About this Research Topic
New insights into how B cells respond to infections/re-infections have also been generated through the recent identification of B cell subsets with strong implications in host immunity against infectious agents, autoimmunity and aging, such as activation-induced naïve B cells, age-associated B cells and atypical memory B cells. Notably, some of these B cell subsets share the functional dependency on T-bet, but are distinct from each other, perhaps due to the differential targeting of NF-kB and IRFs. This is particularly pertinent to the understanding of B cell differentiation modulated by IFNy in the antibody and autoantibody responses. It has been increasingly appreciated that activation, proliferation and differentiation of B cells are tightly linked to and specifically regulated by the metabolic state of these cells. We emphasize the differential requirements of glycolysis for B cells to fast divide, a hypoxia environment for B cells to undergo CSR, and oxidative phosphorylation for B cells to differentiate into plasma cells. While hypoxia also promotes the survival of plasma cells, autophagy plays a crucial role in the generation and maintenance of class-switched memory B cells. Indeed, throughout all B cell activation and differentiation stages, different sophisticated mechanisms are employed to counter the propensity of B cells to death.
With novel tools that continuously provide newer and more accurate information, B cells have become the center of our attention due to insufficient vaccines and therapeutic means to endemics in the developing world, the hypersensitivity and intolerance in the developed world, and ill preparations to emerging infectious agents that can quickly turn to pandemics in both, with COVID-19 being a clear case.
Here, we seek Original Research, Review, Mini-Review, Hypothesis and Theory, and Opinion articles that cover, but are not limited to, the following subjects:
1. B cell and antibody responses to specific infectious agents during natural infections and in pre-clinical animal models.
2. Generation of memory B cells and development of vaccines against persistent and newly emerging infections.
3. Heightened antibody responses to allergens or autoantigens and underlying dysregulation of B cell activation and differentiation.
4. Complexity of B cell stimuli and their interactions, in the context of local and systemic immune environments, to regulate CSR, SHM and plasma cell differentiation.
5. Networks of signal transduction pathways and transcription factors that underpin the B cell response.
6. Regulation of B cell differentiation by metabolic, nutritional, hormonal and other environmental elements, and underlying epigenetic mechanisms.
7. Function of B cells as regulatory cells, in the context of cancer immunology, diabetes, gut inflammation and other pathophysiological conditions.
8. New clinical studies in B cell lymphomagenesis and autoimmune diseases built on the understanding of molecular mechanisms of B cell differentiation.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.