIs,

canopy transpiration

Australia Deery et al., 2014

– Ultrasonic,

NDVI, thermal

IR,

spectrometers,

RGB

A “stop-measure-

go”

model

Soybean,

wheat

Canopy height, NDVI,

canopy temperature

USA Bai et al., 2016

Phenomobile Lite LiDAR, RGB,

NDVI

Three-wheeled

buggy

Wheat Plant height, biomass,

ground cover

Australia Jimenez-Berni et al.,

2018

GPhenoVision RGB-D,

thermal,

hyperspectral

Modularity,

customizability

Cotton Canopy height, width,

growth rate, projected

leaf area, volume, yield

USA Jiang et al., 2018

– LiDAR Group observation

on parcel, “stop-

measure-go”

model

Maize Plant height China Qiu et al., 2019

– Ultrasonic,

spectrometer,

RGB, IR

radiometer

Emergency stop

and inspection

Soybean Canopy height, canopy

coverage, NDVI

USA Murman, 2019

Gantry-based LeasyScan Planteye Continuous

phenotyping

Peanut,

cowpea, pearl

millet, maize

Canopy transpiration,

plant height, 3D leaf

area, water use

efficiency

India Vadez et al., 2015;

Sunil et al., 2018

Phénofieldr RGB,

VIS-NIR,

LiDAR

Conditions

controlled in the

field

Wheat Water stress

resistance, nitrogen

stress resistance

France Beauchene et al., 2019

Field Scanalyzer RGB, FLUO,

thermal IR,

hyperspectral,

3D laser

scanner

Fully automatic or

remote manual

operation

Wheat Canopy height, spike

number, canopy

closure, canopy

temperature, NDVI,

photosynthesis

UK Virlet et al., 2017

Mini-Plot Hyperspectral Divided into open

field and closed

greenhouse areas

Barley Disease severity Germany Thomas et al., 2018

Cable-suspended NU-Spidercam Multispectral,

thermal IR,

LiDAR,

VIS-NIR

spectrometer

Covered 0.4 ha,

30-kg payload,

maximum speed

of 2 m/s

Soybean,

maize

Plant height, ground

cover, canopy

temperature

USA Bai et al., 2019

(Continued)
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TABLE 2 | Continued

Field HT3P Designation Sensors Feature Plants Traits Country References

FIP Spectrometer,

ultrasonic,

DSLR,

thermal, laser

scanner,

operator

camera

Covers 1 ha, 2 to

5m above the

canopy, 12-kg

payload,

maximum speed

of 2 m/s

Winter wheat,

maize,

soybean

Canopy cover, canopy

height

Switzerland Kirchgessner et al.,

2017

type. Although this platform is simple in structure, similar to a
small weather station, high throughput and complexity are not
necessarily synonymous.

Friedli et al. (2016) applied a pole-based, terrestrial laser-
scanning (TLS) platform, to monitor canopy height growth
in maize, soybean, and wheat. The TLS is done via a laser
scanner mounted upside down on a 3.8-m high aluminum
elevator tripod. Its time and spatial resolution depend on the
crop variety assessed and scanning distance. Combined with
“Internet of Things” (IoT), CropQuant is equipped with RGB
and No Infrared cameras to continuously monitor crop growth
through high-resolution time-lapse photography (Zhou et al.,
2017). It can be powered by batteries and solar panels and
connected to an in-field WIFI network, as a mesh network node,
to form an IoT-mode HT3P that quantifies crop growth and
development. Furthermore, PhenoCam is a large phenotyping
network, consists of a series of widely deployed digital cameras
that automatically capture RGB images (typically, at 30min
intervals) to track biomes’ vegetation phenology (Richardson
et al., 2018). The camera is mounted on a pole, mast, or
building. Although the data source is only visible images, such
massive time series data sets can monitor the dynamic changes of
an ecosystem.

A mobile handheld pole-based, Phenocorn, is integrated
with a GreenSeeker (portable device), an IR thermometer, a
web camera, and a global positioning system (GPS) receiver
(Wei, 2017). This device can simultaneously collect normalized
vegetation index (NDVI) and canopy temperature. Although the
12 kg hand-held Phenocorn can be carried on a person’s back, it
still requires much manual labor. Fortunately, it can modified for
use in a cart that is manually pushed to collect phenotypic traits in
the field (Crain et al., 2016). As is well-known, it is quite difficult
to capture, track, and quantify crop lodging and crop movement.
In tackling this, Susko et al. (2018) developed an automatic
camera-tracking HT3P that consisted of a hemispherical video
camera, a computer, and an industrial curve track system; its
motor-driven camera moves along the track for phenotypic data
acquisition. What makes this breakthrough so novel is that it can
be used for dynamic imaging in video or static frequent imaging,
thus allowing for the study of new plant phenotypes.

The tower-based HT3P is similar to the stationary pole-
based platform, with sensors installed atop the tower, but the
dimensions and height of a tower-based platform are generally
higher and larger than that of pole-based. In a study on
photosynthetic efficiency of barley and sugar beet, laser-induced

fluorescence transient (LIFT) instruments were placed on the
top of a 10-m high scaffold to measure the photosynthetic
performance of agroecosystems (Raesch et al., 2014). However,
the LIFT signal in the target area introduced noise from plant
stems and the soil. In later work, Naito et al. (2017) installed
an improved multispectral single-lens imaging system (i.e., VIS
and NIR cameras), on two 8-m high towers, which could collect
crop images from eight angles to estimate rice yield-related traits.
Their results showed that the system has great potential for yield
estimation during early crop development.

Both pole-based and tower-basedHT3Ps are easy and low-cost
to build and maintain, and are convenient for temporary use and
multi-site deployments to form networks. However, phenotypic
area of coverage and spectral information are extremely limited
for a single unit, and multi-site trials increase the cost for large-
scale field experiments. Looking ahead, being portable, scalable,
rotatable, robust, and easy to install and remove are anticipated
key features of pole/tower-based platforms, and phenotypic
networks of economically-efficient distributed pole/tower-based
HT3Ps will play a prominent role in the future of multi-site
large-scale experiments and the calibration of high-dimensional
phenotypic data.

Mobile HT3P
The mobile HT3P can move through the field and collect crop
phenotypic traits in a semi-automatic or fully automatic manner,
including refitted agricultural machinery (e.g., tractor, sprayer,
or harvester), self-developed mechanical platform (e.g., cart or
buggy), and commercial automatic platform. A mobile HT3P
is generally composed of four subsystems: sensing system, data
acquisition system, mechanical platform, and drive system. The
sensing system covers GPS, environmental sensors (e.g., sunlight,
wind speed), and phenotypic sensors (e.g., RGB, multispectral,
hyperspectral, thermal). The data acquisition system generally
is the data acquisition software on an onboard computer.
Mechanical platform is for load-bearing and mobility, and
the drive system can be classified as electricity, engine, and
manpower. Theoretically, any agricultural mobile platform has
the potential to be converted into a mobile HT3P.

The mobile HT3P converted from a tractor, sprayer, or
harvester makes rational use of precision agricultural machinery
that already exists. In the early stages, a pioneering field-
based mobile was developed in Canberra’s High-Resolution Plant
Physics Facility (Deery et al., 2014). It was equipped with a
height-adjustable sensor array, including LiDAR, RGB, thermal
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IR, and hyperspectral cameras. Driven by the mobile, the sensors
pick up traits’ data along the surveyed plots. A cherry picker
installed a linear scanning bar with spectral cameras has also
been applied as a mobile HT3P (Pinto et al., 2016); its imaging
cameras aim to collect canopy radiation in a linear push broom
mode. The temporal change of canopy photochemical activity
was tracked by generating sun-induced chlorophyll fluorescence
(SIF) map. A multi-sensor system developed by Bai et al. (2016)
consists of five sensor modules, and this platform was used
to measure canopy traits of soybean and wheat. They adopted
the “stop-measure-go” mode, to ensure the sensors precisely
aligned with the plots, collecting plot-level phenotypic data
that were free of blurring. But to control such a HT3P, a
certain number of operators must participate. GPhenoVision
is assembled from a high-clearance tractor, carrying RGB-D,
thermal, and hyperspectral cameras for quantitative assessment
of cotton canopy growth and development (Jiang et al., 2018).
Customizability and modularity are the two key characteristics of
GPhenoVision, which allows researchers to rapidly develop and
upgrade sensing modules with specific phenotyping purposes,
reduces development effort when adding or removing modules,
and prevents malfunction of the entire system. Jimenez-Berni
et al. (2018) installed a LiDAR, an NDVI sensor, and a digital
camera on a low-cost three-wheeled buggy, called Phenomobile
Lite, to evaluate canopy height, ground cover, and aboveground
biomass. However, to change its direction, a “stop” button is need
to be manually pressed, and almost the whole process requires
operator follow-up.

To achieve the automatic measurement of yield-related
traits, Bao et al. (2014) presented a mobile HT3P that could
automatically obtain stereo images of sorghum plants. It was
retrofitted from a garden tractor, equipped with six stereo camera
heads on a vertical pole, which can be triggered synchronously.
Three-dimensional images of two rows of crops can be collected
in a single pass. The drawback is that before each bout of data
collection, the platform must be driven manually through the
field, stopping, and recording each sampling point to generate
paths. Later, an agricultural mobile robot mounted with a
360◦-view LiDAR, developed by Qiu et al. (2019), was used
to efficiently calculate the row spacing and plant height of a
maize field. Compared with in-row and one-by-one phenotyping
methods, the 3D laser scanner sitting atop this robot obtains
group observation of parcels. While it moves in a “stop-and-
go” manner, the phenotypic data of parcel-level plant group
could be simultaneously collected. Unlike the wheeled mobile
platform, Stager et al. (2019) employed a modified crawler robot
to collect sub-canopy traits at low elevation. But branches,
tillers, or roots may hinder the movement of such crawler
robots. Automated robots offer the prospect of unattended field
operations, which likely be a major focus of future research of
agricultural phenotyping platforms.

By letting the phenotyping height of the mobile HT3P vary,
to adapt to different growing stages of crops, Flex-Ro was
developed to identify differences in the emergence and maturity
stages among soybean varieties (Werner, 2016). PhenoBox of
Flex-Ro mainly integrates data acquisition hardware, while its
height-adjustable PhenoBar, located at the front of this mobile

platform, mainly consists of three sensor units, capable of
covering 4.5-m swath (Murman, 2019). An operator controls
the machine through the remote box or a MATLAB application
called FlexRoRun. It is worth mentioning that a 3D smart sensor
is incorporated, for obstacle detection, which successfully detects
pedestrian-sized objects and triggers parking. This will be a
critical security consideration for future robotic HT3Ps. Likewise,
a multi-purpose field robot in combination with various apps
can achieve different functions. For example, Bonirob robotic
platform with the phenotyping app, penetrometer app, and
precision spraying app can monitor plant growth, measure soil
parameters, and apply chemical weeding, respectively (Bangert
et al., 2013). Unlike the mobile HT3P for small-sized or early-
growing crops, Robotanist can navigate autonomously in the
fields of tall crops, such as corn or sorghum (Mueller-Sim et al.,
2017). Interestingly, it has a three DOF manipulator that can
touch and measure the strength of plant stalks, which is a
phenotypic innovation based on contact.

A semi-automatic self-made mobile HT3P can reduce the
development cost and soil compaction (because of lightweight
architecture), but normally requires one or more operators to
follow-up (Bai et al., 2016, 2018; Jimenez-Berni et al., 2018).
Moreover, because of the “stop-measure-go” mode and slow
response speed of low-cost sensors, the efficiency of crop traits’
data acquisition cannot be guaranteed. Concerning the mobile
HT3P based on themodified tractor, sprayer, or harvester, it often
needs special personnel to drive. Its large volume and weight
risk causing soil compaction and mechanical disturbance to the
crops, which precludes the deployment in the field. And the
faster travel speed than self-made cart also may not guarantee the
quality of phenotypic data obtained. But the payload is large, so it
can integrate diverse sensors to collect multi-source information.
Robotic HT3P is capable of automatically navigating through
the field and collecting data on crop traits, as well as doing
continuous phenotyping throughout the day and night, but
its development and maintenance costs are expensive. The
future mobile HT3Ps will likely aim for lightness, automation,
modularization, and customization, and the mechanical arm and
emergency braking mechanism will offer potential applications
that could greatly improve the flexibility, autonomy, and security.

Gantry-Based Field HT3P
As a gantry frame is equipped with a sensor box, andmoves along
the track and collects crop traits along XYZ directions, it becomes
the gantry-based HT3P. When it moves back and forth on the
track, repeated phenotyping done this way avoids the possibility
of soil compaction and damage of crops’ normal development.

LeasyScan, equipped with a set of scanners (PlantEye F300,
Phenospex, Heerlen, the Netherlands), can perform continuous,
synchronous and automated monitoring of plant water use
and leaf canopy development, via linear movement above the
surveyed plants (Vadez et al., 2015). The trigger and stop of
eachmeasurement are controlled by amechanical barcode, which
is also used for distance calibration from the scanner to the
ground. LeasyScan was also utilized in a pre-breeding, genetic
resource identification experiment with hybrid maize (Sunil
et al., 2018), in which it measured plant height, 3D leaf area
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(i.e., total leaf area), and leaf area index (LAI). Similarly, Virlet
et al. (2017) applied Field Scanalyzer (LemnaTec) to monitor
and quantify morphological traits of wheat organs and canopy.
Through the control software in themaster computer, the gantry-
based HT3P can operate in the full-automatic or manual mode.
Unfortunately, though it can sample continuously, 24 h per day,
but no two sensors can collect images simultaneously. Then, Field
Scanalyzer also was used to determine wheat canopy height and
further validate the potential of functional mapping analysis for
detecting persistent quantitative trait loci (QTLs) (Lyra et al.,
2020).

A phenotypic experiment that precise management is
involved in the sufficiently realistic field environment is ideal
for deciphering G×E×M interactions. PhénoFieldR is the first
field-based facility in the European Union, one equipped with
high-throughput phenotyping devices on a gantry, automatic
irrigating mobile rainout shelters on tracks, and environmental
recording sensors. By controlling both irrigation and fertilization,
this gantry-based HT3P was used to investigate water and
nitrogen stress (Beauchene et al., 2019). Likewise, Mini-Plot,
developed by Forschungszentrum Jülich, consists of a closed
greenhouse area and an open-fenced area, containing 90
and 30 Mini-Plots, respectively; it was used to quantify the
disease severity of barley varieties (Thomas et al., 2018). The
measuring head consisting of a hyperspectral sensor, a mirror-
based scanning system, and an automatic positioning system
moves over the plant for imaging. Such gantry-based HT3Ps for
phenotyping, which can integrate genetics, field environmental
factors, and management practices, has greatly enhanced the
understanding of genetic control pattern for breeders and
plant biologist.

However, once the construction and installation of the
gantry-based HT3P is completed, multi-site experiments can be
expensive or even inoperative. High development, operation,
and maintenance costs are also several factors that researchers
should be aware of and bear in mind. Fortunately, gantry-based
HT3Ps with a high degree of automation can collect time-series
phenotypic data of high resolution. Owing to its large payload
and continuous operation ability, which greatly improves
expansibility, this approach does provide an opportunity to better
understand the dynamics of plant circadian rhythms. Extending
phenotypic area, shrinking volume, and reducing cost will imbue
the gantry-based HT3Ps with better application prospects.

Cable-Suspended Field HT3P
A cable-suspended HT3P is mainly composed of sensing system,
data acquisition system, mechanical transmission system, and
drive system. Sensing system and data acquisition system are
generally integrated in a sensor bar. Winches, cables, poles, and
pulleys make up the drive and mechanical transmission system.
Four poles are distributed in four corners of the field and a
winch house for controlling the cables sits at the bottom of
the pole. The sensor array with a GPS unit can be precisely
positioned above the interested region for traits’ data acquisition
through cable-driven.

A typical representative of cable-suspended HT3P is the “FIP,”
located at the ETH research station in Switzerland. Its sensor

heads integrated with a DSLR camera, a laser scanner, and a
thermal camera can collect crop phenotypic data from 2 to
5m above the canopy. The feasibility of FIP in monitoring
canopy coverage and canopy height of winter wheat, maize, and
soybean was verified by Kirchgessner et al. (2017). Furthermore,
the Nu-Spidercam at the University of Nebraska has a multi-
sensor systems, a subsurface drip irrigation (SDI) system and an
automatic weather station (Bai et al., 2019), which is capable of
accurately and flexibly capturing crop traits, such as plant height,
canopy cover, and spectral reflection. Its sensor bar integrates
numerous sensors, so software is designed for selecting available
sensors tomeet particular experimental needs. A drawback is that
it only can operate continuously for 6–8 h when fully charged.

Phenotyping sensors of the cable-suspended HT3P is
performing tasks over the crop canopy by cables during
data collection of agronomic traits, meaning that the cable-
suspended HT3P has lower dependence on soil conditions and
less interference to plants than mobile HT3P. Phenotypic traits
information of time series can still be collected within the
established crop growth-monitoring period. And it can cover
larger phenotypic region but has lower load than do gantry-
based HT3P. In general, field HT3Ps are considerably weather-
dependent and region-limited. Allowing stabilized imaging of
plants clusters and continuous monitoring of crop growth at low
elevation for a longer duration will be a likely future trend for
cable-suspended HT3Ps.

Aerial HT3P Vulnerable to Weather
Constraints and Aviation Regulatory
According to the imaging distance employed, aerial HT3Ps
encompass the Unmanned Aerial Platform (UAP), Manned
Aerial Platform (MAP), and satellite platform. UAP usually
requires an operator at a ground station to remotely control
or execute the flight task, by following a set planned path.
Crop images are automatically acquired by onboard sensors.
Nevertheless, MAP needs a dedicated person to pilot the aircraft
and another passenger to manually capture the crop images while
in flight. UAP and MAP typically carry global navigation satellite
system (GNSS), but often this must be coupled with ground
control points (GCPs) and calibration boards, for accurate
georeferencing of the acquired data and for correcting its spatial
resolution. A satellite platform collects large-scale field images
from space, letting one access and download this satellite data as
needed. Table 3 lists the specific applications and details of the
aerial HT3Ps. When compared with a ground-based platform,
an aerial HT3P can collect broader-scale phenotypic regions in
a shorter period. However, the aerial platform has strong weather
dependence and relatively low spatiotemporal resolution because
of its flight altitude and imaging distance.

Unmanned Aerial Platform (UAP)
In recent years, due to the reduction of Unmanned Aerial
Vehicle (UAV) prices and the relaxation of air traffic regulations,
the application of UAP in agricultural research has increased
exponentially. This so-called UAP is a kind of aerial platform,
for which UAV is the carrier, that integrated onboard sensors,
a GPS unit, an inertial measurement unit (IMU), a battery and
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TABLE 3 | Overview of aerial HT3Ps subject to air regulatory regime and weather constraints.

Aerial

HT3P

Designation Sensors Flight

altitude (m)

Plants Traits References

UAP Phantom 4 RGB 20 Inbred lettuce

lines

Carotenoid content Mascarenhas Maciel

et al., 2019

3DR Solo

quadcopter

Multispectral 45, 50 Maize NDVI, chlorophyll red-edge

index (CHL),

hemispherical-conical

reflectance factors (HCRF)

Fawcett et al., 2020

Customized Hyperspectral 80 Winter barley NDVI, yield Oehlschläger et al.,

2018

Self-developed

octorotor

RGB, multispectral 25 Rice Canopy height, VIs, canopy

coverage

Wan et al., 2020

Matrice 600 Pro RGB, multispectral

camera, infrared

thermal

50 Cotton Yield Feng et al., 2020

Tuffwing Mapper RGB 120 Sorghum Plant height Han et al., 2018

Ebee Multispectral 50 Wheat Yield Hu et al., 2020

Self-developed Multispectral,

thermal

150 Maize Low-nitrogen stress

resistance

Zaman-Allah et al.,

2015

Anaconda RGB, multispectral 120 Sorghum,

maize

Plant height, VIs Shi et al., 2016a

MAP Robinson R44

Raven helicopter

Radiometrically-

calibrated

thermal

60, 90 Wheat Canopy temperature Deery et al., 2016

Air Tractor

AT-402B

RGB 152–3,048 Crop Pest severity Yang and Hoffmann,

2015

– LiDAR 1,500 Maize Biomass Li et al., 2015

Satellite GeoEye-1 Multispectral 684 k Turfgrasses Nitrogen content Caturegli et al., 2015

RapidEye Multispectral 630 k Wheat Nitrogen stress Basso et al., 2016

Sentinel-1 and

RADARSAT-2

Synthetic aperture

radar (SAR)

700, 798 k Wheat Crop height, angle of

inclination

Chauhan et al., 2020

Fluorescence

explorer (FLEX)

Fluorescence

Imaging

Spectrometer

(FLORIS)

814.5 k Terrestrial

vegetation

Photosynthesis Drusch et al., 2017

a crucial gimbal—for correcting the influence of pitch and roll
motion—to collect phenotypic data at the plant canopy scale. To
collect high-precision geographic position of plots, both GCPs
and calibration boards are needed. Its successful phenotyping of
plants depends on the characteristics of UAV and the properties
of the deployed sensors (Sankaran et al., 2015). According to its
most distinguishing feature, UAPs can be classified as multi-rotor
or fixed-wing. UAV’s flight, however, is weather-dependent, and
the ideal conditions are clear, windless, and dry weather, similar
to those required when applying agronomic inputs.

Because of its limited payload and endurance, UAP can only
carry a finite number of phenotypic sensors (generally, no more
than 3). A multi-rotor UAV can be a quadcopter, hexacopter,
or octocopter. Compared with its fixed-wing counterpart, it has
lower flight altitude and slower flight speed, but is capable of
vertical takeoff and landing (i.e., it can hover). With respect to

the multi-rotor UAP, the use of one sensor is most common.
For example, RGB images acquired by multi-rotor UAPs have
been widely used for researching the growth rate of wheat
(Holman et al., 2016), carotenoid levels of inbred lettuce lines
(Mascarenhas Maciel et al., 2019), vegetation index (Buchaillot
et al., 2019), wheat height (Villareal et al., 2020), growth of
different maize inbred lines (Wang et al., 2019), and canopy
extraction of orchard (Wu et al., 2020). Parrot Sequoia (Parrot,
France) and Micasense RedEdge (Micasense, US) are the more
familiar multispectral cameras used with UAP. For example,
Parrot Sequoia was used to evaluate the accuracy and spatial
consistency of hemispherical-conical reflectance factors (HCRF)
(Fawcett et al., 2020). Notably, cameras are fixed (at a 3-
degree angle) to offset the average forward tilt in flight. The
recent declining cost of thermal cameras has made airborne
thermography more widely used. In addition, ICI camera
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was proven to be better than either the FLIR or thermomap
camera for evaluating plants’ physiological and biochemical
characteristics (Sagan et al., 2019a). However, atmospheric
and emissivity calibration are remained challenges to thermal
imaging. Likewise, hyperspectral sensors on the multi-rotor UAP
were used to predict the yield of winter barley (Oehlschläger
et al., 2018). Interestingly, for that, they used a mirror to
guide the ground images into horizontally-positioned sensors.
Compared with mere RGB data, collecting additional spectral
data enables more robust predictions. In such a setting, RGB and
multispectral sensors are integrated into the UAP, as was done
to evaluate the yield of rice (Wan et al., 2020), plant height of
sorghum (Kakeru et al., 2017), ground cover of cotton (Duan
et al., 2017), and senescence rate of wheat (Muhammad et al.,
2018). To obtain multi-source phenotypic data, three sensors are
also employed on the multi-rotor UAP. For instance, an RGB
camera, a multispectral camera, and an thermal IR imager were
used together for cotton yield estimation (Feng et al., 2020).
However, due to the limited payload, two independent flights
of a multi-rotor UAP are occasionally required. For example, in
assessing genotypic differences in durumwheat production, RGB
images were obtained on the first flight and multispectral canopy
information later collected on the second pass (Gracia-Romero
et al., 2019).

Compared to the multi-rotor, a fixed-wing UAP has longer
flight time, higher flight altitude, greater payload, and faster
flight speed. But the fixed-wing UAP lacks hovering capability
and has certain requirements for its takeoff and landing (e.g., a
runway). The flight speed may cause blurred images, a problem
resolved by using imaging sensors with high frame rate and
short exposure time (Shi et al., 2016b). Although the fixed-wing
UAP does have a relatively large payload, it is almost always
relied on a single sensor. For instance, an RGB camera mounted
on Tuffing Mapper (Tuffing LLC, Boerne, USA) was used to
evaluate the plant height of sorghum (Han et al., 2018). The
fixed-wing UAP has a semi-autonomous horizontal takeoff and
landing (HTOL), controlled by the Pixhawk controller. Similarly,
an RGB camera, with an internal infrared filter removed for
color infrared (CIR) detection, was used to assess the height
and crown diameter of olive trees (Díaz-Varela et al., 2015).
The eBee UAV (senseFly, http://www.geosense.gr/en/ebee/) is
becoming a commonly used fixed-wing platform. Amultispectral
camera mounted on eBee was used to evaluate the yield of
early wheat genotypes (Hu et al., 2020) and thermal camera
performance (Sagan et al., 2019a), as well as for identifying,
positioning, and mapping weedy patches of Silybum marianum
(Tamouridou et al., 2017). Research on this platform shows that
using its highest resolution fails to provide the highest accuracy
for weed classification. To assess the spatial variation of maize
under low nitrogen stress, Zaman-Allah et al. (2015) developed
a fixed-wing UAP with a multispectral camera and a thermal
camera, controlled by an automatic navigation system. Fixed-
wing UAPs have enough of a payload to carry three sensors. The
Anaconda (ReadyMadeRC, Lewis Center, Ohio), fixed-wing UAP
equipped with two multispectral cameras and a high-resolution

digital camera, was used to collect phenotype data of corn and
sorghum (Shi et al., 2016a), for which it employed the traditional
configuration of a twin boom thruster. Interestingly, an external
GPS unit was added to the digital camera for accurate positional
information. Although the 3DR Pixhawk autopilot system has
been applied for autonomous takeoff and landing, during its
flight the Anaconda must be controlled manually. Ingeniously,
the unmanned helicopter is an alternative type of UAP. For
example, the Pheno-Copter (gas-powered) with a visible camera,
a NIR camera, and a thermal IR camera was applied to measure
sorghum ground cover, sugarcane canopy temperature, and crop
lodging (Chapman et al., 2014). However, Pheno-Copter’s flight
needs to be controlled from a ground station, and this often
requires specialized training.

If accurate geo-registration accompanies the image
acquisition process of UAP, precise micro-plot extractions
should be greatly improved (Hearst, 2014). To achieve this
goal, he sensor configuration pattern must also undergo
improvement. The data collected by UAP requires a GNSS
and an inertial navigation system (INS) for spatial matching
and georeferencing. To facilitate the calculation of the camera’s
actual geographic location corresponding to a given image
acquisition, a more than 60% overlap of adjacent images is
generally needed (Jin et al., 2017). In this context, the spatial
offset (lever arm) and angle relationship (boresight angles)
between the GNSS/INS unit and sensors are of great significance.
Furthermore, compared with the lever arm, the boresight angle
matters more. In view of this, Habib et al. (2018) recently
employed a UAP, with push-broom hyperspectral sensors, to
establish three boresight angle-calibration methods (around
GCPs, tie points, and approximate means). While spatial
positioning information may be obtained from an airborne
GNSS/INS unit, its resolution is not high enough. Therefore,
in order to carry out high-precision geographical referencing,
establishing a proper layout of ground control points (GCPs)
and calibration boards is necessary (Yu et al., 2016). Further,
multifunctional GCPs were suggested for calibrating geometric
and reflectance, and their usage significantly improved the
phenotyping accuracy and also reduced manpower (Thomasson
et al., 2019). Likewise, Han and Thomasson (2019) developed
an automatic mobile GCP equipped with two RTK-GPS units, a
navigation computer, and an integrated driving controller. It can
reliably recognize and predict the behavior and activities of the
UAP during the flight instead of traditional fixed GCPs, which
explores the potential of improving the accuracy and efficiency
of data collection.

Since the relevant airspace regulations remain strict, the
huge potential of UAP cannot yet be fully exploited. Despite
being susceptible to weather, payload, endurance, and aviation
regulatory constraints, UAPs characterized by large-scale
phenotyping, efficiency, flexible flight plans, and relatively low
cost have gradually shifted the trend in phenotypic missions from
the ground into the air. In recent years, with policy adjustment,
hardware optimization, commercial UAVs’ price reduction,
advances in battery technology, and operation simplicity, UAP
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has come to fully display its outstanding abilities in plant
phenotyping and plant science. Developing strategies for crop
phenotype by remote sensing (Yang et al., 2017), improving
performance such as endurance, payload, and stability, reducing
the cost of sensors, and promoting data processing capabilities
are the future trends of UAP.

Manned Aerial Platform (MAP)
The MAP is converted from a manned helicopter or fixed-wing
aircraft, by mounting to it the phenotype acquisition kit, placed
in a cargo pod or directly installed on the step (via a bracket),
with a passenger(s) evaluating the images and giving feedback
on their quality to the pilot, in real time, via a video monitor
in the cockpit. The phenotypic equipment used for this entail
sensors, GPS unit, gyroscopes and/or inertial measurement units.
Although the MAP is capable of carrying multiple sensors for
complicated phenotypic tasks, this has not been fully exploited,
likely because it would depend on much manual participation.
For example, just one radiometric calibration thermal camera in
the cargo pod of a helicopter was employed for collecting canopy
temperature (Deery et al., 2016)—and a passenger must be
present to perform the image assessment and provide feedback.
For this, an RGB camera can be remotely controlled and
triggered by an operator, to watch the “real situation” through
a video monitor in the cockpit (Yang and Hoffmann, 2015). For
estimating the aboveground biomass (AGB) and underground
biomass (BGB) of maize, LiDAR was also installed on a MAP, to
collect point-cloud data at the nominal height of 1,500m (Li et al.,
2015). High imaging heights and airspeeds certainly make the
acquisition of phenotypic data at a high resolution and accuracy
more challenging.

Similarly, MAP can also make effective use of pre-existing
agricultural machinery, and can overcome challenging weather
conditions to a certain extent because of flight stability.
Nevertheless, conducting phenotypic experiments with MAP
demands a specific amount of manpower and inevitably
involves high costs. For example, MAP requires a trained
pilot with relevant qualifications to operate the helicopter
or plane, and a passenger on board doing the monitoring,
assessing, communicating, and manual imaging. Moreover,
considering the cost and technical issues, the advantages
of MAP have not been fully exploited (i.e., flight altitude,
flight speed, carrying capacity). Perhaps that’s why MAP’s
prominence has dropped sharply in crop phenotyping, precisely
because of UAP’s unparalleled advantages, which enable it to
complete the consistent phenotypic tasks and thus progressively
supplant MAP.

Satellite Platform
Satellites can provide panchromatic imagery, multispectral
imagery, or radio detection and ranging (RADAR) data.
Panchromatic images of a single-band are displayed as gray-scale
images with high resolution but limited spectral information,
whereas multispectral images have a rich spectrum yet with
relatively low resolution. Thus, these obtained panchromatic
and multispectral images are usually merged by panchromatic

sharpening or pan-sharpening, to obtain multispectral raster
data having a high resolution. However, such optical satellite
phenotyping is susceptible to uncooperative weather conditions,
such as cloudy, rain, fog, and haze, and it also suffers from
visible light saturation (Jin et al., 2015). In this case, RADAR
and synthetic aperture radar (SAR) data are able compensate
for this defect extremely well. This is due to the unique
sensitivity of crop structure to microwaves, which effectively
improves the availability of the satellite platform. WorldView
series, RapidEye, GeoEye-1, SPOT series, QuickBird, Ikonos,
Planet Scope, Pleiades series, KOMPSAT series, Satellite for Earth
Observation series, Landsat series, Gaofen series, and SkySat
series are currently the main satellite HT3Ps that can obtain
color and multispectral images (Jin et al., 2020). Those satellite
platforms able to obtain RADAR data are mainly Sentinel-1,
RADARSAT-2, ENVISAT, TerraSAR-X/TanDEM-X, and RISAT-
2 (Zhang et al., 2020).

In recent years, with the rapid development of satellite
HT3Ps, there is increasingly more research on plant phenotyping
done using satellite data. For example, multispectral data of
GeoEye-1 satellite was used to evaluate the nitrogen status and
spatial variability of different species of turfgrass (Caturegli
et al., 2015), leading to an important guiding principle for turf
fertilization management. The RapidEye satellite provides five
bands with a spatial resolution of 5 m: blue, green, red, red-
edge, and near infrared. Its multispectral images were used to
study the variable rate of wheat nitrogen fertilizer effects (Basso
et al., 2016). In evaluating the crop angle of indentation (CAI),
Chauhan et al. (2020) relied on Sentinel-1 and radarsat-2 (multi-
incidence angle) data and went on to evaluate the severity of
crop lodging. An interesting satellite platform, FLuorescence
EXplorer (FLEX), is equipped with a single payload fluorescence
imaging spectrometer (FLORIS) that combines spectral and
spatial resolution to retrieve and interpret the full chlorophyll
fluorescence spectra emitted by terrestrial vegetation (Drusch
et al., 2017). It is scheduled to launch in 2022 and will fly
in the same orbit as Sentinel-3; hence, the availability and
interoperability of auxiliary information.

The ability to process large-scale satellite phenotypic data at
low cost according to international standard protocols is a key
advantage of satellite phenotyping. Some satellites provide free
data to would-be users, but the acquisition of high-precision
commercial satellite data normally has a monetary charge.
Fortunately, the cost of accessing to satellite data is now modest.
Still, both panchromatic and multispectral imaging done by
satellites remains susceptible to interference of atmospheric,
clouds, and fog. In addition, the resolution issue—such as
Pleiades-1a, 0.5m; SPOT 6, 1.5m; Planet Scope 3.0m; Rapid Eye,
5.0m, to name a few—and the data revisit period are also limiting
factors. Fortunately, satellite resolution is making continuous
progress as satellite technology advances. For instance, the
Finnish technology start-up ICEYE has released commercial
spaceborne SAR samples with the highest resolution (0.25m)
currently available worldwide. In the near future, low-orbiting
nanosatellites and microsatellites with high spatiotemporal
resolution may become join the prevailing aeronautical HT3Ps.
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HT3PS’ COMBINATION FOR
COMPARATIVE VALIDATION OR
COMPREHENSIVE ANALYSIS

A typical comprehensive HT3P consists of four components:
sensor, platform, analysis, and visualization. Together, these
should be able to perform high-throughput and non-destructive
acquisition of a substantial amount of data on dynamic
phenotypic traits of cultivated plants and their environmental
characteristics, as well as providing multi-omics analyses,
completing the entire phenotyping process from a holistic
perspective, thereby ultimately facilitating crop improvement
and molecular breeding of plants (as shown in Figure 4).
Since the various types of HT3Ps each have their own unique
merits—Table 4 summaries the advantages and disadvantages of
miscellaneous HT3Ps—with traditional manual measurements
usually needed to take relative real data for comparison and
verification, pursuing combinations of differing HT3Ps offers
a way to break away from traditional phenotyping and obtain
comprehensive high-precision phenotypic data. Several common

and typical combinations of diverse HT3Ps are highlighted in
Table 5.

HT3Ps’ Combination for Comparative
Validation
Some combinations of HT3Ps seek to compare and validate the
phenotypic performance by applying different types of HT3Ps
and thereby bypass traditional manual measurements entirely.
For instance, Andrade-Sanchez et al. (2014) modified a sprayer
to function as a mobile platform, to simultaneously collect
canopy height, reflectance, and temperature in four adjacent rows
in a cotton field; it can carry four sets of sensors, including
sonar sensors, IR radiometers, and multispectral canopy sensors.
Then, to verify the data authenticity of the mobile platform,
a MAP (helicopter) was applied to collect visible-near-infrared
(VNIR) and thermal IR data. In other work, to evaluate the
plant height of wheat, a mobile platform with LiDAR and
a UAP with RGB cameras were jointly used to generate 3D
dense-point clouds (Madec et al., 2017). However, because of
the low resolution of RGB images from UAP and the strong

FIGURE 4 | Typical comprehensive HT3P components: (a) sensor, (b) platform, (c) analysis, (d) visualization; HT3P performs the entire workflow of phenotyping: (1)

cultivation of plants, (2) extraction of phenotypic traits, (3) acquisition of environmental parameters, (4) data processing, (5) multi-omics analysis, and, ultimately, (6)

aiding in crop improvement.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 16 January 2021 | Volume 8 | Article 62370528

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Li et al. High-Throughput Plant Phenotyping Platform

penetrability of LiDAR of the mobile platform, plant height
measurement based on UAP was underestimated. Similarly,
Khan et al. (2018) combined a mobile platform and a UAP
to collect RGB images, which revealed that canopy height

TABLE 4 | Overview of the comparison of advantages and disadvantages of the

different types of HT3Ps.

HT3P type Advantages Disadvantages

Benchtop-type Strong repeatability;

continuous monitoring;

precision phenotyping;

high resolution

Expensive; for small plants only

Conveyor-type Large sample size; strong

repeatability; high

resolution

Expensive; high operating

costs

Pole/tower-based Low cost; relatively simple

structure; flexible

movement

Small range; increased

distance decreases resolution

Mobile Semi-automatic or fully

automatic; high resolution;

expansive; high flexibility.

Affected by weather, soil

conditions; soil compaction;

mechanical interference;

requires some manpower; long

boom may cause sensor

jittering and blurred images;

safety mechanism needed

Gantry-based Low weather

dependency; continuous

phenotyping all-day

Expensive; fixed limited area;

high maintenance costs

Cable-suspended Low weather dependency Expensive; fixed limited area;

limited endurance

UAP Flexible flight plan;

coverage a wide range of

field plots; relatively low

cost; GPS navigation;

Weather (light, rain, fog, etc.)

dependence; limited payload;

limited endurance; strict

aviation regulation (altitude);

flight training

MAP Flexible payload; rapid

coverage of large areas

Expensive; non-repeatable

flight route; substantial

manpower

Satellite Coverage a wide range of

field plots; relatively low

cost

Low resolution; long return

period; weather restrictions

(except radar)

obtained from the mobile platform is more accurate than UAP,
whereas the plant vigor evaluated from the UAP is more precise.
A multi-rotor UAP, with an RGB camera and a fixed-wing
UAP with a hyperspectral push-broom scanner, was devised by
Habib et al. (2017) to verify the feasibility of using RGB-based
orthophotos to improve the geometric features of hyperspectral
orthophotos. In addition, the combination of a UAP and
four satellites was implemented to compare the phenotypic
capabilities of different resolutions in dry bean (Sankaran et al.,
2019), whose results indicated that using sub-meter resolution
satellites as HT3Ps holds promising application prospects for
field crop phenotyping.

While some combinations of different types HT3Ps
are still based on the time-consuming and laborious
traditional field measurements, these will gradually
disappear with the stabilization and improvement of
the advanced HT3Ps. The combination of various types
of HT3Ps for cross-validation is gradually moving
forward, representing a landmark step in the field of
plant phenotyping.

HT3Ps’ Combination for Comprehensive
Analysis
Some HT3Ps’ performance aspects are combined to realize the
fusion of multi-source data for collaborative and comprehensive
phenotyping. For example, using both a mobile platform and
a tower-based platform for canopy scale and single plant
phenotyping has been proposed by Shafiekhani et al. (2017).
As an autonomous mobile platform, Vinobot, with its stereo
cameras installed on the robotic arm, can autonomously navigate
in the field and collect data on individual plant traits. The tower-
based Vinoculer can inspect a large-area canopy phenotype, and
delegate specific regions to Vinobot for elaborate phenotyping,
which greatly improves the flexibility and purposiveness. A
robotic mobile platform and a UAP collected complementary
multispectral data, which let investigators obtain comprehensive
crop phenotypes (Ingunn et al., 2017). Specifically, that mobile
platform provided detailed traits information of plants and
the UAP obtained calibrated NDVI, and together they further
predicted the heading date and yield. One multi-rotor UAP

TABLE 5 | Overview of typical applications of HT3Ps when used in combination.

Combination

type (a+b)

Sensorsa Sensorsb Plants Traits References

Mobile +

pole/tower-based

Stereo

camera

RGB, infrared Maize,

sorghum

Plant height, leaf area index

(LAI)

Shafiekhani et al., 2017

UAP + mobile RGB LiDAR Wheat Plant height Madec et al., 2017

MAP + mobile Monochromatic,

thermal

Sonar, IR

radiometer,

multispectral

Cotton Canopy height, canopy

temperature

Andrade-Sanchez et al.,

2014

MAP +

pole/tower-based

Thermal IR IR thermometer Wheat Canopy temperature Deery et al., 2019

UAP + UAP RGB Hyperspectral Crop – Habib et al., 2017

UAP + satellite RGB, thermal,

multispectral

Multispectral

(VNIR, SWIR)

Soybean Mean canopy temperature,

water stress resistance, VIs

Sagan et al., 2019b
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with an RGB camera, and another with a multispectral
camera, were combined to monitor tomato crops, so as
to formulate management measures and determine the best
management scheme for specific fields (Marconi et al., 2019).
Likewise, Anderson et al. (2020) employed a rotary-wing
UAP and a fixed-wing UAP to monitor a track of plant
height growth of an recombinant inbred line (RIL) maize
population; hence, they could, for the first time, elucidate
dynamic characteristics of quantitative trait loci (QTL) in
real time under the field conditions. In addition, Deery
et al. (2019) designed a MAP with airborne thermal IR
cameras and a pole-based platform (Arducrop wireless IR
thermometers) and used it to continuously measure crop
CT (canopy temperature). To fill the temporal gap in the
availability of satellite data and improve the usability of UAP,
Sagan et al. (2019b) merged RGB, thermal, and multi-spectral
images from UAP with VNIR and SWIR imagery taken by the
WorldView-3 satellite, applying them to crop monitoring and
early stress detection on a temporal scale, which contributed
to form field-scale coordinated data of UAV and satellite
virtual constellation.

The imaging distance of various HT3Ps will engender a
differing spatial resolution and pixel size. Taking ground coverage
(GC) as an example, the pixel size of an RGB image has a huge
impact on the accuracy of GC’s evaluation (Hu et al., 2019). In
addition, there are significant disparities among different types
of HT3Ps, such as their time resolution, weather dependence,
experimental scale, and financial investment, to name a few. This
means that combinations of HT3Ps ought to steer toward actual
phenotypic requirements and concrete practical issues. Along
with further refinement of plant phenotyping, the future HT3P
portfolio is expected to integrate multi-site distributed platforms,
single-point centralized platforms, and cloud-based platforms,
to deeply mine and dissect multi-source phenotypic data from
dynamic time series at multiple scales, for multiple species, and
under multiple scenarios. Furthermore, to effectively integrate
existing HT3Ps, phenotyping technology, phenotypic methods,
data availability, and resources, to speed up the emergence
of high-quality phenotypic achievements and accelerate crop
breeding, while also reducing duplication of research and
investment, more international and regional organizations, or
initiatives (see Table 6) have come into being.

SIMULATION HT3P

The simulated HT3P aims to model plant growth, phenotypic
expression, and phenotyping at various scales. It does this by
integrating multi-source information in a modeling framework,
such as that of germplasm resources, irrigation, fertilization,
nutritional substance, spatial climate, soil environment, terrain
properties and management records. For example, a digital
plant phenotyping platform (D3P) would use environmental
variables, crop management, and meteorological information
as input, to generate 3D virtual canopy structure. Based on
this, the collection of virtual canopy phenotypic traits can be
performed by RGB, multi-spectral, and LiDAR simulators (Liu

et al., 2019). For whole forests with large cover areas, long-lived
cycles and high heterogeneity, Dungey et al. (2018) provided a
prototype of a landscape-scale HT3P simulator, by consolidating
remote sensing topography, environmental impacts, spatial
abiotic information, management records and genomics into
the modeling framework. It aimed to eliminate some traditional
limitations in tree breeding programs and provide genetic gains
in tree fitness.

By combining genomics, high-throughput phenotyping, and
simulation modeling, we can obtain an adequate but sound
understanding of phenotypic traits and their variation (Varshney
et al., 2018). The application of various complex models to
combine simulations with empirical methods will contribute
markedly to accelerating the process of extracting ideal
phenotypic traits for use in crop improvement.

FUTURE PROSPECTS FOR HT3P

The concept of HT3P is rather grand, such that the development
and innovation of HT3Ps depends on the cross-disciplinary
cooperation of agronomy, robotics, computer, automation,
artificial intelligence, and big data, requiring the participation
of experts—breeders, agronomists, plant scientists, mechanical
engineers—and leadership from interdisciplinary talent of
open innovation teams. Whether HT3P is phenotyping in the
greenhouse or in the field, ground-based proximal phenotyping
or aerial large-scale remote sensing, the future of HT3Ps lies
in improving spatial-temporal resolution, sensor integration,
turnaround time in data analysis, human-machine interaction,
operational stability, throughput, automation, operability,
and accessibility.

It is worth noting that the development, selection, and
utilization of HT3Ps should be orientated by concrete project
requirements, specific phenotypic tasks, and practical application
scenarios, such as the field coverage (Kim, 2020), rather than
assuming that more devices, technologies, and funds with
which the HT3P is equipped, the better; partly because the
collection of a large amount of data does not mean all of
it is useful (Haagsma et al., 2020). Even in some cases, the
experimental effects of applying single and multiple sensors
are identical (Meacham-Hensold et al., 2020), and the data
obtained from multiple devices are redundant. However, the
combinations of various HT3Ps for comparative validation
and comprehensive analysis could provide broad application
prospects for inspection, extraction, and quantification of
complex physiological functional phenotypes. Yet the technical
issues of formulating standards and synchronizing calibrations
for these multiple combinations are daunting tasks. Fortunately,
the involvement of meta-analysis ensures the objectivity of HT3P
development and selection. For example, Young (2019) applied
meta-analysis method to develop an evaluation framework
that can quantitatively and objectively assess the complexity
and utility scores of high-throughput systems. As an effective
analytical method of quantitative, scientific synthesis of research
results (Gurevitch et al., 2018), meta-analysis may prove
especially fruitful in the near future.
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TABLE 6 | Overview of international organizations or regional initiatives contributing to plant phenotyping.

Organization acronym Full name (or description) URL

APPF Australia Plant Phenomics Facility https://www.plantphenomics.org.au/

APPN Austrian Plant Phenotyping Network https://appn.at/

CGIAR Modernize breeding programs targeting the developing

world

http://excellenceinbreeding.org/

CIMMYT International Wheat and Maize Improvement Center https://www.cimmyt.org/

CPPN China Plant Phenotyping Network –

CSISA The Cereal Systems Initiative for South Asia https://csisa.org/

DPPN German Plant Phenotyping Network https://dppn.plant-phenotyping-network.de/

EMPHASIS European Plant Phenotyping Infrastructure https://emphasis.plant-phenotyping.eu/

EPPN2020 European Plant Phenotyping Network (2020) https://eppn2020.plant-phenotyping.eu

ESFRI European Strategy Forum for Research Infrastructure https://www.esfri.eu/

FPPN/PHENOME French Plant Phenomic Network https://www6.dijon.inrae.fr/umragroecologie_eng/Research-

Programs/Investissement-Avenir/PHENOME

LatPPN Latin American Plant Phenomics Network –

LEPSE Laboratory of Plant Ecophysiological Responses to

Environmental Stresses

http://www1.montpellier.inra.fr/ibip/lepse/english/

NAPPN The North American Plant Phenotyping Network http://nappn.plant-phenotyping.org/

NPPN Nordic Plant Phenotyping Network https://nordicphenotyping.org/

NPEC Netherlands Plant Eco-phenotyping Centre https://www.wur.nl/en/product/TheNetherlands-Plant-Eco-

phenotypingCentre-NPEC.htm

G2F The Genomes to Fields Initiative https://www.genomes2fields.org/

GCN Green Crop Network http://www.greencropnetwork.com/

IPPN International Plant Phenotyping Network https://www.plant-phenotyping.org/

JPPC The Jülich Plant Phenotyping Centre http://www.fz-juelich.de/ibg/ibg-2/EN/Research/Phenotyping/

Phenotyping_article.html?nn=548814

MIAPPE Minimum Information About a Plant Phenotyping

Experiment

https://www.miappe.org/

PHEN-ITALY Italian Plant Phenotyping Network http://www.phen-italy.it/index.php

PhenomUK Promotes an integrated, holistic view of the phenotyping

process across the UK

https://www.phenomuk.net/

TERRAREF Terraphenotyping Reference Platform https://www.terraref.org/

Wheat Initiative Endorsed by the G20 Agricultural Ministers, to contribute

to improving world food security

https://www.wheatinitiative.org/our-vision

Specifically, the future conveyor-type HT3P requires
consideration of operational stability and environmental
homogeneity, and allowing phenotypic analysis for multi-
level subtle traits of a wide variety of representative plants
will be a key design factor to the development of the future
benchtop-type HT3P. Scalability, rotatability and multi-site
deployment will be the prospective features of pole/tower-based
HT3Ps, and economically-efficient distributed ones will perform
outstandingly in the calibration of high-dimensional phenotypic
data. Mobile HT3Ps that can be transported to the experimental
site are preferred by phenotypic researchers rather than the
experiment coming to the limited platform (Roitsch et al.,
2019). This means that the development of mobile HT3P needs
to move toward flexibility and portability, and that modular
and customizable design will be welcomed by the phenotyping
community. The reduction of volume and cost is the major
consideration for future gantry-based HT3P designs, and the
new cable-suspended HT3P will have the ability to monitor
continuously and consistently crop growth and development

at low altitudes over long periods of time. As for UAP, the
development of compact lightweight sensor configuration that
is sensitive to plant-specific phenotypic traits will be a breakout
(Xie and Yang, 2020). In addition, advanced battery technology is
in dire need of a stage breakthrough, which can greatly improve
the endurance, payload, and power of the UAV. For satellite
phenotyping, improving image resolution and shortening the
revisit cycle remain the focus of satellite platform development.
Additionally, cost-effective platforms also warrant consideration,
as smart phone, handheld portable instrument, backpack system,
and wearable device are adopted and updated for utilization
in phenotyping.

High-throughput data acquisition, data management, data
interpretation, modeling, integration, and application together
form the core and pillar of plant phenotyping. The main
challenges faced by the new generation of phenotyping are data
handling, images processing, and traits analyzing (Fahlgren et al.,
2015a; Campbell et al., 2018; Hickey et al., 2019). Fortunately,
the introduction of various software, web-based tools, pipelines,
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toolkits, deep learning tools, and online repository solutions
to assist phenotypic researchers in processing phenotypic data
will break through these technical bottlenecks. For example,
a free multi-purpose software—Coverage Tool—can semi-
automatically quantify a wide range of visual plant traits
(Merchuk-Ovnat et al., 2019). Web-based image analysis tools,
such as Field Phenomics (Guzman et al., 2015), are considered
by us to be a hotspot for phenotypic solutions. Kar et al.
(2020) developed an analysis pipeline with outlier detection,
missing value imputation, and spatial adjustment for solving the
problem of inaccurate and missing phenotypic data. Toolkits
tend to be relatively specific, such as Plant 3D (P3D), which
specializes in analyzing 3D point cloud data of plant structures
(Ziamtsov and Navlakha, 2020). With the advancement of HT3P,
their improving high-throughput and efficiency will produce
increasingly big data. For huge datasets, deep learning tools are
needed; however, only when large datasets that capture shared
problems become available can the greatest benefit be gained
from the application of deep learning tools. Online databases,
such as http://www.plant-image-analysis.org, can effectively
bridge the gap between developers and users, but still lack
comprehensive management platforms that cover software, web-
based tools, pipelines, toolkits, deep learning tools, and other
phenotypic solutions, which will be a milestone breakthrough as
well as a considerable challenge.

With the emergence of various HT3Ps, experimental
designs, phenotyping methods, standardized management,
both phenotype acquisition and its data analysis are becoming
extremely prominent. Phenotypic data that costs substantial
capital, labor, time, and energy, however, may 1 day be
abandoned forever (Mir et al., 2019). Presently, a standard
phenotyping agreement or data analysis methodology for
plant phenotyping has yet to be established (Mahlein et al.,
2019). The standardization of data and metadata from the
HT3Ps contributes to an improved data utilization rate and it
ensures the interoperability of data providers and experimental
replication. Otherwise, data that is poor annotated and in a
disorderly format may generate noise or disordered waves.
Fortunately, relevant standard constraints are being proposed.
For example, Krajewski et al. (2015) published a technical
paper offering effective recommendations (at http://cropnet.pl/
phenotypes) and initiatives (such as http://wheatis.org), making
a further step toward establishing internationally practical
solutions. Moreover, originating the relevant standardization of
phenotyping can strengthen the comprehension and explanation
of biological phenomena, contributing to the transformation
of biological knowledge and establishment of a real coherent
semantic network.

CONCLUSIONS

HT3P is a novel and powerful tool for obtaining plant-
deep phenotypes (morphological structure, physiological
function, component content) and dense phenotypes in
complex field setting, which cannot be accomplished by
traditional phenotyping approaches. This paper reviewed the
application of HT3Ps in the growth chamber or greenhouse

with strictly controlled environmental conditions and field
phenotyping with notoriously heterogeneous conditions
and uncontrollable environmental factors. Then, according
to platform configuration and operation mode, further
classifications were performed to provide comprehensive
overview and description and assessment of the various types
of HT3Ps currently available. The unique characteristics,
applications, and strengths and weaknesses of various HT3Ps
were emphasized. Going further, the simulation platform,
various combinations of HT3Ps for comparative validation or
comprehensive analysis, current phenotypic challenges, and the
future development trends of HT3Ps were discussed.

With the assistance of powerful HT3Ps, phenomics has
arguably entered a new stage (Tardieu et al., 2017). At this stage,
the new and pressing challenge of next generation phenotyping
will be to reasonably combine phenotypic experiments, various
HT3Ps, models, data processing and handling scheme, meta-
analysis, and visualization of phenotypic information for
optimizing the allocation of research resources, efficiently
accomplishing complex phenotypic tasks, and transforming
massive multi-source phenotypic data into statistical and
biological knowledge. Robust phenotyping is central to plant
breeding (Hickey et al., 2019), and the development of satisfying
crop varieties with high-yielding and strong stress resistance is
the ultimate goal of crop breeding. High-throughput sequencing
activity underpins the fast development of genomics (Shah et al.,
2018). Likewise, HT3P as a novel and powerful phenotyping tool
will explore a new period of rapid development in phenomics.
Further, combining morphological, physiological, and elemental
phenotyping with multi-omics methods from the perspective of
holistic omics will usher in a new era of botany phenotyping.
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Hyperspectral Estimation Models of
Winter Wheat Chlorophyll Content
Under Elevated CO2
Yao Cai, Yuxuan Miao, Hao Wu and Dan Wang*

Department of Ecology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing,
China

Chlorophyll content is an important indicator of winter wheat health status. It is valuable
to investigate whether the relationship between spectral reflectance and the chlorophyll
content differs under elevated CO2 condition. In this open-top chamber experiment,
the CO2 treatments were categorized into ambient (aCO2; about 400 µmol·mol−1)
or elevated (eCO2; ambient + 200 µmol·mol−1) levels. The correlation between the
spectral reflectance and the chlorophyll content of the winter wheat were analyzed
by constructing the estimation model based on red edge position, sensitive band
and spectral index methods, respectively. The results showed that there was a close
relationship between chlorophyll content and the canopy spectral curve characteristics
of winter wheat. Chlorophyll content was better estimated based on sensitive spectral
bands and difference vegetation index (DVI) under both aCO2 and eCO2 conditions,
though the accuracy of the models varied under different CO2 conditions. The results
suggested that the hyperspectral measurement can be effectively used to estimate the
chlorophyll content under both aCO2 and eCO2 conditionsand could provide a useful
tool for monitoring plants physiology and growth.

Keywords: elevated CO2, hyperspectral estimation model, chlorophyll content, red edge position, sensitive band,
spectral index, winter wheat

INTRODUCTION

It is expected that the atmospheric CO2 concentration will rise to 550 µmol·mol−1 in 2050 and
reach or exceed 700 µmol·mol−1 at the end of the 21st century due to the increase of human
population, energy production and utilization, deforestation and other intensive human activities
(IPCC, 2013). Wheat is one of the world’s most productive and important crops in the 21st
century, and also the main source of food for human (Curtis and Halford, 2014). Under elevated
CO2, the physiology, growth and yield of wheat and other species are affected (Long et al., 2006;
Wang et al., 2012).

Chlorophyll content was closely related to crop health, photosynthetic capacity and crop yield
(Lukas et al., 2014). C3 plants are more sensitive to elevated CO2 than C4 plants (Leakey et al.,
2009). The chlorophyll content and photosynthetic rate of varieties of C3 species, including crops
and trees, was increased by elevated CO2 (Zhang et al., 2013; Madhana et al., 2014; Fathurrahman
et al., 2016; Choi et al., 2017). For wheat, previous studies had shown a positive (Dubey et al., 2015)
or negative (Wang et al., 2013) CO2 effects on the chlorophyll content and the difference might be
resulted from the different experimental settings or CO2 increasing levels used in different studies.
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Given that systematic measurement of chlorophyll contents in
elevated CO2 condition is scarce, a detailed measurement of
chlorophyll content of winter wheat throughout the growing
season will be useful to understand the effect of elevated CO2 on
the physiology and growth of winter wheat.

Remote sensing methods could be used to accurately
and rapidly relate variations in leaf optical properties with
important plant characteristics, such as chlorophyll content
and photosynthetic properties at the leaf and canopy scales
(Ainsworth et al., 2014). Inversion of chlorophyll content by
hyperspectral remote sensing was of great significance for crop
growth status monitoring, yield estimation and agricultural
planning (Liang et al., 2012; Flores-De-Santiago et al., 2013).
Hyperspectral remote sensing had been used to monitor winter
wheat chlorophyll content (He et al., 2018; Kasim et al., 2018).
However, the application had been limited to specific test
conditions (Serbin et al., 2012; Zhou et al., 2016) and there
were few studies investigating hyperspectral remote sensing
applications on winter wheat under elevated CO2 conditions.

The hyperspectral estimation models could be determined
through different techniques to extract hyperspectral
characteristics, including reflectance spectrum and first
derivative spectrum, absorption and reflection location and
vegetation index (Li et al., 2014). Previous research studied the
relationship between visible and near-infrared spectra and leaf
chemical components and found out that the original spectral
reflectance and the first and second derivatives of the spectra
could be used to estimate crop agronomic parameters (Card
et al., 1988). Red edge and sensitive bands based spectral models
had been used to simulate chlorophyll and nitrogen content of
many species (Hansen and Schjoerring, 2003; Chen et al., 2013;
Clevers and Gitelson, 2013; Stratoulias et al., 2015). Identifying
optimal hyperspectral estimation models of winter wheat under
different CO2 conditions is critical in crop growth monitoring
and forecasting and requires further investigation.

In order to find an optimal estimation model for chlorophyll
content and promote spectral analysis in the application of
agriculture management under future global change conditions,
an open top chamber (OTC) based CO2 manipulation
experiment was conducted for 2 years in this study. The
objectives of this study were: (1) to establish statistical models
to study the relationship between hyperspectral characteristics
and chlorophyll content of winter wheat throughout the growing
stages; (2) to investigate whether the relationship between
hyperspectral characteristics and chlorophyll content varies
under elevated CO2 conditions.

MATERIALS AND METHODS

Experimental Site
The study site was located in the agrometeorological
experimental station of Nanjing University of Information
Science and Technology, in Nanjing city, Jiangsu province
of China (32◦16’N, 118◦86’E). The climate in this region
characterizes subtropical monsoon season, with annual average
precipitation of 1,100 mm, the average temperature in recent

years of 15.6◦C and the average annual frost-free period of 237
days. The soil texture in the tillage layer of winter wheat was
loamy clay, and the clayey content was 26.1%. The bulk density of
0–20 cm soil was 1.57 g·cm−3, the pH (H2O) value was 6.3, and
the organic carbon and total nitrogen content were 11.95 and
1.19 g·kg−1, respectively.

Experimental Design
Open top chambers (OTC) were used in the experiment to
manipulate CO2 concentration. There were eight OTC chambers,
all of which were octagonal prisms (opposite side diameter 3.75
m, height 3 m, bottom area 10 m2) and equipped with aluminum
alloy frames and toughened glass with high transmittance. There
were two CO2 treatments, ambient CO2 (aCO2) and elevated
CO2 (eCO2, aCO2 + 200 µmol·mol−1), each with four replicates.
The treatment of elevated CO2 started from regreening stage and
lasted to the end of growing stage.

In order to avoid the rapid loss of CO2 gas and reduce the
experiment cost, the top opening of OTC was designed to tilt
inward for 45◦. The CO2 concentration in the chambers was
controlled with an automatic control platform, composed of CO2
sensors, gas-supplying devices and automatic control system.
Three wind-blowing fans were placed in each chamber to make
the CO2 gas in the chamber evenly distributed. The CO2 sensor
feeds back the CO2 concentration information in the chamber
to the automatic control system every two seconds. The CO2
concentration averaged was 650 ± 58 µmol·mol−1 in elevated
CO2 chambers and 455 ± 42 µmol·mol−1 in ambient chambers
across two growing seasons.

The local winter wheat variety of Ningmai 13 was selected in
the study. The field measurement of spectrum and chlorophyll
was conducted in 2018–2019 and 2019–2020 growing
seasons. During the whole growing stages, fertilizer and water
management were carried out in the local conventional way.

Spectrum Measurement
The spectral reflectance of winter wheat was measured by
Field Spec4 of American analytical spectral device (ASD). The
wavelength range was set at 350–2,500 nm. The sampling interval
and resolution was set at 1.4 and 3 nm in the range of 350–
1,000 nm; and 2 and 10 nm in 1,001–2,500 nm, respectively.
The reflectance of winter wheat at five growth stages (jointing,
booting, heading, filling and maturity stage) was measured on
sunny days at 10:00 a.m.–2:00 p.m. Field Spec4 needed to be
preheated 30 min before measurement. During the measurement,
the sensor probe was placed vertically downward, the field of
view angle was 10◦ and the probe was about 20 cm away from
the top of the canopy. The measurement was carried out 10
times in different areas of an OTC. The reference white board
was corrected immediately before and after the measurements
in each chamber.

Measurement of Chlorophyll Content
At the same time as the spectral measurement, the chlorophyll
content was measured by the portable chlorophyll meter SPAD-
502. Relevant studies have shown that soil and plant analyzer
developrnent (SPAD) value was positively correlated with the
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total chlorophyll content, with the correlation coefficient up
to 0.99, and the SPAD value could be used to represent the
chlorophyll content of plants (Costa et al., 2001; Uddling
et al., 2007). When measuring the chlorophyll content, five
wheat plants were selected at the corresponding position
of canopy spectrum measurement, then SPAD values were
measured for five times uniformly on the upper, middle and
lower leaves of each plant, and the average value was taken
as the chlorophyll content of this sample point. A total of
200 chlorophyll samples were measured in 2018–2019 and
120 samples in 2019–2020. Two years of data were combined
together, among which 240 samples were selected to establish
the models, and the remaining 80 samples were used to
verify the models.

Statistical Analyses
View Specpro_6.0, Matlab_2017 and Origin_2018 were used
to process and analyze the data. The spectral band range was
set at 350–1,350 nm, and the wavelength corresponding to the
largest first-order differential value in the red edge range (680–
760 nm) was selected as the red edge position λr. The correlation
analysis between canopy spectral reflectance and SPAD values
of winter wheat was conducted, and the correlation coefficient
was calculated to find out the sensitive bands. According to
the original reflectance of winter wheat canopy, five common
vegetation indexes were calculated. Each vegetation index had
different characteristics. The normalized difference vegetation
index (NDVI) was a common vegetation index and very sensitive
to green vegetation. Ratio vegetation index (RVI) was sensitive
to vegetation with high coverage. Difference vegetation index
(DVI) and perpendicular vegetation index (PVI) were sensitive
to the change of soil background. Optimizing soil and adjusting
vegetaŷition index (OSAVI) explained the changes in the optical
characteristics of the background and corrected the sensitivity
of NDVI to the soil background (Bannari et al., 2007; Yan
et al., 2013). The calculation of each vegetation index was listed
in Table 1.

Using the canopy spectral data of winter wheat, a regression
estimation model with hyperspectral variables as independent

variables and the chlorophyll content as dependent variables was
established. Linear regression model was selected for all models:

Y = a+ bx (1)

In this study, the coefficient of determination (R2) and the
root mean square error (RMSE) were used to verify the linear
regression model. The higher coefficient of determination R2 and
the smaller RMSE indicated a more accurate estimation model.

R2
=

∑n
i=1(ŷi − ȳi)2∑n
i=1(yi − ȳi)2 (2)

RMSE =

√√√√ 1
n

n∑
i=1

(ŷi − yi)2 (3)

Where ŷi and yi were the predicted values and measured values
of the sample respectively, and i was the average value of the
measured values of the sample, and n was the number of samples.

RESULTS

Chlorophyll Content
The chlorophyll content in winter wheat under aCO2 and eCO2
in five growth stages was listed in Table 2. The chlorophyll
content was lowest in the maturing stage and highest in the
heading stage and varied under different CO2 treatments. At
different growth stages, the effects of eCO2 on chlorophyll
content of winter wheat were different. In booting and heading
stage, eCO2 increased the chlorophyll content by 4.70–6.90%;
in jointing, filling and maturity stage, eCO2 decreased the
chlorophyll content by 2.80–18.20%. During the whole growth
stage, the chlorophyll content under aCO2 was lower than that
under eCO2 (Table 2).

Canopy Spectral Reflectance
The original spectral band range was set at 350–1,350 nm and
the canopy spectral reflectance under aCO2 and eCO2 at different

TABLE 1 | The calculation of the vegetation indexes.

Spectral index Formulation Authors

NDVI NDVI = (RNIR − RRED)/(RNIR + RRED) Rouse et al., 1973

RVI RVI = RNIR/RRED Jordan, 1969

DVI DVI = RNIR − RRED Richardson and Wiegand, 1977

PVI PVI = (RNIR − 10.489× RRED − 6.604)/
√

1+ 10.4892 Huete et al., 1985

OSAVI OSAVI = (1+ 0.16)(RNIR − RRED)/(RNIR + RRED + 0.16) Rondeaux et al., 1996

TABLE 2 | The chlorophyll content of winter wheat.

Data composition Jointing Booting Heading Filling Maturity SD CV%

aCO2 48.04 ± 2.53c 55.50 ± 2.15b 57.42 ± 4.35a 55.32 ± 3.78b 44.28 ± 4.26d 7.33 14.70

eCO2 46.70 ± 3.53d 58.10 ± 4.97b 61.38 ± 3.75a 51.98 ± 2.51c 36.20 ± 7.36e 10.65 21.38

SD is the standard deviation and the CV (%) is the coefficient of variation. Lowercase letters indicate significant levels (p < 0.05).
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FIGURE 1 | Spectral reflectance of winter wheat canopy at different growing stages under aCO2 and eCO2.

FIGURE 2 | The relationship between the chlorophyll content and the red-edge positions.
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FIGURE 3 | The measured and estimated values of the chlorophyll content based on the red-edge position model under aCO2 and eCO2.

growth stages was shown in Figure 1. In each growth stage, the
reflectance showed similar trend under aCO2 and eCO2, with an
absorption band around 500 nm, an obvious “green peak” around
550 nm, the minimum value around 680 nm, and a “red edge”
within the band range of 680–760 nm.

The spectral reflectance of winter wheat canopy under eCO2
was slightly lower at jointing, heading and maturity stages, and
was higher at filling stage than that at aCO2, especially in the
wavelength range of 760–1,350 nm. In the booting stage, the
spectral reflectance of the two treatments was similar. Among the
five growth stages, the spectral reflectance at the booting stage was
the highest, reaching about 0.45.

Chlorophyll Content Estimation Models
The Red-Edge Position Model
Spectral reflectance rose rapidly at about 680 nm and slowly at
about 760 nm. The band ranging between 680 and 760 nm was
selected as the “red edge” spectrum. The linear regression model
between the red edge position and the chlorophyll content was
established to estimate chlorophyll content (Figure 2). The rest of
the spectra and the chlorophyll content data were used to verify
the model (Figure 3). The R2 of the model was 0.36 and 0.41
under aCO2 and eCO2, respectively (Figure 2). The estimation
model based on the red edge location estimated chlorophyll
content slightly better under eCO2 than under aCO2 (Figure 3).

The Sensitive Band Spectral Model
The correlation coefficient of the spectral reflectance and
chlorophyll content of winter wheat during the whole growth
stage was analyzed (Figure 4). The correlation coefficient under
aCO2 was higher than that under eCO2 between 350 and
1,350 nm. The canopy reflectance had the greatest correlation
with the chlorophyll content at 740 and 749 nm under aCO2 and
eCO2, respectively.

The sensitive bands of 740 and 749 nm were then selected
under aCO2 and eCO2 respectively, and the linear model between

the spectral reflectance and chlorophyll content of the sensitive
bands was established to estimate the chlorophyll content of
winter wheat (Figure 5). The model was validated using the rest
of the sampling data (Figure 6). The R2 of the linear model was
0.72 and 0.52 under aCO2 and eCO2, respectively (Figure 5) and
the estimated values correlated well with the measured values of
chlorophyll content under aCO2 and eCO2 (Figure 6).

The Spectral Index Model
Five different spectral indexes were extracted from the spectral
reflectance curves (Table 2). Linear regression models of the five
spectral indexes and chlorophyll contents of winter wheat were
established. Under aCO2, the rank of R2 of the linear models
was DVI > PVI > OSAVI > NDVI > RVI. Under eCO2, the
rank of the R2 was DVI > OSAVI > NDVI > PVI > RVI

FIGURE 4 | The correlations between the chlorophyll content and the spectral
reflectance of winter wheat during the whole growing season.
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FIGURE 5 | The relationship between the chlorophyll content and the sensitive bands position of the spectral reflectance.

FIGURE 6 | The measured and estimated values of chlorophyll content based on the sensitive band position model under aCO2 and eCO2.

TABLE 3 | Estimation models of the chlorophyll content in wheat canopy based
on different spectral indexes.

Treatment Spectral index Estimation equation R2 Significance

aCO2 NDVI y = 19.10x+38.22 0.56 p < 0.01

RVI y = 0.32x+46.38 0.21 p < 0.01

DVI y = 0.39x+40.80 0.67 p < 0.01

PVI y = 0.77x+34.28 0.57 p < 0.01

OSAVI y = 16.53x+38.23 0.56 p < 0.01

NDVI y = 27.83x+32.82 0.54 p < 0.01

RVI y = 0.50x+44.61 0.22 p < 0.01

eCO2 DVI y = 0.58x+37.31 0.60 p < 0.01

PVI y = 0.71x+36.72 0.30 p < 0.01

OSAVI y = 24.04x+32.89 0.54 p < 0.01

(Table 3). The DVI based estimation models was established
using half of the measured data (Figure 7) and validated
using the rest of the sampling data (Figure 8). The R2 of

the linear model established was 0.67 under aCO2 and 0.60
at eCO2 (Figure 7) and the estimated correlated well with
the measured values of chlorophyll content under aCO2 and
eCO2 (Figure 8).

DISCUSSION

In order to establish statistical models to study the relationship
between the optical properties and chlorophyll content of
winter wheat under elevated CO2 conditions, we measured
the chlorophyll content and spectral reflectance in winter
wheat canopy under aCO2 and eCO2 conditions throughout
the growing season for 2 years. The effects of elevated CO2
on the chlorophyll content and spectral reflectance depended
upon growing stages. The statistical models established in
this study was effective under both ambient and elevated
CO2 conditions.
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FIGURE 7 | The relationship between the chlorophyll content and the DVI.

FIGURE 8 | The measured and estimated values of the chlorophyll content based on the DVI model under aCO2 and eCO2.

Elevated CO2 increased the chlorophyll content of winter
wheat at booting and heading stage, but decreased it at filling
and maturity stage in this study. Elevated CO2 usually had a
positive effect on the chlorophyll content, but the specific effect
depended on treatment duration and different species (Long
et al., 2004). The increase of CO2 concentration in the late
growing stage might lead to the faster decline of chlorophyll
concentration of wheat (Ommen et al., 1999). In this study,
the senescence of winter wheat under eCO2 was faster than
that under aCO2 and the chlorophyll content was decreased
under eCO2 at the later growing stages. The overall shapes
of spectral curves did not change throughout the growing
season, except in the maturity stage, the curves flattened due
to the senescence of the leaves. The effect of elevated CO2
on the spectral curves varied at different growing stages, with
no impact in the earlier jointing and boosting stages, positive

impact in the filling and negative impact in the heading and
maturity stages. Though elevated CO2 changed the maximum
reflectance, it did not change the overall shape of the spectral
curves of winter wheat at all the growing stages. The results
were consistent with previous studies where the shapes of
soybean canopy spectral curve did not change under different
CO2 treatments (Gray et al., 2010) and O3 concentrations
(Campbell et al., 2007).

Red edge position, sensitive band and vegetation index were
effective means to retrieve crop chlorophyll content from the
spectral curves (Dou et al., 2018; Kasim et al., 2018; Wang
et al., 2019). Previous studies had shown that the position and
reflectance of red edge were highly correlated with chlorophyll
content of plant leaves and could be used as an indicator of
chlorophyll content (Filella and Penuelas, 1994; Gitelson et al.,
1996). The current study showed that the reflectance at the
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680–740 nm wavelengths had a positive relationship with the
content of chlorophyll under both ambient and elevated CO2.

Sensitive bands could be used to calculate spectral
indexes, which were sensitive to the difference of chlorophyll
concentration in plant canopy (Hunt et al., 2011). The current
results showed that the sensitive bands at 740 and 749 nm
wavelength correlated with the chlorophyll content most, under
aCO2 and eCO2, respectively (Figures 4–6), even though the
established model fit slightly better under aCO2 than at eCO2
conditions. Vegetation indexes calculated from hyperspectral
remote sensing technology had long been used to monitor the
chlorophyll content of vegetation leaves (Meng et al., 2012; Guo
et al., 2020). Among the five tested vegetation indexes, the DVI
based model simulated the chlorophyll content best under both
aCO2 and eCO2 conditions and the model using overall data
from both the CO2 treatments gave similar results (results not
shown). Though the methods tested in the study proved effective
to simulate winter wheat chlorophyll content under different CO2
conditions, further investigations on how the spectral reflectance
correlates with other biochemical contents and biophysical
processes are still urgently needed for the purpose of guiding
crop management and monitoring crop growth status in the
future climate change situations.

In conclusion, the hyperspectral estimation models based on
the red edge position, sensitive band and DVI vegetation index
could all simulate the chlorophyll content of winter wheat. The
accuracy of vegetation index and sensitive bands based models
was higher than that of the red edge position model. The results
suggested that the hyperspectral measurement can be effectively
used to estimate the chlorophyll content under both aCO2 and
eCO2 conditions and different equations should be established at
specific CO2 growing conditions based on the methods chosen.
The findings in the study were useful in providing hyperspectral

methods to monitor the growth status of winter wheat in the
future global change situations.
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Estimations of Water Use Efficiency 
in Winter Wheat Based on  
Multi-Angle Remote Sensing
Hai-Yan Zhang , Meng-Ran Liu , Zi-Heng Feng , Li Song , Xiao Li , Wan-Dai Liu ,  
Chen-Yang Wang * and Wei Feng *

State Key Laboratory of Wheat and Maize Crop Science, National Engineering Research Center for Wheat, Henan 
Agricultural University, Zhengzhou, China

Real-time non-destructive monitoring of water use efficiency (WUE) is important for 
screening high-yielding high-efficiency varieties and determining the rational allocation of 
water resources in winter wheat production. Compared with vertical observation angles, 
multi-angle remote sensing provides more information on mid to lower parts of the wheat 
canopy, thereby improving estimates of physical and chemical indicators of the entire 
canopy. In this study, multi-angle spectral reflectance and the WUE of the wheat canopy 
were obtained at different growth stages based on field experiments carried out across 
4 years using three wheat varieties under different water and nitrogen fertilizer regimes. 
Using appropriate spectral parameters and sensitive observation angles, the quantitative 
relationships with wheat WUE were determined. The results revealed that backward 
observation angles were better than forward angles, while the common spectral parameters 
Lo and NDDAig were found to be closely related to WUE, although with increasing WUE, 
both parameters tended to become saturated. Using this data, we constructed a double-
ratio vegetation index (NDDAig/FWBI), which we named the water efficiency index (WEI), 
reducing the impact of different test factors on the WUE monitoring model. As a result, 
we were able to create a unified monitoring model within an angle range of −20–10°. The 
equation fitting determination coefficient (R2) and root mean square error (RMSE) of the 
model were 0.623 and 0.406, respectively, while an independent experiment carried out 
to test the monitoring models confirmed that the model based on the new index was 
optimal, with R2, RMSE, and relative error (RE) values of 0.685, 0.473, and 11.847%, 
respectively. These findings suggest that the WEI is more sensitive to WUE changes than 
common spectral parameters, while also allowing wide-angle adaptation, which has 
important implications in parameter design and the configuration of satellite remote sensing 
and UAV sensors.

Keywords: winter wheat, hyperspectral remote sensing, angle adaptability, water use efficiency, monitoring 
model
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INTRODUCTION

Wheat is one of the important food crops in the world, and 
with recent economic development and population growth, 
the level of winter wheat production has become even more 
important for ensuring world food security. Meanwhile, due 
to global climate change, lack of water has become a key 
limiting factor in winter wheat production. Water use efficiency 
(WUE) is a broad agronomic concept that reflects the 
comprehensive effect of crops on water use. Leaf WUE is 
the main criterion used to measure drought tolerance and 
efficient water use in crops, and subsequent selection and 
screening of high WUE varieties is one of the most important 
goals of crop breeding (Richards, 2006; Zhang et  al., 2007). 
Efficient use of limited water resources and increases in overall 
WUE has therefore become an urgent goal of winter wheat  
production.

Leaf WUE is defined as the ratio of net photosynthesis 
(PN) to transpiration (Tr; Condon et  al., 2002), which can 
be  estimated using the carbon isotope ratio (δ13C; Hultine 
and Marshall, 2000). Recently, rapid development of remote 
sensing technology has provided an effective tool for large-
scale analysis of water use in crops. Compared with traditional 
crop WUE monitoring and diagnostic tools, hyperspectral 
remote sensing technology has made it possible to obtain 
a huge amount of continuous large-scale data in a more 
efficient manner (Peñuelas et  al., 1993b; Dong et  al., 2011). 
Ground hyperspectral remote sensing technology selects 
sensitive bands using spectral characteristic information to 
obtain vegetation indexes, which are used to establish 
estimation models (Hatfield et  al., 2008; Mistele and 
Schmidhalter, 2008).

An appropriate water content is the basis of vigorous 
plant growth and efficient water use. As early as 1971, 
Thomas et  al. (1971) analyzed the relationship between the 
leaf water content (LWC) and spectral reflectance, and 
revealed a strong correlation with reflectance at 1450 and 
1930  nm. Similarly, Carter (1991) suggested that the near-
infrared absorption peak at 950–970  nm could be  used to 
monitor plant moisture content, while Dawson et  al. (1999) 
examined the performance of the moisture spectral index 
to estimate the canopy water content, revealing that indexes 
based on 970 and 1200  nm water absorption characteristics 
had a high coefficient of determination (Dawson et  al., 
1999). However, studies also suggest that reflectance at 970, 
1200, and 1900  nm is easily affected by starch, protein, 
and nitrogen (Curran, 1989). For example, Sims and Gamon 
(2003) revealed that the best spectral bands for remote 
estimates of the plant water content at the canopy scale 
were 1150–1260 and 1520–1540  nm (Sims and Gamon, 
2003), while in addition to the near infrared region, reflectance 
at 690 and 740  nm have also been shown to reflect water 
stress in plants (Dobrowski et  al., 2005). Screening and 
analysis of spectral bands that are sensitive to water also 
provides a basis for the establishment of relevant vegetation 
indexes that reflect the water status. Peñuelas et  al. (1993a) 
combined the water absorption band at 970  nm and the 

reference band at 900  nm as a ratio to establish a water 
index (WI) capable of tracking changes in water content. 
Similarly, Zarco-Tejada et  al. (2003) used MODIS data to 
construct a plant water index (PWI) for monitoring vegetation 
moisture content, and revealed good consistency with the 
water content of ground crops (Zarco-Tejada et  al., 2003). 
Moreover, the floating-position water band index (FWBI) 
has also been established, which uses the reflectance at 
900 nm and minimum reflectance at 900–980 nm to represent 
the water status (Strachan et  al., 2002). Yao et  al. (2014) 
subsequently introduced a new water-sensitive band based 
on the normalized vegetation index NDSI (1429, 416) to 
construct a three-band vegetation index capable of estimating 
the leaf equivalent water thickness. However, these previous 
studies mainly used the sensor to obtain two-dimensional 
information of the crop in a vertical direction, and failed 
to include data from middle to lower parts of the canopy. 
The accuracy of remote sensing monitoring therefore requires 
further improvements.

Compared with vertical observation angles, the multi-
angle observation method collects data from different 
directions, providing multi-dimensional information and 
representing a new method of remote sensing monitoring 
(Thenkabail et  al., 2000; Pocewicz et  al., 2007; Huang et  al., 
2011). A number of studies have been carried out to extract 
optical and structural information using multi-angle 
observations (Cierniewski et  al., 2004; Rautiainen et  al., 
2004), suggesting that multi-angle remote sensing technology 
can improve the ability of a vegetation index to estimate 
crop canopy structure and distinguish between crop varieties 
(Shibayama and Wiegand, 1985; Diner et  al., 1999). The 
photochemical reflectance index (PRI) is notably affected 
by the observation angle. For example, PRI values calculated 
using backward spectral data tend to be  higher than those 
obtained with forward observation data (Drolet et  al., 2008; 
Garbulsky et al., 2011; Middleton et al., 2011). Furthermore, 
Galvão et  al. (2009) found that data collected in a 
backscattering direction was better at distinguishing between 
different soybean varieties, while Chopping et  al. (2003) 
obtained canopy characteristics of desert grassland using 
multi-angle remote sensing data. Chen et  al. (2005) and 
Leblanc et  al. (2005) proposed a multi-angle index for 
measuring leaf aggregation based on hot and dark spot 
reflectivity. Multi-angle hyperspectral remote sensing has 
also made great progress in estimations of crop pigment 
content and nitrogen content (Stagakis et al., 2010; He et al., 
2015). Meanwhile, He et  al. (2016) constructed an angle 
insensitivity index (AIVI) based on analysis of different 
bands and vegetation indexes, improving the accuracy of 
plant nitrogen content estimations and expanding the scope 
of application.

In the field of remote sensing monitoring, in addition to 
analyses of vegetation canopy structure and physiological 
indicators, the performance indicators of crop production are 
also important. The PN of field crops has been shown to 
be  significantly correlated with physiological indicators, and 
studies suggest the use of the ratio vegetation index (R810/680) 
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to directly estimate the PN of rice leaves (Tian et  al., 2005). 
In addition, based on hyperspectral data, Zhang et  al. (2018) 
established an estimation model of nitrogen fertilizer use 
efficiency in winter wheat, while photosynthetic effective radiation 
(FPAR) captured by the canopy can also be  directly obtained 
through multi-angle remote sensing (Chen et  al., 2003).

Light use efficiency (LUE) is one of the most important 
traits in crops, and is usually reflected by the PRI (Zarco-
Tejada et  al., 2013). For example, Hall et  al. (2008) proposed 
a method to obtain forest LUE directly from space by measuring 
the shadow component of the PRI based on multi-angle spectral 
information (Hall et  al., 2008). Meanwhile, Bastiaanssen et  al. 
(1999) used remote sensing data to estimate crop yield and 
crop transpiration (ETc), and then determined the WUE of 
crops in the Barkra region of India. Li et  al. (2005) also used 
remote sensing observation means combined with meteorological 
data to invert crop WUE in the Haihe River Basin by estimating 
crop transpiration. Thus, while progress has been made in the 
use of remote sensing data to monitor crop WUE, the monitoring 
indicators, methods, and models remain inconsistent due to 
geographical differences and crop types, as well as differences 
in cultivation conditions. However, estimations of WUE 
utilization efficiency at the leaf scale based on hyperspectral 
remote sensing data are lacking, especially with regards the 
influence of different observation angles, and the angle range 
of model adaptation requires further clarification. The main 
goal of this study, therefore, was to create a model capable 
of estimating the instantaneous WUE of winter wheat leaves 
based on multi-angle hyperspectral remote sensing data. By 
clarifying the relationship between common spectral parameters 
and WUE at different vertical angles, a new vegetation index 

for estimating WUE was established. The new parameter was 
then compared with common vegetation indexes under different 
observation angles, and the optimal range of angles was 
determined, allowing establishment of a unified estimation 
equation. The findings provide a theoretical basis for real-
time accurate monitoring of water use in winter wheat, 
supporting the screening of germplasm resources and efficient 
irrigation management.

MATERIALS AND METHODS

Experimental Design
Five experiments were carried out across 4 years at two different 
locations. Various water management, N rates, and cultivars 
of hexaploid winter wheat (Triticum aestivum L.) were studied, 
specific details are shown in Table  1. Experiments 1–4 were 
completed in the experimental station of Henan Agricultural 
University (35°51’N, 113°35’S), Zhengzhou, Henan Province, 
China, in fluvo-aquic soil. Experiments 1 and 4 were completed 
in 2016–17, and experiments 2 and 3 in 2017–18 and 2018–19, 
respectively. Experiment 5 was completed at Shangshui 
experimental station in Zhoukou, Henan Province (33°33’N, 
114°37’S), in 2017–18, in lime concretion black soil. The 
experiments 1, 4, and 5 consisted of a only one irrigation 
regiments (twice irrigation, 750 m3ha−1 at jointing plus anthesis 
stage), experiments 2–3 consisted of a three irrigation regiments 
(no irrigation, single irrigation of 750  m3ha−1, and 
irrigation750  m3ha−1 at jointing plus anthesis stage). Three 
different winter wheat cultivars were examined, two erect (Yumai 
49–198 and Zhoumai 27) and one horizontal (Zhengmai 9694). 

TABLE 1 | Seasons, soil status, cultivars, nitrogen rates, irrigation frequency, and sampling dates for five experiments.

Exp. no.
Season, Site, 
and Cultivar Soil characteristics Treatments Sampling stage

Exp. 1 2016-2017

Zhengzhou

Yumai49-198

Type: fluvo-aquic soil, Organic-M: 20.7 g kg−1, 
Soil pH (CaCl2): 7.9, Total N: 
1.9 g kg−1,AvailableP: 40.63 mg kg−1, Available 
K: 116.2 mg kg−1

Irrigated N: N rate (kg ha-1), W2: [N0(0), N6(60), N12(120), N18(180), 
N24(240)]. N: 50% prior to seeding and 50% at jointing. Irrigation 
frequencies: W2 (twice at jointing and anthesis stage).

Booting
Anthesis

Mid-filling

Exp. 2 2017-2018

Zhengzhou

Yumai49-198

Type: fluvo-aquic soil, Organic-M: 16.8 kg−1, 
Soil pH (CaCl2): 7.8, Total N: 0.92 g kg−1, 
Available P: 18.90 mg kg−1, Available K: 
152.64 mg kg−1

Water and nitrogen coupling: N rate (kg ha-1), W0: [N0(0), N6(60), 
N12(120), N18(180), N24(240)], W1: [N0(0), N6(60), N12(120), N18(180), 
N24(240)], W2: [N0(0), N6(60), N12(120), N18(180), N24(240)]. Irrigation 
frequencies: W0(none), W1(once at jointing stage), W2 (twice at 
jointing and anthesis stage).

Booting
Heading
Anthesis

Mid-filling

Exp. 3 2018-2019

Zhengzhou

Yumai49-198

Type: fluvo-aquic soil, Organic-M: 16.8 kg−1, 
Soil pH (CaCl2): 7.8, Total N: 0.92 g kg−1, 
Available P: 18.90 mg kg−1, Available K: 
152.64 mg kg−1

Water and nitrogen coupling: N rate (kg ha-1), W0: [N0(0), N6(60), 
N12(120), N18(180), N24(240)], W1: [N0(0), N6(60), N12(120), N18(180), 
N24(240)], W2: [N0(0), N6(60), N12(120), N18(180), N24(240)]. Irrigation 
frequencies: W0(none), W1(once at jointing stage), W2 (twice at 
jointing and anthesis stage).

Booting
Heading
Anthesis

Mid-filling

Exp. 4 2016-2017

Zhengzhou

Zhengmai9694

Type: fluvo-aquic soil, Organic-M: 16.8 kg−1, 
Soil pH (CaCl2): 7.8, Total N: 0.92 g kg−1, 
Available P: 18.90 mg kg−1, Available K: 
152.64 mg kg−1

Irrigated N: N rate (kg ha-1), W2: [N0(0), N12(120), N18(180), 
N24(240)]. N: 50% prior to seeding and 50% at jointing. Irrigation 
frequencies: W2 (twice at jointing and anthesis stage).

Booting
Heading
Anthesis
Mid-filling

Exp. 5 2017-2018

Shangshui

Zhoumai27

Type: lime concretion black soil, Organic-M: 
kg−1, Soil pH

(CaCl2): 7.0, Total N: kg−1, Available P: 
4.87 mg kg−1,

Available K: 176.52 mg kg−1

Irrigated N: N rate (kg ha-1), W2: [N0(0), N6(60), N12(120), N18(180), 
N24(240)]. N: 50% prior to seeding and 50% at jointing. Irrigation 
frequencies: W2 (twice at jointing and anthesis stage).

Heading

Anthesis
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Experimental plots 1–4 covered an area of 7 × 2.9 m, respectively, 
planted in a north-south direction, with 18  cm row spacing, 
while plot 5 covered an area of 9  ×  6  m, planted in a north-
south direction, with 20  cm row spacing. All experiments 
followed a completely randomized block design, and each 
treatment was repeated three times. All plots were managed 
according to local standard management practices.

Measurements of Agronomic Indicators
The PN and Tr of the top leaf were determined in the field 
using a photosynthetic device (LI-6400 photosynthetic rate 
system; Li-Cor Inc., United States). Measurements were obtained 
in the open at a carbon dioxide concentration of approximately 
385  μmol  1−1. The built-in light source was set at 
1600  μmol  m−2  s−1. The ratio of PN and Tr was then used to 
reflect the WUE. Measurements were taken at the booting, 
heading, anthesis, initial-filling, and mid-filling stages.

Twenty representative plants from each treatment were then 
randomly selected and brought back to the laboratory where 
they were separated into stem and leaf samples. Leaf weight 
(FW) was recorded before drying the samples in an oven at 
105°C for 30  min then to a constant weight at 70°C. The dry 
mass of the leaves (DW) was then determined and the LWC 
was calculated as follows:

LWC  =  (FW-DW)/FW.

Plant leaf samples were simultaneously dried to a constant 
weight then crushed and passed through a sieve before determining 
the leaf nitrogen content (LNC) using the Kjeldahl method.

Canopy Spectrum Acquisition
At the same time as measuring the WUE, the spectral reflectance 
of the winter wheat canopy was also determined. A FieldSpec 
Pro FR 2500 back-mounted field hyperspectral radiometer 
(Analytical Spectral Device, American ASD Company) was 
used to sample 10 points per 1  m2, which were then averaged 
as one point of data. Measurements were made on a sunny 
day with no cloud cover between 10:00 and 12:00  a.m. The 
field of view of the spectrometer was set at 25°, the spectral 
range was 350–1075 nm, and the sampling interval was 1.6 nm. 
Before sampling and during use, a 40 × 40 cm BaSO4 whiteboard 
was used for calibration. To obtain multi-angle spectrum, a 
probe was fixed to the multi-angle observation frame according 
to the design of the field angle measurement system (FIGOS, 
Figure  1). A total of 13 observation angles were examined 
following the principal plane of the sun, with the sunny side 
representing backward observation angles (−60, −50, −40, −30, 
−20, and −10°, respectively), and angles on the opposite side 
representing forward observation angles (10, 20, 30, 40, 50, 
and 60°, respectively), with the vertical angle set at 0°.

Data Application
A self-developed computation program was used to optimize the 
sensitive band combinations and equations using MATLAB 7.0 
software. Data from experiments 1–3 were used to construct the 

new vegetation index and WUE estimation model, while independent 
data from experiments 4–5 were used to test the model by 
comparing differences between the coefficient of determination 
(R2), root mean square error (RMSE), and relative error (RE, %). 
A 1:1 scatter plot was then used to show the effect of the model. 
Some common spectral indices were calculated using the equation 
listed in Table  2. RMSE and RE were calculated as follows:

 RMSE
n

P Q

i

n

i i= × −( )
=
∑1

1

2 (1)

 RE
n

P Q

Q
i

n
i i

i

= ×
−







 ×

=
∑1

100

1

2

(2)

where Pi and Qi represent the predicted and measured values, 
respectively, and n represents the number of samples.

RESULTS

Quantitative Relationships Between the 
Leaf Nitrogen Content, Water Content, and 
WUE
Based on the data from experiments 1–3, the relationships 
between the LNC, LWC, and ratio between LNC/LWC under 
different experimental conditions was analyzed in terms of the 
WUE (Figure  2). As shown in Figure  2A, when the irrigation 
treatment conditions are not distinguished, the relationship 
between LNC and WUE was generally poor (R2 = 0.366). Under 
a single water treatment condition, the LNC showed a significant 
linear relationship with the WUE, and the correlation was best 
under W1 (once water at jointing stage) conditions (R2 = 0.869), 
followed by W0 conditions (R2  =  0.803). The worst correlation 
was observed under W2 (twice water at jointing and anthesis 
stage) conditions (R2 = 0.682). Similarly, the relationship between 

FIGURE 1 | Dimensions and design of the field goniometer system.
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the LWC and WUE was also affected by nitrogen treatment. 
Overall, the R2 between the LWC and WUE was only 0.098 
(Figure 2B). Under different nitrogen treatment conditions, the 
relationship between LWC content and WUE was significant. 
The transition from high to low nitrogen treatment caused an 
increase followed by a decrease in R2, with N12 (120  kg  ha−1) 
treatment giving the highest value (R2 = 0.885). The relationships 
between the LNC and LWC content and WUE were therefore 
affected by each other, and these relationships were therefore 
analyzed further. Results revealed that the variation in WUE 
was closely related to the slope between LNC and LWC. With 
increasing WUE, the slope of the equation between LNC and 
LWC gradually increased (Figure 2C), and there was a significant 
positive correlation between the LNC/LWC ratio and WUE 

(R2  =  0.564, Figure  2D). These findings suggest that the LNC/
LWC ratio more accurately reflects the dynamic changes in 
WUE under different water and nitrogen conditions.

Relationship Between Common Spectral 
Parameters and WUE at the Vertical 
Observation Angle
The relationships between 330 previously reported vegetation 
indices and WUE were subsequently analyzed, then the best 
12 were selected (Figure  3). As shown in the figure, the R2 
between WUE and only three of these parameters was greater 
than 0.4 (R2 of Lo, EVI-1 and NDDAig: 0.439, 0.523, and 
0.545; RMSE: 0.539, 0.511, and 0.500, respectively). To further 

A B

C D

FIGURE 2 | Quantitative relationships between leaf nitrogen (N) content (LNC: A), water content (LWC: B), LNC/LWC (D) and water use efficiency (C: The relation 
between LWC and LNC. WUE; n = 140).
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improve the estimation accuracy using the relationship between 
LNC/LWC and WUE, LNC and LWC were converted using 
related vegetation indexes then the relationship with WUE was 
analyzed further. Ten indexes representing the LNC and seven 
representing the LWC were combined to create different ratios 
of the two vegetation indexes then the correlations with WUE 
were determined at a vertical angle (Figure 4). Ten combinations 
showed a R2 greater than 0.40, and of these, three had an R2 
exceeding 0.50 and were considered optimal (NDDAig/FWBI, 
NDDAig/WBI-1, and SPRI/WBI-1). Overall, the combination 
of NDDAig/FWBI performed the best (R2  =  0.624).

The quantitative relationships between the two common 
spectral parameters Lo and NDDAig and the optimized novel 
ratio vegetation index (NDDAig/FWBI) and WUE are shown 
as a scatter plot in Figure  5. A significant linear correlation 
was revealed between Lo and WUE (R2  =  0.523 and 
RMSE  =  0.501, Figure  5A), with an obvious saturation 
phenomenon. Compared with Lo, the NDDAig model showed 
improvement (R2 = 0.543, RMSE = 0.486, Figure 5B), although 
the combined NDDAig/FWBI index gave the best results 
(R2  =  0.624, 19.31 and 14.92% higher than that of Lo and 
NDDAig, respectively; RMSE = 0.441, 13.61, and 10.20% lower 

than that of Lo and NDDAig, respectively), with obvious 
weakening of the saturation phenomenon. Based on highest 
R2 values, the new ratio vegetation index (NDDAig/FWBI) 
was constructed to generate a water efficiency index (WEI).

Relationships Between the Spectral 
Parameters and WUE at Different Zenith 
Angles
Based on the data from experiments1–3, the relationships 
between the 12 common vegetation indexes and new combined 
index WEI were analyzed in terms of WUE under different 
observation angles (Table  3). Overall, except for angles of −60 
and −50°, all spectral parameters had a higher backward R2 
than forward R2, especially in the range of −40–30°. Moreover, 
the optimal observation angles of the different vegetation indexes 
were inconsistent with the monitoring accuracy. Two of the 
13 spectral parameters (GVI and TC2) had an optimal observation 
angle of 0° with R2 values of 0.375 and 0.365, respectively, 
while five spectral parameters [TSAVI (800, 670), RDVI (800, 
670), PSRI, SIPI (800, 680, 445), and EVI-1] had an optimal 
angle of −20° with R2 values of 0.424, 0.406, 0.407, 0.422, 
and 0.472, respectively. It is worth noting that the optimal 
observation angle of seven of the indexes was −10°, suggesting 
that observation angles of −10 to −20° are important when 
monitoring the WUE of winter wheat leaves.

Compared with the common spectral parameters, the new 
vegetation index WEI showed obvious advantages at specific 
observation angles, especially an angle of −10°. The R2 and 
RMSE of the WEI model at different zenith angles are shown 
in Figure  6. The R2 was highest in an angle range of −20–10° 
and the RMSE was relatively low.

Relationship Between the New Spectral 
Parameter and WUE Under Different Angle 
Ranges
From a single observation angle point of view, the monitoring 
accuracy of the new combined index was highest within a 
range of −20–10°, with highest precision at −10° (R2 and 
RMSE: 0.635 and 0.441, respectively). By combining the data 
from different observation angles, equation fitting was further 
analyzed under five observation angle ranges according to the 
principle of adjacent observation angles. As shown in Figure 7, 
the monitoring accuracy of WEI was higher than that of Lo 
and NDDAig, and the RMSE value was lowest under different 
angle ranges. Compared with an observation angle of −10°, 
the R2 of WEI decreased by 6.72% within a range of −20–20°, 
while the RMSE increased by 7.76% (Figure  8A). Meanwhile, 
the R2 decreased by only 1.93% in a range of −20–10° and 
the RMSE increased by only 4.71% (Figure 8B). These findings 
suggest that within an angle range of −20–10°, the WEI model 
reduces the dependency on the observation angle, increasing 
the applicability and stability of the model.

Testing of the Estimation Model
The WUE estimation models were subsequently tested with 
the independent test data obtained in experiments 4–5 using 

TABLE 2 | Summary of selected spectral parameters reported in the literature.

Vegetation 
indices Formula Reference

DVI(810,680) R810-R680 Jordan, 1969

SRPI R430/R680 Peñuelas et al., 1995a
WBI-1 R950/R900 Peñuelas et al., 1993a
WI R900/R970 Peñuelas et al., 1997
Readone R415/R695 Read et al., 2002
Lo min(R680-780) Miller et al., 1990
PSRI (R680-R500)/R750 Merzlyak et al., 1999
R434/(R496 + R401) R434/(R496 + R401) Tian et al., 2011
R705/(R717 + R491) R705/(R717 + R491) Tian et al., 2011
FWBI R900/min(R930-980) Strachan et al., 2002
PRI(570, 531) (R531-R570)/(R531 + R570) Gamon et al., 1992

SIPI(800, 680, 445) (R800-R445)/(R800-R680) Peñuelas et al., 1995a

mSR705 (R750-R445)/(R705-R445)
Sims and Gamon, 
2002

RES (R718-R675)/(R755-R675) Ju et al., 2010

NDVI(895, 675) (R895-R675)/(R895 + R675)
Santos and Negri, 
1997

NDRE (R790-R720)/(R790 + R720) Fitzgerald et al., 2006
NRI(570, 670) (R570-R670)/(R570 + R670) Li et al., 2005

RDVI(800, 670) (R800-R670)/sqrt(R800 + R670)
Roujean and Breon, 
1995

NDDAig (R755 + R680−2 × R705)/(R755−R680) Feng et al., 2014

NDGI
[R(520-560)-R(630-690)]/ [R(520-560) +  
R(630-690)] Rouse et al., 1974

EVI-1
2.5*(R860-R645)/(1 + R860 + 6*R645-
7.5*R470) Huete et al., 2002

MCARI(700, 670, 
550) [(R700-R670)-0.2*(R700-R550)]*(R700/R670) Daughtry et al., 2000

Vari-GREEN
(R520-560-R630-690)/(R520-560 + R630-

690-R430-470) Gitelson et al., 2002

TSAVI(800, 670)

1.4735*(R780 + 1.4735*R650-
1.3681)/
(-1.4735*R780+R650 + 1.4735*1.3681)

Baret and Guyot, 
1991

WEI
[(R755+R680-2*R705)*Min(R930-980)]/
[(R755-R680)*R900] This study
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three indicators (R2, RMSE, and RE). The prediction ability 
is shown as the ratio between predicted and observed values 
in Figure  9. The WUE model using NDDAig (R2  =  0.602, 

RMSE  =  0.474, and RE  =  14.191%) as a variable was better 
than that using Lo (0.517, 0.523, and 18.012%, respectively); 
however, new parameter WEI gave better predictions, with 

FIGURE 3 | Relationships between common vegetation indices and WUE (n = 140).

FIGURE 4 | Correlations between different parameter ratios and the WUE. [X-axis: VIs-LNC (vegetation indices related to LNC) 1–10 represent NDDAigig, R434/
(R496 + R401), R705/(R717 + R491), SRPI, NDRE, Lo, NRI, NDGI, RES, MCART (700, 670, and 550), respectively; Y-axis: VIs-LWC (vegetation indices related to LNC) 1–7 
represent PRI (570 and 531), FWBI, WBI-1, WI, Vari-GREEN, mSR705, NDVI (895 and 675), respectively; n = 140].
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R2  =  0.685, RMSE  =  0.403, and RE  =  11.147%. Overall, 
these findings suggest that the new combined index of WEI 
can be  used to accurately monitor the WUE of winter 
wheat leaves.

DISCUSSION

Water and nutrients are not only the main stress factors affecting 
agricultural production, but they also interact with each other, 
playing individual as well as complimentary roles. The main 
aim of agricultural management, therefore, is to maximize the 
coupling effect of water and nitrogen, adjust water management 
according to nitrogen absorption, and use water management 
to promote nitrogen absorption (Sheshbahreh et  al., 2019). 
Water stress significantly affects nitrogen absorption, while 
improved soil water conditions benefit nitrogen absorption and 
utilization. Increased uptake of nutrients under drought stress 
can also help improve drought resistance, while optimal increases 
in nitrogen fertilizer application can improve WUE and increase 
yield (Wolfe et al., 1988). As a result of the synergetic relationship 
between soil water and nitrogen, the changes in crop nitrogen 
and water contents are also synchronized. However, this 
relationship is also affected by irrigation and nitrogen fertilizer 
treatment. Meanwhile, this study confirmed that the relationship 
between the LNC and WUE is also affected by irrigation 
treatment, while at the same time, the relationship between 
the LWC and WUE is also affected by nitrogen fertilizer 
treatment. Thus, the use of LNC and LWC alone was relatively 
unreliable in characterizing the WUE. In contrast, the relationship 
between the ratio of LNC/LWC in terms of WUE was relatively 
less affected by irrigation and nitrogen fertilizer treatment. 
The coefficient of determination of the fitting equation was 
0.564, suggesting that the LNC/LWC ratio is a good indicator 
of dynamic changes in WUE. Overall, the findings confirmed 
that an increase in nitrogen in line with an increase in the 
water content of crop leaves is beneficial to overall 
water absorption.

The WUE of a plant is genetically controlled as well as 
being affected by the environment, and can therefore 
be  improved by both breeding and cultivation measures.  

A high WUE is beneficial in maintaining a certain yield under 
water stress, and therefore has important application value. 
In addition, WUE plays a significant role in estimations of 
net primary productivity (NPP  =  WUE  ×  Tr) on a regional 
scale. However, recent studies have shown that the WUE is 
not constant, but rather it varies greatly with environmental 
conditions and the plant type (Yu et  al., 2001). The use of 
remote sensing to rapidly and non-destructively determine the 
real-time WUE of a crop therefore provides important 
information for terrestrial ecosystem and water cycle models 
at different scales. The crop canopy spectrum provides mixed 
information, and is susceptible to factors such as plant coverage, 
soil type, and leaf area. Accordingly, a number of studies have 
aimed to construct new indexes that reduce noise and improve 
the estimation accuracy (Wang et  al., 2012). For example, 
Peñuelas et  al. (1997) and Pinol et  al. (1998) successfully 
determined the humidity of combustibles using spectral data 
obtained in the field in the Mediterranean using a combined 
ratio spectral index (Peñuelas et  al., 1997; Pinol et  al., 1998). 
Studies have also shown that double-ratio vegetation indexes 
can reduce the effects of variables such as background and 
leaf area index (LAI), and provide more useful information 
for estimations of the vegetation canopy water content (Daughtry 
et  al., 2000; Haboudane et  al., 2002). Meanwhile, double-ratio 
vegetation indexes also include more sensitive bands, thus 
improving the estimation accuracy (Gitelson et al., 2017). Based 
on these studies, we  therefore combined the close relationship 
between LNC/LWC and WUE to obtain a new spectral parameter, 
one indicate the change in nitrogen content of the leaf is 
selected, another parameter that is sensitive to the change in 
LWC is selected, the combination of these two vegetation 
indexes in the form of ratio provides an opportunity to invert 
WUE of leaves. To this end, we selected two spectral parameters 
of nitrogen content (NDDAig) and water content (FWBI), 
and combined the two (NDDAig/FWBI) to give a new index, 
WEI. Accordingly, estimations of the WUE of winter wheat 
leaves were greatly improved. Compared with common spectral 
parameters, the new WEI performed best at 13 angles, with 
optimal angle compatibility within the range of −20–10° 
(R2  =  0.623). The use of independent test data also confirmed 
the accuracy of the model.

A B C

FIGURE 5 | Relationships between Lo (A), NDDAig (B), NDDAig/FWBI (C), and the WUE at a 0° zenith angle (n = 140).
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The difference between a vegetation index in different 
observation directions depends on various factors, including 
the crop canopy structure, the shape, and angle of the sensor, 
shadows, and the soil type (Kimes et  al., 1985). In this study, 
the relationship between WEI and WUE also varied depending 
on the angle of observation. Pocewicz et  al. (2007) made 
full use of the hotspot effect of the backward observation 
angles to improve the estimation accuracy of LAI (Pocewicz 
et  al., 2007). Meanwhile, a multi-angle observation method 
was used to collect image data of the soybean canopy at 
different growth stages in the field, revealing that a 40° zenith 
angle was the best angle for inverting chlorophyll density 
(Zhang et al., 2013). In this study, the R2 between the spectral 
parameters and WUE decreased with increasing observation 
angle, possibly because a smaller angle results in more 
comprehensive information of the upper, middle, and lower 
canopies of the entire crop. The absorption of water by crop 
leaves is the result of interactions throughout the canopy; 
therefore, small-angle spectral information is important in 
determining an accurate WUE. In addition, the effects of 
backward observation angles were found to be  better than 
those of forward observations. This is thought to be  because 
when data is collected in a backward direction, the sensor 
is located on the same side as the sun, and data is mainly 
collected from canopy falling within the light. In contrast, 
the crop canopy with a larger shadow share is collected in 
a forward direction, although angles of −60° and −50° behave 
abnormally, possibly due to the decline in data quality at 
larger angles (Barnes and Hu, 2016).

Compared with the vertical angle, the wider angle range 
not only resulted in more information on the crop canopy, 
but also expanded the application range of the sensor, 
increasing overall efficiency. In addition to determining the 
best observation angle, it is also important to comprehensively 
model data from different angles to increase application 
accuracy (Guo et  al., 2018; He et  al., 2018). The WEI 
constructed in this study provided high estimation accuracy 
(R2  =  0.623) within a range of −20–10°, and compared 
with the optimal angle (−10°), the estimation accuracy of 
WEI within a range of −20–10° decreased by only 1.93%, 
while the RMSE value increased by only 4.71%. These results 
suggest that the WEI reduces the sensitivity to observation 
angles within the range of −20–10°, helping establish a 
more unified monitoring model, and increasing the efficiency 
and applicability of portable monitors in the field. However, 
despite these findings, this experiment was carried out using 
only three winter wheat varieties under two ecological 
conditions, and therefore, further analysis of the monitoring 
model in other regions, and with different crop types and 
varieties is required.

CONCLUSION

Real-time monitoring of crop water use is of great significance 
in improving crop irrigation management and guiding water-saving 
agricultural production. Based on the WUE, this study adopted TA
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FIGURE 6 | Correlations between water efficiency index (WEI) and WUE at different zenith angles (n = 140).

FIGURE 7 | Comparisons of the predictive abilities of Lo, NDDAig, and WEI within five zenith angle ranges (−60–60°, −60–0°, 0–60°, −20–20°, and −20–10°) with 
respect to WUE (n = 140).
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a combined vegetation index method, using NDDAig/FWBI to 
effectively determine the WUE of winter wheat leaves reflecting 
a new index named the WEI. The WEI performed better than 
other common vegetation indexes at 13 observation angles, with 
the most suitable observation range falling between −20 and 10°. 
Within this range, a unified estimation model was established 
with reduced dependency on observation angle limitations. These 
findings provide a basis for the selection of varieties with a high 
WUE as well as supporting water-saving cultivation management.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will 
be  made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

H-YZ, C-YW and WF conceived the research concept; H-YZ, 
M-RL, LS and XL performed the experiments; H-YZ, C-YW 
wrote the paper; Z-HF and W-DL contributed to the results 
analysis and discussion.

FUNDING

This work was supported by the National Key Research and 
Development Program of China (Grant No. 2018YFD0300707) 
and the Fund for Modern Agro-industry System of Henan 
province (S2010-01-G07). National Natural Science Foundation 
of China (31671624).

 

REFERENCES

Baret, F., and Guyot, G. (1991). Potentials and limits of vegetation indices for 
LAI and APAR assessment. Remote Sens. Environ. 35, 161–173. doi: 
10.1016/0034-4257(91)90009-U

Barnes, B. B., and Hu, C. (2016). Dependence of satellite ocean color data 
products on viewing angles: a comparison between SeaWiFS, MODIS, 
and VIIRS. Remote Sens. Environ. 175, 120–129. doi: 10.1016/j.rse.2015.12.048

Bastiaanssen, W. G. M., Thiruvengadachari, S., Sakthivadivel, R., and Molden, D. J. 
(1999). Satellite remote sensing for estimating productivities of land and 

A B

FIGURE 8 | Comparisons of the predictive power of WEI at different view zenith angles (VZAs) combinations in terms of WUE (A: n = 700; B: n = 560).

FIGURE 9 | Comparisons between predicted and measured WUE based on Lo, NDDAig, and WEI at a zenith angle of −20° to +10° (n = 120).

56

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1016/0034-4257(91)90009-U
https://doi.org/10.1016/j.rse.2015.12.048


Zhang et al. Multi-Angle Remote Sensing for WUE

Frontiers in Plant Science | www.frontiersin.org 12 March 2021 | Volume 12 | Article 614417

water. Int. J. Water Resour. Dev. 15, 181–194. doi: 10.1080/0790062994 
9005

Carter, G. A. (1991). Primary and secondary effects of water content on the spectral 
reflectance of leaves. Am. J. Bot. 78, 916–924. doi: 10.1002/j.1537-2197.1991.tb 
14495.x

Chen, J. M., Liu, J., Leblanc, S. G., Lacaze, R., and Roujean, J. L. (2003). 
Multi-angular optical remote sensing for assessing vegetation structure and 
carbon absorption. Remote Sens. Environ. 84, 516–525. doi: 10.1016/
S0034-4257(02)00150-5

Chen, J. M., Menges, C. H., and Leblanc, S. G. (2005). Global mapping of 
foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 
97, 447–457. doi: 10.1016/j.rse.2005.05.003

Chopping, M. J., Rango, A., Havstad, K. M., Schiebe, F. R., Ritchie, J. C., 
Schmugge, T. J., et al. (2003). Canopy attributes of desert grassland and 
transition communities derived from multiangular airborne imagery. Remote 
Sens. Environ. 85, 339–354. doi: 10.1016/S0034-4257(03)00012-9

Cierniewski, J., Gdala, T., and Karnieli, A. (2004). A hemispherical–directional 
reflectance model as a tool for understanding image distinctions between 
cultivated and uncultivated bare surfaces. Remote Sens. Environ. 90, 505–523. 
doi: 10.1016/j.rse.2004.01.004

Condon, A. G., Richards, R. A., Rebetzke, G. J., and Farquhar, G. D. (2002). 
Improving intrinsic water-use efficiency and crop yield. Crop Sci. 42, 122–131. 
doi: 10.2135/cropsci2002.1220

Curran, P. J. J. R. S. o. E. (1989). Remote sensing of foliar chemistry. Remote 
Sens. Environ. 30, 271–278. doi: 10.1016/0034-4257(89)90069-2

Daughtry, C. S. T., Walthall, C. L., Kim, M. S., De Colstoun, E. B., and 
Mcmurtrey, J. E. (2000). Estimating corn leaf chlorophyll concentration from 
leaf and canopy reflectance. Remote Sens. Environ. 74, 229–239. doi: 10.1016/
S0034-4257(00)00113-9

Dawson, T. P., Curran, P. J., North, P. R. J., and Plummer, S. E. (1999). The 
propagation of foliar biochemical absorption features in forest canopy 
reflectance: a theoretical analysis. Remote Sens. Environ. 67, 147–159. doi: 
10.1016/S0034-4257(98)00081-9

Diner, D. J., Asner, G. P., Davies, R., Knyazikhin, Y., Muller, J. P., Nolin, A. W., 
et al. (1999). New directions in earth observing: scientific applications of 
multiangle remote sensing. B. Am. Meteorol. Soc. 80, 2209–2228. doi: 
10.1175/1520-0477(1999)080<2209:ndieos>2.0.co;2

Dobrowski, S. Z., Pushnik, J. C., Zarco-Tejada, P. J., and Ustin, S. L. (2005). 
Simple reflectance indices track heat and water stress-induced changes in 
steady-state chlorophyll fluorescence at the canopy scale. Remote Sens. Environ. 
97, 403–414. doi: 10.1016/j.rse.2005.05.006

Dong, B., Shi, L., Shi, C. h., Qiao, Y. Z., Liu, M. Y., and Zhang, Z. B. (2011). 
Grain yield and water use efficiency of two types of winter wheat cultivars 
under different water regimes. Agr. Water Manage. 99, 103–110. doi: 10.1016/j.
agwat.2011.07.013

Drolet, G. G., Middleton, E. M., Huemmrich, K. F., Hall, F. G., Amiro, B. D., 
Barr, A. G., et al. (2008). Regional mapping of gross light-use efficiency 
using MODIS spectral indices. Remote Sens. Environ. 112, 3064–3078. doi: 
10.1016/j.rse.2008.03.002

Fitzgerald, G. J., Rodriguez, D., Christensen, L. K., Belford, R., Sadras, V. O., 
and Clarke, T. R. (2006). Spectral and thermal sensing for nitrogen and 
water status in rainfed and irrigated wheat environments. Precis. Agric. 7, 
233–248. doi: 10.1007/s11119-006-9011-z

Feng, W., Guo, B.-B., Wang, Z.-J., He, L., Song, X., Wang, Y.-H., et al. (2014). 
Measuring leaf nitrogen concentration in winter wheat using double-peak 
spectral reflection remote sensing data. Field Crop. Res. 159, 43–52.  
doi: 10.1016/j.fcr.2014.01.010

Galvão, L. S., Roberts, D. A., Formaggio, A. R., Numata, I., and Breunig, F. M. 
(2009). View angle effects on the discrimination of soybean varieties and 
on the relationships between vegetation indices and yield using off-nadir 
Hyperion data. Remote Sens. Environ. 113, 846–856. doi: 10.1016/j.rse.2008. 
12.010

Gamon, J. A., Peñuelas, J., and Field, C. B. (1992). A narrow-waveband spectral 
index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. 
Environ. 41, 35–44. doi: 10.1016/0034-4257(92)90059-S

Garbulsky, M. F., Peñuelas, J., Gamon, J., Inoue, Y., and Filella, I. (2011). The 
photochemical reflectance index (PRI) and the remote sensing of leaf, canopy 
and ecosystem radiation use efficiencies: a review and meta-analysis. Remote 
Sens. Environ. 115, 281–297. doi: 10.1016/j.rse.2010.08.023

Gitelson, A. A., Gamon, J. A., and Solovchenko, A. (2017). Multiple drivers 
of seasonal change in PRI: implications for photosynthesis 2. Stand level. 
Remote Sens. Environ. 190, 198–206. doi: 10.1016/j.rse.2016.12.015

Gitelson, A. A., Kaufman, Y. J., Stark, R., and Rundquist, D. (2002). Novel 
algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 
80, 76–87. doi: 10.1016/S0034-4257(01)00289-9

Guo, B. B., Zhu, Y. J., Feng, W., He, L., Wu, Y. P., Zhou, Y., et al. (2018). 
Remotely estimating aerial N uptake in winter wheat using red-edge area 
index from multi-angular hyperspectral data. Front. Plant Sci. 9:675. doi: 
10.3389/fpls.2018.00675

Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., and Dextraze, L. 
(2002). Integrated narrow-band vegetation indices for prediction of crop 
chlorophyll content for application to precision agriculture. Remote Sens. 
Environ. 81, 416–426. doi: 10.1016/S0034-4257(02)00018-4

Hall, F. G., Hilker, T., Coops, N. C., Lyapustin, A., Huemmrich, K. F., 
Middleton, E. M., et al. (2008). Multi-angle remote sensing of forest 
light use efficiency by observing PRI variation with canopy shadow 
fraction. Remote Sens. Environ. 112, 3201–3211. doi: 10.1016/j.rse. 
2008.03.015

Hatfield, J. L., Gitelson, A. A., Schepers, J. S., and Walthall, C. L. (2008). 
Application of spectral remote sensing for agronomic decisions. Agron. J. 
100, 117–131. doi: 10.2134/agronj2006.0370c

He, L., Coburn, C. A., Wang, Z. J., Feng, W., and Guo, T. C. (2018). Reduced 
prediction saturation and view effects for estimating the leaf area index of 
winter wheat. IEEE. Trans. Geosci. Remote Sens. 57, 1637–1652. doi: 10.1109/
TGRS.2018.2868138

He, L., Song, X., Feng, W., Guo, B. B., Zhang, Y. S., Wang, Y. H., et al. (2016). 
Improved remote sensing of leaf nitrogen concentration in winter wheat 
using multi-angular hyperspectral data. Remote Sens. Environ. 174, 122–133. 
doi: 10.1016/j.rse.2015.12.007

He, L., Zhang, H. Y., Zhang, Y. S., Song, X., and Guo, T. C. (2015). Estimating 
canopy leaf nitrogen concentration in winter wheat based on multi-angular 
hyperspectral remote sensing. Eur. J. Agron. 73, 170–185. doi: 10.1016/j.
eja.2015.11.017

Huang, W. J., Wang, Z. J., Huang, L. S., Lamb, D. W., Ma, Z. H., Zhang, J. C., 
et al. (2011). Estimation of vertical distribution of chlorophyll concentration 
by bi-directional canopy reflectance spectra in winter wheat. Precis. Agric. 
12, 165–178. doi: 10.1007/s11119-010-9166-5

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G. 
(2002). Overview of the radiometric and biophysical performance of the 
MODIS vegetation indices. Remote Sens. Environ. 83, 195–213. doi: 10.1016/
S0034-4257(02)00096-2

Hultine, K. R., and Marshall, J. D. (2000). Altitude trends in conifer leaf 
morphology and stable carbon isotope composition. Oecologia 123, 32–40. 
doi: 10.1007/s004420050986

Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on 
the forest floor. Ecolo. Soc. Am. 50, 663–666. doi: 10.2307/1936256

Ju, C. H., Tian, Y. C., Yao, X., Cao, W. X., Zhu, Y., and Hannaway, D. J. P. 
(2010). Estimating leaf chlorophyll content using red edge parameters. 
Pedosphere 20, 633–644. doi: 10.1016/S1002-0160(10)60053-7

Kimes, D. S., Newcomb, W. W., Tucker, C. J., Zonneveld, I. S., Wijngaarden, V. W., 
Leeuw, D. J., et al. (1985). Directional reflectance factor distribution for 
cover types of northern Africa in NOAA 7/8 AVHRR bands 1 and 2. 
Remote Sens. Environ. 18, 1–19. doi: 10.1016/0034-4257(85)90034-3

Leblanc, S. G., Chen, J. M., White, H. P., Latifovic, R., Lacaze, R., and 
Roujean, J. L. (2005). Canada-wide foliage clumping index mapping from 
multiangular POLDER measurements. Can. J. Remote. Sens. 31, 364–376. 
doi: 10.5589/m05-020

Li, F., Liu, L. Y., Wang, J. H., Li, L. X., Zhao, C. J., and Cao, W. X. (2005) 
Detection of nitrogen status in FCV tobacco leaves with the spectral reflectance. 
IEEE International Geoscience & Remote Sensing Symposium. 1863–1866.

Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., and Rakitin, V. Y. (1999). 
Non-destructive optical detection of pigment changes during leaf senescence 
and fruit ripening. Physiol. Plant. 106, 135–141. doi: 10.1034/j.1399- 
3054.1999.106119.x

Middleton, E. M., Huemmrich, K. F., Cheng, Y.-B., and Margolis, H. A. (2011). 
“Spectral bioindicators of photosynthetic efficiency and vegetation stress” in  
Hyperspectral remote sensing of vegetation. eds. P. S. Thenkabail, J. G. Lyon,  
A. Huete (Boca Raton, FL, USA: CRC Press), 265–288.

57

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1080/07900629949005
https://doi.org/10.1080/07900629949005
https://doi.org/10.1002/j.1537-2197.1991.tb14495.x
https://doi.org/10.1002/j.1537-2197.1991.tb14495.x
https://doi.org/10.1016/S0034-4257(02)00150-5
https://doi.org/10.1016/S0034-4257(02)00150-5
https://doi.org/10.1016/j.rse.2005.05.003
https://doi.org/10.1016/S0034-4257(03)00012-9
https://doi.org/10.1016/j.rse.2004.01.004
https://doi.org/10.2135/cropsci2002.1220
https://doi.org/10.1016/0034-4257(89)90069-2
https://doi.org/10.1016/S0034-4257(00)00113-9
https://doi.org/10.1016/S0034-4257(00)00113-9
https://doi.org/10.1016/S0034-4257(98)00081-9
https://doi.org/10.1175/1520-0477(1999)080<2209:ndieos>2.0.co;2
https://doi.org/10.1016/j.rse.2005.05.006
https://doi.org/10.1016/j.agwat.2011.07.013
https://doi.org/10.1016/j.agwat.2011.07.013
https://doi.org/10.1016/j.rse.2008.03.002
https://doi.org/10.1007/s11119-006-9011-z
https://doi.org/10.1016/j.fcr.2014.01.010
https://doi.org/10.1016/j.rse.2008.12.010
https://doi.org/10.1016/j.rse.2008.12.010
https://doi.org/10.1016/0034-4257(92)90059-S
https://doi.org/10.1016/j.rse.2010.08.023
https://doi.org/10.1016/j.rse.2016.12.015
https://doi.org/10.1016/S0034-4257(01)00289-9
https://doi.org/10.3389/fpls.2018.00675
https://doi.org/10.1016/S0034-4257(02)00018-4
https://doi.org/10.1016/j.rse.2008.03.015
https://doi.org/10.1016/j.rse.2008.03.015
https://doi.org/10.2134/agronj2006.0370c
https://doi.org/10.1109/TGRS.2018.2868138
https://doi.org/10.1109/TGRS.2018.2868138
https://doi.org/10.1016/j.rse.2015.12.007
https://doi.org/10.1016/j.eja.2015.11.017
https://doi.org/10.1016/j.eja.2015.11.017
https://doi.org/10.1007/s11119-010-9166-5
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1007/s004420050986
https://doi.org/10.2307/1936256
https://doi.org/10.1016/S1002-0160(10)60053-7
https://doi.org/10.1016/0034-4257(85)90034-3
https://doi.org/10.5589/m05-020
https://doi.org/10.1034/j.1399-3054.1999.106119.x
https://doi.org/10.1034/j.1399-3054.1999.106119.x


Zhang et al. Multi-Angle Remote Sensing for WUE

Frontiers in Plant Science | www.frontiersin.org 13 March 2021 | Volume 12 | Article 614417

Miller, J. R., Hare, E. W., and Wu, J. (1990). Quantitative characterization of 
the vegetation red edge reflectance 1. An inverted-gaussian reflectance model. 
Int. J. Remote Sens. 11, 1755–1773. doi: 10.1080/01431169008955128

Mistele, B., and Schmidhalter, U. (2008). Estimating the nitrogen nutrition 
index using spectral canopy reflectance measurements. Eur. J. Agron. 29, 
184–190. doi: 10.1016/j.eja.2008.05.007

Peñuelas, J., Baret, F., and Filella, I. (1995a). Semiempirical indexes to assess 
carotenoids chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica 
1995, 221–230. doi: 10.1007/BF00029464

Peñuelas, J., Filella, I., Biel, C., Serrano, L., and Save, R. (1993a). The reflectance 
at the 950–970  nm region as an indicator of plant water status. Int. J. 
Remote Sens. 14, 1887–1905. doi: 10.1080/01431169308954010

Peñuelas, J., Filella, I., Lloret, P., Oz, F. M., and Vilajeliu, M. (1995b). Reflectance 
assessment of mite effects on apple trees. Int. J. Remote Sens. 16, 2727–2733. 
doi: 10.1080/01431169508954588

Peñuelas, J., Gamon, J. A., Griffin, K. L., and Field, C. B. (1993b). Assessing 
community type, plant biomass, pigment composition, and photosynthetic 
efficiency of aquatic vegetation from spectral reflectance. Remote Sens. Environ. 
46, 110–118. doi: 10.1016/0034-4257(93)90088-F

Peñuelas, J., Pinol, J., Ogaya, R., and Filella, I. (1997). Estimation of plant 
water concentration by the reflectance water index WI (R900/R970). Int. J. 
Remote Sens. 18, 2869–2875. doi: 10.1080/014311697217396

Pinol, J., Filella, I., Ogaya, R., and Penuelas, J. (1998). Ground-based 
spectroradiometric estimation of live fine fuel moisture of Mediterranean 
plants. Agric. For. Meteorol. 90, 173–186. doi: 10.1016/S0168-1923(98)00053-7

Pocewicz, A., Vierling, L. A., Lentile, L. B., and Smith, R. (2007). View angle 
effects on relationships between MISR vegetation indices and leaf area index 
in a recently burned ponderosa pine forest. Remote Sens. Environ. 107, 
322–333. doi: 10.1016/j.rse.2006.06.019

Rautiainen, M., Stenberg, P., Nilson, T., and Kuusk, A. (2004). The effect of 
crown shape on the reflectance of coniferous stands. Remote Sens. Environ. 
89, 41–52. doi: 10.1016/j.rse.2003.10.001

Read, J. J., Tarpley, L., Mckinion, J. M., and Reddy, K. R. (2002). Narrow-
waveband reflectance ratios for remote estimation of nitrogen status in 
cotton. J. Environ. Qual. 31, 1442–1452. doi: 10.2134/jeq2002.1442

Richards, R. A. (2006). Physiological traits used in the breeding of new cultivars 
for water-scarce environments. Agr. Water Manage. 80, 197–211. doi: 10.1016/j.
agwat.2005.07.013

Roujean, J. L., and Breon, F. M. (1995). Estimating PAR absorbed by vegetation 
from bidirectional reflectance measurements. Remote Sens. Environ. 51, 
375–384. doi: 10.1016/0034-4257(94)00114-3

Rouse, J. W., Haas, R. W., Schell, J. A., Deering, D. W., and Harlan, J. C. 
(1974). Monitoring the vernal advancement and retrogradation (Greenwave 
Effect) of natural vegetation. NASA/GSFCT Type III Final Rep.  75–80. 

Santos, P., and Negri, A. J. (1997). A comparison of the normalized difference 
vegetation index and rainfall for the amazon and northeastern Brazil.  
J. Appl. Meteorol. 36, 958–965. doi: 10.1175/1520-0450(1997)036<0958:AC
OTND>2.0.CO;2

Sheshbahreh, M. J., Dehnavi, M. M., Salehi, A., and Bahreininejad, B. (2019). 
Effect of irrigation regimes and nitrogen sources on biomass production, 
water and nitrogen use efficiency and nutrients uptake in coneflower (Echinacea 
purpurea L.). Agr. Water Manage. 213, 358–367. doi: 10.1016/j.agwat.2018.10.011

Shibayama, M., and Wiegand, C. L. (1985). View azimuth and zenith, and 
solar angle effects on wheat canopy reflectance. Remote Sens. Environ. 18, 
91–103. doi: 10.1016/0034-4257(85)90040-9

Sims, D. A., and Gamon, J. A. (2002). Relationships between leaf pigment 
content and spectral reflectance across a wide range of species, leaf structures 
and developmental stages. Remote Sens. Environ. 81, 337–354. doi: 10.1016/
S0034-4257(02)00010-X

Sims, D. A., and Gamon, J. A. (2003). Estimation of vegetation water content 
and photosynthetic tissue area from spectral reflectance: a comparison of 
indices based on liquid water and chlorophyll absorption features. Remote 
Sens. Environ. 84, 526–537. doi: 10.1016/S0034-4257(02)00151-7

Stagakis, S., Markos, N., Sykioti, O., and Kyparissis, A. (2010). Monitoring 
canopy biophysical and biochemical parameters in ecosystem scale using 
satellite hyperspectral imagery: an application on a Phlomis fruticosa 

Mediterranean ecosystem using multiangular CHRIS/PROBA observations. 
Remote Sens. Environ. 114, 977–994. doi: 10.1016/j.rse.2009.12.006

Strachan, I. B., Pattey, E., and Boisvert, J. B. (2002). Impact of nitrogen and 
environmental conditions on corn as detected by hyperspectral reflectance. 
Remote Sens. Environ. 80, 213–224. doi: 10.1016/S0034-4257(01)00299-1

Thenkabail, P. S., Smith, R. B., and Pauw, E. D. (2000). Hyperspectral vegetation 
indices and their relationships with agricultural crop characteristics. Remote 
Sens. Environ. 71, 158–182. doi: 10.1016/S0034-4257(99)00067-X

Thomas, J. R., Namken, L. N., Oerther, G. F., and Brown, R. G. (1971). Estimating 
leaf water content by reflectance measurements. Agron. J. 63, 845–847. doi: 
10.2134/agronj1971.00021962006300060007x

Tian, Y. C., Yao, X., Yang, J., Cao, W. X., Hannaway, D. B., and Zhu, Y. (2011). 
Assessing newly developed and published vegetation indices for estimating 
rice leaf nitrogen concentration with ground- and space-based hyperspectral 
reflectance. Field Crop Res. 120, 299–310. doi: 10.1016/j.fcr.2010.11.002

Tian, Y. C., Zhu, Y., and Cao, W. X. (2005). Monitoring leaf photosynthesis 
with canopy spectral reflectance in rice. Photosynthetica 43, 481–489. doi: 
10.1007/s11099-005-0078-y

Wang, W., Yao, X., Yao, X. F., Tian, Y. C., Liu, X. J., Ni, J., et al. (2012). 
Estimating leaf nitrogen concentration with three-band vegetation indices 
in rice and wheat. Field Crop Res. 129, 90–98. doi: 10.1016/j.fcr.2012.01. 
014

Wolfe, D. W., Henderson, D. W., Hsiao, T. C., and Alvino, A. (1988). Interactive 
water and nitrogen effects on senescence of maize. II. Photosynthetic decline 
and longevity of individual leaves. Agron. J. 80, 865–870. doi: 10.2134/agr
onj1988.00021962008000060005x

Yao, X., Jia, W. Q., Si, H. Y., Guo, Z. Q., Tian, Y. C., Liu, X. J., et al. (2014). 
Exploring novel bands and key index for evaluating leaf equivalent water 
thickness in wheat using hyperspectra influenced by nitrogen. PLoS One 
9:e96352. doi: 10.1371/journal.pone.0096352

Yu, G. R., Zhuang, J., and Yu, Z. L. (2001). An attempt to establish a synthetic 
model of photosynthesis-transpiration based on stomatal behavior for maize 
and soybean plants grown in field. J. Plant Physiol. 158, 861–874. doi: 
10.1078/0176-1617-00177.

Zarco-Tejada, P. J., González-Dugo, V., Williams, L. E., Suárez, L., Berni, J. A. 
J., Goldhamer, D., et al. (2013). A PRI-based water stress index combining 
structural and chlorophyll effects: assessment using diurnal narrow-band 
airborne imagery and the CWSI thermal index. Remote Sens. Environ. 138, 
38–50. doi: 10.1016/j.rse.2013.07.024

Zarco-Tejada, P. J., Rueda, C. A., and Ustin, S. L. (2003). Water content estimation 
in vegetation with MODIS reflectance data and model inversion methods. 
Remote Sens. Environ. 85, 109–124. doi: 10.1016/S0034-4257(02) 
00197-9

Zhang, D. Y., Coburn, C., Zhao, J. L., Wang, X., Wang, Z. J., and Liang, D. 
(2013) Chlorophyll Density Inversion of Soybean Canopy Based on Multi-
angle Imaging Hyperspectral Data. 44, 205–213 Transactions of the Chinese 
Society for Agricultural Machinery (in Chinese with English abstract).

Zhang, H. Y., Ren, X. X., Zhou, Y., Wu, Y. P., He, L., Heng, Y. R., et al. 
(2018). Remotely assessing photosynthetic nitrogen use efficiency with in 
situ hyperspectral remote sensing in winter wheat. Eur. J. Agron. 101, 
90–100. doi: 10.1016/j.eja.2018.08.010

Zhang, Z. B., Shao, H. B., Xu, P., Chu, L. Y., Lu, Z. H., and Tian, J. Y. (2007). 
On evolution and perspectives of bio-watersaving. Colloid. Surface. B. 55, 
1–9. doi: 10.1016/j.colsurfb.2006.10.036

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Copyright © 2021 Zhang, Liu, Feng, Song, Li, Liu, Wang and Feng. This is an 
open-access article distributed under the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or reproduction in other forums is permitted, 
provided the original author(s) and the copyright owner(s) are credited and that 
the original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

58

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1080/01431169008955128
https://doi.org/10.1016/j.eja.2008.05.007
https://doi.org/10.1007/BF00029464
https://doi.org/10.1080/01431169308954010
https://doi.org/10.1080/01431169508954588
https://doi.org/10.1016/0034-4257(93)90088-F
https://doi.org/10.1080/014311697217396
https://doi.org/10.1016/S0168-1923(98)00053-7
https://doi.org/10.1016/j.rse.2006.06.019
https://doi.org/10.1016/j.rse.2003.10.001
https://doi.org/10.2134/jeq2002.1442
https://doi.org/10.1016/j.agwat.2005.07.013
https://doi.org/10.1016/j.agwat.2005.07.013
https://doi.org/10.1016/0034-4257(94)00114-3
https://doi.org/10.1175/1520-0450(1997)036<0958:ACOTND>2.0.CO;2
https://doi.org/10.1175/1520-0450(1997)036<0958:ACOTND>2.0.CO;2
https://doi.org/10.1016/j.agwat.2018.10.011
https://doi.org/10.1016/0034-4257(85)90040-9
https://doi.org/10.1016/S0034-4257(02)00010-X
https://doi.org/10.1016/S0034-4257(02)00010-X
https://doi.org/10.1016/S0034-4257(02)00151-7
https://doi.org/10.1016/j.rse.2009.12.006
https://doi.org/10.1016/S0034-4257(01)00299-1
https://doi.org/10.1016/S0034-4257(99)00067-X
https://doi.org/10.2134/agronj1971.00021962006300060007x
https://doi.org/10.1016/j.fcr.2010.11.002
https://doi.org/10.1007/s11099-005-0078-y
https://doi.org/10.1016/j.fcr.2012.01.014
https://doi.org/10.1016/j.fcr.2012.01.014
https://doi.org/10.2134/agronj1988.00021962008000060005x
https://doi.org/10.2134/agronj1988.00021962008000060005x
https://doi.org/10.1371/journal.pone.0096352
https://doi.org/10.1078/0176-1617-00177.
https://doi.org/10.1016/j.rse.2013.07.024
https://doi.org/10.1016/S0034-4257(02)00197-9
https://doi.org/10.1016/S0034-4257(02)00197-9
https://doi.org/10.1016/j.eja.2018.08.010
https://doi.org/10.1016/j.colsurfb.2006.10.036
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


fpls-12-616689 April 1, 2021 Time: 15:34 # 1

REVIEW
published: 09 April 2021

doi: 10.3389/fpls.2021.616689

Edited by:
Penghao Wang,

Murdoch University, Australia

Reviewed by:
Lea Hallik,

University of Tartu, Estonia
Jian Ma,

Sichuan Agricultural University, China

*Correspondence:
Xi Qiao

qiaoxi@caas.cn
Yanzhou Li

lyz197916@126.com

Specialty section:
This article was submitted to

Technical Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

Received: 13 October 2020
Accepted: 18 March 2021

Published: 09 April 2021

Citation:
Wang T, Liu Y, Wang M, Fan Q,
Tian H, Qiao X and Li Y (2021)

Applications of UAS in Crop Biomass
Monitoring: A Review.

Front. Plant Sci. 12:616689.
doi: 10.3389/fpls.2021.616689

Applications of UAS in Crop Biomass
Monitoring: A Review
Tianhai Wang1, Yadong Liu1, Minghui Wang1, Qing Fan2, Hongkun Tian1, Xi Qiao3,4* and
Yanzhou Li1*

1 College of Mechanical Engineering, Guangxi University, Nanning, China, 2 College of Civil Engineering and Architecture,
Guangxi University, Nanning, China, 3 Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis
Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy
of Agricultural Sciences, Shenzhen, China, 4 Guangzhou Key Laboratory of Agricultural Products Quality & Safety Traceability
Information Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China

Biomass is an important indicator for evaluating crops. The rapid, accurate and
nondestructive monitoring of biomass is the key to smart agriculture and precision
agriculture. Traditional detection methods are based on destructive measurements.
Although satellite remote sensing, manned airborne equipment, and vehicle-mounted
equipment can nondestructively collect measurements, they are limited by low accuracy,
poor flexibility, and high cost. As nondestructive remote sensing equipment with high
precision, high flexibility, and low-cost, unmanned aerial systems (UAS) have been
widely used to monitor crop biomass. In this review, UAS platforms and sensors,
biomass indices, and data analysis methods are presented. The improvements of UAS in
monitoring crop biomass in recent years are introduced, and multisensor fusion, multi-
index fusion, the consideration of features not directly related to monitoring biomass,
the adoption of advanced algorithms and the use of low-cost sensors are reviewed to
highlight the potential for monitoring crop biomass with UAS. Considering the progress
made to solve this type of problem, we also suggest some directions for future research.
Furthermore, it is expected that the challenge of UAS promotion will be overcome in the
future, which is conducive to the realization of smart agriculture and precision agriculture.

Keywords: unmanned aerial systems, unmanned aerial vehicle, remote sensing, crop biomass, smart agriculture,
precision agriculture

INTRODUCTION

Agriculture plays an important role in maintaining all human activities. By 2050, population
and socioeconomic growth are expected to double the current food demand (Niu et al.,
2019). To solve the increasingly complex problems in the agricultural production system, the
development of smart agriculture and precision agriculture provides important tools for meeting
the challenges of sustainable agricultural development (Sharma et al., 2020). Biomass is a basic
agronomic parameter in field investigations and is often used to indicate crop growth status, the
effectiveness of agricultural management measures and the carbon sequestration ability of crops
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(Bendig et al., 2015; Li W. et al., 2015). Fast, accurate and
nondestructive monitoring of biomass is the key to smart
agriculture and precision agriculture (Lu et al., 2019;
Yuan et al., 2019).

Traditional biomass measurement methods are based on
destructive measurements that require the manual harvesting
(Gnyp et al., 2014), weighing and recording of crops, which
makes large-scale, long-term measurements challenging and
time-consuming, and these measurements are not only time-
consuming and laborious but also difficult to apply over large
areas (Boschetti et al., 2007; Yang et al., 2017). In other
research areas, many studies have used satellite remote sensing
to monitor biomass. Navarro et al. (2019) used Sentinel-1 and
Sentinel-2 data to monitor the aboveground biomass (AGB) of
a mangrove plantation. However, meteorological conditions have
a great influence on satellite images, such as cloud and aerosol
interference, surface glare and poor synchrony with tides (Tait
et al., 2019). In addition, satellite data cannot provide sufficient
data resolution for precision agricultural applications (Jiang et al.,
2019; Song et al., 2020), and it is difficult to obtain timely and
reliable data (Prey and Schmidhalter, 2019). Similar to satellite
remote sensing, manned airborne equipment can cover a wide
range, but the data are not detailed enough (Sofonia et al., 2019;
ten Harkel et al., 2020). Meanwhile, although vehicle-mounted
equipment can guarantee high accuracy, it has poor flexibility
and slow speed (Selbeck et al., 2010; Tian et al., 2020). Unmanned
aerial systems (UAS) represent a noncontact and nondestructive
measurement method that can obtain the spectral, structural, and
texture features of the target at different spatiotemporal scales
(Jiang et al., 2019). These systems have the ability to obtain high
spatial and temporal resolution data and have great application
potential (Niu et al., 2019; Ramon Saura et al., 2019).

To date, most reviews of UAS in the field of agriculture
are general reviews involving multiple fields in agriculture, and
the description of biomass monitoring is not detailed enough
(Hassler and Baysal-Gurel, 2019; Kim et al., 2019; Maes and
Steppe, 2019). Reviews of remote sensing for crop biomass
monitoring are rare and mainly introduce satellite remote
sensing, while the application of UAS in crop biomass monitoring
is rarely introduced (Chao et al., 2019). Therefore, the motivation
of our study was to conduct a comprehensive review of almost
all UAS-related studies in the field of crop biomass monitoring,
including information on the equipment used in the field of crop
biomass monitoring, biomass indices, and data processing and
analysis methods. Finally, the relevant applications are reviewed
according to different development directions.

THE COMPOSITION OF UAS

Unmanned aerial systems consist of unmanned aerial vehicle
(UAV) platforms, autopilot systems, navigation sensors,
mechanical steering components, data acquisition sensors,
and other components (Jeziorska, 2019), among which the
most important are the data acquisition sensors (Toth and
Jozkow, 2016). Meanwhile, the type of UAV platforms and flight
conditions will have a great impact on the data acquisition

process of sensors, which need to be considered (Domingo et al.,
2019; ten Harkel et al., 2020).

UAV Platforms
The most commonly used platforms in crop biomass monitoring
are fixed-wing drones and rotor drones (Hassler and Baysal-
Gurel, 2019). Hogan et al. (2017) summarized the characteristics
of fixed-wing aircrafts and rotorcrafts. Fixed-wing aircrafts
usually have a larger payload capacity, faster flight speed, longer
flight time, and longer range than rotorcrafts. For these reasons,
fixed-wing systems are particularly useful for collecting data
over large areas. Fixed-wing aircrafts have poor mobility, need
more space to land, and have more expensive prices than rotor
UAVs. Rotor UAVs are very maneuverable and can hover, rotate
and take pictures at almost any angle. Although there are also
expensive models, more low-cost models have widely appeared
in the market. Compared with fixed-wing aircrafts, the main
disadvantage of rotor UAVs is their short range and flight time.
Figure 1 shows DJI Inspire 2 Rotor Drone1 and eBee X Fixed-
Wing Drone2.

The flight planning of a fixed-wing UAV is very similar to
that of a manned aircraft, while a rotor UAV can meet almost
any trajectory requirements, including hover, slow motion and
attitude control (Toth and Jozkow, 2016). These features enable
rotor UAVs to perform extremely accurate tasks (Kim et al.,
2019). Therefore, rotor UAVs are more commonly used in
biomass monitoring than fixed-wing aircrafts.

Data Acquisition Sensors
Unmanned aerial systems usually obtain data through spectral
sensors and depth sensors (Toth and Jozkow, 2016). Spectral
sensors mainly include RGB sensors, multispectral sensors,
and hyperspectral sensors, which can obtain color and texture
information from the crop surface (Li et al., 2019). The difference
between these three types of sensors is their ability to sense the
spectrum (Shentu et al., 2018; Zhong et al., 2018; Kelly et al.,
2019). Light detection and ranging (LiDAR) is a typical example
of a depth sensor and can clearly obtain the three-dimensional
structure and height information of crops (Wijesingha et al.,
2019). Figure 2 shows several UAV-mounted sensor types.

Spectral Sensors
Based on the same imaging principle, RGB, multispectral, and
hyperspectral sensors all capture images by sensing spectral bands
but have abilities to sense different spectral bands.

RGB sensors are a type of visible light camera that can
detect three bands of color: red (R), green (G), and blue (B)
(Shentu et al., 2018). The data from the three bands represent
the intensity of R, G, and B in each pixel (Tait et al., 2019).
Although RGB sensors have low accuracy compared with other
sensors because they can collect spectral data from only three
bands, the low-cost characteristic of RGB sensors is not possessed
by others. Due to the need for low cost during the large-scale
use of UAS in the monitoring of crop biomass, RGB sensors

1www.dji.com/inspire-2
2www.sensefly.com/drone/ebee-x-fixed-wing-drone/
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FIGURE 1 | (A) DJI Inspire 2 Rotor Drone and (B) eBee X Fixed-Wing Drone.

have received increasing attention because of their low-cost
characteristics (Calou et al., 2019; Lu et al., 2019; Yue et al.,
2019). The combination of RGB data with better biomass indices
and advanced algorithms can obtain high accuracy at a low cost
(Acorsi et al., 2019; Lu et al., 2019; Yue et al., 2019). Therefore, in
the field of crop biomass monitoring by UAS, RGB sensors play
an irreplaceable role.

Since spectral information is lost during the process of
color image recording, the use of RGB input obviously limits
the amount of information to extract from the highlighted
area (Kelly et al., 2019). Compared with three-channel RGB
imaging, multispectral images contain more imaging bands
(Shentu et al., 2018).

Multispectral image data containing several near-infrared
(NIR) spectral regions are superior to RGB data (Cen et al., 2019),
but the disadvantage is that the cost of multispectral sensors is
higher than that of RGB sensors (Costa et al., 2020). Different
spectral bands can reflect the characteristics of different plants
and can be used to effectively distinguish different crops (Xu et al.,
2019). Song and Park (2020) used the RedEdge multispectral
camera from MicaSense to analyze the spectral characteristics
of aquatic plants and found that waterside plants exhibited the
highest reflectivity in the NIR band, while floating plants had high
reflectivity in the red-edge band.

Hyperspectral sensors can obtain more abundant spectral
information than multispectral sensors (Zhong et al., 2018).

FIGURE 2 | UAV-mounted sensor types.

Yue et al. (2018) used the UHD 185 Firefly (UHD 185
Firefly, Cubert GmbH, Ulm, Baden-Württemberg, Germany)
hyperspectral sensor to collect panchromatic images with
radiation records of 1000 × 1000 (1 band) and hyperspectral
cubes of 50 × 50 (125 bands), with rich texture and
spectral information. The disadvantage is that the cost of
hyperspectral sensors is higher than that of multispectral
sensors. In addition, the spatial resolution of hyperspectral
images is lower than that of ordinary images, which may cause
the loss of detail information for small targets. Meanwhile,
more spectral information may not be useful in some cases.
Tao et al. (2020) used hyperspectral sensors to study the
correlation between different vegetation indices (VIs) and
red-edge parameters and crop biomass. It was found that
using too many spectral features as independent variables will
lead to overfitting of the model, so it is necessary to use
an appropriate number of spectral features that are highly
related to biomass.

How to improve the reliability of spectral data is an
unavoidable problem when using spectral sensors to collect
data. First, the image resolution will affect the results of AGB
monitoring, and the higher the image resolution is, the higher
the prediction accuracy (Domingo et al., 2019). Yue et al. (2019)
found that using image texture information to estimate the best
image resolution for AGB monitoring depends on the size and
row spacing of the crop canopy. Second, fisheye lenses may have
an advantage over flat lenses. Calou et al. (2019) coupled a 16-
megapixel plane lens with a 12-megapixel fisheye lens on a UAV
for data collection, and the results showed that the fisheye lens
estimation was the most accurate at an altitude of 30 m. Finally,
at present, some applications using spectral data are processed
without accurate or rough calibration. Guo et al. (2019) proposed
a general calibration equation that is suitable for images under
clear sky conditions and even under a small amount of clouds.
The method needs to be further verified.

Although RGB sensors can only collect spectral data from
the R, G, and B bands, the equipment is inexpensive. Although
hyperspectral sensors can collect spectral information from
many bands, the equipment is expensive. Unless there are
special requirements for detailed hyperspectral images and the
equipment is inexpensive, a multispectral sensor that balances
the richness of spectral bands and equipment costs exhibits the
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highest cost performance and should be the default imaging
choice (Hassler and Baysal-Gurel, 2019; Niu et al., 2019).

Light Detection and Ranging
Spectral data have poor robustness in the case of target overlap,
occlusion, large illumination changes, shadows, and complex
scenes. Depth data that do not change with brightness and color
can provide additional useful information for complex scenes
(Shuqin et al., 2016). At present, the depth sensors on UAV
platforms are mainly LiDAR (Wallace et al., 2012; Qiu et al., 2019;
Tian et al., 2019; Wang D.Z. et al., 2019; Yan et al., 2020). LiDAR
has become an important information source for the evaluation
of the vegetation canopy structure, which is especially suitable for
species that limit artificial and destructive sampling (Brede et al.,
2017). Figure 3 shows a schematic illustration of the difference
between LiDAR and spectral data (Zhu Y.H. et al., 2019).

Light detection and ranging is an active remote sensing
technology that accurately measures distance by emitting laser
pulses and analyzing the returned energy (Calders et al.,
2015). With the development of global positioning system
(GPS), inertial measurement unit (IMU), laser and computing
technology, which make it possible to use LiDAR more
inexpensively and accurately, a LiDAR system based on a
UAV platform has become possible (Lohani and Ghosh, 2017).
Compared with spectral sensors, LiDAR tends to provide
accurate results of biomass prediction (Acorsi et al., 2019)
because spectral data tend to be saturated in the middle and high
canopy (Féret et al., 2017), and LiDAR can improve this through
depth information (Hassler and Baysal-Gurel, 2019).

However, when it is difficult to estimate plant height, it
is difficult to accurately monitor biomass through LiDAR. ten
Harkel et al. (2020) used a VUX-SYS laser scanner to monitor the
biomass of potato, sugar beet, and winter wheat. The researchers
achieved good results in monitoring the biomass of sugar beet
(R2 = 0.68, RMSE = 17.47 g/m2) and winter wheat (R2 = 0.82,
RMSE = 13.94 g/m2), but the reliability for monitoring potato
biomass was low. The reason for this result is that potatoes
have complex canopy structures and grow on a ridge, and the
other two crops have vertical structures and uniform heights.
Therefore, for potatoes, it is difficult to visually determine the
highest point of a specific position.

Finally, how to improve the data reliability by adjusting the
LiDAR parameters is still lacking in more research. For instance,
the sampling intensity of LiDAR has an impact on the accuracy
of monitoring biomass (Wang D.Z. et al., 2020), but the current
research in this area needs to be further verified.

Multisensor Fusion
The combination of data obtained from multiple sensors is an
effective method to improve the accuracy of biomass estimation.
On the one hand, the density of LiDAR point clouds has
been improved with increased data resolution and penetrability
(Wallace et al., 2012; Yan et al., 2020), which can improve the
disadvantage that spectral data collected by RGB, multispectral
and hyperspectral sensors are easily saturated in the middle and
high canopy (Gitelson, 2004; Féret et al., 2017). On the other
hand, the texture and spectral features that can be collected by

RGB, multispectral, and hyperspectral sensors are also beyond
the reach of LiDAR (Liu et al., 2019; Yue et al., 2019; Zheng
et al., 2019). A variety of sensors with different characteristics
are used to collect data, and the data that can reflect different
characteristics of target crops are combined to provide more
effective characteristics that are not cross-correlated that are
needed for data analysis with a regression algorithm (Niu et al.,
2019) to improve the accuracy of biomass estimation.

Wang et al. (2017) first evaluated the application of the fusion
of hyperspectral and LiDAR data in maize biomass estimation.
The results show that the fusion of hyperspectral and LiDAR data
can provide better estimates of maize biomass than using LiDAR
or hyperspectral data alone. Different from the previous methods
of using LiDAR and optical remote sensing data to predict AGB
separately or in combination, Zhu Y.H. et al. (2019) divided
the estimation of maize AGB into two parts: aboveground leaf
biomass (AGLB) and aboveground stem biomass (AGSB). AGLB
was measuring with multispectral data, which are sensitive to the
vegetation canopy. AGSB was measured with LiDAR point cloud
data, which are sensitive to the vegetation structure. Compared
with using LiDAR data alone or using multispectral data alone,
the combination of LiDAR data and multispectral data can more
accurately estimate AGB, in which the R2 increases by 0.13 and
0.30, the RMSE decreases by 22.89 and 54.92 g/m2, and the
NRMSE decreases by 4.46 and 7.65%.

Other researchers have also carried out many studies in the
field of multisensor data fusion and obtained the same results
in studies on the monitoring of crop biomass, such as rice (Cen
et al., 2019) and soybean (Maimaitijiang et al., 2020). In addition,
different crops have different characteristics, and the same
crop will show different characteristics under different growth
conditions (Johansen et al., 2019; ten Harkel et al., 2020), which
requires the use of different sensors to collect crop information
comprehensively and screen out some information most related
to biomass. The combination of data from multiple sensors is an
effective method to improve the accuracy of biomass estimation.

Flight Parameters
To ensure the most accurate results for biomass monitoring,
further tests should be carried out before experiments to
determine the optimal flight parameters, such as altitude, speed,
location of flight lines, and overlap (Domingo et al., 2019).
Increasing the UAV flight height will reduce image resolution
(Lu et al., 2019), and the sensitivity of the accuracy of biomass
monitoring to the image spatial resolution is an important
reference for the configuration of a UAV flight height. The
estimation of the other flight parameters did not exhibit much
different effects on the overall effect of biomass monitoring from
that of standard flight parameters, but different flight parameters
can lead to different point densities and distributions, which
have a greater impact on biomass monitoring than altitude and
velocity. A better crossover model and a closer flight path may
improve biomass monitoring overall (ten Harkel et al., 2020). The
images need to be overlapped sufficiently to improve the accuracy
of biomass monitoring (Borra-Serrano et al., 2019). Therefore,
the UAV flight plan should be wide enough. Domingo et al.
(2019) found that reducing side overlap from 80 to 70% while
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FIGURE 3 | A schematic illustration of the difference between LiDAR and spectral data.

maintaining a fixed forward overlap of 90% may be an option
to reduce flight time and procurement costs. For specific species,
such as rice, due to the physiological characteristics of rice, the
analysis of the solar elevation angle during the creation of a flight
plan is very important to avoid the influence of sun glint and
hotspot effects (Jiang et al., 2019).

BIOMASS INDICES

It is a common method in biomass monitoring to use biomass
indices to obtain data directly related to biomass. Common
biomass indices include VIs and crop height (CH), which are
extracted from images or three-dimensional point clouds. There
are also relevant studies that do not use biomass indices but
directly use images or three-dimensional point clouds to conduct
correlation analysis with biomass (Nevavuori et al., 2019).

Vegetation Indices
A variety of VIs from remote sensing images can be used to
monitor the state of vegetation on the ground. This method is also
able to quantitatively evaluate the richness, greenness and vitality
of vegetation. After years of development, VIs can be divided
into various monitoring and calculation methods, among which
the most commonly used is the normalized difference vegetation
index (NDVI) proposed by Rouse et al. (1974). The NDVI is
usually used to reflect information such as vegetation cover and
growth, and its calculation formula is as follows:

NDVI =
NIR− R
NIR+ R

Near-infrared is the reflectance in NIR band, and R is the
reflectance in red band. The value range of NDVI is (−1,
1). It is generally believed that an NDVI value less than 0
represents no vegetation coverage, while a value greater than
0.1 represents vegetation coverage (Li Z. et al., 2015). Since
the index is positively correlated with the density of vegetation,

the higher the NDVI value is, the higher the vegetation
coverage will be.

Different VIs have unique characteristics, and more spectral
features can be identified by using multiple VIs to obtain
high monitoring accuracy. Marino and Alvino (2020) used the
soil adjusted vegetation index (SAVI), NDVI and OSAVI to
characterize 10 winter wheat varieties in a field at different
growth stages and obtained optimal biomass monitoring results.
Villoslada et al. (2020) combined 13 VIs to obtain the
highest accuracy.

Vegetation indices can be built not only on the basis of
spectral information but also on the basis of texture information.
Texture is an important characteristic for identifying objects
or image areas of interest. In several texture algorithms,
the gray level co-occurrence matrix (GLCM), which includes
variance (VAR), entropy (EN), data range (DR), homogeneity
(HOM), second moment (SE), dissimilarity (DIS), contrast
(CON), and correlation (COR), which are based on Haralick
et al. (1973), is often used to test the effects of texture
analysis from UAS data on biomass estimation potential
(Zheng et al., 2019).

Vegetation indices based on image texture are usually
combined with VIs based on spectral information to monitor
crop biomass, and this combination can improve the accuracy
of monitoring biomass significantly (Liu et al., 2019; Yue et al.,
2019; Zheng et al., 2019). Zheng et al. (2019) predicted rice AGB
using stepwise multiple linear regression (SMLR) in combination
with VIs and image texture, and the results showed that the
combination of texture information and spectral information
significantly improved the accuracy of rice biomass estimations
compared with the use of spectral information alone (R2 = 0.78,
RMSE = 1.84 t/ha).

Previously, as the required data were obtained by satellites, the
spectral data collected would be affected by clouds. When there
was cloud cover in the observation area, the information received
by the satellite-borne sensor would be all cloud information,
instead of reflecting the local vegetation cover (Feng et al., 2009).
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The low altitude and flexibility of UAS solve this problem, making
VIs more widely used. At present, VIs have become indispensable
biomass indices for monitoring crop biomass. Common VIs are
shown in Table 1.

Crop Height
Crop height is an important indicator to characterize the vertical
structure, and CH is usually strongly correlated with biomass
(Scotford and Miller, 2004; Prost and Jeuffroy, 2007; Salas
Fernandez et al., 2009; Montes et al., 2011; Hakl et al., 2012; Alheit
et al., 2014). The crop surface model (CSM) is an effective CH
information extraction technique and has been widely used for
different crops (Han et al., 2019).

Crop height data can be obtained using RGB sensors and
multispectral sensors. Cen et al. (2019) established a CSM to
determine the CH (Tilly et al., 2014) based on spliced RGB
images. First, structure from motion (SfM) was used to generate
a point cloud, and the specific steps can be found in the study
of Tomasi and Kanade (1992). Point clouds consist of matching
points between overlapping images such as crop canopies and
topographic surfaces. A digital elevation model (DEM) and
digital terrain model (DTM) were obtained by classifying the
point clouds. The DEM was based on a complete dense point
cloud representing the height of the crop canopy, while the DTM
was developed from only the surface dense point cloud. The
CSM could be obtained by subtracting the DTM from the DEM
by importing the two models into ArcGIS software (ArcGIS,
Esri Inc., Redlands, CA, United States). Hassan et al. (2019)
used a Sequoia 4.0 multispectral camera with the same method
to measure the CH of wheat, and the results showed that the
correlation between the CH data from UAS and the actual height
was very high (R2 = 0.96).

Crop height data can also be obtained using LiDAR. Zhu
W.X. et al. (2019) used CloudCompare open-source software to
construct CH raster data from the LiDAR point cloud and studied
the effects of CH on monitoring the AGB of crops. The results
showed that CH is a robust indicator that can be used to estimate
biomass, and the high spatial resolution of the CH data set was
helpful to improve the effect of maize AGB estimation.

The monitoring of crop biomass by a single biomass index is
sometimes unreliable. On the one hand, it is difficult to obtain
reliable CH data from LiDAR in some cases. Johansen et al. (2019)
found that dust storms can cause tomato plants to flatten and
that once the tomato fruits become large and heavy, the weight
may cause the branches to bend downward, thereby reducing
the height of the plants. ten Harkel et al. (2020) found that
potatoes have complex canopy structures and grow on ridges, so
it is difficult to visually determine the highest point of a specific
position. In the above cases, VIs can achieve better results than
other measurements. On the other hand, CH data can better
reflect the three-dimensional information of crops and can more
accurately reflect the biomass of crops in the scene of target
overlap, occlusion, large changes in light, shadow, and complex
scenes. In addition, the information collected by UAS includes
not only target crops but also other interference information. If
this interference information cannot be effectively eliminated, it
will have a negative impact on the monitoring of crop biomass,

which can be improved by the combination of multiple biomass
indices (Niu et al., 2019). Therefore, the combination of multiple
models for biomass estimation is an effective method to improve
the accuracy of biomass estimation.

Multi-index Fusion
The combination of multiple models for biomass estimation is an
effective method to improve the accuracy of biomass estimation.
The combination of spectral and textural features to construct
VIs or the combination of VIs and CH has been shown to
improve the results of biomass estimation.

Based on the idea of combining VIs with CH, Cen et al.
(2019) used a biomass model that combined VIs and CH to
monitor rice biomass under different nitrogen treatments. The
results showed that the CH extracted by the CSM exhibited a
high correlation with the actual CH. The monitoring model that
incorporated RGB and multispectral image data with random
forest regression (RFR) significantly improved the prediction
results of AGB, in which the RMSEP decreased by 8.33–16.00%,
R2 = 0.90, RMSEP = 0.21 kg/m2, and RRMSE = 14.05%.

Relevant studies have proven that a biomass model combined
with VIs and CH can also improve the biomass estimation
accuracy for corn (Niu et al., 2019), wheat (Lu et al., 2019),
ryegrass (Borra-Serrano et al., 2019), and other crops. These cases
prove that the combination of VIs and CH is an effective way to
build a biomass model. However, Niu et al. (2019) pointed out
that the fusion of CH data derived from RGB images in the VIs
model, which was based on MLR, did not significantly improve
the estimation of the VI model, which may be caused by the
clear correlation between VIs and CH in this crop (Schirrmann
et al., 2016). Therefore, it is necessary to combine biomass indices
reasonably for different crops.

According to the idea of combining spectral information
with image texture to build VIs, Liu et al. (2019) used a linear
regression model to convert the digital number (DN) of the
original image into surface reflectance. The reflectivity obtained
from the gain and offset values of each band was used to
calculate the VIs and image texture. The results showed that
the introduction of image texture into the partial least squares
regression (PLSR) and RFR models could estimate winter rape
AGB more accurately than a model based on VIs alone. The
accuracy of the prediction of AGB by the RFR model using VIs
and texture measurements (RMSE = 274.18 kg/ha) was slightly
higher than that of the PLSR model (RMSE = 284.09 kg/ha).
The same idea has also obtained good results in applications to
winter wheat (Yue et al., 2019), rice (Zheng et al., 2019), soybean
(Maimaitijiang et al., 2020), and other crops. Biomass models
combined with VIs and image texture have great potential in the
estimation of crop biomass.

DATA PROCESSING AND ANALYSIS
METHODS

Data analysis is the key link to build the relationship between the
data obtained from UAS and the actual crop biomass, and it is
an important part of UAS. The data obtained from UAS often
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TABLE 1 | Introduce the formulation and features of common VIs.

VIs Formulation Features References

Ratio vegetation index RVI = NIR / R Monitor the photosynthetically active
biomass of plant canopies.

Tucker, 1979

Green chlorophyll index GCI = (NIR/G) − 1 Estimation of spatially distributed
chlorophyll content in crops.

Gitelson et al., 2005

Red-edge chlorophyll index RECI = (NIR / RE) − 1 Estimation of spatially distributed
chlorophyll content in crops.

Gitelson et al., 2005

Normalized difference vegetation index NDVI = (NIR − R)/(NIR + R) Quantitative measurement of vegetation
conditions over broad regions.

Rouse et al., 1974

Green normalized difference vegetation
index

GNDVI = (NIR − G)/(NIR + G) Nondestructive chlorophyll estimation in
leaves.

Gitelson et al., 2003

Green-red vegetation index GRVI = (G − R) / (G + R) Monitor the photosynthetically active
biomass of plant canopies.

Tucker, 1979

Normalized difference red-edge NDRE = (NIR − RE) / (NIR + RE) Increases the sensitivity of NDVI to
chlorophyll content by approximately
fivefold.

Gitelson and Merzlyak, 1997

Normalized difference red-edge index NDREI = (RE − G) / (RE + G) Estimation of senescence rate at
maturation stages.

Hassan et al., 2018

Simplified canopy chlorophyll content
index

SCCCI = NDRE / NDVI Real-time detection of nutrient status. Raper and Varco, 2015

Enhanced vegetation index EVI = 2.5 × (NIR − R) / (1 + NIR − 2.4 × R) The EVI remains sensitive to canopy
variations while the NDVI is
asymptotically saturated in high
biomass regions.

Huete et al., 2002

Two-band enhanced vegetation index EVI2 = 2.5 × (NIR − R) / (NIR + 2.4 × R + 1) A 2-band EVI (EVI2), without a blue
band, which has the best similarity with
the 3-band EVI (EVI).

Jiang et al., 2008

Wide dynamic range vegetation index WDRVI = (a × NIR − R) / (a × NIR + R) (a = 0.12) The sensitivity of the WDRVI to
moderate-to-high LAI (between 2 and
6) was at least three times greater than
that of the NDVI.

Gitelson, 2004

Soil adjusted vegetation index SAVI = (1 + L) (NIR − RE) / (NIR + RE + L) Almost eliminated soil-induced changes
in vegetation index.

Huete, 1988

Optimized soil adjusted vegetation
index

OSAVI = (NIR − R) / (NIR − R + 0.16) Less sensitive to soil background and
atmospheric effects.

Rondeaux et al., 1996

Modified chlorophyll absorption in
reflectance index

MCARI = [(RE − R) − 0.2 × (RE − G)] × (RE / R) Evaluate the nutrient variability over
large fields quickly.

Daughtry et al., 2000

MCARI/OSAVI MCARI / OSAVI Evaluate the nutrient variability over
large fields quickly.

Daughtry et al., 2000

Transformed chlorophyll absorption in
reflectance index

TCARI = 3 × [(RE − R) − 0.2 × (RE − G) × (RE / R)] Minimizing LAI (vegetation parameter)
influence and underlying soil
(background) effects.

Haboudane et al., 2002

TCARI/OSAVI TCARI / OSAVI Minimizing LAI (vegetation parameter)
influence and underlying soil
(background) effects.

Haboudane et al., 2002

Generally, one or several kinds of VIs should be selected according to different situations. Abbreviate green, red, red-edge, and near-infrared to G, R, RE, and
NIR in formulation.

contain different noises, and the information is highly correlated.
Generally, effective data analysis methods are needed to interpret
the data and establish a robust prediction model (Cen et al., 2019).
Therefore, scientific and systematic data analysis methods often
play an important role.

Data Preprocessing Methods
Since the data collected by UAS cannot be directly used to
monitor biomass, a series of preprocessing steps is needed for
the data. When spectral sensors are used, an indispensable step

is geometric correction and mosaicking of the image. Common
software includes Pix4DMapper and Agisoft Photoscan.

Pix4DMapper software (Pix4D, S.A., Lausanne, Switzerland)
is UAS photography geometric correction and mosaic technology
based on feature matching and SfM photogrammetry technology.
Initially, images were processed in any model space to create
three-dimensional point clouds. The point clouds could be
transformed into a real-world coordinate system using either
direct geolocation techniques to estimate the camera’s location
or GCP techniques for automatic identification within the point
cloud. The point cloud was then used to generate the DTM
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required for image correction. Subsequent geographic reference
images are linked together to form a mosaic of the study area
(Turner et al., 2012).

Agisoft Photoscan software (Agisoft LLC, St. Petersburg,
Russia) is also a common UAS data preprocessing software. The
processing procedure is similar to that of Pix4DMapper. Finally,
the UAS image is exported to TIFF image format for subsequent
analysis (Acorsi et al., 2019; Lu et al., 2019). Figure 4 shows
RGB imagery datasets were processed using the software Agisoft
PhotoScan (Sun et al., 2019).

(a) High-resolution proof images of the acquisition area
(b) Overall map of research area processed by Agisoft

PhotoScan.

Data Analysis Methods
Machine learning algorithms are widely used to process
biomass information. According to whether the input dataset
is labeled, machine learning algorithms can be divided into
supervised learning algorithms and unsupervised learning
algorithms (Dike et al., 2018). Supervised learning algorithms
depend on a labeled dataset. Classification algorithms and
regression algorithms are the two output forms of supervised
learning. In crop biomass monitoring, regression algorithms
are more often used than classification algorithms. Because
the expected biomass results are often continuous instead
of discrete. Unsupervised learning does not rely on a
labeled dataset. It is often used when the cost of labeled
datasets is unacceptable (Sapkal et al., 2007). This is also a
common method to reduce the dimensionality of the data.
Most unsupervised learning algorithms are in the form
of cluster analysis. Figure 5 shows the types of machine
learning algorithms.

Biomass monitoring is a typical regression problem, which
can to be solved by supervised learning algorithms. Enough
labeled datasets are the basis of supervised learning algorithms.
Actual biomass data tend to obtain through destructive samplings
(Jiang et al., 2019; Yue et al., 2019). Field trials are limited by
the area of cropland and the crop growing season. Therefore,
sufficiently large datasets are often not available. How to
properly divide the datasets into training datasets and validation
datasets is a challenge to train supervised learning algorithms.
To solve this problem, Jiang et al. (2019) used fivefold cross
validation, Han et al. (2019) used repeated 10-fold cross
validation, Zhu W.X. et al. (2019) used leave-one-out-cross
validation (LOOCV) to reduce generalization error. Fivefold
cross validation and repeated 10-fold cross validation belong to
k-fold cross validation. LOOCV is a special case of k-fold cross
validation, in which the number of folds equals the number
of instances (Wong, 2015). k-fold cross validation divides the
datasets into k folds, treats each fold as a validation dataset and
regards the other k−1 folds as a training dataset (Wong and
Yang, 2017). The value of folds can be large and the value of
replications should be small if k-fold cross validation is applied
in the classification algorithms (Wong and Yeh, 2020).

Support Vector Regression
Support vector regression (SVR) is a boundary detection
algorithm for identifying/defining multidimensional boundaries
(Sharma et al., 2020), and the basis of this method is to solve
the regression problem by using appropriate kernel functions to
map the training data to the new hyperspace characteristics and
transform the multidimensional regression problem into a linear
regression problem (Navarro et al., 2019). Duan et al. (2019) in an
analysis of VIs and image texture using SVR found that the SVR
itself has the ability to find a suitable combination of different
reflectance bands, which shown that SVR has strong adaptability
to complex data and is suitable for data analysis in biomass
monitoring. Yang et al. (2019) compared PLSR and SVR, and the
results showed that the accuracy of SVR was higher than that of
PLSR, and the SVR optimized by particle swarm optimization
(PSO) could obtain more appropriate parameters and improve
the accuracy of the model.

Random Forest Regression
Random forest regression is a data analysis and statistical method
that is widely used in machine learning and remote sensing
research (Viljanen et al., 2018). Compared with artificial neural
networks (ANNs), RFR does not suffer from overfitting problems
because of the law of large numbers, and the injection of suitable
randomness makes them precise regressors (Breiman, 2001). The
random forest algorithm makes full use of all input data and can
tolerate outliers and noise (Jiang et al., 2019). This algorithm has
the advantages of high prediction accuracy, no need for feature
selection and insensitivity to overfitting (Tewes and Schellberg,
2018; Viljanen et al., 2018).

Artificial Neural Network
An ANN is an information processing paradigm that is inspired
by the way biological nervous systems such as the brain
process information (Awodele and Jegede, 2013). ANN is a
nonparametric nonlinear model that uses a neural network to
transmit between layers and simulates reception and processing
of information by the human brain (Zha et al., 2020). In
individual cases, the results of the algorithm are not better than
those of the multiple linear regression (MLR) method. The reason
for this difference may be that in these applications, a small
sample set will not meet the needs of the artificial neural network
(Han et al., 2019; Zhu W.X. et al., 2019; Zha et al., 2020), and
compared with RFR, ANN needs large data sets and a large
number of repetitions to generate appropriate nonlinear mapping
and obtain the optimal neural network (Devia et al., 2019; Han
et al., 2019); however, RFR can still be applied for a small amount
of sample data (Han et al., 2019; Liu et al., 2019), which leads to
more frequent biomass monitoring use of RFR. Therefore, before
the development of a deep neural network (DNN), the remote
sensing field, including UAS studies, shifted the focus of data
analysis methods from ANN to SVR and RFR (Ma et al., 2019).

The appearance of DNN and a series of methods to solve
overfitting improved the effect of ANN (Maimaitijiang et al.,
2020). Nevavuori et al. (2019) used a convolutional neural
network (CNN) to predict the biomass of wheat and barley. The
researchers tested the influence of the selection of the training
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FIGURE 4 | RGB imagery datasets were processed using the software Agisoft PhotoScan. (A) High-resolution proof images of the acquisition area. (B) Overall map
of research area processed by Agisoft PhotoScan.

algorithm, the depth of the network, the regularization strategy,
the adjustment of super parameters, and other aspects of CNN
on the prediction efficiency to improve the monitoring effect.
This study proved that if enough information can be collected to
increase the number of samples and solve the overfitting problem,
ANN will perform no worse than RFR (Zhang et al., 2019).

Multiple Regression Techniques
Multiple linear regression (Borra-Serrano et al., 2019; Devia et al.,
2019; Han et al., 2019; Zhu W.X. et al., 2019), SMLR (Lu et al.,
2019; Zheng et al., 2019) and PLSR (Borra-Serrano et al., 2019;
Liu et al., 2019; Yue et al., 2019) are also commonly used multiple
regression algorithms. However, with the gradual progress of
SVR, RFR, and ANN, these algorithms have gradually become
references for SVR, RFR, and ANN and are no longer the main
focus of data analysis.

Devia et al. (2019) described an MLR equation for monitoring
rice biomass with VIs. In general, there was a linear relationship
between the accumulation of biomass and VIs. However, the

FIGURE 5 | The types of machine learning algorithms.
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TABLE 2 | Summarize the equipment, methods, and important results of the studies cited in the body.

Crop Platforms Sensors Biomass
indices

Data analysis
methods

Results References

Wheat DJI Phantom
series

A digital camera VIs, CH RFR R2 = 0.78, RMSE = 1.34 t/ha,
RRMSE = 28.98%

Lu et al., 2019

Rice DJI S1000
DJI Phantom 4
Pro

Mini-MCA 12 multispectral
camera
DJI FC6310 digital camera

VIs, CH
Meteorological
feature

SER R2 = 0.86,
RMSE = 178.37 g/m2,
MAE = 127.34 g/m2

Jiang et al., 2019

Potato
Sugar beet
Winter wheat

RIEGL
RiCOPTER

VUX-SYS laser scanner CH MLR Potato: R2 = 0.24,
RMSE = 22.09 g/m2

Sugar beet: R2 = 0.68,
RMSE = 17.47 g/m2

Winter wheat: R2 = 0.82,
RMSE = 13.94 g/m2

ten Harkel et al.,
2020

Maize DJI Phantom 2 Ricoh GR digital camera CH Statistical analysis The estimated values were
most accurate when using a
fisheye lens at 30 m altitude.

Calou et al., 2019

Winter wheat DJI S1000 DSC-QX100 digital camera VIs SMLR R2 = 0.89, MAE = 0.67 t/ha,
RMSE = 0.82 t/ha

Yue et al., 2019

Rice A lightweight
octorotor UAV

An RGB camera
A multispectral camera

VIs, CH RFR R2 = 0.90,
RMSEP = 0.21 kg/m2,
RRMSE = 14.05%

Cen et al., 2019

Winter wheat DJI S1000 DSC–QX100 digital camera
UHD 185 Firefly snapshot
hyperspectral sensor

VIs Exponential
regression

R2 = 0.67, MAE = 1.19,
RMSE = 1.71

Yue et al., 2018

Winter wheat DJI S1000 UHD 185-Firefly VIs PLSR The results of AGB monitoring
can be improved by combining
the red-edge parameters with
VIs.

Tao et al., 2020

Corn
Wheat

DJI M600 Pro Mini-MCA 6 multispectral
camera

VIs Linear regression A systematical radiometric
calibration method was
proposed.

Guo et al., 2019

Rice Mikrokopter
OktoXL

Tetracam mini-MCA6
multispectral camera

VIs SMLR R2 = 0.78, RMSE = 1.84 t/ha Zheng et al., 2019

Winter oilseed
rape

DJI S1000 Mini-MCA multispectral
camera

VIs PLSR
RFR

RFR: RMSE = 274.18 kg/ha
PLSR: RMSE = 284.09 kg/ha

Liu et al., 2019

Maize DJI Phantom 4
Pro
DJI M600 Pro

Parrot Sequoia
multispectral camera
DJI FC6310 digital camera
RIEGL VUX-1UAV laser
scanner

VIs, CH MLR
PLSR

MLR: R2 = 0.82,
RMSE = 79.80 g/m2,
NRMSE = 11.12%
PLSR: R2 = 0.86,
RMSE = 72.28 g/m2,
NRMSE = 10.07%

Zhu Y.H. et al.,
2019

Soybean DJI S1000 Mapir Survey2 RGB
camera
Parrot Sequoia
multispectral camera
FLIR Vue Pro R 640 thermal
imager

VIs, CH DNN-F2 R2 = 0.720,
RMSE = 478.9 kg/ha,
RRMSE = 15.9%

Maimaitijiang et al.,
2020

Tomato DJI Matrice 100 A RGB Zenmuse X3 sensor VIs RFR R2 = 0.85, RMSE = 0.052 m Johansen et al.,
2019

Ryegrass Onyxstar
HYDRA-12

RGB camera VIs, CH
Meteorological
feature

MLR
RFR

MLR: R2 = 0.81,
RMSE = 679 kg/ha,
NRMSE = 21.3%
RFR: R2 = 0.70,
RMSE = 769 kg/ha,
NRMSE = 24.2%

Borra-Serrano
et al., 2019

Wheat
Barley

Airinov Solo
3DR UAV

Parrot’s NIR-capable
SEQUIOA-sensor

None CNN MAE = 484.3 kg/ha,
MAPE = 8.8%

Nevavuori et al.,
2019

Ten winter
wheat cultivars

Ebee
fixed-wing UAV

Canon Powershot S110
RGB camera
Canon Powershot S110
NIR camera

VIs Cluster analysis Combination of multiple VIs can
be a valid strategy.

Marino and Alvino,
2020

(Continued
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TABLE 2 | Continued

Crop Platforms Sensors Biomass
indices

Data analysis
methods

Results References

Coastal
meadows

Ebee
fixed-wing UAV

Parrot Sequoia
multispectral camera

VIs RFR Combination of multiple VIs can
be a valid strategy.

Villoslada et al.,
2020

Maize DJI S1000 DSC-QX100 digital camera
Parrot Sequoia
multispectral camera

BIOVP (VIs, CH) RFR R2 = 0.944, RMSE = 0.495,
MAE = 0.355

Han et al., 2019

Bread wheat DJI Inspires 1
model T600

Sequoia 4.0 multispectral
camera

CH Linear regression R2 = 0.96 Hassan et al., 2019

Maize EWZ-D6
six-rotator UAV
DJI M100
four-rotator
UAV
Ebee
fixed-wing UAV

MultiSPEC-4C multispectral
camera
MicaSense RedEdge-M
multispectral camera
Alpha Series AL3-32 LiDAR
sensor

CH RFR R2 = 0.90, RMSE = 2.29,
MRE = 0.22

Zhu W.X. et al.,
2019

Rice An UAV
equipped with
a Mini-MCA
system

An array of 12 individual
miniature digital cameras

VIs SVR SVR itself has the ability to find
a suitable combination of
different reflectance bands.

Duan et al., 2019

Winter wheat Four-axis aerial
vehicle UAV 3P

Sony EXMOR HD camera VIs SVR R2 = 0.9025, RMSE = 0.3287 Yang et al., 2019

Rice UAV Tetracam ADC-lite
multispectral camera

VIs MLR R2 = 0.76 Devia et al., 2019

Eggplant
Tomato
Cabbage

DJI 3 Pro DJI FC300X RGB camera CH SVR
RFR

R2 ranging from 0.87 to 0.97
Bias ranging from −0.66 to
0.45 cm

Moeckel et al.,
2018

Sorghum Custom
designed UAV
platforms

Sony Alpha ILCE-7R
Velodyne VLP-16
Two Headwall Photonics
push-broom scanners

Four
hyperspectral-
based features
and four
LiDAR-based
features

PLSR
SVR
RFR

The data source was more
important than the regression
method.

Masjedi et al., 2020

Rice UAV platform Tetracam ADC-lite
multispectral camera

VIs Multivariable
regression

An average correlation of 0.76 Devia et al., 2019

This table covers plentiful case-studies from different regions for different crops.

relationship between biomass and VIs in other crops at maturity
can be nonlinear. Therefore, MLR does not apply to these
nonlinear relations of crops. Zheng et al. (2019) used SMLR
to establish the relationship between rice biomass and remote
sensing variables (VIs, image texture, and the combination of
VIs and image texture). Although the estimation accuracy was
high, the model was complex and difficult to generalize. Moeckel
et al. (2018) tested the ability of PLSR, RFR, and SVR to predict
the CH of eggplant, tomato and cabbage, and the results showed
that PLSR did not exceed the performance of RFR and SVR, so it
was excluded first.

The monitoring of biomass is a typical nonlinear problem
(Zha et al., 2020). These regression techniques are more suitable
for data showing linear or exponential relationships between
remote sensing variables and crop parameters (Atzberger et al.,
2010; Jibo et al., 2018; Lu et al., 2019). These methods are often
not as good as SVR, RFR, and ANN in the monitoring of biomass.

The construction of a high-performance monitoring model
based on advanced algorithms (such as machine learning
algorithms) is a good method to improve the effect of crop
biomass monitoring (Niu et al., 2019). The monitoring of biomass

is a typical multi-feature nonlinear problem (Zha et al., 2020),
and machine learning algorithms (such as SVR, RFR, and
ANN) exhibit superior results in solving these types of problems
(Breiman, 2001; Navarro et al., 2019; Maimaitijiang et al., 2020).
During the study, by comparing with RFR, the researchers found
that ANN was often superior to RFR when dealing with large
sample sizes and complex, nonlinear, and redundant data sets
(LeCun et al., 2015; Schmidhuber, 2015; Kang and Kang, 2017;
Zhang et al., 2018; Maimaitijiang et al., 2020). However, in a small
sample size, the lack of samples often leads to the phenomenon of
overfitting, and RFR will achieve better results than ANN due to
its stronger robustness and generalization ability (Zhang and Li,
2014; Yao et al., 2015; Yuan et al., 2017; Yue et al., 2017; Zheng
et al., 2018; Zhu W.X. et al., 2019; Zha et al., 2020).

THE PROMOTION OF LARGE-SCALE
UAS APPLICATIONS

Accuracy is an important indicator to evaluate the effects of UAS
in the field of crop biomass estimation. In addition, reducing the
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cost to promote the large-scale application of UAS in this field
is a difficult problem. From the perspective of improving the
accuracy of crop biomass estimations, multisensor data fusion,
multi-index fusion, the consideration of a variety of features not
directly related to the monitoring of biomass, and the use of
advanced algorithms are feasible directions (Maimaitijiang et al.,
2020). Considering the promotion of large-scale applications, the
use of low-cost sensors and the combination of suitable models
and algorithms to improve the estimation accuracy of low-cost
sensors, rather than the use of more expensive sensors, is an
effective research path to promote the large-scale application of
UAS in the field of crop biomass monitoring (Acorsi et al., 2019;
Lu et al., 2019; Niu et al., 2019; Yue et al., 2019). RGB sensors
are currently the most widely used low-cost sensor (Lussem
et al., 2019), and studies based on RGB sensors are expected to
promote the large-scale application of UAS in the field of crop
biomass monitoring.

RGB sensors are not capable of providing NIR band data.
Therefore, VIs associated with NIR bands cannot be used, which
inhibits the enhancement of vegetation vitality contrast (Lu et al.,
2019) and may affect the accuracy of biomass estimation. Lu
et al. (2019) used a combination of advanced algorithms and
multi-index fusion to compensate for this deficiency. Yue et al.
(2019) fused the image texture and VIs to obtain the most
accurate estimated value of AGB (R2 = 0.89, MAE = 0.67 t/ha,
RMSE = 0.82 t/ha). These study proves that the use of low-cost
sensors can guarantee the accuracy of biomass estimation and is
expected to promote large-scale applications.

Solar elevation angle (Jiang et al., 2019), meteorological
conditions (Devia et al., 2019; Wang F. et al., 2019), rainfall (Liu
et al., 2019; Rose and Kage, 2019), soil characteristics (Acorsi
et al., 2019; Vogel et al., 2019), the spatial distribution of multiple
plants in a block (Han et al., 2019), and other characteristics not
directly related to biomass monitoring also affect the accuracy
of biomass estimations. The monitoring accuracy of low-cost
sensors can be improved by considering the characteristics that
are not directly related to biomass monitoring.

Jiang et al. (2019) calculated the solar elevation angle to
avoid sun glint and hotspot effects. In addition, growing degree
days (GDD) was incorporated into the model to estimate
rice AGB as a meteorological feature. Models incorporating
meteorological features achieved better estimation accuracy
(R2 = 0.86, RMSE = 178.37 g/m2, MAE = 127.34 g/m2)
than models that did not use these features (R2 = 0.64,
RMSE = 286.79 g/m2, MAE = 236.49 g/m2).

Other studies have also demonstrated the importance of
considering features that are not directly related to monitoring
biomass. Borra-Serrano et al. (2019) also took GDD as a
meteorological feature and obtained the best estimate by
combining CH, VIs and meteorological data variables in an MLR
model (R2 = 0.81) to monitor ryegrass dry-matter biomass. Devia
et al. (2019) also mentioned the influence of solar elevation angle
and indicated that weather conditions (sunny and cloudy) can
affect the quality of the data, especially in lowland crops where
moisture reflection changes the appearance of the image. The
above studies showed that the accuracy of biomass estimation
can be improved by considering meteorological characteristics

and solar elevation angle. More sample points must be obtained
from multiple research sites and under different environmental
conditions in future studies to train a more robust multivariate
model (Liu et al., 2019). Summary of relevant studies are shown
in Table 2.

CONCLUSION AND FUTURE
PERSPECTIVES

As a high precision, high flexibility and nondestructive remote
sensing system, UAS have been widely used to monitor crop
biomass. The application of UAS in the monitoring of crop
biomass in recent years was reviewed in this article. Four kinds
of data acquisition equipment (LiDAR, RGB sensor, multispectral
sensor, and hyperspectral sensor), two biomass indices (VIs and
CH) and three data analysis methods (SVR, RFR, and ANN)
were introduced.

Despite the rapid progress in this area, difficulties remain.
First, we need to improve the speed of data acquisition and
processing. Although multisensor data fusion improves the
accuracy of evaluation, it makes the process of data collection
more complex, data sorting more difficult, and objectively
reduces the speed of monitoring. In addition, although advanced
algorithms improve the evaluation accuracy, they require a
long training time. Second, there is no universal method
that can be applied to all crops in all cases. Different crops,
even the same crops in different environments, have different
characteristics. This difference requires us to carefully distinguish
the characteristics of crops, use appropriate sensors to collect
characteristics, and test multiple indices to determine the best
biomass indices. Third, the high cost of equipment hinders the
large-scale use of UAS in crop biomass monitoring. Although
research on low-cost sensors has appeared, the method that
is needed to improve the estimation accuracy when using
low-cost sensors still needs further research. It is predicted
that adopting multi-index fusion, considering features not
directly related to monitoring biomass, and the adoption of
advanced algorithms can effectively improve the monitoring
effect of low-cost sensors on crop biomass, which is the future
development direction.

Because of its high precision, flexibility and nondestructive
nature, UAS have the potential to become an important method
for the monitoring of crop biomass. Crop biomass monitoring
systems based on multisensor fusion and multi-index fusion, the
consideration of features that are not directly related to biomass
monitoring and the adoption of advanced algorithms are effective
methods and development directions to improve the accuracy
of crop biomass estimation by UAS. Because of their low cost,
using RGB sensors have become an effective method to promote
the large-scale application of UAS in the field of crop biomass
monitoring. In the field of biomass monitoring, UAS still have
great attraction, and there are an increasing number of studies on
the monitoring of crop biomass based on UAS. Furthermore, it is
expected that the challenges of UAS promotion will be overcome
in the future, which is conducive to the realization of smart
agriculture and precision agriculture.
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Mile-a-minute weed (Mikania micrantha Kunth) is considered as one of top 100 most
dangerous invasive species in the world. A fast and accurate detection technology
will be needed to identify M. micrantha. It will help to mitigate the extensive ecologic
and economic damage on our ecosystems caused by this alien plant. Hyperspectral
technology fulfills the above requirement. However, when working with hyperspectral
images, preprocessing, dimension reduction, and classifier are fundamental to achieving
reliable recognition accuracy and efficiency. The spectral data of M. micrantha were
collected using hyperspectral imaging in the spectral range of 450–998 nm. A different
combination of preprocessing methods, principal component analysis (for dimension
reduction), and three classifiers were used to analyze the collected hyperspectral
images. The results showed that a combination of Savitzky-Golay (SG) smoothing,
principal component analysis (PCA), and random forest (RF) achieved an accuracy (A)
of 88.71%, an average accuracy (AA) of 88.68%, and a Kappa of 0.7740 with an
execution time of 9.647 ms. In contrast, the combination of SG, PCA and a support
vector machine (SVM) resulted in a weaker performance in terms of A (84.68%),
AA(84.66%), and Kappa (0.6934), but with less execution time (1.318 ms). According
to the requirements for specific identification accuracy and time cost, SG-PCA-RF and
SG-PCA-SVM might represent two promising methods for recognizing M. micrantha in
the wild.

Keywords: hyperspectral analysis, invasive plant, data preprocessing, dimension reduction, classification

INTRODUCTION

Mikania micrantha Kunth (M. micrantha), also known as “mile-a-minute,” is one of the world’s 100
most dangerous invasive species (Khadka, 2017). It is estimated that M. micrantha can produced
between 90,000 and 210,000 seeds/m2 (Macanawai et al., 2012; Day et al., 2016). The seeds are
dispersed by wind, animals, and humans (Yang et al., 2005; Day et al., 2016). In China, M. micrantha
achieved an average growth rate of 6–7 cm/day (Zhang et al., 2004; Day et al., 2016). The ecological
environment has been seriously damaged, the biodiversity has been threatened, and the economy
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has been influenced by this weed (Shen et al., 2017). The
yield losses of banana (Musa spp.), Citrus spp., and sugarcane
(Saccharum officinarum L.) infested with M. micrantha ranged
from 60 to 70% due to the twining which would block
out sunlight (Shen et al., 2013). The economic losses were
estimated at US$650,000–1.6 M/year on Neilingding Island
(about 554 ha; Zhong et al., 2004). Therefore, identifying and
monitoring M. micrantha are urgent, which would allow the
plant to be controlled by providing accurate information about
its geographical distribution (Tesfamichael et al., 2018).

Currently, monitoring M. micrantha mainly relied on manual
inspection, which is labor intensive and inefficient (Day et al.,
2012; Nath et al., 2019). Hyperspectral remote sensing is an
efficient monitoring method that has been successfully used
to monitor many alien invasive plants (Calvino-Cancela et al.,
2014; Sabat-Tomala et al., 2020) and has shown great potential
(Chance et al., 2016; Marcinkowska-Ochtyra et al., 2018). In
these researches, researchers pay attention to analyzing the raw
spectral data characteristics of target invasive plants, extracting
spectral signature of the plants, and classifying the features of
the plants (Masemola et al., 2019). Some methods, such as
random forest (RF), support vector machine (SVM), and their
improvements, have been applied for the classification of invasive
plants and have achieved good results (Aneece and Epstein,
2017; Grosse-Stoltenberg et al., 2018; Tarantino et al., 2019).
It is undeniable that the usage of some spectral wavebands
from captured spectral wavebands of hyperspectral images may
cause the loss of important spectral information. Nevertheless,
the usage of full multispectral bands may cause information
redundancy and interference. Therefore, it is necessary to find the
balance between them by preprocessing the raw spectral data.

Some state-of-the-art spectral preprocessing detection
methods have been proposed by researchers. Liu et al. (2019)
used different preprocessing methods to extract hyperspectral
reflectance characteristics. A Savitzky-Golay (SG) smoothing
of the reflectance spectrum was performed, and the first
derivative (FD), the second derivative (SD), and reciprocal
logarithm transformation were performed on preprocessed
reflectance data by multiple scatter correction and standard
normal variate (SNV). The preprocessing methods above have
enabled the optimal estimation model to gain better stability
and higher precision. To effectively eliminate the noise and
baseline hyperspectral drifting, Zhou et al. (2019) proposed a
combination of FD, SD, and wavelet transform prepossessing
on raw spectral data. Their model achieved 98.57% accuracy in
prediction set. Yang et al. (2018) explored the effects of different
pretreatment methods on the FT-MIR spectra detection of
Panax notoginseng, where the best preprocessing combination
for the collected spectra was a mix of baseline correction, SNV
and FD with an 11 point smoothing. The above preprocessing
methods were optimized based on the full-band raw spectral
data set and retained all the information of the raw spectral data.
However, the calculation workload and time will be increased
(Xu et al., 2019). Therefore, this type of method needs to reduce
the dimensions of feature sets and keeps most of the dataset
information (Luo et al., 2019).

Currently, the methods for reducing the dimension of
extracted spectral data from hyperspectral images mainly include
feature extraction based on transformation (Du et al., 2018)
[e.g., principal component analysis (PCA)] and feature selection
based on non-transformation (Salimi et al., 2018; e.g., algorithms
for selecting local feature bands). Peerbhay et al. (2015) used
hyperspectral remote sensing for the detection and mapping
of Solanum mauritianum located within commercial forestry
ecosystems. This method, based on an RF and PCA, achieved
a detection rate of 95% with a false positive rate of 6.39%.
Orrillo et al. (2019) used PCA and a classification model
preprocessed by an SNV and an SD to identify black pepper
adulterated with common adulterant papaya seeds in near-
infrared hyperspectral imaging and achieved 100% accuracy
in the classification of berry samples. Aneece and Epstein
(Aneece and Epstein, 2015) used PCA processed raw spectral
data to distinguish among invasive-dominated successional
plant communities in the wild. It indicates that different plant
species could be identified using spectral information. The
previous studies suggest that PCA has been effectively used
to reduce raw spectral data dimension, thereby significantly
increasing efficiency.

The literature review shows that hyperspectral identification
is a potential method for accurate monitoring of M. micrantha.
Generally, the level of hyperspectral identification can be
generally improved only if preprocessing, the feature dimension
reduction technique, and the classifier are all addressed
(Qiao et al., 2018). Moreover, challenges are manifested in
the variability of the raw spectral data of M. micrantha in
a complex field environment, the lack of prior knowledge
and background interference. To address these challenges,
hyperspectral preprocessing algorithms [such as FD, SD,
nine-point (9P) smoothing, SG smoothing, and SNV],
a feature selection algorithm (PCA), and classification
algorithms [such as RF, SVM, back propagation neural
network (BPNN)] (Vetrekar et al., 2015; Qi et al., 2017)
have been proposed, in combination, to recognize M. micrantha
in wild environments, and an accurate and fast method will
be chosen.

MATERIALS AND METHODS

Sample Preparation
A high-speed imaging spectrograph S185 manufactured by
the German company Cubert was used to manually collect
the M. micrantha hyperspectral images in the wild. The
spectrometer weighs 470 g, uses DC12V power, and can obtain
138 spectral wavebands with a 4-nm sampling interval in the
spectrum range of 450 to 998 nm. The collection site was
a desolate field of farmland near the Xinnan subway station
in Jiulong town, Guangzhou city, China (23◦22′29.5′′ north
latitude and 13◦29′52.9′′ east longitude). The collection time
was approximately 9:30 on November 21, 2018; the weather was
cloudy. Before image acquisition dark reference (by closing the
camera lens) and white reference (using a white plate) images
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FIGURE 1 | Representative hyperspectral images of Mikania micrantha and background.

were collected to calibrate the spectrometer according to the
following equation:

IC = (IR − ID)/(IW − ID) (1)

where IC is the calibrated image, IR is the raw image, IW is the
white reference, and ID is the dark reference.

Then the lens of spectrograph were pointed directly toward
at the surface of the plant, and manually focused on the middle
of M. micrantha leaves. Eighteen hyperspectral images were
collected over vegetation using the S185 spectrometer and used
for this work. Six samples of the eighteen hyperspectral images
contained the leaves and flowers of M. micrantha, other plants,
and non-plant background are shown in Figure 1. An individual
scan time was very short (less than 1 min), and all scans were
basically carried out in an area of about 300 square meters.
Therefore, it was made within half an hour, and illumination
changes from scan to scan varied little.

The raw spectral data of M. micrantha and background were
manually extracted from hyperspectral images by Cubeware
software (Figures 2A,B), care was taken to avoid any cross-class
contamination, and saved in ASCII format. 745 raw spectral data
samples (M. micrantha: 377, background: 368) were collected
and randomly divided into a training set (M. micrantha: 251,
background: 245), a testing set (M. micrantha: 63, background:
62), and a validation set (M. micrantha: 63, background: 61).
The labels of M. micrantha consisted of M. micrantha leaves and
flowers, and the labels of background included leaves and flowers
of other plants, as well as non-plant background. The training,

testing, and validation sets were balanced to prevent bias in the
classifiers and metrics.

Methods
Five preprocessing methods, one feature selection method and
three classifiers were combined and implemented to process and
classify extracted raw spectral data, respectively. The framework
of the proposed methods to recognize M. micrantha and choose
the optimal model is illustrated in Figure 3.

Preprocessing
Smoothing is widely used to eliminate the interference of
high-frequency noise in raw spectral data and to improve
the spectral signal-to-noise ratio (Saberioon et al., 2019). In
this study, 9P smoothing, and SG smoothing were used to
smooth the raw spectral data. 9P smoothing can reduce the
noise by calculating the average value of a set of sample
raw spectral data in the moving smoothing window. The
smoothing procedure is as follows. First, the window size
was determined to be nine in this article (Lawrence et al.,
2006). Second, nine consecutive points on the raw spectral
data (x−4, · · · , x−1, x0, x1, · · · , x4) were selected. Then, the
arithmetic mean was computed and assigned to x0. Finally,
the window was moved to the next point so that the center
of the window traverses the whole raw spectral data. Similar
to 9P smoothing, SG smoothing is a filtering method based
on least squares polynomial fitting in a moving window. The
window size was set as five in this article (Fu et al., 2018;
Liu et al., 2019).
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FIGURE 2 | Extraction of raw spectral data. (A) Pixels of hyperspectral images used for raw spectra extraction, (B) raw spectral data.

The derivative processing can correct the data far away
from the zero plane (Saberioon et al., 2019), thus effectively
reducing noise interference, suppressing useless information and
highlighting the information of interest. This method is a good
choice to deal with noise interference in raw spectral data.
First derivative and SD are selected to preprocess extracted raw
spectral data. The FD is sensitive to noise and can show the
change of reflectivity (Golhani et al., 2019). The SD highlights
subtle variations in the spectrum and is suitable for optimal
wavelength selection (Wu et al., 2018).

The performance of SNV processing was tested on raw
spectral data of M. micrantha. SNV assumes the reflection
values of each wavelength in the raw spectral data to
meet a certain distribution (Yang et al., 2018; Liu et al.,
2019), thereby eliminating the errors caused by particle size
difference between samples, spectral transformation and surface
scattering (Asaari et al., 2018).

Dimension Reduction
Raw and preprocessed spectral data have 138 wavebands that
makes the feature sets high-dimensional. If the set is directly used
for M. micrantha target recognition, the calculation workload
and time will be increased. Therefore, there was a need to
reduce the dimension of the feature set and to keep most of the
dataset information. PCA is a transform-based feature extraction
method. In this work, PCA was used to transform the raw
and preprocessed spectral data, the original high-dimensional
raw and preprocessed spectral data were transformed into
new comprehensive variable data, while keeping most of the
information from the original spectral data (Jeyakumar and
Sudha, 2019; Tian et al., 2020).

Classification
In the case of limited training samples, the robustness of SVM
and RF in processing high-dimensional data makes them suitable

for raw and preprocessed hyperspectral data (Tusa et al., 2020).
SVM transforms low-dimensional linear inseparable samples
into a high-dimensional feature space to make them linearly
separable. Based on structural risk minimization, the optimal
classification hyperplane is constructed in the feature space to
obtain the global optimal solution (Cortes and Vapnik, 1995).
RF begins by generating many trees and then votes for the most
popular class. This method is an effective tool for classification
because each tree depends on the values of a random vector
sampled independently and with the same distribution for all
trees in the forest (Breiman, 2001).

A BPNN is a multi-layer feedforward network trained by
error back propagation. The network takes the sum of error
squares as the objective function, and the minimum value of
the objective function is calculated by gradient descent method.
The commonly used BPNN contains an input layer, an implicit
layer, and an output layer. When sufficient training samples are
available, the trained BPNN can identify complex objects with
high accuracy (Vetrekar et al., 2015; Yao et al., 2019).

To choose the optimal model which is accurate and fast
to identify the M. micrantha developed from spectral data
of hyperspectral image, the three classifiers were tested via
different combinations of PCA dimension reduction and other
preprocessing methods.

Evaluation
To evaluate the performance of each of the proposed methods,
four statistical parameters, namely, accuracy (A), average
accuracy (AA), the Kappa value (Dash et al., 2019) and time,
were considered. These parameters are frequently used for
performance evaluation in classification problems (Xu et al.,
2019). The parameters were calculated from below equations (2),
(3), (4), and (5):

Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN) (2)
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FIGURE 3 | Framework of the proposed methods implementation.

Average Accuracy = TP/ [2 (TN+ FP)]+ TN/ [2 (TN+ FP)]
(3)

Kappa =
(
Accuracy− Pe

)
/ (1− Pe) (4)

Pe = [(TP+ FN) (TP+ FP)+ (TN+ FP)(TN+ FN)] /

(TP+ TN+ FP+ FN)2 (5)

where TP is the number of samples correctly predicted to
be M. micrantha, TN is the number of samples correctly
predicted as the background, FP is the number of background
samples incorrectly predicted as M. micrantha, and FN is
number of M. micrantha samples incorrectly predicted to be
the background.

Also, we summarized the computational time required by each
method to recognize the samples in the validation set. All the
aforementioned methods were coded and developed in MATLAB

R2019a (The Math Works Inc., United States). The CPU of the
PC is Intel(R) Core(TM) i7-7700, and the RAM is 16 GB.

RESULTS

Preprocessing
Raw and preprocessed spectral data of M. micrantha and
background were presented in Figures 4A–F. In Figure 4A,
M. micrantha spectral reflectance is slightly higher than the
background in about 450–670 nm range, while parts of
M. micrantha have the same reflectance as the background. In
about 750–880 nm range, the reflectance of M. micrantha and
background are scattered, and the reflectance distribution of
the background basically overlapped with that of M. micrantha.
The raw spectral data distribution of M. micrantha in the
remaining spectral range is almost the same as the background.
It indicates that the intra-class differences were more than inter-
class differences of M. micrantha and background, and it is
a challenging work for M. micrantha identification. In order
to be more conducive to the recognition of raw spectral data,
five kinds of preprocessing methods were used to eliminate
data noise or highlight the distribution law of reflectance with
wavelength. The raw spectral data preprocessed using the two
smoothing methods are shown in Figures 4B,C. Compared
with the raw spectral data in Figure 4A, the small fluctuations
of reflectance over the entire wavelength range (e.g., 450–
500 nm) are eliminated or changed more gently. The other
three preprocessing methods remove other noises from raw
spectral data. The direct analysis of the raw spectral data
after derivation is illustrated in Figures 4D,E. The FD and
SD were constant states (horizontal line) at both ends of the
spectral band (450–470 nm and 978–998 nm), the relevant
raw spectral data were obviously polluted by the system
noise. In the other spectral range, the intra-class differences
of the preprocessed spectral data were smaller than the raw
spectral data. Figure 4F shows the preprocessed data of SNV.
The intra-class differences of the preprocessed spectral data
became smaller, especially the preprocessed spectral data in
the 670–880 nm range. And the spectral noise was relatively
reduced, too.

In summary, all the five preprocessing methods can eliminate
part of the spectral noise. FD, SD, and SVN can significantly
reduce the intra-class differences, however, the inter-class
differences were not significantly improved by all pretreatments.
Therefore, it is necessary to find the difference in the raw
and preprocessed spectral data between M. micrantha and
the background through subsequent processing. To determine
the most suitable preprocessing method, the next step was to
analyze the influence of each preprocessing method combining
the dimension reduction and classifiers on the performance of
M. micrantha identification.

Dimension Reduction by PCA
Principal component analysis was performed on the raw and
preprocessed spectral data. In general, the first and second
principal components have the maximum variation of the
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FIGURE 4 | Raw and preprocessed spectral data of 745 samples (A) raw spectral data, preprocessed by (B) 9P smoothing, (C) SG smoothing, (D) first derivative,
(E) second derivative, and (F) standard normal variate.

original data. The first and second principal component scores
of 745 samples were depicted as Figure 5.

Each of the datasets was clustered and distributed with the
origin of the coordinates as the center. Figure 5 shows the
impact of each preprocessing method on sample clustering.
Through comparison of the raw spectral data (Figure 5A)
with the raw spectral data preprocessed by different methods,

we found that the raw spectral data preprocessed by the SD
(Figure 5E) showed the best clustering effect. In terms of
clustering performance, the SNV (Figure 5F) ranked second,
and the FD (Figure 5D) ranked third. Compared with the
degree of clustering of the raw spectral data (Figure 5A), the
clustering effect of the two smoothing treatments was the worst
(Figures 5B,C). Nevertheless, the above results are predictable
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FIGURE 5 | First and second principal component scores of 745 samples based on (A) raw spectral data, preprocessed by (B) 9P smoothing, (C) SG smoothing,
(D) first derivative, (E) second derivative, and (F) standard normal variate.

because the two smoothing treatments reduced the noise of
the raw spectral data but did not change the details and the
overall trend. In addition, the overlap between the two types of
samples was obvious as shown in Figure 5. Thus, more principal
components need to be taken into account.

As shown in Figure 6, the cumulative contribution rates of
the first k

(
k = 1, 2, . . . , 138

)
principal components were

also calculated. The raw spectral data, 9P smoothing, and SG
smoothing had almost the same curves, and at approximately
the first 5 principal components, all curves tended to be smooth
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FIGURE 6 | Cumulative contribution rate curve of the principal components.

and close to 100%. Thus, all the curves are able to fully represent
the information contained in the 138-dimensional raw and
preprocessed spectral data. Although the contribution rate of
the first principal component of the FD was approximately 20%
lower than that of the SNV, the FD, and SNV did not have
almost the same cumulative contribution rates until the first
18 principal components, where the values are close to 99%.
The SD had the lowest contribution rate of the first principal
component, and the cumulative contribution rates were not more
than 99% until top 40 principal components. Therefore, the first k
principal components based on different preprocessing contained
most of the information. To achieve accurate M. micrantha
identification, the first k principal components were selected as
the input of the classification model. However, the k values were
dependent on the preprocessing and classification algorithms
combined with PCA.

Recognition Performance Assessment
Based on Different Combinatorial
Algorithms
Among the 745 samples, 496 samples were used to train the
models, and 125 samples were used to test the trained models.
The SVM, the BPNN, and the RF were separately trained based on
the first k

(
k = 1, 2, . . . , 138

)
principal components, which

were generated by employing PCA on raw and preprocessed
spectral data. The recognition accuracies of the first k principal
components are shown in Figure 7.

The results showed that the accuracy of the RF was
significantly higher than the other two methods. When k >
10, the accuracies of the adjacent first k principal components
fluctuated within the smallest range. The SVM was the second
most accurate; its accuracy first increased and then decreased
with the increase of k. The BPNN did not achieve good results,
and the accuracies of adjacent k fluctuated within a large range,
although the accuracy was higher than that of the SVM as the
k increased to a certain degree. Using the same classification

method, the accuracies of SG-PCA-RF, FD-PCA-RF, and SD-
PCA-RF methods were more significantly improved than the
accuracy of OR-PCA-RF, but 9P-PCA-RF did not achieve much
improvement except for when the first k principal component
was between 70 and 80. The accuracy of SNV-PCA-RF improved
as the k increased, but there was little benefit in terms of
dimension reduction. In Figures 7C–E, the maximum accuracy
of the RF appeared at k between 10 and 20, and the accuracies of
SD-PCA-RF were higher than those of SG-PCA-RF and FD-PCA-
RF. In addition, compared with OR-PCA-SVM, the combinations
of the other preprocessing methods with PCA and SVM did not
improve accuracy obviously. And the k values corresponding
to the maximum accuracy of the other combination methods
were higher than that of OR-PCA-SVM, such as 9P-PCA-SVM,
SG-PCA-SVM, and FD-PCA-SVM. For the BPNN algorithm,
9P smoothing and SG smoothing improved the accuracy and
reduced the dimensions, while the k values corresponding to the
maximum accuracy were located at between 1 and 10. However,
the accuracy of other preprocessing methods was lower than the
raw, thereby having even negative effects.

Therefore, not all combinations of preprocessing methods,
PCA and classification methods improved accuracy while
reducing the dimensions. To reduce the dimensions and improve
accuracy, the first k principal components corresponding to the
maximum accuracy of each combination method were separately
confirmed to reduce the dimensions (Table 1) and to verify the
recognition performance.

The remaining 124 samples were used as the validation set to
verify the corresponding trained models at the first k principal
components as shown in Table 1. There were over 10 runs for
each method. The most frequent results are shown in Table 2.
The best results for each quality index were highlighted in bold.
The result shows that SG-PCA-RF yielded the best A, AA, and
Kappa values, and 9P-PCA-SVM had the shortest execution time
among all the methods (Table 2).

DISCUSSION

In the process of exploring the identification of M. micrantha
based on hyperspectral technology, the combinatorial test of
conventional spectral data processing methods was carried out.
The results showed that RF and SVM based on homologous
preprocessing spectral data maintained the advantages of
accuracy and time, respectively. In terms of the recognition effect
of M. micrantha, RF shows higher accuracy and recognition
consistency than the other two classifiers. Certainly, if the time
indicator is the most important in practical applications, SVM is
also a good choice. After all, it also has a satisfactory accuracy
and consistency.

When applied to the same classifier RF, SG smoothing yielded
the best A, AA, Kappa, and time values, and SD yielded the
second best A, AA, and Kappa values. When applied to SVM,
SG smoothing yielded the best A, AA, and Kappa values, and
9P smoothing yielded the second best A, AA, Kappa values,
and best time, but the improvement was not obvious compared
with OR. The above results were basically consistent with the
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FIGURE 7 | Recognition accuracy curve of Mikania micrantha based on the first k principal components. (A) raw spectral data, preprocessed by (B) 9P smoothing,
(C) SG smoothing, (D) first derivative, (E) second derivative, and (F) standard normal variate.

analysis results in Figure 7 and Table 1. Overall, SG smoothing
worked the best among the five common pretreatments tested
during M. micrantha identification using hyperspectral image
data. Moreover, the methods combining preprocessing with a
classifier were also used for validation set recognition, without

PCA. The results are shown in Table 3. Compared with Table 2,
all indexes were worse in most of the cases as shown in Table 3.
Although SNV-RF was better than SNV-PCA-RF in terms of
A, AA, and Kappa, SNV-RF was still inferior to SG-PCA-RF
in all indexes. Even for the BPNN classifier, which showed the
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TABLE 1 | First k principal components corresponding to the maximum accuracy of each combination method.

k/max accuracy (%) RSD 9P smoothing SG smoothing FD SD SNV

PCA-SVM 5/88.80 16/88.00 17/88.80 26/88.00 8/88.80 10/88.00

PCA-BPNN 127/87.20 10/89.60 5/88.00 66/84.80 99/80.80 2/84.00

PCA-RF 11/88.80 15/89.60 14/90.40 11/90.40 19/91.20 105/90.40

RSD is raw spectral data.

TABLE 2 | Methods combining preprocessing, PCA, and a classifier for validation
set recognition.

Methods k Validation set

A (%) AA (%) Kappa Time (ms)

RSD-PCA-SVM 5 81.45 81.62 0.6302 0.963

RSD-PCA-BPNN 127 78.23 78.13 0.5636 6.169

RSD-PCA-RF 11 83.87 83.84 0.6772 10.275

9P-PCA-SVM 16 83.87 83.81 0.6770 0.823

9P-PCA-BPNN 10 75.81 75.77 0.5158 6.082

9P-PCA-RF 15 84.68 84.63 0.6932 10.028

SG-PCA-SVM 17 84.68 84.66 0.6934 1.318

SG-PCA-BPNN 5 81.45 81.46 0.6290 5.575

SG-PCA-RF 14 88.71 88.68 0.7740 9.647

FD-PCA-SVM 26 80.65 80.69 0.6132 1.115

FD-PCA-BPNN 66 70.97 70.99 0.4195 5.332

FD-PCA-RF 11 83.87 83.89 0.6775 10.571

SD-PCA-SVM 8 79.84 79.98 0.5978 1.014

SD-PCA-BPNN 99 72.58 72.50 0.4506 6.033

SD-PCA-RF 19 86.29 86.20 0.7252 10.653

SNV-PCA-SVM 10 81.45 81.49 0.6292 1.305

SNV-PCA-BPNN 2 82.26 82.31 0.6454 5.533

SNV-PCA-RF 105 85.48 85.51 0.7098 10.431

RSD is raw spectral data. The best results for each quality index were highlighted
in bold.

worst comprehensive performance in M. micrantha recognition,
PCA dimension reduction treatment can improve the recognition
effect. However, the recognition effect fluctuated significantly
with the change of the number of principal components.
Therefore, PCA was able to improve the accuracy and efficiency
of the algorithms in most cases.

In summary, the SG-PCA-RF (88.71% A, 88.68% AA, 0.7740
Kappa, and execution time of 9.647 ms) and SG-PCA-SVM
(84.68% A, 84.66% AA, 0.6934 Kappa, and execution time
of 1.318 ms) algorithms outperformed other methods for
M. micrantha recognition. Therefore, the method should be
selected according to the specific requirement for identification
accuracy and time cost.

The recognition methods based on convolutional neural
network (CNN) are very popular at present, however, it does
not mean that these methods are applicable to all researches.
Fernandes et al. (2019) used SVM and CNN to identify the
hyperspectral image data of different grape vine varieties, and
the test results showed that SVM achieved a recognition effect
not inferior to CNN. Of course, we recognize that deep learning
is a trend of image recognition. In order to further improve
the recognition accuracy and consistency, it is necessary to

TABLE 3 | Methods combining preprocessing with a classifier for validation set
recognition.

Methods Validation set

A (%) AA (%) Kappa Time (s)

RSD-SVM 81.45 81.38 0.6285 1.823

RSD-BPNN 66.94 66.94 0.3387 5.963

RSD-RF 83.06 82.92 0.6602 12.665

9P-SVM 82.26 82.18 0.6445 3.146

9P-BPNN 71.77 71.86 0.4364 5.857

9P-RF 83.87 83.81 0.6770 9.616

SG-SVM 83.37 83.79 0.6768 1.900

SG-BPNN 71.77 71.86 0.4364 6.795

SG-RF 84.68 84.56 0.6927 9.350

FD-SVM 83.06 83.02 0.6609 2.049

FD-BPNN 77.42 77.39 0.5480 30.801

FD-RF 85.48 85.48 0.7096 9.329

SD-SVM 81.45 81.49 0.6292 21.212

SD-BPNN 80.65 80.64 0.6128 10.110

SD-RF 86.29 86.22 0.7254 10.605

SNV-SVM 82.26 82.33 0.6456 11.373

SNV-BPNN 71.77 71.78 0.4355 17.394

SNV-RF 87.10 87.12 0.7420 12.048

RSD is raw spectral data. The best results for each quality index were highlighted
in bold.

expand the training set and employ the recognition method based
on deep learning.

The main work of this research was to complete the
identification of M. micrantha in a small field. The image
samples used were hyperspectral images taken with a handheld
spectrometer. In the future research, the hyperspectral images of
other invasive plants will be collected to verify the generalization
performance of the proposed method. In addition, the images
acquired by the handheld spectrometer were mainly used to
study the hyperspectral image data processing method, which can
save time and cost on the basis of ensuring the reliability of the
data. In practical applications, it is often necessary to identify
invasive plants in a wide range, which requires the hyperspectral
imager to be mounted on the UAV for image acquisition. Our
study provides a reliable reference for hyperspectral image data
processing of M. micrantha.

CONCLUSION

In this study, to determine the best methods for M. micrantha
recognition based on hyperspectral technology, five
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preprocessing methods, one dimension reduction method,
and three classifiers were separately combined to process the
hyperspectral image data of M. micrantha. It was demonstrated
that SG smoothing could eliminate the interference of high-
frequency noise in raw spectral data and improved the
spectral signal-to-noise ratio. Importantly, PCA reduced
the dimensions of the feature set and kept most of the
dataset information. Additionally, PCA improved the accuracy
and calculation efficiency of the algorithm to some extent.
In our study, the recognition accuracy and time after
PCA dimension reduction were universally better than
those without PCA processing. Finally, the dataset after
dimension reduction was classified by classifiers, proving
that RF had the most accurate and consistent result in
our dataset, while SVM had the shortest execution time.
In subsequent studies, SG-PCA-RF and SG-PCA-SVM
algorithms, which performed well in this study, will be
tested in the hyperspectral images of other invasive plants
obtained by UAV.
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Leaf chlorophyll content is an important indicator of the growth and photosynthesis of
maize under water stress. The promotion of maize physiological growth by (AMF) has
been studied. However, studies of the effects of AMF on the leaf chlorophyll content
of maize under water stress as observed through spectral information are rare. In this
study, a pot experiment was carried out to spectrally estimate the leaf chlorophyll
content of maize subjected to different durations (20, 35, and 55 days); degrees
of water stress (75%, 55% and 35% water supply) and two inoculation treatments
(inoculation with Funneliformis mosseae and no inoculation). Three machine learning
algorithms, including the back propagation (BP) method, least square support vector
machine (LSSVM) and random forest (RF) method, were used to estimate the leaf
chlorophyll content of maize. The results showed that AMF increased the leaf chlorophyll
content, net photosynthetic rate (A), stomatal conductance (gs), transpiration rate (E),
and water use efficiency (WUE) of maize but decreased the intercellular carbon dioxide
concentration (Ci) of maize and atmospheric vapor pressure deficit (VPD) regardless of
the water stress duration and degree. The first-order differential spectral data can better
reflect the correlation between leaf chlorophyll content and spectrum of inoculated
maize when compared with original spectral data. The BP model performed bestin
modeling the maize leaf chlorophyll content, yielding the largest R2-values and smallest
root mean square error (RMSE) values, regardless of stress duration. These results
provide a reliable basis for the effective monitoring of the leaf chlorophyll content of
maize under water stress.

Keywords: arbuscular mycorrhizal fungi, leaf chlorophyll content, spectral reflectance, machine learning
algorithms, water stress

INTRODUCTION

Maize is one of the most important food crops in Asia. However, water stress is a main constraint
of crop production at the global scale and is expected to increase in coming years (Lesk et al., 2016),
and global crop yields are heavily affected by this constraint (Daryanto et al., 2016). Therefore,
increasing the utilization efficiency of existing water resources is an effective way to mitigate
agricultural water use limitations (Schewe et al., 2014).
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Water stress affects the photosynthesis, transpiration, and
water use efficiency (WUE) of plants and their absorption and
utilization of water and nutrients and hinders the physiological
and biochemical processes of plants (Kahil et al., 2015; Ortega-
Farias et al., 2021). Plants can cope with water stress through
their adaptive strategies (Pavithra and Yapa, 2018), and the
symbiosis between arbuscular mycorrhizal fungi (AMF) and
plants plays an important role in plants adaptations to water
stress (Pavithra and Yapa, 2018). AMF canengage in mutualism
with more than 80% of terrestrial plants in the world (Smith
and Read, 2008). Plants provide carbohydrates to AMF, and
AMF play a crucial role in the growth and nutrient uptake of
host plants through beneficial physiological processes. Moreover,
AMF improve plant performance under abiotic stresses such
as drought (Pavithra and Yapa, 2018), pollution (Liu et al.,
2018), or salinity (Arafat and He, 2011). AMF have been shown
to improve plant absorption of water, increase photosynthetic
pigments, stomatal conductance (Duc et al., 2018; Meddich
et al., 2021), intercellular CO2 concentration, transpiration
rate, root volume and diameter, and stimulate H+-ATPase
activity and gene expression of plants in response to water
stress (Cheng et al., 2021). Bromus species inoculated with
AMF enhanced superoxide dismutase, peroxidase, catalase, and
ascorbate peroxidase activities (Karimkhani et al., 2021) to help
plants to tolerate water stress. In addition, inoculation with
F. mosseae through the improvement of ionic and biochemical
status of the plant can mitigate the detrimental effects of
water-deficit stress on maize plants (Bahraminia et al., 2020).
AMF increase water use and reduce oxidation damage by
stimulating antioxidant activities (Pedranzani et al., 2016) and
regulating water absorption and transport by aquaporin genes
and endogenous hormones (Pedranzani et al., 2016; Quiroga
et al., 2017; Cheng et al., 2021). Plant physiological phenomena
are reflected in the healthy status of leaves. Leaf chlorophyll
content is an important index for measuring plant photosynthesis
and growth. However, the extraction and detection of leaf
pigments by traditional chemical monitoring methods is tedious,
destructive, discontinuous and time consuming. A spectro
radio meter can be used to obtain plant spectral information
through reflective rays at different wavelengths (700-1300 nm)
with relatively high reflectivity observed in the near infrared
region. The spectral reflectance of leaves in different wavebands
represents different leaf characteristics of plants. Spectral
reflectance in the visible and near infrared regions differs
between plants under water stress and healthy plants. Spectro
radio metric methods yield measurements more quickly,
continuously and economically than traditional laboratory
methods (Basayigit and Ozkul, 2015).

The vegetation indexes have been used to build inversion
model of chlorophyll content of wheat, as the red edge parameters
used to estimate chlorophyll content of plant under the stripe
rust, water or salt stress have been investigated in many
studies (Gu et al., 2008; Jiang et al., 2010; El-Hendawy et al.,
2021). In the past, most models employed to estimate the leaf
chlorophyll content have been based on linear regression method;
however, this method cannot describe the complex relationship
between modeling factors and dependent variables. Therefore,

the modeling accuracy was not high. The use of machine learning
algorithms is an effective way to express the complex relationship
between the modeling factors and dependent variables (Saitta
et al., 2011; Sonobe et al., 2021). The back propagation (BP)
approach has been used to determine plant diseases (Saleem
et al., 2019), and this methodology has potential in the analysis of
hyperspectral reflectance data. The random forest (RF) method
is a regression technique that combines numerous decision
trees to classify or predict the value of a variable, and it has
been used for estimating vegetation properties (Li et al., 2017;
Chen et al., 2018) as well as for classification and regression
(Biau and Scornet, 2015). Least square support vector machine
(LSSVM) is a nonlinear system modeling method that has been
proposed in recent years. LSSVM requires a small number
of training samples and can approach nonlinear systems with
high accuracy, and it has been widely used in many fields
(Li et al., 2010; Mall and Suykens, 2015). However, studies
involving the hyperspectral estimation of chlorophyll content in
maize inoculated with AMF under drought stress are rare. In
our research, pot experiments were conducted by controlling
the amount of water, and the chlorophyll content of maize
inoculated with AMF was monitored spectrally. Comparisons
and analyses of the physiological characteristics and spectral
response of AMF-inoculated and control maize under water
stress were performed in this study. An inversion model of
the chlorophyll content and multiple spectral variables was
established. The objectives of this study were to (1) compare
the chlorophyll content and other physiological characteristics
of maize with or without inoculation under water stress,
(2) determine the spectral response of AMF-inoculated and
non-inoculated maize to water stress, and construct the best
spectral estimation model of the chlorophyll content of maize
under water stress.

METHODS

Materials
Maize seeds were obtained from the Henan Academy of
Agricultural Sciences; and Funneliformis mosseae was obtained
from the Research Institute of Plant Nutrition and Resources
in the Beijing Academy of Agriculture and Forestry Sciences
and cultured in a microbial laboratory at Henan Agricultural
University. River sand with poor nutrients was collected as a
substrate and then air dried, passed through a 1 mm sieve and
mixed thoroughly. The basic properties of the soil are listed in
Table 1. The soil was sterilized at 121◦C for 2 h, air dried and
prepared for the pot experiment.

TABLE 1 | Basic physical and chemical properties of sandy soil.

pH AP (mg/kg) AN (mg/kg) TN (%) TC (%)

7.78 1.66 28 0.107 0.891

AP, available phosphorus content; AN, available nitrogen content; TN, total nitrogen
content; TC, total carbon content.
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Experimental Design
The experiment was conducted in a greenhouse at the Forestry
College at Henan Agricultural University on August 15, 2019.
The inoculation treatments included inoculation with F. mosseae
and no inoculation; and the water stress treatments included
(a) no stress, irrigation to 75% of the maximum water holding
capacity of the soil (WS75%; achieved with 150 mL water per
plant); (b) moderate stress, wherein irrigation was provided
to 55% of the maximum water holding capacity of the soil
(WS55%; achieved with 110 mL water per plant), and (c)
severe stress, wherein irrigation was provided to 35% of
the maximum water holding capacity of the soil (WS35%;
achieved with 70 mL water per plant). The maize plants
were subjected to the water stress treatments for 20, 35, or
55 days after sprouting (on August 20, 2019), in other words,
the water stress starts on September 10, September 25, and
October 15, 2019, respectively. With 20, 35, and 55 days after
sprouting representing the seedling stage, three leaf stage and
jointing stage, respectively, of maize growth. Each treatment
was performed with 5 replicates. Therefore, a total of 90 pots
of maize were established (2 (inoculation treatments) × 3
(water stress degree treatments) × 3 (water stress duration
treatments)× 5(replicates)).

Maize was inoculated with F. mosseaeat 50 g/pot (20
spores/g), and the non-inoculated maize was inoculated with
the same amount of sterilized microbial inoculum. NH4NO3,
KH2PO4, and K2SO4 were added to achieve 100 mg N/kg,
30 mg P/kg, and 150 K mg/kg, respectively, for fertilization.
Before water stress, the plants were irrigated with 75% of the
maximum water holding capacity of soil during the growth
process, and the soil moisture meter (LB9007, QingDao, in
China) was used for real-time monitoring. Maize seedling was
irrigated in time every day to ensure that the soil moisture
was maintained between70% and 75%. Maize seeds were
disinfected with 10% H2O2 for 10 min, rinsed with water
2-3 times and then washed with deionized water4-5 times.
Seeds were cultured in an incubator at 25-28◦C for 24 h.
Two seeds were sown in each pot (caliber × height × bottom
diameter = 12 × 13 × 9.5 cm) before germination, and the best
growing seedling was kept. The light intensity was controlled
by 10 high-pressure sodium lamps, and the air temperature and
humidity were controlled at 25◦C and 20%, respectively, by an
air-conditioning unit.

Measurements
Leaf spectral collection and physiological measurement were
carried out after each of the three water stress durations, and five
pots were randomly selected from each water stress treatment.

Spectrometric Determination
Leaf spectra were acquired with a Field Spec 3 ground
spectrometer (ASD Company, United States) under dark
conditions. The wave band range of the ground spectrometer
was 350-1025 nm, and the spectral resolution was 3 nm. To
accurately reflect the whole plant growth status, each pot was
placed on a black workbench, and two leaves collected from

each of the upper, middle and lower layers of the plant were
measured. The halogen lamp used for the indoor test matched
the spectrometer and was placed above the sample at an angle of
15◦ (the angle between the halogen lamp and ground normal) and
20 cm from the target. The field angle of the probe was 25◦when
observed from10 cm above the target (with the imaged object
formed an angle with two edges of the maximum probe range).
Each leaf was measured to obtain spectral information, and a
whiteboard correction was conducted every 30 min before and
during the measurements. Each leaf was lit from four directions
during measurement, and five spectra were collected for each
lighting direction to avoid errors of leaf curling. Reflectance
data were obtained from the average spectral values from
all directions.

Physiological and Biochemical
Determination
The chlorophyll contents of the leaves were determined
using a SPAD-502 instrument (Konica Minolta, Japan). This
device determines the relative chlorophyll content using dual
wavelength optical absorbance measurements (at wavelengths of
620 and 940 nm) of leaf samples. The chlorophyll content was
obtained from 5 selected points on each leaf during measurement,
and the average value was taken to reflect the chlorophyll content
of the whole leaf.

Photosynthetic parameters such as intercellular CO2
concentration (Ci), net photosynthetic rate (A), stomatal
conductance (gs), transpiration rate (E), and water use efficiency
(WUE) of maize leaves and water vapor pressure (VPD)
were measured by a LI-6400 photosynthesis instrument
(LI-COR, United States).

The drying method was adopted to measure the aboveground
and belowground biomass of maize: the roots and shoots of
maize were heated at 105◦C for 30 min, dried at 75◦C for
3 days, and weighed to determine the dry weight of maize.
Mycorrhizal colonization was determined by the Phillips and
Hayman methods (Phillips and Hayman, 1970).

Determination of Soil Properties
The soil property analysis shown in Table 1 was performed
using standard soil test procedures. The soil pH values were
measured at a 1:2.5 soil/water ratio (w/v) via a pHmeter
(Gao et al., 2015). The soil total carbon content (TC)
and total nitrogen content (TN) were measured by Dumas
combustion using an ElementarVario MAX CN analyzer
with the combustion chamber set at 900◦C and an oxygen
flow rate of 125 mL min−1. The soil available phosphorus
content (AP) was measured via the molybdenum antimony
colorimetric method, and the soil available nitrogen content
(AN) was determined by the alkali hydrolysis diffusion method
(Bao, 1999).

Data Analysis
Data Smoothing
During spectral data acquisition, the spectral curve may contain
noise because the energy response varies according to the
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waveband and environment. Therefore, the spectral data must
be smoothed. In this study, the Savitzky-Golay (SG) method
was used to smooth the spectral curve. This method not only
removes the high-frequency components but also retains the
characteristic trends of the original curve, and the denoising
effect of the SG method is better than that of other methods.
The SG algorithm is a least-squares convolution smoothing
method that is synthetically applied according to polynomial
fitting order and smoothing degree; however, the error of the
polynomial fitting curve is calculated by the first derivative.
In this study, the SG smoothing method was realized by
MATLAB 2014.

First-Order Differential Processing Method
Derivative spectroscopy can reduce the influences of light,
atmospheric scattering, absorption and background on the
spectral characteristics of targets and there by obviously enhance
the correlations between the first-order differential processing of
the original spectral reflectance and biochemical indexes. In this
study, the smoothed original spectral curves were processed with
the first-order differential method.

Modeling Methods
The LSSVM, BP, and RF models were used to estimate the
chlorophyll content in the leaves through reflectance spectra, and
they were implemented in MATLAB 2014.

The LSSVM method is widely used for complex nonlinear
modeling. If the training sample set is (xi,yi), with i = 1, 2, . . ., n,
then x∈Rd and y∈R. The main idea of the support vector machine
(SVM) is as follows: first, a nonlinear mapping ϕ (·) is used to map
the sample input space Rd to the feature space: ϕ (x) = (ϕ (x1), ϕ

(x2),. . ., ϕ (xn)); next, the optimal decision function y = wT
· ϕ

(x)+b is constructed in this high-dimensional feature space, and
then the model parameters w and b are determined based on the
principle of structural risk minimization. The calculation formula
of structural risk is as follows:

R = c · Remp + 1/2||w||2

Where c is the normalization parameter and Remp is the loss
function, which is also called the empirical risk. The common
loss functions include the first loss function, the quadratic loss
function and the Hubber loss function. Different loss functions
represent different SVM models; LSSVM is the SVM with the
quadratic loss function. That is, Remp =

∑
i ξ

2
i , where ξ 2

i is the
prediction error of the model to the training samples.

The training of sample data is performed via the BP method,
and the weights and thresholds of the network are constantly
modified, so that the error function decreases along the negative
gradient direction and approaches the expected output. BP is
a widely used neural network model that is primarily applied
for function approximation, model recognition and classification,
data compression and time series prediction. The BP network
is composed of an input layer, a hidden layer and an output
layer. The hidden layer can have one or more layers. The network
adopts the S-type transfer function: f(x) = 1/ (1+ex). The error
function E =

∑
i (Ti+Oi)

2/2 (where Ti is the expected output and

Oi is the calculated output of the network) can be minimized by
adjusting the weights and thresholds of the network.

The RF method builds multiple decision trees and fuses them
to obtain a more accurate and stable model, which is represented
by the combination of the bagging idea and random selection
features. The RF method constructs multiple decision trees.
When a certain sample needs to be predicted, the prediction
results of each tree in the forest for the sample are counted,
and the final result is selected from these prediction results
by the voting method. Randomness is reflected in two aspects:
the selection features and selection of samples. Thus, each
tree in the forest has both similarities and differences from
other trees.

Statistical Methods
Analysis of variance (ANOVA) was used to compare the effects
of AMF among treatments on the mycorrhizal colonization,
the growth and photosynthetic physiological progress of maize
using the IBM SPSS 23.0 software program (SPSS Inc., Chicago,
IL, United States). The least significant difference (LSD) test
at the 0.05 probability level (p) was used to compare the
means of the measured traits. Correlations between spectral
and leaf chlorophyll content and two tailed test (significant
level α was 0.05) were determined by the IBM SPSS 23.0
(SPSS Inc, Chicago, IL, United States). The figures were plotted
using Origin 8.0 (OriginLab Corporation, Northampton, MA,
United States).

RESULTS

Mycorrhizal Colonization
Mycorrhizal colonization represents an intimate association
between fungi and host plants. With increasing stress duration
and degree, mycorrhizal colonization decreased gradually
(Figure 1). Mycorrhizal colonization of inoculated maize was

FIGURE 1 | Mycorrhizal colonization of maize under different treatments. FM,
inoculated with F. mosseae; CK, without inoculation.
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highest under the75% water supply regardless of stress duration
and lowest under the35% water supply. Under the stress duration
of 20 days, the mycorrhizal colonization of inoculated maize
under a 75% and 55% water supply was increased significantly
(p < 0.05) by 111.9% and 69% respectively, compared with that
of inoculated maize under the 35% water supply. Under the stress
duration of 35 days, the mycorrhizal colonization of inoculated
maize under a 75% and 55% water supply was significantly
increased (p< 0.05), by 100% and 29.2%, respectively, compared
with that of maize under the 35% water supply; however, the
mycorrhizal colonization of non-inoculated maize was zero,
it may be because the maize grew on the sterile soil in an
aseptic environment.

Maize Growth
With increasing water stress, the chlorophyll content of the
leaves in both the inoculated and non-inoculated maize decreased
gradually; however, when the water stress duration was 20 days,
the chlorophyll content of AMF-inoculated maize was4.33, 3.28
and 4.66 more than that of non-inoculated maize under a 75%,
55%, and 35% water supply, respectively. When the water stress
duration was 35 or 55 days, the differences in chlorophyll content
between AMF-inoculated and non-inoculated maize were not
significant when a normal water supply was used; however, when
the water stress duration was 35 days, the chlorophyll content
of inoculated maize was significantly higher than that of non-
inoculated maize when the water supply was 55% or 35%. Under
the stress duration of 20 days, the aboveground biomass of AMF-
inoculated maize was increased significantly, by 25.7%, compared
with that of non-inoculated maize when the water supply was

55%. Moreover, the aboveground biomass of inoculated maize
was greater than that of maize without inoculation under
the other stress durations, although the differences were not
significant (Table 2). The independent effects of stress duration,
water stress degree, and inoculation were significant; however,
the interaction effect of any two or three factors was not
significant (Table 3).

Photosynthetic Physiological
Parameters of Maize
As shown in Table 2, water stress inhibited the photosynthesis
and transpiration of maize, where as AMF inoculation alleviated
the physiological damage of water stress to maize. Regardless of
the water stress duration or watering conditions, Ci in the leaves
of maize was significantly higher in non-inoculated maize than
in AMF-inoculated maize (p < 0.05). As the degree of water
stress increased, the Ci of the leaves of both inoculated and non-
inoculated maize increased gradually. Under the stress duration
of 20 days, the A of the inoculated maize was higher than that
of the non-inoculated maize (p > 0.05). However, under a stress
duration of 35 days, and a 75% and 55% water supply, the A of the
inoculated maize was 1.6 and 1.28 times higher, respectively, than
that of non-inoculated maize (p < 0.05). Under a stress duration
of 55 days and a 55% water supply, the A of the inoculated maize
was increased significantly, by 30%, compared with that of the
non-inoculated maize (p< 0.05).

When the stress duration was 20 or 35 days, AMF significantly
improved the gs of maize leaves regardless of the degree of
water stress. The stomatal conductance of AMF-inoculated maize
was significantly higher than that of non-inoculated maize

TABLE 2 | Physiological growth characteristics of maize under different treatments.

Stress
duration

Water
stress

Inoculation SPAD Ci A gs E VPD WUE Aboveground
biomass

20 days 75% FM 29.02 ± 0.49a 197.5 ± 2.2l 7.02 ± 0.21a 28.6 ± 0.95a 1.27 ± 0.08a 2.53 ± 0.07g 8.22 ± 1.41a 0.86 ± 0.14cd

CK 24.69 ± 0.47d 258.5 ± 8.8j 6.85 ± 1.61ab 22.4 ± 1.1c 1.08 ± 0.33ab 2.78 ± 0.03f 6.32 ± 0.9ab 0.57 ± 0.18de

55% FM 27.76 ± 0.54b 210.2 ± 6.8k 6.35 ± 0.3b 25.6 ± 1.15b 1.13 ± 0.13ab 3.44 ± 0.45f 7.28 ± 0.85a 0.7 ± 0.08d

CK 24.48 ± 2.97cd 276.7 ± 1.6i 6.42 ± 0.81ab 20.2 ± 1.53cd 0.88 ± 0.15 bc 4.38 ± 0.10e 5.8 ± 0.35b 0.52 ± 0.01e

35% FM 26.13 ± 0.49c 277.5 ± 2.5i 5.43 ± 1.43bc 21.2 ± 0.52c 0.72 ± 0.08cd 4.3 ± 0.22e 6.42 ± 1.28ab 0.52 ± 0.14de

CK 21.47 ± 0.75d 304.7 ± 10.5h 3.9 ± 0.96cd 19.5 ± 0.75d 0.6 ± 0.05d 5.17 ± 0.19d 4.45 ± 0.6cd 0.35 ± 0.09e

35 days 75% FM 24.92 ± 2.29cd 216.2 ± 4.2k 5.57 ± 0.35b 25.2 ± 0.74b 0.94 ± 0.03b 3.12 ± 0.06f 5.85 ± 0.48ab 1.57 ± 0.09b

CK 21.52 ± 3.98de 265.2 ± 12.3ij 3.97 ± 0.20c 20.2 ± 1.53cd 0.72 ± 0.13d 4.12 ± 0.03ef 4.7 ± 0.2c 1.19 ± 0.25bc

55% FM 23.85 ± 1.05d 375.7 ± 21g 4.43 ± 0.15bc 21.3 ± 4.65c 0.81 ± 0.02b 4.43 ± 0.3e 4.28 ± 0.31cd 1.66 ± 0.3ab

CK 20.34 ± 3.18e 387.5 ± 14.9g 3.15 ± 0.38d 17.9 ± 2.12d 0.72 ± 0.06cd 4.87 ± 0.04de 3.5 ± 0.41d 1.16 ± 0.78bc

35% FM 22.05 ± 0.92d 402 ± 19.5g 3.03 ± 0.73de 19.7 ± 1.61c 0.52 ± 0.03de 5.13 ± 0.03d 3.78 ± 0.51d 0.96 ± 0.05c

CK 16.37 ± 1.7e 427.5 ± 14.1f 2.38 ± 0.32de 16.3 ± 1.26e 0.45 ± 0.09ef 6.35 ± 0.3c 2.57 ± 0.56e 0.93 ± 0.41cd

55 days 75% FM 24.75 ± 0.44d 453.8 ± 1.5e 3.05 ± 0.15d 22.2 ± 0.58c 0.74 ± 0.05c 5.15 ± 0.05d 4.4 ± 0.41cd 2.37 ± 0.42a

CK 21.76 ± 1.11d 483.2 ± 6.3b 2.52 ± 0.31de 18.3 ± 1.04de 0.61 ± 0.05d 6.15 ± 0.13c 3.37 ± 0.43d 1.58 ± 0.33ab

55% FM 22.65 ± 0.36d 459 ± 1.3d 2.25 ± 0.15e 19.3 ± 0.76d 0.6 ± 0.05d 6.27 ± 0.18c 3.62 ± 0.08d 1.71 ± 0.51ab

CK 20.21 ± 3.58de 470.3 ± 1.8c 1.73 ± 0.25f 17.3 ± 1.53de 0.48 ± 0.06de 7.15 ± 0.05b 2.6 ± 0.20e 1.19 ± 0.33bc

35% FM 20.86 ± 2.34de 480.3 ± 7.4bc 1.48 ± 0.25fg 16 ± 1.32e 0.47 ± 0.03e 7.12 ± 0.03b 2.42 ± 0.46ef 1.5 ± 0.49bc

CK 18.41 ± 1.25e 496.5 ± 2.5a 1 ± 0.26g 12.5 ± 2.00f 0.36 ± 0.05f 8.08 ± 0.08a 1.58 ± 0.24f 0.85 ± 0.7cd

The value in the table are the mean value ± standard deviation of three repeated samples. Different lowercase letters represent significant differences at the level of 0.05.
FM, inoculated with F. mosseae; CK, without inoculation; SPAD, leaf color value; Ci, intercellular carbon dioxide concentration; A, net photosynthetic rate; gs, stomatal
conductance; E, transpiration rate; VPD, atmospheric vapor pressure deficit; WUE, water use efficiency.
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TABLE 3 | F-test and p-Values for different treatments.

SPAD Ci A gs E VPD WUE Aboveground biomass

Stress time 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00**

F/n 26.99/2 223.46/2 169.50/2 45.73/2 65.00/2 128.9/2 132.77/2 31.78/2

Water stress degree 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00**

F/n 15.64/2 340.13/2 41.13/2 45.61/2 56.31/2 619.59/2 41.11/2 8.59/2

Inoculation 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00**

F/n 47.43/1 150.43/1 17.62/1 71.69/1 23.98/1 311.66/1 52.48/1 15.40/1

Stress duration × Water stress 0.93 0.00** 0.42 0.51 0.04* 0.26 0.74 0.28

F/n 0.22/4 128.70/4 1.00/4 0.84/4 2.90/4 1.38/4 0.50/4 1.32/4

Stress duration × Inoculation 0.41 0.00** 0.24 0.49 0.63 0.08 0.12 0.18

F/n 0.92/2 12.81/2 1.50/2 0.74/2 0.47/2 2.74/2 2.23/2 1.80/2

Water stress × Inoculation 0.66 0.00** 0.77 0.16 0.51 0.04 0.79 0.70

F/n 0.42/2 6.67/2 0.26/2 1.96/2 0.69/2 3.41/2 0.24/2 0.36/2

Stress duration × Water stress × Inoculation 0.91 0.02* 0.19 0.39 0.80 0.00** 0.97 0.89

F/n 0.24/4 3.48/4 1.60/4 1.06/4 0.41/4 5.86/4 0.13/4 0.29/4

SPAD, leaf color value; Ci, intercellular carbon dioxide concentration; A, net photosynthetic rate; gs, stomatal conductance; E, transpiration rate; VPD, atmospheric vapor
pressure deficit;WUE, water use efficiency; F, F-test value; n, degrees of freedom. Superscript** indicates that the differences among treatments were significant at the
level of 0.01; and superscript * indicates that the differences among treatments were significant at the level of 0.05.

regardless of water stress duration or degree (p < 0.05). With
increasing stress duration, the transpiration effect of AMF-
inoculated maize became greater than that of non-inoculated
maize. When the stress duration was 55 days, under a 75%
and 55% water supply, the E of AMF-inoculated maize was
significantly higher than that of maize without inoculation, by
0.22 and 0.09 times, respectively (p < 0.05). Under the stress
durations of 20 days, the atmospheric VPD was significantly
lower (p < 0.05)in the inoculated maize than in the non-
inoculated maize. Under the stress durations of 20 days, the
WUE of leaves did not significantly differ between the inoculated
and non-inoculated maize with a normal water supply, however,
under a 75% and 55% water supply, the leaf WUE of the
inoculated maize was significantly higher than that of the non-
inoculated maize (p< 0.05).

Each type of treatment (stress duration, water stress degree,
and inoculation) had a significant effect (p < 0.05)on the
photosynthetic parameters of maize leaves. However, the
interaction effect of any two or three treatment parameters
was not significant for any parameter except for Ci, VPD, and
E (Table 3).

Spectral Characteristics of Maize Leaves
At the three water stress durations, the general trend of the
spectral curve of maize with different treatments was similar.
When the stress duration was 20 or 35 days, at the green
peak (550 nm), and red edge (700 nm), the leaf reflectance of
non-inoculated maize was significantly higher (except under the
35% water supply) than that of inoculated maize (Figure 2).
In non-inoculated maize under a 75% water supply, leaf
reflectance was highest at wavelengths of 550 nm and 700 nm
at a stress duration of 20 days whereas in non-inoculated
maize with a 35% water supply, leaf reflectance was highest
at wavelengths of 550 nm and 700 nm at a stress duration
of 35 days. When the stress duration was 55 days, the leaf
reflectance of inoculated maize with a 35% water supply was

highest at a wavelength of 550 nm; and that of non-inoculated
maize with a 75% water supply was highest at a wavelength
of 700 nm. The highest reflectance of maize leaves under
a stress duration of 20 days was higher than that of leaves
under 35 and 55 days of stress at the wavelength of 550 and
700 nm (Figure 2).

Correlation Analysis of Chlorophyll
Content and First-Order Spectral
Differential Variables in Maize
For the first-order derivative of spectral reflection, the spectral
reflectance of inoculated maize leaves had larger correlation
coefficients with the leaf chlorophyll content than that without
inoculation under three water stress durations (Figure 3).
When the stress duration was 20 or 55 days, the correlation
coefficients between the first-order differential reflectance and
the chlorophyll content of inoculated maize showed unstable
performance at the range of 800-1000 nm especially, but
during 400-800 nm, the maximum correlation coefficients
values are in the inoculated maize at 550 nm and 700 nm,
respectively (α < 0.05). When the stress duration was 35 days,
the correlation coefficients between the first-order differential
reflectance and the chlorophyll content of inoculated maize
showed larger than that without inoculation at two peak
areas (the wavelengths of 550-700 nm and 850-950 nm;
Figure 3) (α < 0.05).

For the original spectral data, there was a negative correlation
between leaf chlorophyll content and spectral reflectance of
inoculated maize under three water stress durations, but a
positive correlation between that of non-inoculated maize before
500 nm under the stress duration of 35 days and before 700 nm
under the stress duration of 55 days. There are two peaks
of correlation coefficient between leaf color value and spectral
reflectance of inoculated maize at 550 and 700 nm were larger
than that of non-inoculated maize under the stress duration of 35
or 55 days (Figure 3) (α < 0.05).
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FIGURE 2 | Spectra of maize leaves at each stress level and different inoculation durations. FM, inoculated with F. mosseae; CK, without inoculation.

Compared with the original spectral data, the first-order
differential processing can better reflect the correlation between
leaf color value and spectrum of inoculated maize.

Hyperspectral Estimation Model of the
Chlorophyll Content of Maize and Its
Validation
To better reflect the chlorophyll content of inoculated maize
under drought stress, the results of correlation analysis of the
first-order differential spectral data were used to establish, an
estimation model of the first-order differential values from
sensitive bands corresponding to chlorophyll content. The
LSSVM, RF, and BP nonlinear models based on machine learning
were used. A regression analysis was carried out between the
predicted and measured values, and the estimation accuracy of
the models was evaluated by the coefficient of determination (R2)
values, root mean square error (RMSE)values and p-Value of the
LSSVM, RF and BP models established with different spectral
variables that were significant at the 0.001 level (Figures 4A–
C). The results indicated that all of these models could be

used to estimate the chlorophyll content of inoculated maize
under drought stress. The BP model was better than the others
achieving the largest R2-values (R2 = 0.9796 for the 20 days
duration, R2 = 0.9951 for the 35 days duration, and R2 = 0.9479
for the 55 days duration) and smallest RMSEs (RMSE = 0.3875
for the20-day duration, RMSE = 0.2473 for the35-day duration,
and RMSE = 0.6431 for the 55-day duration) regardless of the
stress duration.

DISCUSSION

Water stress is a worldwide problem that affects the growth,
yield and physiological processes of crops (Begum et al., 2019).
AMF symbiosis has been reported to enhance plant tolerance to
water stress (Duc et al., 2018; Zhang et al., 2018). Inoculation
with F. mosseaehas been shown to enhance plant dry weights
compared to those of non-mycorrhizal plants under control and
water-deficit stress conditions (Bahraminia et al., 2020). In this
study, AMF colonization was negatively affected by water stress,
possibly because of declines in spore germination and growth,
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FIGURE 3 | Correlation between spectral reflectance and leaf color value under different treatments. FM, inoculated with F. mosseae; CK, without inoculation.
OR-20 days:water stress duration was 20 days with the original spectral data; OR-35 days: water stress duration was 35 days with the original spectral data;
OR-55 days: water stress duration was 55 days with the original spectral data; FOD-20 days:water stress duration was 20 days with the first-order derivative of
spectral data; FOD-35 days: water stress duration was 35 days with the first-order derivative of spectral data; FOD-55 days: water stress duration was 55 days with
the first-order derivative of spectral data.

reductions in the number of AMF structures, the inhibition of
hyphal growth and expansion in soil (Salloum et al., 2018), or
reductions in the supply of carbohydrate by host plants (Tyagi
et al., 2017). However, AMF inoculation improved the growth
of maize regardless of the stress degree and duration, possibly
because the AMF facilitated maize absorption of available
phosphorus and nitrogen under water stress (Ghorchiani et al.,
2018). Moreover, with increasing degree of water stress, the
stress-mitigation function of the AMF became more obvious
(Pavithra and Yapa, 2018). The AMF may have reduced the
damage of water stress to plant growth by changing plant
physiological processes (Pavithra and Yapa, 2018) and radial root
water transport (Quiroga et al., 2019).

Photosynthesis is an important indicator of physiological
sensitivity to water stress (Chaves et al., 2009). In our study, water
stress inhibited photosynthesis in maize. Similar results have been
reported by others (Hazrati et al., 2016; Ahanger et al., 2017).
Many studies have shown that water stress reduces A, gs and E
(Yan et al., 2016; Hura et al., 2007). The reduced photosynthesis
under water stress is due to reductions in the coupling factor

and production of ATP (Tezara et al., 1999). AMF improved the
photosynthesis of maize under the different treatments in this
study as well as previous studies (Sánchez-Blanco et al., 2004;
Khalvati et al., 2005). In this study, in maize under water stress, Ci
and VPD decreased and the A, gs, E and WUE increased in AMF-
inoculated maize relative to non-inoculated maize. Increased
stomatal functioning enhances CO2 entry into the leaf tissues
and its successful assimilation was observed in AMF-inoculated
plants, such results have also been reported in AMF-inoculated
wheat (Zhou et al., 2015). The high photosynthetic rates of A MF-
inoculated plants under water stress could be explained by the
increased production of photosynthetic pigments and a higher
carboxylation efficiency relative to that of non-inoculated plants
(Sánchez-Blanco et al., 2004; Zhu et al., 2014).

Though the leaf chlorophyll content of maize was measured
by SPAD instrument in a real time, fast and non-destructive
way in this study, it was a relative value with the limitation that
not taking into consideration of the biomass (Lei et al., 2019).
In our study, AMF inoculation increased the leaf chlorophyll
content of maize under water stress, consistent with there port
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FIGURE 4 | Relationships of the measured SPAD values and predicted values based on the three machine learning algorithms under water stress durations of
20 days (A), 35 days (B), and 55 days (C).

of other researchers (Begum et al., 2019). It may be due to
the key role of Mg in chlorophyll synthesis, and Mg uptake
increased in mycorrhizal plants (Mathur et al., 2018). The
spectral reflectance of leaves is closely related to the leaf surface
characteristics, leaf thickness, water content, and the contents
of chlorophyll and other pigments (Feng et al., 2004). The
wavelength region (500 to 900 nm) contains wavelengths with
pigment absorption features (Merzlyak et al., 2003) as well
as the red-edge (700 to 750 nm) (Mutanga and Skidmore,
2007). In our study, at the green peak (550 nm) and red
edge (700 nm), The spectral reflectance of maize without

inoculation under water stress was much higher than that
of AMF-inoculated maize, it may be due to the more water
utilization rate and chlorophyll content of inoculated maize
compared to that without inoculation (Begum et al., 2019).
The spectra lreflectance of maize leaves decreased with water
stress duration, potentially due to greater damage of water
stress to the leaves of maize at the seedling stage than at the
later growth stages. The results of this study indicated that
hyperspectral technology can be used to monitor changes in
chlorophyll content in maize inoculated with mycorrhizae and
exposed to water stress.
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In the present study, compared with the original spectra,
the first-order differential reflectance spectra better reflected the
chlorophyll content of leaves at 400-800 nm. In other study,
the correlation curve between the original spectrum and the
chlorophyll relative content value was the best between the
wavelengths 509-650 nm. The correlation between the first
derivative spectrum and chlorophyll relative content value was
the best and most stable at 450∼500 nm (Zhu et al., 2020). It
can be explained by that the original spectrum can eliminate
the influence of background noise on the spectrum, and reduce
the scattering and absorption of light by atmosphere in the
process of spectrum acquisition, after first-order differential
processing (Mahlein et al., 2012; Manzo et al., 2013). The
correlation coefficient between leaf color value and first-order
differential spectral reflectance of inoculated maize at 550 and
700 nm were larger than that of non-inoculated maize under
the stress duration of 35 or 55 days. The results varied in
different conditions and environments. Hunt et al. (2013) found
that the correlation between chlorophyll content and spectral
reflectance at the canopy scale was strong in the visible region
(400-760 nm). Some study showed that the red edge slope is the
maximum reflectance in the red band, which can better reflect
the chlorophyll content of plants and is often closely related to
the photosynthetic rate of plants (Verrelst et al., 2010).

Our results demonstrated that all the models, constructed
using the LSSVM, RF, and BP methods, could be used to estimate
the chlorophyll content of inoculated maize under drought stress.
The BP model showed the highest R2 and slope and the lowest
RMSE regardless of the water stress duration. BP model was more
stable and accurate than others at estimation of leaf chlorophyll
content (Shao et al., 2018). The best estimating model for the
relationship between the leaf relative chlorophyll content and the
reflectance spectra was the partial least squares (PLS) in the field
experiment about winter wheat (Zhang et al., 2016). It may due
to BP model was suitable for estimating the chlorophyll content
in greenhouse experiment.

CONCLUSION

Arbuscular mycorrhizal fungi treatment increased the leaf
chlorophyll content, A, gs, E, and WUE of maize but decreased

the Ciofmaize and VPD regardless of the water stress duration or
degree. The first-order differential reflectance of inoculated maize
leaves was more significantly correlated with the chlorophyll
content of maize than was the original spectral reflectance. Of
the three machine learning models, the BP model achieved the
largest coefficient of determination and smallest RMSE regardless
of the stress duration. Thus, the BP model represented the
optimal method of estimating the leaf chlorophyll content of
inoculated maize.
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Rapid varieties classification of crop seeds is significant for breeders to screen out seeds
with specific traits and market regulators to detect seed purity. However, collecting
high-quality, large-scale samples takes high costs in some cases, making it difficult
to build an accurate classification model. This study aimed to explore a rapid and
accurate method for varieties classification of different crop seeds under the sample-
limited condition based on hyperspectral imaging (HSI) and deep transfer learning. Three
deep neural networks with typical structures were designed based on a sample-rich
Pea dataset. Obtained the highest accuracy of 99.57%, VGG-MODEL was transferred
to classify four target datasets (rice, oat, wheat, and cotton) with limited samples.
Accuracies of the deep transferred model achieved 95, 99, 80.8, and 83.86% on the
four datasets, respectively. Using training sets with different sizes, the deep transferred
model could always obtain higher performance than other traditional methods. The
visualization of the deep features and classification results confirmed the portability of the
shared features of seed spectra, providing an interpreted method for rapid and accurate
varieties classification of crop seeds. The overall results showed great superiority of HSI
combined with deep transfer learning for seed detection under sample-limited condition.
This study provided a new idea for facilitating a crop germplasm screening process
under the scenario of sample scarcity and the detection of other qualities of crop seeds
under sample-limited condition based on HSI.

Keywords: crop seeds, hyperspectral imaging, classification model, spectroscopic analysis, deep learning

INTRODUCTION

High-quality seeds are conducive to continue excellent species and guarantee crop yield and quality.
Due to the significant differences in climate, soil, and water resources in different regions, breeders
have pointedly developed many crop varieties to adapt to the local planting environment. Growth
rules, stress resistance, and biochemical characteristics of different varieties of crops vary greatly
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(Du et al., 2017; Zhang et al., 2020). For varieties that are still
in the breeding stage, screening a variety with specific traits
often needs to observe the phenotypic traits of the offspring
plants, which is time-consuming and labor-intensive. As a seed
carries all the genetic genes that develop into a plant, seed
classification can be an alternative for screening variety with
specific traits. For varieties that have been promoted widely,
different varieties of seeds frequently circulate in the market,
tending to be easily mixed, making the seed purity unable to
be guaranteed. Conventionally, the manual vision inspection
method based on the external phenotypic traits of seeds, like
color, texture, and shape, is subjective and boring (Rashid and
Singh, 2000). The more accurate methods based on the internal
biochemical properties of seeds, such as DNA molecular markers
(Ye et al., 2013) and protein electrophoresis techniques (Shuaib
et al., 2007), rely on chemical agents and complex operation.
Accordingly, it is necessary to develop a rapid and accurate
method for the varieties classification of crop seeds.

As hyperspectral imaging (HSI) can obtain spectral and spatial
location information simultaneously during one scan, it has
the capability of probing the internal and external phenotypic
traits of samples rapidly (Sendin et al., 2018). HSI has gained
tremendous and continuous attention in breed screening (Feng
et al., 2017), plant phenotyping (Qiu R. et al., 2018; Sun et al.,
2019), and environment monitoring (Stuart et al., 2019). In
seed-related tasks like determination of seed quality (Shrestha
et al., 2016), diagnosis of seed diseases (Wu et al., 2020) and
detection of seed components (Caporaso et al., 2018), HSI
has been utilized as a rapid and accurate alternative. Since
hyperspectral image contains a large amount of redundant
collinear information, diverse linear and non-linear machine
learning approaches, such as partial least squares discriminant
analysis (PLS-DA), extreme learning machine (ELM), and least
square support vector machines (LSSVM), were introduced to
couple the relationship between seed spectra and a category label
or component content (Caporaso et al., 2018; Kong et al., 2018;
Weng et al., 2018).

In recent years, with the attention from academia and industry
increasing, deep learning as the new state-of-the-art machine
learning approach has also been applied in the spectral analysis
field gradually (Jin et al., 2018; Wei et al., 2018; Yu et al., 2018).
Compared with traditional approaches, deep learning can extract
various low-level and high-level features automatically through
a multilayered stack network structure (LeCun et al., 2015).
This advantage can reduce the requirement of prior knowledge
from specific tasks and human effort in feature engineering,
which is very beneficial for analyzing redundant and high-
dimensional spectral data.

However, typical deep learning models, such as deep
networks, generally have serious big data dependencies.
A high-performance deep network requires enough samples
to adequately learn the feature patterns hidden in the massive
and redundant spectral data. Unfortunately, in some tasks
like seeds screening with specific traits during the breeding
process or quality detection of precious agricultural products,
it is challenging to establish a large-scale, high-quality dataset
because of the high cost of obtaining and labeling samples

(Lee et al., 2016; Xu et al., 2017; Sun et al., 2019). Besides, the
precious data acquired at great expense is straightforward to
be outdated and difficult to be reused in new tasks, which
dramatically limits the rapid application of well-performing
methods like the deep network in spectral analysis. Another
problem is that the deep networks developed for different tasks
are generally based on a common assumption, that is, training
and testing data lie in the same feature space and have the same
distribution (Weiss et al., 2016). Therefore, even for similar tasks,
the tiny differences in the distribution of different datasets will
make the network not reusable.

The emergence of transfer learning brings hope for solving
the above two problems. The transfer learning method allows
the training and testing data to lie in different feature spaces. It
mainly investigates how to transfer useful knowledge from the
relevant source domain to the target domain (Pan and Yang,
2010). This property not only relieves the demand for a large
number of samples in the target task but makes reusing the
shared knowledge like model structure and feature representation
in the source domain possible. The target task can be expected
completed, using limited samples and computation overhead.
Deep transfer learning is the product of the combination of deep
learning and transfer learning. It aims to study how to use the
deep neural network to transfer knowledge and has been widely
used in the computer vision field (Mohanty et al., 2016; Ghazi
et al., 2017; Tan et al., 2018).

However, the deep transfer learning technique has not
received much attention in the field of spectral analysis. Most
studies perform task analysis at a pixel level based on remote
sensing images, such as poverty mapping (Xie et al., 2016), image
superresolution processing (Yuan et al., 2017), and crop yield
prediction (Wang et al., 2018). For ground spectral images, Liu
et al. (2018) showed the effectiveness of deep transfer learning
in predicting soil clay content in different soils. For seeds of
different crops, there are also certain similarities, for example, the
structure of the seeds. Most seeds contain a seed coat, an embryo,
and endosperm. These parts contain some common chemical
components, like starch, fat, and enzymes, which are necessary
for a seed to develop into a seedling (Beníteza et al., 2013; Zhao
et al., 2018). This commonality may lead to the similarities among
the spectral characteristics of different crop seeds. Therefore,
when constructing a deep model for seed varieties classification
of a specific crop based on HSI, the knowledge in the model is
possible to be transferred to the classification tasks of other crop
seeds. In this study, we aimed to investigate the feasibility of the
deep transfer learning technique for the varieties classification of
different crop seeds based on HSI.

The specific objectives were: (1) to develop a deep network
model with excellent performance based on a sample-rich
dataset; (2) to transfer common knowledge to the varieties
classification of other crop seeds with sample-limited datasets
through the deep network; (3) to evaluate the impact of training
set size on the performance of transfer learning; and (4) to
visualize the transferring process of deep network and the
classification results. We hope to provide a common framework
for rapid and accurate varieties classification of crop seeds under
sample-limited condition through this study.
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MATERIALS AND METHODS

Sample Collection and Dataset
Description
This study investigated five kinds of crop seeds, including pea,
rice, oat, wheat, and cotton. All images were obtained by the
same line-scanning near-infrared HSI system, covering a spectral
range from 874.41 to 1,733.91 nm with a resolution of 5 nm (Wu
et al., 2018). An ImSpector N17E imaging spectrograph (Spectral
Imaging Ltd., Oulu, Finland) and a Xeva 922 CCD camera
(Xenics Infrared Solutions, Leuven, Belgium), configured with
an OLES22 lens (Spectral Imaging Ltd., Oulu, Finland), were the
critical components of this system. In addition, the illumination
was provided by two 150 W tungsten halogen lamps (3900e
Lightsource; Illumination Technologies Inc.; West Elbridge, NY,
United States) set symmetrically under the camera. Multiple seed
samples placed on a dark plate flowed a miniature conveyer belt
to achieve batch detection. A hyperspectral image, containing 256
spectral channels, could be obtained through each scan by this
system and then calibrated using the following formula.

Ic =
Ir − Id

Iw − Id

where Ir and Ic represented the raw hyperspectral image and
the corrected image, Iw and Id represented the white and dark
reference image. Each seed in the hyperspectral image was
regarded as a region of interest (ROI). To get the mask of
all the ROIs, simple threshold segmentation and morphological
operation were performed on the channel image with the
strongest contrast between the background and the seeds. Then
the spectral vectors of all pixels within each ROI were extracted,
and the bands in head and end ranges were removed to avoid
noise introduced by the instability of the system. The reserved
spectra with a range of 975–1,646 nm were further processed
by wavelet transform (WT). The spectrum vector, representing a
seed sample, was finally obtained by averaging all the transformed
pixel spectra in one ROI.

Five spectra datasets with similar but different distributions
were established in this study. Their detailed collection
parameters and description information were summarized in
Table 1. It should be noted that different parameters were set
for imaging different crop seeds clearly since different seeds have
different external phenotypes, such as size, height, and color.
The most abundant dataset, the Pea dataset, contained a total
of 10,420 samples from four varieties named Baiyan (2697),

TABLE 1 | Description of the source and target datasets.

Datasets Parameters1 #Variety #Total #Training #Validation #Testing

Source Pea (15.5, 3, 12) 4 10,420 6,252 2,084 2,084

Target Rice (9, 3, 11) 3 750 150 300 300

Oat (15.2, 3, 11.5) 4 1,000 200 400 400

Wheat (15, 3, 13) 5 1,250 250 500 500

Cotton (14, 3, 11.5) 7 1,750 350 700 700

Parameters1 represents parameters of the hyperspectral imaging system, including
the distance between the camera and the seed plate (cm), the exposure time of the
camera (ms), and the speed along the x-axis of seeds movement (mm.s−1).

Heiyan (2,848), Changshouren (2,849), and Zhewan 1 (2,026),
which were widely cultivated in southern China. Peas of the first
two varieties generally need to be roasted before eating, while
the latter two can be directly eaten due to the high water and
sugar content. All the seeds were purchased from the Lvfeng seed
company in Hangzhou, Zhejiang, China, in 2018. The dataset
corresponding to each variety was randomly divided into a
training set, a validation set, and a testing set at a ratio of 3:1:1.
Then those independent subsets with the same category were
merged and shuffled. Because of its large volume of data, the Pea
dataset was selected as the source dataset.

The other four sample-limited datasets were used as the target
datasets designed to contain different numbers of seed varieties
for investigating their impact on the transferring effect. Each
variety in these datasets contained 250 samples and was further
divided into three subsets at a ratio of 1:2:2 to reflect sample-
limited condition.

The first target dataset consisted of 750 spectral samples of
three varieties of rice seeds, including Yongyou 9, Nuoyou 6211,
and Zhongbaiyouhuazhan. These varieties are all hybrid rice with
indica property and belong to hybrid indica-japonica, hybrid
indica-glutinous, and hybrid indica rice, respectively. All seeds
were collected by the College of Agriculture and Biotechnology,
Zhejiang University in 2019.

The second dataset was the Oat dataset with the same number
of varieties as the source dataset. It contained 1,000 samples
from four varieties named Bayan 6, Dingyan 2, Muwang, and
Jizhangyan 4, which were widely planted in the grasslands
of northern China. The seeds harvested in 2017 were kindly
provided by the Academy of Agricultural and Animal Sciences,
Inner Mongolia, China.

A total of 1,250 samples from five varieties of wheat seeds,
including Zhenmai 9, Annong 1,124, Longpingmian 6, Shannong
102, and Weilong 169, formed the Wheat dataset. These five
varieties were extensively cultivated in the winter wheat regions
of southern China. The seed samples were friendly provided
by Anhui longping high-tech seed industry Co., Ltd., in Hefei,
Anhui, China, in 2018.

The fourth dataset, the Cotton dataset, was consisted of 1,750
samples of seven varieties of cotton seeds. They were Jinxin 5,
Jinxin 7, Shennongmian 1, Xinjiangzaomian 1, Xinluzaomian 29,
Xinluzhong 52, and Xinluzhong 42. These varieties were mainly
grown in Xinjiang Uyghur Autonomous Region, the largest
cotton-producing region in China. And the cotton seeds were
collected by Shihezi University in 2016.

In this study, multiple deep neural networks with different
structures were first developed, using the source dataset. Then the
optimal deep model was selected as the model to be transferred
by comparing the classification accuracies. The transfer learning
technique was investigated to transfer useful knowledge from the
optimal deep model to the analysis of four target datasets. The
training set of each target dataset was further transformed into 10
datasets to analyze the impact of sample size on transfer learning
by randomly selected 10–100% samples from the original
training set. Four commonly used multivariate analysis methods,
including two linear methods: linear discriminant analysis (LDA)
and PLS-DA, and two non-linear methods: multilayer perceptron
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(MLP) and support vector machines (SVM), were introduced
as the benchmarks.

Deep Classification Models Development
In the computer vision field, the huge image library, ImageNet,
has spawned many excellent deep learning models like VggNet,
InceptionNet, and ResNet (Krizhevsky et al., 2012). The
specialness of VggNet is using small convolution kernels.
The designers believed that using multiple convolution layers
equipped with a 3 × 3 kernel to replace a convolution layer with
a 5× 5 kernel could reduce the network parameters and increase
non-linear mapping, thereby increasing the representation
capability (Simonyan and Zisserman, 2015). ResNet is also
an outstanding network with many variations. What makes it
unique is the introduction of residual learning. The residual
module directly bypasses the input of a particular layer to the
output, which makes ResNet only need to learn the residual
between the input and the output (He et al., 2016). This
manner solves the problem of performance degradation when
the network depth increases. InceptionNet was born in the
ILSVRC2014 competition. The most significant innovation of
this network is introducing a module called “Inception” to
replace the typical structure of the convolution layer, cascading
the pooling layer (Szegedy et al., 2015). This Inception module
contains four branches with different receptive fields to perceive
the input patterns. By utilizing this module, InceptionNet can
increase its width and learn more local features of different scales.

Inspired by these network structures, three one-dimensional
deep neural networks were developed for the source dataset in
this study, as shown in Figure 1.

The first one was VGG-MODEL. Two V blocks (Figure 2),
containing two convolution layers equipped with a 1 × 3 kernel
were designed to extract the feature patterns hidden in the
spectral vectors. A batch normalization (BN) and an activation
function, exponential linear unit (ELU), were inserted after each
convolution to reduce the overfitting risk and speed up the
convergence process. The number of convolution filters was set
to 16 for the first V block and 32 for the second V block. A max-
pooling layer was placed behind each V block to reduce the
feature dimension. A flatten layer was set after the last max-
pooling layer to convert its output feature into a one-dimensional
vector form. Layer Fc1 and Fc2, consisting of 64 and 4 neurons,
were used to perform the classification task like traditional
neural networks. BN and ELU were also used behind Fc1. VGG-
MODEL finally output the probability of the input spectral vector
belonging to each category through a softmax function.

The second one was RES-MODEL. The first part of this
network was similar to half of the V block, which contained a
convolutional layer followed by BN, ELU, and a max-pooling
layer. The difference was that the convolutional layer used 32
kernels, with a size of 1 × 7. The second part consisted of four
cascaded residual modules, R block. This module was similar
to the V block but added a transmission channel from input to
output (Figure 2). The number of convolutional filters in the first
R block was 32 and was doubled as the blocks going deeper. An
average pooling layer was placed after the last R block to average
the features in the spectral dimension. This layer could decrease

the parameters in fully connected layers, thereby reducing the
overfitting risk. The last part of RES-MODELDE was similar to
that of VGG-MODEL but was equipped with one fully connected
layer, Fc1, with four neurons.

The third one was INCEPTION-MODEL. Having the same
structure as that of RES-MODEL, the first part of this network
utilized 16 convolution filters, with a size of 1 × 3. It was
followed by four I blocks (Figure 2), each of which cascaded a
max-pooling layer except the last one. The number of filters in
the first I block was 16 and was doubled as the blocks going
deeper. As shown in Figure 2, the I block transmitted its input
to four parallel branches. Three of them were convolution layers
with 1 × 1, 1 × 3, and 1 × 5 kernels, respectively. They were
employed to extract local spectral features at different scales.
A 1 × 1 convolution was placed before 1 × 3 and 1 × 5
convolution to reduce the number of input channels. The last
branch performed the max-pooling operation. The end of the
INCEPTION-MODEL was similar to that of RES-MODEL.

To fairly compare the performance, these three deep networks
employed cross-entropy as the objective function and used
stochastic gradient descent (SGD) optimization algorithm. The
learning rate and momentum were all set to 0.001 and 0.9,
respectively. After debugging many times, the number of samples
input into the network at one time, batch_size, was set to 128,
and the number of training iterations, epoch, was set to 400. All
networks were trained, using the training set of the source dataset.
The model for each network that obtained the highest accuracy
on the validation set was saved. The effectiveness of the model
was evaluated on the testing set. The detailed parameters of these
three networks were shown in Supplementary Table 1.

Transfer Learning Strategy
As an emerging tool in machine learning, transfer learning
was proposed to remit the requirement of models for sufficient
training data by transferring available knowledge from the
relevant source domain to the target domain (Pan and Yang,
2010). The typical process of transfer learning was shown in
Figure 3A. We defined a domain D = {X , P(X )} where X
represented a feature space and P(X ) represented its probability
distribution, and a task T = {y, f (.)}where y represented a label
space and f represented a transformed function. When the task
T was performed in the domain D, f modeled P(y| x), where y ∈
Y , x ∈ X . In the transfer learning field, there are two domains:
source domain DS with task TS and target domain DT with
task TT . The main goal of transfer learning is to improve the
performance of the transformed function in the target domain
fT(.), using the knowledge learned in DS and TS, where DS (or
TS) and DT (or TT) are different but relevant.

For deep transfer learning, f (.) is various deep models
designed for specific tasks. These deep models contain rich
knowledge. Some knowledge is closely related to the specific task,
while others can be shared between different tasks or objects.
Deep transfer learning aims to transfer the common knowledge
into the current target task to avoid learning this knowledge
repeatedly, thus achieving rapid modeling. The structure of
the model and the weight of the network are two important
types of knowledge contained in deep models. In this study,
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FIGURE 1 | The structures of three developed deep neural networks. The orange, brown, and red cubes represented the V block, R block, and I block in Figure 2,
respectively. The dark green and light green cubes represented the max-pooling layer and the average pooling layer, respectively. The yellow and blue cubes
represented a one-dimensional convolutional layer, BN cascade activation function ELU, respectively. The striped bars represent flattened layers, and the light blue
bars represented fully connected layers. The length, width, and height of the cubes and the bars in the Figure were drawn according to the dimensional size of data
in each layer for a more intuitive display.

FIGURE 2 | The inner structures of three typical blocks.

the structure of the optimal deep model based on the source
dataset was reused to simplify and shorten the modeling process.
Since the number of seed varieties varies with different crops,

the number of neurons in the output layer of the model was
modified correspondingly. As the initial weights greatly influence
the convergence speed and the final performance of the model,
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FIGURE 3 | Transfer learning strategy. (A) The typical process of transfer learning. (B) The deep transfer learning strategy in this study. The yellow cubes of different
sizes represented multiple cascaded convolution layers. The striped bars and blue bars still represented the flattened layer and the fully connected layer.

this study transferred the weights of the optimal deep model
based on the source dataset to the models based on the target
datasets according to the network structure. Since the number of
output neurons in the deep models based on the Rice, Wheat,
and Cotton dataset differed from that in the source model, the
weights of the last fully connected layer in these models needed
to be randomly initialized.

During the transferring process, the weights of the layers
before the flatten layer were frozen, and the target datasets
were used to fine-tune the subsequent fully connected layers
(Figure 3B). The first reason was that the target dataset was
too small to retrain the entire network. The second reason was
that the convolutional layers before the flatten layer might have
extracted important feature patterns of the seed spectra, which
could be reused in the target tasks. According to the size of the
target datasets, the batch_size of the transferred network was
set to 3, and the learning rate was set to 0.0001. The other
configurations were the same as the source model.

Comparison Methods
In this study, the deep neural networks based on the source
dataset and four target datasets were compared with conventional
linear and non-linear multivariate analysis methods to confirm
their validities in spectra analysis from both data-rich and data-
poor sides.

LDA aims to find an optimal projected direction for raw
variables. In the projected feature space, samples between classes
hold maximal dispersion, while samples within classes hold
minimal dispersion (Gerhardt et al., 2019). This projection

manner facilitates transforming the samples into a linear
separable state. The number of variables in the projected space,
n_lda, is the only parameter that needs to be adjusted. We set
n_lda to 1–20 and selected the optimal n_lda according to the
classification performance of LDA.

The core principle of PLS-DA is also to conduct a linear
transformation. Unlike LDA, the transformed latent variables
(LVs) can carry the primary information hidden in the raw
variables and maximize the correlation between the independent
and the dependent variables (Kandpal et al., 2016). In spectral
analysis, the number of LVs, n_pls-da, that minimize the sum
of predicted residual error was usually selected. The range of
n_pls-da was also set to 1∼20 in this study.

SVM can enable raw linear inseparable variables to transform
into a linear separable space through a non-linear kernel function
(Gerhardt et al., 2019). Radial basis function (RBF) kernel was
often used with SVM in many spectral analysis tasks because
of its ability to cluster samples with the same categories closely
and make them linearly separable. In this study, SVM equipped
with RBF kernel was introduced as a non-linear benchmark. Two
parameters, penalty coefficient c and kernel parameter g, were
set to {10, 100, 1,000, and 10,000} and {0.1, 0.01, 0.001, and
0.0001}, respectively.

MLP is a fully connected artificial neural network with one
or more hidden layers (Taud and Mas, 2017). To obtain the
optimal performance, a total of 32 structures were attempted to
process the source dataset, which contained one to four hidden
layers, and each was equipped with eight configurations for nodes
in hidden layers. The number of nodes in hidden layers of the
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structure with four hidden layers was set to [(200-100-50-25),
(180-90-45-23), (160-80-40-20), (140-70-35-18), (120-60-30-15),
(100-50-25-13), (80-40-20-10), (60-30-15-8)], and was simplified
as the number of the hidden layer decreases. For the target
datasets, 24 same structures with one to three hidden layers were
tried to get the optimal classifier.

In addition, to further verify the role of the shared features
for effective transfer learning, a hyperspectral dataset in the
remote sensing field, Indian-Pines1 was introduced. It is a
145 × 145 × 224 cube, containing 10,249 effective pixels of 16
categories, whose size was similar to that of the Pea dataset. These
pixels were also randomly divided into a training set, a validation
set, and a testing set at a ratio of 3:1:1. The number of the bands
for analysis was reduced to 200 by removing the bands absorbed
by water. To eliminate the influence of factors, such as the deep
model, the structure of the optimal deep model based on the
source Pea dataset was used to train the Indian-Pines dataset and
was recorded as Model 0. Then, Model 0 was transferred to the
other four target datasets.

The parameters of all models in this study were adjusted
toward the optimal states, using the corresponding validation
set. All models were coded, using python language in Spyder
3.2.6 environment (Anaconda, Austin, TX, United States). The
famous machine learning library, Sklearn2, was introduced to
implement the conventional models, and the popular deep
learning framework, Keras, was employed to program deep
models. A Win10 64-bit operating system with Inter (R)
Core (TM) i5-8500 CPU and 8 GB RAM constituted the
primary platform.

Model Visualization
Model visualization is significant for intuitively understanding
the decision-making mechanism and clearly showing the
computational result. In this study, visualization techniques
were investigated from the perspective of the training process
of the deep model and the classification results of the crop
seeds. The raw seed spectra of different datasets and the feature
representation of different layers in the optimal deep models
based on the source Pea dataset and the deep model based on
the Indian-Pines dataset were extracted. Their distributions were
then expressed by t-distribution stochastic neighbor embedding
(t-SNE). As an effective method for high-dimensional data
visualization, t-SNE converts the similarity between sample
points in high-dimensional space into Gaussian joint probability
form and constructs a similar probability distribution in low-
dimensional space (van der Maaten and Hinton, 2008). The
ability to maintain the local structure of data is conducive to
observing data patterns in low-dimensional space. Moreover, the
advantage of HSI to obtain both spatial and spectral information
was fully exploited in this study. The label of the sample predicted
by the deep model was projected into the corresponding
spatial position and represented by different colors to establish
classification maps of crop seeds.

1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_
Scenes
2https://scikit-learn.org/stable/

RESULTS AND DISCUSSION

Spectroscopic Analysis
The average spectra with the standard deviation of different
varieties of seeds in five datasets were shown in Figure 4.
Obviously, these spectral curves possessed similar fluctuation
patterns and locations of peaks and valleys. The absorption bands
at approximately 1,119.45 and 1,206.92 nm were caused by the
second overtone of carbohydrates (C–H stretch) (Wu et al.,
2019). The peak near 1,307.97 nm (in the range of 1,254 –
1,348 nm) was reported to be associated with the combinations of
the first overtone of amide B (N–H stretch) and the fundamental
vibrations of amide II and III (C–N stretch and N–H in-plane
bend) (Daszykowski et al., 2008). The band at 1,469.95 nm (in
the region of 1,410–1,502 nm) could be attributed to the first
overtone of Amide A (N–H stretch), which might be the critical
band for protein detection (Daszykowski et al., 2008; Ribeiro
et al., 2011). The similar chemical components in different
crop seeds led to the similarities between the spectral curves.
This meant that certain shared features might be hidden in the
spectral information of different crop seeds, which provided the
possibility for effective transfer learning.

However, for different varieties of seeds of the same crop, some
heterogeneities also existed between their spectral curves due to
the content difference of chemical components. For example,
the spectral curves of four varieties of pea seeds were naturally
divided into two groups. Baiyan and Heiyan formed one group,
while Changshouren and Zhewan 1 formed the other one. This
trend was consistent with the classification results according to
the edible manner resulted from the content difference of sugar
and water. In addition, for the Rice dataset, it was because of
the introduction of the japonica characteristic that the reflectance
of variety Yongyou 9 was quite different from the other two
varieties. Qiu Z. et al. (2018) also confirmed spectra differences
existed between different varieties of rice seeds. Nie et al. (2019)
found the optical characteristics of different varieties of hybrid
okra and luffa seeds were very different. The metabolic analysis
results showed that the content of components of different seeds
varied greatly. The heterogeneity of the spectral features between
different varieties laid the basis for using HSI to classify different
varieties of crop seeds.

Classification Results on Source Dataset
The accuracies and the optimal parameters of all models on
the training set and the testing set of the source dataset were
summarized in Table 2. The overfitting phenomenon for all
models was not serious due to the large-scale training set that
might contain the spectral patterns in the testing set.

The accuracies of three deep models on the testing set
were all above 99%, which was higher than most conventional
methods. Owing to the convolution operation, the deep models
could extract much discriminative information hidden in the
raw redundant spectral data. Their performance superiorities
were predictable. VGG-MODEL, with an accuracy of 99.57%
on the testing set, was slightly conspicuous than the other
two models. Generally speaking, the difficulty of improving
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FIGURE 4 | The average spectra with the standard deviation of five crop seeds.

performance increases with the performance of the model being
better. For example, in the 2014 ILSVRC competition, a 22-layer
InceptionNet won the championship with a top-five error rate of
6.7% that was only 0.6% lower than the runner-up, VGGNet, with
a 19-layer structure (Szegedy et al., 2015). In addition, the high
version of Inception, Inception-v4, achieved a top-five error rate
of 3.08% that was only 0.42% lower than the previous version,
Inception V3 (Szegedy et al., 2016).

Since the structures of the three deep models were
continuously adjusted to the optimal states according to the
source dataset, they possessed different depths. In this study,
INCEPTION-MODEL and RES-MODEL had a deeper structure
than VGG-MODEL. In general, the deeper the model is, the
richer the extracted features are. But this was based on an
enough big dataset like ImageNet, and it should be guaranteed
that the gradient would not disappear during model training.
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TABLE 2 | The classification accuracies and optimal parameters of all the models
on the source dataset.

Methods Parameters2 Training (%) Testing (%)

VGG-MODEL (16, 32, 128, 201) 99.98 99.57

RES-MODEL (32, 32, 64, 64, 128, 194) 99.76 99.14

INCEPTION-MODEL (16, 32, 64, 128, 256, 349) 100 99.09

LDA (1) 99.39 98.90

PLS-DA (20) 87.14 86.90

SVM (104, 10−3) 99.70 99.28

MLP (200, 100, 50, 25) 93.81 93.52

Parameters2 represents (number of major convolution filters, best epoch) for deep
models, (n_lda) for LDA, (n_pls-da) for PLS-DA, (c, g) for SVM, (number of nodes
in hidden layers) for MLP.

Zhang et al. (2019) developed a network with an inception
structure that showed better performance than a comparison
network, Model 3, with a similar structure to VGG-MODEL.
However, the authors also pointed out that the superiority of
the deep model was not in processing small datasets. In their
study, Model 3 could not learn enough effective patterns from
a few samples. The authors also indicated that the performance
of Model 3 improved significantly when the size of the dataset
increased slightly. The source dataset in this study was much
larger than all the datasets in their study and was enough
for VGG-MODEL training. For structures like ResNet, Zhu
et al. (2019) compared the performance of a developed ResNet
with a general deep convolutional neural network on a cotton
dataset. Also, they found that ResNet was not as effective
as the latter one.

The structure of the optimal model for a specific dataset
was the result of a constant tradeoff and adjustment. It was
closely related to the size and distribution of the sample
set. A complex deep network could not always obtain higher
performance than a simple one. In this study, for the source
dataset, VGG-MODEL with the simplest structure and the
shallowest depth won a small victory when faced with the
relatively complex INCEPTION-MODEL and RES-MODEL. For
conventional models, the accuracies of different methods on
the testing set varied greatly. SVM performed best, followed by
LDA. Thus, if we use traditional multivariate analysis methods,
many models need to be tried and compared to determine the
optimal one (Liu et al., 2017; Bao et al., 2019; Nie et al., 2019).
Conversely, deep models will generally achieve satisfactory results
if the training data are sufficient and the structure is designed
reasonably. In the field of spectral analysis, deep learning is a very
competitive and potential tool.

Classification Results on Target Datasets
Although the deep network might not perform well on a
small dataset, its advantages would carry forward again after
combining with transfer learning. To verify the effect of deep
transfer learning, the slightly better-performing VGG-MODEL
was used as the source model to be transferred in this study.
Ten training sets with different sizes were built based on the
original training sets to investigate the influence of training set
size on the transferring effect. The classification results of the

deep transferred model and the comparison methods were shown
in Figure 5.

It could be seen that the deep transferred model was the only
model that consistently performed well on the four datasets. For
the 100% training set that was still very small compared with
the training set of the source dataset, the deep model achieved
accuracies of 95, 99, 80.8, and 83.86% on the testing sets of Rice,
Oat, Wheat, and Cotton datasets, respectively. It was because of
combination with transfer learning that the deep learning model
could also obtain satisfactory results on these datasets. Transfer
learning enabled deep learning to take advantage of itself and
avoided the requirement for a mass of samples (Tan et al., 2018).
As similar patterns existed among the spectra vectors of different
crop seeds, varieties classification of different crop seeds belonged
to different but similar tasks in the same domain. Thus, transfer
learning was very suitable for varieties classification of different
crop seeds in this study.

However, if the difference between the target dataset and the
original dataset was too large, it might cause a negative transfer.
In this study, Model 0, the deep model based on the Indian-
Pines dataset, achieved accuracies of 98.31 and 90.05% on the
training set and the testing set, respectively. But its performance
was worse than the deep transferred model based on the source
Pea dataset and most conventional multivariate analysis methods
when transferred to the four target datasets (shown in Figure 5).
This poor performance could be expected since the Indian-Pines
dataset and the seed datasets in this study were quite different
in sampling scenarios, spectral resolution, and spectral modes.
This result illustrated the importance of the similarity between
the features of the source dataset and the target dataset for
effective transfer learning in this study. When there is a vast
difference between these two datasets, the direct transfer may lead
to undesirable results. More effective transfer learning methods
need to be studied in the future.

For other conventional models, although they could also
achieve good performance on some datasets, they could not
always perform well on all. For example, for the 100% training
set, LDA achieved an accuracy of 87.71% on the Cotton dataset,
which was even higher than that achieved by the deep transferred
model. However, it just obtained accuracies of 93.33, 94.5, and
71.2% on the Rice, Oat, and Wheat datasets. SVM performed
relatively stable, just like previous research (Qiu Z. et al., 2018;
Bao et al., 2019; Nie et al., 2019). It achieved accuracies of 90,
96.75, 76.6, and 75.86% on the four datasets when using the
100% training sets. As expected, MLP performed much worse
than the deep neural network. For the Wheat dataset, it only got
an accuracy of 32.4% on the testing set, which was just a little
better than random guessing. The shallow neural network could
not extract valuable discriminative information from redundant
spectral data, which led to unsatisfactory results (Chen et al.,
2014). PLS-DA, commonly used in spectral analysis, was also
very unstable. Although it could obtain an accuracy of 92.25% on
the Oat dataset, it performed rather severely on the Wheat and
Cotton datasets, which contained more varieties. Its performance
was consistent with the results of Nie et al. (2019). With the
increase of the number of seed varieties, the possibility of samples
being linearly separable became smaller, and the difficulty of
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FIGURE 5 | The classification accuracies of all the models on the four target datasets.

distinguishing different varieties became greater. In a word,
for traditional multivariate analysis methods, different datasets
might correspond to different optimal models. Conversely, the
deep transferred models based on the source Pea dataset could
generally achieve satisfactory results.

In addition, it was worth mentioning that the deep transferred
model based on the source dataset could also achieve good results
when fine-tuned, using tiny datasets. For example, when using
the 10% training set, which only contained five samples for each
variety, it could achieve accuracies of 86.67, 88.74, and 70.14% on
the Rice, Oat, and Co tton datasets. And the accuracy rose rapidly
with the increase of training set size. Even on the Wheat dataset,
where all models failed, the deep transferred model outperformed
all the conventional methods. Deep transfer learning brings hope
for scenarios with very limited samples. On the contrary, the
accuracies of most conventional methods were very low when
trained, using such a small dataset. The result that LDA got a high
classification accuracy of 93% on the Oat dataset was unexpected.
The reason might be that this small training set just fitted the
classification rule of LDA because its accuracy dropped to 80%
soon for the 30% training set and then slowly increased.

Moreover, it could be observed that almost all the models
showed high accuracies on the Rice and Oat datasets but

performed poorly on the Wheat and Cotton datasets. The
sample distribution of a dataset with few categories was generally
simple. Contrarily, the distribution of a dataset with more
categories was relatively complicated, which was not conducive
to classification. Thus, the dataset was an essential factor affecting
the performance of models (Özdemir et al., 2019; Zhang et al.,
2019). In addition, it could be seen that the deep transferred
model based on the source Pea dataset got the best performance
on the Oat dataset. Using the 20% training set, it obtained an
accuracy of 97.25% on the testing set. Since the Oat dataset
had the same number of varieties as the source dataset, all the
weight parameters in the source model, including the weights
in the last fully connected layers, could be transferred. This
specialness allowed the maximum transferring of features in
the source model.

Model Visualization
Visualizing the feature distribution at each layer of the deep
network was an important channel to understand the training
process of the deep model (Lin and Maji, 2016; Zintgraf et al.,
2017; Zhang and Zhu, 2018). In this study, the t-SNE technique
was used to visualize the original high-dimensional spectra and
the features output by the flatten, Fc1, and Fc2 layers of the deep
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model in a two-dimensional space, as shown in Figure 6 and
Supplementary Figures 1–8. For the Pea dataset, the raw spectral
samples were aggregated into two categories, consistent with
the average spectral analysis. After passing the flatten layer, the
spectra with easily confused categories like Baiyan and Heiyan, or
Changshouren and Zhewan 1, gradually became distinguishable.
As the layers deepened, the samples within a category were
clustered closely, while those between different categories became
discrete. The samples were clearly gathered into four categories
after output by the Fc2 layer. It could be seen that the deep model
gradually transformed the samples from a cluttered state to a
distinguishable state. It was why the deep model could obtain
better performance than the traditional methods.

For the four target datasets, the raw spectra in the Rice and
Oat datasets, especially in the Rice dataset, were slightly more
regular than those in the Wheat and Cotton datasets. The variety
Yongyou9 was strongly distinguishable from the other two
varieties. This phenomenon was also consistent with previous
spectral analysis. Thus, most traditional methods performed

better on the Rice and Oat datasets than on the other two
datasets. Since all the weights before the flatten layer were
transferred from the deep model based on the source Pea dataset
or the Indian-Pines dataset directly, the features output by the
flatten layer of the deep transferred model contained the spectral
patterns learned from these two datasets. From Supplementary
Figures 1–4, it could be seen that, for the Rice, Oat, and Cotton
datasets, the features output by the flatten layer presented a more
aggregated distribution pattern than the raw spectral samples. In
Supplementary Figures 5–8, however, the distribution patterns
of the features output by the flatten layer were not significantly
improved compared with the raw spectral samples. These results
intuitively illustrated the critical role of the shared features for
transfer learning. Effective transfer learning was conductive to
the classification of different varieties of seeds in this study. The
spectral features learned from the source Pea dataset were reused
through transferring, facilitating the classification of small target
datasets. The Wheat dataset might be too cluttered so that the
output of the flatten layer did not show distinguishability. The

FIGURE 6 | Feature visualization of VGG-MODEL on the Pea dataset, using t-SNE.
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FIGURE 7 | The classification visual maps of pea seeds.

target datasets began to work from the Fc1 layer. The samples
gradually showed strong separability with the layers deepened.
After output by the final Fc2 layer, the rice and oat samples
had been divided into three and four categories, respectively.
Thus, the deep transferred model achieved two high accuracies
of 95 and 99%. However, the wheat and the cotton samples still
had some overlapping phenomenon, which led to relatively low
accuracies of the deep transferred model. Since there were no
effective features transferred, the features output by the Fc1 and
Fc2 layer in Supplementary Figures 5–8 showed a more discrete
distribution pattern than those in Supplementary Figures 1–4.
This was why the classification performance of the transfer model
based on the Indian-Pines dataset was worse than that based on
the source Pea dataset.

The classification visualization of crop seeds was helpful for
breeders to select varieties that meet requirements and for market
supervision authorities to check seed purity. In this study, the
categories of pea seeds classified by the optimal model, VGG-
MODEL, were visualized in a map. As shown in Figure 7,
Baiyan and Heiyan showed similar smooth texture features in
the original hyperspectral images. In contrast, Changshouren and
Zhewan 1 showed rough texture due to water loss during the
drying process. According to human vision, these four varieties
were naturally divided into two categories, consistent with the
visualization analysis of the distribution of the samples. Among
the predicted 180 seeds, only two seeds of the variety Heiyan
were misclassified into the similar Baiyan category. This accuracy
was sufficient for variety selection during the breeding process

or purity detection in actual production. The characteristics
of batch detection of HSI combined with the capabilities of
rapid analysis of deep transfer learning may provide a brand-
new solution for identifying crop varieties under sample-limited
condition. It is expected to help accelerate the process of crop
variety screening.

CONCLUSION

This study attempted to use HSI and deep transfer learning
to achieve accurate and rapid varieties classification of crop
seeds under sample-limited condition. The VGG-MODEL based
on the sample-rich dataset stood out from three deep neural
networks with typical structures and was utilized as the deep
source model to be transferred. The transfer results on the four
small target datasets showed that the deep transferred model
could fully use the shared spectral features of crop seeds extracted
by the source deep model. The deep transferred model could
achieve better performance than traditional multivariate analysis
methods under sample-limited condition, especially when using
tiny samples. Giving a glimpse into the process of deep transfer
learning, the visualization of the feature distribution at each layer
of the deep network further confirmed the portability of shared
spectral features. It revealed why the deep network achieved
high accuracy. The visualization of classification results provided
an intuitive and convenient manner for varieties classification
of crop seeds. In conclusion, HSI combined with deep transfer
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learning, was a great potential tool for the classification of seed
varieties with limited samples, which will significantly accelerate
the seed screening process in fields with scarce samples. This
study also provided a new idea for detecting other qualities of
crop seeds based on HSI under sample-limited condition.
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Dietary supplements of anthocyanin-rich vegetables have been known to increase

potential health benefits for humans. The optimization of environmental conditions to

increase the level of anthocyanin accumulations in vegetables during the cultivation

periods is particularly important in terms of the improvement of agricultural values in

the indoor farm using artificial light and climate controlling systems. This study reports

on the measurement of variations in anthocyanin accumulations in leaf tissues of four

different cultivars in Brassica rapa var. chinensis (bok choy) grown under the different

environmental conditions of the indoor farm using hyperspectral imaging. Anthocyanin

accumulations estimated by hyperspectral imaging were compared with the measured

anthocyanin accumulation obtained by destructive analysis. Between hyperspectral

imaging and destructive analysis values, no significant differences in anthocyanin

accumulation were observed across four bok choy cultivars grown under the anthocyanin

stimulation environmental condition, whereas the estimated anthocyanin accumulations

displayed cultivar-dependent significant differences, suggesting that hyperspectral

imaging can be employed to measure variations in anthocyanin accumulations of

different bok choy cultivars. Increased accumulation of anthocyanin under the stimulation

condition for anthocyanin accumulation was observed in “purple magic” and “red stem”

by both hyperspectral imaging and destructive analysis. In the different growth stages, no

significant differences in anthocyanin accumulation were found in each cultivar by both

hyperspectral imaging and destructive analysis. These results suggest that hyperspectral

imaging can provide comparable analytic capability with destructive analysis to measure

variations in anthocyanin accumulation that occurred under the different light and

temperature conditions of the indoor farm. Leaf image analysis measuring the percentage

of purple color area in the total leaf area displayed successful classification of anthocyanin

accumulation in four bok choy cultivars in comparison to hyperspectral imaging and

destructive analysis, but it also showed limitation to reflect the level of color saturation
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caused by anthocyanin accumulation under different environmental conditions in “red

stem,” “white stem,” and “green stem.” Finally, our hyperspectral imaging system was

modified to be applied onto the high-throughput plant phenotyping system, and its test

to analyze the variation of anthocyanin accumulation in four cultivars showed comparable

results with the result of the destructive analysis.

Keywords: bok choy, health promotion, non-destructive, image analysis, indoor farming

INTRODUCTION

Anthocyanin, a group of water-soluble flavonoid pigments
derived from the phenylpropanoid pathway, is responsible for
the color of different plant tissues, such as flower, fruit, and
leaf ranging from red to violet and blue (Strack and Wray,
1989). Recent evidence suggests that the dietary supplements
of anthocyanin-rich vegetables are closely associated with the
reduced risk of cardiovascular disease and cancer (Williams
et al., 2004; Butelli et al., 2008; de Pascual-Teresa et al.,
2010). Because of the eye-catching color and potential human
health beneficial effects of anthocyanin, the improvement of
anthocyanin accumulation in plants was attempted through the
selection of high-anthocyanin germplasm and the optimization
of cultivation environments including light and temperature
(Bian et al., 2015; Passeri et al., 2016).

Since anthocyanin accumulations varied during the growing
periods of the plant depending on the plant genetic background,
environmental conditions, and physiological stress (Chalker-
Scott, 1999; Sibley et al., 1999), the non-destructive method of
anthocyanin content estimation would be extremely valuable
and especially useful for the investigations of pigment changes
in individual intact leaves over time. As the less expensive
approach, color leaf images obtained by the commercial digital
camera can also be considered as an alternative parameter for
non-destructive anthocyanin estimation (Simko et al., 2016).
The hyperspectral imaging technique is an advanced imaging
technology that can combine the advantages of spectroscopic
and imaging techniques to detect the continuous wavelengths
from visible to near-infrared lights selectively. Hyperspectral
imaging has been successfully employed in previous studies
to measure anthocyanin contents in various vegetables and
fruits in a non-destructive manner (Liu et al., 2017; Gabrielli
et al., 2021). However, it has been rarely tested to measure
differentially expressed anthocyanin in plants grown under
different environmental conditions during the growing period
of vegetables.

The objective of this study was to determine that hyperspectral
imaging and commercially available color imaging techniques
could be employed to analyze the variations in anthocyanin
accumulation and be differentially expressed in leaf tissues by
cultivar-dependent genetic effect, influence of environmental
factors, and their genetic × environmental (G × E) associations.
The target plant was a bok choy (Brassica rapa var. chinensis),
an important dietary vegetable cultivated and consumed
worldwide for its edible leaves, and cultivation experiments were
performed in an indoor farm with LED artificial light climate
control systems.

MATERIALS AND METHODS

Plant Materials and Experimental Design
The first experiment was conducted to select and calibrate proper

anthocyanin reflectance indices, such as anthocyanin absorption

index (Merzlyak et al., 2003) and three bands model (Gitelson
et al., 2009) in bok choy. Four commercial cultivars that had
the variation in anthocyanin accumulations, “green stem,” “white
stem,” “red stem,” and “purple magic” (Asia Seed Co., Republic
of Korea) were used in this experiment. Seeds of each bok choy
cultivar were germinated in small pots filled with a horticultural
soil mix (Nongwoo Co., Republic of Korea). Seedlings of 3-
week-old were transplanted into 10 cm pots and grown in a
growth room at the Korea Institute of Science and Technology at
Gangneung under a 28 /20◦C and 14/10 h day/night temperature
regime and with LED artificial light (110 µmol/m2/s). After
6 weeks of growing, the third and fourth leaves from apical
meristem in each plant were subjected to hyperspectral imaging
and collected for chemical analysis.

The second experiment was conducted to determine whether
hyperspectral imaging and commercially available color
imaging techniques could be employed to analyze variations
in anthocyanin accumulation, differentially expressed in leaf
tissues by cultivar-dependent genetic effect, the influence of
environmental factors, and their genetic × environmental (G ×

E) associations. For the second experiment, the same cultivars
were subjected to two different environmental conditions
(different light intensity, temperature, and cultivation period)
after seedling. The environmental condition for relatively
lower light intensity and slight temperature differences (NC;
non-stimulation condition) was the same as the environmental
condition for the first experiment. The environmental condition
for relatively higher light and extreme temperature difference
(SC; stimulation condition) was at a growth room under a
28/15◦C and 14/10 h day/night temperature regime and with
LED artificial light (300 µmol/m2/s). The leaf samples were
subjected after 2 (GS1) and 4 (GS2) weeks of growing for
hyperspectral imaging and then collected for color image
acquisition and chemical analysis. Leaf color images were taken
together with the reference color card (CTrax 24ColorCard-2 ×

3, Camera Trax, Las Vegas, NV, United States).
The third experiment was performed to confirm the possibility

of hyperspectral imaging to be applied into the “sensor-to-plant”-
type high-throughput phenotyping stage (Lee et al., 2018) for the
measurement of anthocyanin accumulations in the whole plant
level. The same cultivars were prepared under the stimulation
condition for anthocyanin accumulation (SC), and 2 week-grown
whole plant (GS1) was subjected to hyperspectral imaging.
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The experimental design was a randomized complete block
with four replicates of five plants.

Hyperspectral Imaging Data Acquisition
Bok choy leaves and whole plants were imaged with SOC710-
VP hyperspectral imager (Surface Optics Corp., San Diego, CA,
United States). The hyperspectral imager is composed of 520
lines, 696 samples, and 128 bands (the spectral resolution of
4.69 nm). For the first and second experiments, the target leaf
was placed at the focal plane of a hyperspectral imaging system,
consisting of a hyperspectral camera and halogen lamp in the
same growth room. The distance from the target leaf was about
30 cm for both the hyperspectral imaging camera and the light
source. The hyperspectral image was acquired by placing a leaf
on a white reference panel to distinguish the leaf from the
background (Figure 1A).

For the third experiment, whole plant hyperspectral images
were acquired as top view with the hyperspectral camera
mounted 100 cm above the target plant in the same growth room.
Halogen lamp was mounted 50 cm above the target plant to
irradiate light, and a separate white reference panel was added
to the light source part (Figure 1B).

After hyperspectral image scanning, we calculated
transmittance and reflectance spectra of white reference panel
and target samples. All hyperspectral imaging experiments were
performed under the conventional indoor light environment.
In addition, a white panel was adopted to monitor indoor
light conditions, including irradiating halogen lamps. To
minimize the light-affected environmental condition, we applied
the calibration curve obtained from response correction to
hyperspectral images so that the obtained spectra are localized
only to leaves.

Chemical Measurement of Anthocyanin
Accumulation
Anthocyanin accumulation in leaf tissue was analyzed as
described in Gitelson et al.’s study (2001). Freeze-dried tissues of
0.5 g were homogenized in 10ml of 70% methanol and passed
through a paper filter after 5min of sonication. Distilled water
was then added to equal 0.2 of the extract volume, and the
diluted filtrate was centrifuged in glass test tubes for 10min at
3,000 g to separate the water–methanol phases. The absorption
spectra of the water–methanol fraction were calculated using a
plant reader (Epoch, BioTek Instruments Inc., Winooski, VT,
United States). Anthocyanin accumulations were normalized to
dry weight (mg/g).

Selection and Optimization of Reflectance
Index Model to Estimate Anthocyanin
Accumulation in Bok Choy
Gitelson et al. (2009) established a non-destructive technique
to estimate anthocyanin contents in leaves of various tree
species using various indices, such as absorbance (abs) value
for anthocyanin, anthocyanin reflectance index (ARI), modified
anthocyanin reflectance index (mARI), and anthocyanin content
index (ACI). Among these indices, mARI is a three-band model

based on measurements of tissue reflectance (R) at the specific
wavelengths obtained from hyperspectral imaging: relative
anthocyanin accumulation [(R759.5–797.02) × (1/R550.14–
1/R701.06)] to present the actual and precise wavelengths
and anthocyanin values (Merzlyak et al., 2003; Gitelson
et al., 2006). We slightly modified the wavelength of this
equation to correct the wavelength mismatch and visualize the
precise anthocyanin value. The modified equation is [(R759.5–
797.02) × (1/R550.14–1/R706.35)]. Using these previously
developed anthocyanin estimation indices with our wavelength-
corrected mARI, we analyzed the linear relationship between
hyperspectral imaging and destructive analysis values to select
the optimum index for anthocyanin estimation in bok choy.
Total 20 plant samples obtained from the first experiment
were subjected to both hyperspectral imaging and destructive
analysis. As the result, the highest linear relationship between
the destructive and non-destructive (hyperspectral imaging)
of anthocyanin content was wavelength-corrected mARI (R2

= 0.9958), followed by mARI (R2 = 0.8795), abs value (R2

= 0.8115), ARI (R2 = 0.4295), and ACI (R2 = 0.0224).
Therefore, our wavelength-corrected mARI was selected as the
anthocyanin reflectance index in bok choy, and anthocyanin
accumulation expressed on a leaf area basis (mg/cm2) were
converted to dry weight (mg/g) using the following formula
obtained from the data set of the first experiment: y =

1.8123x + 0.0962 (R2 = 0.9958) (Supplementary Figure 1).
This anthocyanin measurement method was applied to the
hyperspectral imaging-based analysis of anthocyanin variations
in the second and third experiments.

Leaf Image Analysis
All images of four cultivars acquired with the reference color
card were corrected and auto-segmented from the background,
and their color area was analyzed using the Leaf Analysis tool
(NOROO KIBAN Systems Inc., Seongnam, Republic of Korea).
We analyzed the area occupied by red and purple colors (RGB±

20%) in the leaf area as percentages, separately (Figure 4A).

Statistical Analysis
All data were represented as means ± SD of at least four
independent experiments. Statistical analysis was carried out
using the SAS 9.4 software (SAS Institute Inc., Cary, NC,
United States). The ANOVA was the Fisher’s Least Significant
Difference (LSD) analysis based on the 0.05 probability level.

RESULTS

Comparison of Anthocyanin
Accumulations Estimated by
Hyperspectral Imaging With the Value
Measured by Wet Chemical (Destructive)
Assay in Different Bok Choy Cultivars
Between the modified hyperspectral value and destructive
analysis (UV) results, no significant differences in anthocyanin
accumulation were observed across the four bok choy cultivars
grown under the SC at GS2. Furthermore, the anthocyanin
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FIGURE 1 | Schematic diagram of hyperspectral imaging employed for target leaf analysis in the first and second experiment (A), and whole plant analysis in the third

experiment (B).

FIGURE 2 | (A) Comparison of anthocyanin accumulations (mg/g DW) obtained by destructive analysis and hyperspectral analysis among targeted leaf of four bok

choy cultivars grown under the SC at GS2. These data were obtained from the second experiment described in the Materials and methods section. Means with a

different letter are significantly different at P ≦ 0.05, using Fisher’s LSD analysis. (B) The representative image of four different bok choy cultivars (from the left white

stem, purple magic, red stem, and green stem). (C) The representative hyperspectral image was taken in leaf-level in four different bok choy cultivars (from the left

white stem, purple magic, red stem, and green stem).

accumulations estimated by hyperspectral imaging and
destructive analysis equally displayed cultivar-dependent
significant differences across cultivars (Figure 2A). This result
indicates that hyperspectral imaging can be employed to
measure differences in variations of anthocyanin accumulations
that occurred in the leaf tissue of different bok choy cultivars.
Variations in anthocyanin accumulation in different cultivars
seem to be related to the expression of color pigments in leaf

tissues (Figure 2B). The “purple magic” showed the highest level
of anthocyanin accumulation in both hyperspectral value and
destructive analysis with the purple color expression in almost
the whole area of the leaf, whereas “white stem” and “green stem”
displayed the lowest level of anthocyanin accumulation with
the no expression of purple color in a leaf. “red stem” showed
a partial expression of purple color in the leaf tissue with the
middle level of anthocyanin accumulation (Figure 2).
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Variations of Anthocyanin Accumulations
Caused by Different Indoor Farm
Cultivation Conditions
Increased accumulation of anthocyanin under the SC was
observed in “purple magic” and “red stem” by both hyperspectral
imaging and destructive analysis (Figure 3A). In different growth

stages (GS1 and GS2), no significant differences in anthocyanin

accumulation between hyperspectral imaging and destructive

analysis were found in each cultivar (Figure 3B). These results

suggest that hyperspectral imaging can provide comparable

analytic capability with destructive analysis to measure variations

in anthocyanin accumulation under the different environmental

FIGURE 3 | Variation in anthocyanin accumulations (mg/g DW) of purple magic and red stem estimated by different cultivation conditions. (A) Destructive and

hyperspectral analysis with non-stimulation and stimulation conditions. (B) Destructive analysis and hyperspectral analysis by cultivation period for 2 weeks (GS1) and

4 weeks (GS2). These data were obtained from the second experiment described in the Materials and methods section. Means with a different letter are significantly

different at P ≦ 0.05, using Fisher’s LSD analysis.

TABLE 1 | Variation of anthocyanin accumulation (mg/g) in leaf tissue of four bok choy cultivars grown under the different environmental conditions (NC and SC) with

different growth stages (GS1 and GS2).

Genotype Treatmenty TA (mg/g)z TA (%)z

Destructive (UV)x Hyperspectralx based on RGB color

“White Stem” NC-GS1 0.880 ± 0.023g 0.423 ± 0.027f 0.30 ± 0.20f

SC-GS1 0.953 ± 0.043g 0.529 ± 0.080e 0.66 ± 0.36f

NC-GS2 0.378 ± 0.030h 0.603 ± 0.051e 3.01 ± 1.11e

SC-GS2 0.938 ± 0.048g 0.698 ± 0.263e 1.61 ± 0.79ef

“Purple Stem” NC-GS1 6.848 ± 0.158b 1.982 ± 0.498d 17.08 ± 10.31cde

SC-GS1 9.608 ± 0.218a 8.585 ± 1.860b 53.56 ± 11.62b

NC-GS2 5.060 ± 0.103cd 4.232 ± 0.930c 54.21 ± 11.69b

SC-GS2 10.3425 ± 0.215a 9.959 ± 1.836a 83.53 ± 4.20a

“Red Stem” NC-GS1 1.160 ± 0.030f 0.550 ± 0.096e 0.82 ± 0.31f

SC-GS1 4.325 ± 0.103d 3.344 ± 0.395cd 11.32 ± 4.38de

NC-GS2 2.045 ± 0.070e 1.766 ± 0.678d 27.53 ± 9.44c

SC-GS2 5.708 ± 0.098c 3.768 ± 0.436c 26.38 ± 8.53cd

“Green Stem” NC-GS1 0.863 ± 0.030g 0.442 ± 0.009f 0.34 ± 0.09f

SC-GS1 1.293 ± 0.093f 0.573 ± 0.128e 0.22 ± 0.06f

NC-GS2 0.663 ± 0.030gh 0.620 ± 0.060e 5.64 ± 1.88def

SC-GS2 0.633 ± 0.030gh 1.046 ± 0.255d 10.56 ± 2.60de

Anthocyanin accumulation (mg/g) was analyzed by destructive analysis and hyperspectral imaging.
zTA: total anthocyanin accumulation.
yNC-GS1: treatment with low lights and slight temperature difference for 2 weeks, SC-GS1: treatment with high lights and extreme temperature difference for 2 weeks, NC-GS2:

treatment with low lights and slight temperature difference for 4 weeks, SC-GS2: treatment with high light and extreme temperature difference for 4 weeks.
xMeans within each column and cultivar with different letters are significantly different at P ≦ 0.05, using Fisher’s LSD analysis.
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FIGURE 4 | (A) The representative image of four different bok choy cultivars (from the left white stem, purple magic, red stem, and green stem) for leaf color analysis.

(B) Comparison of anthocyanin accumulation (%) obtained by leaf color analysis among four cultivars, bok choy. (C) AT accumulation (%) of purple magic and red

stem by non-stimulation (NS) and stimulation (CS) conditions. (D) AT accumulation (%) of purple magic and red stem by cultivation period for 2 weeks (GS1) and 4

weeks (GS2). These data were obtained from the second experiment described in the Materials and methods section. Means with a different letter are significantly

different at P ≦ 0.05, using Fisher’s LSD analysis.

conditions of the indoor farm. Although significant increases
of anthocyanin accumulations were also found in “white stem”
and “green stem” under the SC, these increases would be caused
by the limit of analytic capability of both hyperspectral imaging
and destructive analysis under the relatively lower level of
anthocyanin compared with its level of “purple magic” and “red
stem” (Table 1).

Leaf Image Analysis-Based Estimation of
Anthocyanin Accumulations
Leaf image analysis is one of the potential approaches to estimate
anthocyanin accumulations in a non-destructive manner. Unlike
hyperspectral imaging and destructive analysis, leaf image
analysis significantly increased anthocyanin accumulation in
GS2 of “red stem” (Figures 3B, 4D). The percentages of the
purple color area in the total leaf area among the four cultivars
varied similar to the anthocyanin accumulation values measured
by hyperspectral imaging and destructive analysis in the four
cultivars (Figure 4B). However, leaf image analysis did not
show a significant increase in anthocyanin accumulation in
“red stem” under the SC compared with the results obtained
by hyperspectral imaging and destructive analysis (Figures 3A,
4C). The different consequence was also found in anthocyanin
accumulation of “red stem” leaves in different growth stages.
These results indicated that the proportion of colored leaf area
may be employed to estimate the anthocyanin accumulations of
different cultivars showing clear differences in anthocyanin levels

TABLE 2 | Percentages of variations in anthocyanin accumulations (mg/g)

associated with genotype, environment, and genotype by environment interaction

for the leaves of four bok choy genotypes grown in different environmental

conditions (NC and SC) with different growth stages (GS1 and GS2).

Source of variation Percentage of variations in TAz

Destructive (UV) Hyperspectral

Genotype 77.7* 59.2*

Environment 6.7 11.1

G × E y 10.8** 26.6***

Residual 4.8*** 2.9***

Anthocyanin accumulation (mg/g) was analyzed by destructive analysis and

hyperspectral imaging.
zTA: total anthocyanin accumulation.
yG × E = genotype × environment interaction.

*, **, ***Significant at P ≦ 0.2, 0.05, or 0.025, respectively.

with quantitative values. However, it has limitations to reflect the
level of color saturation caused by pigment accumulation, such as
anthocyanin accumulation.

Genotype and Environment Interaction
The ANOVA was applied to partition the variations in
anthocyanin accumulation into components associated with
the genotype, environment, and genotype × environment
interaction (G × E) using the data obtained from hyperspectral
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imaging and destructive analysis, respectively (Table 2).
Comparison of the results obtained from hyperspectral
imaging and destructive analysis data demonstrated a similar
proportion of genotypic and G × E effects with the same
significance, indicating comparability of hyperspectral imaging
with destructive analysis for the G × E study. The high
proportion of anthocyanin variation was primarily contributed
by the genotypic effect, indicating that selection and breeding
of cultivars can be performed to optimize anthocyanin
accumulation in bok choy for indoor farming. Since our
data also demonstrated the significance of G × E interaction
(Table 2), attention should be given to identifying germplasm
in which anthocyanin biosynthesis is maximized in the specific
environmental condition of indoor farms.

Establishment of the Hyperspectral
Imaging System to Be Applied to
High-Throughput Plant Phenotyping
System
In our previous study, a “sensor-to-plant” type plant phenotyping
system was developed to accelerate the large-scale acquisition of
plant images through the moving actuators with vision sensors
in real-time (Lee et al., 2018). To apply our hyperspectral
imaging onto the high-throughput phenotyping system, the

hyperspectral imaging system was modified to acquire a top
view image of the whole plant (Figures 1B, 5C). Two-week-
old whole plants of four bok choy cultivars were subjected
to hyperspectral imaging in the third experiment. Similarly,
classified anthocyanin accumulations were observed across four
cultivars in the results obtained from both hyperspectral imaging
and destructive analysis (Figure 5A). In addition, the linear
relationship between hyperspectral imaging and destructive
analysis data (R2 = 0.9339, RMSE = 0.05) suggests that the
hyperspectral imaging of the whole plant is comparable with the
destructive analysis and feasible to be applied onto the high-
throughput plant phenotyping system (Figure 5B).

DISCUSSION

There were various attempts to analyze anthocyanin
accumulation non-destructively, such as the hyperspectral
model (Gu et al., 2018), UV-Spec. (Gitelson et al., 2009), and the
fluorimetric sensor (Tuccio et al., 2011). We tested previously
established hyperspectral models, such as the ACI (Gitelson et al.,
2006), ARI (Gitelson et al., 2001, 2006), and mARI (Gitelson
et al., 2006) to select the optimum model to analyze anthocyanin
accumulations using hyperspectral imaging in bok choy. We
also attempted to optimize mARI to improve the measurement

FIGURE 5 | (A) Comparison of anthocyanin accumulations (mg/g DW) obtained by destructive analysis and hyperspectral analysis from the whole plant of four bok

choy cultivars grown under the SC at GS1. These data were obtained from the third experiment described in the Materials and methods section. Means with a

different letter are significantly different at P ≦ 0.05, using Fisher’s LSD analysis. (B) The linear relationship between hyperspectral imaging and destructive analysis

data was obtained from the whole plant of four bok choy cultivars grown under the SC at GS1. (C) The representative hyperspectral image was taken at the whole

plant level in four different bok choy cultivars (from the left white stem, purple magic, red stem, and green stem).
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accuracy through the adjustment of wavelength in the first
experiment, and we confirmed that our wavelength-adjusted
mARI approach could improve the linear relationship (R2 =

0.9958) between destructive and non-destructive analyses for
anthocyanin estimation. Further studies conducted with our
optimized hyperspectral imaging approach in the second and
third experiments demonstrated comparable trends in changes
of anthocyanin accumulations across different cultivars and
different environmental conditions between hyperspectral
imaging and destructive analysis, although statistical significance
was limited in the cultivars and environmental conditions
inducing a relatively lower level of anthocyanin accumulation.

High-throughput phenotyping has received considerable
attention due to its potential for rapid identification of valuable
germplasm (Matsuda et al., 2012; Banerjee et al., 2020). In our
previous study, we established a high-throughput phenotyping
system consisting of an image-capturing hardware module,
environmental data sensors, and automated irrigation and
artificial light controllers (Lee et al., 2018). In this system, a total
of 28 plant trays (52.5 cm × 26.5 cm in size) are placed in a 4
× 7 matrix, and the image acquisition module moves over 28
plant trays following the pre-defined X, Y, and Z coordinates of
the plant trays. In each plant tray, 8 of 10 cm pots are placed.
Therefore, a total of 280 pots can be placed in our phenotyping
system. Our hyperspectral imaging system was modified to be
applied to our high-throughput phenotyping system (Figure 1B).
Using our hyperspectral imaging system, it took 2min to acquire
a top view image of the whole plant in 10 cm pots, and an
additional 1min to move pots and process data. It indicated
that a total of 280 plants in 10 cm pots could be scanned by
hyperspectral imaging under our phenotyping system for 14 h for
rapid identification of bok choy germplasms.

In the conventional indoor farm, increasing artificial light
intensity and day/night temperature differences to improve
anthocyanin accumulation in vegetables also may cause an
increase in the energy costs. To solve this conflicting problem,
not only selection of proper germplasm that can show a better
performance of anthocyanin accumulation under the acceptable
indoor farming environments but also identification of optimum
environmental conditions through the monitoring of changes
in anthocyanin accumulations under the diverse indoor farm
environmental conditions need to be accomplished as a further
study. According to the previous studies, lettuce grown under
5◦C of night-time temperatures showed a relatively higher

polyphenolic content than lettuce cultivated under 20◦C for 5

days. However, phenol content showed the highest levels at
20◦C in 20 days of cultivation duration (Jeong et al., 2015). In
another study, anthocyanin, carotenoid, and relative chlorophyll
contents were decreased when purple bok choy was exposed
to low light (250 µmol/m2/s) compared with high light (1,000
µmol/m2/s) (Zhu et al., 2017). These reports suggest that
additional studies on the change of anthocyanin accumulations in
bok choy with more diverse environmental conditions for more
than 4 weeks of cultivation period using hyperspectral analysis
are considered to be necessary. We believe that hyperspectral
imaging can be an affordable approach to perform it in a
non-destructive manner.
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Effective evaluation of physiological and biochemical indexes and drought degree of tea

plant is an important technology to determine the drought resistance ability of tea plants.

At present, the traditional detection method of tea drought stress is mainly based on

physiological and biochemical detection, which is not only destructive to tea plants, but

also time-consuming and laborious. In this study, through simulating drought treatment

of tea plant, hyperspectral camera was used to obtain spectral data of tea leaves, and

three machine learning models, namely, support vector machine (SVM), random forest

(RF), and partial least-squares (PLS) regression, were used to model malondialdehyde

(MDA), electrolyte leakage (EL), maximum efficiency of photosystem II (Fv/Fm), soluble

saccharide (SS), and drought damage degree (DDD) of tea leaves. The results showed

that the competitive adaptive reweighted sampling (CARS)-PLS model of MDA had

the best effect among the four physiological and biochemical indexes (Rcal = 0.96,

Rp = 0.92, RPD = 3.51). Uninformative variable elimination (UVE)-SVM model was the

best in DDD (Rcal= 0.97, Rp= 0.95, RPD= 4.28). Therefore, through the establishment

of machine learning model using hyperspectral imaging technology, we can monitor

the drought degree of tea seedlings under drought stress. This method is not only

non-destructive, but also fast and accurate, which is expected to be widely used in tea

garden water regime monitoring.

Keywords: hyperspectral imaging, machine learning, non-destructive testing, tea plants, drought assessment

INTRODUCTION

Drought is the main factor affecting crop growth and development, which affects crop quality
and yield worldwide. With climate change, especially global warming and the increase in non-
agricultural water demand, drought will seriously affect the growth, yield, and quality of tea
(Sharma and Kumar, 2005). According to reports, drought reduced tea production by 14–33%
and caused 6–19% of plant deaths (Cheruiyot et al., 2010). At present, there are many traditional
methods to detect the drought status of tea plants (Tian et al., 2019), but it is urgent to find a more
timely and efficient detection method for tea drought status.

122

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.695102
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.695102&domain=pdf&date_stamp=2021-08-19
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dzttea@163.com
mailto:wangyutea@163.com
https://doi.org/10.3389/fpls.2021.695102
https://www.frontiersin.org/articles/10.3389/fpls.2021.695102/full


Chen et al. Non-Destructive Testing of Hyperspectral Imaging

Recent studies have documented and explained the response
of plant systems to drought stress. Tea plants adapt to drought
stress through a series of physiological and biochemical reactions,
such as osmotic pressure regulation, antioxidant activity, and
plant hormone regulation (Liu and Chen, 2014). Under drought
stress conditions, the content of soluble saccharide (SS) in
tea plants will increase to cope with the stress. However, tea
plants will cause membrane peroxidation, which will damage the
membrane system and detect the increase in electrolyte leakage
(EL) in plant cells. The content of malondialdehyde (MDA)
as an oxidation product will increase, which will reduce the
photosynthetic intensity of the cell membrane-dependent system.
At this time, the maximum efficiency of the photosystem II
value of plants will be lower than the normal level. In general,
MDA, EL, maximum efficiency of photosystem II (Fv/Fm), and
SS are used to evaluate the drought status of tea plants (Prieto
et al., 2009; Soleimanzadeh, 2010; Guo et al., 2017). However,
these traditional methods are not only time-consuming but also
destructive (Tian et al., 2019).

Therefore, how to detect the physiological and biochemical
components of plants under drought stress in real time is an
urgent problem to be solved. Hyperspectral imaging technology,
as a new phenotypic research technology, makes it possible to
quickly, accurately, and non-destructively assess the water status
of tea plants. Hyperspectral data have the characteristics of high
spectral resolution, wide spectral range, continuous band, and
rich information. Previous studies on hyperspectral imaging
mainly used vegetation index or characteristic bands as input
variables. The method of using vegetation index as a modeling
variable has the characteristics of a small amount of data and
fast calculation speed, which can be used for the large-scale data
evaluation. For example, Zovko et al. (2019) found that using
vegetation index to establish the prediction model can predict
the drought degree of grape to a certain extent. Wang et al.
(2014b) used the vegetation index (PRI, RENDVI, OSAVI, etc.)
of spring wheat to build the corresponding stress prediction
model, and they found that the model has a certain significance
for monitoring the degree of crop stress in semi-arid stress
areas. Zelazny and Lukáš (2020) found that RGI, CI, RNDVI,
and GI of rape seedlings were related to drought intensity, and
they took them as input variables to establish a drought stress
prediction model of rape seedlings, which achieved good results.
The method of characteristic bands as modeling variable has
the characteristics of high accuracy and strong generalization
ability. There are also related studies on this method. Kong et al.
(2016) used partial least-squares (PLS) regression, LS-SVM, and
ELM algorithms to extract the characteristic bands of MDA of
oilseed rape leaves as the input variables of the model, and they
found that the characteristic bands extracted by this method
mainly concentrated in the range of 524–868 nm, and the model
achieved the expected effect. Jiang et al. (2016) used competitive
adaptive reweighted sampling (CARS) and GA algorithms to
extract the characteristic bands of potato SS, and they found that
the model had a good prediction ability in 450–470-, 520–560-,
730–810-, 860–890-, and 910–980-nm bands (Jiang et al., 2016).

Previous studies used various algorithms to analyze the
correlation of different types of data and establish a robust

prediction model. Shi and Cheng used multiplicative scatter
correction (MSC), first derivative (1D), second derivative (2D),
and Savitzky–Golay (S-G) to preprocess hyperspectral image
data, and they found that these preprocessing algorithms have
an excellent effect on eliminating baseline drift and multiple
scattering effects (Shi et al., 2014; Cheng et al., 2019). Filho
et al. used successive projections algorithm (SPA), uninformative
variable elimination (UVE), CARS, and other algorithms to
extract sample feature data, and they found that these algorithms
can extract the most representative sample subset from the
dataset (Araújo et al., 2001; Filho et al., 2004; Zhang et al., 2010;
Li et al., 2019a). Qin et al. used support vector machine (SVM),
random forest (RF), PLS regression, and other algorithms to
model the sample set, and they found that these algorithms can
adapt to different data types for modeling and analyzing and can
establish stable mathematical models (Qin and He, 2005; Iverson
et al., 2008; Lin et al., 2016). The above studies showed that
choosing the appropriate algorithms for different types of data
can save calculation time and improve the accuracy of themodels.
However, the comprehensive evaluation of tea drought status
using hyperspectral imaging technology and the mathematical
algorithm has not been reported.

In this study, hyperspectral imaging technology was used
to comprehensively evaluate the drought status of tea plants.
MSC, 1D, 2D, and S-G algorithms were used as preprocessing
methods; SPA, UVE, and CARS algorithms were used as feature
band screening methods; and SVM, RF, and PLS algorithms were
used as prediction models. The principal component analysis
(PCA) was used to weight the MDA, EL, and SS, which were
positively correlated with the drought degree of tea plants, and
a comprehensive evaluation index of drought degree of tea plants
was obtained: drought damage degree (DDD), so as to more
accurately reflect the drought stress suffered by tea plants.

MATERIALS AND METHODS

Experimental Design
The experiment was carried out in the greenhouse of Qingdao
Agricultural University. The movable cultivation platform in the
greenhouse is 3.5m long and 1m wide, with a total of four
rows. The variety of tea plants is “Zhongcha 108,” and the age
of seedlings is 2 years. The soil, substrate, and tea seedlings
were disinfected, and 576 tea seedlings were cultivated in plug
culture. OnDecember 21, 2020, the tea plants will be precultured,
and the tea seedlings will be irrigated quantitatively to keep the
relative humidity of soil at about 50%. The air humidity in the
greenhouse will be controlled at about 40% by the humidifier,
and the temperature will be set at 26◦C in the daytime and 20◦C
at night. The greenhouse was ventilated for 1–2 h every day, and
the culture lasted for 2 weeks. From January 4, 2021, to January
19, 2021, the sprinkler irrigation or irrigation was stopped, the air
humidifier was closed, and other conditions remained unchanged
to simulate the drought stress of tea plants by high temperature
and natural water loss. From 10:00 a.m. to 12:00 a.m., most of
the biochemical indicators increased at noon, and we chose this
time to sample and collect their data (Zhang et al., 2006; Guo
et al., 2008). Each time 30 tea plants were randomly selected,
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FIGURE 1 | Hyperspectral image acquisition system.

one mature leaf was taken from each tea plant, and a total of
30 samples were collected for hyperspectral data collection. The
physiological and biochemical indexes of collected leaves were
determined, and each sample was repeated three times. In this
experiment, 180 samples were collected for six times.

Data Acquisition
Collection of Spectral Data
The hyperspectral image acquisition system device is shown
in Figure 1 (Supplementary Figure 1 shows the detailed
components of the system), which mainly includes imaging
spectral camera (Gaia field pro-v10, Finland), light source
(Hsia-ls-t-200w, China), displacement platform, PC, and other
components. In order to get a clearer image, the exposure time is
9ms, the field angle is 22◦, and the object distance (the distance
from the sample to the lens) is 38 cm. The color temperature of
the light source is 3,000K. The spectral range of the collected
image is 400–1,100 nm, and the size of hyperspectral image
data block is 960 pixels × 1,101 pixels × 176 bands. In order
to improve the signal-to-noise ratio of hyperspectral image, the
black-and-white correction method is used to remove the dark
current noise caused by the internal current instability of the
spectral camera (Talens et al., 2013). The formula of black and
white correction is:

C = 65552(R− D)/(W − D)

where C is the corrected image, R is the original image, D andW
are all black and all white images, respectively, and 65,552 is the
maximum value of digital quantization value (DN).

Determination of MDA, EL, Fv/Fm, SS, and DDD
The physiological and biochemical indexes of tea leaves were
measured by fresh samples, and the specific methods are
as follows:

Determination of MDA and SS: the fresh leaf samples crushed
by grinding machine (IKA A11, Germany) were extracted with

TABLE 1 | Descriptive statistics of drought-induced components and drought

damage degree of total fresh leaf samples.

Index Maximum Minimum Average value Standard deviation

MDA (mmol/kg FW) 9.61 3.26 5.95 1.76

EL (%) 49.70 18.76 33.14 7.29

Fv/Fm 0.92 0.6 0.76 0.07

SS (mmol/g FW) 13.1 5.1 8.98 1.93

DDD(Level) 9.06 3.65 6.07 1.40

TBA (4,6-dihydroxy-2-mercaptopyrimidine) solution at 100◦C.
According to the colorimetric method described by Li et al.
(2019b), the absorption value of MDA and SS was read at 532
and 450 nm, respectively, by spectrophotometer (Zhou and Leul,
1999; Morales and Munné-Bosch, 2019; Tian et al., 2019).

Determination of EL: the leaf samples were cut and rinsed
with deionized water for a short time. Under the condition of-
−0.1MPa, the vacuum pump (SHB-IIIA, China) was used to
vacuum for 10min. According to the method described by Tian
et al., the conductivity (C1) was measured by conductivity meter
(DDSJ-308A, China). Then, the solution was boiled for 10min,
and the conductivity (C2) was measured after cooling (Kate and
Johnson, 2000; Tian et al., 2019; Takashima et al., 2021).

RPC (%) = C1/C2 × 100

Determination of Fv/Fm: After dark treatment for 20–30min, the
Fv/Fm value of tea leaves was determined by Fluor Pen (Fluor Pen
FP110Hand held chlorophyll fluorometer, Czech Republic).

Determination of soil relative moisture: the relative moisture
of the soil at the time of sample collection was determined by
using a soil moisture-measuring instrument (TOP Cloud-agri
TZS-I, China).

The process of obtaining DDD: three physiological data
(MDA, EC, and SS) positively correlated with drought degree of
tea plant were standardized, and the eigenvalues and eigenvectors
of the correlation matrix were calculated, and the principal
component score was calculated according to the cumulative
contribution rate (the sum of the three variables is >0.85, so the
three variables are available). The calculation formula of DDD
can be obtained:

Y = 0.359X1 + 0.341X2 + 0.3X3

where X1 is MDA, X2 is EL, and X3 is SS. The contents of
drought-induced components and DDD are shown in Table 1,
mainly including maximum, minimum, average, and standard
deviation. The distributions of drought-induced components and
DDD of six periods under drought stress are shown in Figure 2;
the change of soil relative humidity during drought treatment is
shown in Supplementary Figure 2.

Extraction of Spectral Variables
In the hyperspectral image processing software Specview
(Dualix spectral imaging, China), the hyperspectral image is
corrected by lens correction and reflectance correction, and the
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FIGURE 2 | Data distribution of drought-induced components (three repeats) and damage degree of six periods under drought stress (boxplot) (A). Malondialdehyde

content; (B). electrolyte leakage; (C). Fv/Fm; (D). soluble saccharide content; (E). drought damage degree. The data box in the figure below different letters are

significantly different at P < 0.05 according to Duncan’s test.

standardized hyperspectral image is obtained. In the remote
sensing image processing software Envi5.3 (RSI, America),
threshold segmentation is used to remove the background
pixels of the corrected hyperspectral image, and the average
spectral value of the leaf part is extracted by the combination
of binarization and mask (Duan, 2016). The average spectra of
all samples are extracted in turn, and the 176 × 180 (number of
variables × number of samples) spectral matrix is obtained. The
specific process is shown in Figure 3.

Spectral Data Preprocessing Method
In order to enhance the correlation between spectral parameters
and tea plant indexes, the original data were preprocessed
by MSC, S-G, and differential method (1D, 2D), where MSC
is a common data processing method for multiwavelength
modeling at present. The processed spectral data can effectively

eliminate the scattering effect and enhance the quality of spectral
information. The relevant formula is as follows:

Calculate the average spectrum :X (i) =

∑n
i=1 x (i)

n

Linear regression :X (i) = m (i) ∗x (i) + b (i)

MSC correction :X (i)(msc) =
x (i) − b (i)

m (i)

where X is the original spectral matrix of the sample,
X (i) ,m (i) , b (i) , and X (i)(msc) are the surface original spectral
mean, regression constant, regression coefficient, and MSC-
corrected spectrum of the ith sample.

Savitzky–Golay (S-G estimates the ideal spectral value of the
spectral data point by fitting or averaging the data points within
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FIGURE 3 | Hyperspectral image processing flow of tea leaves: Hyperspectral image, ROI image (band math, segmentation image, masking), and average spectrum.
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FIGURE 4 | Image comparison of unprocessed spectral data and preprocessed spectral data. (A) Original spectral data; (B). multiplicative scatter correction +

second derivative + Savitzky-Golay (17); (C). multiplicative scatter correction + second derivative + Savitzky-Golay (19); (D). multiplicative scatter correction+ second

derivative + Savitzky-Golay (7); (E). multiplicative scatter correction + first derivative + Savitzky-Golay (5); (F). multiplicative scatter correction+ second derivative +

Savitzky-Golay (17).

a certain size window range (the window width is generally
odd) around the single-point spectral data, so as to reduce
the interference of the irregular fluctuation noise signal in the
spectral data to the data point and improve the signal-to-
noise ratio of the spectral data. The formula of S-G smoothing
algorithm is as follows:

X∗
i =

∑

j=−r Xi +Wj
∑r

j=−r Wj

where X∗
i , Xi is a spectral data point before and after S-G

smoothing, and Wj is the weight factor obtained by smoothing
the moving window with window width 2R+ 1.

Derivative is mainly used for baseline correction and
background interference removal of spectral data, so as to
improve the resolution of spectral data. Due to the interference
of different components of the sample and the experimental
environment, the baseline shift (the position of the signal line
changes) and the overlap of the spectral lines are directly caused.
Therefore, the spectrum can be preprocessed by first derivative
(1D) or second derivative (2D) to provide clearer spectral profile
changes. However, when the original spectrum does not have
a good signal-to-noise ratio, the derivative algorithm will also
amplify the noise signal (Yan et al., 2001; Chu, 2004). The specific

algorithm formula of the differential method is as follows:

First derivative :
dy

dλ

=
yi+1 − yi

1λ

Second derivative :
d2y

dλ2
=

yi+1 − 2yi + yi− 1

1λ2

Model Accuracy Verification
The accuracy of the prediction model is measured by R2, RMSE,
and RPD. If R2 is larger and RMSE is smaller, the accuracy of
the model is higher and the model is more stable; otherwise, the
accuracy of the model is lower and the model is more unstable
(Cui et al., 2017). In addition, when RPD ≥ 2, it shows that the
model has an excellent prediction ability. When 1.4 ≤ RPD < 2,
it shows that the model can roughly estimate the sample, while
RPD < 1.4 shows that the model cannot predict the sample (Yu
et al., 2016).

RESULTS AND ANALYSIS

Significant Difference Analysis and
Division of Modeling Sample Set
The drought-induced components of tea leaves were ranked
according to time; the calibration set and prediction set of
samples were selected according to the ratio of 3:1. The sample
numbers of the calibration set and the prediction set are 135
and 45, respectively. The data distribution of the training set and
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FIGURE 5 | Distribution of characteristic bands. (A) Malondialdehyde-uninformative variable elimination; (B). Malondialdehyde-competitive adaptive reweighted

sampling; (C). Malondialdehyde-successive projections algorithm; (D). Electrolyte leakage-uninformative variable elimination; (E). Electrolyte leakage-competitive

adaptive reweighted sampling; (F). Electrolyte leakage-successive projections algorithm; (G). Fv/Fm-uninformative variable elimination; (H). Fv/Fm-competitive

adaptive reweighted sampling; (I). Fv/Fm-successive projections algorithm; (J). Soluble saccharide-uninformative variable elimination; (K). Soluble

saccharide-competitive adaptive reweighted sampling; (L). Soluble saccharide-successive projections algorithm; (M). Drought damage degree-uninformative variable

elimination; (N). Drought damage degree-competitive adaptive reweighted sampling; (O). Drought damage degree-successive projections algorithm.

Frontiers in Plant Science | www.frontiersin.org 7 August 2021 | Volume 12 | Article 695102128

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chen et al. Non-Destructive Testing of Hyperspectral Imaging

TABLE 2 | Bands screening results.

Index Screening method Number of bands Characteristic bands (nm)

MDA UVE 85 466–535, 540–580, 730–760, 790–820, 830–870, 950

CARS 36 450, 520, 600–620, 650–670, 740–780, 800, 920, 950

SPA 33 400–460, 520, 550, 650, 670–690, 750, 810–880, 900–970

EL UVE 57 530–550, 590–660, 690–730, 770–810, 850–910, 960

CARS 20 460–490, 540, 560–590, 750, 790–820, 850, 880, 930

SPA 26 430–470, 550, 600–680, 740, 750, 800–860

Fv/Fm UVE 73 535–570, 600–670, 780–830, 840–920, 930–950

CARS 20 460, 670, 700–740, 780, 820–850, 900–920

SPA 27 400, 520, 540, 690, 750–810, 870–930, 960–980

SS UVE 68 430–460, 530–570, 590–660, 690–750, 770–810, 850–910

CARS 15 420–440, 500, 530, 580–620, 670, 810, 870, 950

SPA 26 540–600, 670, 700, 750, 810, 850–930, 950–990

DDD UVE 71 450–530, 540–600, 670–820, 830–870, 910, 950

CARS 27 450, 520, 550, 600, 660, 700, 740, 810, 900, 950

SPA 26 400–430, 520, 540, 590–670, 700–740, 810–840, 970

the prediction set is shown in Supplementary Material, mainly
including maximum value, minimum value, average value, and
standard deviation.

Preprocessing of Hyperspectral Data
In order to reduce the influence of the external environment and
the dark current of the spectrometer, and reduce the baseline
drift, light scattering, and other noises of the spectrum, we
preprocessed the spectrum. In this paper, MSC, derivative (1D,
2D), and S-G technology are used to preprocess hyperspectral
data (Tian et al., 2005; Zhao et al., 2005; Lu et al., 2019b).
The spectral differences caused by different scattering levels
are eliminated, and the correlation between spectra and data
is enhanced. It can be seen from Figure 4 that, through
pretreatment, it is found that the peak valley of the spectral bands
is obvious, avoiding the interference of overlapping peaks and
improving the resolution and sensitivity of the spectrum.

Selection of Characteristic Wavelength
In order to improve the accuracy of the model and reduce
the influence of noise and irrelevant bands, we screened 176
bands of spectral data. In this paper, three methods are used to
select the characteristic bands: UVE, SPA, and CARS (Chen and
Chen, 2005; Wu et al., 2009; Shi et al., 2018). The distribution
of characteristic bands is shown in Figure 5. It can be seen
from Table 2 that in MDA-related characteristic bands screening
method, the number of characteristic bands screened by UVE
is the most, which is 85, and that by SPA was the least, 33. In
the selection method of characteristic bands related to EC, the
number of characteristic bands screened by UVE was the most,
57, and that by CARS was the least, 20. In the feature bands
selection method related to Fv/Fm, the number of characteristic
bands screened by UVE was the most, 73, and that by CARS
was the least, 20. Among the methods for screening characteristic
bands related to SS, the number of characteristic bands screened

TABLE 3 | Optimal screening results.

Index Optimal method Rcal RMSEC Rp RMSEP

MDA MSC+2D+S-G (17) +CARS 0.96 0.36 0.92 0.46

EL MSC+2D+S-G (19) + UVE 0.90 0.022 0.82 0.032

Fv/Fm MSC+2D+S-G (7) +CARS 0.98 0.01 0.81 0.03

SS MSC+1D+S-G (5) +UVE 0.87 0.09 0.87 0.69

DDD MSC+2D+S-D (17) + UVE 0.98 0.28 0.95 0.32

by UVE was the largest (68), and the number screened by CARS
was the least (15). In themethod of feature bands selection related
to DG, the number of characteristic bands screened by UVE was
the largest, which was 71, and that by SPA was the least, 26. It can
be seen from Table 3 that the optimal bands selection methods
for MDA, EL, Fv/Fm, SS, and DDD models are MSC+2D+ S-G
(17) +CARS, MSC+2D+S-G (19) + UVE, MSC+2D+S-G (7)
+CARS, MSC+1D+S-G (5)+UVE, andMSC+2D+S–D (17)+
UVE, respectively.

Modeling and Analysis Based on
Characteristic Bands
In order to establish the algorithmmodel of tea tree with different
indexes, we use the feature vectors extracted by UVE, CARS, and
SPA as the input variables of SVM, RF, and PLS models (Vapnik,
1998; Carrascal et al., 2010; Shao et al., 2012; Dong and Huang,
2013; Li, 2013; Zhou, 2016). Table 4 shows the results of the
validation of the model with prediction set samples; it can be
seen fromTable 4 that, inMDAprediction, CARS-PLSmodel has
the highest accuracy and SPA-RF model has the lowest accuracy.
Among themodels ofMDA, EL, Fv/Fm, SS, andDDD, themodels
with the highest prediction accuracy are CARS-PLS, UVE-RF,
CARS-SVM, UVE-PLS, and UVE-SVM respectively. The models
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TABLE 4 | Modeling results.

Index Modeling method Rcal RMSEC RMSECV Rp RMECP RPD

MDA MSC+2D+S-G (17) + UVE+SVM 0.97 0.33 0.45 0.90 0.55 3.19

MSC+1D+ S-G (15) +SPA+RF 0.96 0.34 0.36 0.91 0.54 3.01

MSC+2D+ S-G (17) +CARS+PLS 0.96 0.36 0.38 0.92 0.46 3.51

EL MSC+1D+S-G (21) +UVE+SVM 0.88 0.031 0.38 0.75 0.034 1.78

MSC+2D+S-G (19) +UVE+RF 0.90 0.022 0.021 0.81 0.032 2.00

MSC+2D+S-G (17) +SPA+PLS 0.88 0.11 0.034 0.76 0.035 1.90

Fv/Fm MSC+2D+S-G (7) +CARS+SVM 0.98 0.01 0.02 0.81 0.03 2.29

MSC+1D+S-G (7) +SPA+RF 0.94 0.017 0.021 0.83 0.027 2.15

MSC+2D+S-G (5) +SPA+PLS 0.89 0.069 0.021 0.80 0.031 2.23

SS MSC+1D+S-G (13) +UVE+ SVM 0.87 0.68 0.68 0.84 0.79 2.41

MSC+1D+S-G (13) +SPA+RF 0.93 0.50 0.36 0.86 0.73 2.46

MSC+1D+S-G (5) +UVE+PLS 0.87 0.09 0.71 0.87 0.69 2.72

DDD MSC+2D+S-G (17) +UVE+SVM 0.97 0.28 0.021 0.95 0.32 4.28

MSC+2D+S-G (15) +SPA+RF 0.96 0.29 0.29 0.92 0.40 3.27

MSC+2D+S-G (15) +CARS+PLS 0.92 0.077 0.41 0.91 0.43 3.27

with the lowest accuracy were SPA-RF, UVE-SVM, SPA-RF, UVE-
SVM, and CARS-PLS, respectively. Among the four physiological
and biochemical indexes of MDA, EL, Fv/Fm, and SS, the CARS-
PLS model of MDA had the best effect, and Rp, RMSEP, and
RPD were 0.92, 0.46, and 3.51, respectively. The results showed
that the UVE-SVM model of DDD index for the comprehensive
evaluation of tea drought degree had the highest precision and
the best effect, and Rp, RMSEP, and RPD were 0.95, 0.32, and
4.28, respectively. Figure 6 shows the scatter distribution of the
real value and the predicted value of the prediction sample set.

DISCUSSION

In this study, we found that the models of MDA, EL, Fv/Fm, and
SS have a precise prediction ability in the inversion process of
physiological/biochemical indexes and hyperspectral data of tea
plants; these physiological and biochemical indexes are closely
related to the drought state of tea plant, which has important
physiological significance (Tian et al., 2019). Moreover, using
MDA, SS, and EL to evaluate the stress degree of tea plants
comprehensively can eliminate the deviation of single index
evaluation to a certain extent, which is consistent with the
conclusion of Liang et al. (2014). In this experiment, the
estimation ability of the optimal models of MDA, EL, Fv/Fm,
SS, and DDD all reached the expected effect (Rp > 0.8), which
means that this method can quickly and non-destructively detect
the drought state of tea plants.

The Optimization of Input Variables and
Algorithms Is of Great Significance to
Improve the Accuracy and Efficiency of
Hyperspectral Data Inversion
First, in the selection of input datasets, a large number of
previous studies used the vegetation index to evaluate stress

(Wang et al., 2014a; Lu et al., 2019a). Due to the relatively
small amount of information of vegetation index and the
lack of stable vegetation index closely related to drought
stress, the generalization ability of the final model may be
reduced. Therefore, multialgorithm modeling analysis based
on full bands is adopted in this experiment, which improves
the accuracy of the model and makes the determination
coefficients of the five models to evaluate the drought state
of tea trees above 0.8, which proves the superiority of the
experimental model.

In this experiment, we use a variety of feature extraction
methods, including UVE, CARS, and SPA, to reduce redundant
information and computing time, simplify data, and improve
model accuracy. Then, the model of five indexes is established
by machine learning method. The results showed that the
optimization model had high precision and strong stability,
which indicated that it was feasible to predict the physiological
and biochemical indexes of tea and evaluate the drought
status of tea by hyperspectral technology. Among them, the
performance of UVE-SVM model of comprehensive index DDD
(Rcal = 0.97, RMSEC = 0.28, Rp = 0.95, RMSEP = 0.32,
RPD = 4.28) is better than that of other four physiological and
biochemical indexes (MDA, EL, Fv/Fm, and SS), indicating that
the method of combining multiple single indexes to evaluate
plant drought status is better than a single index. Among the
four physiological and biochemical indexes, CARS-PLS model
had the highest prediction accuracy of MDA (Rcal = 0.96,
RMSEC = 0.36, Rp = 0.92, RMSEP = 0.46, RPD = 3.51),
which indicated that the relationship between MDA content
and spectrum was more close than other physiological and
biochemical indexes. It is expected that this model can be used
to detect MDA content in tea seedlings, so as to evaluate the
drought situation of tea plants. In the prediction models of
EL, Fv/Fm, and SS, the RPD of the models was 2.72, 2.29, and
2.00 respectively, which was ≥2.00, indicating that the three
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FIGURE 6 | Scatter plot of real and predicted values. (A). Malondialdehyde-support vector machine; (B). Malondialdehyde-random forest; (C).

Malondialdehyde-partial least-squares regression; (D). Electrolyte leakage-support vector machine; (E). Electrolyte leakage-random forest; (F). Electrolyte

leakage-partial least-squares regression; (G). Fv/Fm-support vector machine; (H). Fv/Fm-random forest; (I). Fv/Fm-partial least-squares regression; (J). Soluble

saccharide-support vector machine; (K). Soluble saccharide-random forest; (L). Soluble saccharide-partial least-squares regression; (M) Drought damage

degree-support vector machine; (N). Drought damage degree-random forest; (O). Drought damage degree-partial least-squares regression.
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models had a good prediction ability and the stress state of young
tea plants.

The Quantity and Quality of the Selected
Characteristic Bands Have an Indirect
Effect on the Model
Spectral data analysis needs to include a large number of
samples, resulting in a large number of redundant data in the
spectral matrix. And the original spectral data are prone to the
phenomenon of spectral peak overlap, which leads to the slow
speed and low efficiency of spectral analysis. In addition, the
spectral matrix information unrelated to the sample detection
index will have a great impact on the prediction accuracy
of the model. Therefore, the performance of the prediction
model can be improved by extracting characteristic wavelengths
and removing redundant spectral variables from the collected
spectral data.

In this experiment, we screened the variables to obtain amodel

with stronger generalization ability. In the screening results

of MDA, EL, Fv/Fm, and SS, it was found that the spectral

regions of 600–700, 700–780, and 800–850 nm appeared, and the

positions of these peaks were closely related to the wavelength of

vegetation index RENDVI and NDVI, which were also the two

best indicators proposed by Kim et al. (2011) when they studied

the response of plants to drought. In addition, in Kong et al.’s

research (Kong et al., 2012), it is found that the characteristic

bands of barley MDA are around 404 and 981 nm, and the

selected characteristic bands are located at the two ends of the
selected band range, in the visible and near-infrared regions, with
large span and instability, and the possibility of noise interference
is not excluded. In this experiment, the best characteristic band
of MDA is 466–535, 540–580, 730–760, 790–820, 830–870, and
950 nm, which is different from the results of previous studies.
The reason may be that with the increase of drought degree,
MDA, as a product of plant peroxidation reaction, shows the
increase of cell membrane permeability and respiration, which
leads to the increase of reflectance in the visible region and
the decrease of reflectance in the near-infrared region, thus
increasing the characteristic bands (Soleimanzadeh, 2010). In
research (Zhang et al., 2019), we found that the characteristic
bands of conductivity of corn seeds were concentrated in the
range of 400–600 and 760–1,000 nm. The screening results of
UVE of EL in this experiment were 430–460, 530–570, 590–
660, 690–740, 770–810, and 850–910 nm, which were similar to
the previous research results; the optimal characteristic bands
of Fv/Fm are 400, 520, 540, 690, 750–810, 870–930, and 960–
980 nm. The reason may be that SPA algorithm chooses the
variable combination with the least redundant information and
the least collinearity, and the reflectance of near-infrared band in
spectral data is quite different, which is different from previous
research results. In the screening results of Fv/Fm characteristic
bands, the corresponding bands (531 and 570 nm) of vegetation
index PRI can be found, which is an effective index proposed
by Wu and Niu (2008) in the study of plant photochemical
vegetation index. In the visible light region of 400–700 nm, tea
leaves absorbed a lot of visible light, but under drought stress, the

photosynthesis of tea plants decreased, resulting in more visible
light reflection and higher canopy original spectral reflectance.
In the range of 700- to 1,000-nm near-infrared region, the
spectral reflectance is greatly affected by the internal structure
of leaves. Drought stress may lead to the disorder of internal
tissue structure and rough cell wall of leaves (Mu et al., 2012), the
complex leaf cavity structure scatters, and reflects near-infrared
light many times, resulting in the decrease of spectral reflectance
(Xu et al., 2017); in the visible light range, the utilization rate
of light energy decreased and the reflectance of visible light
increased, while Fv/Fm value and chlorophyll content could
reflect the light utilization efficiency of plants. The SPA algorithm
screening results of SS in this experiment were 540–600, 730, 750,
810, 850–930, and 950–990 nm. In the range of 560–719 nm, it
is similar to the results of previous studies (Wang et al., 2018),
but this experiment is different from previous studies in the near-
infrared region. The reason may be that with the increase in
SS concentration, the difference of near-infrared light reflection
that leaves do not absorb becomes larger, so it is selected as the
characteristic band by the algorithm.

The Algorithm Characteristics of the Model
Determine the Correlation Between
Hyperspectral Data and Drought Stress
Through the comparison of three modeling methods, it is found
that the optimal models of different data are different, and the
reason may be as follows: SVM model can make full use of the
linear and non-linear information in the spectral data, but it is
difficult to implement for the training set with a large amount
of data. If a large part of the features of the data is lost, the
RF can still maintain the accuracy, but cannot make predictions
beyond the range of the training set data, which may lead to
overfitting in themodeling of some specific noise data. PLSmodel
can find the best function matching by minimizing the sum of
squares of errors, but it can only use the linear information in
spectral data.

In previous studies, it was found that LS-SVM was the best
model for MDA content of barley under herbicide stress, and
the determination coefficient of prediction set Rp = 0.84, but
the RMSEC and RMSEP were 7.87 and 13.79, respectively (Kong
et al., 2012), indicating that the degree of divergence of prediction
results was too large. In this experiment, UVE-SVM is the
best MDA model under drought stress, Rp = 0.9, RMSEP is
only 0.55, which proves that this modeling method is better
than LS-SVM model to some extent; In Zhang et al.’s research,
MSC-GA-PLSR model was the best model for predicting the
conductivity of sweet corn seeds (Zhang et al., 2019), with
Rp = 0.97 and RMSEP = 0.226. In the experiment, CARS-
RF model had the highest accuracy in this experiment, with
Rp = 0.81 and RMSEP = 0.032. The CARS-RF model in
this experiment is more stable than Zhang et al.’s GA-PLSR
model; in this experiment, using a variety of algorithms and
selecting the optimal model, the accuracy of Fv/Fm model of
CARS-SVM (Rp = 0.81, RMSEP = 0.03) is higher than that of
MASAVI2 model using vegetation index (Rp = 0.69, RMSEP
= 8.6) (Zhao et al., 2011), and the stability is higher than
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that of full bands-PLS model (Rp = 0.83, RMSEP = 1.52)
(Ding et al., 2015). According to Wang et al. ’s research, the
vegetation index DSI (D444, D455) was the best linear prediction
model of SS in maize under drought stress (Wang et al., 2018).
The coefficients of determination of D444 and D455 were Rp
= 0.88 and Rp = 0.94, while those of RMSEP were 5.40
and 3.19, respectively. The results showed that the difference
between the two models was large, which may be due to the
limitations of their linear models and their limited ability to
analyze complex hyperspectral data. In this experiment, the
optimal SS-UVE-PLS model (Rp = 0.87, RMSEP = 0.69) is
obtained through a variety of algorithms, and the anti-jamming
ability and prediction accuracy are better than the former. In
this experiment, the three models of comprehensive evaluation
of tea drought damage have an excellent effect, among which the
UVE-SVM model (Rcal = 0.97, Rp = 0.95, RPD = 4.28) is the
best, which proves that the effect of the comprehensive evaluation
model is better than the single physiological and biochemical
index model.

CONCLUSION

In this experiment, we established the hyperspectral data
models of five indexes related to drought evaluation by image
segmentation, spectral preprocessing, and feature band selection.
The results show that the best estimation models of the four
physiological and biochemical indexes (MDA, EC, Fv/Fm, SS,
DDD) were CARS-PLS, UVE-RF, SPA-RF, UVE-PLS, and UVE-
SVM, respectively. The determination coefficients of the model
prediction set were 0.92, 0.81, 0.83, 0.87, and 0.95, respectively.
The models all achieve the expected results, and the prediction
accuracy is very high. Among them, the model of DDD is better
than themodel of the four physiological and biochemical indexes,
which can more comprehensively and objectively estimate the
drought stress suffered by tea plants and effectively evaluate the
drought resistance of tea plants.

Through the research and application of the models, the
automatic irrigation of tea garden can be realized, the water-
use efficiency of tea garden can be improved, and it is of great
significance for water saving and consumption reduction. At the

same time, this study is expected to be used to evaluate the
drought resistance of different tea varieties, so as to screen out
drought-resistant tea varieties.
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