

[image: image]





Frontiers eBook Copyright Statement

The copyright in the text of individual articles in this eBook is the property of their respective authors or their respective institutions or funders. The copyright in graphics and images within each article may be subject to copyright of other parties. In both cases this is subject to a license granted to Frontiers.

The compilation of articles constituting this eBook is the property of Frontiers.

Each article within this eBook, and the eBook itself, are published under the most recent version of the Creative Commons CC-BY licence. The version current at the date of publication of this eBook is CC-BY 4.0. If the CC-BY licence is updated, the licence granted by Frontiers is automatically updated to the new version.

When exercising any right under the CC-BY licence, Frontiers must be attributed as the original publisher of the article or eBook, as applicable.

Authors have the responsibility of ensuring that any graphics or other materials which are the property of others may be included in the CC-BY licence, but this should be checked before relying on the CC-BY licence to reproduce those materials. Any copyright notices relating to those materials must be complied with.

Copyright and source acknowledgement notices may not be removed and must be displayed in any copy, derivative work or partial copy which includes the elements in question.

All copyright, and all rights therein, are protected by national and international copyright laws. The above represents a summary only. For further information please read Frontiers’ Conditions for Website Use and Copyright Statement, and the applicable CC-BY licence.



ISSN 1664-8714
ISBN 978-2-88976-640-6
DOI 10.3389/978-2-88976-640-6

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a pioneering approach to the world of academia, radically improving the way scholarly research is managed. The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share and generate knowledge. Frontiers provides immediate and permanent online open access to all its publications, but this alone is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, online journals, promising a paradigm shift from the current review, selection and dissemination processes in academic publishing. All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service to the scholarly community. At the same time, the Frontiers Journal Series operates on a revolutionary invention, the tiered publishing system, initially addressing specific communities of scholars, and gradually climbing up to broader public understanding, thus serving the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative interactions between authors and review editors, who include some of the world’s best academicians. Research must be certified by peers before entering a stream of knowledge that may eventually reach the public - and shape society; therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact





DIGITAL IMAGING OF PLANTS

Topic Editors:

Michele Pisante, University of Teramo, Italy

Kathy Steppe, Ghent University, Belgium

Angelica Galieni, Council for Agricultural and Economics Research (CREA), Italy

Nicola D’Ascenzo, Huazhong University of Science and Technology, China

Fabio Stagnari, Università degli studi di Teramo, Italy

Qingguo Xie, Huazhong University of Science and Technology, China

Citation: Pisante, M., Steppe, K., Galieni, A., D’Ascenzo, N., Stagnari, F., Xie, Q., eds. (2022). Digital Imaging of Plants. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88976-640-6





Table of Contents




Editorial: Digital Imaging of Plants

Michele Pisante, Angelica Galieni, Fabio Stagnari, Kathy Steppe, Qingguo Xie and Nicola D’Ascenzo

Raman-Based Diagnostics of Biotic and Abiotic Stresses in Plants. A Review

William Z. Payne and Dmitry Kurouski

Past and Future of Plant Stress Detection: An Overview From Remote Sensing to Positron Emission Tomography

Angelica Galieni, Nicola D’Ascenzo, Fabio Stagnari, Giancarlo Pagnani, Qingguo Xie and Michele Pisante

Functional Hyperspectral Imaging by High-Related Vegetation Indices to Track the Wide-Spectrum Trichoderma Biocontrol Activity Against Soil-Borne Diseases of Baby-Leaf Vegetables

Gelsomina Manganiello, Nicola Nicastro, Michele Caputo, Massimo Zaccardelli, Teodoro Cardi and Catello Pane

Guide to Plant-PET Imaging Using 11CO2

Jens Mincke, Jan Courtyn, Christian Vanhove, Stefaan Vandenberghe and Kathy Steppe

Field-Deployable Computer Vision Wood Identification of Peruvian Timbers

Prabu Ravindran, Frank C. Owens, Adam C. Wade, Patricia Vega, Rolando Montenegro, Rubin Shmulsky and Alex C. Wiedenhoeft

Raman Spectroscopy Can Distinguish Glyphosate-Susceptible and -Resistant Palmer Amaranth (Amaranthus palmeri)

Vijay Singh, Tianyi Dou, Mark Krimmer, Shilpa Singh, Dillon Humpal, William Z. Payne, Lee Sanchez, Dmitri V. Voronine, Andrey Prosvirin, Marlan Scully, Dmitry Kurouski and Muthukumar Bagavathiannan

Seed Priming With Protein Hydrolysates Improves Arabidopsis Growth and Stress Tolerance to Abiotic Stresses

Mirella Sorrentino, Nuria De Diego, Lydia Ugena, Lukáš Spíchal, Luigi Lucini, Begoña Miras-Moreno, Leilei Zhang, Youssef Rouphael, Giuseppe Colla and Klára Panzarová

Digital Phenotyping to Delineate Salinity Response in Safflower Genotypes

Emily Thoday-Kennedy, Sameer Joshi, Hans D. Daetwyler, Matthew Hayden, David Hudson, German Spangenberg and Surya Kant

Wheat Spike Blast Image Classification Using Deep Convolutional Neural Networks

Mariela Fernández-Campos, Yu-Ting Huang, Mohammad R. Jahanshahi, Tao Wang, Jian Jin, Darcy E. P. Telenko, Carlos Góngora-Canul and C. D. Cruz

In situ Phenotyping of Grapevine Root System Architecture by 2D or 3D Imaging: Advantages and Limits of Three Cultivation Methods

Yuko Krzyzaniak, Frédéric Cointault, Camille Loupiac, Eric Bernaud, Frédéric Ott, Christophe Salon, Anthony Laybros, Simeng Han, Marie-Claire Héloir, Marielle Adrian and Sophie Trouvelot

Non-invasive 11C-Imaging Revealed the Spatiotemporal Variability in the Translocation of Photosynthates Into Strawberry Fruits in Response to Increasing Daylight Integrals at Leaf Surface

Yuta Miyoshi, Kota Hidaka, Yong-Gen Yin, Nobuo Suzui, Keisuke Kurita and Naoki Kawachi

Automatic Diagnosis of Rice Diseases Using Deep Learning

Ruoling Deng, Ming Tao, Hang Xing, Xiuli Yang, Chuang Liu, Kaifeng Liao and Long Qi

A Method of Green Citrus Detection in Natural Environments Using a Deep Convolutional Neural Network

Zhenhui Zheng, Juntao Xiong, Huan Lin, Yonglin Han, Baoxia Sun, Zhiming Xie, Zhengang Yang and Chenglin Wang

Diagnosis of Typical Apple Diseases: A Deep Learning Method Based on Multi-Scale Dense Classification Network

Yunong Tian, En Li, Zize Liang, Min Tan and Xiongkui He

Contour-Based Detection and Quantification of Tar Spot Stromata Using Red-Green-Blue (RGB) Imagery

Da-Young Lee, Dong-Yeop Na, Carlos Góngora-Canul, Sriram Baireddy, Brenden Lane, Andres P. Cruz, Mariela Fernández-Campos, Nathan M. Kleczewski, Darcy E. P. Telenko, Stephen B. Goodwin, Edward J. Delp and C. D. Cruz

Multi-Target Recognition of Bananas and Automatic Positioning for the Inflorescence Axis Cutting Point

Fengyun Wu, Jieli Duan, Siyu Chen, Yaxin Ye, Puye Ai and Zhou Yang

Improving Accuracy of Tomato Plant Disease Diagnosis Based on Deep Learning With Explicit Control of Hidden Classes

Alvaro Fuentes, Sook Yoon, Mun Haeng Lee and Dong Sun Park

Image-Based Hot Pepper Disease and Pest Diagnosis Using Transfer Learning and Fine-Tuning

Yeong Hyeon Gu, Helin Yin, Dong Jin, Jong-Han Park and Seong Joon Yoo

A Proof-of-Principle Study of Non-invasive Identification of Peanut Genotypes and Nematode Resistance Using Raman Spectroscopy

William Z. Payne, Tianyi Dou, John M. Cason, Charles E. Simpson, Bill McCutchen, Mark D. Burow and Dmitry Kurouski

Design Study of a Novel Positron Emission Tomography System for Plant Imaging

Emanuele Antonecchia, Markus Bäcker, Daniele Cafolla, Mariachiara Ciardiello, Charlotte Kühl, Giancarlo Pagnani, Jiale Wang, Shuai Wang, Feng Zhou, Nicola D’Ascenzo, Lucio Gialanella, Michele Pisante, Georg Rose and Qingguo Xie

Non-invasive Estimation of Foliar Nitrogen Concentration Using Spectral Characteristics of Menthol Mint (Mentha arvensis L.)

Praveen Pandey, Swati Singh, Mohammad Saleem Khan and Manoj Semwal












	
	TYPE Editorial
PUBLISHED 25 August 2022
DOI 10.3389/fpls.2022.986584






Editorial: Digital imaging of plants

Michele Pisante1*, Angelica Galieni2, Fabio Stagnari1, Kathy Steppe3, Qingguo Xie4,5,6 and Nicola D'Ascenzo4,5,6*


1Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy

2Research Centre for Vegetable and Ornamental Crops, Council for Agricultural and Economics Research (CREA), Pontecagnano Faiano, Italy

3Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium

4Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China

5Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo Neuromed I.R.C.C.S., Pozzilli, Italy

6Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China

[image: image2]

OPEN ACCESS

Edited and reviewed by:
Roger Deal, Emory University, United States

*CORRESPONDENCE
 Michele Pisante, mpisante@unite.it
 Nicola D'Ascenzo, ndasc@hust.edu.cn

SPECIALTY SECTION
 This article was submitted to Technical Advances in Plant Science, a section of the journal Frontiers in Plant Science

RECEIVED 05 July 2022
 ACCEPTED 09 August 2022
 PUBLISHED 25 August 2022

CITATION
 Pisante M, Galieni A, Stagnari F, Steppe K, Xie Q and D'Ascenzo N (2022) Editorial: Digital imaging of plants. Front. Plant Sci. 13:986584. doi: 10.3389/fpls.2022.986584

COPYRIGHT
 © 2022 Pisante, Galieni, Stagnari, Steppe, Xie and D'Ascenzo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.



KEYWORDS
 digital plant imaging, plant positron emission tomography, plant RGB imaging, plant functional imaging, early stress detection



Editorial on the Research Topic
 Digital imaging of plants





Digital plant imaging – A revolution on the crossroads between physics, mathematics, plant physiology, and digital agronomy

Each plant species is different and physiological damages following stress are strongly crop-dependent. Visual inspection of morphologic, organoleptic, and chromatic traits of plants has represented the traditional approach to stress assessment since centuries. When addressed from an information science perspective, visual inspection deals with the extraction of parameters of agronomic interest from crop digital images. The arrival of digital imaging and Artificial Intelligence (AI) boosted digital image processing to an unprecedented level of precision, enabling the possibility of identifying hidden features in macroscopic crop images.

The predictive power of these digital imaging techniques is limited by the empiric nature of the data, which relies on external evidence of stress. It is however well-known that plants, when subjected to both biotic and abiotic stressful conditions, respond through physiological and metabolic changes mediated by pulses of gene expression, suggesting the existence of a complex signaling network that allows plant recognizing adverse environmental conditions as well as changes in growth conditions. Modern nuclear imaging techniques, such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) allow to visualize in 3D the internal structure of the vascular system and organs of plants with a spatial resolution of few hundred of micrometers and help with the identification of structural evidence of stress.

Also supported by AI classification algorithms, morphologic mesoscopic imaging represents a clear advance with respect to macroscopic digital imaging but does not allow to observe the physiological aspects of plant stress. Positron Emission Tomography (PET) introduced in this landscape a revolution. It is in fact the only technique which allows to visualize in 3D the metabolism and transport of carbon, glucose, and water from sources to sinks, enabling an in-vivo and real-time inspection of the functional aspects of plants vascular system and organs. If the development of a plant PET system requires a biomedical and electronic engineering background, the quantitative interpretation of PET measurements requires the development of applied mathematics and physical modeling theories and methods, to form a 3D image and to connect the observation with quantitative fluid dynamic aspects. This unique cross-disciplinary approach is at the basis of a series of European actions, like the Horizon 2020 project PETAL (Positron Emission Tomography for Agriculture and Life) which aims at collecting the first worldwide digital biobank of plant functional imaging data for wheat stress assessment (https://petalproject.eu).

The 17 original research articles, the two methods and two review papers of this Research Topic describe this transition and revolution from conventional agronomic methods to disruptive cross-disciplinary, technological, and AI-supported digital imaging techniques for the early stress assessment on the plant models and crops in green houses and open field.



The frontier of digital plant imaging—From RGB imaging to dynamic functional imaging

The potential of Red Green Blue (RGB) digital imaging is nowadays widely demonstrated in agronomy. For instance, contour-based detection of fungal stromata has been proven by Lee et al. to be helpful in quantifying the intensity of tar spot infections of corn leaves. Furthermore, visual disease estimation of wheat spike blast can be used to train deep convolutional neural networks (CNN) for disease severity (DS) classification. Results shown by Fernández-Campos et al. provide a promising approach to classify images into three wheat blast severity categories. Along a similar research direction, Zheng et al. detected green citrus in natural environments and Wu et al. offered a solution to the real-time operating requirements for the banana bud-cutting robot. Furthermore, Ravindran et al. tested a computer vision wood identification model for Peruvian woods that is ready for immediate in-country field evaluation on the XyloTron platform.

The high-throughput phenotyping approach (Thoday-Kennedy et al.) allowed to identify candidate genotypes for salt tolerance in safflower. Similarly, Sorrentino et al. used it as a valuable tool to compare biostimulants at different concentrations on plants grown under several conditions, allowing to accelerate the selection of the best performing substances at highly efficiency. A digital plant imaging screening method of novel and effective biological control agents (BCAs) against soil-borne plant pathogens is proposed by Manganiello et al.. Finally, nutrient diagnosis in Menthol mint to make precise N fertilizer recommendations has been introduced by Pandey et al..

Digital plant imaging is going to play a key role in the early assessment of biotic stress, steering fast diagnosis of diseases and timely control measures, which are crucial to increase plant production. Deng et al. carried out an accurate diagnosis on the vegetative part of the rice in open field, and developed a model for plant disease recognition. A similar approach based on deep learning method on multi-scale dense classification network allowed to distinguish different kind of diseases and the same disease with different grades (Tian et al.). Similarly, Fuentes et al. propose a paradigm called “control to target classes.” The core of this approach is to train and validate a deep learning-based detector using target and control classes on images collected in various greenhouses. On the same topic, Gu et al. proposed an improved method for the diagnosis of hot-pepper diseases and pests using a fine-tuning-based transfer learning method.

As mentioned above, macroscopic digital imaging allows to extract features, which can be correlated to a specific state of the plant. However, to produce a quantitative biomarker containing physiological information, mesoscopic and microscopic imaging will be necessary. The review (Payne and Kurouski) on Raman spectroscopy (RS) discusses the most recent research articles on this emerging analytical technique that can be used for non-invasive, non-destructive, and confirmatory diagnostics of diseases, as well as the nutrient deficiencies in plants. The evaluation of herbicide resistance and stress response in plants under field conditions with RS is presented by Singh et al. as well as the attempt by Payne et al. for the identification of peanut genotypes and nematode resistance.

The cross-fertilization between agronomy and nuclear imaging techniques has been beneficial to extend the imaging potential of existing instrumentation. For instance, Krzyzaniak et al. have demonstrated that neutron tomography is relevant to quantify the root volume in grapevine propagated by cuttings potentially be extended to other plants. As mentioned above, nuclear imaging techniques represent the frontier of plant imaging. Among the several existing technologies, Positron Emission Tomography (PET) represents the only solution for non-invasive, quantitative, dynamic functional imaging. PET enables agronomists and plant scientists to visualize the 3-dimensional flow of nutrients within the plant vascular system and the organs, identifying cellular metabolism sources and storage sinks (Galieni et al.). Mincke et al. highlighted in their guide to plant-PET that this type of imaging is a complex cross-disciplinary topic, requiring a background in biomedical engineering, mathematical modeling, plant science, applied and nuclear physics, which are at the basis of a proper implementation and use of the PET technique on plants. Such a cross-disciplinarity represents at once the difficulty and the scientific challenge of plant PET, motivating the development of novel dedicated plant imaging systems (Antonecchia et al.). Plant PET has been found successful in the quantitative study of plant metabolism. For instance, Mincke et al. developed a technique for the study of carbon dynamics based on [11C]-CO2. Similarly, Miyoshi et al. studied carbon metabolism and transport in strawberry fruits using the PETIS system, developed for the specific application of plant-PET.

Plant digital imaging represents one of the key emerging technologies for the ecological intensification as a pathway to sustainable agriculture through accurate agronomic information. We expect that it will provide an effective beneficial result in the early detection and control of crop stress. This field of research became fundamental due to the rapidly devastating conditions caused by global climate change and desertification, also exacerbated by the recent economical and societal developments.
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Digital farming is a novel agricultural philosophy that aims to maximize a crop yield with the minimal environmental impact. Digital farming requires the development of technologies that can work directly in the field providing information about a plant health. Raman spectroscopy (RS) is an emerging analytical technique that can be used for non-invasive, non-destructive, and confirmatory diagnostics of diseases, as well as the nutrient deficiencies in plants. RS is also capable of probing nutritional content of grains, as well as highly accurate identification plant species and their varieties. This allows for Raman-based phenotyping and digital selection of plants. These pieces of evidence suggest that RS can be used for chemical-free surveillance of plant health directly in the field. High selectivity and specificity of this technique show that RS may transform the agriculture in the US. This review critically discusses the most recent research articles that demonstrate the use of RS in diagnostics of abiotic and abiotic stresses in plants, as well as the identification of plant species and their nutritional analysis.

Keywords: digital farming, non-invasive phenotyping, nutrient content assessment, plant disease diagnostics, Raman spectroscopy, optical sensing


INTRODUCTION

As the global population grows exponentially, the expansion of agricultural territories is restricted by a scarcity of rich land, an increase in cost, and operational time consumption of conventional farming. This problem can be solved by an expansion of agricultural territories or by the development of digital farming. While the first approach is destructive and inefficient, the second strategy is focused on an enhancement of the farming efficiency. By other means, digital farming, or precision agriculture, aims to maximize the crop yield with minimal environmental impact. This can be achieved by timely detection and identification of biotic (plant diseases) and abiotic [drought and nutrient deficiency (ND)] stresses.

Plant diseases caused by fungi and viruses can reduce the crop yield on average by 40%, depending on a host, the pathogen and environmental conditions (Mantri et al., 2012; Waqas et al., 2019). Confirmatory diagnosis of such diseases can be used for the precise application of fungicides and pesticides, allowing for highly efficient pathogen treatment, maximization of the crop yield and minimization of the environmental impact of farming (Farber et al., 2019a). There are several molecular and imaging techniques that can be used to detect biotic stresses (Raza et al., 2015). For instance, polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) are commonly used for confirmatory diagnostics of plant diseases (Alvarez and Lou, 1985; Li et al., 2006; Lievens et al., 2006). Rapid development of these technologies enabled on-site, rather than laboratory-based, use of these methods (Ahrberg et al., 2016, 2020; Thomas et al., 2019). However, relatively high cost of PCR analysis (~$15 per sample) limits broad use of this technique in farming. Confirmatory diagnostic of abiotic stresses, such as nutrient deficiencies and drought, is far more challenging than the detection and identification of plant diseases. These conditions are also far more detrimental than a pathogen-induced stress: lack of nutrients, water or hyper salinity can cause up to a 70% reduction in the crop yield (Mantri et al., 2012; Waqas et al., 2019). There are several imaging techniques, such as hyperspectral imaging and thermography, that potentially can be used for an indirect detection of abiotic stresses in plants (Bauer et al., 2019; Caballero et al., 2020). These techniques allow for fast imaging of broad field areas and identification of “problematic areas” (Baena et al., 2017; Lu et al., 2020). However, these methods do not always possess required specificity. Diagnostics of nutrient deficiencies can also be achieved by the use of sophisticated chromatographic and colorimetric procedures (Zhu et al., 2008; Mihaljev et al., 2015), which are time and labor consuming. This catalyzes a search for alternative methods of diagnostics of plant stresses that can be inexpensive, fast, portable, and confirmatory.

Digital farming also requires advanced methodologies in plant breeding and selection (He et al., 2020; Wang et al., 2020). This is necessary to develop the germplasm of crops to have higher drought or soil salinity tolerance, as well as enhance the resistance to pathogens. One of the major drawbacks of conventional plant selection and breeding techniques is the long period of time that takes to measure the effect of a specific stress on plants (He et al., 2020; Wang et al., 2020). For example, the current in vivo techniques are focused on determination of physiological changes or plant chlorophyll contents, which are not directly related to the stress response and therefore require many experiments to draw meaningful conclusions (He et al., 2020). Biochemical in vitro techniques are more relevant but are destructive and labor-intensive. Because of unpredictable weather patterns, drought or fungal tolerance screening of breeding populations during the entire growing session over many months are difficult to perform as drought stress is difficult to control (Gao et al., 2008). To speed up this research, there is an urgent need to develop more robust phenotyping techniques for non-destructive, accurate and rapid assessment of breeding populations for drought-related responses, especially at the early seedling stages and with short periods of withholding water.

Raman spectroscopy allows for non-invasive and non-destructive detection and identification of biotic (Egging et al., 2018; Farber and Kurouski, 2018; Sanchez et al., 2019a, 2019c) and abiotic (Altangerel et al., 2017; Sanchez et al., 2020b) stresses. RS can be used for accurate and rapid plant phenotyping and the assessment of the nutritional content of grains (Krimmer et al., 2019; Farber et al., 2020c). RS is based on a phenomenon of inelastic light scattering by molecules that are being excited to higher vibrational or rotational states. After the first experimental demonstration of this phenomenon in 1928 by C. V. Raman, the spectroscopy of inelastic light scattering or RS continuously gain popularity in a large variety of research fields that range from food chemistry (Almeida et al., 2010) and electrochemistry (Zeng et al., 2016) to forensics (Kelly Virkler and Lednev, 2009; López-López et al., 2013) and materials science (Cantarero, 2015). Agriculture and farming, together with a basic plant biology, plant breeding, and pathology are relatively new unchartered territories for RS. One can expect that RS had far-reaching implications in agriculture broadly defined due to its non-invasiveness, non-destructiveness, high sensitivity, and a label-free nature. Raman had desired portability, low labor, and cost requirements (Yeturu et al., 2016; Farber and Kurouski, 2018; Farber et al., 2019a). Raman had no difficulty in scanning an entire orchid due to its quick analysis time (typically 1 s per reading) and high specificity for both biotic and abiotic stresses. The fast results of RS allow farmers to take advantage of the information and make quick adjustments to cease the development of a certain biotic or abiotic stress. The non-labor-intensive and non-destructive nature of Raman also allows for rapid assessment of the plant phenotype directly in the field, eliminating the need of a wet-laboratory analysis of plants (Krimmer et al., 2019; Farber et al., 2020c).



INSTRUMENTATION AND IMAGING APPROACHES

Although the instrumental concept of RS was known since 1928, rapid growth of this technique took place after the invention of lasers in 1960s and CCDs in 1980s (Cardona, 1975). Massive lasers used in first Raman spectrometers not only needed a large footprint of a laboratory space for such instruments but also required highly efficient water chillers. Appearance of solid-state continuous wavelength (CW) lasers and highly stable CCDs allowed for substantial militarization of Raman spectrometers. Currently, several companies offer excellent hand-held devices that can be used directly in the field or a crime scene (Figure 1). Although portable spectrometers continuously gain popularity, confocal Raman microscopes remain the instrument of choice if low amount of material is available or spatial resolution of the Raman measurements is required.

[image: Figure 1]

FIGURE 1. Two commercially available hand-held Raman spectrometers with 1,064 nm (left) and 830 nm (right) excitations (top) and a bench-top home-built confocal Raman microscope (bottom).


From a hardware perspective, confocal Raman microscopes and hand-held instruments share similar engineering concepts. Electromagnetic radiation generated by a laser source is directed by a beam splitter toward the sample. Achromatic lens or a microscope objective is then used to focus a light on the sample (Figure 2). Scattered light is collected typically using the same optical setup. Next, with a use of edge/long-pass filters, elastically scattered photons are removed. The remaining inelastically scattered photons are directed into the spectrometer, where photons are dispersed on a grating according to their energies prior to their appearance on the CCD. Typically, researchers use near-Infrared (near-IR; 785 and 830 nm) laser sources for RS on biological species (Vallejo-Pérez et al., 2016; Farber et al., 2019b, 2020c; Mandrile et al., 2019; Sanchez et al., 2019c, 2020e). This wavelength choice is based on a phenomenon that is known as “biological window.” A light of a red-near-IR part of the electromagnetic spectrum penetrates deeper into biotical species compared to the blue-green light. Near-IR excitation is also unlikely in the case of photodegradation and thermal degradation of biological specimens. For instance, Kurouski group demonstrated a lack of photodegradation and thermal degradation of a plant leaf upon the use of nearly 0.5 W of 830 nm laser (Sanchez et al., 2019c). It should be noted that the use of green (532 nm) and IR (1,064 nm) excitations in the plant research also has been demonstrated (Yeturu et al., 2016; Altangerel et al., 2017; Egging et al., 2018; Farber and Kurouski, 2018).

[image: Figure 2]

FIGURE 2. Schematic representation of a Raman spectrometer.




SPECTRAL TREATMENT AND INTERPRETATION OF VIBRATIONAL BANDS

Raman spectra collected from plant leaves with both 532 nm and 785–830 nm excitations typically have a fluorescence background (Figure 3). Subtraction of such a background is a straightforward process that can be performed either in Matlab (Sikirzhytski et al., 2012) or directly by the spectrometer (Farber and Kurouski, 2018; Farber et al., 2019b).

[image: Figure 3]

FIGURE 3. Raw (green) and baseline-corrected (red) Raman spectra collected from a rose leaf with 785 nm excitation.


Direct comparison of Raman spectra can be a challenging task, primarily because the overall spectral intensity can vary with coloration of the analyzed specimen. For instance, Krimmer and co-workers found that dark maize kernels absorbed more and consequently scattered less light relative to the yellow or pale color kernels (Krimmer et al., 2019). Since RS is based on inelastic light scattering, the researchers concluded that dark color maize varieties would produce less intense Raman spectra (under the same experimental conditions) compared to the light color maize varieties. Therefore, observed variations in spectral intensities are likely to originate from different light absorption and scattering properties of such kernels. Kurouski group proposed to solve this problem using normalization. It should be noted that spectra normalization on one particular band that can be assigned to a specific class of molecules, such as carbohydrates, is not appropriate. Such normalization would bias spectral interpretation in regard to the nutrient content of that class of molecules. At the same time, there are several vibrational bands that originate from aliphatic (CH2) vibrations, such as 1,440 and 1,458 cm−1. Normalization of spectra on these vibrational bands can be used for an unbiased comparison of Raman spectra collected from both leaves and seeds (Farber et al., 2019b, 2020c; Krimmer et al., 2019; Sanchez et al., 2019b,c, 2020b,e). Such normalization allows for avoiding artificial differences in spectra associated with different coloration of analyzed plant material.

Interpretation of vibrational bands in Raman spectra of plant material is a challenging process. In the Raman spectra collected from plant leaves, vibrational bands originating from pectin, cellulose, phenylpropanoids, proteins, and carotenoids can be detected (Table 1).



TABLE 1. Vibrational bands and their assignments for spectra collected from plant leaves and seeds.
[image: Table1]

Information provided by Table 1 suggests that RS can be used for the analysis of a large spectrum of compounds in both plant leaves and seeds. It should be noted that an interpretation of spectroscopic changes on the level of molecular species is not always feasible. Nevertheless, RS can be used to probe changes in the most important classes of molecules, such as carotenoids and phenylpropanoids.



ELUCIDATION OF METABOLOMIC CHANGES THAT ARE TAKING PLACE UPON BACTERIAL DISEASES IN PLANTS

Raman spectroscopy is a non-invasive and non-destructive analytical technique that can be used to reveal the chemical structure and composition of analyzed samples (Kurouski et al., 2015). Unlike IR spectroscopy, RS can be used for the analysis of hydrated biological specimens such as cells and tissues because water provides very low Raman signal (Farber et al., 2019c). Various advantages of RS make this technique the perfect method for the detection of both biotic and abiotic stresses in living organisms, particularly in plant pathology (Egging et al., 2018; Farber and Kurouski, 2018; Farber et al., 2019b, 2020c; Sanchez et al., 2019a,b,c, 2020e). There have been many recent findings on RS breakthroughs in the detection of abiotic and biotic stresses. These include the detection of bacterial infections, secondary diseases, insect infestations, fungal infections, and a variety of other pathogens (Egging et al., 2018; Farber and Kurouski, 2018; Farber et al., 2019b, 2020c; Sanchez et al., 2019a,b,c, 2020e). Although RS can detect pathogens directly (Gan et al., 2017), the below discussed diagnostic of plant biotic and abiotic stresses is achieved by the detection and identification of pathogen-induced changes in the plant biochemistry. Detected changes in the plant metabolism that are taking place on the below discussed diseases are summarized in the Table 2.



TABLE 2. Summary of observed spectroscopic and corresponding biochemical changes in plants that are associated with certain diseases.
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Recently, Kurouski group showed that RS can be used to detect Liberibacter disease in tomatoes (Sanchez et al., 2020c). Liberibacter is a bacterium that infects tomatoes and potatoes worldwide (Glynn et al., 2012; Lin et al., 2012; Nelson et al., 2013; Haapalainen et al., 2018; Swisher Grimm and Garczynski, 2019). While infected plants exhibit observable characteristics, such as chlorosis, stunting, leaf cupping, and scorching, the conventional testing technique of PCR cannot detect the pathogen in the early infection stages at which no symptoms are evident (Liefting et al., 2009; Tamborindeguy et al., 2017). Sanchez and co-workers reported 80% accurate diagnostics of Liberibacter disease on the early infection stage before the development of observable symptoms (Sanchez et al., 2020c). They also found that Raman spectra collected from leaves of Liberibacter-infected tomatoes exhibited lower intensities of carotenoid vibrations compared to healthy tomato plants. This finding suggests that Liberibacter disease in tomatoes is associated with a degradation and fragmentation of host carotenoids. The decrease in the carotenoid content can be also attributed to their conversion to apocarotenoids, signaling molecules that are synthesized by plants upon the development of the stress response. Lee and co-workers found a decrease in the content of pectin in Liberibacter-infected tomatoes. This could be explained by bacteria-driven hydrolysis of pectin, as these molecules are a good source of carbohydrates for this pathogen. Alternatively, changes in pectin content could be due to plant responses to the bacteria-induced stress.

Huanglongbing (HLB) or citrus greening is a devastating disease that obliterates citrus trees in Florida and Texas. Kurouski group were able to prove that RS could be used to detect and identify not only HLB but also secondary diseases, such as blight and canker (CA) in HLB-infected orange and grapefruit trees (Sanchez et al., 2019b,c). Sanchez and co-workers also showed that RS could be used to readily diagnoze nutrient deficiencies in these plants (Sanchez et al., 2019c). Sanchez and co-workers collected spectra from four groups of plants: symptomatic qPCR positive plants, and asymptomatic, but qPCR positive plants for HLB, as well as trees that exhibited ND symptoms, which had a similar visual appearance to symptomatic HLB plants, and healthy control plants. In these experiments, leaves were detached from the tree and analyzed immediately using Agilent Resolve spectrometer equipped with 830 nm laser (Figure 1). Although a leaf detachment was not required in this experiment, it was done to minimize exposure to the enormous heat in the area of the spectral analysis (Weslaco, TX). Sanchez and co-workers found that Raman spectra collected from symptomatic and asymptomatic plants exhibited an increase in the intensity of phenylpropanoids (~1,601–1,630 cm−1) relative to the intensity of this band in the spectra collected from leaves of healthy trees (negative to HLB by qPCR). It should be mentioned that, in addition to an increase in the intensity of phenylpropanoids, spectra of symptomatic and asymptomatic plants had a decrease in intensities of 1,184 and 1,218 cm−1 (xylan), 1,525 cm−1 (carotenoids), as well as 1,288 cm−1 (aliphatic) and 1,155 and 1,326 cm−1 (cellulose) bands (Figure 4).
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FIGURE 4. Leaf samples collected from fields for qPCR assay and Raman spectrum (A). Raman spectra generated from leaves of healthy (green), HLB-infected on late (blue) and early (purple) stages, and ND symptoms (red) in grapefruit (B), and orange (C) trees. Spectra normalized on cellulose vibrational bands [marked by asterisks (*)]. Reproduced with permission from Sanchez et al. (2019c).


It has been also found that Raman spectra collected from ND trees had even more intense vibration of phenylpropanoids, together with a band at 1,247 cm−1, which was assigned to a phenolic vibration. This evidence allowed for a clear differentiation between HLB, ND, and healthy trees. Sanchez and co-workers also used chemometrics to enable quantitative diagnostics of HLB and ND in citrus trees. In the first set of orthogonal partial least square discriminant analysis (OPLS-DA) models, healthy plants were differentiated from ND and HLB plants. The predicted accuracy was 98% for grapefruit and 87% for orange trees (cross-validation). In the following set of models, chemometrics was used to distinguish symptomatic vs. asymptomatic plants. The accuracy of prediction upon cross-validation appeared to be 100% for grapefruit and 94.4% for orange trees. This work showed that RS can be used for accurate diagnostics of HLB and ND on citrus trees, which helps to enable timely management of that devastating disease in the field. These findings show that non-invasive, non-destructive Raman-based approach allows citrus farmers to properly manage infected trees to increase fruit yield of the rest of their crops.

Microscopic examination of HLB-infected trees confirmed spectroscopic evidence provided by Sanchez and co-workers (Brodersen et al., 2014). It has been found that HLB causes a deformation of cambium cells, has a collapse, callose plug formation, and the thickening of cell walls of parenchyma cells (Brodersen et al., 2014). Cell wall thickening can happen in the attempt to block propagation of bacteria inside the plant. Alternatively, one can imagine that plants secrete low molecular weight phenylpropanoids, aiming to deactivate bacteria. However, these phenylpropanoids later polymerase into high molecular weight phenylpropanoid polymers, also known as lignins. Thus, such phenylpropanoid polymerization can cause histological changes as observed by Brodersen and co-workers.

It should be noted that HLB-infected trees are a subject for secondary infections due to suppressed immune resistance to pathogens. As a result, HLB infected trees become easily susceptible for a blight (BL), one of the most frequently observed secondary diseases on HLB trees, which even further reduces fruit yield and the lifetime of plants. The question to ask was whether RS can be used to differentiate between HLB-infected and HLB + BL plant species. Another question is whether RS can be used to differentiate between HLB and other diseases, such as CA that can appear on citrus trees. Sanchez and co-workers investigated whether RS can be used to differentiate between healthy, HLB, HLB + BL, and orange trees infected by CA (Sanchez et al., 2019b). It has been found that CA and HLB + BL could be detected and identified with 95 and 96% accuracy, respectively. The accuracy of prediction of BL and HLB was 87.7 and 89.4%, respectively. Such a fast and reliable spectroscopic approach is highly important for successful intervention and management of HLB-infected trees.



RAMAN-BASED DIAGNOSTICS OF FUNGAL DISEASES IN WHEAT, MAIZE, AND SORGHUM

Kurouski group discovered that RS could also be used to detect fungal infections in wheat and sorghum grain, some of the most economically important food sources grown worldwide (Egging et al., 2018). Pathogens such as ergot, black tip, and mold can cause devastating, up to 50% crop, losses in wheat and sorghum (Egging et al., 2018). Simple diseases, like ergot, are caused by one pathogen. More complex diseases, such as black tip or mold, are caused by several different pathogens co-infecting the plant simultaneously. Egging and co-workers collected Raman spectra from healthy sorghum grain, as well as sorghum grain infected by ergot and mold at different stages of disease proliferation. Spectra were collected form dried grain in the laboratory using Rigaku Progeny spectrometer (Figure 1) equipped with 1,064 nm laser. The researchers also used RS to analyze healthy wheat, wheat black tip, and wheat infected by ergot. It was found that ergot-infected wheat had two distinct peaks at 1,650 and 1,667 cm−1 that were not indicated in healthy and black tip-infected wheat. This change in intensity of the amide I region (1,650 and 1,667 cm−1) suggests that ergot infection may be associated with the expression and the deposition of alpha-helical and beta-sheet proteins. It was also found that spectra collected from black tip-infected wheat had decreased intensities of bands at 862 and 937 cm−1 when compared to healthy wheat spectra. These vibrational bands are associated with C–O–C vibration, which is very typical for starch. In addition, vibrational bands at 1,348 and 1,600 cm−1 had increased intensities in black tip-infected wheat when compared to healthy wheat. The 1,348 cm−1 band correlates to C–O–H vibration that is common in monomeric sugars. This observation suggests that black tip may ferment starch in wheat into monomeric sugar. The 1,600 cm−1 band originates from lignin and suggests that black tip degrades lignin or phenylpropanoid content of the plant. Black tip-infected wheat also has a 856 cm−1 peak that is shifted from the regular 862 cm−1 peak that healthy and ergot wheat exhibit. The authors proposed that this could be due to methylesterification of pectin caused by the black tip infection. Egging and co-workers used OPLS-DA to enable quantitative prediction of the disease on wheat and sorghum. The researchers found that RS was capable of predicting the diseases on wheat with 100% accuracy (cross-validation; Egging et al., 2018).

Kurouski group also analyzed differences in spectra collected from healthy sorghum, mold sorghum, and ergot sorghum (Egging et al., 2018). It was found that lignin bands at 1,600 and 1,630 cm−1 disappeared in mold-infected sorghum, indicating the degradation of lignin associated with mold development. There was also some slight decrease in the intensities of those bands in ergot-infected sorghum when compared to healthy sorghum. Spectra collected from ergot-infected sorghum were also found to have increased intensity at 1,150, 940, 1,124, and 1,083 cm−1 bands, indicating that ergot hydrolyzes starches to produce monomeric sugars. Spectra collected from both ergot- and mold-infected sorghum exhibited a shift in their 856 cm−1 band to 862 cm−1. The authors proposed that this could be due to a decrease in methylesterfication of pectin caused by the infections. Decreases in the methyl-esterified pectin suggests a decreased ability for the grain to resist infection. Finally, changes in ratios between 1,518 and 1,541 cm−1 peaks were observed between healthy and infected sorghum. These changes suggest a decrease in the length of conjugated double bonds of carotene. Based on the above-discussed spectroscopic changes, Kurouski group was able to distinguish between mold, ergot, and healthy sorghum using RS with over 96% accuracy.

Maize, also referred to as corn, is one of the most impactful grains in the world in terms of its uses. With a commercial impact of more than 50 billion in the United States, maize is used as livestock feed, as raw material in the industry, and as a biofuel and serves as a staple for human consumption as food (Farber and Kurouski, 2018). Kurouski group showed that RS could detect fungal pathogens Aspergillus flavus, Aspergillus niger, Fusarium spp., and Diplodia spp. in maize with 100% accuracy (Farber and Kurouski, 2018). In this study, Raman spectra were collected from dried grain in the laboratory using Rigaku Progeny spectrometer (Figure 1) equipped with 1,064 nm laser. Healthy maize has vibrational bands attributed to lignin, carbohydrates, proteins, and carotenoids. The 1,600 and 1,633 cm−1 bands from lignin completely disappear in Fusarium-infected maize, suggesting the significant degradation of lignin (Figure 5). These peaks also had a change in intensity in A. flavus and A. niger-infected maize, but no noticeable difference in Diplodia. Protein exhibits a key vibrational band at around 1,658 cm−1 in the Fusarium-infected maize, indicating that the growth of this pathogen is strongly associated with the deposition of protein in maize kernels. In healthy maize kernels, carotenoids show an intense peak at 1523 cm−1 with another less intense peak at 1547 cm−1. Fusarium-, A. flavus-, and Diplodia-infected maize kernels all exhibit a stronger peak at 1547 cm−1 rather than 1,523 cm−1. This suggests that these pathogens either lead to degradation and fragmentation of carotenoids in maize, produce specific short-chain carotenoids, or convert carotenoids to apocarotenoids. Starch and monomeric sugars are carbohydrates and make up the major components of maize. An increase in C–O–H vibrations were observed in Diplodia- and A. flavus-infected maize. This suggests that these pathogens breakdown maize starch into monomeric sugars. The authors also observed an increase in the intensity of C–O–C band (1,153 cm−1) in the spectra collected from A. niger- and Fusarium-infected maize, suggesting that these pathogens turn monomeric sugars into polymeric carbohydrates.
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FIGURE 5. Raman spectra of healthy maize kernels (green) and maize kernels infected by Aspergillus niger (brown), A. flavus (blue), Diplodia spp. (black), and Fusarium spp. (red). 1450-1700 cm-1 and 950-1200 spectral regions shown by dashed lines in the panel A are magnified in panels B and C, respectively. Reproduced with permission from Farber and Kurouski, (2018).




RAMAN-BASED DIAGNOSTICS OF VIRAL DISEASES

First experimental evidence about a feasibility of Raman-based diagnostics of viruses was provided by Yeturu et al. (Yeturu et al., 2016). The authors demonstrated that the intensity of the collected spectra from Abutilon hybridum depends on a degree of the plant infection by Abutilon mosaic virus. Expanding upon these findings, Rossi group investigated the accuracy of diagnostics of tomato yellow leaf curl Sardinia virus (TYLCSV) and tomato spotted wilt virus (TSWV) in tomatoes (Mandrile et al., 2019). Using RS and real-time PCR, the researchers monitored inoculated plants over 28 days until the appearance of symptoms. Mandeile and co-workers showed that RS allowed the discrimination of mock inoculated (healthy) from virus-infected specimens with above 70% accuracy after only 14 days after inoculation for TYLCSV and >85% only after 8 days for TSWV. These findings demonstrate a suitability of RS for an early detection of virus infections in tomatoes.

Recently, Kurouski and group demonstrated that RS could be used for confirmatory identification of viruses in wheat (Farber et al., 2020a). Farber and co-workers found that RS can be used to differentiate between healthy wheat and wheat infected by wheat streak mosaic virus (WSMV) and barley yellow dwarf virus (BYDV). Lastly, researchers showed that RS could be used to identify whether wheat is infected by these individual viruses or by a combination of WSMV and BYDV, as well as WSMV, BYDV, and Triticum mosaic virus (TriMV; Figure 6).
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FIGURE 6. Raman spectra of: (A) Healthy and WSMV- or BYDV-infected wheat leaves and (B) the combination of these two viruses. Normalization band at 1,440 cm−1 is marked by an asterisk (*).




FRUIT AND SEED QUALITY CONTROL ENABLED BY RAMAN SPECTROSCOPY

Tomato is a major fruit, and the need for determining the quality attributes of this fruit in a non-destructive way is in increasing demand. Nikbakht and co-workers proposed to use RS to determine tomato fruit quality (Nikbakht et al., 2011). This study showed that RS could be used to measure important quality parameters of tomatoes such as soluble solid content (SSC), acidity (pH), and color. The work done by Nikbakht and co-workers also showed that RS can be highly effective in quality assessment of both external and internal properties of tomatoes (Nikbakht et al., 2011). Martin and co-workers further expanded the use of RS for the analysis of tomatoes ripening (Martin et al., 2017). The researchers developed a model of tomato ripening based on carotenoid vibrational bands in Raman spectra. Tomato fruits were scanned using bench-top spectrometer equipped with 532 nm laser during their post-harvest time evolution and ripening. It has been found that an increase in carotenoid vibrations were coincident with the onset of the turning stage of the fruit ripening. The model built from the collected data describes the tomato ripening stages and helps to accurately assess postharvest fruit quality control (Martin et al., 2017).

Expanding upon these results, Nekvapil and co-workers investigated the applicability of RS for quality control of fruits (Nekvapil et al., 2018). Nekvapil and co-workers were able to show that RS can be used to scan for fruit freshness, particularly in citrus. By scanning the peels of citrus fruits, such as mandarin oranges, tangerines, and clementines, it was found that the intensity of carotenoids in a fruit can be used to determine the freshness of a fruit. The researchers proposed that this approach can be used to increase consumer trust, safety, and satisfaction when purchasing citrus fruits (Nekvapil et al., 2018). Independently, Feng and co-workers used RS to test eight different citrus varieties (Feng et al., 2013). The researchers were able to build a model to distinguish the citrus varieties. This work demonstrates that RS can be used for accurate, rapid, effective identification of citrus varieties and quality assessment for citrus fruits. Further studies on the ability of RS to be used for the purpose of quality assessment was done by Zhu et al. (2018). Lignification in fruits leads to increased fruit firmness and is important to optimize postharvest fruit handling to minimize quality deterioration. Zhu and co-workers were able to come up with a procedure to use Raman to assess fruit lignification (Zhu et al., 2018). By using Raman spectroscopy, lignification of a fruit can be assessed to determine ripeness.

The cowpea bruchid is an insect that damages legumes, such as beans and peas by feeding on them. The bruchid lays its eggs on the seeds, making the detection of infestation a difficult problem. If left unchecked, two bruchids could destroy up to 50% of a ton of harvest cowpea. Sanchez and co-workers discovered that RS could be used for the detection of bruchid larvae as well as their excrements inside intact seeds (Sanchez et al., 2019a). Specifically, Sanchez and co-workers collected spectra from cowpea seeds infested with bruchids. They took the spectra of bruchids at different developmental stages, including the first, second, third, and fourth larvae (L1–L4) or pupa. The respective spectra were then averaged and compared to healthy cowpea seeds. The spectra were normalized on the 1,458 cm−1 band. They found in L1–L3 infected seeds that gradual decreases in intensity occurred in (C–O–H) vibrational bands (440, 479, 522, 862, 938, 1,057, 1,085, 1,125, 1,258, 1,339, 1,384, and 1,397 cm−1) and observed drastic changes in these bands in L4 and pupa (Figure 7). The differences between healthy, early stage (L1–L3), and late stage (L4 and pupa) infections were statistically significant. The Kurouski group also observed additional changes in the intensity of bands in L4 and pupa spectra. To determine if the spectral changes were from insects feeding on the seeds or from the actual bruchid larvae, Raman spectra were taken from L4 seeds where the larvae were removed and called the L4’ spectrum. They found that the observed spectral changes in the 1,600–1725 cm−1 region were due to the larvae.
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FIGURE 7. Raman spectra of healthy, uninfested cowpea seeds and seeds infested by bruchids at larval and pupal stages, normalized to the 1,458 cm−1 peak [indicated by an asterisk (*)]. Reproduced with permission from Sanchez et al. (2019a).


Using this information, RS can also be used to monitor the growth of insect larvae. The vibrational band at ~630 cm−1 was found to be assigned to uric acid and was a major component of the bruchid excrement. A decrease in intensity in all vibrational bands was also observed and associated with carbohydrates in the L4’ spectrum. Using partial least square discriminant analysis (PLS-DA) and cross-validation, Kurouski group was able to determine the early stage infection with 93.7% accuracy, the late stage infection with 100% accuracy, and the healthy stage with 85% accuracy. The results of Lee and co-workers demonstrate that RS can detect insects within plant hosts, such as cowpeas.

Piot and co-workers showed that RS can be used to probe wheat grain to follow the evolution of protein content and structure during grain development (Piot et al., 2002). The work done by Piot and co-workers shows Raman spectroscopy’s ability to not only detect molecular species at the micro scale but also give information on the structure and their binding with neighboring molecules. For example, Piot and co-workers discovered that an increase in α-helical protein content occurs when the kernel hardens during grain ripening.

Virgin olive oil is different from other vegetable oils because it is edible from the moment of production. However, olive oil comes in different grades, and if its quality is not high enough, it cannot be considered virgin olive oil and must undergo further refinement prior to consumption. Muik and co-workers were able to use RS to differentiate between olives of different qualities (Muik et al., 2004). Sound olives, olives with frostbite, olives collected from the ground, fermented olives, and olives with diseases were analyzed using RS. Principal component analysis (PCA), hierarchical cluster analysis (HCA), and soft independent modeling of class analogy (SIMCA) were used to analyze differences in vibrational bands. Based on the acquired spectra and the above-discussed statistical approaches, Muik and co-workers were able to identify the type with 95% accuracy for sound olives, 93% accuracy for frostbite, 96% accuracy for ground, and 92% accuracy for fermented olives (cross-validation; Muik et al., 2004). In addition, none of the damaged olive samples were wrongly predicted to the class for sound olives.



SPECTROSCOPIC IDENTIFICATION OF PLANT SPECIES AND THEIR VARIETIES

Urushiol oils, a mixture of pentadecylcatechols, are responsible for the allergic reactions caused by the notorious poison ivy (Hodgson, 2012). Server rashes, skin inflammation, uncolored bumps, and blistering are some of the common symptoms exhibited by those who were unfortunate enough to come across poison ivy (Yang et al., 2000; Gober et al., 2008; Joly et al., 2019). Because these reactions take hours or days to occur, those covered in urishiol unknowingly spread the substance once they have come in contact with poison ivy. While extensive washing with soap and water may stop the spread of urishiol oils, there is no way to avoid these symptoms other than to avoid contact with poison ivy (Joly et al., 2019). Unfortunately, it is difficult for those without botanical experience to differentiate poison ivy from other plants. To help overcome this problem, Kurouski group developed RS for non-invasive, non-destructive, confirmatory, and label-free identification of poison ivy (Farber et al., 2020b). The exhibited vibrational bands in poison ivy could be assigned to a few key groups: cellulose, pectin, carotenoids, phenylpropanoids, xylan, protein, aliphatic, and carbonyl/ester groups (Figure 8). While some of these bands appear in other similar plants, poison ivy has a unique band at 1,717 cm−1, which is not evident in other plants. This unique band, along with other key spectroscopic features in poison ivy’s Raman fingerprint (such as its high carotenoid intensity), can be used for the identification of poison ivy with 100% accuracy when compared to similar looking plants, such as palmer amaranth, water oak, white crown beard, and saw greenbrier (98.2% accuracy when compared to buckbrush).
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FIGURE 8. Baseline-corrected (top) and area normalized (bottom) Raman spectra collected from poison ivy (red), palmer amaranth (green), water oak (blue), white crownbeard (marine), buckbrush (purple) and saw greenbrier (black).


Potatoes are a staple food for people all over the world because of high starch content, simple cultivation, and high production. Potatoes are made up of about 83% water, 12% carbohydrates, and the remaining 4% includes proteins, vitamins, and other trace elements (Morey et al., 2020). The proportions vary based on the potato type and where it was cultivated. While there are some chemical methods to investigate starch content, these approaches are indirect, destructive, labor consuming, and time consuming. Kurouski group was able to use RS to asses nutrient content of potato tubers (Morey et al., 2020). In addition, RS can be used to identify nine different potato varieties as well as to determine the origin of cultivation. Using spatially offset Raman spectroscopy (SORS), Kurouski group found that a peak intensity varied by potato variety at 479 and 1,125 cm−1 for starch, 1,600 and 1,630 cm−1 for phenylpropanoid, 1,527 cm−1 for carotenoid content, and 1,660 cm−1 for protein content. Using these differences in relative intensities and PLS-DA with cross-validation, Kurouski group was able to identify a potato variety, as well as to determine the location of potato cultivation with accuracy ranging from 81 to 100%. In addition, Kurouski group was able to demonstrate that the intensity of the 479 cm−1 band (which correlates to starch) linearly increases with an increase in the starch content of the sample (Morey et al., 2020). These results demonstrate that RS can be used for highly accurate determination of the starch content in intact potatoes.

Currently, the identification of specific genotypes can be only accomplished via visual recognition of distinct phenotypical appearances (if applicable) or by genotype sequencing. Both have many downfalls. Identifying genotypes by visual recognition is often difficult and requires substantial taxonomic expertise. The results are often subjective and often can be incorrect. Genotype sequencing is destructive, time- and labor-consuming. The answer to these genotype identification problems can be solved by the use of RS (Farber et al., 2020c). Farber and co-workers show that chemometric analysis of peanut leaflet spectra provides an accurate identification of different varieties, genotype, and can be used for the prediction of nematode resistance and oleic-linoleic oil (O/L) ratio (Farber et al., 2020c). Raman-based analysis of seeds provides accurate genotype identification and also can identify carbohydrates, proteins, fiber, and other nutrients obtained from the readings of peanut seeds. Ten different genotypes of peanuts were grown and their leaflets were scanned. They all exhibited similar profiles with vibrational bands being mainly due to carbohydrates, cellulose, pectin, carotenoids, phenylpropanoids, proteins, and carboxylic acid. A PLS-DA model was built, and it was found that Raman could identify peanut variety with 80% accuracy just from scanning leaflets (cross-validation was used). Root-knot nematodes feed on peanut plants and peanut plant resistance is important to peanut cultivators. Kurouski group found that peanut plant resistance was related to changes in bands associated with carotenoid and phenylpropanoid. In addition, peanut cultivators prefer peanuts with high oleic ratios as they have a longer shelf life which leads to reduced rancidity. Also, it has been found that peanuts with high oleic ratios reduce serum cholesterol levels and reduce chances of cardiovascular disease. RS revealed that plants with high oleic ratios have lower phenylpropanoid content whereas all other peaks remained nearly identical. Farber and co-workers found Raman to be 82% accurate in the identification of peanuts with high oleic ratios against those with normal ratios. Raman scanning of seeds was done to see if it was more accurate than scanning leaves of peanut plants. The results show that Raman is 95% accurate in the identification of peanut seeds when compared to the 82% of leaves.

Because of the popularity of maize as a food source, further research on the possibilities of Raman and maize was performed by Krimmer and co-workers. The researchers found that RS can be used to access the nutrient content of maize. Specifically, it can predict the content of carbohydrates, fibers, carotenoids, and proteins in six different varieties of maize (Krimmer et al., 2019). To achieve this, Krimmer and co-workers collected more than 600 spectra form six different varieties of maize. All six varieties had similar spectral profiles except the darker kernels scanned had lower intensities. This is because of different light absorption and scattering properties of these maize kernels affect the scan. This problem can be solved by normalization, particularly at the 1,458 cm−1 peak which all spectra display. The authors analyzed the intensities of bands at 479 cm−1 (starch), 1,530 cm−1 (carotenoids), 1,600/1,632 cm−1 (both fiber), and 1,640–1,670 cm−1 (protein region) to quantify the content of carbohydrates, carotenoids, fibers, and proteins in maize (Figure 9). In addition, Krimmer and co-workers showed that RS in combination with chemometric methods can be used for highly accurate typing of maize varieties.
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FIGURE 9. Right: Raw (A) and normalized (B) Raman spectra of BL, SW, SY, PP, RD, and LY maize kernels. The 1,458 cm−1 peak, which was used for spectral normalization, is indicated by an asterisk (*). Left: Means (circles) and confidence intervals for the intensities of the maize kernel spectra, normalized to 1,458 cm−1, at the indicated wavenumbers. Colors indicate significantly different groups. Multiple colors indicate a member of a group that has an overlap between two separate groups. Reproduced with permission from Krimmer et al. (2019).




NON-INVASIVE ASSESSMENT OF CANNABINOID CONTENT IN PLANTS

Hemp has been used to treat pain since 2,900 B.C. and has pharmacological effects from a variety of cannabinols (Hartsel et al., 2016). While there are over 100 different cannabinoids that can be isolated from cannabis plants, clear physiological effects have only been determined for a few such as delta-9 tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabigerol (CBG; Appendino et al., 2008; Borrelli et al., 2013). THC is illegal, but CBD and CBG are legal and have been shown to reduce chronic pain, inflammation, anxiety, and depression. Cannabis is consumed by 147 million people, which is about 2.5% of the world population (Sanchez et al., 2020d). Cannabis is a hemp plant that contains tetrahydrocannabinolic acid (THCA) in amounts higher than industrial hemp. This THCA is the source of the psychoactive THC that forms from its oxidation. As the most widely cultivated and trafficked illicit drug in the world, it requires substantial effort from border control and law enforcement to control illegal trafficking. Cultivation of cannabis plants with large amounts of CBD and CBG, simultaneously exhibiting little to no THC, would be ideal for growers. Currently, high performance liquid chromatography (HPLC) can be used to determine the amount of cannabinoids in plant material, but the process is non-portable, destructive, and time/labor consuming (Patel et al., 2017; Zivovinovic et al., 2018; Burnier et al., 2019; Nie et al., 2019). Sanchez and co-workers showed that RS can be used to differentiate between hemp, cannabis, and CBD-rich hemp with 100% accuracy using OPLS-DA with cross-validation (Sanchez et al., 2020d). Using a handheld Raman spectrometer, the spectrum of hemp were found to have vibrational bands from cellulose, carotenoids, and lignin. Multiple varieties of cannabis were scanned, and all clearly demonstrated a presence of THCA with key peaks at 780, 1,295, 1,623, and 1,666 cm−1 (Figure 10). It was also found that vibrational bands assigned to carotenoids had higher intensity in hemp scans relative to scans of cannabis. This result indicates that hemps have higher carotenoid content compared to cannabis. Similarly, higher intensity in cellulose peaks in hemp indicate a higher amount of cellulose in hemp when compared to cannabis. Using the information gathered by Sanchez and co-workers, a model was set up to determine if Raman spectrometry could be used to differentiate between hemp and cannabis. The result was 100% accuracy in classification between hemp and cannabis. Sanchez and co-workers were also able to detect THCA in intact growing plants because of the vibrational band at 1,691 cm−1 that correlates to the carboxyl group of THCA. Therefore, Sanchez and co-workers showed that RS can predict the amount of THC in a sample without necessary oxidation of THCA to THC (Sanchez et al., 2020d). In another study, Sanchez and co-workers took this idea further and were able to detect other cannabinoids, such as CBD, CBG, CBGA, and CBDA on top of THCA and THC (Sanchez et al., 2020a). These discoveries allowed the Kurouski lab to not only differentiate hemp vs. cannabis but also detect CBD-rich hemp with 100% accuracy [63]. Their extensive analysis of Raman spectra on the six major cannabinoids (THC, THCA, CBD, CBDA, CBG, and CBGA) allows for the differentiation between THC/THCA vs. CBD/CBDA vs. CBG/CBGA and can be used to identify cannabis variety with 97% accuracy (Sanchez et al., 2020a).
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FIGURE 10. Top: Raman spectra collected from hemp (green), GC (purple), TCC (blue), and TS (red). Bottom: Raman spectrum of THCA extract (maroon). Spectra normalized on CH2 vibrations (1,440 and 1,455 cm−1) are present in nearly all classes in biological molecules [marked by asterisks (*)]. Reproduced with permission from Sanchez et al. (2020d).




FUTURE PERSPECTIVES

Research articles published over the last decade provided strong experimental evidence of high sensitivity of RS in determination of changes in plant biochemistry that are associated with biotic and abiotic stresses (Yeturu et al., 2016; Egging et al., 2018; Farber and Kurouski, 2018; Farber et al., 2019b; Mandrile et al., 2019; Sanchez et al., 2019a,b,c). These studies also showed that plant biochemistry uniquely changes as a result of such stresses (Egging et al., 2018; Farber and Kurouski, 2018; Mandrile et al., 2019; Sanchez et al., 2019c). This allows for the use of RS in diagnostics of biotic and abiotic stresses in plants. This high sensitivity to small changes in plant biochemistry also enables Raman-based identification of plant species and their varieties, as well as allows for Raman-based selection and breeding of plants (Krimmer et al., 2019; Farber et al., 2020b,c; Sanchez et al., 2020a,d). Although to date, most of the reported experiments were made in greenhouses (Altangerel et al., 2017; Mandrile et al., 2019; Sanchez et al., 2020b,c), there is a growing body of evidence about successful use of RS in the field (Sanchez et al., 2019b,c, 2020e; Farber et al., 2020a). Once this practice will become the routine of research studies – recognition of RS as a reliable agricultural method will tremendously increase.

The use of RS in agriculture can be further empowered by direct elucidation of biochemical changes that are taking place upon the above-discussed biotic and abiotic stresses. Mass spectroscopy (MS) and HPLC coupled to MS are excellent analytical techniques for analytical characterization of changes in plant biochemistry (Hijaz et al., 2013; Killiny and Nehela, 2017; de Moraes Pontes et al., 2020). Their use will allow for the determination of biochemical origin of the observed spectroscopic changes on the level of molecular analytes. The potential of RS can be further enchanted by its coupling to already established imaging (Mahlein et al., 2012; Mutka and Bart, 2015) and molecular techniques (Schaad and Frederick, 2002; Liu et al., 2015; Zhang et al., 2017). For instance, quick surveillance of large field territories by RGB, thermography or hyperspectral imaging can be used to navigate RS to the “danger” or “problematic” areas (Gowen et al., 2007; Mahlein et al., 2012; Raza et al., 2015). Such UAV-guided RS-based approaches can save enormous resources in diagnostics of biotic and abiotic stresses. This approach can be used to overcome the existing low-throughput of RS. Specifically, the use of hand-held spectrometers requires a direct contact with the analyzed plant that substantially reduces the analysis of large agricultural territories even with 1 s acquisition time that is currently required for such diagnostics. Also, in the light of numerous diseases simultaneously present on a plant, RS can be considered as a “fast screening” approach that may be used for rapid screening of plants. If more sophisticated or accurate analysis is needed, molecular methods of analysis, such as PCR, qPCR, or ELISA, can be used (Clark and Adams, 1977; Schaad and Frederick, 2002; Liu et al., 2015; Zhang et al., 2017).

Substantial limitation of broad utilization of commercially available hand-held spectrometers is their relatively high cost (~$30,000–$60,000). This will likely limit the possession of instruments by individual farmers. One can expect that continuous technological development of spectrometers that enabled their militarization will also reduce the cost of these devices in the nearest future. Nevertheless, the use of RS in agriculture is likely to be implemented as a service in which a farmer can order a non-invasive and reagent-free scan of the field to detect the presence of biotic and abiotic stresses. Collected spectra can be transferred to a server for the analysis using Bluetooth or WiFi or analyzed directly in the field by the hand-help instrument. Next, the farmer will receive information about the status of the field together with GPS coordinates of the analyzed locations.



CONCLUSION

This review shows the potential for RS in the future of digital farming. Raman spectrometry’s portable and quick analysis allows for timely detection of biotic and abiotic stresses in plants. In addition, Raman can be used as an advanced method in plant breeding and selection thanks to being both non-invasive and non-destructive. Furthermore, RS can be used for plant phenotyping and nutrient analysis. The benefits of RS will surely become more clear to others and the adoption of Raman spectrometry in digital farming will become more common.



AUTHOR CONTRIBUTIONS

WP review of previously reported results and systematization of literature reports. DK methodology, funding acquisition, and supervision. Both the authors contributed to the article and approved the submitted version.



FUNDING

We are grateful to AgriLife Research of Texas A&M for the provided financial support. We also acknowledge the Governor’s University Research Initiative (GURI) grant program of Texas A&M University, GURI grant agreement no. 12-2016, M1700437.


REFERENCES

 Adar, F. (2017). Carotenoids - their resonance Raman spectra and how they can be helpful in characterizing a number of biological systems. Spectroscopy 32, 12–20.

 Agarwal, U. P. (2006). Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224, 1141–1153. doi: 10.1007/s00425-006-0295-z 

 Agarwal, U. P. (2014). 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials. Front. Plant Sci. 5:490. doi: 10.3389/fpls.2014.00490 

 Ahrberg, C. D., Choi, J. W., Lee, J. M., Lee, K. G., Lee, S. J., Manz, A., et al. (2020). Plasmonic heating-based portable digital PCR system. Lab Chip 20, 3560–3568. doi: 10.1039/d0lc00788a 

 Ahrberg, C. D., Manz, A., and Chung, B. G. (2016). Polymerase chain reaction in microfluidic devices. Lab Chip 16, 3866–3884. doi: 10.1039/c6lc00984k 

 Almeida, M. R., Alves, R. S., Nascimbem, L. B., Stephani, R., Poppi, R. J., and De Oliveira, L. F. (2010). Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal. Bioanal. Chem. 397, 2693–2701. doi: 10.1007/s00216-010-3566-2 

 Altangerel, N., Ariunbold, G. O., Gorman, C., Alkahtani, M. H., Borrego, E. J., Bohlmeyer, D., et al. (2017). In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 114, 3393–3396. doi: 10.1073/pnas.1701328114 

 Alvarez, A. M., and Lou, K. (1985). Rapid identification of xanthomonas-campestris pv campestris by ELISA. Plant Dis. 69, 1082–1086.

 Appendino, G., Gibbons, S., Giana, A., Pagani, A., Grassi, G., Stavri, M., et al. (2008). Antibacterial cannabinoids from Cannabis sativa: a structure-activity study. J. Nat. Prod. 71, 1427–1430. doi: 10.1021/np8002673 

 Baena, S., Moat, J., Whaley, O., and Boyd, D. S. (2017). Identifying species from the air: UAVs and the very high resolution challenge for plant conservation. PLoS One 12:e0188714. doi: 10.1371/journal.pone.0188714 

 Bauer, A., Bostrom, A. G., Ball, J., Applegate, C., Cheng, T., Laycock, S., et al. (2019). Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: a case study of lettuce production. Hortic. Res. 6:70. doi: 10.1038/s41438-019-0151-5 

 Borrelli, F., Fasolino, I., Romano, B., Capasso, R., Maiello, F., Coppola, D., et al. (2013). Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease. Biochem. Pharmacol. 85, 1306–1316. doi: 10.1016/j.bcp.2013.01.017 

 Brodersen, C., Narciso, C., Reed, M., and Etxeberria, E. (2014). Phloem production in Huanglongbing-affected Citrus trees. HortSci. 49, 59–64. doi: 10.21273/HORTSCI.49.1.59

 Burnier, C., Esseiva, P., and Roussel, C. (2019). Quantification of THC in Cannabis plants by fast-HPLC-DAD: a promising method for routine analyses. Talanta 192, 135–141. doi: 10.1016/j.talanta.2018.09.012

 Caballero, D., Calvini, R., and Amigo, J. M. (2020). Hyperspectral imaging in crop fields: precision agriculture. Data Hand. Sci. Technol. 32, 453–473. doi: 10.1016/B978-0-444-63977-6.00018-3

 Cabrales, L., Abidi, N., and Manciu, F. (2014). Characterization of developing cotton fibers by confocal Raman microscopy. Fibers 2, 285–294. doi: 10.3390/fib2040285

 Cael, J. J., Koenig, J. L., and Blackwell, J. (1975). Infrared and raman spectroscopy of carbohydrates. 4. Normal coordinate analysis of V-amylose. Biopolymers 14, 1885–1903.

 Cantarero, A. (2015). Raman scattering applied to materials science. Procedia Mater. Sci. 9, 113–122. doi: 10.1016/j.mspro.2015.04.014

 Cao, Y., Shen, D., Lu, Y., and Huang, J. (2006). A Raman-scattering study on the net orientation of biomacromolecules in the outer epidermal walls of mature wheat stems (Triticum aestivum). Ann. Bot. 97, 1091–1094. doi: 10.1093/aob/mcl059 

 Cardona, M. (1975). Light scattering in solids. Berlin Heidelberg: Springer-Verlag.

 Clark, M. F., and Adams, A. N. (1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34, 475–483.

 Colthup, N. B., Daly, L. H., and Wiberley, S. E. (1990). Introduction to infrared and Raman spectroscopy. New York: Academic Press.

 De Moraes Pontes, J. G., Vendramini, P. H., Fernandes, L. S., De Souza, F. H., Pilau, E. J., Eberlin, M. N., et al. (2020). Mass spectrometry imaging as a potential technique for diagnostic of Huanglongbing disease using fast and simple sample preparation. Sci. Rep. 10:13457. doi: 10.1038/s41598-020-70385-4 

 Devitt, G., Howard, K., Mudher, A., and Mahajan, S. (2018). Raman spectroscopy: an emerging tool in neurodegenerative disease research and diagnosis. ACS Chem. Neurosci. 9, 404–420. doi: 10.1021/acschemneuro.7b00413 

 Edwards, H. G., Farwell, D. W., and Webster, D. (1997). FT Raman microscopy of untreated natural plant fibres. Spectrochim. Acta A 53, 2383–2392.

 Egging, V., Nguyen, J., and Kurouski, D. (2018). Detection and identification of fungal infections in intact wheat and Sorghum grain using a hand-held Raman spectrometer. Anal. Chem. 90, 8616–8621. doi: 10.1021/acs.analchem.8b01863 

 Engelsen, S. B., and Nørgaard, L. (1996). Comparative vibrational spectroscopy for determination of quality parameters in amidated pectins as evaluated by chemometrics. Carbohydr. Polym. 30, 9–24.

 Farber, C., Bryan, R., Paetzold, L., Rush, C., and Kurouski, D. (2020a). Non-invasive characterization of single-, double- and triple-viral diseases of wheat with a hand-held Raman spectrometer. Front. Plant Sci. 11:01300. doi: 10.3389/fpls.2020.01300 

 Farber, C., and Kurouski, D. (2018). Detection and identification of plant pathogens on maize kernels with a hand-held Raman spectrometer. Anal. Chem. 90, 3009–3012. doi: 10.1021/acs.analchem.8b00222 

 Farber, C., Mahnke, M., Sanchez, L., and Kurouski, D. (2019a). Advanced spectroscopic techniques for plant disease diagnostics. A review. Trends Analyt. Chem. 118, 43–49. doi: 10.1016/j.trac.2019.05.022

 Farber, C., Sanchez, L., and Kurouski, D. (2020b). Confirmatory non-invasive and non-destructive identification of poison ivy using a hand-held Raman spectrometer. RSC Adv. 10, 21530–21534. doi: 10.1039/D0RA03697H

 Farber, C., Sanchez, L., Rizevsky, S., Ermolenkov, A., Mccutchen, B., Cason, J., et al. (2020c). Raman spectroscopy enables non-invasive identification of Peanut genotypes and value-added traits. Sci. Rep. 10:7730. doi: 10.1038/s41598-020-64730-w

 Farber, C., Shires, M., Ong, K., Byrne, D., and Kurouski, D. (2019b). Raman spectroscopy as an early detection tool for rose rosette infection. Planta 250, 1247–1254. doi: 10.1007/s00425-019-03216-0

 Farber, C., Wang, R., Chemelewski, R., Mullet, J., and Kurouski, D. (2019c). Nanoscale Structural Organization of Plant Epicuticular wax Probed by atomic force microscope infrared spectroscopy. Anal. Chem. 91, 2472–2479. doi: 10.1021/acs.analchem.8b05294 

 Feng, X., Zhang, Q., and Zhu, Z. (2013). Rapid classification of Citrus fruits based on Raman spectroscopy and pattern recognition techniques. Food Sci. Technol. Res. 19, 1077–1084. doi: 10.3136/fstr.19.1077

 Gan, Q., Wang, X., Wang, Y., Xie, Z., Tian, Y., and Lu, Y. (2017). Culture-free detection of crop pathogens at the single-cell level by micro-Raman spectroscopy. Adv. Sci. 4:1700127. doi: 10.1002/advs.201700127 

 Gao, X., Stumpe, M., Feussner, I., and Kolomiets, M. (2008). A novel plastidial lipoxygenase of maize (Zea mays) ZmLOX6 encodes for a fatty acid hydroperoxide lyase and is uniquely regulated by phytohormones and pathogen infection. Planta 227, 491–503. doi: 10.1007/s00425-007-0634-8 

 Glynn, J., Islam, M., Bai, Y., Lan, S., Wen, A., Gudmestad, N., et al. (2012). Multilocus sequence typing of ‘Candidatus Liberibacter solanacearum’isolates from North America and New Zealand. Plant Pathol. J. 94, 223–228. doi: 10.4454/jpp.fa.2012.007

 Gober, M. D., Fishelevich, R., Zhao, Y., Unutmaz, D., and Gaspari, A. A. (2008). Human natural killer T cells infiltrate into the skin at elicitation sites of allergic contact dermatitis. J. Investig. Dermatol. 128, 1460–1469. doi: 10.1038/sj.jid.5701199 

 Gowen, A. A., Odonnell, C., Cullen, P., Downey, G., and Frias, J. (2007). Hyperspectral imaging – an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 18, 590–598. doi: 10.1016/j.tifs.2007.06.001

 Haapalainen, M. L., Wang, J., Latvala, S., Lehtonen, M. T., Pirhonen, M., and Nissinen, A. I. (2018). Genetic variation of ‘Candidatus Liberibacter solanacearum’haplotype C and identification of a novel haplotype from Trioza urticae and stinging nettle. Phytopathology 108, 925–934. doi: 10.1094/PHYTO-12-17-0410-R 

 Hartsel, J. A., Eades, J., Hickory, B., and Makriyannis, A. (2016). “Cannabis sativa and hemp” in Nutraceuticals. ed. R. C. Gupta (New York: Academic Press), 735–754.

 He, Y., Borrego, E. J., Gorman, Z., Huang, P. C., and Kolomiets, M. V. (2020). Relative contribution of LOX10, green leaf volatiles and JA to wound-induced local and systemic oxylipin and hormone signature in Zea mays (maize). Phytochemistry 174:112334. doi: 10.1016/j.phytochem.2020.112334 

 Hijaz, F. M., Manthey, J. A., Folimonova, S. Y., Davis, C. L., Jones, S. E., and Reyes-De-Corcuera, J. I. (2013). An HPLC-MS characterization of the changes in sweet orange leaf metabolite profile following infection by the bacterial pathogen Candidatus Liberibacter asiaticus. PLoS One 8:e79485. doi: 10.1371/journal.pone.0079485 

 Hodgson, E. (2012). “Chapter fourteen - toxins and venoms” in Progress in molecular biology and translational science. ed. D. B. Teplow (Los Angeles: Academic Press), 373–415.

 Jamieson, L. E., Li, A., Faulds, K., and Graham, D. (2018). Ratiometric analysis using Raman spectroscopy as a powerful predictor of structural properties of fatty acids. R. Soc. Open Sci. 5:181483. doi: 10.1098/rsos.181483

 Joly, A., Goëau, H., Botella, C., Kahl, S., Poupard, M., Servajean, M., et al. (2019). “LifeCLEF 2019: biodiversity identification and prediction challenges” in Advances in information retrieval. eds. L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, and D. Hiemstra (Lisbon, Portugal: Springer International Publishing), 275–282.

 Kang, L., Wang, K., Li, X., and Zou, B. (2016). High pressure structural investigation of benzoic acid: raman spectroscopy and x-ray diffraction. J. Phys. Chem. C 120, 14758–14766. doi: 10.1021/acs.jpcc.6b05001

 Killiny, N., and Nehela, Y. (2017). One target, two mechanisms: the impact of 'Candidatus Liberibacter asiaticus' and its vector, Diaphorina citri, on Citrus leaf pigments. Mol. Plant-Microbe Interact. 30, 543–556. doi: 10.1094/MPMI-02-17-0045-R 

 Krimmer, M., Farber, C., and Kurouski, D. (2019). Rapid and noninvasive typing and assessment of nutrient content of maize kernels using a handheld Raman spectrometer. ACS Omega 4, 16330–16335. doi: 10.1021/acsomega.9b01661 

 Kurouski, D., Van Duyne, R. P., and Lednev, I. K. (2015). Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review. Analyst 140, 4967–4980. doi: 10.1039/c5an00342c 

 Li, W., Hartung, J. S., and Levy, L. (2006). Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Methods 66, 104–115. doi: 10.1016/j.mimet.2005.10.018 

 Liefting, L. W., Weir, B. S., Pennycook, S. R., and Clover, G. R. (2009). ‘Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. Int. J. Syst. Evol. Microbiol. 59, 2274–2276. doi: 10.1099/ijs.0.007377-0 

 Lievens, B., Brouwer, M., Vanachter, A. C. R. C., Cammue, B. P. A., and Thomma, B. P. H. J. (2006). Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Sci. 171, 155–165. doi: 10.1016/j.plantsci.2006.03.009

 Lin, H., Islam, M. S., Bai, Y., Wen, A., Lan, S., Gudmestad, N. C., et al. (2012). Genetic diversity of ‘Cadidatus Liberibacter solanacearum’strains in the United States and Mexico revealed by simple sequence repeat markers. Eur. J. Plant Pathol. 132, 297–308. doi: 10.1007/s10658-011-9874-3

 Liu, M., Mccabe, E., Chapados, J. T., Carey, J., Wilson, S. K., Tropiano, R., et al. (2015). Detection and identification of selected cereal rust pathogens by TaqMan® real-time PCR. Can. J. Plant Pathol. 37, 92–105. doi: 10.1080/07060661.2014.999123

 López-López, M., Delgado, J. J., and García-Ruiz, C. (2013). Analysis of macroscopic gunshot residues by Raman spectroscopy to assess the weapon memory effect. Forensic Sci. Int. 231, 1–5. doi: 10.1016/j.forsciint.2013.03.049 

 Lu, B., Dao, P. D., Liu, J., He, Y., and Shang, J. (2020). Recent advances of Hyperspectral imaging technology and applications in agriculture. Remote Sens. 12:2659. doi: 10.3390/rs12162659

 Mahlein, A. -K., Oerke, E. -C., Steiner, U., and Dehne, H. -W. (2012). Recent advances in sensing plant diseases for precision crop protection. Eur. J. Plant Pathol. 133, 197–209. doi: 10.1007/s10658-011-9878-z

 Mandrile, L., Rotunno, S., Miozzi, L., Vaira, A. M., Giovannozzi, A. M., Rossi, A. M., et al. (2019). Nondestructive Raman spectroscopy as a tool for early detection and discrimination of the infection of tomato plants by two economically important viruses. Anal. Chem. 91, 9025–9031. doi: 10.1021/acs.analchem.9b01323 

 Mantri, N., Patade, V., Penna, S., Ford, R., and Pang, E. (2012). “Abiotic stress responses in plants: present and future” in Abiotic stress responses in plants. eds. P. Ahmad and M. N. V. Prasad (New York: Springer), 1–19.

 Martin, D. M., Gonzalvez, A. G., Medina, R. M., and Urena, A. G. (2017). Modeling tomato ripening based on carotenoid Raman spectroscopy: experimental versus kinetic model. Appl. Spectrosc. 71, 1310–1320. doi: 10.1177/0003702816681012 

 Mihaljev, Ž., Jakšić, S., Prica, N. B., Ćupić, Ž. N., and Baloš, M. Ž. (2015). Comparison of the Kjeldahl method, dumas method and NIR method for total nitrogen determination in meat and meat products. J. Agroaliment. Proc. Technol. 21, 365–370.

 Morey, R., Ermolenkov, A., Payne, W. Z., Scheuring, D. C., Koym, J. W., Vales, M. I., et al. (2020). Non-invasive identification of potato varieties and prediction of the origin of tuber cultivation using spatially offset Raman spectroscopy. Anal. Bioanal. Chem. 412, 4585–4594. doi: 10.1007/s00216-020-02706-5

 Muik, B., Lendl, B., Molina-Diaz, A., Ortega-Calderon, D., and Ayora-Canada, M. J. (2004). Discrimination of olives according to fruit quality using Fourier transform Raman spectroscopy and pattern recognition techniques. J. Agric. Food Chem. 52, 6055–6060. doi: 10.1021/jf049240e 

 Mutka, A. M., and Bart, R. S. (2015). Image-based phenotyping of plant disease symptoms. Front. Plant Sci. 5:734. doi: 10.3389/fpls.2014.00734 

 Nekvapil, F., Brezestean, I., Barchewitz, D., Glamuzina, B., Chis, V., and Cinta Pinzaru, S. (2018). Citrus fruits freshness assessment using Raman spectroscopy. Food Chem. 242, 560–567. doi: 10.1016/j.foodchem.2017.09.105 

 Nelson, W. R., Sengoda, V. G., Alfaro-Fernandez, A. O., Font, M. I., Crosslin, J. M., and Munyaneza, J. E. (2013). A new haplotype of “Candidatus Liberibacter solanacearum” identified in the Mediterranean region. Eur. J. Plant Pathol. 135, 633–639. doi: 10.1007/s10658-012-0121-3

 Nie, B., Henion, J., and Ryona, I. (2019). The role of mass spectrometry in the Cannabis industry. J. Am. Soc. Mass Spectrom. 30, 719–730. doi: 10.1007/s13361-019-02164-z

 Nikbakht, A. M., Hashjin, T. T., Malekfar, R., and Gobadian, B. (2011). Nondestructive determination of tomato fruit quality parameters using Raman spectroscopy. J. Agric. Sci. Technol. 13, 517–526.

 Pan, T. -T., Pu, H., and Sun, D. -W. (2017). Insights into the changes in chemical compositions of the cell wall of pear fruit infected by Alternaria alternata with confocal Raman microspectroscopy. Postharvest Biol. Technol. 132, 119–129. doi: 10.1016/j.postharvbio.2017.05.012

 Patel, B., Wene, D., and Fan, Z. T. (2017). Qualitative and quantitative measurement of cannabinoids in cannabis using modified HPLC/DAD method. J. Pharm. Biomed. Anal. 146, 15–23. doi: 10.1016/j.jpba.2017.07.021 

 Piot, O., Autran, J. C., and Manfait, M. (2002). Assessment of cereal quality by micro-Raman analysis of the grain molecular composition. Appl. Spectrosc. 56, 1132–1138. doi: 10.1366/000370202760295359

 Raza, S. -E. -A., Prince, G., Clarkson, J. P., and Rajpoot, N. M. (2015). Automatic detection of diseased tomato plants using thermal and stereo visible light images. PLoS One 10:e0123262. doi: 10.1371/journal.pone.0123262 

 Rys, M., Juhasz, C., Surowka, E., Janeczko, A., Saja, D., Tobias, I., et al. (2014). Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy. Plant Physiol. Biochem. 83, 267–278. doi: 10.1016/j.plaphy.2014.08.013 

 Sanchez, L., Baltensperger, D., and Kurouski, D. (2020a). Raman-based differentiation of hemp, Cannabidiol-rich hemp, and Cannabis. Anal. Chem. 92, 7733–7737. doi: 10.1021/acs.analchem.0c00828 

 Sanchez, L., Ermolenkov, A., Biswas, S., Septiningshih, E. M., and Kurouski, D. (2020b). Raman spectroscopy enables non-invasive and confirmatory diagnostics of salinity stresses, nitrogen, phosphorus, and potassium deficiencies in rice. Front. Plant Sci. 11:573321. doi: 10.3389/fpls.2020.573321 

 Sanchez, L., Ermolenkov, A., Tang, X. T., Tamborindeguy, C., and Kurouski, D. (2020c). Non-invasive diagnostics of Liberibacter disease on tomatoes using a hand-held Raman spectrometer. Planta 251:64. doi: 10.1007/s00425-020-03359-5 

 Sanchez, L., Farber, C., Lei, J., Zhu-Salzman, K., and Kurouski, D. (2019a). Noninvasive and nondestructive detection of cowpea Bruchid within cowpea seeds with a hand-held Raman spectrometer. Anal. Chem. 91, 1733–1737. doi: 10.1021/acs.analchem.8b05555 

 Sanchez, L., Filter, C., Baltensperger, D., and Kurouski, D. (2020d). Confirmatory non-invasive and non-destructive differentiation between hemp and Cannabis using a hand-held Raman spectrometer. RSC Adv. 10, 3212–3216. doi: 10.1039/C9RA08225E

 Sanchez, L., Pant, S., Irey, M. S., Mandadi, K., and Kurouski, D. (2019b). Detection and identification of canker and blight on Orange trees using a hand-held Raman spectrometer. J. Raman Spectrosc. 50, 1875–1880. doi: 10.1002/jrs.5741

 Sanchez, L., Pant, S., Mandadi, K., and Kurouski, D. (2020e). Raman spectroscopy vs quantitative polymerase chain reaction in early stage Huanglongbing diagnostics. Sci. Rep. 10:10101. doi: 10.1038/s41598-020-67148-6 

 Sanchez, L., Pant, S., Xing, Z., Mandadi, K., and Kurouski, D. (2019c). Rapid and noninvasive diagnostics of Huanglongbing and nutrient deficits on citrus trees with a handheld Raman spectrometer. Anal. Bioanal. Chem. 411, 3125–3133. doi: 10.1007/s00216-019-01776-4 

 Schaad, N., and Frederick, R. (2002). Real-time PCR and its application for rapid plant disease diagnostics. Can. J. Plant Pathol. 24, 250–258. doi: 10.1080/07060660209507006

 Schulz, H., Baranska, M., and Baranski, R. (2005). Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers 77, 212–221. doi: 10.1002/bip.20215 

 Sikirzhytski, V., Sikirzhytskaya, A., and Lednev, I. K. (2012). Advanced statistical analysis of Raman spectroscopic data for the identification of body fluid traces: semen and blood mixtures. Forensic Sci. Int. 222, 259–265. doi: 10.1016/j.forsciint.2012.07.002 

 Swisher Grimm, K., and Garczynski, S. (2019). Identification of a new haplotype of ‘Candidatus Liberibacter solanacearum’ in Solanum tuberosum. Plant Dis. 103, 468–474. doi: 10.1094/PDIS-06-18-0937-RE 

 Synytsya, A., Čopíková, J., Matějka, P., and Machovič, V. (2003). Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr. Polym. 54, 97–106. doi: 10.1016/S0144-8617(03)00158-9

 Tamborindeguy, C., Huot, O. B., Ibanez, F., and Levy, J. (2017). The influence of bacteria on multi-trophic interactions among plants, psyllids, and pathogen. Insect Sci. 24, 961–974. doi: 10.1111/1744-7917.12474 

 Thomas, A. C., Tank, S., Nguyen, P. L., Ponce, J., Sinnesael, M., and Goldberg, C. S. (2019). A system for rapid eDNA detection of aquatic invasive species. Env. DNA 2, 261–270. doi: 10.1002/edn3.25

 Vallejo-Pérez, M. R., Mendoza, M. G., Elias, M. G., Gonzalez, F. J., Contreras, H. R., and Servin, C. C. (2016). Raman spectroscopy an option for the early detection of citrus Huanglongbing. Appl. Spectrosc. 70, 829–839. doi: 10.1177/0003702816638229 

 Virkler, K., and Lednev, I. K. (2009). Blood species identification for forensic purposes using Raman spectroscopy combined with advanced analytical statistics. Anal. Chem. 81, 7773–7777. doi: 10.1021/ac901350a 

 Wang, K. D., Borrego, E. J., Kenerley, C. M., and Kolomiets, M. V. (2020). Oxylipins other than Jasmonic acid are xylem-resident signals regulating systemic resistance induced by Trichoderma virens in maize. Plant Cell 32, 166–185. doi: 10.1105/tpc.19.00487 

 Waqas, M. A., Kaya, C., Riaz, A., Farooq, M., Nawaz, I., Wilkes, A., et al. (2019). Potential mechanisms of abiotic stress tolerance in crop plants induced by Thiourea. Front. Plant Sci. 10:1336. doi: 10.3389/fpls.2019.01336 

 Wiercigroch, E., Szafraniec, E., Czamara, K., Pacia, M. Z., Majzner, K., Kochan, K., et al. (2017). Raman and infrared spectroscopy of carbohydrates: a review. Spectrochim. Acta A 185, 317–335. doi: 10.1016/j.saa.2017.05.045 

 Yang, C., Prasher, S. O., Landry, J., and Ditommaso, A. (2000). Application of artificial neural networks in image recognition and classification of crop and weeds. Can. Agric. Eng. 42, 147–152.

 Yeturu, S., Vargas Jentzsch, P., Ciobotă, V., Guerrero, R., Garrido, P., and Ramos, L. A. (2016). Handheld Raman spectroscopy for the early detection of plant diseases: Abutilon mosaic virus infecting Abutilon sp. Anal. Methods 8, 3450–3457. doi: 10.1039/C6AY00381H

 Yu, M. M., Schulze, H. G., Jetter, R., Blades, M. W., and Turner, R. F. (2007). Raman microspectroscopic analysis of triterpenoids found in plant cuticles. Appl. Spectrosc. 61, 32–37. doi: 10.1366/000370207779701352 

 Zeng, Z. C., Hu, S., Huang, S. C., Zhang, Y. J., Zhao, W. X., Li, J. F., et al. (2016). Novel electrochemical Raman spectroscopy enabled by water immersion objective. Anal. Chem. 88, 9381–9385. doi: 10.1021/acs.analchem.6b02739

 Zhang, W., Zhang, Z., Fan, G., Gao, Y., Wen, J., Bai, Y., et al. (2017). Development and application of a universal and simplified multiplex RT-PCR assay to detect five potato viruses. J. Gen. Plant Pathol. 83, 33–45. doi: 10.1007/s10327-016-0688-1

 Zhu, T., Jackson, D. S., Wehling, R. L., and Geera, B. (2008). Comparison of amylose determination methods and the development of a dual wavelength iodine binding technique. J. Cereal Chem. 85, 51–58. doi: 10.1094/CCHEM-85-1-0051

 Zhu, N., Wu, D., and Chen, K. (2018). Label-free visualization of fruit lignification: Raman molecular imaging of loquat lignified cells. Plant Methods 14:58. doi: 10.1186/s13007-018-0328-1

 Zivovinovic, S., Alder, R., Allenspach, M. D., and Steuer, C. (2018). Determination of cannabinoids in Cannabis sativa L. samples for recreational, medical, and forensic purposes by reversed-phase liquid chromatography-ultraviolet detection. JAST 9, 1–10. doi: 10.1186/s40543-018-0159-8



Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Payne and Kurouski. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.










	
	REVIEW
published: 27 January 2021
doi: 10.3389/fpls.2020.609155






[image: image2]

Past and Future of Plant Stress Detection: An Overview From Remote Sensing to Positron Emission Tomography

Angelica Galieni1, Nicola D'Ascenzo2,3*, Fabio Stagnari4*, Giancarlo Pagnani4, Qingguo Xie2,3* and Michele Pisante4


1Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics, Monsampolo del Tronto, Italy

2School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China

3Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo, I.R.C.C.S, Pozzilli, Italy

4Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy

Edited by:
Shawn Carlisle Kefauver, University of Barcelona, Spain

Reviewed by:
Shabir Hussain Wani, Sher-e-Kashmir University of Agricultural Sciences and Technology, India
 Christos Kissoudis, Wageningen University and Research, Netherlands

*Correspondence: Nicola D'Ascenzo, ndasc@hust.edu.cn
 Fabio Stagnari, fstagnari@unite.it
 Qingguo Xie, qgxie@hust.edu.cn

Specialty section: This article was submitted to Technical Advances in Plant Science, a section of the journal Frontiers in Plant Science

Received: 22 September 2020
 Accepted: 18 November 2020
 Published: 27 January 2021

Citation: Galieni A, D'Ascenzo N, Stagnari F, Pagnani G, Xie Q and Pisante M (2021) Past and Future of Plant Stress Detection: An Overview From Remote Sensing to Positron Emission Tomography. Front. Plant Sci. 11:609155. doi: 10.3389/fpls.2020.609155



Plant stress detection is considered one of the most critical areas for the improvement of crop yield in the compelling worldwide scenario, dictated by both the climate change and the geopolitical consequences of the Covid-19 epidemics. A complicated interconnection of biotic and abiotic stressors affect plant growth, including water, salt, temperature, light exposure, nutrients availability, agrochemicals, air and soil pollutants, pests and diseases. In facing this extended panorama, the technology choice is manifold. On the one hand, quantitative methods, such as metabolomics, provide very sensitive indicators of most of the stressors, with the drawback of a disruptive approach, which prevents follow up and dynamical studies. On the other hand qualitative methods, such as fluorescence, thermography and VIS/NIR reflectance, provide a non-disruptive view of the action of the stressors in plants, even across large fields, with the drawback of a poor accuracy. When looking at the spatial scale, the effect of stress may imply modifications from DNA level (nanometers) up to cell (micrometers), full plant (millimeters to meters), and entire field (kilometers). While quantitative techniques are sensitive to the smallest scales, only qualitative approaches can be used for the larger ones. Emerging technologies from nuclear and medical physics, such as computed tomography, magnetic resonance imaging and positron emission tomography, are expected to bridge the gap of quantitative non-disruptive morphologic and functional measurements at larger scale. In this review we analyze the landscape of the different technologies nowadays available, showing the benefits of each approach in plant stress detection, with a particular focus on the gaps, which will be filled in the nearby future by the emerging nuclear physics approaches to agriculture.
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1. INTRODUCTION

The world population is expected to increase up to 10.9 billion by 2050. Consequently food supply needs to be increased from 50 to 75% depending upon the region (Prosekov and Ivanova, 2018). Such scenario is even more complicated due to the global climate change and to the recent COVID-19 geopolitical problems that have been affecting the food production and importation in many parts of the world.

Global climate change has resulted in heat waves due to rising temperature, increased atmospheric CO2 level, frequent spells of drought and higher precipitations. In addition to climate change, the natural resource depletion as well as the anthropogenic activities have created serious challenges to agriculture sustainability causing lower agricultural yields, threat to the food security and food and feed safety (Miraglia et al., 2009; Pisante et al., 2012).

The already critical food security situation has been exacerbated by the restrictions of movement and trade due to the recent Covid-19 crisis. A series of social problems are also heavily affecting agriculture. On the one hand the limited availability of seasonal workers disrupted the harvesting cycles, on the other hand increasing food price is limiting food accessibility. The World Bank estimates that protectionism accounted for about 40% of the increase in the global price of wheat and 25% of the rise in maize prices.

When subjected to both biotic and abiotic stressful conditions plants respond through physiological and metabolic changes mediated by pulses of gene expression, suggesting the existence of a complex signaling network that allows plant recognizing adverse environmental conditions as well as changes in growth conditions (Kollist et al., 2019).

Therefore, it became extremely urgent to define novel technologies and methods to ensure better growth and yields of all crops. An early warning system of plant stress (i.e., before symptoms are visible in the plant) would be, indeed, the tool that helps growers on greenhouse management to increase efficiency the use of resources. Moreover such approach could constitute the base for breeding programs to select genotypes for biotic and abiotic stress adaptation and high yield in both stress and non-stress environments.

As represented in Figure 1, the effect of stressors manifests itself in a series of signs at a wide length scale, ranging from the entire cropping system down to the cellular level. Therefore a series of detection techniques has been developed to measure physiological responses to situation of stress.


[image: Figure 1]
FIGURE 1. A summary of the main techniques for plant stress detection. The stressors and the wavelength used for stress detection in each technique are also shown. Stress manifests itself over a wide length scale ranging from the microscopic cellular to the macroscopic plant and field level. Whole field sensing (VIS/NIR reflectance, Thermography, Fluorescence) is naturally attractive in the agricultural practice, but provides only a qualitative information. At plant level morphological imaging techniques (CT, MRI) provide quantitative high resolution detection of structural damages induced by the stress, but cannot provide any information on the functional basis of the physiological mechanisms of reactions to both biotic and abiotic stressors at cellular level. For this purpose, metabolomics is an essential tool to enhance the results obtained with morphologic imaging techniques, but it is sample disruptive and is not able to provide timely indications to support early interventions both in open-field and controlled conditions. PET is by far the only quantitative functional imaging technique, which provides a time-dynamic non-disruptive information of the modifications of functional mechanisms and transport flows in the vascular system in response to biotic and abiotic stress.


The remote sensing approach is preferred for large area investigations, as it allows to detect the chemical or physical properties of crops from whatever distance, through the record, measure and interpretation of imagery and digital representations of energy patterns. With these methods the whole fields can be investigated during the whole crop seasons, allowing an accurate, early and reliable detection of crop stress, thanks also to highly innovative and sophisticated methods of data analysis.

However, remote sensing methods are qualitative and do not allow precision measurements. Quantitative techniques at cellular level principally relay on two different acquisition strategies [nuclear magnetic resonance (NMR) and mass spectrometry (MS)] to the Volatile organic compound-based techniques. Such laboratory methods, although often result very accurate, are sampling destructive and allow monitoring only a very limited number of plants or sections of plants. Consequently, such approach is not suitable to control, estimate and manage within-field spatial variability as well as ready detection of the changes of physiological crop responses over time.

Therefore the current frontier of stress evaluation in plant science is the establishment of novel quantitative and non-disruptive imaging techniques, both for precision morphological studies (computed tomography, magnetic resonance) and dynamic functional imaging (positron emission tomography).

In this review we present an overview of the several methods and approaches to detect the most affecting biotic and abiotic stress in agricultural crops at the different plant scales, ranging from qualitative remote sensing techniques (section 2), to sample disruptive quantitative techniques (section 3), to frontier quantitative and non-disruptive functional imaging technologies (section 4).



2. REMOTE SENSING QUALITATIVE METHODS FOR STRESS ASSESSMENT

The term remote sensing can be defined as a set of techniques that allow detecting the chemical or physical properties of physical objects, from whatever distance, through the record, measure and interpretation of imagery and digital representations of energy patterns derived from non-contact sensor systems. It represents a rapid, non-destructive, method to detect both biotic and abiotic stressful conditions, utilized in precision agriculture and plant phenotyping for resistance breeding purposes.

The processes involved are mainly based on the interaction between electromagnetic radiation and plants. Since any stressful condition can induce numerous and complex physiological and biochemical responses in plants (i.e., altered stomatal conductance, pigments concentration, and biochemistry), healthy crop status could be derived from alterations observed in plant-electromagnetic radiation relationship, provided on specific spectral domains. Over the past decades, agricultural sciences relied principally on reflectance (in the visible, VIS, 0.4–0.7 μm, near-infrared, NIR, 0.7–1.3 μm and short wave-infrared, SWIR, 1.3–2.5 μm regions), thermal (in the thermal infrared, TIR 7.0–20.0 μm region) and fluorescence (at 0.68 and 0.74 μm wavelengths) sensors. These sensors, although each one with proper characteristics, can be used for applications on scales ranging from microscopic observation (i.e., laboratory spectroscopy or hyperspectral microscopy) to ground (proximal sensing, i.e., detector within 2 m from the observed object), airborne, and satellite remote sensing. Consequently, each sensor is characterized, beyond its resolution in discriminating the signal variations, by the spatial resolution, as a function of the distance between the sensor itself and the subject of the analysis. Sensors can also be classified based on their application in (i) non-imaging [i.e., VIS and infrared (IR) spectroscopy, fluorescence spectroscopy], and (i) imaging (i.e., VIS, multispectral and hyperspectral imaging, thermal imaging, fluorescence imaging, x-ray imaging) approaches. In general, non-imaging sensors could be more effectively applied on lab-scales or leaf-scales measurements, since they provide data without spatial information.

The high resolution of the currently available sensors helps in individuating the possible correlations between subtle processes at the tissue level and plant electromagnetic patterns, following stress exposure (Thomas et al., 2017, 2018). At canopy or landscape levels, the spatial resolution represents a critical factor to gather information on plant responses to stress. As an example, for the characterization of a specific disease at the field scale, proximal hyperspectral imaging is more able than hyperspectral remote sensing, thanks to higher spatial resolution (Kuska and Mahlein, 2018). Despite the potential of remote sensing for stress detection, some general considerations and weaknesses deserve to be highlighted.

Firstly, based on the reached technological advances and on the intrinsic characteristics of the applied technology, each sensing technique is characterized by its own effectiveness in stress detection and identification (see also Figure 1), that depends on (i) the kind of stressful conditions and (ii) its magnitude. Consequently, the desirable early identification of stressful conditions (i.e., before symptoms appearance) is not obvious at all. For example, in the case of water stress, the temperature-based indices (see section 2.3) provide an appropriate pre-visual detection of plant responses, while some vegetation indices derived from reflectance in the VIS/NIR domain (see section 2.2) are effective only at late plant responses (Gerhards et al., 2019).

Secondly, within the same sensing vegetation technique and stressful condition, spectral responses to stress exposure are related to plant genotype (i.e., principally due to genotype-sensitivity). This aspect may need an in-depth study of specific stress-genotype combinations, also involving the understanding of the physiological and biochemical processes, which cause changes in the spectral feature, to derive indicators or parameters for specific demands.

Thirdly, data acquisition processes should consider the environmental condition during measurements as well as plant canopy and leaf structural architecture. Improvements need to be achieved in terms of (i) data pre-processing, (ii) inclusion of calibration systems integrated on automated systems, and (iii) use of multiple sensors platforms also equipped with 3-D shape sensors (Mishra et al., 2020).

Fourthly, some plant responses, potentially detectable for stress diagnosis, may be shared among different stresses (i.e., drought, salinity, temperatures, mineral toxicity, or pathogen infection) making difficult the identification of specific stressors, especially in open-field conditions, where a multi-stress scenario can occur. It derives that, while a single sensing technique could be characterized by high specificity in the identification of individual stress signals in experimental conditions, the possible multiple causes in agricultural applications can be identified only through a holistic and integrated approach (Jones and Schofield, 2008).

All the above considerations offer a new starting point for the advancement in vegetation sensing for stress detection through the implementation of the currently available techniques, also with the introduction and strengthening of innovative imaging techniques applicable to the agricultural sector (see section 4). The review goes through a more detailed overview of remote sensing technologies applied to plant stress detection in agriculture. Considering the complexity and breadth of the covered topics, further information can be obtained by consulting the available scientific literature, to which reference is made (Gorbe and Calatayud, 2012; Murchie and Lawson, 2013; Mishra et al., 2017; Khan et al., 2018; Gerhards et al., 2019).


2.1. Fluorescence Spectroscopy

Fluorescent molecules absorb energy from a given wavelength, modify its electronic shell, and, after a short time, descend back to its natural status while emitting some of the absorbed energy in the form of an electromagnetic wave. Wavelengths of absorption and emission are specific for each compound: chlorophyll a fluorescence (ChlF) has a natural emission between 650 and 800 nm, with two maxima in the red (680 nm) and far-red (735 nm) wavelengths. Changes in the fluorescence spectra shape as well as in the ratio between the two maxima emission peaks (i.e., F685/F735) are responsive of changes in Chl content of leaves (Buschmann, 2007; Pandey et al., 2015). So, ChlF and ChlF parameters are widely applied to rapid assess any mutation of Photosystem II, following the plant exposure to both biotic and abiotic stressful conditions (Belasque et al., 2008; Pandey et al., 2015). With respect to the latter, the fluorescence in the blue-green range (400–600 nm, with two maxima in the blue—440nm and green—530 nm) is related to fungal leaf infections as it is emitted by substances (e.g., stilbenes) produced by the leaf following a fungal attack, and so providing a useful early detection tool (Casa et al., 2016). Active systems, based on laser-induced fluorescence (LIF), was applied, for example, on citrus plants to detect the citrus canker disease (caused by Xanthomonas axonopodis pv. citri) (Belasque et al., 2008) or, more recently, the Huanglongbing (caused by Candidatus Liberibacter spp.) or citrus greening (Ranulfi et al., 2016).

LIF was also successfully applied to study the effects of dimethoate on physiological and growth responses of pigeon pea plants and to measure out its application (Pandey et al., 2015). A fluorescent index was also proposed to estimate leaf nitrogen concentration in rice (Yang et al., 2019). In particular, differently to reflectance measurements (see sections 2.2 and 2.5), the signal is not affected by soil properties; so, ChlF sensors can be applied to estimate Chl content (linked to nitrogen availability) even in the early crop stages (after plant emergence or transplant) or in sparse soil coverage conditions (Casa et al., 2016).



2.2. Vis/NIR Spectroscopy

Leaf and/or canopy reflectance has been widely researched across several biotic and abiotic stressful conditions with both active and passive sensors; the former are equipped with light-emitting components while the latter depend on sunlight as a source of light. The main applications in plant health detection are based on the spectral wavelengths ranging from 400 to 2,500 nm, since reflectance in the VIS, NIR and SWIR is primarily influenced by photosynthetic pigments, cell structure and water content, respectively. These traits can in fact undergo important changes in plants growing under unfavorable conditions (Mishra et al., 2017).

Briefly, the electromagnetic radiation that runs into the leaf surface can be reflected, scattered, absorbed and transmitted at wavelengths which depend on the biochemical and physical characteristics of the leaf. In the VIS and IR regions the reflection patterns are somehow influenced by (i) the C-O, O-H, C-H and N-H covalent bonds of macromolecules (i.e., sugars, proteins, lignin, and cellulose), (ii) the amount of natural pigments containing tetrapyrroles rings, like chlorophylls (as important absorbing molecules, in the blue and in the red bands), as well as (iii) the anatomical and biochemical leaf traits (i.e., surface texture or thickness of cuticle, trichome density and architecture, shape and thickness of the palisade and spongy mesophyll).

The typical spectral assignments of a green leaves in the optical spectral ranges VIS-NIR-SWIR of the electromagnetic spectrum is reported in Figure 2. In the VIS region, there are two main absorption bands in blue (470 nm) and in red (670 nm), associated with Chla and Chlb, and a reflectance peak in the yellow-green band (550 nm). The NIR region is characterized by higher reflectance values (the typical spectrum plateau), while in the SWIR region the leaf reflectance pattern is highly dependent on the light absorbed by leaf water (near 1,450 and 1,900 nm) and on leaf dry matter (Ge et al., 2019; Gholizadeh and Kopacková, 2019).
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FIGURE 2. A typical healthy vegetation spectrum (350–2,500 nm); spectral reflectance signature refers to spinach leaves (author's personal and unpublished data). Measurements were taken using full-range hyperspectral ASD FieldSpec 4 Hi-Res (Analytical Spectral Devices Inc., Boulder, CO, USA) spectroradiometer equipped with a contact probe. Red-edge and water bands' absorption sections are highlighted in red and blue, respectively.


Interestingly, the position (wavelength) of the rapid increase in leaf reflectance from VIS to NIR, called red-edge (RE), is significantly affected by Chl content in leaves (Liu et al., 2019b). Thus, stressful conditions that influence the concentration of leaf pigments can be effectively identified. To this purpose, the analysis of the spectral derivative is successfully performed to highlight changes in RE (i.e., position and amplitude). For instance, a blue-shift of the RE in rice infested by rice leaf folder has been found (Huang et al., 2019).

In general, reflectance spectroscopy is used for the sensing of a wide range of stressful conditions. Some of the more recent literature on this topic concerns the assessment of the nitrogen status in crops (Stellacci et al., 2016), the macro- and micro-nutrient deficiencies (Galieni et al., 2015; Visioli et al., 2016; Rustioni, 2017; Rustioni et al., 2018), the impact of air and soil pollution (Cotrozzi et al., 2018; Gholizadeh and Kopacková, 2019), the plant disease detection (Ortiz et al., 2019; Zhang et al., 2019a), the salinity effects on crop growth and yield (El-Hendawy S. et al., 2019; El-Hendawy et al., 2019a; Boshkovski et al., 2020), the drought-induced changes in plants (Stagnari et al., 2014; Maimaitiyiming et al., 2017; Sylvain and Cecile, 2018; El-Hendawy et al., 2019b), the specific secondary metabolites accumulation in plant tissue (Couture et al., 2016) as well as the plant phenotyping (Garriga et al., 2017; Ge et al., 2019).

Nowadays, reflectance spectroscopy principally relies on technologies based on hyperspectral sensors, which consist of acquiring images in several narrow (<10 nm) and contiguous spectral bands, and allow to collect a large amount of data (Feng et al., 2018; El-Hendawy S. et al., 2019). Over years, the reflectance values measured at specific wavelengths of the VIS -NIR-SWIR domains have been combined to obtain different spectral reflectance indices (SRIs), applied in the assessment of morphological, physiological and biochemical parameters related to stress (El-Hendawy S. et al., 2019). One of the most commonly used SRI is represented by the Normalized Difference Vegetation Index (NDVI), which was observed to significantly correlate with the final yield of many crop species (El-Hendawy et al., 2019b). It is very difficult to provide a complete overview of all developed SRIs. In Table 1 are summarized some of the SRIs commonly used to estimate a range of plant characteristics indicative of various stressors exposures. Some SRIs have been formulated and validated under specific genotype-stressor combinations, see plant-disease during infection (i.e., grapevine-Flavescence Dorée, AL-Saddik et al., 2017). Although their reliability, a significant amount of information come from very narrow spectrum regions (Hansen and Schjoerring, 2003); moreover, the predictive performances of SRIs can be significantly influenced by genetic, environmental, and crop management factors (Kawamura et al., 2018). Reflectance spectrum can be also used entirely as a “fingerprint” of the plant. Due to the large datasets, different techniques, that involves multivariate statistical approaches, including the stepwise multiple linear regression analysis (SMLR) and the partial least squares regression (PLSR), were exploited (Garriga et al., 2017). SMLR is useful in defining the relationships between spectral reflectance and crop characteristics although its predictive ability can be compromised when the number of predictors (X) is higher than the number of observations (Y) (overfitting), and when several predictors are strongly correlated to each other (multicollinearity) (El-Hendawy et al., 2019b). PLSR was found to effectively relate the plant responses to spectral signatures, as in the estimation and prediction of several crop traits in viral infection causing leafroll disease in Vitis vinifera (Naidu et al., 2009), to predict photosynthetic activity among six genotypes (three transgenic and three wild type lines) of Nicotiana tabacum (Meacham-Hensold et al., 2019), and to detect the impact of tropospheric ozone on Salvia officinalis (Marchica et al., 2019).


Table 1. Summary of some of the most commonly vegetation spectrum reflectance indices (SRIs) and the related estimated morphological or physiological traits. Traits can relate to more than one stressful condition, so the same index can detect different kinds of stress, both biotic and abiotic. Abbreviations: N, nitrogen; Chl, chlorophyll; Car, carotenoids.
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Other studies reported the use of the principal component analysis (PCA), spectral band intercorrelations and stepwise discriminant analysis (Ray et al., 2010). Anyway, the accuracy of the estimating proposed models depends also on the preprocessing methods which include multiplicative scattering correction, standard normal variate, normalization, PCA and others (Liu et al., 2019b).



2.3. Thermal Imaging

Thermal imaging (thermography) is one of the most used imaging techniques in agronomic and environmental sciences as well as in the agri-food industry (Costa et al., 2013). It can be successfully applied in the detection of stressful conditions thanks to the significant relationships between foliar surface temperature (Tleaf) and leaf gas exchange (CO2 and H2O fluxes regulated by stomatal closure or aperture) or stomatal conductance (gs) (Gutirrez et al., 2018). The physical laws that regulate the emission of bodies in the TIR region, as well as the atmospheric and environmental variables that condition the Tleaf-gs relationship, are well-known and well-treated topics (Jones and Schofield, 2008; Costa et al., 2013; Vialet-Chabrand and Lawson, 2019) and are beyond the scope of this review.

As an imaging technique, thermography possess the advantage to acquire geolocated data at canopy scale, overcoming the classic handheld infrared thermometers, applied at leaf or single plant scales (Crusiol et al., 2020), providing results on a whole plant basis (Poirier-Pocovi et al., 2020). TIR cameras are widely used as portable devices for both Unmanned Aerial Vehicles (UAVs) (Sagan et al., 2019) or for agricultural vehicle proximal to the ground, as an on-the-go system, or even involving machine learning (Gutirrez et al., 2018), characterized by low-cost data acquisition, easy implementation, processing and immediate response as well as higher spatial-, spectral- and temporal resolutions.

Over years, thermography has been applied in the early detection and monitoring of pests and diseases (Al-doski et al., 2016; Ahmed et al., 2019; Vidal and Pitarma, 2019; Lydia et al., 2020), even before symptoms appearance (Chaerle et al., 2009; Awad et al., 2015), despite its low applicability on a large scale. Other works have shown a relationship between higher temperature and nutrient deficiency (Costa et al., 2013).

However, its main applications is addressed toward the sensing for crop water-stress detection, for agricultural and phenotyping purposes: i.e., the setting-up of the irrigation schedules (Gutirrez et al., 2018), the identification of any anomalies in irrigation systems (Matese et al., 2018), as a part of Cloud of Things (CoT)-based automated irrigation network (Roopaei et al., 2017), as a powerful tool in plant breeding activities (Shakoor et al., 2017; Sagan et al., 2019; Siddiqui et al., 2019) and in ecological studies (Still et al., 2019). Many studies relied on thermography in both herbaceous (Mangus et al., 2016; Martynenko et al., 2016; Quebrajo et al., 2018) and arboreous (Egea et al., 2017; Espinoza et al., 2017; Santesteban et al., 2017; García-Tejero et al., 2018; Blaya-Ros et al., 2020; Gutiérrez-Gordillo et al., 2020) cropping systems. Consequently, a large variety of crop water-stress indices (CWSIs) have been developed both isolating the effect of the crop water status and normalizing the aggregated data at the canopy level (Poirier-Pocovi et al., 2020). Some combination of well-watered and dry reference crop temperatures, starting from the CWSI proposed by Idso et al. (1981) till to the most recent ones developed by Poirier-Pocovi et al. (2020), have been applied to derive the above-mentioned indices.

However, despite technology advances of detectors as well as of data processing, further efforts should be addressed toward (i) the optimization of data collection (Costa et al., 2013), (ii) the indication of a generally accepted calculations of CWSI, to determine crop-specific thresholds for irrigation scheduling, and (iii) the advancement of hyperspectral TIR remote sensing (Gerhards et al., 2019).



2.4. Fluorescence Imaging

The development of new technologies has allowed building up an image starting from the simultaneous gathering of a high number of punctual fluorescence spectroscopy signals, which are encoded with a color-value relation. Thanks to cameras it is possible to repeat the measure over time very rapidly, obtaining a comprehensive visualization of the spatial-temporal gradients of the crop. Generally, the system is composed of a UV light source for the excitation of the fluorescent molecules and a charge-coupled device (CCD) camera (Sankaran et al., 2010). In the multicolor fluorescence imaging approach, it is possible to generate a fluorescent response from four different wavelength bands: red, far-red, blue and green (690, 740, 440, and 520 nm, respectively) using a single UV light source of excitation (ranging from 340 to 360 nm).

Active ChlF sensors has been successfully applied in the detection of the early stages of infection by fungi, viruses or bacteria: see for example, zucchini plants affected by soft-rot (caused by Dickeya dadantii) and powdery mildew (caused by Podosphaera fusca) (Pérez-Bueno et al., 2016; Pineda et al., 2017). Fluorescence imaging represents also an useful tool for the investigation of stressful conditions attributable to nutrient deficiencies (Wang et al., 2018c), extreme temperatures (Dong et al., 2019; Lu and Lu, 2020), pollution (Moustakas et al., 2019), use of agrochemicals (Weber et al., 2017; Li et al., 2018) as well as drought and/or salinity (Yao et al., 2018; Sun et al., 2019). Beside active fluorescence techniques, sun induced ChlF through passive sensors deserves to be mentioned due to its various application in plant stress studies (Bandopadhyay et al., 2020).



2.5. Multi- and Hyperspectral Imaging

Spectral sensors are classified based on the resolution of the measure (i.e., the wavebands density in the measure): both multi- and hyperspectral can load data from a broader and continuous VIS/NIR band, typically from 400 to 1,000 nm, with the most advanced systems that reach the 350–2,500 nm band (Stellacci et al., 2016; Maes and Steppe, 2019). Multispectral sensors reach a spectral resolution of about 50 nm while hyperspectral sensors provide a resolution ranging between 1 and 10 nm (Mahlein, 2016; Stellacci et al., 2016). Despite this, to date multi-spectral sensors are mainly advantageous in agricultural applications due to greater availability and lower costs.

The working principle of spectral imaging sensors vary from the filter-based ones, where only the light of a specific waveband can pass through, to the push broom and whisk broom scanners that gather the full spectrum on one pixel than move to another, to the most recent snapshot sensors that, using the same mosaic principle of the common RGB (red-green-blue) camera, allows a quicker image recording, very useful in extremely variable and adverse sampling conditions (Thomas et al., 2017).

With the image-based VIS/NIR approach, thanks to the combination of spectral information with the spatial and temporal dimensions, it is possible to estimate the occurrence of stressful conditions even at landscape scale (Zhang et al., 2019a). Spaceborne, airborne and ground-based, help to monitor in real-time the water status, biomass and yield, nutrient status, disease, and pests (Xue and Su, 2017; Maes and Steppe, 2019; Zhang et al., 2019a; Caballero et al., 2020), thanks also to combined elaboration of ground-based hyperspectral collected data with hand-carried radiometers and spectroradiometers and UAVs imaging data (Zheng et al., 2018). In Table 2, an overview of the recent literature about the application of hyperspectral imaging for stress detection has been reported.


Table 2. Published claims of stress identification from hyperspectral imaging since 2018, along with the chosen multivariate data processing technique and accuracy reached. “Plant stress” refers to both (i) the classification or modeling of stressful conditions and (ii) the plant phenotyping.

[image: Table 2]

It is worth to highlight that the robustness of the estimation models built from spectral imaging datasets is greatly affected by the technical characteristics of the sensors, by environmental factors such as temperature, humidity and wind, by the camera settings (i.e., compression, stabilization, aperture, shutter speed), and even by data preprocessing and processing techniques (Barbedo, 2019; Liu et al., 2019a).




3. DISRUPTIVE QUANTITATIVE PRECISION METHODS FOR STRESS ASSESSMENT


3.1. Molecular Methods

In the last decades, several molecular techniques have been developed for the detection of plant stress. The most commonly used are polymerase chain reaction (PCR and real-time PCR) and enzyme-linked immunosorbent assay (ELISA); other techniques, mainly applied for disease detection, include immunoflourescence imaging (Gautam et al., 2020), flow cytometry (Chitarra and Bulk, 2003), fluorescence in situ hybridization (FISH; Farber et al., 2019), and DNA microarrays.

PCR screens complementary DNAs (cDNAs/cDNA) and characterizes tissue-, organ- or development-specific cDNAs. It allows identifying differentially induced or expressed genes and represents a reliable and widely used method to reveal genes and molecular mechanism which response to abiotic stress in different plant species. It has been reported (Liu and Baird, 2003) that the genes corresponding to 13 out of 17 cDNAs clones isolated from sunflower were confirmed to be expressed differentially in response to osmotic stress by quantitative reverse-transcription PCR (RT-PCR). Suitable reference genes have also been reported in cultivated rice (Pabuayon et al., 2016), rapeseed (Machado et al., 2015), potato (Tang et al., 2017) and ornamental plant species (Carex rigescens; Zhang K. et al., 2019). Real-time PCR platforms have also been used for rapid diagnosis of plant diseases (Campos et al., 2019; Liu et al., 2019a).

ELISA-based biotic stress detection consists in the production of a specific antibody for a protein (antigen), associated with a plant disease, and is used for the detection of the biotic stress-causing microorganism inside an extracted probe from the plant tissue. The sensitivity of ELISA varies depending on the organism species (relatively low for bacteria, higher for fungi), sample freshness and titre (Martinelli et al., 2015). The main disadvantages of molecular-based approaches rely on time-consuming and labor-intensive domains. These shortcomings clash with the need of a rapid screening and detection and monitoring of stress and can be overcome through the use of detection techniques able to estimate the presence of any limiting conditions on a plant-response basis (sections 2 and 4).



3.2. Metabolomics

Metabolomics, defined as comprehensive and quantitative analysis of all small molecules in a biological system (Fiehn, 2001), is widely shared in studies regarding plant physiology and biochemistry as it allows the comprehension of the regulation of metabolic networks (Obata and Fernie, 2012). Plants rely on specific survival strategies to react to stress. Frequently their response leads to the synthesis of primary and secondary metabolites (Stagnari et al., 2016), which are involved, for example, in the regulation of osmotic pressure within cells, cell signaling, membrane formation and scaffolding, whole-plant resource allocation, prevention from cell oxidation, deterrence from herbivores as well as prevention from infection and growth of pathogenic microorganisms (Dawid and Hille, 2018). Consequently, an adjustment of the metabolic pathways, aimed at achieving a new state of homeostasis (referred as acclimation) occur (Suzuki and Mittler, 2006).

The research conducted in the metabolomics field relays principally on two different acquisition strategies: nuclear magnetic resonance (NMR) and mass spectrometry (MS)—gas chromatography/liquid chromatography-mass spectrometry (GC/LC-MS) (Piasecka et al., 2019). NMR allows to elucidate the structure of metabolites and the biomolecular composition of plant extracts (Fernie et al., 2004). GC is the most developed analytical platform for plant metabolite profiling and represents one of the first high-throughput approaches applied (Roessner et al., 2001). When coupled to MS, it allows profiling non-targeted metabolites, both thermally stable non-polar ones and derivatized polar one. This technique has lower efficiency for molecular compounds with molecular weight larger than 1 kDa.

Time-of-flight (TOF)-MS has become the method of choice thanks to its fast scan times. The crucial advantages of this technology are his stable protocols for machine setup and maintenance, and the chromatogram evaluation and interpretation. LC-based methods have the advantage, over GC-MS, to detect thermolabile, polar metabolites, and high-molecular weight compounds without any derivatization. Moreover, higher resolution and sensitivity have been achieved with the development of ultraperformance liquid chromatography (UPLC) (Rogachev and Aharoni, 2012). Nowadays, the progresses in analytical instrumentation and the application of bioinformatic procedures have improved the measurements of a higher number of plant metabolites as well as the correlation of metabolome data with those from other omics levels (i.e., transcriptome and/or genome). This allows the assessment of metabolic changes and the elucidation of the involved metabolic pathways (Parihar et al., 2019), although the analytical sensitivity and resolution needed for the simultaneous separation and detection of the metabolites found in plants, are still far to be achieved.

Several metabolomic studies have revealed that many metabolic pathways are regulated under stress (i.e., drought, salinity, heat and chilling, nutrient deficiency, light, heavy metals, ozone - alone or in combination). Since many of these studies have been previously reviewed (Obata and Fernie, 2012; Arbona et al., 2013; Li et al., 2019), we will consider only the most recent literature on this topic. Photosynthesis regulation and osmolytes accumulation have been widely reported under water stress conditions. Proline, tryptophan, L-arginine, L-histidine, L-isoleucine increased in the tolerant line after water stress induction while choline, phenylalanine, guanine, aspartic acid, and alpha-ketoglutaric decreased in the case of chickpea; however, the effect of variety (and sensitivity to drought) could have affected the accumulation of some of them after a long-term exposition to stressful conditions (Khan et al., 2019). Proline and arginine accumulations were also observed in drought-tolerant sesame genotype, besides an increase of abscisic acid, lysine, aromatic and branched chain amino acids, 4-aminobutanoic acid, saccharopine, 2-aminoadipate, and allantoin). Metabolomics—also in combination with other-omics—can explain the drought-tolerance mechanism in drought-tolerant wild and/or ancestral genotypes, providing useful information for breeding purposes, as wild soybean (Glycine soja) (Wang et al., 2019a) and Brachypodium distachyon (Lenk et al., 2019), among others, as well as the salt-tolerant mechanisms of the halophyte for food or pharmaceutical purposes (Chen et al., 2019).

The effect of extreme temperatures (beyond the maximum and minimum cardinal temperatures) on plants metabolomics responses is rather relevant (Guy et al., 2008). Cold stress—which is one of the most damaging abiotic stresses—can alter significantly transcriptome and plant metabolism due to the direct inhibition of metabolic enzymes and to the reprogrammed gene expression (Chinnusamy et al., 2007). As consequence, the observed growth reduction reduces the capacity for energy utilization, with a consequent inhibition of photosynthesis and production of reactive oxygen species (ROS) (Arbona et al., 2013). Phenolics accumulation significantly increases in the cell wall as well as amino acids, hormones and simple carbohydrate levels, while starch content decreases (Moura et al., 2010; Rastogi et al., 2019). In wheat, the abundance of several simple carbohydrates, i.e., raffinose, trehalose, maltotetraose, mannose, and fructose follows cold acclimation (Zhao et al., 2019), with a preeminent role played by proline-synthesis pathway, ABA and jasmonic acid (JA) signal transduction pathways. In the freezing tolerant potato genotypes the accumulation of putrescine via the expression of the arginine decarboxylase gene, represents an important response to cold stress (Kou et al., 2018).

The metabolic regulation under heat shock has similarities with that regarding low temperature case (Guy et al., 2008). In recent years, metabolism reprogramming under heat stress has been extensively studied in several agricultural crops, i.e., wheat (Thomason et al., 2018; Wang et al., 2018a,c) and soybeans (Das et al., 2017), among others. Tomato microspore of pollen after 2 h of heat stress increased significantly the total abundance of flavonoids (Paupiére, 2017); pepper plants coped with heat stress inducing the accumulation of osmotic adjusting materials such as total soluble sugars, proline and total protein as well as flavonoids (isorhamnetin-3-O-neohesperidoside, daidzein, 7-O-methyleriodicty-ol, tulipanin) (Wang et al., 2019b). Heat-stress was often studied in combination with other environmental stressful conditions, such as elevated CO2, reproducing the climate change scenario, as for maize (Qu et al., 2018a) and soybeans, among others.

Heavy metal toxicity hampers the metabolic pathways, reduces the photosynthesis, respiration or transpiration (Feng et al., 2020) and contributes to generate ROS or non-free radical species (i.e., singlet oxygen and hydrogen peroxide) and cytotoxic compounds such as methylglyoxal causing oxidative stress (Parihar et al., 2019). Plants normally react to heavy metals toxicity by significantly increasing proline and histidine levels (Khalid et al., 2019) as well as alanine, β-alanine, serine, putrescine, sucrose, γ-amino butyric acid, raffinose, and trehalose contents (Sun et al., 2010).

Regarding biotic stress, several metabolites have been identified as metabolic biomarkers in plant species (Li et al., 2019; Castro-Moretti et al., 2020)—also including the volatile organic compounds (VOCs) (i.e., isoprene, methanol, phytohormone ethylene, and some monoterpenes, terpene, methyl jasmonate, methyl salicylate) (Ninkovic et al., 2019). In tomato bacterially infected plants, the level of amino acids, organic acids, rutin, and phenylpropanoids increased, while viroid infection seems to alter only glucose and malic acid biosynthesis (López-Gresa et al., 2010). In rice, 16 fatty acids (unsaturated linoleic acid) together with two amino acids (glutamine and phenylalanine) were identified as resistance markers (Agarrwal et al., 2014). Metabolomic analysis of barley, rice and purple false brome grass, revealed a significant accumulation in the non-polymerized lignin precursors during infection by Magnaporthe oryzae (Parker et al., 2009). In addition, among secondary metabolites, phytoalexins and phytoanticipins are biosynthesized in response or advance to pathogen perception (Schlaeppi et al., 2010).

Among the various “omics” technologies (genomics, transcriptomics, proteomics, metabolomics, and phenomics), metabolomic can be considered one of the most suitable approach for the identification of phenotypic, genetic, and biochemical changes involved in plant plasticity responses to environmental stress conditions (Pandian et al., 2020). However, it has a strong point of weakness due to the influence of developmental stage and growth factors in the metabolic responses among tissues and cells, which could compromise the detection of secondary metabolites of complicated structure, potentially involved in stress responses (Gokce et al., 2020). As a matter of facts, the complete comprehension of the complexity of plant' stress response and tolerance, can be achieved integrating data from the “omics” sciences into systems biology approaches (Gokce et al., 2020). The obtained reliable metabolite quantitative locus (mQTL) data from metabolomic, can be effectively combined with phenotypic data, obtained using high-throughput technologies, so also integrates the G × E (Genotype × Environment) interaction, and providing insights of metabolic adaptation to the environment, crucial in targeted breeding programs. However, it is essential to specify that physiological, biochemical and molecular mechanisms involved in stress tolerance can be complementary but not equal among tissues and organs so that the novel breeding strategies can be based on targeting specific tissues or organs (Vives-Peris et al., 2020). Various high-throughput phenotyping technologies, employed in the phenomics of plant above-ground organs, have been developed over the last years (see section 2). On the other hand, high-throughput phenotyping of below-ground organs is still little explored and could advantage from non-destructive 3D technologies, including the tomographic and dynamic phenotyping technologies described in the next sections (Qu et al., 2016; Yoshino et al., 2019).




4. POSITRON EMISSION TOMOGRAPHY: AN EMERGING NON-DISRUPTIVE QUANTITATIVE FUNCTIONAL IMAGING TECHNIQUE FOR STRESS DIAGNOSIS


4.1. Morphological Plant Imaging Techniques

The frontier of plant stress diagnosis is represented by non-disruptive and non-invasive methods, the most of which have been originally developed for quantitative precision medical imaging. Here it is needed to make a distinction between morphological and functional imaging.

Morphological imaging consists of visualizing in a non-invasive way the internal structures of the plant with a resolution of few hundreds micrometers. X-rays (i.e., electromagnetic radiation in the wavelength range 0.01–10 nm) have the distinct advantage to penetrate through several objects and are particularly suited to this purpose. The x-ray studies in the food and agricultural sectors generally apply low-energetic x-rays (up to 10 keV energy level, 10–0.10 nm wavelength). Moreover, x-ray computed tomography (CT) represents a powerful strategy for the internal quality evaluation (Kotwaliwale et al., 2014). CT provides in fact non-disruptively a 3-dimensional measurement of the attenuation coefficient of the tissues of the plants. We show an example of the 3-dimensional view and the transverse and longitudinal profiles of μ(x, y, z) in the leaf of Epipremnum Aureum in Figures 3A–C, respectively. We report the distribution of the value of μ(x, y, z) expressed in Hounsfield units (HU) across the entire leaf in Figure 3D. It is possible to distinguish two regions. In the first one μ(x, y, z) is in the range between −550 and 0 HU. By visualizing only the region of the leaf with μ(x, y, z) in this range (Figure 3E), we identify the vascular system. The second one has μ(x, y, z) in the range between −550 and −800 HU and corresponds to the mesophyll (Figure 3F). They have been applied, for example, to identify fungal infections in wheat (Narvankar et al., 2009) and pest injuries by cowpea weevil in soybean (Chelladurai et al., 2014). Under both laboratory and field conditions, x-ray fluorescence can be used to determine the elemental spatial distribution in plant organs, also in response to environmental stress (Mathanker et al., 2013; Fittschen et al., 2017).


[image: Figure 3]
FIGURE 3. Example of CT of a leaf of Epipremnum Aureum. 3D view (A), transverse (B), and longitudinal (C) slices with visible midrib and veins, distribution of the CT values in the leaf expressed in Hounsfield units (D). Two regions can be identified from the analysis of the CT values: −550 <HU< −50 identifies the vascular system (E) and −800 <HU< −550 identifies the mesophyll (F).


Similarly, magnetic resonance imaging (MRI) is an application of NMR, firstly developed for medical purposes. Since MRI necessitates of large electro-magnets (commonly between 0.2 and 7.0 T), it cannot operate directly in the field. The magnetic interaction between the nuclei and the magnetic field results in a resonant absorption of certain frequencies, characterizing elements with a non-zero magnetic momentum nucleus (1 H, 13 C, 14 N, 15 N, and 31 P) and their bounds. The signals intercepted by the detectors are elaborated by computing systems into a tridimensional image. In addition to food quality control (Chen et al., 2013; Ebrahimnejad et al., 2018), MRI was applied in plant stress detection (water and biotic stress) (Goodman et al., 1992; Sorin et al., 2018). Recently MRI has been used to identify a reduction in xylem flux related to dehydration sensitivity in potatoes (Aliche et al., 2020).

Although high-resolution structural imaging plays an essential role in the investigation of plants, the need of additional information is essential to properly characterize plant stress. Therefore lower resolution imaging techniques have been developed with the aim of a multimodal approach. THz imaging systems and ultrasound imaging are emerging examples of such approach. THz imaging refers to a band of electromagnetic waves ranging from 0.1 to 10 THz (3,000–30 μm), between the microwave and infrared regions, where the vibration and rotation frequencies of the most polar and many organic molecules occur (Martinelli et al., 2015; Qu et al., 2018b; Nie et al., 2019). In the last years sources and detectors for THz region have been developed leading to the definition of specific THz spectroscopy (such as THz time-domain spectroscopy, THz-TDS) and imaging techniques (Qu et al., 2018b; Wang et al., 2018c). Nowadays, these techniques are principally used to detect the leaf water content (Nie et al., 2017; Song et al., 2018; Zahid et al., 2019; Li et al., 2020). Other applications include agrochemicals detection in plant tissues and/or plant derived foods (Lee et al., 2016; Qin et al., 2018; Nie et al., 2019), seed inspection and soil analysis (Wang et al., 2018b) as well as the determination of spatial distribution feature of the leaf constituent contents (Wang et al., 2019c). Ultrasound imaging—which implies mechanical waves at frequencies above 20 kHz, has also been applied to plant imaging (Chen et al., 2013). It is based on the principle that ultrasound velocity is related to the material property or changes in material characteristics; it finds wide application for food-quality and safety assessment (Chen et al., 2013). Non-contact resonant ultrasound spectroscopy (NC-RUS) allows determining surface mass, thickness and elastic modulus of the leaves very rapidly, in-vivo and contactless (Álvarez Arenas et al., 2016; Fariñas et al., 2019). It has been also proposed the use of air-coupled and wide-band ultrasound pulses (150–900 kHz) to continuously monitoring leaf properties modifications in response to environmental stimuli (Fariñas et al., 2014).



4.2. Plant Positron Emission Tomography

The paradigm of morphological imaging techniques is that they are able to detect non-invasively the microscopic structural damages induced by plants stress, but sample disruptive molecular methods (see section 3.1) and metabolomics (see section 3.2) are needed in order to establish a functional relationship between alterations of the molecular processes at cellular level and of plant structures at system level.

Plant Positron Emission Tomography (Plant PET) is filling this gap in plant science, by providing a non-disruptive technique for the 3-dimensional quantitative and dynamic functional imaging of plants under biotic and abiotic stress. As mentioned in section 3.2, a large number of metabolites of interest have been identified for the quantitative evaluation of plant stress. Chemical compounds exist, which have the property to bind specifically to metabolites. In PET one of the atoms of the compounds is substituted with a β+-decaying radio-nuclide, without modifying its chemical property. The emitted positrons annihilate with the electrons in the plant tissues, providing a clear external signal made of two almost collinear 511 keV gamma-rays. The collinearity angle has a variation of 0.0015 degrees, due to kinetic energy of the annihilating positron.

D-Glucose (C6H12O6) is the main constituent of plant biomass and can be considered here as a prototypical example of plant metabolite. It is produced through the photosyntesis reaction Ephot + 6CO2 + 12H2O → C6H12O6 + 6O2 + 6H2O, initiated with the energy of optical photons Ephot. Here both H2O and CO2 can be used as ligands to this process. The former may lead to a radioactive tracer [O15] − H2O, where the stable 16O nucleus is substituted with the radionucleus 15O, undergoing the decay [image: image] within a half-life of 2.04 min, where e+ is a positron and [image: image] an anti-neutrino of electron type. The latter may lead to a radioactive tracer [C11] − CO2, where the stable 12C nucleus is substituted with the radionucleus 11C, undergoing the decay [image: image] within a half life of 20.34 min. However, while [O15] − H2O can be associated also to transport and is not specifically binding only to glucose (Ohya et al., 2008), the involvement of [C11] − CO2 in the photosynthetic reaction brings to the production of [11C] − C6H12O6, which is univocally therefore tracked within the plant. [C11] − CO2 can be therefore considered a specific tracer for glucose (Minchin and Thorpe, 2003).

D-Fluorodeoxyglucose [image: image] (2-[18F]FDG) is an alternative, and still poorly understood, tracer for the study of glucose metabolism in plants (Kumei et al., 1997). With respect to 11C and 15O, 18F undergoes the decay [image: image] within a much longer half life of 109.8 min and is therefore suited to the measurement of the dynamics of metabolic processes during a longer observation time window. As D-Glucose, 2-[18F]FDG is taken up by plant cells and phosphorylated by exhokinase to FDG-6-PO4. Unlike glucose-6PO4, FDG-6-PO4 is not further metabolized in the glycolytic pathway and accumulates. The concentration of FDG-6-PO4 is therefore proportional to the glucose metabolism in the plant cell. Besides FDG-6-PO4, F-gluconic acid, F-maltose, and UDP-FDG have also been observed as metabolic products of 2-[18F]FDG (Fatangare et al., 2015). While [C11]−CO2 is absorbed by the plant in gaseous form, following a conventional assimilation pathway, 2-[18F]FDG is provided in liquid form and more kinetic modeling is needed for the discrimination between water transport and glucose accumulation.

Functional imaging of plants poses very demanding challenges to PET technologies (Converse et al., 2013). The vascular system of plants is in fact composed of two nested micro-tubular sub-millimetric structures for water flow and nutrients transportation, namely the xylem and the phloem. A quantitative measurement of the impairments in the dynamics of the flows within the vascular system induced by stress needs therefore a sub-millimetric spatial resolution. Moreover, plants need to be imaged vertically, along their entire size at the same time. The growth of the plant should be followed from sprouting to germination to the final evolutional stages. Therefore a vertical system, longitudinally elongated, compact and shape adaptable is needed.

The intrinsic physical limit of PET is represented by the range of positrons before annihilation and the acollinearity of the produced 511 keV γ-rays. Positrons emitted by 11C and 18F have, respectively, an average range (FWHM) of 0.92 and 0.54 mm. The acollinearity results in an additional intrinsic blurring of the spatial resolution of 0.0044 × R, where R is the radius of the PET system. For instance, the intrinsic spatial resolution of a PET system with a 15 cm long radius ranges between 0.85 and 1.1 mm. The parallax problem affecting compact and longitudinally elongated PET systems needed for plants represents a limitation to achieve such spatial resolution.

Plant PET signals are very weak. Emitted positrons in fact are energetic enough to escape before annihilating in the thin and soft plant tissues. An example of the physical process is shown in Figure 4A, where two β+ decays of the 18F radio-nucleus in a leaf of Epipremnum Aureum are visible. The emitted positrons, represented as the blue tracks, do not annihilate with the electrons in the thin and soft material composing the leaf but are energetic enough to escape. The 3-dimensional view of the annihilation probability is shown in Figure 4B. It depends on the thickness and composition of the leaf, reaching approximately 20% in the mesophyll and 65% in the vascular system. It follows that positron escape probability the ranges approximately between 80% in the mesophyll and 35% in the vascular system. An additional effect leading to mis-interpretation of plant PET data is the self-contamination due to the interaction of escaping positrons with plant tissues far away from the emission point. The 3-dimensional view of the contamination probability is shown in Figure 4C. We note that it has a clear dependence on the geometry of the leaf. In fact, while it is uniform and approximately equal to 20% in the upper flat part of the leaf, it approaches 70% in the lower part of the leaf. The two lower ends of the leaf are in fact folded and enhance the capture of escaping positrons. Plant PET systems require therefore an excellent sensitivity to cope to the weak plant signal.


[image: Figure 4]
FIGURE 4. Example of a physical model of a leaf of Epipremnum Aureum: simulation of a positron escape in GEANT4 (A), positron annihilation probability (B), and positron contamination probability (C).


While the design of dedicated plant PET systems optimized for the demanding requirements of quantitative dynamic functional plant imaging is still in a preliminary stage (Keutgen et al., 2005; Alexoff et al., 2011; Wang et al., 2014), first results and proof of principles are obtained with existing micro PET/CT systems originally developed for small animal imaging (Hubeau and Steppe, 2015).

PET is considered a key-technology for the quantitative measurement of the transport and assignment of metabolites in plants under stress condition (Kiser et al., 2008). A prototypical example of a transport dynamic study is shown in Figure 5, where the three dimensional view of the corrected 2-[18F]FDG tracer activity in the leaf of Epipremnum aureum 10 min (a), 70 min (b), 130 min (c), and 190 min (d) after beginning of the PET scan is shown (Liang et al., 2020). The time dependence of the average tracer activity uncorrected and corrected for positron escape in two ROIs expresses the interplay between water transport and tracer decay. At first the two quantities increase, reaching a maximal value approximately 60 and 30 min after the start of the scan in the midrib and in the lateral vein, respectively. At this time the water flow in the two ROIs reaches a steady state and the tracer decay with an half-life of approximately 110 min dominates. As the midrib is responsible of the main water support to the entire leaf, it reaches the steady state flow regime shortly later than the smaller lateral vein. The ratio of the average Tmeas(wi) and Ttrue(wi) in the two ROIs is approximately 5 and 2.5, respectively. This implies that, without considering the effect of positron annihilation and escape, the difference of water flow in the two region of the plants would be over-estimated of approximately a factor 2.


[image: Figure 5]
FIGURE 5. Example of a [18]F-FDG PET of a leaf of Epipremnum Aureum: 3-dimensional view of the corrected tracer concentration 10 min (A), 70 min (B), 130 min (C), and 190 min (D) after the beginning of the scan. The average standard uptake value of the measured (empty markers) and corrected tracer distribution (filled markers) in the two ROIs identified in (A) are shown in (E) as a function of the acquisition time.


Water transport in plants is in fact very sensitive to biotic and abiotic stress factors (Schmidt et al., 2020). Modifications of water uptake have been observed in tomato, rice (Mori et al., 2000), and Vigna unguiculate (Furukawa et al., 2001), among others. The nitrogen channel is also sensitive to plant stress, being this element a key nutrient for plants. By using root-applied [13N]-NO3 tracer, it is possible to visualize the modification in uptake and translocation of NO3 in stressed plants (Ohtake et al., 2001; Li et al., 2014).

[C11]−CO2 and [O15] − H2O have been used to visualize the photoassimilate translocation in intact eggplant fruit (Kikuchi et al., 2008) and the variation of water flow in tomato and rice under different illumination conditions (Mori et al., 2000; Nakanishi et al., 2002), respectively. Kinetic modeling of the measured flow in plants is needed in order to extract quantitative parameters (Matsuhashi et al., 2010). The quantitative assessment of the effects of stress on the photosynthetic rate plays also an important role in prevention and cure. Prototypical studies using [C11] − CO2 have been performed to verify the relationship between drought and photosynthesis in the African african tropical tree species Maesopsis Eminii Engl. (Hubeau and Steppe, 2015; Epila et al., 2018). [18F]-FDG has been used to associate water movement to the leaf in acid soil-tolerant rice varieties (Kang et al., 2009) and to study plant signal and response to defense from biotic stress (Ferrieri et al., 2012). However, the ability of PET to provide a quantitative dynamic measurement of the metabolic pathways and transport processes in plants opens a new perspective in plant science, with a large number of unsolved research questions ranging from the development of a proper plant PET system, to novel specific plant tracers, to more advanced modeling of plant PET data for the establishment of a truly quantitative functional imaging technique for plants. Due to its demanding performances, plant PET represents nowadays one of the frontiers of PET technology and plant science research (Hubeau and Steppe, 2015).




5. CONCLUSIONS AND FUTURE PERSPECTIVES

Imaging technologies became an essential tool for the assessment and monitoring of stress, supporting agronomist, breeders and physiologists both for in-field and for laboratory experiments. Stress manifests itself over a wide length scale ranging from the microscopic cellular to the macroscopic plant and field level. An imaging technology able to cover quantitatively the entire scale does not exist.

Whole field sensing is naturally attractive in the agricultural practice. The rapidity in detection is a characteristic of qualitative remote sensing techniques and technologies, which also have the great advantage of providing indications on scales ranging from microscopic to landscape levels. Moreover, it allows monitoring continuously vegetation thanks to the adoption of robotic platforms. Due to the large versatility, however, the most important limits are related to the correct definition of protocols for measurements, processing and pre-processing of collected data, that should take into account the variability of the environmental conditions that occur during measurements, and that can compromise the goodness and reliability of the obtained results. Managing enormous amount of data is still an open matter as well as the specificity of genotype-stress combinations needs further investigation. Finally, the scarce application maturity of some remote sensing technologies, beyond research purposes, should be emphasized. For example, for hyperspectral imaging there are currently no cameras in the full range of 350–2,500 nm, which would require the simultaneous use of two sensors, even very expensive (see SWIR); similarly, most current fluorescence and thermal systems are characterized by high price and poor applicability.

Quantitative information is obtained at the expenses of portability, restricting the analysis to the plant scale. Morphologic imaging techniques, such as CT or MRI, provide non-disruptive, quantitative and precise information of the plants structure. However they do not provide any information about the functions within plants and therefore can only address structural damages induced by stress, but cannot provide any information on the functional basis of the physiological mechanisms of reactions to both biotic and abiotic stressors at cellular level. For this purpose, metabolomics is an essential tool to enhance the results obtained with morphologic imaging techniques. However, it is time-consuming, requires considerable use of reagents and chemicals, and, above all, it is not able to provide timely indications to support early interventions both in open-field and controlled conditions. Finally, if not associated with other detection techniques, it provides indications on a small scale, from cell to tissue.

PET is by far the only quantitative functional imaging technique, which provides a non-disruptive information of the modifications of functional mechanisms in response to biotic and abiotic stress. The interesting aspect of PET is time-dynamical acquisition for the measurement of transport fluxes within the vascular system. New technologies will allow PET systems to be compact and portable, enabling in-field measurements and, even, PET-on-platform (RPA, remotely piloted aircraft) possibilities. Furthermore, it is expected that the combination of PET scan with tissue/site/cell specific metabolomics and transcriptomics analyses will be a powerful tool for the understanding of the stress responses of plants. We are therefore confident that plant PET will cross-fertilize disciplines, driving new research in agriculture, supported by the development of new specific tracers for plant science, new mathematical models for a more precise quantitative approach, and new high resolution compact portable PET technologies.
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Research has been increasingly focusing on the selection of novel and effective biological control agents (BCAs) against soil-borne plant pathogens. The large-scale application of BCAs requires fast and robust screening methods for the evaluation of the efficacy of high numbers of candidates. In this context, the digital technologies can be applied not only for early disease detection but also for rapid performance analyses of BCAs. The present study investigates the ability of different Trichoderma spp. to contain the development of main baby-leaf vegetable pathogens and applies functional plant imaging to select the best performing antagonists against multiple pathosystems. Specifically, sixteen different Trichoderma spp. strains were characterized both in vivo and in vitro for their ability to contain R. solani, S. sclerotiorum and S. rolfsii development. All Trichoderma spp. showed, in vitro significant radial growth inhibition of the target phytopathogens. Furthermore, biocontrol trials were performed on wild rocket, green and red baby lettuces infected, respectively, with R. solani, S. sclerotiorum and S. rolfsii. The plant status was monitored by using hyperspectral imaging. Two strains, Tl35 and Ta56, belonging to T. longibrachiatum and T. atroviride species, significantly reduced disease incidence and severity (DI and DSI) in the three pathosystems. Vegetation indices, calculated on the hyperspectral data extracted from the images of plant-Trichoderma-pathogen interaction, proved to be suitable to refer about the plant health status. Four of them (OSAVI, SAVI, TSAVI and TVI) were found informative for all the pathosystems analyzed, resulting closely correlated to DSI according to significant changes in the spectral signatures among health, infected and bio-protected plants. Findings clearly indicate the possibility to promote sustainable disease management of crops by applying digital plant imaging as large-scale screening method of BCAs' effectiveness and precision biological control support.

Keywords: BCAs, Sclerotinia sclerotiorum, Sclerotium rolfsii, Rhizoctonia solani, Diplotaxis tenuifolia, Lactuca sativa, fresh-cutting vegetables, plant reflectance


INTRODUCTION

Baby leaf vegetables constitute the major ingredient of ready-to-eat salads, very appreciated worldwide by consumers looking for healthy diets rich in fibers and low in calories, with organoleptic and nutraceutical traits particularly enhanced in pigmented varieties. Currently, in Italy, which is among the top European producers of these crops, it is estimated that more than 4,500 hectares are devoted, both in tunnels and, marginally, in open field, to grow baby salads for the high convenience food chain (Morra et al., 2017). A rather large group of different leafy vegetable species are included under this appellation, although by far, wild rocket [Diplotaxis tenuifolia (L.) DC.] and baby lettuce (Lactuca sativa L. var. acephala) are the most extensively cultivated. Because of the intensive exploitation of soils, continuous cropping, cultivars susceptibility to pathogens and reduced use of synthetic fungicides, those crops are dramatically prone to several diseases occurring in the humid and temperate microclimate of the sprinkler-irrigated tunnels/fields (Caruso et al., 2018; Gilardi et al., 2018a,b; Gullino et al., 2019). The soil-borne fungi Rhizoctonia solani Kuhn, Sclerotinia sclerotiorum (Lib.) de Bary and Sclerotium rolfsii Sacc., belonging to the Phylum Basidiomycota, are parenchymatic, polyphagous, necrotrophic pathogens of different salad crops, causing huge economic losses and symptoms ranging from the simple rotting of the attacked organs to the damping-off. Their non-chemical counteraction is particularly requested under sustainable management systems pursuing the zero residues goal, while it is mandatory according to the organic farming rules (Giménez et al., 2019). To this scope, the integrated disease management people are exploring alternative approaches to synthetic fungicides, including the implementation of effective microbes able to control phytopathogenic attacks, referred as biological control agents (BCAs).

Soil microbiota represents a precious reservoir of biocontrol microorganisms to impact plant health, growth and productivity in agricultural applications. Several fungal species belonging to the genus Trichoderma (Ascomycota) are known to suppress soil-borne and foliar plant diseases directly by mechanisms against the host pathogen (competition for space and nutrients, antibiosis, and mycoparasitism) and indirectly by the induction of a resistance responses in the colonized plants (Howell, 2003). Because of their crucial role as antagonists, Trichoderma spp. are among the most effective and commercialized biological control agents, registered as Plant Protection Products to manage a broad-spectrum of plant pathogens (Sharma et al., 2019). A number of Trichoderma spp. antagonistic strains are sourced from several telluric environments carrying disease control-related functions, including suppressive composts, to gain increasing efficacy firstly due to the niche-competence shared with the targeted soil-borne pathogens (Wang et al., 2019). The selection of novel and effective BCAs requires fast and robust screening methods suitable to evaluate high numbers of candidates. In this context, digital technologies, such as remote sensing, could play a pivotal role not only for early disease detection but also for the rapid performance analyses of BCAs and in the prediction of the biocontrol efficacy.

Hyperspectral imaging is a non-destructive and powerful digital technology to directly identifying biochemical and physiological shifts occurring in plants in response to external stimuli, including pathological prodding (Thomas et al., 2018). It involves the pixel-by-pixel analysis of an image containing spatially distributed the reflectance spectrum captured in the visible (VIS, spectral range 400–700 nm) and near infrared (NIR 700–1,000 nm) regions as hypercube dataset resulting by the interaction of the canopy with the incident light (Liu H. et al., 2020). Several previous hyperspectral studies pointed up broad/narrow extracted band indices, called vegetation indices (VIs) that have been used to associate the spectral information to several crop characteristics (Thenkabail et al., 2000), including plant health (Xue and Su, 2017). For example, the best known one, Normalized Difference Vegetation Index (NDVI) that is predictive of the vegetative growth and the general plant status (Rouse et al., 1973), recently was also proposed to refer about the Vitis vinifera – Botrytis cinerea interaction (Pañitrur-De la Fuente et al., 2020). The sensitivity of hyperspectral VIs about disease grade of the canopy, was also proposed to automatically evaluate the performances of disease control methods as innovative functional application (Martins et al., 2018). In this view, hyperspectral imaging may additionally help the fine scouting of new effective microbial antagonists under selection by configuring a standard quantitative analytic method to follow biocontrol dynamics that can be usefully implemented in a perspective definition of precision biological control guidelines.

The aim of this work was to select new useful antagonistic strains of Trichoderma able to protect wild rocket and baby lettuce from deleterious soil-borne pathogens. R. solani and S. sclerotiorum infections are very diffuse among these cultivations while S. rolfsii is going emerging importance on baby-leaf because of its attitude to grow at high temperature regime, as under greenhouse. Additionally, computing the reflectance data from the canopy of the bio-treated plants, this study can lead to the identification of high-performing vegetative indices (VIs) functional to the large-scale evaluation of the biocontrol effectiveness and, furthermore, to discriminate between healthy and infected plants.



MATERIALS AND METHODS


Isolation of Trichoderma Strains

The sixteen Trichoderma strains characterized here, were isolated from a high suppressive rocket and fennel-derived compost (Pane et al., 2020; Scotti et al., 2020) and stored in the fungal collection of CREA-Centro di ricerca Orticoltura e Florovivaismo (Pontecagnano Faiano, Italy CREA-OF). Isolates were subjected to monosporic culturing by serial ten-fold dilution. For the strain characterization, macroscopic features (medium pigmentation, colony color, colony edge shape, smell) were evaluated after 7 days of growth on potato dextrose agar (PDA, Condalab, Madrid, Spain) medium at 25°C. Microscopic parameters (conidium length, width and shape) were also measured under light microscopy at 40× magnification with the optical microscope (Nikon Eclipse 80i, Nikon, Melville, NY, USA) in 0.05% Tween® 20 considering n = 40 conidia. All the isolates were maintained on PDA at 4°C and sub-cultured weekly.



Identification of Trichoderma Strains

Isolates were grown in potato dextrose broth (PDB, Condalab, Madrid, Spain) on a rotary shaker at 120 rpm for 96 h at 25°C. Fresh mycelium was collected after vacuum filtration through No. 4 Whatman filter paper (Whatman Biosystems Ltd., Maidstone, UK), then frozen in liquid nitrogen, ground to a fine powder and immediately processed. Total genomic DNA was extracted from 100 mg of ground mycelium by using the PureLink® Plant Total DNA Purification Kit (Invitrogen™, ThermoFisher Scientific, Waltham, MA, USA) according to the manufacturer's protocol. PCR amplification of internal transcribed spacers and translation elongation factor 1α (TEF1) was performed in a Biorad C1000 Thermal Cycler (Bio-Rad, Hercules, CA) following PCR program: denaturation at 96°C for 2 min; 35 cycles of denaturation at 94°C for 30 s; annealing at 55°C for 30 s; extension at 68°C for 75 s; final extension at 68°C for 10 min. Primers ITS1 (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) were used to amplify a fragment (~0.6 kb) of rDNA including ITS1 and ITS2 and the 5.8S rDNA gene (White et al., 1990; Gardes and Bruns, 1993) while the 5′ portions of translation elongation factor 1α (~0.8kb) coding region and introns were amplified with primers TEF1-F (5′- ATGGGTAAGGARGACAAGAC- 3′) and TEF1-R (5′-GGARGTACCAGTSATCATGTT-3′), which prime within conserved exons (O'Donnell et al., 1998). Amplicons were separated by gel electrophoresis in 1% w/v agarose supplemented with SYBR Safe DNA Gel Stain (Invitrogen, Paisley, UK). Amplicon sizes were determined against a 100 bp DNA ladder (Invitrogen™, ThermoFisher Scientific, Waltham, MA, USA). PCR products were purified by PureLink™ PCR Purification Kit (Invitrogen™, ThermoFisher Scientific, Waltham, MA, USA) following the manufacturer's instructions, quantified with a NanoDrop™ system (NanoDrop Technologies Inc., Wilmington, DE, USA) and sent to Sanger sequencing.



Phylogenetic Reconstruction

Phylogenetic relationships of the 16 Trichoderma strains were investigated based on ITS and TEF1 sequences. DNA sequences were blasted against the NCBI GenBank database using default parameters and then aligned with the more related Trichoderma isolates by the Clustal W algorithm (Thompson et al., 1994) with MEGA7 software (Kumar et al., 2016). Multiple alignments parameters were gap penalty = 10 and gap length penalty = 10. The default parameters (Ktuple = 2, gap penalty = 5, window = 4, and diagonals saved = 4) were used for the pairwise alignment. Final alignment adjustments were made manually in order to remove artificial gaps, as reported by Ospina-Giraldo et al. (1999). The analysis was conducted on the two gene partial sequences separately. Aligned sequences were then concatamerized to a total length of 1,667 nucleotides. The evolutionary history was inferred using the maximum likelihood method. The evolutionary distances were computed using the Tamura-Nei model. The confidence of the branching was estimated by bootstrap (BP) analysis with 1,000 replications (1000 BP). T. atroviride sequences DAOM 233966, DAOM 231423, DAOM 233456, T. longibrachiatum sequences DAOM 231854, DAOM 232019 and DAOM 231850 and T. harzianum sequences DAOM 233458, DAOM 232032 and DAOM 232055, were used as references. All sequences were deposited in GenBank under the accession numbers reported in Table 1.


Table 1. List of Trichoderma strains identified in this study with the GenBank accession numbers of the internal transcribed spacer (ITS) and translation elongation factor 1α (TEF1) sequences.
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In vitro Dual Confrontation Assay

The ability of the sixteen Trichoderma strains to contain the development of R. solani, S. sclerotiorum and S. rolfsii in vitro, was evaluated by the dual culture technique. These phytopathogenic fungi were stored in the fungal collection of CREA-OF, maintained on PDA slants. Mycelial plugs of 5-mm diameter, obtained from the periphery of 7-days old cultures of both pathogen and Trichoderma strains were placed simultaneously on the border of the plate (9 cm diameter), about 0.25 mm from the edges at opposite sides. The Petri dishes containing PDA medium inoculated only with the pathogen were used as reference controls. All plates were incubated at 25°C and the radial growth was recorded 7-days post-inoculation. The growth inhibition percentage was calculated by using the formula:

[image: image]

where C = pathogen radial growth in the control and T = pathogen radial growth of the in the dual culture.



In vivo Biocontrol Activity Assays

The biocontrol activity of Trichoderma strains was assessed in vivo against R. solani on wild rocket, S. sclerotiorum on green baby lettuce and S. rolfsii on red baby lettuce.

One L flasks containing 150 g of common millet seeds were saturated with a 0.1 × PDB (w/w) and autoclaved. Flasks were then inoculated with 15 plugs 5 mm diameter obtained from one-week-old plates of each pathogen maintained on PDA, and incubated for 21 days at 25°C. At the end of incubation, the inoculum was ground and added to sterilized peat soil at the final concentration of 1% (w/w) for R. solani and S. rolfsii, and 2% (w/w) for S. sclerotiorum, respectively, according to the pathogen virulence. In the uninfected pots, non-inoculated common millet prepared as described above, was added. Trichoderma spp. spore suspensions were obtained from one-week-old cultures maintained on PDA at 25°C. For each isolate, the conidia were harvested by washing the plates with sterilized water using a sterile brush. The suspension was filtered and collected in a 50 mL Falcon® tube (Falcon, USA). The spore suspension concentration was measured by a Burker chamber (Brand, Germany) and adjusted at 1 × 107 spore mL−1. Seeds of wild rocket cv. Tricia (Enza Zaden, Italy), green baby lettuce cv 166 (Sementi Dom Dotto, Italy) and red baby lettuce cv. Pamela (Maraldi, Italy) were sown in vermiculite-filled 500 mL bowls, germinated in the dark at 25°C and then maintained in a growth chamber at 22°C with a 12-h photoperiod. The irrigation was manually performed daily and a basal NPK mix liquid fertilization was applied twice a week. After 15 days, plants were transplanted in plastic pots (7 cm diameter and 100 mL volume capacity) filled with sterile peat, infected as described above. Each treatment consisted of three pots (replicates) containing 5 plants each for baby lettuces, and 10 plants per pot for rocket. After that, Trichoderma suspension treatments were applied by soil drenching reaching a final concentration of 1 × 106 spore mL−1. Untreated infected pots and healthy pots were used as reference controls.

Pot distribution was arranged randomly in the growth chamber at the same conditions described above. After 7-days incubation, each pot was assessed for hyperspectral images, disease incidence (DI%) and severity index (DSI). DI was calculated as the percentage of plants with disease symptoms on the total. Disease severity was assessed using a 1–3 scale adapted from Larkin and Honeycutt (2006): 0: no symptom; 1: foliar discoloration; 2: plant withering and visible lesion(s); 3: severe infection and plant dead.

DI% and DSI were calculated according to Yang et al. (2009). The experiment was performed twice.



Hyperspectral Imaging

Hyperspectral images were acquired by using the SPECIM IQ camera (Specim, Spectral Imaging Ltd., Oulu, Finland) working in the range of 400–1,000 nm on a total of 204 wavelengths with a spectral resolution of 4 nm. The camera carries a CMOS sensor with a spatial sampling of 512 pixels and an image resolution of 512 × 512 pixel. The pixel size is 17.58 × 17.58 μm. Reflectance value was calculated automatically by the camera software. The images were captured under natural light conditions (Irradiance range 800–1,000 W/m2). One image per replicate (pot) was acquired, each containing all conditions (treatments) analyzed. Relative reflectance of hyperspectral images was simultaneously computed by the camera software. White reference, dark frame and raw data, were acquired during the measurements. The equation applied for the computation of the raw reflectance was as follows:

[image: image]

where White is the white reference, t1 and t2 are integration times (used for a highly reflective white reference), and Dark represents a target with low reflectance.

The elaboration of the hyperspectral images was carried out with the R software. Raster R package (Hijmans et al., 2015) was used to visualize and extract the hypercube dataset, successively elaborated into a typical spectral graphic. The unsupervisioned classification of the images was performed with Cluster R package to remove background once separated the objects “X” into “K” clusters. K-means clustering algorithm is a partitional or non-hierarchical clustering method (MacQueen, 1967; Anderberg, 1973), that here highlighted two clusters, background and plants (Figure 1). Then, the background cluster was deleted from the image, while the plant cluster was submitted to the extraction of the 46 hyperspectral VIs by imaging, averaging the pixel values for each replicate per treatment.
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FIGURE 1. Workflow of data processing in hyperspectral imaging.




Hyperspectral Vegetation Indices and Statistical Analysis

Measurements of the pathogen growth inhibitions in vitro, disease incidence and disease severity percentages, were subjected to the statistical analysis by GraphPad Prism Software. Ordinary one-way ANOVA was applied to test the effects of the Trichoderma strains on the assessed parameters. In all cases, the statistical analysis of variance was corrected for multiple comparisons by the Bonferroni hypothesis test, considering a p-value ≤ 0.05. Since experiment effect was not observed, data from the repeated experiments were pooled.

The same procedure was applied to evaluate the indices calculated on the hyperspectral dataset. Moreover, in order to select the most informative ones, they were analyzed, in relation to the observed disease severity in each pathosystem, by Multiple Variable analysis, applying the Pearson's correlation coefficient. The high-performing VIs that resulted commons to all the three host-pathogen target systems, were filtered on the base of a stringent statistical grid (p-value ≤ 0.05 and R2 > 0.5) and highlighted by using Venn diagram (http://bioinformatics.psb.ugent.be/webtools/Venn/). The heatmap visualization and the hierarchical clustering analysis of the selected indices were obtained applying ClustVis online software (https://biit.cs.ut.ee/clustvis). Unit variance scaling was applied to rows and columns and they were clustered using correlation distance and average linkage. Furthermore, the Principal Component Analysis (PCA) of vegetative indices / disease index for each pathosystem was performed with the pca function of the R Factoextra package (Kassambara and Mundt, 2017). Data were log-normalized and disease severity index was converted to “factor” by grouping in classes according to the following 0–4 scale: 0 = 0 ≤ DSI ≤ 0.2; 1 = 0.21 ≤ DSI ≤ 0.4; 2 = 0.41 ≤ DSI ≤ 0.6; 3 = 0.61 ≤ DSI ≤ 0.8, 4 = 0.81 ≤ DSI ≤ 1. Then, lm function (R package) was applied to fit linear models.




RESULTS


Colony and Conidium Morphological Characteristics

The morphological characterization of the sixteen Trichoderma isolates studied in this work was carried out based on the inoculated medium appearance and pigmentation, color and edge of colonies, culture smell, shape and size of the conidia. After 5-days incubation at 25°C, the growth and sporulation patterns of the Trichoderma isolates showed significant differences. During the growth, due to the release of secondary metabolites, medium pigmentation varied significantly among the Trichoderma isolates, ranging from colorless to bright yellow and yellow-brownish to amber. Some of them showed a profuse production of conidia with coloration ranging from white to dark green (Figure 2). Furthermore, microscopic observations allowed highlighting differences in terms of conidia size and shape. In fact, the conidia of Ta56, Ta117, Ta105, ThRP, and Tat3C1 isolates, showed spherical shape with length-to-width ratio around 1, while the conidia of all the remaining strains, resulted ellipsoidal with length-to-width ratio > 1. The morphological colony and conidium features are summarized in Table 2.
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FIGURE 2. Colony appearance of the 16 Trichoderma strains used in this study after 7-days growth on PDA medium at 25°C. T. atroviride Ta100 (A); T. atroviride Ta104 (B); T. atroviride Ta104C (C); T. atroviride Ta104S (D); T. atroviride Ta105 (E); T. atroviride Ta116 (F); T. atroviride Ta117 (G); T. longibrachiatum Tl35 (H); T. atroviride Ta56 (I); T. atroviride TaIC12 (J); T. atroviride Tat11 (K); T. atroviride Tat3C1 (L); T. harzianum ThCB (M); T. harzianum ThRP (N); T. harzianum Th23 (O); T. longibrachiatum Tl41 (P).



Table 2. Main morphological features of colonies (medium pigmentation, color, edge and smell) and conidia (length, width, length-to-width ratio and shape) of the Trichoderma strains used in this study.
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Determination of Trichoderma Species

The multi-locus sequence analysis is suggested for a better distribution of Trichoderma spp. in a phylogenetic tree (Samuels et al., 2010). Therefore, in the present work, concatemers of the ITS-TEF1 genes were used to contract the phylogenetic tree inferred by neighbor-joining method, as reported by Ospina-Giraldo et al. (1999). rDNA region and partial translated elongation factor locus amplifications, yielded products of ~600 and 800 bp, respectively, as estimated by agarose gel electrophoresis. Loci were analyzed separately, aligned and manually adjusted. Sequences were then grouped in concatamers and subjected to the phylogenetic analysis. This analysis involved 26 nucleotide sequences with a total of 1,667 positions in the final dataset. Based on the bootstrap values, the 16 Trichoderma strains were arranged into three distinct groups, belonging to T. atroviride, T. longibrachiatum and T. harzianum species (Figure 3). The strains Ta100, Ta104, Ta104C, Ta104S, Ta105, Ta116, Ta117, Ta56, Tat11, TaIC12, and Tat3C1, clustered within the T. atroviride clade, resulting aligned with the reference strains (DAOM 233966, DAOM 231423, and DAOM 233456). On the other hand, Tl35 and Tl41 strains were identified as T. longibrachiatum, showing a strictly association with the reference isolates (DAOM 231854, DAOM 232019, and DAOM 231850), while the strains Th23, ThRP and ThCB clustered in the T. harzianum clade. These identifications resulted well-supported by bootstrap tests, with values >60%.


[image: Figure 3]
FIGURE 3. Phylogenetic relationships among the 16 strains of Trichoderma spp. inferred by analysis of rDNA (ITS) and translation elongation factor 1-α (TEF1) concatemers. The evolutionary history was inferred using the maximum likelihood method. The optimal tree is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The evolutionary distances were computed by applying Tamura-Nei model. DAOM 233966. DAOM 231423 and DAOM 233456 (T. atroviride); DAOM 231854. DAOM 232019 and DAOM 231850 (T. longibrachiatum); DAOM 233458. DAOM 232032 and DAOM 232055 (T. harzianum) are the reference sequences.




In vitro Dual Challenge Assay

The dual culture assay was optimized to compare the inhibition activity of the 16 Trichoderma strains against the three soil-borne fungal pathogens. Since no significant differences were observed in the timing of growth among Trichoderma strains, S. sclerotiorum, R. solani, and S. rolfsii, the fungi were co-inoculated. As reported in Figure 4, all Trichoderma strains determined around 60% inhibition of S. sclerotiorum and R. solani radial growth. Only slight differences were observed among the different Trichoderma strains in inhibiting those phytopathogenic fungi. Furthermore, all the biocontrol strains, except Ta100 and Th23, reached the pathogen in 4–5 days and overgrew it in 9–10 days. On the other hand, most of the Trichoderma strains showed the ability to inhibit S. rolfsii radial growth up to 70%. Additionally, significant differences were observed among the different Trichoderma strains in containing this pathogen. In fact, a profuse overgrowth was observed for Ta116, ThRP, Ta105, Tat11, ThCB, Ta104C, Ta56, TaIC12, and Ta104S after 9 days, while Tl35 and Th23 resulted less effective in reducing the in vitro fungus development.
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FIGURE 4. R. solani. S. sclerotiorum and S. rolfsii radial growth inhibition observed in dual culture assay. Values are expressed as inhibition percentage of pathogen radial growth. Each value is the average of three replicates. Bars with different letters are significantly different (p-value ≤ 0.05) according to ANOVA and Bonferroni correction test for multiple comparisons.




In vivo Biocontrol Activity

The ability of the different Trichoderma strains to protect plants was investigated by in vivo assays with R. solani on wild rocket, S. sclerotiorum on green baby lettuce and S. rolfsii on red baby lettuce. On all cases, disease incidence percentages (Figure 5 left) and disease severity index (Figure 5 right) were assessed. Overall, a significant Trichoderma treatment effect was found (p-value <0.001), as well as the interaction between factor Trichoderma strain × plant/pathogen system (p-value < 0.001). The application of Ta116, Tl35, Ta56, TaIC12, Tat3C1, and Tl41, on wild rocket significantly reduced the percentage of Rhizoctonia disease incidence detected 120 h post-inoculation, in comparison with the infected control. In fact, only the 60% of Tl35 treated plants showed disease symptoms; for all the other treatments, the disease incidence was around 80%. Interestingly, all Trichoderma strains, except for Tat11 and Th23, contained the severity of the disease: the bio-treated plants displayed mild disease symptoms or were almost healthy.
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FIGURE 5. Disease incidence (A) and disease severity (B) percentages observed on Trichoderma treated wild rocket. green baby lettuce and red baby lettuce infected with R. solani. S. sclerotiorum and S. rolfsii. respectively. compared with the infected untreated control. Bars with different letters are significantly different (p-value ≤ 0.05) according to ANOVA and Bonferroni correction test for multiple comparisons.


On the other hand, the BCAs reduced Sclerotinia disease incidence on green baby lettuce, excepted for Ta104, Ta104S and ThRP; the number of plants with symptoms was significantly lower than that observed in the infected control and a consistent reduction in the disease severity index was also observed.

Trichoderma harzianum Th23 resulted the best one in containing Sclerotinia disease development. The strains Ta100, Ta104, Ta117, Tl35, Ta56, Tat11, ThCB, ThRP, and Th23, were able to control S. rolfsii on red baby lettuce determining a meaningful reduction of disease incidence. Furthermore, all Trichoderma treated plants, excepted for Ta104S, TaIC12, and Tat11 interactions, showed a significant lower disease severity index than the infected control.



Hyperspectral Imaging

Plants infected with the three soil-borne pathogens and exposed to the biocontrol treatment with Trichoderma, were subjected to hyperspectral imaging analysis in order to capture the spectral changes that occurred during the plant-pathogen-antagonist relation. As reported in Figure 5A, out of the 46 analyzed hyperspectral indices, 13 significantly cross-correlated with Rhizoctonia disease on rocket, 26 with Sclerotinia drop on green baby lettuce and 7 with Sclerotium rotting on red baby lettuce. Interestingly, four indices, OSAVI, SAVI, TSAVI and TVI, resulted shared by the three assayed pathosystems. The Multiple Variable analysis showed the score of their negative cross-correlation with the disease severity index for each plant/pathogen systems, with samples distributing between the two extremes, full healthy and full diseased (Figure 6B), coherently with changes visualized in the spectral signatures among non-inoculated, infected and infected but bio-treated plants (Figure 7A). Hence, heatmap visualization of the VIs/DSI hierarchical clustering quickly identified the most effective biocontrol agents in relation to the specific pathosystem (Figure 7B).
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FIGURE 6. Selection of the significant (p-value ≤ 0.05 and R2 > 0.5) cross-correlated hyperspectral vegetation indices with disease severity index (DSI) for R. solani/wild rocket. S. sclerotiorum/green baby-lettuce and S. rolfsii/red baby-lettuce compatible interactions. (A) Venn diagram showing the number of the vegetative indices significantly cross-correlated with disease severity. common and not common to all the pathosystems. (B) Pearson's correlation between the common hyperspectral vegetative indices (OSAVI. SAVI. TSAVI and TVI) and DSIs. Non-inoculated healthy controls (red); infected plants (black); infected plants treated with Trichoderma strains (blue).
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FIGURE 7. (A) Spectral signatures of wild rocket (a). green baby lettuce (b) and red baby lettuce (c) assayed with R. solani. S. sclerotiorum and R. rolfsii. respectively. and treated with the Trichoderma strains (blue). compared to the non-inoculated (red) and infected (black) controls. (B) Hierarchical clustering of OSAVI. SAVI. TSAVI. TVI in relation to the observed disease severity index (DSI) in the systems R. solani-wild rocket (a). S. sclerotiorum-green baby-lettuce (b). and S. rolfsii-red baby-lettuce (c). Rows were centered and unit variance scaling was applied. Columns were clustered using correlation distance and average linkage. Analysis was performed by ClustVis software.


PCA analysis of VIs detected in the three different pathosystems showed their consistent ability to discriminate among different disease levels (Figure 8). Furthermore, OSAVI, SAVI and TSAVI resulted quite redundant, probably due to they differ only in the algorithm used for combining spectral data, while the distinct contribution in explaining the variance along PC1 (93.9%) was associated to TVI (Figure 8).
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FIGURE 8. Principal component analysis of OSAVI. SAVI. TSAVI and TVI indices measured in wild rocket/R. solani. green baby lettuce/S. sclerotiorum and red baby lettuce/S. rolfsii pathosystems associated to the relative DSI. PC1 and PC2 explain the 93.9% and 5.8% of the total variability. respectively. Col indicate the distribution of DSI values in classes as follow: 0 = 0 ≤ DSI ≤ 0.2; 1 = 0.21 ≤ DSI ≤ 0.4; 2 = 0.41 ≤ DSI ≤ 0.6; 3 = 0.61 ≤ DSI ≤ 0.8. 4 = 0.81 ≤ DSI ≤ 1.


In order to fit a linear model, DSI data and selected indices were analyzed for multiple regression (Table 3). Based on the PCA results, SAVI indices (OSAVI, SAVI and TSAVI) computed together and TVI were submitted to linear regression analysis. OSAVI index was excluded since OSAVI:TVI interaction was found not significant in the resulting linear model. Results showed that F-statistic was highly significant (<3.5e-10) meaning that at least, one of the predictor is significantly related to the outcome variable. All the coefficients, including the interaction term coefficients, were statistically significant, suggesting that there is an interaction between the two predictor variables TSAVI + SAVI and TVI. On the other hand, these last are able to provide information about the biological observations although R-squared value was low. Thereby, statistical outputs corroborated the visualization by VIs images of the effects of Trichoderma strains on the disease symptom expressions over the cultivars.


Table 3. Summary of statistical values associated to linear regression model for prediction of DSI using SAVI (OSAVI, SAVI and TSAVI) and TVI vegetative indices.
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Differences between healthy and diseased controls resulted, actually, perceptible on OSAVI, SAVI, TSAVI and TVI images, and the BCA treated plants displayed intermediate collocations (Figures 9–11). However, the correlational analysis identified disease-specific indices as reported in Figure 6A. Indeed, MCARI and SRPI resulted effective to track the R. solani/wild rocket interaction, other 15 indices (ARI, CAR, LRDSI, msr705, NDVI, PRI, PSSRc, R705, RDVI, RGRcn, RVI, RSVI, SIPI, TCARI, VARI-Green) were found significantly correlated to the S. sclerotiorum infection degree of green baby lettuce, while LIC3, VOG2, VOG3 were found suitable for following the S. rolfsii/red baby lettuce interaction. A summarization of Pearson's analysis involving all the VIs, is reported in Table 4.
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FIGURE 9. Hyperspectral vegetative indices (OSAVI. SAVI. TSAVI and TVI) images of wild rocket plants infected with R. solani and treated with Trichoderma strains (c–r) compared to non-infected (a) and infected (b) controls. acquired by Specim IQ hyperspectral camera. The description of the vegetative indices features are reported in Table 2. The list of Trichoderma treatments is as follow: T. atroviride Ta100 (c); T. atroviride Ta104 (d); T. atroviride Ta104C (e); T. atroviride Ta104S (f); T. atroviride Ta105 (g); T. atroviride 116 (h); T. atroviride Ta117 (i); T. longibrachiatum Tl35 (j); T. atroviride Ta56 (k); T. atroviride TaIC12 (l); T. atroviride Tat11 (m); T. atroviride Tat3C1 (n); T. harzianum ThCB (o); T. harzianum ThRP (p); T. harzianum Th23 (q); T. longibrachiatum Tl41 (r).
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FIGURE 10. Hyperspectral vegetative indices (OSAVI. SAVI. TSAVI and TVI) images of green baby-lettuce plants infected with S. sclerotiorum and treated with Trichoderma strains (c–r) compared to non-infected (a) and infected (b) controls. acquired by Specim IQ hyperspectral camera. The description of the vegetative indices features are reported in Table 2. The list of Trichoderma treatments is as follow: T. atroviride Ta100 (c); T. atroviride Ta104 (d); T. atroviride Ta104C (e); T. atroviride Ta104S (f); T. atroviride Ta105 (g); T. atroviride 116 (h); T. atroviride Ta117 (i); T. longibrachiatum Tl35 (j); T. atroviride Ta56 (k); T. atroviride TaIC12 (l); T. atroviride Tat11 (m); T. atroviride Tat3C1 (n); T. harzianum ThCB (o); T. harzianum ThRP (p); T. harzianum Th23 (q); T. longibrachiatum Tl41 (r).
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FIGURE 11. Hyperspectral vegetative indices (OSAVI. SAVI. TSAVI and TVI) images of red baby lettuce plants infected with S. rolfsii and treated with Trichoderma strains (c–r) compared to non-infected (a) and infected (b) controls. acquired by Specim IQ hyperspectral camera. The description of the vegetative indices features are reported in Table 2. The list of Trichoderma treatments is as follow: T. atroviride Ta100 (c); T. atroviride Ta104 (d); T. atroviride Ta104C (e); T. atroviride Ta104S (f); T. atroviride Ta105 (g); T. atroviride 116 (h); T. atroviride Ta117 (i); T. longibrachiatum Tl35 (j); T. atroviride Ta56 (k); T. atroviride TaIC12 (l); T. atroviride Tat11 (m); T. atroviride Tat3C1 (n); T. harzianum ThCB (o); T. harzianum ThRP (p); T. harzianum Th23 (q); T. longibrachiatum Tl41 (r).



Table 4. List of the hyperspectral vegetation indices from the literature that were used in this study for estimating their informative degree about disease severity.
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DISCUSSION

Trichoderma spp. include a plethora of isolates with biocontrol activity against phytopathogens (Kumar et al., 2017) that can also give additional benefits to the plants, such as increase the nutrient uptake, enhance the photosynthetic activity and stimulate different metabolic processes that positively affect yields and quality of the treated crops (El Enshasy et al., 2020). Recently, it has been shown that soil treatment with Trichoderma gave biostimulant effects on wild rocket and baby lettuce, ranging from the increase of leaf yield, fresh and dry weight, to the improvement of leaf nutritional status, resulting in a premium quality of the fresh-cuttings with higher lipophilic antioxidant activity and total ascorbic acid content (Fiorentino et al., 2018; Caruso et al., 2020; Di Mola et al., 2020; Rouphael et al., 2020). However, expressing the full biocontrol potential in these contexts, Trichoderma-based formulates can successfully integrate disease management protocols for producing baby leaf vegetables with high added value in terms of sustainability, decreasing the dependence on synthetic fungicides.

This study recruited sixteen new Trichoderma antagonistic strains assigned, on the base of the variations of the rRNA ITS and translation elongation factor 1-α gene partial sequences, to three different species, T. longibrachiatum, T. atroviride, and T. harzianum. Several stains of these species are well-known as BCAs of many pathogens affecting vegetables, including our targets (Bastakoti et al., 2017): they are proposed alone, being part of complex microbial consortia or activating suppressive organic amendments (Kareem et al., 2016; Wang et al., 2019; Chilosi et al., 2020). The macroscopic and microscopic examination of the selected strains showed interesting characters such as the profuse sporulation, the ability to secrete secondary metabolites in the medium changing its pigmentation and the capability of some to produce a volatile compound with the typical coconut-like aroma. This last specific character was detected in the strains Ta56, TaIC12, and Tat11 and could be putatively associated to the production of 6-pentyl-α-pyrone, a bioactive unsaturated δ-lactone with interesting properties involved in the microbial antagonism (Bonnarme et al., 1997; Serrano-Carreón et al., 2004; Longo and Sanromán, 2006; Ramos et al., 2008; Penha et al., 2012; Pascale et al., 2017). However, to clarify these aspects, further metabolomic investigations are necessary.

All the new identified antagonists significantly inhibited the mycelial growth of the pathogens in the dual culture assay. The main mechanism of control resulted to be the mycoparasitism, highlighted by the overgrowth of the BCAs onto the pathogen mycelia, observed already after 9–10 days of incubation. Mycoparasitism is one of the major weapons displayed by Trichoderma spp. against phytopathogens (Sachdev and Singh, 2020) allowing them to parasitize and kill the fungal host after the direct contact. During this intimate interaction, the beneficial fungus produces antibiotics and a huge array of cell degrading enzyme (protease, as β-glucanase, chitinase) necessary for the parasitism process (Steyaert et al., 2003).

In vivo biocontrol assays classified the Trichoderma BCA-candidates for the substantial ability to protect wild rocket, red and green baby lettuces from their most feared telluric fungal pathogens. Contrary to what was observed in in vitro assays, the in planta trials showed meaningful differences in biocontrol intensity among the strains in relation to the target pathosystem.

Specifically, Tl35, Ta56, Ta116, TaIC12, and Tat3C1 resulted the most effective strains in controlling Rhizoctonia damping-off of wild rocket, determining a significant reduction in terms of DSI (roughly 60%) compared with infected control under high disease pressure (100%). Rhizoctonia crown and root rot is a problematic disease of wild rocket for the ready-to-eat produces in the Italian cropping areas (Nicoletti et al., 2004). For their biological control, only the hyperparasite Clonostachys rosea has been noticed in literature (Nicoletti et al., 2007). Genetic resistance to this pathogen is not available yet (Pane et al., 2017), while wild rocket waste meals are proposed as amendments to promote the soil general suppressiveness providing antifungal molecules contained into the grounded plant tissues (Schlatter et al., 2017). Our results suggest that Trichoderma spp. can reduce the incidence and the severity of the disease and earn a chance as effective antagonist in Rhizoctonia damping-off management.

On the other hand, the biological control of Sclerotinia species, in particular S. sclerotiorum, has received increasing attention on adult lettuce inasmuch as chemical control of this pathogen is usually difficult, because the ascospores can infect any part of the head and sclerotia resist in the soil and can occur after prolonged wet periods (Patterson and Grogan, 1985; Elias et al., 2016; Subbarao et al., 2017). Therefore, the antagonists play a crucial role in the lettuce drop management because of their ability to parasitize the sclerotia in deep soil layers (Subbarao, 1998). As Sclerotinia drop biocontrol agents, Coniothyrium minitans Campbell, Clonostachys rosea (Schroers et al., 1999) and Trichoderma spp. resulted effective either in laboratory or in soil assays (Turner and Tribe, 1976; Phillips, 1989; Whipps and Budge, 1990; Jones et al., 2003, Bonini et al., 2020). Furthermore, against the compatible interaction between Sclerotinia spp. and adult lettuces, Trichoderma biocontrol agents have been reported to effectively reduce the seedlings drop (Elias et al., 2016), promote plant growth under infection (da Silva et al., 2019) and delay the symptoms appearance by emitting volatiles (da Silva et al., 2021). Accordingly, our results on baby lettuces demonstrated that Trichoderma strains Ta100, Ta104C, Ta117, Tl35, Ta56, TaIC12, Tat3C1, ThCB, and Th23, belonging to different species, can contain Sclerotinia drop disease, reaching a significant reduction of DSI (around 30%) compared to untreated control (DSI 100%).

Many previous studies reported the effectiveness of Trichoderma volatile compounds in inhibiting S. rolfsii growth (Hirpara et al., 2017; Marques et al., 2018; Sridharan et al., 2020). The culture filtrates with the highest antifungal effect against S. rolfsii were those of T. brevicompactum (Marques et al., 2018), T. harzianum (Saxena et al., 2014), T. viride (Darvin, 2013) and T. virens (Srinivasa and Devi, 2014). Wonglom et al. (2019) selected a Trichoderma strain with higher biocontrol properties against Sclerotium stem rot on red oak lettuce, due to its capability to produce volatile antifungal compounds (phenylethyl alcohol and epi-cubenol) and the cell wall degrading enzyme β-1,3-glucanase. Similarly, our results showed that Trichoderma strains Ta100, Ta104, Ta116, Ta117, Tl35, Ta56, ThCB1, and ThRP, highly suppressed lettuce Sclerotium rotting with a reduction of DSI around 50%, on average, compared to untreated infected control.

Interestingly, T. atroviride strain TA56 and T. longibrachiatum strain TA35 resulted to be multi-suppressive, namely highly effective in containing all the three diseases of the baby-leaf vegetables, demonstrating positive performances both in vitro and in vivo. The ability of these two BCAs to control the main disease of baby leaf make them promising candidates for a wide-spectrum application in preventive and/curative biological control practices in fresh-cut salad cropping, especially under soil sickness conditions.

Hyperspectral imaging was used here to objectively assess the biocontrol effectiveness of the comparing Trichoderma spp., interpreting the canopy reflectance response to the bio-treatments acquired by a hyperspectral sensor and summarized by VIs, thus, quantifying the functional effects. Four out of the 46 tried VIs, previously calibrated on plant physiological and structural shifts (Mishra et al., 2017), displayed significant (p-value < 0.05, highest coefficient of determination R2) positive relationships with plant health, as variably modulated by the biological control treatments contemporary in all the three target systems. The indices OSAVI, SAVI, TSAVI and TVI were able to highlight the most effective BCAs in controlling multiple soil-borne diseases of baby leaf vegetables. This result confirmed that selected indices can be applied as highly-informative tool for both BCA selections and disease monitoring in the presence of soil-borne pathogens generally associated to root and collar rot and, in advancing, leaf withering and plant death.

Therefore, the disease progression significantly affects the vegetation vitality and also the chlorophyll content. OSAVI, SAVI and TSAVI are soil adjusted vegetation indices, also defined as soil-line indices descriptive for sparse vegetation covering (Ren et al., 2018) as baby-leaf crops are. They have been used for grading wheat powdery mildew disease severity trough satellite-acquired scenes (Gröll et al., 2007; Feng et al., 2016; Ma et al., 2018). Recently, SAVI has been applied for the field estimation of the severity of cotton root rot caused by the fungus Phymatotrichopsis omnivora (Zhao et al., 2020), while OSAVI has been used to sense Fusarium Head Blight on wheat by computing Sentinel-2 multispectral data (Liu L. et al., 2020). Similarly to our findings, OSAVI has been found highly correlated with Rhizoctonia crown and root rot severity on sugar beet assessed with a non-imaging remote sensing approach (Reynolds et al., 2012). On the other hand, TVI is the triangular vegetation index associated to leaf chlorophyll content (Cui et al., 2019) and plant vitality (Broge and Leblanc, 2001). It has been calibrated for the leaf area index estimation (Xing et al., 2020) and is also known for describing spectral variations due to wheat leaf rust symptoms caused by Puccinia triticina (Ashourloo et al., 2014a,b).

To the best of our knowledge, this is the first study that retrieved hyperspectral VIs with high discriminatory capability for the biocontrol ability of Trichoderma against developing soil-borne diseases of leafy vegetables. Previously, Silva et al. (2018) have tried to apply a laser speckle based on a light signal at 632 nm to assess the efficacy of maize seed treatments with T. harzianum on the germination, vigor and sanitation of seedlings. Instead, Pishchik et al. (2016) have calculated VIs on VIS, RED (red-edge), NIR and MID (middle infrared) spectral information acquired with a field pulse photometer, to tentatively track the synergistic effect of the plant growth promoting bacteria, Bacillus subtilis and a humic fertilizer on lettuce plants quality and vitality.

The four indices of this study, each applying its own peculiar algorithm, work in the spectral range 550–800 nm, just on the border between VIS and NIR regions, suggesting that this part of the spectrum could be sensitive to the reflectance shifts occurring at canopy level during the plant-pathogen-antagonist interaction. Marín-Ortiz et al. (2020) have found in the VIS/NIR range 448–995 nm the distinctive spectral response of tomato to the Fusarium oxysporum infection that has been also associated to changes in the leaf concentration of chlorophyll and carotene. Similarly, the soil-borne pathogens studied in our systems could bring to the decline of chlorophyll and other pigments, as-well-as growth reduction conditioning the reflectance reaction.

As a matter of fact, decreases in chlorophyll content has been noticed in Rhizoctonia diseased carrot (Ahmad et al., 2019), in cucumber affected both by R. solani and S. rolfsii (Kotasthane et al., 2015) and in soybean attacked by S. sclerotiorum (Vitorino et al., 2020). On the contrary, Trichoderma can enhance the phothosynthetic performances of the colonized plants by increasing their chlorophyll content and, at the same time, determining an improvement of their general physiological status (Singh et al., 2013; Doley et al., 2014; Kotasthane et al., 2015) exerting an antagonistic action with respect to the pathogen in promoting the vitality of the plant. Therefore, according to these inferences the plant functional imaging as applied here may return valuable information about how the biocontrol agents is working.

Findings of the present study indicate the potential to boost the sustainability of disease management protocols trough high-performing hyperspectral VIs that can drive the biocontrol practices, such as, for example, the microbial augmentation, based on the early recognition of the worsening of the plant state and of the possible effectiveness reduction of the adopted plant protection strategy. Functional plant imaging can be used to track the plant progression under biocontrol effect using a restricted number of bands. The digital imaging has been proposed for the early diagnosis of plant diseases (Lowe et al., 2017), for the real-time field estimation of phytopathological conditions (Golhani et al., 2018) and to provide useful information for pest and disease control (Yao et al., 2011). Here, it helped to scout effective biological control agents against baby-leaf salad pathogens, demonstrating the potential to sense the biocontrol making on developing soil-borne diseases. The association between BCAs and hyperspectral imaging, concurring at reducing chemical pressure of fungicides on the environment and avoiding crop losses for uncontrolled pathogenic attacks, opens to the concept of precision biological control. The availability of digital tools for the automatized large-scale evaluation of biocontrol evolution will be useful both in field/greenhouse systems to rapidly assess the success of biological measures against phytopathogens as well as Susič et al. (2020) have recently pointed up for pest control.



CONCLUSIONS

The high-effective Trichoderma strains identified in this study are able for protecting baby-leaf vegetables from a wide-spectrum of soil-borne pathogens, such as R. solani, S. sclerotiorum, and R. rolfsii. Strains belonging to T. longibrachiatum, T. atroviride, and T. harzianum are suitable for large-scale preventive applications in greenhouses that host wild rocket and baby-lettuces in succession and/or in rotation and have a perspective to work in consortia since they sourced from a unique niche. The scenario of applying digital imaging as innovative scheme to boost biological control, from the high throughput screening of the microorganisms to their field application, is highlighted. OSAVI, SAVI, TSAVI, and TVI, that were found highly correlated to disease severity, are promising and informative hyperspectral VIs to track biological control activity against multiple soil-borne pathogens of baby leaf vegetables. In future studies, digital imaging will be able to integrate metabolomic linked to transcriptomic analyses, which, supported by machine learning processing, can contribute to further improve the accuracy of the forecasting models by imaging applied to the plant protection practices.
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Due to its high sensitivity and specificity for tumor detection, positron emission tomography (PET) has become a standard and widely used molecular imaging technique. Given the popularity of PET, both clinically and preclinically, its use has been extended to study plants. However, only a limited number of research groups worldwide report PET-based studies, while we believe that this technique has much more potential and could contribute extensively to plant science. The limited application of PET may be related to the complexity of putting together methodological developments from multiple disciplines, such as radio-pharmacology, physics, mathematics and engineering, which may form an obstacle for some research groups. By means of this manuscript, we want to encourage researchers to study plants using PET. The main goal is to provide a clear description on how to design and execute PET scans, process the resulting data and fully explore its potential by quantification via compartmental modeling. The different steps that need to be taken will be discussed as well as the related challenges. Hereby, the main focus will be on, although not limited to, tracing 11CO2 to study plant carbon dynamics.
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INTRODUCTION

Molecular imaging is a type of medical imaging that has the ability to trace or identify specific molecules within a specific anatomic location and can provide insight into metabolic pathways, tissue components, and tracing solute transport mechanisms (Wickline and Lanza, 2002; James and Gambhir, 2012). Today, molecular imaging is an established tool in both a clinical setting as well as in research facilities, where it is either used for diagnostic imaging and treatment, or for clinical research and drug development. Fueled by the advances and developments of new radioactive labeled probes, functional imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT), in combination with computed tomography (CT) or magnetic resonance imaging (MRI) have become increasingly important (Levin, 2005). As in other functional imaging techniques, PET measures in vivo distribution and concentration of radiotracers in a non-invasive manner. Radiotracers are molecules that contain two moieties (or functional groups), i.e., an agent that has a high affinity for a specific target that needs the be imaged and a positron emitting label (e.g., 11C, 18F, and 15O) in case of PET (Kiser et al., 2008; Saha, 2016). The emitted positron β+ (antimatter of an electron) will react with an electron in its close environment and annihilate. The mass of both particles is hereby converted into energy manifesting as two gamma (γ) photons, which are emitted in opposite direction (180°) to be detected with a ring of detectors (Figure 1; Ametamey et al., 2008; Kim et al., 2013). When a pair of detectors each detect a γ-photon within a short time frame, it is assumed that annihilation took place along the line connecting both detectors, a process referred to as coincidence. Since millions of coincidences are detected during a PET scan, this information can be used to reconstruct a 3D image of the distribution of the radiotracer within the subject/object that is positioned inside the ring of detectors (i.e., the field of view or FOV). A positron-emitting nucleus can be incorporated in naturally occurring molecules, such as H2O or CO2 (Hubeau and Steppe, 2015). According to the tracer principle, these molecules are absorbed via normal metabolism and are distributed similarly throughout the study object as non-labeled molecules (Saha, 2016). Moreover, radiotracers are administered in very small concentrations (nanomolar to picomolar range) in order not to alter or perturb the system (Turkheimer et al., 2014). The combination of these properties allow PET to study biochemical processes in vivo, i.e., without disturbing the object under study, which is a major asset of this technique.
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FIGURE 1. Schematic of branch inside a PET detector ring, i.e., field of view (FOV). Positron decay of the (orange) 11C-nucleus in the branch is shown in the enlarged circle. The positron is traveling a certain distance (typically 1.2 mm for 11C-positrons - black arrow) known as the positron range to eventually collide with an electron and annihilate to produce two γ-photons (red arrows) traveling in opposite (180°) direction. Subsequently, these γ-photons can be detected by two different PET detectors (red ovals) in the detector ring.



Why Should We Use PET in Plant Studies?

Positron emission tomography has become one of the most common and useful imaging modalities for detection and treatment monitoring of human diseases because of its high diagnostic efficacy and accuracy (Saha, 2016). Additionally, this imaging technique is used in preclinical studies on rodents and nonhuman primates for research on drug development linked to, e.g., cardiology or neurology (Ametamey et al., 2008). Given the non-invasive in vivo nature of this technique, its use has been extrapolated to plant science. Whereas preclinical studies on animals and clinical trials on human subjects are governed by ethics limiting the number of individuals to be investigated, this is not the case for studies on plants which avoids considerable administration. Although the number of studies on plants is still limited, this functional imaging technique has already shown its applicability to investigate, e.g., the transport of nutrients, phytohormones and photoassimilates (Minchin and Thorpe, 2003; Kiser et al., 2008; Jahnke et al., 2009; Hanik et al., 2010; Hubeau et al., 2018). Moreover, detection of γ-photons emitted by the radioisotopes enables tracking the transport and distribution of the radiotracers in the plant as a function of time. This is a decisive advantage to study dynamic processes like, for instance, CO2 transport in xylem of tree branches and leaves. Studies that investigated this process with stable 13C-carbon (e.g., McGuire et al., 2009; Bloemen et al., 2013a, b; Boellaard et al., 2015) or unstable 14C-carbon (e.g., Langenfeld-Heyser, 1989) made use of measurement techniques (i.e., isotope-ratio mass spectrometry and autoradiography) that produce discrete temporal results. Although interesting data has been obtained, the results only showed tissue enrichment in a certain treatment at a given point in time after the onset of labeling. A study that applied 11C-carbon in combination with PET to investigate the fate of xylem-transported CO2 resulted in dynamic data which allowed compartmental modeling to disentangle tracer enrichment in physiological parameters characterizing this process (i.e., CO2 efflux rate to the atmosphere, assimilation rate by woody tissues and internal CO2 transport speed) (Mincke et al., 2020). Additionally, the short half-live of the radiotracers (e.g., 2 – 109 min for the most used radioisotopes in plant science – Table 1) in combination with the non-invasive nature of PET enable the same plant to be scanned multiple times without destructive sampling. This feature allows to investigate the plant’s response to environmental changes within the same plant (Kiser et al., 2008). This methodological advantage was also used to investigate photosynthate translocation from strawberry leaves into fruits. First, non-destructive 11C-based imaging was applied to visualize photosynthate transport, and destructive 13C-labeling was applied afterwards on the same plant to quantify photosynthate content (Hidaka et al., 2019). Additionally, a study that investigated the effect of girdling on phloem transport dynamics was able to reuse the same young oak trees before and after girdling for up to five measurements in 1 week (De Schepper et al., 2013a). It was found that the position and speed of phloem transport in stems (with a diameter of 1 cm) changed after complete or partial girdling, a result that could only be obtained due to the non-invasive nature of PET. Furthermore, PET is especially suited to decipher phloem functioning. Since this tissue type is pressure-driven (De Schepper et al., 2013b), it is easily disturbed through transport or displacement, complicating its investigation (Pickard and Minchin, 1990; Turgeon and Wolf, 2009). Radiotracers enable visualization of the sugar flow without damaging or perturbing phloem transport. As such, dynamic positron-based imaging has successfully been used to investigate photosynthate translocation to storage organs like, e.g., root crops or fruits (Jahnke et al., 2009; Kawachi et al., 2011; Yamazaki et al., 2015; Hidaka et al., 2019; Kurita et al., 2020), phloem vulnerability to drought (Hubeau et al., 2018), and the effect of electric shock and cold shock on phloem transport (Pickard et al., 1993). Besides studies on phloem functioning, positron-based imaging has also been used to study the transport of jasmonate (i.e., a signal metabolite involved in plant defense) in whole plants (Ferrieri et al., 2005; Thorpe et al., 2007) as well as nitrate transport (Kiyomiya et al., 2001b; Kawachi et al., 2008). An overview on transport of plant metabolites using positron emitting isotopes is given by Kiser et al. (2008); Hubeau and Steppe (2015), Schmidt et al. (2020).


TABLE 1. Production information and potential tracers of positron emitting tracers used in plant science along with their half-life.
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Nevertheless, the full potential of 11C-PET in plant studies remains largely unexploited. Unlike human or laboratory animal imaging, where the object size is fairly fixed, the size of plant tissues may range from several millimeters to one meter, indicating that the scanner should have a large field of view (FOV) and a high spatial resolution. However, most of the PET studies carried out on plants use either PET systems that were specifically developed for plant imaging (Kume et al., 1997; Uchida et al., 2004; Jahnke et al., 2009; Beer et al., 2010; Wu and Tai, 2011; Weisenberger et al., 2012; Wang et al., 2014) or laboratory animal PET scanners (e.g., Alexoff et al., 2011; Hubeau et al., 2018), which are both characterized by a limited FOV (axial and transverse FOV of ∼ 7 and 10 cm, respectively, for cylindrical detector configurations as depicted in Figure 1, or ∼13 × 20 cm for planar detector configurations). Although these scanning systems benefit from a high spatial resolution (∼1.5 mm and sometimes submillimetre) generally only one or two plant organs (stem, leaves, fruits, or roots) can be visualized (e.g., Jahnke et al., 2009; Hubeau et al., 2018; Hidaka et al., 2019). Additionally, a more comprehensive view of whole-plant carbon allocation patterns can be gained from mature organs in large plants, where a quasi-active carbon sink for carbohydrate storage competes with different plant carbon sinks as growth or respiration (Sala et al., 2012; Hartmann and Trumbore, 2016). These difficulties may be overcome by making use of clinical PET systems, which are developed for human imaging, as these systems have two main advantages. Firstly, these imaging devices allow visualization of larger objects since they are characterized by a transverse and axial field of view (FOV – Figure 1) up to 85 and 26 cm, respectively (Vandenberghe and Marsden, 2015; Vandenberghe et al., 2016). Additionally, clinical PET scanners are equipped with a moving bed on which the plant can be placed, which enables visualization of even larger plants than the volume of the FOV, by acquiring multiple bed positions that can be stitched together into a larger volume. Another advantage of clinical PET systems is that they are nearly exclusively used in combination with structural imaging like computed tomography (CT) or magnetic resonance imaging (MRI). Consequently, the functional information provided by PET can be combined with structural data provided by CT or MRI, but only few plant studies have been reported making use of this multimodal imaging approach (e.g., Jahnke et al., 2009; Garbout et al., 2012). A drawback of clinical PET systems is the lower spatial resolution (∼3 – 5 mm - Vandenberghe and Marsden, 2015) compared to the laboratory animal PET scanners (España et al., 2014; Fine et al., 2014). A poor spatial resolution implies that small plant tissues cannot be distinguished from each other on the resulting PET images, e.g., phloem from xylem in small branches or different parts of a fruits’ pericarp or seeds. However, a good resolution is not always mandatory which is the case when long-distance transport of the radiotracer (in the order of 10 cm) is intended, e.g., transport of photosynthates from leaf to fruit or phytohormone transport. Additionally, the FOV of clinical PET systems have a horizontal axis while in some cases where large plants are studied, it might be appropriate to have a vertical orientation of the PET scanner. An overview of the above-mentioned specifications of laboratory animal and clinical PET imaging systems is given in Table 2 along with those for an ideal plant-PET system. Additionally, environmental parameters within the PET room that are of relevance for plant science, are listed. Note that temperature and relative humidity within a PET room are tightly controlled by air-conditioning. Lighting providing photosynthetically active radiation (PAR) is not present inside a PET room but the FOV is generally spacious enough to include LEDs beside the plant material.


TABLE 2. Generalized specifications of laboratory animal and clinical PET imaging systems as well as for the ideal plant-PET system. Additionally, environmental conditions within the PET room, which are of relevance in plant science, are listed.
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Despite the intensive occupancy of clinical PET systems, we believe that studies making use of these functional imaging devices will make an important contribution to reveal complex in vivo interactions in plants, like the link between xylem and phloem tissue. For example, dynamic PET imaging in combination with compartmental modeling could potentially be applied to investigate phloem vulnerability to drought by repeatedly labeling a tree that is gradually experiencing more drought stress. The same combination of dynamic PET and modeling can be employed to investigate whether xylem embolism repair relies on photosynthates that originate from phloem, storage or local production related to woody tissue photosynthesis. Furthermore, improving our understanding of the mechanisms that drive phloem transport will undoubtedly lead to new approaches for manipulating photoassimilate allocation patterns in crops and fruits.




EXPERIMENTAL DESIGN OF PLANT-PET STUDIES

The objective of PET imaging is to acquire (quantitative) images of the distribution of a certain radiotracer in the object under study. To obtain these images a multidisciplinary trajectory is followed within a PET center (Figure 2) of which the experimental setup is typically composed of six parts. It starts with (i) making contact with a PET center to communicate and discuss the researchers’ innovative plant-PET ideas. Prior to the execution of (test) experiments (ii) radiation protection should be discussed thoroughly to both minimize exposure to ionizing radiation and achieve conformity with the internal policy of the facility. The next step takes place in a radiochemistry lab or radiopharmacy department and involves cyclotron production of the positron emitting isotope, subsequent radio-synthesis (to obtain the desired radioactive molecule), purification and formulation. The radiotracer is then transported to the (iii) PET scanner. Due to the short half-life of PET isotopes (see Table 1), the PET scanner and cyclotron units are generally in close proximity. The PET system is typically operated by a high-level technician or researcher, while a medical physicist keeps track of the quality assurance of the PET system. Visualization of the acquired PET data is realized through (iv) mathematical reconstruction algorithms, which are generally included in PET imaging software. Once 3D images are obtained, (v) image analysis and quantification can take place.
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FIGURE 2. Schematic showing the multidisciplinary steps in performing PET experiments on plants.



Communication and Planning

The basic requirement for conducting plant-PET experiments is access to both radioisotopes and a PET scanner. If not yet the case, contact should be established with key staff of a PET center, i.e., a medical imaging expert (e.g., typically the head of the preclinical imaging lab or clinical PET center) and a radiochemist, at least, if the PET center is accommodated with a cyclotron to produce the required radiotracer. PET centers are growing in large numbers worldwide and can be found in academic institutes as well as in smaller and larger hospitals. Smaller hospitals usually do not have a cyclotron, generally have a single PET scanner (typically combined with CT) and purchase their PET radiopharmaceuticals from commercial vendors that have a cyclotron facility. Larger hospitals and academic institutes have PET centers that can accommodate one or more cyclotrons, a radiochemistry laboratory and often several (multimodal) PET scanners, including laboratory animal (e.g., Alexoff et al., 2011; Hubeau et al., 2019b), clinical (e.g., Garbout et al., 2012; Karve et al., 2015), or self-designed imaging systems (e.g., Uchida et al., 2004; Jahnke et al., 2009; Weisenberger et al., 2012; Kurita et al., 2020). In these larger centers the integral multidisciplinary workflow (Figure 2) can be followed. As indicated earlier, the most frequently used PET isotopes in plant science are characterized by a short half-life (2.03, 9.96, 20.39 min for 15O, 13N and 11C, respectively - Table 1) making it necessary for them to be produced on site. An exception is the longer-lived 18F (half-life 109.74 min), which can be purchased from an isotope supplier, e.g., Curium (France & United States), NTP (South Africa), Isotope-Rosatom (Russia), and ANSTO (Australia). Purchasing radiotracers is regulated and can, for example, only be done via a hospital’s radiopharmacy. There are more than 700 cyclotrons available worldwide of which many are dedicated to the production of PET isotopes (IAEA, 2012). Most of the recent cyclotron facilities are primarily constructed for the production of 18F in the form of the well-defined radiotracer 18FDG (2-[18F]-fluoro-2-deoxy-D-glucose) for cancer detection. Additionally, a sizeable fraction of these facilities has active research programmes for the creation of other 18F-labeled compounds and 11C-labeled compounds (IAEA, 2012). Hence, there is a high probability that one of the nearest cyclotron departments is able to produce 11C and potentially 11CO2, subject to some changes (see “Production and Formulation of Radiotracers”). Assuming that the PET center is interested in a mutual cooperation and a cyclotron facility is able to deliver the required tracer, proof of concept experiments may be organized to investigate the feasibility of the proposed plant-PET idea.

Other important points of discussion are related to the provisioning of dedicated lighting and space. Because of the strict regulations regarding radiation exposure, PET centers are heavily shielded to minimize radiation exposure to workers (Saha, 2016). This usually implies that the rooms do not have windows and thus have a limited availability of sunlight. By consequence, it is advised to provide (timed) lighting supplying PAR to maintain regular plant functioning when performing plant-PET imaging. Additionally, depending on the size of plant species that will be investigated, it might be necessary to discuss the availability of sufficient space to (safely) store plants before and after scanning. Lastly, due to the seasonal dependence of plant material, it is advised to plan experiments well in advance (∼2 months, although depending on the number of scans) as these medical imaging devices are generally well occupied.



Radiation Protection: Working Safely With (Gaseous) Radioactivity

Performing experiments with PET tracers involves exposure to ionizing radiation which could lead to harmful effects. To measure the amount of and exposure to ionizing radiation, several units are used. As indicated earlier, radioactive decay of a PET isotope occurs by the emission of a positron from its nucleus. Since this is a dynamic process, the amount of radioactivity of this type of radiotracers (as well as others used in e.g., SPECT) is quantified by the number of nuclei that decay per unit time. The standard international unit of radioactivity is Becquerel (Bq). One Bq corresponds with one disintegration per second. Curie (Ci) is the original unit of radioactivity and corresponds with the amount of radiation that is produced by one gram of radium (226Ra). This is an enormous unit as it equals 37 GBq compared to clinical used activities for PET imaging, which are in the range of 37 – 740 MBq (1-20 mCi). Regardless the amount of activity used, radiation exposure should be reduced or preferably avoided at all time, which forms the basis of radiation protection. This can be realized by using protective measures, personally and set-up wise.


Personal Radiation Safety

Concerning personal safety, it is of interest to quantify the radiation energy absorbed by biological tissues, i.e., “absorbed dose” as well as to evaluate the harmful effect of a radiation dose to an organism, i.e., “effective dose.” Both PET and computed tomography (CT) can lead to exposure to ionizing radiation. For PET imaging, annihilation generates two γ-photons, each having an energy of 511 keV. As a reference, this energy is higher than the energy of X-rays that are produced in computed tomography (CT) (20 – 130 keV) to create anatomical images or “slices” of specific areas of the body. Given the high energy γ radiation of PET tracers and the relatively small dimensions of plant tissues compared to humans, virtually all of the photons will escape plant tissues so that both absorbed and effective dose are not common for plant tissues. However, they are of importance for the researcher working with radioactivity. Working with ionizing radiation requires wearing a dosimeter badge that monitors the cumulative absorbed radiation dose. Several types of dosimeters exist, i.e., with and without live readout. A dosimeter is typically worn at chest-level on the outside of clothing and generally represent the exposure to the whole body. The absorbed dose is used to calculate the effective dose which takes into account the radiation type (α, β, or γ radiation) and the radio-sensitivity of the exposed organ (Turkheimer et al., 2014; Lakhwani et al., 2019). The limit on effective dose for occupational exposure (e.g., researchers performing PET studies) is regulated and should not exceed 20 millisievert (mSv) per year averaged over five consecutive years and of 50 mSv in any single year (IAEA, 2018). As a reference, cosmic ray exposure of a person in a jet aircraft with a flying time of 200 h in a year at an altitude of 12 km is approximately equivalent to an annual effective dose of about 1 mSv.

Furthermore, exposure to radiation should be minimized according to the triad of “Time-Distance-Shielding” (Lakhwani et al., 2019). Each factor has a different impact on the absorbed dose. Time is related to the exposure opportunities to a source of radioactive radiation as well as the time of exposure, and it is obvious that these should be reduced. Additionally, radiation exposure is inversely proportional to the square of the distance from the source. This means that doubling the distance reduces the exposure to one quarter. For example, the cumulative exposure a radiation worker receives from a 555 MBq (15 mCi) 11C source while standing for 2 h at a distance of 1 m instead of 2 m goes from 50.02 to 12.5 μSv (calculation see Supplementary File 1). Therefore, although strongly depending on the dose and exposure time, a general distance of at least 2 m from the source of radiation may be considered safe. Furthermore, the use of shielding is most effective to reduce radiation exposure. Appropriate stopping material for γ-photons are lead or concrete and allow reduction of exposure that is exponential to the thickness of the material (Table 3; Turkheimer et al., 2014). However, γ-photons are far more energetic than X-rays so traditional protective clothing, such as lead aprons, lead goggles or lead gloves are far less effective if not useless in a PET environment. Note that most, if not all, imaging institutions require (annual) training on safe handling of ionizing radiation and on radiation protection for people exposed to it.


TABLE 3. The thickness of an absorbing material required to reduce the intensity or exposure of a radiation beam (in this case 1 MeV γ rays) to one-half of the initial value when placed in the path of the beam.
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Experimental Radiation Safety

Regarding the set-up for experiments with 11CO2, extra attention should be paid since this radiotracer is a gas under standard temperature and pressure. Therefore, airtightness must be achieved and maintained throughout the entire experiment to reduce the risk of radioactive gas being released into the atmosphere. However, this is challenging since plants require continuous supply of CO2 to maintain photosynthesis. Therefore, most systems enclose the plant, or part of it, in a labeling chamber that is connected to a gas circulation system (e.g., Kawachi et al., 2011; Dirks et al., 2012; Agtuca et al., 2014; Hubeau et al., 2018; Figure 3, upper part). A straightforward method to detect leaks in the labeling chamber is to measure the in- and outflowing air using flow meters (Hubeau et al., 2018). However, the main challenge remains to enclose the plant tissue in an airtight way. When studying or labeling a photosynthesizing organ, the labeling chamber usually has to be made out of translucent material (e.g., plexiglass or see-through plastic) to allow illumination of the plant material with PAR. Airtight constructions enclosing an entire plant can easily be made of acrylate (e.g., Karve et al., 2015), whereas enclosing a plant part (e.g., leaf or branch) can be done using both an acrylate chamber (e.g., Plexiglass, Kawachi et al., 2011), or plastic bag (e.g., Hubeau et al., 2018). When enclosing only a part of the plant, damaging the tissue should be avoided to not disturb plant functioning. An elegant way is to envelop the plant tissue with one or multiple concentric cylindrical pieces of flexible tubing (Figure 3, bottom left) which are lubricated on the inside with petroleum jelly (e.g., Vaseline®). Applying petroleum jelly in a syringe makes it convenient to apply it to the cylindrical tubing. The labeling chamber can then be closed by using small straps or cable ties for both a bag and an acrylic feeding cell (Figure 3, bottom middle) over the tubing without pinching off the phloem and xylem tissue to maintain regular sugar and water transport, respectively. Enclosing the plant tissue first in a somewhat stiff (i.e., semi-flexible) piece of tubing offers good protection to prevent damage when tightening the cable ties. Applying a second piece of soft tubing ensures airtightness of the system. Alternatively, malleable polysiloxan material (e.g., Terostat-IX, Henkel AG & Company, KGaA, Düsseldorf, Germany – Figure 3, bottom right) can be used to separate a plant tissue from other plant parts and the atmosphere. Zipper (storage) bags are elegant to be used as labeling bag because they come in different sizes and allow to reposition the plant tissue after enclosing the bag around the plant tissue. Modifying the shape of a labeling (zipper) bag can easily be done using a vacuum sealing device. A drawback of using small labeling chambers is the difficulty to control the microclimate, especially relative humidity tends to be higher at lower air flows (i.e., lower air renewal rate) due to transpiration of the plant tissue. To avoid 11CO2 that is not taken up by the plant to enter the atmosphere, the outflowing air system can be connected to a CO2 scrubbing column (Figure 3), containing soda lime pellets (Hubeau et al., 2018). In turn, the scrubbing column can be shielded with chevron lead bricks, which are commonly available in a PET center or imaging lab. Internal policy regarding radiation safety on the experimental site may require drafting a standard operating procedure (SOP) to assure safe practice and a risk analysis (RA) to indicate and assess risks of executing experiments with new tracers (e.g., 11CO2). It is hereby recommended that airtightness of the experimental set-up can be checked at any time during the experiment so that, when a leak is detected while the activity is still high, evacuation can take place.
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FIGURE 3. Schematic showing a potential set-up of an air circulation system of a PET experiment using gaseous 11CO2 (top) with specific examples to hermetically seal a plant part (bottom). Air flow is typically provided by a pump or another air controlling device to the plant tissue that will be labeled with 11CO2. Photosynthesis and transpiration can be obtained by a gas analyzer measuring CO2 and H2O content, respectively, of the incoming and outgoing air of the labeling system. Flow meters are used for detection of undesired leaks in the labeling system. At the end of the circulation system, the air can be scrubbed from 11CO2 before being released to the atmosphere. The bottom pictures show effective methods for enclosing part of a plant organ in a labeling bag or an acrylate feeding chamber, while hermetically sealing it from the atmosphere and other plant parts without damaging the tissue. The plant organ can for instance be enveloped by (multiple) small cylindrical flexible pieces of tubing, which are lubricated with petroleum jelly on the inside (bottom left). Straps can then be tightened upon the tubing (bottom middle) to close the labeling bag or fix the plant position in the acrylate chamber. Consecutive application of a stiff semi flexible and a soft flexible piece of tubing ensures airtightness without tissue damage when cable ties are tightened. Alternatively, malleable polysiloxan material can be used (bottom right).





Production and Formulation of Radiotracers

Whereas nowadays radioactive tracers are inherently linked to clinical practice, their first application to study biological processes made use of plants and was described by de Hevesy (1923). He played a key role in the development of radiotracers, which has indirectly led to the development of nuclear medicine and PET imaging. As indicated earlier, the production of radiotracers for PET imaging starts with a cyclotron, where a charged particle (usually a hydrogen ion, e.g., H+) is accelerated to a high velocity to bombard a target atom, eventually creating an unstable nucleus that decays by positron emission. Depending on the target atom a certain radionuclide can be produced (Table 1). The most widely used positron-emitting nuclide in plant science is carbon-11 (11C, half-life of 20.39 min), which is usually administered as gaseous 11CO2 to study long-distance transport of photosynthates (Minchin and Thorpe, 2003; Karve et al., 2015; Hubeau et al., 2018) or can also be administered in an aqueous solution to study xylem-transported CO2 (Bloemen et al., 2015; Mincke et al., 2018, 2020; Hubeau et al., 2019b). 11CO2 is generally produced in two different ways depending on the target material, i.e., N2/O2 (Karve et al., 2015) or N2/H2 (Hubeau et al., 2018). In the former case, the nuclear reaction results immediately in the formation of 11CO2, however, with the undesired by-product 11CO. Yet, CO can be oxidized to CO2 by passing the target gas over hot copper oxide (Ferrieri and Wolf, 1983; Saha, 2016). Application of N2/H2 results in the formation of 11CH4 which subsequently needs to be oxidized via a cobalt oxide column to yield 11CO2 (Landais and Finn, 1989). This last step involves heating to 500 °C, requiring the use of a tube furnace that might not be a part of the standard equipment in a cyclotron unit. Other, albeit less frequently used, methods to produce 11CO2 are described by Ferrieri and Wolf (1983). Guidance information on operation and maintenance together with methodologies and relevant analyses regarding cyclotron production of the radionuclides listed in Table 1 is presented by IAEA (2012), which can be downloaded for free from the IAEA website along other complementary information regarding the development and production of radioisotopes and generators.

After its production, 11CO2 can either be channeled immediately to the plant labeling chamber when a direct connection is made from the cyclotron target or be trapped in a portable medium to be transported to the PET scanner. In the former case, 11CO2 can be concentrated through selective adsorption onto a molecular sieve (Ferrieri et al., 2005; Babst et al., 2013). Once the tracer is concentrated, it can be desorbed from the module to be directed to the experimental labeling chamber using a controlled air flow (Ferrieri et al., 2005). When 11CO2 requires transport to the nearby PET facility it can, depending on the research objective, either be trapped in a NaOH solution to be applied as a gas (e.g., Hubeau et al., 2018), or bubbled through a slightly acidic buffer (e.g., Tris, phosphate or citric acid) to obtain an aqueous 11CO2 solution (e.g., Mincke et al., 2018). In both cases, the liquid tracer solution can be transported in a shielded syringe carrier. The dissolved 11CO2 can be released from the NaOH solution by injection into an excess acidic solution (e.g., H2SO4), which can subsequently be directed towards the plant tissue by bubbling air into the solution. Safe transport of gaseous 11CO2 trapped in a miniature molecular sieve of a portable handheld delivery system (Kim et al., 2014) or a stainless steel trap immersed in liquid nitrogen or liquid argon (Ishioka et al., 1999; Hidaka et al., 2019) are described. With regard to the formulation of a 11CO2-enriched buffered solution that has to be exposed to the xylem (regardless the radioisotope), the buffer’s pH is allowed to deviate slightly from the pH of xylem sap of the species under study. Specifically, once the tracer is taken up, equilibrium reactions will occur, creating the right pH inside the tissue (Butler, 1991). Hence, the pH of an 11CO2-enriched aqueous solution can be slightly more acidic than the xylem sap to favor the 11C-label being dissolved as CO2 (aq.) over bicarbonate.

The use of 11C is not limited to CO2 as it can also be built into other traces like methyl jasmonate, auxin or salicylic acid (Thorpe et al., 2007; Agtuca et al., 2014). Other positron-emitting isotopes applied in plant studies are fluorine-18 (18F), nitrogen-13 (13N) and oxygen-15 (15O), which can be incorporated into biologically active molecules like 18FDG, 13N[image: image] and H215O, respectively. Therefore, the use of these radiolabelled molecules includes, but is not limited to, investigating sugar transport (e.g., Fatangare and Svatoš, 2016), nitrate uptake via roots (e.g., Siddiqi et al., 1989; Liang et al., 2011), and water transport (e.g., Mori et al., 2000; Kiyomiya et al., 2001a), respectively. Application of 18F-fluorine is described as a proxy for tracing water transport (e.g., Ishioka et al., 1999). 13N has also been applied as gaseous 13N2 to study nitrogen fixation of rhizobium root nodules (Ishii et al., 2009; Kasel et al., 2010; Yin et al., 2019) and as ammonium (13NH4) to study the effect of nitrogen deficiency, phytohormones and lighting treatments on its uptake and translocation in rice plants (Kiyomiya et al., 2001b). A nice tabular overview of positron-based plant experiments carried out to date, including the topics listed above as well as uptake and translocation of heavy metals, is provided by Schmidt et al. (2020). The above-mentioned radiotracers, together with their involved pathways, form only a fraction of the potential molecules that can be studied in plants using PET imaging. By making use of organic (radio)chemistry, radionuclides can be incorporated in many other dedicated molecules. However, due to the short half-life, the isotope needs to be labeled to the required molecule by a radiochemist in a short time frame requiring simple and efficient chemical conversion and purification methods (Figure 2). After labeling, the radiotracer is ready to be exposed to the plant material and PET imaging can start.



Pet Data Acquisition


Scan Time

An important issue with PET imaging is the restriction on the experiment’s acquisition or scan time. The radionuclide’s half-life is hereby one of the main determining factors and should be considered together with the final radioactivity of the formulated tracer that is ready to be exposed to the plant tissue. Higher activities enable possibilities to longer scan times, although it should be noted that the allowed radioactivity that can be brought into an imaging facility is likely to be regulated and limited. For studies using 11C (half-life 20.39 min), typically 111 – 740 MBq (3 – 20 mCi) is used in which the plant tissues can be scanned for ∼ 2 – 3 h (note that the activity needs to be doubled to scan another half-life longer). Scan times for studies using 15O and 13N (both having a shorter half-life, 2.03 and 9.96 min, respectively) will be shorter whereas studies with 18F (half-life 109.74 min) can take longer. Other factors affecting the scan time are the time for uptake and plant metabolism as well as the dynamic range of the PET scanner. Generally, if dynamic imaging is intended, it is appropriate to use PET isotopes if the metabolic process of interest alters the tracer distribution within ten half-lives of time (Schmidt et al., 2020). For example, application of 15O is useful for studying fast-metabolizing kinetics such as water transport, but it is very difficult to use this isotope for studying slow-metabolizing pathways involving for instance passive processes. Additionally, the researcher should take into account that the amount of tracer supplied to the plant is generally not entirely taken up. With regard to studies using gaseous 11CO2 an uptake ratio of 80 – 90 % can be achieved by pulse labeling leaf tissues and subsequently stopping gas circulation to the labeling chamber for several minutes (e.g., 5-7 min; personal experience). The last main determinant of the scan time is the dynamic range of the positron-based imaging device. This is especially important for application of 13N and 15O. These radionuclides are characterized by a short half-life and in order to scan as long as possible, a PET scanner is required that is able to handle both high (i.e., high count-rate accuracy) and low (i.e., high sensitivity) activities.



Image Degrading Effects

As mentioned above, PET is based on the detection of two photons (511 keV each) that originate from β+ emitting radiotracers (e.g., 11CO2). The two photons are detected electronically, i.e., coincidence events, using a ring of detectors (Figure 1). When two photons are detected by two different detectors from the detector ring, it is assumed that the annihilation occurred along the straight line connecting the centers of both detectors, called the line of response (LOR). During a PET scan millions of LORs are detected that are used to reconstruct an image of the in vivo distribution of a radiotracer. Despite this simple concept of positron imaging, different factors can degrade the image obtained by a PET scanner due to physics or system performance. These effects include photon noncollinearity, scattered coincidence and random coincidence (Saha, 2016) and are shown schematically in Figure 4. Whereas photon noncollinearity implies a small error compared to both random and scatter coincidence events (especially in preclinical scanners with a small diameter), both the latter result in the formation of a LOR that does not reflect the true location of annihilation and thus degrades image quality. A higher ratio of the true-to-scatter/random coincidence events may improve PET system performance. Such considerations led to the development of the noise equivalent count rate (NECR) as a metric of PET system performance (Strother et al., 1990; Yang and Peng, 2015). Conventionally, NECR is measured for clinical PET systems by scanning the cylindrical NEMA phantom (20 cm diameter × 70 cm long) but it can be measured for laboratory animal PET systems as well by making use of a cone-shaped phantom (NEMA, 2012; Prasad and Zaidi, 2012). However, the most challenging image degrading factor with regard to imaging plants is related to the positron range. This is the distance that the positron travels through the object to lose enough kinetic energy before annihilation takes place (black zigzag pattern in Figure 1). The mean distance between decaying nucleus and the site of annihilation (i.e., mean positron range - Rmean) for common types of radionuclides used in plant science is generally larger than 1 mm and can amount to maximum (Rmax) 4.2 mm for 11C (Table 4 – Conti and Eriksson, 2016), which poses challenges upon imaging leaves whose thickness is in the range of tens of μm for mesophyll and hundreds of μm up to some mm for veins (Witkowski and Lamont, 1991). Particularly, leaves of most plants are so thin that a large fraction of positrons emitted from PET isotopes escape the tissue before annihilation. Alexoff et al. (2011) found that the fractions of positrons that escaped the leaf parenchyma of tobacco plants (200 – 250 μm) were 64 ± 4%, 59 ± 1% and 67 ± 2% for 11C, 18F and 13N, respectively. Because the probability of annihilation increases with thickness, escape fractions were lower in thicker leaf areas like the midrib (1 – 2 mm) (Alexoff et al., 2011). When studying single leaves, an approach to increase the detection of positrons actually annihilating inside the plant material includes the use of thin acrylate plates that can be positioned parallel with the leaf blade, while ensuring not to limit air contact with the leaf (Alexoff et al., 2011; Hubeau et al., 2019b). An alternative is calculating the annihilation probability of positrons according to the thickness of the tissue in which the positrons were detected. Specifically, Jodal et al. (2012) fitted an empirical equation to the cumulative annihilation probability distributions of several positron-emitting isotopes in water. Since plants mainly consist of water, the empirical equation can be used for plant tissues. Additionally, it was indicated that the annihilation probability distributions in other media were very similar to water (Jodal et al., 2012). The empirical equation is in function of the distance from the point of positron emission, and can be used to calculate the probability of positron annihilation for certain tissue thicknesses. In this way activities in plant tissues of different thickness can be normalized and compared. As a reference, the empirically calculated annihilation probability of positron-emitting isotopes commonly used in plant studies within 1 mm of water is given in Table 4.
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FIGURE 4. Schematic representation of a true coincidence event and several image degrading effects in positron emission tomography, i.e., photon noncollinearity, scattered and random coincidence. In each case, the resulting line of response (LOR) that is registered by the detectors is shown.



TABLE 4. Mean and maximum positron range (Rmean and Rmax, respectively) of radionuclides commonly used in plant science along with the probability of annihilation (Pannihilation) within 1 mm of water.
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Detector Configuration

Whereas clinical and preclinical PET scanners typically have a ring of detectors (Figure 1) also planar arrangements of PET detector modules are possible. A planar position of detectors results in 2D images compared to 3D images obtained by circular PET modules or several pairs of planar PET modules. Both planar (2D) and 3D PET setups have their (dis)advantages. Generally, 3D PET is the method of choice in studies where high sensitivity is required, especially when distinction between different tissues in small species is necessary, and where a lot of counts are lost because of attenuation, e.g., in thicker tissues. Additionally, 3D PET can be performed with a lower injected dose, or a reduced scan duration to a comparable planar 2D study (Dhawan et al., 1997; Saha, 2016). When anticipating dynamic PET imaging, which requires time frames of several seconds or minutes, 3D PET is put forward because of the increased sensitivity. However, 3D PET leads to an increased extent of random and scatter incidents compared to planar 2D PET (Gundlich et al., 2006; Saha, 2016). A benefit of planar PET modules is that they allow to position plant tissues freely between detectors which can, additionally, be scanned in a vertical position (Kawachi et al., 2006; De Schepper et al., 2013a). Contrarily, the circular PET modules of laboratory animal and clinical PET scanners are generally horizontally oriented, and it should be taken into account that distally located plant tissues (e.g., ramifications, roots) from the plant tissue that will be scanned (e.g., main branch, stem) need to fit through the detector ring as well. Horizontal orientation of the detector ring might require laying a plant horizontally. Whereas this may affect plant function over the long-term, an 11CO2-based study on maize observed little or no effect of horizontal positioning in terms of photoassimilate transport speeds, 11C fixation, or photosynthetic CO2 exchange rates (measured with an IRGA) compared to vertical plants within a 3 h time frame (Karve et al., 2015). It is therefore safe to assume normal plant functioning when adopting a horizontal plant position for a limited (scan) time. Additionally, most, if not all, 3D PET systems (both clinical and preclinical) are equipped with a bed that can move into the FOV as desired. This makes it possible to scan tissues larger than the axial FOV size (i.e., up to ∼25 cm and ∼190 cm for preclinical and clinical scanners – Table 2). Moving the bed during the acquisition may change the spatial configuration of leaves or other plant tissues which could create movement artifacts. Additionally, no dynamic tracer studies are possible when the bed position changes during scanning. In most preclinical scanners, the bed can be removed to gain extra space inside the FOV.



Complementary Measurements and Other Considerations

Relative comparison or quantification of different measurements often requires normalization based on tracer uptake by the plant tissue. If one plant tissue is to be labeled with, e.g., 11CO2, a PIN diode gamma radiation detector (e.g., Bioscan, Inc., Washington, DC, United States) can be fitted into the labeling chamber to additionally measure the amount of 11C-radioactivity in the labeled plant tissue (Ferrieri et al., 2005; Hanik et al., 2010; Babst et al., 2013). The data of this detector shows the detected activity over time which contains information about the amount of radioactivity administered to the plant tissue, the amount fixed by photosynthesis and the rate of export of radioactivity away from the administration zone. When gaseous 11CO2 is delivered to the labeling chamber by bubbling an 11C-enriched NaOH solution through an acidic solution, there is an alternative way to obtain the amount of radioactivity delivered and fixed by the plant tissue. This requires measurement of (i) the radioactivity of the 11C-enriched NaOH solution before injection in acid from which both, (ii) the remaining activity in the neutralized solution of NaOH and acid that was not injected in the labeling chamber, and (iii) the radioactivity that was collected by the 11CO2 trap after the experiment (Figure 3) should be subtracted. These measurements can be performed by a dose calibrator or Geiger counter which are by default available in a PET center and needs to be recalculated to one point in time before subtraction. Eventually, the amount of carbon fixation can be used to normalize and thus compare different measurements.

Another possible advantage of PET is the complementarity with positron autoradiography. After the PET experiment the plant tissue is hereby exposed to an imaging phosphor plate for typically 10-15 min, depending on the remaining radioactivity in the plant tissue. Since autoradiography requires close contact between the plant tissue and the imaging plate, these should be pushed close together. Therefore, this method is generally considered as destructive. However, the resulting 2D image gives a high-resolution snapshot in time showing the integrated tracer activity detected during the exposure time in the plant tissue. Positron autoradiography has a much higher spatial resolution (24 pixels mm–1) compared to PET (∼ 0.3 – 1 pixel mm–1 for PET). In this way, this technique has been used to acquire detailed tracer distribution in leaves to characterize phloem loading strategies in different plant species (Hubeau et al., 2019a). Because of its high spatial resolution, autoradiography was also used to assist 2D positron-based imaging in the visualization of 13N-translocation in rice (Kiyomiya et al., 2001b), [11C]methionine (Nakanishi et al., 1999), 52Mn (Tsukamoto et al., 2006), and 52F (Tsukamoto et al., 2009) translocation in barley. Additionally, autoradiography was used in a creative way to trace carbon partitioning to the major non-structural carbohydrates (NSC) in sorghum leaves (Babst et al., 2013). Specifically, after 11CO2 labeling leaves were extracted, and the supernatant was separated in NSC using thin layer chromatography (TLC). The TLC-plates were subsequently exposed to autoradiographic phosphor plates to determine the amount of [11C]-labeled sucrose, glucose and fructose.

After the PET acquisition and/or positron autoradiography, there will be some radioactivity remaining inside the plant tissue and/or labeling medium. Therefore, these are regarded as radioactive waste and can be disposed of by decay in safe storage (i.e., lead castle). Because of the short half-lives, waste from 11C, 13N, and 15O does not need to be stored for long-term decay in storage and can be discarded or kept for further processing at the beginning of the next day at the latest. Waste of 18F-labeling experiments may need to be stored for decay depending on the level of activity and the time of the day when it is stored.




Image Reconstruction

The aim of plant-PET is to quantitatively determine the dynamic flow of a radioactively labeled compound inside the plant. The measured data after PET scanning represent the total activity along lines of known location, i.e., LORs (Figure 4). To obtain a final image, the mathematical problem consists of reconstructing the spatial distribution of radioactivity in the plant, at specific time points from these LORs. These measurements are generally noisy because limited amounts of radioactivity will be used in practice and constraints on acquisition time due to the isotope’s half-life. For emission tomography, there are two categories of reconstruction algorithms, namely, analytical and iterative methods. The reconstruction algorithm that is used will have important effects on the noise properties of the final image. Note that regardless of the reconstruction algorithm, exponential decay of the radiotracer is corrected. However, due to the noisy nature of the acquired emission data, it is desirable to use a reconstruction approach that takes into account the statistical nature of the noise. Since the emission and detection of photons are Poisson processes, iterative methods that model Poisson statistics have become the standard for PET reconstructions (Vandenberghe et al., 2016). Analytical methods, such as the filtered back projection (FBP) algorithm, are computationally very efficient. However, they do not take into account counting statistics, and consequently the use of these analytical methods has been completely replaced by iterative reconstruction methods. Here, the maximum-likelihood expectation maximization (MLEM) is the foundational algorithm (Lange and Carson, 1984) and it has been shown that it provides images with better noise properties compared to analytical methods (Shepp et al., 1984). However, MLEM is computationally expensive and requires many iterations to reach a suitable image. To reduce computational cost, block-iterative algorithms such as the ordered-subsets expectation maximization (OSEM) algorithm (Hudson and Larkin, 1994; Hutton et al., 1997) and the Row-Action Maximum Likelihood Algorithm (RAMLA) (Browne and De Pierru, 1996; Teymurazyan et al., 2013) have been introduced and can be regarded as modified versions of MLEM and OSEM, respectively (Tarantola et al., 2003). Still, in each of these reconstruction methods the target remains maximization of a likelihood function. In both OSEM and RAMLA, the measured data is divided into subsets that are sequentially used to accelerate the reconstruction process compared to MLEM. The number of subsets provides a good estimate of the acceleration factor that can be obtained (Hudson and Larkin, 1994; Hutton et al., 1997). The effect of reconstruction algorithms MLEM and OSEM as well as the effect of a varying number of OSEM subsets on plant-PET data was tested for a study visualizing phloem transport in Arabidopsis (Figure 5A). In this study the rosette of an Arabidopsis plant was labeled with one pulse of 11CO2 while the inflorescence was positioned in the FOV. Data was acquired for 120 min but to reduce the computational cost of the reconstruction only one time frame of 5 min was selected towards the end of the scanning period, i.e., when the activity inside the FOV was maximal (inserted PET image of Figure 5A). Comparison of the different reconstruction algorithms was based on the convergence of the sum of all voxel values of the reconstructed time frame in function of the number of iterations per subset (Figure 5B). It can be assumed that with convergence of the total voxel value, more iterations will not lead to a better-quality image; on the contrary, the noise present can be amplified with further iterations. Application of MLEM and OSEM using 4 subsets (i.e., OSEM 4) led to a similar convergence of the total voxel value. The total voxel value was slightly lower when OSEM 4 was applied instead of MLEM, because each subset contained only one fourth of the acquired data. The main difference between both algorithms is the reconstruction time needed per iteration as OSEM 4 was roughly four times faster compared to MLEM (0.145 vs. 0.5 s per iteration – Table 5). Further increase of the number of subsets is accompanied with faster reconstruction speeds (Table 5) but at a cost of image quality (Figure 5B) since less data is used in each subset. An indication of image quality can be provided by calculating the signal-to-noise ratio (SNR), which was determined by dividing the average voxel value by the standard deviation in an ROI that closely fits part of the plant tissue (indicated by arrow on insert Figure 5A). As can be observed in Table 5, the SNR decreases with a higher number of subsets and one should be careful not to select too many subsets, because then each individual subset contains less tomographic and statistical information, potentially resulting in a loss of image quality.


[image: image]

FIGURE 5. Photograph of a plant-PET setup for a study on visualizing phloem transport in Arabidopsis (A). The rosette of the plant was hereby labeled with one pulse of 11CO2, while the inflorescence was positioned inside the field of view. The OSEM reconstructed time frame using 4 subsets and 30 iterations per subset is inserted in the right top corner. The region of interest, indicated by the arrow, was drawn on the reconstructed time frame and used to calculate the signal-to-noise ratio (SNR - Table 5). The effect of reconstruction algorithms MLEM and OSEM as well as the effect of a varying number of OSEM subsets X (indicated by OSEM X) on plant-PET data was investigated based on the convergence of the sum of all voxel values in the reconstructed time frame as a function of the number of iterations per subset (B). Stable convergence of the total voxel value implies that more iterations will not result in a qualitatively better image, on the contrary, the noise present can be amplified with further iterations.



TABLE 5. Comparison of reconstruction algorithms MLEM and OSEM, using different number of subsets X (indicated by OSEM X), in terms of iteration speed and signal-to-noise ratio (SNR).

[image: Table 5]
Practically, image reconstruction methods are generally included in the software that comes with the PET system. Hereby, MLEM and OSEM are currently incorporated in many PET systems and it is advised to use these reconstruction algorithms over FBP to obtain high-quality (dynamic) images. RAMLA is implemented on some commercial PET systems and, when available, could lead to faster convergence than OSEM (Saha, 2016).

Iterative methods have the theoretical potential to produce unbiased estimates of the tracer distribution within an object and thus to provide absolute quantification. Two criteria characterize the reliability of absolute quantification: accuracy and precision (Frey et al., 2012; Vanhove et al., 2015). Iterative methods can substantially improve both criteria because they include an appropriate statistical model to describe the measured data, resulting in better noise properties and thus improved precision, and they allow to accurately model image degrading effects such as photon attenuation, scattered and random coincidences (Figure 4), resulting in a more accurate representation of the tracer distribution when a sufficient number of iterations are used (Vandeghinste et al., 2014). When absolute quantification is required, it is important to perform a cross-calibration between the PET camera and the dose calibrator required to measure the amount of radioactivity used during the plant-PET experiments. Cross-calibration is a direct, relative calibration between the institution’s own dose calibrator and PET camera. In short, the procedure is as follows: a syringe has to be filled with a radioactive solution with an activity (in Bq) that is close to the injected activity applied during the plant-PET experiments. This syringe should be measured in the institution’s dose calibrator. The solution should then be introduced into a calibration phantom (mostly a cylindrical phantom) with an exact known volume (in mL) filled with water, resulting in a solution with known activity concentration in Bq/mL. After acquiring a PET scan of the calibration phantom, the acquired data have to be reconstructed using the same reconstruction parameters that will be used during the plant experiment. A region-of-interest has to be drawn on the reconstructed images of the calibration phantom in order to determine the average volumetric concentration of activity within the phantom as measured by the PET scanner. Conversion factors can then be directly derived so that the measurements from dose calibrator and PET camera can be synchronized (Boellaard et al., 2010, 2015). Karve et al. (2015) described the impact of some image degrading effects using a phantom when imaging sorghum and found that scatter correction had little effect (<1%) on the stem and shoot, whereas attenuation of the γ-photons (due to energy loss to the irradiated tissue) led to an error of 30% in the stem and 55% in the root. It is thus especially important to investigate the impact of these effects when comparing plant tissues of different sizes as well as larger tissues (e.g., stems) given the half-value layer of 29 cm for wood (Table 3). When CT data is acquired in addition to PET images, it is generally used to correct the latter for photon attenuation. CT data can additionally be used to facilitate image analysis (see “Image Processing and Quantification”).

Image reconstruction is demanding in terms of computational power and time, especially when the stored LORs have to be reconstructed into different time frames to monitor a dynamic process, which is called dynamic or 4D PET. Here, series of PET images are obtained per e.g., 2–10 min of the acquisition time, depending on the sensitivity of the PET scanner and the amount of radioactivity added. However, it is also advised to reconstruct a static image that is the mean/sum of the all the individual time frames. This static 3D image has a higher SNR than the individual time frames (Turkheimer et al., 2014) and it is particularly useful for visual assessment of the entire dynamic process in one 3D image. This is demonstrated in Figure 6, where the static image is shown in the upper left corner along with some dynamic time frames of 20 min. To this end, a Populus tremula L. branch was exposed to gaseous 11CO2. The static image shows 11C-tracer accumulation in the complete branch segment inside the FOV in contrast to the dynamic images, where only part of the branch segment is visible due to dynamic nature of the process. Aside from the higher SNR, the reconstruction time of such a static image is generally much shorter than the dynamic reconstruction time.


[image: image]

FIGURE 6. Example of a static (upper left rectangle) and three dynamic PET images (timestamp in minutes shown in the lower left corner) of a Populus tremula branch that was exposed to gaseous 11CO2 during a 60-min PET acquisition. Transport of the label via the petioles to the branch is visualized by dynamic PET images. The static PET image (i.e., sum of dynamic images) has a better signal-to-noise ratio and can be used for drawing regions of interest (ROIs) around the branch or petiole. These ROIs can then be copied on the dynamic PET images to obtain tracer concentrations per ROI over time, i.e., time-activity curves (TACs).




Image Processing and Quantification

After image reconstruction, while applying the necessary corrections (if needed), 3D or 4D images are obtained, which can be analyzed using image analysis software. Commonly used software includes OsiriX (Rosset et al., 2004 – commercial), Horos [1 GNU Lesser General Public License, Version 3.0 (LGPL 3.0) – open-source] and AMIDE (Loening and Gambhir, 2003 – open-source). These software packages allow to reduce noise by smoothing or blurring the images, which can be executed on both static and dynamic reconstructed images. A common approach is the application of a gaussian filter, whereby a gaussian curve is applied to calculate the intensity of each voxel by using a fixed number of voxels around it. However, reducing noise will also result in poorer spatial resolution. Finding the ideal trade-off between noise and spatial resolution is usually performed on the static image when a dynamic process needs to be quantified. Subsequently, the static 3D image can be used to draw regions of interest (ROIs) onto the plant tissue under study (Figure 7A). In Figure 7A, xylem-transported 11CO2 in a young branch segment of Populus tremula is imaged and the goal was to visualize and quantify its dynamic transport. In this example, four consecutive ROIs are drawn (colored ROIs 1 – 4) on the static 3D image because it depicts the branch more clearly than each separate image that makes up dynamic 4D image (see “Image Reconstruction”). Image analysis software allows to upload multiple datasets in one study so that the dynamically reconstructed 4D PET data can be uploaded as well. All image analysis software includes the possibility to calculate the measured activity in each ROI for any of the 4D PET images over time. This data can be plotted directly as time-activity curves (TACs – one for each ROI) which can be used for further quantification. An example of measured TACs (circles) for each of the four colored ROIs (Figure 7A) is shown in Figure 7B. TACs can for example be used to retrieve physiological properties of the plant like phloem transport speed (based on the time of first tracer arrival, e.g., Karve et al., 2015), uptake and distribution of plant nutrients like NO3 (e.g., Kawachi et al., 2008; Liang et al., 2011), NH4 (e.g., Kiyomiya et al., 2001b), or Fe (e.g., Tsukamoto et al., 2009), photoassimilate translocation to storage organs (e.g., Kikuchi et al., 2008; Hidaka et al., 2019), xylem-transported CO2 (Hubeau et al., 2019b), as well as changes in whole-plant carbon allocation (e.g., Karve et al., 2015).


[image: image]

FIGURE 7. Example of a static volume rendered PET image showing xylem-transported 11CO2 in a branch segment of Populus tremula (A). By extracting the tracer concentrations within, e.g., four consecutive ROIs of the corresponding dynamic PET images (e.g., 2.5 min time frames) time-activity curves (TACs) are obtained [circles in panel (B)]. Time is expressed in minutes after pulse-labeling aqueous 11CO2 to the cut end of the branch. By means of mathematical frameworks a model, representing the molecular system under study, can be fitted continuous lines) to the measured TACs. The importance of pursuing good region of interest (ROI) drawing practices is demonstrated by knowing which corresponding plant part is inside the field of view (C). It would be straightforward to draw ROI 1 on the branch segment having the highest tracer concentration [dotted ROIs in panel (A)]. On the branch segment enclosed in these ROIs however, a petiole originates, which cannot be resolved from the branch itself due to the limited spatial resolution of the PET system. Therefore, the 11C-tracer detected in the branch and the petiole is added in these ROIs, resulting in an incorrect higher signal and eventually incorrect TACs [gray ROI measurements in panel (B)]. These ROI data sets were therefore excluded from parameter calibration and thus do not have a continuous model fit. Note that PET image (A) shows the side view whereas the branch (C) is shown from above.


Additionally, dynamic PET measurements can be used as input for mathematical frameworks to retrieve physiological plant parameters that are difficult to measure with other techniques. This can be achieved by means of an input-output framework, as developed by Minchin and co-workers (Minchin and Thorpe, 2003; Minchin, 2007, 2012; Kiser et al., 2008), or by mechanistic compartmental modeling (Bühler et al., 2011, 2014, 2018; Hubeau et al., 2018). Compartmental models have an advantage over input-output models because they restrict model outcomes with physical boundaries, allowing to pose realistic ranges for solute transport characteristics (Bühler et al., 2011; Hubeau and Steppe, 2015). Therefore, compartmental models are of high interest to study long-distance transport in plants for the investigation of functional traits, especially under diverse environmental conditions (Jahnke et al., 2009). This boils down to translating the tracer dynamics (i.e., TACs) by a model that represents the system under study. The model is composed of mass balances (i.e., differential equations) defined by tracer concentrations and kinetic rate constants to describe the exchange between compartments. This method has usually been implemented with the assumption that the system under study does not change during the experiment (Minchin and Thorpe, 2003). The example of xylem-transported 11CO2 (Figure 7) is described by Mincke et al. (2020) using three compartments which will be simplified in this manuscript to a two-compartment model, purely for demonstration purposes. Each of the ROIs can be regarded as a small branch segment that is divided in two compartments, which are described by two parameters, i.e., xylem CO2 transport speed vCO2 (mm min–1) and exchange fraction a (min–1) (Figure 8). Sap-dissolved 11CO2 can move within xylem conduits of each ROI (compartment 1) with transport speed vCO2 and can move to surrounding chloroplast containing cells (compartment 2) through a to be assimilated and immobilized by woody tissue photosynthesis. The equations describing this model along with extra considerations on the model can be found in Supplementary file 2. This model could equally be applied to study phloem transport within a petiole or a branch after gaseous 11CO2 exposure (Figure 6) with the two parameters then being phloem transport speed and the unloading fraction.


[image: image]

FIGURE 8. Schematic of a simplified compartmental model used to describe xylem-dissolved 11CO2-tracer movement in a cylindrical region of interest (ROI) within a branch segment shown in Figure 7A. The model is described by two parameters, i.e., xylem CO2 transport speed vCO2 (mm min–1) and exchange fraction a (min–1) as defined by Eqs. (S3–4) (Supplementary file 2). Through sap flow, 11CO2 enters and moves through the xylem conduits (i.e., compartment 1) of each ROI with transport speed vCO2. Within each ROI, 11CO2 can move from the xylem to surrounding chloroplast containing cells (i.e., compartment 2) through a, where it is assimilated by woody tissue photosynthesis and stored.


The goal of fitting a model to dynamic tracer data (i.e., model calibration) is to derive specific parameters that have a physiological meaning, which are difficult to obtain by direct measurement. Specifically, due to the limited spatial resolution of PET (∼ 1 - 3 mm), physiological processes in several tissues are integrated into the measured TACs. In the example of xylem-transported CO2, these parameters are the xylem CO2 transport speed vCO2 and the exchange fraction a that gets photosynthetically incorporated into the tissue. Practically, such physiological parameters can be retrieved by implementation and calibration of plant models using software packages, which include MATLAB (MathWorks, Inc, Natick, MA, United States - commercial), (R Core Team, 2020 - open source) and dedicated plant modeling software PhytoSim (Phyto-IT, Gent, Belgium - commercial). When the proposed model properly describes the system under study (i.e., TACs), model calibration should converge, resulting in the optimal model parameters. These parameters can then be used to simulate the solved differential equations which should fit the measured TACs (continuous lines in Figure 7B). When plant modeling is intended, it is advised to have a profound read on model calibration and simulation (e.g., Sun and Sun, 2015).

It is clear that good and reliable ROI placement is a prerequisite when fitting the resulting TAC data to a model. Therefore, it is of great importance to know which part of the plant is being imaged inside the FOV. Some PET systems are combined with a CT or MRI module which facilitates this process because anatomical images can be obtained aside from the functional PET data. For plant-PET studies, however, simple photographs can generally serve as a good reference instead of CT or MRI data. The importance of good ROI-drawing practices is exemplified in Figure 7C which shows the branch segment that was imaged in Figure 7A. Without this image, it seemed obvious to start drawing ROIs from the point where the highest activity was measured (gray dotted ROIs). However, in these ROIs a petiole originates from the branch and due to the limited spatial resolution of the PET system (∼ 1 – 3 mm), the tracer uptake inside the petiole and branch could not be resolved, resulting in TACs with a higher tracer uptake for these ROIs (gray TACs in Figure 7B). This would inevitably prompt incorrect parameter values upon model calibration. Therefore, it is advisable to select a branch segment without ramifications for ROI analysis.

Aside from studying in vivo dynamics of xylem-transported 11CO2 (Mincke et al., 2020), compartmental modeling has been applied in plant-PET studies to investigate the vulnerability of phloem characteristics, including the phloem speed to drought (Hubeau et al., 2018) and girdling (De Schepper et al., 2013a), tracer kinetics of plant carbon allocation, including carbon storage and export rate (Fares et al., 1988), and axial and lateral exchanges in transport pathways of plants (e.g., phloem) (Bühler et al., 2011, 2014).




CONCLUSION

Positron emission tomography imaging is one of the key diagnostic tools used clinically to follow-up and treat diseases by making use of positron-emitting radioisotopes. The in vivo nature of this technique in combination with the ability to monitor dynamic processes has led to its application in plant science. Specifically, this imaging technique has already successfully shown its applicability to investigate the dynamic transport of nutrients, phytohormones as well as photoassimilates. However, in contrast to the numerous studies using laboratory animals and humans, the number of studies on plants is still limited. Therefore, the aim of this manuscript is to provide general insights on the opportunities of PET imaging as a tool for plant experiments and to guide the reader to start PET experiments on plants. To fully grasp PET imaging along with its potential and limitations, it is advised to have a profound read on the principles of PET or to follow a course on PET or biomedical imaging in general. Besides explaining the basics of PET imaging, this guide starts from planning the experiment, elucidates the different steps to execute plant-PET scans and completes with the quantification of the obtained data by means of mathematical frameworks. In this way, physiological parameters can be obtained that can otherwise not be measured in vivo, indicating the potential of plant-PET. We believe that in vivo imaging in combination with modeling, both at cell and organ scale, are necessary to advance our mechanistic understanding of plant physiology, including dynamics of xylem-transported CO2 and its relation to woody tissue photosynthesis, phloem characteristics as well as the effects of nutrients, hormones and both micro and macro environmental changes.
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Illegal logging is a major threat to forests in Peru, in the Amazon more broadly, and in the tropics globally. In Peru alone, more than two thirds of logging concessions showed unauthorized tree harvesting in natural protected areas and indigenous territories, and in 2016 more than half of exported lumber was of illegal origin. To help combat illegal logging and support legal timber trade in Peru we trained a convolutional neural network using transfer learning on images obtained from specimens in six xylaria using the open source, field-deployable XyloTron platform, for the classification of 228 Peruvian species into 24 anatomically informed and contextually relevant classes. The trained models achieved accuracies of 97% for five-fold cross validation, and 86.5 and 92.4% for top-1 and top-2 classification, respectively, on unique independent specimens from a xylarium that did not contribute training data. These results are the first multi-site, multi-user, multi-system-instantiation study for a national scale, computer vision wood identification system evaluated on independent scientific wood specimens. We demonstrate system readiness for evaluation in real-world field screening scenarios using this accurate, affordable, and scalable technology for monitoring, incentivizing, and monetizing legal and sustainable wood value chains.

Keywords: XyloTron, wood identification, illegal logging and timber trade, computer vision, machine learning, deep learning


INTRODUCTION

State-owned Amazonian forests cover 60% of the total area of Peru with over 15.3 million hectares of the Amazon forest being classified as natural protected areas (SERNANP, 2020) and the rest supporting diverse modes of managed production (e.g., 11 million hectares designated as Forest Logging Concessions; Kometter, 2019). However more than 68% of supervised logging concessions showed unauthorized tree harvesting from natural protected areas and indigenous territories (Finer et al., 2014), and in 2016 alone at least 58% of exported lumber was of illegal origin (SBS and GIZ, 2018). According to official data, over the past decade the volume of wood produced from illegally logged trees increased from 1.15 to 1.8 million cubic meters per annum (OSINFOR, 2015—onward).

For the last twenty years Peru has been building governance infrastructure to achieve sustainability of its forest products, facilitated by national and international policies (Office of the US Trade Representative, 2006; SERFOR, 2015) to improve the monitoring and regulation of the forest products supply chain. Oversight of this monitoring is conducted at inspection stations by government authorities such as the National Forestry and Wildlife Service, the Supervisory Agency for Forest and Wildlife Resources, the Regional Offices of Forests and Wildlife, and the National Customs Superintendency of Peru. Rapid field identification of wood can help efficiently establish due cause for further investigation (UNODC, 2016) at these inspection stations when officials are confronted with falsified documentation. In contrast to plant identification, which is based on common botanical structures (i.e., flowers, fruits, leaves), conventional wood identification is dependent on recognizing anatomical patterns in wood and comparing them to reference descriptions or specimens. Such identifications are best performed by highly trained wood anatomists with substantial training in forensic wood identification, and are typically conducted in a laboratory, which does not meet the needs for rapid field screening at the inspection stations.

In the larger Amazonian context, two notable initiatives that enable human-based wood identification are: a mobile phone-based identification key that enables humans to identify 157 species (Gontijo et al., 2017), and the development of electronic identification keys as part of the Brazil-Colombia Amazon Cooperation Treaty Organization (OTCA, 2018). The knowledge of wood anatomical characteristics of Peruvian species conveyed in academic publications (Acevedo and Kikata, 1994; Chavesta, 2015, 2018) and industry guides/manuals (Rodriguez and Sibille, 1996; Gonzales, 2008; Ugarte and Mori, 2018) have not yet been encapsulated in similar solutions and adopted for widespread human-based wood identification in Peru. The development and uptake of these solutions at the national level in Peru has been challenging, in part, due to limited institutional wood forensics capacity, limited opportunities (university courses and infrequent workshops) for human expertise development, and mostly localized access to xylaria for comparative forensic work (the largest Peruvian xylarium, with around 8,500 samples, is housed in the National Agrarian University, Lima). It should be noted that these approaches emphasize or depend on developing human-based expertise.

To remove the need for extensive human expertise and to enable officials with only a modicum of training to identify wood, computer vision-based approaches (Khalid et al., 2008; Ravindran et al., 2018) have been explored for automated wood identification. Souza et al. (2020) and de Andrade et al. (2020) used machine learning for macroscopic image-based identification for woods of 21 and 46 Brazilian species, respectively. Apolinario et al. (2018) used a convolutional neural network (CNN) for identification of 7 commercial Peruvian timber species using a portable microscope. Recently, the open source XyloTron system (Ravindran et al., 2020), was used to demonstrate a field deployable computer vision wood identification model for fourteen commercial Colombian woods by Arévalo et al. (2021). Among these works, it should be noted that XyloTrons have been shown to have comparable/better accuracy than expensive mass spectrometric methods (Ravindran and Wiedenhoeft, 2020), have been deployed for charcoal identification across the European Union in partnership with the Forest Stewardship Council (as noted in Wiedenhoeft, 2020), and, critically, have been field-tested for wood identification in Ghana (Ravindran et al., 2019). This field testing of a machine learning model on wholly new specimens, ideally by distinct users and using distinct instantiations of the system, especially at the scale undertaken in this work, is lacking in virtually all forensic wood identification literature, regardless of the modality, technique, or the taxa studied.

In this study, we train 24 class (228 taxa grouped into anatomically informed classes representing 57% by volume of the commercially harvested roundwood and 66% by volume of the sawn wood produced in 2019 in Peru; SERFOR, 2020) CNN based computer vision identification models of Peruvian commercial woods for the XyloTron. We use wood specimens from the MADw, SJRw, BCTw, BOFw, Tw, and FORIGw xylaria to develop five-fold cross-validated models and then train a field model using the same hyperparameter values. The field model was trained by incorporating all the images and specimens used in the cross-validation analysis but was evaluated on completely different specimens from the PACw xylarium, using different hardware and different operators. Performance evaluation of an automated wood identification system requires expert verification of each specimen identified by the system and can be logistically challenging. Our approach using verified, mutually exclusive specimens from distinct xylaria during the training and testing phases serves as a practical surrogate for field evaluation (a first step toward real-world field deployment) and provides a useful measure of the generalization capability of the identification system. To the best of our knowledge this is the first, large-scale study of Peruvian commercial timber identification using distinct instantiations of a computer vision identification system, in this case, the XyloTron.



MATERIALS AND METHODS


Species Selection

The 24 Peruvian woods selected for this study represent 57% by volume of the commercially harvested roundwood and 66% by volume of the sawn wood produced in 2019 in Peru (SERFOR, 2020) and are listed in Supplementary Material 1. Because wood anatomy is typically accurate only to the genus level (Gasson, 2011) and given that the XyloTron operates on macroscopic anatomical variation, we included a range of wood anatomically appropriate, congeneric, Amazonian species and restricted data collection to the transverse surface of the specimens (e.g., congeneric species that are differentiable only from the tangential surface are clubbed into the same class here).



Sample Preparation

The transverse surface of 1,419 wood specimens from seven xylaria (Table 1) were polished by sanding with progressively finer-grit sandpapers (240, 400, 600, 800, 1,000, 1,500). To the extent possible, compressed air and adhesive tape were employed to remove dust from cell lumina between each grit. This sample preparation protocol enabled the consistent and efficient preparation of wood samples for imaging.


TABLE 1. The seven xylaria providing images of wood specimens and the number of specimens from each collection used to build the training image data set.
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Image Collection

The XyloTron (Ravindran et al., 2020), an open-source macroscopic imaging system, was used to collect 6244 non-overlapping RGB images of the polished transverse surfaces of specimens from 228 taxa. Each XyloTron image shows 6.35 × 6.35 mm of tissue and has dimensions 2,048 × 2,048 pixels. Each institution employed one or more unique XyloTrons to collect images, so at least seven different hardware instantiations were employed. The details of the collected image dataset are presented in Table 2.


TABLE 2. Details of the image data set.
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Label Space Design

The 228 taxa included: (i) the species of interest to the Peruvian wood value chain, and (ii) additional congeneric macroscopically inseparable species native to South America. Brosimum was separated into two anatomically distinguishable classes while the remaining species were grouped into genus level classes, producing 24 classes. Complete details about the class labels and their constituent taxa are provided in Supplementary Material 2.



Model Architecture and Training

A convolutional neural network (CNN; LeCun et al., 1989) classifier, with a aResNet50 (He et al., 2016) backbone and a custom head that included batchnorm (Ioffe and Szegedy, 2015), dropout (Srivastava et al., 2014), global average and max pooling, and linear layers (Goodfellow et al., 2016), was implemented for identification (see Figures 1A,B). A two-stage (Howard and Gugger, 2020) transfer learning (Pan and Yang, 2010) methodology, comprising locking the ImageNet (Russakovsky et al., 2015) pre-trained backbone weights while training the randomly initialized weights (He et al., 2015) of the custom head followed by fine tuning the weights of the entire network, was adopted (see Figures 1C,D). The Adam optimizer (Kingma and Ba, 2015) with simultaneous cosine annealing of the learning rate (maximum value of 1.8e-2) and momentum (Smith, 2018) was employed with cross-entropy loss for both the stages. Random 2,048 × 768 image patches were sampled from the training images, downsampled to 512 × 192 pixel images, and fed to the CNN in batches of size 16 with a data augmentation strategy that included horizontal/vertical flips, small rotations and cutout (Devries and Taylor, 2017). The hyperparameters were the same across all the training runs. Further details about the hyperparameter settings and training methodology can be found in Ravindran et al. (2020). The model definition, training and evaluation was performed using PyTorch (Paszke et al., 2019) and scientific Python tools (Pedregosa et al., 2011).
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FIGURE 1. (A) The CNN architecture comprises a ResNet50 backbone with a custom head. Given an input image, the network produces a 24-element vector that represents the prediction confidence for each of the 24 classes in the model. Tensor dimensions are depicted over the connections between the modules. (B) The custom head includes global average pooling (A), global max pooling (M), concatenation (C), batchnorm (B), dropout (D) and linear layers with ReLU (R) and softmax (S) activations. Dp represents a dropout layer with drop probability parameter p. Tensor dimensions are depicted over the connections between the layers. (C) The first stage of transfer learning locks (or freezes) the ImageNet pretrained weights of the ResNet50 backbone and optimizes the randomly initialized weights of the custom head using the cross-entropy (CE) loss. (D) The weights of the entire network are fine tuned using the CE loss during the second stage of the training methodology.




Model Evaluation

The predictions of the trained models were evaluated at the specimen level with the predicted class for a specimen taken to be the majority of class predictions for the images contributed by the specimen. Accuracies based on the top prediction (top-1) for each specimen are reported for all the models. Additionally, the top two image-level predictions (from a specimen) are aggregated, with equal weights, to generate the top-2 predictions for a specimen. If the true label is one of the top-2 specimen level predictions, the specimen is considered to be correctly identified.

The following two analyses were performed to evaluate model performance in this study:

(1) Training and evaluation using five-fold cross validation: Images from 1,300 specimens were split into five folds with class level stratification while maintaining mutual exclusivity at the specimen level between the folds i.e., each specimen contributed images to exactly one fold. This specimen-aware partitioning of the data into folds with distinct specimens is required for correct evaluation of a trained model’s generalization capability to unseen samples. It should be noted that cross validation analysis did not include specimens from the PACw xylarium. A standard cross validation strategy, with four folds used for training and the trained model tested on the hold-out fold, was implemented and the specimen-level predictions over the five folds were accumulated to compute the accuracy (Table 3) and the confusion matrix (Figure 2).


TABLE 3. Predictive accuracies for the trained models and the corresponding number of specimen-level prediction errors.

[image: Table 3]

[image: image]

FIGURE 2. Confusion matrix for the top-1 predictions of the five-fold cross-validation models. The specimen-level accuracy accumulated over the five folds was 97%. The majority of misclassifications are between anatomically similar woods.


(2) Training a field model for evaluation on PACw specimens: All images in the five-fold cross-validation analysis were used to train a single model—the field model—using the same training hyperparameters. The specimen-level prediction performance of the field model was tested on 119 specimens from the PACw xylarium at Mississippi State University. The top-1 and top-2 predictions of the field model are reported in Table 3. The operators and XyloTron hardware used to collect the 529 images from the PACw specimens were different from those for the training data, and the images were used to evaluate the prediction accuracy of the trained model as a proxy for in-country field testing.

All images of the misclassified specimens in the five-fold cross validation were qualitatively evaluated and the misclassified specimens were categorized into three types: (1) taxa are anatomically consistent and the test specimen is typical; (2) the test specimen is atypical—but within reasonable variation for the taxon (i.e., it is not an archetypal image for the taxon); and (3) the taxa and test specimen are anatomically typical, but not anatomically consistent with each other. Types 1 and 2 represent misidentifications that trained field inspectors are likely to make, and so are sensible. Type 3 represents misidentifications not as likely to be made by trained human field inspectors, and for which there is no clear anatomical explanation.




RESULTS

The cross-validated specimen-level identification accuracy (accumulated over the five folds) was 97%. The field model had top-1 and top-2 specimen-level accuracies of 86.5 and 92.4% when tested on the PACw specimens. The predictive performance of the models is summarized in Table 3, and the cross-validation confusion matrix is shown in Figure 2.

Figure 3 presents examples of each of the three types of misclassifications, which are summarized and reported in Table 4. When comparing two wood anatomically similar taxa (Type 1 misclassification, Figures 3A,B) the misclassification is sensible—both woods are characterized by vessels with similar grouping, arrangement, and of similar diameter, with lozenge-aliform-to-confluent axial parenchyma, and narrow, abundant rays. In Figures 3C,D (an example of Type 2 misclassification) the similarities between the atypical specimen of class Virola (Virola surinamensis; Figure 3C) and class Swietenia (Swietenia macrophylla; Figure 3D) include prominent marginal parenchyma, roughly similar vessel diameters, similar vessel grouping and arrangement, and absence of axial parenchyma in the body of the growth ring. An example of anatomically disparate misclassification (Type 3 misclassification) is shown in Figures 3E,F where the apotracheal banded parenchyma and much smaller vessels of class Cariniana (Cariniana pyriformis; Figure 3E) present a pattern not at all similar to the human eye to the larger vessels and vasicentric axial parenchyma of class Cedrelinga (Cedrelinga cateniformis; Figure 3F).
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FIGURE 3. Images of the transverse surface of test specimens (A,C,E) and exemplars of the class to which they were assigned (B,D,F). All images are 6.35 mm on a side. An anatomically representative specimen of class Amburana (A) was misclassified as the anatomically similar class Ormosia (B). An anatomically atypical specimen of class Virola (C) was classified as class Swietenia (D). An anatomically typical specimen of class Cariniana (E) was misclassified as the wood anatomically disparate class Cedrelinga (F).



TABLE 4. Number and proportion of misclassified specimens from Figure 2 when categorizing into one of three misclassification types.
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DISCUSSION

The top-1 specimen-level accuracy of the field model was approximately 10 percentage points lower than the cross-validation accuracy while the top-2 specimen-level accuracy was over 90% — a level which is arguably sufficient to establish probable cause and initiate a full forensic investigation when fraud or misrepresentation is detected. The generalization capability of machine learning wood identification models must be evaluated on specimens that were not used to train the model. Additionally, real world systems deployed at scale must also be robust to the skills of operators (with different levels of training) and variations in system instantiations. The prediction accuracies reported above were obtained using training and testing datasets that were mutually exclusive at the specimen level. We maintained specimen-level mutual exclusivity of specimens across folds for cross validation analysis, and likewise xylaria specimen mutual exclusivity for field model evaluation. Additionally, the performance evaluation metrics were obtained using data collected at multiple sites and by multiple operators using different instantiations of the XyloTron system.

Our approach of testing models on specimens from a xylarium that did not contribute data to model training was employed as a logistically manageable, practically useful surrogate for real-world field testing. The ultimate test of any automated wood identification system is in-country field testing, but the main logistical challenge is the requirement of a wood identification expert for validation of the specimens being tested. Prior field-testing by Ravindran et al. (2019) of a pilot XyloTron model for Ghanaian woods showed a 10% drop in identification accuracy when comparing results on xylarium specimens to testing on field specimens. Such losses of accuracy of computer vision models when tested on wholly new datasets have been found by research in other domains of computer vision (Recht et al., 2018, 2019; Zech et al., 2018). The drop in performance shown in Ravindran et al. (2019) and in this study could be attributed to a combination of many factors such as differences in the quality of specimen surface preparation; differences in subtle anatomical patterns present in xylarium specimens as compared to material currently in trade; differences between green and dry wood; and slight variations in operator use of the equipment or the equipment itself. A well-designed field-testing strategy for evaluating automated wood identification systems must incorporate these factors in a context-specific manner. For example, given that the XyloTron platform is intended as a field-screening rather than a forensic tool, a testing protocol that incorporated taking multiple images per specimen of multiple specimens per shipment/consignment, etc., should yield reliable, robust results when characterizing the shipment at large, rather than any single piece of wood.

Our top-2 specimen-level accuracy was computed with equal weights for the top-2 image-level predictions, but for practical deployment a weighting scheme should be chosen in a context dependent fashion that takes into account factors such as the taxa-aware cost of making an incorrect identification, the anatomical similarity of the taxa being considered, the number of specimens to field screen per shipment, and the calibration of the model predictions (Niculescu-Mizil and Carauna, 2005; Guo et al., 2017). By including top-2 specimen level accuracy, we provide a window into the performance of the model and how such a model could be deployed. For example, the XyloTron platform’s classification software, xyloinf (Ravindran et al., 2020), provides the confidence value and an exemplar image for each class for the top-3 predictions per image, plus the sum of the confidences for the remaining N-3 classes in a given model of N classes. An operator thus has access not only to the ranked results, but also the confidence of a prediction and an exemplar image for human evaluation. This opens an interesting avenue for future research into the real-world deployment of computer vision wood identification systems (and other modalities) for maximum practical effect by incorporating human judgment (e.g., visual matching of an image from a field specimen to reference exemplar images for human approval and for flagging Type 3 misclassifications) or comparison of top-k results to some affirmative claim (e.g., a shipping manifest or transit permit). Even as field screening and forensic tools grow in power and sensitivity, it is critical to ensure that users of those tools are guided in how to achieve best practical effect with the tools at hand.

The uptake of computer vision and machine learning for automated wood identification is accelerating (Ravindran et al., 2018, 2019, 2020; de Andrade et al., 2020; Souza et al., 2020; Arévalo et al., 2021) and the real-world adoption of these systems is critically dependent on rigorous validation metrics and methodologies underlying any well-considered field-deployment framework. An easy first step toward rigorous validation is to enforce specimen-level separation between the training and testing splits (as in this work) rather than only image-level separation (most prior works). As affordable mobile phone adaptations (Tang et al., 2018; Wiedenhoeft, 2020) democratize access to these automated technologies, for wider impactful adoption it is critical that they be rigorously evaluated on external validation data. For this work, the next obvious steps will be testing the field model on specimens in Peruvian xylaria; folding in the PACw specimens to train a new field model to test in Peruvian xylaria; folding in the specimens from the Peruvian xylaria to iterate a new field model; and then, taking that model into the real-world and conducting the necessary field-testing coupled with independent forensic validation of the field tested specimens, an approach that should be applied to all modalities (Dormontt et al., 2015) in forensic wood science.



SUMMARY

We provided the largest tested computer vision wood identification model for Peruvian woods that is ready for immediate in-country field evaluation on the XyloTron platform. We demonstrated the utility and practicality of our model by evaluation using completely new specimens with independent hardware instantiations and different users, emphasized the critical need for specimen-level control of training and testing splits, and laid out a clear, iterative plan for augmenting the existing model. It is our hope that this work can be deployed within Peru to prevent illegally logged material from entering trade, and to support the trade in legal timber.
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Raman Spectroscopy Can Distinguish Glyphosate-Susceptible and -Resistant Palmer Amaranth (Amaranthus palmeri)
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The non-judicious use of herbicides has led to a widespread evolution of herbicide resistance in various weed species including Palmer amaranth, one of the most aggressive and troublesome weeds in the United States. Early detection of herbicide resistance in weed populations may help growers devise alternative management strategies before resistance spreads throughout the field. In this study, Raman spectroscopy was utilized as a rapid, non-destructive diagnostic tool to distinguish between three different glyphosate-resistant and four -susceptible Palmer amaranth populations. The glyphosate-resistant populations used in this study were 11-, 32-, and 36-fold more resistant compared to the susceptible standard. The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene copy number for these resistant populations ranged from 86 to 116. We found that Raman spectroscopy could be used to differentiate herbicide-treated and non-treated susceptible populations based on changes in the intensity of vibrational bands at 1156, 1186, and 1525 cm–1 that originate from carotenoids. The partial least squares discriminant analysis (PLS-DA) model indicated that within 1 day of glyphosate treatment (D1), the average accuracy of detecting herbicide-treated and non-treated susceptible populations was 90 and 73.3%, respectively. We also found that glyphosate-resistant and -susceptible populations of Palmer amaranth can be easily detected with an accuracy of 84.7 and 71.9%, respectively, as early as D1. There were relative differences in the concentration of carotenoids in plants with different resistance levels, but these changes were not significant. The results of the study illustrate the utility of Raman spectra for evaluation of herbicide resistance and stress response in plants under field conditions.

Keywords: herbicide resistance diagnostics, plant stress, field scouting, precision weed management, remote sensing, vibrational spectrum


INTRODUCTION

Weeds compete with crop plants for critical resources and cause severe yield losses, if not managed adequately (Oerke, 2006). Herbicides are the most commonly used tool for weed control in modern agriculture; however, repeated use of few herbicide modes of action (MOA) has led to a widespread evolution of herbicide-resistant weeds in cropping systems. Currently, 263 weed species have evolved resistance to 167 herbicides used globally (Heap, 2020). In the United States cropping systems, weeds resistant to glyphosate (the active ingredient in the herbicide Roundup®) have become a major production challenge (Garetson et al., 2019). Glyphosate inhibits the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme in plants and leads to the depletion of the aromatic amino acids tryptophan, tyrosine, and phenylalanine. The first case of glyphosate resistance in Palmer amaranth (Amaranthus palmeri S. Wats.), the most troublesome weed in the United States cropping systems (Van Wychen, 2017), was confirmed in 2004 in Georgia (Culpepper et al., 2006). Currently, 30 states in the United States have reported the occurrence of glyphosate-resistant Palmer amaranth (Heap, 2020).

Glyphosate-resistant weeds have been managed with alternative herbicides of different MOA. However, early detection of resistance is critical in order to implement measures in a timely manner. The common approach of confirming resistance by collecting mature seeds from putative resistant plants and then testing the seedlings with the herbicide is time consuming (Beckie et al., 2000), and by the time the diagnosis results are available, it is often too late to implement effective field management strategies. Sometimes, farmers attempt to apply a different herbicide immediately after observing weed control failure. However, glyphosate applications require a waiting period of about 10–14 days before plant response can be determined; given the rapid growth rate of Palmer amaranth (Horak and Loughin, 2000), the resistant plants can grow to large sizes before subsequent herbicide applications can be made, rendering such applications largely ineffective. There is a critical need for novel technologies that can facilitate early stage detection of herbicide resistance in weed populations.

Raman spectroscopy (RS) has emerged as an analytical tool for rapid and non-destructive diagnostics of abiotic (Altangerel et al., 2017) and biotic stresses in plants (Egging et al., 2018; Farber and Kurouski, 2018; Farber et al., 2019b; Sanchez et al., 2019a, b, c). RS measures the vibrational spectrum of the analyzed sample that allows for determining its structure (Thomas, 1999; Petry et al., 2003). Thus, RS is considered as a molecular “fingerprinting” technique, owing to its ability to identify substances and their chemical compositions (McCreery, 2005; Schulz and Baranska, 2007). In plants, Raman spectra contain vibrational bands that can be assigned to carbohydrates, carotenoids, proteins, and phenylpropanoids (Sene et al., 1994; Schulz and Baranska, 2007). Measurements using the traditional confocal RS units are carried out under controlled conditions. However, the improvements with handheld Raman spectrometers (Hager et al., 2018; Sanchez et al., 2020a) over the past decade have allowed for on-site diagnosis of biotic and abiotic stresses in plants (Farber et al., 2019a). For instance, fungal diseases in corn can be detected with 100% accuracy using RS (Farber and Kurouski, 2018). It has been demonstrated that RS is capable of diagnosing ergot, black tip, and mold on wheat and sorghum (Egging et al., 2018). Additionally, RS has been shown effective in detecting the presence of insects inside intact cowpea seeds with high statistical accuracy (Sanchez et al., 2019a). RS could be used to distinguish between healthy, Huanglongbing (early and late stage)-infected citrus trees and those suffering from nutrient deficiencies (Sanchez et al., 2019b, c). Based on this knowledge, we hypothesized that RS can be used for detection of herbicide resistance in weeds. In the present study, we investigated the accuracy of RS in differentiating between several different glyphosate-susceptible and -resistant Palmer amaranth populations.



MATERIALS AND METHODS


Plant Material Characterization

Three previously confirmed glyphosate-resistant (TX15-10, TX15-12-2, TX15-14-1) and four glyphosate-susceptible (TX15-2, TX15-13-2, TX15-29, TX16-10) populations were used (Garetson et al., 2019). Although these populations were known to be resistant or susceptible to glyphosate, the extent of sensitivity to this herbicide as well as the mechanism of resistance (EPSPS gene copy numbers) is yet to be determined, which will help make a more informed interpretation of the findings. For this purpose, a herbicide dose–response assay and a gene copy number analysis were conducted.


Glyphosate Dose–Response

Seeds of glyphosate-resistant and -susceptible Palmer amaranth populations were planted in six-cell trays (Figure 1) filled with potting soil mix (LC1 Potting Mix, Sun Gro Horticulture Inc., Agawam, MA, United States) in a greenhouse at Texas A&M University, College Station, TX, United States, during Fall 2019. Resistant and susceptible populations were treated with eight different doses of glyphosate: 0, 217, 434, 868, 1736, 3472, 6944, and 13888 g ae ha–1 for the resistant population and 0, 54.3, 108.5, 217, 434, 868, 1736, and 3472 g ae ha–1 for the susceptible population. Glyphosate was applied at 1× the recommended label rate (868 g ae ha–1) at the 8–10-cm-tall seedling stage (Figure 1), using a spray chamber fitted with a flat fan nozzle (TeeJet XR110015) calibrated to deliver 140 L ha–1 of spray volume, operating at 4.8 kmph. The greenhouse was maintained at a day/night temperature regime of 30/26°C and a photoperiod of 14 h. The experiment was conducted in a randomized complete block design with four replications. Percent survival and injury were evaluated at 21 days after treatment (DAT). Data were analyzed using SigmaPlot v.13 (Systat Software, Inc., San Jose, CA, United States). A three-parameter logistic regression equation (1) provided the best fit for the herbicide injury data.
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FIGURE 1. Growth stage (8- to 10-cm seedlings) of the Palmer amaranth plants when treated with glyphosate (1 × = 868 g ae ha–1). An 830-nm continuous-wave (CW) laser was targeted on the leaf blade, and the leaf area near the veins was avoided for uniformity.


where Y is the injury (%), a is the slope of the curve, b is the inflection point, c is the lower asymptote, and x is the herbicide dose.

The regression equations were used to calculate the amount of herbicide that caused 50% injury/growth reduction (GR50). The GR50 value of the resistant population divided by the averaged GR50 of the susceptible standard provided the resistance ratio (R/S) values for each resistant population.



EPSPS Gene Copy Number

The leaf samples of non-treated susceptible populations and confirmed resistant populations (treated) were collected at 21 DAT. DNA was extracted from leaf tissues, according to the protocol provided by Takara DNA isolation kit (Takara Bio Inc., Mountain View, CA, United States, Cat # 9194), with the exception that the dry pellets were resuspended in 20 μl distilled, deionized water instead of the TE buffer. The DNA concentration was quantified using NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE, United States), and DNA was diluted according to the requirement. The EPSPS gene copy number in each of the populations was determined in comparison to the acetolactate synthase (ALS) gene (a positive control) using a qPCR. The forward and reverse primers used for the EPSPS and ALS genes are as follows: EPSF1 (5′ATGTTGGACGCTCTCAGAACTCTTGGT3′) × EPSR8 (5′TGAATTTCCTCCAGCAACGGCAA3′) and ALSF2 (5′GCTGCTGAAGGCTACGCT3′) × ALSR2 (5′GCG GGACTGAGTCAAGAAGTG3′) (Gaines et al., 2010). A 25-μl reaction mix was prepared using SYBR Green Supermix (12.5 μl) (Bio-Rad, Hercules, CA, United States), forward and reverse primers (10 μM), and gDNA (1 ng). The qPCR was run at 95°C for 15 min followed by 40 cycles of 95°C for 30 s and 60°C for 60 s. A negative control (no DNA template) was also used. Data were analyzed using a method to calculate genomic copy number of EPSPS relative to ALS, as ΔCt = (Ct ALS - Ct EPSPS). An increase in genomic EPSPS copy number was expressed as 2ΔCt (Gaines et al., 2011).




Raman Spectroscopy

Raman spectra were determined with a handheld Resolve Agilent spectrometer (Agilent, Santa Clara, CA, United States) equipped with an 830-nm laser source. The spectra were collected with 1-s acquisition time and 495-mW power. Four spectra were collected from each leaf from four quadrants on the adaxial side of the leaf of each resistant and susceptible plant before herbicide treatment (D0) and after 1 day (D1) and 2 days (D2) of herbicide application. For each of the treatment groups (resistant and susceptible) at each time point, 30 spectra were collected, resulting in a total of 1584 spectra. Following this, the spectra were baselined using the handheld instrument software. Initially, spectra were collected from one herbicide-resistant (TX15-14-1) and one susceptible (TX15-13-2) population only for standardization of the instrument. Later, about 600 Raman spectra from leaves of three herbicide-resistant (TX15-14-1, TX15-10, and TX15-12-2) and four herbicide-susceptible (TX16-10, TX15-2, TX15-29, and TX-13-2) populations (Figure 2) were collected and normalized to the 1438-cm–1 band, representing CH2 and CH3 vibration (Table 1; Farber et al., 2019b). This chemical group is present in nearly all biological molecules, which makes the normalization unbiased to any specific chemical component of the weed leaf.
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FIGURE 2. Dose–response to glyphosate of the resistant (R) and susceptible (S) populations based on injury ratings (%) at 21 days after treatment. Injury data were recorded on a scale of 0–100% (0% = no injury and 100% = plant death). Dose–response curves were plotted on mean values of plant injuries (%) and error bars represent standard error (SE) of means.



TABLE 1. Vibrational band assignments for Palmer amaranth leaf spectra.
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Statistical Analysis

The Raman spectra data were imported into the MATLAB R2019a add-on PLS_Toolbox 8.6.2 (Eigenvector Research Inc.) for statistical analyses. The preprocessing of the spectra included mean centering and area normalization for partial least square discriminant analysis (PLS-DA), which is a suitable analysis method for spectral data (Lee et al., 2018). Analysis of variance (ANOVA) was also performed in MATLAB R2019a add-on PLS_Toolbox 8.6.2 to compare carotenoid bands (at 1186 cm–1 and 1213 cm–1) between the herbicide-resistant and -susceptible plants after treating with glyphosate. Matthew’s correlation coefficient is generated by MATLAB R2019a add-on PLS_Toolbox 8.6.2 (Eigenvector Research Inc.) for the binary classification model. The score of MCC is based on four confusion matrix categories: true positive, false negative, true negative, and false positive to reflect the quality of prediction model (Chicco and Jurman, 2020).




RESULTS AND DISCUSSION


Herbicide Resistance Characterization

The estimated GR50 values for TX15-10, TX15-12-2, and TX15-14-1 were 537, 1780, and 1568 g ae ha–1, respectively (Table 2 and Figure 2). The resistance ratios have indicated that the resistant populations TX15-10, TX15-12-2, and TX15-14 were 11-, 36-, and 32-fold more resistant to glyphosate, respectively, compared to the susceptible standard (average GR50 = 40.3) (Table 2 and Figure 2). The variation (low and high) in resistance levels of the tested resistant populations in the current study presented an appropriate case for differentiation through RS.


TABLE 2. GR50a values and resistance levels to glyphosate in the Palmer amaranth (Amaranthus palmeri) populations used in the study.
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Small spectroscopic changes can be used for confirmatory differentiation of glyphosate-resistant and -susceptible plant populations. The PLS-DA analysis of Raman spectra indicates that glyphosate-treated and non-treated susceptible populations can be differentiated with an average accuracy of 93.45% and 82.1% at D1 and D2, respectively (Table 3). This is a confirmatory evidence that Raman system can detect small variations between healthy and glyphosate-stressed plants within 1 or 2 days of herbicide application.


TABLE 3. PLS-DA confusion matrix for treated and non-treated susceptible population TX15-2.
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EPSPS Gene Copy Number

The susceptible A. palmeri populations used in the current study had a single copy of EPSPS (Figure 3). However, relative gene copy numbers in the resistant populations (TX15-10, TX15-12-2, and TX15-14-1) ranged from 86 to 116. In general, EPSPS gene amplification is a common resistance mechanism among glyphosate-resistant Amaranthus spp. (Singh et al., 2018), which results in increased EPSPS enzyme production, allowing the resistant populations to overcome the effect of glyphosate (Gaines et al., 2010). The difference in the number of EPSPS copies detected among the resistant populations used in the current study corroborates with the variation in sensitivity of these populations to glyphosate (11- to 36-fold; Table 2). The variation in EPSPS gene expression may lead to differential physiological response in Palmer amaranth populations, which may in turn influence Raman spectra.
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FIGURE 3. Variability in relative EPSPS:ALS gene copy numbers among the Palmer amaranth populations resistant (TX15-10, TX15-12-2, and TX15-14-1) or susceptible (TX15-2, TX15-13-2, TX15-29, and TX16-10) to glyphosate. Each population had four biological replicates (samples) and three technical replicates (n = 12). These susceptible populations were known standards, and resistant populations were selected based on the previous study (Garetson et al., 2019). Data were plotted on mean values and error bars indicate standard error (SE) of means. Means represented with different letters are significantly different (Tukey’s honest significance test; HSD, α = 0.05).




Raman Spectra

First, RS was used to determine structural changes in a single herbicide-resistant (TX15-14-1) and -susceptible (TX15-2) Palmer amaranth population before (D0) and after (D1 and D2) glyphosate application (Figure 4).
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FIGURE 4. Raman spectra of (A) resistant (TX15-14-1) and (B) susceptible (TX15-2) populations of Palmer amaranth collected at D0 (non-treated), D1 and D2. Here, D1 and D2 indicate observations conducted at 1 and 2 days after herbicide treatment, respectively. Raman spectra collected from leaves of plants with no herbicide applied (blue curves) were measured at the same time points with those that were sprayed with the herbicide (red). Most of the spectra with no herbicide (blue) was masked by that of herbicide treated (red). The Raman spectra were normalized to total spectral area.


Raman spectra of Palmer amaranth leaves exhibited vibrational bands originating from cellulose, phenylpropanoids, pectin, proteins, and carotenoids (Figure 4 and Table 1). We also observed bands that correspond to the CH2 and CH3 vibrations that could be assigned to aliphatic hydrocarbons such as oils and waxes (Table 1). No changes have been found in intensities or positions of these bands in the spectra collected from leaves of different glyphosate-resistant plants (Figure 4A) compared with respective non-treated. At the same time, a decrease in the intensity of carotenoids (1156, 1186, and 1525 cm–1) has been observed in Raman spectra collected at both D1 and D2 from leaves of susceptible plants after the application of glyphosate, compared with non-treated susceptible plants (Figure 4B).

About 600 spectra from leaves of three glyphosate-resistant (TX15-14-1, TX15-10, and TX15-12-2) and four -susceptible (TX16-10, TX15-2, TX15-29, and TX15-13-2) populations of Palmer amaranth indicated spectroscopic differences between the two groups following glyphosate treatment. A decrease in the intensities of carotenoid vibrations (1186 and 1213 cm–1) has been observed in the spectra of susceptible plants after herbicide application at both D1 and D2 (Figures 5A,B, 6). These results showed consistent reduction in the intensities of carotenoids across different susceptible populations of Palmer amaranth. Two PLS-DA models built for D1 and D2 distinguished the resistant and susceptible populations (Table 4).
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FIGURE 5. Area-normalized Raman spectra of all resistant (blue) and susceptible (red) populations of Palmer amaranth collected at D1 (A) and D2 (B). Here, D1 and D2 indicate observations conducted at 1 and 2 days after herbicide treatment, respectively.
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FIGURE 6. Mean (circles) and 95% confidence intervals for the intensities of weed spectra collected from D1 and D2, normalized to the total spectra area at carotenoid bands 1186 cm–1 and 1213 cm–1, generated following the ANOVA test. Blue: resistant population, red: susceptible population. D1 = 1 day after treatment and D2 = 2 days after treatment of glyphosate.



TABLE 4. PLS-DA confusion matrix of three different resistant and four different susceptible populations.
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Partial least square discriminant analysis is a classification method evolved from PLS which is commonly used for linear regression. PLS-DA is an ideal algorithm for predictive and descriptive modeling (Lee et al., 2018). PLS-DA has quantitative explanatory and qualitative response variables. In the current study, Raman spectra are the quantitative explanatory variables, which have its own explanatory (Raman Shift) and response (intensity) variables. The qualitative response variables are the treatment statuses of the Palmer amaranth.

Besides, PLS-DA, there are other methods like Fisher’s linear discriminant analysis (LDA) and soft independent modeling of class analogies (SIMCA) to build a classification model. LDA assumes that the data will fit in a particular distribution or linear relationships. It is applicable to many classification problems, but it is limited by the correlation between variables (Lee et al., 2018). PLS-DA, comparing with LDA, offers a higher degree of flexibility. Another commonly used method “SIMCA” differentiate different classes using principal component analysis (PCA).

Based on PLS-DA models, the first three latent variables of the D1 model (Figure 7A) explained 13.7, 14.6, and 5.9% of the variation between the resistant and susceptible population spectra. The second plot for the latent variables (which explains the greatest class-to-class variation of 14.6%) is similar to the general weed leaf spectrum, suggesting that most of our classifications were made based on the difference in the intensity of the peaks. The carotenoid bands at 1156 to 1213 cm–1 and 1525 cm–1 expressed greater difference in intensity. A large absolute value at the 1185-cm–1 band corresponds to carotenoids. The first three LVs of the D2 model (Figure 7B) explain 30, 3.5, and 5.1% of the variation. In addition to 1156-, 1186-, and 1525-cm–1 bands, LV2 and LV3 also express difference at 1285 and 1326 cm–1 bands, which are attributed to CH2 vibration (Table 1 and Figure 7B). Our results show that glyphosate-resistant and -susceptible populations of Palmer amaranth can be detected with an accuracy of 82.3 and 65.3%, respectively, averaged across D1 and D2. The resistant populations used in this study were 13- to 44-fold resistant (Table 1), which could be easily distinguished from the susceptible populations with consistent accuracies. The relatively lower prediction accuracy of susceptible populations in a general model can be explained by small intra-population variations in their sensitivity to glyphosate. The susceptible populations were highly sensitive to glyphosate at the recommended label rate, and even a small variation in sensitivity could lead to inconsistencies in spectra (Figures 2, 3 and Table 2). Thus, such populations can show a physiological response that can be expressed slightly faster or slower at D1 and D2. Nevertheless, our results show that the prediction accuracy is high enough for confirmatory identification of glyphosate-resistant and -susceptible populations of Palmer amaranth at D1 and D2.
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FIGURE 7. Partial least square discriminant analysis (PLS-DA) model based plot of the first three latent variables (LVs), LV1 (blue), LV2 (orange), and LV3 (yellow) of D1 (A) and D2 (B) resistant vs. susceptible model. Annotations indicate the centers of the peaks before the first derivative was taken. The dash line in the middle corresponds to 0 point. D1 = 1 day after treatment, and D2 = 2 days after treatment of glyphosate.


Spectroscopic signatures of three glyphosate-resistant (TX15-14-1, TX15-10, and TX15-12-2) and four -susceptible (TX15-2, TX15-29, TX15-13-2, and TX16-10) populations of Palmer amaranth were also compared in the absence of herbicide treatment (Figure 8). At D0 (non-treated), spectra from herbicide-resistant populations were not different from the spectra collected from the susceptible Palmer amaranth population. The analysis of variance (ANOVA) test performed at the two carotenoid bands 1186 cm–1 and 1213 cm–1 showed significant differences at D1 and D2, but not at D0. However, PLS-DA modeling of these spectra allowed for a prediction accuracy of 76.8% for the resistant and 64.8% for the susceptible plants at D0 (Table 5). The PLS-DA analysis may not be picking up direct plant response and needs further research for differentiating herbicide-resistant and -susceptible populations without herbicide applications.


[image: image]

FIGURE 8. Normalized Raman spectra of resistant (blue) and susceptible (red) populations of Palmer amaranth collected at D0 (non-treated). Spectra of resistant and susceptible at D0 are overlapping.



TABLE 5. PLS-DA confusion matrix of three non-treated resistant and four non-treated susceptible populations at D0 (before herbicide application).
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The results of this study indicate that carotenoid content in plants can be used as a simple measure for monitoring herbicide-induced stress. In this study, glyphosate was the specific herbicide tested to compare Raman spectra differences between glyphosate-resistant and -susceptible Palmer amaranth populations, and whether this response can be the same for other herbicides and weed species is yet to be determined. However, exposure to herbicides constitutes a major abiotic stress for plants, and it is known that plant stress can directly influence carotenoid production (Altangerel et al., 2017). Moreover, it is speculated that general stress response can lead to changes in several compounds, which may subsequently alter carotenoid peaks (Dong and Zhao, 2017). Carotenoids are a large group of polyenes that are directly involved in plant stress responses. Based on the acquired Raman spectra, we can conclude that a concentration of carotenoids decreased in the susceptible plants upon glyphosate-induced stress. This suggests that carotenoids were metabolized into abscisic acid, β-ionone, and β-cyclocitrals, molecular analytes that protect the plant against such an abiotic stress (Nambara and Marion-Poll, 2005; Havaux, 2014). At the same time, no significant changes in the concentration of carotenoids in resistant plants were detected.

The use of additive spray for surface-enhanced Raman spectra (SERS) has been suggested to increase the sensitivity of Raman spectra (Yang et al., 2017). In the current study, the SERS could not be implemented in order to avoid any interaction of the additive spray solution with the herbicide molecules. Nevertheless, our experiments were repeated twice with a new set of seedlings each time, and the differentiation of carotenoid peaks for glyphosate-resistant and -susceptible populations was consistent both times, suggesting the robustness of this approach.

The high accuracy of prediction in the current study indicates the potential of RS for use in herbicide-related studies. For example, it can be utilized for detecting herbicide residues in plants and the extent of herbicide drift in crop fields. Herbicide drift is an important field issue in recent times leading to several litigations, and RS may provide an effective means for detecting drift in large field scales. Among the Raman platforms, handheld or remote Raman units are expected to provide more flexibility and convenience for studying plant physiological characteristics from a distance. Recently, a telescopic pulsed Raman system has also been developed (Misra et al., 2005), which is capable of measuring Raman spectra irrespective of light conditions, from a distance of 10 cm to 120 m. This would extend the applications of the Raman system to be utilized in manned or unmanned aerial systems for precision diagnosis of herbicide-related issues under field conditions, which can inform precision weed management.




CONCLUSION

The results of this study suggest that RS holds promise for early and rapid field diagnosis of glyphosate-resistant populations and utilization in precision weed management. Raman spectra could differentiate herbicide-treated and non-treated susceptible populations with an accuracy of 93.5 and 82.1%, respectively, averaged across D1 and D2. Based on PLS-DA modeling, the glyphosate-resistant and -susceptible populations of Palmer amaranth can be easily predicted with an accuracy of 84.7 and 71.9%, respectively, at D1. The accuracy of predicting a glyphosate-resistant and -susceptible population without herbicide treatment was 76.8 and 64.8%, respectively, but the differences were statistically non-significant. More research is required to detect subtle differences in Raman spectra to differentiate herbicide-resistant and -susceptible populations prior to herbicide application, although it is unclear if such differences can be case-specific and any generalizations could be made. Standardization of this can bring revolutionary changes in herbicide resistance detection and management approaches. Nevertheless, the availability of hand-held Raman sensors provides opportunities for rapid detection of herbicide resistance and stress response under field conditions. More research is imperative for improving the utility of this technology for broader applications.
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The use of plant biostimulants contributes to more sustainable and environmentally friendly farming techniques and offers a sustainable alternative to mitigate the adverse effects of stress. Protein hydrolysate-based biostimulants have been described to promote plant growth and reduce the negative effect of abiotic stresses in different crops. However, limited information is available about their mechanism of action, how plants perceive their application, and which metabolic pathways are activating. Here we used a multi-trait high-throughput screening approach based on simple RGB imaging and combined with untargeted metabolomics to screen and unravel the mode of action/mechanism of protein hydrolysates in Arabidopsis plants grown in optimal and in salt-stress conditions (0, 75, or 150 mM NaCl). Eleven protein hydrolysates from different protein sources were used as priming agents in Arabidopsis seeds in three different concentrations (0.001, 0.01, or 0.1 μl ml–1). Growth and development-related traits as early seedling establishment, growth response under stress and photosynthetic performance of the plants were dynamically scored throughout and at the end of the growth period. To effectively classify the functional properties of the 11 products a Plant Biostimulant Characterization (PBC) index was used, which helped to characterize the activity of a protein hydrolysate based on its ability to promote plant growth and mitigate stress, and to categorize the products as plant growth promoters, growth inhibitors and/or stress alleviator. Out of 11 products, two were identified as highly effective growth regulators and stress alleviators because they showed a PBC index always above 0.51. Using the untargeted metabolomics approach, we showed that plants primed with these best performing biostimulants had reduced contents of stress-related molecules (such as flavonoids and terpenoids, and some degradation/conjugation compounds of phytohormones such as cytokinins, auxins, gibberellins, etc.), which alleviated the salt stress response-related growth inhibition.

Keywords: protein hydrolysates, high-throughput phenotyping, secondary metabolism, seed priming, plant biostimulant characterization index, salinity, multi- well plates


INTRODUCTION

Nowadays, the actual yield from the main crops worldwide accounts for less than half of its potential because of the effects of abiotic stresses on plants (Bulgari et al., 2019). Among them, one of the most concerning condition is represented by salinity stress that decreases the quantity and quality of the final yield (Yamaguchi and Blumwald, 2005; Shahbaz and Ashraf, 2013), because most of the high-value agricultural crops are sensitive to salinity (Shannon and Grieve, 1999). Salinity stress generally occurs in those areas where the concentration of salt – most commonly sodium chloride (NaCl) – in the soil or in the groundwater is higher than the crop threshold sensitivity (Colla et al., 2010). This occurs especially in parts of the world where most of the agricultural areas are close to the sea, like in the Mediterranean basin (Viégas et al., 2001). Soil or water salinity can affect plants in different ways, from increasing the soil osmotic pressure to hindering the regular plant nutrition (Machado and Serralheiro, 2017). Plant biostimulants represent an eco-friendly and useful tool improving plant tolerance to abiotic adversities, like salinity (Colla et al., 2017). According to the European Biostimulant Industry Council, in the EU alone, the economic value of biostimulants is estimated to be between 200 and 400 million euros. However, despite the high economic potential of these substances, few well-characterized products are commercially available. The main problem is represented by the limited knowledge about their mode of action, mainly because they are formulated from complex, diverse, and heterogeneous materials (Brown and Saa, 2015). For this reason, plant biostimulants are usually classified more according to the plant response they cause than by their composition. In fact, “plant biostimulants” is a hypernym used to describe very different substances such as seaweed extracts, humic and fulvic acids, animal and vegetal-based protein hydrolysates, rather than microorganisms like mycorrhizal fungi and rhizospheric bacteria (Colla and Rouphael, 2015; Carillo et al., 2020). Among all the existing plant biostimulants, protein hydrolysates (PHs) are recently gaining big popularity. They are mixtures of amino acids with oligo- to polypeptides derived from the partial hydrolysis of protein-rich sources either from plant or animal origin. The application of PHs goes from foliar spray or substrate drench to adult plants (Lucini et al., 2015; Sestili et al., 2018) to seed priming, which increases abiotic stress tolerance by reprogramming the plant metabolism during the germination stages (Mahdavi, 2013; Sharma et al., 2014; Pichyangkura and Chadchawan, 2015; Van Oosten et al., 2017). Many studies have proven the efficacy of PHs in improving the quantity and quality of the yield, especially under abiotic stress or limiting conditions (Ertani et al., 2009; Colla et al., 2015; du Jardin, 2015). Indeed, they have been reported to exert multiple benefits in plants under sub-optimal conditions, including mitigation of oxidative imbalance, elicitation of osmolytes and modulation of secondary metabolism (Lucini et al., 2015). Therefore, PH-based biostimulant treatments modify plant metabolism and physiology for maximizing biomass yield under globally changing environmental conditions (Dudits et al., 2016).

In past years, significant advances were made in understanding the mode of action and in-depth characterization of biostimulants through combining omics-based methodological approaches (Rouphael et al., 2018). It was clearly demonstrated that by combining multiple omics technologies, including the high-throughput phenotyping, new functional perspectives in the biostimulant field are emerging, allowing for the discovery, evaluation, and accelerated development of innovative biostimulants (Povero et al., 2016; Bulgari et al., 2017; Rouphael and Colla, 2018; Ugena et al., 2018; Briglia et al., 2019; Dalal et al., 2019; Paul et al., 2019a).

Precise and accurate assessment of the variation in plant morpho-physiological traits over time is crucial for unraveling and quantifying the biostimulant activity of different substances. Image-based automated plant phenotyping techniques increase both the speed and the accuracy of measurements (Rouphael et al., 2018). Plant phenotyping platforms are automated systems normally operating in a fully-controlled growing chamber or in semi-controlled conditions such as greenhouses. Different sensors can be implemented into the plant phenotyping platform, allowing the user to monitor simultaneously multiple morpho-physiological plant traits in a non-destructive way. Additionally, the high number of variants and the possibility of repeated measurements from the same individuals in different phases of their growth enable the user to compare the plant development under different growth conditions and treatments, at the same time reducing costs and human labor, thus speeding up the process (Rouphael et al., 2018). As demonstrated previously by Ugena et al. (2018), multi-trait high-throughput screening (MTHTS) based on the semi-automated analysis of Arabidopsis seedlings growth provides a powerful tool for fast and large-scale discovery of new potential biostimulants, including characterization of their mode of action under optimal and stress conditions. The objective of the experiment was to use a multi-trait high-throughput screening approach based on simple RGB imaging and combined with untargeted metabolomics to screen and elucidate the mode of action/mechanisms of protein hydrolysates in Arabidopsis plants grown in optimal and in salt-stress conditions.



MATERIALS AND METHODS


Characterization of the Protein Hydrolysates Tested

Eleven PHs were tested in the trial. Three of them were commercial products obtained by thermal-chemical hydrolysis of animal-derived proteins [Siapton® (I) commercialized by Sumitomo Chemical Italia S.r.l., Milano, Italy] or enzymatic hydrolysis of vegetal-derived proteins [Trainer® (D), and Vegamin® (H) commercialized by Hello Nature Inc. (former Italpollina), Anderson, IN, United States]. The other eight PHs were obtained from vegetal proteins by enzymatic hydrolysis as described previously (Colantoni et al., 2017; Ceccarelli et al., 2021). Plant biomass from Fabaceae (A, G, O), Malvaceae (C), Brassicaceae (F), Solanaceae (B), and Graminaceae (E, P) were used as protein sources for the other eight PHs. For chemical characterization, the total C and N were determined in triplicate through an elemental analyzer (Elemental vario MAX CN, Langenselbold, Germany). Thereafter, the different PH were twofold diluted in methanol, filtered through a 0.2 membrane, and then the phytochemical profile characterized by mass spectrometry as reported by Senizza et al. (2020).



Plant Material and Growing Conditions

Arabidopsis thaliana (accession Col-0) seeds were sterilized and sown as described by De Diego et al. (2017) in Murashige-Skoog (MS) medium (Murashige and Skoog, 1962) (pH 5.7) using 0.6% Phytagel (Sigma–Aldrich, Germany) as a gelling agent. To investigate the effect of biostimulants on the growth of Arabidopsis plantlets, the eleven PHs were dissolved in demineralized water and added to the growing media for seed priming at concentrations of 0.001, 0.01, or 0.1 μl ml–1. The plates containing the different media and the seeds were maintained at 4°C for 3 days and then transferred into a growth cabinet to maintain temperature and humidity setpoints (22°C, 55% RH, 16/8 h light/dark photoperiod with an irradiance of 120 μmol photons of PAR m–2 s–1).

Three days after germination, the seedlings were transferred into 48-well plates filled with 1 × MS medium, either plain or enriched with NaCl for two salinity levels (75 and 150 mM NaCl) as described by Ugena et al. (2018). A total of 96 seedlings (two plates) per variant as biological replicates were used. The protocol schematized in Figure 1 describes the experimental workflow.
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FIGURE 1. Scheme of experimental protocol for high-throughput screening of biostimulant impact on Arabidopsis growth in control and salinity conditions. After sterilization seeds were germinated in 0.5 × MS mixed with 11 different protein hydrolysates at three concentrations (0.001, 0.01, and 0.1 μl/ml). 4 days after cold stratification, seedlings of similar developmental stage were transplanted into 48-well plates with fresh MS medium either simple or supplemented with NaCl (75 mM or 150 mM). Plates were placed for 7 days to the cultivation chamber with XYZ PlantScreenTM System used for daily (am and pm) automatic RGB imaging and growth analysis. At the end of the phenotyping period, the plates were used for the measurement of the chlorophyll fluorescence. Following the last measurement, the plantlets treated with the best-performing biostimulants including the controls were harvested, freeze-dried and used for subsequent metabolomic analysis.




High-Throughput Automated Phenotyping

The plates were then transferred to the OloPhen platform (CRH Olomouc, Czechia). A generalized randomized block design was used for the random positioning of the plates in a cabinet equipped with the PlantScreenTM XYZ system. The growth conditions were set to a regime of 22°C/20°C, 60% RH, and a 16/8 h light/dark cycle., while irradiance was set to 120 μmol photons of PAR m–2 s–1 (De Diego et al., 2017). Imaging was carried out twice per day (at 10:00 a.m. and 4 p.m.) for a period of 7 days (De Diego et al., 2017).



RGB Imaging

RGB images from each plate were automatically stored in PNG format by PlantScreenTM XYZ (resolution 2,500 pixels × 2,000 pixels) and analyzed using an in-house software implemented in MatLab R2015 (De Diego et al., 2017). The total number of green pixels was used to assess the total green area for each well of the plate, further referred to as the projected shoot area. The daily pictures of the single 48-well plates were then used to monitor the increase in the rosette area throughout the whole period. The Relative Growth Rate was calculated using the following formula:
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where t is the time, expressed in days.

The value of the projected rosette area from the last day of imaging was lastly used for the calculation of the Coefficient of Variance, which provides information about the size homogeneity of the seedlings on the final day of the experiment for all the treatments at all the growth conditions tested.

For the salt stress variants, a fourth growth-related parameter was introduced: Survival Rate, representing the percentage of seedlings per plate still alive on the last day of phenotyping. A seedling was considered alive if at least 100 green pixels could be detected in the corresponding well (De Diego et al., 2017).



Chlorophyll Fluorescence Measurement

After the last RGB measurement (day 7, 10:00 a.m.), the plates were taken out of the OloPhen platform, and the perforated transparent foils were removed from each plate. Six plates at a time were randomly put onto a customized blue tray to perform kinetic chlorophyll fluorescence (ChlF) measurements of each plate, using FluorCam FC-800MF pulse amplitude modulated (PAM) chlorophyll fluorometer (Photon Systems Instruments, Drásov, Czechia) incorporated into a PlantScreenTM Conveyor System. After a 15 min dark-adaptation period in the adaptation tunnel, the trays were automatically transported by the conveyor belt to the ChlF imaging light-isolated cabinet. The changes of the photosynthesis-related parameters in Arabidopsis seedlings were measured at different photon irradiances using the light curve protocol (Henley, 1993; Rascher et al., 2000). The light curve protocol with four actinic light irradiances (cool-white actinic light at 95, 210, 320, and 440 μmol m–2s–1) was used as described in Awlia et al. (2016) with a duration of 60 s, to quantify the photosynthetic efficiency. Fluorescence data were elaborated by the FluorCam7 Software (Photon Systems Instruments, Drásov, Czechia) as described by Tschiersch et al. (2017). Automation of plant masks for the single plantlets was difficult because of their small dimensions and the feeble or absent fluorescence emitted by dying or dead seedlings, especially in severe salt stress conditions. Thus, plant masks were drawn manually, using the manual image segmentation in Fluorcam7, whereas background subtraction and calculations were performed automatically. The basic ChlF parameters were derived from fluorescence transient states (i.e., Fo, Fm, Fm′, Ft, Fv, and Fp) and used to calculate plant photosynthetic performance parameters (Fv/Fm, Fv′/Fm′, NPQ and ΦPSII).



Untargeted Metabolomic Analysis

Arabidopsis rosettes were freeze-dried at harvest the material from controls and primed with the best-performing substances was then used for metabolomics as described by Senizza et al. (2020). In brief, samples (10 mg) were extracted in 2 ml of a methanol-water (80:20, v/v) mixture using ultrasounds (Fisher Scientific model FB120, Pittsburgh, PA, United States) at 80% amplitude. After that, the extracts were filtered through a 0.22 μm membrane and plant metabolites analyzed by liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC/QTOF) (Lucini et al., 2018). In summary, positive polarity and SCAN mode (100–1,000 m/z range) at 30,000 FWHM were used. Chromatography used a water and methanol binary elution mixture (from 5 to 90% methanol, 35 min run time) flowing at 220 μl min–1 and an Agilent Zorbax Eclipse-plus column (75 mm × 2.1 mm i.d., 1.8 μm). The software Profinder B.07 (Agilent Technologies) was used for features deconvolution, alignments and the following annotations using accurate mass, isotope spacing and isotope ratio (Rouphael et al., 2016). The reference database was PlantCyc 9.6 (Plant Metabolic Network1). The annotation process corresponded to Level 2 (putatively annotated compounds) of the COSMOS Metabolomics Standards Initiative (Salek et al., 2015). Compounds were finally filtered to only retain those present in 100% of replicates (N = 4) within at least one treatment.



Data Analysis

One-way analysis of variance (ANOVA) with post hoc Tukey’s Honest Significant Difference (HSD) test (p < 0.05) was used for statistical differences in phenotyping data, using the MVApp application (mmjulkowska/MVApp: MVApp.pre- release_v2.0; Julkowska et al., 2019). Correlation matrices and the significance were also performed in RStudio (Version 1.1.463 – © 2009–2018 RStudio, Inc.) using the packages factoextra, FactoMineR, and corrplot.

Data from metabolomics were interpreted in Mass Profiler Professional B.12.06, (Agilent Technologies) as reported by Lucini et al. (2018). Log2 transformation and normalization at the 75th percentile were carried out prior to naive elaboration through unsupervised hierarchical cluster analysis (HCA – Wards agglomerative algorithm of the Euclidean distances). Then, Volcano Plot analysis (p < 0.01, fold-change >10; Bonferroni multiple testing correction) was used to identify differential metabolites in pairwise comparisons between treatments. These compounds were interpreted by the Omic Viewer Pathway Tool of PlantCyc (Stanford, CA, United States) to identify the pathways and metabolic classes elicited by the treatments (Caspi et al., 2013).

After that, OPLS-DA supervised analysis was performed in SIMCA 16 (Umetrics, Sweden) at default parameters. CV-ANOVA (p < 0.01) and permutation testing (n = 200) were used for model validation and to exclude overfitting, respectively. Fitness parameters were also calculated and Hotelling’s T2 applied to exclude outliers. Subsequently, VIP analysis was used to objectively identify the most discriminant metabolites.



RESULTS


Selection and Characterization of the Protein Hydrolysates

Eleven PHs from different natural sources were selected and used for the study. Three of the PHs were previously characterized and are commercially available products (Trainer®, Vegamin®, and Siapton®, here referred to as D, H, and I, respectively). The other eight PHs were obtained by enzymatic hydrolysis of plant-derived proteins and were together with the three commercial products characterized by quantitative analysis of total nitrogen and carbon. Total nitrogen in the PHs ranged between 22.2 and 95.1 g per kg of product, while total carbon content varied between 170.5 and 281.9 g per kg of product (Figure 2). The highest value of nitrogen was found in I, while H had the lowest nitrogen content. Total carbon was also highest in I, while the biostimulant A exhibited the lowest carbon concentration value. The N and C content of PHs had a positive linear correlation (r = 0.884∗∗). The untargeted analysis of the PHs revealed a broad chemical diversity that included amino acids and their derivatives, as well as other N-containing compounds (mainly alkaloids), carbohydrates (mono- to oligosaccharides), and phenylpropanoids. Relatively less polar compounds such as fatty acids and phospholipids-related compounds, carotenoids and xanthophylls, steroids and terpenoids were also represented (Supplementary Table 1). A data reduction approach based on the fold-change-based heatmap clustering was used to hierarchically describe the similarity and the difference in the whole phytochemical profile across the different PH (Supplementary Figure 1). In detail, the unsupervised clustering highlighted two main clusters, one including PH A to D and another including the products E, F, G, O, and P. The product H was distinct from these two macro-clusters, and the PH I was completely apart.
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FIGURE 2. Total nitrogen and carbon content of the 11 protein hydrolysates selected for seed priming.




Multi-Trait High-Throughput Screening of Arabidopsis Rosette Growth for the Characterization of the Different PHs Derived Biostimulants

The Multi-Trait High-Throughput Screening (MTHTS) described by Ugena et al. (2018) was optimized for determining the mode of action of selected PHs that were here applied as priming agents (Figure 1). The seedlings from non-primed and primed seeds with different concentrations (0.001, 0.01, or 0.1 μl ml–1) of PHs (Supplementary Table 2) were grown in control conditions and two intensities of salt-stress conditions. Six protein hydrolysates were evaluated in the first experimental round (A-F) and 5 in the second (G-P) round. 1st round counted 114 plates (5,472 seedlings) and the 2nd round consisted of 96 plates (4,608 plantlets), respectively. All plants were imaged by an RGB camera twice per day (at 10:00 a.m and 4 p.m.) for seven consecutive days.

Using the automated image analysis described by De Diego et al. (2017), we could quantify a variety of growth dynamics related traits such as rosette area and relative growth rate, together with homogeneity of the population (Weiner and Thomas, 1986; De Diego et al., 2017; Ugena et al., 2018).

First, we verified the reproducibility of the two rounds of the experiment, comparing the growth-related parameters of the control groups from the two rounds. Only a 2% difference between the final dimensions of the control plants in the first and the second round was observed (Rosette size of 2,362 and 2,318 pixels, respectively). This result corroborated the very high level of reproducibility of the experimental protocol used in our platform as demonstrated De Diego et al. (2017). Further, we validated the screening assay with commercial product Trainer® (Hello Nature Inc., Anderson, IN, United States), here defined as substance D, that was previously characterized as growth improving substance (Figure 3) (Sestili et al., 2018).
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FIGURE 3. Top view RGB pictures of the 48-well plates and projected rosette area (pixels) of seedlings from seeds primed with D compound (Trainer®). RGB image of an individual 48-well plate at the first and the last day of the experiment, containing non-primed Arabidopsis seedlings or primed with the “D” product grown under non-saline, 75 or 150 mM NaCl conditions (A). Increase in projected rosette area (pixels) throughout the 7 days of the experiment for the same seedlings primed with D product (Trainer®) grown under non-saline, 75 or 150 mM NaCl conditions (B). The values represent the average of the 96 biological replicates per treatment, error bars represent SE.


Overall, our phenotyping data showed that the improved growth of the Arabidopsis seedlings primed with PHs was not only product-dependent but also dose-dependent under optimal growth conditions (Figure 4A and Supplementary Table 2). The priming with all tested concentrations of C and B proved to be especially beneficial to the plant’s fitness, improving plant growth with better RGR under all growth condition, ending with a higher increase of the projected rosette area under control conditions (Figure 4A, Supplementary Table 2, and Supplementary Figure 2). In contrast, the impact on plant growth of the substances (Siapton®) I and O was extremely dose-dependent (Figure 4A, Supplementary Table 2 and Supplementary Figure 2). For example, when the plants were primed with I product and grown under optimal (control) conditions, the best response was observed in the highest concentration of the substance (0.1 μl ml–1). In contrast, O product had the best effect when the lowest dose was used as a priming agent, while the highest concentration caused the opposite effect and resulted in the reduction of the final rosette area (Figure 4A, Supplementary Table 2, and Supplementary Figure 2). As expected, O is not the only substance that proved to be growth-inhibiting and/or toxic to the plants at a very high dose. The same detrimental effect was observed in groups primed with A, B, F, G, and P. In summary, from our data, it is possible to identify the substances C and D (Trainer®) as the best growth promoters.
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FIGURE 4. Characterization of the 11 plant biostimulants. Parallel coordinate plot of the traits (Projected Rosette Area, Relative Growth Rate, Coefficient of Variance, Survival Rate, and Slope of the Growth Curve) obtained from the Multi-trait HTS of Arabidopsis seeds primed with the PHs at three concentrations (0.001, 0.01, and 0.1 μl/ml) and grown under non-saline (A) 75 mM NaCl (B), or 150 mM NaCl (C) conditions.




Influence of the Protein Hydrolysates Applied as Seed Priming on Rosette Growth and Survival in Salt Stress Conditions

Thanks to the capacity of the OloPhen platform, we were able to evaluate the effect of our substances under two levels of salt stress: moderate (75 mM NaCl) and severe (150 mM NaCl). The two NaCl concentrations were selected based on the work from De Diego et al. (2017). As a main result, we observed that for the seedlings primed with PHs, independently of the origin of the substances used for the priming, the stress-induced growth inhibition was usually alleviated so in many cases bigger Arabidopsis rosettes and RGR were observed. However, the effects of the PHs on the seedlings were extremely dose-dependent and dependent on the severity of the salt stress applied.

At 75 mM NaCl, only 3 of the 11 substances (C, D, and O) significantly increased the final projected rosette area compared to the non-primed seedlings (Figure 4B, Supplementary Table 2, and Supplementary Figure 3). The beneficial effect of C, D, and O was significant over all concentrations tested, resulting in dose-independent stress alleviating action. Interestingly, C’s improving effect was more noticeable in the lowest concentration (0.001 μl ml–1), whereas for D in the highest concentration (0.1 μl ml–1). This result suggested that these two products varied in the mode of action for mitigating the negative effects of salt stress. Similarly, only the seed priming with any of the concentrations of C or D (Trainer®) improved the RGR values showing that only 2 of the PHs used (C and D) behaved as stress alleviators (Figure 4B, Supplementary Table 2, and Supplementary Figure 3), with higher values for 0.001 μl ml–1 in C and 0.1 μl ml–1 in D (Trainer®). Interestingly, E and I (Siapton®) had an inhibiting effect on RGR, reducing this parameter in all three concentrations.

For the salt stress variants, a third growth-related parameter was introduced; the survival rate (%) was calculated on the last day of the experiment. The survival rate of the seedlings was not seriously compromised in moderate salt stress conditions (∼100%) (Figure 4B and Supplementary Table 2).

At 150 mM NaCl, no substance caused an increase in the final area (Figure 4C, Supplementary Figure 4, and Supplementary Table 2). However, the RGR was improved by the seed priming with D and P substances. D (Trainer®) acted as a stress alleviator in all concentrations, especially with 0.01 μl ml–1 dose, whereas P substance only improved the RGR when the highest concentration (0.1 μl ml–1) was used. Contrarily, E and F inhibited the growth of the seedlings in all concentrations. Severe salt stress also reduced the survival rate of the seedlings, with values around 95% for unprimed plants. The seed priming with B, C, D, and O maintained higher survival rates but the effect was present in a dose-dependent manner (Supplementary Table 2); the most effective concentration for C and D (Trainer®) was 0.001 μl ml–1, while for B and O was 0.1 μl ml–1. Remarkably, the seeds priming with E and F at all concentrations had a reduced survival rate.



Influence of Seed Priming With Protein Hydrolysates on Seedlings Homogeneity

Despite the two selection steps for the plant material (seed size and seedling size at the transfer moment), some variability between seedlings is always present. However, the level of variability in the population can be modified by the growth conditions and/or priming agents (De Diego et al., 2017; Ugena et al., 2018).

For that, we evaluated the effects of the priming with the different PHs on the plant-to-plant variability. The coefficient of variation (CV = standard deviation/mean) was used as a standard measurement of relative variation (Weiner and Thomas, 1986) and calculated on the last day of phenotyping, before the harvest. In control conditions, O was the only substance that improved the homogeneity of the seedlings, except when it was applied at the highest concentration. In conditions of moderate salt stress, the CV was reduced by C in the 0.001 μl ml–1 concentration and by E in the 0.01 μl ml–1 concentration compared with their respective control. In severe stress conditions, the highest variability occurred, probably because most of the seedlings stopped growing in the early phase of the experiment (Figure 4C and Supplementary Table 2). In this case, the substances B (in the 0.1 μl ml–1 concentration), D (Trainer® at 0.001 μl ml–1), H (Vegamin® at 0.01 μl ml–1), and O (0.1 μl ml–1) improved the uniformity of the plantlets significantly (Figure 4C and Supplementary Table 2).



Evaluation and Classification of the Substances Through the Plant Biostimulant Characterization Index

In order to uniquely classify the 11 PHs according to their effect on seedlings as growth promoters and/or stress alleviators, we used the Plant Biostimulant Characterization (PBC) index developed by Ugena et al. (2018). This index considers the five parameters previously mentioned: Projected Rosette Area on the last day of measuring, Relative Growth Rate throughout the entire period of the experiment, coefficient of variance in the final day of the experiment, the slope of the growth curve, and the final survival rate for the variants grown under salt stress conditions. The log2 of the ratio between primed and unprimed seedlings was calculated for each of the five parameters, the concentration of the PHs (0.001, 0.01, or 0.1 μl ml–1) and growth conditions [optimal (control), moderate salt stress (75 mM NaCl) or severe salt stress (150 mM NaCl)], values that concur with those represented in the parallel plot (Figure 4). As example, for the A substance at 0.001 μl ml–1 applied to the plants growing in moderate salt stress conditions (75 mM NaCl), the log2 of the analyzed traits were: for final area [log2 (1184.25/947) = 0.3225], for RGR [log2 (0.20/0.18) = 0.1448], for CV [−log2 (53.5665071/55.38435406) = −0.0481, as it is a negative trait], for survival [log2 (95.83/100) = −0.0614] and for slope [log2 (149.1805556/106.3796296) = 0.4878]. The five values obtained were then summed up to calculate the PBC index, ending with a single numeric value that could categorize the compounds in a straight-forward way. The value obtained for the single compound, concentration and growth condition could be negative (red) or positive (blue), telling us if this specific combination was beneficial in terms of plant performance in the given conditions compared to the respective control variant (from non-primed seeds) (Table 1). Additionally, the obtained values allowed us to divide the compounds into three groups; plant growth promotor [only positive values (blue) in primed seedlings grown under control conditions], stress alleviator [only positive values (blue) in primed seedlings grown under stress conditions], or both [positive values in primed seedlings under control and stress conditions].


TABLE 1. Plant biostimulant characterization (PBC) index.

[image: Table 1]Overall, our data clearly suggest that C and D (Trainer®) were the best biostimulants in all their concentrations and growth conditions, acting both as plant growth promotors and salt stress alleviators. C was especially effective as stress alleviator in the 75 mM NaCl-enriched media, with a PBC value 208% (for 0.001 μl ml–1), 129% (for 0.01 μl ml–1) and 335% (for 0.1 μl ml–1) higher than the non-primed seedlings. On the contrary, D (Trainer®) had a better stress-alleviating effect on the plants growing in 150 mM NaCl- enriched media, with a PBC value 108% (for 0.001 μl ml–1), 276% (for 0.01 μl ml–1) and 221% (for 0.1 μl ml–1) higher than the non-primed variant.

Some of the remaining substances proved to be effective as well, although in a concentration and growth condition-dependent manner. For example, as the PBC index shows (Table 1A), the substance O can be classified as a growth promotor when applied at the two lower concentrations. At the same time, the highest dose was even detrimental to the plantlets’ development in control conditions. The substance B, however, can be classified as a stress alleviator but when used in high doses it was inhibiting the growth when plants were grown in 75 mM NaCl-enriched media (Table 1B). E and F were the worst performing substances, inhibiting the growth of the seedlings in all concentrations and growing conditions and especially under 150 mM NaCl salinity conditions (Table 1C).



Influence of Protein Hydrolysates on Photosynthetic Performance

To verify the effect of the priming on the photosynthetic performance of the seedlings, a range of ChlF parameters was measured using the PAM method and light curve quenching kinetics on the last day of the experiment, after the RGB imaging for all the plates was completed. A set of fluorescence parameters reflecting the photosynthetic function of PSII were calculated (Supplementary Table 3). The maximum quantum yield of photosystem II in dark-adapted (Fv/Fm) was used to characterize photosynthetic performance of the control and stressed seedlings (Supplementary Figure 5). Fv/Fm was shown to be a robust indicator of plant stress (Rousseau et al., 2013; Wang et al., 2016; Wu et al., 2018) and especially of salt stress (Lucini et al., 2015; Simko et al., 2016; Adhikari et al., 2019). In our experiment, the value of Fv/Fm was significantly reduced in the plants grown in the 150 mM NaCl-enriched media, but not under moderate salt stress (Supplementary Figure 5). Overall, the seedling’s photosynthetic efficiency belonging to the moderate stress group was not severely compromised (Supplementary Figure 5 and Supplementary Table 3). Only the seedlings primed with 0.01 μl ml–1 and the 0.1 μl ml–1 H (Vegamin®), or with a 0.1 μl ml–1 solution of A and O improved the Fv/Fm under moderate stress conditions. The seed priming with the highest concentration of the substance F was even able to increase the value Fv/Fm higher than the values observed in the non-primed seeds grown under optimal conditions in control conditions (Supplementary Figure 5 and Supplementary Table 3). Contrarily, B at the 0.001 ml–1 concentration negatively affected the photosynthetic performances of the seedlings in moderate stress conditions, reducing the Fv/Fm values to those observed in the plants grown under severe salt stress (150 mM NaCl) (Supplementary Figure 5 and Supplementary Table 3).

Finally, to understand how the fluorescence parameters conditioned plant growth under the three different growth conditions studied, we performed three different correlation matrices using the phenotyping data per well plate (a total of 70 plates per growth condition) (Figure 5). As a result, there was not a clear correlation between the growth parameters (rosette size and RGR) with the fluorescence parameters under control and moderate salt stress conditions (Figures 5A,B). However, under severe stress conditions the RGR was positively correlated with higher Fv′/Fm′ (∗p < 0.05) and negatively with NPQ (∗p < 0.05) (Figure 5C), showing that under severe salt stress a higher photosynthetic efficiency related with the RGR and hence, the plant growth and final rosette size.


[image: image]

FIGURE 5. Correlation matrices comparing the growth and fluorescence related phenotyping traits in Arabidopsis seedling grown under control conditions (A), moderate salt stress (B), or severe salt stress (C). Red asterisks mean ∗p < 0.05, ∗∗p < 0.01, ***p < 0.001.




Metabolomics Insights Into the Mode of Action of Selected Protein Hydrolysates

Once the best performing substances were identified according to the PBC index (C and D), we carried out a non-targeted metabolomic analysis based on UHPLC-ESI/QTOF-MS. The priming seedlings from these treatments, together with their respective controls were collected at the end of the phenotyping experiment. The metabolic analysis also included the three studied growth conditions [optimal growth conditions (control), and moderate (75 mM NaCl) or severe (150 mM NaCl) salt stress], in which seedlings from non-primed or primed seeds with the substance C (Malvaceae-derived PH) or D (Trainer®) were compared. The lowest concentration (0.001 μl/l) was selected for the analysis of Arabidopsis seedlings grown under control and moderate stress conditions for two main reasons; this concentration presented the highest PCB index values in both substances (Table 1) and because the use of lower concentration has economic benefits. However, under severe salt stress the highest concentration 0.1 μl/l of D and C was analyzed because it showed the best performance in the phenotyping data (Table 1). The whole list of metabolites annotated, together with individual abundances and composite mass spectra, is provided as Supplementary Table 4.

The unsupervised hierarchical clustering indicated different metabolic profiles when comparing non-primed or primed seedlings, as thereafter confirmed by the supervised OPLS-DA modeling (Figure 6). The clustering built from the fold-change based heatmap (Figure 6A) highlighted two main clusters: a first including the seedlings primed with the D substance under the three tested growth conditions, and a second cluster with the non-primed seedlings and those primed with the C substance. This last cluster was also divided into two subclusters that separated the non-primed seeds from the primed ones with substance C, independent of the growing conditions. These results indicated that the main clustering factor was the type of priming agent used.


[image: image]

FIGURE 6. Fold-change based unsupervised hierarchical cluster analysis (Euclidean distance) carried out from metabolomic profile of plants treated either with the biostimulant C or D, at different salinity levels (A); OPLS-DA (Orthogonal Projections to Latent Structures Discriminant Analysis) supervised modeling of metabolomic profile in plants at different salinity levels and treated with the OPLS-DA of the two best performing protein hydrolysates, C (B) and D (C).


To corroborate these results, we performed an OPLS-DA supervised multivariate analysis, in which the two substances were independently compared to the non-primed seeds (controls) under the three tested growth conditions (Figures 6B,C). In both analyses, the results provided a score plot in agreement with hierarchical clustering, showing that the priming agent is the principal factor separating the samples followed by the growth conditions (Figures 6B,C). The investigation of the most discriminant compounds in both OPLS-DA models (i.e., variables of importance in projection—VIP analysis) was then carried out. The Supplementary Table 5 includes two columns (one for the substance C and another for the substance D) reporting the discriminant metabolites identified (VIP score >1.3). Overall, from the comparison between non-primed seeds and the seeds primed with the C or D substance (Sheets- VIPs markers C or VIPs markets D) 97 and 127 compounds were identified, respectively. Due to this different metabolic profiling between the plants from seeds primed with C or D substance, we also carried out an additional OPLS-DA and identified the most discriminant compounds that differed between these two treatments. As an outcome, a total of 253 compounds were identified (Supplementary Table 6), confirming that C and D substances affected in different ways the seeds and hence the plant growth. For example, only the D-primed seedlings increased compounds such as β-solanine, guaiacol or plant hormones-related compounds such as gibberellin 34, the brassinosteroids 6-deoxo-24-epicathasterone and campest-5-en-3-one, the sugar maltose or some flavones such as baicalin and 7-hydroxyflavone, among others (Supplementary Table 6). However, C but not D increased certain sesquiterpenoids such as curcuquinone or the main precursor for the synthesis of the aromatic amino acids, shikimate, relevant pathway controlling plant growth and development (Tzin and Galili, 2010), or the metabolite meso-diaminopimelate, substrate for the synthesis of L-lysine (Crowther et al., 2019) (Supplementary Table 5).

To go further with the study of the mode of action, we inferred the biochemical processes that these two substances are activating in the Arabidopsis seedlings to modulate plant growth and promote stress alleviation. To this aim, the discriminating compounds were compared in each growth condition by Volcano Plot analysis (Figure 7 and Supplementary Table 7). First of all, the different compounds were grouped in functional classes; synthesis of amino acids, nucleotides, carbohydrates, fatty acids or lipids, hormones, cofactor synthesis with the metabolites related to secondary metabolism being the most represented in all the growth conditions, especially in the case of Trainer® (D) (Figure 7). Secondly, the compounds that differ the most (opposite behavior as in one up accumulated and in another one without changes or down accumulated) between the two PHs were identified (Supplementary Table 6). As an example, when the plants primed with D substance were grown under moderate salt stress (75 mM NaCl), secondary metabolites such as flavonoids and terpenes decreased.
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FIGURE 7. Biosynthetic processes affected by the two best performing protein hydrolysates at 0 (A), 75 (B), and 150 mM NaCl (C). Differential metabolites (Volcano Plot analysis, n = 8) and their fold-change (FC) values were elaborated using the Omic Viewer Dashboard of the PlantCyc pathway Tool software (www.pmn.plantcyc.com). Within each class, large and small dots represent the average (mean) and individual logFC, respectively.


A similar profile was observed when plants were grown under severe salt stress conditions (150 mM NaCl) (Figure 7C). However, in this case many derivate forms of plant hormones such as benzyladenine-7-glucoside, 16,17-dihydro-16α-17-dihydroxy gibberellin 12 and methylgibberellin 4, the IAA-derivate 4-(indol-3-yl)butanoyl-β-D-glucose or the brassinosteroid castasterone were highly reduced in the seedlings primed with D substance but not with C, compared to the plants coming from non-primed seeds. All together, it is clear that being both PH products, including when they are from the same type of botanical material but not the same family, their application to the plants affect different metabolic pathways, including the phytohormone balance, that finally condition the plant response to the environment in which is grown.



DISCUSSION

Sustainable approaches able to promote plant growth and enhance crop productivity represent a priority in modern agriculture (Xu and Geelen, 2018). Protein hydrolysates, as natural products mainly deriving from agricultural waste and able to reduce dependency on chemical fertilizers, are therefore of great interest. However, due to the diverse origins of the biostimulants, their manufacturers require fast and efficient tools for identifying and characterizing new functional biostimulants and to identify their mode of action (Ugena et al., 2018). In the last years, platforms for high-throughput automated phenotyping have been frequently used for fast and highly reproducible screenings of the effects of potential biostimulants on growth-related traits of plants, both in control and stress conditions (Rahaman et al., 2015; De Diego et al., 2017; Ugena et al., 2018; Paul et al., 2019a,b). However, most platforms are limited in their capacity of measuring a large number of individuals (or variants) at the same time. In contrast, the comparison between plants primed with different doses of biostimulants and growing in diverse stress severities is fundamental to prove the effectiveness of the substances as biostimulants and elucidate their mode of action. The biostimulant activity of a product, in fact, is strongly dependent on the severity of the stress applied to the plant (Bulgari et al., 2019) as well as on the time of exposure; therefore, the beneficial effects of a substance can vary with the concentration and time of exposure of the plants to the stress (Colla et al., 2010). Transferring to in vitro conditions using a model plant such as Arabidopsis allows increasing the number of treatments and replicates (De Diego et al., 2017). Starting from these premises, we followed the same protocol described by Ugena et al. (2018). The effects of potential biostimulant substances were tested on Arabidopsis seedlings grown under optimal conditions and salt stress in two different intensities (75 mM and 150 mM NaCl). However, instead of using single compounds such as polyamines, we tested the effects of 11 complex products based on protein hydrolysates from different natural origins, applied in three different concentrations (0.001, 0.01, and 0.1 μl ml–1) as seed priming agents. Priming induces preliminary germination (Jisha et al., 2012; Paparella et al., 2015), enhances synchronized germination, promotes plant growth (Bryksová et al., 2020) and can elicit resilience to stressors (Conrath, 2011; Paparella et al., 2015). Priming can improve seed performance, ensure higher uniformity among the seeds, result in faster and better. Priming finds application particularly in vegetables like carrot, onion, celery, lettuce, endive, pepper, and tomato (Paparella et al., 2015). This is why in our study the seed priming with PHs-based substances was used instead of mixing them into the media, so the amount of the substances used for the priming is highly reduced saving product and costs, and of course reducing the potential toxicity of the high dosages. As corroboration, we could see that the seed priming with the high dosages of some PHs-based substances inhibited plant growth (Table 1 and Figure 4) but did not kill the plants as happened in previous studies in which the substances were applied to the growth media (data not shown).

Simple RGB daily pictures were able to provide us with plenty of information related to the plants’ growth and fitness using the MTHTS approach: starting from the mere dimensions of the plants, we could calculate the slope of the growth curve, the RGR, the Coefficient of Variance and the Survival Rate in salt stress conditions. Exactly as described by Ugena et al. (2018), the phenotyping traits were used to calculate the Plant Biostimulant Characterization (PBC) index, which ended with a single number making easier the characterization of each biostimulant according to their mode of action: growth promotor/inhibitor and/or stress alleviator. Thus, the PBC index showed that the effects of the substances on plants was not only dependent of the PH substance tested but also dose dependent. For most of the substances, the highest concentration (0.1 μl ml–1) was not beneficial or reduced plant growth (Table 1 and Figure 4). It is known that PHs contain carbohydrates, amino acids, and lipids that may improve crop fitness, acting as plant growth regulators (growth promoters) in the absence of any external stress, due to the presence of bioactive peptides (Colla et al., 2014, 2015) with a range of phytohormone-like activities (Ito et al., 2006; Kondo et al., 2006). PHs may as well increase plant tolerance to abiotic stresses (Van Oosten et al., 2017) because certain amino acids affect the ion fluxes across membranes, most having a positive effect on reducing NaCl-induced potassium efflux (Cuin and Shabala, 2007). However, when PHs based substances are applied to the plants at high dosages an excess of free amino acids or phenols can have the opposite effect and induce growth retardation (Cerdán et al., 2009; Muscolo et al., 2013; Ertani et al., 2018), explaining the inhibitory effect observed in some of the variants. Only the substances C and D (Trainer®) improved plant growth under control and stress conditions, including when they were applied in high concentration, with better results in the case of D (Trainer®), our positive control. In this regard, Trainer® has been demonstrated to improve the growth of many crop species and to mitigate the deleterious effects of salt stress (Colla et al., 2014; Lucini et al., 2015; Rouphael et al., 2017; Di Mola et al., 2019; Luziatelli et al., 2019; Paul et al., 2019b). Altogether, we showed that the MTHTS of Arabidopsis rosette growth is an advantageous and fast approach to test new biostimulants under a wide range of concentrations and growth conditions. Besides, our results are comparable with those obtained in other interesting plant species including crops with agronomical interest, confirming the biological translation of the results obtained in Arabidopsis to them. The PHs-derived biostimulants C and D have in common the vegetal origin but differ in the plant family from which they are produced (Malvaceae and Fabaceae, respectively).

At the end of the experiment, chlorophyll fluorescence measurement of all the plants have also been performed and the light curve protocol (Henley, 1993; Rascher et al., 2000) was used as it was proven to be especially effective in providing detailed information on plant adaptation to adverse conditions (Brestic and Zivcak, 2013; Awlia et al., 2016). As a result, we observed that the maximum quantum yield of PSII photochemistry in the dark-adapted state (Fv/Fm) was reduced in salt stress conditions, especially in the 150 mM NaCl-enriched media. This is coherent with previous works (Baker and Rosenqvist, 2004; Awlia et al., 2016), where Fv/Fm proved to be a robust parameter, being affected only under severe stress. Additionally, the seed priming with some PHs based substances at certain concentrations also improved the Fv/Fm under optimal and salt stress conditions (Supplementary Figure 5 and Supplementary Table 3). This is in agreement with previous experiments, in which the use of plant-derived PHs promoted photosynthetic efficiency and increased the accumulation of photosynthetic pigments (Yakhin et al., 2017). However, this effect was not very remarkable in the case of the best performing PH (D). A possible explanation is that this product did not influence the light phase of the photosynthesis (fluorescence parameters) but could increase the dark phase of the photosynthesis and hence, the efficiency of the plant, as has been described previously in PHs treated lettuce (Xu and Mou, 2017).

Another explanation for this result can relate to the broad metabolic reprogramming induced by PHs. For example, the seedlings primed with D substance accumulated higher levels of maltose compared to the controls. Maltose is a soluble sugar and the major starch-degrading product (Thalmann and Santelia, 2017). Starch degradation (a common plant stress response) is the main mechanism D- primed plants used, resulting in accumulating certain soluble sugars, especially maltose (Supplementary Table 5). As corroboration of the beneficial maltose accumulation, its exogenous application in wheat plants improved plant growth, yield and some biochemical components when grown under drought conditions (Ibrahim and Abdellatif, 2016). The Arabidopsis seedlings primed with D substance also displayed lower levels of flavonoids and terpenoids. These compounds are mainly accumulated in plants under stress condition resulting in reactive oxygen species (ROS) production (D’Amelia et al., 2018; Sharma et al., 2019a). Altogether, we suggest that the reduced presence of flavonoids and terpenoids pointed to the D-primed seedlings as healthier plants with lower levels of ROS that allow the plants to grow better. Finally, recent studies have shown strong crosstalk between flavonoids and some plant growth regulators such auxins and cytokinins, controlling biological processes such as nodulation in Medicago truncatula and, hence, plant growth (Ng et al., 2015). In this regard, the D-treated plants showed a clear reduction in many products of degradation or conjugation (mainly related to inactivation) of cytokinins, auxins, and brassinosteroids. Thus, they could maintain the levels of the active phytohormone forms to preserve the general homeostasis of the plants. In this regard, both the activation and inactivation of cytokinin degradation genes have been mentioned to give plant stress tolerance (Vojta et al., 2016; Prerostova et al., 2018). In Arabidopsis, for example, the inducible 35S:CKX plants were approximately half those of WT plants under well-watered conditions, their rosette growth rates were actually more sensitive to soil drying, and they recovered more slowly after re-watering (Prerostova et al., 2018). These results are in accordance with the better growth of the D-treated Arabidopsis seedlings and the reduced benzyladenine-7-glucoside levels. Finally, these seedlings also accumulated brassinosteroid precursors such as 6-deoxo-24-epicathasterone and campest-5-en-3-one and reduced the formation of castasterone. Brassinosteroids (BRs) are a category of plant steroid hormones having multiple roles in plant growth, development, and stress responses (Ahammed et al., 2020). In fact, the accumulation of castasterone has been related to plant stress response and detoxification under metal and pesticide stress (Sharma et al., 2019b; Ahammed et al., 2020). Interestingly, brassinosteroids have been reported to modulate plant growth and stress management, including under saline conditions (Vidya Vardhini, 2017). This suggests a lower level of castasterone indicated that the plants experienced new homeostasis in which the effect or toxicity induced by salt stress is reduced. Our findings indicate that this modulation of brassinosteroids might be the consequence of an improved resilience toward salinity induced by the biostimulants in our plants.



CONCLUSION

The present study presented a complex pipe-plan to select and understand the mechanism of action of 11 PHs-substances used as priming agents. The results demonstrated that the high-throughput phenotyping approach, such as MTHTS of Arabidopsis rosette, is a valuable tool to compare a high number of biostimulants at different concentrations in plants grown under different conditions (with and without stress). This approach has proven to be able to accelerate the selection of the best performing substances in a highly effective manner. Besides, the obtained results corroborated the biological translation from Arabidopsis to other crops with agronomical interest. Additionally, the combination of the phenomics with untargeted metabolic analysis revealed that the priming with the best-performing substance modifies the plant homeostasis thus promoting growth and allowing a higher survival by reducing the oxidative damages induced by the stress and by regulating the crosstalk between different plant hormones. Finally, this approach can help to accelerate the selection and characterization of new biostimulants that make the plants more efficient and more resistant to stress. Further studies will be performed using model crops to go further in the understanding of the mode of action of PHs based biostimulants.
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Supplementary Figure 1 | Hierarchical cluster analysis conducted on the phytochemical composition of the different PHs; a fold-change heat map was done, and Euclidean distance used for clustering.

Supplementary Figure 2 | Growth of the plants in control conditions following the priming with the set of protein hydrolysates. Projected rosette area (pixels) of Arabidopsis seedlings primed with the 11 protein hydrolysates (A–P) at three concentrations (0.001, 0.01, and 0.1 μl/ml) and grown for 7 days in 48-well plates under control conditions. Rosette area was extracted from RGB images acquired twice a day (am and pm) over the period of 1 week. Values represent the average of the 96 biological replicates per treatment, bars represent SE.

Supplementary Figure 3 | Growth of the plants in moderate salt stress conditions following the priming with the set of protein hydrolysates. Projected rosette area (pixels) of Arabidopsis seedlings primed with the 11 protein hydrolysates (A–P) at three concentrations (0.001, 0.01, and 0.1 ml/ml) and grown for 7 days in 48-well plates under moderate (75 mM NaCl) salt stress conditions. Rosette area was extracted from RGB images acquired twice a day (am and pm) over the period of 1 week. Values represent the average of the 96 biological replicates per treatment, bars represent SE.

Supplementary Figure 4 | Growth of the plants in severe salt stress conditions following the priming with the set of protein hydrolysates. Projected rosette area (pixels) of Arabidopsis seedlings primed with the 11 protein hydrolysates (A–P) at three concentrations (0.001, 0.01, and 0.1 ml/ml) and grown for 7 days in 48-well plates under severe (150 mM NaCl) salt stress conditions. Rosette area was extracted from RGB images acquired twice a day (am and pm) over the period of 1 week. Values represent the average of the 96 biological replicates per treatment, bars represent SE.

Supplementary Figure 5 | Maximum quantum yield of PSII photochemistry in the dark-adapted state (Fv/Fm) of the Arabidopsis seedlings. Graphs show the maximum quantum yield of the plantlets after 7 days of in control, moderate (75 mM NaCl), and severe (150 mM NaCl) salt stress conditions. Seedlings were primed with the 11 protein hydrolysates at three concentrations (0.001, 0.01, and 0.1 ml/ml). Values represent the average of the 96 biological replicates per treatment, bars represent SE. Different letters are used to indicate the significant differences between the treatments (different PH’s and control treatment) using post hoc Tukey’s test (p < 0.05).

Supplementary Table 1 | Untargeted phytochemical composition in the tested PHs; individual abundances (as provided from UHPLC/QTOF metabolomics) are also provided.

Supplementary Table 2 | Growth-related parameters extracted from the RGB images. Values for the Slope of the growth curve, projected rosette area (pixels) in the last day of measurement, RGR (pixel pixel-1 day-1) for the entire period of the experiment and survival rate (%) estimated at the last day of the trial. The values displayed correspond to Arabidopsis seedlings from non-primed seeds or primed with 11 different PHs at 3 concentrations (0.001, 0.01, and 0.1 ml/ml) grown under non-saline (A), 75 (B), and 150 mM NaCl conditions (C). Different letters are used to indicate the significant differences between the treatments (different PH’s and control treatment) using post hoc Tukey’s test (p < 0.05).

Supplementary Table 3 | Fluorescence-related parameters. Values of the maximum quantum yield of PSII photochemistry in the dark-adapted state (Fv/Fm), the maximum quantum efficiency in light-adapted state (Fv′/Fm′), the steady-state non-photochemical quenching (NPQ) and the steady-state operating efficiency of PSII in the light (ΦPSII) in the last day of the trial of the experiment. The values displayed correspond to plantlets treated with all the 11 PHs, in the 3 concentrations (0.001, 0.01, and 0.1 ml/ml), in non-saline (A), 75 (B), and 150 mM NaCl conditions (C). Different letters are used to indicate the significant differences between the treatments (different PH’s and control treatment) using post hoc Tukey’s test (p < 0.05).

Supplementary Table 4 | Whole list of metabolites annotated through untargeted metabolomics in plants, either treated or not with the biostimulants, at different salinity levels. Metabolites are reported with individual abundances, PlantCyc annotation, composite mass spectrum (mass-abundance combinations) and retention time.

Supplementary Table 5 | OPLS-DA modeling VIP markers are also provided with score and standard error for protein hydrolysate C and D separately.

Supplementary Table 6 | VIP markers (with individual score and standard error) from the OPLS-DA supervised model discriminating protein hydrolysate C vs. D.

Supplementary Table 7 | Differential compounds as resulted from Volcano Plot analysis (ANOVA P < 0.01, fold-change > 10) (A) for protein hydrolysate C and D separately, at 0.001%, compared to control, (B) for protein hydrolysate C and D separately, at 0.1% and (C) under 150 mM NaCl stress, compared to untreated control. Compounds are reported with fold-change values, ontology, SMILES and InChIKey annotations.


FOOTNOTES

1
http://www.plantcyc.org


REFERENCES

Adhikari, N. D., Simko, I., and Mou, B. (2019). Phenomic and physiological analysis of salinity effects on lettuce. Sensors 19:4814. doi: 10.3390/s19214814

Ahammed, G. J., Li, X., Liu, A., and Chen, S. (2020). Brassinosteroids in plant tolerance to abiotic stress. J. Plant Growth Reg. 39, 1451–1464. doi: 10.1007/s00344-020-10098-0

Awlia, M., Nigro, A., Fajkus, J., Schmoeckel, S. M., Negrão, S., Santelia, D., et al. (2016). High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front. Plant Sci. 7:1414. doi: 10.3389/fpls.2016.01414

Baker, N. R., and Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55, 1607–1621. doi: 10.1093/jxb/erh196

Brestic, M., and Zivcak, M. (2013). “PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications,” in Molecular Stress Physiology of Plants, eds G. R. Rout and A. B. Das (Berlin: Springer). doi: 10.1007/978-81-322-0807-5_4

Briglia, N., Petrozza, A., Hoeberichts, F. A., Verhoef, N., and Povero, G. (2019). Investigating the impact of biostimulants on the row crops corn and soybean using high-efficiency phenotyping and next generation sequencing. Agronomy 9:761. doi: 10.3390/agronomy9110761

Brown, P., and Saa, S. (2015). Biostimulants in agriculture. Front. Plant Sci. 6:671. doi: 10.3389/fpls.2015.00671

Bryksová, M., Hybenová, A., Hernándiz, A. E., Novák, O., Pencík, A., Spíchal, L., et al. (2020). Hormopriming to mitigate abiotic stress effects: a case study of N9-substituted cytokinin derivatives with a fluorinated carbohydrate moiety. Front. Plant Sci. 11:599228. doi: 10.3389/fpls.2020.599228

Bulgari, R., Franzoni, G., and Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9:306. doi: 10.3390/agronomy9060306

Bulgari, R., Morgutti, S., Cocetta, G., Negrini, N., Farris, S., Calcante, A., et al. (2017). Evaluation of borage extracts as potential biostimulant using a phenomic. agronomic, physiological, and biochemical approach. Front. Plant Sci. 8:935. doi: 10.3389/fpls.2017.00935

Carillo, P., Ciarmiello, L. F., Woodrow, P., Corrado, G., Chiaiese, P., and Rouphael, Y. (2020). Enhancing sustainability by improving plant salt tolerance through macro- and micro-algal biostimulants. Biology 9:253. doi: 10.3390/biology9090253

Caspi, R., Dreher, K., and Karp, P. D. (2013). The challenge of classifying and representing metabolic pathways. FEMS Microbiol. Lett. 345, 85–93. doi: 10.1111/1574-6968.12194

Ceccarelli, A. V., Miras-Moreno, B., Buffagni, V., Senizza, B., Pii, Y., Cardarelli, M., et al. (2021). Foliar application of different vegetal-derived protein hydrolysates distinctively modulates tomato root development and metabolism. Plants 10:326. doi: 10.3390/plants10020326

Cerdán, M., Sánchez-Sánchez, A., Oliver, M., Juárez, M., and Sánchez-Andreu, J. J. (2009). Effect of foliar and root applications of amino acids on iron uptake by tomato plants. Acta Hortic. 830, 481–488. doi: 10.17660/actahortic.2009.830.68

Colantoni, A., Recchia, L., Bernabei, G., Cardarelli, M., Rouphael, Y., and Colla, G. (2017). Analyzing the environmental impact of chemically-produced protein hydrolysate from leather waste vs. enzymatically-produced protein hydrolysate from legume grains. Agriculture 7:62. doi: 10.3390/agriculture7080062

Colla, G., and Rouphael, Y. (2015). Biostimulants in agriculture. Sci. Hortic. 196, 1–2. doi: 10.1016/j.scienta.2015.10.044

Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R., et al. (2017). Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 8:2202. doi: 10.3389/fpls.2017.02202

Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., et al. (2015). Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 196, 28–38. doi: 10.1016/j.scienta.2015.08.037

Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., and Cardarelli, M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 5:448.

Colla, G., Rouphael, Y., Leonardi, C., and Bie, Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Sci. Hortic. 127, 147–155. doi: 10.1016/j.scienta.2010.08.004

Conrath, U. (2011). Molecular aspects of defence priming. Trends Plant Sci. 16, 524–531. doi: 10.1016/j.tplants.2011.06.004

Crowther, J. M., Cross, P. J., Oliver, M. R., Leeman, M. M., Bartl, A. J., Weatherhead, A. W., et al. (2019). Structure–function analyses of two plant meso-diaminopimelate decarboxylase isoforms reveal that active-site gating provides stereochemical control. J. Biol. Chem. 294, 8505–8515. doi: 10.1074/jbc.ra118.006825

Cuin, T. A., and Shabala, S. (2007). Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 25, 753–761. doi: 10.1007/s00425-006-0386-x

D’Amelia, V., Aversano, R., Chiaiese, P., and Carputo, D. (2018). The antioxidant properties of plant flavonoids: their exploitation by molecular plant breeding. Phytochem. Rev. 17, 611–625. doi: 10.1007/s11101-018-9568-y

Dalal, A., Bourstein, R., Haish, N., Shenhar, I., Wallach, R., and Moshelion, M. (2019). Dynamic physiological phenotyping of drought-stressed pepper plants treated with “productivity-enhancing” and “survivability-enhancing” biostimulants. Front. Plant Sci. 10:905. doi: 10.3389/fpls.2019.00905

De Diego, N., Fürst, T., Humplík, J. F., Ugena, L., Podlešáková, K., and Spíchal, L. (2017). An automated method for high-throughput screening of Arabidopsis rosette growth in multi-well plates and its validation in stress conditions. Front. Plant Sci. 8:1702. doi: 10.3389/fpls.2017.01702

Di Mola, I., Ottaiano, L., Cozzolino, E., Senatore, M., Giordano, M., El-Nakhel, C., et al. (2019). Plant-Based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants 8:522. doi: 10.3390/plants8110522

du Jardin, P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14. doi: 10.1016/j.scienta.2015.09.021

Dudits, D., Török, K., Cseri, A., Paul, K., Nagy, A. V., Nagy, B., et al. (2016). Response of organ structure and physiology to autotetraploidization in early development of energy willow (Salix viminalis). Plant Physiol. 170, 1504–1523. doi: 10.1104/pp.15.01679

Ertani, A., Cavani, L., Pizzeghello, D., Brandellero, E., Altissimo, A., Ciavatta, C., et al. (2009). Biostimulant activities of two protein hydrolysates on the growth and nitrogen metabolism in maize seedlings. J. Plant. Nutr. Soil Sci. 172, 237–244. doi: 10.1002/jpln.200800174

Ertani, A., Francioso, O., Tinti, A., Schiavon, M., Pizzeghello, D., and Nardi, S. (2018). Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Front. Plant Sci. 9:428. doi: 10.3389/fpls.2018.00428

Henley, W. J. (1993). Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29, 729–739. doi: 10.1111/j.0022-3646.1993.00729.x

Ibrahim, H. A., and Abdellatif, Y. M. (2016). Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress. Ann. Agric. Sci. 61, 267–274. doi: 10.1016/j.aoas.2016.05.002

Ito, Y., Nakanomyo, I., Motose, H., Iwamoto, K., Sawa, S., Dohmae, N., et al. (2006). Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313, 842–845. doi: 10.1126/science.1128436

Jisha, K. C., Vijayakumari, K., and Puthur, J. T. (2012). Seed priming for abiotic stress tolerance: an overview. Acta Physiol. Plant 35, 1381–1396. doi: 10.1007/s11738-012-1186-5

Julkowska, M. M., Saade, S., Agarwal, G., Gao, G., Pailles, Y., Morton, M., et al. (2019). MVApp—multivariate analysis application for streamlined data analysis and curation. Plant Physiol. 180, 1261–1276. doi: 10.1104/pp.19.00235

Kondo, T., Sawa, S., Kinoshita, A., Mizuno, S., Kakimoto, T., Fukuda, H., et al. (2006). A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313, 845–848. doi: 10.1126/science.1128439

Lucini, L., Rouphael, Y., Cardarelli, M., Bonini, P., Baffi, C., and Colla, G. (2018). A vegetal biopolymer-based biostimulant promoted root growth in melon while triggering brassinosteroids and stress-related compounds. Front. Plant Sci. 9:472. doi: 10.3389/fpls.2018.00472

Lucini, L., Rouphael, Y., Cardarelli, M., Canaguier, R., Kumar, P., and Colla, G. (2015). The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. 182, 124–133. doi: 10.1016/j.scienta.2014.11.022

Luziatelli, F., Ficca, A. G., Colla, G., Baldassarre, Švecová, E., and Ruzzi, M. (2019). Foliar application of vegetal-derived bioactive compounds stimulates the growth of benefcial bacteria and enhances microbiome biodiversity in lettuce. Front. Plant Sci. 10:60.

Machado, R., and Serralheiro, R. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulture 3:30. doi: 10.3390/horticulturae3020030

Mahdavi, B. (2013). Seed germination and growth responses of Isabgol (Plantago ovata Forsk) to chitosan and salinity. Int. J. Agric. Crop Sci. 5, 1084–1088.

Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x

Muscolo, A., Sidari, M., and da Silva, J. A. T. (2013). Biological effects of water- soluble soil phenol and soil humic extracts on plant systems. Acta Physiol. Plant 35, 309–320. doi: 10.1007/s11738-012-1065-0

Ng, J. L. P., Hassan, S., Truong, T. T., Hocart, C. H., Laffont, C., Frugier, F., et al. (2015). Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the medicago truncatula cytokinin perceptionm mutant cre1. Plant Cell 27, 2210–2226. doi: 10.1105/tpc.15.00231

Paparella, S., Araújo, S., Rossi, G., Wijayasinghe, M., Carbonera, D., and Balestrazzi, A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Rep. 34, 1281–1293. doi: 10.1007/s00299-015-1784-y

Paul, K., Sorrentino, M., Lucini, L., Rouphael, Y., Cardarelli, M., Bonini, P., et al. (2019a). A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability. Front. Plant Sci. 10:493.

Paul, K., Sorrentino, M., Lucini, L., Rouphael, Y., Cardarelli, M., Bonini, P., et al. (2019b). Understanding the biostimulant action of vegetal-derived protein hydrolysates by high-throughput plant phenotyping and metabolomics: a case study on tomato. Front. Plant Sci. 10:47.

Pichyangkura, R., and Chadchawan, S. (2015). Biostimulant activity of chitosan in horticulture. Sci. Hortic. 196, 49–65. doi: 10.1016/j.scienta.2015.09.031

Povero, G., Mejia, J. F., Di Tommaso, D., Piaggesi, A., and Warrior, P. (2016). A Systematic approach to discover and characterize natural plant biostimulants. Front. Plant Sci. 7:435.

Prerostova, S., Dobrev, P. I., Gaudinova, A., Knirsch, V., Körber, N., Pieruschka, R., et al. (2018). Cytokinins: their impact on molecular and growth responses to drought stress and recovery in Arabidopsis. Front. Plant Sci. 9:655.

Rahaman, M. M., Chen, D., Gillani, Z., Klukas, C., and Chen, M. (2015). Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front. Plant Sci. 6:619.

Rascher, U., Liebig, M., and Luttge, U. (2000). Evaluation of instant light- response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ. 23, 1397–1405. doi: 10.1046/j.1365-3040.2000.00650.x

Rouphael, Y., and Colla, G. (2018). Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 9:1655.

Rouphael, Y., Cardarelli, M., Bonini, P., and Colla, G. (2017). Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 8:131.

Rouphael, Y., Colla, G., Bernardo, L., Kane, D., Trevisan, M., and Lucini, L. (2016). Zinc excess triggered polyamines accumulation in lettuce root metabolome, as compared to osmotic stress under high salinity. Front Plant Sci. 7:842.

Rouphael, Y., Spíchal, L., Panzarová, K., Casa, R., and Colla, G. (2018). High-throughput plant phenotyping for developing novel biostimulants: from lab to field or from field to lab? Front. Plant Sci. 9:1197.

Rousseau, C., Belin, E., Bove, E., Rousseau, D., Fabre, F., Berruyer, R., et al. (2013). High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods 9:17. doi: 10.1186/1746-4811-9-17

Salek, R. M., Neumann, S., Schober, D., Hummel, J., Billiau, K., Kopka, J., et al. (2015). Coordination of standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics 11, 1587–1597. doi: 10.1007/s11306-015-0810-y

Senizza, B., Zhang, L., Miras-Moreno, B., Righetti, L., Zengin, G., Ak, G., et al. (2020). The strength of the nutrient solution modulates the functional profile of hydroponically grown lettuce in a genotype-dependent manner. Foods 9:1156. doi: 10.3390/foods9091156

Sestili, F., Rouphael, Y., Cardarelli, M., Pucci, A., Bonini, P., Canaguier, R., et al. (2018). Protein hydrolysate stimulates growth in tomato coupled with N-dependent gene expression involved in N assimilation. Front. Plant Sci. 9:1233.

Shahbaz, M., and Ashraf, M. (2013). Improving salinity tolerance in cereals. Critical Rev. Plant Sci. 32, 237–249. doi: 10.1080/07352689.2013.758544

Shannon, M. C., and Grieve, C. M. (1999). Tolerance of vegetable crops to salinity. Sci. Hortic. 78, 5–38. doi: 10.1016/s0304-4238(98)00189-7

Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., and Zheng, B. (2019a). Response of phenylpropanoid pathway and the role of polyphenols in Pplants under abiotic stress. Molecules 24:2452. doi: 10.3390/molecules24132452

Sharma, A., Yuan, H., Kumar, V., Ramarakrishnan, M., Kohli, S. K., Kaur, R., et al. (2019b). Castasterone attenuates insecticide induced phytotoxicity in mustard. Ecotoxicol. Environ. Saf. 179, 50–61. doi: 10.1016/j.ecoenv.2019.03.120

Sharma, H. S. S., Fleming, C., Selby, C., Rao, J. R., and Martin, T. (2014). Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 26, 465–490. doi: 10.1007/s10811-013-0101-9

Simko, I., Hayes, R. J., and Furbank, R. T. (2016). Non-destructive phenotyping of lettuce pants in early stages of development with optical sensors. Front. Plant Sci. 7:1985.

Thalmann, M., and Santelia, D. (2017). Starch as a determinant of plant fitness under abiotic stress. New Phytol. 214, 943–951. doi: 10.1111/nph.14491

Tschiersch, H., Junker, A., Meyer, R. C., and Altmann, T. (2017). Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. Plant Methods 13:54.

Tzin, V., and Galili, G. (2010). New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plants 3, 956–972. doi: 10.1093/mp/ssq048

Ugena, L., Hýlová, A., Podlešáková, K., Humplík, J. F., Doležal, K., De Diego, N., et al. (2018). Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of Arabidopsis germination and rosette growth. Front. Plant Sci. 9:1327.

Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S., and Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 4:5.

Vidya Vardhini, B. (2017). Modifications of morphological and anatomical characteristics of plants by application of brassinosteroids under various abiotic stress conditions—A review. Plant. Gene. 11, 70–89. doi: 10.1016/j.plgene.2017.06.005

Viégas, R. A., Silveira, A. R. L., Junior, J. E., Queiroz, M. J., and Fausto, M. (2001). Effect of NaCl salinity on growth and inorganic solute accumulation in young cashew plants. Braz. J. Agric. Eng. 5, 216–222. doi: 10.1590/s1415-43662001000200007

Vojta, P., Kokáš, F., Husièková, A., Gruz, J., Bergougnoux, V., Marchetti, C. F., et al. (2016). Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. New Biotechnol. 33, 676–691. doi: 10.1016/j.nbt.2016.01.010

Wang, X., Wang, L., and Shangguan, Z. (2016). Leaf gas exchange and fluorescence of two winter wheat varieties in response to drought stress and nitrogen supply. PLoS One 11:e0165733. doi: 10.1371/journal.pone.0165733

Weiner, J., and Thomas, S. C. (1986). Size variability and competition in plant monocultures. Oikos 47, 211–222. doi: 10.2307/3566048

Wu, Y., Li, Q., Jin, R., Chen, W., Liu, X., Kong, F., et al. (2018). Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low- nitrogen tolerances. J. Integr. Agric. 17, 60345–60347.

Xu, C., and Mou, B. (2017). Drench application of fish-derived protein hydrolysates affects lettuce growth, chlorophyll content, and gas exchange. HortTechnology 27, 539–543. doi: 10.21273/horttech03723-17

Xu, L., and Geelen, D. (2018). Developing biostimulants from agro-food and industrial by-products. Front. Plant Sci. 9:1567.

Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., and Brown, P. H. (2017). Biostimulants in plant science: a global perspective. Front. Plant Sci. 7:2049.

Yamaguchi, T., and Blumwald, E. (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci. 10, 615–620. doi: 10.1016/j.tplants.2005.10.002


Conflict of Interest: KP was employed by the company Photon Systems Instruments, spol. s r.o.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Sorrentino, De Diego, Ugena, Spíchal, Lucini, Miras-Moreno, Zhang, Rouphael, Colla and Panzarová. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	 
	ORIGINAL RESEARCH
published: 16 June 2021
doi: 10.3389/fpls.2021.662498





[image: image]

Digital Phenotyping to Delineate Salinity Response in Safflower Genotypes

Emily Thoday-Kennedy1, Sameer Joshi1, Hans D. Daetwyler2,3, Matthew Hayden2,3, David Hudson4, German Spangenberg2,3 and Surya Kant1,5*

1Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia

2Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia

3School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia

4GO Resources Pty Ltd., Brunswick, VIC, Australia

5Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia

Edited by:
Angelica Galieni, Research Centre for Vegetable and Ornamental Crops, Council for Agricultural and Economics Research (CREA), Italy

Reviewed by:
Puneet Mishra, Wageningen University and Research, Netherlands
Pilar Hernandez, Institute for Sustainable Agriculture, Spanish National Research Council, Spain
Dijun Chen, Nanjing University, China

*Correspondence: Surya Kant, surya.kant@agriculture.vic.gov.au

Specialty section: This article was submitted to Technical Advances in Plant Science, a section of the journal Frontiers in Plant Science

Received: 01 February 2021
Accepted: 24 May 2021
Published: 16 June 2021

Citation: Thoday-Kennedy E, Joshi S, Daetwyler HD, Hayden M, Hudson D, Spangenberg G and Kant S (2021) Digital Phenotyping to Delineate Salinity Response in Safflower Genotypes. Front. Plant Sci. 12:662498. doi: 10.3389/fpls.2021.662498

Salinity is a major contributing factor to the degradation of arable land, and reductions in crop growth and yield. To overcome these limitations, the breeding of crop varieties with improved salt tolerance is needed. This requires effective and high-throughput phenotyping to optimize germplasm enhancement. Safflower (Carthamus tinctorius L.), is an underappreciated but highly versatile oilseed crop, capable of growing in saline and arid environments. To develop an effective and rapid phenotyping protocol to differentiate salt responses in safflower genotypes, experiments were conducted in the automated imaging facility at Plant Phenomics Victoria, Horsham, focussing on digital phenotyping at early vegetative growth. The initial experiment, at 0, 125, 250, and 350 mM sodium chloride (NaCl), showed that 250 mM NaCl was optimum to differentiate salt sensitive and tolerant genotypes. Phenotyping of a diverse set of 200 safflower genotypes using the developed protocol defined four classes of salt tolerance or sensitivity, based on biomass and ion accumulation. Salt tolerance in safflower was dependent on the exclusion of Na+ from shoot tissue and the maintenance of K+ uptake. Salinity response identified in glasshouse experiments showed some consistency with the performance of representatively selected genotypes tested under sodic field conditions. Overall, our results suggest that digital phenotyping can be an effective high-throughput approach in identifying candidate genotypes for salt tolerance in safflower.

Keywords: high-throughput phenotyping, RGB imaging, salinity, salt tolerance, digital biomass


INTRODUCTION

Salinity is one of the most severe abiotic constraints for crop production worldwide. Soil salinity can be due to primary causes, the inherent accumulation of sodium (Na+) from geological and meteorological process (dryland salinity), or develop as secondary salinity due to human settlement (transient or irrigation salinity; Rengasamy, 2002, 2006). Globally, over 900 million hectares or 6% of land are affected by saline or sodic soils (Rengasamy, 2002, 2006; Munns and Tester, 2008; Wicke et al., 2011). This is expected to expand to over 50% of arable land by 2050, due to climate change and mismanagement of irrigation, soil and land management practices (Pitman and Läuchli, 2002; Ivushkin et al., 2019). Salinity in agricultural areas causes a range of issues, including severe crop reductions and changes of soil biophysical properties (Rengasamy, 2010; McDonald et al., 2012).

Plants experience the effects of salt stress at all stages of development from germination to vegetative growth and reproduction, through complex biochemical and physiological interactions (Munns and James, 2003; Gengmao et al., 2015; Hussain and Al-Dakheel, 2018). Interactions can be shoot ion dependent, caused by ion toxicity and nutrient deficiency, or shoot ion independent, causing osmotic and oxidative stresses (Flowers, 2004; Munns and Tester, 2008; Roy et al., 2014). Crop salt tolerance is therefore considerably variable between species, as well as between genotypes and cultivars of the same species, due to reliance on different salt tolerance components (Janardhan et al., 1986; Maas, 1993; La Bella et al., 2019). Improving cropping options on saline soils include soil management and breeding for salt tolerant varieties (Flowers, 2004). There are multiple approaches of breeding for saline and sodic soils, including screening for existing genetic and physiological variation in under-developed crops, such as safflower.

Safflower (Carthamus tinctorius L.), a member of the Asteraceae family, is one of the oldest cultivated oilseed crop, grown in semi-arid and arid regions due to its stress tolerant nature (Emongor, 2010; Hussain et al., 2016; Singh and Nimbkar, 2016). An underutilized and underappreciated crop (Dajue and Mündel, 1996), safflower is currently only grown in 25 countries (FAO, 2018). A versatile crop, safflower not only has commercial and industrial uses, but also crucial agronomic benefits. Safflower forms deep root systems allowing penetration of compacted or sodic soils, improving soil structure, as well as accessing deep water and nutrient reserves, improving the growth of subsequent crops on otherwise marginal soils (Nuttall et al., 2008). Historically, safflower has been used as a vegetable, the source of the orange-red dye (carthamin), in traditional medicine, stock feed, and oil production (Dajue and Mündel, 1996; Singh and Nimbkar, 2016).

With the recent resurgence in renewable plant-based oils, interest in safflower has been renewed due to high oil yields (32–40%) and genotypic variation in fatty acid composition, in particular linoleic, stearic and monounsaturated oleic acids (Fernández-Martinez et al., 1993; Gecgel et al., 2006; La Bella et al., 2019). The oil is used for a range of applications including biofuel (Meka et al., 2007; de Oliveira et al., 2018), lubricants (Khemchandani et al., 2014), cosmetics (Wouters et al., 2010; Zemour et al., 2019), pharmaceuticals (Emongor, 2010; Asgarpanah and Kazemivash, 2013), food/cooking (Carvalho et al., 2006), and textiles (Wouters et al., 2010). Recent breeding efforts have focused on maximizing oil yields and increasing the oleic acid content, targeting expanding industrial markets (Anjani and Yadav, 2017; Wood et al., 2018; La Bella et al., 2019).

Safflower is a moderately salt (Francois et al., 1964; Maas, 1993; Kotuby-Amancher et al., 2000; Golkar, 2011) and drought tolerant (Istanbulluoglu, 2009; Hussain et al., 2016; La Bella et al., 2019) oilseed crop suitable for growing in a range of environments. Previous research has focussed on the effects of saline irrigation water, under field conditions, on safflower growth, morphology, and yield (Francois et al., 1964; Janardhan et al., 1986; Yeilaghi et al., 2015; Hussain and Al-Dakheel, 2018), as well as oil characteristics (Yuldasheva et al., 2011; Yeilaghi et al., 2012). Studies on glasshouse grown safflower have sought to understand the effects of Na+ on vital traits including salt tolerance inheritance (Golkar, 2011), stress signaling pathways (Severino et al., 2014; Shaki et al., 2019), and oil composition (Yuldasheva et al., 2011; Harrathi et al., 2013). Further studies have focused on the effects of salinity on seed germination and seedling vigor due to the particular sensitivity of safflower to Na+ at these earlier stages (Kaya et al., 2003, 2019; Ghazizade et al., 2012). While the above literature identified considerable variation in the salt tolerance of various safflower cultivars, no protocol has been developed to phenotype for salt response in an effective, reliable, and rapid manner.

High-throughput phenotyping is key in complementing recent advances in genomic breeding, especially through the use of rapid and high-throughput screening methods to screen for diversity among genotypes. The uptake of low-cost digital sensors and analysis algorithms has driven significant advances in plant phenotyping technology. High-throughput digital imaging has been used in a wide array of industries including forestry and agriculture, via a range of platforms, from satellites to unmanned aerial or ground-based vehicles, to hand-held sensors (Homolova et al., 2013; Fahlgren et al., 2015). Sensors and cameras measure spectral reflectance, the interaction of light and energy with plant components, at precise spectral regions including visible, often using red-green-blue (RGB; 400–700 nm), near infra-red (700–1,000 nm), and shortwave infrared (1,000–2,500 nm) (Li et al., 2014). Various imaging techniques for plant phenotyping have been developed to utilize spectral information including RGB, multispectral, hyperspectral, thermal, and fluorescence (Li et al., 2014). Despite the wide range of advanced digital phenotyping techniques, RGB imaging is often considered the most widely accessible and cost-effective method, due the comparatively lower cost of set-up, ease of maintenance, and variety of data output utilizations.

In recent years, advances in high-throughput digital imaging platforms in controlled environments have seen the rise of non-destructive data capture of plant traits, reducing the need for destructive measurements, and increasing the number of genotypes being screened. Controlled environment high-throughput phenotyping, using either plant-to-sensor or sensor-to-plant platforms, have been used to dissect plant traits including germination and early vigor (Nguyen et al., 2018), growth dynamics, biomass production or morphology (Golzarian et al., 2011; Neilson et al., 2015; Nguyen et al., 2019), and stress indicators (Sirault et al., 2009; Hairmansis et al., 2014; Neilson et al., 2015; Banerjee et al., 2020). Digital phenotyping has been used to dissect salt tolerance traits in a range of crops, including cereals (Krishnamurthy et al., 2007; Hairmansis et al., 2014; Takahashi et al., 2015; Tilbrook et al., 2017), pulses (Atieno et al., 2017), and grapevine (Henderson et al., 2018). These studies have shown that non-destructive digital estimations of plant growth, over multiple time points, consistently form high correlations with shoot fresh and dry weights (Golzarian et al., 2011; Hairmansis et al., 2014; Das Choudhury et al., 2018; Nguyen et al., 2018).

Here, we describe the development and application of a protocol for precise, high-throughput RGB digital phenotyping of salt tolerance in safflower at early vegetative growth stages, obviating the need to grow for the full lifecycle. We used the optimized protocol to screen 200 genotypically diverse safflower genotypes and to investigate mechanisms for salt tolerance in safflower. We highlighted the potential transferability of results obtained from glasshouse-based screening to field conditions. Our results show the protocol is an effective high-throughput approach for phenotyping diverse safflower genotypes for salt tolerance under controlled conditions, which, when coupled with high-throughput genomics, could be used to improve breeding of safflower varieties suited to saline soils.



MATERIALS AND METHODS


Plant Materials, Growth Conditions, and Experimental Design

Plant Phenomics Victoria, Horsham is a state-of-the-art automated, high-throughput facility operated by Agriculture Victoria, Department of Jobs, Precincts and Regions. Detailed descriptions of the facility can be found in Banerjee et al. (2020). In brief, the Scanalyzer 3D plant-to-sensor platform (Lemnatec GmBH, Aachen, Germany), consists of a conveyor system with 600 carriers, automated weighing and watering stations, also used for salt application, and a digital imaging cabinet containing high-resolution RGB cameras.

The first experiment, using four released safflower (C. tinctorius L.) genotypes with differing oil composition and phenology (GRDC, 2017), Gila, Sironaria, S317, and Montola2003, was conducted with the aim to test and select salt treatments, using 0, 125, 250, and 350 mM sodium chloride (NaCl). Based on these results, the second experiment consisted of two salt treatments, 0 and 250 mM NaCl, to phenotype 200 diverse safflower genotypes (Supplementary Table 1), chosen to represent maximum genetic diversity in the Agriculture Victoria safflower collection.

For both experiments, Euro-TL white pots (200 mm diameter × 190 mm depth; Garden City Plastics, VIC, Australia) were filled by weight with 3.25 L of standard potting mix (Biogro, SA, Australia). Added to 1,000 L of standard potting mix were 3 kg Floranid N 32 IBDU (Compo GmbH & Co. KG, Münster, Germany), 5 kg Standard Brown Nutricote (Yates Australia, NSW, Australia), 3 kg Blue Colonizer Plus Macracote (Langley Fertilizer, WA, Australia), 1 kg MicroPlus Trace Element Fertilizer (Langley Fertilizer, WA, Australia), 225 g LiberFer SP Fe-chelate (BASF Corporation, NJ, United States), and 2 kg Debco SaturAid (Evergreen Garden Care Australia Pty Ltd, NSW, Australia) to ensure optimal plant nutrition. Pots were watered to pot capacity prior to sowing and placed on saucers throughout the experiment to prevent water/saline solution loss. Three seeds were sown per pot, then thinned to one seedling per pot 7 days after sowing (DAS) to ensure seedlings of uniform vigor across experiment. Plants were loaded onto the conveyer system at 15 DAS. The experiments were loaded in a complete randomized block design with up to six replicates per genotype per treatment. Growth conditions were controlled at 24/15°C day/night, with natural light conditions.



Digital Imaging

Digital RGB images were captured daily from 15 DAS until harvest at 36 DAS. Images were captured using two 28.8 Megapixel RGB cameras (top and side mounted), model Prosilica GT 6600C (Allied Vision Technologies, Stadtroda, Germany). Using the camera mounted directly above the plants, one digital RGB top view image was acquired. The three side view images were captured after consecutive rotations of the “turner” at 0°, 120°, and 240°. Captured images were automatically stored and analyzed in LemnaBase and LemnaGrid software (Lemnatec GmBH, Aachen, Germany). Details of image analysis pipelines used are described in Banerjee et al. (2020). In short, the region of interest consisting of all plant parts, was separated from the background of the raw images, then in subsequent steps image noise was removed and digital plant objects determined (Figure 1A). The pixel area from the four processed images per plant were then added together to calculate the estimated shoot biomass (ESB), digital plant volume, convex hull area, and plant height (PH).
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FIGURE 1. Performance of safflower genotypes under four salt (NaCl) concentrations from first experiment. (A) Raw and processed images of representative safflower plants at 36 days after sowing from the four salt treatments. (B) Growth curves showing the average performance, as estimated shoot biomass, of safflower genotypes across the growing period under four salt treatments. Data shown as mean with standard deviation. n = 96.




Salt Treatments

From 17 DAS, respective salt solutions were applied over several days to prevent salt shock, with 150 mL doses applied daily for 2 days for 0 and 125 mM, and for 3 days for 250 and 350 mM. To ensure calcium activity remained the same between control (0 mM) and salt treatments, 33 mM of CaCl2 was added to the 1M NaCl stock solution. This stock solution was diluted to achieve the correct application concentration for each salt treatment, based on the gravimetric soil water content (Supplementary Table 2). Saline solutions were administered through the saucer to prevent salt shock. Throughout the experiments, automated watering occurred to maintain pots at 5,300 g; the weight of pot, saucer, carrier, plant, and soil kept at 80% field capacity.



Manual Destructive Harvesting

At 36 DAS all plants were destructively harvested. To determine fresh shoot biomass, plants were harvested at soil level and weighed. The third and fourth leaves (second leaf pair) and first and second youngest expanded leaves (youngest leaf pair) were removed, weighed separately and put into separate 15 mL tubes. The fresh biomass and two leaf pairs were dried at 70°C for 3 days, then weighed to obtain dry biomass. Leaf pair samples were used for ion analysis.



Ion Analysis of Leaf Tissue and Soil

Leaves were digested in 1% (v/v) nitric acid at 100°C for 4 h in a water bath (TWB-48D; Thermoline Scientific Equipment Pty. Ltd., NSW, Australia). The Na+ and potassium (K+) concentrations of the digested leaves were determined using a flame photometer (Sherwood 420, Sherwood Scientific, Cambridge, United Kingdom).

Soil from four pots per treatment from the first experiment were sampled at the end of the experiment to determine the Na+ concentration of potting mix at different depths. The pots were divided into three depths, 0–5, 6–10, and 11–15 cm, dried for 3 days at 70°C, then subsampled. Na+ and K+ concentrations were measured using a 1:5 (soil:water) extract, after samples had been shaken on an orbital shaker for 2 h and settled for 1 h. Concentrations were determined using flame photometry.



Field Trial Under Sodic Soil Conditions

Based on the results from the second glasshouse experiment, eight genotypes (two salt sensitive, two moderately salt tolerant, and four salt tolerant) were chosen to grow in a field trial on sodic soil at Lockhart, NSW, Australia (35°14′27.46″ S, 146°48′11.07″ E) from May 2019 to January 2020. The field site was a slightly sodic red-brown loam soil, with 6% exchangeable Na+ percentage to 80 cm depth. The genotypes were sown using a disk seeder at a rate of 35 seeds/m2, in six rows per 2 m × 12 m plot, in three blocks using a randomized complete block design. During sowing MAP (60 kg/ha) and Granam (50 kg/ha) fertilizers were applied. Normal agronomic practices were followed during the season. The trial received 245 mm of rainfall during the growth season, well below the average rainfall for this period of 413 mm.

At 48 DAS, plant count (per meter) and vigor (1–9 scale) observations were recorded. Once plots were machine harvested, seed yield (tons/hectare) was obtained and yield (g/plant) was calculated using final plant counts. Salinity rankings were determined by comparing the eight genotypes to each other, with classification at 48 DAS based on a combination of plant count and vigor.



Statistical Analysis

The salt tolerance of safflower genotypes was calculated using a salt tolerance index (STI; Negrão et al., 2016), based on the ESB of a genotype under control (bc) and salt treatments (bs), using the formula: STI = bs/bc. Plant were grouped as strongly salt sensitive, salt sensitive, salt tolerant, or strongly salt tolerant based on STI, in a similar method to Ahmad et al. (2013). Salt sensitive genotypes were broken into two further classes, as strongly salt sensitive genotypes had a 50–95% reduction in biomass under salt treatment, while salt sensitive genotypes had 10–49% reductions in biomass. Salt tolerant genotypes were also further classified into two classes, with salt tolerant genotypes maintaining growth under salt treatment, with a 10–20% leeway either side, while strongly salt tolerant genotypes had over 10% increases in biomass production. Pearson’s correlation coefficient and t-tests were performed to assess the relationship between digital biomass-related indices and ion-content indices from the second experiment. Similar to STI, other indices were calculated for digital traits; digital volume index (DVI), convex hull index (CHAI), plant height index (PHI), and salt tolerance index derived from manual dry biomass (STI-DB). Ion content changes and ratios were also calculated, i.e., the change in Na+ content in the third and fourth leaves (Na+ third and fourth), the change in Na+ content in the first and second youngest leaves (Na+ first and second), the K+ to Na+ ratio at 250 mM treatment in the third and fourth leaves (K+/Na+ third and fourth), and the K+ to Na+ ratio at 250 mM treatment in the first and second youngest leaves (K+/Na+ first and second).



RESULTS


Analysis of Safflower Growth Using Digital Imaging

The effects salt treatments had on safflower plant growth is illustrated in Figure 1, with reduced biomass production, especially at 250 and 350 mM. A week after salt treatment was applied, ESB growth curves for the four treatments began to noticeably separate, with significantly large differences noticeable from 29 DAS onward (Figure 1B). Very strong correlations were observed between ESB and shoot fresh (R2 = 0.978) and dry (R2 = 0.925) weights, with separation between control, 125 and 250/350 mM plants (Figures 2A,B). When comparing biomass from 200 diverse safflower genotypes grown in the second experiment, strong correlations were observed between ESB and shoot fresh (R2 = 0.828) or dry (R2 = 0.725) weights (Supplementary Figure 1). ESB showed significant differences in biomass between treatments (Figure 2C), in a similar trend to fresh biomass of all four genotypes (Figure 2D, solid black line). Variation in biomass production between genotypes (Figure 2D), likely explained some overlap between groups in Figures 2A,B.
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FIGURE 2. Measured and estimated shoot biomass in safflower genotypes at four salt (NaCl) concentrations from first experiment. (A) Correlation between estimated shoot biomass and fresh biomass and (B) dry biomass harvested at 36 days after sowing. (C) Estimated shoot biomass accumulation for all genotypes at the four salt concentrations. (D) Fresh biomass at the four salt concentrations for the four safflower genotypes and average of all genotypes. Data represents mean and standard deviation. n = 96. Different letter (a,b,c) indicate a significant difference (P < 0.05) for fresh biomass at different salt level.




Defining Salinity Stress Levels in Safflower

The first experiment used four safflower genotypes grown under four salt treatments (0, 125, 250, and 350 mM) to define the salt stress levels for further phenotyping in safflower. Saline solutions were applied to the saucer to prevent salt shock, and ensure the middle level of pots, where roots were most concentrated, reached the defined salt concentrations (Supplementary Figure 2). Control plants (0 mM) showed considerable growth at 36 DAS, with expected very low Na+ and high K+ concentrations (Figures 1, 3). While plants at 125 mM had a mild drop in biomass, there was still overlap in both fresh and dry biomass with control plants, due to genotypic variation (Figures 2A,B). Plants at 350 mM suffered a significantly severe drop in biomass compared to control plants for all genotypes and showed signs of necrosis (Figures 1A, 2C). This correlated to the highest uptakes of Na+ and large drops in K+ severely effecting the K+/Na+ ratio (Figure 3). Significant differences between genotypes were observed, with genotype Montola2003 the most affected, taking up the highest or second highest concentrations of Na+, and lowest levels of K+ at both 250 and 350 mM treatments (Figure 3). While plants grown at 250 mM, also showed significant drops in biomass, and had high Na+ concentrations, differences could be seen between genotypes without plants health being severely affected (Figures 1–3). These results demonstrated that 125, 250, and 350 mM showed mild, moderate, and severe effects on safflower growth. Therefore, 250 mM NaCl was chosen for further experiments, to ensure differences could be identified between diverse genotypes.
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FIGURE 3. Ion contents in third and fourth leaves of four safflower genotypes under four salt (NaCl) treatments from first experiment. (A) Sodium content, (B) potassium content, and (C) K+/Na+ ratio in third and fourth leaves of four safflower genotypes at 36 days after sowing.




Comparative Performance of Diverse Safflower Genotypes

A moderate correlation (R2 = 0.769; r = 0.604) was observed between the STI calculated using ESB and dry biomass (Figure 4A and Supplementary Figure 3). High correlations were observed between STI-ESB and DVI (r = 0.957), CHAI (r = 0.939), and PHI (0.963). STI-DB had significant, moderate correlations with the same traits (Supplementary Figure 3). Based on the STI-ESB, all 200 genotypes were classified as either salt tolerant or salt sensitive. 65 genotypes essentially maintained biomass or increased biomass production under salt treatment, while 135 genotypes suffered biomass loss under saline conditions (Figure 4B). The change in biomass production between the two treatments is shown in Figure 4C. Interestingly, genotypes which performed best under control conditions were the most salt sensitive. The classification of genotypes based on STI-ESB corresponds with changes in ion content. Overall, salt tolerant genotypes maintained low or had only slight increases in Na+ content in both the second and youngest leaf pairs, coupled with the maintenance or small K+ reductions in both leaf sets (Figures 5, 6). However, salt sensitive genotypes showed moderate to very large increases in Na+ content in both the second and youngest leaf pairs, as well as large decreases in K+ in the second leaf pair (Figures 5, 6). To further elucidate the biomass and ion content trends associated with safflower salt sensitivity or tolerance, genotypes were further divided into four groups based on STI; strongly salt sensitive, salt sensitive, salt tolerant, strongly salt tolerant (examples in Figure 7), which corresponded to leaf Na+ and K+ levels. Strongly salt sensitive genotypes had large reductions in biomass, corresponding to extremely high Na+ in the second leaf pair, relatively high Na+ content in the youngest leaves, and large decreases in K+ content in the second leaf pair (Figure 6). Salt sensitive genotypes showed similar trends, with high Na+ content and lower K+ content in the second leaf pair but only a small rise in Na+ content in the youngest leaf pair (Figure 6). Salt tolerant genotypes had a moderately high Na+ content and a moderate decrease in K+ in the second leaf pair, with only a small rise in Na+ content in the youngest leaf pair (Figure 6). Strongly salt tolerant genotypes had a moderate rise in Na+ levels and a small decrease in K+ in the second leaf pair, with almost no differences to control plants in the youngest leaf pair (Figure 6). Interestingly, the change in Na+ content in the first and second youngest leaves shown moderately low correlations with biomass based trait indices STI-ESB (r = 0.238), CHAI (r = 0.334), and STI-DB (r = 0.264), while change in Na+ content in the third and fourth leaves, showed no correlation to any traits (Supplementary Figure 3). The performance of example genotypes for each of the four STI-based classifications are given in Figure 7.
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FIGURE 4. Changes in shoot biomass between control and salt (NaCl) treatments for 200 diverse safflower genotypes. (A) Correlation between estimated biomass and dry biomass salt tolerance index. (B) Boxplots showing spread of estimated shoot biomass data for safflower genotypes classified as salt tolerant (blue) or salt sensitive (yellow) based on dry biomass salt tolerance index. Boxplot plots represent minimum, maximum and mean values as well as interquartile range and outliers. (C) Estimated shoot biomass under control (0 mM) and salt (250 mM) treatments for 200 diverse safflower genotypes. Black – all genotypes; blue – salt tolerant genotypes n = 65; and yellow – salt sensitive genotypes n = 135.
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FIGURE 5. Changes in sodium and potassium leaf content between control and salt (NaCl) treatments for 200 diverse safflower genotypes. (A) Sodium content of safflower genotypes under control (0 mM) or salt (250 mM) treatments; sodium content of the third and fourth leaves in the upper panel and sodium content of the first and second youngest expanded leaves in the lower panel. (B) Potassium content of safflower genotypes under control (0 mM) or salt (250 mM) treatments; potassium content of the third and fourth leaves in the upper panel and potassium content of the first and second youngest expanded leaves in the lower panel. Black – all genotypes; blue – salt tolerant genotypes; and yellow – salt sensitive genotypes.
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FIGURE 6. Average sodium and potassium content in leaves for salt tolerant and salt sensitive safflower genotypes under control and salt (NaCl) treatments. Sodium content of significantly salt tolerant, salt tolerant, salt sensitive and significantly salt sensitive genotypes for (A) third and fourth leaves and (C) first and second youngest expanded leaves under control (0 mM; green) and salt (250 mM, pink) treatments. Potassium content of strongly salt tolerant, salt tolerant, salt sensitive, and strongly salt sensitive genotypes for (B) third and fourth leaves and (D) first and second youngest expanded leaves under control (0 mM; green) and salt (250 mM, pink) treatments.
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FIGURE 7. Performance of the four classes of safflower genotypes under control and salt (NaCl) treatments. Processed images and dry biomass salt tolerance index (STI) of genotypes under control (0 mM) and salt (250 mM) treatments, representing the four classes of genotypes; strongly salt sensitive (STI < 0.5), salt sensitive (STI 0.5–0.8), salt tolerant (0.8–1.1), and strongly salt tolerant (>1.1).




Field Evaluation of Eight Genotypes

To understand if the salt tolerance or sensitivity classifications determined using glasshouse-based phenotyping showed any correlation to performance in the field, eight genotypes, classified as salt sensitive, moderately salt tolerant or salt tolerant, were grown under sodic field conditions. During the field trial, at 48 DAS (two leaf pairs fully emerged), genotypes were ranked into the three salt tolerance categories based on a combination of plant establishment observations, counts, and vigor scores. Observations taken in the field at 48 DAS, were equivalent to those taken when plants were approximately 20 DAS under glasshouse environments, when plants also had two leaf pairs fully emerged. From the establishment observations, five genotypes were found to maintain the same ranking at 48 DAS between field and glasshouse experiments, one found to perform better and two performed worse (Table 1). Based on seed yield results, five genotypes maintained ranking, one performed better and two performed worse (Table 1). While some genotypes (i.e., S317, Sironaria, AVS-SAFF-228, and AVS-SAFF-56) maintained salinity ranking across their full lifecycles, other genotypes (SIGMA46 and AVS-SAFF-247) were found to differ majorly in salt tolerance between young plants and yield in the field experiment.


TABLE 1. Performance of safflower genotypes grown under sodic field conditions compared to performance in glasshouse.
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DISCUSSION

Increasing salt tolerance will play an important role in improving the growth, development, and yields of crops grown on the ever increasing areas of saline soils and reopening cropping opportunities on salinized lands (Ivushkin et al., 2019). Modern breeding efforts, which have identified different salt tolerance mechanisms (Munns and Tester, 2008; Roy et al., 2014), rely on innovative and high-throughput genotyping and phenotyping platforms to identify tolerant germplasm. Historically, conventional phenotyping for salt tolerance often involved hydroponic set-ups, manual Na+ measurements, and destructive harvesting (Munns and James, 2003; Genc et al., 2007; Javed et al., 2014).

Therefore, the integration of technology which can improve cost and time efficiencies, such as image-based, non-destructive phenotypic sensors, is key to improving crop breeding programs (Fahlgren et al., 2015). Image-based phenotyping has been used in previous salinity studies to dissect tolerance mechanisms and screen germplasm in pulses (Atieno et al., 2017) and a range of cereals (Krishnamurthy et al., 2007; Hairmansis et al., 2014; Takahashi et al., 2015; Tilbrook et al., 2017). In this study, we report a novel protocol for high-throughput, image-based salt tolerance screening of safflower, during early vegetative stages, allowing for the rapid phenotyping of large germplasm populations. Repetitive, non-destructive phenotypic measurements have previously been demonstrated to enable analysis of plant traits across growth stages, through the mapping of growth curves (Meng et al., 2017; Das Choudhury et al., 2018; Nguyen et al., 2018, 2019). Our results show that overall, high-throughput image-based phenotyping techniques can be used to screen large germplasm populations, and identify candidate genotypes for further field evaluations. This protocol fits with previous research which has also demonstrated that early vegetative screens can provide insight into the performance and yield of germplasm at later stages (Krishnamurthy et al., 2007; Meng et al., 2017) or under stresses (Nguyen et al., 2019; Banerjee et al., 2020).

From RGB images captured during high-throughput phenotyping in this study, plant biomarker ESB was calculated over the 20 day imaging period for each genotype. High linear correlations were found between ESB, and plant fresh and dry biomass, similar to those seen in other crops (Golzarian et al., 2011; Hairmansis et al., 2014; Nguyen et al., 2018; Banerjee et al., 2020). This suggests that ESB can be effectively used to estimate fresh and dry biomass, obviating the need for destructive harvesting. Biomass at vegetative stages, under abiotic stresses, have been shown to highly correlate to biomass production at maturity, illustrating that performance in vegetative screens is a good indicator of performance at yield (Nguyen et al., 2019; Banerjee et al., 2020). Biomass-based traits show high narrow-sense heritability, although they are controlled by additive gene effects, and strong links to yield performance, making them strong selection parameters in early vegetative screens (Moragues et al., 2006; Golkar, 2011; Yeilaghi et al., 2015). Therefore, since biomass-based parameters, ESB, fresh or dry weights, and STIs, are determining factors of salt tolerance, the selection of genotypes, based on these traits could be highly effective under saline conditions (Golkar, 2011; Yeilaghi et al., 2015).

Previous work on safflower has shown little change in growth parameters below 100 mM Na+, with large reductions in biomass seen above 150 mM (Harrathi et al., 2013; Singh et al., 2013; Gengmao et al., 2015), although young seedlings are more sensitive at lower concentrations (Kaya et al., 2003, 2019; Ghazizade et al., 2012). In the first experiment plants grown under 125 mM NaCl were shown to have a 50% decrease in plant biomass (PH and digital volume), across all genotypes, as well as increased shoot Na+ and decreased shoot K+ levels. Meanwhile, 250 and 350 mM Na+ had moderate to severe effects on plant growth (nearly 75% biomass drop), with higher increases in shoot Na+, decreases in K+, and extremely low K+/Na+ ratios. These findings align with the characteristics of safflower as a moderately salt tolerant crop, with 50% biomass loss, at 125 mM NaCl (12.5 dS/m), and severely impacted growth at 250 mM (25 dS/m) and 350 mM (35 dS/m; Janardhan et al., 1986; Maas, 1993; Kotuby-Amancher et al., 2000). Interestingly, genotypic variation was mainly seen in the higher NaCl treatments supporting the idea that to identify stress tolerance variation in populations of diverse germplasm, moderate to severe stress conditions are ideal.

Plants respond and adapt to Na+ toxicity in a myriad of ways which can be categorized as either shoot ion independent or shoot ion dependent pathways. Shoot ion independent tolerance involves the rapid regulation of long-distance sensing and signaling of salt stress, triggering responses, including the reduction of growth, and production of protective osmolytes and secondary metabolites to regulate osmotic and leaf water potentials (Munns and Tester, 2008; Roy et al., 2014; Hussain et al., 2016). Shoot ion dependent tolerance mechanisms come into effect days after initial stress and revolve around the movement of Na+ across membranes. Ion exclusion pathways operate in the roots and vascular system, moving and removing Na+, either completely out of plants at the root surface or removing it from circulating to sensitive tissues (Munns and Tester, 2008; Roy et al., 2014). Tissue tolerance, the sequestrations of Na+ into the vacuole from the cytosol and synthesis of compatible solutes, allows plants to deal with Na+ which has reached leaf tissue (Munns and Tester, 2008; Roy et al., 2014). The above mechanisms are not mutually exclusive, but rather the dominance of each tolerance mechanisms switches under different circumstances (Roy et al., 2014; Hussain et al., 2016).

Safflower appears to have strong osmotic tolerance mechanisms when grown in environments with less than 100 mM Na+, being able to synthesis a range of compatible solutes and secondary metabolites for osmotic adjustments and preservation of leaf water potential (Singh et al., 2013; Javed et al., 2014; Gengmao et al., 2015; Hussain et al., 2016). At higher salinity levels, safflower seems to rely on ion exclusion and tissue tolerance mechanisms. Safflower roots have been shown to sequester high concentrations of Na+ and Cl– in the roots, suggesting that safflower is able to partition toxic ions away from sensitive leaf tissue (Patil, 2012; Karimi et al., 2014). In this study, Na+ accumulation increased with the salt concentration, with genotypic differences more prominent at 250 and 350 mM, i.e., S317 accumulating lower Na+ and higher K+ than other varieties. This fits with previous research showing that while Na+ accumulation in safflower leaves increased with stress levels, salt tolerance was linked to genotypes which uptake less Na+ and more K+ compared to sensitive genotypes (Hosseini et al., 2010; Harrathi et al., 2013; Karimi et al., 2014; Yeilaghi et al., 2015).

To allow for further dissection of the likely salt tolerance mechanisms used by safflower, the diverse safflower population was divided into four classes of tolerance or sensitivity based on their STI-ESB. While no significant differences were seen between groups, due to the variation in responses to salt between genotypes, clear trends were observed as follows: salt tolerant and strongly salt tolerant genotypes tend to produce moderate biomass under control conditions and were able to maintain or produce higher biomass production under salt stress; salt sensitive and strongly salt sensitive genotypes suffered severe reductions in biomass under salt stress, although interestingly some of the more sensitive genotypes were the best performing of all genotypes under control conditions. This demonstrates why germplasm selected only in control condition screens, will often produce poor performance in more realistic stress environments (Rosielle and Hamblin, 1981).

Due to the complex nature of salt tolerance responses, ion accumulation has been reported as both connected (Yeilaghi et al., 2015) and detached from growth parameters (Genc et al., 2007; Tilbrook et al., 2017). Although individual genotypes had different ion accumulation profiles, clear trends for each of the four salt tolerance or sensitivity classes were identified, which matched their biomass production. Genotypes from all classes had very little differences in Na+ uptake under control conditions, although K+ accumulation differed, which may explain some of the differences in growth, as K+ is a macronutrient vital for plant growth. Tolerant genotypes, which produced more biomass under 250 mM NaCl conditions, typically showed low levels of Na+ accumulation and only a small decrease in K+ in the second leaf pair, as well as very little change in accumulation of either Na+ or K+ in the youngest leaf pair. Salt tolerant genotypes, which maintained biomass at 250 mM NaCl, show similar uptake patterns, although more Na+ was accumulated in both leaf pairs. These results, as well as the significant low correlations between biomass indices and Na+ in the youngest leaves, suggest salt tolerance in safflower is dependent on ion exclusion, especially in the youngest growing tissue, likely resulting in strong root tolerance and exclusion mechanisms. These genotypes also maintained a higher K+/Na+ratio in both leaf pairs, consistent with the behavior of other salt tolerance genotypes identified in previous studies (Hosseini et al., 2010; Karimi et al., 2014; Yeilaghi et al., 2015).

Salt sensitive genotypes, which showed moderate reductions in biomass at 250 mM NaCl, accumulated even more Na+ and less K+ in the second leaf pair, although they maintained similar ion content in the youngest leaf pair as salt tolerant plants. These genotypes likely had a reduced ability to exclude Na+ from leaf tissue. Strongly salt sensitive genotypes, which had the largest reductions in biomass at 250 mM NaCl, showed the highest Na+ accumulation in both leaf pairs, as well as the lowest K+ uptake in the second leaf pair. These genotypes likely have poor abilities to excluded Na+ throughout the plant, but especially in leaf tissue. Overall, results suggest that salt tolerance in safflower at high salt concentrations, is highly dependent on the exclusion of Na+ from all shoot tissue, likely through transport proteins including SOS1 and NHX1 (Munns and Tester, 2008; Roy et al., 2014; Shaki et al., 2019), allowing biomass production to continue at near normal rates. Tolerance in safflower is also likely achieved through strong osmotic tolerance mechanisms, including changing the composition profile of sugars (Javed et al., 2014; Gengmao et al., 2015), antioxidants (Hosseini et al., 2010; Yuldasheva et al., 2011), osmolytes (Karimi et al., 2014; Gengmao et al., 2015), and fatty acids (Yuldasheva et al., 2011; Yeilaghi et al., 2012; Harrathi et al., 2013; Javed et al., 2014).

Continuing from the glasshouse studies conducted in this study, eight genotypes representing three of the classes (salt sensitive, salt tolerant/moderately salt tolerant, and strongly salt tolerant/salt tolerant) were grown in a field trial with sodic soil conditions. Interestingly, five of the eight genotypes in field experiment performed in a similar or only slightly different manner when compared to their glasshouse performance. Three genotypes, Sironaria, S317 and AVS-SAFF-56, had consistent performance in both glasshouse and field conditions based on biomass, vigor, and yield scores. Previous studies have shown performance consistencies between glasshouse and field screens (Schilling et al., 2014; Pardo et al., 2015; Peirone et al., 2018). The salt tolerance of other genotypes, SIGMA46, AVS-SAFF-247, and AVS-SAFF-18, varied depending on the stage of development in the field, often showing reduced vigor, but comparatively higher yields. Differences in performance between glasshouse and field are likely due to environmental factors, such as the presence of salt at germination, and soil environment differences due to the sodic nature of the site, which have been known to affect safflower growth (Kaya et al., 2003; Ghazizade et al., 2012; Severino et al., 2014). Inconsistent performance between glasshouse and field studies has been documented, due to variations in competition, environmental factors, inconsistent stress application, and soil type (Araus and Cairns, 2014; Junker et al., 2014). Vegetative phenotypic screens, like those performed in this study, can therefore be useful indicators of the likely salt tolerance of genotypes and their potential performance under field conditions.



CONCLUSION

In conclusion, the vegetative screening method presented here demonstrates the use of biomass-based salt tolerance indices in explaining the salt tolerance of safflower genotypes and predict their performance under field conditions. Our findings show that high-throughput digital RGB imaging can be used to effectively differentiate salt tolerant and salt sensitive safflower genotypes. Here, we also demonstrate that at high salt concentrations, safflower relies on Na+ exclusion and maintenance of K+/Na+ ratios to infer salt tolerance. Consistent performance of a few representative genotypes under both glasshouse and field conditions demonstrated that this protocol, and vegetative screens in general, can be useful in predicting potential performance under field conditions. Further research is needed to elucidate the potential for vegetative screening protocols to predict potential field performance. This protocol provides a robust assessment tool for safflower populations, enabling the rapid identification of candidate germplasm to enhance salt tolerance.
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Wheat blast is a threat to global wheat production, and limited blast-resistant cultivars are available. The current estimations of wheat spike blast severity rely on human assessments, but this technique could have limitations. Reliable visual disease estimations paired with Red Green Blue (RGB) images of wheat spike blast can be used to train deep convolutional neural networks (CNN) for disease severity (DS) classification. Inter-rater agreement analysis was used to measure the reliability of who collected and classified data obtained under controlled conditions. We then trained CNN models to classify wheat spike blast severity. Inter-rater agreement analysis showed high accuracy and low bias before model training. Results showed that the CNN models trained provide a promising approach to classify images in the three wheat blast severity categories. However, the models trained on non-matured and matured spikes images showing the highest precision, recall, and F1 score when classifying the images. The high classification accuracy could serve as a basis to facilitate wheat spike blast phenotyping in the future.

Keywords: wheat blast, convolutional neural networks, inter-rater agreement, severity classification, plant disease phenotyping, breeding, deep learning, controlled conditions


INTRODUCTION

Wheat blast is an emergent disease caused by the Ascomycetous fungus Magnaporthe oryzae Triticum (MoT). MoT was first detected in Brazil in 1985, with successive spread to Bolivia, Paraguay, and Argentina (Igarashi et al., 1986; Barea and Toledo, 1996; Viedma, 2005; Cabrera and Gutiérrez, 2007; Perello et al., 2015). In 2016, a wheat blast outbreak was first reported in Bangladesh, apparently due to the unintended importation of MoT-infected South American grain (Aman, 2016; Malaker et al., 2016). Many countries in South Asia are actively monitoring wheat fields for the presence of MoT (Bhattacharya and Pal, 2017; Mottaleb et al., 2018). In 2020, MoT presence was reported in Zambia, Africa, which summates another continent to the list (Tembo et al., 2020). Cruz et al. (2016b) predicted areas at risk in the United States (southern and pacific northwest states) for MoT establishment and the threat of this pathogen to soft- and hard-red winter wheat production.

MoT can infect leaves, stems, and seeds, although the most remarkable and studied symptoms are associated with the spike (Igarashi et al., 1986; Cruz et al., 2015; Cruz and Valent, 2017; Ceresini et al., 2019). The infection by MoT of the spike, spikelets, or rachis causes the wheat spike blast, inducing partial or complete bleaching of the spikes (Igarashi, 1986). Infection can cause shriveled grain reducing the grain quality and yield. A wide range of disease intensities can occur depending on the susceptibility of cultivars planted and the prevalent weather conditions (Goulart and Paiva, 1992).

Warm temperatures, excessive rain, long and frequent spike wetness, and limited fungicide efficacy exacerbate the intensity of wheat blast epidemics, especially in susceptible cultivars (Goulart et al., 2007). The optimum conditions for wheat blast development include a temperature range between 25 and 30°C and spike surface wetness between 25 and 40 h (based on controlled conditions) (Cardoso et al., 2008). Under conducive field conditions, the fungus can kill up to 100% of susceptible wheat spikes in a period of 2.5–3 weeks (Gongora-Canul et al., 2020).

Since 1985, when wheat spike blast was first detected, intense efforts have been undertaken to identify resistance (Igarashi et al., 1986; Urashima et al., 2004; Prestes et al., 2007; Cruz et al., 2016b; Ceresini et al., 2019; Cruppe et al., 2020). Recently, two new genes, Rmg8 and RmgGR119, were found to generate resistance to wheat blast (Wang et al., 2018). However, the only currently effective resistance provided by the 2NVS translocation from Aegilops ventricosa (Tausch) confers useful yet partial and environment and/or genetic background-dependent resistance to wheat blast (Cruz et al., 2016a; Valent, 2016; Cruppe et al., 2019, 2020). Obtaining tissue samples from phenotyped wheat entries and testing for the presence or absence of the 2NVS segment is relatively easy and routine (Cruz et al., 2016b; Yasuhara-Bell et al., 2018; Cruppe et al., 2019). Although there is evidence that 2NVS-based resistance may be overcome, additional sources of wheat spike blast resistance should be identified (Cruz et al., 2016b; Cruppe et al., 2019, 2020; Juliana et al., 2020). Thus, there is a continued need to find new sources of resistance to wheat blast.

Plant disease estimations, or phytopathometry, refer to the measurement and quantification of plant disease severity (DS)or incidence that is essential when studying and analyzing diseases at organ, plant, or population levels (Large, 1966; Bock et al., 2010). Plant disease estimations by human raters are the standard method used for plant disease phenotyping. Humans are trained to perform visual disease evaluations of incidence and severity, and their reliability can be improved with experience. These estimations are helpful, but they are subjective evaluations that can introduce variability and can be time-consuming and labor-intensive (Nutter et al., 1993; Madden et al., 2007; Bock et al., 2010, 2020). Due to issues associated with an agreement in data acquisition, inter-rater agreement among other statistical tests can be used to compare the consensus or agreement between estimations of raters of DS (Nutter et al., 1993; Madden et al., 2007; Bock et al., 2010, 2020). These agreement analyses are relevant in plant pathology and plant breeding since inaccurate disease estimations can cause imprecision and unreliability leading to incorrect conclusions (Chiang et al., 2016; Singh et al., 2021).

A bottleneck in the identification of novel sources of resistance is measuring disease intensity (i.e., plant disease phenotyping), which is considered a limiting factor in the assessment of genotype performance in plant breeding programs (Mahlein, 2015; Shakoor et al., 2017). Therefore, innovative and transformative solutions for the quantification of plant disease symptoms at the individual and host population levels are needed (Camargo and Smith, 2009; Kumar et al., 2020). Implementation of advanced computer vision and machine learning techniques could reduce the phenotyping bottleneck during breeding and enhance the understanding of genotype–phenotype relationships (Fiorani and Schurr, 2013; Kruse et al., 2014; Shakoor et al., 2017; Yang et al., 2020; Singh et al., 2021).

Computer vision, machine learning, and deep learning methods have recently been adapted to agriculture due to increased knowledge of algorithms and model capabilities that can learn and make predictions from images Red Green Blue (RGB), multispectral, or hyperspectral (Barbedo, 2016; Kersting et al., 2016; Mahlein et al., 2018). There are two ways in which these models are trained, one is supervised learning, which depends on an annotated dataset, and another is unsupervised learning, which does not rely on annotations (Mahlein et al., 2018). The most frequently used deep learning methods are the Convolutional Neural Networks (CNN). The CNN is characterized by high-accuracy metrics for image recognition and image segmentation. Recent studies have further enhanced the scope of a deep-learning-based approach for classifying, identifying, and quantifying plant diseases (Mahlein et al., 2018; Singh et al., 2018; Barbedo, 2019).

A variety of CNN classification models are available for plant diseases. These include models for bacterial pustule (Xanthomonas axonopodis pv. glycines), sudden death syndrome (SDS, Fusarium virguliforme), Septoria brown spot (Septoria glycines), bacterial blight (Pseudomonas savastanoi pv. glycinea), and several abiotic stresses in soybean (Ghosal et al., 2018). In tomato (Solanum lycopersicum), deep-learning models were developed with and without pre-training models with images from nine leaf tomato diseases from the website www.PlantVillage.org, obtaining better performance using pre-training models (Brahimi et al., 2018). A total of 54,306 leaf images from several crops with 26 diseases were obtained from PlantVillage.org and trained using AlexNet and GoogleLeNet pre-trained models with a leaf-segmented dataset, obtaining an accuracy of 99.35% (Mohanty et al., 2016). On wheat, an in-field automatic diagnosis system for powdery mildew (Blumeria graminis f. sp. tritici), smut (Urocystis agropyri), leaf blotch (Septoria tritici), black chaff (Xanthomonas campestris pv. undulosa), stripe rust (Puccinia striiformis f. sp. tritici), and leaf rust (Puccinia recondita f. sp. tritici) were developed using deep-learning, and multiple instances–learning techniques from the Wheat Disease Database 2017 (Lu et al., 2017). Although this database is a significant contribution to wheat disease identification based on images, aspects regarding the reliability of the labeler may be compromised (Lobet, 2017). It is appropriate that detection and quantification studies of plant disease provide evidence of (“true”) estimation agreement analysis before using the labeled images as a dataset for training deep-learning models. Currently, phenotyping of wheat spike blast DS relies on a visual estimation made by humans (Cruz et al., 2016a). We hypothesized that deep CNN models can be trained for wheat spike blast severity image classification under a controlled environment. To test this hypothesis, we focused on the following objectives:

(i) Evaluate the agreement in data acquisition of the human rater who collected and classified datasets.

(ii) Develop an accurate deep CNN model to detect and classify wheat spike blast symptoms in three severity categories.



MATERIALS AND METHODS


Ethics

A written informed consent was obtained from the individual for the publication of any potentially identifiable images or data included in this article.



Plant Cultivation and Genetic Materials

Two experiments were conducted under controlled conditions in a growth room at the Asociación de Productores de Oleaginosas y Trigo (ANAPO) research facility in Santa Cruz de la Sierra, Bolivia. Wheat cultivars were planted in pots of 15 cm diameter, filled with vermicast:silt (3:1 [v/v]), and grown at 18−25°C, 14 h light/10 h dark photoperiod, and 50–60% relative humidity. Plants were fertilized, and insecticides were sprayed when needed. Plants were arranged in a randomized complete block design with wheat cultivars having various levels of resistance to MoT, two inoculation levels (inoculated and non-inoculated), and four replicates. Wheat cultivars with a range of sensitivity to the wheat blast were used for the experiments. Experiment one included Bobwhite and South American spring cultivars Atlax, BR-18, Motacú, Urubó, AN-120, Sossego, and San Pablo and for experiment two the cultivars included BR-18, San Pablo, Bobwhite, and Atlax (Baldelomar et al., 2015; Fernández-Campos et al., 2020).



Inoculation

Plants were inoculated at the growth-stage Feekes 10.5, when the spike had completely emerged, with MoT isolate 008-C (Figure 1A), according to a modified inoculation protocol previously published (Cruz et al., 2016a). A conidial suspension was adjusted to 20,000 spores/ml, and each spike received 1 ml of the spore suspension. Immediately after the spikes were sprayed with the MoT inoculum, plants were moved to a dew chamber (Figure 1B) to induce MoT infection (i.e., 24–26°C, 95–98% RH, and 14 h light photoperiod). Forty-eight hours after inoculation, plants were removed from the dew chamber and left under controlled environment room conditions [(24–26°C and relative humidity of 50–60%), until day 19 after inoculation; Figure 1B].


[image: Figure 1]
FIGURE 1. Wheat blast image collection flow process: (A) Magnaphorthe oryzae pathotype Triticum inoculation, (B) After inoculation, plants were moved to the yellow dew chamber that provided optimal conditions for fungal infection for 48 h, later transfer to the black trays, (C) wheat spike imaging set up, and (D) an image was captured perpendicular to the spike.




Data Collection, DS, and Disease Measurements

Following phytopathometry terminology, we used the term “estimate” for visual disease estimations made by humans and the term “measurement” for estimations made by image analysis (Bock et al., 2010; Gongora-Canul et al., 2020). Visual estimate of DS was obtained by observing the disease area covered in the spike and assigned a corresponding severity value from 0 to 100%. In this study, image analysis disease measurements were achieved by manually measuring spike disease area (pixels) using RGB color threshold segmentation with the image analysis software Fiji ImageJ v.1.52a (Schindelin et al., 2012; Sibiya and Sumbwanyambe, 2019). First, the measurement of the total spike area was obtained, then the diseased area was measured. Finally, the percentage of diseased severity (DS) of the individual spike was calculated (Equation 1), where ADiseased is the proportion of the area of spike that is diseased divided by the total area of the spike ATotal (See Video 1 in Supplementary Material).
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Visual estimations of wheat spike blast symptoms were taken seven times after inoculation in each experiment. In experiment one, visual estimations and images were collected 4, 6, 9, 12, 14, 16, and 19 days after inoculation (DAI) and in experiment two, 0, 5, 7, 10, 12, 14, and 19 DAI. Each spike side (four sides total) was visually estimated for DS by Rater 1 (a plant pathologist with experience on wheat blast, rice blast, and other diseases). Simultaneously, an image from each spike side was captured perpendicular to the spike with a distance of 50 cm approximately with a DSLR EOS 6D Canon camera (Canon Inc., Tokyo, Japan) (Figure 1D) using a photography studio set up with umbrellas, lights, and screens (Neewer 2.6 m × 3 m/8.5 ft × 10 ft Background Support System and 800 W 5,500 K Umbrellas Softbox Continuous Lighting Kit for Photo Studio Product) that helped create a uniform light and smooth environment (Figure 1C).



DS Categories

The total spike disease estimations of Rater 1 paired with the corresponding image were converted to a three-category scale according to the amount of severity that served to fed training and testing dataset of CNN model. The category selection was based on wheat blast results from published work conducted over the last decade (Baldelomar et al., 2015; Cruz et al., 2016b; Vales et al., 2018; Cruppe et al., 2020; Fernández-Campos et al., 2020). Category 1 (healthy spikes) was used as a baseline (i.e., negative control or fully immune). Category 2 showed 0.1–20% severity (resistant and moderately resistant/low levels of symptoms) corresponding to the selected putative population for successive trials under variable conditions (controlled environment or field). Category 3 showed 20.1–100% severity (moderately susceptible and susceptible/intermediate and high levels of symptoms) corresponding to the plant population that will not be selected for successive trials because of the high potential to be or to become susceptible to the disease studied (Figure 2).
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FIGURE 2. Examples of images per category: (A–D) healthy wheat spikes no disease (0% severity, Category 1); (E–H) spikes with moderate severity (0.1–20%, Category 2); and (I–L) spikes with high severity (20.1–100%, Category 3).




Testing Reliability of Rater 1: Inter-rater Analysis of Wheat Spike Blast Severity Estimations

Rater 1 played a critical role in estimating DS and classifying into categories of all the images belonging to Dataset 1 and Dataset 2 (Datasets are described in the section, generation of data sets according to wheat spike physiological changes). Therefore, an inter-rater analysis was needed to determine the reliability of visual estimations of Rater 1. Inter-rater agreement assesses the degree of agreement between two and more raters who obtain independent ratings about the characteristics of a set of subjects. Subjects of interest include people, things, or events that are rated (Madden et al., 2007; Everitt and Anders, 2010; Bock et al., 2020).

To determine the agreement of disease estimations of Rater 1, we performed an inter-rater analysis including a second-rater, and ImageJ was used as an image analysis software baseline. Rater 2, is a plant pathologist and expert in the wheat blast. ImageJ is an image analysis software used to measure plant diseases from images.

We used the power analysis Wilcoxon signed-rank test to determine the sample size for the inter-rater agreement studies of the two training datasets. The test consisted of DS estimations or measurements of 31 and 29 images from the CNN training Dataset 1 and training Dataset 2, respectively. From now on, the 31 images selected from Dataset 1 will be called sample Dataset 1 and the 29 images from Dataset 2 will be referred to as sample Dataset 2. Rater 2, who is an experienced researcher with more than 4 years of working with the wheat blast disease, visually estimated DS from the sample Dataset 1 and Dataset 2. Additionally, disease measurements were obtained from the sample Dataset 1 and the sample Dataset 2 using ImageJ software as indicated above. Ultimately, the DS results of visual disease estimations of human raters and ImageJ measurements were compared. The estimated and measured DS values from both samples were analyzed for inter-rater agreement in two scenarios, one with a scale of 0–100% DS (continuous data), and the other with the images divided into three categories of DS (ordinal data). We, therefore, computed Lin's Concordance Coefficient, Fleiss kappa, and weighted kappa statistics.

The Lin's concordance coefficient (ρc or CCC) is used to estimate the accuracy1 between two raters using continuous data. From the analysis, we obtained the estimation of accuracy1, precision1, and bias of the disease estimations and disease measurements between the two raters (Lin, 1989; Madden et al., 2007; Bock et al., 2010). For accuracy1 (ρc) and precision1 (r), values range from 0 to 1; values close to 1 indicate high accuracy1 and precision1. Bias (Cb) ranges from 0 to 1, and values close to 1 indicate less bias (Nita et al., 2003). Lin's concordance analysis was performed by using PROG REG ALL procedure on SAS v.9.4 (Cary, NC), based on the macro developed by Lawrence Lin and verified by Min Yang (Lin et al., 2002).

To determine the degree of association between the estimation of categorical information provided by the two raters (inter-rater agreement), the weighted kappa statistics were computed (Chmura, 1992; Graham and Jackson, 1993; Nelson and Edwards, 2015). The Fleiss kappa coefficient was used to compare the agreement of categorical information among all raters, (i.e., Rater 1, Rater 2, and ImageJ) (Fleiss et al., 2003). The values of both the weighted kappa and Fleiss kappa coefficients range from 0 to 1. Values from 0.5 to 1 indicate that the agreement is better than what is expected by chance (Nelson and Edwards, 2015; Tang et al., 2015; Mitani et al., 2017; Gamer et al., 2019). The Fleiss kappa statistics and weighted kappa were computed with the irr package of the R software (Team, 2017).



Generation of Datasets According to Wheat Spike Physiological Changes

Wheat was inoculated at the growth-stage Feekes 10.5 (spike completely emerged) of the host plant. Approximately every 2 days after the inoculation, the spike images were collected to capture the changes developed. Indirectly, progressive physiological changes in spikes were recorded, as maturing begins at wheat growth-stage Feekes10.5.4 (kernels watery ripe) and continues through the growth-stage Feekes 11.4 (mature kernels) (Large, 1954; Wise et al., 2011). During this period, the kernel hardened, and the green spike lose its color (maturing), which mimic the typically bleached spikes caused by wheat spike blast symptoms.

Two datasets were generated considering the (color) physiological changes that can lead to confusion when training the CNN model. Dataset 1, included maturing and non-matured wheat spikes; and Dataset 2 included only non-matured spikes (data available at: https://purr.purdue.edu/publications/3772/1). The proposed CNN model was trained using the two datasets. Each dataset was randomly separated into the training and testing datasets. The CNN model automatically extracted the features of each image in the training dataset to learn a good classifier, whereas the testing dataset was used to evaluate the performance of the trained CNN model. In general, an unseen dataset was applied to evaluate the CNN model to ensure that the model was not under-fitting or over-fitting. In this research, 80% of the images were categorized and used as the training set, and the remaining 20% as the testing set. Table 1 lists the original distribution of the number of images in Dataset 1 and Dataset 2. Although Category 3 covers a large variability, it does not mean the number of the data in Category 3 is larger than the other two categories. The number of images in each category was extremely imbalanced and using them indiscriminately could have resulted in a biased model. Fortunately, there are several viable methods to cope with the disproportionate training data in each category.


Table 1. Training and testing data distribution and the number of images used in Dataset 1 and Dataset 2.
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Data augmentation is a common technique providing a viable solution to data shortage issues by adding copies of original images with modification or noise (Boulent et al., 2019). Data augmentation was used in this study to balance the number of images in each category. In this study, images were randomly flipped horizontally and vertically in order to increase the number of images in Categories 2 and 3. Thus, for Dataset 1, training data were triplicated in Category 2 and quadrupled in Category 3 (Table 1). For Dataset 2, training data were quadrupled in Category 2 and quintupled in Category 3 (Table 1).



Deep CNN Model

In recent years, the feasibility of using artificial intelligence, in particular deep learning, has been expanded into a variety of applications (Atha and Jahanshahi, 2018; Chen and Jahanshahi, 2018; Kumar et al., 2018; Wu and Jahanshahi, 2019). Deep learning is a subset of machine learning that enables computers to automatically extract features from a huge amount of data and learn to classify data.

In this study, wheat spike blast symptoms were automatically detected and classified into three severity categories using a pre-trained CNN model. This model may be more efficient than classifying images visually. To obtain a general and reliable CNN model, the network needed to be trained using a large labeled training dataset. The performance of the CNN model is highly dependent on the number and quality of the training data. However, it was hard to collect a wheat blast dataset having a million images in a short time. The performance CNN model can easily lead to under- or over-fitting due to the lack of a large dataset for training. To address this issue, transfer learning was used as a practical solution where a network was trained using a typically different larger dataset such as ImageNet. A major advantage of using transfer learning is that it can adapt the parameters trained from an abundant number of images. Transfer learning starts with a pre-trained model, e.g., VGG16 model, and replaces the fully-connected (FC) layers of the model with new FC layers. A network trained on the ImageNet dataset was used to initialize the network parameters, and the whole network was fine-tuned since the nature of our dataset was very different from the ImageNet dataset. In this study, an FC layer that consisted of three nodes, representing three categories, were appended to the end of the network. A residual neural network architecture (ResNet101), a CNN model with 101 layers with recurrent connection trained on ImageNet data (He et al., 2015, 2016), was selected as the pre-trained model. Furthermore, as shown in Table 1, it was extremely difficult to obtain a large number of images in each category. An unbalanced dataset can result in a biased CNN model. To address this issue in the dataset, the loss function, which was used to optimize the parameter in a neural network, was transformed into a weighted loss function (Equation 2) by assigning individual weights to each category. Equation (2) defines the cross-entropy loss function in the CNN model, where ωcategory is the assigned weight to each of the categories, the first term in Equation (2) is a negative log-likelihood loss, and the second term in Equation (2) is log-softmax. Four cases of study were tested with an individual weight set to the loss functions assigned to different categories. In the experiments, “cases” refer to specific combinations of weight loss functions for each of the three DS categories (Table 2). Case 1 was the non-weight set [1, 1, 1], with all categories sharing the same class weight. Case 2 used [1, 10, 1] class weights in the loss function, meaning that the highest weight was for Category 2, which includes plants at early disease stages and low levels of disease symptoms. Case 3 used [2, 5, 1] class weights in the loss function, meaning that the higher weight was assigned to Categories 1 (no symptoms) and 2 (early stages and low levels of disease symptoms). Case 4 had class weights [2, 1, 1] in the loss function, assigning a higher weight to category 1 (no symptoms) (Table 2).
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The network was trained for 15 epochs using a stochastic gradient descent optimizer (Bottou, 2010), a learning rate of 0.0001 was used, and the batch size was 16. Additionally, 5-folds cross-validation was applied to the training process. The training took place on a Linux server with Ubuntu 14.04. The server included two Intel Xeon E5-2620 v4 CPUs, 256-GB DDR4 memories, and four NVIDIA Titan X Pascal GPUs. Pytorch (Paszke et al., 2017) was used to implement the CNN.


Table 2. Two datasets trained the CNN model with four cases of the study through different weights in loss functions for each category.
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Model Performance Evaluation

The performance of the CNN model was evaluated via the classified results of the testing dataset. A 3 × 3 confusion matrix was used to describe the prediction result of the model. Each row of the confusion matrix represented the ground truth of the data, and each matrix column corresponded to a predicted category by the CNN model. Thus, the diagonal elements of the matrix, called true positive (TP), were the number of wheat images correctly classified into the ground truth. The false positive (FP) for each Category was the sum of all errors in that column. For example, the FP of Category 1 was the number of Category 2 and Category 3 severities that were incorrectly classified as Category 1. Based on the confusion matrix, additional evaluation metrics were calculated.

Accuracy2 was defined as the total number of TP among three categories divided by the total number of the predictions. Precision2 was defined as the total number of the TP instances divided by the total number of predicted positive examples, which was the summation of TP and FP instances in the binary classification task (Equation 3). Similarly, the precision2 of the multi-classes task illustrates the number of instances that were correctly predicted given all the predicted labels for a given category. Recall was defined as the TP instance divided by all the positive samples (TP and FN) (Equation 4). F1 score is a single metric that encompasses both precision2 and recall (Equation 5). Accuracy2, precision2, recall, and F1 score metrics ranged from 0 to 1, where higher values indicate the high predictive ability of the model.

[image: image]

[image: image]

[image: image]




RESULTS


Cultivar Response to Wheat Spike Blast Under Controlled Conditions

The final wheat spike blast severity was at day 19 after inoculation when cultivar Atlax reached 100% average DS, followed by Bobwhite (99.7%), San Pablo (32.9%), BR-18 (8.7%), Motacú (3.7%), AN-120 (3.31%), Urubó (1.9%), and Sossego (0.83%). Wheat spike blast symptoms developed on all tested cultivars, with reactions to MoT infection consistent with previous reports, except for cultivar San Pablo that showed moderate susceptibility (Baldelomar et al., 2015; Cruz et al., 2016b; Cruppe et al., 2020; Fernández-Campos et al., 2020; Gongora-Canul et al., 2020). Cultivar Atlax exhibited the highest DS of all the cultivars and had a high level of susceptibility to wheat spike blast.



Inter-rater Agreement Analysis

The Lin's concordance correlation analysis showed a high accuracy1 (ρc = 0.89–0.91), high precision1 (r = 0.91–0.94), and less bias (Cb = 0.95–0.99) in the sample Dataset 2 than in the sample Dataset 1 (ρc = 0.77–0.85, precision1 r = 0.80–0.87, and bias Cb = 0.93–0.98) (Figure 3). In the sample Dataset 1, the highest accuracy1 was between Rater 1 and Rater 2 (ρc = 0.85) and between Rater 1 and ImageJ (ρc = 0.85). In the sample Dataset 2, the highest accuracy1 value was between Rater 1 and ImageJ (ρc = 0.92), followed by between Rater 1 and Rater 2 (ρc = 0.91). In both sample datasets, strong accuracy1, high precision1, and low bias involved Rater 1, providing evidence that ratings of disease based on continuous data were done correctly for further classification of the images into categories for model training.
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FIGURE 3. Regression analysis of wheat spike blast DS estimations made by Rater 1 (responsible to estimate the severity of total image dataset) vs. Rater 2 (expert in wheat blast) and ImageJ DS measurements (image analysis software). Graphs show accuracy (ρc), precision(r), bias (Cb), scale shift (ν), and location shift (u) for wheat spike blast continuous Dataset 1 (A–C) (n = 31 images) and Dataset 2 (D–F) (n = 29 images). (A) Disease estimation comparison from images Dataset 1 between Rater 1 and Rater 2. (B) Disease estimation and disease measurement comparison from images Dataset 1 between Rater 1 and ImageJ. (C) Disease estimation and disease measurement comparison from images Dataset 1 between Rater 2 and ImageJ. (D) Disease estimation comparison from images Dataset 2 between Rater 1 and Rater 2. (E) Disease estimation and disease measurement comparison from images Dataset 2 between Rater 1 and ImageJ. (F) Disease estimation and disease measurement comparison from images Dataset 2 between Rater 2 and ImageJ.


The weighted kappa statistics (κ), used to quantify inter-rater agreement, were higher in the sample Dataset 1 than in the sample Dataset 2, with κ = 0.72–0.88 (p < 0.01) and κ = 0.78–0.85 (p < 0.01), respectively (Table 3). In the sample Dataset 1, the highest agreement occurred between Rater 1 and ImageJ (κ = 0.88), and in the sample Dataset 2, the highest agreement was between Rater 1 and Rater 2 (κ = 0.85). In both sample datasets, the substantial agreement involved the ground truth (Rater 1), providing evidence that ratings were done correctly for further classification of the images into categories for model training.


Table 3. Values of weighted Kappa (κ) analysis for inter-rater agreement between raters and ImageJ in Dataset 1 (maturing and non-matured spikes) and Dataset 2 (non-matured spikes) of wheat spike blast under controlled environment.
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The Fleiss kappa coefficient (Fκ), which compared the association of ordinal categorical information of two or more raters, showed an Fκ = 0.771 (n = 31, z = 9.26, p < 0.001) for the sample Dataset 1 and 0.697 (n = 29, z = 8.1, p < 0.001) for the sample Dataset 2, indicating substantial agreement among the human raters and ImageJ in both datasets. However, the sample Dataset 1 possessed a higher Fleiss kappa coefficient index than the sample Dataset 2, both presented substantial agreement between the rates and ImageJ. Yet, the evidence supported the fact that the three raters correctly estimated the amount of the disease from the same image.



Deep CNNs Model Performance

To train the proposed CNN model, two different datasets were used. As mentioned above in the section Generation of Datasets According to Wheat Spike Physiological Changes, testing reliability of Rater 1, Dataset 1 included matured and non-matured wheat spikes and Dataset 2 included only non-matured spikes (Table 1). Four cases applied different weight set of loss functions in both Datasets (Table 2, Supplementary Figures 1, 2). The performance of the CNN model was evaluated via the classified result of the testing data.

The testing accuracy2 of the model trained with Dataset 1 was 90.1% in Case 1, 90.4% in Case 2, 90.0% in Case 3, and 87.7% in Case 4. The testing accuracy2 of Dataset 2 was 98.4% in Case 1, 93.9% in Case 2, 95.0% in Case 3, and 94.2% in Case 4. Dataset 2 presented higher accuracy2 values compared to Dataset 1, suggesting that the model was accurate. However, it was not sufficient to claim that the model was reliable based on accuracy2 alone since the dataset in this study was unbalanced. In addition to accuracy2, other metrics can help evaluate the performance of the CNN model, such as precision2, recall, and F1 score.

Precision2 indicates the ability to correctly classify an instance in all predicted positive instances. The focus was on the performance of the CNN model in Category 2 as this was the category that breeders and pathologists will concentrate on for breeding purposes. Dataset 1 Case 2 showed the lowest precision2 (75.4%) among all cases values (Table 4). Moreover, the confusion matrix of Dataset 1 Case 2 showed that the model misclassified 38 images of Category 1 (no symptoms) as Category 2 (early disease stages and low levels of disease symptoms), which was the highest number of wrongly classified images among all the cases (Figure 4B). This suggested that the class weight of Category 2 might be too high since its misclassified images that belonged to other categories as Category 2. Hence, the class weight combination was modified by lowering the weight in Category 2 and increasing the weight in Category 1 as to not overemphasize the impact from Category 2. Precision2 of Category 2 significantly increased from 75.4% in Case 2 to 84.1% in Case 3, and to 85.0% in Case 4 (Table 4). In Case 2, precision2 of Category 2 significantly increased from 75.4% in Dataset 1 to 90.2% in Dataset 2 (Table 4). Precision2 of Category 2 significantly increased from 90.2% in Case 2 to 92.7% in Case 3 and from 90.2% in Case 2 to 94.1% in Case 4 (Table 4).


Table 4. Classification performance of the CNN model when classifying the testing set of Dataset 1 (maturing and non-matured spikes) and Dataset 2 (non-matured spikes) in the cases of the study presented different weights in the loss function [weight in Category 1, weight in Category 2, weight in Category 3].
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FIGURE 4. Confusion matrix of the images of Dataset 1 (non-matured spikes only) showing “true” categories by Rater 1 (y-axis) and predicted categories by the CNN model (x-axis). Category 1: contained images with 0% severity, Category 2: 0.1–20% severity, Category 3: 20.1–100% severity. The cases of study presented different weights in the loss function [weight in Category 1, weight in Category 2, weight in Category 3]. (A) Case 1 [1, 1, 1], (B) Case 2 [1, 10, 1], (C) Case 3 [2, 5, 1], and (D) Case 4 [2, 1, 1]. Values and color intensity represent number of images.


The recall metric for evaluating the CNN model that indicates the ability to correctly recognize a category was also used. In datasets 1 and 2, the recall of Category 2 was the lowest, illustrating the challenge of the model to classify images of Category 2 (early disease stages and low levels of disease symptoms) (Table 4). The highest recall of Dataset 1 Category 2 was 86.0% in Case 2, and the lowest was 74.2% in Case 1 (Table 4). This was expected given that Case 2 had a higher weight in the loss function of Category 2 compared to Case 1 (non-weighted loss function). In Case 2, Dataset 1, the recall values were similar among the three categories (Table 4). In Dataset 2 Category 2, the lowest recall was 75.0% in Case 1, and the highest recall was 84.2% in cases 2 and 3 (Table 4). The model in these two cases had the highest weight in loss function of Category 2 (early disease stages and low levels of disease symptoms).

F1 score is a common indicator of the overall performance of the CNN model. In datasets 1 and 2, the F1 score of Category 2 was the lowest, reaffirming the difficulty of classifying images of Category 2 by the model (Table 4). The lowest F1 score of Dataset 1 Category 2, was 79.3% in Case 1, while the highest was 82% in both Case 3 and Case 4 (Table 4). In Dataset 2 Category 2, the lowest F1 score was 82.6% in Case 1, and the highest F1 score was 88.2% in Case 3 followed by Case 2 with 87.1% (Table 4).

A comparison of outcomes revealed that Category 2 was the most difficult category to classify correctly (Figure 4). This difficulty was attributed to the disease symptoms being barely visible at the early stage of infection, and some wheat spikes in Category 1 were maturing, and their color was similar to that of MoT infected spikes. We observed that the highest number of images exactly classified as Category 2 was obtained with the Case 2 Dataset 1 (Figure 4B). These results suggested that Case 2 was the most appropriate to classify wheat spike blast images in Dataset 1 because it was capable of detecting the infection at an early stage. Even though Case 2 had a slightly lower precision, this is considered the usual trade-off between precision2 and recall for disease classification purposes. The recall, precision2, and F1 score increased after the images of maturing spikes were omitted when training the model with Dataset 2 (Figure 5). The cases 2 and 3 of Dataset 2 presented the highest number of images exactly classified as Category 2 (Figures 5B,C). Cases 2 and 3 were the most appropriate to detect the wheat spike blast in Dataset 2 because the model was capable of detecting the infection in the early stages. Additionally, in all the cases, the model was more stable predicting Category 3, which is relevant because it covers DS from 20.1 to 100%, potentially aiding breeders and pathologists to discern higher levels of susceptibility among cultivars. Although the CNN model misclassified some images of Category 2, it still provided a promising approach to classify the severity of the disease. It demonstrated that the CNN model is potentially a good method for breeders and pathologists.


[image: Figure 5]
FIGURE 5. Confusion matrix of the images of Dataset 2 (non-matured spikes only) showing “true” categories by Rater 1 (y-axis) and the predicted categories by the CNN model (x-axis). Category 1: contained images with 0% severity, Category 2: 0.1–20% severity, Category 3: 20.1–100% severity. The cases of study presented different weights in the loss function [weight in Category 1, weight in Category 2, and weight in Category 3]. (A) Case 1 [1, 1, 1], (B) Case 2 [1, 10, 1], (C) Case 3 [2, 5, 1], and (D) Case 4 [2, 1, 1]. Values and color intensity represent number of images.





DISCUSSION

Wheat blast is spreading worldwide, the identification of durable and broad-spectrum resistance is urgently needed (Valent et al., 2021). There are a few known sources of effective resistance, and therefore it is crucial to identify more genetic resources. Plant disease phenotyping is a bottleneck in the identification of novel sources of resistance. We developed the first deep CNNs model for wheat spike blast phenotyping under controlled environment.

This study results demonstrated that the agreement between disease estimations and disease measurements was more significant than what could have been expected to occur by chance. Rater 1 (a pathologist with expertise in multiple diseases besides blast) consistently obtained the higher kappa coefficient (substantial agreement), higher accuracy, and lower bias in all the performed analyses than disease estimations of an expert (Rater 2) in the wheat blast and the disease measurements of ImageJ software. These results are relevant because Rater 1 estimated the DS and classified the entire image dataset into three categories. Therefore, the agreement analysis supports an accurate classification of the images before they were used to train and test the CNN model. The inter-rater agreement analysis also showed that accuracy, precision, and bias are highly dependent on the nature of the dataset. Dataset 1 included images showing disease symptoms and natural plant physiological changes. However, although Dataset 2 was preferred due to higher concordance, results showed that DS assessments among raters were never perfect.

In the present study, the applicability of CNNs for wheat spike blast severity classification from spring wheat images was investigated. Currently, the CNN approach can classify three severity levels (0%, 0.1–20%, and 20.1–100% severity) and was trained using a reliable wheat spike blast dataset. The advantage of this three categories CNN model is that it detects the infected wheat spike and provides further information on the corresponding blast severity level. It is useful to have such a model to classify different infection levels and identify the resistant cultivars from the susceptible ones. Despite the wheat blast dataset comprising of imbalanced data that could have led to a biased CNN model, two techniques, including data augmentation and weighted loss function, were applied to the training process. The loss function is a function map of the difference between the ground truth and predicted output of the model. The importance of a category with a larger error can be enhanced by assigning a weighted variable in the loss function. The results indicate that the performance of the model has a significant improvement when the weighted loss function is applied. In particular, the model has gained the ability to detect Category 2 using a weighted loss function. These encouraging results demonstrate that the proposed CNN model can distinguish Category 1 and Category 2 even though there is a relatively little difference between both the categories. More significant, the CNN could classify the images of Category 3 with low error, which contained infected spikes with severities higher than 20%.

The results showed that the CNN models trained in both datasets (Fernandez-Campos et al., 2021) presented good performance classifying the wheat spike blast images in the corresponding severity categories. However, the models trained without images of wheat maturing spikes showed higher precision2, recall, and F1 score when classifying the images than the models trained with maturing and not matured wheat spikes. The performance of the model trained with maturing and non-matured spikes is a critical finding from a biological/physiological point of view. These symptoms on spikes are often reported when wheat has reached the medium milk-to-dough growth stage (Cruz et al., 2016b). The reason why the rating is often stopped at the milk-to-dough stage is that from that point forward, physiological maturity starts to kick in. Our findings will serve to provide future and explicit guidelines to potential users of the preferred model. Users will need to acknowledge the natural wheat maturity process (which alters spike color from green to yellow/white), which can confuse the CNN model. This statement applies when phenotyping for wheat blast or similar diseases with symptoms characterized by spike bleaching [e.g., Fusarium graminearum (Fusarium head blight)].

Different software based on image analysis are currently available to measure DS (Lamari, 2002; Vale et al., 2003). We used ImageJ, a free image-processing software, and manually thresholded images to measure wheat spike blast severity. de Melo et al. (2020) indicated the inevitable error when delineating the disease area with image analysis software (Bock et al., 2008). This is a challenge that future research needs to address when disease symptoms are not well-defined.

Researchers could benefit from the proposed approach promising for wheat spike blast severity measurements under controlled environmental conditions. Results are supported by a substantial agreement with “true” data obtained from Rater 1, compared against disease estimations of Rater 2, and disease measurements of ImageJ. In collaboration with data scientists, breeders could pre-select wheat cultivars under controlled environments by automatically analyzing and classifying images using the wheat spike blast CNN model preferably trained with Dataset 2. Next, the breeders can focus on the cultivars that fall into categories 1 and 2, which in general terms, are considered resistant or moderately resistant. This may reduce the high number of cultivars tested under field conditions, accelerating the cultivar screening process. A limitation of the study is that the CNN was trained to classify only images of wheat spike blast (spring wheat) under controlled conditions. Further research is required to improve the generalizability of the CNN model using a greater wheat spike blast dataset consisting of controlled and field images. In addition, the results in this study show an opportunity that could be applied similar to other pathogens.

The next step in this research is to validate the model with other images with a similar background and deploy it in a Web application. This future option might allow breeders and pathologists to submit their images and have the model classify them by categories automatically. As more images of various cultivars infected with different isolates can be added to the dataset, increasing symptom variability, a more refined and robust model can be developed. To our knowledge, this is the first study presenting a deep CNN model trained to detect and classify wheat spike blast symptoms. The model might help in the pre-screening of wheat cultivars against the blast fungus under controlled conditions in the future.
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The root system plays an essential role in the development and physiology of the plant, as well as in its response to various stresses. However, it is often insufficiently studied, mainly because it is difficult to visualize. For grapevine, a plant of major economic interest, there is a growing need to study the root system, in particular to assess its resistance to biotic and abiotic stresses, understand the decline that may affect it, and identify new ecofriendly production systems. In this context, we have evaluated and compared three distinct growing methods (hydroponics, plane, and cylindric rhizotrons) in order to describe relevant architectural root traits of grapevine cuttings (mode of grapevine propagation), and also two 2D- (hydroponics and rhizotron) and one 3D- (neutron tomography) imaging techniques for visualization and quantification of roots. We observed that hydroponics tubes are a system easy to implement but do not allow the direct quantification of root traits over time, conversely to 2D imaging in rhizotron. We demonstrated that neutron tomography is relevant to quantify the root volume. We have also produced a new automated analysis method of digital photographs, adapted for identifying adventitious roots as a feature of root architecture in rhizotrons. This method integrates image segmentation, skeletonization, detection of adventitious root skeleton, and adventitious root reconstruction. Although this study was targeted to grapevine, most of the results obtained could be extended to other plants propagated by cuttings. Image analysis methods could also be adapted to characterization of the root system from seedlings.

Keywords: root system architecture, root traits, grapevine, phenotyping, rhizotron, neutron tomography, 2D/3D imaging


INTRODUCTION

Roots provide essential functions including the uptake of water and nutrients (Gregory et al., 2009; Hammond et al., 2009; Lynch and Brown, 2012) for plant growth. They serve as storage organs (C and N principally), anchor the plants to the soil, produce hormones involved in development and response to stress and are the site of interactions with pathogenic, and beneficial organisms in the rhizosphere (Richards, 1983; Gregory, 2006; De Herralde et al., 2010). Root system is a complex three-dimensional (3D) structure exhibiting a specific spatial and temporal configuration of root types. The spatial distribution of all root parts, in a particular growth environment, is collectively referred to as Root System Architecture (RSA). RSA is dynamic and affected by the external environment. Roots indeed sense and respond to abiotic and biotic stresses (Malamy, 2005), and are able to communicate with the aboveground plants parts via signaling pathways, for example via hormones. In this context, studying the root system is fundamental to understand the global behavior of the plant (Smit et al., 2000). Moreover, studying the plasticity of root growth and development in response to abiotic and biotic factors provides opportunities for exploring natural adaptation and identifying beneficial root traits to enhance plant productivity in agricultural systems (Lynch, 1995; Kano et al., 2011; Grossman and Rice, 2012).

As the root system is complex to study in natural environment, it is necessary to have adapted devices under controlled conditions. Roots are hidden in most growth matrices, so destructive methods are generally used to evaluate root biomass at the end of experiments (Mugnai et al., 2008). Specific devices are required to investigate the distribution and dynamics of roots, as well as to evaluate their functioning. Containerized assay methods have facilitated such approaches in a smaller and reproducible manner. They include agar plates, hydroponics, paper roll methods, thin soil filled chambers (rhizotrons), soil filled tubes, large soil boxes, and field screens (Chen et al., 2015; Paez-Garcia et al., 2015, for review). Moreover, 3D imaging of the root system can be done by using X-ray computed tomography, magnetic resonance imaging or neutron tomography (Leitner et al., 2014; Metzner et al., 2015; as example). Hydroponics is one of the methods allowing growing plants without soil, hence potentially facilitating root observation (Conn et al., 2013; Mathieu et al., 2015). This method is easy to use and generally low cost, which gives it significant advantages. Rhizotron systems artificially restrict root growth to two dimensions only. They are subterranean rooms, laboratories, or plane containers with clear glass or plastic window to expose the soil for root visualization. Although they are very expensive to build and maintain, they provide a way of studying root systems throughout time, in a non-destructive way. Rhizotrons are widely used in root research as they provide an easy way to observe the growth and development of a large number of plants in a soil-like substrate (Chen et al., 2015) and allow a fine analysis of soil-root relationships. However, they do not allow the 3D growth and visualization of RSA. Over the last decade, various non-invasive imaging methods with higher spatial resolution have been developed to study 3D root development in soil with infiltration processes: magnetic resonance imaging (MRI) (Segal et al., 2008; Van As and van Duynhoven, 2013), X-ray computed tomography (CT) (Mooney et al., 2012; Metzner et al., 2015), or neutron tomography (Matsushima et al., 2008; Moradi et al., 2011).

Image-based methods (e.g., relying on the use of scanners or cameras) are mostly used for measuring the size, architecture, and other structural shoot and root traits. They allow hundreds of plants to be daily phenotyped, given the short time required for image acquisition (Clark et al., 2013; Adu et al., 2014; Le Marié et al., 2014; Slovak et al., 2014). Several software packages have been developed for root imaging and extracting quantitative data from captured images. ImageJ is an open source Java-based image analysis program, which is customizable with a variety of macros and plugins available, some of them written specifically for plant phenotyping applications. This program has been used, for example, in the IJ-Rhizo (Pierret et al., 2013) and SmartRoot software (Lobet et al., 2011). The Plant Image Analysis web site1 (Lobet et al., 2013) provides an on-line database and imaging solutions, commercial as well as open sources, for analyzing biology of plants. It provides a complete overview of existing software for root image analysis. Some of these tools require manual inputs from the user such as selecting points or tracing lines on the root, while others are automatic or semi-automatic. The most popular methods in root image processing are summarized in Table 1, according to the root characteristics requested in our study.


TABLE 1. Summary of currently available tools and the proposed method, for analysis of root images and the respective traits provided.

[image: Table 1]Identification of roots (adventitious and/or lateral) as distinct objects is an important goal for quantifying plant responses to various abiotic stresses including water stress and nutrient deficiency. For example, changes in nitrate and phosphate availability were found to have contrasting effects on primary root length and lateral root density, but similar effects on lateral root length (Linkohr et al., 2002). Most of the existing softwares can separate the primary roots from lateral ones, but with semi-automatic or manual methods (Lobet et al., 2013). Thus, they cannot be used efficiently for high-throughput usage in a root phenotyping pipeline. On the other hand, solutions such as ARIA, EZ-Rhizo, and RNQS were designed to analyze the roots of seedlings displayed in 2D scans (Pace et al., 2014; Remmler et al., 2014). The RNQS method requires to take out the plants from their pots and to clean them manually, which can result in slight plant destruction and thus in loss of data. Moreover, for adult plants, the root system can be anarchic and very complex, so it requires a more robust and refined method of analysis, and especially for the identification of adventitious roots. The different growing plant methods available for root imaging have advantages and limits. Their choice will depend on several factors, including the specific root traits of interest, degree of precision, desired timescale for sampling, infrastructure capacity, and costs.

The present study was focused on grapevine, (Vitis vinifera L.), a crop with high economic value facing major problems, and especially water stress associated with climate change. Viticulture also requires the development of more ecofriendly production systems. Identifying solutions to these problems and addressing this issue require experimentation in controlled conditions, integrating the root system. This is also needed for an increasing number of studies focused on the impact of biotic and abiotic stresses on vine development and physiology. Grapevine is propagated by cuttings (Waite et al., 2015). Roots arising from cuttings are called adventitious roots from which additional lateral roots are branching off. Such cutting process, associated with the possibility of using different genotypes of rootstock, impacts the development of its root system (Swanepoel and Southey, 1989). In this context, we have evaluated and compared three distinct methods allowing the study of architectural root traits of grapevine cuttings. We have evaluated two 2D- (hydroponics and rhizotron) and one 3D- (neutron tomography) imaging techniques for visualization and quantification of roots. We have also developed a robust and novel Matlab script for the automated high-throughput and high-resolution analysis of roots growing in rhizotron. Although this study was focused on grapevine the results obtained will be of interest for scientists working on other plants, especially those obtained from cuttings.



MATERIALS AND METHODS


Grapevine Culture

For all cultivation methods, V. vinifera L. cv. Marselan (Cabernet sauvignon × Grenache) cuttings were obtained from herbaceous mother parents, as previously published (Trouvelot et al., 2008). Without further specification, herbaceous cuttings were always maintained in greenhouses at 23°C/15°C (day/night), under a 16-hour light photoperiod during all the experiment. To assess whether the cultivation system was suitable for grapevine rooting, the mortality rate was measured. It was based on the number of cuttings displaying necrosis signs developing on cutting ends and aborted growth of root and aerial parts, after 4 weeks of cultivation.


In Hydroponics Tube for 2D Imaging

Hydroponics tubes consist on cap-free 50 mL Falcon® tubes. Each tube received 50 mL of tap water, was wrapped in aluminum foil and was then closed on top by a piece of holed Parafilm®, through which an unrooted cutting (cut 7 cm down from the bud) was placed. A maximum of thirty tubes were held vertically on an empty seed starting tray and then placed in a polypropylene mini-greenhouse (56 × 36 × 25 cm, Botanic, France), with water at the bottom to keep a saturated humidity environment. This growing system, as the others, is illustrated in Figure 1A and its characteristics are presented in Table 2. Four weeks after the beginning of the experiments, cuttings were removed from the tubes and several parameters were determined: shoot height, fresh and dry weights of shoots and roots.


[image: image]

FIGURE 1. Overview of the different devices, growing conditions and image acquisition / analysis process. Grapevine herbaceous cuttings (cv. Marselan) were placed in three devices (top line: “Visualization of growing conditions”): (A) hydroponics tubes, (B) rhizotrons, and (C) aluminum cylinder for neutron tomography. They were then grown in greenhouse conditions and, depending on the method, some RSA parameters could be phenotyped. Quantitative parameters (i.e., projected root area) could be measured by image reconstruction and analysis (bottom line: “image acquisition/reconstruction”).



TABLE 2. Comparison of the three devices assessed: hydroponic tubes, 2D-rhizotron, and neutron tomography.

[image: Table 2]


In Rhizotron for 2D Imaging

The rhizotron system was based on the Rhizotube® design (Jeudy et al., 2016) except the fact that it was not cylindrical. Its characteristics are presented in Table 2. As it is a plane structure, placing directly an unrooted cutting in the device causes serious rhizogenesis difficulties. Moreover, placing cuttings that were pre-rooted in a pot causes their partial destruction as they developed in different directions. Rhizogenesis therefore needs to be carried out beforehand in a plane container to constrain newly formed roots to pre-adopt a 2D architecture. In this way, trials in rhizotrons were conducted in a two steps procedure (Figure 1B). In a first step, intermediary manufactured “mini-rhizotrons” (outer dimensions 8 × 8 × 3 cm; inner dimensions 6 × 7 × 1 cm) with substrate (peat/perlite, 3/2, v/v) were used for rhizogenesis. Grapevine cuttings (4–5 cm long down from the bud) were placed in “mini-rhizotrons” and grown during 4 weeks in a mini-greenhouse with saturated humidity, and watered daily to keep the substrate moist. At the end of this period, the grapevine cuttings were directly transferred in the final rhizotrons (step 2) as follows. The rhizotron is a methyl polymethacrylate structure (44 × 51.5 × 3 cm, laser cut by Lasertec, Arcelot, France) with two compartments separated with a blue nylon membrane (Jeudy et al., 2016): one for substrate filling (black plexiglas for the backside), and one dedicated for root growth (transparent plate for the frontside). In the first compartment, 2.8 L of substrate (peat/perlite, 3/2) were first spread and homogeneously pressed at the surface, in order to avoid irregularities in compaction. After the nylon membrane was placed, the 4-weeks old rooted cuttings were removed from the “mini-rhizotron,” roots were carefully washed with water before being positioned directly on the membrane (one cutting per rhizotron). Then the transparent plate was screwed on the device. An opacifier (dark polyvinyl chloride cover) was clipped on the outer face in order to avoid light exposure of the root system, and lastly, a small plastic bag was placed on the aerial part of the cutting in order to maintain humidity during the 1 week of recovery. Plants were automatically irrigated with two dripper tubes placed on both sides of the cutting, delivering in total 100 mL per irrigation time, three times a day, with nutritive solution (N/P/K 10-10-10, PlantIn, France) twice a week, and with same amount of tap water the rest of the week. Five weeks after the beginning of the experiments, cuttings were removed from the rhizotron and several parameters were determined: height of the shoot, fresh and dry weights of shoots and roots.



In Aluminum Cylinder for 3D Imaging

Since experiments performed with a natural soil present a too small contrast between roots and soil (Oswald et al., 2008; Moradi et al., 2009), fine sand was used as substrate for 3D neutron imaging (Figure 1C). Aluminum tubes (height of 80 mm and diameter of 22 mm, so volume around 30 ml) were then filled with aquarium sand (grain size 1 mm, Botanic SDS – IBP Archamps, France). As sand does not well keep humidity, it was difficult for the cuttings to take root in that context. Therefore cuttings of 4–5 cm long were pre-rooted in plugs of peat (2 × 4 cm Fertiss, Fertil SAS Boulogne Billancourt, France), for 3 weeks under saturated humidity, before being transferred in the aluminum cylinder with sand, and watered daily to keep the substrate moist. The tube is mounted on a 3D printed base that keeps it stable during culture and acquisition periods (Figure 1C). The characteristics of this system are presented in Table 2.



Imaging of Grapevine Roots


2D Imaging for Rhizotron and Adventitious Root Detection

The first image acquisition was run 4 days after transferring the cutting from the mini-rhizotron to the final rhizotron – a time period needed to guarantee correct plant recovery after transfer. This latter was checked by the presence of at least 1 cm long newly formed root and the presence of condensation in the plastic bag surrounding the cutting (witnessing foliar evapotranspiration). Image acquisition was realized by scanning the rhizotron directly through the transparent Plexiglas, using a scanner at 300 dpi (EPSON GT-15000, Seiko Epson Corp., Japan). As dimensions of the device were larger than the maximum area available on the scanner, the upper part and the lower part of the device were scanned in two halves. A common band area between the two images helped us to merge them numerically using a recomposition algorithm specifically developed to obtain a single image from two different ones. This algorithm is based in SIFT algorithm (Scale Invariant Feature Transform) (Lowe, 2004) which allows to extract key points using the RGB (Red, Green, and Blue) information. Ransac (Random Sample Consensus) (Fischler and Bolles, 1981) was also used on calculating homographies between both images. For the unfavorable cases (unperfectly flat), the discrepancy was around one pixel. Acquisitions were made every week for 5 weeks on 4 plants per replication, and experiments were repeated 3 times.

Merged images (Figure 2A) were then processed newly in a 4 steps image processing (Figure 2) resulting in: (1) segmentation, (2) skeletonization, (3) adventitious root identification, and (4) reconstruction of the adventitious root. The goal of image segmentation is to transform the images in order to facilitate their analysis to obtain more information. Here, we only used the Otsu’s method (Otsu, 1979), which is efficient in our study and fully automatic. In computer vision and image processing, this method is used to automatically perform clustering-based image thresholding or the reduction of a gray level image to a binary image. The algorithm assumes that the image contains two classes of pixels following bi-modal histogram (foreground pixels and background pixels). Otsu’s method is roughly a one-dimensional, discrete analog of Fisher’s Discriminant Analysis. Thus, this method of segmentation by thresholding allowed us to obtain a binary image with two classes: a white part which represents “Roots” and the black part which represents the background (Figure 2B).


[image: image]

FIGURE 2. Summary of the different steps allowing the detection of the adventitious roots from the images acquired from the rhizotrons. The original image (A) firstly undergoes segmentation, which allows us to obtain a binary image (B). Root skeletonization (C). For each pixel in a digital binary image, 8 neighborhoods of a pixel P are defined: 4 points in direct direction and 4 other ones in diagonal direction (Da). Different points on the skeleton can be distinguished: the endpoints (b–e), the junction points (f and g) and the normal points (h–j). Points detection (E). Identification of the adventitious root (F). Reconstruction of the adventitious root (G). Example of image of the “pruned” root (a). Histogram of the vertical radius of the right part of the root (b) thresholds (Th1 = lower threshold, Th2 = upper threshold) around a peak (c). Final image of the adventitious root without lateral information (H).


The method of skeletonization by homotopic thinning (Iwanowski and Soille, 2007) has then been used. This method consists to look for the iterative erosion of the boundary of the object until obtaining a thin figure. At each step, the voxels whose deletion does not modify the topology of the object are cleared. The root skeleton obtained using this method is presented in Figure 2C. For each pixel in a digital binary image, the 8 neighborhoods of a pixel P are defined as follows: 4 points in direct direction (P2, P4, P6, and P8) and 4 in diagonal direction (P1, P3, P5, and P7; Figure 2Da). To search for the skeleton representing each adventitious root, lateral root or nodule, it is necessary to determine the type of each point on a morphological skeleton. In such a skeleton, three classes of points can be distinguished: the endpoints (Figures 2Db–e), the junction points (Figures 2Df,g), and the normal points (Figures 2Dh–j). In standard image processing, an endpoint in the skeleton of a binary image is an active pixel (gray pixel) that has only one active pixel in its neighborhood as shown in Figures 2Db,c) and 6 other possibilities in 45° rotation each time (Zhang and Suen, 1984). In addition, due to the natural root characteristics and the complexity of the skeleton image, the points of the Figures 2Dd,e were also defined as endpoints in our study (Lü and Wang, 1986). Normal points must have at least 2 pixels in their 8 neighborhoods, and up to 3 or 4 pixels. Once the different points categories were defined, a specific and new method has been developed to determine the class of a point which checks the successive changes of the active and inactive pixels to the 8-neighborhood (in binary image, it is the change between 0 and 1; Figure 2E). It consists in checking the successive change of the active and inactive pixels in 8-neighborhood (for a binary image, it is the change between 0 and 1). We check this change from P1 to P8 clockwise (Ch1∼Ch7), as well as between P8 and P1(Ch8). For example: if P1 = active goes to P2 = inactive or P1 = inactive goes to P2 = active, we note the change in pixels Ch = 1 (Figure 2E).

Once all the points have been identified and classified, a new method of identifying the adventitious root is proposed, called by the authors “Ascending Path.” The program starts from the bottom of the root, traveling in the upstream direction of the whole adventitious root, and finishes at the beginning of the root, regarding local image processing. This innovative method makes it possible to determine automatically the skeleton of the adventitious root (Figure 2F) and consists on the following steps:

(1) The starting point is determined with the lowest point and the breakpoint with the highest point in the skeleton image of the root.

(2) The program starts with the starting point, applying the ascending method, always taking the direction that goes up when it arrives at a crossing while traveling the skeleton. The indicator of this crossing is a junction point with at least 3 branches of different directions.

(3) To define the starting point and the breakpoint, as well as the recognition of the junction point, it is necessary to use the method of detecting the type of point presented above and tied to the Figure 2E.

The adventitious root can then be reconstructed from the identified skeleton in order to eliminate the lateral roots that are located on it. From the obtained skeleton of the adventitious root and, for each pixel, by examining each side (left and right) of the root mask bisected by the skeleton, our method reaches the boundary of the two classes (black and white) in a binary image, that is to say the change between 0 and 1, and with an accuracy of 1 pixel. An example of image of the adventitious root without lateral ones (i.e., deprived of them) is presented in Figure 2Ga. At each side of the adventitious root we can see the beginning of the lateral roots and of the potential nodules, and inside the adventitious root, the skeleton. The adventitious root was next cut in two parts from the skeleton in order to obtain a kind of histogram (for the right side Figure 2Gb). Each peak corresponds to the presence of a lateral root or a nodule, their classification depending on three parameters: height of peak, width of the peak, and area. Then, a low-pass filter was applied between the two thresholds (Figure 2Gc), considering the amplitude of each peak, repeating this step when there was no peak. Finally, an image was obtained which almost represents the adventitious root without lateral information (Figure 2H), with the same diameter as the original adventitious root. Images were acquired weekly, on 4 rhizotrons per replication, and experiments were repeated three times.



2D Imaging for Hydroponic Tubes

Image acquisition started 1 week after the system was set up. Aluminum foils were removed and tubes were placed on a holder, in front of a black background. Images were acquired under natural light, by a camera (Sony DSC-HX60), placed on a tripod. Acquisitions were made every week for 4 weeks on 10 plants per replication, and experiments were repeated three times. Images were analyzed with the same method used for the rhizotron, described in the previous paragraph.



3D Imaging by Neutron Tomography

The experiments were performed on the neutron imaging station, IMAGINE (Ott et al., 2015) at the French national neutron facility, the Léon Brillouin Laboratory, located at Saclay, France. The neutron-generating source is the ORPHEE reactor. The detector is constituted of a 50 μm gadolinium scintillator (RC Tritec, 2014) coupled to a Neo sCMOS (ANDOR) camera equipped with a sCMOS sensor (size of 16.6 mm × 14.0 mm, 2560 × 2160 pixels, so 5.5 Mpx). The size of one pixel is 6.5 μm × 6.5 μm. To reduce the noise, the camera was cooled down to −30°C. The camera was equipped with a 35 mm objective (Canon EF 35 mm f/2.0 IS USM). The sample holder was positioned at 5 cm away from the scintillator on a rotating table which allowed collecting 180 images in increments of 1°. Exposure time used for image acquisition was 80 s and ten images (with this exposure time) of open beam were collected for data normalization.

Every collected image was initially analyzed by Image J 1.48 (Abràmoff et al., 2004). We firstly cropped the image to select the object of interest (sample holder with the roots) and reduced the size of the data to analyze. We also used this software in order to remove noise (despeckle command) and white points due to gamma rays (remove outliers command, radius of 2 px; threshold of 50), to normalize the images by the open beam, and to correct the eventual tilt of the object of interest. Exported images were saved in.tiff format.

Octopus 8.7 (Octopus Imaging, Inside Matters, Belgium) was used to reconstruct the 3D image. This software allowed a last filtering step to remove rings due to scattering phenomena and building sinograms. Then, the reconstruction was realized, recording the output images in 32 bit. At the end of this step, the intensity values were set up between 0 and 1. After reconstruction with Octopus, a stack of 1074 slides (from the top to the bottom of the sample holder) was cropped and re-scaled (50%) on Image J. The Avizo Fire 9.2 (FEI, Hillsboro, Oregon, United States) software was then used to visualize the 3D volume. The quantification of the pixels corresponding to the roots on entire stack of reconstructed slides has been performed with the toolbox particle analysis of the Image J 1.48 software.



RESULTS


Grapevine Root Traits Observed in Hydroponics Tubes

Unrooted grapevine herbaceous cuttings could develop easily in this culture system for 4 weeks. Indeed, the mortality observed during these experiments was low, evaluated between 3 and 5%. With hydroponics tubes, it was easy to visually follow the early root development of the cuttings over time (Figure 3), including the rhizogenesis. After 4 weeks of culture, roots occupied all the space available in the tube and the experiment had to be stopped. At this final time, the young plant could be recovered without injuring its root system, and different root traits such as the number of primary roots, average length of the adventitious roots could be observed. At this stage and in our experiment conditions, the root system weighed on average 388 ± 178 and 32 ± 16 mg in fresh and dry weight (±standard deviation from 3 biological repetitions), respectively.
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FIGURE 3. Grapevine herbaceous cutting growth and development in a hydroponic tube over time (i.e., weeks after diving an unrooted cutting into water). Cap-free Falcon® tubes filled with water were closed on top by a piece of holed Parafilm®, through which an unrooted cutting was placed. Tubes were held vertically on an empty seed starting tray. The four pictures show the development of the root system for 4 weeks (1 image per week).


The same algorithm as the one developed initially for the 2D-rhizotron system was then used to analyze the pictures acquired over time with the color camera for hydroponics tubes. Conversely, to 2D-rhizotron system, it was not possible to draw reliable data. Indeed, the fact that roots were immersed in a liquid and the container was cylindrical generated deformations in the images thereby acquired in 2D. To avoid the problem of cylindrical surface, focus could be done only on the central axis of the tubes. However, the main drawback concerned the transparency of the culture system which did not allow to catch the root in the center of the tube. Moreover, in some cases, the liquid could modify the optical way inducing a distorsion of the objects (i.e., roots).



Grapevine Root Traits Analyzed in Rhizotron

In this device, grapevine cuttings needed to be pre-rooted (during 4 weeks) in “mini-rhizotron.” As a consequence, at the time 0 of image acquisition, roots were already visible (Figure 4). In this device, one could easily follow the development of the root system during 5 weeks. At this stage, herbaceous cuttings were 9-weeks old. After this time, the roots gained the borders of the device and it was no longer possible to observe the root architecture reliably. At the final time (i.e., after 5 weeks of rhizotron culture), the root system weighed 15.4 ± 6.5 and 0.9 ± 0.5 g in fresh and dry weight (±standard deviation), respectively. The mean stem height was to 70.2 ± 20.6 cm and the shoot/root ratio was of 1.27 and 3.55 in fresh and dry weight, respectively.


[image: image]

FIGURE 4. Root development over time of a pre-rooted grapevine herbaceous cutting grown in a rhizotron. The root development was followed during 5 weeks after transplantation of the cutting in the rhizotron (1 picture per week). The landmark at the top right side corresponds to 12 cm.


The images dynamically acquired were then analyzed by the procedure previously described (Figure 2) to determine the projected root area and the number of adventitious roots obtained. An illustration of the projected root area calculated during the time course and the correlation between this area and the root fresh weight is presented in Figures 5A,B, respectively. As shown in Figure 5A, the root system of the cuttings grown considerably in 5 weeks since its surface was multiplied by a factor 10. It was also observed that its growth dynamics was greater between 20 and 35 days than before. In addition, there was an excellent correlation (r2 = 0.98) between the projected root area (estimated by image analysis) and the evaluation of fresh root biomass (Figure 5B).


[image: image]

FIGURE 5. Correlation between the projected root area and root fresh weight. This correlation was determined for grapevine cuttings grown for 5 weeks in rhizotrons. Illustration of the projected root area calculated from root image analysis on 72 images (A). Four images were analyzed for each time point, and three biological repetitions were carried out. Bars correspond to standard errors. Correlation between the projected root area and the root fresh weight (B).


From the adventitious root identified and reconstituted, the calculation of its local diameter becomes possible and simple by counting the number of pixels occupied by the root throughout its length (Figure 6). It is therefore no longer an average diameter as with WinRhizo, SmartRoot or more recently RootGraph software. This local diameter makes it possible to calculate even more parameters such as the apical diameter of the roots and the unbranched apical zone of the primary root, etc., All the phenotyping traits, which are determined with the previous procedure, are presented in the Table 1, even if some of them present no biological significance for vine as they deal with nodules. Compared to semi-automatic or manual methods/algorithms (Table 1), the main advantages of our method concern the calculation time (4 min processing vs. 3 h for SmartRoot for example), the number of traits which can be determined and the automatic procedure.


[image: image]

FIGURE 6. Local diameter in pixels of the adventitious root along its length. From the adventitious root identified and reconstituted by the algorithm, the calculation of its local diameter becomes possible by measuring the number of pixels occupied by the root throughout its length, allowing therefore the measurements of more diverse parameters such as the diameter of the root apexes in different stress conditions. In this case the root diameter is indeed decreasing as the distance from the cutting gets further. DIA: Diameter and ARL: Adventitious Root Length. The values of the diameter are after converted in mm using image calibration procedure: in our case 1 pixel is equivalent to 1 mm.




Grapevine Root Traits Observed by Neutron Tomography

We first measured, by neutron radiography, the attenuation of a neutron beam in a sample holder filled with sand and grapevine roots. Figure 7A showed an example of a recorded 2D image with the transmission values along a cross-section through the image (Figure 7B). There was a clear contrast between the sand and the roots. After the normalization, the image set had a mean transmission value of 1 for the open beam (out of the sample holder), while the sample area had different transmission values (ranging from 0.4 to 0.2) depending on their thickness and composition. The mean of transmission values observed for the sand was around 0.8, which highlight the visualization of the root system. The experimental spatial resolution of a pixel was 15.2 μm.


[image: image]

FIGURE 7. Neutron radiography of grapevine root and sand in an aluminum sample holder. The image (A) has been obtained with an exposure time of 80 s. The experimental resolution of the pixel is 15.2 μm which allows observing both the adventitious roots and its laterals. An example of a transmission profile is presented (B). The transmission of the sand is around 0.8 whereas the one of the roots is going from 0.4 to 0.2. This difference of transmission between the sand and the roots corresponds to a contrast which allows to clearly distinguishing the roots from the soil (The image analysis has been performed by using the free access Image J 1.48 software).


We recorded 180 images by rotating this sample by steps of 1°. As the exposure time for the acquisition of an image was 80 s and the time to transfer the data from the camera to the computer was 8 s, the duration of one tomography was around 4 h 30 s. After computational reconstruction, we could visualize the 3D organization of the roots and the sand inside the sample holder as illustrated in Figures 8A,B.


[image: image]

FIGURE 8. Reconstructed tomography obtained for grapevine roots. The grapevine herbaceous cutting has been grown in a sample holder filled with sand. The dense 3D architecture of the roots is clearly observed in (A). A slide at the bottom of the sample holder is presented in (B). A threshold has been used to specifically contrast the roots from the sand and the sample holder (this 3D volume visualization is performed with the Avizo Fire 9.2 software).


To quantify the root biomass inside the sample holder, we performed an image analysis using the IMAGE J free software from the stack of 1074 slides obtained after the reconstruction. After adjusting manually the contrast over the whole stack to specifically select the roots, a binarization of the images was applied also on the whole stack. Then the toolbox “particle analysis” of Image J was used to quantify the number of pixels corresponding to the roots. Figure 9 presents the results of these steps of image analysis for three different slides of the stack, one at the top (slide 0), one in the middle (slide 500), and one in the bottom (slide 1074). We found that over the reconstructed sample holder including the root system and the sand, 0.16% of the total volume corresponded to the root system (0.0486 cm3).


[image: image]

FIGURE 9. Image analysis for quantification of the root system. A contrast adjustment and binarization is performed on the whole stack of the 1074 slides obtained after reconstruction to specifically select the roots and quantify them by the particle analysis toolbox of Image J free software.




DISCUSSION

As there is a growing interest in phenotyping the root system of the vine under controlled conditions, it was necessary to identify the most suitable methodologies. Regarding the root phenotyping technologies available (De Herralde et al., 2010; Chen et al., 2015; Paez-Garcia et al., 2015), we decided to test and compare 3 methods: hydroponics and rhizotron, both with 2D-imaging and neutron tomography, with 3D-imaging, to highlight their main advantages and drawbacks. These methods are highly different regarding physical, biological, technological, logistic, and economic characteristics (Table 2).


Hydroponics Tubes Allow to Easily Visualizing the Early Root Development of the Plant but It Is Not Possible to Quantify the Root Traits in situ Over Time

Hydroponics is frequently used for studies requiring control of nutrients and accessibility to the root system. Hydroponics is appropriate for cultivation of many plants and allows performing independent experiments in reproducible root-environment conditions. The advantages are its ease of use, cost and space-saving size. If necessary, the supply of water and nutrients can be adjusted easily. As unrooted herbaceous cuttings are used at the time 0 (i.e., cutting placed directly in water or in nutrient solution), this device is the only one among the tested ones that allowed us to follow the rhizogenesis process over time. However, the time course of experiments is limited to 4 weeks for grapevine cuttings in our conditions. Conversely to what is described in other studies (Chen et al., 2015; for review), quantification of RSA is not possible in a such systems due to root tangling in the liquid medium. In order to solve this problem, it may be relevant to evaluate the possibility of growing grapevine herbaceous cuttings in a device similar to rhizoponics described by Mathieu et al. (2015) for Arabidopsis thaliana. Indeed, such devices present the advantage to combine hydroponics and rhizotron. By this way, it allows non-destructive, 2D imaging of root architecture. This can be considered as an advantage since the root system is thus easily observed and harvested.



2D Imaging in Rhizotron Is Suitable for Grapevine Root Traits Quantification Such as Root Projected Area or Adventitious Root Length

Rhizotron allows the development of roots and shoots similar to those observed in pots and in “RhizoTubes” (Jeudy et al., 2016) for the same type of cuttings. Except WinRHIZO, all the softwares available nowadays are open source, but many of them are semi-automatic even manual like DART (Data Analysis of Root Tracings), SmartRoot, RootNav, and RootReader 2D. We thus proposed an automatic method for high-throughput and high-resolution root images characterization, using a specific pipeline.

Image segmentation is a crucial step in image processing, particularly in our Ascending Path method, and was used to identify adventitious roots of cuttings developed in rhizotron. It is an innovative result compared to previously published studies on grapevine with a similar device (Dumont et al., 2016). Several image segmentation methods have been reported in the literature. They can be divided in three main categories: segmentation by “Region” approaches, such as the Region-growing method (Adams and Bischof, 1994) or Split and Merge (Horowitz and Pavlidis, 1974); segmentation by “frontier” approach, such as the Canny filter method (Canny, 1986), and Segmentation by Thresholding, as Histograms (Jain, 1989). All these methods are different in terms of accuracy, complexity, and computation time. Threshold segmentation is a widely used technique for image segmentation (Gonzalez and Woods, 2002). This method uses the difference between the target area and the grayscale background, and then selects an appropriate value to determine the belonging class of each pixel in an image, in order to produce a corresponding binary image. The well-known and used method “AnalyzeSkeleton” (Fiji2; Author: Ignacio Arganda-Carreras) developed for detecting the three classes of points above, uses a simple counting of number of active pixels. It requires high calculation time and do not take into account all the root characteristics. In order to avoid these problems, and thus simplify the calculation time and identify the different points in a complex context, a specific method has been defined here. The development of this original method of image analysis makes this rhizotron system highly performing, and it merits adaptation to high throughput phenotyping (Jeudy et al., 2016) for grapevine root system observation. However, cutting manipulation and pre-rooting is time consuming.

Finally, following the development of the whole root system over the time could be of great interest to be sure to detect accurately the different phenotyping traits and to propose a universal method allowing these detections for different plants. This seems possible with the methods proposed in this paper but more experiments are needed to provide a global precise solution.



3D Imaging by Neutron Computer Tomography Is Relevant for the Quantification of the Root Volume Occupying the Container (Aluminum Cylinder)

Various methods allow the study of 3D root development. They permit observations of large objects with a field of view going from a millimeter to hundred centimeters. Moreover, they permit the visualization of opaque root structures. Series of projections are acquired and combined to reconstruct a 3D image of the root system. The imaging resolution is usually around few micrometers depending on the size of the observed object. In previous experiments, MRI has been used to study water infiltration toward root-colonized soils (Segal et al., 2008). However, full exploitation of MRI methods is handicapped by the high content of paramagnetic particles and the high heterogeneity of structure and geochemical composition. The last 30 years application of X-ray Computed Tomography (CT) has demonstrated considerable promise for root visualization studies. Micro CT scanners are now able to achieve high resolutions (50 μm), which enhanced capability to detect fine roots. However, the overlap in the attenuation density of root material and soil pore space (even more when full of water) is still a limitation to the study of water infiltration and root-soil interactions. Neutron radiography measures the attenuation of neutrons through a medium. Neutrons interact with atomic nuclei and this interaction does not show periodic regularity with the atomic number. They are particularly sensitive to light elements such as hydrogen and lithium, while being relatively insensitive to metals such as aluminum (Kang et al., 2013). Neutrons are therefore ideally suited to deeply penetrate most common materials but are strongly attenuated by those containing hydrogen such as water. Previous studies (Moradi et al., 2009, 2011) have used neutron radiography (NR) to study in situ root developments in soil of different textures. They demonstrated that sandy soil was the best substrate to obtain a good contrast for the root visualization. They also used neutron tomography (NT) to quantify and visualize the water content in the rhizosphere of chickpea, lupin, and maize, 12 days after planting. NT of the root-soil interface showed an increase in soil water content close to the roots. Both adventitious roots and lateral roots showed higher water contents in their rhizosphere compared with bulk soil.

Through this first study of the grapevine roots grown in sand in a sample holder of 22 mm of inner diameter and 80 mm long (large object), we have shown that it is possible to visualize grapevine root network by using neutron tomography. A 3D imaging of the root system could be obtained at a resolution of few micrometers (15.6 μm). We have been able, using a very simple and preliminary image analysis (with free software), to quantify the percentage of root occupation in the total volume of the cell holder. To go further on the root system analysis, one should perform a deeper image analysis with a segmentation of the root regarding their sizes (number of pixels) to classify them into adventitious or lateral roots. One could also extract the mean size of these different root classes by image analysis (Metzner et al., 2015). Also as perspective one can use neutron radiography technique to monitor water distribution and root growth simultaneously, making it suitable for studying root-water relationships in soils (Oswald et al., 2008; as example).



CONCLUSION

This study highlights the advantages and limitations of three devices specifically developed and/or adapted to phenotyping of grapevine roots. Each of them has interest, depending on the objective of phenotyping and on the number of plants needed for it. Even if hydroponics does not allow precise root quantification, it consists on a rapid approach with a low cost and provides rapid first information. Despite being more complex, 2D-rhizotron is particularly suitable for grapevine root traits quantification such as root projected area or adventitious root length. Finally, 3D imaging by neutron tomography is the most complex device but is the most relevant for quantifying the root volume occupying the substrate. To our knowledge, it is the first time that this last device is tested to phenotype grapevine roots.

In the case of 2D-rhizotron phenotyping, we have developed a new image analysis Matlab script adapted for rhizotron for identifying adventitious roots as a feature of root architecture. Calculation time for each image takes between 3 and 5 min automatically, whereas for the standard software generally available it takes more than 30 min. Thus, this method is automatic, fast and unsupervised, and allows high-throughput adventitious root parameters determination with high resolution images (144 Mpixels). Moreover, none of the other software can provide all the information on the RSA, as mentioned in Table 1.

Even if image acquisition is not the same for the three devices tested and previously described, image processing could be similar using this new method proposed with “Ascending path” procedure and identification of the different points on the skeleton.

Although this study was focused on grapevine, it has also interest for other plants, especially perennial ones.
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The efficiency of photosynthate translocation from leaves to fruits directly affects dry matter partitioning. Therefore, controlling photosynthate translocation dynamics is critical for high-yield and high-quality fruit production. Accordingly, photosynthate translocation changes must be characterized using data obtained at a higher spatiotemporal resolution than those provided by conventional methods. In this study, 11C-photosynthate translocation into strawberry (Fragaria × ananassa Duch.) fruits in individual plants was visualized non-invasively and repeatedly using a positron emission tracer imaging system (PETIS) to assess the spatiotemporal variability in the translocation dynamics in response to increasing daylight integrals (i.e., 0.5-, 4.5-, and 9-h exposures to 400 μmol m–2 s–1 at the leaf surface). Serial images of photosynthate translocation into strawberry fruits obtained from the PETIS confirmed that 11C-photosynthates were translocated heterogeneously into each fruit on the same inflorescence. The amount of translocated 11C-photosynthates and the translocation rate into each fruit significantly increased as the integrated light intensity at the leaf surface increased. An analysis of the pedicel of each fruit also confirmed that the photosynthate translocation rate increased. The cumulated photosynthesis in leaves increased almost linearly during the light period, suggesting that an increase in the amount of photosynthates in leaves promotes the translocation of photosynthates from leaves, resulting in an increase in the photosynthate translocation rate in pedicels and enhanced photosynthate accumulation in fruits. Additionally, the distribution pattern of photosynthate translocated to fruits did not change during the light period, nor did the order of the sink activity (11C radioactivity/fruit dry weight), which is the driving force for the prioritization of the 11C-partitioning between competing organs, among fruits. Thus, this is the first study to use 11C-radioisotopes to clarify the spatiotemporal variability in photosynthate translocation from source leaves to individual sink fruits in vivo in response to increasing daylight integrals at a high spatiotemporal resolution.

Keywords: carbon-11, light period, positron-emitting tracer imaging system, strawberry (Fragaria × ananassa Duch), photosynthate translocation


INTRODUCTION

Photosynthate translocation from source organs (e.g., matured leaves) to sink organs (e.g., fruits, new shoots, and roots) is an important physiological process that directly affects dry matter accumulation in fruits and promotes the growth of sink tissues, thereby significantly influencing the crop yield and quality (Troughton and Currie, 1977; Braun et al., 2014; Hidaka et al., 2019). The photosynthate translocation to sink organ is generally regulated by the sink strength (Moorby, 1968; Gifford and Evans, 1981; Marcelis, 1996), which is determined by the sink size and sink activity (Warren, 1972). Sink activity reflects the physiological responses in photosynthate translocation (Ho, 1996), and it has been suggested that sink activity rather than sink size is a major determinant of sink strength in strawberry plants (Hidaka et al., 2019). The photosynthate translocation to sink organs is greatly affected by the environmental factors such as light intensity, air temperature, and CO2 concentration. To ensure highly profitable and stable fruit production, the translocation induced by environmental conditions must be clarified. The resulting information will be useful for determining the ideal cultivation conditions for optimizing photosynthate translocation into fruits.

Several studies have analyzed photosynthate translocation in response to environmental stimuli. For example, using a 14C tracer method, Yoshioka (1986) and Pickard and Minchin (1990) analyzed tomato and Phaseolus vulgaris, respectively, and clarified the effects of temperature variations in leaf petioles on the photosynthate translocation rate. Troughton and Currie (1977) and Lanoue et al. (2018) used 11C and 14C tracers to conduct studies on maize and tomato leaves, respectively, to evaluate the effects of light intensity and light quality on photosynthate translocation. Regarding strawberry plants, the effects of fruit developmental stages, leaf positions, and environmental conditions (light intensity and air temperature) on photosynthate translocation have been analyzed using EDTA to examine the phloem exudates from fruit pedicels as well as 14C and 13C tracers (Forney and Breen, 1985; Nishizawa and Hori, 1986, 1988; Kumakura and Shishido, 1994; Nishizawa et al., 1998; Hidaka et al., 2014). However, most of the methods used in previous studies to analyze photosynthate translocation dynamics require the destruction and extraction of plant tissues. Moreover, the generated data are fragmented as they are restricted to specific periods. To thoroughly elucidate photosynthate translocation, imaging techniques with a higher spatiotemporal resolution than that provided by conventional techniques are required. Therefore, in this study, we used the 11C tracer and the positron-emitting tracer imaging system (PETIS). The 11C is one of the short-lived RI tracers that emit positrons, with the half-life of 20.39 min. A major advantage of such tracers is that in vivo measurement is possible, giving detailed time series of tracer data in many locations (Minchin and Thorpe, 2003). The PETIS also facilitates the non-invasive, real-time imaging of plant physiological activities. It produces movie-like serial, two-dimensional images of long-distance translocation in plants. Because the half-life of 11C is about 20.39 min, photosynthate translocation dynamics in an individual plant can be visualized repeatedly under various environmental conditions, enabling a highly accurate analysis of translocation changes. We previously completed PETIS-based investigations on the spatiotemporal distribution of photosynthates in leguminous plants (Matsuhashi et al., 2006; Kawachi et al., 2011; Yin et al., 2020), Cannabis sativa (Kawachi et al., 2006), eggplant (Kikuchi et al., 2008), tomato (Yamazaki et al., 2015; Tsukamoto et al., 2020), and strawberry (Hidaka et al., 2019). Various other studies have been conducted on the elucidation of physiological functions using 11C tracers. Thorpe et al. (1998) analyzed the changes in carbon partitioning into soybean rhizoids when root systems were treated with nitric acid. Ferrieri et al. (2005) analyzed the dynamics of 11C-isoprene emissions from leaves of poplar seedlings. Babst et al. (2005) revealed that an increase in jasmonic acid, a plant hormonal signal of herbivore attack, leads to more rapid 11C-photosynthate export from leaves and greater 11C-photosynthate partitioning into stems and roots in Populus species. Mincke et al. (2020) analyzed the internal movement dynamics of 11CO2 through the xylem inside branches of Populus tremula L. In addition, research on detectors for imaging 11C continues, and Kiser et al. (2008) have reviewed the versatile imager for positron-emitting radiotracers, a system that enables 2D imaging at a greater resolution than conventional detectors.

The aim of this study was to clarify the spatiotemporal variability in the translocation of photosynthates into strawberry (Fragaria × ananassa Duch.) fruits in response to the increasing exposure of leaf surfaces to daylight integrals (i.e., light periods). Strawberry is an important horticultural crop grown worldwide. Strawberry fruits provide consumers with a variety of sensory experiences and health benefits because of their pleasant aroma, sweet and sour tastes, and antioxidative properties (Giampieri et al., 2012; Nile and Park, 2014; Afrin et al., 2016; Battino et al., 2016; Warner et al., 2021). Because of their desirable taste and health benefits, large quantities of strawberry fruits are consumed fresh and in processed foods worldwide. The total global production of strawberries has increased over the past two decades, with the yield exceeding 8.8 million tons in 2019 (FAO, 2019). The aroma and taste of strawberry fruits (i.e., quality indicators) are determined by the ratios of the principal soluble components, namely, sugars and organic acids (Perez et al., 1992; Montero et al., 1996; Kallio et al., 2000; Moing et al., 2001). More specifically, sucrose, glucose, and fructose, which are the most abundant soluble solids in strawberry fruits, determine fruit sweetness (Perez et al., 1997; Todeschini et al., 2018). Because the fruit sugar content is greatly affected by the ambient environment, strawberry plants are increasingly being cultivated under controlled environmental conditions (e.g., light intensity, air temperature, and CO2 concentration) (Neri et al., 2012; Hidaka et al., 2013, 2016; Miyoshi et al., 2017; Samtani et al., 2019; Yoneda et al., 2020). During this protected cultivation, environmental conditions are modulated to promote leaf photosynthesis, which positively affects strawberry fruit yield and quality. However, to further increase the fruit yield and quality, the effects of the environment on the translocation of photosynthetic products into the fruits must be characterized. The examined photosynthate translocation dynamics may be relevant for developing an environmental control system useful for the protected cultivation of horticultural plants. Earlier research on diurnal variations in photosynthate translocation dynamics focused on the differences between the light and dark periods. In this study, we hypothesized that photosynthate translocation may vary over time, even during the light period. We tested this hypothesis using a PETIS and a 11C tracer to determine the spatiotemporal changes to photosynthate translocation from the source leaves to individual sink fruits after the source leaves were exposed to varying daylight conditions.



MATERIALS AND METHODS


Plant Material and Growth Conditions

June-bearing strawberry (Fragaria × ananassa Duch. cv. Fukuoka S6) plants were grown in a 37-m long × 9-m-wide plot in a greenhouse (37 m long × 27 m wide × 4.5 m high) at the NARO Kyushu Okinawa Agricultural Research Center, Japan (33°18.4′N, 130°32.8′E). Nursery plants were selected from the mother plant in early June and transplanted into plastic pots (6 cm diameter and 0.2 L volume). Connections to the mother stocks were retained through runners. Pots were filled with a substrate consisting of peat moss, coconut shells, and charcoal [3:5:2 (v/v/v)] and placed on a nursery bench. The plants were irrigated with water until rooting when their runners were cut from the mother stocks (late June). Thereafter, a nutrient solution (OK-F-1; OAT Agrio Co., Ltd., Tokyo, Japan; electrical conductivity = 0.6 dS m–1) was supplied at a rate of 300 mL d–1 plant–1. Nutrient supplementation was suspended from mid-August to mid-September to induce anthesis. During this time, plants were only supplied water. Flower buds had differentiated on the first inflorescences by mid-September, after which the plants were transplanted into substrate-filled plastic pots (0.15 m diameter and 2.6 L volume) and set on cultivation beds (30 m long × 30 cm wide × 80 cm high), with 20 cm between plants and 15 cm between rows. They were subsequently supplied with nutrient solution. The substrates and nutrient solutions were the same as those described above. The initial greenhouse ventilation temperature was 27°C. The air temperature was maintained above 8°C with a fuel-burning heater (HK2027TEV; NEPON Inc., Tokyo, Japan). Flowers were pollinated by bees. The plants with fruits were moved to a plant growth chamber at the Takasaki Advanced Radiation Research Center, National Institutes for Quantum and Radiological Science and Technology (QST), Japan (36°18.1′N, 139°04.4′E), where a PETIS was set up. The plants were cultivated for 2 weeks under the following experimental conditions: 12-h photoperiod, 400 μmol m–2 s–1 photosynthetically active radiation (PAR) using LEDs (ISL-150 × 150-HWW; CCS Inc., Kyoto, Japan), 20°C air temperature, 60% relative humidity, 380 μmol mol–1 CO2 concentration, and 300 mL d–1 plant–1 nutrient supply. After plants were acclimated to the experimental conditions, they were analyzed using the PETIS. In this study, three plants (Plants A–C) having similar growth conditions were used to ensure the high reproducibility of our translocation data. To simplify the relationship between the source leaves and sink fruits, we used test plants having primary inflorescences. Each plant had ten leaves. Plants A and B each had one primary fruit, two secondary fruits, and four tertiary fruits with a cymose inflorescence structure. Plant C had the same number of primary and secondary fruits as Plants A and B, but only had three tertiary fruits. Among all the fruits, the dry weights of the primary fruits (Fruit 1) were the greatest, followed by the secondary (Fruits 2 and 3) and tertiary fruits (Fruits 4–7), suggesting that the balance of fruit sizes in each plant was similar (Figure 1). Each fruit was divided into three different developmental stages: green, the first stage during which fruits are just fully formed; white, the second stage during which fruits begin to expand rapidly and become much larger; and red, the third stage during which fruit enlargement slows and the fruits become fully red. In Plants A and B, the primary fruits were in the white stage, the secondary fruits were just turning from the green stage to the white stage, and the tertiary fruits were in the green stage. In Plant C, the primary fruit was in the red stage, the secondary fruits were in the white stage, and the tertiary fruits were in the green stage (Figure 2A).


[image: image]

FIGURE 1. Dry weights of fruits on the same inflorescences of Plants A–C.
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FIGURE 2. (A) Image of strawberry fruits from Plants A–C in the PETIS field of view. The black- and blue-dotted ellipses indicate the regions of interest (ROIs) on the fruits and pedicels, respectively. The F and P numbers in the figure indicate the fruit and pedicel numbers, respectively. The positions of the fruits on the same inflorescence are as follows: Fruit 1, primary; Fruits 2 and 3, secondary; and Fruits 4–7, tertiary. (B) Several PETIS images of 11C-photosynthate translocation into the fruits of Plant A for the (i) 0.5-h, (ii) 4.5-h, and (iii) 9-h lighting treatments. Each image represents the 5-min average for the time period indicated at the top of each PETIS image, which indicates the time elapsed since the start of PETIS imaging. The white and yellow ellipses indicate the ROIs of the fruits and pedicels, respectively.




11CO2 Tracer Production

The 11CO2 tracer was produced by the 14N(p,α)11C reaction induced by bombarding pure nitrogen gas with 10 MeV protons from an AVF cyclotron located at Takasaki Ion Accelerators for Advanced Radiation Application (TIARA), QST, Japan (see Ishioka et al., 1999 for specific details). The irradiated gas containing nitrogen gas and 11CO2 was passed through a stainless steel trap (11CO2 trap) immersed in liquid nitrogen, and only the 11CO2 gas was collected as dry ice in the trap. In this study, approximately 160 MBq 11CO2 was collected and transferred to the gas circulation system for the PETIS imaging experiments.



Imaging Experiments and Light Duration Treatments in the PETIS

The PETIS was installed in a plant growth chamber so that the ambient environmental conditions could be completely controlled during the experiments. Strawberry plants were positioned so that their fruits were located in the PETIS field of view (FOV) that was 119.9 mm wide and 187.0 mm high. The fruits were oriented correctly in the focal plane and positioned so they did not interfere with the mutual FOV. A fourth leaf developing immediately below the inflorescence was inserted into a gas-tied transparent acrylic box (exposure cell: 20 cm long, 15 cm wide, and 1 cm deep). The inlet of the exposure cell was connected to a 11CO2 trap, and approximately 160 MBq of 11CO2 was pumped into the cell at a constant rate of 100 mL min–1. The 11CO2 passed through the exposure cell within 1 min, and the remaining 11CO2 that was not fixed to the leaf was collected using soda lime (Wako Pure Chemical Industries Ltd., Osaka, Japan) in an acrylic tube connected to the outlet of the exposure cell. PETIS was started as soon as the 11CO2 was pumped out from the 11CO2 trap. At 20 min after the injection of 11CO2, the exposure cell was disconnected from the 11CO2 trap, and then, air in the growth chamber was pumped into the cell at a constant rate of 500 mL min–1 to continue the PETIS experiment. Thereafter, the 11C radioactivity collected in soda lime was measured using a Curie meter. The amount of assimilated 11C in the source leaf was calculated using the difference from the radioactivity of the injected 11CO2. PETIS images were acquired every 10 s for 180 min. The image data were automatically calibrated for the 11C decay assuming a half-life of 20.39 min and recorded on a personal computer (Figure 2B).

The 3-h PETIS imaging on the same plant was repeated three times during the 12-h light period. More specifically, at 0.5 h after changing the PAR on the adaxial surface of the source leaf from 0 to 400 μmol m–2 s–1, 11CO2 was fed to the source leaf within 1 min and the first 3-h PETIS imaging treatment was started (Figure 3A). The first PETIS treatment was named “0.5-h lighting.” At 1 h after the end of the first PETIS imaging treatment (i.e., at 4.5 h after changing to the light period), the second PETIS imaging treatment was started (“4.5-h lighting”) without changing the environmental conditions or the plant material. At 1.5 h after the end of the second PETIS imaging treatment (i.e., at 9 h after changing to the light period), the third PETIS imaging treatment was started (“9-h lighting”). The environmental conditions during the PETIS imaging were the same as the pre-experimental growth conditions. During the PETIS imaging experiments, the photosynthetic rates of the source leaves were determined every 10 min for 14 h (i.e., from 1 h before to 1 h after the 12-h light period) (Figures 3B,C). A portable photosynthesis system (model LI-6400; Li-Cor Inc., Lincoln, Nebraska, United States) was used under the following leaf chamber conditions: 20°C air temperature, 60% relative humidity, and 380 μmol mol–1 CO2 concentration. The PAR inside and outside the chamber was the same (400 μmol m–2 s–1) because of the natural light window at the chamber head. The air flow rate was maintained at 200 μmol s–1. At the beginning of the light period, the photosynthetic rate of the source leaves increased rapidly to approximately 13 μmol CO2 m–2 s–1 and then decreased slowly at a constant rate during the light period, reaching approximately 10 μmol CO2 m–2 s–1 by the end of the light period. The accumulated photosynthesis value increased almost linearly during the light period, reaching approximately 0.5 mol CO2 m–2 by the end.
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FIGURE 3. Photosynthesis-related time changes. Time changes in (A) photosynthetically active radiation (PAR). The setup of the lighting treatments is also shown. The star symbol indicates the timing of the 11CO2 injection; (B) photosynthetic rate; and (C) accumulated photosynthesis in the source leaf under specific environmental conditions during PETIS imaging. The dark gray area in (B) represents the standard deviation.




Translocation Analysis

The 11C translocation into fruits was analyzed by setting the regions of interest (ROIs) around the fruits (white-dotted ellipses) and pedicel parts (yellow ellipses) in the PETIS images as shown in Figure 2B. Time-course analyses of 11C radioactivity (kBq) within each ROI were completed by generating time activity curves (TACs) from the signal intensities (counts per second) obtained using Image J (version 1.50) (National Institutes of Health, Bethesda, MD, United States)1 (Figure 4). The counting efficiency of the system (cps Bq–1) was then calculated. In this study, the 11C radioactivity in each fruit at the end of a PETIS imaging experiment reflected the amount of 11C-photosynthates translocated into each fruit (red line in Figure 5). Because photosynthates flow into, and accumulate in, fruits, the tracer increase rate (Figure 4) after the translocation of 11C into each fruit represents the accumulation rate of 11C in the fruit and, thus, the influx rate of photosynthates into the fruit. Therefore, we defined the increasing rate of 11C radioactivity in the fruits as the translocation rate of 11C-photosynthates into fruits (Figure 5). Furthermore, the translocation rate of 11C-photosynthate in the phloem was also calculated using the pedicel TAC data. These data were normalized against the 11C-radioactivity assimilated by the source leaf because of the differences between experiments regarding the amount of 11C taken up by the source leaf via photosynthesis (in kBq MBq–1). In addition, to confirm that individual differences in the 11C translocation rate and amount of translocated 11C to sink fruits were large, the changes after light duration treatments were comparatively analyzed. Specifically, the normalized amount of translocated 11C and normalized 11C translocation rate for each light duration treatment were divided by the corresponding average of the three light duration treatments. The average value of the relative amount of translocated 11C for fruits per plant was determined and compared with values from the light duration treatments (Figure 6A). Similarly, the relative amounts of translocated 11C and relative 11C translocation rates of all the fruits (Figures 6B,C) and all the pedicels (Figure 6D) in which 11C translocation was confirmed were averaged over all the plants in each light duration treatment.
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FIGURE 4. Time-course analysis of average 11C radioactivity in the ROIs of (A) Fruit 1, (B) Fruit 2, and (C) Fruit 3 for all the plants in response to the 0.5-, 4.5-, and 9-h lighting treatments. The black bar on each plot represents the standard deviation. The data were normalized against the 11C-radioactivity assimilated by the source leaf during each PETIS imaging experiment.
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FIGURE 5. 11C-photosynthate translocation rate and the amount of 11C-photosynthates translocated into all fruits in Plants A–C in response to the 0.5-, 4.5-, and 9-h lighting treatments. The data were normalized against the 11C-radioactivity assimilated by the source leaf during each PETIS imaging experiment. The fruits in which 11C-photosynthates were not detected are indicated with n.d.
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FIGURE 6. Average relative 11C-photosynthate translocation rates and the amounts of 11C-photosynthates translocated into the fruits having confirmed 11C-photosynthate translocation. Average relative amount of 11C-photosynthates translocated into the fruits (A) of each individual plant in response to the 0.5-, 4.5-, and 9-h lighting treatments and (B) in all the plants for each lighting treatment. Average relative 11C-photosynthate translocation rate (C) for the fruits in all the plants for each lighting treatment and (D) in the phloem of the pedicels of all the plants in response to the 0.5-, 4.5-, and 9-h lighting treatments. Different letters indicate significant differences (p < 0.05) as determined by the Tukey–Kramer test.


The sink activity of each fruit in each plant was evaluated for each treatment by normalizing the total amount of 11C radioactivity detected in each fruit against its dry weight as described in the study by Hidaka et al. (2019) (Figure 7A). Furthermore, the relative sink activity was calculated by dividing the sink activity of each fruit by the total sink activity of all fruits on an inflorescence in each plant (Figure 7B).
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FIGURE 7. (A) Sink activity of all fruits in (a) Plant A, (b) Plant B, and (c) Plant C in response to the 0.5-, 4.5-, and 9-h lighting treatments. (B) Relative sink activity of all fruits in (a) Plant A, (b) Plant B, and (c) Plant C for each lighting treatment.




Statistical Analysis

The relative 11C translocation rate and the relative amount of 11C translocated into fruits were calculated on the basis of the 11C radioactivity in the fruits. The 11C-photosynthate translocation was confirmed in three replicate plants (Plants A–C) (n = 12). Furthermore, the relative 11C translocation rate in the phloem was calculated using the pedicels of the fruits (n = 12). After the arcsine transformation of the original data, the significance of the differences between means (p < 0.05) among the different light duration treatments was determined by a Tukey–Kramer test using the transformed data. Statistical analyses were performed using the “Rcmdr” package (version 2.6-2) of the R software (R 3.6.3)2.



RESULTS


Dynamic Analysis of 11C-Photosnthate Translocation

In Figure 2, an image (Figure 2A) shows strawberry fruits in the PETIS FOV and the averages of several PETIS images taken over 5 min (Figure 2B). The 11C-photosynthate translocation into strawberry fruits through pedicels was successfully visualized by PETIS imaging. It was visually confirmed that 11C-photosynthates translocated first to Fruit 2 and then to Fruit 1 in all the plants. The 11C-photosynthate translocation to fruits in the bunches was not homogeneous, and the translocation to Fruits 1–3 in Plants A and C, and to Fruits 1–6 in Plant B, were visually confirmed after the 9-h lighting treatment. The translocation of 11C-photosynthates to other fruits was not confirmed. Additionally, 11C-photosynthates did not accumulate uniformly in fruits. More specifically, the PETIS images revealed that they accumulated mainly in the upper sides of Fruit 1 from Plants A and B, and in Fruit 2 from Plant C, but also in the lower sides of Fruit 2 from Plants A and B. Additionally, they accumulated in the right sides of Fruit 3 from Plant B and of Fruit 1 from Plant A. There were no observable differences in the translocation patterns into fruits among the light duration treatments. In all the fruits in which 11C-photosynthate translocation was confirmed, the radioactivity of 11C at 180 min was the highest after the 9-h lighting treatment, followed by the 4.5- and 0.5-h lighting treatments.

Figure 4 presents the average TACs for all the plants after 11CO2 feeding in each ROI of Fruit 1 (Figure 4A), Fruit 2 (Figure 4B), and Fruit 3 (Figure 4C) in which 11C-photosynthate translocation was confirmed. The data from all the TACs were normalized against the 11C assimilation in the source leaf. For all the fruits, 11C-translocation was most prominent after the 9-h lighting treatment, followed by the 4.5-h and then the 0.5-h lighting treatments. In Fruit 1, the 11C tracer began to increase at approximately 53, 28, and 24 min after 11CO2 feeding in the 0.5-, 4.5-, and 9-h lighting treatments, respectively. In Fruit 2, the 11C tracer began to increase at approximately 49, 33, and 28 min after 11CO2 feeding in the 0.5-, 4.5-, and 9-h lighting treatments, respectively. In Fruit 3, the 11C tracer began to increase at approximately 68, 47, and 43 min after 11CO2 feeding in the 0.5-, 4.5-, and 9-h lighting treatments, respectively.

Figure 5 presents the 11C-photosynthate translocation rate and the amount of translocated 11C-photosynthates for each lighting treatment for all fruits of Plants A–C. In Plant A, 11C-photosynthate translocation was observed in three fruits. In Plants B and C, 11C-photosynthate translocation was detected in six and three fruits, respectively. In these fruits, both the 11C-photosynthate translocation rate and the amount of translocated 11C-photosynthates were the highest for the 9-h lighting treatment and the lowest for the 0.5-h lighting treatment.

Figure 6A presents the average relative amounts of 11C-photosynthates translocated into fruits per plant for each lighting treatment. Because of the large variation in the 11C-photosynthates translocation dynamics among individuals (Figure 4), we analyzed the relative values, i.e., the rates of change owing to the light duration treatments. In all plants, the relative amount of translocated 11C-photosynthates was the highest for the 9-h lighting treatment and the lowest for the 0.5-h lighting treatment. In Plant A, the average values for the 4.5- and 9-h lighting treatments were about 1.4 and 2.2 times higher than the corresponding values for the 0.5-h lighting treatment, respectively. In Plant B, the average values for the 4.5- and 9-h lighting treatments were about 4.6 and 10.8 times higher than those for the 0.5-h lighting treatment, respectively, whereas in Plant C, the average values for the 4.5- and 9-h lighting treatments were about 2.3 and 3.4 times higher than those for the 0.5-h lighting treatment, respectively. Figure 6B presents the average relative amounts of 11C-photosynthates translocated into fruits for all plants. The relative amounts of translocated 11C-photosynthates (±SE) were 0.35 ± 0.07, 0.82 ± 0.06, and 1.83 ± 0.11 for the 0.5-, 4.5-, and 9-h lighting treatments, respectively. The differences among treatments were significant. Figure 6C presents the average relative rates of 11C-photosynthates into fruits for all plants. The relative translocation rates (±SE) were 0.41 ± 0.08, 0.82 ± 0.05, and 1.76 ± 0.12 for the 0.5-, 4.5-, and 9-h lighting treatments, respectively. The differences among treatments were significant. The average relative 11C translocation rates in the pedicels of all plants also significantly increased with increasing daylight integrals (Figure 6D) and were 0.34 ± 0.06, 0.81 ± 0.07, and 1.85 ± 0.12 (±SE) for the 0.5-, 4.5-, and 9-h lighting treatments, respectively.



Sink Activity

Figure 7A presents the sink activity of each fruit on each plant for all lighting treatment. In all fruits, the sink activity was at the highest and lowest for the 9- and 0.5-h lighting treatments, respectively. In all plants, the sink activity of Fruit 2, which is the secondary fruit, was at the highest. Figure 7B presents the relative sink activity of each fruit of each plant for all lighting treatments. In Plant A, the relative sink activity of Fruit 2 decreased with increasing daylight integrals, whereas the relative sink activity of Fruits 1 and 3 increased. In Plant B, the relative sink activity of Fruits 1–3 decreased with increasing daylight integrals, in contrast to the increasing relative sink activity of Fruits 4–6. In Plant C, the relative sink activity of Fruits 1 and 2 decreased slightly with increasing light exposure time, whereas the relative sink activity of Fruit 3 increased slightly.



DISCUSSION

During protected cultivation, photosynthate translocation dynamics should be considered when establishing the environmental control system to optimize yield and quality. Accordingly, the daily changes in photosynthate translocation dynamics must be determined. In this study, we successfully visualized the spatiotemporal variability in 11C-photosynthates translocation into strawberry fruits in response to increasing daylight integrals using the non-invasive analysis of 11C tracer and the PETIS, and also visualized the images of 11C tracer movement into the same strawberry fruits repeatedly during all the treatments of light period (Figure 2B). Furthermore, by analyzing the obtained PETIS images, the photosynthate translocation dynamics from one source leaf to an individual fruit could be evaluated separately with high spatiotemporal resolution (Figures 4, 5). Previous studies that assessed daily changes in photosynthate translocation monitored the movement of the 14C tracer fed to leaves at a specific time point during the light period at long time intervals. Pearson (1974), for example, estimated the net carbon dioxide exchange and loss of 14C-photosynthates from Vicia faba L. leaves throughout the day via infrared gas analysis and Geiger–Muller tube monitoring, respectively. The results of this earlier study indicated that, of the total carbon fixed in a 24-h period, about 50% is transferred in the current photoperiod, 14% in the dark period, and 5% in the next photoperiod. Sharkey and Pate (1976) investigated the diurnal changes in the leaf sugar concentration and the amount of 14C in the phloem sap from the distal tips of fruits attached to Lupinus albus L. plants by supplying 14CO2 to the leaves. In their study, the leaf sugar concentration increased, reaching peak levels in the afternoon, and the sugar output rate from the cut phloem of a fruit was directly related to the current leaf sugar content. Shishido et al. (1987, 1989) investigated the diurnal variation in the carbon budget of each organ in cucumber and tomato plants using a 14C tracer. They reported that the translocation started early in the morning and was much greater in the light period than in the dark period. Lanoue et al. (2018) also analyzed the effect of the intensity and quality of the light received by tomato leaves on the diurnal variation in photosynthate translocation using a 14C tracer. Their data indicated that photosynthate translocation in response to a lighting treatment involving all wavelengths, including orange and green wavelengths, was greater than that at night. Furthermore, the translocation under light varied from 65 to 83% of the total daily carbon fixed by leaf photosynthesis, depending on the light intensity. Most of these previous studies have analyzed the differences between light and dark periods to determine the diurnal variation in photosynthate translocation, and they proved that the translocation is greater under light than in darkness. Although long-term translocation dynamics have been analyzed, few studies have been analyzed at the short-time scale under the continuous lighting, which is an accelerating condition of photosynthesis, on the leaf surface with high spatial resolution. To the best of our knowledge, this study is the first to analyze the spatiotemporal variability of photosynthate translocation from one source leaf to each individual fruit during the light period with high spatiotemporal resolution.

The images obtained from the PETIS indicated that 11C-photosynthates were translocated from source leaves to several fruits, but not homogeneously. Furthermore, the imaging analysis revealed that 11C-photosynthates from CO2-fed leaves entered the fruits earlier as the light period increased (Figure 4). Hidaka et al. (2019) reported that 11C-photosynthates from source leaves reach fruits 52 min after 11CO2 feeding in strawberry plants. Although the plants used in this study were of the same size and cultivar as those used by Hidaka et al. (2019), the translocation into fruits occurred much earlier in our study depending on the duration of the light period (e.g., 4.5- and 9-h lighting treatments). In most of fruits in which 11C-photosynthates translocation was confirmed, both the photosynthate translocation rate and the amount of translocated photosynthates increased as the duration of the light treatment increased (Figure 5), and a significant difference was confirmed in the average value of the increasing rate (Figure 6). This is considered to be because of an increase in the concentration of sucrose, which is a translocated sugar in strawberries, in the source leaves during the light period. Photosynthate translocation between source and sink organs is generally considered to be driven by an osmotically generated pressure gradient, which is a mechanism known as Münch’s flow (Münch, 1930; Nobel, 2009). Considering the effect of increases in the strawberry leaf sucrose concentration on photosynthate translocation in terms of Münch’s flow, an increase in the leaf sucrose concentration leads to an increase in the frequency of encounters between sucrose and sucrose transporters on the plasma membrane as well as an increase in the amount of sucrose loaded into vascular bundles via active transport (Hammond and White, 2008). This decreases the osmotic water potential of the phloem and increases the water flow from the xylem to the phloem, thereby increasing the turgor pressure of the phloem (Lalonde et al., 2003, Schepper et al., 2013). Finally, a high-pressure gradient is generated and the phloem contents are pushed toward the sink organs (Maynard and Lucas, 1982; Lalonde et al., 1999; Hölttä et al., 2006), resulting in an enhanced photosynthate translocation from the sources to the sinks. Miyoshi et al. (2017) analyzed the same strawberry cultivar used in this study and determined that increases in the intensity of the light received by the source leaves increase concentration of the leaf sucrose and promotes the photosynthate translocation from the leaves. Under the continuous lighting conditions of the PETIS imaging experiment, the photosynthetic rate was relatively stable during the light period, and the cumulated photosynthesis in the source leaves increased almost linearly (Figures 3B,C). This could suggest that the leaf sucrose concentration increased with increase in the duration of the light period, resulting in promotion of the photosynthate translocation from the source leaf. The average relative rate of 11C-photosynthates translocation through the pedicels increased as the light period increased (Figure 6D), indicating that the loading rate from the source leaves increased during the light period. This is considered to be a compelling evidence to support the hypothesis of this study that the promotion of translocation to the fruit with the increasing daylight integrals on leaf surface is explained by an increase in the concentration of sugar in the leaf.

The sink activity of each fruit increased along with the light period (Figure 7A). We hypothesize that this is because the photosynthate-loading ability of the source leaf increased along with the daylight integrals, thereby promoting their translocation into each fruit. The sink activity level varied among fruits, with Fruit 2 (i.e., secondary fruit) having the highest sink activity among all the plants and treatments. Hidaka et al. (2019) analyzed the photosynthates translocated from a leaf just below the fruit bunch to fruits and observed that a secondary fruit had the highest sink activity, which is consistent with our results. Hidaka et al. (2019) speculated that the factor causing sink activities to differ among fruits is the strength of the auxin signals that are emitted from fruits and are critical for strawberry fruit growth (Nitsch, 1950). These signals vary depending on the developmental stage and the position of the sink fruit. Bangerth (1989) hypothesized that the exportation of polar auxin from earlier fruits on the same inflorescence inhibits its export from the later fruits. However, the highly reproducible findings of this study showed that when the developmental stage of the first fruit (the earlier fruit) in strawberry plants was red or white and each secondary fruit was white, or just turning from green to white, the sink activity of the secondary fruit (the later fruit) was stronger than that of the first fruit. This indicates that auxin export and inhibitory mechanisms are not uniform and vary depending on the developmental stage of each fruit, supporting the hypothesis described in the study by Hidaka et al. (2019). The balance of the relative sink activity levels among fruits also varied during the light period (Figure 7B). Fruit 2 in all the plants having higher relative sink activities in response to the 0.5-h lighting treatment tended to have the same or lower relative sink activities throughout the light period, whereas fruits with lower relative sink activities in response to the 0.5-h lighting treatment (Fruits 1 and 3 of Plant A, Fruits 4–6 of Plant B, and Fruit 3 of Plant C) tended to have higher relative sink activities that increased along with the light period duration. This implies that photosynthates are preferentially translocated to fruits having higher sink activities at the beginning of the light period and that the translocation into fruits with lower sink activities is accelerated during the latter part of the light period. Sink activity is subtly regulated in response to the cumulative photosynthate translocation to each fruit, and it has been suggested that auxin export from fruits and its inhibitory mechanisms vary not only with the fruit developmental stage but also within a short time span during the light period. Actually, in fruits having higher sink activity levels (Fruit 2 of Plant A, Fruits 1 and 2 of Plant B, and Fruit 1 of Plant C), the photosynthate translocation rates increased almost linearly or the increase rates under the 4.5- to 9-h lighting treatments were slightly lower than those under the 0.5- to 4.5-h lighting treatments, whereas in fruits having lower sink activity levels (Fruits 4–6 of Plant B and Fruit 3 of Plant C), the increase rates from the 4.5- to 9-h lighting treatments were higher than those from the 0.5- to 4.5-h lighting treatments (Figure 5). This supports the hypothesis that the light time period when photosynthate translocation occurs varied among fruits. The ability to study such subtle dynamic changes in sink activity is an advantage of PETIS and 11C tracer experiments.

A comparison of the relative sink activities among fruits on each plant for each lighting treatment (Figure 7B) indicated that the order of sink activities among fruits did not change during the light period. For fruits in which photosynthate translocation was not observed in response to the 0.5-h lighting treatment, photosynthate translocation remained undetectable even as the light period duration increased. The cause of the non-uniform distribution pattern of the photosynthate translocation to fruits over time may be the individual vascular system’s link between the source leaf and each fruit. Shishido et al. (1988) and Kikuchi et al. (2008) proposed in tomato and eggplant, respectively, that photosynthate translocation into sink fruits is affected by the vascular system’s link between source and sink organs. Hidaka et al. (2019) also supported the hypothesis that similar individual vascular connections exist between organs in strawberry plants. Furthermore, here, it was confirmed that the photosynthate translocation rate increased along with daylight integrals at source leaf surfaces in all the fruits in which the translocation was confirmed (Figure 5). Thus, the effects of physiological functional changes in the source leaves and the effects of promoting translocation from a source leaf were exerted in the same way on all the fruits. This suggests that there is an individual direct route between a source leaf and each sink fruit, representing the vascular system connection. In this study, we traced photosynthate translocation from the same source leaves, and photosynthate translocation to different fruits may be confirmed if the translocation from different source leaves is traced. Future studies are needed to prove this hypothesis. Comparisons between the 11C translocation rate and the amount of 11C translocated to individual fruits among plants revealed that their levels differed greatly between Plants A and B, even though the fruit positions and their developmental stages were similar. Moreover, in Plant B, the rate and amount of 11C-photosynthate translocation to the whole fruit bunch were greater than those of the other plants (Figure 5). We speculate that this resulted from the different developmental stages of the fruits on each plant. Yamazaki et al. (2015) reported that in tomato, the sink strength of the whole fruit bunch is greater when a number of fruits at younger stages are set in the bunch. In this study, all the fruits in Plant B were at earlier developmental stages than those of the other plants at the same positions (Figure 2A), and thus, the sink strength of the whole fruit bunch on Plant B was greater than those of the other plants, resulting in differences in 11C translocation levels. This hypothesis also explains why Fruit 1 of Plant B (Figure 7B) did not follow the trend of fruits having low sink activities during the 0.5-h lighting treatment showing high sink activities during the 4.5- and 9-h lighting treatments. The sink strength of the entire fruit bunch of Plant B was greater than those of the other plants, which may have led to an increased number of fruits in which 11C translocation was observed. As a result, the number of competing sink fruits in the fruit bunch increased in Plant B compared with the other plants, and it was assumed that 11C translocation to other young fruits was prioritized over the oldest fruit (Fruit 1).



CONCLUSION

The spatiotemporal variability in the 11C-photosynthates translocation from individual source leaves into each strawberry fruit in vivo under increasing daylight integrals at leaf surface was visualized non-invasively and in real time using the PETIS. The obtained images revealed that photosynthate translocation from a source leaf differed among fruits at various positions of the same inflorescence. Moreover, the distribution pattern of photosynthates translocated into fruits did not vary during the light period. These results indicate that the correspondence between source leaves and sink fruits is unaffected by changes in the light environment, but is mediated by the individual vascular connections between a source leaf and each sink fruit. Additionally, the photosynthate translocation from source leaf to sink fruits was promoted in response to increasing daylight integrals. Furthermore, the order of the sink activity did not change when the daylight integral increased, although the balance of the sink activity among fruits changed. These results suggest that photosynthates are preferentially translocated into fruits with a high sink activity at the beginning of the light period, but the translocation into fruits with a low sink activity increases later in the light period. This study is the first to use an 11C-radioactive isotope and a PETIS to elucidate the variability in the real-time translocation of photosynthates into individual fruits on strawberry inflorescences in response to increasing daylight integrals.
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Rice disease has serious negative effects on crop yield, and the correct diagnosis of rice diseases is the key to avoid these effects. However, the existing disease diagnosis methods for rice are neither accurate nor efficient, and special equipment is often required. In this study, an automatic diagnosis method was developed and implemented in a smartphone app. The method was developed using deep learning based on a large dataset that contained 33,026 images of six types of rice diseases: leaf blast, false smut, neck blast, sheath blight, bacterial stripe disease, and brown spot. The core of the method was the Ensemble Model in which submodels were integrated. Finally, the Ensemble Model was validated using a separate set of images. Results showed that the three best submodels were DenseNet-121, SE-ResNet-50, and ResNeSt-50, in terms of several attributes, such as, learning rate, precision, recall, and disease recognition accuracy. Therefore, these three submodels were selected and integrated in the Ensemble Model. The Ensemble Model minimized confusion among the different types of disease, reducing misdiagnosis of the disease. Using the Ensemble Model to diagnose six types of rice diseases, an overall accuracy of 91% was achieved, which is considered to be reasonably good, considering the appearance similarities in some types of rice disease. The smartphone app allowed the client to use the Ensemble Model on the web server through a network, which was convenient and efficient for the field diagnosis of rice leaf blast, false smut, neck blast, sheath blight, bacterial stripe disease, and brown spot.

Keywords: convolutional neural network, rice disease, ensemble learning, diagnosis, deep learning


INTRODUCTION

Rice is an important crop in agriculture. However, crop diseases can significantly reduce its yield and quality, which is a great threat to food supplies around the world. Thus, disease control is critical for rice production. The key for successful disease control is a correct and fast diagnosis of diseases, so that pesticide control measures can be applied timely. Currently, the most widely used method to diagnose rice crop diseases is manual judgment based on the appearance of diseases (Sethy et al., 2020). There are not enough people across the region with skills to perform such tasks in a timely manner. Therefore, a more efficient and convenient method for disease diagnosis of rice is required.

Over the past decades, researchers have used computer vision technology in agriculture for estimating crop yields (Gong et al., 2013; Deng et al., 2020), detecting crop nutritional deficiencies (Xu et al., 2011; Baresel et al., 2017; Tao et al., 2020), estimating geometric sizes of crop (Liu et al., 2019), and recognizing weeds (Jiang et al., 2020). Several different approaches of computer vision have also been used for the diagnosis of crop diseases, such as image processing, pattern recognition, support vector machine, and hyperspectral detection (Ngugi et al., 2020). Multi-spectral remote sensing images of tomato fields were used for cluster analysis to differentiate healthy tomatoes from diseased ones (Zhang et al., 2005). The shape and texture features of rice bacterial leaf blight, sheath blight, and blast were extracted using a support vector machine. A genetic algorithm and a support vector machine were used to detect the diseased leaves of different crops (Singh and Misra, 2017). Islam et al. (2018) detected the RGB value of an affected portion, and then used Naive Bayes to classify rice brown spot, bacterial blight, and blast. Infrared thermal imaging technology that provides temperature information of crop has also been used to detect tomato mosaic disease and wheat leaf rust (Zhu et al., 2018). Although some of these existing methods could achieve reasonably high accuracies for crop disease diagnosis, most of them rely on manual extraction of disease features. As a result, the expression ability is limited, and it is difficult to generalize when results are applied. Also, some methods need special equipment that is not always readily available to users. All these drawbacks make it difficult to apply these methods for crop disease diagnosis.

Deep learning technology can be implemented in crop disease diagnosis methods to overcome the drawbacks. In recent years, deep learning has been widely used in image classification, object detection, and content recommendation. In fact, there have been researchers who used deep learning to detect diseases of various crops. Lu et al. (2017a) proposed an in-field automatic disease diagnosis system, which could achieve identification and localization for wheat diseases. Ozguven and Adem (2019) first applied a convolutional neural network (CNN), Faster R-CNN, to images of sugar beet leaves to detect spot disease. Karlekar and Seal (2020) proposed SoyNet that was applied to soybean leaf images for disease diagnosis. Deep learning also plays an important role in disease diagnosis of many other crops, such as tomato (Rangarajan et al., 2018; Agarwal et al., 2020), cassava (Sambasivam and Opiyo, 2020), tulip (Polder et al., 2019), and millet (Coulibaly et al., 2019). Deep learning has also been applied for detecting rice crop diseases. For example, Kamal et al. (2019) combined a depthwise separable convolution architecture with Reduced MobileNet. In terms of recognition accuracy, there have been various claims. Chen et al. (2020) used Enhanced VGGNet with Inception Module through migration learning, which had an accuracy of 92% in the classification of rice diseases. Rahman et al. (2020) proposed a two-stage small CNN architecture, which achieved 93.3% accuracy with smaller model sizes. Some efforts have been made to improve the accuracy. For instance, Picon et al. (2019) used a dataset of five crops, 17 diseases, and 121,955 images, then proposed three different CNN architectures that incorporate contextual non-image meta-data. Arnal Barbedo (2019) proposed a method of image classification based on individual lesions and spots, testing 14 plants and 79 diseases, which improved the accuracy compared with using original images.

Relying on a single predictive model may cause machine learning algorithm to overfit (Ali et al., 2014; Feng et al., 2020). To solve this problem, ensemble learning with a set of algorithms to combine all possible predictions was used (Dietterich, 2000). With the development of computer technology, ensemble learning was used for prediction in disease diagnosis (Albert, 2020), soybean yield (Yoosefzadeh-Najafabadi et al., 2021), protein binding hot spots (Hu et al., 2017), and wheat grain yield (Fei et al., 2021). Since the above studies have proven the feasibility of ensemble learning, ensemble technology would be used in this research to improve the accuracy of disease diagnosis.

In summary, deep learning is a promising technology for disease diagnosis of various crops with which high accuracy can be achieved. Existing research on the use of deep learning for rice diseases dealt with a limited number of rice diseases. Various types of rice diseases have been observed in rice fields, such as rice leaf blast, false smut, neck blast, sheath blight, bacterial stripe disease, and brown spot. The aim of this study was to increase the accuracy, efficiency, affordability, and convenience of rice disease diagnosis. The specific objectives of this study were to (1) develop a deep learning network model for diagnosing six different types of rice diseases, (2) evaluate the performance of the model, and (3) implement the diagnosis method in a cloud-based mobile app and test it in an application.



MATERIALS AND METHODS


Model Development and Testing


Data Acquisition

Deep learning requires a large number of training images to achieve good results (Barbedo, 2018). Thus, a total of 33,026 images of rice diseases were collected over a 2-year period for the development of a disease diagnosis model. Among these images, 9,354 were for rice leaf blast, 4,876 were for rice false smut, 3,894 were for rice neck blast, 6,417 were for rice sheath blight, 6,727 were for rice bacterial stripe, and 1,758 were for rice brown spot diseases. The characteristics of rice leaf blast are large spindle-shaped lesions with grayish centers and brown edges. For false smut disease, the pathogen is fungal that infects rice flowers and turns them into rice false smut balls, which is the only visible feature of rice false smut. For rice neck blast disease, node and neck lesions often occur at the same time and have a similar characteristic, a blackish to a grayish brown color. For rice sheath blight disease, lesions on the leaves are usually irregular in shape, and after a period of infection, the center is usually grayish white with brown edges. For rice bacterial stripe disease, on young lesions, the bacteria ooze dew and dry out the plant, leaving yellow beads that eventually develop orange-yellow stripes on the leaves. For rice brown spot disease, the spots are initially small round, dark brown to purplish brown, and fully developed spots are round to elliptic with light brown to gray centers and reddish-brown edges. Example images of each disease are in the Supplementary Material. The images were from four locations in China: (1) Baiyun Base of The Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, (2) Laibin, Guangxi, (3) Binyang, Guangxi, and (4) the Chinese Academy of Sciences, Hefei, Anhui. These images were taken using mobile phones with high resolution (more than 1 megapixel), so that the characteristics of rice diseases could be clearly captured. To prepare for model development, the images were split into a training set, a validation set, and a test set with a ratio of 7:2:1. This ratio was randomly applied to all the six disease categories; thus, the corresponding image numbers of these sets were 23,096; 6,684; and 3,246.



Image Preprocessing

Image preprocessing and data enhancement are performed to reduce the overfitting of models, as illustrated in Figure 1. Before the model reads the image, the short side of the image was scaled to 256 pixels, and the long side was scaled proportionally to reduce the computational pressure of the model. Then, random affine transformation was applied to the image, which could randomly translate, rotate, scale, deform, and cut the image. At the same time, Gaussian blur and image flipping were applied randomly. Finally, the resized image was randomly cropped to a 224 × 224 pixels square area as the actual training image. These processes favored expanding the data set and reducing the over-fitting of the model on the original dataset without modifying the characteristics of rice diseases.


[image: Figure 1]
FIGURE 1. Steps of the image preprocessing for expanding dataset and reducing the overfitting of models.


Next, the mean and standard deviation of the ImageNet dataset were applied for normalization to make image color distribution as similar as possible. As the number of images of different types of diseases was not equal, an over-sampling operation was adopted for a small number of rice brown spot images in the preprocessing, with a ratio of three times. This process was repeated for each training epoch; therefore, the number of images that each model read was different in each training epoch, and the number of image samples in the dataset was increased in this way.



Convolutional Neural Network (CNN) Models

The structure of the convolutional neural network has a crucial influence on the performance of the final model. It was necessary to compare the performance of different networks in the diagnosis of rice diseases. Five network structures were selected and tested, and they were: ResNet, DenseNet, SENet, ResNeXt, and ResNeSt. These networks are described below.

ResNet (He et al., 2016) is a widely used network model, which uses residual blocks to enhance the depth of the CNN. The structure of the residual block is shown in Figure 2A. By directly connecting the input and the output, ResNet can reduce the problems of gradient disappearance and gradient explosion, thus deepening the number of network layers and achieving better effects. DenseNet (Huang et al., 2017) uses a dense connection, which connects each layer to every other layer (Figure 2B). Since DenseNet allows features to be reused, this can generate many features with a small number of convolution kernels. As a result, it can reduce gradient loss and enhance the propagation of features, and the number of parameters is greatly reduced. SE-ResNet (Hu et al., 2020) presents the “Squeeze-and-Excitation” block, which can establish the relationship between channels and adaptively recalibrate the responses of the channel-wise feature. The SE block can be added in different networks. Figure 2C shows the SE block with ResNet. ResNeXt (Xie et al., 2017) is an improved version of ResNet that was designed to have a multi-branch architecture and grouped convolutions to make channels wider (Figure 2D). ResNeXt can improve accuracy without increasing parameter complexity while reducing the number of super parameters. ResNeSt (Zhang et al., 2020) proposes Split-Attention blocks based on SENet, SKNet, and ResNeXt, which makes attentions grouped (Figure 2E). This structure combines channel attention and feature map attention to improve performance without increasing the number of arguments.


[image: Figure 2]
FIGURE 2. Structures of different convolutional neural network (CNN) models tested. (A) Residual Block, (B) Dense Block, (C) SE Block with ResNet, (D) ResNeXt, (E) ResNeSt Block.


Based on the five network structures above, five network models were selected for subsequent training, and they were ResNet-50, DenseNet-121, SE-ResNet-50, ResNeXt-50, and ResNeSt-50. The MACs (multiply–accumulate operation number) and Params of the five network models above are shown in Table 1. MACs is an evaluation index of the computational force of the model, and Params is used to count the number of model parameters. Except for DenseNet-121, the number of calculations and parameters of the other models is very close. This means that their speed and model size are close to each other. Despite the small number of Params and MACs in DenseNet-121, due to the reuse of features, the occupation of training resources is still close to the other models, but it is more economical in model inference. Therefore, comparing these network models could eliminate the negative effect of hardware resource utilization.


Table 1. Parameters of the models.

[image: Table 1]



Evaluation of the Models

The performance of the five network models was compared, so that the best models could be selected. For each network model, the results of disease prediction were given in four categories, and they were true positive (TP): correctly predicted the type of disease; false positive (FP): other types of diseases were predicted as this disease; true negative (TN): correctly predicted the disease not being other types of disease; and false negative (FN): the disease was predicted to be another type of disease. These outputs were used to determine the performance indicators: accuracy, precision, recall rate, F1 score, and Matthews correlation coefficient (MCC), as shown in Equations (1–5). The accuracy and MCC were evaluated for all the types of diseases, and the other indicators were evaluated for a single type of disease:
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where N is the number of all test images, A is accuracy, P is precision, R is recall rate, F1 is a score, i is the ith type of disease, and TPi, FPi, and FNi are the numbers of true positives, false positives, and false negatives, respectively, in the ith type of disease. MCC is essentially the correlation coefficient between the observed and predicted binary classifications; it returns a value between −1 and +1. The coefficient +1 means perfect prediction, 0 means no better than random prediction, and −1 means complete discrepancy between prediction and observation.

Loss value is another indicator to evaluate the models. Different from the other indicators, loss is an evaluation of the fitting degree of the training set instead of test set. Although it cannot directly represent the performance of the model, the fitting condition of the model can be estimated through the changes in loss during the training process Here, we selected the cross entropy loss function (De Boer et al., 2005).



Fine-Tuning of the Models

The models were fine-tuned using the transfer learning method to reduce training time. Transfer learning means applying the knowledge learned from one dataset to another, which has been proven to be effective for plant disease recognition (Kaya et al., 2019; Chen et al., 2020). In transfer learning, models fully trained on the ImageNet dataset were trained again on the rice disease dataset. Since 1,000 classes of ImageNet do not correspond to the number of disease categories identified for rice crop in this study, the last layers of all the models were modified to output six classes. Therefore, before the training for rice diseases, the parameters of the models were set as the pre-trained models except for the last layers. The weights of the last layers were initialized with the method used by He et al. (2015), and biases of the last layers were modified by uniform distribution.

After the pre-training, the models trained using the rice disease dataset were able to extract basic features such as edges and contours of leaves and spots; thus, the models could converge faster. The training policies of the five models were the same, where the batch size was 64, the data loader process number was eight, the max epoch was 200, the optimizer was stochastic gradient decent (SGD) with 0.9 momentum, and the initial learning rate was 0.001. To make the model converge quickly in the early stage and continue to improve in the later stage, a variable learning rate was applied. In the first five epochs, warm up was used, i.e., the learning rate increased linearly from 0 to the initial learning rate, which enabled the model to stabilize rapidly on a large data set. Subsequently, the learning rate decreased to 0 after 30 epochs according to the cosine function, and then returned to the initial learning rate, which decreased repeatedly until the max epoch was reached.



Ensemble Learning

Ensemble learning combines multiple submodels into a single model so if a submodel fails, the others can correct the errors (Caruana et al., 2004). In this study, ensemble learning was achieved by combining the three best network submodels, which were selected out of the five submodels after comparisons of the performance of the five submodels. The type of the ensemble algorithm implemented here was voting. For the output of each selected network submodel, the Softmax function (Equation 6) was used to normalize first, and then the output scores of all three submodels were averaged to obtain the final scores of all classes, as illustrated in Figure 3. The class that had the highest score was the diagnosed disease for the input image.

[image: image]

where z is a vector of K real numbers, zi and zj are the ith and jth number of z respectively, and σ(z) is the output vector whose value is between 0 and 1.


[image: Figure 3]
FIGURE 3. Architecture of the Ensemble Model for rice disease diagnosis.





Model Implementation and Application

The Ensemble Model was implemented in an app consisting of software architecture and user interface. The software system had two parts: the client and the server. The client runs on the smartphone, while the server runs on a server computer. As the Ensemble Model was trained and run under PyTorch 1.5.0 with CUDA 9.2 that is based on the Python language (Paszke et al., 2019), the Python language was chosen for the server-side development. Django, a Python-based free and open-source web framework, was used to build a stable web server. The client transmits a rice disease image to the web server. When the server receives a POST request from the client, the server invokes the Ensemble Model to detect the image and returns results to the client in JSON format (Figure 4). The results include status information, disease category, and probability score. After the client receives the JSON data, it parses and displays the data on the screen for the client to view. This structure of front end and back-end separation can help with subsequent functional expansion and support for more platforms in future development.


[image: Figure 4]
FIGURE 4. Software architecture of the system.


The user interface for the mobile client was written using Flutter. Flutter is a cross-platform open-source software kit developed by Google, which can be used to develop applications for Android, iOS, Windows, Mac, Linux, and Google Fuchsia. Therefore, the app developed in this study can be used in the Android platform and also in other operating systems after some compilations.

To test the generalization of the Ensemble Model, the app was utilized to recognize rice diseases using a different test set of rice disease images sourced from Google and provided by Shenzhen SenseAgro Technology Co. Ltd. (Shenzhen, Guangdong, China). This set of images includes 50 images for each of the six types of disease, totaling 300 images. With these images, the performance of the Ensemble Model in practical application was evaluated. For the purpose of distinction, this image set was called independent test set, while the images from the original data set was called split test set.




RESULTS


Model Training and Testing Results


Performance Comparisons of the Five Network Submodels

After fine-tuning and training, the loss value was low for all the five submodels, and the minimum loss values of all the submodels were below 0.002 (Figure 5A). The learning rate was the same for all the submodels, and it was in the range of 0–0.001 (Figure 5B). The disease diagnosis accuracy on the training set of rice disease images was high for all the submodels, meaning all the submodels had fit the training set well, but that SE-ResNet-50, DenseNet-121, and ResNeSt-50 had better accuracies (over 99%) (Figure 5C). When the submodels were applied on the validation set and test set of images, the disease diagnosis accuracy was also high for all the submodels, particularly for the SE-ResNet-50, DenseNet-121, and ResNeSt-50 submodels, which achieved accuracies of over 99% (Figure 5D).


[image: Figure 5]
FIGURE 5. Comparisons in performance of the five different submodels. (A) Loss value, (B) learning rate, (C) validation accuracy, and (D) training accuracy.


Confusion matrix is a specific table that makes it easy to see if the model is mislabeling one class as another. The performance of the five submodels can be visualized using the confusion matrix. Figure 6 shows the confusion matrixes in the split test set of images for the six types of rice diseases. The rows of confusion matrixes are the actual types of disease, while the columns are the predicted type of disease. The diagonal values represent the correct recognition from the model in the categories of true positives (TP) and true negative (TN). The off-diagonal values represent the incorrect recognition in the categories of false positives (FP) and false negative (FN), and smaller values means fewer misrecognitions occurred. The diagonal values were large, and the other values were small, which showed that all the submodels were quite effective in diagnosing all the various types of rice diseases. The depth of the color indicates the proportion of the number at that position to the total of the row, therefore the color on the diagonal represents the recall rate of the disease. According to the confusion matrix, the DenseNet-121, SE-ResNet-50, and ResNeSt-50 submodels overperformed the other two submodels in the confusion of different diseases, especially for the leaf blast, false smut, and sheath blight rice diseases.


[image: Figure 6]
FIGURE 6. Confusion matrixes of the five different submodels; images used were from the split test set. (A) ResNet-50, (B) DenseNet-121, (C) SE-ResNet-50, (D) ResNeXt-50, and (E) ResNeSt-50.


To further verify the effect of the confusion matrix results, the MCC of the diseases corresponding to each model were also calculated, as shown in Table 2. According to the MCC values, which are shown in Table 2, the DenseNet-121, SE-ResNet-50, and ResNeSt-50 submodels overperformed the other two submodels in the confusion of different diseases, especially for the leaf blast, false smut, and sheath blight rice diseases.


Table 2. MCC values of the five different submodels.

[image: Table 2]

The precision, recall, and F1 score of each submodel on recognition of each disease were determined using Equations (2–4). Figure 7 below visually compares the boxplots of precision, recall and F1 score values for each of the five models, namely, ResNet-50, DenseNet-121, SE-ResNet-50, ResNeXt-50, and ResNeSt-50. The boxplots suggest that the DenseNet-121 model is significantly better than the other four submodels, whether it is compared with precision, recall, or F1 score. Except for the DenseNet-121 model, SE-ResNet-50 and ResNeSt-50 are better than ResNet-50 and ResNeXt-50 in terms of precision or recall and F1 score. In summary, DenseNet-121, ResNeSt-50, and SE-ResNet-50 had better overall performance among the five submodels tested.


[image: Figure 7]
FIGURE 7. Boxplots of precision, recall, and F1 score of the different submodels.




Visualization of the Three Best Submodels

Based on the discussion above, the three best submodels were DenseNet-121, ResNeSt-50, and SE-ResNet-50. Their performance was further demonstrated by visualization methods: Grad CAM (Selvaraju et al., 2016), Grad CAM++ (Chattopadhyay et al., 2017), and Guided Backpropagation (Springenberg et al., 2015). The CAM is class activation map, which can show the areas most relevant to a particular category and map them to the original image (Zhou et al., 2015). The Grad CAM is calculated by the weighted sum of the feature map and the weight of the corresponding class, which can generate CAM without changing the structure of model. Grad CAM++ is an improved version of Grad CAM, which introduces the weighting of the output gradient for the pixel level at a particular location, and it has better effects than Grad CAM. Guided Backpropagation uses backpropagation to calculate the output-to-input gradient, and it restricts the backpropagation of gradients less than 0 to find the points of the picture that maximizes the activation of a feature. In the results, these points are usually represented as the contours of features. Also, to make the Guided Backpropagation images clearer, high-pass filters using the Sobel operator were taken to post-process the images. The maps of these three visualization methods were generated for each of the three selected submodels on each of the six types of diseases (Figure 8). In the Grad CAM and Grad CAM++maps, the red area represented activation areas, and the model paid more attention to this area in the diagnosing process, whereas the blue area had no positive effect on the result. In the Guided Backpropagation map, the contours, in which the model was interested, were highlighted. It is obvious to find the basis of diagnosis using this map. When comparing the maps among the three submodels, the general shapes and locations of active areas (red areas) in the Grad CAM and Grad CAM++ maps are similar. However, the boundaries of the active areas from DenseNet-121 (Figure 8A) are not as defined as those from the two other submodels (Figures 8B,C). Also, it seemed that the locations of the active areas from SE-ResNet-50 better reflect the disease locations shown in the original images (Figure 8C). In the Guided Backpropagation map, contours of interesting objects from DenseNet-121 (Figure 8A) are not as obvious as those from ResNeSt-50 (Figure 8B), and those from SE-ResNet-50 (Figure 8C) are intermediate in this regard. Overall, all the three selected submodels have a good disease identification ability, as visually observed, and they would complement each other in the Ensemble Model.


[image: Figure 8]
FIGURE 8. Visualization of rice disease diagnosis results from the three best submodels: (A) DenseNet-121, (B) ResNeSt-50, and (C) SE-ResNet-50.




Performance of the Ensemble Model

To show the performance of the Ensemble Model, which is a combination of DenseNet-121, ResNeSt-50, and SE-ResNet-50, the confusion matrix was calculated. The diagonals of the confusion matrix indicated high values of TP (Figure 9A), meaning the Ensemble Model had an accuracy of over 99%. The boxplots of the performance indicators of the Ensemble Model: precision, recall, and F1 score, are shown in Figure 9B. The boxplots show that the Ensemble Model did not have outliers in precision, recall, and F1, indicating that the performance of the model in identifying diseases is very stable. These results demonstrate that the Ensemble Model had a good performance in recognizing all the six types of rice diseases.


[image: Figure 9]
FIGURE 9. Test results of the Ensemble Model for different types of rice disease with the split test set of images. (A) The confusion matrix and (B) the boxplots of the precision, recall, and F1 score for the Ensemble model in diagnosing six rice diseases.





Application of the Ensemble Model

In the rice disease diagnosis app, the user interface is composed of several parts, as shown in Figure 10. The main interface was for taking photos or uploading existing pictures. The photo interface was used for taking disease images and uploading them. The picture-selecting interface was used to select the existing disease pictures in the mobile phone for uploading. Considering the time required for network uploading, a wait interface was provided to improve user experience. After the client received the data returned by the server, the result interface displayed the results of the recognition of the disease image by the model.


[image: Figure 10]
FIGURE 10. Components of the user interface in the rice disease diagnosis app.


To test the performance of the app in a practical application, a test set of images from different sources (Google images and SenseAgro) was used to verify the generalization of the Ensemble Model and the performance of the app. The boxplots of precision, recall, and F1 scores for the Ensemble Model are shown in Figure 11. The boxplots illustrate that the Ensemble Model had a small degree of dispersion in precision, recall, and F1 score, indicating that the performance of the model in identifying diseases is relatively stable. The F1 score varied from 0.83 to 0.97 when the Ensemble Model was used to diagnose different types of disease. As for the overall performance, the results showed that the accuracy for all the diseases was 91%. As the F1 scores are over 0.8 and the accuracy is over 90% for all the diseases, the rice disease diagnosis app is considered to be good.


[image: Figure 11]
FIGURE 11. Boxplots of precision, recall, and F1 score for the Ensemble Model, tested with the independent test set of images.





DISCUSSION

Rice leaf blast, rice false smut, rice neck blast, rice sheath blight, rice bacterial stripe, and rice brown spot are common diseases during the growth of rice. The identification of these diseases is of practical importance and can provide ideas for the identification of other rice diseases in the future. In this study, the dataset was split into a training set, a validation set, and a test set using a ratio of 7:2:1. From the training results, the ratio made full use of the data obtained from the collection and enabled the model to learn the important features of each disease. Considering that the test set obtained from splitting this dataset has a large similarity with the training set, various disease images from different sources were collected to form an independent test set. The test results of the independent test set demonstrate that the network designed in this study is generalizable and can be applied in practice. Therefore, the division of the data set and the selection of the test set are appropriate for this study.


Comparison of the Submodels

The convergence speeds of DenseNet-121, ResNeSt-50, and SE-ResNet-50 were high (Figure 5), and they reached a stable level when about 30 epochs were iterated, while ResNet-50 and ResNeXt-50 were relatively stable after 100 epochs. Throughout all the training processes, DenseNet-121, ResNeSt-50, and SE-ResNet-50 were more accurate than ResNet-50 and ResNeXt-50. The accuracy curves and the loss curves of the three submodels were also smoother. This indicates that DenseNet-121, ResNeSt-50, and SE-ResNet-50 have faster convergence speeds, higher accuracy rates, and more stable convergence states.

The confusion matrixes show that most diagnosis results were correct, and that some diseases were more easily misrecognized than the others (Figure 6). There was a confusion between rice leaf blast and brown spot diseases in some of the submodels, because the early characteristics of rice leaf blast and rice brown spot were very similar. Both diseases consist of small brown spots, which are difficult to distinguish by naked eyes. Rice false smut and rice neck blast are also easily confused because they both appear at the ear of rice, which could sometimes lead to misjudgment by the submodels.

Figure 7 provides a more intuitive view of the performance of the different submodels on different diseases. DenseNet-121, ResNeSt-50, and SE-ResNet-50 perform better than the other two submodels; the gap is most pronounced in rice brown spot. Each of the three submodels have internal advantages for different diseases. DenseNet-121 performed better with rice neck blast and rice brown spot; SE-ResNet-50 performed better with rice bacterial stripe; and ResNeSt-50 was more balanced with different diseases. Therefore, considering the better performance of DenseNet-121, ResNeSt-50, and SE-ResNet-50, these three submodels were selected as the submodels of the Ensemble Model.



Visualization Analysis of the Models

The learning conditions of different networks to different diseases can be found (Figure 8). For rice leaf blast disease, characterized by large spindle-shaped lesions with grayish centers and brown edges, all three submodels are more sensitive to the whole spot area, so all of them could accurately learn the characteristics of this disease. In detail, the areas on Grad CAM and Grad CAM++ of ResNeSt-50 were the most precise, and in the Guided Backpropagation maps, the spots were the most obvious. Therefore, the feature extraction of ResNeSt-50 for rice blast was the best.

For rice false smut disease, the pathogen is fungal that infects rice flowers and turns them into rice false smut balls, which are the only visible feature of rice false smut. The heatmap of the three submodels is very close, the part that includes the rice false smut ball is focused, while the surrounding normal rice is ignored, which means that the learned characteristics of rice false smut are the same.

For rice neck blast disease, node and neck lesions often occur at the same time and have a similar characteristic, a blackish to a grayish brown color. DenseNet-121 and SE-ResNet-50 mainly focus on the neck and node of rice, while ResNeSt-50 mainly focus on the node of rice, which means that the feature extraction ability of ResNeSt-50' in rice neck blast is poor compared with the other two submodels, as the latter submodel did not fully learn all the characteristics in the node and neck.

For rice sheath blight disease, lesions on the leaves are usually irregular in shape, and after a period of infection, the center is usually grayish-white, and the edges are usually brown. The Grad Cam heatmaps of the three submodels are also similar, and all the lesions are of concern.

For rice bacterial stripe disease, on young lesions, the bacteria ooze dew and dry the plant out, leaving yellow beads that eventually develop orange-yellow stripes on the leaves. DenseNet-121 and SE-ResNet-50 focus on most of the spots, while ResNeSt-50 focuses only on the upper spots, which means ResNeSt-50 is weaker than the other two submodels in feature extraction of rice bacterial stripe disease.

For rice brown spot disease, the spots are initially small round, dark brown to purplish brown, and fully developed spots are round to elliptic with light brown to gray centers and reddish-brown edges. DenseNet-121 performs poorly in feature learning and is only sensitive to some features, while the other two submodels contain most of the disease spots.

It should be noted that these heatmaps can only indicate which features the model paid more attention to, indicating that the model learned the features of the spots rather than other unrelated features. However, this is not exactly consistent with the final classification score of the model, because different types of diseases interact with each other. It is not enough to learn the characteristics of a disease. Learning the characteristics of the differences between various diseases also affects the final classification performance. Therefore, although the heatmaps of some models are not perfect for some diseases, they can still be well-classified.



Performance of the Ensemble Model

The results of the Ensemble Model tested with the split test set of images (Figure 9) showed that by combining the scores of the different models, the confusion between different diseases was greatly reduced. This explains that the Ensemble Model combines the advantages of each model to solve the problem of a single model misjudging some diseases. Meanwhile, the precision, recall, and F1 scores of the Ensemble Model were also more stable than those of the single model.

The F1 scores of the Ensemble Model for each disease were tested using the independent test set of images, and the overall accuracy of the Ensemble Model in the independent test set was 91% (Figure 11). Compared with the results of the previous test in the split test set, it can be found that although there was a reduction in accuracy, it was still high. The best recognition effect was on the rice sheath blight and rice bacterial stripe diseases; their indicator scores were close to one, which was close to the results from the test using the split test set of images. This means that the Ensemble Model has the best generalization for these two diseases. The indicators of rice leaf blast, rice false smut, and rice neck blast were all around 0.9, which was mainly caused by the confusion between diseases, and the samples from different sources also had some influence. The F1 score of brown spot disease was close to 0.8. On one hand, the training samples of rice brown spot were least in all the diseases, although data enhancement was performed. On the other hand, rice leaf blast and rice brown spot have similar characteristics, which may cause confusion easily. In general, the performance of the Ensemble Model in the independent test set was satisfactory, which indicated that the rice disease diagnosis app is reliable to be applied in the field.

Since the dataset used for training and testing in this study is different from that in previous studies and the diseases targeted by the study are different, a direct comparison cannot be made. However, the Ensemble Model designed in this study performed better on the split test set than the previous study on the corresponding dataset (Lu et al., 2017b; Rahman et al., 2020), which indicates that the Ensemble Model designed in this study is effective. The results on the independent test set also demonstrate the good generalization of the Ensemble Model. Therefore, as compared with previous applications, the proposed smartphone app can provide higher accuracy, which is the most important performance indicator of the application. To facilitate the implementation of the app, easy operation and simplicity are the key features for farmers to quickly adopt the app. Finally, the cost is a barrier to commercialization of any technology. The low cost of the app will attract many users.




CONCLUSION

In this study, a dataset containing 33,026 images of six types of rice diseases was established. Based on these images, five submodels, ResNet-50, ResNeXt-50, DenseNet-121, ResNeSt-50, and SE-ResNet-50 were trained and tested, achieving over 98% accuracy and over 0.95 F1 score. Among them, DenseNet-121, SE-ResNet-50, and ResNeSt-50 performed well. Visual analysis confirmed the good learning status of the submodels on the characteristics of rice diseases. Subsequently, the Ensemble Model, an integration of these three submodels, produced accurate judgment of confusable diseases, according to the confusion matrixes analysis. As a result, the F1 scores reached more than 0.99 for each of the six types of disease. Being tested by independently sourced images, the Ensemble Model achieved 91% accuracy, indicating that it has enough generalization ability to be implemented in a rice disease diagnosis app for field applications. With a software system that included both servers and clients, the smartphone app provided high accuracy, easy operation, simplicity, and low-cost means for the recognition of rice diseases. The limitation was that the Ensemble Model has many parameters, which may affect the speed of identification. Future studies will be carried out on network pruning to reduce the number of parameters.
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The accurate detection of green citrus in natural environments is a key step in realizing the intelligent harvesting of citrus through robotics. At present, the visual detection algorithms for green citrus in natural environments still have poor accuracy and robustness due to the color similarity between fruits and backgrounds. This study proposed a multi-scale convolutional neural network (CNN) named YOLO BP to detect green citrus in natural environments. Firstly, the backbone network, CSPDarknet53, was trimmed to extract high-quality features and improve the real-time performance of the network. Then, by removing the redundant nodes of the Path Aggregation Network (PANet) and adding additional connections, a bi-directional feature pyramid network (Bi-PANet) was proposed to efficiently fuse the multilayer features. Finally, three groups of green citrus detection experiments were designed to evaluate the network performance. The results showed that the accuracy, recall, mean average precision (mAP), and detection speed of YOLO BP were 86, 91, and 91.55% and 18 frames per second (FPS), respectively, which were 2, 7, and 4.3% and 1 FPS higher than those of YOLO v4. The proposed detection algorithm had strong robustness and high accuracy in the complex orchard environment, which provides technical support for green fruit detection in natural environments.

Keywords: deep learning, green citrus, YOLO v4, agricultural harvesting robotic, object detection


INTRODUCTION

As one of the most important fruit production countries, China has the largest citrus industry in the world (Liu et al., 2019). Limited by the complexity of environments in the country, citrus picking in China is still dominated by inefficient manual operation. Therefore, the development of intelligent fruit-picking robots is of great value and significance for alleviating labor shortage, saving labor costs, and promoting intelligent agricultural production. Thus, machine vision is the key technology for the development of the ability of picking robots to achieve precise operation, but the detection accuracy and efficiency of existing fruit-picking robots still need to be improved (Liang et al., 2020).

In the complex outdoor environment, the accurate and effective detection of citrus fruits is the prerequisite for robots to complete picking tasks efficiently. The detection accuracy determines the positioning accuracy, which is of great significance for robots to achieve successful picking. Compared with mature fruits with colors different from the background, green fruits are more difficult to recognize in natural environments. The difficulties are as follows: (1) the natural environment has complex illumination, where different light intensities and uneven illumination at different daytime periods would reduce the quality of image acquisition; (2) citrus fruits have diverse growth states as, under natural conditions, citrus fruits are randomly distributed and overlapped with each other and can thus be easily blocked by background objects such as leaves or branches; (3) in addition to having a similar color to leaves, green citrus fruits occupy few pixels in the image due to their small size in reality, which is difficult to detect. These are the common phenomena in the actual orchard environment, and all of them cause great difficulties for algorithms when accurately detecting green citrus fruits.

In recent years, many scholars have tried to detect green citrus and made some progress in the endeavor. For example, Kurtulmus et al. (2011) proposed the concept of an “intrinsic fruit” and detected green citrus by combining color with circular Gabor texture features, subsequently reaching an algorithm accuracy of 75.3%. Sengupta and Lee (2014) proposed an algorithm using color images to detect green citrus fruits; specifically, combining shape features with Hough circle detection to realize the preliminary detection of potential fruits and used texture features. They also used Hough line detection and Canny edge detection to further remove false positives, resulting in an algorithm accuracy of 80.4%. Zhao and Lee (2016) put forward a green citrus detection method based on the sum of absolute transformation difference (SATD) and used texture features to filter out false positives, achieving an accuracy up to 83.4%. Lu and Hu (2017) proposed a hierarchical contour analysis (HCA) algorithm based on the light distribution on the surface of a fruit to realize the detection of green citrus fruits on trees, with an accuracy of 83.5%, a recall rate of 81.2%, and an execution time of 3.7 s. Lu et al. (2018) proposed a method using texture and intensity distribution to detect green citrus fruits in tree images, with an accuracy of 80.4%. Wang et al. (2018) developed a green citrus recognition and counting method based on the local binary pattern (LBP) features and the AdaBoost classifier, with an accuracy of 85.6%. He et al. (2020) proposed a deep bounding box regression forest (DBBRF) green citrus detection method based on a deep border regression forest. The average recognition accuracy and time were 87.6% and 0.759 s, respectively. In summary, the studies discussed previously mainly combined the traditional image processing methods and the basic characteristics of color, texture, and shape to realize green citrus detection. However, in the complex environment of the actual orchard, this kind of method is prone to inference from other factors, such as natural light, leaf occlusion, fruit overlap, and so on.

In addition, some scholars also used heat map, multispectral, or hyperspectral images to detect green citrus fruits. Okamoto and Lee (2009) achieved the detection of green citrus fruits by combining the hyperspectral camera in the range of 369–1,042 nm and using image processing methods such as noise reduction filtering, labeling, and region threshold segmentation. The detection accuracy of the algorithm for complete fruits was between 80 and 89%. Torres et al. (2019) proposed a green citrus detection method based on two hyperspectral reflectance imaging systems, resulting in a detection accuracy of 96.97%. Although multispectral images and hyperspectral images can provide many clues to green citrus, at the same time, there is still much information redundancy, which may lead to the poor real-time performance of the algorithm. Furthermore, compared with the color image acquisition equipment, a multispectral or hyperspectral camera is generally more expensive. Gan et al. (2018) applied the multimodal imaging method to the visual detection of green citrus for the first time, with green citrus fruits being effectively identified through the fusion of color information with thermal information, resulting in an algorithm recognition accuracy of 95.5%. Despite the high accuracy of this method, its thermal images can be easily affected by other factors such as relative humidity, ambient temperature, and wind, so it is rarely used in actual fruit detection tasks.

With the rapid development of machine learning, some researchers have begun to apply deep learning to the visual inspection of fruits (Kamilaris and Prenafeta-Boldu, 2018). Peng et al. (2018) proposed an improved single shot multi-box detector (SSD) deep learning fruit detection model by replacing the VGG16 backbone network with the ResNet-101 model. In the proposed model, the average detection accuracies of imperial orange and navel orange were 91.57 and 90.69%, respectively. Lv et al. (2019) proposed a citrus recognition method based on the improved YOLOv3-LITE lightweight neural network. The method introduced the generalized Intersection over Union (GIoU) border regression loss function and used the MobileNet-v2 as the backbone network, with an average accuracy of 91.13%. Xiong et al. (2020) proposed a citrus detection network based on Des-YOLO v3, which effectively improved the problem of the missed detection of small targets, and the average detection accuracy of the algorithm was 90.75%. Kang and Chen (2020) proposed an apple detection model named LedNet and an automatic labeling tool. The recall and accuracy of the model were 82.1 and 85.3%, respectively. Yang et al. (2020) proposed an integrated system for citrus and branch detection and size estimation and used the Mask RCNN as the citrus fruit recognition model, with the average recognition accuracy of 88.15%. In summary, the mentioned researches mainly focused on mature fruits; however, green fruits are more difficult to detect because of the color similarity between these fruits and their leaves. Combining color with thermal information, Gan et al. (2018) adopted the Faster RCNN algorithm to identify green citrus fruits, with a recognition accuracy of 95.5%. Xiong et al. (2018) also used Faster RCNN to identify green citrus in natural environments, with an average accuracy of 85.49% on the test set. In Afonso et al. (2020), the Mask RCNN algorithm was used for the detection of tomatoes in images taken in a greenhouse, which detected objects and the pixels corresponding to each object. The above researches showed that, due to the strong feature extraction ability of deep convolution neural networks, fruit recognition studies have gradually shifted their focus to recognition methods based on deep learning.

In short, although many researchers have done extensive work on the detection of green citrus, the accuracy and robustness of most detection algorithms still need to be further improved due to the difficulties of green citrus detection already discussed. Compared with traditional machine learning methods, deep learning algorithms have greater advantages in terms of accuracy and real-time performance. However, few studies have been conducted on the use of deep learning methods to detect green citrus fruits in natural environments. At the same time, the resources that fruit-picking robots can use in the orchard are limited, so it is necessary to improve detection algorithms according to actual needs.

Therefore, based on the deep learning method, this study proposed a visual detection method of green citrus fruits in the natural environment, which can provide technical support for the intelligent picking of other green fruits. The main research work is presented as follows. (1) The green citrus images captured in the complex environment of citrus orchard were collected, classified, and enhanced. (2) Referring to the idea of a weighted bi-directional feature pyramid network (BiFPN), a green citrus detection network, YOLO BP, was proposed to improve algorithm accuracy and real-time performance based on the improvement and compression of the YOLO v4 detection algorithm. (3) The YOLO BP network was trained and three groups of comparative experiments were designed to evaluate the performance of the proposed method.



MATERIALS


Image Acquisition

In this study, citrus images were acquired from the citrus orchard of Zengcheng, Guangdong, China. The citrus varieties were emperor citrus and tangerine citrus. The image acquisition experiments were carried out on November 11, 2016, January 8, 2017, and July 20, 2018. As shown as Figure 1, the shooting distance between camera and citrus trunk was between 1 and 2 m during image acquisition, and the citrus fruits are photographed from multiple angles. To meet the diversities of the dataset, a total of 890 green citrus images were taken at different time periods (9:30–17:00) and different light conditions (directional light and backlight) and saved in 24-bit color JPEG format.


[image: Figure 1]
FIGURE 1. Visual system and image acquisition schematic diagram.


The image acquisition system mainly included three cameras, namely, Nikon (Tokyo, Japan), SONY (Tokyo, Japan), and Apple (Cupertino, CA, USA), with the specific parameters of each camera and the corresponding image number shown in Table 1.


Table 1. Statistics of the camera parameters and image quantities.

[image: Table 1]



Class Definition for the Green Citrus Scene

As described in the Introduction, except for the color similarity between green citrus fruits and their backgrounds, there are many complex situations in the natural environment, such as light changes, shades of the branches and leaves, overlapping of fruits, changes in the number and size of fruits, etc.

To verify the average detection accuracy of green citrus fruits under the different conditions discussed using the algorithm, we defined and classified the citrus image set shown in Figure 2. The distribution of citrus fruits can be classified into single and multiple fruits, shown in Figures 2A,B. Figures 2C,D show different fruit illuminations, which can be divided into backlighting and front lighting. The cases of citrus fruits occluded by leaves or branches are shown as Figures 2E,F. In particular, if more than one-third of the fruit was occluded, it was called heavy occlusion (Figure 2F); otherwise, it was a slight occlusion (Figure 2E). Figure 2G shows the overlapping of multiple citrus fruits. In addition, citrus fruits are often presented in a combination of the mentioned conditions when they were in the actual orchard environment. Figure 2H contains four conditions, including multiple small-size fruits, backlighting, branch and leaf shading, and fruit overlapping. The classification and naming of the discussed cases are shown as Table 2.


[image: Figure 2]
FIGURE 2. Classification and definition of different citrus scenes in natural environment.



Table 2. Green citrus scene classifications and image quantities.

[image: Table 2]



Image Data Augmentation

To improve the generalization ability of the detection algorithm, this study adopted four methods to enhance the data set, including rotation, horizontal inversion, adding Gaussian noise, and changing brightness. Then, we removed invalid images without fruits or blurs and counted the number of images of each citrus scene. The statistical results are shown in Table 2. Finally, the dataset was randomly divided into training, validation, and test sets according to the proportions 70, 15, and 15%, respectively.




METHODOLOGY


Experimental Environment

The running environment included a desktop computer with Intel i7-10700 (2.9 GHz × 16) octa-core CPU, NVIDIA GeForce GTX 3090 GPU, and Ubuntu 16.04 64-bit systems. The software included CUDA 10.0.130, CUDNN 7.4.2, NVIDIA driver 410.78, Opencv 3.4.5, Deep Learning Framework-DarkNet, labelImg, spyder, and Anaconda 3.5.2.



YOLO v4 Network

Compared with other object detection methods [such as regional-based convolutional neural network (R-CNN) series (Ren et al., 2015; He et al., 2017; Liang et al., 2020)], YOLO v4 (Bochkovskiy et al., 2020) extracts features based on a regression method, with a single neural network being used to detect and classify input images without generating a large number of candidate windows in order to realize end-to-end object detection. The YOLO v4 algorithm can quickly predict and classify targets and ensure high accuracy simultaneously, so it is suitable for application in actual environments.

Shown as Figure 3, the YOLO v4 divides the input image into grids with a size of S× S (S=7). If the center of an object falls within a certain cell, the cell is responsible for detecting the object. The cell outputs multiple prediction boxes and their corresponding confidences, discards the prediction boxes with low confidences, and, finally, locates the citrus position by the non-maximum suppression algorithm (Lawal, 2021).


[image: Figure 3]
FIGURE 3. YOLO V4 detection network.




Improved YOLO v4 Network

The YOLO v4 is the fourth version of the YOLO algorithm series. Its average precision (AP) and FPS achieved 43.5 and 65%, respectively, on the Microsoft Common Objects in Context (MS COCO) dataset, resulting in a better performance than the Faster R-CNN (Ren et al., 2015), SSD (Liu et al., 2016), EfficientDet (Tan et al., 2020), and other object detection algorithms. However, we found that YOLO v4 had some shortcomings during the experiment, such as the missed detection of overlapped foreground objects and the incorrect detection of background objects. Although the backbone of YOLO v4 performed well, at the same time, its network was too deep, which would result in huge computation. Therefore, based on the improvements of YOLO V4, this study proposed a green citrus detection network named YOLO BP, which effectively improved the accuracy and real-time performance of the detection algorithm.


Feature Extraction Network

In view of the difficult and challenging nature of green citrus detection in natural environments, the accuracy of the visual system of picking robots should be improved as much as possible on the premise of real-time algorithm performance. Compared with the lightweight and high-speed YOLO v4_Tiny algorithm, the YOLO v4_CSPDarknet53 pursues better performance while ensuring real-time performance. Thus, referring to the Cross Stage Partial Network (CSPNet) (Wang et al., 2019), the CSPDarknet53 was proposed on the basis of the improved Darknet53. Furthermore, as the layer depth increases, the network performance will quickly reach saturation or even begin to decline, slowing the network reasoning speed and, at the same time, increasing the computation cost. Therefore, after many instances of clippings and experimental verifications, the CSPDarknet56 was finally proposed as the feature extraction network of YOLO BP.

Shown as Figure 4, the feature extraction network CSPDarknet56 contains five CSP_Blocks, each with a 3*3 convolution kernel used for downsampling. Compared with the CSPDarknet53, which contains 72 convolutional layers, the CSPDarknet56 proposed in this study has the following two advantages: (1) 16 convolutional layers have been clipped and the deep network can extract high-quality semantic information more efficiently, realizing the reuse and fusion of multilayer characteristics; (2) the memory cost is reduced and the network becomes lightweight on the premise of a high detection accuracy, resulting in the effective improvement of detection speed.


[image: Figure 4]
FIGURE 4. Feature extraction network.




Feature Enhancement and Fusion Network

In order to further improve the performance of the detection network, researchers usually add some convolutional layers between the feature extraction network and the output layer to better integrate features. To increase the receptive field to a greater extent, Spatial Pyramid Pooling Network (SPP-Net) (He et al., 2015) was added after the CSPDarknet53 of YOLO v4. The added network can effectively separate most of the significant context features and hardly affect the computing speed.

Shown as Figure 5, using convolution kernels with the sizes of {1*1, 5 * 5, 9 * 9, 13 * 13}, respectively, SPP-Net performs maximum pooling on the feature map obtained in the previous stage, and then aggregates all the feature maps through the concat layer.


[image: Figure 5]
FIGURE 5. Spatial Pyramid Pooling Network (SPP-Net).


In addition, PANet (Liu et al., 2018) was adopted as a parameter aggregation method in YOLO v4, shown as Figure 6A. Although PANet proves the effectiveness of two-way fusion, it ignores the possibility that the contributions of the different levels of features may be different. In order to reuse and fuse multilayer features more efficiently and get better detection performance, referring to the idea of a BiFPN network (Tan et al., 2020), this paper proposed a feature fusion network named Bi-PANet. The structure of Bi-PANet is shown as Figure 6B.


[image: Figure 6]
FIGURE 6. (A,B) Represent Path Aggregation Network (PANet) and bi-directional feature pyramid network (Bi-PANet).


Compared with PANet, Bi-PANet was improved as follows: (1) to reduce unnecessary cost of computations, the PANet was simplified by removing redundant nodes from both ends of the network, as P′3 and P′6, as shown in Figure 6A; (2) to strengthen the reuse and fusion of multilayer features, the extra edges from the original feature nodes to the output nodes were added as [image: image] and [image: image], as shown in Figure 6B.



YOLO BP Network

Through the improvements of the backbone and feature fusion network, this study proposed a green citrus detection network based on YOLO BP, shown as Figure 7. Firstly, the CSPDarknet56 was used to extract the features of the input images in the backbone network. By reusing CSP_Blocks, the features of the shallow convolution layer could better and faster transmit to the deep convolution layer, resulting in the whole network having high information transmission and gradient transmission efficiencies. Secondly, to improve the ability of the network to extract deep features, the SPP-Net was used to perform maximum pooling and aggregation with different scales on the feature map, with the ability improvement of the deep layer feature selection. Then, the Bi-PANet was used to perform upsampling and downsampling operations twice for each technique. It also spliced the corresponding feature maps in the network, achieving the effective reuse and fusion of features. Finally, the regression prediction was performed three times in the prediction network to realize the multi-scale detection of green citrus fruits with different sizes.


[image: Figure 7]
FIGURE 7. YOLO BP network architecture diagram.






EXPERIMENTAL RESULTS AND ANALYSIS


Model Training

The training setting and strategy are as follows:

(1) The hyper-parameters setting. The training steps were 20,000, the batch size was 64, and the momentum factor and weight decay were 0.949 and 0.0005, respectively. The step decay learning rate scheduling strategy was adopted with an initial learning rate of 0.001 and the learning rates of 0.0001 and 0.00001 at the steps 16,000 and 18,000, respectively.

(2) Training strategy. The weight parameters of the pre-trained network (yolov4.conv.137) were used for initialization. The multi-scale training strategy and mosaic data augmentation method were adopted to improve the robustness and accuracy of the network for images with different resolutions.

Figure 8 shows the change curves of the average loss and mAP values of the YOLO BP network during training. The network updated the loss function of the small sample batch, resulting in a gradual decrease of prediction loss deviation. When the network training steps exceeded 16,000, the loss value and mAP were basically stabilized with approximately 1 and 93%, respectively. From the point of parameter convergence, the result of the network training was satisfactory. Figure 9 shows the results of the detection of citrus fruits in various environments by the trained YOLO BP network.


[image: Figure 8]
FIGURE 8. Curves of the loss function value and mean average precision (mAP) of YOLO BP network.



[image: Figure 9]
FIGURE 9. Green citrus fruit detection results under different conditions.




Experiment and Evaluation of Citrus Detection

To verify the effectiveness of the proposed detection algorithm, three groups of performance comparison experiments for the green citrus recognition algorithm were designed in this study.

The precision (P), recall (R), and F1 score (F1) are defined as follows:

[image: image]

[image: image]

[image: image]

Where TP, FP, and FN are true positive, false positive, and false negative, respectively.


Comparative Experiment of YOLO BP and YOLO v4

The performances of the detection algorithms were uneven in different situations. As shown in Figure 2A, the fruits are relatively clear, complete and easy to identify. However, with backlighting, the detection of small-size fruits, overlapping fruits, or fruits covered by branches and leaves would be more difficult, which is shown in Figure 2G. Therefore, the experiment designed in this section mainly focused on the detection performance of YOLO BP and YOLO v4 in complex scenarios. The test set included multiple fruits (MF), backlighting (BL), slight occlusion (SO), heavy occlusion (HO), overlapping fruits (OF), and the combination of the above (COA). The hyper-parameters setting and training strategy of the YOLO v4 network were consistent with those of YOLO BP network.

Figure 10 shows the detection results of the two algorithms. The missed and false detections are manually marked with yellow and red ellipses, respectively.


[image: Figure 10]
FIGURE 10. The comparison between the proposed method and the traditional YOLO v4. (A–C) and (G–I) are the detection results of the traditional YOLO v4. (D–F) and (J–L) are the detection results of YOLO BP.


As shown in Figure 10, both YOLO BP and YOLO v4 can detect complete, slightly occluded, or overlapping green citrus fruits. However, YOLO BP (e.g., Figures 10D,F,L) can overcome the defect of missing small objects that is present in YOLO v4 (e.g., Figures 10A,C,I). Compared with YOLO v4 (such as Figures 10B,I), YOLO BP (such as Figures 10E,L) can also better detect citrus fruits that overlapped or were occluded by leaves under the backlighting environment. In addition, compared with YOLO v4 (such as Figures 10G,I), YOLO BP (such as Figures 10J,L) can detect citrus fruits heavily occluded by branches and leaves with better robustness and accuracy. The experimental results showed that the overall performance of YOLO BP was better than YOLO v4.

Figure 11 and Table 3 show the comparison results of YOLO BP and YOLO v4 in six different complex citrus scenes. It can be seen that the accuracy, recall, mAP, F1 score, and average IoU of the YOLO BP recognition algorithm are higher than those of YOLO v4. Especially in the HO case, the mAP of YOLO BP was nearly 6% higher than that of YOLO v4. The experimental results showed that, in the six gradient test sets conducted, the average mAP, average IoU, and average F1 score of the YOLO BP reached 92.91 and 75.47% and 0.89, respectively, which were higher than the 88.57 and 69.5% and 0.85 of YOLO v4, indicating that YOLO BP has better detection effect.


[image: Figure 11]
FIGURE 11. (A,B) Represents the comparison of precision and recall of YOLO BP and YOLO v4.



Table 3. YOLO v4 and YOLO BP performance comparison under different citrus situations.

[image: Table 3]



Precision and Real-Time Analyses of the Citrus Detection Network

To further evaluate the contributions of CSPDarknet56 and Bi-PANet, a group of comparative experiments of YOLO v4–CSPdarknet53, YOLO v4–CSPdarknet56, and YOLO BP were designed. The above three algorithms were used to detect the whole original test sets. The accuracy, recall, mAP, and FPS of the three algorithms were computed, shown as Table 4, and the precision and recall curves of the three algorithms were obtained, shown as Figure 12.


Table 4. Disentangling backbone and Bi-PANet—starting from the standard CSPDarknet (CSPDarknet53 + PANet), we first replace the backbone with CSPDarknet56 and then replace the baseline PANet with our proposed Bi-PANet.

[image: Table 4]


[image: Figure 12]
FIGURE 12. The comparison of precision and recall curves of the three algorithms.


Figure 12 shows that the precision-recall (PR) curve of the YOLO v4-CSPDarknet53 is under the PR curves of YOLO v4–CSPDarknet56 and YOLO BP, indicating that the performance of the latter two algorithms is better than YOLO v4–CSPDarknet53.

It can be seen from Table 4 that, compared with the original YOLO v4-CSPDarknet53, the mAP of YOLO v4-CSPDarknet56 is 88.16% and FPS effectively increased to 19 frames per second, showing that the improved feature extraction network contributed 0.91 percentage points of mAP and 2 frames of FPS. Compared with YOLO v4–CSPDarknet56, the mAP and FPS of the proposed method reached 91.55% and 18 frames, indicating that the improved feature-enhanced fusion network contributed 3.39% of mAP. The final results showed that, compared with YOLO v4, the mAP and FPS of YOLO BP were increased by 4.3% and 1 frame, respectively, indicating the higher detection speed and accuracy of the proposed method.



Comparison Experiment of Different Green Citrus Detection Methods

To further verify the performance of the proposed method, we also designed a comparative experiment of existing green citrus detection algorithms, namely, the DBBRF (He et al., 2020), Faster RCNN (Xiong et al., 2018), and the proposed algorithm. The average accuracy, F1 value, and execution time were the evaluation indicators, as shown in Table 5.


Table 5. Comparison of green citrus detection algorithms.

[image: Table 5]

Firstly, by comparing the two existing methods in Table 5, we found that mAP and F1 of the DBBRF proposed by He et al. were 87.6 and 85.38%, respectively, which were higher than the 85.49 and 82.31% of Faster R-CNN, which was proposed by Xiong et al. However, the detection speed of the former was 0.759 s per frame, which was lower than the 0.4 s of the latter. Compared with the DBBRF and Faster R-CNN, the mAP, F1, and execution time of the proposed method were 91.55 and 88% and 0.057 s, respectively, showing a greater advantage in performance. The experimental results showed that the proposed detection algorithm for green citrus has strong robustness and high accuracy in the complex orchard environment, which provides technical support for green fruit detection in natural environments.





DISCUSSION

Compared with the original algorithm YOLO v4 (one-stage detection network), it can be seen from Figure 11 and Table 3 that the accuracy, recall, map, F1 score, and average IOU of YOLO BP are higher than YOLO v4. The main reasons are as follows: (1) the backbone network (CSPDarknet56) was proposed, which could extract higher quality features; (2) a bi-directional feature pyramid network (Bi-PANet) was proposed by removing the redundant nodes of PANet and adding additional connections, which could enhance the robustness of small-size and overlapping fruit detection effectively. Moreover, from the PR curve (Figure 12) and Table 4, we can observe that CSPDarknet56 and Bi-PANet proposed in this study both contribute to the improvement of network detection performance, indicating the feasibility and effectiveness of our method.

Compared with the DBBRF proposed by He et al. (2020) and Faster R-CNN (two-stage detection network) proposed by Xiong et al. (2018), it can be seen from Table 5 that YOLO BP has high accuracy and real-time performance in complex environments. Analyzing the experimental results, we found that the good performance of YOLO BP benefitted from the following aspects: (1) the strong feature extraction network and feature enhancement and the fusion network; (2) the real-time advantage of the deep learning algorithm (especially the one-stage method). The experimental results showed that the proposed method had a greater advantage in performance, meeting the accuracy and real-time requirements of picking robots.

Although the proposed method had strong robustness and high accuracy in the complex orchard environment, there were also some shortcomings, as shown in Figure 10. By analyzing the results of the comparative experiments, the main possible reasons affecting the detection accuracy were concluded as follows; (1) leaves with similar color and shape to citrus were easily mis-detected as citrus, shown as the red ellipse mark in Figure 10D; (2) in the backlight environment, multiple fruits with severe overlap were easily identified as one fruit, shown as the yellow ellipse mark in Figure 10E; (3) some citrus fruits in the image were too small and occluded by branches and leaves at the same time, which led to missed detections, shown as the yellow ellipse marks in Figure 10L.



CONCLUSIONS AND FUTURE WORK

In this study, we proposed a multi-scale convolutional neural network named YOLO BP to detect green citrus fruits in natural environments. First, we carried out image acquisition experiments of green citrus fruits and classified data sets. Second, four methods were implemented to enhance the citrus image set. Moreover, we improved the structure of the YOLO V4 framework and made progress on the detection of green citrus in complex scenarios. Finally, by conducting three groups of comparison experiments, the proposed method was proven to achieve better recall and accuracy.

In conclusion, the proposed method provided a new visual recognition idea for fruit-picking robots and fruit-picking unmanned aerial vehicles (UAVs). Although this research made some progress, there are still some issues to be improved upon, such as the deficiency of the proposed method mentioned at the end of discussion, which is the necessary manual labeling and lack of samples. For further research, we will focus on solving these problems in order to better apply deep learning methods to the visual detection methods of picking robots.
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Disease has always been one of the main reasons for the decline of apple quality and yield, which directly harms the development of agricultural economy. Therefore, precise diagnosis of apple diseases and correct decision making are important measures to reduce agricultural losses and promote economic growth. In this paper, a novel Multi-scale Dense classification network is adopted to realize the diagnosis of 11 types of images, including healthy and diseased apple fruits and leaves. The diagnosis of different kinds of diseases and the same disease with different grades was accomplished. First of all, to solve the problem of insufficient images of anthracnose and ring rot, Cycle-GAN algorithm was applied to achieve dataset expansion on the basis of traditional image augmentation methods. Cycle-GAN learned the image characteristics of healthy apples and diseased apples to generate anthracnose and ring rot lesions on the surface of healthy apple fruits. The diseased apple images generated by Cycle-GAN were added to the training set, which improved the diagnosis performance compared with other traditional image augmentation methods. Subsequently, DenseNet and Multi-scale connection were adopted to establish two kinds of models, Multi-scale Dense Inception-V4 and Multi-scale Dense Inception-Resnet-V2, which facilitated the reuse of image features of the bottom layers in the classification neural networks. Both models accomplished the diagnosis of 11 different types of images. The classification accuracy was 94.31 and 94.74%, respectively, which exceeded DenseNet-121 network and reached the state-of-the-art level.

Keywords: apple disease diagnosis, Cycle-GAN, Multi-scale connection, DenseNet, deep learning


1. INTRODUCTION AND RELATED WORKS

Nowadays, apple is one of the most widely grown, highly productive and popular fruits in the world. The quality of fruits directly determines the economic development of the apple plantation industry. However, different kinds of diseases have always been one of the major causes for the decline in apple quality and yield, and directly harm the development of agricultural economy. Therefore, precise diagnosis of apple diseases and correct treatments are important measures to alleviate agricultural losses and promote economic development.

At present, the diagnosis of most plant diseases still depends on farmers. However, as the image features of some diseases are similar, and there is no obvious boundary between different grades of the same disease, the artificial diagnosis results might present a large deviation. This poses a challenge to disease management. Moreover, due to the random occurrence, some diseases cannot be found in time. This will affect the quality and yield of fruits, and then harm the development of agricultural economy. Therefore, it is increasingly significant to use computer vision and deep learning methods to achieve automatic and precise disease diagnosis. With the continuous maturity of agricultural Internet of Things (IoT) technology, sensor networks and information perception systems are increasingly employed in agricultural industry (Khanna and Kaur, 2019; Muangprathub et al., 2019). This plays a key role in obtaining timely disease information and making precise decisions on disease prevention. In terms of plant disease information processing, image information has become a common basis for identifying disease types and judging the grades of the disease (Sankaran et al., 2010; Zhang J. et al., 2019).

In traditional image processing, binarization is often utilized to extract lesion areas. These methods can process images with simple backgrounds, but they cannot be readily applied in complex image background due to the lack of available image features. In the past few years, traditional image processing techniques have been widely adopted in plant disease identification and detection. Zou et al. (2010) used a multi-threshold segmentation technique to detect the lesion area of apples. This method can extract the lesion area on the surface of the apple, but the disease type cannot be diagnosed. Zarifneshat et al. (2012) adopted artificial neural network (ANN) to predict the volume of the apple lesion. Rumpf et al. (2010) made use of the support vector machine (SVM) to classify the multi-spectral images of lesions and realized the diagnosis of plant diseases. Omrani et al. (2014) used SVM and ANN to diagnose diseases such as apple spot alternaria and black spot, and compared the performance of the two models. In our previous research, a feedback neural network optimized by a genetic algorithm was employed to segment apple fruit regions in complex environments (Tian et al., 2018). The SVM method was then used to extract the lesion areas in the fruit images. This method realized the detection of apple diseases in a complex environment. Although traditional methods have achieved the diagnosis and detection of plant diseases in certain circumstances, they are not effective in complex environments. Moreover, the image processing time is relatively long, which cannot meet the demand for timely and accurate plant disease diagnosis.

With the continuous upgrading of processor computing power, artificial intelligence and machine learning technologies are favored in the field of smart agriculture (Patricio and Rieder, 2018). In terms of image processing of plant diseases, Mohanty et al. (2016) used AlexNet (Krizhevsky et al., 2012) and GoogLeNet (Szegedy et al., 2015) to realize the recognition of 14 crops and 26 diseases, with the accuracy of 99.35%. The dataset images used in this research are crop images with monotonous backgrounds, rather than taken in field. Amara et al. (2017) adopted LeNet (Lecun et al., 1998) as the backbone to identify banana leaf diseases under complex backgrounds and illumination conditions. Sladojevic et al. (2016) made use of CaffeNet (Jia et al., 2014) to classify 13 leaf diseases, and the accuracy reached 96.3%. Jiang et al. (2019) proposed an INAR-SSD method for real-time diagnosis and detection of 5 common apple leaf diseases, achieving 78.80% mean average precision and 23.13 frames per second. Zhang S. et al. (2019) proposed a global pooling dilated convolution neural network to diagnose 6 types of common cucumber leaf diseases with the accuracy of 94.65%, which is better than commonly used depth convolutional neural networks. Zhong and Zhao (2020) adopted DenseNet-121 (Huang et al., 2017) backbone to diagnose 6 types of apple leaf diseases. Three methods of regression, multi-label classification and attention loss function were employed for comparison on the basis of DenseNet-121. The accuracy reached 93.51, 93.31, and 93.71% respectively, achieving the state-of-the-art level. However, due to the phenomenon of image feature loss, it is difficult to improve the diagnostic accuracy merely by increasing the depth of network layers, which brings a challenge to meet the increasing demand for diagnosis.

The outstanding performance of convolutional neural networks is based on sufficient training data. During the acquisition of apple disease images, the randomness of disease occurrence makes it difficult to collect a large amount of data. Traditional image augmentation methods, such as rotation (Tan et al., 2016), mirroring (Dyrmann et al., 2016), translation (Sladojevic et al., 2016), scale transformation (Bargoti and Underwood, 2016), brightness transformation, color transformation (Tian et al., 2019b) and image mosaic (Tian et al., 2020), have been applied in the process of dataset establishment. However, these methods do not change the super-pixel information of the image, and still retain the similarity of the color, brightness, texture, and other features between the adjacent pixels of the original image. In our previous research, the Cycle-GAN (Isola et al., 2018; Shen et al., 2019) method was employed to generate anthracnose lesion images on the surface of healthy apples (Tian et al., 2019a). This method effectively expanded the training set. However, in our previous work, only anthracnose images have been generated. Various kinds of diseases and different grades of the same disease need to be further processed to verify the feasibility of the algorithm.

In this paper, a Multi-scale Dense convolutional neural network backbone is designed for diagnosing 11 types of images including healthy and diseased apple fruits and leaves. The main contributions are as follows:

(1) Cycle-GAN method was adopted to generate two diseases, anthracnose and ring rot, on the surface of healthy apples. This method completed the data augmentation in the super-pixel space.

(2) A Multi-scale Dense neural network backbone for apple disease diagnosis was proposed. The effectiveness of existing classification models has been improved.

(3) It was validated in the experiment that the proposed method outperformed other common disease diagnosis models, and achieved the state-of-the-art level.

The paper has been organized in the following manner. Section 2 introduces the materials and methods, including image acquisition, image augmentation, and apple disease diagnosis models. Section 3 concerns the experiments and the performance of the proposed methodologies. Finally, our conclusions are presented.



2. MATERIALS AND METHODS


2.1. Dataset Preparation


2.1.1. Composition of Image Dataset

The dataset employed in our research includes diseased leaf images, diseased fruit images, healthy leaf images, and healthy fruit images, as shown in Figure 1. The images of apple leaves come from Challenger-Plant-Disease-Recognition (https://gitee.com/cheng_xiao_yuan/AI-Challenger-Plant-Disease-Recognition). The leaf images are divided into six categories, including healthy apple leaf, general apple scab, serious apple scab, apple gray spot, general cedar apple rust, and serious cedar apple rust. The fruit images were collected in the field. These images include five categories, including healthy green apple fruit, healthy red apple fruit, general anthracnose, serious anthracnose, and ring rot. The number of original images collected is shown in Table 1. Due to the random occurrence of apple diseases, it is arduous to obtain abundant images of diseases in the field. Therefore, the number of collected apple images of anthracnose and ring rot is far less than that of other types of diseases, which cannot meet the training requirements of deep learning neural networks. Since some of the image features of anthracnose and ring rot are similar, and there is no clear boundary between different grades of the same disease, more images are needed to obtain rich image features. However, the images collected in the field were insufficient for training the deep neural networks.


[image: Figure 1]
FIGURE 1. Some images of the dataset adopted in this paper, from top to bottom, are general anthracnose, serious anthracnose, ring rot, healthy green apple, healthy red apple, general cedar apple rust, serious cedar apple rust, general apple scab, serious apple scab, apple gray spot, healthy apple leaf.



Table 1. Categories, labels, and quantity of images in the dataset.

[image: Table 1]



2.1.2. Image Data Augmentation

In order to meet the demand for the number of images in the training set, Cycle-GAN (Isola et al., 2018) is adopted to further augment the image dataset upon traditional methods. Cycle-GAN algorithm can realize image style transfer by learning two different types of images. In other words, there are now two image sample spaces X and Y. X represents the image space of healthy apples, and Y represents the image space of diseased apples. The image in space X is expected to be converted to an image in space Y. The Cycle-GAN algorithm transforms the image x in space X into the image F(x) in space Y through the generator F. In order to determine whether the generated image F(x) is an image in space Y, the Cycle-GAN algorithm imports a discriminator DY, which, combined with the generator F, constitutes an adversarial neural network, as shown in Figure 2. Finally, by learning the image features of healthy and diseased apples, the generator converts the healthy apple image into a diseased apple image. The discriminator determines that the generated image is in the diseased apple image dataset, which completes the image style conversion.


[image: Figure 2]
FIGURE 2. Cycle-GAN model.


To remedy the insufficient number of gray spot and serious cedar apple rust images in apple leaf disease dataset, rotation and brightness transformation were adopted to augment the original image. According to the lack of diseased apple fruit images, brightness transformation, rotation transformation and mirror transformation were first exploited to generate abundant images. Subsequently, the Cycle-GAN technique was utilized to perform feature learning on general anthracnose, serious anthracnose, and ring rot images, then generate these three types of lesions on healthy apple images. After image style transformation, the generated images were provided to disease experts, who selected 500 images of each type of disease that could be employed as training samples. These generated images were added to the dataset. The dataset composition after image augmentation is shown in Table 1.




2.2. Multi-Scale Dense Classification Network

Deep learning network is an effective method to achieve target classification. In recent years, LeNet (Lecun et al., 1998), AlexNet (Krizhevsky et al., 2012), VGG (Simonyan and Zisserman, 2015), GoogLeNet (Szegedy et al., 2015), DenseNet (Huang et al., 2017), Inception (Szegedy et al., 2016), etc. have been widely used in target classification. Due to the complex backgrounds of apple disease images, the image features of different diseases are similar, and the distinction between different grades of the same disease is inconspicuous. Therefore, it is necessary to further improve the performance of the existing deep learning networks. In general, increasing the number of network layers is employed to improve the fitting ability of the network. However, with the deepening of the network layers, the image features of the bottom layers are gradually lost. This results in the inadequate usages of image features. Therefore, when a network reaches a certain depth, increasing the number of network layers cannot continue to improve its capability.

As the Inception series classification networks have shown superior performance on multiple classification tasks, the state-of-the-art neural networks Inception-V4 and Inception-ResNet-V2 (Szegedy et al., 2016) were adopted as the backbone in this paper. The idea of Multi-scale connection and DenseNet was introduced to construct new network models, achieving the purpose of promoting feature reuse and improving network performance.


2.2.1. Inception-V4 and Inception-ResNet-V2

Inception-V4 and Inception-ResNet-V2 networks were optimized on the basis of Inception-V3 (Szegedy et al., 2016). The network structure of Inception is shown in Figure 3, where Stem is the basic structure of feature extraction, which consists of multiple convolution and pooling operations. The Inception-X module in the backbone learns image features through the feature transfer architecture of several parallel structures, which has a higher feature utilization rate than the previous Inception versions. One basic mechanism of the Inception module is shown as Figure 4. The entire Inception structure is strung together by several Inception modules. There are two main contributions of the Inception structure. One is to use 1 × 1 convolution to raise and lower the dimension.The other is to convolve and aggregate on multiple dimensions at the same time. Inception-ResNet-V2 introduces the ResNet module over inception-V4, which further improves the performance of the network.


[image: Figure 3]
FIGURE 3. Network structures of Inception-V4 and Inception-ResNet-V2.



[image: Figure 4]
FIGURE 4. Inception module.




2.2.2. DenseNet

In order to make better use of the image features, DenseNet (Huang et al., 2017) structure was introduced into the networks. DenseNet realizes the concatenation of features in different depths by establishing dense connections between the front layers and the back layers, thereby achieving feature reuse.

Each Inception-(ResNet-)X module in the Inception-X layer and Inception-ResNet-X layer is called an Inception block. The four Inception-A modules in Inception-V4 are taken as an example, demonstrated in Figure 5. The output of the first Inception block is processed by the H1 function and then used as the input of the second Inception block. The output of the second Inception block is cascaded with the output of the previous block after H2 function operation. Their concatenation is the input of the third Inception block. The output of the third Inception block is cascaded with the output of the previous two Inception blocks after H3 function and then adopted as the input of the fourth Inception block. Finally, the outputs of all Inception blocks are spliced as the input of the subsequent network. In this paper, Hi stands for non-linear conversion function, which is a combination structure of batch normalization (BN), rectified linear units (RELU), and convolution (Conv), named BN-ReLU-Conv (1 × 1)-BN-ReLU-Conv (3 × 3).


[image: Figure 5]
FIGURE 5. Dense Inception block.




2.2.3. Multi-Scale Connection

On the basis of the Dense Inception block, a Multi-scale concatenation structure was designed to splice the different depths of the network, as shown in Figure 6. In the Multi-scale concatenation network model, the output of the Stem block is convolved and spliced with the output of each Dense Inception block. The concatenation result is sent to the average pooling layer as the input. Multi-scale connection enables network features of different depths to function in the final training, which further improves the utilization of bottom layer features.


[image: Figure 6]
FIGURE 6. Multi-scale Dense neural networks.




2.2.4. Details of Model Training

In this paper, the image dataset composition is shown in Table 1. In order to verify the performance of the deep learning models, 350 images of each disease were randomly selected from the augmented image dataset as the test set, and the remaining images as the training set. All diagnostic models were trained and tested on the IW4210-8G server. In the training process of Multi-scale Dense Inception-V4 and Multi-scale Dense Inception-ResNet-V2, the number of epoches was set to 4,000, the minimum batch was set to 16, the dropout was set to 0.8, the learning rate was set to 0.0001 and the decay rate was set to 0.95. The cross entropy function was used as the loss function as follows.

[image: image]

where N is the number of training samples. M is the number of categories. yic is a symbolic function that is 1 when the true class of sample i is c, and 0 otherwise. pic is the prediction probability of sample i belonging to category c.





3. EXPERIMENTS AND DISCUSSION


3.1. Evaluation of Cycle-GAN Method

The Cycle-GAN method is introduced on the basis of traditional image augmentation methods to expand the image dataset. Some of the healthy and diseased apple images captured in the field and the diseased apple images generated by Cycle-GAN are shown in Figures 7–9. It can be seen that the generated diseased apple images are similar to the real images, and the disease characteristics are well-preserved. These images can be added to the dataset as the training samples. As described in section 2.1.2, these qualified images are selected from the generated images by experts. Images that can meet the requirements account for 73.1% of all generated images.


[image: Figure 7]
FIGURE 7. (A–D) General anthracnose apple images captured in field, (E–H) healthy apple images, (I–L) general anthracnose apple images converted from the above healthy apple images by the Cycle-GAN method.



[image: Figure 8]
FIGURE 8. (A–D) Serious anthracnose apple images captured in field, (E–H) healthy apple images, (I–L) serious anthracnose apple images converted from the above healthy apple images by the Cycle-GAN method.



[image: Figure 9]
FIGURE 9. (A–D) Ring rot apple images captured in field, (E–H) healthy apple images, (I–L) ring rot apple images converted from the above healthy apple images by the Cycle-GAN method.


In order to better evaluate the Cycle-GAN method, two training sets were compared. One is a training set that contains images generated by Cycle-GAN. The other is the dataset that only adopts traditional augmentation techniques, such as brightness transformation, rotation transformation, and mirror transformation. The two training sets were employed to train the classification models, and the test results are shown in Table 2. According to the experimental results, Cycle-GAN method can generate new training samples in the super-pixel space and improve the richness of the training dataset more effectively than traditional image augmentation methods.


Table 2. Test results on different datasets.

[image: Table 2]



3.2. Comparison of Different Models

In order to evaluate the performance of the proposed Multi-scale Dense architecture, Inception-V4, Inception-ResNet-V2, Multi-scale Dense Inception-V4, Multi-scale Dense Inception-ResNet-V2, LeNet, AlexNet, VGG, and Densenet-121 were compared. All classification models were trained and tested on the IW4210-8G server. The training parameters of all models were unified. The experimental results of the eight models are shown in Table 3. It can be seen from Table 3 that there is no direct relationship between the training time and the size of the model, and the introduction of feature layer connection methods such as ResNet can accelerate the convergence of the neural network. The introduction of the Multi-scale connection and DenseNet has significantly improved the performance of Inception-V4 and Inception-ResNet-V2 models. The Multi-scale Dense Inception-ResNet-V2 model achieves the best accuracy, surpasses the Densenet-121 model, and realizes the state-of-the-art performance.


Table 3. Comparison of different models.

[image: Table 3]



3.3. Diagnosis of Different Diseases

In this paper, two models are proposed to classify images of 11 categories. The diagnosis results of different diseases are shown in Table 4. Accuracy1 is the diagnosis result of the Multi-scale Dense Inception-V4 model, and Accuracy2 is the diagnosis result of the Multi-scale Dense Inception-ResNet-V2 model. It can be seen from the results in Table 4 that healthy apple leaf and healthy apple fruits have the highest diagnostic accuracy. Because the distinction between general disease and serious diseases is not obvious, the accuracy of the diagnosis result is affected. In addition, the image features of apple gray spot and cedar apple rust have a certain similarity, so a few inaccurate diagnosis results are given among the test samples. However, combining the results of various categories, the two new models have shown superior results and can meet the diagnosis requirements.


Table 4. The diagnosis results of two models for different diseases.

[image: Table 4]



3.4. Practical Application Scenarios

In order to apply the disease diagnosis model in the actual scenario, a related disease management software is developed. The software consists of a human-computer interface on web page and a cloud data processing system. The Multi-scale Dense Inception-ResNet-V2 classification model is deployed in the cloud data processing system. In practice, the orchard staff can upload the disease images collected in field through the human-computer interface. The cloud system obtains the diagnosis results by processing the uploaded images and gives feedback to the human-computer interface. Some of the diagnostic results are shown in Figure 10. In practical application scenarios, 54 disease images collected in orchards were diagnosed, and the diagnostic accuracy was 94.44%. With the continuous expansion of the disease image datasets, the diagnosis model can also identify more kinds of diseases, which will further reflects the generalization ability.


[image: Figure 10]
FIGURE 10. Several diagnosis results in practical application scenarios. (A) General anthracnose, (B) serious anthracnose, (C) ring rot.





4. CONCLUSIONS

A Multi-scale Dense network architecture is proposed in this paper to diagnose images of 11 categories including healthy apple leaves and fruits and typical diseased apple leaves and fruits. The diagnosis results have reached the state-of-the-art performance. The detailed work is summarized as follows.

(1) Aiming at the problem of insufficient image data for general anthracnose, serious anthracnose, and ring rot, the Cycle-GAN method is adopted to learn the image features of healthy apples and diseased apples, and generates different categories of the lesions on the surface of healthy apple images. Experiments have verified that the generated images have greatly enriched the image dataset. The Cycle-GAN technique outperforms traditional image augmentation methods.

(2) The DenseNet and Multi-scale connection method are employed to improve the existing deep learning models, and the Multi-scale Dense Inception-V4 and Multi-scale Dense Inception-ResNet-V2 classification models are proposed. Experiments have shown that the detection accuracy of the two proposed models have reached 94.31 and 94.74%, respectively, which not only improves the classification results of the original models, but also achieves the state-of-the-art diagnosis performance.

In future work, we will collect more images of different types of apple diseases and analyze the image characteristics of different diseases. The automatic diagnosis ability will be further enhanced through dataset expansion and model improvement.
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Quantifying symptoms of tar spot of corn has been conducted through visual-based estimations of the proportion of leaf area covered by the pathogenic structures generated by Phyllachora maydis (stromata). However, this traditional approach is costly in terms of time and labor, as well as prone to human subjectivity. An objective and accurate method, which is also time and labor-efficient, is of an urgent need for tar spot surveillance and high-throughput disease phenotyping. Here, we present the use of contour-based detection of fungal stromata to quantify disease intensity using Red-Green-Blue (RGB) images of tar spot-infected corn leaves. Image blocks (n = 1,130) generated by uniform partitioning the RGB images of leaves, were analyzed for their number of stromata by two independent, experienced human raters using ImageJ (visual estimates) and the experimental stromata contour detection algorithm (SCDA; digital measurements). Stromata count for each image block was then categorized into five classes and tested for the agreement of human raters and SCDA using Cohen's weighted kappa coefficient (κ). Adequate agreements of stromata counts were observed for each of the human raters to SCDA (κ = 0.83) and between the two human raters (κ = 0.95). Moreover, the SCDA was able to recognize “true stromata,” but to a lesser extent than human raters (average median recall = 90.5%, precision = 89.7%, and Dice = 88.3%). Furthermore, we tracked tar spot development throughout six time points using SCDA and we obtained high agreement between area under the disease progress curve (AUDPC) shared by visual disease severity and SCDA. Our results indicate the potential utility of SCDA in quantifying stromata using RGB images, complementing the traditional human, visual-based disease severity estimations, and serve as a foundation in building an accurate, high-throughput pipeline for the scoring of tar spot symptoms.

Keywords: contour-based image segmentation, stromata detection, plant disease quantification, tar spot of corn, contour analysis


INTRODUCTION

Plant disease assessments are conducted to quantitatively measure the amount of disease (intensity) in a host population (Campbell and Madden, 1990; Nutter et al., 1993). Nevertheless, plant disease epidemics occur from the interaction of both host and pathogen populations with the environment in space and time. Therefore, symptoms and signs of diseases are expected to be directly proportional to the size of the pathogen population (Nutter et al., 2006; Groves et al., 2020). Hence, disease assessments can be conducted by estimations or measurements of the extent of disease symptoms or signs of the pathogen (e.g., number of spores, sclerotia, and stromata) per unit area of the plant sampled (Nutter, 1997, 1999).

Despite the significant role that human vision-based disease evaluation has played in the advancement of plant pathology, the accuracy of this traditional way of disease estimation has continuously been questioned due to the “human factor” that is part of the endeavor (Sherwood et al., 1983; Shokes et al., 1987; Nutter and Schultz, 1995; Nutter and Esker, 2006; Nutter et al., 2006). To address these problems, digital imagery-based disease phenotyping has extensively been explored during the past decade for its potential in mitigating the limitations of human visual-based disease estimates (Mahlein, 2016; Simko et al., 2017; Bock et al., 2020). The feasibility of digital image processing has been assessed and is widely used for plant disease quantification (Tucker and Chakraborty, 1997; Bock et al., 2008; Gongora-Canul et al., 2020). The utility of Red-Green-Blue (RGB) image-based processing and deep learning have shown a great promise for the recognition and quantification of various plant diseases (Lamari, 2002; Bardsley and Ngugi, 2013; Stewart and McDonald, 2014; Ngugi et al., 2021).

Tar spot, caused by Phyllachora maydis Maubl., is a fungal disease of corn that is endemic to Mexico and to various countries in Central and South America (Maublanc, 1903). The disease has established itself across the northern US since 2015 (Ruhl et al., 2016; McCoy et al., 2018; Dalla Lana et al., 2019; Kleczewski et al., 2019; Mueller et al., 2020; Valle-Torres et al., 2020) resulting in ~$840 million in losses during 2018–2019 (Crop Protection Network, 2021). Phenotyping and surveillance of tar spot have been performed through human visual assessments of disease severity based on the detection of pathogenic structures called stromata. These black-brown, semi-circular growths are produced as a result of P. maydis infection and are embedded in host tissue and can be observed across leaf surfaces and other tissues (Liu, 1973; Hock et al., 1995; Carson, 1999; Kleczewski et al., 2019; Valle-Torres et al., 2020). In addition, P. maydis can produce ascospores in sexual structures embedded in the stromata, acting as inocula (Kleczewski et al., 2019; Valle-Torres et al., 2020). Therefore, the proportion of stromata relative to the area of the corn leaf has been estimated to reflect tar spot severity. Moreover, since stromata can also serve as a measure of pathogen colonization of infected plant tissue, the number of stromata per unit area of the infected corn leaf serves as an important measure of tar spot severity.

Despite the growing importance of tar spot, a standardized, objective method capable of high-throughput assessments of its symptoms is not available. Interpretation of the symptom intensity data collected for tar spot is essential to guide disease-management decisions (Bock et al., 2010). Hence, selecting the method suited to accurately represent the intensity of a disease of interest is crucial (Campbell and Madden, 1990; Gaunt, 1995). The objectives of our study were to (i) develop a tar spot stromata contour detection algorithm (SCDA) using RGB images of tar spot-infected corn leaves; (ii) assess the performance of the SCDA by comparing the numbers and locations of the stromata to those determined by two independent human raters (reference data), and evaluate its feasibility in tracking tar spot disease development in the field by comparing it to human visual disease estimations and an alternative machine learning-based approach. A reliable, accurate, high-throughput method for tar spot assessment will benefit plant disease modeling, epidemiology, and resistance screening.



MATERIALS AND METHODS


Leaf Sample Collection and Red-Green-Blue Image Acquisition

Two datasets were generated and used in this study. The first consisted of tar spot-infected maize leaves randomly collected from a field experiment site established at the University of Illinois South Farm in Urbana-Champaign, Illinois. Fresh leaf samples were pressed to flatten out the leaf edges and brought back to our laboratory. RGB images were acquired using a Canon E.O.S. 6D full-frame 20.2 MP DSLR camera body and a Canon E.F. 50 mm f/1.8 S.T.M. lens. A 30 × 70 cm cardboard panel covered by a synthetic blue fleece fabric was laid out on a flat surface as a background for all leaf samples to facilitate effective background removal during the image preprocessing step. Photographs were taken in .jpg format and then converted to .png format. The second dataset (Dataset B) contained RGB images of maize leaves acquired during the summer of 2020 at the Pinney Purdue Agricultural Center (PPAC) in Wanatah, Indiana. A tar spot fungicide trial was established at PPAC with a randomized complete block design. The fungicide treatments were randomly assigned into blocks and four replications were established. We selected two plots per replication, an untreated and experimental setup, of which from preliminary results, we have identified the high efficacy of the experimental setup [Headline AMP, 10 fl oz + Preference (NIS), 0.25% v/v] in managing tar spot. Each plot consisted of four rows of which the middle two rows were used to collect both image- and visual-rating data. A total of five maize plants in the middle two rows were selected in a zig-zag manner, wherein two leaves from the middle canopy of each selected maize plant were marked and tagged to track tar spot development at different time points. The RGB images of the leaves were collected approximately at weekly intervals over six time points during 2020: August 25, September 3, 10, 15, 22, and 29. Collectively, 466 RGB images of selected maize leaves were then used as input and analyzed using SCDA and a maskRegion-based convolutional neural network (maskR-CNN) approach (unpublished data).



Generation of “Image Blocks”

Quantification of disease severity can be done at the scale of plant organs (e.g., the stems and the leaves) or in quadrats (Bock et al., 2010). In our study, we partitioned six tar spot-infected leaf RGB images (samples A–F) into uniformly-sized (400 × 400 pixels) squares or “image blocks” which contained different regions of the corn leaf with varying numbers of stromata. A total of 1,130 image blocks (Sample A = 202 blocks, Sample B = 196 blocks, Sample C = 193 blocks, Sample D = 131 blocks, Sample E = 217 blocks, and Sample F= 191 blocks) were provided to the human raters for software-aided, visual assessment and also used as input for stromata contour analyses.



Reference (Human Visual-Based) Data Tar Spot Disease Quantification

In this study, we utilized the terms, “estimate” and “measurement” to refer to assessments conducted by human rater (visual) and the SCDA, respectively. To generate reference ground truth for Dataset A, two human raters with experience in tar-spot disease estimations were employed to generate reference data to assess the performance of the SCDA. Human raters analyzed the number of stromata for each image block with the help of the point toolbox (yellow, cross-shaped markers) provided by Fiji (Image J; Schindelin et al., 2012), wherein raters clicked on the center of all structures perceived as stromata. Furthermore, the reference disease severity data for Dataset B was in the form of estimated percentage leaf area covered by stromata. Estimations were done for the lower, middle, and upper canopy per experiment plot. The prominent ear leaf was considered leaf 0 (L0). Leaves below or above L0 were identified with signs “–,” and “+,” respectively. The lower canopy was from L-3 to the lowest leaf (L - n), mid-canopy from L-2 to L + 1, and the upper canopy from L + 2 to the flag leaf (L + n).



Assessing the Agreement Between SCDA and Human Raters

To measure the agreement of stromata counts for all the image blocks analyzed by two independent raters as well as between those of the raters and the SCDA, weighted Cohen's kappa coefficient (κ) was used. Cohen's kappa is a metric to assess the agreement between two raters, i.e., the two raters either agree in their rating or disagree. However, it does not quantify the extent of disagreement. Weighted Cohen's kappa with a modification to Cohen's kappa can resolve this issue, using predefined weights that measure the degree of disagreement between the two raters; the higher the disagreement, the higher is the weight. For instance, let (1) n be the total number of subjects, (2) ni be the number of subjects for which rater A chooses category i, (3) mj be the number of subjects for which rater B selects category j, and (4) ni,j be the number of subjects for which raters A and B choose categories i and j at the same time, respectively. Defining pi = ni/n, qi = mj/n, and pi,j = ni,j/n, one can calculate the weighted Cohen's kappa (Bakeman and Gottman, 1997) by:

[image: image]

where ei,j = piqi are the expected probabilities and wi,j are the weights.

The collected nominal data were then classified into five categories (Classes 1–5) and the resulting ordinal categorical data were used to calculate Cohen's weighted kappa index for the agreement between the ordinal data. The five groups were delimited as: Class 1 (0 to 2 stromata); Class 2 (3 to 9 stromata); Class 3 (10 to 20 stromata); Class 4 (21 to 45 stromata); and Class 5 (>46 stromata). The kappa coefficient ranges from −1 to 1, wherein the value of −1 indicates complete disagreement (poor agreement), 0 indicates agreement by chance, and 1 indicates perfect agreement. The strength of agreement for positive kappa values can be further categorized as slight (0.01–0.20), fair (0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80), or nearly perfect (0.81–0.99) (Landis and Koch, 1977; Shoukri et al., 1999).



Assessing the Performance of the Tar-Spot SCDA to Recognize Stromata Compared to Human Raters

To assess the performance of the SCDA in recognizing stromata at the human rater level, we utilized the same image blocks which were previously used to quantify the number of stromata. Using ImageJ, human raters labeled the centers of the stromata by using yellow cross markers in all image blocks and saved the labeled images. Then, using MATLAB, these labeled images were loaded and converted into a binary mask by the following threshold condition of detecting all pixels colored in yellow:

[image: image]

where [image: image] is the resulting binary mask that encodes spatial locations of stromata detected by the human raters. The binary mask [image: image] was then compared to the binary mask produced by the SCDA algorithm, denoted by [image: image]. If an isolated region having 1 in [image: image] spatially overlaps with a region having 1 in [image: image], this region or the corresponding stroma had spatial coincidence using both human and SCDA methods; it was considered to be a true positive. This task was repeated for all isolated regions having 1 in [image: image]. On the other hand, if an isolated region having 1 in [image: image] did not overlap with any region having 1 in [image: image], it was regarded as a false positive. Finally, if an isolated region having 1 in [image: image] did not overlap with any region having 1 in [image: image], it was considered as a true negative. After processing all the image blocks, precision, recall, and Dice coefficient metrics were calculated. Precision measures the correctly identified positive cases among all predicted positive cases. Thus, it is a useful figure of merit to observe whether the cost of false positives is high. Recall measures the correctly identified positive cases against all the actual positive cases and is an important metric when the cost of false negatives is high. Dice coefficient (or F1-score) is proportional to the harmonic mean of precision and recall and is calculated to assess the spatial overlap shared by the ground truth (i.e., human raters A or B) and the SCDA for a comprehensive measure of the incorrectly classified cases.

Precision, recall, and Dice coefficients measured in percentage (%) are defined as follows:

[image: image]

where TP = true positive, FP = false positive, and FN = false negative. TP is defined by the number of true stromata correctly detected by the SCDA, FN is the number of true stromata undetected, and FP is the number of wrong stromata detected by the SCDA. The results of all blocks of each sample leaf were transformed into a histogram, showing the probability density vs. percentage for precision, recall, and Dice coefficient metrics. Note that the total area of each histogram (i.e., Riemann sum) is supposed to be equal where the width of the bin is chosen as 4%.



Quantification of Tar Spot Intensity Using Mask R-CNN

Parallel to SCDA, mask R-CNN approach was used as a deep learning approach to detect tar spot stromata. The output of this approach provided stromata counts and the proportion of leaf area covered by stromata, which were then statistically analyzed for a side-by-side evaluation of its performance and that of SCDA and agreement with the visual data.



Assessing the Agreement Between Reference Visual Data to the SCDA and a Mask R-CNN Approach

The area under disease progress curve (AUDPC) using visual severity estimation of tar spot at different canopy levels was used as reference data to measure the agreement with digital counts of stromata and the area occupied by stromata measured by the two algorithms. Accuracy, precision, and bias of digital disease measurements (Nutter et al., 1991; Madden et al., 2007) were evaluated. However, before measuring the agreement, AUDPC values from visual and the algorithm data were matched with similar scale values according to the maximum and minimum values. Accuracy is a product of precision and bias (Nita et al., 2003; Madden et al., 2007). Accuracy was calculated with Lin's concordance correlation coefficient (ρc) which measures the variation of data from a concordance line, a 1:1 line with an intercept of zero and a slope of one (Lin, 1989; Nita et al., 2003; Bock et al., 2010). To obtain ρc, we used the equation ρc = r × Cb, where r represents the correlation coefficient as the measurement of precision (r = 1 perfectly straight line), while Cb as the measurement of bias (closeness of best fit line to the concordance line; Cb = 1 indicates no bias). The Cb was calculated with the equation

[image: image]

where ν = (σ1/σ2) indicated scale shift or difference in the slope of the concordance and best-fit lines (ν = 1 for equal slopes), and [image: image] corresponds to location shift or differences in height (u = 0 for equal intercepts). Furthermore, μ1 and μ2 are the means of measured values/digital disease measurement and true values/visual disease estimates, while σ1 and σ2 are the standard deviations of these values calculated based on maximum-likelihood estimates (Nita et al., 2003; Madden et al., 2007). The analysis was performed using PROG REG ALL procedure on SAS (SAS Institute, Cary NC), based on the macro statement developed by Lawrence Lin and verified by Min Yang (Lin et al., 2002).




THEORY AND CALCULATION


Image Pre-processing
 
Background Removal

The images in Dataset A had a blue background panel behind the corn leaf for easier background removal. Since the color properties of the corn and the blue panel can be distinguished by a simple thresholding, one can obtain the region of interest (RoI) of the diseased corn leaf easily. The SCDA pipeline starts first by reading the input RGB image, denoted by I. Its red, green, and blue channel matrices are represented by [image: image], [image: image], and [image: image], respectively. The RGB images containing the diseased corn leaf with a blue panel as background were utilized as input, as shown in Figure 1A. Thresholding color values isolated the region of interest, or the corn leaf via the following conditions:

[image: image]


[image: Figure 1]
FIGURE 1. Pre-processing of original tar spot-infected leaf images. (A) Original RGB image, (B) binary image after thresholding, (C) complement of the binary image, (D) resultant mask, and (E) cropped sample image after isolating the region of interest (RoI) (leaf image without background).


for all pixels, i.e., i = 1, 2, ⋯ , Nr and j = 1, 2, ⋯ , Nc where Nr and Nc are the number of horizontal and vertical pixels. Note that [image: image] is the resulting binary image mask after thresholding.

An example of the resulting binary image is depicted in Figure 1B, in which pixels having value 1 are visualized by white, whereas the other pixels are visualized by black. Next, we complemented the binary image, i.e., values at all pixels are reversed (Figure 1C), and salt-and-pepper noise was removed by performing CCC or ρc erosion and dilation, which are deleting and adding of pixels to the boundary of an original object, respectively, depending on the size and shape of the structuring element. The resulting mask, denoted by [image: image], is illustrated in Figure 1D. Finally, RoI can be obtained by performing the Hadamard product of each channel matrix ([image: image], [image: image], or [image: image]) of the original RGB image and [image: image], i.e.,

[image: image]

Furthermore, for computational efficiency, non-RoI regions were discarded by introducing a window (rectangular box) that only contained RoI. This can be done by measuring the size of the RoI, i.e., minimum and maximum indices of rows and minimum and maximum indices of columns, denoted by, rmin, roi, rmax, roi, cmin, roi, cmax, roi, respectively. The final RGB image to be analyzed is illustrated in Figure 1E.

In contrast to Dataset A, which consisted of images acquired under controlled lighting conditions (indoor), Dataset B comprised images which were acquired under natural lighting conditions with varied focus. An advanced background remover was required to correctly isolate the RoI; however, the development of such a tool was beyond the scope of this study. Instead, we utilized a commercial artificial-intelligence-based, background image remover, Clipping Magic, which enabled us to process 466 RGB images of maize leaves collected in the field with arbitrary background. The processing time for each RGB image was <10 s. Subsequent procedures for detecting tar spot stromata were the same as those used for the previous analysis of Dataset A, where the image is then partitioned into image blocks.



Homogenization of Inhomogeneous Brightness of RGB Images

Due to the prevailing conditions, when taking pictures of corn leaves, such as weather and time, raw RGB images often have inhomogeneity that can degrade the accuracy of detecting tar spot stromata. An example of an image block imposed by the intensity inhomogeneity of a raw image is illustrated in Figure 2A. To homogenize the brightness of the image blocks so that the false detection rate of tar spot stromata can be minimized, MATLAB built-in function imflatfield() was utilized (Figure 2B). Moreover, to prevent false-positive detections, such as the salt-and-pepper noises, MATLAB built-in function imgaussfilt() was used to apply the Gaussian filter, which blurred the input RGB image and reduced its resolution (Figure 2C). This approach will also improve the computation speed with the use of fewer contours.


[image: Figure 2]
FIGURE 2. Homogenization and Gaussian filtering of image blocks. (A) Pre-homogenization, (B) post-homogenization, and (C) post-filtering.




Converting the RGB Images Into Grayscale Images

Each input RGB image (three channels) was converted into a grayscale image (one channel) to generate contour lines. The naïve average method (Niblack, 1986; Solomon and Breckon, 2011),

[image: image]

where [image: image] is the resultant grayscale image (Figure 3A), generally produces a darker grayscale image. Consequently, the resulting image may lose the distinct patterns manifested by the stromata structure and may degrade the contrast between the stromata patterns and the surrounding regions (leaf area). To avoid this problem, we used the weighted (or luminosity) method, which combines RGB colors with different weighting factors (Figure 3B). The weighted method resolves the issue mentioned above, given by

[image: image]


[image: Figure 3]
FIGURE 3. Normalized grayscale images [image: image] using the (A) average method and (B) weighting method.


Then, we can normalize this as

[image: image]

where [image: image] and [image: image] are maximum and minimum values of elements in the matrix [image: image]. As a result, one can obtain the resulting normalized grayscale image [image: image] in which elements range from 0 to 1 with double data type.




Generating Contour Lines to Detect Tar Spot Stromata

The choice of contour analysis, for the detection of tart spot stromata, was motivated by the morphology of the pathogen structure (stromata), characterized by the protrusion of black and semi-circular regions on the leaf surface, leading to an elevated and rough topology (Valle-Torres et al., 2020). Suppose that a scalar function is defined on the 2-dimensional Cartesian coordinate system, denoted by f(x, y). The function value takes a scalar number at a given position (x, y). A contour line (isoline) is made of a set of points connected so that their function values are equal. Different contour lines represent another set of points having different function values. Here, the function values of contour lines correspond to values of the grayscale image at a given pixel obtained in the previous step. Thus, contour lines describe the brightness of the pixels in the image. Note that contour lines can be generated by using the built-in function contour() in MATLAB.

Figures 4A,B illustrate contour lines for a representative image block. Note that the color of each contour line represents the brightness of the normalized grayscale image. Brightness can be thought similarly as heights of the contour lines on a map. Furthermore, Figure 4C illustrates contour lines of tar spot stromata in a zoomed window at rows from 452 to 475 and columns from 288 to 306, wherein the contour lines near a stroma show distinct patterns of densely populated contour lines that monotonically increase the brightness levels from the center of the stroma toward the outer boundary of the structure. This feature facilitated the search for sets of contour lines showing such patterns, which were predicted to delineate tar spot stromata.


[image: Figure 4]
FIGURE 4. Contour lines generated from a normalized grayscale image block. (A) All contour lines, (B) zoomed-in view of contour lines where columns from 360 to 440 and rows from 260 to 340, and (C) distinct pattern of contour lines of stromata.




Feature Extraction: Identification of Tar Spot Stromata and Local Contour Analysis

Consider a set of points, denoted by [image: image] which represents the j-th point of the i-th contour line. The degree of circularity of a polygon formed by the i-th contour line is calculated and the area can be evaluated by a MATLAB built-in function polyarea(). The center point of the i-th contour line, denoted by [image: image], of the contour line can be calculated by averaging all points consisting of the i-th contour line. The degree of circularity, denoted by gcircle, can be evaluated by

[image: image]

where dmin and dmax are minimum and maximum radii, i.e., distances between each point and the center point of the contour line, which can be written by = min(d) and = max(d) where,

[image: image]

Note that gcircle has the range of 0 ≤ gcircle ≤ 1; in other words, the higher the gcirclevalue, the more circular the shape of a contour will be (i.e., gcircle = 1 for a perfect circle).

Figure 5 compares the degree of circularity of two example contour lines. Since the shape of tar spot stromata is often semi-circular or circular, the contour lines with very low values of gcircle can be discarded. For the contour lines which overlap, a contour line satisfying the following conditions was regarded as a tar spot stroma and searched: (1) the contour line must completely enclose more than Nct number of smaller sub-contour lines, (2) the ratio of areas of the nearest sub-contour lines should be less than rad (threshold value), and (3) contour levels should be monotonically decreasing from the largest to the smallest contour lines.


[image: Figure 5]
FIGURE 5. Two example contour lines. Red circle markers are points of each contour line and the blue dots indicate the center point of polygons (A) gcircle = 0.7606, area = 2.3821 and (B) gcircle = 0.0566, and area = 0.9515.


Consequently, the largest contour line found would correspond to the boundary of the tar spot stroma and its interior region becomes the area of the stroma. Thus, the largest contour line that we found can be called a stroma-boundary-contour line. To check enclosedness between two contour lines, built-in function overlaps() in MATLAB was used (Figure 6). Finally, the searching algorithm was repeatedly performed to find all stroma-boundary-contour lines for all blocks in a sample corn leaf in Figures 7A,B.


[image: Figure 6]
FIGURE 6. Illustration showing instances when two given contour lines are either (A) enclosed or (B) not enclosed using the MATLAB built-in function overlaps().



[image: Figure 7]
FIGURE 7. Illustration, showing the (A) original Red-Green-Blue (RGB) image input (top) and the (B) resulting image after detection of stromata colored in red using the SCDA (bottom).





RESULTS


Agreement Between the Stromata Contour Detection Algorithm and Human Raters A and B With Respect to Detection and Quantification of Stromata

A total of 1,130 of image blocks was evaluated for the number of stromata by two independent human raters and by the stromata contour detection algorithm (SCDA). The capability of the SCDA to recognize Classes 1, 2, and 3 was slightly biased compared to the human raters, but the kappa strengths of the agreement between SCDA and human raters A (κ = 0.83) and B (κ = 0.83) were classified as nearly perfect and identical to the strength of agreement observed between human raters A and B (κ = 0.95) (Figure 8; Table 1).


[image: Figure 8]
FIGURE 8. Agreement charts reflecting the agreement of tar spot stromata counts (classes 1 to 5) between (A) two human raters, (B) human rater A and SCDA, and (C) human rater B and SCDA after kappa analysis.



Table 1. Agreement of two independent raters and SCDA according to Cohen's weighted kappa and associated 95% confidence levels (CI).

[image: Table 1]



Assessment of the Ability of SCDA to Accurately Detect Stromata Compared to Human Raters

The higher concordance correlations between the numbers of stromata detected by the SCDA vs. human raters is not enough to evaluate its performance. For more accurate validation purposes, the coincidence rate for each stroma detected was measured both by the algorithm and human raters. Figure 9 depicts the coincidence measurement (the present algorithm vs. human rater A) for three example blocks. Image blocks were chosen randomly while showing infected leaf image sections with varying numbers of stromata (increasing frequencies of stromata, from left to right).


[image: Figure 9]
FIGURE 9. Overview of evaluating spatial overlap of stromata recognized by human rater A and contour analysis. Illustration of evaluating random image blocks (A–C), showing infected leaf image blocks with varying numbers of stromata (increasing frequency of stromata from left to right). Red blobs represent the area of stromata detected by contour analysis while the center of blue squares signifies the point which the human raters identified to be stromata.


The mean and median values of recall for all the image blocks analyzed by both human raters A and B ranged from 83.3 to 91.7% (average: 87.1%) and from 88.2 to 94.4% (average: 90.5%), respectively (Table 2). Note that the median is greater than the mean, which indicates that the recall distribution is asymmetric based on the mean but left skewed (negative skewness), meaning that poor performance is infrequent (Figure 10), showing that the SCDA can detect a given actual stroma with a probability of 87.1% (mean based) or 90.5% (median based). Furthermore, the mean and median values of precision ranged from 71.3 to 92.1% (average: 84.3%) and from 82.4 to 93.8% (average: 89.7%), respectively, with the left-skewed precision distribution. From the precision result, the probability of stromata detected by the SCDA to human-scored stromata was 84.3% (mean based) or 89.7% (median based). The performance degradation compared with that of precision results from Sample A, which was the image of relatively lower quality than other sample images. Particularly, image A included many blurred blocks due to focusing problems while it was being collected. This issue will be considered in future work. As a result, mean and median values of Dice coefficient values ranged from 75.0 to 91.0% (83.9%) and from 84.5 to 92.6% (average: 88.3%), respectively.


Table 2. Summary of the mean and median of precision, recall, and Dice coefficients (%) upon comparing the stromata contour detection algorithm (SCDA) to human raters A and B for six leaf sample images.
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[image: Figure 10]
FIGURE 10. Validation of performance (precision, recall, and Dice coefficient) of the stromata contour algorithm (SCDA) in recognizing “true stromata” compared to human rater A (left panels) and human rater B (right panels) on (A) Sample A, (B) Sample B, (C) Sample C, (D) Sample D, (E) Sample E, (F) and Sample F.




Correlation of AUDPC of Visual Severity, SCDA, and Mask R-CNN

We observed a higher agreement between AUDPC of visual severity and AUDPC of SCDA at the three canopy levels (ρc = 0.75, r = 0.82, Cb = 0.82) than AUDPC from the R-CNN model (ρc = 0.14, r = 0.13, Cb = 0.27). In general, AUDPC from stromata counts (ρc = 0.82, r = 0.87, Cb = 0.95) had better correlation with AUDPC from the visual estimation than the AUDPC from the area occupied by the stromata (ρc = 0.60, r = 0.87, Cb = 0.69). The best correlation occurred at the mid and upper canopy between AUDPC from visual and AUDPC from the counts of stromata (Figure 11; Table 3).


[image: Figure 11]
FIGURE 11. Agreement of AUDPC between visual disease severity vs stromata counts and proportion of leaf covered by stromata generated by SCDA and mask R-CNN.



Table 3. Correlation of AUDPC between visual disease severity vs. SCDA and mask R-CNN, respectively, at lower, middle, and upper canopies of the experimental plots.
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DISCUSSION

A successful automated system for disease assessment should provide reproducible results and approach the accuracies achieved by human performance. The outcomes of our study suggest the potential of RGB image processing using contour analysis to mimic human rater assessments of tar spot stromata counts on leaves. The SCDA performed with high accuracy and reliability in quantifying the number of stromata to assess the disease intensity and detect “true stromata” as recognized by human raters. Moreover, we observed that stromata detected by the SCDA were highly correlated with reference ground truth recognized by human raters. Accurate numerical descriptions of the extent of manifestations (symptoms) brought about by the disease and of pathogen structures (signs) observed in a diseased plant sample are essential to correctly assess the effect of the disease and to devise effective management strategies (Nutter and Schultz, 1995; Nutter et al., 2006). Although software tools have been used to quantify the disease severity (Biernacki and Bruton, 2001; Stewart and McDonald, 2014; Rivera et al., 2020), they are neither efficient nor appropriate for the disease count task discussed here. To our knowledge, RGB image-based quantification for tar spot of corn has not been established previously. Since counting thousands of stromata present on leaf images or leaf samples is tedious and labor-intensive, the resulting fatigue can lead to inaccurate counts of stromata, providing less reliable data. To prevent such situations, we utilized Fiji (ImageJ) in this study, which allowed for increased accuracy of detection based on the recognition of the stromata by human raters. This prevented the raters from counting the same stroma more than once and allowed for the tracking of the stromata locations on each leaf.

The generation of image blocks or partitioning single images into equal sizes used these “blocks” for the downstream analysis. The rationale for this procedure was that image blocks decrease the computational cost required for analyzing an entire leaf sample, they increase the number of samples (i.e., image blocks). In addition, this approach also reduces rater subjectivity, which is crucial as the labor-intensive nature of generating ground truth data affects the reliability and accuracy of the results (Bock et al., 2010). Moreover, by partitioning the whole leaf into image blocks, a wide variation in disease intensity (stromata count) can be analyzed.

The under-or over-estimation of the SCDA may be accounted for by its limitation to detect small-sized stromata and the low resolution in regions beyond the focus of the camera. The use of flatbed scanners is one of our recommendations to address this issue, although obtaining high-resolution images may take a bit more time than using a camera. Moreover, the noise was eliminated in our image blocks using a Gaussian filter to generate a high-quality image before processing each image for feature extraction. Images were enhanced by utilizing a Gaussian filter, which blurs the images by suppressing high frequencies, similar to the effect of the mean filter. The Gaussian filter has been used previously in image-based plant disease detection (Camargo and Smith, 2009; Shrivastava et al., 2017).

In some cases, another type of manifestation of tar spot is “fish-eye” symptoms, which often appear after stromata structures have emerged and are visible (Hock et al., 1992, 1995; Bajet et al., 1994). These lesions are characterized by Phyllachora maydis stromata at their centers while surrounded by ellipsoidal, chlorotic/necrotic halos, which can enhance the severity of tar spots (Hock et al., 1992; Bajet et al., 1994). Detecting these types of symptoms was not the scope of this study as they are not as common in northern North America; however, this is a recommended enhancement for future research projects. In addition, the condition of the leaf samples was preserved by using a leaf press and storing them at 4°C. Along with the stromata contour detection algorithm (SCDA) in providing accurate disease intensity quantification in the lab, field disease evaluations still need improvement.

For the optimal performance of the proposed algorithm, one should set parameters properly, such as (1) the number of smaller sub-contour lines surrounding a stroma (Nct), (2) the degree of roundness (gcircle), and (3) the ratio of areas of a pair of nearest sub-contour lines ([image: image]). Moreover, for a given image block, the determination of these parameters mainly depends on (1) the blurriness of the grayscale image and (2) the total number of contour levels used to discretize a grayscale level of the image block. In principle, the optimal parameters may be different for each image block, even on the same corn leaf, since the extents of the intensity in homogeneities and blurriness due to a focusing spot imposed on a raw RGB image are different in general. That is why we applied the two-step preprocessing (i.e., intensity homogenization and Gaussian filtering) to make sure that all image blocks would be in a similar condition as far as possible. Consequently, the same parameters used in analyzing all image blocks may not lead to significant degradation.

Nevertheless, when an image block is too blurry due to the Gaussian filter with a larger window, smaller tar spot stromata tend to be wiped out along with salt-and-pepper noise; thus, they are never recognized. On the other hand, analyzing an image block that is less blurred requires a more significant number of contour levels to detect smaller tar spot stromata, ending up with expensive computational costs. Specifically, when more contour levels are used for a less blurred image block, contour lines around a tar spot stroma tend to be more densely populated; thus, Nct generally increases, and rad converges to unity allowing for a higher probability of detecting true-positive cases since the detection of stromata may not be very sensitive to the parameters chosen. However, when insufficient numbers of contour levels are used for a less blurred image block, the performance may degrade significantly; specifically, many false-positive cases may occur. In contrast, for an image block that is blurred excessively, the performance would be saturated even with the use of numerous contour levels. This is because information on smaller tar spot stromata was already lost during the course of blurring. As a consequence, a tradeoff exists between computational efficiency and accuracy. Therefore, the accuracy is determined by the degree of blurriness applied to an image block. Specifically, it determines the smallest size of tar spot stromata that can be found. Then, one can find an optimal number of contour levels for the best performance in detecting tar spot stromata for the blurred image block, which determines computational costs.

In general, both SCDA and mask R-CNN were able to detect and measure the number of stromata and diseased areas covered by the stromata. However, SCDA performed better than the mask R-CNN algorithm based on its correlation of estimated visual severity (AUDPC). Both SCDA and mask R-CNN separated plots that were controls (untreated plots) from those used as treatments (with fungicide application). Generally, control plots had higher values for visual tar spot disease severity, stromata counts, and leaf area covered with stromata. However, the SCDA showed a significantly greater area under disease progress curve (AUDPC) agreement with visual disease estimations compared to mask R-CNN. For future research, we can employ artificial intelligence to train a machine to automatically find the optimal parameters for a given image block while performing the contour-based stromata detection analysis. This is beyond the scope of the present project.

In our study, we utilized a laptop with Intel Core i7-8650U processor (with an 8-MB cache memory and a base frequency of 1.9 GHz and a maximum frequency of 4.2 GHz) and 16 GB of RAM for the present analyses. For our empirical observation with several trials and errors, we found that it would be the best setup with 100 contour levels for each image block and σ = 2 and σ = 1.5 for coarse and fine windows, respectively, for using the Gaussian filter provided by MATLAB. Note that σ represents a standard deviation of the two-dimensional Gaussian distribution. With this parameter setup, we set Nct = 10 and Nct = 5 in searching stromata in coarse and fine windows, respectively. For both windows, we set gcircle = 0.25 and rad = 0.7. It is worth noting that the reason why gcircle was set to a relatively lower value is because of the detection of matured tar spot stromata that tend to form an ellipse-like shape.

Plant disease intensity is often measured with random variables. In some instances, pathogen density based on the number of stromata per unit leaf area may be a better measure of disease intensity than the visual severity in terms of inter-rater repeatability (Madden et al., 2007). Also, severity and counts are different concepts from a statistical standpoint. The count is a discrete variable, and severity is a continuous, random variable. Although discrete stromata count data can encapsulate and convey the natural progression of pathogen invasion and disease development, without automation, counting stromata is time-consuming and tiring. Automated counting of physically distinct stromata is an option with plant diseases as characteristic and conspicuous as tar spot of corn. Automated disease measurement is still in an exploratory stage and the results presented are the basis of future research based on data collected under field conditions and data processing with more advanced techniques. Our ultimate goal is to explore the spatio-temporal domain of plant disease quantification using both visual and digital imagery and weather variables to properly describe and forecast plant disease epidemics.



CONCLUSION

Automated, image-based, accurate detection and assessment of disease intensity will provide a substitute for labor-intensive and subjective-prone, human visual-based disease intensity estimations and aid in generating high volumes of reliable data in a relatively short time. In turn, this will support building robust epidemiological models for tar spot outbreaks and improving the management decisions for this disease. Moreover, for an emerging disease, such as tar spot, it is crucial to develop and establish a standardized method that will provide accurate estimates of plant disease intensity to obtain reliable assessments for monitoring tar spot epidemics, resistance screening, and management practices. The contour-based stromata detection method developed in this study will serve as a foundation toward building a systematic approach in quantifying the disease intensity of tar spot using digital imagery as well as for other plant diseases generating similar types of stromata.
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Multi-target recognition and positioning using robots in orchards is a challenging task in modern precision agriculture owing to the presence of complex noise disturbance, including wind disturbance, changing illumination, and branch and leaf shading. To obtain the target information for a bud-cutting robotic operation, we employed a modified deep learning algorithm for the fast and precise recognition of banana fruits, inflorescence axes, and flower buds. Thus, the cutting point on the inflorescence axis was identified using an edge detection algorithm and geometric calculation. We proposed a modified YOLOv3 model based on clustering optimization and clarified the influence of front-lighting and backlighting on the model. Image segmentation and denoising were performed to obtain the edge images of the flower buds and inflorescence axes. The spatial geometry model was constructed on this basis. The center of symmetry and centroid were calculated for the edges of the flower buds. The equation for the position of the inflorescence axis was established, and the cutting point was determined. Experimental results showed that the modified YOLOv3 model based on clustering optimization showed excellent performance with good balance between speed and precision both under front-lighting and backlighting conditions. The total pixel positioning error between the calculated and manually determined optimal cutting point in the flower bud was 4 and 5 pixels under the front-lighting and backlighting conditions, respectively. The percentage of images that met the positioning requirements was 93 and 90%, respectively. The results indicate that the new method can satisfy the real-time operating requirements for the banana bud-cutting robot.

Keywords: fruit detection, computer vision, recognition and localization, multi-feature classification, edge detection, vision sensing


INTRODUCTION

Recent years have seen an unprecedented rise in the cost of human labor, with the increase reaching up to 12–15% in 2019 (Fu et al., 2020). At present, banana buds are generally cut and picked manually, and the labor cost accounts for approximately 34–40% of the total cost of banana production. Moreover, labor shortage and an aging labor pool pose barriers to the development of the banana industry. Considering the above, mechanization and intelligentization of banana bud cutting and picking represent an inevitable development trend for the banana industry. In a banana plant, the buds are connected to the fruits via the inflorescence axes. At the intermediate middle stage of development, the buds need to be cut off manually to ensure the quality of the fruit. Developing vision-based bud-cutting robots capable of automatic perception and intelligent decision-making is important for reducing labor costs and building intelligent banana orchards.

In the fruit industry, visual inspection and image processing for the recognition and positioning of fruits and flowers are among the most intensively studied topics (Gongal et al., 2015; Stein et al., 2016; Tang et al., 2020). Visual features are used to differentiate between the targets and other objects (Saedi and Khosravi, 2020). Classical image processing algorithms include those based on color, threshold segmentation, and edge detection. These algorithms are generally used for determining fruit type and yield, positioning, and harvesting (Patricio and Rieder, 2018). Wu et al. (2019) developed an automatic tomato harvesting method that integrated multi-feature fusion and double-level classification. Oppenheim et al. (2017) detected and counted yellow tomato flowers using an unmanned aerial vehicle (UAV). The tomato flowers were detected and segmented using self-adaptive global thresholding, HSV color space segmentation, and the morphological method (Oppenheim et al., 2017). Wang et al. (2018) employed the color thresholding technique for image processing. They used the conventional pixel segmentation method to separate mango spike pixels from the crown (Wang et al., 2018).

Target fruit recognition and positioning in a field is quite challenging (Wang et al., 2017; Chen et al., 2021). The environment is complex, with constantly varying light conditions; the fruits, leaves, stems, or other targets may be shaded (Feng et al., 2019). For this reason, simple color-based or thresholding methods may not be suitable for target recognition in a field (Li et al., 2020). Machine learning (ML) emerged along with big data technology and high-performance computing, and is defined as a scientific field that allows machines to learn without rigorous programming. Traditional ML algorithms include decision trees, clustering, Bayesian classification, SVM, Adaboost, and so on. In recent decades, ML has been widely used in various fields of agriculture (Tsaftaris et al., 2016; Maione and Barbosa, 2019; Chopra et al., 2021; Wan Nurazwin Syazwani et al., 2021; Yoosefzadeh-Najafabadi et al., 2021). “Deep learning” is strongly related to the “neural network” in machine learning. Since detection algorithms based on ML require proper feature vector design for classification, and then use the feature vectors to extract pixel or super pixel features for classification to achieve detection, which strongly relies on personal prior knowledge and is rather difficult. Therefore, the use of deep convolutional neural networks for fruit and vegetable detection has received much attention in recent years. Compared with conventional color- and threshold-based models and manual feature extraction, neural networks have been proven successful in target fruit detection and positioning (Gongal et al., 2015). For deep learning, the target detection model can be repeatedly trained using different convolutions to mine deep-level features. Thus, the model can more properly detect the target fruits and vegetables in an uncontrollable field environment regardless of the lighting conditions.

The object detector used for deep learning algorithms is mainly divided into two types: one is a two-stage detector based on candidate regions, and the other is a single-stage detector based on the regression method. The first type of two-stage detector divides object detection into stages, as in the case of the R-CNN series. This type of neural network has been widely applied to deep learning for fruit and flower detection in orchards. Jia et al. (2020) proposed a modified Mask R-CNN architecture to detect apples. The accuracy of feature extraction obtained by combining the ResNet and DenseNet architectures was 97.31% (Jia et al., 2020). Sa et al. (2016) detected sweet peppers using the modified faster R-CNN algorithm, and the F1-score was 0.83 (Sa et al., 2016). Dias et al. (2018a) applied the CNN architecture to extract features from the candidate flower regions separated by superpixel segmentation. Subsequently, a support vector machine (SVM) was employed to detect apple flowers. Both the recall and the accuracy exceeded 90% (Dias et al., 2018a,b). They also used the fully convolutional network (FCN) to detect flowers from the images of apples, peaches, and pears (Dias et al., 2018b). Lin and Chen (2018) described a strawberry flower detector. The results showed that the deep-level faster R-CNN could effectively monitor strawberry flowers under different camera views, flower distances, overlaps, complex background lighting, and blurred lighting (Lin and Chen, 2018). Tian et al. (2020) proposed a modified Mask-R-CNN for a real case of apple flower segmentation, with the accuracy reaching 96.43%. Complex noises in field environments have considerable bearing on the precision of detection.

To rapidly classify and recognize the objects, researchers have put forward the second type of one-stage object detection algorithm. You only look once (YOLO) and single-shot multibox detector (SSD) series belong to this type (Redmon and Farhadi, 2017; Yin et al., 2020). Compared to two-stage object detectors, single-stage object detectors are faster. Koirala et al. (2019) compared the performance of six deep learning frameworks in mango detection, and the MangoYOLO architecture was constructed. The F1 score was 0.97, and the mean accuracy was 0.98. The elapsed time for detecting each image was 70 ms (Koirala et al., 2019). Santos et al. (2020) detected grapes using three networks, namely, Mask R-CNN, YOLOv2, and YOLOv3, with the F1-score being 0.91. Zhang et al. (2021) described a modified SSD detector based on fruit color and morphological features. The frame rate of the stereo depth camera for detecting palm fruits, durian fruits, and pineapples reached 16.71 frames per second (Zhang et al., 2021). Wang et al. (2021) described a modified YOLOv3-Litchi model for detecting densely distributed lychee fruits in a large visual scene, where the mean precision was 87.43%. Wu et al. (2020) reported a real-time apple flower detector method using the channel-pruned YOLOv4 deep learning algorithm, which had an mAP of 97.31%. The detection speed was 72.33 f/s (Wu et al., 2020).

For edge detection and cutting point determination for targets in orchards, Luo et al. (2018) recommended using visual positioning to determine the picking point (for cutting off the fruit axis) on the fruit axis of grapes. Zou et al. (2012) and Xiong et al. (2018) studied the positioning and error analysis of the picking point in the pedicel of litchi. Many methods for picking point positioning have been proposed for different fruit-picking robots. However, picking point positioning may be influenced by some factors. Given the variability of fruit type, size, shape, and color, it is almost impossible to design a universal image segmentation algorithm, which otherwise affects the determination of the image centroid of fruits.

In banana orchards, machine vision and deep learning algorithms have been successfully applied to the classification and detection of a single target, such as fruits or stems. Neupane et al. (2019) detected and counted banana plants from RGB aviation images collected by UAV using fast-RCNN. Banana fruits and flower buds are objects of multi-target detection in banana orchards. However, the flower buds and inflorescence axes do not always point vertically downwards. This image feature adds to the complexity and computational difficulty. The purpose of target classification and recognition from images is to realize behavioral control of the visual robot operation. One of the important considerations is balancing the accuracy and speed of multi-target detection (Soviany and Ionescu, 2019). Our research team detected the fruit axes of bananas using the Deeplab v3+semantic segmentation network. A multi-view 3D perception of the center of the fruit axis of bananas in a complex orchard environment was conducted (Chen et al., 2020). A YOLOv4 neural network was then used to extract deep-level features from the banana fruits, thus realizing the accurate detection of bananas of varying sizes (Fu et al., 2020). Determining the cutting points in the banana flower buds and inflorescence axes is a necessary prerequisite for decision-making in bud-cutting robots. Acquiring visual information regarding the cutting point is a technical difficulty due to wind disturbance, changing lighting conditions, and branch and leaf shading.

Addressing complex environmental noises, we modified the YOLOv3 algorithm for accurate and rapid multi-target classification and recognition, Some parameters in YOLOv3 are optimized, and on the basis of clustering algorithm, the cross entropy loss function is introduced into the confidence and classification error model. An image segmentation and denoising algorithm was used to obtain the images of banana buds and inflorescence axes. A spatial geometry model was thus established. The function for positioning the inflorescence axis was based on finding the centroid of the banana bud. The coordinate information of the cutting point was obtained.

The highlights of the present study mainly include the following:

(1) Images of banana buds and inflorescence axes were obtained by image segmentation and denoising. The center of symmetry and the centroid were calculated for the edges of the flower buds.

(2) The cutting point was positioned using an edge image processing algorithm and the geometric method. Thus, the function for solving the inflorescence axis was established.



MATERIALS AND DATA COLLECTION


Testing Equipment and Software

The testing equipment had both hardware and software components. The hardware part of the testing equipment (Figure 1) included a computer for image processing, with the following configuration: i7-7700K processor, memory 16G, 2,400 MHz; video card GTX1080Ti 11G. A camera and high-resolution smartphone were used for the sampling. The resolution was 16 million pixels.


[image: image]

FIGURE 1. Computer, software, and camera.




Image and Data Collection

The sampling objects were banana fruits, flower buds, and inflorescence axes connecting the buds to the fruits (Figure 2). Each banana tree had only one bud, with the bud and the inflorescence axis pointing vertically downwards. When the fruits reach a particular stage of growth, the bud should be cut off from the inflorescence axis; this is known as bud cutting. Banana fruits, buds, and inflorescence axes are three types of targets with different features. The detection of these targets is influenced by the random shading of leaves or plants, background noises, and lighting. In this study, multi-target recognition was performed under different lighting conditions. The sampling strategy was to sample wherever there was a flower bud. The objective was the automatic recognition of flower buds and inflorescence axes to formulate the positioning decision for robotic bud picking. Besides, the multi-target sampling of bananas lays the basis for yield estimation and maturity assessment.
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FIGURE 2. Samples of bananas, flower buds, and inflorescence axes under front-lighting and backlighting.


The experimental images were obtained in two batches. The photographs were taken on July 25, 2020, which was a sunny day, at the Lingnan Fresh Fruit Base of the Guangzhou Fruit World in Guangdong Province, China. The weather changed from sunny to cloudy from August 4, 2020 to August 5, 2020. The location was a banana orchard in Jiangmei, Guangdong Province. Multiple targets, including fruits, inflorescence axes and buds, were included in the photographs. Thus, the banana plants had multiple features that could be detected as targets in this study. During the sessions, 5,343 images were collected under different lighting conditions. Among them, 5,300 images were selected and subjected to annotation using an image annotation tool. A script was written for the automatic, random division of the samples into the training, validation, and testing sample sets. There were 4,800 images in the training set, 364 images in the validation set, and 685 images in the testing set, accounting for 90.60, 7, and 13%, respectively.



METHOD AND ALGORITHM DESCRIPTION


Multi-Target Classification of Banana Fruits, Flower Buds, and Inflorescence Axes

Samples for the multi-target recognition of bananas are shown in Figure 2. Class annotation was performed for the original multi-target images obtained in the experiment. The script was written for automatic annotation to reduce the manual time. The size of the sampled images was set to 721 × 960 pixels. An image of random size was input and scaled until the w or h was 416 pixels. Then, the image was used as the network input. That is, the input was a three-channel RGB image with a size of 416 × 416 pixels.



Multi-Scale Feature Fusion Method

For multi-target detection of bananas in which different features were recognized simultaneously, the prediction was done on multiple scales. The influence of resolution on the prediction is mainly determined by the resolution information, that is, the number of pixels (Figure 3). Logistic regression only applies to binary classification problems. While maintaining the accuracy, we designed a multi-label logistic classifier by modifying logistic regression to adapt to multi-classification problems. The new classifier utilized the Sigmoid function. If the confidence level for a bounding box was above 0.5 after feature extraction and after the Sigmoid function was constrained, it meant that the object surrounded by the bounding box was labeled correctly. In the YOLOv3 model belonging to the second type of method, the upsampling (like FPN) and data fusion algorithm were used to fuse banana images on three scales (13 × 13, 26 × 26, and 52 × 52). Then, target detection was performed separately on the multi-scale feature fusion map to improve the performance. The multi-scale fusion information about banana fruits, buds, and inflorescence axes is shown in Figure 3.
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FIGURE 3. Multi-scale feature map of the bananas. (A) 416 × 416 image. (B) 13 × 13 grid. (C) 26 × 26 grid. (D) 52 × 52 grid.




YOLOv3 Network Architecture for Multi-Feature Targets

YOLOv3 utilized the feature extraction network part Darknet-53, which was composed of five residual blocks. This model borrowed from the residual neural network. The number of anchor boxes used in the algorithm changed from 5 in the original YOLOv2 model to 9. The size of the anchor boxes was calculated by applying k-means clustering to optimize the width and length of the actual target frame of the bananas (Redmon and Farhadi, 2017).

The separate detection of each feature of the banana plants (inflorescence axes and buds) was performed using multi-scale feature fusion maps. This method could enhance the detection performance for targets of varying sizes and also the shaded ones. Besides, connections were introduced between the layers to strengthen the convergence performance. The multi-target detection of bananas was conducted in a complex field environment where noise interference abounded. The parameters of the existing YOLOv3 architecture still needed to be modified. Here, the loss function was modified and improved. The network architecture is shown in Figure 4.
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FIGURE 4. YOLOv3 network architecture for the multi-feature targets of banana plants.




Loss Function

The loss function of YOLOv3 can affect the model convergence. It also serves as the basis for penalizing incorrect detection. The Sigmoid function was designed and used for the activation of the final output. Subsequently, SSE was used to calculate the final loss. However, the Sigmoid function has a saturation problem. Once the input falls within the saturation region, it approaches zero. As a result, the gradient nearly vanishes. If the error value calculated by using the squared error is very small, the network parameters can hardly be trained effectively (Lyu et al., 2019). One way to solve this problem is to introduce a cross-entropy loss function when the true value is either 0 or 1, as given by
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where a is the output value of the error model after the introduction of a Sigmoid function. The YOLOv3 loss function consists of three parts, namely, location error (set to l_1box), classification error (l_2obj), and error of the confidence level (l_3cls). The squared error is considered as a function to reduce the cumulative error of the loss function and to mitigate the gradient vanishing when calculating the coordinate errors (location errors). If this error increases, the parameter gradient will increase. But when the error is very large, the parameter gradient decreases, leading to an uncertainty problem. Therefore, when calculating the confidence interval and the classification error, we introduced a cross-entropy loss function (Yin et al., 2020; Cao et al., 2021). Based on the initial YOLO loss function, the loss function was built using (6). Thus, the modified loss function has the following form:
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which indicates whether the [image: image] bounding box of the grid I and grid J network is responsible for detecting the banana targets. cobox is used to improve the stability of the loss function and enhance the coordinate loss prediction of the bounding box. is the weight coefficient of the coordinate error model. obj,noobj are for the trade-off between the positive and negative samples, representing the weight coefficients for the error of the confidence level with the target included and excluded, respectively. λclass is the weight coefficient for the classification error. wihi are the width and height of the real target frame of bananas, respectively; C_i is the confidence level of the real banana target; p_i is the class probability prediction. In the squared error term, let [image: image][image: image].

Multi-target detection of bananas covered the fruits, inflorescence axes, and buds. Therefore, unlike usually, softmax was not chosen for predicting the class labels. Instead, logistic regression was used to predict the class. The function for realizing multi-target prediction with multi-scale feature fusion is known as the logistic function, given by
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Modification of the YOLOv3 Model Based on Clustering Optimization and Model Evaluation

A trade-off was considered between the elapsed time and prediction. First, some parameters of the YOLOv3 model were optimized based on environmental features and the biological features of bananas as the multi-feature target. During model training, the epoch parameters were 100 iterations and batch_size 32, which increased the elapsed time and memory consumption. While ensuring precision, the epoch, number of iterations, and batch_size were set to 50, 39, and 8, respectively. The experimental results showed that when the number of iterations was approximately 50, the loss function curve tended to stabilize. The YOLOv3 model with optimized parameters for multi-target recognition of bananas was known as the modified YOLOv3 thereafter.

Based on the above, the dimensionality of the target candidate frame in the YOLOv3 model was subject to clustering optimization to optimize the YOLOv3 model and improve the precision. The YOLOv3 had default values for the number of target candidate frames and height-to-width ratio and hence, enjoyed universality to a certain degree. However, the YOLOv3 still needs to be optimized when applied to the multi-target detection of bananas in a complex field environment and changing lighting conditions. Here, the YOLOv3 model was optimized using the fusion clustering algorithm (known as YOLOv3 based on clustering optimization). Clustering was performed using the k-means clustering and training dataset. The number of target candidate frames, height, and width fit for the prediction were updated. The parameters of the multi-target candidate frame are shown in Table 1. We conducted a multi-target recognition experiment using the YOLOv3 model based on clustering optimization under different lighting conditions.


TABLE 1. Parameters of candidate frames for multiple features of bananas.

[image: Table 1]To assess the generalization ability of the deep learning network and optimize the model stepwise, we determined the precision (Pre), recall, F1-score and Matthews Correlation Coefficient (MCC) as precision measure of the binary classification model. The calculation formulae are shown in Eqs. (4)–(6):
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where is the true positive T_p is the false positive, and the false F_p is preserved; Fn is the false negative, and the true is removed.

During the training experiment, the full data set of the multi-target recognition of bananas was run once (epochs). For each epoch, one group of precision and recall was obtained. By setting different thresholds of the modified YOLOv3 model, several groups of precision and recall were obtained, and a PR curve was drawn. The area under the curve was the average precision (AP).



CALCULATION METHOD FOR THE CUTTING POINT

Geometrically, the flower buds are inverted cones with basic symmetry. The cutting point of the bud is located on the inflorescence axis. The midpoint of the bounding rectangle of the inflorescence axis can be easily found when the bud and the inflorescence axis point vertically downwards. However, some buds and inflorescence axes do not point vertically downwards but at an angle δ with respect to the vertical direction. In this case, finding the midpoint of the bounding rectangle of the inflorescence axis to position the cutting point may lead to mistakes.

Without loss of generality, the cutting point should be calculated by determining the centerline when the bud is at an angle of δ. First, multi-target classification was done using the YOLOv3 model based on clustering optimization. The image edges of the buds and inflorescence axes were determined using the edge algorithm. The centroid and the center of geometric symmetry were solved based on the symmetry of the bud. Next, the cutting point in the inflorescence axis was calculated using the geometric method. This method first determined the distance from all the detected straight lines to the centroid. Then, the straight line with the shortest distance was chosen by imposing the minimum constraint on the distance from the point to the line. This is the line along which the inflorescence axis runs. The midpoint of this line is chosen based on the coordinates and treated as the cutting point. The spatial coordinates of this cutting point forms the basis for configuring the parameters of tool posture in the robot actuator. The schematic of the cutting point positioning algorithm is shown in Figure 5.
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FIGURE 5. Flowchart of cutting point positioning.



Image Segmentation

Image segmentation for flower buds and inflorescence axes is the basis of the cutting point positioning algorithm. Multi-target classification and recognition of banana fruits, flower buds, and inflorescence axes were first performed for noise reduction. However, some bud images might contain green or dry leaves, fruit branches, and lighting noises. The bud color differs from the color of a few green or dry leaves. Here, the bud edges were extracted by extracting the color components and by Otsu’s binarization.

Mathematical morphology is applicable to the denoising of complex images and image restoration due to its intuitiveness and suitability for processing geometrical structures. The opening operation can inhibit positive impulse noise in the bud signals, while the closing operation can inhibit the negative impulse noise. To remove the positive and negative noise from the signals simultaneously, we combined the opening and closing operations to form a morphology filter. Noise in the binary images of the buds were mainly composed of the surrounding noise blocks and the noise holes inside. The opening operation was adopted to remove the noise surrounding the buds, and the closing operation was for removing the noise holes inside. That is, set A was closed using the structure element B. Denoising was performed using the morphological method. However, the black noise within the contour of the bud became enhanced (Figure 6).
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FIGURE 6. Image segmentation process of the banana buds. (A) Original image. (B) H component image. (C) Segmented image. (D) Denoising.


After image segmentation, some small curled petals might be separated from the overall contour of the bud under certain conditions. However, these petals were of negligible size. To reduce the error in the computation of the image centroid, we proposed extracting the maximum connected region from the main contour of the bud. In this study, 50 sample images were used for cutting point positioning on the inflorescence axis. Given the large sample size, the conventional denoising approach usually has a low efficiency as denoising is performed for one image at a time. Here, denoising was performed using the batch processing method.



Solving the Image Centroid

After extracting the maximum connected region, a binary image was obtained for the bud region. The pixel value of this region was set to 1 (white), while the remaining was set at 0 (black). The centroid coordinates of the bud were estimated (Luo et al., 2018) using the formula below according to the definition of the moment of the image centroid:
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where xci,yci are the centroid coordinates of the upper and lower parts of the bud, respectively; x,y are the pixel coordinates; f(x,y) is the pixel value of the binary image at point (x,y).

After binarization, the image in the H channel was divided into the upper and lower parts. The pixel location information was estimated for each target. It was determined whether the pixel point fell within the bud region. The pixel information was estimated and the centroids in the upper and lower parts were determined. The centroid rc1(xc1,yc1) in the upper part and the centroid rc2(xc2,yc2) in the lower part were connected to find the centerline of the bud. The image centroid of the banana buds is shown in Figure 7. After obtaining the centroid coordinates, the minimum bounding rectangle was found for the bud region by fitting. When λ = 900, = 0, the bud and the inflorescence axis point vertically downwards and are symmetric. When λ < 900, the bud and the inflorescence axis are at an angle of δ with respect to vertical direction, as shown in Figure 7B.
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FIGURE 7. Schematic for solving image centroid and cutting point. (A) = 900. (B) = 900.


lmax is the maximum width of the bud contour; s is the distance from the detected straight line to the centroid; T(xt,yt) is the highest point on the bud edge; Qi1 and Qi2 are end points of the detected line segment; H_t is the height of our interest in the inflorescence axis; Qih is the cutting point in the inflorescence point, with a distance of H_Q. Based on the principles above, the image centroid and central axis were found for the buds, as shown in Figure 8.
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FIGURE 8. Image centroid calculation for the buds. (A) Original image of the bud. (B) Upper and lower part of the bud. (C) Calculating the centroid. (D) Central axis.




Geometric Calculation of the Position of the Cutting Point in the Bud

According to the growth features of the buds and inflorescence axes and the principles of geometric method, we constructed a schematic diagram for the calculation of the cutting point. First, the bounding rectangle of the inflorescence axis was found. Then, the inflorescence axis information and growth direction were extracted. Finally, the coordinates of the optimal cutting point were determined.

Due to shading and color interference, it was difficult to extract the inflorescence axis. In Figure 9A, the inflorescence axis and the banana leaves in the background are similar in color. Therefore, it is difficult to extract the inflorescence axis region by setting a specific hue. Besides, the inflorescence axis itself has a complex geometric shape. Under a particular illumination, shadows will appear on the boundaries of the inflorescence axis, causing considerable interference in the binary image. Here, the inflorescence axis was treated as a slender cylinder in axial symmetry, and the region was extracted by image processing. Thus, the problem of extracting inflorescence axis information was converted into a problem of extracting the binary mask of the inflorescence axis.
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FIGURE 9. Inflorescence axis extraction and growth direction calculation. (A) Original image. (B) Image in the brightness channel. (C) Threshholding. (D) Denoising. (E) Morphological processing. (F) Final solution of results.


The images where converted into the HSV coordinate system; the HSV channels were observed, and the V channel (Figure 9B) showed the best separation of the inflorescence axis from the background. Thus, image segmentation was primarily performed in the V channel. To remove the problems of random colors and uneven brightness, we subtracted the values in the V and H channels after histogram equalization. This was followed by a phase inversion. After this procedure, only the portion with higher brightness remained as noise (Figure 9C). The boundaries of the inflorescence axis in the original image were blurred. We ran the contour-finding algorithm for all the homochromatic simply connected regions in Figure 9C. The regions below the threshold within the contour were eliminated. In this way, nearly all the noise was removed while maximally preserving the boundary features of the inflorescence axis (Figure 9D).

The following assumption was made within the bounding rectangle of the inflorescence axis to eliminate the influence of the remaining irrelevant area and boundary irregularity of the inflorescence axis: The inflorescence axis had the largest area ratio. Figure 9D was further subject to morphological processing, such as expansion and corrosion, to obtain Figure 9E. Then Figure 9E was solved to calculate the growth direction of the inflorescence axis (Figure 9F).

As to the bounding rectangle of the inflorescence axis, the boundaries were determined by finding the pixel pair. First, the boundary coordinates of the inflorescence axis were estimated and clustered. The outliers were eliminated by using the clustering-based denoising algorithm. The feature boundary line was fitted. The center of the inflorescence axis was found based on the mean diameter or pixels of the inflorescence axis.

The pixel coordinates of the two end pointsQi1, Qi2 in the line segment of the inflorescence axis are (xi1, yi1) and (xi2, yi2), respectively. The two endpoints are connected by a straight line:
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The centroid in the upper part of the bud and the center of the bud were already known. The bud was basically symmetrical. The inflorescence axis is usually above the centroid of the bud. When the bud and the inflorescence axis point vertically downwards, the centerline of the bud overlaps with the axis of the inflorescence axis (Figure 7A). The extension of the axial line of the inflorescence axis passes through the centroid of the bud (Luo et al., 2018). But in a real orchard, a few buds do not point vertically downwards but at an angle of δ (Figure 7B). Here, the minimum constraint function min(Si) for the distance from the point to the line was solved to find the straight line segment where the cutting point was located. The midpoint of this straight line segment Qih was considered the cutting point (Figure 9F).

By analogy with the method of solving the distance from the point to the straight line segment, we found the distance from each straight line segment to the centroid S_i:
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EXPERIMENTAL RESULTS AND ANALYSIS


Classification and Recognition of Banana Fruits, Flower Buds, and Inflorescence Axes

The modified YOLOv3 model was trained using the training set and subsequently verified using the validation set. Features were repeatedly extracted from the trunk layer and the detection layer on multiple scales to improve the efficiency of the network in detecting tiny objects. A comparison was made between the modified YOLOv3 model, YOLOv4 model, and Faster R-CNN. The values in the brackets are the precision.

As shown in Figure 10, the precision was higher for banana fruits and buds. YOLOv3 had a higher precision for detecting the inflorescence axis, which was comparable to that of the faster R-CNN. However, when the inflorescence axis was very short, a part of it was blocked by the petals growing upwards. Besides, the short inflorescence axis could hardly be separated from the background. Apparently, lighting had a large impact on the precision of the YOLOv3 model.
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FIGURE 10. Comparison of the multi-target recognition results of bananas.


Comparison of the precision and elapsed time for the modified YOLOv3, faster R-CNN, and YOLOv4 in multi-target detection is shown in Table 2. The average elapsed time for each image in the sample set is denoted by t.


TABLE 2. Comparison of the multi-target detection results between the YOLOv3 model, YOLOv3 model based on clustering optimization, R-CNN model and YOLOv4 model (238 images).

[image: Table 2]Table 2 shows that the mAP of YOLOv3 and clustering optimization-based YOLOv3 was 92.95 and 92.98%, respectively, for the multi-target detection of bananas. The average elapsed time for the detection of each image was 0.24 s. Table 2 shows that the mAP of the YOLOv4 model was 93.46% for the multi-target detection of bananas. The average elapsed time for the detection of each image was 0.2 s. The mAP of Faster R-CNN was 95.80% for the multi-target detection of bananas. The average elapsed time for the detection was 0.43 s per image.

To account for the influence of lighting on multi-target recognition, 1,062 and 1,072 images of banana fruits, buds, and inflorescence axes in front-lighting and backlighting conditions, respectively, were used for the recognition experiment.

The results showed that under the front-lighting condition, YOLOv3 based on clustering optimization had the highest mAP, which was 97.90%, followed by Faster-R-CNN. Both had a precision above 97.00%. Under the backlighting condition, Faster-R-CNN had the highest precision of 97.47%, followed by YOLOv3 based on clustering optimization. The overall average recall was 97.55% with Faster-R-CNN vs. 95.50% with YOLOv3 based on clustering optimization. In the front-lighting condition, both models had a comparable recall. But in the backlighting condition, Faster-R-CNN had a higher recall.

Taken together, YOLOv3 based on clustering optimization performed better in both front-lighting and backlighting conditions with a higher recall. The modified YOLOv3 model based on clustering optimization performed well with a good balance between speed and precision under both the front-lighting and backlighting conditions. During the robotic bud cutting and picking operation, the modified YOLOv3 based on clustering optimization can preferably be chosen for positioning in the front-lighting condition.



Positioning of the Banana Buds and Cutting Point in the Inflorescence Axes

Thirty groups of samples were chosen for the cutting point positioning experiment. First, the cutting point was positioned manually in the inflorescence axis. Next, the proposed algorithm was run for calculation and comparison, and the error was estimated.

Let the optimal cutting point positioned manually on the inflorescence axis be Mih. The calculated cutting point is Qih. Thus, the error Δ is given by:
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where Xi,Yi are the pixel coordinates of the i row and the i column in the pixel region for the optimal cutting point manually determined in the inflorescence axis, respectively. xi,yi are the pixel coordinates of the i row and the i column for the calculated cutting point in the inflorescence axis, respectively.

The pixel scope of the optimal cutting point (20 ± 15 pixels × 65 ± 30 pixels) was manually set up. The optimal cutting point was located along the centerline of the inflorescence axis (20 ± 15 pixels × 65 ± 30 pixels). The pixel positioning errors calculated for the 60 images are shown in Table 3. X and Y are the pixel scopes of the optimal cutting point; x and y are the coordinates of the calculated cutting point; e_x is the pixel positioning error along the row direction; e_y is the pixel positioning error along the column direction; e is the overall pixel positioning error.


TABLE 3. Comparison of the multi-target detection results between the YOLOv3 model, YOLOv3 model based on clustering optimization, R-CNN model and YOLOv4 under front-lighting and backlighting conditions.
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TABLE 3–1. Comparison table of cutting point and pixel positioning error under two types of lighting.
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TABLE 3–2. Statistical table of cutting point positioning under two types of lighting.
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As shown by the cutting point positioning errors for the buds and inflorescence axes, the error was kept below 15 pixels for 55 images. On these images, the cutting point was positioned along the edge of the inflorescence axis. The error was above 15 pixels for five images, where the cutting point was positioned outside the inflorescence axis. The positioning error along the Y-direction was significantly lower than that along the X-direction. This was probably because the mask generated by the morphological processing of shadows on the edge of the inflorescence axis shifted in the X-direction.

When detecting the rectangular region associated with the inflorescence axis, the cutting point might be mistakenly positioned at the edge of the axis. However, the optimal cutting point must be located on the centerline of the inflorescence axis. The positioning error can be estimated as the radius of the fruit stem. We have developed a clamping and cutting mechanism for the end actuator based on fault tolerance analysis (Zou et al., 2016). This mechanism can compensate for the pixel positioning error of the cutting point in the X (row) direction and identify the cutting point.

The previous algorithms can only get better results when facing fruits with simple outline shape, but cannot get better classification results when facing fruits with complex and irregular or fruits with complex growing environment (such as bananas). The algorithm proposed in this study can further calculate the detected target on the basis of deep learning, and has achieved high detection accuracy in both bright and backlight environments, and has high robustness in cooperation with the end effector based on fault-tolerant design developed by us.



CONCLUSION

This study focused on the multi-target recognition of banana fruits, buds, and inflorescence axes in a complex orchard environment, and proposed YOLOv3 model and edge detection algorithm based on cluster optimization, and constructed a calculation model of flower bud cutting point. Experiments showed that the mAP and speed of modified YOLOv3 and YOLOv4 were satisfactory. The precision was 92.98 and 93.46%, respectively. The average time for field detection of each image was 0.24 and 0.2 s, respectively. The accuracy of the improved YOLOv3 is 97.90 and 91.11% under the conditions of front-lighting and backlighting conditions, respectively. The improved YOLOv3 had better performance and higher recall rate, and had achieved a good balance between speed and accuracy. Under the conditions of front-lighting and backlighting, the total pixel positioning errors between the calculated optimal cutting point and the manually determined optimal cutting point in flower bud were 4 and 5 pixels, respectively. The proportion of images meeting the positioning requirements was 93 and 90%, respectively. The experiments showed that the proposed algorithm could satisfy the requirements for recognition performance and comprehensive performance in the cutting point positioning process.

Multi-target classification and recognition of bananas from images potentially offer data support for the yield estimation of bananas. In the present study, we performed multi-target detection of bananas using monocular vision and by calculating the cutting point on the xy-plane. We recommend stereoscopic vision to obtain the 3D spatial information required for the detection. Another important research task related to the smart banana orchard operation is the robotic recognition of spatial coordinates of the inflorescence axis based on stereoscopic vision and the robot obstacle avoidance and cutting behavior.
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Recognizing plant diseases is a major challenge in agriculture, and recent works based on deep learning have shown high efficiency in addressing problems directly related to this area. Nonetheless, weak performance has been observed when a model trained on a particular dataset is evaluated in new greenhouse environments. Therefore, in this work, we take a step towards these issues and present a strategy to improve model accuracy by applying techniques that can help refine the model’s generalization capability to deal with complex changes in new greenhouse environments. We propose a paradigm called “control to target classes.” The core of our approach is to train and validate a deep learning-based detector using target and control classes on images collected in various greenhouses. Then, we apply the generated features for testing the inference of the system on data from new greenhouse conditions where the goal is to detect target classes exclusively. Therefore, by having explicit control over inter- and intra-class variations, our model can distinguish data variations that make the system more robust when applied to new scenarios. Experiments demonstrate the effectiveness and efficiency of the proposed approach on our extended tomato plant diseases dataset with 14 classes, from which 5 are target classes and the rest are control classes. Our detector achieves a recognition rate of target classes of 93.37% mean average precision on the inference dataset. Finally, we believe that our study offers valuable guidelines for researchers working in plant disease recognition with complex input data.

Keywords: deep learning, control classes, explicit control, target classes, tomato diseases and pests


INTRODUCTION

Plant diseases and physiological disorders concern farmers and researchers as it directly impacts food security and, therefore, human well-being (Stewart and Roberts, 2012). Quantifying the impact of plant diseases on crops represents one of the most challenging problems in agriculture (Food and Agriculture Organization, 2006). Once a plant is infected, the damage can be easily propagated to the entire crop, causing several production and economic losses. Traditionally, crop monitoring is conducted by specialists in the field, which requires a higher level of expertise to understand the complexity of plants and their interactions with factors that cause plant anomalies. However, this task is often considered time-consuming, laborious, and prone to error since it involves human knowledge (Barbedo, 2018a). Therefore, earlier and automatic identification of plant diseases is required to support human labor as an efficient tool to monitor plants.

Following the success of deep neural networks (DNNs), mainly on large-scale image classification (Russakovsky et al., 2015) and object recognition tasks (Lin et al., 2014), over the last few years, several works have presented solutions to the problem of plant disease recognition in various crops. This technology has shown the potential to reduce negative impacts to the crop by promptly estimating the damage using non-intrusive sensors such as RGB cameras. Classification methods based on convolutional neural networks (CNNs) is the notation of convolutional neural networks. It should be separated from the reference (Mohanty et al., 2016) predict the type of disease using the features of the whole input image, and detection methods such as region-based recognition estimate both localization and classification using bounding boxes and confidence score respectively (Fuentes et al., 2020). In this line of research, our early work (Fuentes et al., 2017b) introduced a detector based on deep learning that automatically performs localization and diagnosis of 10 types of tomato plant diseases. Consecutively, we improved the recognition rate by introducing a refinement filter bank (Fuentes et al., 2018) to address the problem of false positives caused by the detector.

Encouraged by the results achieved by our previous works, we seek further improvements, especially to make the system more adaptable to new real-world greenhouse conditions (Barbedo, 2018b; Ferentinos, 2018). We are particularly interested in addressing the performance decay observed when a model is evaluated in new scenarios than those utilized for training. We believe, therefore, that there is still room to improve in this particular application and have identified the following causes: (1) The model is unable to generalize well in the presence of new data. For instance, when a system is exposed to limited information provided by datasets that are practically inadequate to cover the large variety of features. (2) Many of this information is new to the system and is often associated with one of the trained categories, leading to wrong predictions during inference. (3) Training data are hard to obtain and scarce. Still, it can also be severely affected by different visual appearances determined by the types of disease and infection stages, illumination, sizes, and background conditions.

In this research, we take a step towards the issues mentioned above and present an approach to improve model accuracy by applying a strategy that can help refine the model’s generalization capability. More specifically, we investigate the interaction between anomalies and their inter- and intra-class variations from the perspective of two categories: target classes and control classes. Based on that concept, our strategy works as follows: First, we utilize the target and control classes to train and validate a detector on images collected on a set of greenhouses (known data). Then, we apply the generated features for testing the system’s performance on an inference dataset (new data) where the goal is to specifically detect the target classes. Finally, our model becomes more robust during inference in new environments by explicitly controlling inter- and intra-class variations of the data utilized during training.

The contributions of our work are summarized as follows:

•We propose and explore a paradigm called “control to target classes” to improve the performance of our deep learning-based detector to deal with changes of new greenhouse conditions using target and control classes.

•Experimental results on our tomato plant diseases dataset show the efficiency of the proposed framework. We work on a more extended dataset than (Fuentes et al., 2017b, 2018) that includes more classes and samples and obtain a recognition rate of target classes of 93.37% mean average precision (mAP) during inference.

•From an information-theory perspective, we analyze the distribution of samples in the feature space using the t-SNE distribution (Maaten and Hinton, 2008) and confirm that our strategy can improve the generalization of target classes.

•We believe that our study can offer valuable guidelines for researchers working in domains of plant disease recognition with complex input data. Also, the potential of this technology aims to help farmers and non-expert people find problems associated with plant anomalies and diseases that affect crops.

The remainder of this paper is organized as follows: Section “Related Works” presents a review of related works and techniques for plant diseases recognition; Section “Materials and Methods” describes our proposed method; Section “Experimental Results and Discussion” shows the experiments and results; and finally, Section “Conclusion” concludes the paper and presents a discussion and guidelines for future works in the field.



RELATED WORKS

In this section, we describe recent works related to our research. We introduce some baseline approaches on deep learning for image classification and object detection. Then, we review some techniques for plant disease recognition.


Deep Learning Architectures

The massive accessibility of media and hardware technology has brought new opportunities for the application of deep learning into various research areas (Schmidhuber, 2015; Voulodimos et al., 2018). CNNs have become the leading method for feature extraction in the image classification task (Krizhevsky et al., 2012). State-of-the-Art CNNs include for instance, VGGNet (Simonyan and Zisserman, 2015), ResNet (He et al., 2016), and feature pyramid network (FPN; Lin et al., 2017). In contrast, object-based recognition focuses more on the individual regions containing objects than the whole image’s context (Szegedy et al., 2013). It addresses the problem by localizing and classifying multiple image regions containing objects using bounding boxes and confidence scores, respectively. In this regard, Faster R-CNN (FRCNN; Ren et al., 2016), SSD (Liu et al., 2016), and YOLO (Redmon et al., 2015) are commonly chosen as baseline meta-architectures for object detection due to their robustness and applicability. Furthermore, recent works have also focused on designing methods to improve the performance of DNNs using techniques such as data augmentation (Shorten and Khoshgoftaar, 2019), optimization (Le et al., 2011), normalization (Ioffe and Szegedy, 2015), transfer learning (Yosinski et al., 2014), network complexity (Livni et al., 2014), real-time processing (Choi et al., 2019), and training data (Johnson and Khoshgoftaar, 2019).



Techniques for Plant Disease Recognition

In recent years, deep learning techniques have shown great efficiency in recognizing diseases and pests that affect plants. Thus, through its implementation, deep learning-based systems have become the leading technology to fulfill this task. Depending on the processing strategy, these methods can be divided into two categories: image-based disease classification and region-based disease recognition.


Image-Based Disease Classification

A breakthrough in the area is the work presented in Mohanty et al. (2016), where the authors used CNN architectures such as AlexNet (Krizhevsky et al., 2012) and GooogleNet (Szegedy et al., 2015) to categorize 26 diseases of 14 crop species. Although this method efficiently classified images containing diseases, its application is limited to using images collected in the laboratory with a single label and homogenous background. Similarly, Sladojevic et al. (2016) identified 13 types of diseases and healthy leaves using an AlexNet architecture with an average accuracy of 96.3%. They further applied various techniques such as data augmentation to increase the size of the dataset and fine-tuning with pre-trained networks on large-scale datasets to increase efficiency while training. In the same context, recent works extended the application to various types of crops such as tomato (Fuentes et al., 2017a; Liu and Wang, 2020), cassava (Ramcharan et al., 2017), grapes (Liu et al., 2020), and walnut (Anagnostis et al., 2020).



Region-Based Disease Recognition

In this category, our previous work (Fuentes et al., 2017b) on tomato plant disease recognition presented a robust and effective solution to provide more objective information such as the bounding box and confidence score. Consequently, to improve the results, we proposed a new technique (Fuentes et al., 2018), based on a refinement filter bank that mainly copes with the problems related to class imbalance and false positives. We exploited the detector’s capabilities to generate the corresponding regions of interest (ROIs) that contain the location and type of diseases and then used a CNN filter bank for verification of misclassified samples. We obtained a recognition rate of 96% through that implementation, which improved 13% over the results in Fuentes et al. (2017b).

Recently, region-based frameworks were extended to other crops and diseases. For instance, a method (Liu and Wang, 2020) to detect tomato gray leaf spots using a network based on YOLO-v3 (Redmon and Farhadi, 2018). Also, YOLO-v3 was used to detect goosegrass in strawberries and tomatoes (Sharpe et al., 2020). Another study (Afonso et al., 2020) applied deep learning for tomato fruit detection and counting in greenhouses. Furthermore, an application of region-based framework with sentence description was designed to characterize plant disease recognition using bounding box and text information (Fuentes et al., 2019).




Data Availability for Plant Diseases Recognition

The availability of accessible data has also brought the opportunity to improve the accuracy of image-based disease classification approaches. A significant breakthrough is the Plant Village Dataset (Hughes and Salathé, 2015). Recent works used this dataset or part of it to validate their experiments (Mohanty et al., 2016). However, although this dataset created new opportunities for plant disease recognition, it presents several limitations to provide a natural characterization of the problem. Images are mainly collected in the laboratory and do not include conditions proper of real field scenarios. Also, single label images containing single leaves with homogeneous backgrounds do not show the actual situation where plants could be affected by multiple diseases not only in the leaves but also on other parts such as stems, flowers, and fruits. On the other hand, our dataset initially presented in our previous study (Fuentes et al., 2017b) provided a different way to overcome the problem by identifying both class and localization of diseases on images collected in real greenhouse scenarios, including complex background conditions.

The drawbacks of using data collected in the laboratory against images collected in the field are analyzed in Ferentinos (2018). In that work, the authors evaluated various CNN models to classify images of healthy and 58 distinct diseases from 25 different crops using both types of data, with the best accuracy of 99.53% using a VGG network. Although promising results showed the method’s utility, the success rate was significantly lower when using images collected in the field. Therefore, it demonstrated that image-based disease classification under actual field conditions is challenging because it includes more variations, especially in the background context.

Despite the availability of datasets, data is still scarce and hard to collect. Also, the desired performance is challenging to achieve uniformly for all classes since a system tends to prioritize classes with more samples while minimizing the contribution of the other classes. In this regards, a solution to the issues on data imbalance proposed to generate synthetic images using generative adversarial networks for image-to-image translation (Nazki et al., 2020). This strategy improved the learning process concerning the data distribution, reducing the class imbalance issues and shifting the decision boundary towards better performance.




MATERIALS AND METHODS


System Overview

Figure 1 presents the workflow of our proposed approach. The system operates as follows: First, we utilize a dataset of target and control classes to train and validate a detector on images collected in various greenhouses. Then, we apply the generated features for testing the inference of the system on data from other greenhouse environments to detect target classes exclusively.
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FIGURE 1. Overall architecture of the proposed method. (A) Training and validation. (B) Inference. Control and target classes are used for training and validation. The weights of the model are used during inference but only focusing on the target classes as the recognition goal.


In the following subsections, we study the conditions and strategies to achieve the desired performance through the recognition of tomato plant diseases. Each component of the system and the selection criteria for the target and control classes are described below.



Criteria for Data Collection

Tomato plants, like any crop, are vulnerable to several physiological disorders and attacks caused by plant diseases. A plant is considered a bio-physiological organism and a physical object that is subject to physical laws (Geelen et al., 2018). Effective plant growth should be then based on balancing factors such as energy, water, and assimilates. A disequilibrium of those balances causes severe damages to the crop, for instance, due to abiotic disorders from environmental conditions such as temperature, humidity, air circulation, light, and plant species. In this sense, at indoor crops such as greenhouse cultivation, the conditions should be controlled to protect plants against external disturbances. However, the reality is that not all greenhouses count with appropriate technology to handle all variations. Many of the processes are still performed manually and demand the use of the farmers’ empiric knowledge or experts to decide a solution against a problem such as plant diseases. We studied those cases, and therefore, collected the dataset based on the following conditions:

•Sensor: We captured images using different RGB camera devices with various resolutions such as smartphones or other digital cameras, including DSLR cameras.

•Images: Our dataset includes images of multiple resolutions with various infection stages and locations of the symptom (mainly leaves, but also fruits and stems). Also, we collected images of healthy leaves and surrounding regions of the greenhouse.

•Greenhouses: We obtained data throughout the year since 2015–2020 in different seasons and local farms in Korea. The selected farms include some for research and commercial purposes at different scales. Among them, some utilized controlled environments and technology, while in others, mainly at a small scale, the process is performed more manually. Therefore, plants are more vulnerable to disease spread.

•Diseases: As tomato is a seasonal product, we visited the farms in coordination with local experts to ensure data collection of various diseases. The current dataset includes images of 12 types of diseases and pests in different amounts based on the presence and availability in the farms.

•Time: We collected data during the period of 10 am to 3 pm with sunlight.

•Validation: During the whole data collection process, we had the support of experts in plant diseases who were in charge of selecting and validating the type of diseases and disorders.

Figure 2 shows an example of images and types of plant diseases and pests included in our dataset. A detailed description of the types of diseases and pests is presented in Fuentes et al. (2016). Hereinafter, we use the following notations in some of the tables and figures to represent the classes included in the dataset: canker, Canker; lmold, Leaf mold; powder, Powdery mildew; gmold, Gray mold; TYLCV, TYLCV/yculr; healthy, Healthy; ToCV, ToCV; plague, Plague; miner, Miner; wfly, Whitefly; wflyegg, Whitefly egg; magdef, Magnesium deficiency; phydam, Physical damage; back, Background.

[image: Figure 2]

FIGURE 2. Example of collected images and types of diseases of our dataset.




Target and Control Classes

Target and control classes are selectable according to the given task. Initially, to find this distribution, we consider that once any disease infects a plant, the symptoms could appear in various parts such as leaves, stems, flowers, fruits. From the perspective of an image captured for recognition, these damages contain a universe of features showing several internal variations (Figure 3A, left). Also, various external variations, such as the lighting and surrounding objects in the greenhouse, can add complexity to the model. Some intra-class variations between diseases, may also appear, mainly if the infection occurs globally (e.g., whole leaf) or locally (e.g., leaf tip, spots). For instance, some diseases, especially at an early stage, contain features that can cause confusion to the system (Figure 3A, right).

[image: Figure 3]

FIGURE 3. General overview of the context of the problem addressed by our proposed approach. (A) Intra-and inter class variations at plant-based and target class-based models. An explicit control of these variations can make a deep learning model become more oriented to learning various types of features. (B) Feature association in the space and feature domains. Similarities between diseases can affect the final prediction.


Due to the large variety of data and infection stages in the feature domain, it is sometimes difficult for a system to associate images as part of the same distribution, resulting in wrong predictions and false positives (Figure 3B). For example, a leaf affected by powdery mildew can contain some features of canker since canker sometimes also appears at later stages of powdery mildew. Similarly, powdery mildew can cover some features related to leaf mold. Confusion can also be created by even unaffected parts of the leaves that show healthy regions or features of other diseases. From this assumption, we believe that by having explicit control over intra- and inter-class variations, a deep learning model can become more oriented to learning various types of features. Nonetheless, although these variations may not be part of the recognition goal, they still provide context information of the real scenarios. The system becomes then more robust as we reduce the chances of confusion.

Based on the above fundament, we considered the following conditions for selecting the target and control classes:

•Target classes: This group includes diseases that are mainly difficult to handle and demand a higher priority over the other classes. They spread faster and are challenging to be identified, especially at the early stage. Therefore, recognizing target classes is the main objective of our application. We selected five types of diseases as target classes for this study based on farms’ data availability and occurrence level. Control classes include: leaf mold, canker, gray mold, yellow leaf curl virus (TYLCV), and powdery mildew. We support this decision from the experience of our previous works and with the support of the experts.

•Control classes: Control classes are those that contain particular features that help deploy the system in new greenhouse scenarios. By using these classes, we aim to specifically obtain explicit control over intra- and inter-class variations by adding additional knowledge to improve the model’s generalization capability. Although the model also learns these classes, their application directly influences the final prediction of target classes. Control classes are healthy leaves, miner, physical damage, magnesium deficiency, tomato chlorosis virus (ToCV), plague, whitefly, whitefly egg, and background. The background class, in particular, provides contextual characteristics such as different illumination conditions and surrounding objects of the greenhouse.



Deep Learning Meta-Architecture

Motivated by the above observations, this part elaborates the strategy in detail. As shown in Figure 1, the framework consists of two main parts: (1) training and validation, (2) inference.


Training/Validation Strategy

Following the promising results of our previous work (Fuentes et al., 2017b) with the FRCNN as the meta-architecture, we use it as the baseline model for our proposed approach. The FRCNN detector consists of a CNN backbone, a region proposal network (RPN) to obtain the object proposals, an ROI pooling layer, and fully connected layers followed by two branches for classification and bounding box regression. The RPN uses the features of the input image after being fed into the backbone CNN. For every point in the output feature map, the network should learn whether an object is included in the input image on its corresponding location and estimate its size. Next, the proposals from the RPN are used to pool features from the backbone feature map. This is done by the ROI pooling layer. The ROI pooling layer, in particular, works by taking the region corresponding to a proposal from the feature map; dividing this region into a fixed number of sub-windows, and performing max-pooling over these sub-windows to give a fixed size output. After passing these regions through two fully connected layers, the features are fed into the classification and bounding box regression branches.

Both target T = {1, 2, 3, …, t} and control classes C = {1, 2, 3, …, c} are used to build the weights of the baseline model. [image: image] and [image: image] represent the number of categories, respectively. Although the detection of controlled classes is not the priority of the system, they provide features and information of potential cases that could appear in greenhouse scenarios. On the other hand, target classes include those which are part of the recognition goal. Both groups are used during training/validation and testing on data collected in the seen farms.

Training the network end-to-end aims to reduce the final loss function in Equation (1), which adds the classification and regression losses. The objective is to reduce the loss between the predicted results and the ground truth, as well as to minimize the presence of false positives in the final results.

[image: image]

where [image: image] and [image: image] are the predicted probability of anchor [image: image] being an object and ground-truth label of whether [image: image] is an object, respectively, [image: image] and [image: image] are the predicted and ground-truth box coordinates, [image: image] is a balancing hyperparameter. [image: image] and [image: image] represent normalization factors for classification and regression, respectively. Figure 1A shows the strategy for training and validation.



Inference

Once trained on data from seen farms, the model contains features from both target and control classes. Then, we use the generated weights to evaluate the adaptation capability of the model to new environments and its generalization to new data. This inference dataset includes samples of target classes collected in greenhouse environments other than those used for training. Control classes are omitted for recognition but still contribute the necessary weights to avoid class confusion and misclassification. Figure 1B shows the inference process.




Evaluation Metric

Our system uses a single input image and generates a set of regions with bounding boxes and class confidence of plant diseases. We evaluate the performance of the detector using the following metrics:

•Intersection-over-Union: This metric evaluates the detector’s capacity to precisely localize the ROIs concerning the ground truth using the intersection over union (IoU) operation with a threshold value. We utilized a threshold of 50%.

[image: image]

(2)where A and B represent the ground-truth and predicted box, respectively.

•Mean Average Precision: mAP is the area under the precision–recall curve calculated for all classes.

[image: image]

(3)

[image: image]

(4) where, [image: image] is the maximum precision for any recall values greater than r, and [image: image] is the measured precision at recall [image: image].




EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we validate the performance of our proposed framework using target and control classes. We use the training/validation dataset to build the core features of the detector. Then, we evaluate the inference of the model with another set of target data from new greenhouses to perform recognition of target classes. Also, we further analyze the influence of control and target classes. Qualitative results show some examples of the output images of the detector evaluated in different scenarios. Finally, we demonstrate the impact of the use of target classes by representing features in the spatial domain.


Dataset Settings


Training/Validation Dataset

Following our previous work (Fuentes et al., 2017b), we use the tomato diseases and pest dataset, including annotations for class and bounding box information. We apply geometric transformations (resizing, crop, rotation, horizontal flipping) and intensity transformations (contrast and brightness enhancement, color, noise) to augment the number of images in the dataset. Then, we divide the dataset into training and validation. The deep learning architecture uses the training dataset to obtain features of the regions containing diseases, and the validation dataset is used to validate the learning process during training. To facilitate our explanation, we will refer to this data as our “baseline dataset” and use it to build the core weights for further implementation.

Additionally, since our data come from different sources, an appropriate distribution is required to ensure that the system learns features adequately. Specifically, we apply an inner-class distribution of samples to capture data from all classes. This setup allows independent data from each class to appear during training and validation, respectively.

Table 1 shows the list of classes and the number of annotated bounding boxes obtained from approximately 10,000 images before and after data augmentation. This dataset includes 12 types of diseases and pests out of healthy leaves and an additional class containing background features. Five categories correspond to the target classes, and the rest are part of the control classes.



TABLE 1. Training/validation dataset of tomato plant diseases with target and control classes.
[image: Table1]



Inference Dataset

To further validate the use of target and control classes to improve our model’s generalization capability, we collected an inference dataset. We obtained additional data of target classes from farms other than those used for training. Although these sample images belong to the same type of diseases as the baseline dataset, their visual characteristics and background conditions may vary and contain more features from global and local areas of the leaves. In addition, we also extended the recognition of symptoms in other parts of the plants, such as fruits and flowers. Table 2 shows the number of images used for inference.



TABLE 2. Inference dataset of target diseases.
[image: Table2]




Implementation Details

We conducted experiments on a machine with 4 NVIDIA TitanV GPUs, CUDA 9.0, and cuDNN 7.1.2 during the system development. We also implemented the model on a server PC equipped with an NVIDIA Tesla V100 GPU for inference purposes. For all the cases, we set the batch size to two images on a single GPU. We trained the model end-to-end using a pre-trained model on the MS-COCO dataset (Lin et al., 2014).



Performance With/Without Explicit Control


Training/Validation on the Baseline Dataset

We train the model on the baseline dataset (Table 1) and evaluate the performance using the mAP. To prove the utility of control classes, we compare the model’s performance on two settings, first, training without control classes, and then with control classes. We use the same model in both cases, however, training without control classes represents the same configuration utilized in our previous work (Fuentes et al., 2017b). Moreover, we applied different feature extractors to find the most suitable for our approach.

Table 3 presents the results of this experiment. Using the exact configuration of our previous work (Fuentes et al., 2017b), with FRCNN as the meta-architecture and VGG-16 network as the feature extractor, without applying control classes reports a mAP of 87.06% for the validation on the target classes. Then, by adding the control classes to the training set, the performance improved by about 1.98%. Posteriorly, we replaced the backbone network with ResNet-50 and obtained a gain of 1.15% mAP using control classes. By further adding a FPN-based structure to ResNet-50, we improved the results at about 92.58% mAP, representing a gain of 2.8% to the results of the same model without control classes. In all cases, ResNet-50 FPN outperforms the other networks.



TABLE 3. Experimental results of training/validating the model on the baseline dataset with and without using control classes.
[image: Table3]

The use of control classes for training the model represents a valuable performance improvement for all the evaluated feature extractors. However, the results suggest that using an FPN-based architecture satisfactorily contributes to addressing the recognition problem of our approach. We believe that the reason is that FPN uses features obtained from different levels of the backbone and thus influences the recognition of objects at multiple scales. Figure 4 shows a representation of the performance differences after evaluating the model with and without control classes. Moreover, Figure 5A shows some qualitative examples of true positive results on images from the baseline dataset, and Figure 5B presents some examples of false-positives when training the model without control classes.

[image: Figure 4]

FIGURE 4. Performance differences with and without using control classes. A certain gain in mean average precision (mAP) is observed after adding the control classes along the target classes during training. Different feature extractors are evaluated in this graph.


[image: Figure 5]

FIGURE 5. Example qualitative results from different setups and experiments. (A) Examples of true positives obtained during training/validation with target and control classes. (B) Examples of false positives and undetected areas resultant from training the model without control classes. (C) Recognized target samples on the inference dataset. Class notations are introduced in Section “Criteria for Data Collection.”




Inference on New Data

To measure the model’s capacity to deal with features of target classes, we further evaluate the trained model on the inference dataset using the best model of Table 3 (FRCNN ResNet-50 FPN). As shown in Table 4, despite the complexity of the inference data, our system can satisfactorily recognize an average of 93.37% mAP of target diseases. This result represents a difference of about 6.5% to the model trained without control classes. During inference, the system associates these features with the information obtained during training to improve the recognition capabilities of target classes. Therefore, we find that, by having explicit control over the intra- and inter-class variations, control data plays a crucial role in providing the required features to improve the recognition of target classes.



TABLE 4. Model evaluation of the inference dataset.
[image: Table4]

It is also essential to notice that the inference results show the potential characteristics of the proposed approach to deal with new conditions of target diseases. Specifically, healthy leaves and background classes support the model’s adaptation to new environments, while the other control classes add more context information. Figure 5C shows some qualitative example results of target disease recognition on the inference data.




Discussion


Target Classes Over Control Classes

In this part, we study the inter-and intra-class variations that potentially help determine the correlations between target and control classes. Moreover, we evaluate the capabilities of the detector by studying the spatial distribution of features to demonstrate the contributions of our approach.

First, to show the importance of using control classes, we use the model trained on the baseline dataset (Table 1), applying only the target classes. We explore the features through the t-SNE distribution for all samples and visualize the relationship between classes. Then, we obtain the coordinates of the spatial location of each sample to generate Figure 6A for all classes in the dataset. Based on the information provided by this figure and using the criterion of region overlapping, we find that classes with a higher level of complexity are located mainly at the center of the distribution. Among them, we determine the target classes as those with significant inter-class variations such as canker, gray mold, and leaf mold. Still, more significantly, powdery mildew is a particular case that harms the system’s general performance if not treated appropriately. Correspondingly, in the case of the TYLCV, where symptoms appear more globally in the whole leaf area, the distribution is smoother as samples do not present such variations rather than sizes and infection stages. Yet, the area is larger, and generally, its features cover most of the classes. On the other side, concerning control classes, except miner, whitefly, whitefly egg, and background, the rest are covered either by other control classes or target classes, respectively.

[image: Figure 6]

FIGURE 6. Distribution of features of target and control classes in the space domain. (A) Sampling distribution of the model trained without control classes. (B) Sampling distribution of the model trained with control classes. Each circle represents one class, and its radio depends on the number of samples and the dispersion of features. Solid lines and dashed lines correspond to target classes and control classes, respectively.


Additionally, to demonstrate the effectiveness of using control classes for training, in Figure 6B, we present the case when both target and control classes are used for training. We can see that explicit control over the inter-and intra-class variations significantly helps the network avoid class confusion. Samples are then recognized as their corresponding categories and tend to make distant groups in the space. We extend this comparison in the next part.



Quality of Control Data

To support the results presented above, we evaluate the generated models in terms of the number of true positives (correct predictions) compared to the false positives and false negatives. In this experiment, we also analyze the capability of the system to quantitatively predict target classes and their impact on the false positive and false negative rates, using two cases:

•Training without control classes: We train the model on the target classes and further evaluate it in the whole dataset. In this setting, the system does not receive any features of the control classes.

•Training on both target and control classes: We evaluate the impact of adding the control classes to train the model along with the target classes. In this case, the system obtains features of both groups.

In the first case, as presented in Table 5, target classes are effectively identified with slight levels of confusion between them. However, when evaluating the model on the rest of the dataset, depending on the class, higher levels of confusion mainly appear, for instance, with healthy, plague, and in lower amount with physical damage. In general, without control data used for training, the results evidence a total of 42.2% confusion. To support this statement, we obtain the t-SNE distribution, as presented in Figure 7, to find the location and class of the evaluated samples in the feature space. This representation evidences the model’s generalization problem to deal with new data. Testing on new classes generally diminishes the recognition of the target classes as they tend to confuse the network. We associate this scenario as an effect of the inter-and intra-class variations.



TABLE 5. Confusion matrix of target classes without using control classes for training.
[image: Table5]
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FIGURE 7. Representation of the tSNE distribution obtained from the model trained without control classes. (A) t-SNE distribution for the whole dataset. (B) Powdery mildew (target class) and its corresponding samples in the features space. (C) Plague (target class) and its samples in the space. Each dot represents a sample, and the colors identify the class assignation. Lines between dots show the connection of each sample to the center of its corresponding class.


In the second case, as shown in Table 6, we can see a general tendency of improvement after adding control classes for training. The level of confusion decreased by about half to 19%. More importantly, by introducing control data during training, the number of true positives for the target classes increased, consequently benefiting the model for further applications in new farms. Also, it shows a significant reduction in the false positive and false-negative rates. Figure 8 illustrates the changes in confusion rates for the target and control classes.



TABLE 6. Confusion matrix of target classes using control classes for training.
[image: Table6]

[image: Figure 8]

FIGURE 8. Class confusion rates concerning the use of target and control classes. (A) Using control classes can effectively reduce the false positive and false negative rates in most target classes. (B) Also, the effect is extended to reduce confusion with data of control classes mainly. The impact appears to be more effective in classes with more similar features to the target ones. Class notations are introduced in Section “Criteria for Data Collection.”


Figure 9A shows the t-SNE distribution obtained after training the model with control classes. The generalization capability of the system improved, and samples appear to make groups that specifically occupy a region of the space. Furthermore, the confusion levels were reduced while the performance of target classes increased. Figure 9B shows the case when a set of samples are assigned to their corresponding classes. This result suggests that teaching the model with additional information from intra- and inter-class variations helps improve the recognition of target classes while reducing the presence of misclassified samples in the final prediction.

[image: Figure 9]

FIGURE 9. Representation of the tSNE distribution obtained from the model trained using control classes. (A) t-SNE distribution and class association. (B) Control classes provide sufficient information to assign samples to their respective category. Each dot represents a sample, and the colors identify the class assignation. Lines between dots show the connection of each sample to the center of its corresponding class. Class notations are introduced in Section “Criteria for Data Collection.”




Current Limitations

Despite the satisfactory and robust performance that we presented, there is a limitation of the proposed approach. The main limitation is the data imbalance. This issue directly impacts the selection of the target classes as the recognition objective of a system. Data should be sufficient to capture all features that the system can encounter in real-world greenhouse scenarios. This fact indicates that while we can achieve satisfactory results on the evaluated target classes, the promising model still needs more data to improve its robustness against more variations. Also, an appropriate selection of samples is essential for the success of our approach.





CONCLUSION

In this paper, we proposed a new paradigm called “control to target classes” to refine the generalization capacity of plant disease recognition based on deep learning. We presented a strategy to deal with changes in new greenhouse conditions. The explicit control over inter-and intra-class variations allowed our model to learn more data variations that make the system more adaptable and robust when applied to new scenarios. Experimental results on our extended tomato plant diseases dataset with 5 target classes and 9 control classes validated the performance of the proposed framework. We obtained a recognition rate of 93.37% mAP for the target classes during inference. From an information-theory perspective, we analyzed the distribution of samples in the feature space using the tSNE distribution. We confirmed that our methodology using control classes improved the recognition of target classes. Finally, our study can offer valuable guidelines for researchers working in plant disease recognition with complex input data. Also, the potential of this technology can help farmers and non-expert people find problems associated with plant anomalies and diseases that affect crops. Future studies will apply our proposed method to other crops using data collected in more greenhouse settings.
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Past studies of plant disease and pest recognition used classification methods that presented a singular recognition result to the user. Unfortunately, incorrect recognition results may be output, which may lead to further crop damage. To address this issue, there is a need for a system that suggest several candidate results and allow the user to make the final decision. In this study, we propose a method for diagnosing plant diseases and identifying pests using deep features based on transfer learning. To extract deep features, we employ pre-trained VGG and ResNet 50 architectures based on the ImageNet dataset, and output disease and pest images similar to a query image via a k-nearest-neighbor algorithm. In this study, we use a total of 23,868 images of 19 types of hot-pepper diseases and pests, for which, the proposed model achieves accuracies of 96.02 and 99.61%, respectively. We also measure the effects of fine-tuning and distance metrics. The results show that the use of fine-tuning-based deep features increases accuracy by approximately 0.7–7.38%, and the Bray–Curtis distance achieves an accuracy of approximately 0.65–1.51% higher than the Euclidean distance.

Keywords: deep feature, distance metric, fine-tuning, hot pepper, k-nearest neighbors, transfer learning


INTRODUCTION

Hot peppers comprise one of the world’s most popular crops. In 2018, the Food and Agricultural Organization reported that production of hot-pepper (item: “chiles and pepper, green”) had steadily increased to approximately 36.8-million tons, up more than 14.4% compared with 2014 [Food and Agriculture Organization [FAO], 2018]. Hot-pepper production is greatly affected by climate change (Aji et al., 2020), and owing to increased importing and exporting, the influx of foreign diseases and pests are prominent threats.

Past studies of plant disease and pest recognition used classification methods that presented a singular recognition result to the user. Unfortunately, incorrect recognition results may be output, which may lead to further crop damage. Therefore, there is a need for a system that can offer multiple candidate results so that the user can intervene and weigh options. Google (2020) presents several candidate results to an image query and allows the final selection to be made by the user. The content-based image retrieval (CBIR) technique can also be used for this purpose. CBIR extracts features by applying a specific content (e.g., color and edge) descriptor to an image, and it outputs the most similar images to a query image using similarity comparison between features. However, owing to limitations of the feature-extraction descriptor, the recognition accuracy of diseases and pests is low at ∼75–83% (Yin et al., 2016, 2020; Piao et al., 2017). Thus, it is necessary to improve recognition performance using a deep-learning algorithm.

In cases where there are insufficient data, or models are not well-trained, transfer learning can be used (Kaya et al., 2019; Deng et al., 2020; Zhuang et al., 2021). Many studies on machine vision have employed transfer learning. It has been widely applied to solve problems related to image recognition using convolutional neural network (CNN) models. Typically, copious data, time dimensions, and computing resources are required to train models with deep layers. An example is the visual geometry group (VGG) (Simonyan and Zisserman, 2014) and ResNet (He et al., 2016) models. These architectures have already shown excellent image verification performance with various large public datasets.

Transfer learning is a machine-learning methodology that focuses on knowledge transfer between domains. It can be quickly applied to tasks using pre-trained knowledge (Tsiakmaki et al., 2020; Zhuang et al., 2021). Thus, the number of cases using transfer learning to recognize diseases and pests is increasing. Too et al. (2019) analyzed the performance of plant-disease identification using fine-tuned VGG, Inception, ResNet, and DenseNet models. Their research findings showed that DenseNet achieved the best performance. Sagar and Dheeba (2020) conducted research on the recognition of plant diseases using the Plant Village dataset (Hughes and Salathe, 2015). Their results showed that ResNet50 with a skip-connection structure achieved a recognition accuracy of 98.2%. Rangarajan and Raja (2020) conducted research on the classification of 10 diseases related to four crops: eggplant, hyacinth beans, lime, and ladies’ finger (okra). They employed six pre-trained CNN architectures, including AlexNet and VGG16. The results showed that GoogLeNet achieved the highest verification accuracy of 97.3%. Dawei et al. (2019) proposed a pest-diagnostic system using transfer learning. For this, they developed a deep-learning model capable of classifying 10 pest images and compared its performance with human experts and traditional neural-network-model training methods. The results of the proposed method showed performance results similar to those of human experts and a classification accuracy of 93.84%. Pattnaik et al. (2020) presented a pre-trained CNN-based transfer-learning framework for tomato-pest recognition. Their research used 859 images collected online, classified into 10 classes. They performed transfer learning using 15 pre-trained models, and the experimental results showed that the DenseNet169 model achieved the best performance with a classification accuracy of 88.83%. Leonardo et al. (2019) identified fruit flies using nine machine-learning techniques and deep features extracted by five models, including VGG and inception, by applying transfer learning. The method of applying deep features extracted using the VGG16 model to a support vector machine (SVM) achieved the best accuracy of 95.68%. Aravind et al. (2019) applied transfer learning to disease-image classification for grapes. They pre-trained AlexNet on the PlantVillage dataset and trained a multiclass SVM (MSVM) model using the deep features extracted from each AlexNet layer as image features. The results showed that the best performance was achieved when the features extracted from the third rectified linear unit layer of the AlexNet model were applied to the MSVM model. In that research, fewer than 100 images per class were used when training the deep-learning model, but high recognition accuracy was achieved through transfer learning.

Yin et al. (2020) proposed a disease and pest recognition method using deep features based on transfer learning, achieving recognition accuracies of 85.6 and 93.62% for the top-10 results of hot-pepper diseases and pests, respectively. However, in their study, they extracted features using pre-existing weights without a tuning process for the pre-trained model. In this study, we propose an improved method for diagnosing diseases and pests using fine-tuning based on those previous studies. Furthermore, we demonstrate the excellence of the proposed model by measuring the following effects through various experiments:


•Performance comparison when fine-tuning the last dense layer and the conv+dense layer in the classification model;

•Effect of fine-tuning on deep features;

•Effect of the distance metric on the proposed model;

•Performance comparison between the conventional classification model and the proposed disease and pest diagnosis model.





MATERIALS AND METHODS


Dataset Description

In this study, we used hot-pepper disease and pest images provided by the National Institute of Horticultural and Herbal Science. Figure 1A shows sample images of the diseases, and Figure 1B displays those of pests. In the experiments, we used 23,868 cropped disease and pest images (disease: 15,435; pest: 8,433) for 19 types (disease: 9; pest: 10) (Tables 1, 2).


[image: image]

FIGURE 1. Examples of disease/pest classes.



TABLE 1. Summary of hot pepper disease dataset.
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TABLE 2. Summary of hot pepper pest dataset.
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In this study, instead of using the original disease and pest images, we used a cropped set containing the diseased areas. Image cropping reduces image recognition time and improves accuracy (Suh et al., 2003; Chen et al., 2016). The image cropping performed in this study was manually performed by agricultural experts to select the diseased areas as accurately as possible. As seen in Figure 2, we created at least one cropped image of 128 × 128 pixels from each original.


[image: image]

FIGURE 2. The process of image cropping.




Pre-trained Models

In this study, different pre-trained models have been used as a transfer learning such as VGG16, VGG19 (Simonyan and Zisserman, 2014) and ResNet50 (He et al., 2016). The reason for using these three pre-trained models is that they are the top three models that showed the highest performance in the previous study (Yin et al., 2020). A pre-trained model is a network that was trained on a large dataset. Such a pre-trained model, for example ImageNet, can overcome insufficient training data, and it has high flexibility, because a model suitable for a particular task can be created by fine tuning it (Tan et al., 2018; Kaya et al., 2019). The pre-trained ImageNet model classifies 1,000 classes. Therefore, we had to modify it to our problem. In this study, pre-trained VGG16, VGG19 and ResNet50 models were used for transfer learning.



Transfer Learning of Deep Convolutional Neural Network

Transfer learning is a machine-learning method that focuses on the application of knowledge acquired from solving existing problems to solve new problems. It is extensively used for computer vision and natural language processing applications. It can achieve high accuracy in a relatively short time (Rawat and Wang, 2017). In particular, transfer learning can efficiently solve problems when only a small number of data is available, or huge computing and time resources are needed (Tan et al., 2018; Noor et al., 2020). ImageNet is the most extensively used for pre-training. It consists of 21,841 classes of approximately 14-million images. Of these, a sub-dataset of 1,000 classes is commonly used for benchmarking (Russakovsky et al., 2015). CNN architectures trained using ImageNet include VGG, ResNet, Inception (Szegedy et al., 2015), Xception (Chollet, 2017), and Densenet (Huang et al., 2017). Of these, we employed VGG and Resnet models.


Visual Geometry Group Model

The VGG network is a CNN model devised by Simonyan and Zisserman (2014) for the 2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Although the VGG model is a bit heavy, its structure is simple (Canziani et al., 2016). The model supports deep layers made by stacking convolutional and pooling layers in a certain pattern. A 3 × 3 kernel is used in the convolutional layer, and the height and width of the input and output feature maps are set to the same by using a stride value of one. In the pooling layer, the height and width of the feature map are reduced by half through a 2 × 2 stride-two max-pooling operation. The architecture is shown in Figure 3 as VGG16 or VGG19, depending on the depth of the model.
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FIGURE 3. The architecture of the pre-trained VGG16 (Ullah et al., 2020).




ResNet Model

The ResNet model won the 2015 ILSVRC. The most significant difference between other model is that the number of layers in the ResNet architecture is sharply deeper than that of existing models. VGG has 16 or 19 layers, GoogLeNet has 22, and ResNet has 152. The deeper the layer of the deep-learning model is difficult to train because the larger the number of weights. And gradient vanishing issue can also occur (Bengio et al., 1994; Glorot and Bengio, 2010; Rawat and Wang, 2017). ResNet addresses these issues by using a residual block. As seen in Figure 4, the residual block makes it possible to effectively transfer the gradient between layers using a skip connection. This is similar to the philosophy of long short-term memory in recurrent neural networks, used to better transfer the gradient of the previous step through a forget gate (Staudemeyer and Morris, 2019). In this study, we employ a pre-trained ResNet50 model using the ImageNet dataset instead of the 152-layer ResNet.


[image: image]

FIGURE 4. Skip connection.




Feature Extraction and Fine-Tuning

Strategies using transfer learning are mainly divided into feature extraction and fine-tuning (Kandel and Castelli, 2020; Luján-García et al., 2020). Feature extraction involves extracting features from new samples using a representation of the pre-trained network. Using the extracted features, a classification model can be obtained that fits the problem by training a new classifier from scratch. The CNN model comprises consecutive convolution and pooling layers and performs classification through fully connected layers. Feature extraction regards the output value of a specific layer of the pre-trained model as a feature, and the feature extracted from the deep-learning model is called a deep feature.

Fine-tuning refers to the method of transforming an architecture for a new purpose based on a pre-trained model and updating training from the pre-trained weights. This method adjusts some of the representations of the reuse model to be closer to the given problem. The process of fine-tuning is as follows:


(1)Add architecture (layer or network) to the pre-trained base network;

(2)Freeze the base network;

(3)Train the newly added layer or network;

(4)Unfreeze some layers in the base network;

(5)Train the unfrozen and newly added layers with new data.



In this study, we adopt a more concise method. See section “Layer Freezing and Fine-Tuning.”




k-Nearest-Neighbor Algorithm

The k-nearest-neighbor (kNN) algorithm is a supervised learning method that classifies unlabeled observations based on the most-similar labeled examples in the attribute space (Zhang, 2016). During classification, this algorithm refers to the information of k instances around a given point and makes the final decision via majority voting. For example, as shown in Figure 5, there are six instances of two classes (A and B) in the vector space. Here, we intend to classify the class of N when a given point is input into the vector space. The kNN algorithm calculates the distance between the input data and all other data without creating a separate model. Next, the class of the input data is determined by referring to the information of k instances around them. For instance, when k is set to one in Figure 3, the input data are classified as Class A, because the distance between the input data, N, and point A is the shortest. When k is set to three, it is ultimately classified as Class B, because it refers to points A, D, and E. As such, classification performance varies, depending on the value of k. Thus, choosing the right value of k is crucial (Koklu and Ozkan, 2020).


[image: image]

FIGURE 5. Illustration of how k-nearest neighbors’ algorithm works.


Apart from the value of k, a critical distance function calculates the similarity between vectors. This function has the advantage of effectively handling high-dimensional data and reducing computation time. Thus, the use of a suitable distance function can improve model performance. The most commonly used distance function is the Euclidean distance, shown in Equation 1.

[image: image]




DEEP-LEARNING METHODOLOGIES


Data Preprocessing and Augmentation

The hot-pepper disease and pest images used in this study were cropped images of 128 × 128 pixels. To use the pre-trained model on the ImageNet dataset, we performed pre-processing on the disease and pest images the same as we did for training the ImageNet dataset. First, we resized the disease and pest images to 224 × 224 pixels. As in the study by Simonyan and Zisserman (2014), we normalized the images by calculating the average value of each channel of the dataset. Then, we subtracted the average value calculated for each input image. The average value was a 1D array containing the average values of RGB pixels of the entire ImageNet image: 103.939, 116.779, and 123.68, respectively.



Layer Freezing and Fine-Tuning

Layer freezing prevents the layer weight from being modified. This technique is often used with transfer learning and fine-tuning, where the base model or lower layer trained on another dataset is frozen. Training can then be accelerated by using an appropriate freezing technique (Brock et al., 2017). In this study, we froze most layers of the VGG and ResNet models and performed fine-tuning on the last convolution layer.

To fine-tune the pre-trained VGG16, VGG19 and Resnet50 models, we removed the existing fully connected layer. Then added a dense layer (VGG model: 512 nodes, Resnet50: 2,048 nodes) and a new softmax layer that fit our data classes (i.e., diseases: 9; pests: 10). It was set equal to the number of values from the last convolutional layer. Thus, the newly added dense layer’s node was 512, and 2,048 for Resnet50. We performed fine-tuning in two different ways: (i) only fine-tune the newly added dense and softmax layer, (ii) fine-tune the last convolution layer, dense and softmax layer. And the rest of the layers were frozen.

The batch size was set to 256, and a categorical cross-entropy loss function was used. Stochastic gradient descent was used as an optimizer, and a learning rate of 0.001 was used in this study. The epoch was set to 500, and early stopping was added to avoid over-fitting problems. The early stopping was set to terminate the training when the validation accuracy did no longer improve over the next 20 times.

In this study, fine-tuned models were used as a feature extractor. Remove the softmax layer from fine-tuned model and use the value from the newly added dense layer as deep feature. Because the architecture of the VGG and the Resnet model are different, the dimension of deep feature is also different. Deep features extracted from VGG16 and VGG19 models have a dimension of 512, and 2,048 dimensions from Resnet50.



Proposed Method

The proposed architecture comprising training and diagnosis processes is shown in Figure 6. The training process mainly consisted of image cropping, fine-tuning the pre-trained model, deep feature extraction, and kNN-algorithm training. In this study, we extracted deep features of cropped images using the fine-tuned pre-trained model, and we represented the extracted deep features in the vector space by using kNN algorithm.


[image: image]

FIGURE 6. The architecture of the proposed diagnostic model.


In the diagnosis process, we extracted deep features by given cropped images into the fine-tuned model generated during the training process. The extracted deep features were input into the trained kNN model, which output the k vectors most similar to itself in the vector space. Here, each vector refers to a cropped image. Five similar images were output for each query image by setting the value of k to five.

We used the Bray–Curtis distance (Bray and Curtis, 1957) as the crucial kNN distance metric to improve the diagnostic accuracy of the proposed model. The Bray–Curtis distance provides a normalization method commonly used in the fields of ecology and environmental science. The distance between Vectors A and B can be calculated using Equation 2, referring to a vector of length N. The Bray-Curtis distance has a value ranging from zero to one. As it approaches zero, it indicates that they are closer together.
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EXPERIMENTAL RESULTS


Tools and Setup

Experimental work was performed using Python v.3.6 on a Windows desktop with two Nvidia GeForce RTX 2080 Ti graphical processing units. We divided the dataset into a training set and a test set to fine-tune the pre-trained models. The training and test sets were randomly chosen from each category, with 90% and 10% ratios, respectively.



Measurement Criteria

In this study, we applied two indices (i.e., precision and accuracy) to measure the performance of classification method and proposed method, as shown in Equations 3, 4. Equation 3 measured the performance of the classification model, and Equation 4 measured the performance of the proposed diagnostic model:
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Equation 4 provides an index for measuring the performance of the proposed diagnostic method. Here, among the output results, the relevant images were determined as those having the same class as the query. Five retrieved images became the output images. N refers to the number of images included in each disease and pest class in the test image set, and i refers to the index number of each query image. Thus, the accuracy index represents the proportion of images having the same class as a query image among similar images.



Result and Discussion

We investigated the following effects through experimentation:


•Performance comparison when fine-tuning the last dense layer and the conv+dense layer in the classification model;

•Effect of fine-tuning on deep features;

•Effect of the distance metric on the proposed model;

•Performance comparison between the conventional classification model and the proposed disease and pest diagnosis model.




Effect of Fine-Tuning According to a Specific Layer During Classification

Fine-tuning plays a crucial role in improving model performance. In this study, we compared the performance of the pre-trained VGG16, VGG19, and ResNet50 models when fine-tuning the last dense layer and the conv+dense layer, respectively, and the results are shown in Figure 7.


[image: image]

FIGURE 7. Precision comparison when fine-tuning dense layer and conv+dense layer.


As seen in Figure 7, for hot-pepper diseases, the precision of fine-tuning the conv+dense layer was approximately 1.45–6.83% higher than that of the model in which only the dense layer was finely tuned. For hot-pepper pests, the precision of fine-tuning the conv+dense layer was approximately 0.01–1.41% higher than that of the model in which only the dense layer was finely tuned. Of the three pre-trained models, the ResNet50 model achieved the highest precisions of 96.14 and 99.61% for diseases and pests, respectively.



Effect of Fine-Tuning on Deep Feature

In the proposed diagnostic model, we used the deep features extracted from the pre-trained models. Therefore, we measured the effect of fine-tuning through the use of the deep features extracted from the finely tuned VGG16, VGG19, and ResNet50 models. The results of performance comparisons are shown in Figure 8. The results show that the accuracy of using the deep features extracted from the finely tuned model for hot-pepper diseases was approximately 6.1–7.38% higher than that of using the deep feature without fine-tuning. These results were also true for hot-pepper diseases, showing a higher accuracy of 0.7–1.67%. Furthermore, of the three pre-trained models, the ResNet50 model showed the highest performance for diseases and pests with accuracies of 96.02 and 99.61%, respectively.


[image: image]

FIGURE 8. Accuracy comparison of fine-tuned and non fine-tuned models in hot pepper diseases and pests.




Effect of Distance Metric on the Proposed Method

Because the proposed diagnostic model used the kNN algorithm, the role of the distance metric that calculated the distance between vectors in the vector space was crucial. In this experiment, to measure the effect of the distance metric on the proposed method, we measured performance using two metrics (i.e., Euclidean and Bray–Curtis distances), and the results are shown in Figure 9. The results show that the accuracy of the Bray-Curtis distance was approximately 0.65–1.51% higher than that of the Euclidean distance for hot-pepper diseases. For hot-pepper pests, the accuracy of the Bray-Curtis distance was approximately 0.07–0.35% higher. These results demonstrated excellent Bray–Curtis distance.


[image: image]

FIGURE 9. Accuracy comparison of distance metric.




Discussion

To reduce the result of incorrect recognition of the classification methods used in most previous studies, a method was needed that presents several candidate results of high probability to the user, allowing them to make the final decision. We proposed a disease and pest diagnosis model using a transfer learning and fine-tuning technique.

In the experiment described in section “Effect of Fine-Tuning According to a Specific Layer During Classification,” we compared the performance when fine-tuning specific layers (i.e., dense layer and conv+dense layer). As seen in Figure 7, we achieved the highest performance when fine-tuning the conv+dense layer. Performance was improved by approximately 0.01–1.41% for pests, whereas it was improved by approximately 1.45–6.83% for diseases. Despite using the same fine-tuning method, the reason for this difference in performance can be attributed to the dataset. Most pest images contain pests, and they have more distinct features than do disease images. On the other hand, disease images often have similar symptoms, despite different disease classes. In the convolution layer, image features were extracted through the convolutional and pooling layers. Therefore, it showed a greater effect on images having similar symptoms by fine-tuning the convolution layer.

We measured the effect of fine-tuning on the deep features used in the proposed model, as shown in Figure 8. The deep features to which fine-tuning was applied improved accuracy by approximately 0.7–7.38%, compared with fine-tuning not being used. This demonstrates the importance of fine-tuning.

Table 3 shows the results of comparing the performance of the proposed model in this study with the classification model using the fine-tuning method. The results show that the accuracy of the classification method was 97.88%, which was 0.01% higher than that of the proposed model. Although the performance of the classification as was higher, an incorrect result may be output with a probability of approximately 2.12%, because this is a single result. However, because the accuracy of the proposed model was the measurement of the weight of images having the same class as the query image among a total of five candidate groups, the error can be reduced via the final decision of the user. For example, because the average accuracy of the proposed model was 97.87% and assuming that 100 similar images were output, approximately 98 correct answers and two incorrect ones were presented to the user. With the proposed method, there is, therefore, a higher probability of reducing incorrect recognition results is provided, owing to expert human intervention.


TABLE 3. Performance comparison of single recognition method and proposed method.
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CONCLUSION

In this study, we proposed an improved method for diagnosing hot-pepper diseases and pests using a fine-tuning-based transfer learning method. To extract deep features, we employed pre-trained VGG16, VGG19, and ResNet50 models based on the ImageNet dataset and output disease and pest images most similar to the query image using the kNN algorithm. We used image data of 19 types of hot-pepper diseases and pests, and the experimental results showed that accuracies of 96.02 and 99.61% were achieved for diseases and pests, respectively. We also measured the effects of fine-tuning and distance metrics. The measurement results showed that fine-tuning improved the accuracy by approximately 0.7–7.38%, and the Bray-Curtis distance achieved a higher accuracy of approximately 0.65–1.51% than that of the Euclidean distance. Furthermore, when comparing the performance between the proposed model and the classification, they showed an accuracy performance of 97.87 and 97.88%, respectively. In summary, an expert user is expected to derive more accurate pest recognition results from the proposed model, which requires manual image cropping around the disease area. In the future, we will automatic the image cropping and measure its effectiveness by applying the proposed model to other crops.
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Identification of peanut cultivars for distinct phenotypic or genotypic traits whether using visual characterization or laboratory analysis requires substantial expertise, time, and resources. A less subjective and more precise method is needed for identification of peanut germplasm throughout the value chain. In this proof-of-principle study, the accuracy of Raman spectroscopy (RS), a non-invasive, non-destructive technique, in peanut phenotyping and identification is explored. We show that RS can be used for highly accurate peanut phenotyping via surface scans of peanut leaves and the resulting chemometric analysis: On average 94% accuracy in identification of peanut cultivars and breeding lines was achieved. Our results also suggest that RS can be used for highly accurate determination of nematode resistance and susceptibility of those breeding lines and cultivars. Specifically, nematode-resistant peanut cultivars can be identified with 92% accuracy, whereas susceptible breeding lines were identified with 81% accuracy. Finally, RS revealed substantial differences in biochemical composition between resistant and susceptible peanut cultivars. We found that resistant cultivars exhibit substantially higher carotenoid content compared to the susceptible breeding lines. The results of this study show that RS can be used for quick, accurate, and non-invasive identification of genotype, nematode resistance, and nutrient content. Armed with this knowledge, the peanut industry can utilize Raman spectroscopy for expedited breeding to increase yields, nutrition, and maintaining purity levels of cultivars following release.

HIGHLIGHTS

- We show that Raman spectroscopy can be used for highly accurate identification of nematode resistance and susceptibility in peanuts. This allows for the use of Raman in digital selection of plant species.

Keywords: peanut varieties, Raman spectroscopy, phenotyping, identification, genotyping, nematode resistance


INTRODUCTION

The population of the world is increasing at an alarming rate. As population increases, the production of food must increase in order to match demand. It is predicted that we will need to produce 70% more food by 2050 to sustain our population (Food and Agriculture Organization of the United Nations, 2009). As population increases, the expansion of agricultural territory is limited due to urbanization, cost of production, and other contributing factors. The continued loss of agricultural lands has led agricultural leaders to focus on increasing yields on existing croplands through the innovation of digital farming. Digital farming, also referred to as precision agriculture, seeks to maximize crop yield by maximizing plant production and minimizing the environmental impact with the use of technologies such as Raman spectroscopy (Farber et al., 2019a, 2020b; Sanchez et al., 2019a,b, 2020b).

Although many practices in modern agriculture have reached a significant degree of mechanization, genotyping and taxonomic identification for the purpose of plant breeding is not one of them. Identity preservation and seed purity is a growing problem as more and more value-added traits are incorporated into new varieties. Similar issues are faced by plant breeders as well as seedsmen and processors. Historically, plant descriptors and a “trained eye” have been used to identify cultivars and maintain seed purity. More recently, genotyping techniques, whether it be marker-assisted selection (MAS) (Chu et al., 2011; Burow et al., 2013, 2019) to select for specific traits of interest, or genomic selection (GS) (Hayes et al., 2009; Heffner et al., 2009; Ravelombola et al., 2019, 2020), which can be used to identify elite breeding materials, have been used to develop cultivars with beneficial traits and move them into production. A trained eye requires an expert with substantial taxonomic knowledge and many years of experience. Even with an expert as described, visual inspection is subjective and often difficult even for those with bountiful experience. Genotyping, whether by sequencing or other methods, is more accurate than visual inspection. However, genotyping has its drawbacks. In the early stages of cultivar development, seed can be very limited in a crop such as peanut. In these early generations, everything must be handled by hand which is time-consuming and labor-intensive but makes genotyping feasible. However, as one move into larger and larger lots, genotyping becomes impractical on a large scale where profit margins are small. Anything that can lessen these burdens during the development process would represent a significant improvement.

Raman spectroscopy (RS) is a label-free, non-invasive, and non-destructive analytical technique that can be used to examine the chemical composition of samples (Farber et al., 2019a, 2020c). The Kurouski group recently demonstrated that RS can be used to detect both biotic and abiotic stress on plants. Using a hand-held Raman spectrometer, the Kurouski group showed one can diagnose fungal disease in corn, wheat, or sorghum with great accuracy (Egging et al., 2018; Farber and Kurouski, 2018). Another study done by the Kurouski lab showed that RS could be used to identify potato variety, origin of cultivation, and starch content (Morey et al., 2020). These studies demonstrate RS’s usefulness in detecting changes in plants and the potential to revolutionize agriculture.

Peanut (Arachis hypogaea L.) is an allotetraploid (2n = 4x = 40) that has been cultivated for thousands of years (Singh and Simpson, 1994). Today, peanut is grown throughout the temperate and tropical parts of the world (Kochert et al., 1991; Krapovickas and Gregory, 1994, 2007). In the U.S., approximately 556,000 ha of peanuts were harvested in 2018, with an average yield of 4,484 kg/ha (USDA-NASS, 2019). The estimated farm value of U.S. production in 2019 was approximately $1.2 billion, resulting in peanut being the third most valuable cash crop based on net revenue (USDA-NASS, 2019). Peanuts are used in many popular food products in the U.S. which results in Americans consuming, on average, more than 6 pounds of peanut products a year and spending over 2 billion dollars on peanut products at the retail level (NPB, 2020).

A major pest associated with peanut production is the root-knot nematode [Meloidogyne arenaria (Neal)]. Root-knot nematodes are found throughout the peanut production regions in the U.S. from Georgia to Texas. The peanut root-knot nematode can cause significant yield losses (Tirumalaraja et al., 2011). It has been estimated that yield losses of 3–15% are common (Dong et al., 2007) and heavily infested fields can see losses of 75% or more (Rich and Tillman, 2009). Peanut suffers from a narrow genetic base (Kochert et al., 1991) and no longer has access to many genes contained in related wild relatives. However, many genes associated with both biotic and abiotic stressors have been identified (Cason et al., 2020), and gene introgression has successfully been used to move alleles into cultivated peanut and is still one of the best options available to peanut breeders (Cason et al., 2020). An excellent example of this is the resistance to root knot transferred from Arachis cardenasii (Burow et al., 1996; Simpson et al., 2003). The resulting introgression resulted in almost total immunity to root-knot nematode (Simpson and Starr, 2001; Simpson et al., 2003, 2013). While not fully understood, it is believed the resistance is associated with a failure by juveniles to establish a feeding site that causes root-knot nematode resistance (Timper et al., 2000). This has resulted in the release of the resistant cultivars: COAN (Simpson and Starr, 2001), NemaTAM (Simpson et al., 2003), Webb (Simpson et al., 2013), Georgia 14N (Branch and Brenneman, 2014), Tifquard (Holbrook et al., 2008), and TifNV High O/L (Holbrook et al., 2017).

In this proof-of-principle study, we demonstrate that RS can be used for highly accurate identification of peanut genotypes based on spectroscopic analysis of their leaves. We also show that RS can further be used to screen these peanut leaves for the identification of specific traits in germplasm, such as nematode resistance, based on the direct analysis of biochemical profile of the leaves which identify molecular species that are unique to nematode-resistant germplasm.



MATERIALS AND METHODS


Peanut Germplasm

Approximately 30 leaves from 20 different genotypes of peanut (see Table 1) were provided by the Texas A&M AgriLife Research and Extension Center at Stephenville. The plants were grown as part of the Texas A&M Peanut Breeding Programs Statewide Advanced Line Breeding Yield Trial in Erath Co., Texas. The trial was planted on May 7, 2020 and managed according to recommended production practices. The trial was designed with a randomized complete block design (RCBD) containing 16 breeding lines and 4 commercially available checks. Each experimental unit was 3 × 3 m in two row plots replicated three times. For this project, plots were sampled on September 17, 2020. Individual leaves were sampled randomly from the lateral branches within each plot and bulked by plot. These peanut leaves were scanned approximately twice per leaf depending on the size of the leaf.


TABLE 1. A complete list of varieties and breeding lines (genotypes) in the 2020 Advance Line Trial from Erath Co., Texas.
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Raman Spectroscopy


Acquisition

A portable, hand-held Agilent Resolve spectrometer with an 830 nm laser equipped was used to collect all spectra. The experimental parameters used for the collected spectra were: 1 s acquisition time, 495 mW power, and surface scan mode. Leaves were gently pressed against the nose cone for proper focus during scans. Not all leaves that were provided resulted in usable scans, so in some cases samples were bulked to allow for a number of scans that was consistent. In total, we collected over 1,200 spectra from leaves of both nematode-resistant peanut plants and non-nematode-resistant peanut plants.



Processing

Spectra were automatically baseline-corrected and background subtracted by the onboard software of the instrument. Data from the instrument were exported as comma separated value (CSV) files using provided software from the company. These CSV’s were imported into MATLAB for preprocessing. Statistical analysis of spectra was than conducted using PLS_Toolbox, an add-on of MATLAB.




Statistical Analysis


Partial Least Squares Discriminant Analysis

Spectra were imported into MATLAB for multivariate statistical analysis. Partial least squares discriminant analysis (PLS-DA) was used to build classification models. PLS-DA, an extension of ordinary PLS, uses dummy Y-variables to indicate discrete classes/categories of data which the model then proceeds to predict (Eriksson et al., 2013). PLS-DA is a type of supervised learning model and the user must provide categories during training for each data point. After the model finishes training, it then cross-validates. This means part of the dataset is excluded while the rest is used to train the model. The model tries to predict the class membership of the excluded data points. This process repeats until all data points have been included. In this study, cross-validation results are reported and are suggestive of the model’s ability to classify unseen data. Differentiation of peanut varieties using leaf spectra were conducted in the MATLAB add-on PLS_Toolbox using PLS-DA. The selected preprocessing used for modeling included: SNV, 1st derivative, smoothing, PQN, normalize, and mean center.





RESULTS AND DISCUSSION


Differentiation of Genotype

Raman spectra were collected from 19 different genotypes of peanuts (Figure 1). The spectra exhibited similar profiles with vibrational bands at 480 and 917 cm–1, which can be assigned to carbohydrates: 520, 1,048, and 1,115 cm–1 to cellulose; 747 and 853 cm–1 to pectin; 1,000, 1,155, and 1,526 cm–1 to carotenoids; 1,185, 1,606, and 1,632 cm–1 to phenylpropanoids (including lignin); 1,660 cm–1 to proteins; and 1,682 cm–1 to carboxylic acids (Table 2). We also observed vibrational bands at 964, 1,286, 1,327, 1,387, and 1,443 cm–1, which can be assigned to aliphatic groups (CH2/CH3 vibrations) (Farber et al., 2020c).


[image: image]

FIGURE 1. Raman spectra collected from leaves of five representatives of peanut genotypes. In total, 19 peanut genotypes were analyzed.



TABLE 2. Vibrational bands and their assignments for spectra collected from peanut leaves.
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We used partial least squares discriminant analysis (PLS-DA) to determine the accuracy of RS in quantitative identification of peanut genotypes based on the spectroscopic signatures collected from their leaflets. As a proof-of-concept study, a subset of six genotypes was chosen that did not contain the same exact maternal and paternal parentage because many of the provided genotypes were closely related sister lines. For example, Tx144370, Tx144485, and Tx144342 are all progeny from the same parents. Because of this, only Tx144342 was selected for modeling since it had the most scans of the three breeding lines and could be more easily used to refine our model. The other five genotypes selected for modeling were TxL100212-02-05, Georgia 09B, Georgia 14N, TP200610-4-8, and Webb. These six genotypes provided the most variety without having breeding lines that were directly related. The results of the model created using these six genotypes indicated that RS averaged about 94% accuracy and ranged from 62% accuracy in some accessions to 100% accuracy in others (see Table 3).


TABLE 3. PLS-DA cross-validation confusion matrix of Raman spectra collected from leaves of six different genotypes of peanuts. Results were determined using 50 scans per member sample.
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It was interpreted from the results that the accuracy was correlated with the number of scans suggesting that a relatively higher number of scans such as ∼50 per sample ensures close to 100% accuracy in genotype identification. Expanding upon these results, we created another PLS-DA model except this time only using genotypes with a higher number of scans. The three genotypes chosen were TxL100212-02-05, Georgia 14N, and TP200610-4-8. The results of the model created using these three genotypes and 50 scans per accession sample indicated that RS averaged close to 100% accuracy (99.2%) in genotype identification from peanut leaf scans (see Table 4). These results show that RS can identify peanut plant genotypes from leaf surface scans with very high accuracy.


TABLE 4. PLS-DA cross-validation confusion matrix of Raman spectra collected from leaves of three different genotypes of peanuts.
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Nematode-Resistant vs. Non-nematode-Resistant Genotypes

Of the genotypes provided, both Webb and Georgia 14N were nematode-resistant. The genotypes that are not nematode-resistant were: Tamrun OL11, Georgia 09B, TxL100212-07-07, TxL100212-02-05, TxL100212-05-09, Tx121082, TxL100212-03-13, and TP200606-2-11. These two groups, even though very similar in average spectroscopic signatures (Figure 2), were found to be identified with about 83% (see Table 5) accuracy with PLS-DA modeling. These results show that RS can identify valuable traits such as nematode resistance from leaf surface scans with high accuracy.
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FIGURE 2. Averaged Raman spectra collected from the leaves of nematode-resistant (referred to as pure nematode-resistant) and susceptible (referred to as non-nematode-resistant) peanut plants.



TABLE 5. PLS-DA cross-validation confusion matrix of Raman spectra collected from leaves of nematode-resistant and susceptible peanut varieties.
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One may wonder about the robustness and reliability of the discussed spectroscopic approach. To answer this question, we excluded nematode-susceptible genotypes from the model and then used that model to verify the accuracy of the prediction of the “left over” genotype (Tables 6, 7). For instance, we built the model using susceptible (Georgia 09B, TxL100212-07-07, TxL100212-02-05, TxL100212-05-09, Tx121082, TxL100212-03-13, and TP200606-2-11) and resistant (Webb and Georgia 14N) peanut varieties with the left over Tarun OL11 variety (Table 6). Next, we used this model to predict the accuracy of identification of Tarun OL11 (Table 7). Our results show that Tamrun OL11 was predicted as susceptible with 84.8% accuracy.


TABLE 6. PLS-DA model that is based on susceptible (Georgia 09B, TxL100212-07-07, TxL100212-02-05, TxL100212-05-09, Tx121082, TxL100212-03-13, and TP200606-2-11), and resistant (Webb and Georgia 14N) peanut varieties.
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TABLE 7. Prediction results of Tamrun OL11 using PLS-DA model from Table 6.
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The same validation approach, however, cannot be utilized to demonstrate the robustness of the prediction of nematode-resistant varieties. In the current work, we analyzed only two available-to-date nematode-resistant varieties. If one of them was left out of the model we built and then used for external validation of such a model, the results could have dual interpretation. These results can (i) demonstrate robustness of the spectroscopic approach for identification of nematode resistance and (ii) demonstrate that RS can be used for identification of plant varieties. We previously demonstrated that RS is highly sensitive to plant biochemistry that is drastically different in different peanut varieties (Farber et al., 2020c). This allowed for demonstration of over 80% accurate prediction of such varieties. To overcome this limitation and to demonstrate robustness of the described methodology, we partitioned our data as 60:40; 70:30, and 80:20, where 60, 70, and 80 of the initial data were used to build the model and remaining 40, 30, and 20% were used for external validation (Tables 8–10). All models used the following data prepressing method: SNV, 1st derivative (Sav. Gol), smoothing (Sav. Gol), PQN, normalize, and mean center.


TABLE 8. 60:40 prediction and validation model.
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TABLE 9. 70:30 prediction and validation model.
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TABLE 10. 80:20 prediction and validation model.
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Our results show that similar accuracy of prediction of both susceptible and resistant varieties was obtained upon three various data partitioning approaches. Nevertheless, it should be noted that the reported results of statistical analysis will require at least three additional stages of validation and verification: (1) a larger amount of data for external validation that has to include blind and double-blind spectral assessment strategies; (2) a larger number of nematode-resistant varieties; and (3) elucidation of contribution of environmental factors, such as soil structure, fertilizers, irrigation, and weather conditions.

Critical analysis of chemometric models recently reported by Xu and Goodacre showed that (i) the size of the dataset and (ii) choice of the data splitting methods were critical for model performance (Xu and Goodacre, 2018). Xu and Goodacre determined that datasets with less than 30 spectra were unlikely to be suitable for the development of robust and reliable methods. The researchers also found that model performance was also very sensitive to the choice of a data splitting method used to partition the training data into training and validation sets. The reported results of the current study are based on 51 spectra collected for resistant and 326 spectra collected from susceptible varieties. We envision that although different spectral partitioning strategies provided similar outcomes, collection of 300–1,000 spectra from the resistant varieties will be required in the future to enable external validation of the reported models. We expect that such a large dataset will be sufficient to fully validate the robustness of the reported proof-of-principle spectroscopic approach in the current study. We also anticipate that development of novel nematode-resistant varieties, which is currently in progress in our laboratory, will allow for additional generalization of the reported spectroscopic approach. Finally, we expect to reproduce the reported studies in several different geographic locations in the U.S. to investigate the extent to which environmental factors alter spectroscopic signatures of nematode-resistant and susceptible peanut varieties.



Nutrient Content Analysis

From analyzing Figure 2, the vibrational bands at 1,155–1,218 cm–1 that are associated with carotenoids had a higher intensity in nematode-resistant varieties than nematode-susceptible varieties (Payne and Kurouski, 2011). Likewise, the vibrational band at 1,525 cm–1 that is also associated with carotenoids was also more intense in nematode-resistant varieties. However, the vibrational band at 1,606 cm–1, associated with phenylpropanoids, was much more intense in nematode-susceptible varieties (Payne and Kurouski, 2011; Farber et al., 2019b, 2020a; Sanchez et al., 2020a). These data suggest that nematode-resistant peanut plants are higher in carotenoid content than nematode-susceptible peanut plants.

It also should be noted that RS analysis costs are much lower than traditional genomic analysis because there is no additional cost incurred on a per sample basis for the phenotyping of plants. In addition, the hand-held nature of Raman spectrometers enables their use for on-site analysis of plants which further lowers overall costs and increases efficiency. Most currently available hand-held RS instruments have incorporated computers that allow for chemometric analysis of spectra immediately upon acquisition. Thus, integration of the spectroscopic libraries of germplasm into the hand-held spectrometer units eliminate the need to transfer the collected spectra for later analyses at a different location. As trait libraries are expanded and developed, researchers, seed companies, consultants, and even growers can obtain results almost instantaneously which will allow them to make almost real-time decisions in the field from the small screen of the RS spectrometers.




CONCLUSION

Our results demonstrate that RS can be used for highly accurate identification of peanut genotypes. We showed that with a proper number of scans, PLS-DA can be used to build a model that can identify specific peanut genotypes by leaf scans with close to 100% accuracy. Additionally, we demonstrated that RS can be potentially used for indication of valued traits such as nematode resistance by leaf scans with approximately 83% accuracy. The ability to distinguish cultivars will allow peanut breeders, shellers, and processors to maintain high purity levels at all levels of the value chain. Finally, we showed how analysis of leaf spectra may give insight into peanut plant biochemistry which could be used as a possible direction to further the resistance mechanism that is present in nematode-resistant germplasm. In addition, the fast, portable nature of RS allows for researchers, consultants, and growers to begin to implement the use of RS for digital farming/precision agriculture. With tools like RS at their disposal, they can better selectively breed and manage the valued traits, and maximize production.
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Positron Emission Tomography is a non-disruptive and high-sensitive digital imaging technique which allows to measure in-vivo and non invasively the changes of metabolic and transport mechanisms in plants. When it comes to the early assessment of stress-induced alterations of plant functions, plant PET has the potential of a major breakthrough. The development of dedicated plant PET systems faces a series of technological and experimental difficulties, which make conventional clinical and preclinical PET systems not fully suitable to agronomy. First, the functional and metabolic mechanisms of plants depend on environmental conditions, which can be controlled during the experiment if the scanner is transported into the growing chamber. Second, plants need to be imaged vertically, thus requiring a proper Field Of View. Third, the transverse Field of View needs to adapt to the different plant shapes, according to the species and the experimental protocols. In this paper, we perform a simulation study, proposing a novel design of dedicated plant PET scanners specifically conceived to address these agronomic issues. We estimate their expected sensitivity, count rate performance and spatial resolution, and we identify these specific features, which need to be investigated when realizing a plant PET scanner. Finally, we propose a novel approach to the measurement and verification of the performance of plant PET systems, including the design of dedicated plant phantoms, in order to provide a standard evaluation procedure for this emerging digital imaging agronomic technology.

Keywords: Positron Emission Tomography, plant stress, functional plant imaging, portable imaging device, plant physiology


1. INTRODUCTION

The increasing recurrence of droughts, floods, forest fires, and new pests are a constant reminder that our food system is under threat and must become more sustainable and resilient (The European Commission, 2020), as stated in the recently approved Green Deal (Sikora, 2021), not only at European level, but on a global scale. It comes as no surprise that the 2020 Nobel Peace Prize has been awarded to the “World Food Program,” thus confirming a series of economic, social, and ecological emergencies concerning food security worldwide. The main objective of the food security program is to increase the production yield of cereals around the globe, ensuring the incremental demand for food, animal feed, and biofuels (Miraglia et al., 2009; Pisante et al., 2012; Prosekov and Ivanova, 2018). Climate change plays here a fundamental role, as the related temperature stress represents the most important factor limiting the production yield of cereals. Stress is in fact generating a complex cascade of severe physiological modifications affecting the exchange of nutrients with the soil and the plant metabolism. The Green Deal rules out fertilizers because of their high pollution potential. Genetic improvement is a necessary but not sufficient part of the strategy (Bailey-Serres et al., 2019). Agronomy is therefore facing one of the most critical challenges of our century.

Indeed, an environmental-friendly engineering system which supports agronomists in (1) understanding the mechanism of temperature stress signaling at functional level, (2) quantitatively and precisely detecting such a mechanism at a very early stage, and (3) intervening before the damage becomes irreversible is far from being achieved (Galieni et al., 2021).

Although in current plant investigations imaging techniques are commonly used for functional analysis, like fluorescence microscopy (Toyota et al., 2018) and Nuclear Magnetic Resonance (Kuchenbrod et al., 1998), they carry important drawbacks in terms of sample disruption during long term observations (Dixit and Cyr, 2003) and poor sensitivity (Chatham and Blackband, 2001). Positron Emission Tomography (PET) proposes a solution to the problem, being a high-sensitive digital imaging technique able to provide a non-invasive 3D visualization of the dynamic flow of nutrients and water within plants (Galieni et al., 2021), that is essential in early stress assessment (Keutgen et al., 2005; Converse et al., 2013; Schmidt et al., 2020; Mincke et al., 2021). Thanks to the easy availability of molecular probes, it has been used to assess changes in the functional mechanisms of plants under different conditions. For instance, recently 11C-imaging revealed the spatiotemporal variability of photosynthates translocation into strawberry fruits in response to increasing daylight integrals at leaf surface (Hidaka et al., 2019; Miyoshi et al., 2021). More interestingly, when combined with properly labeled nanoparticles, PET can trace the transport of pollution particles in food with unprecedented precision (Davis et al., 2017). The quantitative measurement of phloem/xylem transport with compartmental modeling remains one of the most striking possibilities of plant PET, and has been shown very promising for the early detection of damages due to climate change (Tsukamoto et al., 2008; Yoshihara et al., 2014; Karve et al., 2015; Partelová et al., 2017; Hubeau et al., 2019a,b; Mincke et al., 2020). The study of fixation and translocation of CO2 has also a potential in the identification of novel methods for the improvement of bioproduction in vegetables and fruits (Yamazaki et al., 2015; Kurita et al., 2020).

The key advantage of PET in agronomy, with respect to other imaging techniques, is the possibility of in-vivo functional measurements. This feature has also motivated the development of dedicated PET technologies.

As summarized in Figure 1A, a series of technological limitations are impairing the extension of PET to agronomy and plant science, despite the high potential of this unique functional imaging technique. First, the functional and metabolic mechanisms of plants depend on light exposure, temperature, and humidity, among others. Therefore, the reproducibility of the experiments relies on controllable environmental conditions, which can be obtained only in dedicated growing houses. A plant PET camera needs to be movable to different growing facilities. The electronic and sensing components of a PET system are not seriously affected by the typical heat and humidity conditions of a greenhouse. A conventional air cooling system to avoid overheating of the electronics and a well designed outer shell to avoid excessive humidity exchange with the internal parts of the system are enough to guarantee a proper operation of the machine. However, besides the radiation protection issues, which can be easily overcome with a proper shielding, the complexity of the design of conventional PET systems does not allow transportability. In fact, a typical PET system is an arrangement of multiple sensing modules composed of a detecting unit and a dedicated readout service unit. It means that the bigger is the system, the higher is the number of PET modules needed. The dimension of the system affects also the design and sizing of essential elements like switches, power supplies, clocks, cooling circuits, and shielding. For example, a Raycan Trans-PET® scanner reaches 700 kg in weight and 4.2 m3 in volume with its 16,224 crystals (Liang et al., 2020). A dedicated plant PET scanner (1,000–1,500 crystals) may reach size and weight of the sensing and electronic units 15 times smaller. Transportability to greenhouses or growing chambers is pivotal to find the most suitable environment for functional analysis on plants, because we can limit the induced stress on plants by transport and adaptation to conventional PET scanning conditions, minimizing the related measurement bias.


[image: Figure 1]
FIGURE 1. The application of PET to agronomy is limited by experimental, operational, and technological bottlenecks (A). We propose a new concept of a portable plant PET scanner composed of two movable half-cylinders (B) and we study its miniaturization options (C). The main parameters of the two systems are summarized in Table 1.


Second, plants need to be imaged in vertical size in order to estimate transport mechanisms in accordance to their physiology. This would imply a vertical extension of the Field Of View (FOV) up to several tens of millimeters without impacting the sensitivity and the spatial resolution performance. Conventional preclinical and clinical systems are developed with a horizontal extension of the FOV due to the supine position of small animals and patients during a PET scan. Several efforts on plant PET investigations have been made so far using conventional scanners (Ariño-Estrada et al., 2019; Ruwanpathirana et al., 2021) but with samples positioned vertically inside the camera: the plant displacement along the radial direction of the FOV causes non-uniformity in terms of spatial resolution. However, there are few attempts of PET scanners with the FOV extended in vertical that are conquering a niche in the field of personalized bioimaging (Norvall et al., 2021; Sakai et al., 2021). That reveals a nice suggestion to move toward the trend of personalized screening approach on plants as well.

Third, the transverse extension of plants depends on the species and on the experimental protocol. While early stress assessment is usually performed with a time-dynamic imaging of small-sized seeds and sprouts approximately 1 week after germination, more complex transport experiments may require larger capability up to few tens of millimeters in diameter. The diameter of the FOV defines the maximal size of the targets and is fixed in conventional PET systems, which are not suitable to an adaptive approach. It is well known that the arabidopsis and plants cultivated for food use like rice, sunflower, and maize have a radial expansion (Dolan et al., 1993; Hochholdinger, 2008; Hochholdinger and Tuberosa, 2009; Mai et al., 2014). At later stages of sprout growth they further develop branches and leaves, that contribute to their radial evolution. Although this feature may justify a PET system with cylindrical geometry, agronomic experiments may necessitate the analysis of multiple plants in a single scan to compare directly samples at the same time. This is particularly important, for instance, in rapeseed and wheat, which get benefits from the tillering and have a growth influenced by the sowing density (Zadoks et al., 1974; Leach et al., 1999; White and Edwards, 2008). Such a requirement justifies a scanner with elongated oval geometry. Since providing multiple scanners with different FOV sizes is a costly solution, shape adaptation plays a key role in plant PET. The final aim is to reach a spatial resolution in any geometrical configuration at the center of the scanner FOV of around 1.8 mm and 1 mm for a conceptual scanner geometry with large crystal cross section and a miniaturized scanner geometry with smaller crystal cross section, respectively.

Besides the application to plant imaging of conventional high resolution digital preclinical PET technologies (Liang et al., 2020), dedicated plant PET scanners addressing these specific issues of agronomy have been proposed. Planar (Kawachi et al., 2006; Streun et al., 2007; Weisenberger et al., 2011), combined cylindrical (Yamaya et al., 2011), and half-cylindrical (Wang et al., 2014) configurations have been recently explored. The development of portable and compact plant PET systems opened up a novel strategy of the geometrical design. For instance, the Open PET system extends the FOV along the vertical axis by displacing two detection rings, including also dedicated Depth Of Interaction (DOI) correction (Yoshida et al., 2012).

The recent advances in compact sensor technologies and fast digital readout strategies (D'Ascenzo et al., 2018, 2020) make it possible to explore even more compact and shape adaptive geometries with full flexibility in response to the needs of agronomy. In this paper, we investigate the expected performance of a novel design of dedicated plant PET systems addressing the specific needs of plant imaging. Furthermore, filling in the existing gap in standard evaluation of clinical systems and agricultural systems, we define here how to adapt the established NEMA standard procedure to the evaluation of plant PET scanners.

The paper is organized as follows: in section 2 we describe the plant PET models, the simulation setup and the analysis methods; in section 3 we show the results of the performance evaluation; in section 4 we discuss the results; in section 5 we report our conclusions.



2. MATERIALS AND METHODS


2.1. PET Systems Simulation
 
2.1.1. Conceptual and Miniaturized Plant PET Geometry

In order to address the above-mentioned issues of PET in agronomy, we propose two possible designs of plant PET systems, which are summarized in Table 1. In the first one, a conceptual prototype (CONC), we define the general concept of a plant PET geometry, without overwhelming the technological requirements. A 3D view of the CONC prototype is shown in Figure 1B. The required portability and elongation of the system are obtained with a compact design, which extends with a vertical FOV. In order to adapt to the different transverse sizes of plants, the system is composed of two movable half-cylinders with 83.4 mm diameter and 100.8 mm axial length. The system has a vertical axial cylindrical symmetry. The two half-cylinders can be separated at a distance up to 40 mm. The technology requirement of this prototype is conservative. We propose to use PET heads already established for other scanners (D'Ascenzo et al., 2018; Antonecchia et al., 2020). They consist of an array of 6 × 6 Lutetium Yttirium Oxyorthosilicate (LYSO) scintillators. Each crystal has a size of 3.9 × 3.9 × 20mm3 and is composed of a mixture of 71.20% Lutetium, 4.01% Yittirium, 6.5% Silicon, 18.1% Oxygen, and 0.19% Cerium. The gap between two contiguous crystals is 0.3 mm in both longitudinal and transverse directions and is filled with BaSO3 to reduce the light cross-talk between adjacent crystals. Each layer of the half-cylinder composed of five heads. Four head-layers are displaced vertically. Therefore, each half-cylinder counts 24 crystal layers formed by 30 scintillators. A stack of scintillators laying on the same horizontal plane of the camera is called ring. Therefore, the scanner counts 24 rings formed by 60 scintillators (30 crystals in each half-cylinder). The entire scanner is composed of 1, 440 crystals.


Table 1. Geometrical features of the conceptual and miniaturized systems.
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The second prototype (MINI) further explores the portability potential of plant PET, by proposing a miniaturization of the CONC system (Figure 1C). The key component of the MINI prototype is the PET head composed of crystals with tiny cross section, as low as 1 × 1 mm2. The crystal length is considered an optimization parameter. We studied three configurations, namely 13 mm (MINI-13), 16 mm (MINI-16), and 20 mm (MINI-20) long scintillators. In practice, a 1:1 readout of these small crystals by using modern silicon detectors, such as Silicon Photomultipliers (SiPM), requires a careful consideration of the packaging options of SiPM arrays. Following a realistic engineering design, the gap between neighboring scintillator is 0.6 mm in the transverse direction and 0.9 mm in the longitudinal direction. The MINI system is composed of two half-cylinders with an axial length of 45.6 mm and a diameter of 30.5 mm. Like the CONC system, it counts a total of 1,440 scintillators grouped in 24 detecting rings with 60 crystals per ring (30 crystals in each half-cylinder).

We modeled the systems in the GEANT4 simulation framework (Agostinelli et al., 2003; Allison et al., 2016). The simulation includes the radioactive decay of the unstable β+ emitters and the electromagnetic physics characterizing the positron annihilation and the further interaction mechanisms of the two annihilation 511 keV γ-rays in the scintillators (Figure 2A). The radioactive decay of the fraction of 176Lu in LYSO is not considered in the simulation since the intrinsic radioactivity poorly affects the evaluations of camera performances, mainly due to the small number of crystals we used for the scanner architecture. In fact, the count rate derived from intrinsic radioactivity in a 176Lu-based crystal is approximately 300Bq/ml (Enr-quez-Mier-y Terán et al., 2020). Considering the total crystal volume for CONC system (438 ml) and for MINI systems (from 18.7 ml to 28.8 ml), the total intrinsic radioactivity can be estimated at most 8 kBq for MINI systems and 131kBq for CONC system. Since testing radioactivities are >1 MBq, the intrinsic radioactivity can be considered negligible for performance simulations. The generation of scintillation photons in the crystals and the further propagation and detection are not included in the simulation. The emission energy of the β+ is of critical importance in plant PET, as the plant tissues are thinner than the average range of positrons. In order to perform a precise calculation, we used the Evaluated Nuclear Structure Data File (ENSDF) libraries (Burrows, 1990) for the proper simulation of the decay of the radio-nuclei.
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FIGURE 2. Plant PET simulation and data processing. A plant phantom is placed inside the FOV. A β+ emitter in the phantom is simulated. Two γ-rays are generated from the positron annihilation and are detected in the PET sensors (A). The energy deposited in each PET sensor and the detection time are used to discriminate coincident events (B), which are ordered in the sinograms (C). 3D images of the distribution of the radioactive source in the phantoms are reconstructed from the sinograms (D).




2.1.2. Data Processing and Image Reconstruction

The simulation outputs the deposited energy, the detection time, and the crystal position of each detected γ-ray. As mentioned above, the propagation of scintillation optical photons and their detection in a realistic photosensor is not included in the simulation. In order to take into account a realistic environment and following previous observations in similar systems (D'Ascenzo et al., 2020), we smear the value of the deposited energy and of the detection time with a Gaussian with 15% resolution (FWHM) and 350 ps (FWHM), respectively. The simulated energy distribution deposited by the γ-ray in the crystals is shown in Figure 2B.

Annihilation γ-rays may undergo Compton scattering and deflect their trajectory before detection, causing a bias in the determination of the positron emission point and image blurring. In order to disregard Compton scattered events hitting the crystals, only events with a deposited energy laying within an energy window ΔE are selected. We consider here two different approaches to the determination of the energy window. On the one hand, we define a conservative and traditional energy window centered at the 511 keV photoelectric peak ΔE(trad) = (350, 650) keV. On the other hand, we consider that the probability of Compton scattering in the soft and thin plant tissues is very low. Therefore, we study also the possibility of an extended energy window ΔE(ext) = (50, 750) keV, which would be beneficial in order to increase the overall efficiency of the technique. We chose the lower energy cut at 50 keV because it guarantees a signal from 40 to 80 photoelectrons at least, high enough to noticeably exceed the electronic noise due to dark current of detectors that is not higher than 7.5 photoelectrons (D'Ascenzo and Saveliev, 2011). We define the energy-selected events as singles. We consider two singles in coincidence if they occur within a time window of 2 ns. We include in the simulation a paralyzable crystal dead time of 200 ns and a paralyzable system global dead time of 20 ns.

A coincidence pair between two crystals identifies a unique 3-dimensional line of response (LOR), along which the positron emission took place. LORs are organized in 24 × 24 sinograms, each of which is a 2D matrix of pixels representing all the possible LORs of a specific transverse slice of the camera including the oblique slices described by different rings. The position of one LOR in a sinogram is uniquely identified by a couple of coordinates called bins and views, that represent the information about the radial distance of the LOR from the FOV center and the angular displacement of the LOR, respectively. One sinogram is 2-dimensional containing (N−1) × (N/2) pixels, where N = 60 is the number of crystals per ring, (N−1) is the number of bins, while (N/2) is the number of views. An example of sinogram measured at different separations of the two half-cylinders is shown in Figure 2C.

For the reconstruction of PET images we computed the System Response Matrix (SRM) based on a high resolution Bayesian method for 3D Maximum a posteriori (MAP) image reconstruction (Qi et al., 1998). We noticed that the Filtered Back Projection algorithm (FBP) suffers the geometrical singularities of our scanners in opened configurations: because of the missing solid angles between the two camera halves, it returns artifacts and distortions in image reconstruction. For such reason, we opted for reconstructing the images from the sinograms by using a 3D ordered subset expectation minimization algorithm (3D-OSEM), that is less sensitive to the missing angles problem. For completeness, we listed also the FBP results in the Supplementary Materials. The voxel size of the reconstructed image is 0.5 × 0.5 × 0.5 mm3. The reconstructed image of the plant phantom is shown in Figure 2D.




2.2. NEMA Standards Characterization

The National Electrical Manufacturers Association (NEMA) defines quantitative standards only for the evaluation of preclinical (NEMA, 2008) and clinical scanners (NEMA, 2007). Currently there is no certified standard protocol for testing the performances of tomographs that are made for plant screening purpose. Moreover, beside the target they are built for, the classification of PET scanners is based on the dimensions of the machine. For instance, a PET device for small-animals must have a transverse FOV at least 33.5 mm large according to NEMA. Though the CONC system may fit such constraint, the MINI systems are out of that scale. Lastly, current standards provide only human or animal shaped phantoms that are not dimensionally suitable for regular plant simulation. Therefore, for our tests on plant PET systems, we took inspiration from NEMA for small-animal tomographs and adjusted the current protocols when needed for more meaningful measurements of such new typology of PET cameras. We claim the necessity to define a novel standard procedure for the evaluation of plant PET systems, which is closer to the experimental needs of agronomy.


2.2.1. Sensitivity

The sensitivity of a PET camera defines the fraction of positron annihilation events detected as true coincidence events in response to the activity in the FOV. The method, radionuclide setting and source distribution come directly from the standard method (NEMA, 2008). For data collection, calculation and analysis we adopted the procedures described in Antonecchia et al. (2020) for sensitivity measurements from simulated data. We simulated a point-like 22Na source with a 0.3 mm radius positioned at the center of a PMMA cube with 10 mm side length. As shown in Figures 3A-1, 3, we moved the radioactive source along the longitudinal axis by 4 mm and 2 mm steps in the CONC and MINI system, respectively. We simulated 2.5·106 events for each position.
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FIGURE 3. Modified NEMA standards for Plant PET characterization: measurement of the sensitivity (A), count rate performance (B), and spatial resolution (C).


The analysis was performed on all the 2D sinograms measured at the nth source position. An example of the sinogram is shown in Figure 3A-4. We identified the hottest bin for each view and we retrieved the total number of counts Cn, out in the group of bins within a 10 mm window (Figure 3A-4). The sensitivity is defined as:

[image: image]

where Cin is the total number of events we simulated for each phantom position, Nabr is the β+ decay branching ratio of the 22Na isotope and the statistical error takes in consideration only the Poisson fluctuation.



2.2.2. Count Rate Performance

The count rate measurement of a PET scanner indicates the ability of the machine to acquire events especially at high activity when the acquisition limitations, due to the dead time losses, become significant. Moreover, this calibration includes also the computation of the Compton scattered and random coincidence event rates, which disturb the quality of the reconstructed image.

Following NEMA (NEMA, 2008), we measure the count rate of the scanner in response to a line-shaped source, normally [18F]-FDG, inserted in the FOV. Key to the measurement is a phantom, in which the radioactive tracer is embedded. Its purpose is to emulate the density and size of a biological system. It allows to have a realistic approximation of the Compton scatter probability. Existing NEMA standards define cylindrical PMMA phantoms emulating mice, rats, monkeys, and human subjects, which are significantly larger than plants. Our goal is to introduce a new standard that provides a feasible plant-like structure.

As shown in Figure 3B-1, we propose a phantom model representative of a dicotyledon plant, with a shape that is inspired by zucchini sprouts. It is composed of a mixture of water and cellulose as the main constituents, in the following proportions: 80% H2O (Lumen, 2021) and 20% C6H12O5, with a density of 1.2g/cm3. As shown in Figure 3B-1, the phantom has a solid structure with a cylindrical basis (the stem) and an elliptical disk (the leaf). The stem length should cover the entire longitudinal FOV of the system and is 100 mm and 40 mm for the evaluation of CONC and MINI system, respectively. The stem radius is 1.5 mm. The leaf is 20 mm long, 10 mm large, and 2 mm thick. A capillary tube with a radius of 0.25 mm is filled with the tracer. Compared to the capillary lumen, we fixed the stem with a diameter 6 times bigger and the leaf with a thickness 4 times bigger. We imposed constraints on the capillary dimensions, based on small syringe diameters used for tracer injection and the average resolution of device manufacturing.

We placed the phantom along the scanner parallel to the longitudinal direction, with the geometrical midpoint crossing the axial center of the FOV and with a radial offset of 8 mm and 3 mm for the CONC and MINI system, respectively (Figure 3B-2). The leaf is therefore positioned along the longitudinal axis with the center placed with a 50 mm and 20 mm offset from the FOV center for the CONC and MINI systems, respectively.

We randomly generated 18F atoms into the capillary volume, with an initial activity of 150.0 MBq. We simulated 21 independent 0.5 s wide time frames spanning the decay of the radio-nuclei down to an activity of 1.2 MBq. The simulated number of events for each time frame is reported in the Supplementary Table 1.

We performed the analysis on the collected sinograms for each time frame, adapting the NEMA procedure to the dimensions of CONC and MINI scanners. As shown in Figure 3B-3, for each pair of rings the sinogram is a sinusoidal line. A zero-suppression was first done by selecting a window of width of 11 bins and 13 bins across the center of the FOV, for the CONC and MINI system, respectively. The bin windows are different because the pixel dimension is larger for the CONC system, due to the camera diameter that is wider than the diameter of the MINI system. For each view, we spotted the pixel having the highest value to determine the center of the line source response. We shifted all the pixels of each view in order to align all the pixels containing the maximum values at same central bin (Figure 3B-4). Finally, we created the sum projection array, where each value corresponds to the sum of pixels placed at the same bin (Figure 3B-5):
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where bini is the pixel correspondent to a specific i-bin and binmax(ν) is the reference bin correspondent to the position of the pixel with the greatest value in the view=ν. The statistical error considers only the Poisson fluctuations in each pixel of the sinogram. We analyzed this resulting histogram, by selecting a window of 4 bins for CONC system and 6 bins width for MINI system. At the edges of the window we individuated two pixels with values CR and CL and a linear interpolation of these two points defined two areas in the sum projection plot: the upper and lower areas estimate, for each jth sinogram, the number of true and noise events, respectively. The value of true events is [image: image], while the number of noise events is [image: image], where [image: image] and [image: image]. The noise events include random and scatter coincidences. The total number of counts in the plot represents the total number of coincident events [image: image] for the jth sinogram, and acquisition k:
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where [image: image]. Addressing the total number of sinograms NS = 24 ×24 = 576, for each time frame acquisition k we calculated the total [image: image] and true [image: image] count rates as follows:
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When the activity is lower than a few MBq, the probability of random coincidences is negligible and the noise events are determined only by Compton scattering. With this approximation, the scatter fraction (SF), which defines the ratio between scattered and total coincidences, is:
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Finally, the random event rate is calculated according to the methodology suggested by NEMA, when scanners do not directly measure random coincidences:

[image: image]

The Noise Equivalent Count Rate (NECR) quantifies the signal strength vs. the Compton and scatter background. We estimated it as:

[image: image]
 

2.2.3. Spatial Resolution

The spatial resolution of a PET camera is the ability for the system to distinguish two points of the reconstructed image. Using a compact source we could measure the widths of the point response functions from the reconstructed image. The method for the quantification of the spatial resolution is described in Figure 3C. We used the same phantom as we did for the sensitivity measurement but, differently from current standards, we decided to distribute the source in a more extended spatial range. In fact, as the two half-cylinders composing the plant PET scanners can be displaced, the rotational symmetry of conventional cylindrical PET geometries cannot be applied and the existing NEMA standard (NEMA, 2008) should be adapted to this new situation. We propose to move the phantom at 6 radial positions along the two transverse directions in the X-Y plane (Figures 3C-1, 3), both at the center (Figure 3C-4) and at 1/4 of the longitudinal FOV (Figure 3C-5). While the X-Y measurement will be sensitive to the artifacts introduced by the asymmetry of the detector, the longitudinal displacement will enhance any not-uniformity of the response in the FOV. We simulated 2.5·106 events per phantom position. The collected singles were sorted and processed for coincidence detection and sinogram construction.

We analyzed the reconstructed images of the source placed at each spatial point. As shown in Figures 3C-6, we projected the reconstructed image on the two transverse axes and on the longitudinal axis of the FOV. For each of the 3 projections, we determined the greatest value and we involved the two closest points in order to describe a parabolic fitting function. We determined the peak value of the fitting function and the two points of the function correspondent to the half of the peak value Cl and Cr, then we calculated the FWHM as the distance in millimeters of the two points above D(Cl, Cr). The estimation is affected by the statistical Poisson error, which we compose according to conventional propagation of errors methods.




2.3. De Renzo Imaging

We performed a further analysis on spatial resolution through the simulation and image reconstruction of a De Renzo phantom. The phantom we designed is a PMMA disk with a 18 mm diameter and 4 mm height, exhibiting different hole patterns with varying diameters and spacing. The phantom features 4 different hole sizes arranged in triangles around the center of it, while holes within groups are spaced exactly one diameter apart. The diameters of each group of holes are 1.6 mm, 1.8 mm, 2.0 mm, 2.2 mm, while the holes depth is 4 mm for all. We arranged 3 holes with the same diameter for each group. A representation of the De Renzo we designed is shown in Figure 3C-7. Among all the possible configurations, we simulated the phantom in the CONC system when the two hemicylinders are separated by a 20 mm gap. We initialized events to simulate in each well according to the volume of the related well, in order to normalize the volumetric radioactivity. The number of simulated events per well are summarized in Table 2. We took data displacing the phantom for 3 different positions inside the FOV: one acquisition at center of the FOV and two acquisitions moving the De Renzo along the radial axis by 4.5 mm offset on both directions across the center of the FOV. Moving the phantom of just 4.5 mm on both direction of the radial axis guarantees the displacement of the holes between 4.5 mm and 13.5 mm far from the FOV center, enabling the evaluation of the spatial resolution in a range from 18 mm to 27 mm across the FOV center. The setup is shown in Figure 3C-8. The selection of singles was done using the ΔE(ext) window.


Table 2. De Renzo phantom simulation features.
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2.4. Plant Phantom Imaging

The characterization of the plant PET system relies on a proper plant phantom. In order to verify the feasibility of the novel proposed phantom, we considered different materials, typically used in biomedical engineering: Acrylonitrile butadiene styrene (ABS), Polyurethane (PU), and Polylactic Acid (PLA). 18F and 11C are the typical radionuclides used to label tracers for plant studies. The maximal energy of the emitted positrons is approximately 0.634 MeV and 0.960 MeV, respectively. Therefore, we expect different maximal positron ranges of 2.4 mm and 4.2 mm, respectively (Teuho et al., 2020). We studied the effects of scattering and positron escape in the different materials. In one simulation, we initialized 1 million ions of 18F inside the capillary of the phantom and tracked the cross sections of the γ-rays generated by the positrons annihilations. In a second simulation we initialized 1 million ions of 11C within the same setup. We evaluated both the number of 511 keVγ-rays having at least one Compton scattering and the total amount of all photoelectric and Compton scattering inside the phantom (labeled as Primary Compton and Total Scattering, respectively). One more feature we evaluated is the positron escape, a common phenomenon involving bodies whose thickness is shorter than the radiotracer mean range (Alexoff et al., 2011). Since the plant is confined in a volume whose size is comparable with the positron range of both radiotracers, we wanted to estimate the number of generated positrons that is likely to escape outside the injected volume without annihilating in the designed plant phantom.




3. RESULTS


3.1. Conceptual System
 
3.1.1. Sensitivity

The estimated sensitivity of the conceptual system is shown in Figure 4A for the conventional energy window ΔE(trad) and in Figure 4B for the extended energy window ΔE(ext). Its value reaches a maximum at the center of the FOV and decreases linearly following the typical expectations in systems with translational axial symmetry. When the half-cylinders are closed and the energy window ΔE(trad) is used, the peak and mean sensitivity are (8.400 ± 0.002)% and (5.760 ± 0.002)%, respectively. When the half-cylinders are displaced from each other, the reduced solid angle coverage causes up to 35% decrease of the sensitivity. The extension of the energy window is beneficial. We observe that, if the half-cylinders are closed and the energy window ΔE(ext) is used, the peak and mean sensitivity are (41.091 ± 0.004) %and (30.200 ± 0.004)%, respectively, thus exhibiting a almost 5-fold gain with respect to ΔE(trad).
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FIGURE 4. Conceptual system expected performances. The sensitivity is estimated for the conventional (A) and the enlarged (B) energy window at three openings of the two half-cylinders. Similarly, the count rate figure is estimated at three openings of the two half-cylinders for the conventional (C–E) and enlarged (F–H) energy window, respectively (see also Supplementary Tables 2, 3). The radial, tangential and longitudinal spatial resolution at the center of the FOV are reported in (I) for different energy windows and opening angles (see also Supplementary Tables 4–7). The dashed lines represent the spatial resolution profiles related to the same energetic window over different openings.




3.1.2. Count Rate Performance

The count rate performance of the conceptual system in a conventional configuration, with closed half-cylinders and small energy window ΔE(trad) is shown in Figures 4C–E. The system exhibits a total, trues and NECR peak rate of (1141.59 ± 1.51) kcps@147.34 kBq/μL, (1026.14 ± 0.43) kcps@147.34 kBq/μL, and (922.37 ± 1.35) kcps@147.34 kBq/μL, respectively, when the two half-cylinders are closed. In accordance with the sensitivity, the count rate decreases of approximately 30% when the half-cylinders are displaced (Figures 4D,E). More interestingly, the count rate increases of an approximate factor of 4 when the extended energy window ΔE(ext) is used (Figures 4F–H). For instance, we expect a total, trues and NECR peak rate of (3690.27 ± 2.81) kcps@157.19 kBq/μL, (3269.37 ± 2.56) kcps@147.34 kBq/μL, and (2705.69 ± 2.33) kcps@147.34 kBq/μL, respectively, when the two half-cylinders are closed. The count rate performance is summarized in the Supplementary Table 2.

The scatter fraction is approximately 4% when using the traditional energy window and never exceeds approximately 11% when enlarging the energy window, as reported in the Supplementary Table 3. This indicates that the probability of Compton scattering in plants is very small and confirms the feasibility of the extension of the energy selection window in plant PET applications, with a remarkable improvement of the sensitivity without negatively affecting the NECR of the system.



3.1.3. Spatial Resolution

A summary of the spatial resolution of the system at the center of the FOV for different separations between the half-cylinders and different energy windows is reported in Figure 4I. When the half-cylinders are closed and the source is positioned in the FOV center, the axial, radial and tangential spatial resolutions are 1.90 ± 0.60 mm, 1.38 ± 0.19 mm, and 1.38 ± 0.19 mm, respectively. When increasing the energy window, these values increase up to 2.17 ± 0.91 mm, 1.75 ± 0.13 mm, and 1.75 ± 0.13 mm, respectively. The separation between the half-cylinders has a significant effect on the radial spatial resolution, which increases up to 3.43 ± 0.66 mm at the center of the FOV for a separation of 40 mm. As summarized in the Supplementary Tables 4–7, a slight degradation of the axial spatial resolution is also observed at 1/4 of the longitudinal FOV. As for the dependence of the spatial resolution on the position in the transverse plane, only the tangential spatial resolution has a pronounced dependence on the position on the X-axis, deteriorating up to 6.30 ± 2.15 mm at a distance of 35 mm from the center for the FOV. Similarly, only the radial spatial resolution has a pronounced dependence on the position of the Y-axis, deteriorating up to 6.85 ± 0.99 mm at a distance of 35 mm from the center for the FOV.




3.2. Miniaturized System
 
3.2.1. Sensitivity

The estimated sensitivity of the miniaturized systems is shown in Figure 5A for the conventional energy window ΔE(trad) and in Figure 5B for the extended energy window ΔE(ext). Similarly to the CONC systems, its value reaches a maximum at the center of the FOV and decreases linearly following the typical expectations due to translational axial symmetry. When the half-cylinders are closed and the energy window ΔE(trad) is used, the peak sensitivity ranges between (1.057 ± 0.007)% and (0.763 ± 0.006)% for a crystal length of 20 and 13 mm, respectively. When the half-cylinders are displaced from each other, the reduced solid angle coverage causes up to 50% decrease of the sensitivity. The extension of the energy window is beneficial. We observe that when the half-cylinders are closed and the energy window ΔE(ext) is used, the peak sensitivity reaches a value of (12.861 ± 0.027)%, thus exhibiting an almost 10-fold gain with respect to ΔE(trad). The sensitivity increases of approximately 50% when the crystal length is expanded from 13 mm to 20 mm.
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FIGURE 5. Miniaturized system expected performances. The sensitivity is estimated for the conventional (A) and the enlarged (B) energy window at three openings of the two half-cylinders. Similarly, the count rate figure is estimated at three openings of the two half-cylinders for the conventional (C–E) and enlarged (F–H) energy window, respectively (see also Supplementary Tables 8, 9). The radial, tangential and longitudinal spatial resolution at the center of the FOV are reported in (I) for different energy windows and opening angles (see also Supplementary Tables 10–13). The dashed lines represent the spatial resolution profiles related to the same energetic window over different openings.




3.2.2. Count Rate Performance

The count rate performance of the miniaturized systems in a conventional configuration, with closed half-cylinders and small energy window ΔE(trad) is shown in Figure 5C. The highest values are recorded for the MINI-20 system, when the two half-cylinders are closed, with a total, trues and NECR peak rate of (301.55 ± 0.77) kcps@353.68 kBq/μL, (239.68 ± 0.69) kcps@353.68 kBq/μL, and (190.92 ± 0.69) kcps@353.68 kBq/μL, respectively. In accordance with the sensitivity, the count rate decreases of approximately 50% when the half-cylinders are displaced (Figures 5D,E). More interestingly, the count rate increases approximately 10 times when the extended energy window ΔE(ext) is used (Figures 5F–H). For instance, we expect a total, trues and NECR peak rate of (2944.85 ± 2.43) kcps@353.68 kBq/μL, (1789.68 ± 1.89) kcps@353.68 kBq/μL, and (1087.64 ± 1.70) kcps@353.68 kBq/μL, respectively, when the two half-cylinders are closed. A summary of the count rate characterization is reported in the Supplementary Table 8.

The scatter fraction is smaller than 10% when using the traditional energy window and never exceeds approximately 37% when enlarging the energy window, as reported in the Supplementary Table 9.



3.2.3. Spatial Resolution

A summary of the spatial resolution of the system at the center of the FOV for different separations between the half-cylinders, different energy windows and crystal lengths is reported in Figure 5I. When the half-cylinders are closed and the source is positioned in the FOV center, the axial, radial and tangential spatial resolutions are 1.06 ± 0.05 mm, 1.00 ± 0.03 mm, and 1.00 ± 0.03 mm, respectively. When increasing the energy window, these values increase up to 1.14 ± 0.06 mm, 1.11 ± 0.04 mm, and 1.12 ± 0.04 mm, respectively. The separation between the half-cylinders has a significant effect on the radial spatial resolution, which increases up to 1.88 ± 0.41 mm at the center of the FOV for a separation of 40 mm. As summarized in the Supplementary Tables 10–13, a slight degradation of the axial spatial resolution is also observed at 1/4 of the longitudinal FOV. As for the dependence of the spatial resolution on the position in the transverse plane, only the tangential spatial resolution has a pronounced dependence on the position on the X-axis, deteriorating up to 4.43 ± 0.87 mm at a distance of 10 mm from the center of the FOV. Similarly, only the radial spatial resolution has a pronounced dependence on the position of the Y-axis, deteriorating up to 9.25 ± 0.51 mm at a distance of 10 mm from the center for the FOV. The crystal length does not seem to have a significant effect on the spatial resolution.




3.3. De Renzo Imaging

We can appreciate in Figure 6 the results of the De Renzo phantom reconstruction in three different radial positions. They evidence the a good resolution of the holes with a diameter of 2.2 mm and 2.0 mm for all the displacements of the phantom, even when their relative distance of the holes from the center of the FOV is >4.5 mm. The resolution of the holes with 1.6 mm and 1.8mm diameters is poor as expected but it increases when their relative distance from the center of the FOV is reduced. It is clear that, around the center of the CONC system in a 20mm opening configuration, source distributions within those small volumes are difficult to distinguish outside a range of few millimeters.


[image: Figure 6]
FIGURE 6. De Renzo imaging of the CONC system. A De Renzo phantom is placed at the center of the FOV and at a shift of ±4.5 mm along the transverse axis of the system.




3.4. Plant Phantom Imaging

Figures 7A,B report the values in percentage over 1 million simulated events for each evaluated parameter for 18F and 11C radionuclides. We estimated that 2.61% and 2.35% of the interactions in the plant-like phantom are primary Compton processes, respectively.
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FIGURE 7. Plant phantom imaging. Distribution of the Scattering and positron escape events using 18F (A) and 11C (B), a simulation frame (C) and a typical PET image of the stem of the plant phantom (D). A movie showing the reconstructed image at different angles is found in the Supplementary Material.


Such percentages correspond to the the number of events generating γ-rays that interact with the vegetal tissue and releasing part of their original energy and momentum via Compton scattering. The total number of events with an interaction in the plant phantom, including photoelectric processes, rises up to 4.91% for 18F and 4.83% for 11C. Instead, the number of escaped positrons from the original volume is 0.05% for 18F and 0.34% for 11C. Among the simulated plastic phantoms, PLA performances are close to the simulated plant phantom made of water and cellulose. A typical simulation framework and reconstructed image of the simulated phantom is shown in Figures 7C,D. The section of the phantom reproducing the stem and the vascular system are well visible. A 3D movie of the reconstructed image from many different angles can be found in the Supplementary Material.




4. DISCUSSION

The findings presented here can be benchmarked with respect to existing plant PET systems. The CONC design addresses the needs of an extended longitudinal and transverse FOV for dedicated plant imaging, without overloading sensors technology. The FOV adjustability is the most striking feature of the novel design. The axial FOV, oriented vertically, is 100 mm and the transverse FOV is oval-shaped, with a minimal diameter of 83.4 mm, extendible up to 123.4 mm. These values are in good agreement with the Open PET system, which has an axial and transverse FOV of 110 mm and up to 126 mm, respectively (Yamaya et al., 2011). The PETIS system has a larger transverse and axial FOV, but the planar geometry allows only 2D imaging (Kawachi et al., 2006).

The CONC design is not particularly demanding from a technological point of view. The cross section of the crystals is in fact 3.95 mm and is larger than in existing plant PET systems, where it ranges between 1.5 mm (Wang et al., 2014) and 2.9 mm (Yamaya et al., 2011). It determines the minimal reachable spatial resolution of 1.38 mm at the center of the FOV. This value is still competitive with respect to the spatial resolution obtained in other plant PET systems, which is ranging between 1.25 mm (Wang et al., 2014) and 2.3 mm (Kawachi et al., 2006). We observe a series of characteristic features when the transverse FOV is extended by displacing the two half-cylinders and acquires an oval shape. As visible in Figure 4I, in fact, a degradation of the radial spatial resolution is expected as a consequence of the displacement of the half-cylinders. More interestingly, the depth of interaction error affects the transverse components of the spatial resolution differently, when the transverse FOV is extended. In particular, the radial and the tangential spatial resolution are adversely worsened along the minor and major transverse axis, respectively.

A comparison between the NEMA characterization of the spatial resolution and the De Renzo imaging provides also a better view of the achievable image quality. We considered the CONC prototype with a 20 mm opening. As shown in Figure 6, De Renzo imaging reveals a good discrimination power of the holes down to 1.8 mm, which is even better than the single point spatial resolution. In fact, from the NEMA evaluation on the CONC system in a 20 mm opened configuration in the ΔE(ext) window regime, we can appreciate a FWHM from 2.04 mm at the center of the FOV to 2.56 and 2.77 mm when the source is radially displaced 5 and 10mm, respectively (Figure 4I). It is evident that it is possible to provide a good spatial resolution also for distributed sources in an oval configuration, encouraging the pioneering idea of shape-adaptability for plant PET cameras.

The miniaturization of the system by using smaller section crystals allows to obtain a potential competitive spatial resolution of approximately 1 mm. We report similar effects to the axial, tangential and radial spatial resolutions in the CONC and MINI designs, due to the oval-shaped FOV. Figure 5I, in addition, reveals that the contribution of the crystal length to the spatial resolution is negligible with respect to other systematic sources. Such a compact design is in fact affected by cracks between PET heads and a significant DOI error, which need to be modeled with a proper image reconstruction. It may be mandatory therefore to include the Point Spread Function calculation in the OSEM algorithm in order to have a more precise estimation of the spatial resolution, which is expected to reach a sub-millimetric level (D'Ascenzo et al., 2018). The MINI design is conceived for the imaging of small sprouts, with fast portability to the greenhouse, and has a FOV significantly smaller than other PET systems. This is not a limitation of the system. The modular structure allows in fact to extend the FOV as desired.

It is evident that the smaller crystal pitch is preferable, in order to achieve a competitive spatial resolution. However, the number of readout channels of the system increases together with the readout complexity and the related dead time. This is particularly important when considering the sensitivity and the NECR of the systems. As shown in Figures 4A,B, 5A,B, the peak value of the CONC and MINI system sensitivities is 8% and 1%, respectively. As we verified in the phantom study (Figures 7A,B), the probability of Compton scattering and attenuation in the plant tissue is approximately 4%. In D'Ascenzo et al. (2020), using the sensor technology we based our CONC design, the probability of Compton scatter in a mouse phantom made of PMMA and with a 25 mm diameter and 70 mm length is approximately 8%. It is therefore reasonable, even considering larger or denser plant samples, to extend the energy window of PET imaging to a larger range ΔE(ext) = (50, 750) keV. When using ΔE(ext), the sensitivity of the system has a sizable increase up to a peak value of 41% and 13% in the CONC and MINI systems, respectively. These values are competitive with respect to other plant PET systems, which report a sensitivity between 1.3% (Wang et al., 2014) and 8.7% (Yamaya et al., 2011). The estimated SF confirms our expectations. It increases from 4% when a conservative energy window is used up to 11% and 30% in the CONC and MINI systems, respectively, when ΔE(ext) is used. This shows that a certain level of inter-crystal scattering occurs in the systems even at low activities and generates a large number of random coincidences at high activities (Figures 4C–H, 5C–H), which can be easily suppressed with dedicated coincidence schemes. However, we may note that the spatial resolution of both systems is not affected significantly by the expansion of the energy window.

Even if the sensitivity decreases when the half-cylinders get displaced from each other, its value is never below 10% when ΔE(ext) is used. This implies an expected count rate of up to 40 Mcps. Such high sensitivity plant PET system will therefore require a large bandwidth readout system, which is possible thanks to novel digital technologies (D'Ascenzo et al., 2018, 2020).

Positron escape plays an important role in plant PET imaging, due to the thin and soft plant structures. According to Alexoff et al. (2011), the expected amount of escaped positrons for a simulated plant leaf with a 2 mm thickness is around 13%, while in our simulation we record that only the 0.2% of positrons do not annihilate in the phantom volume. We can address such discrepancy to the fact that we involved in the analysis the stem of our designed scatter phantom, that is 50% thicker than the leaf, consists in the 83% of the entire volume and the source distribution is confined in a 0.5 mm hole along the longitudinal axis for radiotracer injection reasons. It may be therefore reasonable to provide a proper “leaf phantom” in order to quantify the effect of positron escape in plant PET imaging. In literature, Partelová et al. (2016) described how to cast discs imitating plant tissues 0.8 mm thick by using 18F-enriched agar solution. Although that solution returns very thin phantoms already loaded with radiotracer, it is likely to have a not negligible portion of radiotracer directly on the phantom surface, making the phantom not suitable as such for positron escape analysis. However, providing a thin shell to Partelová et al. (2016) leaf phantom may return more reliable results and that can be matter for further works.

Finally, a key result of this study is the definition of a set of new standards for the evaluation of plant PET systems, which can be used in the future in order to compare plant PET scanners in a way, which is more suited to the agronomic perspective. The results in Figures 7A,B suggest that in a plant phantom composed of PLA is to be preferred, in order to carry the characterization procedures proposed in the paper.



5. CONCLUSIONS

As recently noticed, Plant Positron Emission Tomography is an emerging field of research, which requires a strong cross-disciplinary interplay between physics, engineering, mathematics, biology, and agronomy (Mincke et al., 2021). A first result of this study is to determine the method of communication between these disciplines during the design and optimization of a plant PET system, on the basis of a standard assessment strategy. We therefore extended and re-adapted to agronomy the typical procedures of clinical PET design. In particular, the design proposed in our paper is at the basis of the currently ongoing realization of a portable plant PET system.

Beyond these novel methodological aspects, the design study proposed in this paper highlighted the theoretical basis of the technological challenges posed by plant PET, which include high sensitivity and count rate performance, in order to detect the weak signals from the soft and thin plant tissues. In addition, we demonstrated that the compact and shape-adaptable geometry of a plant PET system introduce the problems of DOI error and limited angle availability, which reflects to the uniformity of the spatial resolution in the extendible FOV. These challenges are recently driving new CMOS-based sensor technologies (D'Ascenzo et al., 2017), signal processing methods and dedicated image reconstruction algorithms, which will be instrumental to achieve the required precision for quantitative in-vivo functional measurements in digital agriculture.
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Menthol mint (Mentha arvensis L., Family: Lamiaceae), popularly known as corn mint or Japanese mint, is an important industrial crop that is widely grown for its valued essential oil. Nitrogen (N) is an important macro-nutrient and an essential factor for optimizing the yield and quality of crops. Hence, rapid and accurate estimation of the N content is crucial for nutrient diagnosis in plants and to make precise N fertilizer recommendations. Generally, N concentration is estimated by destructive sampling methods; however, an indirect assessment may be possible based on spectral characteristics. This study aimed to compare the foliar N concentration based on non-destructive (reflectance) and destructive (laboratory analyses) methods in menthol mint. Foliar N concentration was measured through the Kjeldahl method and reflectance by Miniature Leaf Spectrometer C-710 (CID Bio-Science). Using reflectance data, several vegetation indices (VIs), that is, normalized difference red edge (NDRE), red edge normalized difference vegetation index (reNDVI), simple ratio (SR), green–red vegetation index (GRVI), canopy chlorophyll content index (CCCI), photochemical reflectance index (PRI), green chlorophyll index (CIGreen), red edge chlorophyll index (CIRed Edge), canopy chlorophyll index (CCI), normalized pigment chlorophyll ratio index (NPCI), and structure insensitive pigment index (SIPI), were developed to determine the foliar N concentration. The highest correlation (r) between VIs and foliar N concentrations was achieved by NDRE (0.89), followed by reNDVI (0.84), SR (0.83), GRVI (0.78), and CCCI (0.76). Among the VIs, the NDRE index has been found to be the most accurate index that can precisely predict the foliar N concentration (R2 = 0.79, RMSE = 0.18). In summary, the N deficiencies faced by the crop during its growth period can be detected effectively by calculating NDRE and reNDVI, which can be used as indicators for recommending precise management strategies for the application of nitrogenous fertilizers.

Keywords: Mentha arvensis L., foliar nitrogen, spectral reflectance, vegetation index, partial least squares regression


INTRODUCTION

Menthol mint (Mentha arvensis L., Family: Lamiaceae), popularly known as corn mint or Japanese mint, is a short-term (90–110 days) cash crop that is widely grown for its valued essential oil and provides livelihood support to millions of smallholder farmers. India is the principal producer and supplier of mint oil in the world (about 80% global share), followed by China, Brazil, and the United States (Khan et al., 2020). The high demand for menthol mint oil in the global market in the last few years has drastically increased its cultivation capacity, with around 2,50,000 hectares of land being cultivated by nearly 5,00,000 farming families in India (Khan et al., 2020). The economic security of this crop relies on farmers’ prosperity, which can be accomplished by enhancing the productivity of their farms with minimal inputs. Among the various aspects of farm inputs, fertilizers play a vital role in improving the productivity of food and commercial crops. The spatial and temporal variability in soil and nutrient requirements is not uniform even within the same field, which can be attributed to inherent soil properties, peculiar nutrient supply, and versatile crop management practices (Dobermann et al., 1996). Therefore, site-specific nutrient assessment is crucial for sustainable crop production.

Nitrogen (N) is one of the most important macro-nutrients essential for plant growth, development, and quality of the crop (Clevers and Gitelson, 2013; Biswas and Ma, 2016). Plant growth and development is not static but a dynamic process that requires persistent N throughput (Kattge, 2002). N regulates a range of cellular functions, such as growth, absorption, transportation, excretion, etc. Moreover, it is also a major constituent of amino acids that are the building blocks of proteins. In addition, it indirectly helps in the process of photosynthesis via chlorophyll production (Li et al., 2014). On one hand, insufficient N supply to the plants can cause damage to the photosynthesis process, thus resulting in reduced biomass and yield. On the other hand, its excessive use can degrade soil and environmental quality, and hence an appropriate amount of N must be supplied. However, farmers apply excess amounts of nitrogenous fertilizers to their fields to obtain higher yields without knowing its harmful effects on soil and environmental health (Ju et al., 2006). Therefore, continuous monitoring of this key plant characteristic and precise N fertilization (adequate rate and time) are crucial for increasing agricultural productivity while preserving environmental sustainability.

The traditional method for N measurement is tedious and time consuming, and is typically performed by destructive sampling and laboratory analyses, making it difficult to fulfill the challenges of precise crop management in large-scale agricultural fields. In recent years, remote sensing technologies have been established as effective methods for the non-destructive detection of N concentration in several crops, such as rice (Tian et al., 2011; Du et al., 2016; Yang et al., 2016; Sun et al., 2017; Zhou et al., 2018), wheat (Hansen and Schjoerring, 2003; Zhu et al., 2007; Feng et al., 2014; Li et al., 2014; Yao et al., 2015), oilseed rape (Li et al., 2018), cotton (Tarpley et al., 2000), soybean (Song and Wang, 2016), and eucalyptus (Oliveira et al., 2017). It provides comprehensive dimensions of vegetation indices (VIs) consistent with the optical function of biochemical foundations, which have a theoretical advantage over traditional measurements for the detection of N in modern agriculture. Over the years, empirical regression algorithms have been predominantly utilized for the N assessment based on the vegetation spectral signatures in the agronomic context. These methods are the most useful assessment systems that are based on major biophysical and biochemical vegetation characteristics. Regression models evaluate different narrowband VIs using wavelengths primarily in the NIR, red edge, and SWIR regions (Chen et al., 2010; Jay et al., 2017). Studies have shown that N estimation can be related to spectral bands associated with chlorophyll absorption due to the similarity in the region of absorption, as N is predominantly localized in the building blocks of chlorophyll (Baret et al., 2007; Schlemmer et al., 2013). Subsequently, differences in chlorophyll intensities result in substantial spectral variations, particularly in the red-edge region, which is a critical component of the vegetation spectrum (Main et al., 2011). Several reports have shown better retrievals of foliar N when protein-linked absorption bands in the NIR and SWIR regions were brought together with different narrowband VIs (Serrano et al., 2002; Herrmann et al., 2010).

Although N assessments in different crops have been widely reported, only a few efforts have been made in the menthol mint crops (Singh et al., 2019). Therefore, more oriented research is required to develop a precise and robust method intended to estimate plant N status with high consistency and practicability and to determine the N requirement of crops using different sensors. Thus, this study aimed to explore different VIs and assess their relationship with foliar N content in menthol mint crops for precise N fertilizer management.



MATERIALS AND METHODS


Site Description

The field experimentation site (Figure 1) is located in Barabanki, Uttar Pradesh, India (27°03′N, 81°17′E). It is a part of the Indo-Gangetic Plains with a sub-humid climate and sandy loam soil. The study area, Barabanki, has emerged as a major hub for the production of menthol mint in the world, alone contributing to about 60% of the global share. Apart from menthol mint, other major crops cultivated in the district are paddy, wheat, maize, potato, mustard, pigeon pea, okra, chilies, etc. (Khan et al., 2020). In the present investigation, Mentha arvensis cv. Kosi, developed by CSIR-Central Institute of Medicinal and Aromatic Plants, was used to determine the correlation between different VIs and the foliar N concentration based on non-destructive (reflectance) and destructive (laboratory analyses) methods.


[image: image]

FIGURE 1. Location of the experimental site.




Foliar Nitrogen Estimation

For field destructive sampling, to represent the amount of canopy N, the established leaves which are most recent and expanded first below the growing point were collected for the study. In each geo-referenced sampling point, we selected 15–20 leaves for total N analysis in this study. Leaf samples were oven-dried (70°C) and powdered, and were subjected to wet digestion with HNO3 + H2O2 by the Kjeldahl method to assess the N content (Lang, 1958).



Measurements of Leaf Spectral Reflectance Indices

The spectral reflectance in the range of 400–1,000 nm was measured using a C-710 Miniature Leaf Spectrometer (CID Bio-Science) and analyzed using SpectraSnap! software. VIs were extensively utilized to differentiate plant nutrient concentration, and the selection of different VIs used in this study was based on their capacity to retrieve chlorophyll and N content according to the methods described in the literature. The following VIs were measured through reflectance spectra: normalized difference red edge (NDRE), red edge normalized difference vegetation index (reNDVI), simple ratio (SR), green–red vegetation index (GRVI), canopy chlorophyll content index (CCCI), photochemical reflectance index (PRI), green chlorophyll index (CIGreen), red edge chlorophyll index(CIRed Edge), canopy chlorophyll index (CCI), normalized pigment chlorophyll ratio index (NPCI), and structure insensitive pigment index (SIPI) (Table 1).


TABLE 1. Different vegetation indices (VIs) used in this study.

[image: Table 1]


Statistical Analysis and Model Development

The relationship between VIs and foliar N concentration was assessed through Pearson correlations (r) and a test of significance at the level of p ≤ 0.05 in SPSS 20.0. When a significant correlation was present between VIs and foliar N concentration, a linear model was tested for regression analysis. To study the linear relationship between variables, the partial least squares regression (PLSR) model was constructed, and the data were computed using Python 3.7.3. The standard PLSR equation can be expressed as follows:

[image: image]

where y = response variable that represents foliar N,

xi = predictor variable representing spectral data,

βi = the estimated weighted regression coefficient, and

ε = error vector.

Partial least squares regression is the most popular linear model that has applications in a wide range of fields (Kamruzzaman et al., 2012; Zhang et al., 2015; Li et al., 2016, 2018). It is a robust and powerful modeling procedure in comparison to many traditional multivariate regression models (Sun et al., 2017; Li et al., 2018). It can efficiently analyze data including several multi-collinear variables. In the present study, we used N concentration as the dependent variable and VI as an independent variable. The model was performed by the leave-one-out cross-validation procedure to assess the validation of model quality. In this method, all samples excluding one were employed to build a validation model, which was subsequently utilized to predict the rest of the samples. The cross-validation method evaluates the predictive capability of a model and is statistically a more comprehensive method for selecting an appropriate number of components to be retained in the model. The performance of PLSR was measured with the help of the R2 (coefficient of determination) and the RMSE (root-mean-square error), which is calculated as follows:

[image: image]

where Yi = N concentration of the ith sample calculated by the equation,

yi = N concentration analyzed in the lab for “i” sample, and

n = total number of samples.

The precision of the model was considered being more accurate when the R2 value was close to 1 and the RMSE value was close to 0 (Zheng et al., 2018). A detailed methodology adopted in this study for estimating foliar N concentration is shown in Figure 2.
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FIGURE 2. Schematic representation of the methodology adopted in this study.





RESULTS

The performance of different VI (NDRE, reNDVI, SR, GRVI, CCCI, PRI, CIGreen, CIRed Edge, CCI, NPCI, and SIPI) derived from spectral reflectance studies was evaluated for estimating foliar N concentration. It was observed that all the VIs significantly and positively correlated with foliar N concentration (Table 2). In other words, these VIs were good indicators of N concentration in menthol mint plants. Based on the magnitude of Pearson correlation, we categorized the estimates as high (<0.80), medium (0.70–0.80), and low correlation (0.60–0.70) estimates. The highest correlation between VIs and N concentrations was retrieved by NDRE (0.89), followed by reNDVI (0.84) and SR (0.83). Medium correlation with N concentration was shown by the VIs GRVI (0.78), CCCI (0.76), PRI (0.71), CIGreen (0.71), and CIRed Edge (0.71), while a weak correlation was demonstrated by CCI (0.68), NPCI (0.68), and SIPI (0.64).


TABLE 2. Pearson correlation coefficient (r) between vegetation indices (VIs) and foliar nitrogen concentrations (N).
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According to Zheng et al. (2018), lower RMSE and higher R2 values obtained from PLSR analysis indicate better estimation efficiency of the foliar N content. In this context, NDRE index showed a very strong correlation with foliar N concentration (R2 = 0.79, RMSE = 0.18) and provides the most accurate results among all the VIs used in this study (Figure 3). In comparison, reNDVI (R2 = 0.71, RMSE = 0.21), SR (R2 = 0.69, RMSE = 0.22), GRVI (R2 = 0.60, RMSE = 0.25), CCCI (R2 = 0.58, RMSE = 0.26), CIGreen (R2 = 0.51, RMSE = 0.28), PRI (R2 = 0.50, RMSE = 0.28), and CIRed Edge (R2 = 0.50, RMSE = 0.28) also provided good estimations for N concentration. Nevertheless, a weak correlation was observed between foliar N and VIs SIPI (R2 = 0.42, RMSE = 0.30), NPCI (R2 = 0.46, RMSE = 0.29), and CCI (R2 = 0.46, RMSE = 0.29).


[image: image]

FIGURE 3. Relationship between foliar nitrogen concentrations and vegetation indexes: (A) normalized difference red edge (NDRE), (B) red edge normalized difference vegetation index (reNDVI), (C) simple ratio (SR), (D) green-red vegetation index (GRVI), (E) canopy chlorophyll content index (CCCI), (F) green chlorophyll index (CIGreen), (G) photochemical reflectance index (PRI), (H) red edge chlorophyll index (CIRed Edge), (I) canopy chlorophyll index (CCI), (J) normalized pigment chlorophyll ratio index (NPCI), and (K) structure insensitive pigment index (SIPI) in menthol mint.


The association between measured N (Kjeldahl method) and predicted N (model) is shown in Figure 4. The precision and accuracy of the model were found to be very high (R2 = 0.95, RMSE = 0.08), suggesting that predicted N concentration is strongly correlated with measured N concentration. The sensitivity study was also performed using spectral variables to calculate their specific importance toward the reliability of the PLSR model. The outcomes (Figure 5) showed that all the independent variables significantly affected the model output.
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FIGURE 4. Relationship between measured and predicted nitrogen concentrations in menthol mint.
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FIGURE 5. Independent variables with their respective importance values.




DISCUSSION

Fertilizers play a vital role in improving crop yield and productivity. Among them, nitrogenous fertilizers are important to mineral nutrition and significantly affect the biological process of the plant, right from its germination stage till maturity, and thus have a considerable impact on crop yields. Excess amount of N fertilizers not only increases the cost of cultivation, but is also harmful to soil, environment, and human health (Ahmed et al., 2017; Rhezali and Lahlali, 2017). Hence, the accurate estimation of the N requirements of the crop is crucial for optimizing N fertilizer management. Previous studies have shown that N content is strongly correlated with plant photosynthetic activities (Baret et al., 2007; Maathuis, 2009; Schlemmer et al., 2013; Yao et al., 2015). Over the past years, the chlorophyll content of leaves was frequently used as an index for detecting nutrient and N status in plants (Dey et al., 2016). Keeping in view, the key objective of this investigation was to explore a rapid and non-invasive method for estimating foliar N concentration in menthol mint plants. In the present study, destructive foliar N concentration was measured through the Kjeldahl method and spectral reflectance by Miniature Leaf Spectrometer C-710 (CID Bio-Science). Using reflectance data, NDRE, reNDVI, SR, GRVI, CCCI, PRI, CIGreen, CIRed Edge, CCI, NPCI, and SIPI were measured and further used to determine the foliar N concentration. The Pearson correlation analysis showed that all the VIs were significantly and positively correlated to N concentration, signifying that these VIs were good indicators of N concentration in menthol mint plants. The highest correlation (r) between VIs and N concentrations was retrieved by NDRE, followed by reNDVI and SR. The VIs GRVI, CCCI, PRI, CIGreen, and CIRed Edge showed a medium correlation, while VIs CCI, NPCI, and SIPI exhibited a low correlation with N concentration. Similar findings were also reported by previous studies (Oliveira et al., 2017; Shaver et al., 2017).

Following the presence of a significant correlation, the PLSR model was used to evaluate the linear relationship between variables, which revealed that the NDRE vegetation index has a significant correlation with foliar N concentration and provides the most precise results among all the VIs used in this analysis. This is in agreement with the findings of the previous studies (Hansen and Schjoerring, 2003; Li et al., 2014, 2018; Oliveira et al., 2017; Perry et al., 2018; Singh et al., 2019). Studies have shown that NDRE is a better indicator of crop health and is generally found to be sensitive toward the crops having high levels of chlorophyll and nitrogen content (Gitelson et al., 1996; Eitel et al., 2008; Cammarano et al., 2014; Liu et al., 2016). The linear relationship between VIs and foliar N also showed that the VIs based on the reflectance of the red-edge band (i.e., NDRE and reNDVI) had higher R2 values and lower RMSE values, which indicated that VIs based on the reflectance of the red-edge band were more sensitive toward the estimation of foliar N status than the other VIs evaluated in this study. These results are in agreement with the findings of Yu et al. (2013), who found that the red-edge-based VIs were more sensitive to plant N concentration. The reason behind this is some degree of saturation may be appeared due to only red-edge band. Similarly, we also found a strong correlation between NDRE, GRVI, and SR indices and nitrogen content in the menthol mint crops in our preliminary study (Singh et al., 2019). However, a weak correlation between foliar N and VIs was observed for SIPI, NPCI, and CCI. Wu et al. (2008) suggested that SIPI and NPCI appear to quickly saturate at low chlorophyll levels and become insensitive to high chlorophyll content, which might be the reason for a weak correlation between SIPI and NPCI indices and foliar N concentration. Chlorophyll is not only used as an alternate indicator for the estimation of leaf nitrogen content, but is also an indispensable indicator of N deficiency in plants (Cerovic et al., 2012). Moreover, in the present study, the performance of chlorophyll/carotenoid-based index (CCI) in estimating the foliar N concentration was found to be poor among all the VIs; nevertheless, a strong linear relationship between CCI and N concentration was reported by several researchers (Peng et al., 1993; Van den Berg and Perkins, 2004; Pal et al., 2012; Mace and Mills, 2015).

Analyzing the model’s precision is an essential part of developing regression models because it describes how well the model performs in its predictions. In this study, the model precision and accuracy between measured N and predicted N concentration was found to be very high, indicating that the predicted N is strongly correlated with the measured N concentration. The results of the sensitivity analysis of the PLSR model revealed that all the independent variables had a significant impact on the model output.



CONCLUSION

The revolutionary scientific and technological development, particularly in the field of remote sensing, has greatly influenced agricultural practices in the 21st century. Remote sensing techniques have been proved to be a promising method for monitoring health, nutrient evaluation, and yield prediction of crops. Constant monitoring of plant N content might be useful for farmers to expand their farming practices and facilitate real-time observation for site-specific fertilizer management, which would favor novel inventions in the coming years. Hence, the application of excess fertilizers should be reduced to prevent destructive consequences on the environment, which can simultaneously provide supportable benefits to the production capital. It is apparent from this study that NDRE and reNDVI are the most sensitive VIs for the estimation of foliar N concentration in menthol mint plants. This finding suggests that N deficiencies encountered during the growth of the menthol mint crops can be detected by calculating NDRE and reNDVI vegetative indices. In comparison, SR, GRVI, CCCI, CIGreen, PRI, and CIRed Edge indices also provided good estimations, whereas SIPI, NPCI, and CCI indices showed a weak correlation with foliar N concentration. The results of the sensitivity analysis of the PLSR model revealed that all the independent variables had a significant impact on the model output. The model precision and accuracy between measured N and predicted N concentration was found to be very high, indicating that the predicted N is strongly correlated with the measured N concentration. We firmly believe that this information can be used as an indicator for recommending the application of precise amounts of nitrogenous fertilizers.
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