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Editorial on the Research Topic

The Use of Plant Extracts and Essential Oils as Biopesticides

Essential oils (EOs) and plant extracts contain valuable natural products, many of which can be
used in pest and disease control safely due to their ability to degrade in nature (Ni et al., 2021; El
Khetabi et al., 2022). Despite their qualities, biopesticides represent only 5% of the overall pesticide
market (Balog et al., 2017; Kumar et al., 2021; Rakshit et al., 2021). Nevertheless, biopesticides are
experiencing rapid growth in recent years with an average annual growth rate of 9–20%, predicted
to outpace that of chemical pesticides (Balog et al., 2017; Marrone, 2019; Kumar et al., 2021; Rakshit
et al., 2021). Common management practices focus on the application of EOs and plant extract-
based biopesticides without deeply understanding their mode of action (Álvarez-Martínez et al.,
2021). Recent research focusing on pest management using EOs and plant extracts revealed several
mechanisms involved in the insecticidal effects of EOs on targeted organisms (Ni et al., 2021).
Moreover, several reports suggest specific strategies that could help in optimizing application of
EOs and plant extracts as part of integrated pest management programs (de Oliveira, 2021). Apart
from their role in plant development and growth, plant secondary compounds are also essential
in plant resistance to biotic and abiotic stressors, and can be involved in metabolic processes that
control plant tolerance (Yang et al., 2018; Karimi and Meiners, 2021; Ni et al., 2021). However,
EOs and plant extracts are biologically unstable as they are easily destroyed by environmental pH,
oxygen, light, andmoderate temperatures. EOs exhibit poor aqueous solubility and high volatility in
general. Efforts are being made to overcome these challenges. The present Research Topic gathers
together studies that focus on the use of plant extracts and essential oils as biopesticides while
aiming at the same time to shed light on their mode of action on different targeted key agricultural
pest and plant diseases including insects, mites, nematodes, and oomycetes.

Several bioassays of different EOs and plant extracts have been used to demonstrate potential
control of different key insect and mite populations. In one study, the strong ixodicidal and
antifeedant agents included EOs of Thymus zygis, T. vulgaris, and Mentha suaveolens, which were
suggested to be developed as biopesticides to effectively control ticks and insect pests (Valcárcel
et al.). Interestingly, synergistic effects were also observed between these EOs (Valcárcel et al.).
In a large-scale field trial, the application of aqueous extracts of Murraya paniculata, Cassia tora,
Amphineuron opulentum, Tithonia diversifolia, and C. alata equally reduced the population of
the red spider mite, a major tea pest, with a lower impact on natural enemies and increased
the yield of tea plants without lethal consequence for the tea plants or consumers (Deka et al.).
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Furthermore, the larvicidal activity of EOs from five piper species
including Piper aduncum, P. marginatum, P. gaudichaudianum,
P. crassinervium, and P. arboreum against the yellow fever
mosquito Aedes aegypti showed up to a 90% lethality at a
screening concentration of 100 ppm, making these EOs potential
alternatives for control of A. aegypti mosquito larvae (Pereira
Filho et al.). Despite these effects, EO-based products are often
chemically variable, requiring rigorous control of the cultivation
process and an understanding of the regulatory aspects of
the biosynthesis of these phenylpropanoids (Pereira Filho
et al.), especially in developing countries such as sub-Saharan
Africa (SSA) (Uyi et al.). The latter review summarized the
existing insecticidal activity of invasive plants in SSA including
Asteraceae, Solanaceae, Fabaceae, and Euphorbiaceae amongst
others. These plants caused 50–100% mortality against various
insect pests (Uyi et al.). However, using extracts from these
invasive plants as biopesticides in African countries, especially
among resource-poor smallholder farmers and locals, remains
challenging (Stevenson et al., 2017; Uyi et al.).

Unlike studies on insects and mites, very few bioactivity
evaluation bioassays with different EOs and plant extracts
have been carried out on controlling different nematode
populations. Recently the nematicidal potential of Citrus sinensis,
Cymbopogon nardus, and Melaleuca alternifolia has been
reported against the cotton root-knot nematode Meloidogyne
incognita (Kundu et al.). On the other hand, potential
botanical products against plant diseases have been extensively
studied. For example, volatile organic compounds (VOCs) from
soybean plants have been tested against harmful oomycetes,
represented by Phytophthora (Ge et al.). The VOCs, mainly
containing 4-ethylphenol, were simultaneously inoculated with
the causal agent of soybean root rot, P. sojae and the
black shank, P. nicotiana. VOCs inhibited the growth of the
pathogens by destroying their cell membrane (Ge et al.).
These VOCs have potent antifungal activity against other
soil-borne phytopathogenic fungi including Rhizoctonia solani,
Fusarium graminearum, and Gaeumannomyces graminis var
tritici, and four forma specialis of Fusarium oxysporum (Ge
et al.), making it ideal for simultaneously controlling major
soilborne diseases.

The identification of active compounds of EOs and plant
extracts is crucial to study their mode of action and thus develop
effective biopesticide products. Nanotechnology using active
biomolecules represents a potential solution to control the release
of the active ingredient with less product waste. Biochemical and
molecular modes of action of plant extracts and EOs have been
recently investigated. Thymus proximus EO contains carvacrol,
p-cymene, and γ-terpinene, representing 85.9% of the total
oil, and these major constituents are responsible for both the
plant suppressive effect and the insecticidal activity of the EOs
(Zhou et al.). Furthermore, Azadirachtin, a tetranortriterpenoid
derived from the neem seed of the Indian neem tree, have
been reviewed many, many times in the past going back to the
early 1980s for its insecticidal activity (Schmutterer, 2002). In
this Research Topic, the literature review of Kilani-Morakchi
et al. summarized the state of the art on key azadirachtin
insecticidal activities and risk assessment. The effect of T.

zygis, T. vulgaris, and M. suaveolens was mainly due to the
presence of active compounds including piperitenone oxide,
carvacrol, piperitenone, and thymol (Valcárcel et al.). The
major compounds of the EOs from Piper species were identified
and included β-asarone, (E)-anethole, (E)-β-caryophyllene,
γ-terpinene, p-cymene, limonene, α-pinene, and β-pinene
and showed larvicidal activity with mortality between 90 and
100% (Pereira Filho et al.). Phytochemical analyses of EOs of
Origanum compactum tested against Callosobruchus maculatus
showed that the main components were carvacrol and thymol
(38 and 31.5%, respectively) (Aimad et al.). A comprehensive
chemoprofiling of nematicidal action of EOs was performed to
understand their possible interactions with the target sites of
M. incognita, suggesting the most prominent monoterpene was
l-limonene, with a range of 32–98%. In particular, industrially
important Commiphora myrrha, Cymbopogon nardus, Artemisia
absinthium, and Pogostemon cablin contained a higher amount
of furanoeudesm 1,3 diene, geraniol, myrcene, camphor,
and patchoulol, respectively. In silico analysis suggested a
higher binding capacity of geraniol, β-terpineol, citronellal,
l-limonene, and γ-terpinene, to the selected target proteins
(Kundu et al.). Terpenoids which are present in most essential
oils have been reported responsible for their bioactivity (Kundu
et al.). Interestingly, several studies pointed out that synergistic
interactions among terpenoids in EOs can be important
(Tak and Isman, 2015, 2017). Therefore, these biochemical
analyses of EOs and plant extracts will open a new door
to specifically devise efficient and eco-friendly biopesticides
and will help in effectively targeting the plant system
(Werrie et al.).

The present Research Topic provides important updates
on the roles of EOs and plant extracts in pest and disease
management and highlights the chemical compositions
responsible for their mode of action. This Research Topic
contributes to define potential EO and plant extract candidates,
which can be implemented in eco-friendly and sustainable
management strategies. Moreover, plants are an important
source of biomolecules, which are essential for fighting against
economically devastating pests and diseases, and are also listed
in this Research Topic. As such, it contributes to advancing
the development of sustainable strategies for pest and disease
management of food crops. However, there is a big disconnect
between academic studies on insecticidal activity of plant
metabolites and production of commercial bioinsecticides.
Many such compounds are touted as potential biopesticides,
but very few meet all the necessary criteria to be produced at
scale for commercial use (Isman, 2017, 2020). Finally, besides
providing an update on the state of the art of biopesticide
research, the current Research Topic offers a perspective on
future research needs and priorities. Emerging areas of research
related to biopesticides include investigating (i) biopesticides’
roles and function in plant metabolism and (ii) novel biopesticide
management strategies to address biopesticide waste such as that
of nanotechnology. Biopesticides and related products should be
evaluated in a more biological and ecological context to further
enhance the penetration of biopesticides into plant tissues,
thus decreasing the waste and degradation of biopesticides
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and contributing to more sustainable integrated pest
management systems.
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Rajshekhar Puramchatwad2, Jyoti Antil2, Anupama Singh1* , Uma Rao2, Supradip Saha1,
Rajesh Kumar1, Neeraj Patanjali1, Suman Manna1, Anil Kumar3, Sukanta Dash3 and
P. K. Singh1

1 Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India, 2 Division of Nematology,
ICAR-Indian Agricultural Research Institute, New Delhi, India, 3 Division of Design of Experiments, ICAR-Indian Agricultural
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Nematicidal potential of essential oils (EOs) has been widely reported. Terpenoids
present in most of the essential oils have been reported responsible for their bioactivity
though very less is known about their modes of action. In the present study, an
in vitro screening of nine Eos, namely, Citrus sinensis (OEO), Myrtus communis (MTEO),
Eucalyptus citriodora (CEO), Melaleuca alternifolia (TEO), Acorus calamus (AEO),
Commiphora myrrha (MREO), Cymbopogon nardus (CNEO), Artemisia absinthium
(WEO), and Pogostemon cablin (PEO) against Meloidogyne incognita revealed OEO,
CNEO, and TEO as most effective with LC50 39.37, 43.22, and 76.28 µg ml−1

respectively. EOs had varying compositions of mono- and sesquiterpenes determined
by gas chromatography-mass spectrometry (GC-MS) analysis. The in silico molecular
interactions screening of major EO constituents and the seven selected target proteins
of the nematode indicated highest binding affinity of geraniol-ODR1 (odorant response
gene 1) complex (1G = -36.9 kcal mol−1), due to extensive H-bonding, hydrophobic
and π-alkyl interactions. The relative binding affinity followed the order: geraniol-
ODR1 > β-terpineol-ODR1 > citronellal-ODR1 > l-limonene-ODR1 > γ-terpinene-
ODR1. Taken together, the cumulative in vitro and computational bioefficacy analysis
related to the chemoprofiles of EOs provides useful leads on harnessing the potential
of EOs as bionematicides. The insight on biochemical ligand–target protein interactions
described in the present work will be helpful in logical selection of biomolecules and
essential oils for development of practically viable bionematicidal products.

Keywords: volatile oils, gas chromatography-mass spectrometry analysis, Meloidogyne incognita, molecular
docking, odorant response gene 1

INTRODUCTION

Root knot nematodes, pose a major challenge to the global pest management programs due to
devastating crop losses caused by these organisms (Sidhu et al., 2017). Among the root knot
nematodes, Meloidogyne incognita is most abundant in tropical soils, barely sparing any crop
family, and the most challenging part is to control its population below economic damage levels
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(Collange et al., 2011; de Freitas Silva et al., 2020). Synthetic
recommended nematicides like carbofuran, fluopyram owing
to their associated detrimental effects on the environment,
non-target organisms besides phytotoxicity, necessitate safer
approaches for nematode management in cropping systems
(Westphal, 2011; Jones et al., 2017). To develop ecofriendly
alternatives, a wide spectrum of plant metabolites with
nematostatic and nematicidal actions has extensively been
reported (Atolani and Fabiyi, 2020).

Phytochemicals have been extensively reported as potential
sources of bioactive ingredients for the development of natural
nematicides (Oka, 2001). Long-chain hydrocarbons, sulfur
compounds, alkenes, furans, acetogenins, phenolics, saponins,
etc., have been reported to be effective against various
phytoparasitic nematodes (Aissani et al., 2018). Most of the
phytochemicals have served as models for the identification of a
lead molecule with potential commercial applications (Cantrell
et al., 2012). Volatile organic compounds of botanical origin,
most commonly found in essential oils, have particularly been
recognized as highly effective against M. incognita (Aissani et al.,
2015; Silva et al., 2018; Pedroso et al., 2019).

Plant essential oils (EOs) are complex mixtures of terpenoids
and their oxygenated derivatives, produced by isoprenoid
pathways (Tetali, 2019). Only∼10% of the reported plant species
produce EOs (Kalemba and Kunicka, 2003). Stored in secretory
glands in epidermic cells, secretory hair, glandular trichomes,
EOs play a key role in plant defense against biotic stresses (Bakkali
et al., 2008). Known for their bioactive potential against diverse
agriculturally important pests, EOs in numerous reports have
been mentioned as very effective against M. incognita (Caboni
et al., 2013). EOs of Acorus calamus and Pogostemon cablin have
been tested for nematicidal activities (Perrett and Whitfield, 1995;
Lee et al., 2009). EO from Eucalyptus citriodora was found highly
toxic toM. incognita at 500 µl ml−1 by Pandey et al. (2000).Citrus
sinensis EO was reported effective against the phytonematodes,
M. incognita, Pratylenchus vulnus, and Xiphinema index (Avato
et al., 2017). Similarly, EO of Myrtus communis was reported to
kill 100% ofM. incognita juveniles at 4,000 µl ml−1 concentration
(Ardakani et al., 2013). Another study reported that EO of
Melaleuca alternifolia was highly active against the larvae of
Anisakis simplex at a concentration of 7 µl mL−1 (Andrés et al.,
2012). The EO of Cymbopogon nardus tested against M. incognita
exhibited moderate effectiveness in a study reported by Sinha
et al. (2006). Similarly, the toxicity of Artemisia absinthium
EO has been documented against M. incognita on the tomato
plant (Amora et al., 2017). Promising nematicidal action of
sesquiterpenes rich in the EO of Commiphora myrrha against
juveniles of M. incognita was reported by Kong et al. (2006) and
Ardakani et al. (2013).

A review of literature clearly showed that EO bioactivity
evaluation against nematodes largely remained restricted so far to
the evaluation of EOs against different plant parasitic nematodes.
Emphasis on the correlation of their anti-nemic activity
with chemical compositions and mechanism of interaction at
molecular level with the possible target sites of action has
remained lacking. Therefore, the present study was performed
to characterize the chemical composition of the selected EOs,

evaluate their bio-efficacy in vitro against M. incognita, and
subject the most effective EOs to in silico analysis for a likely mode
of action, using molecular docking and modeling approach.

MATERIALS AND METHODS

Essential Oils
Commercially available EOs (99% purity) of different plants,
namely, OEO (Citrus sinensis (L.) Osbeck; family Rutaceae,
orange essential oil), MTEO (Myrtus communis L.; family
Myrtaceae, myrtle essential oil), CEO (Eucalyptus citriodora
L.; family Myrtaceae, citriodora essential oil), TEO (Melaleuca
alternifolia L.; family Myrtaceae, tea tree oil), AEO (Acorus
calamus L.; family Acoraceae, calamus essential oil), MREO
[Commiphora myrrha (Nees) Engl; family Burseraceae, myrrh
essential oil], CNEO (Cymbopogon nardus L. Rendle.; family
Poaceae, citronella oil), WEO (Artemisia absinthium L.; family
Asteraceae, wormwood essential oil), and PEO [Pogostemon
cablin (Blanco) Benth.; family Lamiaceae, patchouli essential
oil] were purchased from CDH Fine Chemicals (New Delhi,
India) and Merck R© (New Delhi, India) and used without
further purification.

Chemicals and Reagents
All the solvents used were of AR grade, purchased from Merck R©

(New Delhi, India). Surfactants, Atlas G5002 and Triton X-
100 were procured from Croda India Company Pvt. Ltd. (Navi
Mumbai, India) and Loba Chemie Pvt., Ltd. (Mumbai, India),
respectively. For GC-MS analysis, helium (He) gas of high purity
(99%) was used.

Gas Chromatography-Mass
Spectrometry Analysis
Volatile constituents of EOs were analyzed in GC-MS in a
7890A GC instrument (Agilent Technologies R©, United States)
equipped with an HP-5MS column (30 m × 0.25 µm;/0.25 µm,
Agilent Co., United States) as stationary phase, which was directly
connected to a triple axis HED-EM 5975C mass spectrometer
(Agilent Co., United States). The injection volume was 1 µl with
flow mode in split control. Helium was used as carrier gas at a
head pressure of 10 psi, and flow was set at 1 ml min−1. The
GC-MS condition was programmed with the oven temperature
initially held at 40◦C for 1 min, thereafter increased with a
gradient of 3◦C min−1, until the temperature reached to 120◦C
and held constant for 2 min. The temperature was raised again
with a gradient of 5◦C min−1 up to 220◦C and held constant
for 1 min and finally raised to 280◦C with an increment of
4◦C min−1. The total run time of the analysis was 65 min.
The MS acquisition parameters were ion source temperature
180◦C, electron ionization 70 eV, full scan mode (50–550 AMU),
transfer line temperature 280◦C, solvent delay 3 min, and E.M
voltage 1,380 V. Compounds were identified by matching their
mass spectra and fragmentation pattern using NIST (National
Institute of Standards and Technologies) Mass Spectra Library.
Further rentention indices (RI) have been calculated following
Kovats (1978):
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TABLE 1 | Target sequences screened for in silico nematicidal activity.

Receptor Amino Acid Seq Source

Cytochrome c
oxidase subunit 1

LVTKSVTHKNIGFIYLFFSFWSGLMGLSLSMLLRMDLMKSGMVIGDGQLYNVILTSHALVMIFFMVMPG
LIGGFGNFFFPILINCIDLFLPRVNNMSYWFLPGSLILLMFSLFMDKGSGTGWTLYPPLMI
DGQPGRSTDLVIFSLHFSGISSISSGINFLSTCHEMRLEVKTLEIMSLFVWCLIITVFLLVLSLPVLASGITMGLSDRN
FNTGFFDSNMGGNILMFQHLFWFFGHPEVYVLIAPAFGLVSMVMVLLSSKKDLYGRK
GMILAIMSIGFIGCLVWGHHMFTVGMDHDSRAYFSSATMIIAIPTGMKIFSWMMTLYGSKLNWNYLIL
WIMGFIFMFTVGGLSGLILSNAGLDIFLHDTYYVVAHFHYVLSMGAVFGIFLGFFFSYGFMFGLMMNSVLVK
SFFYIFFLGVNLTFFPMHFSGLQGQPRKYMSYSSDYLFWQMFASIGS
LLSLFSIFLLIYLILESMIIFRLLIFDLFSFSMVSLNVNNYFHTNLDLSMIWLK

NCBI GenBank

AChE MRKRRRKTTAFSINTSELLRLYFKFSSHSCLTFIFCCFFCLIVYCSSVHGRSSPVALTDVLIQTTLGKIIGFKQK
FDGKSVHTFLGVPYAKSPTGSGRFGLPEMIEPWEGEFRADKPARTCFFSRDTMFPDFPGAEMWNPPNDIDEDCLAMNIW
VPEHHDGTVLVWIYGGGFYSGSPSLDLYDGRVLAVQERAVVININYRLGPFGFLYFGDD
TSVPGNMGLQDQQMALKWIHEHIAHFGGDPRRVTLFGESAGSASAMAHMFADG
SYSLFSRIIAQSGSIINNWATKPKASILQISLQLAHHLNCSNGNN
STKAMQNIVECIRRVPTSIIQRAGDAVSQSLSLPMDFAFVPIDEDTHFFRGNV
FDKLRRKNFKRDVSILVGTVRDEGTYWLPYCLQKNGFGFNHTISPEDHINQALISETDYTKAFDAFLPYFGN
SNLVRHALMHAYSHLPTEKQEQRWRDGVARF
LGDYFFTCDSIEFADIVSDELYGSVYSFYFTRRSSANPWPQWMGAMHGYEIEYVFGLPLRSPHLYDPSELELEISFSTKIMEF
WGHFARTGEPVEFWPKYNRITRKSLVLSEEIATGTSHRIYVDVHGKLCRLLEEAQAVAGITGEQRSRICPDGRATTVNYGQE
ISMEDVKEEMQLNRGISGINRIPSIKIYISLIILSLALLRSPEISFLYSSFIFK

NCBI GenBank

Hsp90 MSLIINTFYSNKEIFLRELISNSSDALDKIRYQALTDPAQLETGKDLYIKIVPN
KADKTLTIMDTGVGMTKADLVNNLETIAKSGTKAFMEALQAGADISMIGQFGVGFYSAFLVADRVTVTSEHNDDDCHQ
WESSAGGSFIIRNCVDPEMTRGTKITLYLKEDQTDYLEERRIREVVKKHSQFIGYPIKLLVEKERDKEISDDEAEDEKKDVK
KEEEKEEEKEIKKEEGEDKEGEDEDKDKKDGEKKKKTKKIKEKYTE
DEELNKTKPIWTRNPDDITNEEYAEFYKSLSNDWEDHLAVKHLSVEGQLEFR
ALLFVPQRAPFDMFENKKQKNAIKLYVRRVFIMENCEELMPEYLNFIKGVV
DSEDLPLNISREMLQQSKILKVIRKNLVKKCIELFDEIAEDKDNFKKFYEQFSKNLKLGIHEDSVNRKKLAEYL
RYNTSSSGDELVSLKDYVGRMKENQTCIYYITGESKEVVQNSAFVERVKKRGFEVIYMVDPIDE
YCIQQLKEFDGKKLVSVTKEGLELPESEEEKKKFEEDKVKF
EKLCKVIKDILDKKVQKVSVSNRLVSSPCCIVTGEYGWTANMERIMKAQALRDSSTMG
YMASKKNLEINPDHSIIKSLRERIDSDQDDKTAKDLVVLLYETALLTS
GFSLEDPQQHASRIYRMVKLGLDITEEDLEGGEQQPCTSGEPVEKIAGAEEDASRMEEVD

NCBI GenBank

ODR1 MMTGQQSTESFLATLAIYNACYGFCLGSSLTSTGSFASDPNNPAFVANLRGKSFQGIKKFLLPK
RNFQFKGSFGQVNLTSWPAPLQNLAIYTLPSSGGQYSLIYTAISIPSSSCGT
FECFDIQLQTSPNISEDLLWQKQCSNTIPSCIYSGGCSSLVPYFSAGAAIVLVAAAAGIVYTIQRKKRLDVFRVH
WRIGRQQFKVIENKQAKGKATGIGQEGAWSKRRQLHAYALIGTNKAEFIV
LRQMKKIYWDKIELHFIFELKKLNHDNLTTFMGICYNDGDKFYVCHSLVERGTLEDYIHDLD
FQLDNTFRSAFLRDILKGVKYLHKSSIGYHGMLNLQNVLIDSNWVLKLTNFGIGNLLNRAIRREQLQLIELIPLNTYLT
VAPENLIDISYGREYPNGTTIGDIYSMGMVMYHILFRLAPYERTTLSPKEVIDQVRQHNLKPILENTLPEEK
PLVDAMEQCWQKNLDLRPRLRQLAQVVSTVFQASQGNLIDQMRRMNEKHALNLEKLV
TQRNAELAQAREQTERLLNEMLPPSIAAQLKEHKSV
EPRSYDSATVLFCQLVDFSTVLSKFPPDQVIDFLNQVFSTFDTIIRNHDAYKVETTGETYMVAS
GVPNENENRHVFEISEVAMEFREVSYTYKSINFP
DWKLQLRIGYHCGPIAAGVIGIKAPRYCLFGDTVNFASRMQSNAAPNQIQMSESTALLLMGVSKYKLTKRGIVKVKGKER

WormBase
ParaSite Database

ODR3 SCQSEEVREQLSKNKAIEKQLTSDRRAASSIIKLLLLGAGECGKSTVLKQMQILHSNG
FTEEEINERKAVVYSNTVTSMAAILKAMDNVLHMPMDDASKERDRNLIFRAIENGEENLPFTDPIAKALQNLWGDKAVK
KAYEMRSEYQLNDSAKYFLDSVSRIHEPGYRPTEQDILYSRVATTGVVEVKFIIKGNMEFRVFD
VGGQRSERRKWIHCFDNVEAIIFITAISEYDQVLF
EDETTNRMIESMQLFSSICNSSWFLNTAMILFLNKKDLFLEKIQRVNITTCF
PDYEGSQNYEEAVNFIKMKFAELNQHPDKKTIYMHETCATDTN

WormBase
ParaSite Database

Neuropeptide
GPCR

MVSSISLNQQINQIEIENCIELNSVLDQFGDWTLRLDVKFFYSLFYAAIFIVGL
IGNGFLVGTIRRRMTVANVFLMNLAISDLLLCITALPITPVLAFVKRWIFGLALCKLVPLCQGISVLISSY
CLCLIAVDRYRSIVTPLKVPWNIQXAQWLMTLCWTFCIIISSPLFIVQGLQQIVYKNMTFCGEFCTEL
NWPTDFRIKLFYGISLLSIQFLIPTLIMTYCYWKILQKVRQDWLVPTNNSIMSLEQQAQTAI
RKRRVMYVLILMVLIFMGSWMPLTFVNLLRDIGISFLET
QMYFKLLNVXAVAMTSVVSNPLLYFYMSKRXRRALRDDMYWLTNARRQQNQXVGGLLAKF
TPSPSIGLLYKKSLERHILQNATAKYNPYRRGTLADPTTLGREKVLQEMHANCFLLVPL
MPLCVANQQRLATNQREISNNNNINLNFKRQKHPKFVCEA

NCBI GenBank

CLAVATA3/ESR
(CLE)-related
protein

MFTNSIKNLIIYLMPLMVTLMLLSVSFVDAGKKPSGPNPGGNN UNIPROT
Database

Meloidogyne incognita acetyl cholinesterase (AChE), M. incognita heat shock protein 90 (Hsp90), M. incognita odorant response gene-1 (ODR1), and M. incognita
neuropeptide G-protein coupled receptor (nGPCR).
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TABLE 2 | Chemical composition of various EOs as analyzed in GC-MS and content (%)c of constituents.

Compoundsa RIb OEO MTEO CEO TEO AEO MREO CNEO WEO PEO

Monoterpene
hydrocarbons

Thujene 930 nd 0.2 ± 0.1 nd 2.3 ± 0.1 nd nd nd 0.1 ± 0.0 nd

o-Cymene 937 nd nd nd nd nd nd nd 5.1 ± 0.2 nd

α-Pinene 939 1.6 ± 0.1 42.3 ± 1.1 0.1 ± 0.0 3.2 ± 0.2 0.2 ± 0.1 0.1 ± 0.0 nd 2.7 ± 0.2 0.2 ± 0.0

Camphene 954 nd 4.2 ± 1.0 1.0 ± 0.1 nd 0.1 ± 0.0 0.3 ± 0.0 nd nd nd

t-Ocimene 955 0.1 ± 0.0 nd nd nd nd nd nd nd nd

Sabinene 975 0.5 ± 0.1 nd nd nd nd nd nd 5.6 ± 0.3 nd

β-Pinene 979 nd 1.0 ± 0.2 0.2 ± 0.0 1.3 ± 0.1 nd 0.2 ± 0.0 nd 0.3 ± 0.1 0.3 ± 0.0

β-Myrcene 991 2.2 ± 0.2 nd nd 2.3 ± 0.1 0.1 ± 0.0 nd nd 0.2 ± 0.0 nd

Phellandrene 1,003 nd nd nd 0.6 ± 0.0 nd 0.1 ± 0.0 nd nd nd

p-Cymene 1,013 nd nd nd 4.8 ± 0.2 nd nd 0.1 ± 0.0 0.1 ± 0.0 nd

α-Terpinene 1,017 nd nd nd 8.7 ± 0.6 nd nd nd 0.9 ± 0.3 0.2 ± 0.0

l-Limonene 1,029 93.2 ± 2.3 nd nd nd nd nd 5.7 ± 0.5 nd nd

δ-3-Carene 1,033 0.4 ± 0.1 1.9 ± 0.5 nd nd nd nd nd nd nd

β-Ocimene 1,051 nd nd nd nd nd 0.2 ± 0.0 nd 0.4 ± 0.0 nd

γ-Terpinene 1,060 nd nd nd 17.5 ± 1.1 nd nd nd 1.1 ± 0.2 nd

α-Terpinolene 1,089 nd nd nd 2.8 ± 0.3 nd nd nd 1.1 ± 0.2 nd

Oxygenated
monoterpenes

Fenchone 1,008 nd nd 2.3 ± 0.3 nd 0.1 ± 0.0 nd nd nd nd

1,8-Cineole 1,035 nd 30.3 ± 1.3 nd 3.1 ± 0.4 nd nd nd 10.6 ± 0.5 nd

Limonene oxide 1,087 0.2 ± 0.0 nd nd nd nd nd nd nd nd

Linalool 1,089 0.4 ± 0.1 7.6 ± 0.9 nd nd 0.2 ± 0.0 1.7 ± 0.3 0.8 ± 0.2 6.4 ± 0.4 nd

Eucalyptol 1,093 nd nd 0.2 ± 0.0 nd nd nd nd nd nd

p-Menth-8-en-2-ol 1,090 nd nd nd 3.2 ± 0.5 nd nd nd nd nd

t-Thujone 1,102 nd nd nd nd nd nd nd 0.3 ± 0.0 nd

Pulegol 1,116 nd nd nd nd nd nd 0.1 ± 0.0 nd nd

Camphor 1,146 nd nd nd nd nd nd nd 3.8 ± 0.5 nd

Citronellal 1,148 0.1 ± 0.0 nd 81.9 ± 1.1 nd nd nd 31.5 ± 1.1 nd nd

Isopulegol 1,150 nd nd nd nd nd nd 1.0 ± 0.1 nd nd

β-Terpineol 1,163 nd nd nd 35.7 ± 1.2 nd nd nd 16.2 ± 0.9 nd

Borneol 1,169 nd nd nd nd 0.1 ± 0.0 nd nd 0.5 ± 0.1 nd

4-Caranol 1,185 nd nd nd nd nd nd nd 0.3 ± 0.0 nd

Decanal 1,202 0.2 ± 0.0 nd nd nd nd nd nd nd nd

Citronellol 1,226 nd nd 5.8 ± 0.7 nd nd nd 9.6 ± 0.3 nd nd

Geraniol 1,231 nd nd nd nd nd nd 30.6 ± 1.3 0.6 ± 0.1 nd

Citral 1,236 nd nd 0.1 ± 0.0 nd nd nd nd nd nd

Neral 1,240 nd nd nd nd nd nd 0.5 ± nd nd

Linalyl acetate 1,257 nd 6.6 ± 0.5 nd nd nd nd nd nd nd

Geranial 1,270 nd nd nd nd nd nd 0.7 ± nd nd

Borneol acetate 1,289 nd nd nd nd nd nd nd 26.6 ± 1.7 nd

Neryl acetate 1,362 nd nd nd nd nd nd 2.1 ± 0.2 0.7 ± 0.1 nd

Geranyl acetate 1,383 nd nd nd nd 0.1 ± 0.0 nd nd 0.2 ± 0.0 nd

Thymol 1,470 nd nd nd nd nd nd nd 0.3 ± 0.0 nd

Sesquiterpene
hydrocarbon

δ-Elemene 1,343 nd nd nd nd nd 2.1 ± 0.2 nd 2.0 ± 0.3 nd

α-Cubebene 1,348 nd nd nd nd 0.1 ± 0.0 nd nd nd nd

α-Copaene 1,377 nd nd nd 0.1 ± 0.0 nd 0.2 ± 0.0 nd nd nd

β-Patchoulene 1,382 nd nd nd nd nd nd nd nd 5.8 ± 0.5

β-Elemene 1,389 nd nd nd nd nd 4.8 ± 0.7 3.3 ± 0.1 nd 2.6 ± 0.1

α-Gurjunene 1,410 nd nd nd 2.1 ± 0.1 nd nd nd nd 0.1 ± 0.0

(Continued)
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TABLE 2 | Continued

Compoundsa RIb OEO MTEO CEO TEO AEO MREO CNEO WEO PEO

β-Caryophyllene 1,419 nd nd 0.8 ± 0.1 0.3 ± 0.0 2.4 ± 0.3 0.5 ± 0.1 nd 8.2 ± 1.0 6.9 ± 0.5

α-Guaiene 1,430 nd nd nd nd nd nd nd 0.1 ± 0.0 40.6 ± 1.3

α-Bergamotene 1,436 nd nd nd nd nd 0.4 ± 0.0 nd nd nd

Aromadendrene 1,443 nd nd nd 1.0 ± 0.1 nd nd 1.4 ± 0.1 nd nd

α-Humulene 1,455 nd 1.9 ± 0.3 nd nd nd 0.3 ± 0.0 nd nd nd

Farnesene 1,457 nd nd nd nd nd nd nd 0.1 ± 0.0 nd

α-Patchoulene 1,460 nd nd nd nd nd nd nd nd 10.7 ± 0.5

Neoisolongifolene 1,462 nd nd nd nd nd nd nd nd 1.0 ± 0.1

Alloaromadendrene 1,466 nd nd nd 0.7 ± 0.0 nd nd nd nd 4.4 ± 0.2

β-Salinene 1,473 nd nd nd 0.3 ± 0.0 nd nd nd nd nd

γ-Muurolene 1,477 nd nd nd 0.4 ± 0.1 1.2 ± 0.2 nd 0.3 ± 0.0 nd nd

Germacrene D 1,485 nd nd nd nd nd 1.2 ± 0.1 1.4 ± 0.2 nd nd

Epi-bicyclophellandrene 1,489 nd nd nd 0.4 ± 0.1 nd nd nd nd nd

Aciphyllene 1,492 nd nd nd nd nd nd nd nd 2.8 ± 0.5

α-Bulnesene 1,498 nd nd nd nd nd nd nd nd 14.6 ± 0.9

δ-Cadinene 1,507 nd nd nd 1.6 ± 0.2 nd nd nd nd nd

Curcerene 1,511 nd nd nd nd nd 23.9 ± 2.0 nd nd nd

α-Panasinsene 1,519 nd nd nd 0.2 ± 0.0 nd nd nd nd nd

Sesquiphellandrene 1,523 nd nd nd 0.1 ± 0.0 nd nd nd nd nd

γ-Cadinene 1,526 nd nd nd nd nd 0.3 ± 0.0 1.7 ± 0.2 nd nd

α-Bisabolene 1,539 nd nd 0.1 ± 0.0 nd nd nd nd nd nd

α-Calacorene 1,547 nd nd nd nd nd 0.8 ± 0.1 nd nd nd

Oxygenated
sesquiterpene

Methyl eugenol 1,401 nd nd nd nd 0.1 ± 0.0 nd 1.1 ± 0.1 nd nd

Methyl isoeugenol 1,455 nd nd nd nd 3.1 ± 0.2 nd nd nd nd

Elemol 1,550 nd nd nd nd nd nd 3.3 ± 0.5 nd nd

Spathulenol 1,561 nd nd nd nd 1.7 ± 0.1 nd nd nd nd

Caryophyllene oxide 1,583 nd nd 0.4 ± 0.0 nd 1.4 ± 0.1 0.4 ± 0.0 nd 0.2 ± 0.0 0.2 ± 0.0

Viridiforol 1,588 nd nd nd 0.3 ± 0.1 nd 0.2 ± 0.0 nd nd nd

β-Asarone 1,622 nd nd nd nd 85.4 ± 1.1 nd nd nd nd

Cadinol 1,645 nd nd nd nd nd 0.9 ± 0.1 0.6 ± 0.1 nd nd

γ-Eudesmol 1,625 nd nd nd nd nd 0.2 ± 0.1 nd nd nd

β-Cudesmol 1,649 nd nd nd 0.2 ± 0.0 nd 1.1 ± 0.1 nd nd nd

Patchoulol 1,668 nd nd nd nd nd nd nd nd 6.7 ± 0.3

Elemol acetate 1,674 nd nd nd nd nd 1.2 ± 0.2 nd nd nd

α-Bisabolol 1,678 nd nd nd nd nd 0.2 ± 0.0 nd nd nd

α-Asarone 1,679 nd nd nd nd 1.9 ± 0.3 nd nd nd nd

Farnesol 1,706 nd nd 0.3 ± 0.0 nd nd nd nd 3.0 ± 0.2 nd

Guaiol acetate 1,721 nd nd nd 0.1 ± 0.0 nd nd nd nd nd

Furanoeudesm-1,3-
diene

2,091 nd nd nd nd nd 41.9 ± 2.4 nd nd nd

Others

2,6-Dimethyl-5-
heptenal

nd nd 0.2 ± 0.0 nd nd nd nd Nd nd

4,8-Dimethyl-3,7-non-
adienal

nd nd 0.1 ± 0.0 nd nd nd nd Nd nd

aEOs, essential oils; OEO: Citrus sinensis (OEO); Myrtus communis (MTEO), Eucalyptus citriodora (CEO), Melaleuca alternifolia (TEO), Acorus calamus (AEO), Commiphora
myrrha (MREO), Cymbopogon nardus (CNEO), Artemisia absinthium (WEO), and Pogostemon cablin (PEO); compounds are listed in order of elution from a HP-5MS
capillary column. Identification performed by comparison of mass spectra with the corresponding data in NIST library with respect to total ion chromatogram as well as
retention indices, calculated for alkanes C9 to C24 followed by comparison with the Adams (2007) report.
bRetention indices on the HP-5MS capillary column.
cMean value of three replicates calculated from gas chromatography-mass spectrometry (GC-MS) areas, nd, not detected respective data of NIST and Willey (30: 70)
libraries in total ion current (TIC) and the literature, as well as retention indices as calculated according to Kovats (1978), for alkanes C 9 to C 24 compared with those
reported by Adams.
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FIGURE 1 | Mass fragmentation pattern of (A) l-limonene, (B) citronellal, (C) and β-terpineol.

RI = 100 ∗ n + [log(RTcompound - v) - log(RT - v)]/[log(RTlarger

alkane - v) - log(RTsmalleralkane - v)]
where n = the number of C in the smaller alkane, RTcompound = the
retention time of the compound, v = the column void time,
RTlarger alkane = the retention time of the larger alkane, and
RTsmaller alkane = the retention time of the smaller alkane.

Nematicidal Assay
Collection of Nematodes
Nematode culture was maintained on infected tomato plants (var.
Pusa Ruby) under greenhouse conditions. Second instar juveniles

(J2s) of M. incognita were collected from roots of 21-day-old
infected tomato seedlings. Nematode-infested soil was screened
through water screening method following Cobb’s sieving and
decanting technique (Cobb, 1918). Further, nematode egg masses
were picked up from the sterilized infected roots of tomato
seedlings, transferred to fresh distilled water in Petri plates, and
allowed to hatch under ambient condition of 27 ± 1◦C for
5 days. The hatched nematode juveniles travel through soft wet
tissue placed on the wire of the Petri plate on the surface water
(Julio et al., 2017). Nematode J2s suspensions were combined and
counted under light microscope.
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TABLE 3 | Chemical composition, number of compounds, group-wise classification of EO constituents.

Classification OEO MTEO CEO TEO AEO MREO CNEO WEO PEO

Total identified composition (%) 98.9 96.0 93.5 93.3 98.2 83.2 95.8 97.7 97.1

Number of identified compounds 10 9 14 26 16 24 19 29 15

Total monoterpene constituents (%) 98.9 94.1 91.6 85.5 0.9 2.6 82.7 84.1 0.7

Total sesquiterpene constituents (%) − 1.9 1.6 7.8 97.3 80.6 13.1 13.6 96.4

Total hydrocarbons 98.0 51.5 2.2 50.7 4.1 35.4 13.9 28.0 90.2

Total oxygenated compounds 0.9 44.5 91.0 42.6 94.1 47.8 81.9 69.7 6.9

EOs, Essential oils; OEO: Citrus sinensis (OEO), Myrtus communis (MTEO), Eucalyptus citriodora (CEO), Melaleuca alternifolia (TEO), Acorus calamus (AEO), Commiphora
myrrha (MREO), Cymbopogon nardus (CNEO), Artemisia absinthium (WEO), and Pogostemon cablin (PEO).

Preparation of Essential Oil Emulsions
Primary stock emulsions (10,000 µg ml−1) of all EOs except PEO
were prepared using Atlas G5002 surfactant (2% w/w). In the
case of PEO, Triton X-100 (2% w/w) was used. Each primary
stock emulsion was diluted serially with surfactant solution to
prepare secondary test emulsions of varying strengths (1,000–
10 µg ml−1).

Nematicidal Activity
Nematicidal assay was conducted under in vitro condition to
assess the activity of the EOs against M. incognita following a
known method with slight modifications (Kundu et al., 2016).
Treatments comprised of nine Eos, namely, OEO, MTEO, CEO,
TEO, AEO, MREO, CNEO, WEO, and PEO. Aqueous suspension
(1 µl) containing 25 J2s of M. incognita was added to each
well of multiwell plates (15.6-mm diameter), each containing
EO emulsion (2 ml) of a particular test strength (1,000–10 µg
ml−1). Surfactant solutions used to dissolve EOs were taken as
corresponding negative controls. Each treatment was replicated
thrice. Multiwell plates were incubated at 27± 1◦C and examined
using a stereoscopic microscope at 24, 48, and 72-h intervals.
The numbers of dead vs alive juveniles in each treatment
was recorded. Motionless nematodes with straight bodies were

TABLE 4 | LC50 and LC90 values (µg ml−1) of EOs against M. incognita,
calculated for three exposure periods in test solutions.

*EOs **LC50 (µ g ml−1) ***LC90 (µ g ml−1)

24 h 48 h 72 h 24 h 48 h 72 h

OEO 353.20 79.35 39.37 921.63 556.96 231.70

MTEO >1,000 932.65 879.40 >1,000 >1,000 >1,000

CEO 746.48 330.41 124.50 >1,000 >1,000 987.42

TEO 404.13 103.64 76.28 >1,000 963.90 943.17

AEO 524.45 90.11 85.23 >1,000 353.21 310.92

MREO >1,000 >1,000 >1,000 >1,000 >1,000 >1,000

CNEO 325.41 87.27 43.22 912.57 676.28 278.05

WEO >1,000 937.52 734.72 >1,000 >1,000 >1,000

PEO >1,000 387.77 290.87 − >1,000 >1,000

*EOs, essential oils; OEO: Citrus sinensis (OEO), Myrtus communis (MTEO),
Eucalyptus Citriodora (CEO), Melaleuca alternifolia (TEO), Acorus calamus (AEO),
Commiphora myrrha (MREO), Cymbopogon nardus (CNEO), Artemisia absinthium
(WEO), and Pogostemon cablin (PEO). **LC50 (µg mL−1): Lethal concentration
at 50% mortality of nematodes. ***LC90 (µg mL−1): Lethal concentration at 90%
mortality of nematodes.

counted. The revival test was done as described by Choi et al.
(2007). Briefly, the motionless nematodes were teased with a
needle followed by transfer to fresh wells containing deionized
water. One drop of sodium hydroxide (1M) solution was added
to check any movement. Mortality (%) and corrected mortality
(%) of J2s was calculated considering the mortality of juveniles in
negative control.

Molecular Docking and Simulation
Based on the results of in vitro nematicidal assay and GC-MS
analysis, major volatile constituents of OEO, CNEO, and TEO
were selected out of nine EOs, for in silico ligand target protein
interaction analysis.

Selection of Protein
Seven target proteins, namely, cytochrome c oxidase subunit
1, AChE, Hsp90, ODR1, ODR3, neuropeptide GPCR,
CLAVATA3/ESR (CLE)-related protein of M. incognita
were selected as target receptors for the molecular docking
studies. Cytochrome c oxidase subunit 1 is involved in the
oxidative phosphorylation pathway, which is part of the
energy metabolism. AChE regulates synaptic transmission
and locomotion processes. The full functional activity of
Hsp90 is gained in coordination with other co-chaperones,
playing an important role in the folding of newly synthesized
proteins, stabilization and refolding of denatured proteins
during stress. ODR1 and ODR3 regulate chemosensory
functions. Neuropeptide GPCR is associated in the regulation
of movement of the parasite toward (or within) its host.
CLAVATA3/ESR (CLE)-related protein plays an important
role in the differentiation or division of feeding cells (syncytia)
induced in plant roots during infection. (Ref. for each).

Protein Preparation
The hypothetical protein sequences were taken from the NCBI
and UNIPROT database (Table 1). The BLAST servers1,2 were
used to search and annotate the molecular and biological
functions of the query sequences. The NCBI Blast tool and
the PDB database were together used to identify the templates
for modeling the secondary structures of the query sequences.
Further homology modeling of the proteins was carried out using
Modeller v 9.24.

1http://blast.ncbi.nlm.nih.gov
2https://parasite.wormbase.org//Tools/Blast
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TABLE 5 | In silico nematicidal activity of OEO, TEO, and CNEO oil constituents against M. incognita ODR1.

NAME Hbond Hphob VwInt 1 G Heavy_Atoms Log_P LE Relative Percent (>10%) Oil Constituent

Geraniol −7.04 −5.05 −18.7 −36.9 11 2.67 0.80 30.6 CNEO

Linalool −5.08 −5.43 −21.8 −36.2 11 2.67 0.79 <10.0

Geranial −2.51 −4.76 −23.7 −33.1 11 2.88 0.72 <10.0

β-Terpineol −5.61 −4.95 −15.8 −32.7 11 2.50 0.71 35.7 TEO

t-Ocimene 0.00 −5.89 −20.9 −28.9 10 3.48 0.69 <10.0

Neral −3.61 −4.76 −21.0 −31.0 11 2.88 0.67 <10.0

p-Menth-8-en-2-ol −4.95 −5.03 −17.4 −30.4 11 2.36 0.66 <10.0

Pulegol −3.80 −5.01 −17.4 −29.9 11 2.50 0.65 <10.0

2,6-Dimethyl-5-heptenal −2.58 −4.64 −18.5 −26.8 10 2.57 0.64 <10.0

Citronellal −2.66 −4.79 −20.5 −29.3 11 2.96 0.64 31.5 CNEO

Limonene oxide −1.86 −4.30 −15.6 −28.7 11 2.52 0.62 <10.0

l-Limonene 0.00 −4.74 −15.5 −25.7 10 3.31 0.61 93.2 OEO

β-Myrcene 0.00 −5.42 −21.5 −24.6 10 3.48 0.59 <10.0

β-pinene 0.00 −4.49 −14.3 −24.2 10 3.00 0.58 <10.0

β-Pinene 0.00 −4.36 −13.0 −24.1 10 3.00 0.58 <10.0

β-Terpinolene 0.00 −5.20 −18.5 −24.0 10 3.45 0.57 <10.0

γ-Terpinene 0.00 −5.58 −17.0 −24.0 10 3.31 0.57 17.5 TEO

Para-cymene 0.00 −5.46 −17.0 −23.9 10 3.12 0.57 <10.0

4,8-Dimethyl-3,7-non-adienal −5.24 −5.02 −14.2 −28.6 12 3.27 0.57 <10.0

Phellandrene 0.00 −5.43 −16.4 −23.6 10 3.16 0.56 <10.0

α-Terpinene 0.00 −5.18 −18.5 −23.1 10 3.31 0.55 <10.0

Decanal −2.45 −5.13 −19.8 −25.4 11 3.33 0.55 <10.0

Isopulegol −1.84 −5.04 −18.0 −24.5 11 2.36 0.53 <10.0

Sabinene 0.00 −5.11 −17.5 −21.0 10 3.00 0.50 <10.0

δ-Carene 0.00 −5.10 −17.0 −19.8 10 3.00 0.47 <10.0

Citronellol −4.66 −5.27 −18.2 −21.6 11 2.75 0.47 9.6 CNEO

Methyl eugenol 0.00 −5.64 −23.9 −25.4 13 2.43 0.47 <10.0

α-Thujene 0.00 −5.13 −16.3 −19.2 10 3.00 0.46 <10.0

Neryl acetate −1.56 −5.92 −21.4 −26.7 14 3.24 0.45 <10.0

1,8-Cineol −1.16 −4.88 −14.3 −20.1 11 2.74 0.44 <10.0

β-Caryophyllene 0.00 −5.72 −17.1 −26.3 15 4.73 0.42 <10.0

β-Eudesmol −6.84 −5.95 −8.4 −27.7 16 3.92 0.41 <10.0

γ-Cadinene 0.00 −5.60 −19.5 −25.3 15 4.58 0.40 <10.0

Epibicyclosesquiphellandrene 0.00 −5.66 −17.8 −25.2 15 4.58 0.40 <10.0

Sesquiphellandrene 0.00 −7.01 −23.9 −24.2 15 4.89 0.39 <10.0

Germacrene D 0.00 −5.71 −16.6 −23.9 15 4.89 0.38 <10.0

α-Panasinsene 0.00 −5.45 −15.3 −23.4 15 4.56 0.37 <10.0

Cadinol −5.20 −6.03 −10.5 −24.8 16 3.78 0.37 <10.0

β-Selinene 0.00 −5.88 −18.5 −22.9 15 4.73 0.37 <10.0

Allo-aromadendrene 0.00 −5.50 −14.2 −21.2 15 4.27 0.34 <10.0

β-Elemene 0.00 −6.11 −18.0 −21.1 15 4.75 0.34 <10.0

γ-Muurolene 0.00 −5.99 −18.2 −20.5 15 4.58 0.33 <10.0

α-Gurjunene 0.00 −5.43 −15.1 −20.3 15 4.42 0.32 <10.0

α-Copaene 0.00 −5.91 −16.7 −19.2 15 4.27 0.31 <10.0

Viridiflorol 0.00 −5.54 −13.7 −20.1 16 3.47 0.30 <10.0

Guaiol acetate −1.47 −6.28 −18.5 −23.3 19 4.49 0.29 <10.0

Elemol −3.74 −6.28 −12.7 −19.7 16 3.94 0.29 <10.0

δ-Cadinene 0.00 −6.78 −10.1 −16.3 15 4.73 0.26 <10.0

Aromadendrene 0.00 −5.79 −11.9 −15.3 15 4.27 0.24 <10.0
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TABLE 6 | Binding domains in the ODR1 target receptor.

Domain
Name

Position
(Independent
E-value)

Description

1
Guanylate_cyc

549. . .. . .. . .

724 (2.5e-49)
PF00211, Adenylate and
Guanylate cyclase catalytic
domain (Adenylate
cyclase-activating G
protein-coupled receptor
signaling pathway and cyclic
nucleotide biosynthetic
process)

2
PK_Tyr_Ser _Thr

261. . .. . .. . .

479 (1.2e-22)
PF07714, Protein tyrosine and
serine/threonine kinase (The
catalytic domain found in a
number of serine/threonine and
tyrosine-protein kinases is
represented by this entry)

3
HNOBA

498. . .. . .. . .

541 (0.0028)
PF07701, Heme NO binding
associated (This domain is
predicted to function in both
bacteria and animals as a
heme-dependent sensor for
gaseous ligands, and to
transduce various downstream
signals)

Ligand and Receptor Preparation
The molecular structures of the chemical constituents, referred
hereafter as “ligands,” of OEO, CNEO, and TEO were
downloaded as.sdf file from PUBCHEM database3. The ligand
structures were minimized using MM2 forcefield in Chem
Draw Ultra 11.0 software [Cambridge Soft Corp., Cambridge,
MA, United States (2009)] and used for molecular modeling
studies. The ligand molecules were customized for docking using
the Dock prep tool of Autodock Vina. Hydrogen molecules
were added, and the incomplete side chains were replaced
using Dunbrack rotamer library (Dunbrack, 2006). Charges
were computed using ANTECHAMBER. AMBER ff14SB and
Gasteiger charges were allotted to standard residues and to other
residue types, respectively. Similarly, receptor molecules were
prepared using the same tools except that the ANTECHAMBER
was not employed. All the prepared ligand files were saved in the
Mol2 format and the receptor files in the.pdb format.

Molecular Docking Simulation
The customized ligand and receptor molecules were used for
docking in ICM Molsoft v. 2.8.ICM software, which performed
adaptable ligand docking through global optimization of the
energy function (Abagyan et al., 1994). The energy functions
incorporated the internal energy of the ligand in view of the
ECEPP/3 drive field, and van der Waals, hydrogen-holding,
electrostatic and hydrophobic ligand/receptor association terms
pre-ascertained on the lattice for computational proficiency
(Bursulaya et al., 2003). Flexible ligand docking with the ICM
software used Monte Carlo simulations to globally optimize
a set of ligand internal coordinates in the space of grid

3pubchem.ncbi.nlm.nih.gov

potential maps calculated for the protein pocket (Neves et al.,
2012). Discovery Studio v. 4.1 Client was used to study the
docked receptor–ligand interactions. The most favored docking
conformation interactions of ODR1 with geraniol, β-terpineol,
citronellal, l-limonene, and γ-terpinene were analyzed on the
basis of docking score, binding affinity, and interacting residues.
The active site residues were identified, and depictions of all
possible interactions in 3D and 2D poses were prepared using DS
Visualiser v. 4.1.

In order to avoid affinity-based selection and optimization
of larger ligands, the emphasis was given to compounds that
most effectively utilized their atoms. In an attempt to measure
the compound effectiveness, Hopkins et al. (2014) suggested an
estimation of binding affinity of molecule, in terms of ligand
efficiency (LE):

LE =
[−2.303(RT) × logKd]

HA
=
−1G
HA

where, 1G is free-binding energy and HA is the number of
ligand non-hydrogen atoms. LE is related to the amount and
effectiveness of heavy atoms in a molecule toward complex
formation. The average affinity contribution per atom was taken
into consideration instead of considering the affinity of the whole
compound. This enabled measuring the affinity of the corrected
molecules with their size. In drug discovery modules, candidate
molecules with LE values ≥ 0.3 kcal per mole per heavy atom
usually are taken ahead as lead molecule (Hopkins et al., 2014).

Statistical Analysis
The bioassay experiments were done in triplicate. The
significance of the differences between variables was tested
using one-way ANOVA. The means were compared using
Duncan’s multiple range test. Statistical significance was
determined at p < 0.05. Percent mortality data were subjected
to probit analysis using Polo Plus software to determine lethal
concentrations (LC50 and LC90, expressed in µg ml−1).

RESULTS

Essential Oil Composition
The compositions of EOs of OEO, MTEO, CEO, TEO, AEO,
MREO, CNEO, WEO, and PEO were determined by comparing
their mass spectra with data library, corresponding retention
indices, and mass fragmentation patterns. The identified
chemical constituents of the oils are listed in Table 2. The
aromatic profile of most of the EOs showed dominance of one or
two major constituents. Individually, l-limonene (93.2 ± 2.30%)
was found to be most abundant in OEO, along with β-myrcene
(2.2 ± 0.2%), α-pinene (1.6 ± 0.1%), sabinene (0.5 ± 0.1%),
limonene oxide (0.2 ± 0.0%), and decanal (0.2 ± 0.0%).
l-Limonene was confirmed based on its fragmentation pattern
with characteristic daughter ion peaks of m/z 136.2, 108.2, and
71.2, generated due to sequential loss of methyl and ethyl moieties
(Figure 1). Interestingly, OEO was found to contain only
monoterpenes. The monoterpenic constituents of MTEO were
identified as α-pinene (42.3 ± 1.1%), 1,8-cineol (30.3 ± 1.3%),
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TABLE 7 | Molecular interaction details of flexible ligand docking of major oil constituents (the top 5) with the ODR1 receptor.

Constituent Bondbetween atoms Distance Type ofbonding

Geraniol :LYS599:HZ2 - Lig:Geraniol:O1 2.24581 Conventional Hydrogen

:TYR607:HH - Lig:Geraniol:O1 2.07546 Conventional Hydrogen

Lig:Geraniol:H1 -:ASP589:OD1 2.07777 Conventional Hydrogen

:TRP220 - Lig:Geraniol:C9 4.53747 Pi-Alkyl Hydrophobic

:PHE585 - Lig:Geraniol:C10 4.62898 Pi-Alkyl Hydrophobic

:TYR607 - Lig:Geraniol:C8 5.20422 Pi-Alkyl Hydrophobic

β-Terpineol Lig:β-Terpineol:H1 -:ASN340:OD1 2.14644 Conventional Hydrogen

Lig:β-Terpineol:C9 -:ILE389 5.19655 Alkyl Hydrophobic

:TRP220 - Lig:β-Terpineol 5.04265 Pi-Alkyl Hydrobhobic

:TRP220 - Lig:β-Terpineol:C9 4.59553 Pi-Alkyl Hydrobhobic

Citronellal :ASN582:HD22 - Lig:Citronellal:O1 1.86408 Conventional Hydrogen

:ASN582:HA - Lig:Citronellal:O1 2.5931 Carbon Hydrogen

Lig:Citronellal:C8 -:LEU338 5.31917 Alkyl Hydrophobic

Lig:Citronellal:C8 -:ILE389 5.35293 Alkyl Hydrophobic

Lig:Citronellal:C9 -:ILE389 5.26424 Alkyl Hydrophobic

:TRP220 - Lig:Citronellal:C9 5.02254 Pi-Alkyl Hydrobhobic

:PHE585 - Lig:Citronellal:C10 4.31251 Pi-Alkyl Hydrobhobic

l-Limonene :LEU349 - Lig: l-Limonene 5.48522 Alkyl Hydrophobic

:PRO385 - Lig: l-Limonene 4.65347 Alkyl Hydrophobic

Lig: l-Limonene:C10 -:VAL383 4.26576 Alkyl Hydrophobic

Lig: l-Limonene:C10 -:PRO385 3.65949 Alkyl Hydrophobic

Lig: l-Limonene:C4 -:LEU349 4.67353 Alkyl Hydrophobic

Lig: l-Limonene:C4 -:VAL383 4.5661 Alkyl Hydrophobic

:TRP347 - Lig:Limonene 5.44615 Pi-Alkyl Hydrobhobic

γ-Terpinene :PRO534 - Lig:γ-Terpinene 4.26992 Alkyl Hydrophobic

:PRO535 - Lig:γ-Terpinene 5.10312 Alkyl Hydrophobic

:ALA597 - Lig:γ-Terpinene 3.68262 Alkyl Hydrophobic

:ALA597 - Lig:γ-Terpinene:C8 4.33181 Alkyl Hydrophobic

:LYS599 - Lig:γ-Terpinene 5.25154 Alkyl Hydrophobic

:ALA610 - Lig:γ-Terpinene:C9 4.07633 Alkyl Hydrophobic

Lig:γ-Terpinene:C10 -:PRO534 4.0165 Alkyl Hydrophobic

Lig:γ-Terpinene:C10 -:VAL613 4.30711 Alkyl Hydrophobic

Lig:γ-Terpinene:C10 -:PRO614 4.12284 Alkyl Hydrophobic

Lig:γ-Terpinene:C8 -:PRO535 4.64633 Alkyl Hydrophobic

:TYR672 - Lig:γ-Terpinene:C10 5.24394 Pi-Alkyl Hydrobhobic

linalool (7.6 ± 0.9%), and linalyl acetate (6.6 ± 0.5%). GC-
MS analysis of TEO showed several peaks corresponding to 27
mono and sesquiterpenoids, comprising 93.3% of the total oil.
Monoterpenes (43.5%) and their oxygenated derivatives (42.6%)
were found to be the most abundant. Among monoterpenes, β-
terpineol (35.7 ± 1.2%) was identified as the major constituent
followed by γ-terpinene (17.5± 1.1%), α-terpinene (8.7± 0.6%),
p-cymene (4.8 ± 0.2%), α-pinene (3.2 ± 0.2%), p-menth-8-en-2-
ol (3.2± 0.5%), and 1,8-cineol (3.1± 0.4%). Besides, α-gurjunene
(2.1 ± 0.1%) and δ-cadinene (1.6 ± 0.2%) were identified as the
major sesquiterpenes.

Analysis of volatiles of CEO and CNEO revealed the presence
of various terpenes, representing 93.5% and 95.8% of the total
oil composition, respectively. These oils were characterized by
the presence of predominant acyclic monoterpene aldehyde
and citronellal with its respective contents of 81.9 ± 1.1%
and 31.5 ± 1,1%, in two oils. Both CEO and CNEO showed
higher content of oxygenated compounds, in which the former

attributed an appreciably higher content primarily of 91.3%
oxygenated monoterpenes. Similarly, CNEO mainly contained
oxygenated terpenoids (81.9%) and hydrocarbons (13.9%).
Except citronellal, other constituents of CEO were citronellol
(5.8 ± 0.7%) and fenchone (2.3 ± 0.3%), while CNEO
contained geraniol (30.6 ± 1.3%), citronellol (9.6 ± 0.3%),
l-limonene (5.7 ± 0.5%), β-elemene (3.3 ± 0.1%), and neryl
acetate (2.1± 0.2%).

GC-MS analysis of AEO showed identification of 16 mono
and sesquiterpenes, accounting for 98.2% of the total oil.
Oxygenated terpenes were the major constituents (94.1%)
of the oil with the β-asarone being the highest contributor
(85.4 ± 1.1%). Methyl isoeugenol (3.1 ± 0.2%), caryophyllene
(2.4 ± 0.3%), α-asarone (1.9 ± 0.3%), spathulenol (1.7 ± 0.1%),
caryophyllene oxide (1.4± 0.1%), and γ-muurolene (1.2± 0.2%)
were also detected. Sesquiterpene content was found relatively
higher in AEO (3.7%), whereas monoterpene content was
meager (0.4%). Volatile composition of MREO showed
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abundance of furanoeudesm (41.9%) and curcerene (23.9%),
considered as marker components of MREO. Besides these, other
sesquiterpenoids such as β-elemene (4.8%), δ-elemene (2.1%),
germacrene D (1.2%), elemol acetate (1.2%), and β-cudesmol
(1.1%) were also identified.

Total ion chromatogram (TIC) of WEO in GC-MS analysis
exhibited characteristic peaks corresponding to 29 mono-

and sesquiterpenes, contributing 97.7% of the oil. Oxygenated
terpenoids (69.7%) formed the major share of the composition;
borneol acetate (26.6 ± 1.7%) and β-terpineol (16.2 ± 0.9%)
being the most dominant ones. 1,8-Cineol (10.6± 0.5%), linalool
(6.4 ± 0.4%), sabinene (5.6 ± 0.3%), o-cymene (5.1 ± 0.2%),
camphor (3.8 ± 0.5%), and α-pinene (2.7 ± 0.2%) were
other important terpenes identified in WEO. Sesquiterpenoids

FIGURE 2 | ODR1 bound major CNEO oil constituents: (A) 3-D representation of geraniol. (B) 2-D representation of geraniol. (C) 3-D representation of citronellal
and (D) citronellal.

FIGURE 3 | ODR1 bound major TEO oil constituents: (A) 3-D representation of β-terpineol. (B) 2-D representation of β-terpineol. (C) 3-D representation of
γ-terpinene and (D) 2-D representation of γ-terpinene.
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detected in WEO were β-caryophyllene (8.2 ± 1.0%), farnesol
(3.0 ± 0.2%), and δ-elemene (2.0 ± 0.3%). Volatile composition
of PEO showed various peaks in TIC of GC-MS, representing
15 constituents contributing 97.1% of the oil. Sesquiterpene
constituents were highly abundant. Among these, α-guaiene
(40.6± 1.3%) was the major compound followed by α-bulnesene
(14.6 ± 0.9%), α-patchoulene (10.7 ± 0.5%), patchoulol
(6.7 ± 0.3%), and β-patchoulene (5.8 ± 0.5%). A comprehensive
profile of the chemical composition of the EOs, number of
identified compounds, and their group-wise classification is
presented in Table 3, which described the number of compounds
identified along with their content based on functional groups.

Nematicidal Activity of Essential Oils
All the test EOs immobilized more than 50% of juveniles of
M. incognita at different test concentrations. Antinemic activity
of the EOs is depicted in Table 4. CNEO exhibited LC50 of
325.41, 87.27, and 43.22 µg ml−1 concentration after 24, 48, and
72-h exposure, respectively. However, CEO containing a high
amount of citronellal showed moderate activity with an LC50 of
124.50 µg ml−1 after 72 h. OEO rich in l-limonene was found
to exhibit a comparatively higher nematode toxicity with a lethal
concentration LC50 of 353.20 µg ml−1 within 24 h of J2 exposure.
The nematicidal activity of OEO enhanced with the exposure
time, and the highest activity was recorded at an LC50 of 79.35
and 39.37 µg ml−1 after 48 and 72 h, respectively (Table 4).

In this study, TEO and AEO were found effective with an
LC50 of 76.28 and 85.23 µg ml−1 within 72 h, whereas CEO
exhibited an LC50 of 124.50 µg ml−1. MTEO, however, exerted
moderate action with an LC50 of 879.40 µg ml−1. The first three
Eos, i.e., OEO, CNEO, and TEO, with an LC50 (72 h) below
50 µg ml−1 except TEO, were subjected to molecular docking
analysis, to understand their possible interaction with proteins
for nematicidal action.

Molecular Docking Study
Seven receptor proteins (putative target proteins) of M. incognita
were screened against the biomolecules of OEO, CNEO, and
TEO, the three most effective EOs in the present study. Gibb’s
free energy of binding and other docking parameters of the
screened targets are presented in Table 5. Bioactivity of OEO,
TEO, and CNEO against M. incognita J2s was best explained by
the in silico inhibition of the odorant response gene 1 (ODR1).
The binding pocket of the ODR1 allosteric site is composed of 45
amino acid residues. Screening of the compounds present in the
three EOs against the ODR1 gave significantly low binding free
energy values ranging from -36.9 to 15.3 kcal mol−1, suggestive
of formation of stable protein–ligand complexes.

The relative stability of the docked complexes of 49 ligands
(major compounds, >10% present in the OEO, TEO, and CNEO
oils) with the ODR1 was computed in terms of ligand efficiency
(Table 5). It can be seen that the lowest binding energy value for
the geraniol–ODR1 complex (-36.9 kcal mol−1), as depicted in
Table 6 may be attributed to the three conventional H-bonds
with relatively shorter bond distances (∼2 Å). Additionally, it
appeared that the three hydrophobic interactions of π-alkyl
type led to further stabilization of the geraniol–ODR1 complex
(Table 7). Geraniol was bound specifically to the guanylate
cyclase catalytic domain of the ODR1 receptor (Figure 2).

The citronellal–ODR1 complex with two H bonds (one
conventional and one C–H type) and five hydrophobic bonds
(three alkyl and two π-alkyl types) (Figure 2), exhibited 1G-
29.3 kcal mol−1. In this case, the amino acid residues responsible
for the ligand binding interactions belonged to both guanylate
cyclase and tyrosine/serine/threonine kinase catalytic domains.

The β-terpineol–ODR1 complex, emerged as the next
strongest one with -32.7 kcal mol−1 binding energy. One
conventional H bond and three hydrophobic bonds (one alkyl
type and two π-alkyl types) attributed to complex formation

FIGURE 4 | ODR1 bound major OEO oil constituent: (A) 3-D representation of l-limonene and (B) 2-D representation of l-limonene.
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(Figure 3). Here, the specific binding site was tyrosine and
serine/threonine kinase catalytic domain.

l-Limonene, the major constituent (93.2% w/w) in OEO
showed significant inhibition of the ODR1 gene (1G = -
25.7 kcal mol−1). The l-limonene–ODR1 complex exhibited
seven hydrophobic interactions (six alkyl and one π-alkyl type) in
between the protein and the ligand (Figure 4). Apparently, it was
bound to the tyrosine/serine/threonine kinase catalytic domain.

The next major EO constituent showing significantly low free
energy of binding was γ-terpinene (1G = −24 kcal mol−1,
17.5% in TEO). The γ-terpinene–ODR1 complex showed 10
hydrophobic interactions (nine alkyl and one π-alkyl type).
The γ-terpinene molecule bound to the HNOBA and guanylate
cyclase catalytic domains.

Based on the observed relative 1G values of ligand
receptor complexes, l-limonene ranked fourth (geraniol–ODR1
complex > β-terpineol–ODR1 complex > citronellal–ODR1
complex > l-limonene–ODR1 complex > γ-terpinene–ODR1
complex). Inspite of this, the highest observed in vitro
nematicidal activity of the OEO oil with l-limonene could be
possible due to the exceptionally high content of l-limonene
(93.7%). The major constituents in other active EOs was up to
about 36% only (Table 6).

In order to compare the efficiency of smaller ligands with
larger ligands in a non-biased manner, ligand efficiency (LE)
calculated for the 49 phytochemical constituents of the three oils
varied in the range of 0.8–0.24 kcal mol−1 HA−1. Ninety-one
percent of the compounds had an LE above the threshold value of
0.3 kcal mol−1 HA−1, establishing the discovery of natural leads
targeting the ODR1 gene in M. incognita. This is the first report
on the quantitative binding affinity of the EO constituents toward
the ODR1 gene of the root-knot nematode, M. incognita, to the
best of our information.

DISCUSSION

In the present study, we performed comprehensive chemo-
profiling of EOs in order to understand their possible interactions
with the target sites of M. incognita. The previously investigated
reports on OEO suggested the most prominent monoterpene,
l-limonene, with a range of 32–98% (Zhang et al., 2019; Matuka
et al., 2020). Dejam and Farahmand (2017) described MTEO
as primarily composed of monoterpenes such as 1,8-cineol,
α-pinene, and linalool, which was further confirmed in our
study. However, Tunisian MTEO have been reported to be
rich in α-pinene (Jamoussi et al., 2005). In our study, α-
pinene has been found to be a major component of MTEO.
Bioactive terpenic compositions of CEO make it worthy to
study on volatile constituents for diverse biological properties.
Contrastingly, the oil contains a high amount of citronellal,
citronellol, and isopulegol (Singh et al., 2012; Siddique et al.,
2013). An earlier report by Madalosso et al. (2017) and Raymond
et al. (2017) described the volatile composition of TEO rich
in terpinenes, terpinen-4-ol, and methyl eugenol. Our analysis
too revealed that TEO comprised of β-terpineol and terpinene.
Methyl eugenol, however, was not detected. Our findings on AEO

predominantly containing β-asarone have been corroborated by
Deepalakshmi et al. (2016). The present study suggested that
industrially important MREO, CNEO, WEO, and PEO contained
a higher amount of furanoeudesm 1,3 diene, geraniol, myrcene,
camphor, and patchoulol, respectively, as reported previously
(Buré and Sellier, 2004; Nguyen et al., 2018; Kalaiselvi et al., 2019).
Reported variation in chemical profiles of these EOs could be
attributed to the plant sources related to locational, seasonal, and
climatic factors.

Plant EOs have been described as having great potential
in nematode control (Andrés et al., 2012). Oxygenated
monoterpenes particularly aldehydes and alcohols have
particularly been found effective against M. incognita
(Echeverrigaray et al., 2010). A similar trend in activity was
demonstrated in the case of CNEO comprising an abundance of
citronellal and geraniol (Choi et al., 2007). The activity increased
both with increasing concentration of EOs and treatment time.
Literature also confirmed that EOs containing higher amounts
of l-limonene usually showed excellent nematicidal potential
(Duschatzky et al., 2004). The relative order of nematicidal
activity exhibited by the test EOs after a 72-h incubation period,
was OEO > CNEO > TEO > AEO > CEO > PEO > WEO >
MTEO > MREO.

CONCLUSION

The present study employs analytical and molecular modeling
tools to relate the nematicidal activity of potential essential oils
and the interactions of their chemical constituents with the
target site proteins of the organism. Among the nine essential
oils screened against M. incognita in vitro, the orange (OEO)
and citronella (CNEO) oils were identified in the present work
as most effective for immobilization and killing of nematodes.
In silico analysis suggested a higher binding capacity of geraniol,
β-terpineol, citronellal, l-limonene, γ-terpinene, to the selected
target proteins. Molecular docking-based understanding of
the bioactivity of aromatic oils is a novel attempt toward
logic-driven selection of natural materials and discovery of
biopesticidal leads. The present findings will be further confirmed
through wet lab molecular studies and utilized in bionematicide
product development.
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The use of conventional pesticides is debated because of their multiple potential
adverse effects on non-target organisms, human health, pest resistance development
and environmental contaminations. In this setting, this study focused on developing
alternatives, such as trunk-injected essential oil (EO)-based biopesticides. We analysed
the ecophysiology of apple trees (Malus domestica) following the injection of
Cinnamomum cassia and Mentha spicata nanoemulsions in the tree’s vascular system.
Targeted and untargeted volatile organic compounds (VOCs) analyses were performed
on leaf-contained and leaf-emitted VOCs and analysed through dynamic headspace–
gas chromatography–mass spectrometry (DHS-GC-MS) and thermal desorption unit
(TDU)-GC-MS. Our results showed that carvone, as a major constituent of the
M. spicata EO, was contained in the leaves (mean concentrations ranging from 3.39
to 19.7 ng gDW

−1) and emitted at a constant rate of approximately 0.2 ng gDW
−1 h−1.

Trans-cinnamaldehyde, C. cassia’s major component, accumulated in the leaves (mean
concentrations of 83.46 and 350.54 ng gDW

−1) without being emitted. Furthermore, our
results highlighted the increase in various VOCs following EO injection, both in terms of
leaf-contained VOCs, such as methyl salicylate, and in terms of leaf-emitted VOCs,
such as caryophyllene. Principal component analysis (PCA) highlighted differences in
terms of VOC profiles. In addition, an analysis of similarity (ANOSIM) and permutational
multivariate analysis of variance (PERMANOVA) revealed that the VOC profiles were
significantly impacted by the treatment. Maximum yields of photosystem II (Fv/Fm) were
within the range of 0.80–0.85, indicating that the trees remained healthy throughout
the experiment. Our targeted analysis demonstrated the systemic translocation of EOs
through the plant’s vascular system. The untargeted analysis, on the other hand,
highlighted the potential systemic acquired resistance (SAR) induction by these EOs.
Lastly, C. cassia and M. spicata EOs did not appear phytotoxic to the treated trees, as
demonstrated through chlorophyll fluorescence measurements. Hence, this work can
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be seen as a proof of concept for the use of trunk-injected EOs given the systemic
translocation, increased production and release of biogenic VOCs (BVOCs) and absence
of phytotoxicity. Further works should focus on the ecological impact of such treatments
in orchards, as well as apple quality and production yields.

Keywords: essential oil, biopesticide, Malus domestica, trunk-injection, Cinnamomum cassia, Menthas picata,
systemicity

INTRODUCTION

Apple Malus domestica Borkh is the most cultivated fruit crop
worldwide, reaching a production of 84.7 million tonnes in 2016
and representing a gross product value of US $ 45.8 billion
(FAOSTAT). As any other plant, apple trees are subject to abiotic
and biotic stresses that cause important economic losses. Apple
trees suffer from fungal, viral and bacterial diseases; insects; mites;
and nematodes (Kellerhals et al., 2012). The rosy apple aphid,
Dysaphis plantaginea, and the apple worm, Cydia pomonella, are
amongst the most serious apple pests (Rousselin et al., 2017),
whilst the main diseases are apple scab, powdery mildew, and fire
blight caused by the fungi Venturia inequalis and Podosphaera
leucotricha and by the bacteria Erwinia amylovora, respectively
(Jamar et al., 2010). All these factors can impair production
or marketable yields because apples do not fulfil the minimum
quality criteria. Currently, the most applied delivery method for
pest control is air-blast spray application of pesticides to the tree
canopy (Damos et al., 2015). However, pesticide off-target drift
can lead to adverse effects on non-target organisms. Over the
last 50 years, biodiversity has been reduced by up to 50% in
European bird species and by 20–30% in British and German
flora (Geiger et al., 2010). Pesticides can cause environmental
contamination and risks for human health through excessive
residues on the fruit (Damalas and Eleftherohorinos, 2011).
Additionally, pests can develop resistance to these pesticides,
which usually contain a single active molecule (Alins et al., 2017).
Altogether, this suggests that the plant protection product (PPP)
mode of application selection is an economic and ecological
challenge around the world. As a result of the negative perception
of synthetic pesticides, causing negative effects on human health
during and after application, and fears of their excessive residues
in or on fruit, consumer demand for agricultural products
without synthetic pesticide residues from excessive phytosanitary
treatments has increased. This is why alternative solutions have
been investigated, such as biological pesticides or biopesticides.
An abundant body of literature is published each year concerning
the prospect of plant essential oils (EOs) as active ingredients in
the production of biopesticides (Campos et al., 2019).

The International Organisation for Standardisation (ISO)
defines an EO as a “product obtained from vegetable raw
material, either by distillation with water or steam, or from
the epicarp of citrus fruits by a mechanical process, or by dry
distillations.” Due to their biological activity, they have long
been applied in cosmetics, therapeutics, and food applications
(Hüsnü Can Başer and Buchbauer, 2015). The composition of
EOs is highly variable and comprises a tremendous diversity of
compounds. However, most of them belong to the terpenoids

(mono- or sesqui-) or phenylpropanoids class of compounds,
both of which have high lipophilicity and volatility, especially at
room temperature. The secondary metabolites of EOs originate
from methylerythritol phosphate and phenylalanine pathways
(Rehman et al., 2016).

Some of the volatile organic compounds (VOCs) contained
in EOs play a major role in plant defence mechanisms against
bacteria, fungi, viruses, and herbivores (Bakkali et al., 2008).
Therefore, much research has been performed to integrate these
antibacterial, fungicidal, and insecticidal EOs as alternatives
for sustainable agronomic practices, limiting environmental
and health hazards. Indeed, due to their rapid degradation
and since they are generally recognised as safe (GRAS), they
represent an interesting alternative application of most synthetic
conventional pesticides (Koul et al., 2008). Two EOs were
used in this study:cinnamon EO (Cinnamomum cassia J. Presl)
and mint EO (Mentha spicata L.). They both present well-
documented biopesticidal activity (Singh and Pandey, 2018; De
Clerck et al., 2020) due to their insecticidal and fungicidal
(Muchembled et al., 2018; Lee et al., 2020) properties, which
have already led to commercial product development (Isman
et al., 2011; Isman, 2020).For example, mint EO has presented
an inhibition concentration between 24 and 83 mg L−1on
apple scab, depending on the strain (Muchembled et al., 2018).
C. cassia, on the other hand, possesses a lethal dose 50 of 17.41 µl
ml−1 on aphid Myzus persicae (Ikbal and Pavela, 2019).

Nevertheless, particular attention must be paid to the
formulation of EO-based pesticides (Aćimović et al., 2020).
A well-studied formulation could, on the one hand, counter
the high volatility of EOs and ensure the prolonged release of
the active substance and, on the other hand, attenuate potential
phytotoxic effects (Moretti et al., 2002; Maes et al., 2019). EOs
can impact many plant physiological processes (water status
alteration, membrane integrity, respiration, and photosynthesis
inhibition) through diverse modes of action, such as reactive
oxygen species (ROS) induction and enzymatic or phytohormone
regulation (Werrie et al., 2020). In this regards, chlorophyll
fluorescence has been proven useful to evaluate plant vitality and
response to abiotic stress (Kalaji et al., 2016). The application
of EOs in apple tree may lead to phytotoxicity depending on
the application method, concentration, and adaptive duration.
For example, 7% of flowers were injured for clove oil in a
thinning experiment for concentrations as low as 2% (Miller
and Tworkoski, 2010). Fruit damages were also reported in
postharvest treatment with savory, oregano, and thyme EOs
at concentrations of 1–10% for the purpose of controlling
Botrytis cinerea and Penicillium expansum (Lopez-Reyes et al.,
2010). Nevertheless, fruit damage was not observed with
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thermal fogging treatment of lemongrass and citrus EOs at a
concentration of 0.125% to control B. cinerea (Mbili et al., 2017).
Therefore, the mode of EO application, the formulation and the
selection of the active substance must be adapted for specific
purposes and carefully evaluated.

Trunk injection is a method of applying chemicals directly
to the vascular system of the tree after bark piercing, and
the chemicals are then distributed systemically through the
xylem tissue. This application method directly targets pests
whilst reducing environmental exposure to pesticides and input
quantities (Doccola and Wild, 2012; Wise et al., 2014). It
has recently been experimented to fight fungi, such as apple
scab, Venturia inaequalis, and powdery mildew, Podosphaera
leucotricha, with disease severity reductions of 22–55 and 41.8–
73.5% depending on the season and the product considered
(potassium phosphites and synthetic fungicides) (Percival and
Boyle, 2005; Aćimović et al., 2016b). A similar experiment
on insect species [codling moth Cydia pomonella (L.), rosy
apple aphid Dysaphis plantaginea (Passerini) and green apple
aphid Aphis pomi (Passerini)] reported up to two seasons of
control after a single injection of imidacloprid or emamectin
benzoate (Wise et al., 2014). Spatial and temporal distributions
of imidacloprid in leaves have been investigated (Aćimović et al.,
2014), as well as residues to nectar and pollen, which were
below the Environmental Protection Agency (EPA) threshold of
25 ng g−1 for imidacloprid (Coslor et al., 2019). Although the
management of the injection timings may help to keep residue
under the toxic limit, systemic resistance inducers have also been
explored with the injection of acibenzolar-S-methyl (ASM) to
induce systemic acquired resistance (SAR) and to control fire
blight (Aćimović et al., 2015).

In the present study, we aimed to determine the distribution
of trunk-injected EOs in young apple trees, thus proving their
systemic movement by quantifying target VOCs, both within
leaves and by aerial emissions. We also determined the impact
of injected EOs on tree physiology by monitoring chlorophyll
fluorescence and untargeted VOCs.

MATERIALS AND METHODS

Essential Oils
The cinnamon EO (C. cassia J. Presl) and mint EO (M. spicata
L.) used in this study were purchased from Pranarôm (Pranarôm
& Herbalgem, Ghislenghien, Belgium). Before formulation of the
EOs, the oil composition was analysed by gas chromatography
associated with mass spectrometry (GC-MS). These analyses were
carried out on a 7890A-5975C GC-MS equipped with an HP-5MS
30 m × 0.25 mm × 0.25 µm capillary silica column (Agilent
Technologies Inc., Santa Clara, United States). The operating
conditions were the following: helium flow of 1.0 ml min−1; the
oven temperature was programmed at 40◦C for 2 min, increased
to 100◦C at a rate of 5◦C min−1, increased to 120◦C at a rate
of 3◦C min−1, held for 3 min, increased to 220◦C at a rate of
5◦C min−1, and finally increased to 310◦C at a rate of 15◦C
min−1. One microliter of a 1 mg ml−1 EO solution in hexane
(HPLC grade, Merck KGaA, Darmstadt, Germany) was injected

in splitless mode. The injector, quadrupole and MS temperatures
were 250, 150, and 230◦C, respectively. The mass spectrometer
(MS) ran in electron impact (EI) mode at an electron energy of
70 eV. Mass spectra were acquired in the range of 30–400 atomic
mass units (amu).

Emulsion Formulations
To facilitate injection and diffusion of EOs in the tree vascular
tissue, a water-soluble, stable, and homogenous EO emulsion
was prepared. To prepare 100 ml of the 0.5% (v/v) EO/water
emulsion, 2 ml of Tween 80 (CAS 9005-65-6, Merck KGaA,
Darmstadt, Germany) and 20 ml of 100 mM ethylene diaminete
traacetic acid (EDTA) (Titriplex III, Merck KGaA, Darmstadt,
Germany) solution were added to 15 ml of water under constant
agitation at 1,250 rpm. Water was then added to bring the final
volume to 100 ml. After 5 min under constant agitation, the
solution was then stabilised by high-speed homogenisation for
6 min at 9,500 rpm (Ultra-Turrax T25, IKA WERKE, Staufenim
Breisgau, Germany) and by high-pressure homogenisation with
eight cycles at 5,000 psi (FMC, Philadelphia, United States).
The emulsion stability was checked by analysing the EO
particle sizes and distribution in solution with a particle
sizer (Beckman Coulter DelsaTM Nano C Particle Analyser,
California, United States).

Biological Material
Experiments were performed on 2-years-old apple trees
(M. domestica Borkh, cv “Jonagold” grafted on M26 rootstock)
obtained locally (Serres de Sauvenières, Gembloux, Belgium).
The trees were 155 ± 15 cm high and presented a trunk
diameter of 2 ± 0.2 cm above the graft union. During the
experimental phase, the plants were placed in an environmental
chamber with controlled environmental conditions [21 ± 0.5◦C,
62 ± 10% relative air humidity and 16:8 h light/dark periods
and photosynthetically active radiation (PAR) of 50 µmol m2

s−1]. Plants were watered every day with 500 ml of water. They
developed fully expanded leaves but were free of flowers or fruit.

Trunk Injection System
The trees used in the experiment were drilled right above the
grafting union with holes that were 1 mm wide and 1 cm deep.
Three trunk injection ports per tree trunk were created and
were positioned at an equal distance from each other (each
120◦ of trunk radius). Each injection port was slanted upward
at a 60◦ angle in relation to the trunk axis (Figure 1). Needles
(BD vacutainer R© safety lock 23G, Becton Dickinson, New Jersey,
United States) were inserted into the ports and connected
on the other side to drip bags (Baxter R©, Baxter International
Inc., Deerfield, United States) filled with the solution injected
(Figure 1). Four different treatments were tested using three
biological replicates over a period of 96 h. The first two modalities
were treated with EO emulsions (one with cinnamon oil and
the other with mint oil), the third was a negative control
(emulsion exempt of EOs) and the fourth was a blank treatment
(no injection). To avoid cross-contamination, the treatments
were delivered separately from each other at different times.
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FIGURE 1 | Laboratory trunk-injection device (left) and sampling of leaf-emitted volatile organic compounds (VOCs) (right).

Treatments were applied on different trees each time with a
chamber ventilating period of 2 days.

Volatile Organic Compound Sampling by
Headspace Techniques
Leaf-Contained VOCs
Ten leaves were homogenously sampled at t = 0, 24, 48, 72,
and 96 h on each replicate tree. Sampling was performed by
cutting the leaves at their base and dipping them into liquid
nitrogen before storage at -80◦C prior to dynamic headspace–
gas chromatography–mass spectrometry (DHS-GC-MS) analysis.
A dry weight (DW) measurement was performed at the end of
the experiment at 60◦C until constant weight to obtain content
results in ng gDW

−1.

Leaf-Emitted VOCs
The headspace was sampled following the protocol for the volatile
collection of aphid-infested leaves from an apple tree (Stewart-
Jones and Poppy, 2006). Briefly, two Tenax TA R© 60/80 cartridges
(Camsco©, Houston, United States) were attached to an inert
polyethylene terephthalate (PET) bag (Nalophan R©, Odometrics,
Arlon, Belgium) enclosing a single branch. The trapping of
emitted VOCs was performed by constant air sampling of
50 ml min−1 using a Gilian air sampling pump (Sensidyne R©,
St. Petersburg, United States) attached to the other side of the
cartridges (Figure 1). Briefly, air enters the bag through the
activated charcoal tube, loads in the VOCs and exits the bag
through the Tenax TA cartridges, which capture VOCs. The
bag and its connected cartridges were set up on each tree
(n = 3) at t = 0 h. The cartridges were then replaced at t = 24,
48, 72, and 96 h and stored at −80◦C prior to the GC-MS
analysis. At the end of the experiment, all leaves enclosed in the
bag were sampled and weighed. A DW measurement was also
performed on these leaves at 60◦C until constant weight to obtain
results in ng gDW

−1 h−1.

VOC Analysis: Sample Preparation and
GC-MS Analysis
Leaf-contained VOCs were analysed by DHS-GC-MS. Before
dynamic headspace sampling (DHS), the leaves were ground
(A11 basic grinder, IKA WERKE, Staufenim Breisgau, Germany)
with liquid nitrogen. Then, 1 g of freeze-grinded leaves was
put in a 20 ml screw cap vial (Gerstel©, Mülheiman der Ruhr,
Germany), and 2 ml of a 20% (w/v) NaCl solution was added
to create a salting out effect (Liberto et al., 2020). Afterward,
the sealed vial was incubated in the dynamic headspace system
at 35◦C for 20 min (automated dynamic headspace DHS,
Gerstel©, Mülheiman der Ruhr, Germany). The headspace was
then dynamically transferred to a Tenax TA cartridge by
applying 1,200 ml of nitrogen at a flow of 30 ml min−1.
The cartridge was then drypurged at 50 ml min−1 for 4 min.
The cartridge was then sent to the thermal desorption unit
(Thermal Desorption Unit TDU 2, Gerstel©, Mülheiman der
Ruhr, Germany) for GC-MS analysis. The thermal desorption
parameters used were the same as those described below for
leaf-emitted VOCs. Tenax TA R© porous polymers, based on 2,6-
diphenyl-p-phenylene oxide, are widely used as an adsorbent in
purge trap applications and plant headspace analysis due to their
high versatility.

Leaf-emitted VOCs were analysed by TDU-GC-MS. Before
thermal desorption, 1µl of 0.4 mg ml−1 1-phenyloctane (CAS
2189-60-8, Merck KGaA, Darmstadt, Germany) in hexane was
added to the cartridge by a multipurpose sampler (Multi-Purpose
Sampler MPS, Gerstel©, Mülheiman der Ruhr, Germany). The
addition of 1-phenyloctane as an internal standard (IS) allowed
for semiquantification of the VOCs present on the cartridge.
The VOCs were then thermally desorbed in the TDU and
cryofocused in the cooled injection system (CIS) (Gerstel©,
Mülheiman der Ruhr, Germany). The TDU temperature program
was 40◦C for 1 min and was increased to 280◦C at a rate
of 100◦C min−1 and held for 5 min. CIS was mounted
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with a baffled glass liner and operated in solvent vent mode,
and the temperature program was -60◦C for 0.10 min, which
was increased to 250◦C at a rate of 12◦C s−1 and held
for 2 min following existing protocols (Delory et al., 2016;
Durenne et al., 2018).

The analyses were carried out on a 7890A-5975C GC-MS
equipped with an HP-5MS 30 m × 0.25 mm × 0.25 µm
capillary silica column (Agilent Technologies Inc., Santa Clara,
United States). The operating conditions were the following:
helium flow of 1 ml min−1 and oven temperature 40◦C for
2 min, which was increased to 220◦C at a rate of 5◦C min−1

and finally increased to 310◦C at a rate of 15◦C min−1 and held
for 3 min. The quadrupole and MS temperatures were 150 and
230◦C, respectively. The MS ran in EI mode at an electron energy
of 70 eV. Mass spectra were acquired in the range of 30–400 amu.

For untargeted analysis, identification was based on
comparison of the obtained spectra with the reference mass
spectra from the NIST 17, Wiley 275 and pal 600 databases.
Moreover, experimental retention indexes (RIs) were calculated
using C7–C30 solutions and compared to literature RIs. Technical
grade standards were injected to ensure identification (Nea et al.,
2019; Tanoh et al., 2020). Semiquantification was performed
using the following formula:

Compound A concentration =
compound A area

IS area
∗ IS concentration

Detection and quantification of the major compounds of
EO were performed in single-ion monitoring (SIM) mode.
Based on the characterisation of the selected EOs, calibration
curves in TDU-GC-MS using pure standards were established
for each major component of the EO: (+)-carvone (CAS

2244-16-8, 99.9% purity, Supelco©, Missouri, United States)
for mint and trans-cinnamaldehyde (CAS 14371-10-9, ≥99%
purity, Merck KGaA, Darmstadt, Germany) for cinnamon oil.
The 6-point calibration curves were established by injecting
1µl of the standard solution in hexane (Merck KGaA,
Darmstadt, Germany). For (+)-carvone, ions 108 and 93
were selected as qualifiers, and ion 82 was selected as he
quantifier. A calibration curve (y = 0.527x+0.020, R2 = 0.985)
was established in triplicates between 1.50 and 861.05 µg
ml−1. For trans-cinnamaldehyde, ions 132 and 103 were used
as the qualifier, and ion 131 was used as the quantifier.
A calibration curve (y = 0.628x+0.018, R2 = 0.989) was
established in triplicates between 0.623 and 954.50 µg ml−1.
The IS 1-phenyloctane was also used at a concentration
of 400 µg ml−1.

Chlorophyll Fluorescence Measurements
The potential phytotoxic effect of EOs on the photosynthetic
efficiency of plants was evaluated by estimating the maximum
quantum efficiency of photosystem II (Fv/Fm) with a
fluorimeter (Handy PEA+, Hansatech Instruments Ltd.,
Norfolk, United Kingdom). For a healthy sample, this ratio is
around 0.83 and lowers as plant stress increases, reaching 0.3
at the end of senescence (Bresson et al., 2018). Moreover, the
maximum quantum yield of photosystem II has been used to
evaluate foliar response after EO application (Synowiec et al.,
2015, 2019). Measurements were performed at the same time of
day for each time considered (t = 0, 24, 48, 72, and 96 h for each
modality tested). Fv/Fm was assessed on three leaves randomly
selected on each tree. Before the measurement, the leaves were
dark-adapted for 20 min using leafclips. Fv/Fm measurements

FIGURE 2 | Boxplot of D-carvone contained (in ng gDW
−1) in the leaves (left) and in the emissions (ng gDW

−1 h−1) (right) over time after injection.
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were then performed by exposing the leaves to light intensity of
3,000 µmol m−2 s−1.

Statistical Analysis
The results from the targeted VOCs were visualised, and
detailed nonparametric statistical analysis (Kruskal–Wallis test
and Dunn’s test) was generated in Rstudio with ggstatplots
(Patil, 2018). The untargeted VOC profiles, either contained or
emitted, underwent several statistical analyses to understand
the impact of the treatments performed on the apple trees.
First, one-way analysis of variance (ANOVA) was performed
for each VOC present in the profiles to understand which of
them were significantly different between treatments using
Tukey’s post hoc test. Descriptive statistics were coupled with
principal component analyses (PCA) and heatmaps to visualise
treatment effects and which VOCs they impact. All of these
analyses were performed with metaboanalyst1 (Pang et al.,
2020). Analysis of similarity (ANOSIM) and permutational
multivariate analysis of variance (PERMANOVA) were
performed between the different treatments. PERMANOVA
tests the simultaneous response of one or more variables
to one or more factors based on a similarity/distance
matrix with permutation methods (Anderson, 2017). The
ANOSIM and PERMANOVA were calculated in Rstudio
(R 3.5.2 software, R Development Core Team, Boston
United States) using the VEGAN package. ANOSIM and
PERMANOVA were performed to establish if the contained
and emitted VOC profiles were significantly impacted by the
treatment. For fluorescence measurements, two-way repeated
measures ANOVA was performed on the Fv/Fm dataset with

1www.metaboanalyst.ca

treatments and time as a factor, followed by the pairwise
t-test. A probability cutoff of α = 0.05 was applied for tests
of significance in all statistical analyses and adjusted with the
Bonferroni correction.

RESULTS

Essential Oil Compositions and
Formulations
GC-MS analysis of the EOs demonstrated that C. cassia oil was
composed of 91.22% trans-cinnamaldehyde, and M. spicata was
mainly composed of carvone (57.78%) and limonene (25.28%).
A detailed composition can be found in the Supplementary
Tables 1, 2. The EO compositions are similar to those reported
before (Snoussi et al., 2015; Zhang et al., 2019). A stable
nanoemulsion had a mean particle size diameter below 200 nm
and a polydispersion index < 0.2.

VOCs Spectra Analysis
Targeted Essential Oil Compounds
Regarding mint EO, the main compound, carvone, was found in
both the emission and in the leaves, as displayed in Figure 2.
The emission rate into the air was constant throughout the
experiment at around 0.2 ng gDW

−1 h−1. The leaf content,
however, was more variable within and between 24 and 48 h.
Indeed, the carvone content varied between 3.39 and 19.7 ng
gDW

−1, with a maximum 2 days after injection. However, as
this compound was not found in the other treatments of the
experiment, it demonstrates the systemic translocation of the
trunk-injected mint EO.

FIGURE 3 | Boxplot of trans-cinnamaldehyde contained (in ng gDW
−1) in the leaves over time after injection.
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FIGURE 4 | Boxplot of a selection of Malus domestica volatile organic compounds (VOCs) emitted (ng gDW
−1 h−1) from plants injected with essential oils (EOs) and

the control. The star symbols above the bars indicate a significant difference between the means (P < 0.05).

FIGURE 5 | Principal component analysis (PCA) (left) and heatmap of the top 25 contributors merged by group (right) of Malus domestica volatile organic
compound (VOC) emissions generated on metaboanalyst after data processing.

Trans-cinnamaldehyde, the main compound of cinnamon
EO, was only recovered in the content of the leaf (and
not in the air emission). However, this content was much
higher in comparison to carvone, i.e., mint EO content,
as observed in Figure 3, reaching 350 ng gDW

−1 72 h
after injection.

Untargeted VOCs Emitted (TDU-GC-MS)
A total of 56 compounds were detected in the headspace
emissions profiles of M. domestica trees belonging to the

alkanes, alkenes, alcohols, aldehydes, aliphatic and aromatic
esters, furanes, homoterpenes, ketones, monoterpenes,
sesquiterpenes, and terpenoids (Supplementary Table S3).
A selection of biogenic VOCs (BVOCs) that have a
major biological role in the environment, such as pest
attractant, attraction of pest-killing parasitic wasps,
antennal response elicitor, or herbivory-induced plant
volatile (Gershenzon and Dudareva, 2007; Hare, 2011;
Souza et al., 2017), is presented in Figure 4. The apple
trees that we injected with both EOs emitted the largest
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TABLE 1 | Pairwise permutational multivariate analysis of variance (PERMANOVA)
comparisons for volatile organic compounds (VOCs) emissions
between treatment.

No injection Cinnamon Control

Cinnamon 0.006** – –

Control 0.400 0.013* –

Mint 0.006** 0.006** 0.253

The asterisks indicate significant differences: *P ≤0.05, **P ≤ 0.01.

amounts of caryophyllene, linalool and germacrene D
and significantly larger amounts of α-farnesene and
(E)-4,8-dimethyl-nonatriene (DMNT).

Multivariate analysis of the emitted VOC profiles performed
by PCA captured 83.3% of variance in the first two dimensions
(Figure 5). VOC profiles of EO-injected trees separated well from
the control and no injection treatment. On the other hand, as
can be observed in the heatmap (Figure 5), some compounds
are produced for both oils, such as caryophyllene, germacrene
D, bergamotene, (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene
(TMTT) and linalool, whereas some of them are specific to
a particular oil. Indeed, cinnamon-oil-injected trees emitted
more terpinen-4-ol, α-farnesene, and trees injected with
mint oil emitted more DMNT and β-ocimene. Amongst
the compounds previously mentioned, linalool, germacrene D
and terpinen-4-ol are found in mint EO, and caryophyllene
is found in cinnamon EO, but as minor compounds at
concentrations below 1%.

The VOC emission profiles were significantly impacted by the
treatment. ANOSIM revealed significant structural differences
for VOC profiles between treatments, with some overlapping
(R = 0.281, p = 0.002). On the other hand, PERMANOVA
performed on the same data set revealed similar outcomes for
comparisons between treatment (F = 3.9517, p = 0.001∗∗∗).
Pairwise PERMANOVA yielded significant differences for
multiple comparisons in all cases, except for the no injection-
control and mint-control, as shown in Table 1.

Untargeted VOCs Contained (DHS-GC-MS)
A total of 67 compounds were detected in the VOCs contained
within leaves. These compounds belong to the alcohols,
aldehydes, alkadienes, alkanes, aromatic and aliphatic esters,
fatty acid esters, homoterpenes, and ketones (Supplementary
Table 4). Injection of EOs significantly increased methyl
salicylate, benzaldehyde, benzeneacetaldehyde, β-ionone,
and nonanal (Figure 6). Amongst those compounds, only
benzaldehyde was found in the cinnamon EO but also as a minor
compound below 1%.

VOC profiles for EO-treated trees were much more dispersed
in comparison to the control and no injection treatments
(Figure 7). As for the emitted VOCs, it seems from the heatmap
that some compounds increased for both oil treatments, such
as decanal, caryophyllene and 1-penten-3-ol. Some increases
were specific, such as numerous aldehydes for cinnamon oil (2-
heptenal, 2-nonenal, 2,4-hexadienal) and terpenes for mint oil
(α-terpineol, eucalyptol, β-homocyclocitral). With regard to the
EO composition, only α-terpineol was found in trace amounts
within the mint EO at 0.25%.

ANOSIM revealed significant differences for VOC profiles
between treatments, with some overlapping between group
(R = 0.2712, p = 0.001). PERMANOVA analysis of the
same dataset revealed similar outcomes for comparisons
between treatments (F = 7.3673, p = 0.001∗∗∗). Finally,
pairwise PERMANOVA revealed significant pairwise differences
between all treatments, except for the control–no injection and
cinnamon–mint, as shown in Table 2.

Chlorophyll Fluorescence
Maximum yields of photosystem II (Fv/Fm) over time are
presented in Figure 8. Chlorophyll fluorescence showed that
most values were located between 0.80 and 0.85, implying
that the trees maintained good ecophysiological performances
throughout the experiment (Figure 8). Two-way repeated
measure ANOVA revealed a significant impact of factors
(treatment: F = 4.759, p = 0.003, ges = 0.082; day: F = 4.782,

FIGURE 6 | Boxplot of a selection of Malus domestica volatile organic compounds (VOCs)content (ng gDW
-1) from plants injected with mint and cinnamon essential

oils (EOs) and the control. The asterisk symbols above the bars indicate a significant difference between the means (P < 0.05).
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FIGURE 7 | Principal component analysis (PCA) (left) and heatmap of top 25 contributors merged by group (right) of Malus domestica volatile organic compounds
(VOCs) contained generated on metaboanalyst software after data centring processing.

TABLE 2 | Pairwise permutational multivariate analysis of variance (PERMANOVA)
comparisons for volatile organic compounds (VOCs) contained
between treatments.

No injection Cinnamon Control

Cinnamon 0.006** – –

Control 0.585 0.006** –

Mint 0.016* 0.151 0.022*

The asterisks indicate significant differences: *P ≤ 0.05, **P ≤ 0.01.

FIGURE 8 | Maximum quantum yield of photosystem II (Fv/Fm) boxplot per
treatment during time after injection. The star symbols above the bars indicate
a significant difference between the means (P < 0.05).

p = 0.001, ges = 0.107) without interaction (F = 1.59, p = 0.099,
ges = 0.107). Pairwise comparison demonstrated significant
differences only at day 1 between treatment (Figure 8) and only
for the control between 24 and 48 h and 24 and 96 h.

DISCUSSION

Taken altogether, our results demonstrate, for the first time, the
systemic translocation of trunk-injected EOs in apple plants.
Carvone increased in the leaf content and was emitted at a
constant rate, and trans-cinnamaldehyde content increased
in the leaves but was not found in detectable amounts in
the air emissions. The strong spatial heterogeneity combined
with the relatively small sampling may also contribute to the
variability of the results. However, it appears that the EO
translocation within apple tree tissues and its diffusion in
ambient air must be conditioned by its own physicochemical
properties. Amongst those properties, vapour pressure, organic
carbon–water partitioning coefficient (Ko/c), and the octanol
water partition coefficient (Ko/w) may explain the differences
observed between carvone and trans-cinnamaldehyde (Doccola
and Wild, 2012; Montecchio, 2013; Aćimović, 2014). Out of
these two, trans-cinnamaldehyde was the molecule with the
smallest vapour pressure of 15.3 and 3.853 Pa at 25◦C for
carvone and trans-cinnamaldehyde, respectively (European
Chemical Agency, 2020). This molecule, following Henry’s law,
has a smaller tendency to volatilise and hence accumulates in
the leaves. Moreover, from a histological point of view, they
diffuse slowly through aqueous phases in the mesophyll, lipid
bilayer membranes and internal airspace (in the substomatal
cavity) before release through the stomata (Calfapietra et al.,
2013). This diffusion is conditioned following the compounds’
octanol water partition coefficients (Ko/w), which are 2.7
for carvone and 2.1 for trans-cinnamaldehyde. It is worth
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mentioning that other phenomena could concurrently take
place, such as the potential transformation or degradation
of these xenobiotic compounds by the apple plants. Diverse
mechanisms such as reduction/oxidation, esterification or
conjugation with carbohydrates (glycosylation) or glutathione
(glutathionylation) were demonstrated in planta for numerous
GLVs and terpenes (Matsui et al., 2012; Rivas et al., 2013)
and by diverse microorganisms (Asakawa et al., 2018). This
was specifically demonstrated for Arabidopsis aldehydeoxidase
4 (AAO4) extracted from Arabidopsis thaliana developing
seeds that could convert trans-cinnamaldehyde in vitro
(Ibdah et al., 2009).

In addition to the established systemic circulation of carvone
and trans-cinnamaldehyde, it is most interesting to look at the
modification of other VOCs in the emission profiles that can
strongly impact trophic interaction within ecosystems. BVOC
emissions can mediate herbivore interactions (Trowbridge and
Stoy, 2013). Within the framework of this discussion, one should
bear in mind that numerous factors can influence apple tree VOC
emissions, including meteorological (Vallat et al., 2005), circadian
(Giacomuzzi et al., 2017), physiological (Zeng et al., 2017), and
phonological (Casado et al., 2006), as well as interactions with
herbivores (Suckling et al., 2012) or fungi (Souleyre et al., 2019).
However, systemic release of induced volatiles also occurs in
plants in the case of insect feeding to recruit natural enemies. The
homoterpenes DMNT and TMTT, the monoterpenes ocimene
and linalool and these squiterpenes farnesene and caryophyllene
are a shared response to herbivores in diverse plant systems
(Paré and Tumlinson, 1999; Holopainen and Gershenzon, 2010).
Therefore, modification of emitted VOCs, such as those observed
in our work, may alter trophic interactions with regard to
chemical ecology. Moreover, germacrene-D, α-farnesene and
methyl salicylate may have resulted from SAR activation by the
injected EOs, since SAR has been detected after trunk injection
of SAR activators (Aćimović et al., 2015). Indeed, monoterpenes
have been acknowledged to support SAR amongst different plants
(Riedlmeier et al., 2017). The elicitation of resistance in young
apple trees by acibenzolar-S-methyl was observed to specifically
increase the production of the compounds that were effective
against rosy apple aphids and Erwinia amylovora (Aćimović et al.,
2015; Warneys et al., 2018). Moreover, Cinnamomum zeylanicum
oil and trans-cinnamaldehyde were proven to be efficient
against Alternaria brown spot in tangerine by direct effects
and resistance induction (Perina et al., 2019). A prospective
molecular tool such as quantitative real-time PCR to detect
changes in expression levels of genes involved in plant defence
mechanisms may prove useful to challenge this hypothesis (Dugé
De Bernonville et al., 2014; Aćimović et al., 2015). The plant
defence responses include other mechanisms, such as cell wall
fortification, antimicrobial compounds such as pathogenesis
related (PR)protein productions, phytoalexins or reactive oxygen
species (ROS) (Marolleau et al., 2017). Phytoalexins include
diverse plant secondary metabolites biosynthesised in response
to pathogens and certain abiotic stresses. In the subtribe
Malinae of the Rosaceae family, the phytoalexins biphenyl and
dibenzofuranare are produced upon pathogen attack (Chizzali
and Beerhues, 2012) and after elicitor-treated cell cultures

(Saini et al., 2019; Teotia et al., 2019). The production of
phytoalexins following treatment with EOs could also be an
interesting prospect in order to determine and clarify the defence
induction potential of these compounds as well as their potential
impact on pathogens.

The results presented in this work clearly exposed
the possibility that EO application could trigger different
physiological processes within plants, leading to other BVOC
emissions. Some compound production seems to be shared
for both EOs, whereas some seem to be specifically induced
by each EO. These results support the hypothesis of different
modes of action for each EO and further demonstrated the
plant’s reaction to these EO injections. The differences between
the two EO profiles may result from their specific interactions
with the plant and, more precisely, with the plasma membrane.
Recently, molecular techniques of dynamic interaction were
applied to study the interaction between a biomimetic membrane
with monoterpene (citronellal and citronellol) and with
cinnamaldehyde (phenylpropanoids). Briefly, the in silico
insertion model predicted different behaviours between the
two classes (monoterpenes and phenylpropanoids), which
are the stable interactions with plant lipids for monoterpene,
whilst trans-cinnamaldehydes had no stable interaction with
the membrane. These predictions were confirmed using in vitro
biophysical assays (Lins et al., 2019).

Regarding the contained VOC profiles, green leaf volatiles
(GLVs) generated by the lipoxygenase (LOX) pathway such as 2-
hexenal constitute the major compounds. Due to the extraction
protocol, this profile may not be interpreted as a potential pool for
VOC emissions in the environment, as de novo synthesis could
have occurred during incubation and trapping after grinding,
especially for GLV. DHS is the most widely used sampling
approach in the plant field because of its flexibility (sampled
volume, trapping approaches and materials) (Bicchi et al., 2008).
A high concentration factor was applied for the trace components
under study. However, the analysis of these contained profiles
may prove useful to further establish the metabolomic impact of
EOs injection into apple trees. The presence of greater amounts of
other aldehydes, such as nonanal, and the plant volatile hormone
methyl salicylate reinforces the previously formulated hypothesis
of resistance induction (Wenig et al., 2019). Other compounds
emerged from the degradation of carotenoids, namely β-ionone
and homocyclocitral (Dudareva et al., 2013).

Our work did not express foliar phytotoxicity. Chlorophyll
fluorescence is a non-destructive and sensitive method that is
widely used in eco-physiological studies to assess abiotic stress in
plants. Indeed, perturbation in plant metabolism may decrease
photosystem II (PSII) performance. However, local toxicity at
the injection site cannot be excluded, as well as the mechanical
damage that occurs due to the injection procedure (Doccola,
2012; Aćimović et al., 2016a). Furthermore, the specific mode of
action of carvone can lead to microtubule depolarisation within
cells. Lastly, unspecific generation of ROS has been frequently
observed after EO application (Kaur et al., 2010; Sunohara et al.,
2015; Dahiya et al., 2020). Carotenoids are amongst the first non-
enzymatic antioxidants acting to protect photosystem II from
photo-inhibition and ROS (Pospíšil, 2012). Therefore, the higher
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content of its degradation product in the leaf may be explained by
such a phenomenon. Physiological disorder in phytohormones or
ROS balances that may result in chronic and long-term toxicity
from EO applications should be addressed before concluding a
lack of harmful effects of the treatments.

In terms of agricultural application, trunk injection and EO
applications are rarely used (Aćimović et al., 2020). This work was
established as a proof of concept that the combination of both
may be a suitable strategy to develop the biopesticidal potential
of EOs whilst avoiding most of their drawbacks. However, we
must highlight that more works in terms of reproducibility of
results over different years, with other apple varieties, rootstock
and efficiency on diverse pests are needed to establish the
agronomic potential of such treatment. The absence of impact
on apple quality or yield and on tree growth through long-term
phytotoxicity should be established as well. Field trials should be
performed to establish efficacy as a biopesticide and the lack of
harmful effect to beneficial insects.

Plant VOCs are a promising tool, as they have numerous
applications in agriculture, such as parasitoid attractant or
through defence induction or priming, growth regulators and
abiotic stress protectants (Brilli et al., 2019). Moreover, the use
of natural substances that elicit systemic resistance has been
proven to be a suitable strategy for pathogen management
in orchards (Lateur, 2002). The possibility of combining
EOs due to their biopesticidal properties with a new mode
of application—trunk injection—was hereby demonstrated.
Furthermore, the variations in the emitted and contained VOCs
clearly demonstrate that young apple trees react to EO injection
and that this reaction may be explored to design sustainable
agricultural practices.
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This work has demonstrated the ixodicidal and insect antifeedant effects of essential

oils from 14 experimentally cultivated aromatic plants. The strong ixodicidal and

antifeedant oils corresponded to Thymus zygis, Thymus vulgaris, Satureja montana,

Oreganum virens, and Mentha suaveolens. The moderately active oils were from

Lavandula angustifolia, Mentha piperita, Mentha spicata, Artemisa herba-alba, and

Rosmarinus officinalis. The most effective larvicidal and antifeedant compounds were

piperitenone oxide, carvacrol, piperitenone, and thymol, explaining the effects of the

most active essential oils. The rest of the tested compounds were not ixodicidal

or antifeedant. Therefore, the activity of moderately active oils cannot be explained

by their main components (linalyl acetate, linalool, menthone, menthol, limonene,

camphor, 1,8-cineole, p-cymene, α-pìnene, and carvone), suggesting synergistic effects.

Considering the ixodicidal and antifeedant effects of these extracts, the plants have

been ranked in relation to Thymus vulgare, a commercial biopesticide ingredient, for their

potential as botanical pesticides. T. zygis, S. montana, and M. suaveolens ranked over

T. vulgaris as ixodicidal agents and S. montana as insecticidal. Therefore, we propose

the plant populations of S. montana, T. zygis, and M. suaveolens tested here for further

development as biopesticide ingredients.

Keywords: aromatic plant, essential oil, ixodicidal, antifeedant, Hyalomma lusitanicum, Spodoptera littoralis,

Myzus persicae, Rhopaslosiphum padi

INTRODUCTION

Food safety and environmental concerns related to the use of pesticides have resulted in
more restricted regulatory frameworks worldwide, reducing the number of commercial products
available for crop protection and other pest management sectors including the control of vectors of
human and livestock diseases. Therefore, new safer and effective insecticides are needed. Botanical
pesticides are emerging as a solution to meet part of the demand (Isman, 2020a). Essential oils
(EOs) that are composed of volatile secondary metabolites, mostly terpenes (Bakkali et al., 2008),
are among the most important extracts acting as botanical insecticides (Regnault-Roger et al., 2012;
Pavela and Benelli, 2016), and some are being commercialized as commercial pesticide ingredients
(Isman, 2020b).
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Arthropods, including economically important disease
vectors and insect pests, are an important target of the biological
effects of EOs (Ntalli et al., 2019; Isman, 2020a,b). Tick-borne
diseases are a serious health and economic problem, responsible
for over 100,000 cases of human diseases worldwide (de la
Fuente et al., 2008) and billions of dollars in losses to the
livestock industry (Lotfi and Karima, 2020). Additionally, ticks
are in expansion due to climate change (Abbas et al., 2018).
For example, Hyalomma ticks, vectors of the Crimean-Congo
hemorrhagic fever virus, have spread from their original
distribution (African and Mediterranean environments) to
other European countries, becoming an increasing public health
concern (Chitimia-Dobler et al., 2019; Hansford et al., 2019;
Buczek et al., 2020; Grandi et al., 2020). For many years, tick
control has been carried out with synthetic acaricides, leading to
the appearance of resistance (reviewed by Abbas et al., 2014) and
being harmful to the environment. Therefore, new effective and
safer tick control agents are needed. In this context, EOs have
been reported as being toxic and/or repellent to ticks (Benelli
et al., 2016, 2017a; Benelli and Pavela, 2018; Salman et al., 2020).

Crop yield damages caused by pest infestations and pesticide
use are significant (Oerke, 2006; Gregory et al., 2009) and
increasing with global warming. Adaptation measures to
increased pest damage related to global warming may involve
greater use of pesticides with detrimental effects on health,
environmental damage, and increased pesticide resistance
(Deutsch et al., 2018). Some important crop pests include
the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval)
(Lepidoptera: Noctuidae), a highly polyphagous insect labeled
as an A2 quarantine pest by the OEPP/EPPO (2015) due
to its host range (Alford, 2007) and distribution (Centre for
Agricultural Bioscience International, 2020a). The green peach
aphid, Myzus persicae Sulzer (Hemiptera: Aphididae), is the
most economically important aphid crop pest worldwide (van
Emden and Harrington, 2017) due to its distribution (Centre
for Agricultural Bioscience International, 2020b), host range
(Blackman and Eastop, 2000), mechanisms of plant damage, life
cycle, and its ability to evolve resistance to insecticides (Bass et al.,
2014). The bird cherry-oat aphid, Rhopalosiphum padi L., is a
global pest of cereals (van Emden and Harrington, 2017) and a
vector of yellow dwarf viruses that cause significant crop losses in
cereals (Finlay and Luck, 2011). Many EOs are good insecticidal
candidates because of their direct effects, biodegradability, and
their low level of toxicity to mammals (Isman, 2020a,b).

The commercial production of a botanical insecticide
depends on the sustainable production of plant biomass for
extraction. Therefore, the domestication and cultivation of
aromatic and medicinal plants (AMPs) for the production
of EOs contributes to species conservation and provides
sustainability of the production and lower variations in
active ingredients. For example, a selected chemotype of
wormwood, Artemisia absinthium (Asteraceae), that lacks
the toxic terpene β-thujone but produces other novel
terpenoids that are toxic and antifeedant to a range of
pest insects has been domesticated for cultivation and
registered as a new plant variety (Gonzalez-Coloma et al.,
2017).

TABLE 1 | List of the plant species used and their origin (experimental field

locations in Aragón, Spain, and UTM coordinates).

Plant species Origin

Artemisia dracunculus L. Ejea de los Caballeros (42◦7′45′′ N,

1◦8′15′′ W)

Artemisia herba-alba Asso. Villafranca (41◦34′28′′ N, 0◦39′01′′ W)

Hyssopus officinalis L. Teruel (40◦20′37′′ N, 1◦06′26′′ W)

Lavandula angustifolia L. Ejea de los Caballeros (42◦7′45′′ N,

1◦8′15′′ W)

Mentha piperita L. La Alfranca (41◦36′22′′ N, 0◦45′22′′ O) La

Alfranca (41◦36′22′′ N, 0◦45′22′′ O)

Mentha spicata L.

Mentha suaveolens Ehrh. Ejea de los Caballeros (42◦7′45′′ N,

1◦8′15′′ W)

Origanum vulgare subsp.virens

Hoffmanns and Link

Fabara (41◦10′ N, 0◦10′ E)

Rosmarinus officinalis L. Villafranca (41◦34′28′′ N, 0◦39′01′′ W)

Satureja montana L. Ejea de los Caballeros (42◦7′45′′ N,

1◦8′15′′ W)

Tanacetum vulgare L. Ejea de los Caballeros (42◦7′45′′ N,

1◦8′15′′ W)

Thymus mastichina L. Moncayo-Trasobares (41◦39′49.43′′ N,

1◦37′48.11′′ W)

Thymus vulgaris L. Villarroya (41◦27′49′′ N, 1◦47′01′′ W)

Thymus zygis Loefl. ex L. Aguarón (41◦20′20′′ N, 1◦16′11′′ W)

As part of an ongoing project on the domestication and
valorization of selected AMPs, plant species belonging to the
genera Artemisia, Hyssopus, Lavandula, Mentha, Origanum,
Rosmarinus, Satureja, Tanacetum, and Thymus have been
experimentally cultivated at a small scale. These genera include
species traditionally used in medicinal, food, and flavor
applications due to their contents in bioactive EOs (Fathiazad
and Hamedeyazdan, 2011; Chishti et al., 2013; Kumar and Tyagi,
2013; Tepe and Cilkiz, 2016; Aprotosoaie et al., 2017; Singh and
Pandey, 2018; Borges et al., 2019; Li et al., 2019; Isman, 2020a,b).

In this work, essential oils from selected species of aromatic
and medicinal plants cultivated experimentally (Table 1) have
been evaluated against arthropods of importance in public
health and animal and crop production: the tick (Hyalomma
lusitanicum) and three insect pests (S. littoralis, M. persicae, and
R. padi). Thymus vulgaris has been included in this study as a
reference to compare the rest of the selected species because it
is one of the most important aromatic plants grown worldwide
(Southern and Central Europe, Southeast Asia, North America,
and Africa), and it is an ingredient of botanical insecticides
because of its thymol content (Pavela, 2016). Additionally, the
composition of the most active EOs has been analyzed and the
ixodicidal and insecticidal activities of their main components
(Figure 1) tested.

MATERIALS AND METHODS

Plant Material
Fourteen plant species belonging to the families Asteraceae and
Lamiaceae (Table 1) were selected for the study. The plants
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FIGURE 1 | Chemical structures of the essentail oils main components.

come from Spanish native flora and have been experimentally
cultivated in several locations in Aragon (Spain) as described
(Burillo, 2003; Burillo et al., 2017; Navarro-Rocha et al., 2020).

Aerial parts of these plants were collected at the flowering
stage. EOs were obtained in the laboratory by Clevenger
hydrodistillation (European Pharmacopoeia, 1975).

Essential Oil Analysis
The essential oils were analyzed by gas chromatography–
mass spectrometry (GC-MS) using a Shimadzu GC-2010 gas
chromatograph coupled to a Shimadzu GCMS-QP2010 Ultra
mass detector (electron ionization, 70 eV) and equipped with a
30-m × 0.25-mm i.d. capillary column (0.25µm film thickness)
Teknokroma TRB-5 (95%) dimethyl–(5%) diphenylpolisiloxane.
The working conditions were as follows: split ratio, 20:1; injector
temperature, 300◦C; temperature of the transfer line connected
to the mass spectrometer, 250◦C; initial column temperature,
70◦C; then heated to 290◦C at 6◦C/min. The relative amounts
of the individual components were calculated based on the peak

area without using a correction factor. Electron ionization mass
spectra, retention data, and the calculated linear retention indices
(LRIs) were used to assess the identity of the compounds by
comparing them with those of standards or those found in the
Wiley 229 Mass Spectral Database.

Ixodicidal Activity
Hyalomma lusitanicum engorged females were collected from
red deer in Ciudad Real (Central Spain) and maintained under
laboratory conditions [22–24◦C and 80% relative humidity (RH)]
until oviposition and egg hatching.

Tick bioassays were performed according to Ruiz-Vásquez
et al. (2017). Briefly, 50 µl of the test solution was added to
25mg of powdered cellulose at different concentrations (initial
concentration of 40 or 20 µg/mg for EOs or pure compounds,
respectively) and the solvent was evaporated. The ticks and
cellulose were then placed in laboratory glass tubes and carefully
mixed by rotating the glass several times to ensure full tick–
cellulose contact. After mixing, the tubes were kept under
laboratory conditions for 24 h. For each test, three replicates with
20 active older than 6 weeks larvae. To validate the tests, three
replicates of negative (cellulose, 25mg) and positive (thymol, 20
µg/mg) controls were also used.

Ticks were considered dead when they could not move
from one place to another. Dead ticks were counted after
24 h of contact with the treated cellulose at the laboratory
conditions described using a binocular magnifying glass. The
larvicidal activity data are presented as percent mortality
corrected according to Schneider–Orelli’s formula (Püntener,
1981). Effective lethal doses (LC50 and LC90) were calculated by
Probit analysis (1:2 serial dilutions to cover a range of activities
between 100 and <50% mortality with a minimum of three
doses) (STATGRAPHICS Centurion XVI, version 16.1.02).

Insect Antifeedant Activity
Spodoptera littoralis, M. persicae, and R. padi colonies are
maintained at ICA-CSIC, reared on artificial diet, bell pepper
(Capsicum annuum) and barley (Hordeum vulgare) plants,
respectively, and kept at 22 ± 1◦C and >70% RH, with
a photoperiod of 16:8 h (L/D) in a custom-made walk-in
growth chamber.

The bioassays were conducted as described (Navarro-Rocha
et al., 2018). The upper surfaces of the C. annuum andH. vulgare
leaf disks or fragments (1.0 cm2) were treated with 10 µl of the
test substance. The EOs and products were tested at an initial
dose of 10 or 5 µg/µl (100 or 50 µg/cm2), respectively. Five
to seven Petri dishes or 20 ventilated plastic boxes (2 × 2 cm)
with two sixth-instar S. littoralis larvae (>24 h after molting)
or 10 apterous aphid adults (24–48 h old) each were allowed
to feed in a growth chamber (until 75% larval consumption of
the control disks or 24 h for aphids, environmental conditions
as above). Each experiment was repeated twice. Feeding
inhibition or aphid settling was calculated by measuring the
disk surface consumption (digitalized with https://imagej.nih.
gov/ij/) (Rueden et al., 2017) or by counting the number of
aphids on each leaf fragment. Feeding/settling inhibition (%FI
or %SI) was calculated as %FI/SI = [1 – (T/C) × 100], where

Frontiers in Agronomy | www.frontiersin.org 3 May 2021 | Volume 3 | Article 66280238

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/agronomy#articles


Valcárcel et al. Acaricidal, Antifeedant, Essential Oil, Aromatic Plant Selection

TABLE 2 | Larvicidal effects of the selected essential oils on Hyalomma lusitanicum.

Essential oil Hyalomma lusitanicum

% Mortalitya (40 µg/mg) LD50 (CL)b LD90 (CL)b

Artemisia dracunculus 30.20 ± 11.52 >40 >40

Artemisia herba-alba 100 20–40 20–40

Hyssopus officinalis 0 >40 >40

Lavandula angustifolia 100 16.06 (14.72–17.18) 19.71 (18.55–21.18)

Mentha piperita 100 22.96 (21.06–26.16) 30.34 (26.9–37.64)

Mentha suaveolens 100 4.54 (4.18–4.92) 6.12 (5.64–6.92)

Mentha spicata 100 23.58 (21.46–26.14) 33.86 (30.58–38.84)

Origanum vulgare subsp.virens 100 6.38 (5.82–7.00) 8.96 (8.18–10.10)

Rosmarinus officinalis 100 ∼10 ∼12

Satureja montana 100 4.68 (4.14–5.24) 8.33 (7.54–9.38)

Tanacetum vulgare 23.37 ± 6.74 >40 >40

Thymus mastichina 47.69 ± 20.50 >40 >40

Thymus vulgaris 100 5.52 (4.42–6.36) 9.52 (8.46–11.36)

Thymus zygis 100 2.44 (2.18–2.74) 3.88 (3.48–4.48)

aValues (in percent) are the means of three replicates corrected according to Schneider–Orelli’s formula (Püntener, 1981).
bLethal doses (upper–lower 95% confidence limits) calculated to give 50% (LD50 ) or 90% (LD90 ) mortality by Probit analysis.

T and C represent feeding/settling on the treated and control
leaf disks, respectively. The antifeedant effects (%FI/SI) were
analyzed for significance by the non-parametric Wilcoxon paired
signed-rank test comparing the consumption/settling between
the treatment and control leaf disks. Extracts and compounds
with an SI >70% were further tested in a dose–response
experiment (1:2 serial dilutions to cover a range of activities
between 100 and <50% feeding inhibition with a minimum of
three doses) to calculate their relative potency (EC50, the effective
dose to give a 50% settling reduction) from the linear regression
analysis (%FI/SI on Log-dose, STATGRAPHICS Centurion XVI,
version 16.1.02).

RESULTS

Ixodicidal Effects
Most of the EOs tested (75%) gave significant ixodicidal activity
against H. lusitanicum larvae (Table 2), which can be grouped
into four categories as follows:

(1) Strong ixodicidal effects (LC50 < 10 µg/mg): Thymus zygis
(four doses tested, 100–46% mortality), followed by Mentha
suaveolens (five doses tested, 100–50% mortality), Satureja
montana (seven doses tested, 100–18%mortality), T. vulgaris
(four doses tested, 100–5%mortality), andOriganum vulgare
subsp. virens (six doses tested, 100–10% mortality).

(2) Moderate ixodicidal effects (LC50 < 16–28 µg/mg): Mentha
piperita (three doses, 100–2% mortality), Mentha spicata
(three doses, 100–9%mortality), Lavandula angustifolia (two
doses, 92–2% mortality), and Rosmarinus officinalis (two
doses, 100–20% mortality).

(3) Moderate–low ixodicidal effects (LC50 < 20–40 µg/mg):
Artemisia herba-alba, only toxic at the highest dose tested
(40 µg/mg, 100% mortality).

(4) No ixodicidal effects (LC50 > 40 µg/mg): Artemisia
dranunculus, Hyssopus officinalis, Tanacetum vulgare, and
Thymus mastichina.

Antifeedant Effects
Table 3 shows the insect antifeedant effects of the tested EOs.
Overall, the herbivorous insects were less affected by these EOs
than the tick (37 and 31% EOs effective against S. littoralis and
aphids, respectively).

Spodoptera littoralis feeding was strongly affected by
S. montana (four doses, %FI = 90–5, EC50 = 39 µg/cm2),
followed by M. piperita, M. spicata, T. vulgaris, T. zygis, and
T. vulgare (%FI= 70–80).

Mentha persicae and R. padi were strongly affected by
T. vulgaris (four doses, %SI = 81–10 and 84–7, EC50 = 29 and
49 µg/cm2, respectively) and S. montana (four doses, %SI =

90–5, EC50 = 29 µg/cm2). M. suaveolens (three doses, %SI =
92–20), O. vulgare subsp. virens (three doses, %SI = 78–10), and
T. zygis (three doses, %SI = 89–15) showed moderate effects on
M. persicae (EC50 = 35, 34, and 45µg/cm2, respectively). T. zygis,
T. vulgare, and O. vulgare subsp. virens had low effects on R. padi
(%SI= 65–70).

Plant Species Ranking
Considering the ixodicidal and antifeedant effects of the tested
EOs, the plants have been ranked in relation to T. vulgaris
(Table 4) for their potential as botanical pesticide ingredients.
The ranking index has been established as [T. vulgaris EC50

value/ranked species EC50 value] for each test with significant
effects (see Tables 2, 3).

Overall, considering the sum of all the indices, S. montana
and T. zygis ranked over T. vulgaris (value >4). However,
T. zygis, S. montana, andM. suaveolens ranked over T. vulgaris as
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TABLE 3 | Insect antifeedant effects of the selected essential oils.

Essential oil Spodoptera

littoralis

Myzus

persicae

Rhopalosiphum

padi

%FIa %SIb

EC50 (CL)c

Artemisia dracunculus 53.4 ± 11 21.8 ± 6 42.9 ± 7

∼100 >100 >100

Artemisia herba-alba 30.2 ± 10 59.4 ± 7 31.5 ± 7

>100 >100 >100

Hyssopus officinalis 40.1 ± 3 41.2 ± 8 26.6 ± 7

>100 >100 >100

Lavandula angustifolia 54.8 ± 11 31.0 ± 8 46.5 ± 6

∼100 >100 >100

Mentha piperita 74.6 ± 8* 38.5 ± 10 33.2 ± 8

>70 >100 >100

Mentha spicata 72.84 ± 12* 56.7 ± 8 17.8 ± 5

>70 ∼100 >100

Mentha suaveolens 71.1 ± 14* 92.1 ± 3* 48.5 ± 7

>70 35.0 (31–39) >100

Origanum vulgare subsp. virens 37.7 ± 11 78.0 ± 7* 67.2 ± 8*

>100 33.7 (23–50) >70

Rosmarinus officinalis 35.5 ± 11 51.4 ± 6 19.9 ± 5

>100 ∼100 >100

Satureja montana 94.3 ± 1* 93.5 ± 2* 90.1 ± 3*

39.5 (13–63) 28.9 (22–34) 29.2 (20–38)

Tanacetum vulgare 68.2 ± 10* 51.8 ± 7 68.1 ± 6*

>70 ∼100 >70

Thymus mastichina 38.7 ± 10 33.5 ± 9 8.7 ± 5

>100 ∼100 >100

Thymus vulgaris 74.9 ± 12* 80.7 ± 6* 83.9 ± 5*

>70 29.0 (10–35) 49.0 (40–50)

Thymus zygis 72.3 ± 15* 89.3 ± 5* 70.2 ± 8*

>70 45.0 (40–50) >70

aPercent feeding (FI) inhibition at a dose of 100 µg/cm2. Values are the means of five to

seven replicates per dose.

Values with asterisk are significantly different according to Wilcoxon paired rank test (P

< 0.05).
bPercent setting (SI) inhibition at a dose of 100 µg/cm2. Values are the means of 20

replicates per dose.
cEC50 (95% lower–upper confidence limits), concentration needed to produce 50%

feeding/setting inhibition.

ixodicidal agents (>1), and only S. montana ranked better than
T. vulgaris against insects (Table 4).

Essential Oil Composition
Table 5 shows the main components (% abundance >10)
of the active EOs. The oils can be grouped according to
their main components as follows: camphor/1,8-cineole (+p-
cymene and A. herba-alba; +α-pìnene and R. officinalis);
carvacrol (S. montana); carvone/1,8-cineole (M. spicata); p-
cymene/carvacrol/linalool (O. vulgare subsp. virens); linalyl
acetate/linalool (L. angustifolia); menthone/menthol/limonene

(M. piperita); piperitenone oxide/piperitenone (M. suaveolens);
and thymol (T. zygis) (+p-cymene and T. vulgaris).

Ixodicidal and Antifeedant Effects of EOs’
Main Components
Table 6 shows the ixodicidal effects of the selected individual
components. Piperitenone oxide was the strongest acaricidal
compound (LD50−90 = 0.9–1.1 µg/mg), followed by carvacrol
(LD50−90 = 1.4–1.7 µg/mg), piperitenone (LD50−90 = 1.8–2.2
µg/mg), and thymol (LD50−90 = 2.9–6.2 µg/mg).

The antifeedant effects of the individual EO components
are shown in Table 7. Piperitenone was the most effective
antifeedant against S. littoralis (EC50 = 1.4 µg/cm2), followed
by piperitenone oxide (EC50 = 5 µg/cm2), thymol (EC50 =

21 µg/cm2), and α-pinene with moderate-low effects (EC50 =

∼37 µg/cm2). M. persicae strongly responded to thymol (EC50

= 7.6 µg/cm2) and piperitenone oxide (EC50 = 8.6 µg/cm2),
followed by carvacrol (EC50 = 15 µg/cm2) and menthone (EC50

=∼34 µg/cm2). R. padi was the least sensitive insect species and
responded to carvacrol (EC50 = 15 µg/cm2), thymol (EC50 = 19
µg/cm2), and piperitenone oxide (EC50 =∼25 µg/cm2).

DISCUSSION

This work has demonstrated the ixodicidal and insect
antifeedant effects of EOs from experimentally cultivated
AMPs. Furthermore, more EOs were ixodicidals than insect
antifeedants, probably because of their different feeding ecologies
(blood sucking vs. herbivores). Ticks are obligate hematophagous
ectoparasites (Basu and Charles, 2017) and therefore have not
evolved adaptations to plant secondary metabolites. On the
other hand, insect herbivores have coevolved with plants and
their chemical defenses/secondary metabolites (Maron et al.,
2019). These differences in feeding adaptations could explain the
selective toxicity of EOs toward the ticks observed here.

The EOs grouped as strong ixodicidal agents corresponded to
T. zygis, T. vulgaris, S. montana, M. suaveolens, and Origanum
virens. Similarly, the EOs grouped as strong antifeedants
corresponded to S. montana, T. zygis, and T. vulgaris, followed
by O. virens andM. suaveolens.

Thymus vulgaris EO, an ingredient of botanical pesticides
(Pavela, 2016), has been included in this work as a reference for
further species selection. In this work, the EO from T. vulgaris
(thymol/p-cymene) was the third most ixodicidal and the second
most antifeedant against the insect species tested. The most
common T. vulgaris chemotypes are thymol/carvacrol (György
et al., 2020), which have reported ixodicidal effects including
repellency against nymphs of Ixodes ricinus and adults of
Dermacentor reticulatus (Štefanidesová et al., 2017; Goode et al.,
2018), but not on its larvicidal effects against H. lusitanicum. EO
from T. vulgaris has also been described as being insecticidal
against several insect species, including S. littoralis, M. persicae
(toxicity; Pavela, 2012; Ikbal and Pavela, 2019), and R. padi
(antifeedant; Grul’ová et al., 2017). The EO from T. zygis
(thymol) was the most effective ixodicidal agent tested here,
with insect antifeedant effects similar to T. vulgaris. Previous
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TABLE 4 | Rank index [calculated as EC50 of Thymus vulgaris essential oil (EO)/EC50 of ranked species’ EO] of the bioactive EO-producing plant species tested for further

selection.

Essential oil Hyalomma lusitanicum Spodoptera littoralis Myzus persicae Rhopaslosiphum padi Total index

Thymus vulgaris 1 1 1 1 4

Satureja montana 1.17 1.67 1 2.43 6.27

Thymus zygis 2.25 0.95 0.64 0.69 4.53

Mentha suaveolens 1.22 0.94 0.83 2.99

Origanum vulgare subsp. virens 0.86 0.86 0.66 2.05

Mentha spicata 0.23 1 1.23

Mentha piperita 0.23 1 1.23

Rosmarinus officinalis 0.55 0.55

Lavandula angustifolia 0.34 0.34

TABLE 5 | Main components of the active essential oils.

Plant species Compound (% abundance)

Artemisa herba-alba Camphor (19), 1,8-cineole (12), p-cymene (8), borneol (1)

Lavandula

angustifolia

Linalyl acetate (30), linalool (30), geranyl acetate (7),

terpineol (4), c-linalool oxide (3), t-linalool oxide (3),

caryophyllene oxide (3), neryl acetate (2)

Mentha piperita Menthone (41), menthol (31), limonene (13)

Mentha spicata Carvone (79),1,8-cineole (12), menthol (2)

Mentha suaveolens Piperitenone oxide (37), piperitenone (21), limonene (7),

D-germacrone (7), t-caryophyllene (6)

Origanum vulgare

subsp. virens

p-Cymene (30), carvacrol (17), linalool (14), α-terpinene

(3), myrcene (2), β-caryophyllene (2)

Rosmarinus officinalis Camphor (28), 1,8-cineole (22), α-pinene (11),

endoborneol (6), camphene (6), verbenone (5)

Satureja montana Carvacrol (76), p-cymene (2), borneol (2), thymoquinone

(1), 1-octen-3-ol (1)

Thymus vulgaris Thymol (49), p-cymene (29), γ-terpinene (7), carvacrol (4)

Thymus zygis Thymol (74), p-cymene (9), γ-terpinene (7), carvacrol (4)

reports showed that T. zygis EO (rich in thymol) was ovicidal,
larvicidal, antifeedant, and repellent against the insect Plutella
xylostella (Sangha et al., 2017), but this is the first report on
its ixodicidal activity. T. zygis is distributed in the Iberian
Peninsula and north of Africa (Morales Valverde, 1997), the
thymol chemotype being of interest (Pérez-Sánchez et al., 2008).
Therefore, the high content of thymol (75%) and the effects on
ticks of the EO from the T. zygis line tested here support further
agronomic development.

The EO from S. montana (carvacrol) was the most effective
insect antifeedant and the second most effective ixodicidal
agent tested in this study. The essential oil of S. montana
is characterized by carvacrol, thymol, p-cymene, and linalool
(Velasco and Perez-Alonso, 1983; Silva et al., 2009; Dunkic et al.,
2012). S. montana EO has reported repellence to Frankiniella
occidentalis (Picard et al., 2012), is toxic against Leptinotarsa
decemlineata larvae and adults (Usanmaz-Bozhuyuk and Kordali,
2018), larvicidal against Culex quinquefasciatus (Benelli et al.,
2017b), and toxic to Drosophila suzukii adults (Park et al., 2016).
The population of S. montana used in this work, rich in carvacrol,

TABLE 6 | Ixodicidal activity of the main components (% abundance > 10) of the

active essential oils on Hyalomma lusitanicum larvae.

Compound % Mortalitya

(20 µg/mg)

LD50 (CL)b LDa
90 (CL)b

α-Pinene 0 >20 >20

Limonene 6.87 ± 1.84 >20 >20

Linalool 9.73 ± 5.02 >20 >20

1,8-Cineole 3.70 ± 3.70 >20 >20

Camphor 15.60 ± 4.73 >20 >20

p-Cymene 5.70 ± 2.97 >20 >20

Carvacrol 100 1.42 (1.34–1.54) 1.76 (1.62–1.92)

Thymol 100 2.94 (2.08–3.54) 6.16 (5.30–7.84)

Piperitenone 100 1.77 (1.63–1.92) 2.19 (2.03–2.40)

Piperitenone oxide 100 0.88 (0.81–0.96) 1.09 (1.02–1.19)

Menthone 8.50 ± 4.44 >20 >20

Menthol 31.4 ± 13.6 >20 >20

Carvone 5.00 ± 2.67 >20 >20

aValues (in percent) are the means of three replicates corrected according to Schneider–

Orelli’s formula (Püntener, 1981).
bLethal doses (upper–lower 95% confidence limits) calculated to give 50% (LD50 ) or 90%

(LD90 ) mortality by Probit analysis.

has already been included in an agronomic development
program for the production of biopesticides (Navarro-Rocha
et al., 2020). However, this is the first report on the ixodicidal
activity of this EO.

The M. suaveolens population selected for this work
was rich in piperitenone oxide/piperitenone. This EO was
the second most effective ixodicidal extract tested here
(more effective than T. vulgaris), along with S. montana,
and showed stronger antifeedant effects against M. persicae
than T. vulgaris. M. suaveolens is native of Africa, temperate
Asia, and Europe (Abbaszadeh et al., 2009). There are three
chemotypes described for M. suaveolens: pulegone, piperitenone
oxide, and piperitenone oxide/piperitone oxide (Oumzil et al.,
2002; BoŽović et al., 2015). Previously, M. suaveolens EOs
(pulegone and menthone) showed ovicidal and larvicidal
effects against the tick Hyalomma aegyptium (Laghzaoui
et al., 2019). This species’ EOs also have reported insecticidal

Frontiers in Agronomy | www.frontiersin.org 6 May 2021 | Volume 3 | Article 66280241

https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/agronomy#articles


Valcárcel et al. Acaricidal, Antifeedant, Essential Oil, Aromatic Plant Selection

TABLE 7 | Antifeedant activity of the main components (% abundance >10) of the

active essential oils on Spodoptera littoralis larvae, Myzus persicae, and

Rhopaslosiphum padi apterous adults in choice tests.

Compound S. litorallis M. persicae R. padi

%FIa %SIb

EC50 (CL)c

α-Pinene 67.3 ± 8.9 53.9 ± 10.2 34.9 ± 8.1

∼37 >50 >50

Limonene 44.8 ± 14.5 29.3 ± 7.7 31.15 ± 0.55

>50 >50 >50

Linalool 45.3 ± 7.2 27.3 ± 7.6 48.4 ± 8.3

>50 >50 >50

1,8 Cineole 36.0 ± 8.7 56.0 ± 8.5 21.9 ± 7.2

>50 >50 >50

Camphor 22.6 ± 6.0 37.6 ± 7.0 38.5 ± 7.6

>50 >50 >50

p-Cymene 8.61 ± 6.09 20.24 ± 6.50 35.0 ± 7.5

>50 >50 >50

Carvacrol 55.8 ± 11.8 86.4 ± 3.2* 90.6 ± 5.3*

∼50 15.5 (11.1–18.8) 14.6 (11.7–18.2)

Thymol 52.4 ± 10.1 81.8 ± 7.7* 92.1 ± 2.6*

∼50 7.6 (4.1–8.7) 18.6 (4.1–23.3.5)

Piperitenone 91.8 ± 4.9* 56.2 ± 2.4 nt

1.45 (0.2–9.9) ∼50

Piperitenone oxide 90.1 ± 3.7* 91.1 ± 5.3* 75.0 ± 6.5*

5.0 (1.8–13.5) 8.6 (3.0, 24.5) ∼25.0

Menthone 29.2 ± 9.8 72.8 ± 9.2* 61.6 ± 6.7

>50 ∼34 >50

Menthol 35.6 ± 14.3 34.6 ± 8.7 45.4 ± 8.7

>50 >50 >50

Carvone 52.9 ± 12.7 31.0 ± 9.8 51.5 ± 8.6

∼50 >50 >50

aPercent feeding (FI) inhibition at a dose of 100 µg/cm2. Values are the means of five

to seven replicates per dose. Values with asterisk are significantly different according to

Wilcoxon paired rank test (P < 0.05).
bPercent setting (SI) inhibition at a dose of 100 µg/cm2. Values are the means of 20

replicates.
cEC50 (95% lower–upper confidence limits), concentration needed to produce 50%

feeding/setting inhibition.

effects against stored-product pests such as Sitophilus oryzae
(piperitenone oxide and piperitenone oxide/piperitenone
chemotypes) (Zekri et al., 2013), Rizopertha dominica
(piperitenone/pulegone/piperitone) (Benayad et al., 2012),
and Triboleum castaneum (menthone/pulegone) (Kasrati
et al., 2015) and larvicidal activity against C. quinquefasciatus
(piperitenone oxide) (Pavela et al., 2014). Antifeedant effects
against L. decemlineata and M. persicae have been reported for
a piperitenone oxide/piperitone epoxide Mentha chemotype
(Kimbaris et al., 2017). However, this is the first report on
the ixodicidal effects of a piperitenone oxide/piperitenone
M. suaveolens chemotype. The ixodicidal and antifeedant effects
(stronger than those of T. vulgaris) of the M. suaveolens EO

tested in this work support further agronomic development of
this species for the production of biopesticides.

The chemotype of O. vulgare subsp. virens (p-cymene,
carvacrol, and linalool) tested here showed ixodicidal effects
similar to T. vulgaris, but was less antifeedant, affecting only the
aphid M. persicae. O. vulgare have reported toxic or repellent
activities against I. ricinus (Soutar et al., 2019) and acute
and fumigant toxicity against aphids including M. persicae
(Ikbal and Pavela, 2019). However, this is the first report
on the ixodicidal and aphid antifeedant effects of O. vulgare
subsp. virens EO. O. vulgare is a widespread species native to
the Mediterranean, the Euro-Siberian, and the Irano-Turanian
regions and is one of the most traded and consumed spice
plants (Lukas et al., 2015). O. vulgare subsp. virens is a
heterogeneous subspecies characterized by essential oils rich in
acyclic and/or cymyl compounds (Lukas et al., 2015). Since
the effects of the EO from O. vulgare subsp. virens tested here
were similar to these of T. vulgaris, its further development
for the production of biopesticides against arthropods is not
supported. However, we suggest the valorization of its essential
oil production residues (biomass: hydrolate) as a potential source
of biopesticidal ingredients.

The moderate ixodicidal EOs were from L. angustifolia (linalyl
acetate/linalool), M. piperita (menthone/menthol), M. spicata
(carvone/1,8-cineole), R. officinalis (camphor/1,8-cineole/α-
pinene), and A. herba-alba (camphor/1,8-cineole/p-cymene). All
these EOs were less effective than that of T. vulgaris.

The EO from L. angustifolia tested here (linalyl
acetate/linalool) showed moderate ixodicidal effects against
H. luxitanicum larvae, lower than the effects of T. vulgaris,
without significant insect antifeedant effects. Previous reports
have shown interference with the host-seeking behaviors of
H. marginatum and D. reticulatus for this species’ EO (Mkolo
and Magano, 2007; Štefanidesová et al., 2017) and toxicity to
Rhipicephalus (Boophilus) annulatus (Pirali-Kheirabadi and
Teixeira da Silva, 2010) for this species’ EO. Additionally, a
similar EO from the hybrid Lavandula × intermedia (rich in
linalyl acetate and linalool) was also toxic to H. lusitanicum
larvae and moderately antifeedant to S. littoralis (Ortiz de
Elguea-Culebras et al., 2018). L. angustifolia, distributed in the
sub-Mediterranean region, has a great economic importance
in perfumery, cosmetics, food, pharmaceutical industries, and
aromatherapy (Demasi et al., 2018). However, our results do
not support its agronomic production as a biopesticide when
compared to T. vulgaris, but suggest the valorization of its
essential oil production residues (biomass: hydrolate) as a source
of biopesticidal ingredients.

M. piperita (menthone/menthol) was moderately ixodicidal
against H. lusitanicum and showed moderate antifeedant
effects against S. littoralis. In previous works, M. piperita EO
showed moderate repellency against adults of D. reticulatus
(Štefanidesová et al., 2017), larvicidal effects against R. microplus
(de Souza Chagas et al., 2016), and toxicity against aphids
including M. persicae (Ikbal and Pavela, 2019). M. spicata
(carvone/1,8-cineole) also had moderate larvicidal effects
against H. lusitanicum and moderate-low antifeedant effects
on S. littoralis. M. spicata EO has been reported as a moderate
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repellent against adults of D. reticulatus (Štefanidesová et al.,
2017) and toxic to stored-product pests (Irfan et al., 2009;
Kedia et al., 2014; Eliopoulos et al., 2015; Nubia et al., 2016),
L. decemlineata (Saroukolai et al., 2014), and S. littoralis (Pavela,
2005), while a carvone/limonene chemotype of M. spicata
was not antifeedant or toxic to S. littoralis, M. persicae, and
R. padi (Santana et al., 2014).Mentha oils are used commercially
as biopesticide ingredients because of their various effects
against insects, the most commercialized being the Mentha
species spearmint (M. spicata), peppermint (M. piperita), and
M. arvensis (Singh and Pandey, 2018). Since our results showed
lower effects than T. vulgaris, we suggest the valorization of
their commercial essential oil production residues (biomass:
hydrolate) as an additional source of biopesticidal ingredients.

Rosmarinus officinalis (camphor/1,8-cineole/α-pinene)
showed moderate ixodicidal effects in this work. Previous reports
have shown a moderate post-ingestive toxicity to S. littoralis for
a similar R. officinalis EO (Santana et al., 2014). R. officinalis EOs
rich in 1,8-cineole were toxic to larvae of Hyalomma scupense
(Djebir et al., 2019) and I. ricinus nymphs (Elmhalli et al., 2019),
while an EO rich in α-pinene showed low–moderate toxicity
against larvae of R. (B.) microplus (Martinez-Velazquez et al.,
2011). This plant is cultivated worldwide as a food flavoring and
preservative due to its antioxidant and antimicrobial potential
(Borges et al., 2019). Our results showed lower effects for
R. officinalis than T. vulgaris. However, being a commercial plant
available worldwide, we suggest the valorization of its essential
oil production residues (biomass: hydrolate) as a source of
biopesticidal ingredients.

The chemotype of A. herba-alba (camphor/1,8-cineole/p-
cymene) tested in this work showed low–moderate larvicidal
effects against H. lusitanicum. A. herba-alba is a medicinal
and aromatic shrub that grows wild in arid areas of the
Mediterranean Basin, being abundant in the Iberian Peninsula
(Mohamed et al., 2010), showing chemical diversity (Salido
et al., 2004). An A. herba-alba EO rich in piperitone showed
repellency against I. ricinus nymphs (El-Seedi et al., 2017), and
a thujone/camphor chemotype was antifeedant and moderately
toxic to S. littoralis (Santana et al., 2014). Our results showed
lower effects for a camphor/1,8-cineole A. herba-alba chemotype
than those reported or T. vulgaris. Given the chemical diversity
of A. herba-alba wild populations, we suggest further research on
chemotype–bioactivity correlations for this plant species prior to
its selection for agronomical development.

Considering the plant species’ rank based on the ixodicidal
and antifeedant effects of their EOs, we propose the plant
populations of S. montana, T. zygis, andM. suaveolens tested here
for further agronomical development as biopesticide ingredients
for the control of ticks and insects. These EOs (S. montana,
T. zygis, and M. suaveolens) have additional biopesticidal effects
such as strong nematicidal action against root-knot nematodes
(Meloidogyne javanica), with S. montana being the most effective
(LC50 = 0.041 µg/µl) (Andrés et al., 2012).

To further understand the effects of the active EOs, their
main components (Figure 1) were also tested against the selected
targets. The most effective larvicidal and antifeedant compounds
were piperitenone oxide, carvacrol, piperitenone, and thymol.

The activity of piperitenone oxide and piperitenone explained the
effects of M. suaveolens EO. Thymol explained the effects of the
EOs from T. zygis and T. vulgaris, while carvacrol was responsible
for the effects of S. montana and O. vulgare subsp. virens.

These compounds have reported ixodicidal and/or insecticidal
effects. Piperitenone epoxide and piperitenone showed strong
larvicidal and repellent effects against Aedes albopictus
(Giatropoulos et al., 2018). Piperitenone was antifeedant to
L. decemlineata and S. littoralis (Kimbaris et al., 2017). However,
there are no reports on the acaricidal effects of these compounds.
Thymol was larvicidal to H. lusitanicum (Navarro-Rocha et al.,
2018), and carvacrol was toxic to Rhipicephalus turanicus
(Coskun et al., 2008) and moderately toxic to Hyalomma
marginatum adults (Cetin et al., 2010). These compounds were
repellent to Amblyomma americanum (Carroll et al., 2017) and
showed strong toxicity against I. ricinus larvae and repellency
against I. ricinus larvae and A. americanum nymphs (Carroll
et al., 2017; Tabari et al., 2017). Carvacrol and thymol also
have reported behavioral and toxic effects against several insect
species, including the ones targeted here. Specifically, thymol was
antifeedant to M. persicae (Navarro-Rocha et al., 2018). Thymol
and carvacrol were antifeedant to S. littoralis fourth-instar
larvae (Pavela, 2011) and affected the olfactory sensilla of female
S. littoralis adults (Anderson et al., 1993). Additionally, carvacrol
and thymol showed acute toxicity to S. littoralis third-instar
larvae (Pavela, 2014), and carvacrol was toxic to M. persicae
(Petrakis et al., 2014).

The rest of the tested compounds were not ixodicidal or
antifeedant. Therefore, the activity of the moderately active
EOs (L. angustifolia, M. piperita, M. spicata, R. officinalis, and
A. herba-alba) cannot be explained by their main components
(linalyl acetate, linalool, menthone, menthol, limonene, camphor,
1,8-cineole, p-cymene, α-pìnene, and carvone), suggesting
synergistic effects. p-Cymene was among the most frequent
synergists found, interacting with 22 terpenes commonly
present in EOs (Pavela et al., 2014). Therefore, synergistic
interactions among EO components could explain their
ixodicidal effects.

CONCLUSION

This work has demonstrated the ixodicidal and insect antifeedant
effects of EOs from experimentally cultivated AMPs. The EOs
grouped as strong ixodicidal agents corresponded to T. zygis,
T. vulgaris, S. montana, M. suaveolens, and O. vulgare subsp.
virens. Similarly, the EOs grouped as strong antifeedants
corresponded to S. montana, T. zygis, and T. vulgaris, followed
by O. vulgare subsp. virens and M. suaveolens. The moderate
ixodicidal EOs were from L. angustifolia, M. piperita, M. spicata,
A. herba-alba, and R. officinalis.

The most effective larvicidal and antifeedant compounds
were piperitenone oxide, carvacrol, piperitenone, and thymol,
explaining the effects of M. suaveolens, T. zygis, T. vulgaris,
S. montana, and O. vulgare subsp. virens EOs. The rest of the
tested compounds were not ixodicidal or antifeedant. Therefore,
the activity of the moderately active EOs (L. angustifolia,
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M. piperita, A. herba-alba, R. officinalis, and M. spicata) cannot
be explained by their main components (linalyl acetate, linalool,
menthone, menthol, limonene, camphor, 1,8-cineole, p-cymene,
α-pìnene, and carvone), suggesting synergistic effects.

T. zygis, S. montana, andM. suaveolenswere better ixodicidals
and S. montana was a better antifeedant than T. vulgaris.
Therefore, we propose the plant populations of S. montana,
T. zygis, and M. suaveolens tested here for further development
as biopesticide ingredients for the control of ticks and
insect pests.
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The continuous and indiscriminate use of insecticides has been responsible for the

emergence of insecticide resistant vector insect populations, especially in Aedes aegypti.

Thus, it is urgent to find natural insecticide compounds with novel mode of action

for vector control. The goal of this study was to investigate the larvicidal activity of

essential oils (EOs) from Piper species against A. aegypti characterized as resistant

and susceptible strains to pyrethroids. The EOs from leaves of 10 Piper species

were submitted to the evaluation of larvicidal activity in populations of A. aegypti

in agreement with the (World Health Organization, 2005) guidelines. The resistance

of the strains characterized by determining the lethal concentrations (LCs) with the

insecticide deltamethrin (positive control). The major compounds of the EOs from Piper

species was identified by GC-MS. The EOs from Piper aduncum, P. marginatum,

P. gaudichaudianum, P. crassinervium, and P. arboreum showed activity of up to

90% lethality at 100 ppm (concentration for screening). The activities of the EOs

from these 6 species showed similar LCs in both susceptible strain (Rockefeller) and

resistant strains (Pampulha and Venda Nova) to pyrethroids. The major compounds

identified in the most active EO were available commercially and included β-Asarone,

(E)-Anethole, (E)-β-Caryophyllene, γ-Terpinene, p-Cymene, Limonene, α-Pinene, and

β-Pinene. Dillapiole was purified by from EO of P. aduncum. The phenylpropanoids

[Dillapiole, (E)-Anethole and β-Asarone] and monoterpenes (γ-Terpinene, p-Cymene,

Limonene, α-Pinene, and β-Pinene) showed larvicidal activity with mortality between

90 and 100% and could account for the toxicity of these EOs, but the sesquiterpene

(E)-β-Caryophyllene, an abundant component in the EOs of P. hemmendorffii and P.

crassinervium, did not show activity on the three populations of A. aegypti larvae at a

concentration of 100 ppm. These results indicate that Piper’s EOs should be further

evaluated as a potential larvicide, against strains resistant to currently used pesticides,

and the identification of phenylpropanoids and monoterpenes as the active compounds

open the possibility to study their mechanism of action.

Keywords: essential oils, Piper, larvicides, vector control, Aedes aegypti, insecticide resistance
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INTRODUCTION

Aedes aegypti (Linnaeus, 1762) (Mattingly et al., 1962) is a
mosquito species known to transmit arboviruses such as dengue,
chikungunya, and zika virus worldwide. It is a diurnal mosquito
extremely adapted to urban and domestic environments (Maciel-
de-Freitas et al., 2012). The rapid increase in rates of urbanization
in tropical regions, lack of basic infrastructure and limited
or non-existent sanitation, associated with favorable climatic
conditions for the mosquito’s development, have contributed
to the expansion of the occurrence range of arboviruses
transmitted by females of A. aegypti (Rebêlo et al., 1999;
Carvalho and Moreira, 2016). Therefore, we have witnessed the
increasing transmission of Dengue (DENV), Zika (ZIKV), and
Chikungunya (CHIKV) virus in these regions.

Despite the FDA approval of a dengue vaccine (Dengvaxia)
in 2019, its efficiency is restricted to people who have
been previously infected by dengue and not as disease
prevention for a large portion of the population. Therefore,
the control of A. aegypti populations still represents the best
line of defense. This strategy has focused on controlling
the mosquito’s population by means of using insecticides
such as the larvicide Pyriproxyfen (Juvenil Hormone Analog–
JHA), the adulticides malathion (organophosphate) and Cielo R©,
an insecticide containing imidacloprid (neonicotinoid) and
paletrine (pyrethroid) (Valle et al., 2019). Themain larvicide used
worldwide was the organophosphate temephos, but by the end of
1990’s, it led to the development of resistance inA. aegypti. In fact,
in the last decades, the indiscriminate use of synthetic insecticides
(for example, domestic use of pyrethroid insecticides available in
the retail market, especially in epidemic periods), together with
the lack of coordinated programs in multi-endemic areas, have
led to the emergence of populations of A. aegypti resistant to
different insecticides used (Maciel-de-Freitas et al., 2012; Macoris
et al., 2018).

The resistance of A. aegypti in Brazil studied from 2005 to
2012 was characterized by the frequency and distribution of
the resistance of this vector (Valle et al., 2019). The phenotypes
for populations resistant to pyrethroids throughout the country
have been characterized and are associated to the changes in
biochemical and target site mutations V410L, G923V, I1011M,
V1016I, and F1534C (Brengues et al., 2003; Saavedra-Rodriguez
et al., 2007; Martins et al., 2009a,b; Lima et al., 2011; Araújo et al.,
2013; Lins et al., 2014; Maciel-de-Freitas et al., 2014; Bellinato
et al., 2016; Collet et al., 2016; Dolabella et al., 2016; Haddi et al.,
2017; Viana-Medeiros et al., 2017; Garcia et al., 2018; Valle et al.,
2019; Costa et al., 2020).

In the case of larval resistance in A. aegypti, two studies
were carried out in the city of Belo Horizonte (MG, Brazil)
(Belinato et al., 2013; Valle et al., 2019). The resistance ratio 95
(RR95) to the insecticide Temephos was quantified in mosquito
populations in 2005 (Belinato et al., 2013) and 2008 (Valle et al.,
2019), in which resistance was observed (RR95 = 5.4 and RR95 =

10.8, respectively).
Essential oils (EOs) are odoriferous and volatile compounds

found stored in plants structures, such as glands, secretory

trichomes, secretory ducts, secretory cavities, or resin ducts
(Ciccarelli et al., 2008; Bezić et al., 2009; Liolios et al., 2010;
Morone-Fortunato et al., 2010). The production of these volatiles
in plants is associated with the ecological role they display
in nature, such as protecting plants against pathogens and
herbivores and attraction of pollinating insects (Grodnitzky and
Coats, 2002; Csekea et al., 2007; Bakkali et al., 2008). The
emission of plant volatiles is associated with several messages
they convey to the surrounding interacting organisms, such as
volatiles used in the attraction of pollinating insects, kairomones
in response to herbivores, attraction of parasitoids when
damaged by herbivores, controlling the growth of pathogens
in aerial parts or roots, and so forth (Grodnitzky and Coats,
2002; Csekea et al., 2007; Bakkali et al., 2008; Raveau et al.,
2020). EOs from the plants Cymbopogon spp., Ocimum spp.
and Eucalyptus spp. are well-known for their application as
insect repellents and the active principles are associated with
the presence of α-Pinene, Limonene, Citronellol, Citronellal,
Camphor and Thymol (Nerio et al., 2010). Additionally, some
plant species have been adopted in push-pull strategies for
controlling insect pests in agricultures thanks to their emission
of specific volatile compounds with repellent or attractive
properties that lead pests away from cultivated plants and
onto toxic “trap crops” (Cook et al., 2007; Alkema et al.,
2019).

Several applications of volatiles of Piper species have been
suggested because of their high potential for pest control, and
due to the green technologies involved in the extraction process
and the expected low environmental impact (da Silva et al.,
2017; Salehi et al., 2019). The evaluation of the larvicidal
activity of EOs of species of the genus Piper in A. aegypti
has already been studied for the species: Piper humaytanum,
P. permucronatum, P. hostmanianum, P. gaudichaudianum (de
Morais et al., 2007), P. augustum, P. corrugatum, P. curtispicum,
P. darienense, P. grande, P. hispidum, P. jacquemontianum, P.
longispicum, P. multiplinervium, P. reticulatum, P. trigonum
(Santana et al., 2016), P. marginatum (Autran et al., 2009;
Santana et al., 2015), P. klotzschianum (Nascimento et al., 2013),
P. aduncum (de Almeida et al., 2009; Oliveira et al., 2013;
Santana et al., 2015; Scalvenzi et al., 2019), P. corcovadensis
(da Silva et al., 2016), P. sarmentosum (Hematpoor et al.,
2016), P. betle (Vasantha-Srinivasan et al., 2018; Martianasari
and Hamid, 2019), P. arboreum (Santana et al., 2015), and
P. capitarianum (França et al., 2021). Besides, non-volatile
compounds from Piper species such as amides and lignans have
also been described as larvicidal (Cabral et al., 2009; Kanis et al.,
2018).

Despite the large number of studies with EOs from Piper
species against larvae of A. aegypti, there is no assessment of their
effect on strains of mosquitoes resistant to synthetic insecticides.
Therefore, considering the limited number of safe chemical
approaches for controlling A. aegypti as vectors in the field, the
aim of this work is to investigate the larvicidal activity of essential
oils of Piper species and to identify the active principle against
populations of A. aegypti that are either susceptible or resistant
to pyrethroids.
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TABLE 1 | Voucher number, sampling site, and yield of essential oil from Piper

species.

Species Voucher # Sites EO yield (%)a

P. aduncum L. K-0057 Campus–USPb 2.5

P. marginatum Jacq. K-0223 Campus–USP 1.10

P. gaudichaudianum

Kunth

K-0031 Serra do Japic 0.98

P. crassinervium

H.B.and K.

K-0091 Campus–USP 1.80

P. arboreum Aubl. K-0053 Campus–USP 0.74

P. hemmendorffii C.

DC.

K-1086 Campus–USP 0.86

P. cernuum Vell. K-0137 Campus–USP 0.69

P. lucaenum var.

grandifolium Kunth.

K-0486 Campus–USP 0.70

P. lindbergii C.DC. K-2325 Serra do Japi 0.65

P. amalago L. K-0110 Serra do Japi 0.66

#K (Voucher number Kato-XXXX).
aFrom fresh leaves.
bUniversity of São Paulo.
cParque Municipal Serra do Japi, Jundiaí, Brazil.

MATERIALS AND METHODS

Plant Material
The leaves of 10 species of plants belonging to the genus
Piper: Piper aduncum, P. marginatum, P. gaudichaudianum,
P. crassinervium, P. arboreum, P. hemmendorffii, P. cernuum,
P. lucaenum var. gradifolium, P. lindbergii, and P. amalago,
were collected in the period of January to June 2018. The
vouchers were deposited at the Herbarium of USP–University
of São Paulo for identification (Table 1). All collections were
made under permits #59161-1 and 010/2018-R from the Sistema
de Autorização e Informação em Biodiversidade–SISBIO and
Fundação Serra do Japi, respectively.

Collection and Insect Rearing
In this study, three strains of A. aegypti larvae were used. The
Rockefeller strain is a susceptible reference lineage (SRL) for
all assays. Two other strains were collected in the regions of
Pampulha (19◦ 51′ 04′′ S; 43◦ 58′ 46′′ W) and Venda Nova
(20◦ 11′ 51′′ S; 44◦ 1′ 40′′ W) in Belo Horizonte, Minas Gerais,
Brazil in the period of June 2018. The strains Pampulha (Pamp)
and Venda Nova (VN) were evaluated and certified as resistant
to pyrethroids.

The mosquitoes were kept and raised in the insectarium
of the Laboratory of Physiology of Hematophagous Insects of
the Federal University of Minas Gerais in accordance with
the recommendations of the Ethics Committee (CEUA-UFMG)
(protocol number 01/2017). The insects were maintained under
controlled conditions of temperature (27 ± 1◦C), photoperiod
12:12 h (L:D), and relative humidity (75%).

After the eggs hatched in dechlorinated water, the larvae and
pupae were kept in plastic vats, containing fish food ad libitum.
The adult insects were kept in cylindrical cages 30 × 90 cm
with mesh on the top and with continuous access to cotton

soaked in 10% sucrose solution. The females’ blood meals were
performed weekly on hamsters (Mesocricetus auratus) previously
anesthetized with 0.2mL of Thiopental R© (50 mg/mL) and placed
with the trichotomized abdomen on the screen of the cages so
that the females could perform the blood meal for 1 h. The eggs
were obtained 2 days after the meal using filter paper soaked in
dechlorinated water in dark plastic pots, from which they were
removed and kept in new plastic pots until the hatching time
for testing.

Extraction of Essential Oils
The essential oils (EOs) were extracted from fresh leaves of
each species, submitted to hydrodistillation in a Clevenger type
apparatus for 4 h, using 300–500 g of fresh leaves and 500mL
of distilled water (Santos et al., 2012; Fanela et al., 2015). The
EOs were collected and dried with anhydrous sodium sulfate
and stored in amber bottles in a refrigerator at 4◦C until the
experiments were performed. The yield of EOs from Piper species
are shown in Table 1.

Analysis of Essential Oils and Fractions by
GC-MS
EOs samples were diluted 20 times in ethyl acetate (HPLC grade,
Honeywell) and analyzed using a Shimadzu GCMS- QP2010
equippedwith anHP-5ms column (length 30m, ID 0.25mm, film
thickness 0.25µm, Agilent) using Helium as a carrier gas (1.55
mL/min) and 1 µL of each sample was injected at 250◦C with a
1:20 split. Detector temperature was set at 260◦C with electron
impact ionization energy of 70 eV and a scan range ofm/z35-400
Da at 2500 spectra s−1. The oven program started at 40◦C for
2min, and the temperature was increased at 5◦Cmin−1 to 260◦C
and held for 2min. Individual volatile compound peaks were
identified using extracted ion traces of three specific reference
ions and quantified by the peak area of the most abundant ion
trace per compound using a custom-made analysis method in
the GC-MS Postrun Analysis software (Shimadzu). Relative %
of each compound was calculated by comparing the % peak
area in relation to the total sum of peak areas within a sample.
The identification of compounds was conducted by calculating
Arithmetic retention indexes (RIs) in relation to a series of alkane
standards (C8-C40, Supelco) injected using the same GC-MS
method as used for the samples, according to Van Den Dool and
Kratz (1963). Compound mass spectra and RIs were compared
to those available in the Adams and Wiley databases (Adams,
2007), in previous studies of these Piper species, and confirmed
by comparison to authentic standards, when available.

LC50 and LC95 for Larvicidal Activity of
Deltamethrin Insecticide
The characterization of the larvae to be used in the tests as
susceptible or resistant was made by assaying them with the
technical grade insecticide deltamethrin (Bayer Brazil, 99.1%).
The dose-response tests were performed in the range of 10–90%
mortality. Thirty L3-L4 larvae (F1 generation) were separated
per dose (in triplicate), requiring a minimum of 8 doses to
perform the curve. The larvae were placed in 500ml cups
containing 249ml of dechlorinated water, along with 1ml of the
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insecticide in the desired concentration, diluted in ethanol P.A.
For the control group, 30 L3-L4 larvae were used in 250mL of
dechlorinated water. The concentrations of pyrethroid used for
assaying Rockefeller, Venda Nova and Pampulha strains were
0.2–0, 9, 2.0–9.5, and 1.0–8.0 mg/mL, respectively.

Mortality was recorded every 10min during the first hour
and 24 h after the start of the test, as recommended by
the World Health Organization (1981). Larvae that did not
spontaneouslymove, even if subjected tomechanical stimulation,
were considered dead. The LC calculation was performed using
the Polo Plus program (see item on statistical analysis). The
LC of the field population was divided by the LC of the
Rockefeller strain to obtain the Resistance Ratio. The population
was considered resistant when RR95 was >3 (Valle et al., 2019).

Qualitative Larvicidal Bioassays of Piper
Essential Oils
The tests were performed in accordance with World Health
Organization (2005), with modifications. The EOs of 10 species
of Piper were diluted in a final volume of 100ml of dechlorinated
water with 2% dimethyl sulfoxide (DMSO), in a concentration
of 100 ppm of each oil. Then, 30 larvae (L3–L4) from the three
strains, Rockefeller, Venda Nova, and Pampulha were placed in
the containers. Each experiment was carried out in three bottles
(technical triplicate), being repeated five times on different days
(five biological repetitions). The larvae of the control and vehicle
control groups were exposed only to dechlorinated water and
with 2% DMSO, respectively. Mortality was recorded at 24 h
after the start of the test. Larvae not responding to mechanical
stimulation were considered dead and the EOs with 90 to 100%
larvicidal activity were considered active (Cheng et al., 2003; Dias
et al., 2014; Intirach et al., 2016; Muturi et al., 2017).

Determination of LC50 and LC90 of Piper
Essential Oils
EOs that showed preliminary larvicidal activity (90 to 100%)
had their lethal concentrations (LCs) determined. Thus, 30
larvae L3-L4 from the three strains were submitted to different
concentrations in a range of 10–90%, in a final volume of 100mL
of dechlorinated water. Each dose was assayed in duplicate, with
three repetitions (biological triplicate) on different days. The
larvae of the control and vehicle-control groups were exposed to
dechlorinated water and with 2% DMSO, respectively, and the
mortality was recorded 24 h after the start of the test.

Assays With the Major Compounds From
the EOs
The major compounds from EOs characterized by GC-MS,
E-Anethole (Sigma-Aldrich: 4180-23-8), γ-Asarone (Cayman
Chemical: 11681) and (E)-β-Caryophyllene (Cayman Chemical:
21572), γ-Terpinene (Sigma-Aldrich: 86478), p-Cymene (Sigma-
Aldrich: 121452), Limonene (Sigma-Aldrich: 45423), α-Pinene
(Sigma-Aldrich: 147524), and β-Pinene (Sigma-Aldrich: 402753)
were acquired commercially. Pure Dillapiole was obtained by
fractionation using the Isolera Flash Chromatography system
(Biotage INC). The EO of P. aduncum (0.5ml) was loaded on

the silica samplet and the flash chromatography was performed
in the SNAP Ultra 25 g silica column using a gradient of hexane
and ethyl acetate. The gradient started with 20% of ethyl acetate,
after 2min increased to 28% and in a linear increase reached
33% 12min. Sixty fractions were collected and dillapiole was
present in the fractions 30–35. The samples obtained from this
fractionation were analyzed by GC-MS and a fraction with purity
higher than 98% was selected for the assays.

For the larvicidal assays (qualitative bioassays), the pure
compounds were diluted in dechlorinated water and 2% DMSO,
in a final volume of 50mL, to a final concentration of 100 ppm
(screening concentration), containing 15 larvae of A. aegypti
L3-L4 per cup. For the determination of LC50 and LC90, the
methodology was used as described above, using 15 larvae of
A. aegypti L3-L4 per cup.

Statistical Analysis
The data were organized in spreadsheets using Microsoft Excel
software (Office 2007). Lethal concentrations (LC) 50%, 90%,
95% and slope were obtained through Probit analysis with the
aid of the Polo Plus software (Raymond, 1985). Significant
differences in the LC50 and LC90 values were based on non-
overlap of 95% confidence intervals (Hematpoor et al., 2017;
Wang et al., 2019).

RESULTS

Determination of LC50 and LC95 for the
Insecticide Deltamethrin
Based on the bioassays with Deltamethrin, the strains of
Pampulha and Venda Nova were shown to be resistant to
this insecticide, with the population of Pampulha (RR95 =

26.073) being more resistant than the population of Venda Nova
(RR95 = 20.512). The resistance observed in these populations
of A. aegypti for Deltamethrin is expected for pyrethroids in
general, because of the similarity of the mode of action. The
Rockefeller strain, defined as the susceptibility reference strain
(LRS), has been maintained in the laboratory since 1881, without
contact with insecticides and genetically isolated from external
populations (Organização Pan-americana de Saúde (OPAS),
2005). The values of LC50 and LC95 with their 95% confidence
intervals are listed in Table 2.

Larvicidal Activity of Essential Oils
The EOs of the leaves of 10 species of the genus Piper obtained
from hydrodistillation were tested against the three strains
(resistant and susceptible) of A. aegypti. EOs from 5 out of 10
species were considered active: Piper aduncum, P. marginatum,
P. gaudichaudianum, P. crassinervium, and P. arboreum, with
larvicidal activity of 90–100% at 100 ppm (Table 3).

EOs of these five species had their lethal concentrations,
LC50 and LC90 investigated. Thus, the L3-L4 larvae of the two
populations and LRS were submitted to different concentrations
to achieve larval mortality in a range of 10–90%. After 24 h of
exposure the EOs from P. aduncum, P. gaudichaudianum, and P.
marginatum had the lowest LC50 compared to P. crassinervium
and P. arboreum. The EOs from P. aduncum was the most
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TABLE 2 | LC50 and LC95 for the technical grade deltamethrin insecticide (Bayer Brazil, 99.1%) in larvae of Aedes aegypti.

Strains LC50 (mg/L) (95% CI) RR50 (95% CI) LC95 (mg/L) (95% CI) RR95 (95% CI) Slope (SD)

Rockefeller* 0.16 (0.14–0.189) 1 0.751 (0.55–1.22) 1 3.55 ± 0.45

Venda Nova 3.65 (3.21–4.08) 21.94 (18.36–26.23) 9.905 (8.29–12.80) 20.51 (14.44–29.12) 3.79 ± 0.41

Pampulha 2.94 (2.42–3.47) 17.67 (14.17–22.02) 12.590 (9.20–21.13) 26.07 (16.07–42.28) 2.60 ± 0.36

95% CI, 95% confidence interval; LC50, 50% lethal concentration; LC95, 95% lethal concentration; RR95, 95% resistance ratio; SD, standard deviation. *SRL—susceptibility

reference lineage.

TABLE 3 | Mortality percentage of Aedes aegypti larvae in resistant and

susceptible strains to pyrethroids treated with essential oils of Piper species.

Species Strains

Susceptible Resistant

Rockefeller Venda Nova Pampulha

P. aduncum L. 100.00 100.00 100.00

P. marginatum Jacq. 100.00 97.11 98.44

P. gaudichaudianum Kunth 99.33 90.22 94.88

P. crassinervium H.B. and K. 96.22 91.11 92.66

P. arboreum Aubl. 93.11 90.66 90.00

P. hemmendorffii C. DC. 66.44 43.11 36.00

P. cernuum Vell. 45.11 42.00 30.44

P. lucaenum Kunth. 16.22 18.88 24.00

P. lindbergii C. DC. 12.00 13.55 10.22

P. amalago L. 2.66 6.22 2.22

active with LC50 (23.50 ppm) for Rockefeller, and LC50 of 25.11
ppm and 26.39 ppm to Venda Nova and Pampulha, respectively
(Table 4).

Identification of Essential Oil Compounds
by GC-MS
The EOs of the 10 species were analyzed by GC-MS and
main constituents were identified based on library search,
retention index (RI), and use of standard compounds when
available, and expressed as relative percentage of each constituent
(Table 5). In summary, the major compounds were identified
as phenylpropanoids, sesquiterpenes and monoterpenes. The
complete list of all compounds, the retention indexes, and the
relative percentage of each one, for all 10 species of Piper analyzed
is shown in Table 6 and the GC-MS chromatograms for all
species is shown in the Supplementary Figures 1–3.

Evaluation of the Larvicidal Activity of the
Main Compounds in the EOs
The commercially available compounds (E)-Anethole, β-
Asarone, (E)-β-Caryophyllene, γ-Terpinene, p-Cymene,
Limonene, α-Pinene and β-Pinene and Dillapiole, obtained by
fractionation of EO of P. aduncum using flash chromatography
were submitted to further evaluation to determine whether
they were involved as the active compounds in the EOs. Thus,
pure standards were diluted in water and 2% DMSO, in a final

volume of 50mL, to a final concentration of 100 ppm (screening
concentration). Out of the nine compounds evaluated, only
(E)-β-Caryophyllene did not show activity on A. aegypti larvae in
the three strains at the screening concentration. Nevertheless, the
phenylpropanoids (Dillapiole, (E)-Anethole and γ-Asarone) and
monoterpenes (γ-Terpinene, p-Cymene, Limonene, α-Pinene
and β-Pinene) showed larvicidal activity in the range of 90–100%
(Table 7). Additionally, when comparing the LC50 and LC90 of
the three phenylpropanoids, Dillapiole displayed the lowest LC50

for the three strains, followed by (E)-Anethole and γ-Asarone
(Table 8). Among the five monoterpenes tested, Limonene
and γ-Terpinene showed the lowest LC50 for the three strains
(Table 8).

DISCUSSION

Studies focusing on the investigation of EOs from plants from the
perspective of discovering new ovicides, larvicides, adulticides
and repellents have been an important strategy for controlling
agricultural pests, vectors of medical-veterinary importance or
urban viruses (Santos et al., 2012; Phukerd and Soonwera, 2014;
Govindarajan et al., 2016; Benelli et al., 2017; Muturi et al.,
2017; Luz et al., 2020a). Regarding the urban diseases in tropical
regions, A. aegypti is considered one of the main targets since
it has great dispersal capacity, is the vector of DENV, ZIKV,
CHIKV viruses, and has developed a remarkable resistance to
commercially available insecticides (Smith et al., 2016).

The availability of two strains of A. aegypti resistant to
Deltamethrin (Table 1) prompted us to seek alternatives to
control these populations by screening bioactive EOs from plant
species. Despite Deltamethrin not having been used to control
A. aegypti in Brazil, it is a stable molecule with a well-known
mechanism of action, and it is a standard pyrethroid in studies
with insecticide resistance.

In this article, we adopted the WHO methodology (2005) to
perform larvicidal tests against A. aegypti (Dias et al., 2015; Luz
et al., 2020a). However, as the World Health Organization does
not establish criteria to recognize larvicidal activity, in the present
study, we choose the level of 90–100% of larvicidal activity for
selecting active EOs as previously suggested (Cheng et al., 2003;
Dias et al., 2014; Intirach et al., 2016; Muturi et al., 2017). Based
on this criterion, EOs from five Piper out of 10 species tested
showed larvicidal activity (Table 3). The efficiency of EOs from
Piper species as botanical insecticides against various arthropods,
including mosquito larvae of the species A. aegypti has been
previously demonstrated. For instance, EOs of P. marginatum
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TABLE 4 | Lethal concentrations of essential oil of Piper species against Aedes aegypti larvae resistant and susceptible strains to pyrethroids, during 24 h of exposure.

Species Strains Slope ± SD LC50 (ppm) (95% CI) LC90 (ppm) (95% CI)

P. aduncum Rockefeller 4.5 ± 0.2 23.50 (20.92–26.60) 45.25 (37.46–62.61)

Venda Nova 4.2 ± 0.2 25.11 (22.92−27.80) 50.29 (42.37–65.56)

Pampulha 4.3 ± 0.2 26.39 (24.69–28.40) 52.08 (45.58–62.60)

P. gaudichaudianum Rockefeller 4.3 ± 0.2 37.88 (29.58–46.21) 75.20 (58.19–142.75)

Venda Nova 5.6 ± 0.3 54.01 (49.50–58.95) 91.41 (79.56–115.2)

Pampulha 3.9 ± 0.2 41.35 (34.57–49.01) 86.61 (67.51–148.57)

P. marginatum Rockefeller 4.1 ± 0.2 39.91 (34.94–45.11) 80.85 (66.94–112.42)

Venda Nova 5.0 ± 0.2 41.72 (37.05–46.80) 87.27 (72.22–120.23)

Pampulha 4.0 ± 0.2 45.77 (43.65–48.05) 96.06 (87.07–108.70)

P. arboreum Rockefeller 5.4 ± 0.3 51.63 (47.68–55.72) 89.13 (78.69–108.22)

Venda Nova 5.6 ± 0.3 54.01 (49.50–58.95) 91.41 (79.56–115.27)

Pampulha 5.5 ± 0.3 56.22 (52.16–60.82) 96.01 (84.15–118.36)

P. crassinervium Rockefeller 4.9 ± 0.3 59.03 (53.36–66.47) 106.81 (88.43–152.98)

Venda Nova 5.1 ± 0.3 63.55 (58.34–70.79) 113.21 (95.01–154.04)

Pampulha 5.1 ± 0.3 62.96 (57.94–69.77) 112.10 (94.58–150.34)

95% CI, 95% confidence interval; LC50, 50% lethal concentration; LC90, 90% lethal concentration; SD, standard deviation.

(Autran et al., 2009), P. aduncum (de Almeida et al., 2009;
Oliveira et al., 2013), P. gaudichaudianum (de Morais et al.,
2007), P. arboreum (Santana et al., 2015), and P. capitarianum
(França et al., 2021) have displayed an efficient larvicidal action
on A. aegypti.However, to the best of our knowledge, the present
study is the first to demonstrate the bioactivity of EOs of the
genus Piper and the main active compounds in essential oils in
strains of pyrethroid-resistant A. aegypti larvae.

Among the five species that showed larvicidal activity against
A. aegypti, P. aduncum had a lower LC50 compared to the other
four Piper considered active, and previous reports for P. aduncum
EO activity against larvae of A. aegypti led to variable values
of LC50: 46 ppm (Santana et al., 2015); 50.9 ppm (de Almeida
et al., 2009), and up to 289.9 ppm (Oliveira et al., 2013). Our
average LC50 value of 25 ppm for EO from P. aduncum against
the resistant strains (VN and PAMP) and SRL, is similar to that
described by Scalvenzi et al., 2019 which was 23.73 ppm.

The analysis of the LC50 and LC90 of the five Piper species
active against PAMP, VL, and SRL strains (Table 4) indicated
comparable LCs values among them, indicating activity of Piper
sp. EOs regardless of insect resistance to commercial pyrethroids.
Such similar larvicidal activity, in populations of A. aegypti
resistant and susceptible to the organophosphate temephos, was
observed with EOs of Syzygium aromaticum (Myrtaceae) and
Citrus sinensis (Rutaceae) (Araújo et al., 2016), while a study of
EO from Petroselinum crispum (Apiaceae) showed no significant
differences of the LC50 for EO larvicidal activity against the
pyrethroid resistant and susceptible strains ofA. aegypti (Intirach
et al., 2016). Our results agree with previous studies of plant
EOs and highlights their potential of acting as efficient larvicides
on mosquito strains that are resistant to different types of
insecticides, whose use has already led to the development
of resistant populations in Brazil (for e.g.: Temephos–Valle
et al., 2019; pyrethroids—this study and Costa et al., 2020)
and elsewhere.

TABLE 5 | Major constituents of the EOs of Piper species.

Species Major compounds (class)a RI % rel.

P. aduncum Dillapiole (P) 1632 81.01

P. arboreum Germacrene D (S) 1484 18.58

δ-Elemene (S) 1339 14.53

P. crassinervium α-Pinene (M) 932 13.95

β-Pinene (M) 975 12.09

(E)-β-Caryophyllene (S) 1422 8.01

P. gaudichaudianum α-Humulene (S) 1457 15.50

Bicyclogermacrene (S) 1500 13.53

P. marginatum (E)-Isoosmorhizole (P) 1462 35.23

(E)-Anethole (P) 1286 21.67

P. hemmendorffii Limonene (M) 1039 30.99

β-Pinene (M) 975 10.08

(E)-β-Caryophyllene (S) 1422 9.65

P. amalago α-Pinene (M) 932 28.80

(E)-Nerolidol (S) 1566 9.2

p-Cymene (M) 1024 8.4

P. lindbergii α-Pinene (M) 932 61.67

α-Copaene (S) 1378 6.4

Limonene (M) 1039 5.3

P. cernuum α-Pinene (M) 932 16.6

β-Pinene (M) 975 11.5

Bicyclogermacrene (S) 1500 10.7

P. lucaenum Bicyclogermacrene (S) 1500 27.47

(E)-Cadina-1,4-diene (S) 1527 21

β-Myrcene (M) 992 10.7

RI, retention index; % rel., relative percentage.
aP, Phenylpropanoid; S, Sesquiterpene; M, Monoterpene.

Although Piper species (e.g., P. hemmendorffii, P. lindbergii,
P. amalago, P. cernuum) did not show any larvicidal activity, in
previous studies their major compounds such as α-Pinene (Ali
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TABLE 6 | Chemical composition of the essential oils of Piper species.

Compounds RIa RIb PAD PAR PAB PCR PGA PAM PHE PLB PAP PCE PLU

α-PineneS 932 932 0.2 1.0 1.5 14.0 – 0.8 3.2 28.8 61.7 16.6 –

CampheneS 947 946 – – – – – 0.4 – – 1.7 0.1 2.2

β-PineneS 975 974 0.3 0.6 – 12.1 – 0.7 10.1 3.0 1.4 11.5 –

Sulcatone 989 981 – – – 6.2 – – – – – – –

β-MyrceneS 992 988 – 1.7 – 0.6 – – 0.7 5.9 0.3 1.0 10.7

α-PhellandreneS 1,004 1,002 0.1 0.5 3.7 0.5 – – – 0.7 – 0.2 1.4

2-CareneS 1,010 1,008 0.1 0.7 – 1.5 – 0.8 0.5 0.7 – 0.2 0.1

α-Terpinene 1,016 1,014 – 6.8 – – – – – – – 4.5 –

p-CymeneS 1,024 1,020 0.1 3.0 1.5 0.5 – – 0.3 8.4 1.0 9.2 –

LimoneneS 1,039 1,024 0.1 – 2.1 1.2 0.2 0.1 30.9 – 5.3 0.8 1.9

(Z)-β-OcimeneS 1,039 1,032 1.6 – 8.5 0.1 0.5 0.1 0.3 2.1 – 0.1 4.6

(E)-β-OcimeneS 1,049 1,044 3.4 – 4.9 0.1 0.7 0.2 3.2 0.3 – 0.3 –

γ-Terpinene 1,059 1,054 0.2 22.6 – 0.1 – – – – – 9.9 0.3

α-TerpinoleneS 1,088 1,086 0.4 11.5 – 0.1 – – 0.1 – – 2.7 0.2

2-Nonanone 1,092 1,087 – 3.1 – – – – – – – – –

LinaloolS 1,100 1,095 – – 0.6 2.4 0.7 – – 2.0 1.6 – 5.9

(E)-4,8-dimethyl-1,3,7-nonatriene

(DMNT)S
1,117 1,114 – – 1.1 0.7 – – 0.6 – – 0.3 –

Camphor S 1,144 1,141 – – – – – 0.2 – – 1.1 – –

Terpinen-4-ol 1,178 1,174 – – – – – – – – 0.1 0.3 1.0

α-Terpineole 1,191 1,186 – – – 0.6 0.4 – 0.7 – 2.3 0.3 1.1

Methyl-chavicol 1,198 1,195 – – – – – 0.2 – – – – –

Oxygenated monoterpene 1* 1,201 – – – – – 0.1 – – – – – –

Oxygenated monoterpene 2* 1,209 – 0.1 – – – 0.3 – – – 0.1 – –

Verbenone 1,209 1,204 – – – – – – – – – – –

(Z)-Anethole 1,253 1,249 – – – – – 6.1 – – – – –

(+)-Piperitone 1,255 1,249 0.7 – – – – – – – – – –

(E)-anetholeS 1,286 1,282 – – – – – 21.7 – – – – 0.1

SafroleS 1,289 1,285 – 4.1 – – 1.4 – – – – – –

δ-Elemene 1,339 1,335 0.1 0.5 14.5 2.1 0.6 – 0.1 1.7 1.1 0.4 1.5

α-Cubebene 1,352 1,345 – – 0.3 0.7 0.7 – 0.3 – 0.1 0.3 1.7

α-Ylanglene 1,374 1,373 0.1 – – 1.1 0.4 – 0.1 – – – –

α-CopaeneS 1,378 1,374 0.2 – 1.4 2.9 2.8 1.4 4.1 0.2 6.4 2.1 0.7

β-Bourbonene 1,387 1,387 – 0.5 0.3 0.5 0.1 0.2 – 2.2 0.2 0.6 2.4

β-Elemene 1,394 1,389 0.2 0.2 1.4 1.0 1.8 0.5 0.6 3.3 0.3 4.4 –

(E)-Caryophyllene 1,404 1,408 – – – – – – 0.5 – – – –

Methyl-eugenolS 1,406 1,403 – 4.0 – – – 0.1 – – – – –

α-GurjuneneS 1,412 1,409 0.1 – – 0.3 0.7 – 0.2 1.0 – 0.1 0.2

(E)-β-CaryophylleneS 1,422 1,417 0.8 0.3 8.1 8.0 4.8 2.7 9.6 0.1 0.5 7.0 2.7

β-Gurjunene 1,432 1,431 0.2 0.2 1.0 2.2 1.4 0.2 0.9 4.1 0.6 0.5 0.3

α-Guaiene 1,436 1,437 – – 0.4 0.2 0.8 – – 0.8 – – 0.2

(+)-AromadendreneS 1,442 1,439 – – 0.5 1.5 4.4 – 0.4 0.3 0.2 0.4 0.9

α-Himachalene 1,446 1,449 – – – – 0.8 – – – – – 0.1

α-HumuleneS 1,457 1,452 0.9 – 4.9 2.8 15.5 0.9 2.7 1.2 0.2 2.1 0.5

Isoosmorhizole± 1,462 1,466 – – – – – 15.4 – – – – –

Croweacin 1,463 1,457 1.1 10.4 – – – – – – – – –

(-)-AlloaromadendreneS 1,464 1,458 – – – 0.4 – – 0.5 0.5 0.9 0.1 0.3

Dehydro-aromadendrane 1,466 1,460 – – – 0.4 1.6 – – 1.9 0.9 – 0.3

γ-Muurolene 1,480 1,479 – – 2.1 – 2.8 0.1 1.3 0.8 1.3 0.5 0.2

Germacrene D 1,484 1,481 2.7 2.1 18.6 – 4.0 0.1 2.7 2.8 – 5.2 3.4

β-Selinene 1,490 1,490 – – – – 1.2 1.1 1.0 – 0.3 0.5 –

(Continued)
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TABLE 6 | Continued

Compounds RIa RIb PAD PAR PAB PCR PGA PAM PHE PLB PAP PCE PLU

α-Selinene 1,500 1,498 1.4 1.2 2.4 – – 0.2 1.7 2.4 0.1 – –

Bicyclogermacrene 1,500 1,500 2.3 2.0 3.8 4.3 13.5 0.1 1.7 – – 10.7 27

α-Muurolene 1,503 1,500 0.1 0.6 1.3 3.0 4.2 0.4 0.9 1.9 1.0 – 0.5

α-Bulnesene 1,510 1,509 0.2 – 2.1 – – – – 0.4 – 0.7 –

(E)-Isoosmorhizole± 1,512 1,517 – – – – – 35.2 – – – – –

γ-Cadinene 1,517 1,513 0.1 – – 5.1 5.7 – 1.3 2.5 1.2 0.4 –

δ-Cadinene 1,522 1,522 1.2 – 1.2 – – 1.0 – – – – –

Myristicin 1,524 1,518 1.1 – – – – – – – – – –

(E) Cadina-1,4-diene 1,527 1,533 – – – 4.3 10.1 – 7.1 – 1.3 0.3 21

α-Cadinene 1,537 1,537 – – – – – – – – – – –

Germacrene B 1,561 1,559 0.2 – 2.1 0.4 1.2 – 0.6 – – 0.1 –

(E)-NerolidolS 1,566 1,561 0.1 – 1.0 5.2 0.6 – 0.9 9.2 – 0.9 –

Palustrol 1,572 1,567 – – – – 0.3 – 0.3 – – 0.1 0.2

γ-AsaroneS 1,577 1,572 – 22.0 – – – – – – – – –

Spathulenol 1,581 1,577 0.1 – 0.3 0.2 1.9 – 0.8 2.2 0.3 0.7 3.1

(-)-Caryophyllene oxideS 1,587 1,582 – – 0.6 0.8 – 0.1 4.3 1.1 3.4 0.8 0.9

Veridiflorol 1,596 1,592 0.3 – 0.3 0.4 1.5 – 0.3 0.7 0.5 0.6 0.9

Guaiol 1,601 1,600 – – – 5.2 – – – 1.5 – – 0.9

Humulene epoxide II 1,613 1,608 – – – – 1.0 – 0.3 0.2 – – –

β-Asarone 1,623 1,616 – – – – – 0.4 – – 0.3 – –

Methoxy-4,5-(methylenedioxy)-

propiophenone

isomer±

1,627 1,627 – – – – – 2.3 – – – – –

DillapioleS 1,632 1,620 81.0 – 2.2 1.7 – – – – – 0.1 –

epi-α-Muurolol 1,646 1,640 0.3 – 1.5 1.1 3.2 – 1.1 1.8 0.6 0.6 0.5

Torreyol 1,650 1,644 – – 0.6 3.3 2.6 – 1.1 0.4 0.3 0.4 0.2

α-Cadinol 1,659 1,652 – 0.1 2.9 – 5.3 – 1.7 3.1 0.9 1.2 0.5

α-AsaronaS 1,682 1,675 – – – – – 0.9 – – – – –

ApioleS 1,686 1,677 0.2 – – – – – – – – – –

2-Methoxy-4,5-(methylenedioxy)-

propiophenone±
1,717 1,713 – – – – – 4.7 – – – – –

RIa, Retention Index calculated against C8-C40 n-alkanes on the HP-5m column; RIb, Retention index from literature (Adams, 2007); PAD, Piper aduncum; PAR, Piper auritum; PAB,

Piper arboreum; PCR, Piper crassinervium; PGA, Piper gaudichaudianum; PMA, Piper marginatum; PHE, Piper hemmendorffii; PAM, Piper amalago; PLB, P. lindbergii; PCE, Piper

cernuum; PLU, Piper lucaenum; sCompound identity confirmed with an authentic standard, the remaining compounds were identified by comparing the RI and mass spectra with the

Adams and Wiley databases (see text for details). ±Compound IR corresponds to those found for Piper marginatum in Andrade et al. (2008). *Unidentified compounds.

et al., 2014), β-Pinene (Lee and Ahn, 2013; Ali et al., 2014), (E)-
Nerolidol (Ali et al., 2013), Limonene (Cheng et al., 2013; Lee
and Ahn, 2013; Rocha et al., 2015; Nascimento et al., 2017), (E)-
β-Caryophyllene (Ali et al., 2014, 2015), and β-Myrcene (Cheng
et al., 2013; Lee and Ahn, 2013) presented larvicidal activity
against A. aegypti. This suggests that minor compounds might
negatively interfere with oil larvicidal activity, opening new
possibilities to study synergisms between compounds, as their
interactions are long-lasting and complex, especially because
minor compounds often present biological effects.

Out of the major phenylpropanoid compounds tested,
Dillapiole, (E)-Anethole and γ-Asarone (Table 7), only (E)-
Anethole was previously reported as an active compound in
essential oils against A. aegypti larvae. The LC50 interval found
to (E)-anethole (28.0–30.6 ppm) (Rocha et al., 2015), overlaps
the confidence interval found for the three strains in the present
study (25.60–44.52 ppm) (Table 8). However, in a study carried

out by Pandiyan et al. (2019) the LC50 confidence interval, was
48.89–51.50 ppm for the (E)-anethole, which is a higher value
than that found in our study.

The sesquiterpene (E)-β-Caryophyllene was the only
compound that did not show potential larvicidal activity
(Table 7). In fact, this data is in accordance with that found by
Luz et al. (2020b), but different to the LC50 values found by Ali
et al. (2014) (26, µg/mL), Lee and Ahn (2013) (38.58µg/mL),
and Borrero-Landazabal et al. (2020) (29.28 µg/mL).

Larvae treated with Piper EOs that showed larvicidal activity,
were completely damaged, compared with control groups,
particularly in the chest and segments of the abdominal region.
Specifically, the midgut region was destroyed, and content
became dark. These visual observations after the exposure
period to Piper’s EOs or to major active compounds, indicate
morphological (structural) changes in the larva. Therefore, the
similar values of LCs in resistant and susceptible strains suggest
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a mode of action unrelated to the known biochemical and target
site mutations in resistant strains.

The chemical profile of the compounds described in the
EOs of the Piper species investigated here (Table 6) has already
been described in previous studies. For instance, Dillapiole is
a typical compound for P. aduncum (Pino et al., 2004; de

TABLE 7 | Percentage of dead larvae after 24 h of exposure to major compounds

of the studied Piper species at concentration 100 ppm.

Major compounds of

the studied Piper

species

Strains

Susceptible Resistant

Rockfeller Venda Nova Pampulha

Dillapiole 100 100 100

E-Anethole 98.89 96.67 100

γ-Asarone 98.89 96.67 97.78

(E)-β-Caryophyllene 0 0 0

γ-Terpinene 94.44 93.3 100

p-Cymene 91.1 92.2 90

Limonene 100 100 100

α-Pinene 90 91.1 100

β-Pinene 95.5 97.7 91.1

Almeida et al., 2009; Guerrini et al., 2009; Volpe et al., 2016;
Scalvenzi et al., 2019); Germacrene D for P. arboreum (Machado
et al., 1994; Mundina et al., 1998; Navickiene et al., 2006;
Perigo et al., 2016; Santana et al., 2016); α-Pinene, β-Pinene,
and (E)-β-Caryophyllene for P. crassinervium (Morandim et al.,
2010; Morandim-Giannetti et al., 2010; Perigo et al., 2016); α-
Humulene and Bicyclogermacrene for P. gaudichaudianum (Von
Poser et al., 1994; Andrade et al., 1998; Morandim-Giannetti
et al., 2010; Sperotto et al., 2013); α-Pinene for P. amalago
(Potzernheim et al., 2006; Perigo et al., 2016) and P. cernuum
(Bernuci et al., 2016; Perigo et al., 2016).

In case of P. lucaenum, the major compound
Bicyclogermacrene described in our study was replaced by
α-pinene in another study (Marques et al., 2015). In fact, large
chemical variability in EOs of Piper species has already been
reported (Andrade et al., 2008). For instance, EOs from 22
samples of P. marginatum leaves collected in different areas and
ecosystems of the Brazilian Amazon, separated by up to 1000 km,
exhibited different major compounds depending on the place
of origin. In our study, while the species P. marginatum had
(E)-Anethole as a major compound, analysis of other specimens
led to the characterization of 3,4-methylenedioxy propiophenone
(Macêdo et al., 2020), and (Z)- or (E)-Asarone, and Patchouli
alcohol (Autran et al., 2009) as major compounds. Such
variability can result from different environmental conditions,

TABLE 8 | Evaluation of lethal concentrations of major compounds in Aedes aegypti larvae of resistant and susceptible strains to pyrethroids during 24 h exposure to

major compounds of Piper species.

Compounds Strains Slope ± SD LC50 (ppm) (95% CI) LC90 (ppm) (95% CI)

Dillapiole Rockfeller 2.6 ± 0.2 15.06 (11.94–18.33) 46.16 (35.62–68.71)

Venda Nova 2.6 ± 0.2 15.75 (12.01–19.74) 47.96 (35.21–77.11)

Pampulha 2.6 ± 0.1 17.60 (14.24–21.28) 54.56 (41.77–82.48)

E-Anethole Rockfeller 4.0 ± 0.3 34.41 (25.60–42.10) 71.03 (54.85–136.85)

Venda Nova 4.3 ± 0.3 38.20 (29.33– 47.26) 75.39 (57.74–153.58)

Pampulha 3.9 ± 0.3 38.98 (33.57–44.52) 82.72 (67.24–120.97)

γ-Asarone Rockfeller 3.7 ± 0.3 32.65 (29.91–35.20) 71.92 (64.20–83.85)

Venda Nova 3.3 ± 0.1 37.85 (34.73–40.96) 92.52 (79.59–114.69)

Pampulha 3.3 ± 0.3 36.23 (31.02–41.20) 88.34 (71.06–130.59)

Rockfeller 2.7 ± 0.2 25.29 (21.25–29.30) 74.77 (59.26–108.25)

γ-Terpinene Venda Nova 2.6 ± 0.2 24.58 (21.87–27.26) 76.33 (64.23–96.71)

Pampulha 2.7 ± 0.2 25.00 (22.41–27.58) 72.55 (61.87–89.92)

Rockfeller 3.6 ± 0.3 44.80 (41.23–48.48) 100.71 (88.53–119.53)

p-Cymene Venda Nova 3.4 ± 0.3 49.25 (45.30–53.52) 115.51 (99.70–141.21)

Pampulha 3.5 ± 0.3 47.39 (43.60–51.43) 109.83 (95.47–132.59)

Rockfeller 3.1 ± 0.2 21.86 (18.43–25.33) 55.02 (45.22–72.76)

Limonene Venda Nova 3.2 ± 0.2 23.23 (18.76–27.97) 57.94 (45.53–85.24)

Pampulha 3.0 ± 0.2 21.92 (17.01–27.27) 58.38 (44.19–93.46)

Rockfeller 4.2 ± 0.2 44.17 (37.68–50.50) 71.92 (74.59–112.61)

α-Pinene Venda Nova 4.1 ± 0.2 45.17 (37.72–52.43) 92.52 (76.84–124.16)

Pampulha 3.9 ± 0.2 45.70 (39.48–51.80) 96.49 (82.01–122.45)

β-Pinene Rockfeller 2.8 ± 0.1 32.97 (26.97–38.92) 93.11 (75.49–126.12)

Venda Nova 2.8 ± 0.1 33.35 (26.31–40.40) 95.70 (75.13– 138.87)

Pampulha 2.6 ± 0.1 35.13 (26.02–44.53) 105.59 (78.01–179.01)

95 % CI, 95% confidence interval; LC50, 50% lethal concentration; LC90, 90% lethal concentration; SD, standard deviation.
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soil composition, development, biotic factors, and plant genetic
diversity (Gobbo-Neto and Lopes, 2007; Silva et al., 2019; Mollaei
et al., 2020).

CONCLUSION

Our results suggest the promising role of the EOs of
these five species of Piper as an alternative in controlling
A. aegypti mosquito larvae of susceptible and insecticide
resistant strains. The efficacy of these EOs suggest their use
as alternative bioinsecticides in the management of insecticide
resistant mosquitoes. Despite the ease of obtaining EOs by
hydrodistillation, which is an advantage together the green
appeal of such products, their high chemical variability may
represent a potential drawback for product development
unless a rigorous cultivation control or full understanding
of the regulatory processes in the biosynthesis of these
phenylpropanoids are achieved.
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4 Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources

and Environment, Linyi University, Linyi, China

The chemical profile of Thymus proximus essential oil (EO) and its allelopathic, phytotoxic,

and insecticidal activity was evaluated. Carvacrol, p-cymene, and γ-terpinene were

detected as the major components of the EO, representing 85.9% of the total oil. About

50 g fresh plant material of T. proximus in a 1.5-L air tight container completely inhibited

the seed germination of Amaranthus retroflexus and Poa anuua. Meanwhile, the EO

exhibited potent phytotoxic activity, which resulted in 100% germination failure of both the

test species when 2mg/ml (forA. retroflexus) and 5mg/ml (forPoa annua) oil was applied.

The EO also triggered a significant insecticidal activity on Aphis gossypii with a LC50

value of 6.34 ppm. Carvacrol was identified as the main active compound responsible

for both the plant suppressing effect and the insecticidal activity of the EO. Our study is

the first on the allelopathic, phytotoxic, and insecticidal activity of T. proximus EO, and

the determination of the responsible compound, which indicated their potential of being

further explored as environment friendly biopesticides.

Keywords: phytotoxicity, biopesticides, carvacrol, P-cymene, γ-terpinene

INTRODUCTION

Essential oils (EOs) aremixtures of plant-derived secondarymetabolites that are extensively applied
in food preservation and medical practices for thousands of years (Majewska et al., 2019; Suteu
et al., 2020; Giunti et al., 2021). Many aromatic plants are known for their extraordinary ability to
produce a large amount of EOs that can repel grazers, kill pests, or inhibit the growth of competing
plants growing in the neighborhood (Willmer et al., 2009; Aungtikun et al., 2021; Han et al., 2021;
Sousa et al., 2021). Due to these qualities, certain EOs obtained from aromatic plants, including
their major constituents, have the potential to be used as environmentally compatible alternatives
to synthetic pesticides and herbicides. Successful commercialized examples include clove oil, which
is the main active ingredient in the herbicide Burnout II (Bonide Products Inc., Oriskany, NY,
USA), and cinmethylin, the phytotoxin 1,4-cineole’s derivative that can be detected in EOs of many
plants (Grayson et al., 1987; Ahuja et al., 2015). On the other hand, the commercial production
of pest management products based on plant EOs appears to have lagged significantly behind,
indicating a major disconnect between academic research and industrial practice (Isman, 2017).
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However, there are some commercial pesticides that contain
plant EOs. For example, a commercial product named as “Rice
Weevil Eradication” (manufacturer: Hub Club, Siheung, Korea)
containing cinnamon [Cinnamomum cassia (L.) J. Presl] oil
as its active ingredient (Yang et al., 2020). Ecotrol Plus, the
flagship agricultural product produced and marketed by KeyPlex
Co. (Winter Park, FL, USA), introduced in 2003, contains
10% rosemary oil, 2% peppermint oil, and 5% geraniol as
active ingredients.

Worldwide, synthetic chemicals are used in agriculture;
however, the extensive application has triggered resistance in
pests, not to mention that they can cause many problems not
only to the environment but also to human health. Compared
to synthetic chemicals, plant-derived natural compounds have
the advantages of fast biodegradability, low risk for subsequent
pest/weed resistance, and relatively weak toxicity to non-target
organisms (Chandler et al., 2011; Isman, 2015; Pavela and Benelli,
2016).

To the best of our knowledge, environment friendly
agricultural chemicals are particularly important to drylands,
which are characteristic for low precipitation and simple,
fragile soil microbiota, which almost unavoidably cause slow
degradation rate of synthetic chemicals; the accumulation of
synthetic compounds subsequently might result in acute and
chronic toxicity to human and herds and pose threat on
the environment such as suppressing the growth of desert
plants, which lead to increased wind soil erosion (Pavela,
2015). Due to the occurrence of resistance of agricultural pests
to synthetic chemicals, farmers have to either increase the
amount of application or switch to a new type of pesticides
and herbicides, which may considerably increase the costs of
maintaining dryland farms (Benhalima et al., 2004; Ahmad and
Jaiswal, 2015). In addition, dryland harbors very rich natural
resource of medicinal aromatic plants. Many desert aromatic
plants belonging to the genus Thymus are known for their
outstanding ability to produce high productivity and quality of
EOs, which have been widely used in pharmaceutical, food, and
cosmetic applications (Stahl-Biskup and Saez, 2002; Imelouane
et al., 2009). Thymus proximus Serg, for example, a dense and
robust shrub distributes over a wide range of mountainous
regions and predominantly scatters in northwest China and
Central Asia dryland (Wu et al., 1983), was found to have
antimicrobial, antioxidant, and other biological activities (Jia
et al., 2010). T. proximus is known for its high productivity
of EOs, and like reports on some other desert aromatic plants
including Thymus species growing in the drylands, its EO might
have the allelopathic effect that can either act directly as volatile
allelochemicals or accumulate in the soil to impact the growth
of neighboring plants (Barney et al., 2009; Inderjit et al., 2011; Ali
et al., 2014, 2015; Alexa et al., 2018; Vaiciulyte and Loziene, 2020).

Although some biological activities, such as antimicrobial
activity of T. proximus EO, have been reported before, its
allelopathic, phytotoxic, and insecticidal activities are not
studied, and the bioactive compound(s) remains unclear.
The objectives of our study include: (i) evaluation of the
phytochemical profile of the EO produced by the desert plant T.
proximus growing in Xinjiang province of China; (ii) assessment

of the allelopathic, phytotoxic, and pesticidal effects of the EO
and its major components; and (iii) determination of the major
active component responsible for the biological activities of
the EO.

MATERIALS AND METHODS

Plant Material
Aboveground T. proximus Serg. material (flowering shoot) was
collected in Tianshanmountains (Lat 43.4268◦N, Lon 87.1764◦E,
with an elevation of 2,006m) in Xinjiang Province, China in
June, 2019. Specimens were identified by Professor Li Wenjun,
and a voucher specimen (XJBI018367) was deposited at the
Xinjiang Institute of Ecology and Geography, Chinese Academy
of Sciences Ownbey Herbarium.

Extraction of the EO
About 200 g of freshmaterials of T. proximuswas hydrodistillated
for 4 h using a Clevenger-type apparatus to extract the EO,
and this procedure was repeated three times (altogether 600 g
plant material was used) to yield enough oil for the gas
chromatography/mass spectroscopy (GC/MS) analysis and the
following bioassay. The oil was then dried using anhydrous
Na2SO4 and kept at 4◦C.

GC/MS Analysis
The GC/MS analysis was performed to determine the chemical
profile of T. proximus EO using a 7890A/5975C GC/MS
system (Agilent Technologies, Palo Alto, CA, USA) equipped
with a (5%-phenyl)-methylpolysiloxane phase column (30m
× 0.25mm; film thickness 0.25µm), DB-5MS (Agilent J&W
Scientific, Folsom, CA, USA). The experimental conditions were
programmed as follows: Helium (carrier gas) at a flow rate of 1
ml/min; the oven temperature was first held at 50◦C for 10min
and then programmed from 50 to 120◦C at a rate of 1.5◦C/min
and from 120 to 240◦C at 20◦C/min and then held for 5min;
injector and detector temperature: 280◦C; sample volume: 0.1 µl;
split ratio: 50:1; mass spectra: 70 eV,mass range:m/z 40–800 amu.
Identification of the compounds was determined by comparison
of their mass spectra and retention indices (RIs), which were
determined by the linear interpolation relative to retention times
of a standard mixture of C7-C40 n-alkanes with the data given
in National Institute of Standards and Technology (NIST) and
published literature (Oladipupo and Adebola, 2009; Shao et al.,
2018).

Allelopathic Effect
Fresh stems and leaves of T. proximus were arranged into
plastic containers (13.5 × 13.5 × 8.5 cm, volume 1.5 L) at the
following ratios: 0 g, 6.67 g, 13.33 g, and 26.67 g/L containers.
Their allelopathic potential was assessed by performing bioassays
against Amaranthus retroflexus L. and Poa annua L., which grow
in the same habitat alongside T. proximus. Seeds of receiver
species were surface sterilized with 2% sodium hypochlorite
before use. Distilled H2O (5ml) was added to each Petri dish (φ
9 cm, lined with a layer of filter paper), followed by sowing of 20
seeds. Each container received one Petri dish that was placed onto
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the plant material. Containers without plant materials (0 g) were
used as the control. All containers were kept open for 5min each
day to allow in the fresh air. A. retroflexus and P. annua seedlings
were measured after 5 and 7 days of incubation, respectively,
due to relatively slow development of P. annua seedlings. Three
replicates were prepared for the bioassay and in total 50 seedlings
were measured (Williamson and Richardson, 1988; Wei et al.,
2019; n= 50).

Phytotoxic Effect of the EO and Its Major
Components
Amaranthus retroflexus and P. annua were used to evaluate
the phytotoxic activity of the EO and its major ingredients. p-
Cymene, γ-terpinene, and carvacrol (purity 98%) were purchased
from Sigma-Aldrich Co. (St. Louis, MO, USA). Seeds of the
test species were surface sterilized with 2% sodium hypochlorite
before application of the oil and its major components. T.
proximus oil and the major components were first dissolved
in dimethyl sulfoxide (DMSO, 0.1% v/v final concentration)
and then diluted with the distilled water containing Tween 80
(final concentration 0.02%) to yield solutions at 0.25, 0.5, 1,
2, 5, and 10 mg/ml for the assay. Previously, DMSO has been
adopted in similar bioassays due to the fact that essential oils
and oil constituents are soluble in it, and that DMSO does
not pose significant inhibitory effect on test plants (Tanveer
et al., 2012; Pinto et al., 2015). The mixture of the three major
constituents was prepared by combining p-cymene, γ-terpinene,
and carvacrol at the ratio of 44.3:33.2:8.5, which was identical
to their relative percentage in the EO to test their possible
synergistic/antagonistic effect.

About 5ml of solutions were added to each Petri dish (φ 9 cm;
controls received 5ml of distilled H2O containing 0.1% DMSO
and 0.02% Tween 80), followed by sowing of 10 test seeds. Petri
dishes were sealed with parafilm and kept in a growth cabinet
at 25◦C with a photoperiod L:D = 16:8. A. retroflexus and P.
annua seedlings were checked and measured after 5 and 7 days
of incubation, respectively, due to relative slow development of
P. annua seedlings. Five replicates were performed for the assays,
and in total 50 seedlings were measured (n = 50; Shao et al.,
2018).

Insecticidal Activity of the EO
Thymus proximus oil, p-cymene, γ-terpinene, carvacrol and their
mixture (ratio of 44.3:33.2:8.5, the relative percentage in the EO)
at 2.5, 5, 10, 20, 50, and 100 ppm was impregnated into the
Whatman No.2 filter paper (Maidstone, Kent, United Kingdom)
discs (1× 1 cm), which were then taped onto the inner side of the
lid of each Petri dishes (9 cm in diameter) to avoid direct contact
between the EO/major components and Aphis gossypii Glover.
Thirty adults of A. gossypii were placed onto a healthy fresh
black nightshade (Solanum nigrum) leaf on a layer of moist filter
paper. All Petri dishes were covered and kept in an incubator (25
± 2◦C, photoperiod L:D = 16:8) for 2 days. Mortalities of the
adults were determined at 24-h intervals after treatment. Three
replicates were performed to measure the insecticidal activity,
which was expressed as percent mean mortalities of the adult A.
gossip (Laborda et al., 2013; Zhou et al., 2019).

Statistical Analyses
The bioassay experiment followed a completely randomized
design with five replications and 50 seedlings for each treatment.
Results were expressed as mean ± SE of the mean. One-way
ANOVA (p < 0.05) was applied using the IBM SPSS statistical
package version 21.0 (IBM SPSS, Armonk, NY, USA) for
Windows to examine whether the difference of the allelopathic,
phytotoxic, and insecticidal effects of the EO produced by
T. proximus, their major constituents, that is, p-cymene, γ-
terpinene, and carvacrol and their mixture tested at different
concentrations was significant; then all data were further
processed using the Fisher’s least significant difference (LSD) test
at p< 0.05 level to compare the difference among treatments. The
inhibitory concentration required for 50% inhibition (IC50/LC50)
values were calculated using the PROBIT analysis (SAS/STAT
User’s Guide; SAS Institute Inc., Cary, NC, USA).

RESULTS

Essential Oil Yield and Composition
The EO of T. proximus was obtained by the traditional
hydrodistillation method using fresh aboveground plant
materials. The yield was 0.35% (v/w, volume/fresh weight).
Eventually, 18 compounds were determined, which accounted
for 98.51% of the total oil, whereas 1.49% of the oil remained
unclassified. The most abundant components were p-cymene
(44.26%), γ-terpinene (33.17%), and carvacrol (8.47%), which
represented 85.9% of the total oil. Monoterpene hydrocarbons
accounted for 86.60% of the total oil, whereas oxygenated
monoterpenes and sesquiterpene hydrocarbons represented
10.05 and 1.86% of the total oil, respectively (Table 1).

Allelopathic Potential
The allelopathic effect of volatile organic compounds (VOCs)
released by T. proximus was investigated by arranging fresh
aboveground plant parts into air-tight plastic containers; A.
retroflexus (dicot) and P. anuua (monocot), which are found
growing in the same habitat alongside T. proximus, were selected
as the test species VOCs released by T. proximus at 6.67 g/L
containers suppressed radical elongation of A. retroflexus and P.
anuua by 40.1 and 31.1%, respectively, and 13.33 g/L treatment
resulted in the reduction of the root elongation by 48.8 and
63.6% for A. retroflexus and P. anuua, respectively. About 26.67
g/L treatment basically prohibited the seed germination of two
test species. P. annua (monocot) was apparently more sensitive
compared to A. retroflexus (dicot); the IC50 values were 14.69
and 14.42 g for A. retroflexus and P. annua roots, and 20.595 and
16.316 g for shoots, respectively (Figure 1).

Phytotoxic Activity Bioassay
Phytotoxic activity of the EO (concentrations applied ranging
from 0.25 to 5 mg/ml) and its major components was assessed
by comparing their plant regulatory effect on the seedling growth
of A. retroflexus and P. annua. For A. retroflexus, p-cymene
promoted the root development of A. retroflexus at 0.5 mg/ml;
however, the inhibitory activity was observed with the increase
of concentration, and 5 mg/ml treatment resulted in 93.54%
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TABLE 1 | Chemical composition of Thymus proximus essential oil.

Compounds RIa RIb Area (%) Identification

α-Thujene 913 924 1.76 MS, RI

α-Pinene 928 938* 0.93 MS, RI

(-)-Camphene 946 952 0.66 MS, RI

4-Thujene 965 969 0.3 MS, RI

β-Pinene 976 982 1.41 MS, RI

δ-Carene 1,006 1,004 2.52 MS, RI

p-Cymene 1,011 1,012 44.26 MS, RI

1,5-Dimethyl cyclooctadiene 1,018 1,017 0.49 MS, RI

β-(Z)-Ocimene 1,038 1,041 0.63 MS, RI

γ-Terpinene 1,047 1,056 33.17 MS, RI

Terpinolene 1,050 1,084 0.47 MS, RI

Borneol 1,142 1,173 0.61 MS, RI

Carvacrol 1,273 1,287 8.47 MS, RI

2-Ethyl-4,5-dimethylphenol 1,281 1,300 0.53 MS, RI

Thymol 1,284 1,287 0.05 MS, RI

Durenol 1,324 1,319 0.39 MS, RI

Caryophyllene 1,401 1,415 1.08 MS, RI

β-Bisabolene 1,495 1,489 0.78 MS, RI

Monoterpene hydrocarbons 86.6

Oxygenated monoterpenes 10.05

Sesquiterpene hydrocarbons 1.86

Total identified 98.51

RIa, Retention index measured relative to n-alkanes (C7-C40) using a DB-5MS column; RIb, Retention index from literature; MS, mass spectra.

FIGURE 1 | Allelopathic effect of volatile organic compounds (VOCs) released

by Thymus proximus on the root and shoot elongation of Amaranthus

retroflexus and Poa annua. Means with different letters indicate significant

differences at p < 0.05 level according to the Fisher’s least significant

difference (LSD) test.

reduction on the root development. γ-Terpinene exhibited
relatively stronger activity against A. retroflexus, inhibiting the
root length by 52.35% at 2 mg/ml, and 89.55% at 5 mg/ml.
The third major constituent, carvacrol, showed remarkably
stronger activity compared with the other two compounds,

which completely suppressed the seed germination at the lowest
concentration tested (0.25 mg/ml). The mixture of these three
major components exhibited stronger activity than p-cymene
and γ-terpinene but much weaker activity than carvacrol, which
reduced the root length by 33.92% at 0.5 mg/ml, and 98.94% at
1 mg/ml. When the concentration reached 2 mg/ml, the seed
development was completely prohibited. In conclusion, the EO
exerted more potent activity than p-cymene and γ-terpinene but
much weaker activity than carvacrol; the strength of the EO was
comparable but still somewhat weaker than the mixture; the IC50
values of p-cymene, γ-terpinene, mixture, and the EO were 4.52,
3.78, 2.06, and 2.60 mg/ml, respectively (Figure 2, Table 2).

Similarly, for the monocot plant P. annua, carvacrol exhibited
the most potent activity, which completely suppressed its seed
germination at 0.25 mg/ml, the lowest concentration applied in
the assay. The EO exhibited comparable activity compared with
p-cymene and γ-terpinene, whose IC50 values were 3.65, 3.89,
and 3.63 mg/ml, respectively, and the mixture showed much
stronger activity with the IC50 value of 1.62 mg/ml (Figure 2,
Table 2).

However, the seedling growth exhibited a similar pattern
as the root development to a lesser extent. Carvacrol caused
complete failure of the seed development of P. annua and
A. retroflexus at the lowest concentration tested (0.25 mg/ml),
whereas the other components and EO started to inhibit shoot
growth of A. retroflexus at 0.25 mg/ml as well, representing 13.32,
20.37, 23.02, and 35.36% for p-cymene, γ-terpinene, a mixture of
main components, and EO, respectively.When the concentration

Frontiers in Plant Science | www.frontiersin.org 4 June 2021 | Volume 12 | Article 68987564

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhou et al. Bioactivities of Thymus proximus EO

FIGURE 2 | Phytotoxic effects of Thymus proximus essential oil (EO) and its major constituents, p-cymene, γ-terpinene, carvacrol, and their mixture on the seedling

growth of Poa annua and Amaranthus retroflexus (n = 50). Different letters represent a significant difference at p < 0.05 level according to the Fisher’s LSD test. (A)

root length of P. annua; (B) shoot length of P. annua; (C) root length of A. retroflexus; and (D) shoot length of A. retroflexus.

raised to 5 mg/ml, the EO and mixture of major ingredients
completely inhibited the shoot growth, while p-cymene and γ-
terpinene suppressing the shoot growth of A. retroflexus by 74.93
and 82.76%, respectively. The effect of P. annua is similar to A.
retroflexus, with IC50 values of 3.93, 3.55, 0.83, and 3.35 mg/ml
for p-cymene, γ-terpinene, and mixture of principal components
and EO, respectively (Figure 2, Table 2). The dose–response
curve of the phytotoxic activity was shown in Figure 3.

Insecticidal Activity
The insecticidal activity of T. proximus EO was determined on
adjusted mortality rates of A. gossypii at concentrations ranging
from 2.5 to 100 ppm. Results showed that T. proximus EO had
obvious behavioral avoidance and lethal action on A. gossypii.
The EO, its major components, and their mixture killed all the
tested insects at the dose of 100 ppm after 24 h of exposure. The
mortality rates of T. proximus under 2.5, 5, 10, 20, and 50 ppm,
the EO treatments reached 15, 15.33, 40.67, 93.33, and 99.00%,
respectively, after 24 h of exposure to the oil. Carvacrol showed

the strongest activity against A. gossypii with a LC50 value of 0.1
ppm, compared with the LC50 values of 9.63, 5.69, 6.8, and 7.34
ppm for the EO, p-cymene, γ-terpinene, and the mixture of three
major components, respectively (Table 3). The dose–response
curve of the pesticidal activity was shown in Figure 4.

DISCUSSION

A large body of literature has reported the chemical composition
of the EOs produced by Thymus species, which were frequently
found to have abundant thymol, carvacrol, p-cymene, γ-
terpinene, caryophyllene oxide, etc. (Kabouche et al., 2005;
Hazzit et al., 2006; Sanja and Milka, 2015; Zeynep et al.,, 2018;
Behnaz et al., 2020). Marla et al. (2008) investigated the chemical
composition of T. vulgaris EO and found it was rich in thymol
(57.7%), p-cymene (18.7%), and carvacrol (2.8%). Behnaz et al.
(2017) evaluated the EOs produced by14 Thymus accessions
belonging to 10 species and found that their major components
were thymol (12.4–79.74%), carvacrol (4.37–42.14%), geraniol
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TABLE 2 | Regression analyses of the phytotoxic effect of Thymus proximus essential oil (EO), its major constituents p-cymene, γ-terpinene, and carvacrol, and their

mixture on the root and shoot growth of Amaranthus retroflexus and Poa annua.

Test plants EO/major components Regression equation r2 IC50 (mg/ml) 95% CL

A. retroflexus root p-Cymene y = 15.753x2−71.642x + 51.737 0.951 4.52 3.93–5.11

γ-Terpinene y = 26.643x−50.704 0.958 3.78 3.25–4.31

Carvacrol – – – –

Mixture y = −10.857x2 + 93.768x−97.324 0.965 2.06 1.48–2.64

Essential oil y = 26.221x−18.216 0.873 2.60 2.05–3.15

A. retroflexus shoot p-Cymene y = 6.3663x2−24.564x + 34.084 0.927 3.03 2.71–3.35

γ-Terpinene y = 7.3667x2−30.733x + 46.836 0.903 4.27 3.94–4.60

Carvacrol – – – –

Mixture y = −7.4577x2 + 64.903x−37.786 0.961 1.67 1.23–2.11

Essential oil y = −4.7013x2 + 45.681x−9.1479 0.964 1.54 1.17–1.91

P. annua root p-Cymene y = 6.143x2−18.292x + 28.067 0.938 3.89 3.49–4.29

γ-Terpinene y = 19.82x−21.954 0.982 3.63 3.24–4.02

Carvacrol – – – –

Mixture y = 17.99x + 20.915 0.903 1.62 1.25–1.99

Essential oil y = 4.8065x2 + 4.751x−31.199 0.853 3.65 2.93–4.37

P. annua shoot p-Cymene y = 7.4384x2−29.138x + 49.486 0.923 3.93 3.57–4.29

γ-Terpinene y = 3.335x2−7.1789x + 33.397 0.965 3.55 3.28–3.82

Carvacrol – – – –

Mixture y = 13.68x + 38.628 0.889 0.83 0.55–1.11

Essential oil y = 31.638x−55.906 0.865 3.35 2.71–3.99

r2: adjusted coefficient of determination.

IC50: the inhibitory concentration required for 50% inhibition.

95% CL: 95% confidence limits.

(–): not calculable.

(0.3–22.44%), and p-cymene (0.8–12.86%). As of the EO of T.
proximus, Jia et al. (2010) identified 60 compounds from the
EO of T. proximus, which accounted for 99% of the total oil,
with p-cymene (25.4%), γ-terpinene (18.0%), and thymol (28.0%)
being the most abundant components, which was consistent with
our results. It is noteworthy to mention that there are various
factors that might affect the chemical profile of plant-derived
EOs including but not limited to species variety, growth period,
geographic locality, surrounding climate, stress, and post-harvest
processing, etc. (Raut et al., 2014).

Many plants are capable of synthesizing and releasing VOCs
that are found to play key roles in attracting seed-disperser and
pollinators, defense against pathogenic fungi and herbivores,
interplant signaling, and allelopathic action (Pichersky and
Gershenzon, 2002; Dudareva et al., 2013; Adebesin et al., 2017).
Wei et al. (2019) reported that VOCs produced by Atriplex
cana Ledeb. negatively affected the seedling development of A.
retroflexus and P. annua, with 80 g of fresh A. cana leaves and
stems in a 1.5-L airtight container almost completely prohibited
the seed germination of the test plants. Volatiles emitted from
the leaves of star anise (Illicium verum Hook. f.) totally inhibited
the seedling growth of Lactuca sativa L., and the major volatile
compounds were identified as α-pinene, β-pinene, camphene,
1,8-cineole, D-limonene, camphor, and L-fenchone (Kang et al.,
2019). Tang et al. (2019) reported the allelopathic activity of
VOCs released by the exotic invasive weed Xanthium sibiricum

and found that at 80 g fresh plant materials in a 1.5-L airtight
container, root growth of receiver plants A. retroflexus and P.
annua was reduced by 49.1 and 69.6%, respectively. The release
of volatile allelochemicals into the surroundings are believed
to be able to facilitate the dominance of the donor species;
and interestingly, herbivore-infested plants are found to produce
volatiles to mediate plant–plant interactions by triggering the
expression of volatiles of neighboring unattacked plants to
decrease their susceptibility to herbivores (Ruther and Kleier,
2005).

There have been a number of reports on the phytotoxic
effects of EOs and their constituents, especially monoterpenes,
on the seed germination and seedling growth of the test species
(Langenheim, 1994; Vokou et al., 2003; Nishida et al., 2005;
Salamci et al., 2007). EOs produced by Thymus species have also
been studied for their phytotoxicity. Ali et al. (2015) found that
EOs obtained from different plant parts of T. algeriensis inhibited
both the shoot and root growth of Medicago sativa L. and
Triticum astivum L. seedlings at the lowest tested concentration
(0.1 mg/ml). T. daenensis Celak. EO significantly suppressed
the seedling development of A. retroflexus, and 600 µl/l oil
almost completely prohibited its seedling growth (Kashkooli
and Saharkhiz, 2014). Another species of the Thymus genus,
T. eigii, showed significant herbicidal activity against L. sativa,
Lepidium sativum L., and Portulaca oleracea L., with 0.5 mg/ml
oil completely suppressed the seed germination of all the tested
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FIGURE 3 | Dose–response curves of Thymus proximus essential oil (EO) and its major constituents affected on plant growth of Poa annua and Amaranthus

retroflexus. (A) root length of P. annua; (B) shoot length of P. annua; (C) root length of A. retroflexus; and (D) shoot length of A. retroflexus.

TABLE 3 | Toxicity of Thymus proximus essential oil (EO), p-cymene, γ-terpinene, carvacrol, and their mixture against Aphis gossypii adults.

EO/major components Regression equation r2 LC50 (ppm) 95% CL

EO y = 0.053 + 3.202x 0.922 9.63 4.29–16.63

p-Cymene y = 0.95 + 3.882x 0.939 5.69 3.75–8.04

γ- Terpinene y = 0.729 + 4.348x 0.997 6.8 6.16–7.47

Carvacrol y = 1.94 + 0.963x 0.896 0.1 0.00–0.46

Mixture y = 0.398 + 2.79x 0.831 7.34 3.81–12.58

r2adj : adjusted coefficient of determination.

LC50: 50% lethal concentration of A. gossypii.

95% CL: 95% confidence limits.

species (Zeynep et al.,, 2018). Sara et al. (2019) investigated
the herbicidal action of T. fontanesii EO and found 0.03% T.
fontanesii oil inhibited the seed germination by 100% on Sinapis
arvensis, Avena fatua, Sonchus oleraceus, and Cyperus rotundus.
In another study comparing the strength of phytotoxicity of 12
EOs produced by the Mediterranean aromatic plants conducted
by Rolim et al. (2010), thyme, balm, vervain, and caraway
EOs were found to be more active on germination and radicle
elongation of receiver species; among them, thyme oil completely
inhibited the seed germination of Lepidium sativum, Raphanus
sativus L., and L. sativa at 1.25µg/ml. Synowiec et al. (2017) also

performed a study comparing the phytotoxicity of 12 EOs and
detected that T. vulgaris, Carum carvi L.,Mentha piperita L., and
Salvia officinalis L. oils possessed the most potent activity, with
the ED50 values for thyme oil ranging between 0.06 and 1.03
g/L against seven tested plants, which was comparable to our
findings (Synowiec et al., 2017). Thymus pulegioides L. EO with
high content of α-terpinyl acetate inhibited the seed germination
and radicle growth for high economic productivity forage grass
monocotyledon Poa pratensis L (Vaiciulyte et al., 2021). Different
extraction methods also cause differences in EO activity. Thymus
decussatus EO extracted using hydrodistillationmethod inhibited
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FIGURE 4 | Dose–response curves of Thymus proximus essential oil (EO) and its major constituents against Aphis gossypii adults.
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the seed germination, shoot growth, and root growth of lettuce
by 86.6, 87.4, and 89.9%, respectively, whereas the EO extracted
using the microwave-assisted techniques method inhibited L.
sativa by 77.7, 8 5.8, and 84.6% at 100 µl/L, respectively (Saleh
et al., 2020).

The phytotoxic effect of a particular EO can bemainly ascribed
to certain toxic component(s). Monoterpene compounds have
been reported to show strong inhibitory effects on the seed
germination of many crops and weeds (López et al., 2008;
Li et al., 2011; Ali et al., 2015). The outstanding phytotoxic
activity of thymol has been previously studied. Thammyres
et al. (2018) found that thymol exhibited phytotoxicity at
different concentrations (0.375–3 mmol/L), as reflected on the
reduced germination rate of tested monocot and dicot species.
Kordali et al. (2008) found carvacrol and thymol prohibited the
seed germination and seedling development of A. retroflexus,
Chenopodium album, and Rumex crispus L., whereas p-cymene
did not exert a significant phytotoxic activity (8.6 mg/Petri
dishes). Consistent with this study, Vasilakoglou et al. (2013)
reported thymol completely restrained the seed germination
of rigid ryegrass (Lolium rigidum Gaudin) at 160 nl/cm3

or above, whereas p-cymene was found to be only slightly
phytotoxic. Martino et al. (2010) tested the antigerminative
activity of thymol, p-cymene, and γ-terpinene, along with other
monoterpenes and found that thymol negatively affected the
radicle elongation of garden cress significantly at 10−3 M, p-
cymene suppressed the root growth of garden cress at 10−4

M; however, γ-terpinene did not exert any significant effect at
tested concentrations. Meanwhile, the isomer of γ-terpinene,
that is, α-terpinene, was detected to be phytotoxic against maize
seedlings by reducing the root growth, changing the root border
cells number, increasing the pectin methyl esterase activity, and
upregulating the repel expression in the roots (Wang et al.,
2019). In conclusion, thymol exhibited much stronger phytotoxic
activity compared with p-cymene and γ-terpinene, implying its
role as the major active compound responsible for phytotoxicity
of the oil.

Natural products with plant origin can play crucial roles in
pest management practice (Faraone et al., 2015; Barua et al.,
2020; Basaid et al., 2020; Chen and Oi, 2020). Previously,
EOs synthesized by Thymus species have been demonstrated
to possess insecticidal activity. T. serpyllum L. and T. vulgaris
EOs presented a LC50 of <10 mg/dm3 against the pest
(Acanthoscelides obtectus say) of kidney bean (Phaseolus vulgaris
L.) after 24 h of exposure (Regnault-Roger et al., 1993). Isman
et al. (2001) tested 21 EOs for their insecticidal action via topical
administration to third instar larvae of the tobacco cutworm,
Spodoptera litura, and EOs of Satureja hortensis, Origanum
creticum, and T. serpyllum exhibited over 90% larval mortality
at 24 h at 100 µg/larva; the LD50 value for S. hortensis (48.4
µg) was comparable to that for T. vulgaris (46.9 µg). Park
et al. (2017) detected that the LC50 values of T. vulgaris EO
against Pochazia shantungensis nymphs using the leaf dipping
bioassay was recorded as 57.48 and 75.80 mg/L for adults using
the spray bioassay method. Pavela (2005) tested the insecticidal
activity of T. mastichina and T. vulgaris EOs against Spodoptera
littoralis larvae and determined their LD50 values were 19.3 and
22.9 ml/m3. Thyme (T. vulgaris) EO was also found to show

high activity against Lycoriella ingenua at 20 × 10−3 mg/ml air
(Park et al., 2008). EO produced by T. satureioides had moderate
toxicity with the LD50 value of 0.31 µl/cm2 and the LD90 of
0.77 µl/cm2 against the important stored-product pest insect
Tribolium castaneum (Kasrati et al., 2015). Ali et al. (2015) found
the EOs obtained from all organs of T. algeriensis possessed
strong insecticidal activity (LC50 = 44.25–112.75µl/L air) against
cotton leafworm larvae (Spodoptera littoralis). In a recent study,
EOs of T. spinulosus and T. longicaulis were assayed for their
insecticidal toxicity, and their LC50/LD50 values were detected
in the range of 39.6–87.1 µg/larva, 21.7–62.4 µl/L, and 35.9–
147.3 µg/adult, for Culex quinquefasciatus, Spodoptera littoralis,
and Musca domestica, respectively; it is noteworthy to mention
that they found the most active samples were those with the
highest amounts of thymol (Pavela et al., 2019). A. gossypii were
reported to be susceptible to a variety of EOs. For example,
the strength of Santalum austrocaledonicum Vieill EO was
comparable to imidacloprid (a neonicotinoid insecticide) against
A. gossypii infesting Rose of Sharon (Hibiscus syriacus L.) with
98.8% mortality (Roh et al., 2015). In another study, Melaleuca
styphelioides Sm. EO exhibited strong fumigant toxicity on adults
and nymphs of A. gossypii; 263.18 µl/L air EO let to 100%
mortality of this insect (Albouchi et al., 2018).

Previous works have demonstrated the insecticidal activity
of carvacrol, p-cymene, and γ-terpinene; in fact, carvacrol
was speculated to be the main insecticidal compound of
the EOs (Pavela and Sedlák, 2018; Pavela et al., 2019). Park
et al. (2017) measured the insecticidal activity of thymol,
carvacrol, citral, 2-isopropylphenol, 3-isopropylphenol, and 4-
isopropylphenol against Pochazia shantungensis adults, and their
LC50 values were 28.52, 56.74, 89.12, 71.41, 82.49, and 111.28
mg/L, respectively. Dias et al. (2019) evaluated the toxicity of
thymol, cinnamaldehyde, carvacrol, eugenol, and trans-anethole
on Mahanarva spectabilis eggs, nymphs, and adults, and they
found that treatments with eugenol, carvacrol, and thymol
showed the highest mortalities, presenting efficiencies higher
than 85% after 48 h of application. Traboulsi et al. (2002) found
that the compounds thymol, carvacrol, (1R)-(+)-α-pinene, and
(1S)-(–)-α-pinene showed potent toxicity (LC50 36–49 mg/L),
whereas menthone, 1,8-cineole, linalool, and terpineol (LC50

156–194 mg/L) were less toxic to the mosquito Culex pipiens
molestus. On the other hand, p-cymene and γ-terpinene also
showed effective insecticidal activity. Cetin et al. (2010) detected
that γ-terpinene triggered ≥90% knockdown against adult
Hyalomma marginatum at 105min through 3 h, meanwhile at
24 h only about 87% of the ticks were dead. Another study
found that both γ-terpinene and terpinen-4-ol exhibited a
significant insecticidal effect on Spodoptera littoralis and A.
fabae; however γ-terpinene was more toxic than terpinen-4-ol,
with the LC50/LD50 values being 23.94 g/L, 18.03 g/L for γ-
terpinene, and 32.94 g/L, 20.77 g/L for terpinen-4-ol, respectively
(Abbassy et al., 2009). Silva et al. (2018) tested the activity
of p-cymene and γ-terpinene against Rhipicephalus microplus
and revealed their LC50 values were 1.41 and 3.08 mg/ml,
respectively. Tak and Isman (2017) tested the insecticidal activity
of thymol, p-cymene, and their mixture against Trichoplusia
ni, and the LC50 values were 244.3, 875.4, and 534.8 µg/insect
after 24 h of treatment, respectively; they also suggested that

Frontiers in Plant Science | www.frontiersin.org 9 June 2021 | Volume 12 | Article 68987569

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhou et al. Bioactivities of Thymus proximus EO

p-cymene seemed to enhance penetration of thymol through
the integument. There was a study comparing the insecticidal
activity of 11 Apiaceae plant EOs and their components on
adult male and female Blattella germanica, and p-cymene and
γ-terpinene were found to exhibit significant fumigant toxicity
against adult Blattella germanica, whereas p-cymene exerted
potent contact toxicity against adult Blattella germanica (Yeom
et al., 2012). In the case of T. proximus EO, we discovered
that the insecticidal activity of p-cymene, γ-terpinene, and the
mixture of three major constituents was much weaker than
carvacrol, which suggested that carvacrol might be the main
responsible insecticidal compound in the oil. Moreover, these
results supported the speculation that carvacrol was the major
insecticidal compound of some EOs (Pavela and Sedlák, 2018;
Pavela et al., 2019).

Among the three major constituents, carvacrol was found
to possess much stronger biological activity compared with p-
cymene and γ-terpinene, although they are similar aromatic
monoterpenoids. A recent study revealed that monoterpenoids
can induce cell membrane dysfunction and interfere with cell
metabolism, and OH−- and O−-radicals are considered to react
with cellular components affecting homeostasis (Scariot et al.,
2020). By comparing the chemical structures of carvacrol and
p-cymene, it is speculated that the hydroxyl group of carvacrol
might be critical for its potent activity. In another report,
carvacrol was found to possess herbicidal activity due to its
ability to incite membrane leakage (Chaimovitsh et al., 2017).
On the other hand, it is noteworthy to mention that it is also
possible that minor components in the oil might play important
roles in the activity. Furthermore, due to the fact that EOs are
composed of small molecules that can easily evaporate in the air,
the optimization of the formula is necessary so as to stabilize the
oils and their constituents.

CONCLUSION

Essential oils are valuable sources of providing candidate
compounds as potential environment friendly pesticides and

herbicides, which can be utilized in pest and weed control safely
due to their ability to degrade in nature, and the fact that they
are less toxic to the environment. Our study is the first report
on the allelopathic, phytotoxic, and pesticidal activities of the
EO extracted from the aromatic plant T. proximus and on the
determination of themajor active compound, that is, carvacrol, to
be responsible for the biological activity of the oil, implying their
potential value of being explored as pesticides and herbicides.
Limitations of our work include that only fumigant method was
used to evaluate the insecticidal activity of T. proximus EO and its
constituents against A. gossypii, and leaf dipping method needs
to be performed in the future on more insects such as stored
product pests.
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In the context of the major crop losses, pesticides will continue to play a key

role in pest management practice in absence of practical and efficient alternatives;

however, increasing awareness regarding environmental and human health impacts of

conventional pesticides as well as the development of resistance and cross-resistance

reduced their availability and promoted the search for alternative control strategies and

reduced-risk pesticides. Among the various alternatives, a drastic re-emergence of

interest in the use of plant-derived compounds, called allelochemicals, was noted and

demand for an organic product is rising. Currently, azadirachtin, a tetranortriterpenoid

derived from the neem seed of the Indian neem tree [Azadirachta indica A. Juss

(Meliaceae)], is one of the prominent biopesticides commercialized and remains the most

successful botanical pesticide in agricultural use worldwide. Azadirachtin is a powerful

antifeedant and insect growth disruptor with exceptional low residual power and low

toxicity to biocontrol agents, predators, and parasitoids. This review summarizes the

state of the art on key azadirachtin insecticidal activities and risk assessment, identifies

knowledge gaps that could serve as the basis for future research direction and highlights

limitation in agricultural use and the development of novel strategies by the use of

nanotechnology to control its release rate and improve its stability and sustainability.

Keywords: azadirachtin, Azadirachta indica, nanotechnology, alternative pest control, agroecosystems

INTRODUCTION

The United Nations predicts that the global population will increase from 7.7 billion in 2019 to
9.7 billion in 2050 (United Nations, 2017), this evolution is the main factor that will increase the
demand for food production which is expected to continue to grow and is projected to increase by
25–70% in 2050 to meet the increasing human demand (Hunter et al., 2017; Silva, 2018). Annual
crop losses caused by insects, weeds, and diseases are estimated between 20 and 40 percent, similar
to those of 50 years ago due to the intensification of agricultural production together with the effects
of climate change (FAO, 2017). To safeguard and improve food security, crop protection from
pests is required and aimed to avoid or prevent crop losses or to reduce them to an economically
acceptable level (Karuppuchamy and Venugopal, 2016).

Over the years and since the 1950s, conventional synthetic insecticides have played a crucial
role in increasing agricultural productivity (Aktar et al., 2009; Popp et al., 2013). In the context
of the major crop losses, pesticides will continue to play a key role in pest management practice
in absence of practical and efficient alternatives. Indeed, the beneficial outcome from the use of
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pesticides remains vital for avoiding hunger and food insecurity
and meeting the demand of today and future generations
especially in the developing countries (Deravel et al., 2014);
however, the extensive use of pesticides generates human and
environmental health risk and hazards (Carson, 1962; Aktar et al.,
2009; Nicolopoulou-Stamati et al., 2016; Jars et al., 2018) and a
growing resistance to targeted pests by exerting selection pressure
on insect pests (Harrop et al., 2014; Helps et al., 2017).

After the publication of the Silent Spring by Rachel Carson
(Carson, 1962), and to attenuate the negative impacts of
pesticides in the environment and public health, search for
alternative control strategies and reduced risk pesticides became
a real challenge (Pimentel, 1997; Khater, 2012). Consequently, a
drastic re-emergence of interest in the use of natural pesticides
known as biopesticides was noted (Cantrell et al., 2012; Kumar,
2015; Mishra et al., 2018; Haddi et al., 2020). Although
there is no formally agreed definition, biopesticides are eco-
friendly pest management agents based on living organisms
or natural products (Chandler et al., 2011). They may be
derived from animals (ex: nematodes), microorganisms (ex:
Bacillus thuringiensis), plants (ex: Azadirachta) as well as certain
minerals (Damalas and Koutroubas, 2018). If biopesticides are
gaining popularity as reduced environmental impact alternatives
to conventional synthetic pesticides, the biopesticides market
remains small (5%) to the worldwide pesticide market (Olson,
2015). However, this segment of the industry is experiencing
rapid growth in recent years with a compound annual growth rate
of 8.64% and is projected to outpace that of chemical pesticides
(Olson, 2015; Damalas and Koutroubas, 2018).

The main advantages of biopesticides are that they are
inherently less toxic than conventional pesticides by offering
more targeted action against specific pests (Damalas and
Koutroubas, 2018). Indeed, conventional pesticides which exert
their effects on the nervous system of insects often affect a
broad spectrum of pests along with bird and mammalian species
(Thakora, 2006). Furthermore, biopesticides often are effective in
very small quantities and decompose quickly, resulting in lower
exposures and largely avoiding the pollution problems caused
by conventional pesticides (FAO). When using as a component
of integrated pest management (IPM) programs, biopesticides
can supplement the conventional pesticides and greatly reduce
their use and offer potentially higher crop yields (Thakora, 2006;
Damalas and Koutroubas, 2018).

Recently, among the biopesticides, plants with pesticidal
properties have been the subject of an increasing number of
academic researches as a potential option for environment
friendly pest management tools for developing sustainable
agricultural practices and promote human and environmental
safety (Isman, 2006; Cantrell et al., 2012; Hikal et al., 2017).
Plants, the most common source of biopesticides, produce a great
variety of secondary metabolites potentially applicable in IPM
programs (Céspedes et al., 2014).

Growing attention has been given to the neem tree,
Azadirachta indica A. Juss. (Meliaceae), as the most prominent
biopesticide (Isman and Grieneisen, 2014; Aribi et al., 2020).
In Asia, the neem tree is regarded as a wonder tree and has
been used for centuries in Ayurvedic medicine as one of oldest

medical systems in humanity (Biswas et al., 2002; Pasquoto-
Stigliani et al., 2017). Among its many attributed properties,
it acts as an antidiabetic, immunostimulant, antimicrobial,
antiviral, cholesterol-lowering agents, contraceptive and
anticancer remedy, and it has long been revered by ancient
Indian people and is entitled “village drugtore” (Tinghui et al.,
2001; Hummel et al., 2016; Moga et al., 2018; Blum et al., 2019).
Additionally, aqueous extracts of powdered neem kernels have
been used as an insecticide in India for about 2,000 years for
the control of insect pests (Schmutterer, 1995). In recent time,
and following the isolation of azadirachtin, the major active
compound, that is mainly responsible for the insecticidal activity
of neem, the use of neem-based insecticide has increased in
the last 30 years (Chaudhary et al., 2017; Pasquoto-Stigliani
et al., 2017). Currently, azadirachtin is one of the prominent
biopesticides commercialized and remains the most successful
botanical pesticide in agricultural use worldwide (Isman and
Grieneisen, 2014; Chaudhary et al., 2017; Aribi et al., 2020);
however, its mechanisms of action still unclear and remain to be
clarified especially in relation to the neurophysiological and the
possible long-term activities.

THE NEEM TREE

Neem is an evergreen fast-growing tree native to India
and Burma, it grows in arid, semiarid, and tropical regions
(Schmutterer, 2002). Today, the neem tree is widely distributed
throughout tropical and subtropical Asia, Africa, Australia, and
South America (Kumar et al., 2016). Neem products have
been obtained from several species of neem trees belonging to
the Meliaceae family. A. indica. Juss, is the most important
species of this group considered a renewable resource of various
useful domestic, medicinal, and agricultural products (Kumar
et al., 2016). All parts of the tree (leaf, flower, seed kernel,
wood, bark, and twig), are a source of biologically active
ingredients, and the maximum of activity is associated with
the seed kernel (Kumar et al., 2016). More than 300 different
phytochemicals have been reported from different parts of
the neem tree (Gupta et al., 2017) and over 130 of these
compounds belongs to limonoid-type triterpenoids that are
endowedwith potentmedicinal and insecticidal properties (Chen
et al., 2018); However, the chemical composition of neem is
far to be completely elucidated, as evidenced by the novel
compounds reported each year (Nicoletti et al., 2016; Chen
et al., 2018). The most important neem limonoids include
azadirachtin, nimbolide, salannin, nimbin, deacetylnimbin,
mahmoodin, epoxy-azadiradione, deacetylgedunin, and gedunin
(Nagini, 2014; Gupta et al., 2017). These compounds have
been shown to possess many useful properties of which,
antifeedancy, insecticidal, and insect growth disruption are used
in the management of pest (Schmutterer, 1995). Most of the
triterpenoids of neem were found in very small quantities in
various parts of the tree and account for the total bioactivity of
the neem seed extract (Mordue et al., 2010). Azadirachtin A is
the major active component and is responsible for 72 to 90% of
the biological activity (Schmutterer, 1990; Mordue et al., 2010).
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AZADIRACHTIN: PROPERTIES AND

INSECTICIDAL ACTIVITIES

Azadirachtin is a complex tetranortriterpenoid with 16 chiral
carbon centers, derived from the mevalonic acid pathway in
the neem tree (Hansen et al., 1993; Aarthy et al., 2018). It
is a highly oxidized tetranorterpenoid natural product related
to limonin, the bitter principle of citrus fruits and known as
limonoids (Benuzzi and Ladurner, 2018). Azadirachtin A is
considered as the main constituent and azadirachtin commercial
formulations, available on the world market for insect control
in organic farming, contain a stated amount of azadirachtin
A (Table 1) (Benuzzi and Ladurner, 2018). It has a complex
molecular structure and following the determination of its
correct structure in 1985 (Kraus et al., 1985), the first total
synthesis of this molecule was published two decades after
the discovery of the compound (Jauch, 2008). Azadirachtin is
a broad-spectrum insecticide (Figure 1), its acts as a feeding
deterrent, insect growth disruptor (IGD), and sterilant and
is used to control various agricultural pest species, including
Coleoptera, Heminoptera, Diptera, Orthoptera, and Isoptera
(Morgan, 2009). The toxicity of azadirachtin varies among insect
orders and is influenced by the different penetration rates and
activities of detoxifying enzymes (Table 2).

The chemical complexity of azadirachtin minimizes the
potential risk of insect resistance (Mordue et al., 2010). Feng
and Isman (1995) reported development of resistance to pure
azadirachtin over 40 generations in the peach potato aphidMyzus
persicae but no resistance was reported with neem seed extract.
Bomford and Isman (1996) also showed habituation to pure
azadirachtin in the tobacco cutworms with less sensitivity to the
antifeedant properties of azadirachtin, but not to neem with the
same absolute amount of azadirachtin. This might account for
avoiding desensitization to commercial neem-based insecticides
containing additional non- AZA-compounds (Bomford and

TABLE 1 | Commercial azadirachtin-based products available worldwide.

Products Manufacturer Azadirachtin Percent %

Agroneem plus Agro logistic systems Inc 0.15

Azagro India MART 1

AzaGuard BioSafe systems 3

Azamax E.I.D parry Ltd 1.2

AzaPRO CANN-CARE company 1.2

Azasol ARBORJET Inc 6

Debug TRES AGROLogistic systems 3

EcoZin plus AMVAC chemical Corp. 1.2

Fortune aza Fortune biotech Ltd 3

MOLT-X BIOWORKS Inc 3

Neem Azal TS Trifolio-M GmbH 1

Neemarin AZA-Direct Gowan company LLC 0.15

Neemfol Gassin pierre 5

Neemix Certis 0.25

Ornazin SEPRO corporation 3

Isman, 1996). Azadirachtin A is very well-received by the root
system, and, subsequently, it is systematically distributed through
the xylem into the green parts of plant tissues and stored in
leaves in an unchanged form. In addition, a very low content
of azadirachtin A in plant tissues may protect significantly plant
damage against phytophagous pest larvae (Pavela, 2016).

In addition, azadirachtin has displayed remarkable selectivity
with low mammalian toxicity (Mordue et al., 2010). According
to Raizada et al. (2001), azadirachtin has shown an LD50 value
of more than 5,000 mg/kg which falls into class U (Unlikely
to present an acute hazard) of the WHO (2009) toxicity rating.
Azadirachtin is registered in the United States as a general-use
pesticide with a toxicological class Environmental Protection
Agency (EPA) of IV (relatively non-toxic). Azadirachtin seems to
be selective, non-mutagenic, and readily degradable and has also
been reported as safer for non-target organisms and beneficial
organisms (Medina et al., 2004; Cordeiro et al., 2010; Mordue
et al., 2010; Celestino et al., 2014; Dai et al., 2019); however, the
presumed safety of azadirachtin has been questioned, especially,
in relation to natural enemies and pollinators (Barbosa et al.,
2015; Lima et al., 2015; Xavier et al., 2015; Bernardes et al.,
2017, 2018; Francesena and Schneider, 2018). Nevertheless, semi-
field and field studies may enable to reliably predict potential
side effects of azadirachtin on non-target insects. However,
azadirachtin is still considered as one of the best alternatives
to conventional insecticides in IPMprograms and considered as
one of the most promising plant compounds for pest control
organic agriculture (Tomé et al., 2013; Bezzar-Bendjazia et al.,
2017). Despite the progress on the physiological and biological
activities and agricultural application of azadirachtin, its exact
mechanism of action, especially, at the molecular level is not yet
fully understood (Lai et al., 2014; Dawkar et al., 2019).

Effects on Neuro-Endocrine Activity
In insects, 20-hydroxyecdysone (20E) and juvenile hormone (JH)
play a central role in the regulation of growth and development
(Bensebaa et al., 2015), and the hormonal balance determines the
outcome of each developmental transition (Dubrovsky, 2005).
Therefore, any interference with hormonal homeostasis leads to
interrupted development and is considered as a potential specific
target for pest control (Pener and Dhadialla, 2012). Azadirachtin
is known as an antagonist of these two principles hormones; its
major action was its ability to modify or suppress hemolymph
ecdysteroid and JH titers through inhibition of the secretion
of morphogenetic peptide hormone (PTTH) and allatotropins
from the corpus cardiacum complex and this account for its well-
documented IGD effects defined mostly as reduced pupation,
malformation or a failure of adult emergence (Mordue and
Blackwell, 1993; Bezzar-Bendjazia et al., 2017). Furthermore, this
compound is known to cause degenerative structural changes
of the nuclei in all endocrine glands (prothoracic gland, corpus
allatum, and corpus cardiacum) responsible for controlling
molting and ecdysis in insect which would contribute to a
generalized disruption of neuroendocrine function (Mordue
et al., 2010). Azadirachtin applied on the diet at 74 ppm affects the
growth, suppresses ecdysis, and inhibits ecdysteroids synthesis
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FIGURE 1 | Principals azadirachtin action on insects (Photos: https://www.shutterstock.com/).

TABLE 2 | Azadirachtin LC50 in some species of pest.

Species Mode of application Developmental stage LC50 (ppm) References

Pluttella xylostella Orally 3rd instar larvae 0.63 Zada et al., 2018

Tuta absoluta Orally 2nd instar larvae 5.62 Tomé et al., 2013

Tirathaba rufivena Orally Larval 28.79 Zhong et al., 2017

Helicoverpa armigera Orally 3rd instar larvae 12.95 Abedi et al., 2014

Coridius viduatus Orally Adults 0.003 Aljedani, 2018

Megaselia scalaris Dipping 1st instar larvae 13.79 Abdel-Gawad, 2018

Agonoscena pistaciae Dipping 5th instar larvae 0.22 Izadi et al., 2012

Heteracris littoralis Topically 4th instar larvae 101.20 Ghazawi et al., 2007

Lobesia botrana Orally 1th instar larvae 2.1 Irigaray et al., 2010

Galleria mellonella Topically Immature stage 16.56 Er et al., 2017

in the larvae of Ostrinia furnacafis Guenée (Min-Li and Shin-
Foon, 1987). In Tenebrio molitor, the injection of 1 µg of
azadirachtin into freshly ecdysed pupae induced a significant
depletion of levels of immunoreactive ecdysteroids affecting 20-
hydroxyecdysone levels and suppressing the ecdysteroid peak
that normally appears at the middle of the instar (Marco et al.,

1990). A drastic reduction of hemolymph ecdysteroid titers
was also reported in Rhodnius prolixus after a unique dose
of azadirachtin (Garcia et al., 1990). In addition to its effects
on morphogenetic PTTH, azadirachtin affects ecdysone 20-
monooxygenase activity, the insect cytochrome P450-dependant
hydroxylase responsible for the conversion of the steroid
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hormone ecdysone to its more active metabolite, and 20E
(Smith and Mitchell, 1988). Indeed, in vitro analysis of three
insect species, homogenates of wandering third instar larvae of
Drosophila melanogaster, fat body or midgut from last instar
larvae of Manduca sexta and abdomens from adult female Aedes
aegypti, incubated with radiolabelled ecdysone and azadirachtin
revealed inhibition of the ecdysone 20-monooxygenase with
a dose-dependent relationship (Smith and Mitchell, 1988);
however, ingested or injected azadirachtin had no effect on
ecdysone 20-monooxygenase activity in Spodoptera frugiperda
(Yu, 2000). Besides its negative effects on molting hormone,
azadirachtin induced a delay or a reduction in JH titters,
primarily by hindering the release of the allatotropins and
thereby blocking the synthetic and release processes of the JH
(Mordue et al., 2010; Dhra et al., 2018).

Azadirachtin is reported to impair the growth and molting
process of insects and induced robust developmental delays in the
larva-to-pupa and the pupae-to-adult transition compromising
their survival (Hasan and Ansari, 2011; Tomé et al., 2013;
Lai et al., 2014; Bezzar-Bendjazia et al., 2016). In addition,
growth and nutrient intake are functionally linked processes in
development and growth and body mass are directly affected by
nutrient uptake principally governed by the insulin/insulin-like
growth factor signaling (IIS) pathway (Tennessen and Thummel,
2011). Lai et al. (2014) reported that the inhibition of growth
and development inD. melanogaster after azadirachtin treatment
was similar to those caused by disruption of the IIS pathway.
In addition, azadirachtin can inhibit the excitatory cholinergic
transmission and block partly the calcium channel (Qiao et al.,
2014), and this might interfere with different endocrinological
and physiological actions in insects.

Effects on Reproduction
The negative effects of azadirachtin on reproduction were
reported in several insect orders (Pineda et al., 2009; Tine
et al., 2011; Tomé et al., 2013; Boulahbel et al., 2015; Er et al.,
2017; Oulhaci et al., 2018). Reduced fecundity and fertility has
been recorded in many insects including Spodoptera littoralis,
D. melanogaster, Galleria mellonella, Dysdercus cingulatus, Tuta
absoluta, and Helicoverpa armigera (Pineda et al., 2009; Pandey
and Tiwari, 2011; Tomé et al., 2013; Ahmad et al., 2015; Er
et al., 2017; Oulhaci et al., 2018) and could be due to the
interference of azadirachtin with yolk protein synthesis and or
its uptake into oocytes (Boulahbel et al., 2015). In leaf-cutting ant
queens Atta sexdens, azadirachtin affects oviposition, decreases,
and inhibits vitellogenin reserve, which impact negatively the egg
development (Amaral et al., 2018).

Sterility effects in females due to interference with vitellogenin
synthesis and uptake into oocytes were also reported. A
single injection of 10 µg of azadirachtin resulted in sterilizing
effect on Locusta migratoria migratorioides with an arrest of
terminal oocytes maturation and oviposition (Rembold and
Sieber, 1981). In Heteracris littoralis, ovaries in azadirachtin-
treated females showed complete shrinkage with oocyte growth
arrest with disintegration and destruction in follicular cells and
mitochondria (Ghazawi et al., 2007). In males, azadirachtin
decreases significantly the number of cysts and the apical nuclei

within the cysts in D. melanogaster (Oulhaci et al., 2018). The
inhibition of spermiogenesis was also reported inMylabris indica
(Vivekananthan and Selvisabhanayakam, 2014) and Heteracris
littoralis (Ghazawi et al., 2007).

For the normal progress of oogenesis and spermatogenesis, a
proper balance between JH and 20E is needed, antagonist action
of azadirachtin on these two principal hormones account for
the deleterious effects on reproductive parameters. Indeed, the
application of exogenous 20E after azadirachtin treatment can
compensate for its depressive effects on D. melanogaster and
restored normal values of yolk protein content in the fat body
and ovaries (Boulahbel et al., 2015).

In addition, azadirachtin was finding to alter reproductive
behavior in D. melanogaster by reducing mating success (Aribi
et al., 2017; Oulhaci et al., 2018). The impact of azadirachtin
on sex behavior and mating response to sexual pheromones was
also reported in Oncopeltus fasciatus (Dorn et al., 1987) and
the predator Neoseiulus baraki (Lima et al., 2015). Oviposition
sites treated with azadirachtin or other neem-based compounds
induce an oviposition repellence, deterrence, or inhibition in
several species of insects after a probable detection of the
bioinsecticide on the treated surface (Schmutterer, 1990; Dhar
et al., 1996, Cordeiro et al., 2010; Tomé et al., 2013). Pure
azadirachtin was also reported to deter the oviposition in
Nezara viridula (Riba et al., 2003). A single larval exposure
to a commercial formulation of azadirachtin, the Neem Azal,
was found to reduce fecundity in D. melanogaster and enhance
avoidances to this compound (Bezzar-Bendjazia et al., 2016).
These effects were observed in the next non-exposed generations
which can be used as repellent strategies in pest management
programs (Ferdenache et al., 2019).

Anti-feedancy
Azadirachtin is usually associated with a marked antifeedant
activity and even behavioral avoidance in a large number of
insect species including hemipterans (Kumar and Poehling,
2007), lepidopterans (Charleston et al., 2006; Shannag et al.,
2015), ortheopterans (Capinera and Froeba, 2007), coleopterans
(Baumler and Potter, 2007), and dipterans (Kilani-Morakchi
et al., 2017).

Insects use an olfaction system to search and locate potential
food and thereafter contacting chemoreception, called primary
antifeedancy, which could confirm its quality and provide a basis
for food selection and discrimination (Lee et al., 2010). A signal to
the brain provokes avoidance from further approach or feeding.

The primary antifeeding effect of azadirachtin seems to be
mediated by gustatory chemosensillas and linked to inhibition
on the rate of firing of sugar-sensitive cells of the gustatory
chemoreceptors by activating bitter sensitive gustatory cells (Lee
et al., 2010; Weiss et al., 2011; Delventhal and Carlson, 2016).
Indeed, the sensitivity to primary antifeedancy of azadirachtin
was reported in different species, which starve to death rather
than ingest the biopesticide (Mordue and Nisbet, 2000). An
internal feedback mechanism called secondary antifeedancy,
including a long-term reduction in food intake, and deleterious
effects on different insect tissues (muscles, fat body, gut epithelial
cells), is also reported (Mordue et al., 2010; Khosravi and Sendi,
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2013; Shannag et al., 2015). Third-instar larvae of S. littoralis
orally treated with sublethal concentrations of azadirachtin
display a reduction in food intake, conversion efficiency, and
feeding behavior (Martinez and van Emden, 1999). In second
instar larvae of Spodoptera eridania, short-term consumption (2
days) of food treated with Azatrol, a commercial formulation of
azadirachtin, reduced relative consumption rate, the efficiency of
conversion of ingested food, relative growth rate, approximate
digestibility, and assimilation rate of food during the entire larval
developmental period (Shannag et al., 2015). In D. melanogaster,
a single topical application of azadirachtin on early third instars
larvae decreased significantly the amount of larval food intake
and disrupted the ability of the insect to digest food by
interfering with digestive enzymes activities (Bezzar-Bendjazia
et al., 2017). This effect is also observed in adults surviving the
pre-imaginal treatment, which suggests a long-term antifeedancy
and delayed effects through the developmental stage with a
possible reinforcement of the insecticidal activity of azadirachtin
(Kilani-Morakchi et al., 2017).

In addition, azadirachtin showed an agonistic effect on
dopaminergic neurons and can induce aversive taste memory in
D. melanogaster, and such memory is regulated by dopaminergic
signals in the brain resulting in inhibition of proboscis extension
response (PER) (Yan et al., 2017).

Cellular and Molecular Effects
Besides the above mentioned effects, accounting for its broad-
spectrum activities, azadirachtin was also shown to cause
upregulation of p53, resulting in cell cycle mediated cells
apoptosis induction and cell proliferation inhibition in S
Spodoptera litura S1-1 cell line (Huang et al., 2011). In the same
species, Shu et al. (2018) demonstrated that azadirachtin induced
structural alteration in the larval midgut by apoptosis activation
including increased expression of caspase family members and
apoptosis-binding motif 1 and the release of cytochrome c from
mitochondria to cytoplasm, which may affect the digestion and
absorption of nutrients. The induction of apoptosis through
caspase-dependent pathways by azadirachtin was also reported
in S. frugiperda cultures cell line Sf9 (Shu et al., 2015). Based on
proteomic studies, Sun et al. (2018) reported that the molecular
response mechanism of male infertility induced by azadirachtin
in S. litura may be linked to regulation of many proteins in the
pathway of focal adhesion exerting influences in detachment of
cell attachment, the loss of cell-cell interactions, and inducing
apoptosis at the pupal stage. Furthermore, many proteins in
the adenosine monophosphate-activated protein kinase (AMPK)
pathway were also changed at the adult stage after azadirachtin
treatment as larvae (Sun et al., 2018). In D. melanogaster, a
depolymerization of actin causing a cell arrest and apoptosis
caspase-independent was reported after azadirachtin treatment
(Anuradha et al., 2007; Anuradha and Annadurai, 2008).

At the cellular level, azadirachtin disrupts protein synthesis
and secretion. In Schistocerca gregaria, injections of 3 µg
azadirachtin/g body weight induce an inhibitory effect of the
incorporation of radiolabelled glycine into the protein of the
whole locust (Paranagama et al., 2004). Roberston et al. (2007)
reported that the heat-shock protein, hsp 60, in cultured

DrosophilaKc 167 cells could bind to azadirachtin A whichmight
be associated with a failure of protein synthesis and release.

At the molecular level, azadirachtin alters or prevents the
transcription and/or expression of several proteins. Ingestion
of 10 ppm of azadirachtin in third instars larvae of Ostrinia
furnacalis significantly affected the fat body by interfering with
protein expression related to hemolymph lipid (Huang et al.,
2007). Lai et al. (2014) reported that azadirachtin downregulated
expression of genes of cuticular protein and amylase and
upregulated gene odorant-binding protein 99b (Obp99b) in D.
melanogaster, which may be related to the development, molting
defects, and antifeedancy action of the biopesticide. Azadirachtin
treatment was shown to increase superoxide dismutase activity
(SOD) and malondialdehyde contents (MDA) inD. melanogaster
and induce antioxidant enzymes, such as SOD, catalase (CAT),
and gluthation S-transferase (GST), by an upregulation of gene
expression to protect against oxidative damage caused by elevated
and accumulation of reactive oxygen species (ROS) triggered by a
stress response to azadirachtin (Zhang et al., 2018). Azadirachtin
also inhibits the expression of ferritin and thioredoxin peroxidase
genes, in the sweet potato of whitefly Bemissia tabaci, related
to protective roles against oxidative stress (Asaduzzaman et al.,
2016).

Recently, azadirachtin was found to regulate the growth of
S. frugiperda by affecting the insect chitin synthesis pathway
by a downregulation of 31 cuticle proteins and several
other genes encoding important enzymes involved in insect
chitin and hormone biosynthesis, such as, trehalase, chitin-
synthase, chitin deacetylase, chitinase (Shu et al., 2020). The
suppressed expression of chitin biosynthesis and cuticle genes
by azadirachtin might represent the molecular basis for the
retardation of molting and growth.

Genes encoding enzymes responsible for key steps in hormone
biosynthesis were also affected by azadirachtin. Azadirachtin also
affected genes encoding key enzymes in hormone biosynthesis,
such as genes encoding farnesol dehydrogenase, responsible
for oxidization of farnesol, a precursor of JH named farnesal
(Mayoral et al., 2009); the gene encoding an aldehyde
dehydrogenase, which is responsible for converting farnesal into
farnesoic acid and CYP15A1_C1, which converts the farnesoic
acid to JH-III acid (Qu et al., 2015); the gene encoding JH
epoxide hydrolase, responsible for JH degradation by hydrolyzing
the epoxide of JH (Zhao et al., 2017); the gene encoding
cytochrome oxidase-related proteins CYP307A1 and CYP314A1,
which catalyze the 20-Hydroxyecdysone (Liu et al., 2019). All
these changes in the expression levels of these key genes
account for the disruption of the synthesis of JH and ecdysone,
and therefore, interfere with the balance of these hormones,
contributed to the growth inhibition.

RISK ASSESSMENTS

Azadirachtin-based pesticides act on a wide range of pestiferous
insects from different orders as well as some ectoparasites which
present high sensitivity to these compounds. The major property
of azadirachtin is the blockage of neurosecretory peptides,
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which regulate the synthesis and release of ecdysteroids and
JH leading to disruption of endocrine events. The important
roles of these hormones in arthropods physiology for normal
development leave open the possibility that azadirachtin may
pose a hazard to non-target species. Indeed, Barbosa et al. (2015)
reported that long-term chronic exposure with azadirachtin may
affect reproduction and behaviors of the bumblebee Bombus
terrestris under laboratory conditions. Similarly, in vitro chronic
exposure of azadirachtin affects stingless bee, Partamona helleri,
by reducing the survival, development time, growth, and affecting
reproductive organs but did not affect the larval food intake,
the rate of emergence of queen and walking activity (Bernardes
et al., 2018); however, the instability of azadirachtin and its low
residual potential persistence makes these chronic conditions
unexpected under semi-field and field situations. Azadirachtin
was also found to be selective to the honeybee, Apis cerana, based
on three essential risk assessment criteria [selectivity ratio, probit
substitution method (%), and hazard ratio/risk quotient (Challa
et al., 2019)].

In the case of predatory insects and parasitoids, azadirachtin,
and neem-based insecticides show slight to moderate toxic
effects and are considered to be harmless and with a certain
degree of selectivity, especially for the adult insects (Raguraman
and Kannan, 2014); however, pre-imaginal instars of beneficial
organisms (nymphal/larval instars) are more susceptible to
neem insecticides under laboratory conditions (Raguraman and
Kannan, 2014). Hence, it is important to control the stage of
parasitoids/predators used and the timing of application to avoid
any toxicity in semi-field and field applications.

According to European Food Safety Authority (European
Food Safety Authority, 2011), azadirachtin has moderate to
high toxicity to aquatic organisms (acute LC50 = 0.048mg
azadirachtin A/L, chronic NOEC = 0.0047mg azadirachtin A/L)
and aquatic insects (chronic NOEC = 0.0016mg azadirachtin
A/L), with an aquatic half-life of around 30 days. The risk
assessment for this compound focused on freshwater organisms
as there are no marine or estuarine data. However, the risk
values did not exceed the criteria and were predicted to be low
when azadirachtin was used following the label instruction of the
product (Goktepe et al., 2004; European Food Safety Authority,
2011).

Azadirachtin is not highly mobile in soil due to its oily
composition. Its half-lives in soil are about few hours to 1
or 2 days reducing the risk to earthworms and soil macro-
organisms. The hazard index of heavy metal contamination
in vegetables after soil treatment with azadirachtin was <1
and does not exceed the WHO/FAO permissible limit in
vegetables, suggesting it is safer for consumption (Egwu et al.,
2019).

However, information regarding the fate, behavior, and
toxicity of individual compounds, and the degradation of
products are needed to complement its relatively favorable
ecotoxicological profile (European Food Safety Authority, 2011).
In general, European Food Safety Authority (2018) reported
that the margin safety of the risk assessment performed for
azadirachtin A is considered sufficient to estimate the risk from
the whole azadirachtin. In addition, semi-field and field studies

should be performed considering situations that may include
acute and chronic exposure in the risk assessment setup.

FUTURE DIRECTIONS

Azadirachtin has a variety of physiological effects on many
insect pests, such as antifeedancy (Qin et al., 2020), growth
and development inhibition (Zhao et al., 2019), impairment
of oocyte structure, inhibition of fecundity, and egg viability
(Bezzar-Bendjazia et al., 2016; Amaral et al., 2018; Oulhaci
et al., 2018; Ferdenache et al., 2019). Despite extensive studies
of the mechanisms that highlight the physiological effects of
azadirachtin, the behavioral effects remain more controversial
(Charleston et al., 2006; Hasan and Ansari, 2011; Tomé et al.,
2013).

The fitness and survival of insects strongly depends on
successful localization of host plants, food source, mating
partners, and oviposition sites. Many insect behaviors are heavily
dependent on chemosensation, especially on the perception of
olfactory and gustatory cues (Herrero, 2012; Depetris-Chauvin
et al., 2015;Walker et al., 2016). In addition to these olfactory and
gustatory cues, locomotion represents an integral part of insect
behaviors as is essential for food-seeking, mating, and escape
response (Zhu et al., 2020). The ability of insects to modify their
behavior based on prior experience is essential for their survival
(Chia and Scott, 2020). Increasing evidence has highlighted the
critical role of early life experience in adult behavior in insects
(Caubet et al., 1992; Bezzar-Bendjazia et al., 2016; Ferdenache
et al., 2019). In addition, exposure to a stressor, such as pesticides,
has been shown to prompt a range of behavioral effects which
can be inherited to the next generation (Ferdenache et al., 2019;
Lu et al., 2020). Recent work demonstrated for the first time that
D. melanogaster can modulate its behavior based on previous
experiences of early life (third instars larvae) with azadirachtin
affecting oviposition site preference and food selection and
enhancing avoidances of this compound in adults of parent
generation as well as the non-exposed F1 generation (Bezzar-
Bendjazia et al., 2016; Kilani-Morakchi et al., 2017; Ferdenache
et al., 2019). These changes in insect behavioral responses are
influenced by individual sensory experience and may leave an
“imprinted” trace into adult life in accordance to experience-
induced learning by changes in the neurophysiology of insects
(Dukas, 2008; Little et al., 2019). Indeed, biogenic amines,
octopamine (OA), serotonin (5-HT), and dopamine (DA) are
known to convey the reinforcing cues for many different types
of associative memory in Drosophila (Masek and Keene, 2016).
Azadirachtin treatment was found to reduce OA, 5-HT, and DA
levels in both the brain and the hemolymph of Acherontia styx
(Awad et al., 1997). Furthermore, azadirachtin interferes with the
amount of 5-HT in the endocrine organs and,mainly, in the brain
of locusts (Banerjee and Rembold, 1992).

Moulin et al. (2020) reported that transient dysregulation of
the dopaminergic signaling can produce behavioral alterations
in D. melanogaster adults, which can then be carried to
descendants. In addition, azadirachtin can excite different
clusters of dopaminergic neurons, such as PPL1, and increase
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dopamine release inducing aversive taste memory in Drosophila
(Yan et al., 2017); however, the neurophysiological actions of
azadirachtin remain to be clarified. In addition, insecticides are
known to be able to provoke epigenetic alterations, which can be
inherited in the next generations (Vandegehuchte and Janssen,
2011); this possible epigenetic alteration induced by azadirachtin
treatment was never investigated. The comprehension of the
mechanisms that induce the transgenerational conservation of
the aversive effects of azadirachtin may contribute to better use
of this compound in IPM programs.

In addition, azadirachtin had the potential to be used in
synergy with other botanical compounds. Indeed, azadirachtin
and clarified neem oil can significantly synergize the pyrethrum
activity while reducing or eliminating the need for pipronyl
butoxide as an agent to augment pyrethrum activity, which
represents a significant cost advantage when compared with
existing pyrethrum/pipronyl butoxide formulations (Chang
et al., 1996). On the other hand, phenol compounds in neemwere
suspected to synergize with the main component (azadirachtin)
in increasing the antifeedant activity on S. litura (Prianto et al.,
2019). The use of azadirachtin in synergy with B. thuringiensis
(Bandyopadhyay et al., 2014) and karanj (Pongamia pinnata
Pierre) was also reported (Kumar et al., 2007). Azadirachtin
was found to enhance the efficacy of B. thuringiensis in Cydia
pomonella, S. exigua, andDendrolimus pini (Konecka et al., 2019).
This synergistic effect was observed between azadirachtin and
multicapsid nucleopolyhedrovirus (SfMNPV) on the mortality of
S. frugiperda (Pineda et al., 2014).

More studies are needed for synergism between azadirachtin
and other insecticides to find combinations that can effectively
control pests. Essential oil or their main compounds, especially
compounds (linalool, borneol) with antifeeding activities, might
represent a good candidate.

PRACTICAL PROBLEMS OF

AZADIRACHTIN APPLICATION

If rapid degradation by sunlight and low persistence in the
environment are considered as advantages of the use of
azadirachtin and neem derived products, it also represents a
problem for their use on a large scale and is disadvantageous from
an agribusiness perspective, since they result in lower efficiency
and necessitates a greater number applications (Pasquoto-
Stigliani et al., 2017).

The chemical nature of the media containing azadirachtin
formulation is important and influences its stability. Indeed,
studies on the effect of various solvents on the stability
of azadirachtin in extracts and formulations reported higher
stability of azadirachtin in alcoholic and other aprotic solvents,
which are neutral, as compared with protic solvents (Pereira et al.,
2019). Furthermore, azadirachtin was most stable in mildly acidic
solutions between pH 4 and 6 (Pereira et al., 2019).

The neem-based oil in water emulsion formulation by high
shear mixing also improves stability and bio-efficacity of the
biopesticide by a decrease of particle size of the emulsion
with the increase of stirring time leading to excellent emulsion

stability (Iqbal et al., 2020). In addition, the stability of neem oil-
based microemulsion can be enhanced by the use of botanical
synergists, such as aqueous extract of Prosopis Juliflora (Sharma
et al., 2019).

The use of nanotechnology also represents a way to
overcome such limitations, and the development of controlled-
release formulations of botanical insecticides by polymeric
encapsulation has been studied in recent years (Das et al., 2014;
Pasquoto-Stigliani et al., 2017). Flores-Céspedes et al. (2015)
reported that natural polymers, such as kraft lignin and alginate,
protect azadirachtin against photodegradation and could be used
to improve its stability and delivery to its site of action. These new
procedures to encapsulate botanical pesticides provide several
benefits including slow-release, enhanced stability of compounds,
use of small dose, and masking of odor (Chaudhary et al.,
2017). Poly(ε-caprolactone) nanocapsules loaded with neem oil
are save to soil microbiota during 300 days of exposure and
did not affect the net photosynthesis and stomatal conductance
of maize plants, and present lower toxicity against non-target
organisms (Pasquoto-Stigliani et al., 2017); however, the same
nanocapsule containing a mixture of neem oil and oleic acid
presented higher toxicity and led to negative effects. Recently,
Shanmugapriya et al. (2019) demonstrated that azadirachtin
loaded in silica nanoparticles at 500 ppm showed high mortality
of adult Bemissia tabaci and can be used as an alternative to
chemical pesticides.

Although nanotechnology is still at an early stage in the
agricultural sector, it is clear that there is growing interest in
its use; however, studying the toxicity of nano pesticides and
understanding their mechanism of action in target organisms is
a key factor in the selection of the best formulations for use in
agricultural applications (Feng and Peng, 2012; Seugling et al.,
2019; Jesser et al., 2020).

In addition, a sublethal dose of azadirachtin was reported
to induce hormesis in the Mexican Bean Weevil, Zabrotes
subfasciatus, with increased fecundity daily to compensate for
azadirachtin-induced decreased longevity (Vilca Malqui et al.,
2014). In addition, the population of Z. subfasciatus engendered
from females exposed to azadirachtin present a higher rate of
population increase and a higher net reproductive rate (Vilca
Malqui et al., 2014). Similar results were reported in Myzus
persicae exposed to sublethal concentrations of azadirachtin
with a modest hormetic response under laboratory conditions
(Cutler et al., 2007). Evidence-based toxicology under field
conditions must be used to solidify the importance of hormesis
to understand the risk of exposure to azadirachtin and neem-
based compounds. In addition, new research tools, such as
toxicogenomics and statistical modeling processes, must be
designed to evaluate possible hormetic responses when devising
pest management strategies.

CONCLUSION

Health and environmental concerns have influenced the use of
safe and non-hazardous pest control measures. Azadirachtin-
based insecticides have recently been promoted as an alternative
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pest control method, especially in agroecological farming and
organic agricultural systems. Azadirachtin has broad-spectrum
activity for combating numerous pests in different crops,
and it has not yet reached most of its potential utilization.
Currently, information is sparse on the possible long-term and
transgenerational effects of azadirachtin on insects; a better
comprehension of this phenomenon could improve its use in
IPM programs by reducing the concentrations used, frequency
of application and targeting the best time of application, which
might enhance its ecotoxicological profile.

In addition, the nanoencapsulation of this biopesticide
provides a novel way to enhance its stability and sustainability,
since they protect it against degradation and modulate its release.
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Oomycetes, represented by Phytophthora, are seriously harmful to agricultural
production, resulting in a decline in grain quality and agricultural products and causing
great economic losses. Integrated management of oomycete diseases is becoming
more challenging, and plant derivatives represent effective alternatives to synthetic
chemicals as novel crop protection solutions. Biologically active secondary metabolites
are rapidly synthesized and released by plants in response to biotic stress caused by
herbivores or insects, as well as pathogens. In this study, we identified groups of volatile
organic compounds (VOCs) from soybean plants inoculated with Phytophthora sojae,
the causal agent of soybean root rot. 4-Ethylphenol was present among the identified
VOCs and was induced in the incompatible interaction between the plants and the
pathogen. 4-Ethylphenol inhibited the growth of P. sojae and Phytophthora nicotianae
and had toxicity to sporangia formation and zoospore germination by destroying the
pathogen cell membrane; it had a good control effect on soybean root rot and tobacco
black shank in the safe concentration range. Furthermore, 4-Ethylphenol had a potent
antifungal activity against three soil-borne phytopathogenic fungi, Rhizoctonia solani,
Fusarium graminearum, and Gaeumannomyces graminis var tritici, and four forma
specialis of Fusarium oxysporum, which suggest a potential to be an eco-friendly
biological control agent.

Keywords: 4-Ethylphenol, leaf volatile compounds, cell membrane damage, biological control, Phytophthora

INTRODUCTION

Oomycetes, encompassing Phytophthora, Albugo, Pythium, and a group of downy mildews that
cause plant epidemics, have a negative impact on natural and farm ecosystems due to their strong
pathogenicity and infectivity (Yutin et al., 2008; Kamoun et al., 2015). Besides the well-known
potato late blight caused by Phytophthora infestans, which led to the Irish famine of the 19th
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Century, Phytophthora nicotianae is a pathogen distributed
worldwide, and it causes tobacco black shank and is responsible
for many foliar and fruit diseases (Fang et al., 2016). Soybean root
rot is caused by Phytophthora sojae and is the leading cause of
global soybean production losses (Tyler, 2007). Oomycetes are
phylogenetically different from fungi, forming an independent
group, and are therefore resistant to many broad-spectrum
fungicides (Tyler et al., 2006). Some of the fungicides effective
against oomycetes, such as metalaxil, have resulted in the
emergence of insensitive strains and resurgence events due to
their single site of action (Randall et al., 2014). Interdisciplinary
studies and consistent resources have been invested in finding
new, effective alternatives for the integrated pest management of
oomycete diseases (Gessler et al., 2011).

Novel pharmaceuticals against oomycetes should be explored
for rational fungicide design, and further focus should be
placed on developing alternative botanical agrochemicals to
fight different pathogens that attack crops and related products
(Drakopoulos et al., 2020; Liang et al., 2021; Wang et al.,
2021). Environmentally friendly botanical fungicides are widely
welcomed due to their higher efficiency, lower residue, and
lower negative impact on the environment (Naz et al., 2018;
Tschoeke et al., 2019). Plants are a rich natural source of active
antimicrobial substances (Nino et al., 2012; Hu et al., 2018). For
example, artemisinin, present in sweet wormwood, a Chinese
medicinal plant, is the most effective antimalarial drug available
(Tu, 2011).

Natural products have a long history as a source of novel
agrochemicals (Yoon et al., 2013). Phytopathologists search for
alternative botanical products to replace synthetic fungicides and
effectively control plant diseases without significantly affecting
crop yields (Bowers and Locke, 2000). For example, poacic
acid, which is derived from grass lignocellulosic hydrolysates,
inhibits the growth of the Sclerotinia sclerotiorum and Alternaria
solani fungi and the oomycete P. sojae (Piotrowski et al., 2015).
Pathogen cells treated with poacic acid suffer similar effects to
those treated with cell wall-targeting synthetic drugs (Lee et al.,
2018). There is considerable evidence for the protective effects
of phytochemicals isolated from tissue exudates or volatiles
against disease propagation (Drakopoulos et al., 2020; Liao
et al., 2021; Wang et al., 2021). For example, grape cane
ε-viniferin has antifungal activity against Plasmopara viticola and
Botrytis cinerea (Schnee et al., 2013). Secomicromelin, coumarin,
isomicromelin, and micromarin B, present in Micromelum
falcatum fruits, inhibit the growth of Pythium insidiosum
(Suthiwong et al., 2014). Cuminic acid, isolated from cumin seeds
(Cuminum cyminum L.), inhibits Phytophthora capsici mycelial
growth and zoospore germination (Wang et al., 2016). Gossypol,
naturally present in cotton root tissues, has a strong inhibitory
activity on Pythium irregulare, Pythium ultimum, and Fusarium
oxysporum growth (Mellon et al., 2014).

Leaf volatile organic compounds (VOCs) are rapidly emitted
when plants respond to biotic stress caused by herbivores or
attacks by necrotrophic fungi (Scala et al., 2013; Matsui and
Koeduka, 2016; Tanaka et al., 2018). VOC production is a
basic defense mechanism for plants to enhance resistance or
tolerance to upcoming stresses and may contribute to direct plant

defense responses through their powerful antimicrobial activities
(Jerkovic et al., 2012; Krajaejun et al., 2012; Ulloa-Benitez et al.,
2016; Ricciardi et al., 2021).

Here, we analyzed soybean leaf volatiles produced in
incompatible interaction and compatible interaction with
P. sojae. A group of VOCs was identified by headspace solid-
phase microextraction coupled with gas chromatography–mass
spectrometry (HS–SPME–GC–MS), which were specifically
present in the incompatible interaction. In Petri dish assays, 4-
Ethylphenol, a volatile phenolic substance, inhibited the mycelial
growth, sporangia formation, and zoospore germination of
P. sojae and P. nicotianae. Additionally, it had potent antifungal
activities against three soil-borne phytopathogenic fungi,
Rhizoctonia solani, Fusarium graminearum, Gaeumannomyces
graminisvar, and four Fusarium oxysporum forma specialis.
We found that 4-Ethylphenol triggers mycelia malformation
and cytoplasmic electrolyte leakage because of a disrupted
or disintegrated plasma membrane. Finally, we analyzed the
potential of 4-Ethylphenol as an oomycete biological control
agent and confirmed its efficacy in controlling soybean root
rot and tobacco black shank diseases in potted plants, and
observed a positive effect on plant growth when present in
low concentrations.

MATERIALS AND METHODS

Plant and Phytophthora spp. Cultivation
Soybean and tobacco plants were grown in a chamber at
25◦C, with a cycle of 16 h of high light intensity and 8 h
of darkness. P. sojae strain P6497 and P. nicotianae strain
INRA-310 were grown on 10% V8 medium (10% V8 juice,
0.02% CaCO3, and 1.5% agar) in the darkness at 25◦C.
Mycelia were cultured in V8 liquid medium. To observe
zoosporangia, the mycelia were washed with sterile water
five times and cultured in the darkness at 25◦C for 6 h.
When zoosporangia formed, zoospores were released after
washing with sterile water at 10◦C three times. Finally, the
concentration of the zoospore suspension was adjusted to
105 CFU/mL.

Gas Chromatography–Mass
Spectrometry Analysis
Soybean leaves (Williams and Williams-82 cultivars) inoculated
with P. sojae were placed in a 20 mL headspace bottle,
and the VOCs were analyzed with gas chromatography–
mass spectrometry (GC–MS). An AOC-6000 Multifunctional
Autosampler was used for solid-phase microextraction injection,
and GCMS-TQ8040 NX was used for detection following
the standard SPME parameters (SPME fiber: FIB-C-WR-
95/10. The following parameters were used: aging temperature,
240◦C; aging time (before extraction), 30 min; equilibration
temperature, 40◦C; equilibration time, 5 min; extraction time,
30 min; injection port temperature, 250◦C; desorption time,
2 min; and aging time (after extraction), 5 min. The GC–
MS/MS parameters used were: column, inert cap pure-wax,
30 m × 0.25 mm × 0.25 m; oven program, 50◦C (5 min),
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10◦C/min_250◦C (10 min); carrier gas pressure, 83.5 kPa;
injection mode, split; split ratio, 5:1; ion-source temperature,
200◦C; interface temperature, 250◦C; detector voltage, tuning
voltage+ 0.3 kV; and acquisition mode, MRM.

Effect of 4-Ethylphenol on the Radial
Growth of Phytophthora spp. Hyphae
Hyphal plugs of P. sojae and P. nicotianae were cultured in
10% V8 agra medium containing different concentrations of 4-
Ethylphenol, or the same volume of sterile water as a control.
The medium was incubated in the darkness at 25◦C for 5 days;
then, the colony diameter was measured, and the mycelium
status was observed under the microscope. Each treatment was
repeated three times.

Effects of 4-Ethylphenol on
Phytophthora spp. Zoosporangium
Formation and Zoospore Release
Washed mycelia were placed in different concentrations of 4-
Ethylphenol. After incubation at 25◦C for 6 h, the number of
zoosporangia was observed and recorded under the microscope
using Mallassez cell counting. 4-Ethylphenol was added to
the sporangium-forming dishes, and after 2 h, the number of
zoospores was measured under the microscope using Mallassez
cell counting. Each treatment was repeated three times.

Effects of 4-Ethylphenol on
Phytophthora spp. Zoospore
Germination
The 0.1 mL zoospore suspension was evenly spread on
V8 medium containing four different concentrations of 4-
Ethylphenol. After incubation at 25◦C for 4 days, the minimum
concentration with no colony formation was determined by
naked eye observation. Each treatment was repeated three times.

Effect of 4-Ethylphenol on Phytophthora
sojae Virulence
Soybeans were planted in the dark for 7 days, and etiolated
seedlings were immersed in 4-Ethylphenol solution for 1 h and
then placed in zoospore suspension for infection. After 4 or
6 h of infection, the hypocotyls were collected and stained with
a lactophenol–trypan blue dye solution. After 2 h of staining,
samples were destained with chloral hydrate until they were
translucent. The discolored epidermis was then removed with
forceps, prepared, and observed under the microscope. Each
treatment was repeated three times.

Damage of the Phytophthora spp. Cell
Membrane by 4-Ethylphenol
Mycelia were cultured in V8 liquid medium for 3 days. Washed
mycelia were placed in PBS buffer (pH 7.0) containing 4-
Ethylphenol; DNA and protein concentrations were measured
and recorded every 2 h. Each treatment was repeated three times.

Safety of 4-Ethylphenol on Soybean and
Tobacco Plants
Different concentrations of 4-Ethylphenol (0–25 mg a.i./plant)
were mixed with soil. The growth and development of soybean
and tobacco plants were recorded at 7 and 14 days after treatment,
respectively. Each treatment was repeated three times.

Efficacy of 4-Ethylphenol as a Soil
Fumigant
Different concentrations of 4-Ethylphenol were mixed with soil
and then sealed in plastic film for 15 days. After being air-cured
for 2 days, soybean and tobacco were planted in the soil, and
their growth and development were observed after 9 days. Each
treatment was repeated three times.

Statistical Analysis
Statistical analysis was performed using Statistical Product and
Service Solutions (SPSS) 19.0. The difference among treatments
was determined based on one-way analysis of variance (ANOVA),
and means were subjected to Duncan’s multiple range test with
significance set at P < 0.05.

RESULTS

Detection of the VOC 4-Ethylphenol in
Soybean Leaves
We investigated the VOCs produced in the leaves of susceptible
soybean plants (Williams), lacking resistance genes to P. sojae
(Rps), and resistant soybean plants (Williams82), containing the
Rps1k resistance gene, by GC—–MS. The 4-Ethylphenol content
in Williams82 was significantly higher than that in Williams
leaves (Supplementary Figure 1), suggesting that 4-Ethylphenol
is involved in the defense response of soybean to P. sojae.

Effect of 4-Ethylphenol on the Mycelium
Growth of Phytophthora spp.
The radial diameter of P. sojae and P. nicotianae colonies grown
on V8 medium supplemented with different concentrations of
4-Ethylphenol was determined through naked eye observation;
the toxicity of 4-Ethylphenol to Phytophthora spp. was observed
and calculated (Figure 1A). The average diameter of P. nicotianae
colonies cultured for 5 days on V8 medium containing 0.4 mmol
(57.66 mg/L) of 4-Ethylphenol was 20.52 mm, and the inhibition
rate was 57.73% (Figure 1B). Additionally, the average diameter
of P. sojae colonies cultured for 5 days on V8 medium containing
0.6 mmol (86.48 mg/L) of 4-Ethylphenol was 20.50 mm, and
the antifungal rate was 54.14%. Medium containing 1 mmol
(144.14 mg/L) of 4-Ethylphenol completely inhibited the growth
of both oomycete species (Figure 1C).

Effect of 4-Ethylphenol on the
Morphology and Cell Membrane of
Phytophthora spp. Hyphae
Phytophthora spp. hyphae grew naturally in V8 medium, without
increased terminal branching; the mycelium growing points

Frontiers in Plant Science | www.frontiersin.org 3 September 2021 | Volume 12 | Article 71725889

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-717258 September 16, 2021 Time: 17:21 # 4

Ge et al. 4-Ethylpheno as a Fungicide Substitute

FIGURE 1 | Antifungal activity of 4-Ethylphenol against Phytophthora spp. (A) P. sojae and P. nicotianae were cultured on V8 medium with different concentrations of
4-Ethylphenol. (B) Colony diameters of P. sojae were measured after 5 days. (C) Colony diameters of P. nicotianae were measured after 5 days. The experiment was
repeated three times with similar results.

were uniform, and the branches formed far from the top. After
treatment with 0.4 mmol of 4-Ethylphenol, the growth of P. sojae
and P. nicotianae hyphae was inhibited in the V8 liquid medium.
The morphology of the mycelia changed in the presence of 4-
Ethylphenol, and the branches at the end increased significantly
and became disordered (Figure 2A). The results showed that
4-Ethylphenol inhibited growth by changing the morphology
of Phytophthora spp. hyphae. To analyze the mechanisms of
antimicrobial activity against P. sojae and P. nicotianae, we
treated mycelia with 4-Ethylphenol and investigated the presence
of leakage of cellular material. By monitoring the total DNA
and protein concentrations in the media every 2 h, we observed
that the contents increased significantly with time, and the
intensity of leakage increased with 4-Ethylphenol concentration
(Figures 2B,C). The leakage of cellular contents was likely due to
the destruction of the cell membrane by 4-Ethylphenol.

Inhibition Effect of 4-Ethylphenol on the
Formation of Sporangium and
Zoospores of Phytophthora spp.
To study the effect of 4-Ethylphenol on Phytophthora spp.
zoosporangia formation, we determined the number of
zoosporangia and calculated the inhibition degree after

treatments with different concentrations of the VOC. The
formation of P. sojae zoosporangia was significantly reduced by
0.2 mmol of 4-Ethylphenol, while no zoosporangium was formed
with 1 mmol. For P. nicotianae, 0.4 mmol of 4-Ethylphenol
significantly reduced zoosporangium formation, whereas
0.8 mmol of 4-Ethylphenol completely inhibited it (Figure 3A).

Additionally, zoospore release from both P. sojae and
P. nicotianae sporangia was significantly reduced with 0.4 mmol
of 4-Ethylphenol, and completely inhibited with 0.8 mmol of
4-Ethylphenol (Figure 3B).

Effect of 4-Ethylphenol on Phytophthora
spp. Zoospore Germination
To analyze the effect of 4-Ethylphenol on Phytophthora spp.
zoospore germination, we spread a zoospore suspension evenly
on 1% V8 medium containing different concentrations of the
VOC. Compared with control, 0.4 mmol of 4-Ethylphenol
significantly inhibited the germination of P. sojae zoospores; only
a few zoospores could germinate and form separate colonies.
At 0.8 mmol of 4-Ethylphenol, the germination of zoospores
was completely inhibited. For P. nicotianae, 0.6 mmol of
4-Ethylphenol significantly inhibited zoospore germination, and
1 mmol completely inhibited it (Supplementary Table 1).
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FIGURE 2 | Effect of 4-Ethylphenol on Phytophthora spp. morphology and DNA and protein leakage. (A) Effect of 4-Ethylphenol on the morphology of P. sojae and
P. nicotianae treated with 4-Ethylphenol for 2 h; (B) effect of 4-Ethylphenol on DNA leakage of P. sojae and P. nicotianae; (C) effect of 4-Ethylphenol on protein
leakage of P. sojae and P. nicotianae.

Effect of 4-Ethylphenol on Phytophthora
sojae Zoospore Invasion
Phytophthora sojae zoospores treated with the control could
attach to the epidermis of soybean hypocotyls, and some of them
could form germ tubes at 4 h post-inoculation (hpi) (Figure 4A).
At 6 hpi, more zoospores were attached to the epidermis, and
the majority had germinated hyphae for infection (Figure 4B).
Treatment with 4-Ethylphenol significantly reduced the zoospore
adhesion ability, and only a few attached to the surface of
soybean hypocotyls at 4 hpi (Figure 4C). At 6 hpi, the zoospore

attachment and germination decreased significantly compared
with the control (Figure 4D), indicating that 4-Ethylphenol could
effectively inhibit zoospores from infecting soybean.

Effect of 4-Ethylphenol on Germination
and Growth of Soybean and Tobacco
Plants
To investigate the safety of 4-Ethylphenol for host plants, we
planted soybean and tobacco seedlings in soil mixed with
different concentrations of 4-Ethylphenol, and seedling heights
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FIGURE 3 | Effect of 4-Ethylphenol on zoosporangium formation and zoospore release. (A) Inhibition rate of 4-Ethylphenol on P. sojae and P. nicotianae
zoosporangium formation; (B) inhibition rate of 4-Ethylphenol on P. sojae and P. nicotianae zoospore release. The experiment was repeated three times with similar
results.

FIGURE 4 | Effect of 4-Ethylphenol on P. sojae zoospore invasion. Zoospore invasion after (A) 4 h of the control treatment (water), (B) 6 h of the control treatment
(water), (C) 4 h of the 4-Ethylphenol treatment, (D) 6 h of the 4-Ethylphenol treatment. The control-treated P. sojae zoospores attached to the hypocotyls of
yellow–yellow seedlings and grew many hyphae for infection, whereas the P. sojae treated with 4-Ethylphenol significantly reduced the adhesion and infection ability.
The experiment was repeated three times, and similar results were obtained.

were measured 7 and 14 days after the treatment (Figure 5).
The results showed that the germination rate of soybean plants
under all tested concentrations reached 100%, indicating that
4-Ethylphenol did not affect soybean seed germination. The
average height of soybean plants increased compared with
the control with treatments at low concentrations, indicating
that 4-Ethylphenol promoted the growth of soybean plants.
The maximum concentration tested, 25 mg a.i./plant, had
no obvious inhibitory effects on seedling height, indicating
that 4-Ethylphenol did not affect the normal soybean growth
(Figure 5A and Supplementary Figure 2A). Regarding tobacco
plants, the average height of plants with 4-Ethylphenol was not
significantly different from that of the control group after 7 and

14 days (Figure 5B and Supplementary Figure 2A). Tobacco
seedlings treated with different concentrations grew normally
and somewhat consistently.

Efficacy of 4-Ethylphenol Against
Soybean Root Rot and Tobacco Black
Shank Diseases
Based on the results from the concentration gradient safety
test, we planted soybean and tobacco on soil mixed with
4-Ethylphenol and mycelia to observe the control effect
on soybean root rot and tobacco black shank. The results
showed that control-treated soybean plants (no pathogen) grew
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FIGURE 5 | Effects of 4-Ethylphenol on soybean (A) and tobacco (B) height. Data are the mean ± S.E. from three replicates per treatment.

FIGURE 6 | Efficacy of 4-Ethylphenol on soybean root rot and tobacco black shank diseases. Data are the mean ± S.E. from three replicates per treatment.

Frontiers in Plant Science | www.frontiersin.org 7 September 2021 | Volume 12 | Article 71725893

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-717258 September 16, 2021 Time: 17:21 # 8

Ge et al. 4-Ethylpheno as a Fungicide Substitute

normally, whereas those treated with P. sojae-containing soil
had serious disease symptoms (Figure 6 and Supplementary
Figure 3B). With the increase in 4-Ethylphenol concentration,
the disease index decreased gradually, and the relative control
effect improved. When 20 mg a.i./plant of 4-Ethylphenol was
mixed with soil, the control effect reached 100%, and soybean
plants were healthy (Figure 6 and Supplementary Figure 3A).
Furthermore, tobacco plants grown without the pathogen grew
normally, whereas adding P. nicotianae to the soil prompt
quick plant death. Application of 4-Ethylphenol decreased the
disease index gradually in a dose-dependent response and
the tobacco plants were mostly healthy. When 25 mg of
4-Ethylphenol was applied per pot, all tobacco plants grew
normally, and the control effect reached 100% (Figure 6 and
Supplementary Figure 3B).

DISCUSSION

Oomycetes are fungus-like organisms that include a group
of notorious phytopathogens, namely Phytophthora, Albugo,
Pythium, and downy mildews (Kamoun et al., 2015). Although
oomycetes resemble filamentous fungi (Jiang and Tyler, 2012),
they are phylogenetically related to diatoms and brown algae in
the stramenopiles (Tyler et al., 2006; Haas et al., 2009; Thines
and Kamoun, 2010; Tan et al., 2020). The well-documented Irish
famine forced humans to investigate the causes of the potato
late blight and discover the responsible microbial pathogen,
P. infestans (Haas et al., 2009). Since the 1870s, breeding efforts
for late blight resistance have failed to provide a durable, resistant
cultivar (DeArce, 2008). To control late blight, farmers rely
largely on fungicides with unknown modes of action (Rekanovic
et al., 2012; Ferreira et al., 2014; Randall et al., 2014; Childers
et al., 2015; Miao et al., 2016; Chen et al., 2018). Many fungicides
are ineffective against oomycetes because of their phylogenetic
differences (Siegenthaler and Hansen, 2021). Although some
fungicides have had some effect on oomycetes, widespread use
quickly caused fully insensitive races to emerge (Randall et al.,
2014; Childers et al., 2015; Matson et al., 2015; Pang et al., 2016).
Currently, P. infestans remains a major constraint to the global
production of potato and tomato and is thus a constant threat
to food security (Haverkort et al., 2008; Fisher et al., 2012). In
addition to late blight, Phytophthora spp. soybean root rot and
tobacco black shank are diseases that are distributed worldwide,
which lack effective control methods (Dorrance et al., 2003; Cui
et al., 2010; Ji et al., 2014; Li et al., 2017). Copper-based fungicides
are effective in crop protection against oomycetes, but they are
facing restrictions because of copper accumulation in the soil
(Mackie et al., 2013; Wightwick et al., 2013; Thuerig et al., 2018).
New sources of fungicides have to keep pace with the evolution of
resistant strains and emerging pathogens (Alexander and Perfect,
1997; Jian et al., 2015).

Due to the increasingly stringent regulatory requirements,
crop protection approaches will have to ensure environmental
conservation and sustainability (Hao et al., 2019; Kapsi
et al., 2019). The use of natural products as an alternative to
synthetic chemicals in the fight against different phytopathogens

remains a constant need (Thuerig et al., 2018; Lorsbach et al.,
2019). The primary and secondary metabolites produced
by plants are important sources for developing novel
environmental-friendly agrochemicals (Dayan et al., 2009).
VOCs synthesized and emitted in response to pathogen infection
are particularly relevant and usually have functional benefits
in multiple aspects of plant defense (Ricciardi et al., 2021;
Xu et al., 2021).

In this study, we analyzed the VOCs emitted when soybean
plants responded to P. sojae. We used an odor analyzer combined
with a Triple Quadrupole quality selection detector GCMS-
TQ8040NX (Simadzu Company, Kyoto, Japan) and AOC-6000
multifunctional automatic sampler to establish an analysis
method for VOCs induced in plant leaves. Regarding the
software, the Odor Analyzer provides a complete method package
and database, which was first released and used to analyze plant
VOCs. One hundred and fifty components were determined with
this semi-quantitative method, which is easy to operate, rapid to
provide and analyze data, and suitable for the rapid screening of
plant odors in culture.

Among the 150 components identified, a potent antifungal
compound, 4-Ethylphenol, requires further exploration as a
source or template for novel crop protection chemistry. There
have been a few reports demonstrating the antimicrobial
potential of 4-Ethylphenol (Xing et al., 2018). In this study,
4-Ethylphenol had a good inhibitory effect on P. sojae and
P. nicotianae. Zoospore germination and mycelium growth
are important for disease epidemics (Tyler et al., 1996).
Our results showed that 1 mM (144.15 mg/L) 4-Ethylphenol
completely inhibited Phytophthora spp. sporangium formation
and mycelium growth. This inhibition is comparable to that
of the plant-derived antifungal agent poacic acid when applied
with an IC50 of 1,000 mg/L against P. sojae (Piotrowski et al.,
2015). 4-Ethylphenol has a potent antifungal activity against
three soil-borne phytopathogenic fungi, Rhizoctonia solani,
Fusarium graminearum, and Gaeumannomyces graminis var
tritici, and four Fusarium oxysporum forma specialis. Usually,
these fungi are associated with Phytophthora spp. in the soil
and cause compound infection complications, which aggravate
the occurrence of plant root rot (Pemberton et al., 1998; Wen
et al., 2017; Brown et al., 2021). The potent antifungal activity
of 4-Ethylphenol could block the spread of these pathogens, and
may play a key role in inhibiting soil-borne disease epidemics.
This study provides the first report of the activity of 4-
Ethylphenol against a series of Phytophthora spp. and fungi
pathogens, demonstrates its potential as a universal broad-
spectrum fungicide for soils, and justifies efforts to investigate its
mechanism of action in detail.

To understand the mechanisms behind the antimicrobial
action of 4-Ethylphenol, we examined the morphology of
Phytophthora spp. mycelia treated with the VOC. Mycelium
morphology could be changed after treatments with plant
essential oils (Huang et al., 2019). Microscopic observation
showed that P. sojae and P. nicotianae mycelia morphology
was also changed after 4-Ethylphenol treatment. The leakage
of intracellular materials, such as DNA and proteins, was
significantly higher in treated mycelia than in the control,
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confirming that 4-Ethylphenol damaged the cell structure and
thus affected the normal mycelial growth.

Because it is a potential antifungal agent, plant security studies
for 4-Ethylphenol application are necessary. The application
of 4-Ethylphenol in a certain concentration range (0–25 mg
a.i./plant) did not inhibit or harm normal soybean and
tobacco growth. At the lower but effective concentration
range (5–15 mg a.i./plant), it even slightly promoted soybean
and tobacco growth.

We further verified that 4-Ethylphenol is effective in
controlling soybean root rot and tobacco black shank in pot
experiments where, to mimic the field application, 4-Ethylphenol
was mixed with soil. The results showed that 4-Ethylphenol could
effectively inhibit both the soil-borne pathogens without affecting
the normal plant growth. Future work should explore more
effective application methods and lay a foundation for creating
4-Ethylphenol field application directives.

Botanical fungicides are derived from natural products
and are less likely to develop drug resistance than chemical
fungicides (Shuping and Eloff, 2017). None of the natural
and eco-friendly chemical alternatives currently registered and
available have the full spectrum of activity and versatility
of methyl bromide as pre-plant soil fumigants (Duniway,
2002; Driver et al., 2016). Based on the results described
here, 4-Ethylphenol is a potent antimicrobial that regulates
plant growth and has the potential to substitute traditional
antifungal agents.
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Despite the cornucopia of agricultural, economic and ecological ramifications of invasive

alien plant species (IAPs) in sub-Saharan Africa, studies on their potential use as

bio-insecticides have not received adequate attention compared to the burgeoning

plethora of literature on their use in ethnomedicine. In the current study, we review the

existing, but scattered literature on the insecticidal activity of different parts of some

IAPs; specifically those invasive in sub-Saharan Africa but with published literature from

Africa and elsewhere. From our literature survey, we found that 69 studies from four

continents (Africa, Asia, North America and South America) reported the insecticidal

activity of 23 plant species from 13 families (Asteraceae = 6 species; Solanaceae

= 3 species; Apocynacee, Fabaceae and Euphorbiaceae 2 species each; Araceae,

Bignoniaceae, Chenopodiaceae, Meliaceae, Mimosaceae, Myrtaceae, Papaveraceae,

and Verbenaceae = 1 species each) that are invasive in, and alien to Africa. The highest

number of published case studies were from India (n= 19) and Nigeria (n= 15). We found

that varying concentrations of extracts or powders from different plant parts caused

50–100% mortality against a myriad of insect pests of agriculture and environmental

importance. Our review discussed the prospects for exploiting IAPs as pesticidal plants

in African countries especially among resource-poor small-holder farmers and locals to

improve agricultural productivity and livelihoods. Finally, we highlighted safety concerns

and challenges of using IAPs as bio-insecticides in Africa and formulates appropriate

recommendations for future research.

Keywords: invasive alien plant species, Africa, botanical insecticide, insect pest control, resource poor farmers

INTRODUCTION

Invasive alien plant species (IAPs) are among species whose naturalization threatens the biological
biodiversity and functions of the ecosystem in their new geographic region (Richardson and Pyšek,
2012; Mostert et al., 2017; O’Connor and van Wilgen, 2020). These plants are among significant
ecosystem drivers that degrades the quality of grazing, agricultural and natural lands (Richardson
and van Wilgen, 2004; Davis, 2006). Due to the immense ecological and social pressures exerted
by these plants, governments have announced the management of IAPs and millions of dollars
are invested toward the management of these plants in South Africa and elsewhere in the world
(McConnachie et al., 2010; Van Wilgen and Lange, 2011; Hoffmann and Broadhurst, 2016;
Morokong et al., 2016; Hanley and Roberts, 2019).

Regardless of the efforts made toward minimizing the densities of invasion and the spread of
these IAPs, follow-up treatments may be required to keep the populations of these non-native
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species at a level that prevents spread and harm to human health
or the environment (Marais et al., 2004; Klein, 2011; Mukwevho
and Mphephu, 2020). Although manual clearing of IAPs yields
temporal relief on the intensity of invasion, continuous clearing
alone favors the expansion of the invasion by species that are
propagated vegetatively (Radtke et al., 2013). To minimize the
further spread of IAPs through plant propagules, the cut plant
materials from the above- and below-ground may be further
processed to be used for socio-economic and ecological benefits
in sub-Saharan Africa (Shackleton et al., 2007, 2018; Ngorima and
Shackleton, 2019; Mugwedi, 2020).

The potential use of IAPs in ethnomedicine and various
aspects of ethnobotany in Africa have received a great deal
of attention (e.g., Omokhua et al., 2016, 2018a,b) however,
studies on the use and potential of invasive alien plants as
pesticidal plants to manage agricultural and environmental pests
is only beginning to gain recognition (e.g., Midega et al.,
2016; Mkindi et al., 2017; Stevensona et al., 2017; Uyi et al.,
2018a,b). Since some IAP’s contain some novel secondary
phytochemicals, the harvested materials may be processed to
be used against microorganisms, insects and weeds and other
undesired plants (Deressa et al., 2015; Amir et al., 2017;
Mkindi et al., 2017; Das et al., 2018; Zerihun and Ele, 2018;
Mugwedi, 2020). Like other pesticides, biopesticides may repel
insect pests, disrupt their development, affect reproduction or
kill live organisms on contact (Mogg et al., 2008; Litt et al.,
2014; Uyi and Adetimehin, 2018). Although different scientists
consider IAPs as a threat to agriculture and biodiversity,
dozens of IAPs have insecticidal properties that have been
rigorously screened toward major pests, pollinators and wasps
(including some parasitoids) around the globe (Isman, 2008;
Mkenda et al., 2015; Mkindi et al., 2017; Stevensona et al.,
2017).

Due to the cost of synthetic chemicals (Dougoud et al.,
2019), impacts on non-target species (Theiling and Croft, 1988;
Mulè et al., 2017), target pest’s genetic drift (REX consortium,
2010; Khayatnezhad and Nasehi, 2021) and ecotoxicological
impacts (Pimentel, 1995; Kankam, 2021), the United Nations
(UN) promotes the use of environmentally safe products, such
as aqueous extracts to minimize the impact of pests on crops
(Phillips and Throne, 2010; Bommarco et al., 2013; Oliveira
et al., 2014). Sustainable and eco-friendly biopesticides may
be easily accessible by the resource-poor small-holder farmers
and locals in countries where there is greater food insecurity,
particularly in Africa (Sasson, 2012). Further processing of plant
propagules also curbs the further distribution of IAPs through
vegetative materials, hence also benefiting the livelihoods
though reducing pressures by the agricultural pests on various
crops. In this paper, we review the existing, but scattered
literature on the insecticidal activity of different parts of some
IAPs; specifically, those that are invasive in the sub-Saharan
Africa. We discuss the prospects and opportunities for using
IAPs as bio-insecticides of insect pests of agricultural and
environmental importance. Finally, the paper highlights the
safety concerns, research gaps, the challenges of using IAPs as
bio-insecticides and formulates appropriate recommendations
for future research.

METHODS

The information presented in this review was obtained from
journal articles that are relevant to the topic. Only literature on
insecticidal (not repellence) properties of IAPs that are invasive
in Africa were included. Plant like Azadirachta indica A. Juss
(Miliaceae) that have wide usage and is already well-established
for over 100 years were not considered in this review. The
scientific papers analyzed were obtained from different sources
such as Google Scholar, Science-Direct, PubMed, SciFinder, and
Scopus. Systematically used keywords include invasive alien
plants, insecticidal, pesticidal, insect pest, efficacy, mortality, with
the scientific name of each plant reported to possess insecticidal
properties in journal articles. We used Boolean operators (and,
or, not or and not) to combine or exclude keywords in our
search to obtain a more focused and productive results. The
literature search was conducted between June 2019 and April
2020, and more than 120 published papers were identified.
Among the excluded research papers were those that assessed the
insecticidal properties of forest trees, plants that have not been
declared as invasive in Africa and studies that did not include
control treatments. The mean percentage of insect mortality
reported here was recorded from either of the text, tables,
graphs and/figures. Among the information derived from the
research papers was the country in which different studies were
conducted, name of the IAP’s, the harvested/used plant part(s),
the formulations, the target insect, developmental stages at
which the formulation was applied, and the percentage mortality
reported after application of the formulation. Only articles that
reported data with means, sample size and a measurement
of variance (standard deviation, standard error or confidence
intervals) for all treatments with a clear indication of replication
were considered. The scoring system of 0–4 was used to rate
the insecticidal properties of IAPs against insects in Africa. The
percentage mortality of 1–25, 26–50, 51–75, and 76–100% were
ranked as 1, 2, 3, and 4, respectively, but the formulation that
recorded zero percent mortality was ranked as 0.

RESULTS AND DISCUSSION

Impact and Distribution of Invasive Alien

Plant Species in Africa
Invasive alien plant species are identified as the plants that
are intentionally or accidentally introduced to the regions
beyond their native ranges (Richardson and Pyšek, 2012).
Naturalized alien plant species are among significant ecosystem
drivers that pose major threats to the native communities (e.g.,
plants and arthropods) in natural and agricultural ecosystems
(Van Hengstum et al., 2013; Litt et al., 2014). The increase
in the intensity of invasion aggravates the degree of threat to
biodiversity and ecosystem function (Valone and Weyers, 2019).
The distribution and problems of the IAPs reviewed in this
paper are detailed in Tables 1A–E. Among the common impacts
of the IAPs is the degradation of grazing land, competition
with native species and cultivated crops for natural resources,
supporting agricultural pests between cropping seasons,
presenting health hazard to humans and poisoning of livestock
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(Aigbokhan et al., 2010; Alagesaboopathi and Deivanai, 2011;
Park et al., 2012; Van Hengstum et al., 2013; Litt et al., 2014;
Shackleton et al., 2017; Dandurand et al., 2019; O’Connor and
van Wilgen, 2020). Although there is sufficient literature that
documents the impacts of these plants, the global efforts on
mapping the distribution of the plants in their non-native ranges
is insufficient (Witt et al., 2018).

The current distribution of invasive alien plants has been
recorded for various plants invading the landscapes of different
countries in Africa (Henderson, 2001; Shackleton et al., 2017;
Witt and Luke, 2017;Witt et al., 2018, 2019; Catarino et al., 2019),
whilst other studies also predicted the future distribution of these
weeds (McConnachie et al., 2010; Taylor et al., 2012; Tererai and
Wood, 2014; Obiakara and Fourcade, 2018). Further, surveys on
the distribution of agents associated with these IAPs contribute to
the continuous update on the change of the invasion intensities
(Mukwevho et al., 2018). Despite the remarkable efforts by
the Centre for Agriculture and Bioscience International (CABI,
sometimes also referred to as CAB International) to describe
the international distribution of IAPs, insufficient records of
plant distribution in other African countries result in fragmented
distribution maps.

Invasive Alien Plants in Africa With

Reported Insecticidal Properties
From the literature survey, we found 69 studies across the
globe that reported insecticidal activities of 23 plant species
that are invasive in, and alien to Africa. The identified species
were from 13 plant families and comprised six species from
Asteraceae, three species from Solanaceae, two species from
Apocynaceae, Fabaceae and Euphorbiaceae, and one species
each from Araceae, Bignoniaceae, Chenopodiaceae, Meliaceae,
Mimosaceae, Myrtaceae, Papaveraceae, and Verbenaceae
(Tables 2A–I). These reports showing the insecticidal activities
of alien plants that are problematic in Africa originated from
Africa, Asia, North America and South America. The highest
number of published case studies were from India and Nigeria
with 19 and 15, respectively, whilst countries such as Algeria,
Argentina, Brazil, Colombia, Chile, China, Egypt, Ethiopia,
Ghana, Kenya, Malawi, Mexico, Pakistan, Sudan, Tanzania,
Togo, Tunisia, Turkey, and the United States of America have
less than 6 reports each. We hypothesized that the large number
of research papers from India, Nigeria and other developing
countries may be due to the fact that scientists in these countries
are aware of the limited availability of synthetic insecticides by
the resource-poor small-holder farmers; locals in these countries
are keen on identifying IAPs to control and manage insect pests
of agricultural, environmental and medical importance. Due the
ecotoxicological effects and high cost of synthetic insecticides,
the use of plants with pesticidal properties to control insect
pests in agro-ecosystems among resource-poor small-holder
farmers has been historically widespread and adopted in Africa
(Belmain and Stevenson, 2001; Midega et al., 2016). Despite
the widespread use of these biorational methods, pest control
in some ecosystems in Africa continues to rely on the use
of synthetic insecticides when alternative biopesticides are

unavailable (Isman, 2006, 2015; Isman and Grieneisen, 2014).
Although a plethora of empirical research has demonstrated the
insecticidal properties of weeds in general, our literature found
evidence that some invasive alien plants in Africa possessed
insecticidal properties against a range of insect pests.

Several biological assays have been conducted to ascertain
the efficacy of invasive alien plants against a myriad of insect
pests with varying levels of insect mortality (Tables 2A–I).
The survey demonstrated that leaf extracts were frequently
used for bioassays, compared to other parts (i.e., roots, stems,
inflorescences, fruits or seeds) of the plant (Figure 1). A majority
of studies were conducted on members of the Asteraceae which
represented 25 out of 69 studies and accounted for 38% of the
total studies recorded in this review (Figure 2). Mean mortality
rank of insect pests caused by the Asteraceae ranged from 50 to
100% (Figure 3).

Asteraceae Species With Insecticidal Properties
Six species in the family Asteraceae were reported effective
against a number of insect pest species. In a laboratory and field
study conducted by Xu et al. (2009), the acetone leaf extract of
Ageratina adenophora caused up to 73% mortality in Brevicoryne
brassicae after a 3-day exposure. Although the use of the essential
oils of A. adenophora has been suggested for controlling aphids,
ants and weevils in stored grains, there are no reports on
the insecticidal use of this plant in invaded areas in Africa.
Jaya et al. (2014) observed that essential oils from Ageratum
conyzoides leaves caused 100% mortality against Tribolium
castenum. Moreira et al. (2007a,b) isolated compounds including
(5,6,7,8,3′,4′,5′-heptamethoxyflavone, 5,6,7,8,3′-pentamethoxy-
4′, 5′-methylenedioxyflavone and coumarin) from the hexane
extract of A. conyzoides leaves and tested the efficacy of
the compounds against Rhyzopertha dominica and Diaphania
hyalinata. Following a 24-h exposure, varying concentrations of
the isolated compounds caused between 76 and 87% mortality
in adults of R. dominica and 100% mortality in the larvae of D.
hyalinata (Moreira et al., 2004, 2007a,b). The leaf extracts of A.
conyzoides have also been reported to possess strong insecticidal
activities (100% mortality) against the larvae of Acanthoscelides
obtectus, Musca domestica and Epilachna vigintioctopunctata
(Calle et al., 1990; Saxena and Sharma, 2005). Liu and Liu (2014)
evaluated the larvicidal activity of the essential oil ofA. conyzoides
aerial parts against Aedes albopictus. The authors identified the
principal constituents of the essential oils of A. conyzoides and
concluded that the oils have insecticidal and larvicidal activities.
Despite the burgeoning plethora of papers on the pesticidal
activity of A. conyzoides against a myriad of arthropod pests (see
Rioba and Stevenson, 2017), studies on the indigenous use of
this plant in the control and management of insect pests are
scarce. The increasing reports of the use of A. conyzoides in
ethnomedicine for the treatment of a wide range of diseases in
Africa (e.g., Nwauzoma and Dappa, 2013) suggest that the locals
are exploiting the potential of the plant. Whether or not the plant
has found use among the locals in its invasive range in Africa
remains to be documented.

In a bioassay where Cimex lectularius adults were exposed
to 2.0 g of Chromolaena odorata leaf powder, 70% mortality
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TABLE 1A | Published reports on the impact of some invasive alien plants in sub-Saharan Africa.

Family/Species Growth form Native range Distribution ranges in

Africa*

Impact of the weed Reference (s)

Apocynaceae

Catharanthus

roseus

Shrub/herb Madagascar BE, BO, BF, CA, CD, ET,

GAB, GU, KE, MA, MO, NA,

RW, SE, SL, SA, SW, TZ,

TOGO, UG, ZA, ZM

Adapts to a wider range of ecological conditions such as

watercourses, rocky outcrops, grazing lands, and along

plantations. The milky sap contained on the vegetative

parts of the plant makes the plant to be toxic

Henderson, 2001

Nerium oleander Shrub Europe, Asia EG, KE, MO, NG, SA, ZM The plant is toxic to humans and other mammals. The

modes of toxicity/poisoning include direct ingestion or of

the smoked food products, and inhalation

Henderson, 2001

Araceae

Pistia stratiotes Aquatic South

America

AN, BE, BO, BF, BU, CA,

CAR, CH, CO, CD, EG, EQ,

ET, GA, GAB, GH, GU, KE,

LE, LIB, MA, MO, MOR, NA,

NI, NG, RW, SE, SL, SO,

SA, SU, SW, TOGO, TZ,

UG, ZA, ZM

The water weed covers water bodies and thereby affects

the lives of organisms inhibiting the waters. The weed

clogs waterways and thus prevents movement of boats,

blocks irrigation canals, disrupts fishing grounds and

hydro-electricity production

Henderson and Cilliers,

2002; Macdonald et al.,

2003; Witt et al., 2018

Asteraceae

Ageratina

adenophora

Herb Argentina AL, KE, NG, SA, UG, ZM Outcompetes the native plant and crop species, thus

affecting the diversity of plants, carrying capacity of

grazing lands and yields of cultured crops. The weed is

not palatable to grazers and dense thickens may restrict

movement of stock and machinery

Tererai and Wood

(2014)

Algeria (AL); Angola (AN); Benin (BE); Burkina Faso (BF); Botswana (BO); Burundi (BU); Cameroon (CA); Central African Republic (CAR); Côte d’Ivoire (CD); Chad (CH); Congo (CO);

Egypt (EG); Equatorial Guinea (EQ); Ethiopia (ET); Gambia (GA); Gabon (GAB); Ghana (GH); Guinea (GU); Kenya (KE); Lesotho (LE); Liberia (LIB); Malawi (MA); Mozambique (MO);

Morocco (MOR); Namibia (NA); Nigeria (NG); Niger (NI); Rwanda (RW); South Africa (SA); Senegal (SE); Sierra Leone (SL); Somalia (SO); Sudan (SU); Swaziland (SW); Togo (TOGO);

Tanzania (TZ); Uganda (UG); Zambia (ZA); Zimbabwe (ZM).

was reported after 5 days (Uyi et al., 2018a). Depending on
concentrations, the leaf, stem and root powders of C. odorata
were reported to cause between 16 and 100% mortality against
adults of the Callosobruchus maculatus (Uyi and Igbinoba,
2016; Uyi and Obi, 2017; Uyi and Adetimehin, 2018). In
Nigeria, Lawal et al. (2015) reported that the leaf extracts of
C. odorata displayed a strong insecticidal activity by causing
between 33 and 93% mortality in Sitophilus zeamais. In a
field experiment in Ghana, Ezena et al. (2016) reported that
varying concentrations of the leaf extract caused between 36
and 77% mortality in nymphs and adults of the Brevicoryne
brassicae and Hellula undalis and Plutella xylostella. Udebuani
et al. (2015) tested the efficacy of C. odorata leaf extract
against Periplaneta americana by exposing the adults to
different concentrations of the leaf extract and reported 12
to 69% mortality. Sukhthankar et al. (2014) investigated the
insecticidal activity of different concentrations of methanolic
leaf extract of C. odorata against the larvae of Anopheles
stephensi, Culex quinquefasciatus and Aedes aegypti and found
up to 100% mortality in these larvae after 24 h of exposure.
Similar to A. conyzoides, studies documenting the indigenous
use of C. odorata are scarce (but see Cobbinah et al.,
1999). The authors conducted ethnobotanical surveys on plants
used for the protection of stored cereals in Ghana and
reported that cowpea treated with C. odorata leaf powder
were free of insect infestation for 4 months and that the
locals attributed this to the insecticidal or repellent activities
of C. odorata.

Tesfu and Emana (2013) studied the insecticidal properties
of different parts of Parthenium hysterophorus powders against
Callosobruchus chinensis over 48 h and found that the highest
dose (2/50 g seeds) of inflorescence, leaf and stem powder caused
77, 73, and 57% mortality, respectively. The leaf, stem and root
extracts of P. hysterophorus have been reported to be effective
against Ae. aegypti; larval mortality of 40 to 100% was recorded
after exposure to the aqueous leaf extracts of P. hysterophorus
(Kumar S. et al., 2012; Amir et al., 2017). In an investigation
of the insecticidal efficacy of the leaf extract of P. hysterophorus
against the larvae of the rice moth, Corcyra cephalonica, Khan
and Qamar (2015a) reported 81% mortality of larvae. In another
experiment, Khan and Qamar (2015b) recorded 14.4% adult
mortality in P. americana. Reddy et al. (2018) investigated
the insecticidal activity of P. hysterophorus against P. xylostella
and Aphis craccivora in a field experiment and found that P.
hysterophorus leaf extract showed promising toxicity (LC50 =

1140.68mg L−1) to larvae of P. xylostella and A. craccivora
(LC50 = 839mg L−1) after 96 h of treatment. The authors did
not report any specific mortality rates. Although several studies
(see references in Tables 2A–I) have recommended the use of P.
hysterophorus as a pesticidal plant in its invasive ranges in Asia
and Africa, there is no evidence to show that the locals especially
the resource-poor small-holder farmers are exploiting it as yet.

In Nigeria and Tanzania, the leaf and stem bark extracts of
Tithonia diversifolia have been reported to cause 100% mortality
of adult C. maculatus (Obembe and Kayode, 2013; Green et al.,
2017). Similarly, studies on the insecticidal activity of the leaf
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TABLE 1B | Published reports on the impact of some invasive alien plants in sub-Saharan Africa.

Family/Species Growth form Native range Distribution ranges in

Africa

Impact of the weed Reference (s)

Asteraceae

Ageratum

conyzoides

Herb Americas AN, BE, BO, BF, BU, CV,

CA, CAR, CO, CD, EG, EQ,

ET, GA, GAB, GH, GU, KE,

LIB, MA, MALI, MO, MOR,

NG, RW, SE, SL, SA, SU,

SW, TZ, TOGO, UG, ZA, ZM

Alternate host to a number of economically important

pests, namely pathogens (e.g., Tomato Yellow Leaf Curl

Tanzania Virus and the Ageratum Yellow Vein Virus) and

nematodes (Meloidogyne javanica, Radopholus similis

and Helicotylenchus multicinctus). The plant releases the

allelochemicals that inhibits the seed germination and

growth of other species

Witt et al., 2018

Chromolaena

odorata

Shrub Central and

South

America

BE, CA, CAR, CD, CO, GH,

GU, KE, LIB, MO, NG, SA,

TZ, TOGO, UG, ZM

Displaces native plant species and alters the fuel loads

which may increase proneness to wildfires. Reduces the

productivity of rangelands and may cause serious health

problems to livestock and people

Muniappan et al.,

2005; Witt et al., 2018;

Catarino et al., 2019;

Mugwedi, 2020

Parthenium

hysterophorus

Herb BO, EG, ET, KE, MO, RW,

SA, SO, SW, TZ, UG, ZM

The plant is allelopathic and suppresses the natural

vegetation of the invaded landscapes. Severe reduction

in the productivity of rangelands and has serious health

hazards (dermatitis, hay fever, and asthma) to people,

livestock, and wildlife

McConnachie et al.,

2010; Witt et al., 2018

Tithonia diversifolia Shrub Mexico and

Central

America,

AN, BU, CA, CAR, CO, CD,

EG, ET, GU, KE, MA, MO,

NG, RW, SA, SW, TZ,

TOGO, UG, ZA, ZM

The plant is allelopathic and has a significant impact on

native vegetation. The evergreen plant reduces species

diversity and the productivity of rangelands. Intensive

invasions may contribute to the local extinction of valued

native species

Obiakara and

Fourcade, 2018; Witt

et al., 2019

Xanthium

strumarium

Herb Central and

South

America

BO, BU, EG, ET, KE, LE,

MA, RW, SA, TZ, UG, ZA

Rapidly forms large stands, displacing other plant

species. Toxic to livestock and can lead to death if eaten

Witt et al., 2018

Angola (AN); Benin (BE); Burkina Faso (BF); Botswana (BO); Burundi (BU); Cameroon (CA); Central African Republic (CAR); Côte d’Ivoire (CD); Congo (CO); Cabo Verde (CV); Egypt

(EG); Equatorial Guinea (EQ); Ethiopia (ET); Gambia (GA); Gabon (GAB); Ghana (GH); Guinea (GU); Kenya (KE); Lesotho (LE); Liberia (LIB); Malawi (MA); Mali (MALI); Mozambique (MO);

Morocco (MOR); Nigeria (NG); Rwanda (RW); South Africa (SA); Senegal (SE); Sierra Leone (SL); Somalia (SO); Sudan (SU); Swaziland (SW); Togo (TOGO); Tanzania (TZ); Uganda (UG);

Zambia (ZA); Zimbabwe (ZM).

extract of T. diversifolia against S. zeamais showed 43% mortality
in adults (Obembe and Kayode, 2013). Babarinde et al. (2008)
and Adedire and Akinneye (2004) demonstrated that the leaf
powder of T. diversifolia caused 90 and 99% mortality of S.
zeamais and C. maculatus, respectively. In a field experiment,
Mkenda et al. (2015) showed that the leaf extracts ofT. diversifolia
significantly reduced the population of the nymphs/larvae and
adults of Aphis fabae, Ootheca mutabilis, O. bennigseni, Epicauta
albovittata and E. limbatipennis. The authors further showed
that the control offered by the leaf extracts were comparable
to lambda-cyhalothrin, a commonly used synthetic pyrethroid.
Although without mortality figures, Mkindi et al. (2017)
reported some insecticidal activity of T. diversifolia leaf extract
against some important pests (Aphis fabae, Ootheca mutabilis
and O. bennigsen, Epicauta albovittata, E. limbatipennis,
Clavigralla tomentosicollis, C. schadabi, and C. hystricodes) of
beans in Tanzania and Malawi. The authors reported that T.
diversifolia offered effective control of key pest species that
was comparable in terms of harvested bean yield to a synthetic
pyrethroid. The leaf extract of another species of Asteraceae,
Xanthium strumarium caused more than 82% mortality in green
peach aphid, Myzus persicae (Erdogan and Yildirim, 2016).
In Uganda, farmers used the leaf extract and powder of T.
diversifolia for the management of field and stored product pests
(Mugisha-Kamatenesi et al., 2008; Mwine et al., 2011). Tithonia

diversifolia is known to contain sesquiterpene lactones and
diterpenoids (Chagas-Paula et al., 2012), some of which have
biological activities against insects such as termites (Adoyo et al.,
1997). However, there is no specific information about which
compounds are responsible for its insecticidal effect. Despite the
traditional use of Xanthium strumarium in ethnomedicine for
treating a variety of diseases (Fan et al., 2019), its use by locals
in the management of insect pests of agricultural and medical
importance have not been documented.

Solanaceae Species With Insecticidal Properties
Three species in the family, Solanaceae were reported effective
against a number of important field and stored product insect
pests. Zapata et al. (2006) investigated the insecticidal efficacy
of the leaf extract of Cestrum parqui against the Mediterranean
fruit fly, Ceratitis capitata and recorded 55% mortality in the
adults of this pest. Investigations on the insecticidal activity of
Solanum elaeagnifolium showed that the leaf and seed extracts
of this plant accounted for 88 and 84% mortality, respectively
against the larvae of T. castenum in Tunisia (Ben Hamouda et al.,
2015a). The leaf and seed extracts of S. elaeagnifolium offered
effective control against the Spodoptera littoralis (Ben Hamouda
et al., 2015b). The authors found that leaf and seed extracts,
respectively caused 80 and 100% mortality in the larvae of S.
littoralis. Ben Hamouda et al. (2015c) reported the mortality
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TABLE 1C | Published reports on the impact of some invasive alien plants in sub-Saharan Africa.

Family/Species Growth form Native range Distribution ranges in

Africa

Impact of the weed Reference (s)

Bignoniaceae

Jacaranda

mimosifolia

Tree South

America

AN, BO, CV, CA, CAR, EG,

ET, GAB, GH, GU, KE, MA,

MOR, MO, NG, RW, SA,

SW, TZ, UG, ZA, ZM

The dense foliage it produces tends to shade out native

plants and prevent their regeneration. Deep rooted and

may thrive conditions/outcompete some species

Henderson, 2001

Chenopodiaceae

Chenopodium

ambrosioides

Herb Mexico BO, CA, EG, GAB, GH, KE,

LE, MA, MO, NA, NG, SA,

SE, TA, UG, ZA, ZM

Common weed of agricultural, pastural and natural

ecosystems. Inter-seasonal host for Erysiphe betae

(powdery mildew) of sugar beet. The plant can smother

native plants and may outcompete them in the disturbed

areas

Foxcroft et al., 2003

Euphorbiaceae

Jatropha curcas Shrub Americas AN, BE, BF, CV,CA, CAR,

CH, CD, EG, ET, GA, GAB,

GH, GU, KE, LI, MA, MALI,

MO, NI, NG, RW, SA, SE,

SL, SO, SU, TZ, TOGO, UG,

ZA, ZM

The plant is poisonous to grazing stock of animals and

may contribute to significant modifications of the

ecosystems that they are invading. It cause significant

shift of biodiversity.

Negussie et al., 2014

Fabaceae

Prosopis juliflora Tree or shrub Caribbean AL, BO, BF, CV, CH, EG,

ER, ET, GA, GH, GU, KE,

LIB, MALI, MOR, MO, NA,

NG, NI, SE, SO, SA, SU, TZ,

TUN, UG, ZM

Reduces grazing capacity, eliminates many species from

invaded ecosystems and depletes groundwater

resources. Despite some benefits in the form of firewood

and edible pods, the overall net economic contribution is

negative, and set to worsen as the species continues to

spread

Henderson, 2007;

Zachariades et al.,

2011a,b; Abdulahi

et al., 2017

Sesbania

grandiflora

Tree Asia BE, CV, CH, ET, GAB, GH,

MA, NG, SA, SE, SL, SO,

SU, TZ

It has allelopathic effects on crop seed germination Gillett, 1963

Algeria (AL); Angola (AN); Benin (BE); Burkina Faso (BF); Botswana (BO); Burundi (BU); Cameroon (CA); Central African Republic (CAR); Côte d’Ivoire (CD); Chad (CH); Congo (CO);

Cabo Verde (CV); Egypt (EG); Equatorial Guinea (EQ); Eritrea (ER); Ethiopia (ET); Gambia (GA); Gabon (GAB); Ghana (GH); Guinea (GU); Kenya (KE); Lesotho (LE); Libya (LI); Malawi

(MA); Mali (MALI); Mozambique (MO); Morocco (MOR); Namibia (NA); Nigeria (NG); Niger (NI); Rwanda (RW); South Africa (SA); Senegal (SE); Sierra Leone (SL); Somalia (SO); Sudan

(SU); Swaziland (SW); Togo (TOGO); Tunisia (TUN); Tanzania (TZ); Uganda (UG); Zambia (ZA); Zimbabwe (ZM).

rate of up to 5 and 43% caused by the leaf and seed aqueous
extract of Solanum elaeagnifolium against M. persicae. In an
investigation into the insecticidal activity of S. sisymbriifolium
leaf extract against T. castenum, Padín et al. (2013) reported 22%
mortality in adult beetles. The traditional use of the leaf extract
of C. parqui, S. sisymbriifolium, and S. elaeagnifolium for the
control and management of insect pests in their invasive ranges
in Africa have not been documented and therefore requires some
ethnobotanical studies.

Apocynaceae, Euphorbiaceae, and Fabaceae

Species With Insecticidal Properties
Two species each in the family, Apocynaceae, Euphorbiaceae,
and Fabaceae were reported effective against some insect pests
of medical, environmental and agricultural importance. Remia
and Logaswamy (2010) studied the insecticidal activity of the leaf
extract of Catharanthus roseus against Ae. aegypti and reported
over 71% mortality in the larvae and pupae of this mosquito
species. Khan and Qamar (2015a,b) investigated the efficacy
of Nerium oleander against the larvae of a rice moth, Corcyra
cephalonica and P. americana and found up to 83% mortality in
the larvae of the rice moth and P. americana. Despite the usage of

Apocynaceae species in ethnomedicine (CABI, 2020a), their use
as pesticides by locals is yet to be reported.

The leaf, seed, stem bark and root extracts of Jatropha curcas
have been found effective (i.e., with 40 to 100%mortality) against
the nymphs and larvae of P. xylostella, Helicoverpa armigera,
Spodoptera frugiperda, and Schistocerca gregaria (Ribeiro et al.,
2012; Bashir and El Shafie, 2013; Ingle et al., 2017). Opuba et al.
(2018) and Adetimehin et al. (2018) showed that 3.0 g of the
leaf and stem bark powders of J. curcas caused 100 percent
mortality in C. maculatus in a laboratory test. The leaf extract
of Ricinus communis reportedly caused 100% mortality on the
larvae of P. xylostella (Tounou et al., 2011). Investigations into
the insecticidal efficacy of the leaf, seed and fruit extracts of
Prosopis juliflora caused up to 73% mortality in adult cotton
aphid, A. gossypii (Zerihun and Ele, 2018). Sangavi and Johnson
Thangaraj Edward (2017) reported between 73 and 96%mortality
in P. xylostella when the larvae were treated with the leaf extract
of P. juliflora and Sesbania grandiflora. While the use of R.
communis for the management of insect pests by locals is not
known, J. curcas is used by farmers in Uganda for the control
and management of both field and storage pests (Mugisha-
Kamatenesi et al., 2008). The ethnopesticidal usage of P. juliflora
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TABLE 1D | Published reports on the impact of some invasive alien plants in sub-Saharan Africa.

Family/Species Growth form Native range Distribution ranges in

Africa

Impact of the weed Reference (s)

Euphorbiaceae

Ricinus communis Shrub AL,AN, BE, BO, BF, BU, CV,

CAR, CH, CO, EG, ET,

GAB, GA, GH, GU, KE, LI,

MA, MALI, MOR, MO, NA,

RW, SE, SO, SA, TZ,

TOGO, TUN, UG, ZA, ZM

Pollen causes respiratory allergies for animals. R.

communis is extremely poisonous to animals and

humans and pollen causes respiratory allergies in

humans

Henderson, 2001;

Kiran and Prasad, 2017

Meliaceae

Melia azedarach Tree Asia AN, BO, BF,CV CA, CH,

CO, CD, EG, ER, ET, GH,

KE, LE, MA, MALI, MO,

MOR, NA, NI, NG, SE, SO,

SA, SU, SW, TZ, TUN, UG,

ZA, ZM

The dense monospecific stands suppress the

regenerating native plants. It alters soil chemistry, and

can act as respiratory irritants

Henderson, 2001,

2007

Mimosaceae

Mimosa diplotricha Shrub BU, CA, CO, CD, ET, GH,

GU, MA, MO, NG, RW, SA,

TZ, TOGO, UG, ZM

Dry thickets are prone to fires and density of the plant

restricts movement of mammals, including people. It

suppresses the shaded species and thus prevents

regression of other plants

Ekhator et al., 2013;

Uyi, 2020

Myrtaceae

Eucalyptus

camaldulensis

Tree AL, AN, BE, BF, BO, BU,

CA, CD, CH, CO, CV, EG,

EQ, ER, ET, GA, GH, KE,

LE, LI, MA, MALI, MO,

MOR, NA, NG, NI, RW, SA,

SE, SL, SO, SU, SW, TUN,

TZ, UG, ZA, ZM

The plant suppresses native plants, improves the fuel

loads, depletes nutrients and excessive water use

Henderson, 2001

Algeria (AL); Angola (AN); Benin (BE); Burkina Faso (BF); Botswana (BO); Burundi (BU); Cameroon (CA); Central African Republic (CAR); Côte d’Ivoire (CD); Chad (CH); Congo (CO);

Cabo Verde (CV); Egypt (EG); Equatorial Guinea (EQ); Eritrea (ER); Ethiopia (ET); Gambia (GA); Gabon (GAB); Ghana (GH); Guinea (GU); Kenya (KE); Lesotho (LE); Libya (LI); Malawi

(MA); Mali (MALI); Mozambique (MO); Morocco (MOR); Namibia (NA); Nigeria (NG); Niger (NI); Rwanda (RW); South Africa (SA); Senegal (SE); Sierra Leone (SL); Somalia (SO); Sudan

(SU); Swaziland (SW); Togo (TOGO); Tunisia (TUN); Tanzania (TZ); Uganda (UG); Zambia (ZA); Zimbabwe (ZM).

and S. grandiflora is yet to be documented and therefore warrant
some ethnobotanical investigation.

Other Species With Insecticidal Properties
Insecticidal activity of at least one species from the following
families: Araceae, Bignoniaceae, Chenopodiaceae, Meliaceae,
Mimosaceae, Myrtaceae, Papaveraceae, and Verbenaceae was
investigated. Ito et al. (2015) investigated the insecticidal activity
of Pistia stratiotes and found that the leaf powder of this aquatic
weed reduced the population of Ae. aegypti by 80%. Our survey
also found that the leaf powder of Jacaranda mimosifolia caused
30% mortality in adults of A. obtectus (Waweru et al., 2017),
while the leaf extract caused 49% mortality in adults of T.
castenum (Padín et al., 2013). Guzzo et al. (2006) reported
that the leaf and fruit extracts of Dysphania ambrosioides only
caused low adult mortality (<5%) in R. dominica. The fruit
extract of Melia azedarach has been reported to be effective in
the control of several pests. For example. The fruit extract of
this weed caused 44% larval mortality in Liriomyza huidobrensis
and 100% larval mortality in S. frugiperda and S. littoralis
(Hammad andMcAuslane, 2010; Scapinello et al., 2014). Chiffelle
et al. (2011) documented 86% mortality when the adults of the
Elm leaf beetle, Xanthogaleruca luteola were treated with the

fruit extract of M. azedarach. Similarly, Selvaraj and Mosses
(2011) reported over 88% larval mortality in An. stephensi, Cx.
quinquefasciatus and Ae. aegypti when larvae were treated with
the fruit extracts. Although we found no traditional usage of
the Araceae, Bignoniaceae, Chenopodiaceae species as pesticidal
plants, we found that in Ghana, the leaves of M. azedarach
were used as a bioinsecticide to minimize the impact of Ephestia
cautella on cocoa beans (CABI, 2020b).

In a laboratory experiment on the efficacy of the root extract of
Mimosa diplotricha, Uyi et al. (2018b) reported 100%mortality in
worker termites, Macrotermes species when exposed to different
concentrations for 12 h. In a different experiment on the efficacy
of the leaf and root powders of M. diplotricha against C.
lectularius and C. maculatus, Uyi et al. (2018a, 2020) reported
more than 67% mortality for both insects. Nia et al. (2015)
reported 53% mortality in the nymphs and adults of M. persicae

when the leaf extract of Eucalyptus camaldulensis was used
to treat infestations of this pest. Khan and Qamar (2015a,b)
found significant mortalities (15–76%) in C. cephalonica and
P. americana when the larvae of the moth and nymphs of
the cockroach were exposed to the leaf extracts of Argemone
mexicana. We found no reports on the ethnopesticidal usage
of M. diplotricha and E. camaldulensis, but for A. mexicana,
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TABLE 1E | Published reports on the impact of some invasive alien plants in sub-Saharan Africa.

Family/Species Growth form Native range Distribution ranges in

Africa

Impact of the weed Reference (s)

Papaveraceae

Argemone

mexicana

Herb Mexico AN, BE, BO, BF, CV, CA,

CD, EG, EQ, ER, ET, GA,

GH, GU, KE, LIB, MA,

MALI, MO, NA, NG, NI, SE,

SL, SO, SA, SU, SW, TZ,

TOGO, UG, ZA, ZM

It is a toxic plant, which is also toxic to feeding animals.

The allelopathic effects result on suppression of plants in

the ecosystem

Van der Westhuizen

and Mpedi, 2011

Solanaceae

Cestrum parqui Shrub Argentina,

Brazil, Bolivia,

Chile, Peru,

Paraguay and

Uruguay

KE, SA The plant out-competes and disrupt regeneration of

native plants. Thickets along waterways blocks access

by to streams. Toxic to feeding herbivores, causes skin

irritation (e.g., rashes)

Henderson, 2001; Witt

and Luke, 2017

Solanum

elaeagnifolium

Herb Mexico AL, EG, LE, LI, MOR, SA,

TUN, ZM

The plant acts as a vector for the Lettuce chlorosis virus

between cropping seasons. Competes for natural

resources with cultivated crops and reduce production

on agricultural lands. The berries are toxic to livestock

EPPO, 2007

Solanum

sisymbriifolium

Tree South

America

CO, NA, SA, SW Competes with native vegetation for space and natural

resources. Acts as a trap crop for the potato and

tobacco cyst nematodes, though it affects their

reproduction

Dandurand et al., 2019

Verbenaceae

Lantana camara Tree or shrub Mexico AN, BU, CO, CD, CV, ET,

GA, GAB, GH, GU, KE, LIB,

MA, MO, NA, NG, RW, SA,

SE, SU, SW, TZ, UG, ZA,

ZM

Displaces natural vegetation and impacting negatively on

plant and arthropod biodiversity. Toxic to livestock,

causing animal deaths, reduced productivity, and

allelopathic effects causes loss of pasture

Henderson, 2007;

Taylor et al., 2012;

Shackleton et al., 2017;

Witt et al., 2018

Algeria (AL); Angola (AN); Benin (BE); Burkina Faso (BF); Botswana (BO); Burundi (BU); Cameroon (CA); Côte d’Ivoire (CD); Congo (CO); Cabo Verde (CV); Egypt (EG); Equatorial Guinea

(EQ); Eritrea (ER); Ethiopia (ET); Gambia (GA); Gabon (GAB); Ghana (GH); Guinea (GU); Kenya (KE); Lesotho (LE); Libya (LI); Liberia (LIB); Malawi (MA); Mali (MALI); Mozambique (MO);

Morocco (MOR); Namibia (NA); Nigeria (NG); Niger (NI); Rwanda (RW); South Africa (SA); Senegal (SE); Sierra Leone (SL); Somalia (SO); Sudan (SU); Swaziland (SW); Togo (TOGO);

Tunisia (TUN); Tanzania (TZ); Uganda (UG); Zambia (ZA); Zimbabwe (ZM).

von Weizsäckerl (1995) reported that the leaf extract is used in
parts of India to prepare antifeedant sprays for the management
of insect pests.

From the Verbenaceae family, Lantana camara was reported
active against some mosquito species and major pests of crops
due to the insecticidal potential of the plant. Remia and
Logaswamy (2010) investigated the efficacy of the leaf extract
of L. camara against Ae. aegypti in the laboratory and found
more than 65% larval and pupal mortality. The essential oils
from the leaves of L. camara caused between 93 and 100% in
Ae. aegypti, Cx. quinquefasciatus, An. culicifacies, An. fluvialitis
and An. Stephensi when adults were exposed for 24 h (Dua
et al., 2010). Leaf powders and extracts of L. camara were also
reported effective against a number of stored product pests (S.
zeamais, S. oryzae, S. granaries, C. chinensis, T. castenum) where
it caused 9–100% mortality depending on the concentration
(of the extract/powder) and period of exposure (Sexana et al.,
1992; Zoubiri and Baaliouamer, 2012; Rajashekar et al., 2014;
Taye et al., 2014). In a laboratory experiment in China, the leaf
extract of L. camara caused 90% mortality in the subterranean
termite, Reticulitermes flavipes, when the workers were exposed
for 24 h. The leaf extract of L. camara was reported to possess
some insecticidal activities against some field pests (e.g., A.

fabae, Ootheca mutabilis, O. bennigseni, Epicauta albovittata,
E. limbatipennis, Clavigralla tomentosicollis, C. schadabi, and
C. hystricodes) of beans in Tanzania and Malawi (Mkindi
et al., 2017). Despite the ethnomedicinal uses of L. camara in
Africa and the numerous studies on its pesticidal properties,
there is surprisingly only one report (Mugisha-Kamatenesi
et al., 2008) on the use of the plant for the management
of insect pest species in the invasive range of the plant
in Africa.

Prospects, Challenges, and Safety of Using

IAPs as Bio-Insecticides
Prospects for Exploiting IAPs for Insect Pest Control
Due to the associated non-target effects and cost of synthetic
insecticides in Africa, many resource-poor small-holder farmers
on the continent rely on the use of crude plant-based materials
collected from the wild and locally prepared (using the
available technology or crude methods) to control and manage
insect pests problems in subsistence farming, which is wide
spread on the continent (Cobbinah et al., 1999; Belmain and
Stevenson, 2001; Isman, 2008; Nyirenda et al., 2011; Kamanula
et al., 2017). Despite the demonstrated laboratory and field
efficacy of botanicals from many invasive alien plants against
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TABLE 2A | Published reports on the insecticidal activities of some plant species with invasive potentials in sub-Saharan Africa.

Family Plant species Plant parts Formulation/application

method

Insect target Stage of

insect

Importance of

insect

Mortality (%) Country Reference (s)

Apocynaceae Catharanthus

roseus

Leaf Acetone extract/spray Mosquito (Aedes

aegypti)

Larvae and

pupae

Pest of medical

importance

>71 India Remia and

Logaswamy, 2010

Nerium oleander Leaf Methanol extract/spray Rice moth (Corcyra

cephalonica),

Cockroach (Periplaneta

americana)

Larvae Rice and

household pests

17.4–83 India Khan and Qamar,

2015a,b

Araceae Pistia stratiotes Leaf Aqueous extract/spray Aedes aegypti (L.) Larvae Vector of some

parasitic diseases

80.1 Nigeria Ito et al., 2015

Asteraceae Ageratina

adenophora

Leaf Acetone extract/spray Cabbage aphid

(Brevicoryne

brassiccae)

Adults and

nymphs

Pest of cabbage

and other

brassicae species

73 China Xu et al., 2009

Ageratum

conyzoides

Leaf Essential oils/fumigant Storage grain beetle

(Tribolium castaneum)

Adults Stored grains 100 India Jaya et al., 2014

Leaf Hexane extract/filter

paper impregnation

Lesser grain borer

Rhyzopertha dominica

Adults Stored grains 76- 87 Brazil Moreira et al.,

2007a,b

Leaf Hexane extract/filter

paper impregnation

Melonworm moth,

Diaphania hyalinata,

Tuta absoluta

Larvae Pest of various

plants in the

cucumber family

100 Brazil Moreira et al.,

2004

Leaf Petroleum ether

extract/filter paper

impregnation

Acanthoscelides

obtectus, Musca

domestica

Larvae Bean weevil 100 Colombia Calle et al., 1990

Leaf Petroleum ether

extract/ingestion

Epilachna

vigintioctopunctata

Larvae Agricultural pest

(eggplant)

100 India Saxena and

Sharma, 2005
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TABLE 2B | Published reports on the insecticidal activities of some plant species with invasive potentials in sub-Saharan Africa.

Family Plant species Plant parts Formulation/application

method

Insect target Stage of

insect

Importance of

insect

Mortality (%) Country Reference (s)

Asteraceae Ageratum

conyzoides

Leaf Essential oils/addition

of extract to water

Asian tiger mosquito,

Aedes albopictus.

Larvae – China Liu and Liu, 2014

Chromolaena

odorata

Leaf and root Powder/Dust Bed bugs (Cimex

lectularius)

Adults Pest of humans

and animals

>70 Nigeria Uyi et al., 2018a

Leaf and root Aqueous extract/filter

paper impregnation

Termites (Macrotermes

species)

Adults Pest of crops 100 Nigeria Uyi et al. (2018b)

Leaf, stem

and root

Powder/Dust Cowpea beetle

(Callosobruchus

maculatus)

Adults Pest of cowpea 16–100 Nigeria
Uyi and Igbinoba,

2016; Uyi and Obi,

2017; Uyi and

Adetimehin, 2018

Leaf extracts Methanol extract/filter

paper impregnation

Maize weevil (Sitophilus

zeamais)

Adults Pest of maize, and

cowpea

33–93 Nigeria Lawal et al., 2015

Leaf extract Aqueous extract/spray Cabbage aphid

(Brevicoryne

brassicae), cabbage

webworm (Hellula

undalis), Diamondback

moth (Plutella xylostella)

Adults and

nymphs of

aphids and

larvae of

moths

Pest of cabbage

and other

brassicae species

36–74 Ghana Ezena et al., 2016

Leaf extract Aqueous extract/filter

paper impregnation

Cockroach (Periplaneta

americana)

Adults Household pest

and vector of

parasitic diseases

12–69 Nigeria Udebuani et al.,

2015

Leaf extract Methanol

extract/addition of

extract to water

Anopheles stephensi,

Culex quinquefasciatus

and Aedes aegypti

Larvae Vector of parasitic

diseases

20–100 India Sukhthankar et al.,

2014
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TABLE 2C | Published reports on the insecticidal activities of some plant species with invasive potentials in sub-Saharan Africa.

Family Plant species Plant parts Formulation/application

method

Insect target Stage of

insect

Importance of

insect

Mortality (%) Country Reference (s)

Asteraceae Parthenium

hysterophorus

Flowers, leaf

and stem

Powder/dust Bean weevil

(Callosobruchus

chinensis)

Adults Cowpea and

chickpea

>56.6 Ethiopia Tesfu and Emana,

2013

Leaf and stem Aqueous

extract/addition of

extract to water

Aedes aegypti, Larvae Vector of some

parasitic diseases

>80 Pakistan Amir et al., 2017

Leaf, stem

and root

Acetone and hexane

extract/addition to

water

Aedes aegypti, Larvae Vector of some

parasitic diseases

40–100 India Kumar S. et al.,

2012

Leaf Methanol

extract/ingestion

Rice moth (Corcyra

cephalonica)

Larvae Pest of rice 81 India Khan and Qamar,

2015a

Leaf Methanol

extract/ingestion

American cockroach

(Periplaneta americana)

Adults Household pest 14.4 India Khan and Qamar,

2015b

Leaf Methanol

extract/ingestion

Plutella xylostella, Aphis

craccivora

Larvae and

adults

Agricultural pests good toxicity India Reddy et al., 2018

Tithonia diversifolia Stem bark Aqueous extract/spray Cowpea beetle

(Callosobruchus

maculatus)

Adults Pest of beans 100 Nigeria Obembe and

Kayode, 2013

Leaf Methanol

extract/fumigant

Cowpea beetle

(Callosobruchus

maculatus)

Adults Pest of beans 100 Tanzania Green et al., 2017

Leaf Aqueous extract/spray Maize weevil (Sitophilus

zeamais)

Adults Pest of maize, rice 43 Nigeria Obembe and

Kayode, 2013

Leaf Powder/dust Maize weevil (Sitophilus

zeamais)

Adults Pest of maize, rice 90 Nigeria Babarinde et al.,

2008
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TABLE 2D | Published reports on the insecticidal activities of some plant species with invasive potentials in sub-Saharan Africa.

Family Plant species Plant parts Formulation/application

method

Insect target Stage of

insect

Importance of

insect

Mortality (%) Country Reference (s)

Asteraceae Tithonia diversifolia Leaf Aqueous extract and

powder/spray and dust

Cowpea beetle

(Callosobruchus

maculatus)

Adults Pest of beans 98.3 Nigeria Adedire and

Akinneye, 2004

Leaf Aqueous extract/spray Aphids (Aphis fabae),

Bean foliage beetle

(Ootheca mutabilis and

O. bennigseni), and

flower beetle (Epicauta

albovittata and E.

limbatipennis)

Nymphs,

larvae and

adults

Pest of beans Tanzania Mkenda et al.,

2015

Leaf Aqueous extract/spray Aphids (Aphis fabae),

bean foliage beetle

(Ootheca mutabilis and

O. bennigseni), flower

beetle (Epicauta

albovittata and E.

limbatipennis) and pod

suckers (Clavigralla

tomentosicollis, C.

schadabi and C.

hystricodes)

Nymphs,

larvae and

adults

Pest of beans Tanzania and

Malawi

Mkindi et al., 2017

Xanthium

strumarium

Leaf Ethanol extract/spray Green peach aphid

(Myzus persicae)

Adults Pest of peach >82 Turkey Erdogan and

Yildirim, 2016

Bignoniaceae Jacaranda

mimosifolia

Leaf Powder/dust Acanthoscelides

obtectus

Adults Pest of cowpea >31% Kenya Waweru et al.,

2017

Leaf Methanol

extracts/topical

Tribolium casteneum Adults Pest of stored

grains

49% Argentina Padín et al., 2013

Chenopodiaceae Dysphania

ambrosioides

Leaf and fruit Aqueous extract/spray Lesser grain borer

(Rhyzopertha dominica)

Adults Pest of stored

grains

0.5–2.9 Brazil Guzzo et al., 2006
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TABLE 2E | Published reports on the insecticidal activities of some plant species with invasive potentials in sub-Saharan Africa.

Family Plant species Plant parts Formulation/application

method

Insect target Stage of

insect

Importance of

insect

Mortality (%) Country Reference (s)

Euphorbiaceae Jatropha curcas Leaf, seed,

bark, root

Methanol extract/leaf

dip method

Diamondback moth

(Plutella xylostella)

Larvae Pest of cabbage

and other

brassicae species

40–100% India Ingle et al., 2017

Leaf, root and

seed coat

Methanol extract/leaf

dip method

Helicoverpa armigera Larvae 60% India Ingle et al., 2017

Leaf Fall army worm

(Spodoptera

fragiperda)

Larvae Agricultural pest 3–60% Brazil Ribeiro et al., 2012

Seed Hexane extract/spray Desert locust

(Schistocerca gregaria)

Nymphs Agricultural pest 20–59% Sudan Bashir and El

Shafie, 2013

Leaf and

Stem

Powder/dust Callosobrucus

maculatus

Adults Agricultural pest 100% Nigeria Adetimehin et al.,

2018; Opuba

et al., 2018

Ricinus communis Leaf Aqueous

extract/topical and

ingestion

Diamondback moth

(Plutella xylostella)

Larvae Agricultural pest 100 Togo Tounou et al.,

2011

Fabaceae Prosopis juliflora Leaf Methanol extract/spray Cotton aphid (Aphis

Gossypii)

Adults Pest of cotton 73.3 Ethiopia Zerihun and Ele,

2018

Seed Methanol extract/spray Cotton aphid (Aphis

Gossypii)

Adults Pest of cotton 70 Ethiopia Zerihun and Ele,

2018

Leaf extract Aqueous extract/spray Diamondback moth

(Plutella xylostella)

Larvae Pest of cabbage

and other

brassicae species

96% India Sangavi and

Johnson

Thangaraj Edward,

2017
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TABLE 2F | Published reports on the insecticidal activities of some species with invasive potentials in sub-Saharan Africa.

Family Plant species Plant parts Formulation/application

method

Insect target Stage of

insect

Importance of

insect

Mortality (%) Country Reference (s)

Fabaceae Sesbania

grandiflora

Leaf Aqueous extract/spray Diamondback moth

(Plutella xylostella)

Larvae Pest of cabbage

and other

brassicae species

73 India Sangavi and

Johnson

Thangaraj Edward,

2017

Meliaceae Melia azedarach Fruit Aqueous extract/spray Vegetable leaf miner

(Liriomyza

huidobrensis)

Larvae Agricultural pest 44 USA Hammad and

McAuslane, 2010

Fruit Essential oil and

methanol

extract/ingestion

Fall armyworm

(Spodoptera

frugiperda)

Larvae Pest of maize 100 Brazil Scapinello et al.,

2014

Fruit Acetone extract/leaf

dipping technique

African Cotton

Leafworm (Spodoptera

littoralis)

Larvae Pest of cotton 100 Egypt Farag et al., 2011

Fruit Ethanol extract/filter

paper impregnation

Elm leaf beetle

(Xanthogaleruca

luteola)

Adults Environmental

pest

86 Chile Chiffelle et al.,

2011

Fruit Methanol

extract/addition to

water

Anopheles stephensi,

Culex quinquefasciatus

and Aedes aegypti

Larvae Vectors of some

parasitic diseases

>88 India Selvaraj and

Mosses, 2011

Mimosaceae Mimosa diplotricha Leaf Powder/dust Bed bugs (Cimex

lectularius)

Adults Pest of medical

importance

>70 Nigeria Uyi et al., 2018a

Leaf Powder/dust Macrotermes species Adults Pest of crops 100 Nigeria Uyi et al., 2018b

Root Powder/dust Callosobruchus

maculatus

Adults Agricultural pest 67 Nigeria Uyi et al., 2020

Myrtaceae Eucalyptus

camaldulensis

Leaf Ethanol extract/leaf

dipping technique

Green peach aphid

(Myzus persicae)

Nymphs and

adults

Agricultural pest 53 Algeria Nia et al., 2015;

Erdogan and

Yildirim, 2016
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TABLE 2G | Published reports on the insecticidal activities of some plant species with invasive potentials in sub-Saharan Africa.

Family Plant species Plant parts Formulation/application

method

Insect target Stage of

insect

Importance of

insect

Mortality (%) Country Reference (s)

Papaveraceae Argemone

mexicana

Leaf extract, Methanol

extract/ingestion

Rice moth, (Corcyra

cephalonica) and

Cockroach (Periplaneta

americana)

Larvae, adults Agricultural and

household pests

15.4–76 India Khan and Qamar,

2015a,b

Solanaceae Cestrum parqui Leaf extract Aqueous extract/leaf

dipping and ingestion

Mediterranean fruit fly

(Ceratitis capitata)

Adults Fruits 55 Chile Zapata et al., 2006

Solanum

elaeagnifolium

Leaf extract Methanol extract/seed

treatment

Red flour beetle

(Tribolium castaneum)

Larvae Pest of stored

grains

88 Tunisia Ben Hamouda

et al., 2015a

Seed extract Methanol extract/seed

treatment

Red flour beetle

(Tribolium castaneum)

Larvae Pest of stored

grains

84 Tunisia
Ben Hamouda

et al., 2015a

Leaf extract Methanol extract/leaf

treatment and ingestion

African cotton leafworm

(Spodoptera littoralis)

Larvae Agricultural pest 80 Tunisia Ben Hamouda

et al., 2015b

Seed extract Ethanol and methanol

extract/leaf treatment

and ingestion

African cotton leafworm

(Spodoptera littoralis)

Larvae Agricultural pest 100 Tunisia Ben Hamouda

et al., 2015b

Leaf and seed

extracts

Ethanol and methanol

extract/leaf treatment

and ingestion

Green peach aphid

(Myzus persicae)

Adults Agricultural pest 5–43 Tunisia Ben Hamouda

et al., 2015c
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TABLE 2H | Published reports on the insecticidal activities of some plant species with invasive potentials in sub-Saharan Africa.

Family Plant species Plant parts Formulation/application

method

Insect target Stage of

insect

Importance of

insect

Mortality (%) Country Reference (s)

Solanaceae Solanum

sisymbriifolium

Leaf Methanol extract/filter

paper impregnation

Red flour beetle

(Tribolium castaneum)

Adults Pest of stored

grains

22% Argentina Padín et al., 2013

Verbenaceae Lantana camara Leaf Acetone

extract/addition to

water

Mosquito (Aedes

aegypti)

Larvae and

pupae

Vector of some

parasitic diseases

>65 India Remia and

Logaswamy, 2010

Leaf and stem Methanol

extract/fumigant

Bean weevil

(Callosobruchus

chinensis)

Adults Pest of pulse 9- 23% India Sexana et al.,

1992

Leaf Chloroform extract/filter

paper impregnation

subterranean termite,

Reticulitermes flavipes

Adults Agricultural pest 90 China Yuan and Hu,

2012

Leaf Essential oil/spray Aedes aegypti, Culex

quinquefasciatus,

Anopheles culicifacies,

Anopheles fluvialitis and

Anopheles stephensi

Adults Vector of parasitic

diseases

93–100 India Dua et al., 2010

Leaf and

flower

Powder/dust Maize weevil (Sitophilus

zeamais)

Adults Pest of maize and

rice

>45 Nigeria Taye et al., 2014

Leaf extracts Acetone and

methanol/direct

contact application

Sitophilus oryzae (L.)

Callosobruchus

chinensis (Fab.) and

Tribolium castaneum

Adults Pests of stored

grains

>92 India Rajashekar et al.,

2014

F
ro
n
tie
rs

in
A
g
ro
n
o
m
y
|w

w
w
.fro

n
tie
rsin

.o
rg

S
e
p
te
m
b
e
r
2
0
2
1
|
V
o
lu
m
e
3
|A

rtic
le
7
2
5
8
9
5

113

https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/agronomy#articles


Uyi et al. Insecticidal Activities of Alien Plants

T
A
B
L
E
2
I
|
P
u
b
lis
h
e
d
re
p
o
rt
s
o
n
th
e
in
se
c
tic
id
a
la
c
tiv
iti
e
s
o
f
so

m
e
in
va
si
ve

a
lie
n
p
la
n
ts

in
A
fr
ic
a
.

F
a
m
il
y

P
la
n
t
s
p
e
c
ie
s

P
la
n
t
p
a
rt
s

F
o
rm

u
la
ti
o
n
/a
p
p
li
c
a
ti
o
n

m
e
th
o
d

In
s
e
c
t
ta
rg
e
t

S
ta
g
e
o
f

in
s
e
c
t

Im
p
o
rt
a
n
c
e
o
f

in
s
e
c
t

M
o
rt
a
li
ty

(%
)

C
o
u
n
tr
y

R
e
fe
re
n
c
e
(s
)

V
e
rb
e
n
a
c
e
a
e

L
a
n
ta
n
a
c
a
m
a
ra

L
e
a
f
a
n
d
st
e
m

E
ss
e
n
tia
lo

il/
fu
m
ig
a
n
t

G
ra
in

w
e
e
vi
l(
S
it
o
p
h
ilu
s

g
ra
n
a
ri
e
s
)

A
d
u
lts

P
e
st
s
o
f
st
o
re
d

g
ra
in
s

1
0
0

A
lg
e
ria

Z
o
u
b
iri
a
n
d

B
a
a
lio
u
a
m
e
r,
2
0
1
2

L
e
a
f
e
xt
ra
c
t

A
q
u
e
o
u
s
e
xt
ra
c
t/
sp

ra
y

D
ia
m
o
n
d
b
a
c
k
m
o
th

(P
lu
te
lla

xy
lo
s
te
lla
)

L
a
rv
a
e

P
e
st

o
f
c
a
b
b
a
g
e

a
n
d
o
th
e
r

b
ra
ss
ic
a
e
sp

e
c
ie
s

3
.3
–6

.7
In
d
ia

S
a
n
g
a
vi
a
n
d

Jo
h
n
so

n

T
h
a
n
g
a
ra
jE

d
w
a
rd
,

2
0
1
7

L
e
a
f
e
xt
ra
c
t

A
q
u
e
o
u
s
e
xt
ra
c
t/
sp

ra
y

A
p
h
id
s
(A
p
h
is
fa
b
a
e
),

b
e
a
n
fo
lia
g
e
b
e
e
tle

(O
o
th
e
c
a
m
u
ta
b
ili
s
a
n
d

O
.
b
e
n
n
ig
s
e
n
i),

flo
w
e
r

b
e
e
tle

(E
p
ic
a
u
ta

a
lb
o
vi
tt
a
ta

a
n
d
E
.

lim
b
a
ti
p
e
n
n
is
)
a
n
d
p
o
d

su
c
ke

rs
(C
la
vi
g
ra
lla

to
m
e
n
to
s
ic
o
lli
s
,
C
.

s
c
h
a
d
a
b
i
a
n
d
C
.

h
ys
tr
ic
o
d
e
s
)

N
ym

p
h
s,

la
rv
a
e
a
n
d

a
d
u
lts

P
e
st

o
f
b
e
a
n
s

N
A

Ta
n
za
n
ia
a
n
d

M
a
la
w
i

M
ki
n
d
ie
t
a
l.,

2
0
1
7 a myriad of agricultural, medical and environmental insect

pests (Tables 2A–I), only a few studies have documented the
indigenous use of these IAPs as botanical pesticides by the
locals and small-holder farmers in Africa (e.g., Cobbinah et al.,
1999; Mugisha-Kamatenesi et al., 2008). Therefore, there is
an urgent need to conduct ethnobotanical surveys to identify
and document the IAPs used for the control and management
of insect pest by locals and small-holder farmers in Africa.
Although, assessing efficacy under field condition remains a
serious challenge in the use of botanicals to control insect
pests of crops, recent field trials on bean and cabbage pests
suggest that some plant extracts are as effective as synthetic
pesticides; however, botanicals tend to be much less harmful to
natural enemies (Amoabeng et al., 2013; Mkenda et al., 2015).
Such findings are crucial in convincing the policy makers and
other relevant stakeholders to support the use of botanicals to
control pests. Therefore, field studies on the insecticidal efficacy
of IAPs with botanical pesticides should be prioritized and
such study may receive generous funding from stakeholders
in the agricultural sector because of the direct impact of
such research.

Despite their efficacy against pests, botanical pesticides are
often less harmful to beneficial insects and are therefore more
compatible with other pest management strategies (Stevensona
et al., 2017). For example, Mkenda et al. (2015) showed that
Tithonia diversifolia (an invasive alien plant species) and other
three pesticidal plant species were able to control a several of
agricultural pests attacking Phaseolus vulgaris (common beans),
but were also less harmful to beneficial insects (i.e., lady beetle
and spider mites) compared to a synthetic pesticide. In similar
field study, Ezena et al. (2016) investigated the insecticidal
potential of three concentrations (10, 20, and 30 g/L) of the
invasive C. odorata in the management of the major pests
of cabbage (B. brassicae and P. xylostella) and their natural
enemies in southern Ghana. The authors found that the three
concentrations of C. odorata significantly reduced (by more
than 30%) the number of B. brassicae and P. xylostella than
tap water and conventional insecticide, lambda-cyhalothrin.
The authors also found that plots sprayed with 20 g/L of C.
odorata extract supported the highest number of insect natural
enemies (Diaretiell rapae, Cotesia plutellae (Hymentoptera:
Braconidae) and hoverflies compared to plots treated with
lambda-cyhalothrin. Research to demonstrating compatibility of
botanical pesticides with other pest management strategies is
needed. Such research should also focus on determination of
the underlying mechanisms that reduce the impact of pesticidal
IAPs on beneficial insects and understands if this is due
to selective toxicity or lower persistence. Due to their high
efficacy and low toxicity to beneficial insects (e.g., Mkenda
et al., 2015), there is the prospect to inform locals, small-
holder farmers, and other relevant stakeholders of the potential
usage of the IAPs listed in Tables 2A–I. This will allow for the
exploitation of IAPs by harvesting and using them to control
insect pests and alternately minimizing the invasion intensities
and impact of IAPs in ecosystems. This will give the small-
holder farmers and locals who are typically resource poor access
to technologies and information to control insect pests and
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FIGURE 1 | Percentage prevalence of case studies on the parts of plant used to test for insecticidal activities of invasive alien plants. Data was obtained from 69

published case studies. IL, Inflorescence and leaf; ILS, Inflorescence; leaf and stem; ILR, Inflorescence; leaf and root; ILSR, Inflorescence; leaf, stem and root; LS, Leaf

and stem; LSR, Leaf, stem, root.

FIGURE 2 | Prevalence of case studies on different families of invasive alien plant species tested for insecticidal activities. Data was obtained from 69 published case

studies.

diseases that limit crop production and successful storage of
agricultural produce.

Safety and Exposure Concerns of Using Botanical

Pesticides From IAPs
A key priority in the widely popular subsistence farming system
in Africa is to prevent stored product insects from reducing

the market and nutritional values of the harvested produce.
Many small-holder farmers (peasants) in Africa use botanical
pesticides, locally derived from either indigenous or IAPs to
protect stored commodities (Cobbinah et al., 1999; Belmain and
Stevenson, 2001; Isman, 2008; Nyirenda et al., 2011; Midega et al.,
2016; Kamanula et al., 2017). The use of botanical pesticides
to protect stored products may directly or indirectly expose
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FIGURE 3 | Mean mortality rank (±se) of insect pests of agriculture and medical importance caused by (A) different formulations from, and (B) different plant parts or

combinations plant parts of invasive alien plants. Data was obtained from 69 published case studies. IL, Inflorescence and leaf; ILS, Inflorescence, leaf and stem; ILR,

Inflorescence, leaf and root; ILSR, Inflorescence, leaf, stem and root; LS, Leaf and stem; LSR, Leaf, stem, root.

farmers and/or consumers to potentially toxic chemicals from
the plant materials used. It is important to note that naturally
occurring plant chemicals are not necessarily safe. For example,
some compounds (e.g., Aconitum, aconitine, nicotine, rotenone,
and strychnine) of plant origin are known to be highly poisonous
to mammals and fish (Kolev et al., 1996; Neuwinger, 2004).

Although the use of pesticidal plants to control pests in agro-
ecosystems and other modified ecosystems is perceived to be
safer than conventional pesticides, care must be exercised in
the use of some of plants (especially invasive alien plants with
novel biochemicals) for pest management. Invasive alien plants
with potential toxicity to aquatic fauna or mammals should be
restricted and discouraged. Plant scientists and entomologists
should conduct special bioassays not only to show the efficacy
of botanical pesticides from alien invasive plants but also to
demonstrate the safety of these locally manufactured pesticides

on mammals and aquatic fauna. The results of such safety and
risk assessment studies should be communicated to various
stakeholders including small-holder farmers who rely heavily on
exploring new plant species for various purposes including to
manage pests and for ethnomedicinal purpose. Although the
likelihood of acute toxicity from handling plants is substantially
lower than the risk from handling synthetic pesticides (Coats,
1994; Isman, 2006), the use of appropriate personal protective
equipment should be encouraged when processing and handling
powders and extracts from invasive alien plant materials.

Challenges of Using IAPs as Bio-Insecticides and

Future Research Focus
Despite the acceptance and increasing usage of the biopesticides
by the global communities, the lack of government published
regulatory framework impedes the rigorous research processes
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and hampers the adoption of the compounds [Gahukar, 2011;
AATF (African Agricultural Technology Foundation), 2013;
Ivase et al., 2017; Damalas and Koutroubas, 2018]. Like
synthetic insecticides, the international and national regulations
should be developed to govern the development of bio-
insecticides and alternately protect the consumers and the
natural ecosystems from the hazardous compounds (Chandler
et al., 2011). Although the natural resources extracted from
nature are generally regarded as safe to humans and the
environment, risk assessment protocols and registration portfolio
of bio-insecticides follow conventional insecticides (Damalas
and Koutroubas, 2018; Marrone, 2019). The procedures are
somewhat time-consuming and expensive for the bio-insecticide
development companies. Furthermore, the costs of production
of these natural compounds decelerate the commercialization
processes of the products and once commercialized, the prices
are inflated (Marrone, 2014; Ivase et al., 2017; Damalas and
Koutroubas, 2018). The prospects of developing biopesticides
include the distinct development of legislations that govern
the screening and commercialization of the products (AATF,
2013; Seiber et al., 2014; Kumar and Singh, 2015; Ivase et al.,
2017; Damalas and Koutroubas, 2018). Government’s ability to
subsidize the research on the development of compounds that
are safer to use may accelerate the bio-insecticide development
and commercialization processes (Marrone, 2014). Furthermore,
the efficiency of bioinsecticides with limited efficacy may
be integrated with compatible pest management practices to
optimize the efficiency of the pest management program
(Chandler et al., 2011). Further investigations on the persistence
and efficiency of biopesticides derived from IAPs need to
be prioritized to measure the overall cost of the benefit of
the pest management products. Public and private sectors
should also be encouraged to participate (i.e., technically
or financially) on the development and production of this
economical and environmentally friendly alternative, especially
in the developing countries.

CONCLUSIONS

The diversity of invasive alien plant species (in Africa)
with numerous examples of their insecticidal efficacy against
important pests listed in this paper suggest that opportunity
exist for using invasive alien plants in Africa as pesticides
in agro-ecosystems and other managed ecosystems. This will
result in small-holders spending less on synthetic insecticides,
substantially reduction in crop production or pest management

costs and increase productivity and quality of life. Despite the
rise of research interest in plant pesticides from native plants
and IAPs over the last decade in Africa (Isman and Grieneisen,
2014; Isman, 2015), surprisingly little time is invested in
assessing efficacy under field conditions. The lack of meaningful
chemical data (i.e., elucidation of bioactive compounds) reported
alongside efficacy trials remains a major concern. Some of the
published works on the effects of pesticides from native plants
or IAPs are not repeatable for various reasons and adds little
to our knowledge about mechanisms, efficacy or scope to use
plant materials in pest management. Although the efficacy of the
botanical pesticides from 23 invasive alien plant species in this
study have been documented, further investigations on; (1) their
efficacy under field conditions, mode of action and chemical data,
(2) their compatibility with other pest management strategies, (3)
the economic benefits of using pesticidal plants over synthetic
products and (4) how to effectively commercialize the production
of botanical insecticides from IAPs. For the first time, our
review elucidates the insecticidal efficacy of the invasive alien
plants in Africa and highlights the prospects for the use of
these IAPs as pesticidal plants in African countries especially
among resource-limited small-holder farmers and locals. It
remains to be seen whether stakeholders (governments, research
institutions, scientists, agriculturists, farmers, locals, extension
workers, etc.) can effectively explore the safe use of botanically
based insecticides (extracts, powders or other formulations) from
IAPs in their regions for the control and management of insect
pests in agro-ecosystems and other modified environments.
This paper serves as a veritable reference for researchers and
stakeholders who are interested in advancing, the science,
technology or our understanding of the use of invasive alien plant
to control and manage insect pests of agricultural, environmental
medical importance.

AUTHOR CONTRIBUTIONS

OU and LM conceptualized the study and wrote the manuscript.
OU, LM, AE, and MT interpreted the results and critically
reviewed and amended the manuscript. All authors contributed
to the article and approved the submitted version.

ACKNOWLEDGMENTS

We thank our respective institutions for availing us the needed
time to write this review. We also thank Glory Dickson for
providing some of the literature used in this review.

REFERENCES

AATF (African Agricultural Technology Foundation). (2013). A Guide to

the Development of Regulatory Frameworks for Microbial Biopesticides in

Sub-Saharan Africa. Nairobi: African Agricultural Technology Foundation.
Available online at: https://www.aatf-africa.org/wp-content/uploads/2018/11/
Microbial-biopesticid\penalty\z@es.pdf

Abdulahi, M. M., Ute, J. A., and Regasa, T. (2017). Prosopis juliflora L: distribution,
impacts and available control methods in Ethiopia. Trop. Subtrop. Agroecosyst.
20, 75–89.

Adedire, C. O., and Akinneye, J. O. (2004). Biological activity of tree
marigold, Tithonia diversifolia, on cowpea bruchid, Callosobruchus

maculatus (Coleoptera: Bruchidae). Ann. Appl. Biol. 144, 185–189.
doi: 10.1111/j.1744-7348.2004.tb00332.x

Adetimehin, A. D., Opuba, S. K., Iloba, B. N., and Uyi, O. O. (2018). Insecticidal
and anti-ovipositional activities of the stem-bark powder of Jatropha curcas

(L.) (Euphorbiaceae) against Callosobruchus maculatus (Fab.) (Coleoptera:
Chrysomelidae). Adv. Sci. Technol. 12, 27–34.

Adoyo, F., Mukulama, J. B., and Enyola, M. (1997). Using Tithonia concoctions for
termite control in Busia District, Kenya. Ileia Newslett. 13, 24–25

Frontiers in Agronomy | www.frontiersin.org 20 September 2021 | Volume 3 | Article 725895117

https://www.aatf-africa.org/wp-content/uploads/2018/11/Microbial-biopesticidpenalty z@ {}es.pdf
https://www.aatf-africa.org/wp-content/uploads/2018/11/Microbial-biopesticidpenalty z@ {}es.pdf
https://doi.org/10.1111/j.1744-7348.2004.tb00332.x
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/agronomy#articles


Uyi et al. Insecticidal Activities of Alien Plants

Aigbokhan, E. I., Osazuwa-Peters, O. L., and Ilubon, K. O. (2010). Range and
distribution of Mimosa diplotricha in Nigeria and effects of fire on seed
germination. Nigerian J. Bot. 241, 141–151.

Alagesaboopathi, C., and Deivanai, M. (2011). Allelopathic potential of Sesbania
grandiflora Pers. on germination ofCajanus cajanMill. Sp. (Redgram) varieties.
Int. J. Biosci. 1, 51–55.

Amir, H., Butt, B. Z., and Vehra, and, S. E. (2017). Evaluation of larvicidal activity
of Parthenium hysterophorus against Aedes aegypti. Int. J. Mosquito Res. 4, 1–4.

Amoabeng, B. W., Gurr, G. M., Gitau, C. W., Nicol, H. I., Munyakazi,
L., and Stevenson, P. C. (2013). Tri-trophic insecticidal effects
of African plants against cabbage pests. PLoS ONE 8:e78651.
doi: 10.1371/annotation/f0351003-b6f8-4249-ace5-bcd84dead916

Babarinde, S. A., Olabode, O. S., Akanbi, M. O., and Adeniran, O. A. (2008).
Potential of Tithonia diversifoliawith pirimiphos methyl in control of Sitophilus
zeamais (Coleoptera: Curculionidae). Afr. J. Plant Sci. Biotechnol. 2, 77–80.

Bashir, E., and El Shafie, H. (2013). Insecticidal and antifeedant efficacy
of Jatropha oil extract against the Desert Locust, Schistocerca gregaria

(Forskal) (Orthoptera: Acrididae). Agric. Biol. J. N. Am. 4, 260–267.
doi: 10.5251/abjna.2013.4.3.260.267

Belmain, S. R., and Stevenson, P. C. (2001). Ethnobotanicals in Ghana:
reviving and modernising an age-old practise. Pesticide Outlook 6, 233–238.
doi: 10.1039/b110542f

Ben Hamouda, A., Boussadia, O., Bedis, K., Laarif, A., and Braham, M. (2015c).
Studies on insecticidal and deterrent effects of olive leaf extracts we Myzus

persicae and Phthorimaea operculella. J. Entomol. Zool. Stud. 3, 294–297.
BenHamouda, A., Chaieb, I., Zarrad, K., and Laarif, A. (2015a). Insecticidal activity

of methanolic extract of Silverleaf nightshade against Tribolium castaneum. Int.
J. Entomol. Res. 3, 23–28.

Ben Hamouda, A., Zarrad, K., Chaieb, K., and Laarif, A. (2015b). Antifeedant
and insecticidal properties of Solanum elaeagnifolium extracts on the African
Cotton Leafworm. Azarian J. Agric. 2, 71–74.

Bommarco, R., Kleijn, D., and Potts, S. G. (2013). Ecological intensification:
harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238.
doi: 10.1016/j.tree.2012.10.012

CABI (2020a). Nerium oleanda (Oleander). Invasive Species Compendium.
Available online at: https://www.cabi.org/isc/datasheet/36220 (accessed
December 23, 2020).

CABI (2020b). Melia azedarach (Chinaberry). Invasive Species Compendium.
Available online at: https://www.cabi.org/ISC/datasheet/33144 (accessed
November 2, 2020).

Calle, J., Rivera, A., Luis, G. J., Agular, Z. E., Niemeyer, H. M., and Joseph-Nathan,
P. (1990). Insecticidal activity of the petroleum ether extract of Ageratum

conyzoides L. ReBioinvasions Recv. Colombiana Química Rev. Col. Quim. 19:91.
Catarino, L., Indjai, B., Duarte, M. C., and Monteiro, F. (2019). Chromolaena

odorata invasion in Guinea-Bissau (West Africa): first records and trends of
expansion. Bioinvasions Rec. 8, 190–198. doi: 10.3391/bir.2019.8.1.20

Chagas-Paula, D. A., Oliveira, R. B., Rocha, B. A., and Da Costa, F. B. (2012).
Ethnobotany, chemistry, and biological activities of the genus Tithonia
(Asteraceae). Chem. Biodivers. 9, 210–235. doi: 10.1002/cbdv.201100019

Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., and
Grant, W. P. (2011). The development, regulation and use of biopesticides for
integrated pest management. Philos. Transac. R. Soc. B Biol. Sci. 366, 1987–1998.
doi: 10.1098/rstb.2010.0390

Chiffelle, I., Huerta, A., Azua, F., Puga, K., and Araya, J. E. (2011).
Antifeeding and insecticide properties of aqueous and ethanolic fruit extracts
from Melia azedarach L. on the Elm leaf beetle Xanthogaleruca luteola
Müller. Chilean J. Agric. Res. 71, 218–225. doi: 10.4067/S0718-58392011000
200006

Coats, J. R. (1994). Risks from natural versus synthetic insecticides.
Ann. Rev. Entomol. 39, 489–515. doi: 10.1146/annurev.en.39.010194.
002421

Cobbinah, J. R., Moss, C., Golob, P., and Belmain, S. R. (1999). Conducting
Ethnobotanical Surveys: An Example From Ghana on Plants Used for the

Protection of Stored Cereals and Pulses (NRI Bulletin 77).
Damalas, C. A., and Koutroubas, S. D. (2018). Current status

and recent developments in biopesticide use. Agriculture 8:13.
doi: 10.3390/agriculture8010013

Dandurand, L. M., Zasada, I. A., and LaMondia, J. A. (2019). Effect of the
trap crop, Solanum sisymbriifolium, on Globodera pallida, Globodera tabacum,
and Globodera ellingtonae. J. Nematol. 51, 1–11. doi: 10.21307/jofnem-
2019-030

Das, M., Acharya, B., Saquib, M., and Chettri, M. (2018). Effect of aqueous extract
and compost of invasive weed Ageratina adenophora on seed germination and
seedling growth of some crops and weeds. J. Biodivers. Conserv. Bioresour.
Manage. 4, 11–20. doi: 10.3329/jbcbm.v4i2.39843

Davis, M. A. (2006). “Invasion biology 1958-2005: the pursuit of science
and conservation,” in Conceptual Ecology and Invasion Biology: Reciprocal

Approaches to Nature, eds M.W. Cadotte, S. M. Mcmahon, and T. Fukami
(Dordrecht: Springer), 1–27.

Deressa, T., Lemessa, F., and Wakjira, M. (2015). Antifungal activity of some
invasive alien plant leaf extracts against mango (Mangifera indica) anthracnose
caused by Colletotrichum gloeosporioides. Int. J. Pest Manage. 61, 99–105.
doi: 10.1080/09670874.2015.1016135

Dougoud, J., Toepfer, S., Bateman, M., and Jenner, W. H. (2019). Efficacy of
homemade botanical insecticides based on traditional knowledge. A review.
Agron. Sustain. Dev. 39, 1–22. doi: 10.1007/s13593-019-0583-1

Dua, V. K., Pandey, A. C., andDash, A. P. (2010). Adulticidal activity of essential oil
of Lantana camara leaves against mosquitoes. Indian J. Med. Res. 131, 434–439.

Ekhator, F., Uyi, O. O., Ikuenobe, C. E., and Okeke, C. E. (2013). The
distribution and problems of the invasive alien plant, Mimosa diplotricha C.
Wright ex Sauvalle (Mimosaceae) in Nigeria. Am. J. Plant Sci. 4, 866–877.
doi: 10.4236/ajps.2013.44107

EPPO (2007). Solanum elaeagnifolium. EPPO Bull. 37, 236–245.
doi: 10.1111/j.1365-2338.2007.01112.x

Erdogan, P., and Yildirim, A. (2016). Insecticidal activity of three different
plant extracts on the green peach aphid [(Myzus persicae Sulzer) (Hemiptera:
Aphididae)]. J. Entomol. Res. Soc. 18, 27–35.

Ezena, G. N., Akotsen-Mensah, C., and Fening, K. O. (2016). Exploiting the
insecticidal potential of the invasive siam weed, Chromolaena odorata L.
(Asteraceae) in the management of the major pests of cabbage and their
natural enemies in southern Ghana. Adv. Crop Sci. Technol. 4:1000230.
doi: 10.4172/2329-8863.1000230

Fan, W., Fan, L., Peng, C., Zhang, Q., Wang, L., Li, L., et al. (2019).
Traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics
and toxicology of xanthium strumarium L.: a review. Molecules 24:359.
doi: 10.3390/molecules24020359

Farag, M., Ahmed, M. H. M., Yousef, H., and Abdel-Rahman, A. A. H. (2011).
Repellent and insecticidal activities of Melia azedarach L. against cotton
leafworm, Spodoptera littoralis (Boisd.). Zeitschrift fur Naturforschung. J.
Biosci. 66, 129–135. doi: 10.1515/znc-2011-3-406

Foxcroft, L. C., Henderson, L., Nichols, G. R., and Martin, B. W. (2003). A
revised list of alien plants for the Kruger National Park. Koedoe 26, 21–44.
doi: 10.4102/koedoe.v46i2.54

Gahukar, R. T. (2011). Use of neem and plant-based biopesticides in floriculture:
current challenges and perspectives – a review. J. Horticult. Sci. Biotechnol. 86,
203–209. doi: 10.1080/14620316.2011.11512748

Gillett, J. B. (1963). Sesbania in Africa (excluding Madagascar) and southern
Arabia. Kew Bull. 17, 91–157. doi: 10.2307/4118710

Green, P. W. C., Belmain, S. R., Ndakidemi, P. A., Farrell, I. W., and Stevenson, P.
C. (2017). Insecticidal activity ofTithonia diversifolia andVernonia amygdalina.
Ind. Crops Prod. 110, 15–21. doi: 10.1016/j.indcrop.2017.08.021

Guzzo, E. G., Tavares, M. A. G. C., and Vendramim, J. D. (2006). “Evaluation
of insecticidal activity of aqueous extracts of Chenopodium spp. in relation to
Rhyzopertha dominica (Fabr.) (Coleoptera: Bostrichidae),” in 9th International

Working Conference on Stored Product Protection PS7-37 – 6333 (São Paulo).
Hammad, E. A. F., and McAuslane, H. (2010). Effect of Melia azedarach

L. extract on Liriomyza sativae (Diptera: Agromyzidae) and its biocontrol
agent Diglyphus isaea (Hymenoptera: Eulophidae). J. Food Agric. Environ. 8,
1247–1252.

Hanley, N., and Roberts, M. (2019). The economic benefits of invasive species
management. People Nat. 1, 124–137. doi: 10.1002/pan3.31

Henderson, L. (2001). Alien Weeds and Invasive Plants: A Complete Guide to

Declared Weeds and Invaders in South Africa Handbook No. 12. Pretoria: ARC-
PPRI.

Frontiers in Agronomy | www.frontiersin.org 21 September 2021 | Volume 3 | Article 725895118

https://doi.org/10.1371/annotation/f0351003-b6f8-4249-ace5-bcd84dead916
https://doi.org/10.5251/abjna.2013.4.3.260.267
https://doi.org/10.1039/b110542f
https://doi.org/10.1016/j.tree.2012.10.012
https://www.cabi.org/isc/datasheet/36220
https://www.cabi.org/ISC/datasheet/33144
https://doi.org/10.3391/bir.2019.8.1.20
https://doi.org/10.1002/cbdv.201100019
https://doi.org/10.1098/rstb.2010.0390
https://doi.org/10.4067/S0718-58392011000200006
https://doi.org/10.1146/annurev.en.39.010194.002421
https://doi.org/10.3390/agriculture8010013
https://doi.org/10.21307/jofnem-2019-030
https://doi.org/10.3329/jbcbm.v4i2.39843
https://doi.org/10.1080/09670874.2015.1016135
https://doi.org/10.1007/s13593-019-0583-1
https://doi.org/10.4236/ajps.2013.44107
https://doi.org/10.1111/j.1365-2338.2007.01112.x
https://doi.org/10.4172/2329-8863.1000230
https://doi.org/10.3390/molecules24020359
https://doi.org/10.1515/znc-2011-3-406
https://doi.org/10.4102/koedoe.v46i2.54
https://doi.org/10.1080/14620316.2011.11512748
https://doi.org/10.2307/4118710
https://doi.org/10.1016/j.indcrop.2017.08.021
https://doi.org/10.1002/pan3.31
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/agronomy#articles


Uyi et al. Insecticidal Activities of Alien Plants

Henderson, L. (2007). Invasive, naturalized and casual alien plants in southern
Africa: a summary based on the Southern African Plant Invaders Atlas
(SAPIA). Bothalia 37, 215–248. doi: 10.4102/abc.v37i2.322

Henderson, L., and Cilliers, C. J. (2002). Invasive Aquatic Plants, Plant

Protection Research Institute Handbook No. 16. Pretoria: Agricultural Research
Council, 1–88.

Hoffmann, B. D., and Broadhurst, L. M. (2016). The economic cost
of managing invasive species in 320 Australia. NeoBiota 31, 1–18.
doi: 10.3897/neobiota.31.6960

Ingle, K. P., Deshmukh, A. G., Padole, D. A., Dudhare, M. S., Moharil, M. P., and
Khelurkar, V. C. (2017). Screening of insecticidal activity of Jatropha Curcas

(L.) against diamond back moth and Helicoverpa Armigera. J. Entomol. Zool.

Stud. 5, 44–50.
Isman, M. B. (2006). Botanical insecticides in an increasingly regulated world.

Annu. Rev. Entomol. 51, 45–66. doi: 10.1146/annurev.ento.51.110104.151146
Isman, M. B. (2008). Perspective botanical insecticides: for richer, for poorer. Pest

Manag. Sci. 64, 8–11. doi: 10.1002/ps.1470
Isman, M. B. (2015). A renaissance for botanical insecticides? Pest Manag. Sci. 71,

1587–1590. doi: 10.1002/ps.4088
Isman, M. B., and Grieneisen, M. L. (2014). Botanical insecticide research:

many publications, limited useful data. Trends Plant Sci. 19, 140–145.
doi: 10.1016/j.tplants.2013.11.005

Ito, E. E., Nmor, J. C., Ake, J. E. G., and Utebor, K. (2015). Larvicidal activity of
Pistia stratiotes (Water Lettuce) against Larvae of Aedes aegypti. Adv. Res. 3,
589–595. doi: 10.9734/AIR/2015/13667

Ivase, T. J.-P., Nyakuma, B. B., Ogenyi, B. U., Balogun, A. D., and Hassan, M. N.
(2017). Current status, challenges, and prospects of biopesticide utilization in
Nigeria. Agric. Environ. 9, 95–106. doi: 10.1515/ausae-2017-0009

Jaya, P. S., Prakash, B., and Dubey, N.K. (2014). Insecticidal activity of Ageratum
conyzoides L.,Coleus aromaticus Benth. andHyptis suaveolens (L.) Poit essential
oils as fumigant against storage grain insect Tribolium castaneum Herbst. J.
Food Sci. Technol. 51, 2210–2215. doi: 10.1007/s13197-012-0698-8

Kamanula, J. F., Belmain, S. R., Hall, D. R., Farman, D. I., Goyder, D. J., Mvumi, B.
M., et al. (2017). Chemical variation and insecticidal activity of Lippia javanica
(Burm. F.) Spreng essential oil against Sitophilus zeamais Motschulsky. Industr.
Crops Prod. 110, 75–82. doi: 10.1016/j.indcrop.2017.06.036

Kankam, F. (2021). Causes and management of pesticides contamination in
agriculture: a review. Ghana J. Sci. 7:2. doi: 10.47881/265.967x

Khan, I., and Qamar, A. (2015a). Comparative bioefficacy of selected plant
extracts and some commercial biopesticides against important household pest,
Periplaneta americana. J. Entomol. Zool. Stud. 3, 219–224.

Khan, I., and Qamar, A. (2015b). Evaluation of antifeedant and larvicidal activity
of some commercial biopesticides and plant extracts on Rice Moth, Corcyra
cephalonica (Stainton). Eur. J. Exp. Biol. 5, 61–68.

Khayatnezhad, M., and Nasehi, F. (2021). Industrial pesticides and a methods
assessment for the reduction of associated risks: a review. Adv. Life Sci.

8, 202–210.
Kiran, B. R., and Prasad, M. N. V. (2017). Ricinus communis L.

(Castor bean), a potential multi-purpose environmental crop for
improved and integrated phytoremediation. EuroBiotech J. 1, 101–116.
doi: 10.24190/ISSN2564-615X/2017/02.01

Klein, H. (2011). A catalogue of the insects, mites and pathogens that have
been used or rejected, or are under consideration, for the biological
control of invasive alien plants in South Africa. Afr. Entomol. 19, 515–549.
doi: 10.4001/003.019.0214

Kolev, S. T., Leman, P., Kite, G. C., Stevenson, P. C., Shaw, D., and
Murray, V. S. G. (1996). Toxicity following accidental ingestion of
Aconitum containing Chinese remedy. Hum. Exp. Toxicol. 15, 839–842.
doi: 10.1177/096032719601501008

Kumar, S., Nair, G., Singh, A. P., Batra, S., Wahab, N., and Warikoo, R. (2012).
Evaluation of the larvicidal efficiency of stem, roots and leaves of the weed,
Parthenium hysterophorus (Family: Asteraceae) against Aedes aegypti. Asian
Pacific J. Trop. Dis. 2, 395–400. doi: 10.1016/S2222-1808(12)60086-3

Kumar, S., and Singh, A. (2015). Biopesticides: present status and the future
prospects. J. Fertilizers Pesticides 6:2. doi: 10.4172/2471-2728.1000e129

Kumar, S. D., Masarrat, H., and Muntaha, Q. (2012). Comparative potential
of different botanicals and synthetic insecticides and their economics

against Leucinodes orbonalis in eggplant. J. Plant Protect. Res. 52, 35–39.
doi: 10.2478/v10045-012-0006-7

Lawal, O. A., Opoku, A. R., and Ogunwande, I. A. (2015). Phytoconstituents and
insecticidal activity of different solvent leaf extracts of Chromolaena odorata L.,
against Sitophilus zeamais (Coleoptera: Curculionidae). Eur. J. Med. Plants 5,
237–247. doi: 10.9734/EJMP/2015/6739

Litt, A. R., Cord, E. E., Fulbright, T. E., and Shuster, G. L. (2014). Effects of invasive
plants on arthropods. Conserv. Biol. 28, 1532–1549. doi: 10.1111/cobi.12350

Liu, X. C., and Liu, Z. L. (2014). Evaluation of larvicidal activity of the essential oil
of Ageratum conyzoides L. aerial parts and its major constituents against Aedes
albopictus. J. Entomol. Zool. Stud. 2, 345–350.

Macdonald, A. W., Reaser, J. K., Bright, C., Neville, L. E., Howard, G. W., Murphy,
S. J., et al. (2003). Invasive Alien Species in South Africa: National Reports and

Directory of Resources. GISP, Cape Town, SA.
Marais, C., vanWilgen, B.W., and Stevens, D. (2004). The clearing of invasive alien

plants in South Africa: a preliminary assessment of costs and progress. S. Afr. J.
Sci. 100, 97–103.

Marrone, P. G. (2014). “The market and potential for biopesticides, in
Biopesticides: State of the Art and Future Opportunities,” in ACS Symposium

Series, Vol. 1172, eds A. D. Gross, J. R. Coats, S. O. Duke, and J. N. Seiber
(Washington, DC: American Chemical Society), 245–258.

Marrone, P. G. (2019). Pesticidal natural products – status and future potential.
Pest Manag. Sci. 75, 2325–2340. doi: 10.1002/ps.5433

McConnachie, A. J., Strathie, L. W., Mersie, W., Gebrehiwot, L., Zewdie, K.,
Abdurehim, A., et al. (2010). Current and potential geographical distribution
of the invasive plant Parthenium hysterophorus (Asteraceae) in eastern and
southern Africa.Weed Res. 51, 71–84. doi: 10.1111/j.1365-3180.2010.00820.x

Midega, C. A. O., Murage, A. W., Pittchar, J. O., and Khan, Z. R. (2016). Managing
storage pests ofmaize Farmers’ knowledge, perceptions and practices in western
Kenya. Crop Prot. 90, 142–149. doi: 10.1016/j.cropro.2016.08.033

Mkenda, P. A., Mwanauta, R., Stevenson, P. C., Ndakidemi, P., Mtei, K., and
Belmain, S. R. (2015). Field margin weeds provide economically viable and
environmentally benign pest control compared to synthetic pesticides. PLoS
ONE 10:e0143530. doi: 10.1371/journal.pone.0143530

Mkindi, A., Mpumi, N., Tembo, Y., Stevenson, P. C., Ndakidemi, P. A., Mtei, K.,
et al. (2017). Invasive weeds with pesticidal properties as potential new crops.
Ind. Crops Prod. 110, 113–122. doi: 10.1016/j.indcrop.2017.06.002

Mogg, C., Petit, P., Cappuccino, N., Durst, T., McKague, C., Foster, M., et al.
(2008). Tests of the antibiotic properties of the invasive vine Vincetoxicum

rossicum against bacteria, fungi and insects. Biochem. Syst. Ecol. 36, 383–391.
doi: 10.1016/j.bse.2008.01.001

Moreira, D. M., Picanço, C. M., Barbosa, L. C. A., Guedes, R. N. C., and
Silver, E. M. (2004). Toxicity of leaf extracts of Ageratum conyzoides to
Lepidoptera pests of horticultural crops. Biol. Agric. Hortic. 22, 251–260.
doi: 10.1080/01448765.2004.9755288

Moreira, M. D., Picanco, M. C., and Barbosa, L. C. (2007a). Compounds from
Ageratum conyzoides: isolation, structural elucidation, and insecticidal activity.
Pest Manag. Sci. 63, 615–621. doi: 10.1002/ps.1376

Moreira, M. D., Picanço, M. C., Barbosa, L. C., Guedes, R. N. C., de Campos,
R., Silva, G. A., et al. (2007b). Plant compounds insecticide activity against
Coleoptera pests of stored products. Pesq. Agropec. Bras. Brasília 42, 909–915.
doi: 10.1590/S0100-204X2007000700001

Morokong, T., Blignaut, J., Nkambule, N., Mudhavanhu, S., and Vundla, T. (2016).
Clearing invasive alien plants as a cost-effective strategy for water catchment
management: the case of the Olifants river catchment, South Africa. South Afr.

J. Econ. Manage. Sci. 19, 774–787. doi: 10.4102/sajems.v19i5.1594
Mostert, E., Gaertner, M., Holmes, P. M., Rebelo, A. G., and Richardson, D. M.

(2017). Impacts of invasive alien trees on threatened lowland vegetation types
in the Cape Floristic Region, South Africa. South Afr. J. Bot. 108, 209–222.
doi: 10.1016/j.sajb.2016.10.014

Mugisha-Kamatenesi, M., Deng, A. L., Ogendo, J. O., Omolo, E. O., Mihale, M.
J., Otim, M., et al. (2008). Indigenous knowledge of field insect pests and
their management around Lake Victoria Basin in Uganda. Afr. J. Environ. Sci.
Technol. 2, 342–348.

Mugwedi, L. (2020). Harnessing opportunities provided by the invasive
Chromolaena odorata to keep it under control. Sustainability 12:6505.
doi: 10.3390/su12166505

Frontiers in Agronomy | www.frontiersin.org 22 September 2021 | Volume 3 | Article 725895119

https://doi.org/10.4102/abc.v37i2.322
https://doi.org/10.3897/neobiota.31.6960
https://doi.org/10.1146/annurev.ento.51.110104.151146
https://doi.org/10.1002/ps.1470
https://doi.org/10.1002/ps.4088
https://doi.org/10.1016/j.tplants.2013.11.005
https://doi.org/10.9734/AIR/2015/13667
https://doi.org/10.1515/ausae-2017-0009
https://doi.org/10.1007/s13197-012-0698-8
https://doi.org/10.1016/j.indcrop.2017.06.036
https://doi.org/10.47881/265.967x
https://doi.org/10.24190/ISSN2564-615X/2017/02.01
https://doi.org/10.4001/003.019.0214
https://doi.org/10.1177/096032719601501008
https://doi.org/10.1016/S2222-1808(12)60086-3
https://doi.org/10.4172/2471-2728.1000e129
https://doi.org/10.2478/v10045-012-0006-7
https://doi.org/10.9734/EJMP/2015/6739
https://doi.org/10.1111/cobi.12350
https://doi.org/10.1002/ps.5433
https://doi.org/10.1111/j.1365-3180.2010.00820.x
https://doi.org/10.1016/j.cropro.2016.08.033
https://doi.org/10.1371/journal.pone.0143530
https://doi.org/10.1016/j.indcrop.2017.06.002
https://doi.org/10.1016/j.bse.2008.01.001
https://doi.org/10.1080/01448765.2004.9755288
https://doi.org/10.1002/ps.1376
https://doi.org/10.1590/S0100-204X2007000700001
https://doi.org/10.4102/sajems.v19i5.1594
https://doi.org/10.1016/j.sajb.2016.10.014
https://doi.org/10.3390/su12166505
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/agronomy#articles


Uyi et al. Insecticidal Activities of Alien Plants

Mukwevho, L., and Mphephu, T. E. (2020). The role of the flower-galling
mite, Aceria lantanae, in integrated control of the light pink 163LP
variety of Lantana camara (L.) in South Africa. Biol. Control 49:104309.
doi: 10.1016/j.biocontrol.2020.104309

Mukwevho, L., Olckers, T., and Simelane, D. O. (2018). Occurrence of different
Lantana camara varieties across four South African provinces and their
susceptibility to a biotype of the gall-forming mite Aceria lantanae. Biocontrol
Sci. Technol. 28, 377–387. doi: 10.1080/09583157.2018.1450490

Mulè, R., Sabella, G., Robba, L., and Manachini, B. (2017). A systematic review of
the effects of chemical insecticides on four common butterfly families. Front.
Environ. Sci. 5:32. doi: 10.3389/fenvs.2017.00032

Muniappan, R., Reddy, G., and Lai, P. Y. (2005). “Distribution and biological
control of Chromolaena odorata,” in Invasive Plants: Ecological and Agricultural
Aspects, ed Inderjit (Basel: Birkhäuser), 223–233.

Mwine, J., Pvan, D., Kamoga, G., Kudamba, P., Nasuuna, M., and Jumba, F. (2011).
Ethnobotanical survey of pesticidal plants used in South Uganda: case study of
Masaka district. J. Med. Plants Res. 5, 1155–1163.

Negussie, A., Nacro, S., Achten, W. J., Norgrove, L., Kenis, M., Hadgu,
K., et al. (2014). Insufficient evidence of Jatropha curcas L. Invasiveness:
experimental observations in Burkina Faso,West Africa. BioEnergy Res. 8, 1–11.
doi: 10.1007/s12155-014-9544-3

Neuwinger, H. D. (2004). Plants used for poison fishing in tropical Africa. Toxicon
44, 417–430. doi: 10.1016/j.toxicon.2004.05.014

Ngorima, A., and Shackleton, C. M. (2019). Livelihood benefits and costs
from an invasive alien tree (Acacia dealbata) to rural communities
in the Eastern Cape, South Africa. J. Environ. Manage. 229, 158–165.
doi: 10.1016/j.jenvman.2018.05.077

Nia, B., Frash, A., and Azou, I. (2015). Insecticidal activity of three plants extracts
against Myzus persicae (Sulzer, 1776) and their phytochemical screening. Acta
Agric. Slov. 105, 261–267. doi: 10.14720/aas.2015.105.2.09

Nwauzoma, A. B., and Dappa, M. S. (2013). Ethnobotanical studies
of Port Harcourt metropolis, Nigeria. ISRN Bot. 2013:829424.
doi: 10.1155/2013/829424

Nyirenda, S. P. N., Sileshi, G., Belmain, S. R., Kamanula, J. F., Mvumi, B., Sola, P.,
et al. (2011). Farmers’ ethno-Ecological knowledge of vegetable pests and their
management using pesticidal plants in northern Malawi and eastern Zambia.
Afr. J. Agric. Res. 6, 1525–1537.

Obembe, O. M., and Kayode, J. (2013). Insecticidal activity of the aqueous
extracts of four under-utilized tropical plants as protectant of cowpea seeds
from Callosobruchus maculatus infestation. Pakistan J. Biol. Sci. 16, 175–179.
doi: 10.3923/pjbs.2013.175.179

Obiakara, M. C., and Fourcade, Y. (2018). Climatic niche and potential distribution
of Tithonia diversifolia (Hemsl.) A. Gray in Africa. PLoS ONE 13:9e0202421.
doi: 10.1371/journal.pone.0202421

O’Connor, T. G., and van Wilgen, B. W. (2020). “The impact of invasive alien
plants on rangelands in South Africa,” in Biological Invasions in South Africa.

Invading Nature - Springer Series in Invasion Ecology, Vol. 14, eds B. van
Wilgen, J. Measey, D. Richardson, J. Wilson, T. Zengeya (Cham: Springer),
459–487.

Oliveira, G. L. S., Oliveira, F. R. A. M., de Alencar,. M. V. O. B., Junior, A.
L. G., de Souza, A. A., Cavalcante, A. A. C. M., et al. (2014). Evaluation of
antioxidant capacity of the aqueous extract of Cynara scolymus L. (Asteraceae)
in vitro and in Saccharomyces cerevisiae. Afr. J. Pharm. Pharmacol. 8, 136–147.
doi: 10.5897/AJPP2013.3836

Omokhua, A. G., Abdalla, M. A., Van Staden, J., and McGaw, L. J. (2018a).
A comprehensive study of the potential phytomedicinal use and toxicity of
invasive Tithonia species in South Africa. BMC Complement. Altern. Med.

18:272. doi: 10.1186/s12906-018-2336-0
Omokhua, A. G., Madikizela, A., Aro, A., Uyi, O. O., Van Staden, J., and McGaw,

L. J. (2018b). Noxious to ecosystems, but relevant to pharmacology: four South
African alien invasive plants with pharmacological potential. South Afr. J. Bot.

117, 41–49. doi: 10.1016/j.sajb.2018.04.015
Omokhua, A. G., McGaw, L. J., Finnie, J. F., and Van Staden, J. (2016).

Chromolaena odorata (L.) R.M. King and H. Rob. (Asteraceae) in sub-Saharan
Africa: a synthesis and review of its medicinal potential. J. Ethnopharmacol. 183,
112–122. doi: 10.1016/j.jep.2015.04.057

Opuba, S. K., Adetimehin, A. D., Iloba, B. N., and Uyi, O. O. (2018).
Insecticidal and anti-ovipositional activities of the leaf powder of Jatropha

curcas (L.) (Euphorbiaceae) against Callosobruchus maculatus (F.) (Coleoptera:
Chrysomelidae). Anim. Res. Int. 15, 2971–2978.

Padín, S. B., Fusé, C., Urrutia, M. I., and Dal Bello, G. M. (2013). Toxicity and
repellency of nine medicinal plants against Tribolium castaneum in stored. Bull.
Insectol. 66, 45–49.

Park, M. J., Cho, S. E., Wolcan, S., and Shin, H. D. (2012). First report of powdery
mildew caused by Erysiphe betae on the invasive weed Dysphania ambrosioides

in Korea. Plant Dis. 96, 592–596. doi: 10.1094/PDIS-11-11-1003
Phillips, T. W., and Throne, J. E. (2010). Biorational approaches to

managing stored-product insects. Annu. Rev. Entomol. 55, 375–397.
doi: 10.1146/annurev.ento.54.110807.090451

Pimentel, D. (1995). Amounts of pesticides reaching target pests: environmental
impacts and ethics. J. Agric. Environ. Ethics 8, 17–29. doi: 10.1007/BF02286399

Radtke, A., Ambra, S., Zerbe, S., Tonon, G., Fontana, V., and Ammer, C.
(2013). Traditional coppice forest management drives the invasion ofAilanthus
altissima and Robinia pseudoacacia into deciduous forests. For. Ecol. Manage.

291, 308–317. doi: 10.1016/j.foreco.2012.11.022
Rajashekar, Y., Ravindra, K. V., and Bakthavatsalam, N. (2014). Leaves of Lantana

camara Linn. (Verbenaceae) as a potential insecticide for the management of
three species of stored grain insect pests. J. Food Sci. Technol. 51, 3494–3499.
doi: 10.1007/s13197-012-0884-8

Reddy, S. G. E., Dolma, S. K., Verma, P. K., and Singh, B. (2018). Insecticidal
activities of Parthenium hysterophorus L. extract and parthenin against
diamondback moth, Plutella xylostella (L.) and aphid, Aphis craccivora Koch.
Toxin Rev. 37, 161–165. doi: 10.1080/15569543.2017.1339281

Remia, K. M., and Logaswamy, S. (2010). Larvicidal efficacy of leaf extract of
two botanicals against the mosquito vector Aedes aegypti (Diptera: Culicidae).
Indian J. Nat. Prod. Resour. 1, 208–212.

REX consortium (2010). The skill and style to model the evolution
of resistance to pesticides and drugs. Evol. Appl. 3, 375–390.
doi: 10.1111/j.1752-4571.2010.00124.x

Ribeiro, S. S., Silva, T. B., Moraes, V. R. S., and Nogueira, P. C. L. (2012).
Chemical constituents of methanolic extracts of Jatropha curcas L and effects
on Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Quim. Nova

35, 2218–2221. doi: 10.1590/S0100-40422012001100022
Richardson, D. M., and Pyšek, P. (2012). Naturalization of introduced plants:

ecological drivers of biogeographical patterns. New Phytol. 196, 383–396.
doi: 10.1111/j.1469-8137.2012.04292.x

Richardson, D. M., and van Wilgen, B. W. (2004). Invasive alien plants in South
Africa: how well do we understand the ecological impacts? S. Afr. J. Sci.

100, 45–52.
Rioba, N. B., and Stevenson, P. C. (2017). Ageratum conyzoides L. for the

management of pests and diseases by small holder farmers. Industr. Crops Prod.
110, 22–29. doi: 10.1016/j.indcrop.2017.06.068

Sangavi, R., and Johnson Thangaraj Edward, Y. S. (2017). Anti-Insect activities of
plant extracts on the diamondback moth, Plutella xylostella (L.). Int. J. Curr.
Microbiol. Appl. Sci. 6, 28–39. doi: 10.20546/ijcmas.2017.612.004

Sasson, A. (2012). Food security for Africa: an urgent global challenge. Agric. Food
Secur. 1:2. doi: 10.1186/2048-7010-1-2

Saxena, R., and Sharma, A. K. (2005). Insecticidal potentialities of Ageratum

conyzoides and Nerium indicum leaves extracts against Epilachna 28-punctata

(F.). Vegetos 18, 43–45.
Scapinello, J., de Oliveira, J. V., Chiaradia, L. A., Tomazelli Junior, O.,

Niero, R., and Magro, J. D. (2014). Insecticidal and growth inhibiting
action of the supercritical extracts of Melia azedarach on Spodoptera

frugiperda. Rev. Brasil. Engenharia Agrícola Ambiental 18, 866–872.
doi: 10.1590/1807-1929/agriambi.v18n08p866-872

Seiber, J. N., Coats, J., Duke, S. O., and Gross, A. D. (2014). Biopesticides: state
of the art and future opportunities. J. Agric. Food Chem. 62, 11613–11619.
doi: 10.1021/jf504252n

Selvaraj, M., and Mosses, M. (2011). Efficacy of Melia azedarach on the larvae of
three mosquito species Anopheles stephensi, Culex quinquefasciatus and Aedes

aegypti (Diptera: Culicidae). Eur. Mosquito Bull. 29, 116–121.
Sexana, R. C., Dixit, P., and Harshan, V. (1992). Insecticidal action of Lantana

camara against Callosobruchus chinensis (Coleoptera: Bruchidae). J. Stored
Prod. Res. 28, 279–281. doi: 10.1016/0022-474X(92)90009-F

Shackleton, C., McGarry, D., Fourie, S., Gambiza, J., Shackleton, S., and Fabricius,
C. (2007). Assessing the effects of invasive alien species on rural livelihoods:

Frontiers in Agronomy | www.frontiersin.org 23 September 2021 | Volume 3 | Article 725895120

https://doi.org/10.1016/j.biocontrol.2020.104309
https://doi.org/10.1080/09583157.2018.1450490
https://doi.org/10.3389/fenvs.2017.00032
https://doi.org/10.1007/s12155-014-9544-3
https://doi.org/10.1016/j.toxicon.2004.05.014
https://doi.org/10.1016/j.jenvman.2018.05.077
https://doi.org/10.14720/aas.2015.105.2.09
https://doi.org/10.1155/2013/829424
https://doi.org/10.3923/pjbs.2013.175.179
https://doi.org/10.1371/journal.pone.0202421
https://doi.org/10.5897/AJPP2013.3836
https://doi.org/10.1186/s12906-018-2336-0
https://doi.org/10.1016/j.sajb.2018.04.015
https://doi.org/10.1016/j.jep.2015.04.057
https://doi.org/10.1094/PDIS-11-11-1003
https://doi.org/10.1146/annurev.ento.54.110807.090451
https://doi.org/10.1007/BF02286399
https://doi.org/10.1016/j.foreco.2012.11.022
https://doi.org/10.1007/s13197-012-0884-8
https://doi.org/10.1080/15569543.2017.1339281
https://doi.org/10.1111/j.1752-4571.2010.00124.x
https://doi.org/10.1590/S0100-40422012001100022
https://doi.org/10.1111/j.1469-8137.2012.04292.x
https://doi.org/10.1016/j.indcrop.2017.06.068
https://doi.org/10.20546/ijcmas.2017.612.004
https://doi.org/10.1186/2048-7010-1-2
https://doi.org/10.1590/1807-1929/agriambi.v18n08p866-872
https://doi.org/10.1021/jf504252n
https://doi.org/10.1016/0022-474X(92)90009-F
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/agronomy#articles


Uyi et al. Insecticidal Activities of Alien Plants

case examples and a framework from South Africa. Hum. Ecol. 35, 113–127.
doi: 10.1007/s10745-006-9095-0

Shackleton, R. T., Shackleton, C. M., and Kull, C. A. (2018). The role of
invasive alien species in shaping local livelihoods and human well-being:
a review. J. Environ. Manage. 229, 145–157. doi: 10.1016/j.jenvman.2018.
05.007

Shackleton, R. T., Witt, A. B., Aool, W., and Pratt, C. F. (2017). Distribution
of the invasive alien weed, Lantana camara, and its ecological and
livelihood impacts in eastern Africa. Afr. J. Range Forage Sci. 34, 1–11.
doi: 10.2989/10220119.2017.1301551

Stevensona, P. C., Isman, M. B., and Belmain, S. R. (2017). Pesticidal plants in
Africa: a global vision of new biological control products from local uses. Ind.
Crops Prod. 110, 2–9. doi: 10.1016/j.indcrop.2017.08.034

Sukhthankar, J. H., Kumar, H., Godinho, M. H. S., and Ashwani, K. (2014).
Larvicidal activity of methanolic leaf extracts of plant, Chromolaena odorata

L. (Asteraceae) against vector mosquitoes. Int. J. Mosquito Res. 1, 33–38.
Taye,W., Asefa,W., andWoldu, M. (2014). Insecticidal activity of Lantana camara

on maize weevils (Sitophilus zeamaisMotsch.). Int. J. Res. Agric. Sci. 1, 43–46.
Taylor, S., Kumar, L., Reid, N., and Kriticos, D. J. (2012). Climate change and

the potential distribution of an invasive shrub, Lantana camara L. PLoS ONE

7:e35565. doi: 10.1371/journal.pone.0035565
Tererai, F., and Wood, A. R. (2014). On the present and potential distribution

of Ageratina adenophora (Asteraceae) in South Africa. South Afr. J. Bot. 95,
152–158. doi: 10.1016/j.sajb.2014.09.001

Tesfu, F., and Emana, G. (2013). Evaluation of Parthenium hysterophorus

L. powder against Callosobruchus chinensis L. (Coleoptera: Bruchidae) on
chickpea under laboratory conditions. Afr. J. Agric. Res. 8, 5405–5410.

Theiling, K. M., and Croft, B. A. (1988). Pesticide side-effects on arthropod
natural enemies: a database summary. Agric. Ecosyst. Environ. 21, 191–218.
doi: 10.1016/0167-8809(88)90088-6

Tounou, A. K., Mawussi, G., and Amadou, S. (2011). Bio-insecticidal effects
of plant extracts and oil emulsions of Ricinus communis L. (Malpighiales:
Euphorbiaceae) on the diamondback, Plutella xylostella L. (Lepidoptera:
Plutellidae) under laboratory and semi- field conditions. J. Appl. Biosci. 43,
2899–2914.

Udebuani, A. C., Abara, P. C., Obasi, K. O., and Okuh, S. U. (2015). Studies on the
insecticidal properties of Chromolaena odorata (Asteraceae) against adult stage
of Periplaneta americana. J. Entomol. Zool. Stud. 3, 318–321.

Uyi, O. O. (2020). Mimosa diplotricha: a review and synthesis of its problem and
control options. CAB Rev. 15:14. doi: 10.1079/PAVSNNR202015014

Uyi, O. O., and Adetimehin, A. D. (2018). Efficacy of the stem powder
of an invasive alien plant, Chromolaena odorata (L) (Asteraceae) against
Callosobruchus maculatus (Fab.) (Coleoptera: Chrysomelidae). J. Appl. Sci.
Environ. Manage. 22, 379–385. doi: 10.4314/jasem.v22i3.15

Uyi, O. O., Adetimehin, A. D., and Ogu, O. P. (2018a). Repellent and
insecticidal activities of the root extracts of Chromolaena odorata and
Mimosa diplotricha against Macrotermes species. J. Entomol. 15, 135–142.
doi: 10.3923/je.2018.135.142

Uyi, O. O., Adetimehin, A. D., Uyamasi, E. E., and Ejomah, A. J. (2018b).
Insecticidal activities of the leaf powders of Chromolaena odorata and Mimosa

diplotricha against the common bed bug, Cimex lectularius (L.). Int. J. Zool. Res.
14, 37–42. doi: 10.3923/ijzr.2018.37.42

Uyi, O. O., and Igbinoba, O. G. (2016). Repellence and toxicological activity of the
root powder of an invasive alien plant, Chromolaena odorata (L.) (Asteraceae)
against Callosobruchus maculatus (Fab.) (Coleoptera: Chrysomelidae). Anim.

Res. Int. 13, 2510–2517.
Uyi, O. O., and Obi, B. N. (2017). The evaluation of the repellent and insecticidal

activities of the leaf, stem and root powders of Siam weed (Chromolaena

odorata) against the cowpea beetle, Callosobruchus maculatus. J. Appl. Sci.

Environ. Manage. 21, 511–518. doi: 10.4314/jasem.v21i3.12
Uyi, O. O., Udeogwu, C. C., and Rotimi, J. (2020). Phytochemical constituents

and insecticidal efficacy of the root and leaf powders of Mimosa

diplotricha and Aspilia africana against Callosobruchus maculatus (Fab.)
(Coleoptera: Chrysomelidae). J. Appl. Sci. Environ. Manage. 24, 645–652.
doi: 10.4314/jasem.v24i4.16

Valone, T. J., and Weyers, D. P. (2019). Invasion intensity influences scale-
dependent effects of an exotic species on native plant diversity. Sci. Rep. 9:18769.
doi: 10.1038/s41598-019-55165-z

Van der Westhuizen, L., and Mpedi, P. (2011). The Initiation of
a biological control programme Against Argemone mexicana L.
and Argemone ochroleuca Sweet subsp. ochroleuca (Papaveraceae)
in South Africa. Afr. Entomol. 19, 223–229. doi: 10.4001/003.01
9.0226

Van Hengstum, T., Hooftman, D. A. P., Oostermeijer, J. G. B., and van Tienderen,
P. H. (2013). Impact of plant invasions on local arthropod communities: a
meta-analysis. J. Ecol. 102, 4–11. doi: 10.1111/1365-2745.12176

VanWilgen, B. W., and Lange, W. J. D. (2011). The costs and benefits of biological
control of invasive alien plants in South Africa. Afr. Entomol. 19, 504–514.
doi: 10.4001/003.019.0228

von Weizsäckerl, P. (1995). The yield of weeds. ILEIA Newslett. 11, 6–7.
Waweru, W. R., Wambugu, F. K., and Mbabazi, R. (2017). Bioactivity of Jacaranda

mimosifolia and Bougainvillea spectabilis leaves powder againstAcanthoscelides
obtectus. J. Entomol. Zool. Stud. 5, 110–112.

Witt, A., Beale, T., and vanWilgen, B.W. (2018). An assessment of the distribution
and potential ecological impacts of invasive alien plant species in eastern Africa.
Transac. R. Soc. South Afr. 73, 217–236. doi: 10.1080/0035919X.2018.1529003

Witt, A., and Luke, Q. (Eds.). (2017). Guide to the Naturalized and Invasive Plants

of Eastern Africa. Wallingford: CABI. Available online at: http://www.cabi.org/
cabebooks/ebook/20173158959

Witt, A. B. R., Shackleton, R. T., Beale, T., Nunda, W., and Van Wilgen, B. W.
(2019). Distribution of invasive alien Tithonia (Asteraceae) species in eastern
and southern Africa and the socio-ecological impacts of Tithonia diversifolia in
Zambia. Bothalia 49:a2356. doi: 10.4102/abc.v49i1.2356

Xu, R.,Wu, D., Zhang,W. D., Yin, F., and Kuang, R. P. (2009). Efficacy ofAgeratina
adenophora extract and biogas fermentation residue against the cabbage aphid,
Brevicoryne brassicae and an assessment of the risk to the parasitoidDiaeretiella
rapae. Int. J. Pest Manage. 55, 151–156. doi: 10.1080/09670870802604062

Yuan, Z., and Hu, X. P. (2012). Repellent, antifeedant, and toxic activities
of Lantana camara leaf extract against Reticulitermes flavipes (Isoptera:
Rhinotermitidae). J. Econ. Entomol. 105, 2115–2121 doi: 10.1603/EC12026

Zachariades, C., Hoffmann, J. H., and Roberts, A. P. (2011a). Biological control
of Mesquite (Prosopis species) (Fabaceae) in South Africa. Afr. Entomol. 19,
402–415. doi: 10.4001/003.019.0230

Zachariades, C., Strathie, L. W., Retief, E., and Dube, N. (2011b). Progress
towards the biological control of Chromolaena odorata (L.) R.M.King
and H.Rob. (Asteraceae) in South Africa. Afr. Entomol. 19, 282–302.
doi: 10.4001/003.019.0229

Zapata, N., Budia, F., Vinuela, E., and Medina, P. (2006). Insecticidal effects
of various concentrations of selected extractions of Cestrum parquion

adult and immature Ceratitis capitata. J. Econ. Entomol. 99, 359–365.
doi: 10.1093/jee/99.2.359

Zerihun, M., and Ele, E. (2018). Insecticidal activities of leaf, seed and stem bark
extracts of Prosopis juliflora against the cotton aphid (Aphis Gossypii). Acad.
Res. J. Agric. Sci. Res. 6, 202–221.

Zoubiri, S., and Baaliouamer, A. (2012). Chemical composition and insecticidal
properties of Lantana camara L. leaf essential oils from Algeria. J. Essential Oil
Res. 24, 377–383. doi: 10.1080/10412905.2012.692910

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Uyi, Mukwevho, Ejomah and Toews. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Agronomy | www.frontiersin.org 24 September 2021 | Volume 3 | Article 725895121

https://doi.org/10.1007/s10745-006-9095-0
https://doi.org/10.1016/j.jenvman.2018.05.007
https://doi.org/10.2989/10220119.2017.1301551
https://doi.org/10.1016/j.indcrop.2017.08.034
https://doi.org/10.1371/journal.pone.0035565
https://doi.org/10.1016/j.sajb.2014.09.001
https://doi.org/10.1016/0167-8809(88)90088-6
https://doi.org/10.1079/PAVSNNR202015014
https://doi.org/10.4314/jasem.v22i3.15
https://doi.org/10.3923/je.2018.135.142
https://doi.org/10.3923/ijzr.2018.37.42
https://doi.org/10.4314/jasem.v21i3.12
https://doi.org/10.4314/jasem.v24i4.16
https://doi.org/10.1038/s41598-019-55165-z
https://doi.org/10.4001/003.019.0226
https://doi.org/10.1111/1365-2745.12176
https://doi.org/10.4001/003.019.0228
https://doi.org/10.1080/0035919X.2018.1529003
http://www.cabi.org/cabebooks/ebook/20173158959
http://www.cabi.org/cabebooks/ebook/20173158959
https://doi.org/10.4102/abc.v49i1.2356
https://doi.org/10.1080/09670870802604062
https://doi.org/10.1603/EC12026
https://doi.org/10.4001/003.019.0230
https://doi.org/10.4001/003.019.0229
https://doi.org/10.1093/jee/99.2.359
https://doi.org/10.1080/10412905.2012.692910
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/agronomy#articles


fpls-13-798259 March 12, 2022 Time: 11:5 # 1

ORIGINAL RESEARCH
published: 09 March 2022

doi: 10.3389/fpls.2022.798259

Edited by:
Massimo Lucarini,

Council for Agricultural Research
and Economics, Italy

Reviewed by:
Guadalupe Virginia
Nevárez-Moorillón,

Autonomous University of Chihuahua,
Mexico

Ahmed Abouelatta,
Agricultural Research Center, Egypt

Negero Gemeda Negeri,
Ethiopian Public Health Institute,

Ethiopia

*Correspondence:
Allali Aimad

aimad.allali@uit.ac.ma
Mohammed Bourhia

bourhiamohammed@gmail.com
Ahmad Mohammad Salamatullah

asalamh@ksu.edu.sa

Specialty section:
This article was submitted to

Plant Metabolism
and Chemodiversity,

a section of the journal
Frontiers in Plant Science

Received: 19 October 2021
Accepted: 15 February 2022

Published: 09 March 2022

Citation:
Aimad A, Youness EA, Sanae R,

El Moussaoui A, Bourhia M,
Mohammad Salamatullah A,

Alzahrani A, Khalil Alyahya H,
A. Albadr N, Nafidi H-A, Ouahmane L

and Mohamed F (2022) Chemical
Composition and Antifungal,

Insecticidal and Repellent Activity
of Essential Oils From Origanum

compactum Benth. Used
in the Mediterranean Diet.

Front. Plant Sci. 13:798259.
doi: 10.3389/fpls.2022.798259

Chemical Composition and
Antifungal, Insecticidal and Repellent
Activity of Essential Oils From
Origanum compactum Benth. Used
in the Mediterranean Diet
Allali Aimad1* , El Abdali Youness2, Rezouki Sanae1, Abdelfattah El Moussaoui2,
Mohammed Bourhia3* , Ahmad Mohammad Salamatullah4* , Abdulhakeem Alzahrani4,
Heba Khalil Alyahya4, Nawal A. Albadr4, Hiba-Allah Nafidi5, Lahcen Ouahmane3 and
Fadli Mohamed1

1 Laboratory of Plant, Animal, and Agro-industry Productions, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco,
2 Laboratory of Biotechnology, Environment, Agri-food, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed
Ben Abdellah University, Fes, Morocco, 3 Laboratory of Microbial Biotechnology, Agro-Sciences and Environment
(BioMAgE), Cadi Ayyad University, Marrakesh, Morocco, 4 Department of Food Science and Nutrition, College of Food
and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia, 5 Department of Food Science, Faculty of Agricultural
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Essential oils (EO) of Origanum compactum Benth. (O. compactum) are well known for
their biological and pharmacological activities. This study aimed to assess the chemical
composition, antifungal, insecticidal and repellent activities of EO of O. compactum
used in the Mediterranean diet. Phytochemical screening was conducted using gas
chromatography-mass spectrometry (GC/MS). Antifungal activity was tested by the
disc diffusion method followed by a minimal inhibitory concentration (MIC) assay
against Candida albicans (C. albicans), Aspergillus flavus (A. flavus), Aspergillus niger
(A. nige), and Fusarium oxysporum (F. oxysporum). Repellent potential and toxicity
of EO by contact and inhalation were tested against Callosobruchus maculatus
(C. maculatus). The yield of essential oil obtained by hydrodistillation of O. compactum
was 4.41 ± 0.35%, mainly composed of Carvacrol (38%) and Thymol (31.46%).
Regarding antifungal activity, the results revealed a wide antifungal spectrum of the
studied EO against the tested strains, which reached 100% growth inhibition, especially
against A. niger and C. albicans even at the lowest MIC values (3.125 µg/mL).
Concerning insecticidal activity, the EO caused total mortality of C. maculatus adults
at a dose of 20 µL/L air with LC50 value of 5.3 µL/L air. A significant reduction in
the number of eggs and emergence was proportionally recorded with increasing doses
up to 100% at 20 µL/L air. For repellent activity, the studied EO showed a moderate
repellent activity with an average percentage of 39.16%. The outcome of this work
revealed that O. Compactum EO could be a sustainable and environmentally friendly
alternative bioinsecticide and bio-fungicide to replace the chemically synthesized forms.
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INTRODUCTION

Medicinal and aromatic plants are important sources of EO that
find applications in various areas of life. EO is mainly used as a
food flavoring but can be successfully used for various non-food
applications, as it exhibits many biological properties, including
antifungal, antimicrobial, antioxidant, and insecticidal activity
(Mssillou et al., 2020; Allali et al., 2021; El Moussaoui et al., 2021).

The compact flowered Origanum compactum Benth
(O. compactum) is one of the most important medicinal
plants in terms of ethnobotany in Morocco and southern Spain
(Laghmouchi et al., 2018). Origanum compactum (Labiatae)
is widely used traditionally against several pathologies, with a
varied spectrum of use according to region, medication purposes,
the parts used, and the mode of preparation (Ennabili et al., 2000;
Eddouks et al., 2002). The E O from genus compactum possessed
antibacterial (Bouhdid et al., 2008, 2009), antioxidant (Bouhdid
et al., 2008), cytotoxic (Babili et al., 2011), antimutagenic
(Mezzoug et al., 2007), antifungal (Fadel et al., 2013), and
antimalarial properties (Babili et al., 2011).

Chickpea (Cicer arietinum L.), is one of the most nutrient-
dense seed legumes available for human consumption. It is a
good source of protein, vitamins, and minerals (Allali et al.,
2020a). Loss of seed yield in pulse crops during storage due to
various types of insects, particularly bruchids, is a major issue for
farmers (Matos et al., 2020). The chickpea weevil C. maculatus
(Coleoptera: Bruchidae) is one of the most destructive pest
species against chickpea; it can lay eggs in cultivated fields, as
well as in storage facilities. The larvae, which feed internally,
are difficult to control with chemical insecticides. Fungi in the
field and during storage also cause considerable crop losses and
deterioration of seed quality (Santos et al., 2016). Contamination
by fungi can have serious and dangerous consequences for
human health; A. flavus produces aflatoxins inducing liver cancer
and affecting the growth of young children (Kumar and Kalita,
2017). In addition, invasive candidiasis caused by the candida
fungus is frequently associated with high mortality rates, and the
emergence of resistant strains (El Moussaoui et al., 2021).

Because of its effectiveness and ease of use, the main approach
currently used to control insect pests and fungi in agriculture is
the application of synthetic pesticides and fungicides. However,
extensive, uncontrolled, and unregulated use of these chemically
synthesized products may adversely affect the environment and
public health (Amzouar et al., 2016; Kumari and John, 2019;
Allali et al., 2020b). On the other hand, synthetic fungicides
and disinfectants generally produce chemical residues, which
constitute potential environmental pollutants that are difficult
to degrade (Gonzalez et al., 2009). It is thus fitting that many
recent studies have focused on the search for eco-friendly
substances to control pests and microbes without side effects on
the environment and public health. In this context, substances of
natural origin and particularly EO may represent today an eco-
friendly reservoir and more sustainable solution to protect crops.

In this regard, the present work was undertaken to establish
whether EO from O. compactum (oregano) leaves possess
insecticidal and antifungal effects against species of pests and
fungi attacking leguminous crops. Thus, in current study, we

investigated the chemical composition of EO of O. compactum
from Taounate, as well as their insecticidal and repellent activities
against Callosobruchus maculatus, major pests of chickpea grains
in Morocco, and the antifungal activity against some pathogenic
strains of fungi implicated in the contamination of leguminous
and nosocomial infections.

MATERIALS AND METHODS

Plant Material and Extraction of
Essential Oils
The leaves of O. compactum were used to conduct this work.
The whole plant was harvested in June 2020, wherein there
was maximum flowering, from the Taunt region (34◦30′0′′N;
4◦33′0′′W). The botanical identification of O. compactum was
carried out by a botanist and given a reference DO12/05005
before being deposited in the herbarium. Next, the leaves were
dried in the shade in a dry and ventilated area at a temperature
of 25◦C for 7 days. The extraction of the EO was performed
by hydrodistillation, using a Clevenger-type system according to
the manufacturer’s instructions. Briefly, 200 g of O. compactum
leaves were soaked in 1.25 L of distilled water in a 2-L flask before
being boiled for 3 h. The essential oils obtained were dried with
anhydrous sodium sulfate and stored in a refrigerator at 4◦C until
use. The yield was calculated based on the dried weight of the
plant using the following formula (1):

YHE =
MHE
MD

× 100 (1)

Where YHE is the Yield of essential oil (%), MHE is the mass of the
EO (g), and MD is the mass of dry plant matter (g).

Test Insect Collection and Rearing
Conditions
The insect C. maculatus was collected from a sample of chickpea
stored in the city of Fez, Morocco. Bruchids were reared on
chickpea seeds (Cicer aritinum) packed in glass jars (1 L), covered
internally with transparent fabric. The jars were maintained at a
temperature of 25 ± 2◦C, relative humidity, and a photoperiod
of 14 h (light)/10 h (dark) and 65% (± 5%) relative humidity for
several successive generations.

Chromatographic Analysis and Mass
Spectrometry
Agilent-Technologies 6,890 N Network GC system with a
flame ionization detector and HP-5MS capillary column (30
m × 0.25 mm, film thickness of 0.25 m; Little Falls, CA,
United States) was used to analyze the EO. The injector and
detector temperatures were set to 250 and 280◦C, respectively.
The temperature of the column was designed to rise at a
rate of 5◦C/min from 35 to 250◦C, whilst the lower and
upper temperatures were kept for 3 and 10 min, respectively.
The carrier gas (helium) flow rate was 1.0 mL/min. Using
split mode, 1.0 µL of the sample was injected (split ratio,
1:100). The gas chromatograph’s manufacturer offered a built-in
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data-handling program that was used for all quantifications. The
composition was expressed as a proportion of the total peak
area. By comparing their GC retention indices, the volatile oil
constituents were detected. The mass spectra of each compound
were compared to those of the NIST02 GC/MS library data and
the Adams library spectra (Adams, 2007).

Antifungal Activity of Essential Oils
Fungal Strains and Culture Conditions
In this study, three filamentous fungi namely niger, A. flavus,
F. oxysporum, as well as one yeast strain C. albicans were used
for testing reasons. All fungal strains selected are pathogenic
and have been associated with drug resistance (Krishnan et al.,
2009; Al-Hatmi et al., 2019; El Moussaoui et al., 2021). These
strains have been reported as the main producers of mycotoxins
and are among the most contaminating microorganisms of dry
vegetables and cereals. Spore suspensions were taken from 7-day-
old cultures using tubes containing NaCl 0.9%. Afterward, the
number of spores in suspension was counted before being diluted
to reach an inoculum concentration of around 106 spores/mL
(Moussa et al., 2020).

Disk Diffusion Method
Assessment of the antifungal activity of O. compactum EO was
performed by the disc diffusion method (Balouiri et al., 2015).
First, Petri plates (90 mm) containing MEA (Malt Extract Agar)
medium were inoculated with 0.1 mL of previously prepared
microbial culture (106 spores/mL). Thereafter, Wattman paper
discs of 6 mm were immediately deposited on the culture media
surface after being soaked with 20 µL of EO. Next, the inoculated
plates were incubated at 30◦C in darkness. Both, inhibition
diameter and percent inhibition were determined after 48 h of
incubation for C. albicans strain and after 7 days of incubation
for fungi strains (Zhao et al., 2021).

Determination of the Minimal Inhibitory Concentration
In this work, the macro-dilution method was undertaken to
evaluate the MICs of O. Compactum EO (Moussa et al., 2020).
The EOs were immiscible in the culture medium so that their
emulsification was conducted using a 0.2% agar solution in order
to facilitate germ/compound interaction. To achieve this goal, in
sterile hemolysis tubes containing sterile malt extract, broth serial
dilutions were made with increasing concentrations up to a final
volume of 5 mL in each tube. Consequently, the concentrations
of O. Compactum EO obtained in the tubes ranged from 100 to
0.09 µg/mL. Next, 100 µL of the media control of each fungal
strain was aseptically transferred into each prepared tube except
for the media control. Fluconazole FLU (5 mg/mL) was used as
a positive control under the same conditions. Finally, the tubes
were incubated at 30◦C with a rotary shaker for 48 h for yeast and
7 days for fungi. The MIC values of samples correspond to the
lowest concentration at which no visible growth was observed in
the liquid medium (Bouddine et al., 2012).

Insecticidal Activity of Essential Oils
Toxicity of Essential Oils by Contact Test
Contact toxicity bioassays were performed as described elsewhere
(Dutra et al., 2016; Matos et al., 2020) with slight modification.

For each EO concentration, 100 g of chickpeas were infested
by 5 pairs of insects aged 0–48 h, packed in plastic containers
(250 mL) duly closed by a perforated lid, and covered
with a thin transparent cloth. Next, EOs were added to the
grains using an automatic pipette and then shaken for 2
min. After 48 h of confinement, adult mortality was assessed
as reported elsewhere (Dutra et al., 2016). Based on the
results obtained in preliminary tests, treatments at different
concentrations (1, 5, 10, and 20 µL/100 g) were performed.
Parallelly 100 g of chickpeas infested with five pairs of insects
without oils were used as control. Dead insects were counted
daily until the end of the experiment. Three replicates were
performed to measure insecticidal activity, and expressed as
a percentage of the average mortality of C. maculatus adults
before being transformed into corrected mortality by Abbott’s
formula (2):

Pc = 100×
P0− Pt
100− Pt

(2)

Where Pc is the corrected percentage of mortality (%), Po
is the observed mortality in the trial, and Pt is the observed
mortality in the control.

Eggs laid by females were counted after 12 days from the
start of experiment, whilst the emerged individuals were counted
after 30 days. The reduction percentage in the number of eggs
and adults emerged in each concentration of essential oil was
calculated using the following formula (3):

PR =
NC−NT

NC
× 100 (3)

Where PR is the egg-laying or reduction percent of emerged
insects (%), NC is the number of eggs or insects hatched in
the control and NT is the number of eggs or insects hatched
in the treatment.

Toxicity of Essential Oils Tested by Inhalation
In the current work, the toxicity of EO was tested by inhalation
against C. maculatus. To achieve this objective, in 1-L glass jars,
small masses of cotton were suspended with a thread attached
to the inside of the lid. Doses of 1, 5, 15, and 20 µL/L air
of O. compactum OE were deposited into the cotton using a
micropipette. Afterward, ten C. maculates bruchids (male and
female) aged between 0 and 48 h were placed in each jar
with a perfectly tight seal. For each dose, three replicates were
performed. The comparison was made with a control sample
(cotton without test solutions).

The Abbott formula (4) was used to calculate the observed
mortality rate:

Pc = 100×
P0− Pt
100− Pt

(4)

Where Pc is the corrected mortality percent (%); Po is
the observed mortality in the trial, and Pt is the observed
mortality in the control.

Repellent Activity of Essential Oils
The repellent effect of the essential oil of O. compactum against
adults of C. maculatus was evaluated using the preferential area
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method on filter paper described by McDonald et al. (1970).
Briefly, 9 cm diameter filter paper discs were used for this
purpose. These discs were cut into two halves, each with an
area of 31.80 cm2. For one of the two halves, a volume of 0.5
mL of each EO concentration previously prepared in acetone
(1, 5, 10, and 20 µL/mL) was uniformly spread to reach doses
of 0.016, 0.079, 0.157, and 0.315 µL/cm2 per disk, while the
other half received only 0.5 mL of acetone (control). Afterward,
the Petri dishes were closed with Parafilm for 30 min. Next,
the number of bruchids presented on the half of the disc
treated with essential oil was counted against the number of
the untreated part. Three replicates for each experiment were
done under the same environmental conditions as the insect
rearing (Figure 1).

The percentage of repulsion (PR) was calculated according to
the following formula (5) (Zandi-Sohani et al., 2013):

PR =
NC−NT
NC+NT

× 100 (5)

Where PR is the percentage of repulsion (%), NC is the
number of insects in the control area, and NT is the number of
insects in the treatment area.

The result of the repulsive effects of the essential
oil was interpreted according to the classification of
McDonald et al., 1970.

Statistical Analysis
The bioassay experiment followed a randomized design with
three replicates for each treatment. Results were expressed as
mean± SE. SPSS for Windows R© statistical software (version 21.0)
was used to perform the analyses. Data were assessed by one-way
analysis of variance (ANOVA) to determine significant values.
Fisher’s minimum significant difference (LSD) test was used as
a post-hoc test for multiple comparison purposes at α = 0.05.
The LC50 and LC95 lethal concentrations with their confidence
intervals were determined by the probit method (Finney, 1971).

RESULTS AND DISCUSSION

Essential Oil Extraction
The EO yield recovered from the Hydrodistillation of leaves of
O. Compactum was 4.41 + 0.35%. This EO yield was slightly
lower than that obtained by Rezouki et al. (2020). Several factors
can influence the yield of EO from aromatic and medicinal plants.
According to Baranauskienė et al. (2013), the EO production
of fresh plants was lower than that of dried plants. This can
be explained by increases in the biosynthesis of terpenes and
their derivatives after the harvest. This biosynthesis is stimulated
by plant water stress and ultimately leads to an increase in
the yields of EO. When the plant dies, biosynthetic activity
stops, and evaporative losses of EO are no longer compensated,
resulting in a drop in distillation yields (Bencheikh et al., 2015).
Similarly, Ghasemi et al. (2013) confirmed that drying methods
can negatively or positively influence oil content depending on
drying time and temperature.

FIGURE 1 | Repellent test of Origanum compactum essential oil against
C. maculatus.

TABLE 1 | Phytochemical compounds identified in O. compactum EO.

Peak RT Compound name RI Area (%)

1 4.542 Beta-Myrcene 114 0.55

2 4.936 o-Cymene 212 9.07

3 6.341 Borneol L 562 0.60

4 5.285 Gamma-Terpinene 299 11.11

5 5.659 L-Linalool 392 2.41

6 4.852 Alpha-terpinene 191 0.84

7 6.430 4-Terpineol 584 0.90

8 6.538 Alpha terpineol 611 0.58

9 7.317 Thymol 805 31.46

10 9.461 (-) Caryophylleneoxide 1,339 1.21

11 7.413 Carvacrol 829 38.73

12 8.361 Caryophyllene 1,065 1.47

13 6.984 Pulegone 722 1.07

Monoterpenes 97.32

Sesquiterpenes 2.68

Total 100

RT, Retention time; RI, Retention index.

Gas Chromatography-Mass
Spectrometry Analysis
Thirteen compounds were identified in the studied EO by
the GC-MS analysis (Table 1 and Figure 2). Carvacrol (about
38.73%), thymol (31.46%), gamma-Terpinene (11.11%), and
o-cymene (9.07%) were the major constituents of the EO. The
chemical composition of the studied oil was close to that reported
by several studies conducted in Morocco. The EO of Moroccan
O. compactum was characterized by its high content of thymol
and carvacrol, which agreed with previous works (Mohammed
et al., 2020; Rezouki et al., 2020; Zeroual et al., 2021). The
literature has indicated that the yield and chemical composition
of EO vary according to the harvesting period, the extraction
method, and the drying of the plant, so that our results are in
agreement with previous works (Rezouki et al., 2021).

Antifungal Activity
Fungi are frequently implicated in the contamination of
leguminous crops during harvest or storage, particularly the
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FIGURE 2 | GC-MS chromatographic profile of O. compactum EO.

FIGURE 3 | Antifungal activity of O. Compactum EO tested by disc diffusion method against F. oxysporum (A) and A. niger (B). (C,D) Are untreated fungi for
F. oxysporum and A. niger, respectively (negative controls).
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TABLE 2 | MIC results of O. compactum Benth. EO against fungal strains.

Fungal strains Minimal inhibitory concentration (µg/mL)

Essential oil Fluconazole

A. niger 3.125 128

A. flavus 6.25 256

F. oxysporum 12.5 160

C. albicans 3.125 400

genera Aspergillus and Fusarium (Sud et al., 2005). These
mycotoxin-producing filamentous molds along with C. albicans
are pathogenic and responsible for many fungal infections in
hospitalized patients worldwide (El Moussaoui et al., 2021).
Figure 3 describes the growth inhibition of the studied
fungal strains treated by Origanum compactum EOs. The
results revealed a high antifungal potential of the studied
EOs against the tested strains, marked by a maximum growth
inhibition rate (100%).

In addition, the fungicidal effect of O. compactum EO was
achieved by very low MIC values (Table 2). From this table, it
can be seen that A. niger and C. albicans were the more sensitive
to the oil since they were inhibited by the lowest concentration
of the EO (3.125 µg/mL). In contrast, higher MICs 6.25 and
12.5 µg/mL were required to inhibit the growth of A. flavus
and F. oxysporum, respectively. On the other hand, EO showed
lower MIC values against tested fungal strains when compared
to the Fluconazole standard. Our study reported lower MIC
values against tested fungal strains when compared to previous
work investigating O. compactum against A. niger, A. alternata,

B. cinerea, P. digitatum, P. italicum, V. dahlea, and P. expansum,
which were inhibited by MICs ranging from 300 to 450 µg/mL
(Mohammed et al., 2020). Another recent study revealed that the
MIC values of Origanum majorana L.against human pathogenic
fungi, including Candida species, ranged from 58 to 468 µg/mL
(Hajlaoui et al., 2016).

The chemical composition of EOs is closely related to
their antifungal effect. Potential individual or synergetic effects
between the major and minor compounds may occur.

In this respect, some works revealed that Botrytis cinerea
in vitro mycelial growth and spore germination were strongly
inhibited by carvacrol and thymol, the main compound of our
Oregano essential oil (Zhao et al., 2021). In addition, other recent
research has found that the high content of thymol, carvacrol,
γ-terpinene, and p-cymene is roughly correlated with in vitro
and in vivo biological activities (Bouyahya et al., 2017). For a
better understanding, previous literature has investigated the
mechanism of action of EO in fungi. Indeed, the antifungal
effect of oregano might be attributed in part to EO terpenes
and phenolic compounds involved in cell membrane damage,
leakage of cellular materials, inhibition of electron transport, and
ATPase in the mitochondria, which ultimately lead to the death of
the microorganism (Lagrouh et al., 2017). More comprehensive
research revealed that EO of oregano significantly reduced
the production of the phospholipase enzyme in C. albicans
(Brondani et al., 2018).

Insecticidal Activity of Essential Oils
In this experiment, different doses of Origanum compactum EO
(0; 1; 5; 10; and 20 µL/L air volume) were used to evaluate their
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FIGURE 4 | Percentage of mortality (means ± SD) of C. maculatus adults exposed to an inhalation test of different doses of O. compactum EO.
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FIGURE 5 | Percentage of mortality (means ± SD) of C. maculatus adults exposed to a contact test with different doses of Origanum compactum EO.

toxicity against C. maculatus through inhalation. Mortality of
adults was noted every 24 h for 4 days, and the results obtained
are shown in Figure 4.

According to the results obtained (Figure 4), the oregano
EO showed a significant insecticidal effect on the longevity of
treated adults. The mortality of C. maculates adults increased
with increasing doses and duration of exposure to EO. Significant
mortality (86.21%) was observed in chickpea bruchid adults
treated with a dose of 10 µL/L of oregano EO after 96 h of
exposure, which showed the powerful insecticidal effect of the oil.

In this test, the EO of O. compactum at different doses was
applied in direct contact with C. maculatus in order to evaluate
their toxicity against this pest. The obtained results are listed
in Figure 5. Generally, the mortality of C. maculatus adults
increased when a high dose of the essential oil was applied, and/or
when the duration of contact with it approached 96 h. Indeed, at
the lowest concentration (1 µL/100 g), the EO of O. compactum

TABLE 3 | LC50 and LC95 values calculated based on the mortality of
C. maculatus adults by the inhalation test after 24 h of exposure to
O. compactum EO.

Bioassays LC50 LC95 X2

Inhalation test 33.61 (24.58;62.83) 211.23 (10.93;1900.8) 1.21

Contact test 5.53* 75.67* 17.47

X2, Chi-square.
*Confidence intervals are too wide, they do not lend themselves to calculation.

tested by direct contact caused 80% mortality of C. maculatus
adults after 96 h of exposure, while at the same concentration
tested by inhalation, it caused only 20.69% mortality. At the
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FIGURE 6 | Female fecundity and emergence of new individuals (mean
values ± SD) after a direct contact test with different doses of EO.
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FIGURE 7 | Fecundity and emergence reduction rates after a direct contact
test with different doses of EO.

highest concentration (20 µL/100 g), the tested oils showed
significantly higher action when compared to the control and
caused 100% mortality with the contact test and 63.33% with the
inhalation test after 72 h of exposure. Statistical analysis showed
that the LC50 and LC95 values obtained with the inhalation test
(33.61 µL/L air) were higher than those observed with the contact
test (5.53 µL/L of air) (Table 3).

Despite the significant reduction in mortality of C. maculatus
adults, no oil concentration completely prevented oviposition in
females. Figure 6 shows that the number of eggs laid is inversely
proportional to the concentration of the EO tested. Thus, at
the lowest concentration, the average number of eggs laid per
female was 26.33 ± 5.68 representing a respective reduction of
85.7% in egg-laying when compared to the control (Figure 7).
At the highest concentration, the average number of eggs laid
per female decreased sharply to 3.33 ± 1.15 corresponding to a
98.2% of reduction in oviposition. The number of eggs laid per
female of C. maculatus in the control jar was 184.67± 23.43. For
emergence, a significant reduction rate of 100% was observed at
the highest dose tested (20 µL/100 g).

REPELLENT ACTIVITY

The obtained findings figured out that repellent activity was
moderate at different doses with a maximum repulsion rate
of 56.67 ± 15.26% after 60 min at a dose of 0.315 µL/cm2,
corresponding to the highest average repulsion rate
(39.16%) calculated according to McDonald et al. (1970)
(Table 4).

According to the results obtained, Origanum compactum EO
were effective in the protection of legume seeds. This EO reduced
significantly the life span of C. maculatus adult bruchids, even
at the lowest doses used. This high efficiency resulted in a
low value of the LC50, 5.53 µL/100 g (contact test) that might
be induced by the action of major compounds of these EO
(Allali et al., 2021).

Our results showed that the toxicity of EO of Origanum
compactum increased with increasing doses to reach the
maximum at the highest concentrations used. It is therefore
appropriate that our results are in agreement with those reported
previously (Pavela et al., 2016), which demonstrated that EO
of O. compactum applied by fumigation on Tetranychus urticae
adults caused mortality of more than 50%.

Several authors have observed the acaricidal/insecticidal effect
of other oregano species. The essential oil of O. syriacum
is effective by fumigation on T. cinnabarinus (Tunc and
Şahinkaya, 1998). Aqueous extracts of O. majorana were also
found to be effective against T. Urticae (Pavela et al., 2016).
According to Koschier (2008), carvacrol-rich oregano oils show
significant activity against several insects, mites, and plant
pathogens. For comparison purposes, species among genus
Origanum have shown significant efficacy against several pests
of stored products. For example, Origanum acutidens oil rich
in carvacrol (87.0%), showed a mortality of 68.3 and 36.7%
against two adult insects, Sitophilus granarius and Tribolium
confusum, respectively (Kordali et al., 2008). Moreover, the EO
of Oregano has demonstrated strong insecticidal activity against
the larvae of Spodoptera littoralis with an LC50 ≤ 0.05 mL/larva
(Pavela, 2015).

Regarding the mode of action of EO on insect pests, a
recently published study reported that EO applied by contact
on Sitophilus granarius insects, pests of cereal seeds, can
affect a variety of biological processes in the insects (Renoz
et al., 2021). According to these authors, Mentha arvensis oils
induced significant physiological changes in exposed insects,

TABLE 4 | Results of repellent activity of EO from O. compactum against C. maculatus.

Doses of EO (µL/cm2) Probability (P) Average
%PR

Class

0.016 0.079 0.157 0.315

30 min 13.33 ± 11.55 13.33 ± 11.55 40 ± 20 46.67 ± 11.55 0.03* 28.33 Moderatelyrepellent (II)

60 min 13.33 ± 5.77 33.33 ± 11.55 53.33 ± 11.55 56.67 ± 15.26 0.005** 39.16 Moderatelyrepellent (II)

120 min 0 ± 0 26.67 ± 11.55 46.67 ± 11.55 53.33 ± 11.55 0.0007** 31.67 Moderatelyrepellent (II)

PR, percentage of repulsion.
Each number is the mean standard error of three replicates. The symbol * indicates that the difference between the values in the same row are significant, whilst the
symbol ** means highly significant (p > 0.05) using the LSD test. Repulsion class: Class 0—0–0.1%; Class I—0.1–20%; Class II—20.1–40%; Class III—40.1–60%; Class
IV—60.1–80%; Class V—80.1–100%.
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particularly on vital functions related to the muscular and
neurological systems, cellular respiration, protein synthesis,
and detoxification.

CONCLUSION

In this present work, chemical composition, antifungal,
insecticidal, and repellent actions of EO from O. compactum
were investigated. In summary, the EO was discovered to
be rich in carvacrol and thymol components, which have
been remained the primary contributors to pharmacological
activities. Consequently, the plant can be a promising source
of natural agents with various applications and benefits in
health, food, and agriculture. For safety reasons, there is a need
to better understand the effect of sublethal dosages of EO on
non-target organisms.
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for the Management of Red Spider
Mite, Oligonychus coffeae Nietner
(Acarina: Tetranychidae), in the Tea
Ecosystem: An Eco-Friendly Strategy
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1North Bengal Regional R & D Centre, Tea Research Association, Nagrakata, India, 2 Bioinformatics Laboratory (DBT-Star

College), P.G. Department of Zoology, Darrang College, Tezpur, India

The effects of the application of aqueous extracts of a selection of five traditional plants

(Murraya paniculata, Cassia tora, Amphineuron opulentum, Tithonia diversifolia, and

Cassia alata) were compared with that of synthetic acaricide in reducing the population of

red spider mite (Oligonychus coffeae), a major tea pest, alongside their impact on natural

enemies and green leaf yield. Analysis of large-scale field trials showed that all the five

plants extract treatments resulted in similar yield; this was analogous to the application

of synthetic acaricide. A reduction in the pest population was observed to be on par

with the synthetic acaricide, with a higher number of natural enemies treated using the

pesticide-plant-treated plot in comparison to the synthetic acaricide-treated plot, which

indicated pesticidal plants had a lower impact on natural enemies. A phytotoxicity study

on tea leaves indicated that aqueous extracts of selected plants are non-phytotoxic and

do not impart any taint to the prepared tea samples. Therefore, the present investigation

outlines how plant extracts used as a botanical pesticide display toxicity against red

spider mite on tea plants without harming the beneficial insects, increasing the yield and

avoiding any lethal consequence for the tea plants or consumers.

Keywords: pesticidal plants, tea, red spider mite, phytotoxic effect, natural enemies

INTRODUCTION

Tea, Camellia sinensis (L.) O. Kuntze, is a perennial plantation crop and requires warm humid
weather for ample growth and production. Such climate conditions also house a diverse range
of insect pests and diseases that attack this crop, which turns them into a limiting factor for the
production of tea (Hazarika et al., 2009; Majumder et al., 2012). The red spider mite, Oligonychus
coffeaeNietner (Acarina: Tetranychidae), is among the foremost tea pests in India (Somchoudhury
et al., 1995; Babu, 2010; Barua et al., 2016), and it causes the loss of up to 35–40% of the crop
(Sundararaju and Sundara Babu, 1999; Hazarika et al., 2009). The tea plant’s mature leaves are
attacked by the veins and themid-rib; finally, the whole leaf is affected. In cases of severe infestation,
the tender foliage may also become damaged (Rau, 1965; Jeppson et al., 1975). The red spider mite
feeds on the leaf epidermis by constantly puncturing it using their chelicerae (Jeppson et al., 1975;
Babu, 2010). This pest remains active throughout the year, and unhindered infestation leads to
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100% crop loss if appropriate management strategies are not
suitably adopted. In tea-growing areas, planters use different
synthetic acaricides to maintain this pest under the economic
threshold level (ETL) of 4% (Gurusubramanian et al., 2008; Babu,
2010).

Continuous and non-judicial application of these chemical
acaricides leads to certain undesirable issues, such as water
pollution, degradation of valuable soil microbes, a decline in
biological control agents, resurgence, development of resistance
in pest, secondary pest outbreaks, and pesticide residues in
manufactured tea (Cranham, 1966; Mobed et al., 1992; Roy et al.,
2008, 2012; Hazarika et al., 2009; Babu, 2010). To overcome these
problems, tea growers have attempted to find alternative forms of
crop protection, which is essential to sustainable tea production.
To develop ecologically safe pesticides, identification of toxins
or antifeedants from plants is nowadays being highlighted as a
prospective process (Wheller et al., 2001; Babu et al., 2004, 2008;
Babu, 2010).

Botanicals play an important role in organic tea production
and are considered substitute plant protection products, keeping
the red spider mite population below the ETL between tea
harvests (Babu et al., 2011). The continuous application of plant
extracts of the same species for an extended period of time
may decrease responses amongst herbivores (Liu et al., 2005).
Alteration of plant species or mixing the different plant species
used for plant extracts for pest control is therefore essential (Chen
et al., 1995), as pest resistance is less likely to occur when using
mixtures (Feng and Isman, 1995). If the plantmaterials are locally
available, utilization of crude or raw plant extracts containing
a blend of bioactive components is a simpler and more cost-
effective approach. Aqueous extracts of different locally available
plants in India (viz. Clerodendron infortunatum, Acorus calamus,
Aegle marmelos, Xanthium strumarium, Terminalia chebula,
Duranta repens, and neem kernel) have been evaluated against
the red spider mite in tea, and these show varying degrees of
control under field conditions (Babu et al., 2008; Roy et al., 2014,
2016). To ensure a broad choice of protectants, the selection of
plants should not be a constrain to a limited choice of plants, and
further exploration for other prospective plants is encouraged. It
is much more important to conduct various types of bioassays
during the screening of a botanical pesticides (Akhtar and Isman,
2004).

In this study, an investigation was undertaken to ascertain the
bioefficacy of water extracts of a selected group of plants that
commonly exist in the locality of tea-growing areas in northeast
India against red spider mites. These plant species were selected
because of their ample abundance around tea gardens, bushland,
and roadsides, their familiarity to tea planters, and the substantial
amount of accessible information that exists on their effectiveness
and safety of use (Mollah and Islam, 2005, 2008; Roy et al., 2010;
Deka et al., 2017; Green et al., 2017).

Analyses of the selected plant extracts and their effects on the
eggs, oviposition deterrence, and adult mortality of red spider
mites and Chrysoperla carnea, Oxyopes javanus, and Stethorus
gilvifrons, the major predators of red spider mites (Das et al.,
2010; Perumalsamy et al., 2010; Babu et al., 2011), were carried
out under both laboratory and field conditions. This paper

evaluates whether aqueous extracts of selected pesticidal plants
have prospective use as biopesticides for the tea plant, and it also
highlights the effects of using pesticidal plants.

MATERIALS AND METHODS

Insect Rearing
Different stages of red spider mites were collected from the
Tea Research Association, North Bengal Regional Research and
Development Centre (NBRRDC) experimental plot (88◦ 55′ 0′′

East, 26◦ 54′ 0′′ North longitude) West Bengal, India. Organic
tea is cultivated without the application of synthetic pesticides,
chemical fertilizers, and growth regulators. After field collection,
these mites were transferred on to 1-year-old potted tea plants
(clone TV 1) that were kept in a greenhouse at 26 ± 3◦C,
78 ± 4% RH, and an 18L: 7D photoperiod, and they were
used for raising the susceptible population without any type
of exposure to pesticides. From this stock, red spider mite
adults were transferred onto fresh tea leaves (6 cm2) placed on
moistened cotton pads (ca. 1.5 cm thick) in plastic trays (42× 30
× 6.5 cm), which served as rearing chambers. Rearing chambers
were kept under controlled conditions (26 ± 3◦C, 78 ± 4% RH,
and an 18L: 7D photoperiod) in a humidity chamber (Biojenik).
Withered and dried leaves were regularly replaced. By adopting
this technique, more than 30 generations of susceptible mite
populations were maintained and utilized for carrying out the
bioassays (Figures 1A,B).

Preparation of Plant Extracts
Fresh and full-grown leaves of Murraya paniculata (L.) Jack
(Sapindales: Rutaceae), Cassia tora (L.) (Fabales: Fabaceae),
Amphineuron opulentum (Kaulf.) Holt., (Polypodiales:
Thelypteridaceae) Tithonia diversifolia (Hemsl.) A. Gray
(Asterales: Asteraceae), and Cassia alata (L.) (Fabales: Fabaceae)
were collected (Figures 2A–E) locally from nearby areas of
NBRRDC, West Bengal. The plant materials (leaves, flower, and
succulent stems) were shopped into fine pieces and allowed
to dry in the shade. The dried materials were ground using an
electric dicer, and they were later passed through a 30 mesh
sieve and finally reserved in a 2 kg capability airtight glass jar.
The aqueous extract of each selected plant was prepared by
following the method of Nagappan (2012). To prepare different
concentrations, viz., 2, 4, 6, 8, and 10 gm/l, different quantities
of the powder, viz., 20, 40, 60, 80, and 100 gm, were weighed
individually into plastic containers containing 1 L of water and
then kept for 24 h. The water extracts of each concentration
were filtered using a muslin cloth, labeled, and organized for
application. All of the spray fluids including control were mixed
with 0.1% Teepol AG as an emulsifier.

Acaricidal Activity of Pesticidal Plant
Extracts (Leaf Disc Experiment)
Tea leaves collected from the NBRRDC experimental plot were
cut into discs 2 cm in diameter. The leaf discs were positioned
on soaked cotton set aside in a petri dish, and throughout the
study, the wetness in the cotton was prolonged by wetting it using
water regularly. A total of 20 red spider mites that were 24 h old
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FIGURE 1 | Tea red spider mites (A: eggs, B: adults).

were consigned from the stock culture onto each leaf disc. Using
a glass atomizer, the spray fluid of the prepared plant extract
concentrations were sprayed onto each leaf disc. To ensure the
fine droplets fell onto the leaf disc, the distance between the
leaf disc and the atomizer was set as constant (1 ft). A control
(distilled water mixed with teepol) and Fenpyroximate 5EC
(Mitigate) (dose: 0.5 ml/L) were sprayed along with the different
concentrations of extracts. The experiment was replicated 30
times. Following the treatments, observations were recorded
after 24, 48, and 72 h, and the total numbers of live mites
were recorded with a compound microscope at a specified 10X
magnification. The percentage mortality of mites was analyzed
statistically through analysis of variance to calculate the critical
difference (CD at p = 0.05; Snedecor and Cochran, 1989). After
significant effects were identified, differences between means
were considered significant at a 95% confidence interval based
on Tukey’s post-hoc Honestly Significant Difference (HSD) test
to separate the means.

Ovicidal Action of Pesticidal Plant Extracts
To evaluate the ovicidal action of the selected plant extracts,
15 adult female mites were introduced on a full-grown tea
leaf (leaf number four or five from the apex of the tea bush)

to lay eggs, and they were kept in a petri dish overnight. To
maintain the moisture conditions in the leaves, water-soaked
cotton was padded in around the leaves. After hatching the
eggs, the mites were removed using a fine camel-hair brush.
In each leaf, exactly 30 eggs were chosen for the bioassay; the
remaining eggs were carefully detached using a fine needle. For
the bioassay, we used 30 eggs per experiment where these were
assessed with different concentrations of the pesticidal plant
extracts, viz., 2, 4, 6, 8, and 10 gm/l (w/v) sprayed with a fabricated
atomizer (made with glass, size: 100ml and pressure: 30 psi). A
control (distilled water mixed with teepol) and Fenpyroximate
5EC (dose: 0.5 ml/L) were sprayed along with the different
concentrations of extracts. The experiment was repeated 30
times. After oviposition, the hatchability of the egg was recorded
for both control and experimental batches for a period of 12 days.
After 12 days, if the eggs did not hatch, the eggs were considered
non-feasible (Sarmah et al., 1999). The egg mortality (%) was
analyzed statistically through analysis of variance to calculate the
critical difference (CD at P= 0.05; Snedecor and Cochran, 1989).

Ovipositional Deterrent and Repellent
Activity of Pesticidal Plant Extracts
The ovipositional deterrent and repellent effects of each of the
pesticidal plant extracts on adult mites were tested using the
choice test method (Roy et al., 2016). The adaxial surface of
each leaf disc (2 cm diameter) was positioned facing upward
in a petri dish. Using a camel-hair brush, 50% of the leaf disc
(either side from the midrib) was painted with each of the tested
concentrations from each of the plant extracts (2, 4, 6, 8, and 10
gm/l) and another 50% of the leaf disc was painted with 0.1% soap
water (considered as control) and allowed to dry. After drying,
20 gravid red spider mite females were positioned on the center
of each leaf disc. After 24 h, the mites left on the treated area
were considered as repelled, and the eggs laid on both halves
of the leaf disc were recorded up to 4 days after treatment. The
experiment was replicated 30 times. Using the following formula,
the DiscriminationQuotient (DQ) was calculated (Roobakkumar
et al., 2010):

DQ = [(C− T)/(C+ T)]

[C: eggs (in number) laid on the control area, T: eggs (in number)
laid on the treated area. DQ shows a range (0–1), which is
an indication of a conclusion showing the consequence of any
treatments on the insect’s ovipositional behavior].

Large Scale Field Study of Pesticidal Plant
Extracts
To evaluate the effectiveness of each selected plant extract against
red spider mites in tea plants, this study was conducted at field
sites for two consecutive seasons in tea gardens representing two
different geographical locations, viz., Zone A: Mission Hill Tea
Garden, Darjeeling (27.1◦ 94′ 5′′ N, 87◦ 17′ 43′′ E longitude)
and Zone B: the experimental plot at the NBRRDC, Dooars
(26.1◦ 55′ 0′′ N, 88.1◦ 56′ 0′′ E longitude) West Bengal, India.
The Mission Hill Tea Garden location was at an elevation of
235m above MSL with a mean maximum temperature of 300

Frontiers in Agronomy | www.frontiersin.org 3 March 2022 | Volume 4 | Article 685568134

https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/agronomy#articles


Deka et al. Plant Extracts as Potential Acaricide

FIGURE 2 | Pesticidal plants evaluated against tea red spider mite. (A) M. paniculata, (B) C. tora, (C) A. opulentum, (D) T. diversifolia, and (E) C. alata (source: North

Bengal Regional R and D Centre, Tea Research Association, West Bengal, India).

and mean minimum temperature of 6◦C, with a mean annual
rainfall of 1,300mm; in the North Bengal Regional R&D Centre
experimental plot, the location was at an elevation of 214m
above MSL with a mean maximum temperature of 36◦ and
mean minimum temperature of 10◦C and a mean annual rainfall
of 1,200mm. The tea gardens where field trials took place
were more than 50 years old. Sections of gardens were planted
with mixed clones (mostly TV1, Teenali 17, S3A3, TV25, and
TV26). Each experiment was conducted in a randomized block
design (RBD) that was replicated for five blocks (Anderson and
McLean, 1974). Including the untreated control, each treated

plot consisted of 100 bushes that were separated by three buffer
rows (8m spacing). A preliminary study using different doses
(viz., 2, 4, 6, 8, and 10 g/l w/v) of plant extract against red
spider mite shows that 10 g/l showed better efficacy against this
pest. Therefore, a dose of 10 g/l (40 kg/ha; 400 L of spray fluid
is required to cover a one-hectare area of the tea plantation)
was considered for further field study. In all the trials, the
synthetic acaricide Fenpyroximate 5EC, which was applied as
per the central insecticide board’s (CIB) instructions (@ 200
ml/ha), was used as a positive control, and water was used as a
negative control.
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Observations of the red spider mite population were recorded
from both surfaces (adaxial and abaxial) of randomly collected
tea leaves from each treated and control plot (Babu et al.,
2008). Before spraying, 100 leaves were randomly collected from
each treatment, and the red spider mite population there was
counted for pretreatment assessment. Using a hand-operated
knapsack sprayer (droplet diameter: 1.6mm, hollow cone NMD
60450 nozzle, discharge rate: 450 ml/min at 40 psi pressure,
and droplet size: 140mL), spraying was carried out, the bushes
were drenched for better coverage and control. Prior to being
re-filled with another formulation for application, the spraying
machine was cleaned thoroughly with soap and water. Similar to
the pre-treatment assessment, post-treatment assessments were
also carried out at 7-day intervals up to the fourth week, and,
accordingly, the decrease in mites (mean) during each treatment
was analyzed with the following formula:

% decrease of red spider mite = (
(X− Y)

X
× 100)

Here, X indicates the pre-treatment population count and Y the
post-treatment population count.

All the data were angularly transformed prior to the statistical
analysis. The differences among the population density of
mites before and after each treatment were assessed through
Tukey’s post-hoc Honestly Significant Difference (HSD) test
to separate the means at a 95% confidence interval, and the
critical difference (CD, p = 0.05) was analyzed accordingly
(Snedecor and Cochran, 1989).

Sampling for the Presence of Non-target
Beneficial Insects
To find out the effects of pesticidal plant extracts on non-target
beneficial insects, a direct spray test was conducted by following
the methodology of Leatemia and Isman (2004). For the bioassay,
the study was conducted for two consecutive seasons under field
conditions in tea gardens representing two different geographical
locations, viz., Zone A: Mission Hill Tea Garden, Darjeeling and
Zone B: the experimental plot at the NBRRDC, Dooars West
Bengal, India. Each of the plant extracts were sprayed (dose: 4
kg/ha) with Fenpyroximate 5EC (@ 200 ml/ha) and a control
(distilled watermixed with teepol). The populations of non-target
beneficial organisms like C. carnea, O. javanus, and S. gilvifrons
were recorded on day 0 (pre-spray) and day 21 (post-spray; a total
of two rounds of spraying was carried out; the first spray on day
0 and the second spray on day 7). Visual observations were made
from 30 randomly selected bushes per replication to estimate the
population of C. carnea nymphs and O. javanus adults. A total of
50 leaves were collected at random per replication, and these were
observed under a binocular microscope to estimate the larval
population of S. gilvifrons.

Phytotoxicity, Tainting, and Organoleptic
Tests
To evaluate the phytotoxic effect of each plant extract (at X, 2X,
and 4X concentrations) on tea leaves, a field experiment was
carried out. Four treatments were used: (1) 10 gm/l, (2) 20 gm/l,

(3) 40 gm/l of water, and (4) a control (water spray), and three
replications were maintained at 84 square meters per replication.
Similar to the experiment large scale field study, spraying was
carried out, and observations were recorded on day 0 (pre-
treatment) and days 3, 7, and 14 (post-treatment) on yellowing,
stunting, necrosis, epinasty, hyponasty etc. The injury levels were
graded with the following Phytotoxicity Rating Scale (PRS):

Leaf injury PRS

0–00 0

1–10% 1

11–20% 2

21–30% 3

31–40% 4

41–50% 5

51–60% 6

61–70% 7

71–80% 8

81–90% 9

91–100% 10

To find out whether the pesticidal plant extracts resulted in
any taint (odor and foreign taste) to the black tea, on days 7 and
14 after spraying, tea shoots were harvested and processed in a
mini CTC (crush, tear, curl) machine. The prepared samples of
tea were assessed by a professional tea taster to check whether
there was a taint or not. For the organoleptic test, liquor strength
and leaf infusions were considered and scored (1–2: poor quality,
3–5: moderate quality, 6–8: good quality, and 10: very good
quality; Roy et al., 2014).

Effect of Pesticidal Plant Extracts on Green
Leaf Yield
In order to find out the effects of aqueous plant extracts on
reducing the mite infestation, the yield (green leaf) was also
recorded during the bioassay carried out in the field conditions
by maintaining a standard plucking round of 7-day intervals, and
the yield (green tea leaf) was recorded for the first six rounds
of plucking. The average yield was expressed in kg/plot. The
yield recorded at each plucking was converted into made tea for
one hectare as described by Ponmurugan and Baby (2007) using
the formula

green leaf (kg.)×no. of bushes/ha× Conversion Factor (0.225).

RESULTS

Acaricidal Activity of Pesticidal Plant
Extracts (Leaf Disc Experiment)
Findings of the leaf disc experiment indicated that, amongst
the five plant extracts, T. diversifolia and C. alata @ 10 gm/l
concentrations were more effective than the other three plants
even after 24 h of treatment, showing maximum mortality
(Table 1). After 72 h, both plants offered more than 80%
mortality at 10 g/l concentration, which was similar to the

Frontiers in Agronomy | www.frontiersin.org 5 March 2022 | Volume 4 | Article 685568136

https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/agronomy#articles


Deka et al. Plant Extracts as Potential Acaricide

TABLE 1 | Acaricidal activity of the pesticidal plant extracts (leaf disc experiment).

Treatment Concentration Percent mortality after (mean ± SE)*

24 h 48 h 72 h

M. paniculata 2 gm/l 11.3 ± 1.10b 17.2 ± 2.32b 19.7 ± 3.11b

4 gm/l 12.0 ± 2.15b 16.2 ± 2.16b 22.6 ± 2.15c

6 gm/l 22.0 ± 2.23c 27.4 ± 3.25c 29.5 ± 3.21c

8 gm/l 38.2 ± 3.14d 42.5 ± 4.15e 49.0 ± 4.15e

10 gm/l 47.4 ± 5.14e 48.0 ± 4.25e 67.0 ± 5.15

C. tora 2 gm/l 9.0 ± 1.12b 16.5 ± 1.56b 19.0 ± 2.14b

4 gm/l 12.8 ± 2.12b 17.8 ± 2.14b 19.0 ± 3.14b

6 gm/l 23.6 ± 3.21c 27.7 ± 3.25c 29.4 ± 3.26c

8 gm/l 32.5 ± 3.25d 36.8 ± 3.24d 39.5 ± 3.36d

10 gm/l 44.7 ± 4.15e 48.3 ± 4.15e 52.5 ± 5.45f

A. opulentum 2 gm/l 9.2 ± 1.12b 12.2 ± 2.15b 16.0 ± 2.56b

4 gm/l 11.4 ± 1.12b 15.2 ± 2.13b 19.4 ± 3.15b

6 gm/l 34.2 ± 3.21d 42.0 ± 4.56e 48.2 ± 5.15e

8 gm/l 43.5 ± 5.14e 49.0 ± 5.51e 56.6 ± 6.15f

10 gm/l 48.0 ± 6.15e 59.0 ± 6.15f 70.0 ± 7.45g

T. diversifolia 2 gm/l 42.4 ± 4.16e 48.7 ± 5.24e 55.5 ± 4.56

4 gm/l 46.4 ± 4.16e 52.5 ± 4.56f 62.7 ± 6.15g

6 gm/l 69.7 ± 6.24g 70.0 ± 7.45g 72.6 ± 7.18h

8 gm/l 72.6 ± 7.15h 75.0 ± 7.21h 79.6 ± 8.84h

10 gm/l 75.4 ± 8.15h 79.0 ± 8.45h 82.0 ± 8.78i

C. alata 2 gm/l 40.7 ± 4.45d 45.4 ± 4.16e 50.0 ± 4.16

4 gm/l 45.5 ± 6.18e 49.0 ± 4.15e 52.0 ± 5.65

6 gm/l 67.4 ± 7.45g 69.0 ± 6.78g 75.7 ± 6.54h

8 gm/l 69.6 ± 8.52g 72.5 ± 8.15h 75.6 ± 8.48h

10 gm/l 75.5 ± 9.15h 78.7 ± 9.18h 81.0 ± 8.53i

Fenpyroximate 5EC 0.5 ml/L 78.4 ±3.33h 81.6 ± 3.45i 86.5± 3.67i

Control (water + 0.1% soap)- 0.0± 0.00a 0.0± 0.00a 0.0 ± 0.00a

F-value 8.4 9.5 10.2

ANOVA P-value <0.0001 <0.0001 <0.0001

CD (P = 0.05) 8.27 8.34 9.23

C.V.% 10.12 10.14 10.83

All the spray fluids were mixed with Teepol (0.1%).
*Values represent the mean of 30 observations ± SE (20 mites/observation); Values in the same column with different superscript are significantly different from each other at p < 0.05

by Tukey’s post-hoc Honestly Significant Difference (HSD) test.

synthetic acaricide Fenpyroximate 5EC, while in the other three
plants, 52–70% mortality of the red spider mite was recorded.

Ovicidal Action of Pesticidal Plant Extracts
Ovicidal action of the extracts was reliant on concentrations, i.e.,
percent mortality increased with a rising concentration of each
plant extract. In comparison to the control, the aqueous extract
of all of the selected plants affected the hatchability of the eggs.
The experimental findings showed that the highest mortality
was recorded against T. diversifolia at the highest concentration
(10 gm/l) among the tested concentrations of the selected plant
extract to the level of 66.7%, followed by 58.4, 57.4, and 48.5%
egg mortality, which was recorded in highest concentrations
against C. alata, A. opulentum, and M. paniculata, respectively.
This is comparable to the market sample Fenpyroximate 5EC,
where around 70% egg mortality was recorded. The lowest

mortality against the highest concentrations was recorded against
C. tora (34.15%) (Table 2).

Ovipositional Deterrent and Repellent
Activity of Pesticidal Plant Extracts
The number of eggs laid was considerably lower on the treated
side of the leaf disc where plant extracts (2, 4, 6, 8, and 10 gm/l)
were sprayed than on the control side. Regarding the number
of eggs laid, adult mites showed discrimination in terms of their
egg laying when the leaves were treated with the pesticidal plant
extracts. In this experiment, the DQ value was high (range 0.432–
0.819) in all tested plants at superior concentrations, i.e., 10
g/extract. The DQ value was highest (0.819) in T. diversifolia,
followed by C. alata, A. opulentum, M. paniculata, and C.
tora, respectively (Table 3).
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TABLE 2 | Ovicidal action of pesticidal plant extracts on eggs of the tea red

spider mite.

Treatments Concentration Percent egg

mortality (mean ± SE)*

M. paniculata 2 gm/l 10.13 ± 2.21

4 gm/l 12.90 ± 2.11

6 gm/l 13.82 ± 2.35

8 gm/l 34.21 ± 5.14

10 gm/l 48.51 ± 6.15

C. tora 2 gm/l 6.67 ± 1.13

4 gm/l 7.14 ± 1.61

6 gm/l 10.13 ± 2.21

8 gm/l 25.11 ± 4.11

10 gm/l 34.15 ± 6.21

A. opulentum 2 gm/l 13.3 ± 2.31

4 gm/l 23.22 ± 5.15

6 gm/l 26.32 ± 6.62

8 gm/l 53.24 ± 7.24

10 gm/l 57.45 ± 8.15

T. diversifolia 2 gm/l 15.32 ± 3.51

4 gm/l 25.41 ± 5.14

6 gm/l 34.15 ± 6.21

8 gm/l 45.25 ± 6.15

10 gm/l 66.71 ± 8.15

C. alata 2 gm/l 14.11 ±3.22

4 gm/l 22.18 ± 3.26

6 gm/l 34.15 ± 6.21

8 gm/l 46.5 ± 6.15

10 gm/l 58.4 ± 5.14

Fenpyroximate 5EC 0.5 ml/L 70.00 ± 3.33

Control (water + 0.1% soap) – 0.0 ± 0.00

CD at (P = 0.05) 7.17

CV (%) 8.01

All the spray fluids were mixed with Teepol (0.1%). *Values represent the mean of 30

observations ± SE (30 eggs/observation).

Large-Scale Field Study
The field evaluation results of each selected plant extract against
red spider mite at Zone A (Mission Hill Tea Garden, Darjeeling)
and Zone B (NBRRDC experimental plot, Dooars) during season
I and season II are presented in Table 4.

In Zone A, during season I, pre-treatment observation of the
red spider mite population ranged from 23.72 to 25.02%. Results
indicated that all the treatments were found to be significantly
superior to untreated checks in minimizing the population of
mites (Table 4). The mean percent reductions in the red spider
mite population in the cases of A. opulentum (67.03%) and
T. diversifolia (69.77%) at doses of 4 kg /ha were similar to
Fenpyroximate 5EC (68.16%). The reduction in the mean red
spider mite population was slightly inferior in plots treated with
M. paniculata (50.85%), C. tora (59.40%), and C. alata (53.46%)
compared to plots treated with Fenpyroximate 5EC.

During season II also, both A. opulentum (63.06%) and
T. diversifolia (64.93%) minimized the mite population in a
manner similar to the Fenpyroximate 5EC (62.84%), which were
significantly superior when compared toM. paniculata (48.97%),
C. tora (57.48%), and C. alata (51.17%; Table 4).

In Zone B, during season I, the incidence of red spider
mite infestation was significantly reduced in plots treated with
various insecticides as compared to untreated control (Table 4).
Among all the tested pesticidal plants, T. diversifolia (71.66%)
and A. opulentum (71.03%) significantly reduce the number of
red spider mites followed by C. tora (62.10%), C. alata (54.74%),
and M. paniculata (52.80%). However, there was no significant
difference in mean percent control of red spider mite among C.
tora, A. opulentum, T. diversifolia, and Fenpyroximate 5% EC
after 21 days. Similar to season I, during season II, the plots
treated with pesticidal plant extracts were found to be the most
effective treatments for the management of red spider mites.
While comparing the overall mean data recorded during the
study period, the mean infestation incidence was significantly on
par in plots treatedT. diversifolia andA. opulentum at 4 kg/ha and
Fenpyroximate 5% EC at 200 ml/ha (Table 4). Treatments using
C. tora, C. alata, and M. paniculata extracts were found to be
inferior to treatments using Fenpyroximate 5% EC at 200 ml/ha
but superior to untreated checks in reducing the mean percent
reduction of the red spider mite.

Effects on Non-target Beneficial Insects
The population level of non-target beneficial organisms was
recorded on day 0 (pre-treatment) and day 21 after two rounds
of spray (post-treatment). The most common insect predators
in the tea plant ecosystem, viz., C. carnea, O. javanus, and S.
gilvifrons, were recorded during the trial period. The present
results indicate that the tested pesticidal plants did not have
any adverse effect on these three non-target beneficial organisms
(Figures 3A,B). The numbers of beneficial insects in tea plants
treated with plants extracts were similar to that noticed in the
control. In both the seasons, among all the treatments, the
synthetic acaricide (Fenpyroximate 5EC) significantly reduced
numbers of non-target beneficial insects compared to all other
treatments (P < 0.05; Figures 3A,B).

Phytotoxic Effect, Tainting, and
Organoleptic Test
The phytotoxicity study was carried out separately after the
application of aqueous extracts of selected plants at 10, 20, and 40
gm/l water. Observations recorded on phytotoxicity symptoms
indicate that none of the concentrations showed any type of
phytotoxic effect on tea leaves. There was no visible injury on
the tip or the surface of the tea leaves, nor was there wilting,
necrosis, vein clearing, hyponasty, or epinasty. Likewise, after
the application of pesticidal plant extracts, tea shoots (two leaves
and a bud) were plucked on days 1, 3, 5, 7, 10, and 14, and
manufactured samples were tested by professional tea tasters
which revealed that the made tea did not show any taint and
scored 6.5–7 in organoleptic test, which represented excellent
color, liquor, quality, and potency.
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TABLE 3 | The percentage of female red spider mites that remained on the leaves where introduced and the numbers of eggs oviposited on the control (untreated) or

treated tea leaves with pesticidal plant extracts in choice tests.

Treatments Concentration

(gm/L)

% of adults moved on to leaves after 24 h Avg. no of eggs/female after 72h

Control (mean ± SD) Treated (mean ± SD) p-value Treated (mean ± SD) Control (mean ± SD) p-value DQ value#

M. paniculata 2 51 ± 3.12 49 ± 3.11 0.6416 3.36 ± 0.56 3.21 ± 0.87 0.5684 0.032

4 61 ± 3.43 39 ± 3.47 <0.0001* 2.98 ± 0.23 3.98 ± 0.45 <0.0001* 0.106

6 64 ± 3.56 36 ± 3.67 <0.0001* 2.05 ± 0.45 4.45 ± 0.67 <0.0001* 0.201

8 73 ± 3.55 27 ± 4.34 <0.0001* 1.98 ± 0.11 4.98 ± 0.78 <0.0001* 0.401

10 83 ± 4.25 17 ± 2.11 <0.0001* 1.01 ± 0.12 5.67 ± 0.89 <0.0001* 0.512

C. tora 2 49 ± 2.23 51 ± 4.23 0.7856 2.76 ± 0.23 2.32 ± 0.34 0.5387 0.023

4 61 ± 3.19 39 ± 3.45 <0.0001* 2.45 ± 0.12 2.56 ± 0.36 <0.0001* 0.101

6 64 ± 4.16 36 ± 3.31 <0.0001* 1.95 ± 0.11 3.54 ± 0.56 <0.0001* 0.198

8 73 ± 4.23 27 ± 2.11 <0.0001* 1.43 ± 0.11 3.78 ± 0.45 <0.0001* 0.345

10 82 ± 5.11 18 ± 2.18 <0.0001* 0.95 ± 0.01 4.56 ± 0.68 <0.0001* 0.432

A. opulentum 2 52 ± 3.56 48 ± 2.22 0.6534 4.00 ± 0.56 4.34 ± 0.34 0.5138 0.042

4 62 ± 3.67 38 ± 2.12 <0.0001* 3.96 ± 0.43 4.74 ± 0.45 <0.0001* 0.135

6 64 ± 4.55 36 ± 3.11 <0.0001* 3.01 ± 0.23 5.21 ± 0.32 <0.0001* 0.224

8 74 ± 4.78 26 ± 2.45 <0.0001* 2.29 ± 0.21 5.72 ± 0.57 <0.0001* 0.427

10 84 ± 4.54 16 ± 1.12 <0.0001* 1.43 ± 0.07 6.07 ± 0.67 <0.0001* 0.618

T. diversifolia 2 56 ± 3.11 44 ± 3.11 0.0023 6.00 ± 0.67 6.32 ± 0.45 0.5467 0.061

4 66 ± 3.29 34 ± 3.10 <0.0001* 5.58 ± 0.56 6.47 ± 0.56 <0.0001* 0.336

6 70 ± 3.45 30 ± 4.12 <0.0001* 5.02 ± 0.54 7.34 ± 0.67 <0.0001* 0.423

8 78 ± 4.18 22 ± 2.15 <0.0001* 4.12 ± 0.34 7.89 ± 0.78 <0.0001* 0.628

10 90 ± 5.12 10 ± 1.13 <0.0001* 3.41 ± 0.32 8.98 ± 0.89 <0.0001* 0.819

C. alata 2 54 ± 2.45 46 ± 2.12 <0.0001* 5.01 ± 0.45 5.23 ± 0.32 0.5678 0.051

4 64 ± 3.21 36 ± 2.45 <0.0001* 4.48 ± 0.43 5.44 ± 0.54 <0.0001* 0.225

6 68 ± 4.56 32 ± 3.34 <0.0001* 4.01 ± 0.23 6.32 ± 0.67 <0.0001* 0.312

8 76 ± 4.78 24 ± 2.23 <0.0001* 3.11 ± 0.21 6.56 ± 0.76 <0.0001* 0.512

10 88 ± 5.12 12 ± 2.12 <0.0001* 2.12 ± 0.04 7.89 ± 0.89 <0.0001* 0.712

All the spray fluids were mixed with Teepol (0.1%).
*Means are significantly different between treated and untreated (control) by t-test (mean ± SD, p ≤ 0.05).
#DQ, discrimination quotient.

Effect of Pesticidal Plant Extracts on Green
Leaf Yield
The average yield recorded from the first six pluckings (at 7-
day intervals) from both the experimental locations during the
trial period is presented in Table 4. In spite of there being more
insect pest populations on tea plants being treated with selected
pesticides than with the synthetic pesticides, harvested yields
acquired from the pesticidal plant treatments were shown to be
as good as those from the synthetic pesticides. The yield (green
leaf in kg/plot) was significantly low in the untreated control,
confirming the better efficacy of the different tested plant extracts
(Table 4). This is most prominent with the use of T. diversifolia
and A. opulentum where the yields were statistically comparable
in zone A (2,184 and 2,179 kg/ha, respectively) and zone B (2,106
and 2,102 kg/ha, respectively) with Fenpyroximate 5EC (2,195
kg/ha in zone A and 2,112 kg/ha in zone B) and was statistically
higher when compared to the control (2,038 kg/ha in zone A and
1,951 kg/ha in zone B). The synthetic pesticides (Fenpyroximate
5EC) showed the highest increase in yield in both locations. In the
case of other pesticidal plants, viz., M. paniculata, C. tora, and C.

alata, the yields were slightly lower (not statistically significant)
than with T. diversifolia, A. opulentum, and Fenpyroximate 5EC
in both the locations. In comparison to the yields recorded in the
control plot, the pesticidal plant treatments showed an ability to
considerably enhance the percentage of the yield.

DISCUSSION

Earlier works on the pesticidal plant species that are being used
to control different tea pests have reported bioactivities against
insects, bacteria, fungi, and parasites (Sarmah et al., 1999; Singh,
2000; Weinzierl, 2000; Raja et al., 2003; Isman, 2006; Roy et al.,
2010, 2011; Roy andMukhopadhyay, 2012; Vasanthakumar et al.,
2012; Deka et al., 2017). Conversely, none of these works have
dealt with the studies on the impact on field crop performance or
tri-trophic interactions.

The findings obtained from the leaf disc experiment show that
all of the selected plant extracts showed acaricidal activity where
52–82% mortality of adult red spider mites were recorded with
the highest dose (10 g/l) after 72 h (Table 1). Similar properties
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of indigenous plant extracts Linostoma decandrum, Ageratum
houstonianum, A. haustonianum Bidens pilosa, Allamanda
catharitica, B. pilosa, Crassocephalum crepidioides, Casuarina
equisetifolia, Gliricidia sepium, Conyza bonariensis, Lantana
camara, and Ocimum basilicum, which were recorded by Bora
et al. (1998) and Radhakrishnan and Prabhakaran (2014).
Pesticidal plants as insecticides (botanical insecticides) are
gaining importance since numerous plants show insecticidal
properties. Currently, botanical insecticides comprise only 1%
of the world insecticide trade, however, its annual sales
growth in near about 15% is utterly promising (Wink, 1993).
In the house and backyard sector, the impact of botanical
insecticides is most prominent (Isman, 1995). Plant products
that have prospective use as insecticidal compounds have gained
astonishing importance in recent years (Nattudurai et al., 2015).
Therefore, based on the finding of our laboratory studies, large-
scale field trials were carried out using the extracts of the
same plants.

The aqueous extracts of different plants were sprayed on the
eggs of red spider mite, and all the pesticidal plants influenced
the hatchability of the eggs and showed the ovicidal activity of
the extracts and at higher concentrations, all of which was an
effect similar to that of synthetic acaricides. Chemical substances
present in the host plants possibly block the micropyle region
of the egg, preventing the gaseous exchanges that finally destroy
the embryo in the egg. Raja et al. (2003) screened nine different
plants using different solvent extracts against Spodoptera litura as
ovicidal and ovipositional deterrents, and they noticed efficacy
irrespective of the solvents and concentrations used for the
extraction. The curtailed blastokinesis and anomalous rupture
of additional embryonic membranes in the embryo, or irregular
diffusion of extracts through the egg chorion to remarkable parts
of eggs at unusual times of the perceptive time, could also be
related to an explanation of the inconsistency of morphological
possessions (Slama, 1974). Vasanthakumar et al. (2012) studied
the acaricidal action of the leaf extracts of Gliricidia maculate,
Vitex negundo, Wedelia chinensis, Pongamia glabra, andMorinda
tinctoria on red spider mites and reported that the aqueous
extracts of P. glabra and M. tinctoria showed utmost ovicidal
activity, ovipositional anticipation, and 100% adult mortality.
The current findings also showed similar results with reference to
the ovicidal action of the selected pesticidal plant extracts against
the red spider mites.

Along with the ovicidal and adulticidal properties, the
aqueous extracts of five selected pesticidal plants also indicated
a repellency action against adult red spider mites. This indicates
the selected pesticidal plants have repellent effects that depress
the feeding behavior andmovement of themites. Roy et al. (2016)
and Handique et al. (2017) also reported similar activity when
they sprayed leaf extracts of D. repens, Nyctanthes arbor-tristis,
Phlogacanthus thyrsiformis, and Sapindus mukorossi against red
spider mites. Similar to the red spider mites on tea, the repellent
properties of different plant extracts were studied and established
against different pests, viz., A. aegypti (Yang et al., 2004), Culex
tritaeniorhynchus (Karunamoorthi et al., 2008), and whitefly,
Bemisia tabaci (Al-mazra’awi and Ateyyat, 2009). The aqueous
extracts of M. paniculata, C. tora, A. opulentum, T. diversifolia,
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FIGURE 3 | Effect of aqueous extracts of selected plants on non-target beneficial organisms before treatment (0 day) and after 21 days. (A) during season-I and (B)

during season-II. *Values are significantly different between day 1 and 21 by t-test (p < 0.05).

and C. alata also exerted ovipositional deterrent effects by
preventing the red spider mites from laying eggs on the treated
leaves. The ovipositional deterrence property of ethanol extract
of N. arbor-tristis was also evaluated and confirmed against
Helicoverpa armigera (Chauhan et al., 2008). Our findings also
agree with those of Roobakkumar et al. (2010) and Handique
et al. (2017) in terms of the use of plant extracts against the red
spider mites.

In lower-economic countries, synthetic pesticides are
frequently used, which leads to several harmful impacts on
the ecosystems as well as human health (Ecobichon, 2001). In
these countries, the application of pesticidal plant extracts as
biocontrol options has been argued for extensively as sustainable
options suitable for smallholder farmers (Isman, 2006; Sola et al.,
2014), and our experimental findings also confirmed this and
indicated that application of extracts of pesticidal plant extract
can control pests effectively. It has also been demonstrated that

pesticidal plants can minimize the population of red spider
mites and can support yield increase comparable to those where
synthetic pesticides were used. The relatively regular application
of pesticidal plant extracts highlights their use as synthetic
pesticide substitutes; they are active compounds that break down
rapidly and they show little persistence (Casida, 1980). This
means that, during the preparations of the water extracts of
these plants, the labor inputs might increase, however, for the
commercialization of these products, integrating photostabilizers
and sticking agents may perhaps lengthen their effectiveness on
crops and hence reduce the frequency of application. This kind
of substitution for synthetic pesticides is commonly accepted
by the small tea growers due to the high cost of synthetic
pesticides; the use of pesticidal plants minimally requires labor
costs for harvesting and processing. A cost-effective analysis
of the application of pesticidal plants shows that these of more
cost-benefit than synthetic pesticides (Amoabeng et al., 2014;
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Mkenda et al., 2015). By contrast, the lower persistence of these
plants indicates that the consumer’s health is at a minimum
risk because of the reduced exposure to the plant’s bioactive
compounds that decompose into harmless natural products,
unlike with the synthetic pesticides, which stick to the plants
for few days or remain in the soil for weeks or months or even
years. It indicates that leaves can be harvested without the risk
of leftover residue as exposure to UV light and microorganisms
present in that environment helps to quicken the breakdown of
naturally occurring compounds (Isman, 2000; Angioni et al.,
2005; Caboni et al., 2006). The findings of this research indicated
another important transaction when comparing pesticidal plant
and synthetic plant protection and their impact on non-target
beneficial organisms. Toxicity and the perseverance of synthetic
pesticides as anticipated their effect on predators, parasitoids,
and pollinators is generally extremely high (Potts et al., 2010;
Stanley and Preetha, 2016). In fact, our findings indicated that
synthetic pesticides regularly used in the tea ecosystem for
the control of red spider mites resulted in the non-existence
of predators/parasitoids observed over the cropping season.
In general, it leads to the occurrence of pest resurgence after
the application of synthetic pesticides enabling populations of
pest species to spread out in the non-existence of beneficial
insects (Roubos et al., 2014; Welch and Harwood, 2014). On
the other hand, pesticidal plant extracts showed less of an
impact on predators/parasitoids. A marginal difference was
noticed (statistically not significant) amongst the pesticidal plant
extracts and the control (water spray) in terms of non-target
beneficial insects as compared to the reductions noticed in the
synthetic treatment.

It is due to the lower persistence of the pesticidal plant
extracts and the various modes of accomplishment where the
pesticidal plant treatments may perhaps act against pests as anti-
feedants and repellents through toxicity post-ingestion (Tembo
et al., 2018). The lower toxic effect and the persistence of the
pesticidal plant extracts are supported by their condensed effects
on beneficial insects. Compared to the synthetic pesticide, pests
are less affected by the pesticidal plants extracts; however, it
would facilitate the natural pest directive. As a result, controlling
pest populations is additionally effective as regulation of pests is
more effective when the ratio between the pests and predators in
numbers is less (Arditi and Ginzburg, 1989; Rusch et al., 2010).
Even though all the selected plant extracts could reduce a similar
or lower number of pests in comparison to the synthetic pesticide,

crop yields were repeatedly comparable with that of the synthetic
chemicals. This may be due to the increased decline in the pest
population through natural enemies, and perhaps the bush can
tolerate a definite amount of damage and can physiologically
compensate to maintain overall yield (Rubia et al., 1996; Brown,
2005). Wemay see forms of crop protection via the direct control
of fungal or bacterial pathogens or indirect physiological support
by acting as a topical green fertilizer, foliar feed, biostimulants,
or the phytotonic effects of the plant extracts (Jama et al., 2000;
Shaaban, 2001; Soylu et al., 2010; Marei et al., 2012; Rasoul et al.,
2012; Pretali et al., 2016).

Interpretation of the phytotoxicity on leaves of tea plants
indicated that the selected plants are non-phytotoxic to tea, and
the teas made from the leaves sprayed with these extracts when
evaluated by professional tea tasters revealed that prepared tea
had no taint. Thus, the present study suggests that plant extracts
used as a pesticide showed toxicity against red spider mites on tea
plants without harming the beneficial insects, increasing the yield
without being accompanied by toxic consequences for the part of
the tea plants and consumers.
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The present study aimed to develop nanoemulsions (NEs) of essential oil (EO) and

lipid-soluble extract (HE) of Pogostemon cablin leaves using biosurfactant, saponin.

Hydro-distilled EO and fat-soluble HE were analyzed using GC-MS, which revealed

38.7 ± 2.7% and 37.5 ± 2.1% patchoulol, respectively. EO and HE were formulated

with saponin to prepare corresponding coarse emulsions (CEs); furthermore, high-speed

homogenization for 2min was followed by ultrasonication for 3min with constant

frequency of 50 kHz. of the CEs resulted in respective NEs. NEs were characterized

for the physico-chemical properties such as emulsion intrinsic stability, particle size

distribution, polydispersity index (PDI), and transmission electron microscopy (TEM) for

morphology and accurate nanodroplet diameters. CEs and NEs were investigated for

insecticidal efficacy against adults of Tetranychus urticae and larvae of Spodoptera

litura. Stable NEs of EO and HE at 500 µg mL−1 concentration exhibited corresponding

average particle size of 51.7 and 89.9 nm, while TEM image revealed spherical-shaped

droplets with the average droplet diameters of 15.3 and 29.4 nm, respectively. NEs of

EO and HE displayed highest efficacy in contact toxicity (LC50 43.2 and 58.4 µg mL−1)

after 48 h and fumigant toxicity (LC50 9.3 and 13.6 µg mL−1) after 24 h against T. urticae.

In addition, NEs of EO showed considerable antifeedant and feeding deterrent action (AI

99.21 ± 0.74 and FI 99.73 ± 1.24) against S. litura larvae.

Keywords: biopolymer, volatile oil, ultrasonication, acaricidal, patchouli, Tetranychus urticae

INTRODUCTION

The present concept of green crop protection tools emphasized the exploitation of bioactive volatile
and non-volatile phyto-constituents, which serve as potential sources of new molecules with a
complex mechanism of action (Pavela and Benelli, 2016). In spite of huge versatility of the natural
compounds, common constraints exist for their delivery systems, which are related to limited
aqueous solubility and stability. Nanotechnological interventions are represented as one of the
promising solutions of the problem (Nenaah et al., 2015; Campolo et al., 2017). Further increasing
interests have been focused in recent studies regarding the development of NEs for encapsulation
of volatile bioactive compounds/EOs for their promising application in agriculture (Khot et al.,
2012). EOs have been recognized as eco-benign promising crop protection tool (Kundu et al.,
2021); thus, nano-formulations of EOs are being designed, developed, and evaluated to manage
many economically important pests (Heydari et al., 2020).
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NEs provide a structural framework where bioactive
ingredients are dispersed in the aqueous medium and stabilized
with the help of surfactant particles. The stable oil-in-water NEs
usually comprised of lipophilic active ingredient(s), surfactant,
and water (Noori et al., 2018). It appears mostly transparent
or slightly translucent in texture with the particle diameter
within 100 nm (Balasubramani et al., 2017), since Sugumar et al.
(2014) considered NEs having droplet size ranging between
20 and 200 nm. High-pressure homogenization has been used
to prepare emulsions with reduced diameter; however, the
process could only be sustained on high consumption of energy.
Micro-fluidization is another energy-intensive technique, which
shears the emulsion droplet size through molecular collision
under microfluidic compartment (McClements, 2004). Related
studies on the preparation of NEs using various techniques have
indicated ultrasonic energy as competitive or even relatively
superior employing rotor–stator dispersing to achieve uniform
nanodroplets (Kentish et al., 2008).

Nano-sizing of lipophilic components including EOs helps
to form kinetically stable emulsion with improved dispersibility
in aqueous medium and higher degree of aqueous diffusion
(Hashem et al., 2018). Furthermore, bioavailability improved
as NEs with the increased surface area dimensions could
easily penetrate the cell wall and reach the specific target
binding sites; therefore, nano-emulsification reduced the
application rate of active ingredients (Acevedo-Fani et al., 2015).
However, comprehensive investigations are truly imperative to
ascertain proper encapsulation and stability of nanodroplets.
Thus, emulsifiers play a crucial role, and the critical micelle
concentrations (CMC) of emulsifiers usually determine
the kinetic stability of the emulsion (Kumar et al., 2019a).
Naturally occurring green emulsifiers such as biosurfactants,
amphiphilic proteins, and polysaccharides have been exploited
to prepare nanoemulsions. Biosurfactants like saponins are
preferred as these are required in small quantities to develop
stable nanodroplets of lipophilic compounds (McClements
and Gumus, 2016). Besides, steroidal saponins have been
reported to possess insecticidal properties (Dolma et al.,
2021).

Pogostemon species are perennial herbaceous plants, which
belong to Lamiaceae family, are native to Philippines, and
are widely distributed across warm and humid tropical
climate of South Asian countries including India (Kusuma
et al., 2018). Volatile EO of P. cablin is primarily constituted
with sesquiterpenes, namely, patchoulene and patchouli
alcohol (Sundaresan et al., 2012). Investigations on biological
properties of the Pogostemon EO and phytochemicals revealed
multidimensional pharmacological functions against a panel
of targets (Hu et al., 2018; Roshan et al., 2022). Significant
antifeedant activity of the EO has also been recorded against
cosmopolitan pests (Huang et al., 2014). Furthermore, the oil
was reported to exhibit LD50 0.2 µg/adult against Tribolium
castaneum (Feng et al., 2019) and LD50 8.0 µg/insect against
Choristoneura rosaceana (Machial et al., 2010). Based on the
assumptions of higher efficacy of EO and extracts of Pogostemon,
patchouli alcohol appeared as the key component responsible for
broad-spectrum activities (Lima et al., 2013).

Hence, the hypothesis has been built with the proof of concept
to utilize the EO and lipid-soluble fractions of P. cablin for
the preparation of NEs with improved efficacy against acarid
and insect. With these backgrounds, the present research was
designed to profile volatile chemical constituents of EO and lipid-
soluble fractions of P. cablin for the development of NE-based
delivery system in an attempt to achieve potential bio-insecticide.

MATERIALS AND METHODS

Plant Materials
Fresh leaves of P. cablin (5.0 kg) were collected from farmer’s
field, Hirisave village (12.9172◦ N and 76.4563◦ E) near Hassan
district of Karnataka, India, during the month of April 2019. The
voucher specimen (PC-2019-KHV-01) was authenticated from
ICAR-National Bureau of Plant Genetic Resources, New Delhi,
India. Fresh leaves were cleaned, gently washed with water, and
used for isolation of EO. Shade dried leaves were powdered and
used for extraction.

Distillation of EO
Fresh leaves of P. cablin (1.0 kg) were hydro-distilled in a
Clevenger’s apparatus (Borosil GlassWorks Ltd., Mumbai, India)
for continuous 12 h according to the method reported by Kundu
et al. (2016). Pale yellowish-colored EO was collected from the
apparatus. Furthermore, EO was partitioned with diethyl ether (3
× 50mL) followed by passing through anhydrous sodium sulfate
(20 g) using a glass funnel and stored. The yield of EO (%) was
calculated as 1.43% (v/w).

Extraction
Coarsely powdered leaves (1.0 kg) of P. cablin were submerged
with 2.5-L hexane (Merck R© India Ltd, Mumbai, India) and
sonicated for 2 h at 35◦C using bath sonicator (PCI Analytics Ltd,
Mumbai, India) following the method reported by Dutta et al.
(2021). The extraction was repeated thrice with the same sample
followed by filtration and concentrated to dryness under reduced
pressure in a rotary evaporator (Heidolph, Germany) below 40◦C
to afford the crude HE (109.7 g).

GC-MS Analysis
Pogostemon EO and HE were analyzed in a 5590C GC-MS
(Agilent Technologies R©, USA) using a stationary phase column
(30m × 0.25µm, 0.25µm, Agilent Technologies R©, USA) which
was equipped to a mass spectrometer. Samples (1 µL, each) were
injected through auto-injector under split-less mode. Helium
was used as carrier gas with the flow rate of 1mL min−1 and
pressure of 10 psi. Then, oven condition was programed where
temperature started at 30◦C held for 1min., then increased
at the rate of 3◦C min−1 to reach 60◦C, and then held for
5min. Hereafter, temperature was increased with the rate of
2◦C min−1 to reach 150◦C and with the hold time of 5min.
Next, temperature was again raised at the rate of 5◦C min−1 to
reach 220◦C with the hold time of 5min. At last, temperature
increased to 280◦C at the rate of 10◦C min−1. Both the samples
were analyzed with the runtime of 90min. The MS acquisition
parameters were programed with the ion source temperature of
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170◦C, electron ionization of 70 eV, transfer line temperature of
280◦C, solvent delay of 3min., and E.M. voltage of 1,419V. The
ionization energy (70 eV) was fixed with scanning rate of 1 s with
the mass range of 50–550 amu. Volatile aromatic constituents
were identified by matching their mass spectra, fragmentation
pattern, reference standard, and retention index (literature and
experimental) using Adams (2007), NIST, and WILEY libraries
(Kumar et al., 2021).

Critical Micelle Concentration
Saponin (C36H54O11, sapogenin content 20–35%) sourced from
Quillaja sp. (Merck R© India Ltd. (Mumbai, India) was used as
biosurfactant. CMC of saponin was determined from electrical
conductance (EC) of different concentrations. For that, 100 to
12,000 µg mL−1 of saponin was prepared in aqueous medium
and EC values were determined by a probe-type waterproof EC
meter (HI 98304, Hanna, NewDelhi, India). At first, the ECmeter
probe was calibrated with the ready-made KCl solution of known
strength. Then, the prepared saponin aqueous solutions were
measured by stirring and maintaining temperature equilibrium
at 25 ± 1◦C. The probe was washed thoroughly with de-ionized
water after each measurement, starting from lower to higher
concentrations of saponin.

Nanoemulsions (NEs) Preparation
At first, primary coarse emulsions (CEs) of EO and HE of P.
cablin were prepared separately with the double concentration
of pre-determined CMC values of saponin (0.5%). To prepare
the CEs, EO (0.5g) and HE (0.5g) were separately mixed with
the surfactant, and saponin (0.25 g) with minimum amount of
deionized water, and finally, the volume was made up to 50mL
and vortexed for 5min to obtain CEs (1%) of EO and HE.
The freshly prepared CEs were thoroughly dispersed individually
in high-speed homogenizer (IKA Ultra-Turrax T25, India) for
2min. Thereafter, emulsion dilution technique was used to
prepare nanoemulsions (NEs) from the CEs (Ghosh et al., 2013).
Both the CEs (1%) were diluted serially with 0.5% aqueous
solution of saponin to prepare secondary emulsions of lower
concentrations (31.25–500 µg mL−1) of EO and HE. The diluted
secondary emulsions were then subjected to ultrasonication
using a probe ultrasonicator (MISONIX, Ultrasonic Liquid
Processors, USA) for 3min. at the amplitude of 50 kHz. to
obtain NEs.

Stability of NEs
NEs of EO and HE were subjected to centrifugation at 10,000
rpm for 20min. for checking any phase separation. Furthermore,
the stability of the prepared emulsions was observed at room
temperature at different time intervals and at accelerated storage
condition (54± 1◦C) for 14 days.

Particle Size of NEs
Average particle diameter, distribution, zeta potential, and
polydispersity index (PDI) of the NEs and CEs of EO and
HE were determined using a Zetasizer (Microtrac, Germany)
following the principles of dynamic light scattering. Samples were
measured with the help of a probe attached with the instrument

with a laser light source. Microtrac FLEX data analysis program
was used for the measurement of average droplet size. All the
measurements were replicated thrice for each concentration.

Transmission Electron Microscopy
NEs were visualized using TEM (JEM 1011, JEOL, Japan)
operated at an acceleration voltage of 80 kV to determine the
morphology and droplet size at all the concentrations. The Cu-
coated grid (200 mesh) of TEM was impregnated with each
concentration of NE and kept for 15min. for partial drying. The
grids were further stained with 2% uranyl acetate and allowed
to dry again for 3 h, and micrographs were acquired at the
magnification of 80,000x at 100 nm under TEM.

Acaricidal Assays
Culturing of T. urticae
Adults of Tetranychus urticae were collected from tomato
ecosystem which had not been exposed to any acaricide before.
The acarids were reared on surface of the mulberry (Morus alba)
leaves and kept on wet sponge in the laboratory at 27± 1◦C, 65±
5% RH, and 13:11 h under L:D photoperiod till three generations
before conducting the bioassay to obtain pure culture. Mites
took 8–10 days during summer and 10–16 days during winter to
complete one generation.

Leaf Dip Assay
CEs andNEs were tested against adults of T. urticae following leaf
dip method. Test samples at the strength of 31.25–500 µg mL−1

were used for acaricidal assay. Mulberry (Morus alba) leaves were
cleaned and treated separately with different concentration of
the samples. Treated leaves were allowed to dry for 2 h, and 25
adults of T. urticaewere transferred to the treated leaves. Saponin
solution was used as negative control. All the Petri plates were
incubated at ambient laboratory conditions under insect culture
chamber maintaining 27 ± 1◦C. Observations were taken after
24- and 48-h exposure. Mortality (%) was calculated, and probit
analysis and LC50 values (µg mL−1) were determined using
statistical software.

Fumigation Assay
CEs and NEs were tested for fumigant toxicity against adults of
T. urticae. Using a stereomicroscope, 25 adults were transferred
on the cleaned mulberry leaf holding on the dorsal part of the
hysterosoma using a handling brush. The leaves were kept inside
the glass jars. Each treatment (2.0mL) of each sample was socked
in cotton balls and hung with the help of lid inside the jar. Test
concentrations of each sample were kept at 100–5.0 µg mL−1.
Each treatment was replicated five times along with negative
control, and the dead adults were counted after 24 h. The treated
adults were considered dead if appendages did not respond even
after touching with the brush. Mortality (%) was recorded, and
further, LC50 values (µg mL−1) were determined.

Insecticidal Activity Against S. litura
Insect Culture
Eggs of S. litura were collected from tomato plants and
incubated under laboratory conditions with high RH of 80
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± 5%. When eggs turned into dark color, matured (3–
4 days), and were inoculated for hatching, freshly hatched
larvae were fed on castor (Ricinus communis) leaf bouquets
till larvae entered into pupation. Then, sex was identified,
separated in different jars for emergence, and released for
oviposition in jar, which consists of 15–20% honey solution
dipped in a cotton wad for food and zig-zag folded paper
strip for egg laying. Field collected cultures were reared in
laboratory for 2–3 generations to obtain pure culture and used
for testing.

Larvicidal Assay
Larvicidal activity of the CEs and NEs based on EO and
HE was studied using potter tower spray at five different test
concentrations (500–31.25 µg mL−1). Fresh castor leaf disk
was kept in each Petri dish, and five third instar larvae of
S. litura were released. Each test concentration (1.0mL) was
sprayed on the third instar larvae of S. litura kept in Petri
dish. Each treatment was replicated thrice. Petri dishes were
kept under laboratory ambient conditions, and observations
were taken after 24 and 48 h. Mortality (%) was calculated,
and lethal concentration in terms of LC50 values (µg mL−1)
was determined.

Antifeedant Assay
CEs and NEs were evaluated using non-choice and choice leaf
disk method (Sengonca et al., 2006). Briefly, fresh castor leaves
were collected from field and cleaned thoroughly. Leaves were
cut evenly maintaining disk desired size (3 × 3 cm2), were
dipped in various test concentrations (500–31.25 µg mL−1)
separately, and were allowed to air dry at room temperature for
3 h. Additionally, leaf disks dipped in saponin solution were used
as negative control. In each Petri dish, one layer of wet filter
paper was placed to avoid drying of the leaf disks, if any. One
third instar larva was introduced into each treated plate and
placed in an incubator at 27 ± 1◦C with 65 ± 5% RH and a
14:10 (L: D) photoperiod. Each treatment was replicated eight
times. Observation of the larvae was taken after 24-h exposure
to determine the effect of on their feeding behavior. Larvae
were found to be sterile and could not feed the leaves; however,
most of the treated plates, close to complete consumption of
leaves, were observed in control. Feeding of treated and control
leaves was measured after 24 h. using a Leaf Area Meter (ADC
Bioscientific Ltd., India), and the antifeedant index (AI) was
determined by the following equation AI% = [(1 – T/C) ×

100], where T is the average area of treated leaf consumed
and C is the average leaf area consumed without treatment.
The Feeding Index (FI) was calculated as [(C – T)/(C + T)]
× 100.

Statistical Analysis
Data were measured using the Statistical Package
for the Social Sciences (SPSS, Version 14.0,
IBM, NY, USA). The results were expressed as
mean±standard deviation (SD), and differences
between variables were tested using one-way ANOVA.

TABLE 1 | Chemical composition of volatile organic components of EO and HE of

P. cablin leaves.

aCompounds bRIexp cRIlit dRA (%) eIdentification

EO HE

α-Pinene 928 932 0.2 ± 0.0 – RI, MS

β-Pinene 969 974 0.3 ± 0.1 – RI, MS

dl-Limonene 1,018 1,024 0.2 ± 0.0 – RI, MS

Nonanal 1,103 1,105 – 3.0 ± 0.4 RI, MS

Tridecane 1,302 1,308 – 0.6 ± 0.1 RI, MS

trans-β-Caryophyllene 1,409 1,412 3.7 ± 0.5 4.3 ± 0.5 RI, MS

γ -Elemene 1,430 1,436 3.3 ± 0.4 0.5 ± 0.1 RI, MS

α-Guaiene 1,436 1,440 17.7 ± 1.2 12.4 ± 0.9 RI, MS

Aromadendrene 1,438 1,439 0.5 ± 0.1 - RI, MS

β-Patchoulene 1,441 1,443 3.6 ± 0.5 0.2 ± 0.0 RI, MS

α-Patchoulene 1,452 1,457 2.6 ± 0.3 3.6 ± 0.5 RI, MS

Seychellene 1,458 1,460 - 2.7 ± 0.3 RI, MS

α-Selinene 1,474 1,475 2.5 ± 0.2 0.1 ± 0.0 RI, MS

γ -Gurjunene 1,478 1,479 0.1 ± 0.0 - RI, MS

β-Selinene 1,481 1,487 0.2 ± 0.0 - RI, MS

β-Guaiene 1,482 1,490 3.2 ± 0.4 2.5 ± 0.3 RI, MS

α-Bulnesene 1,509 1,505 18.1 ± 1.2 7.8 ± 0.7 RI, MS

Globulol 171 1,575 0.1 ± 0.0 – RI, MS

Caryophyllene oxide 1,575 1,578 0.4 ± 0.1 – RI, MS

Viridiflorol 1,607 1,612 0.5 ± 0.2 – RI, MS

Cubenol 1,634 1,642 0.2 ± 0.0 – RI, MS

Patchouli alcohol 1,677 1,680 38.7 ± 2.7 37.5 ± 2.1 std, RI, MS

(Z,Z)-Farnesol 1,721 1,718 0.2 ± 0.0 – RI, MS

Leden oxide (I) 1,876 1,890 0.6 ± 0.1 – RI, MS

Hexadecanoic acid 1,958 1,964 – 2.1 ± 0.2 RI, MS

Octadecenoic acid 2,147 2,140 – 6.4 ± 0.5 RI, MS

Octadecanoic acid 2,186 2,188 – 2.4 ± 0.3 RI, MS

Docosane 2,213 2,208 – 2.3 ± 0.3 RI, MS

Tetracosane 2,395 2,402 – 2.1 ± 0.3 RI, MS

Squalene 2,837 2,829 – 1.3 ± 0.2 RI, MS

Non-acosane 2,891 2,900 – 0.8 ± 0.2 RI, MS

Tricontane 2,989 3,000 – 0.9 ± 0.2 RI, MS

Total identified (%) 96.9 93.5

Classified on functional groups

Monoterpene hydrocarbons (%) 0.7 –

Sesquiterpene hydrocarbons (%) 55.5 34.1

Oxygenated sesquiterpenes (%) 40.6 38.7

Aldehydes – 3.0

Long chain fatty acids – 10.9

Long chain hydrocarbons – 5.0

aCompounds are listed in order of their elution from a HP-5MS column. bRetention

index on HP-5MS column, experimentally determined using homologous series of C8-

C30 alkanes.
cRetention index taken from Adams (2007), NIST (2012) and WILEY libraries.

dRelative area % values are expressed as means ± SD. e Identification methods: std,

based on comparison with reference standard; RI, based on comparison of calculated RI

with those reported in Adams and NIST; MS, based on comparison with WILEY and NIST

12 MS databases.

Statistically significant level was determined at p-value
< 0.05.
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FIGURE 1 | GC-MS fragmentation pattern of the most abundant patchouli alcohol characterized in EO and HE of P. cablin.

RESULTS

Volatile Composition of EO and HE
Volatile constituents of EO of P. cablin leaves were identified
in GC-MS which showed several peaks, corresponding to
twenty-four mono- and sesquiterpenoids, representing 96.9%
of the oil (Table 1). Sesquiterpene hydrocarbons (55.5%) were
most abundant followed by oxygenated sesquiterpenes (40.6%).
Patchouli alcohol (38.7 ± 2.7%) was found as the major
oxygenated sesquiterpene followed by α-bulnesene (18.1± 1.2%)
and α-guaiene (17.7 ± 1.2%). Other major sesquiterpenes of
the oil were trans-β-caryophyllene (3.7 ± 0.5%), β-patchoulene
(3.6 ± 0.5%), β-elemene (3.3 ± 0.4%), β-guaiene (3.2%), α-
patchoulene (2.6 ± 0.3%), and α-salinene (2.5 ± 0.2%). Only
three monoterpene hydrocarbons such as α-pinene (0.2± 0.0%),
β-pinene (0.3 ± 0.1%), and dl-limonene (0.2 ± 0.0%) were
identified accounting only 0.7% of the EO.

Mass spectrum of patchouli alcohol showed molecular
ion [M]+ peak at m/z 222, which was further broken to
give daughter ion peaks at m/z 207, 179, and 161 after
sequentially losing methyl and hydroxyl moieties. Other
peaks at m/z 138, 125, 98, 81, and 69 were also originated
due to subsequent cleavage of hydrocarbons (Figure 1).
Similarly, α-bulnesene was characterized from its characteristic
[M]+ peak at m/z 204 and further fragmented to daughter
ion peaks at m/z 189, 175, 161, 147, 135, 121, 107, 93,
and 79 with removal of methylene and methyl groups
(Figure 1).

Nineteen aromatic compositions, representing 93.5% of the
non-polar fat-soluble HE, have been identified in GC-MS
and mentioned as per their elution in HP-5MS stationary

phase (Table 1). However, total sesquiterpene hydrocarbon
content of hexane soluble fraction was 34.1%, while oxygenated
sesquiterpene was 38.7%. Most abundant patchouli alcohol (37.5
± 2.1%) was identified as the sole oxygenated sesquiterpene.
Besides, long-chain fatty acids and long-chain hydrocarbons
were found in the HE, representing 10.9 and 5.0%, respectively.
Among fatty acids, octadecenoic acid (6.4± 0.5%) was identified
as the major compound followed by octadecanoic acid (2.4 ±

0.3%) and hexadecanoic acid (2.1 ± 0.2%). Similarly, long-chain
hydrocarbons, mainly docosane (2.3 ± 0.3%), tetracosane (2.1
± 0.3%), squalene (1.3 ± 0.2%), triacontane (0.9 ± 0.2%), and
non-acosane (0.8± 0.2%), were identified.

Characterizations and Stability of NEs
Based on the recorded electrical conductance of various
concentrations of saponin, sharp change was observed
at 0.25% (Figure 2); thus, double concentration, 0.5%,
has been selected for the final preparation of CEs and
NEs. Primary CEs with the 1% strength of EO (w/w) and
HE were prepared separately and diluted to get various
test concentrations (500–31.25 µg mL−1). Subsequently,
ultrasonication-assisted nano-emulsification of CEs of EO
and HE in aqueous medium resulted in the preparation
of respective NEs (Figure 3). Formation of cavitations in
the liquid due to ultrasonic wave helped to utilize the
energy for shearing of coarse droplets in nano size range
which was further stabilized by the surfactant particles.
The prepared NEs (31.25 to 125 µg mL−1) were found
transparent; however, slight turbidity was recorded at 250–
500 µg mL−1 concentrations. Here, non-toxic biosurfactant,
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FIGURE 2 | Critical micelle concentration (CMC) of biosurfactant, saponin as measured by electrical conductance (EC).

FIGURE 3 | Visual appearance of CEs and different concentrations of NEs of (A) EO and (B) HE of P. cablin.
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TABLE 2 | Physico-chemical characterizations of NEs loaded with EO and HE of P. cablin leaves.

Concentrations (µg mL−1) Mean droplet diameter (Z-average) (nm)* Zeta potential (mV) Polydispersity index (PDI) PH

NE-EO

500 71.68 ± 0.84 −29.21 ± 0.49 0.49 ± 0.02 4.58

250 62.25 ± 0.30 −27.42 ± 0.12 0.62 ± 0.02 4.95

125 58.43 ± 076 −23.49 ± 1.52 0.55 ± 0.03 5.28

62.5 57.82 ± 0.67 −23.03 ± 0.91 0.52 ± 0.03 5.99

31.25 46.19 ± 0.75 −22.62 ± 0.12 0.69 ± 0.06 6.40

NE-HE

500 89.87 ± 0.62 −29.06 ±0.21 0.51 ± 0.03 4.18

250 67.93 ± 0.64 −29.18 ± 2.34 0.57 ± 0.05 4.59

125 61.40 ± 0.90 −27.28 ± 1.07 0.52 ± 0.02 4.84

62.5 56.67 ± 0.76 −20.55 ± 0.58 0.67 ± 0.03 5.62

31.25 49.13 ± 0.5 −26.50 ± 0.48 0.65 ± 0.03 6.01

*Mean diameter of droplets are expressed in mean ± SE (n = 3).

FIGURE 4 | (A) Particle size distribution and (B) zeta potential of 500 µg mL−1 concentration of NEs of EO. (C) Particle size distribution and (D) zeta potential of 500

µg mL−1 concentration of NEs of HE.

saponin, was effectively used to stabilize the developed NEs at
0.5% concentration.

The properties of serially diluted NEs of EO and HE are
shown in Table 2. The average droplet diameter at 500 µg mL−1

concentration of NE of EO as prepared by homogenization
followed by ultrasonication was 71.68 ± 0.84 nm with the

polydispersity index (PDI) of 0.49 ± 0.02, signifying narrow
dimension of particle size distribution (Figure 4A). Likewise,
average droplet diameter at the same concentration of NE-HE
was 89.87 nm (Figure 4C) with corresponding PDI 0.51 ± 0.03.
There was a clear indication that with decrease in concentration
of EO and HE in the NEs, mean droplet size decreased. However,
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FIGURE 5 | TEM image of 500 µg mL−1 concentration of (A) NE of EO (B) NE of HE.

TABLE 3 | Contact toxicity of CEs and NEs against the adults of T. urticae after 24 and 48 h of treatment.

Emulsions Exposure time (h) LC50(µg mL−1)a 95% Confidence limit µg mL−1) Slope ± SEb Intercept±SEc (χ2)d df

Lower Upper

CE-EO 24 223.6 188.5 293.1 0.85 ± 0.32 −3.39 ± 1.35 29.0 25

48 134.9 105.3 154.3 1.21 ± 0.13 −1.56 ± 0.97 57.2 34

CE-HE 24 235.6 194.2 301.1 1.03 ± 0.77 −1.86 ± 1.11 25.3 18

48 168.7 113.5 224.0 0.56 ± 0.09 −3.23 ± 1.32 18.4 12

NE-EO 24 89.7 61.2 113.2 0.95 ± 0.38 −2.60 ± 0.52 32.2 27

48 43.2 29.6 75.1 0.87 ± 0.25 −4.17 ± 1.92 13.0 9

NE-HE 24 97.2 63.6 144.5 0.44 ± 0.17 −3.27 ± 1.18 39.1 28

48 58.4 24.7 72.9 1.35 ± 0.70 −1.03 ± 0.69 18.6 22

aLC50 Concentration (µg mL−1 ) at which 50% mortality observed. bSlope at the response of regression equation ± standard error. c Intercept of the regression equation ± SE. dχ2,

Chi-squared values at different df and probability level (0.05).

no significant relationship was observed between concentration
and PDI as a narrow spectrum was maintained for PDI both in
case of NEs of EO (0.49–0.69) and HE (0.51–0.67), suggesting
uniform size distribution of the droplets irrespective of change in
concentration. As 0.5% saponin concentration was maintained
throughout the study for all the samples, there was always less
chance of much variation in size distribution as the micelles
remained same. However, with increased loading of EO and HE,
the micelles got swelled by entrapment of EO and HE. Therefore,
the mean droplet diameter was found to be more at higher
loading concentrations. In the present study, zeta potential of
the prepared NEs of EO and HE at 500 µg mL−1 was found to
be −29.21 ± 0.49mV and −29.06 ±0.21mV (Figures 4B,D) at
the native PH of 4.58 and 4.18, respectively. Thus, the absolute
droplet charges were found very less. For all the samples, zeta
potential was found to be higher than −20mV, suggesting
formation of stable NEs.

Morphology and size of the droplets of NEs were visualized
under TEM. Figure 5 displayed TEM images of the droplets

of NEs of EO and HE. It was quite evident from the TEM
images displaying spherical-shaped nanodroplets. The average
diameter of the NE of EO droplets was 15.32 nm, which
is relatively three times smaller than the average diameter
determined obtained from particle size analyzer. Similarly, the
average diameter of the NE of lipid-soluble HE droplets was
29.41 nm. However, droplet diameter varied within the range
of 12.78 to 38.97 nm. The variation in droplet size could be
attributed to the fact that TEM analyses of the droplets in the
dry state gave accurate size based on the real morphology of
the droplets, whereas average hydrodynamic diameter of the
droplets was obtained from the particle size analyzer which
was the average size of hydrated micelles. Furthermore, NEs
were found to be stable with no phase separation even after
14 days of storage under accelerated storage condition at 54 ±

1◦C and at room temperature. The average droplet diameters
at 500 µg mL−1 concentrations of NEs of EO and HE after 14
days of accelerated storage were 91.22 ± 1.29 nm and 99.41 ±

0.72 nm, respectively. Furthermore, no aggregation of droplets
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was observed upon TEM analysis, indicating kinetic stability of
the emulsions.

Acaricidal Action on T. urticae
Acaricidal activity of CEs and NEs of EO and HE of P. cablin
against adults of T. urticae revealed significant mortality after 24
and 48 h of the treatment (Table 3). Both the CEs were effective
after 48 h with the LC50 values <170 µg mL−1. Of T. urticae
were found dead along the midrib of the treated leaves. CE-EO
was comparatively more toxic than CE-HE. The magnitude of
acaricidal efficacy was more after 48 h for the emulsions. Contact
toxicity by leaf dip method with respect to time of application
might contribute immensely to the actual acaricidal action. As
hypotheses, NE-EO and NE-HE were very potent with higher
effectiveness, LC50 values <100 µg mL−1. NE-EO exhibited
highest efficacy with the LC50 89.7 µg mL−1 and 43.2 µg mL−1

after 24- and 48-h exposure, respectively. Likewise, NE-HE was
relatively high toxic with their corresponding LC50 values of 97.2
µg mL−1 and 58.4 µg mL−1 after 24- and 48-h exposure.

Fumigant toxicity of the emulsions showed promising
action at the sublethal concentrations after 24-h exposure
(Table 4). Adults were found dead outside the border
of the treated leaves. Among the tested emulsions, NE-
EO (LC50 9.3 µg mL−1) displayed maximum fumigant
action, while similar trend of fumigant action was
observed for NE-HE (LC50 13.6 µg mL−1). NEs of the

oil and non-polar fractions were equally effective in
fumigant toxicity, even more potent than the contact
toxicity assay.

Insecticidal Action Against S. litura
Larvicidal assay of NEs of EO and HE against third instar
larvae revealed moderate action. CEs were found less effective
with the LC50 values >400 µg mL−1. However, NEs-EO
were effective, performing LC50 values 125.8 and 145.9 µg
mL−1 after 48 and 24 h, respectively (Table 5). Similar findings
were noticed for the NEs-HE, which exhibited LC50 values
of 167.5 µg mL−1 and 190.6 µg mL−1 after 48- and 24-h
exposure, respectively.

Antifeedant activity of CEs and NEs of EO and HE
demonstrated sufficient antifeedant activity at all the test
concentrations in both no-choice and choice assays against larvae
of S. litura (Figure 6). At the highest concentration of 500 µg
mL−1, CE-EO and CE-HE showed the maximum AI value of
89.75 ± 2.12 and 87.55 ± 2.45, respectively, while NE-EO and
NE-HE at the same concentration possessed AI value of 99.21 ±
0.74 and 98.75± 1.02, respectively (Table 6). Indeed, antifeedant
activity of the CEs has been improved nearly 10% at the higher
test concentrations and over 20% at the lower concentrations. On
the contrary, NE-EO and NE-HE exhibited FI values of 99.73 ±

1.24 and 97.34± 1.0, respectively.

TABLE 4 | Fumigant activity of CEs and NEs against the adults of T. urticae after 24 h of treatment.

Emulsions LC50 (µg mL−1)a 95% Confidence limit µg mL−1) Slope ± SEb Intercept ± SEc (χ2)d df

Lower Upper

CE-EO 35.8 21.7 47.9 2.28 ± 0.29 −2.18 ± 0.69 34.6 29

CE-HE 52.4 27.8 72.1 3.94 ± 0.35 −3.25 ± 0.68 22.2 16

NE-EO 13.7 11.6 23.5 4.12 ± 0.35 −2.28 ± 0.65 56.1 30

NE-HE 19.4 12.9 31.6 2.71 ± 0.34 −1.44 ± 0.72 28.3 23

aLC50 Concentration (µg mL−1 ) at which 50% mortality observed. bSlope at the response of regression equation ± standard error. c Intercept of the regression equation ± SE. dχ2,

Chi-squared values at different df and probability level (0.05).

TABLE 5 | Contact toxicity of CEs and NEs against third instar larvae of S. litura using leaf dip assay after 24 and 48 h.

Emulsions Exposure time (h) LC50 (µgmL−1)a 95% Confidence limit µg mL−1) Slope ± SEb Intercept ± SEc (χ2)d df

Lower Upper

CE-EO 24 413.2 395.6 449.5 3.33 ± 0.22 −4.29 ± 0.18 23.7 13

48 420.5 301.7 442.3 1.48 ± 0.13 −2.69 ± 0.29 39.4 21

CE-HE 24 569.7 423.5 599.8 2.61 ± 0.18 −3.14 ± 0.23 18.8 15

48 509.1 483.1 524.4 2.25 ± 0.23 −1.25 ± 0.27 19.2 10

NE-EO 24 145.9 137.2 159.7 2.18 ± 0.22 −2.73 ± 0.22 36.5 26

48 125.8 117.2 144.3 1.17 ± 0.19 −2.28 ± 0.25 44.8 16

NE-HE 24 190.6 172.9 205.3 1.42 ± 0.20 −1.64 ± 0.30 52.3 26

48 167.5 147.0 191.6 2.22 ± 0.16 −3.39 ± 0.27 17.2 13

aLC50 Concentration (µg mL−1 ) at which 50% mortality observed. bSlope at the response of regression equation ± standard error. c Intercept of the regression equation ± SE. dχ2,

Chi-squared values at different df and probability level (0.05).
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FIGURE 6 | Visual display of antifeedant action of NEs of (A) EO and (B) HE against S. litura third instar larvae after 24 h.

TABLE 6 | Evaluationa of CEs and NEs of EO and HE of P. cablin for determination of antifeedant index (AI) and feeding index (FI) after 24 h.

Conc. (µgmL−1) CE-EO CE-HE NE-EO NE-HE

bAI (%) cFI (%) AI (%) FI (%) AI (%) FI (%) AI (%) FI (%)

500 89.75 ± 1.12e 81.73 ± 1.04e 87.55 ± 2.45e 77.86 ± 2.38e 99.21 ± 0.14e 99.73 ± 1.24d 98.75 ± 1.02de 97.34 ± 1.05de

250 85.26 ± 2.45d 74.29 ± 3.74d 77.75 ± 1.15d 63.60 ± 2.45d 97.01 ± 1.10d 97.86 ± 1.33d 98.11 ± 1.68d 96.31 ± 2.10d

125 70.78 ± 1.39c 54.77 ± 2.22c 65.43 ± 2.50c 48.62 ± 3.57d 86.72 ± 2.21c 76.56 ± 2.88c 84.81 ± 2.30c 73.63 ± 3.48c

62.5 55.63 ± 1.08b 38.53 ± 0.89b 52.72 ± 4.22b 35.79 ± 2.10d 80.08 ± 1.62b 66.80 ± 3.06b 76.08 ± 2.45b 61.39 ± 1.15b

31.25 35.66 ± 3.06a 21.30 ± 1.33a 33.91 ± 3.56a 20.42 ± 3.16d 72.36 ± 1.74a 56.69 ± 1.22a 70.29 ± 1.10a 54.20 ± 0.74a

aData are presented as means ± SD; bAntifeedant index (AI) is calculated as AI = (1 – T/C) × 100, cFeeding index (FI) is calculated as FI = (C–T)/(C + T) × 100.

DISCUSSION

Comprehensive information on EO of P. cablin displayed
abundance of either patchoulene or patchouli alcohol
(Sundaresan et al., 2012). However, α-guaiene has been
reported as the major constituent of Pogostemon EO (Tsai et al.,
2007). Recently, forty-seven volatile constituents consisting
of twenty sesquiterpenes were reported from the EO, which
mentioned abundance of curzerene followed by epi-cadinol and
acetophenone (Kumar et al., 2019b). Exceptionally, aciphyllene
and acetophenone are often identified in higher content in the
commercially available EO, which was further authenticated
to be found as an adulterant, the major constituent of P.
heyneanus (Murugan et al., 2010). Another literature report,
from South Indian sample of P. cablin, suggested high content
of acetophenone, β-pinene, and (E)-nerolidol in the EO (Anjana
and Thoppil, 2013). Such variations in chemical compositions
of EO could be attributed due to the distillation techniques,
associated temperature on extraction, agroclimatic factors
along with genetic variations of the planting materials, etc.

(Kundu et al., 2013b; Dutta et al., 2020). A recent report
suggested quality control and regulation aspects of patchouli EO
are highly dependent on the variable composition of patchoulol
and other sesquiterpenes (Pandey et al., 2022).

Saponin was used as emulsifier to develop the NEs which
certainly contributed in positive manner to enhance the efficacy
of the developed emulsions. It is the first report on the use
of natural polymer for the preparation of NEs of Pogostemon
bioactives, though most of the previous studies have been
reported on the use of various non-ionic surfactants for the
fabrication of NEs of EOs (Balasubramani et al., 2017; Campolo
et al., 2017). The wide availability and relatively lower cost of
the non-ionic surfactants could be responsible for its higher
use. Contrastingly, xanthan gum along with subcritical water has
been used to develop oil-in-water NEs (Ahmadi and Jafarizadeh-
Malmiri, 2021a). They also suggested the application of natural
gums and/or saponin using subcritical water for the preparation
of EO-based NEs (Ahmadi and Jafarizadeh-Malmiri, 2021b).
Thus, the use of green biopolymer has an edge over the excessive
use of conventional emulsifiers in sustainable agriculture. In
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addition, saponin-like biopolymeric emulsifiers may enhance the
biofunctional properties of the component.

In the present study, stable NEs were developed with saponin
employing ultrasonication. Low energy subcritical water-based
green method has been reported recently for the preparation
of thyme oil-in-water NEs (Ahmadi and Jafarizadeh-Malmiri,
2020). The developed NEs exhibited better stability over a
period of 14 days. Zeta potential of any emulsion has been
recommended as the key indicator for its stability, which is
related to electrostatic repulsion among the nanodroplets (Zainol
et al., 2012). The stability of the NEs will be maintained with the
limited or no coagulation of droplets, and therefore, the colloidal
system should retain its droplet diameter in nano size range
(<100 nm), resulting in better Brownian motion of the particles
in the system (Heydari et al., 2020).

Previously, a homogenization method consisting of multiple
adjuvants has been reported for the preparation of NEs of
Pogostemon EO with non-ionic surfactant, propylene glycol as
co-surfactant, and lecithin as emulsifier at 5% concentration;
however, concomitant data on the physico-chemical properties
have not been generated (Adhavan et al., 2017). Likewise, another
study also reported the use of Tween 80 and/or Triton X-100
to stabilize geranium EO maintaining the oil surfactant ratio
ranging from 5:1 to 1:5, suggesting better stability of the emulsion
with higher amount of surfactant (Jesser et al., 2020). In the
present context, NEs were prepared using ultrasound-assisted
nano-emulsification of EO and lipid-soluble HE of P. cablin
leaves with only biosurfactant, saponin at 0.5% concentration,
without any use of co-surfactant, and/or co-emulsifier. In
addition, better droplet size and emulsion stability of these
NEs have been ascertained with rigorous physico-chemical
characterizations and process validations.

A preliminary investigation on NEs of P. cablin oil (18%) with
polyoxyethylene suggested excellent formicidal action on Atta
opaciceps and Atta sexdens (Rocha et al., 2018). Furthermore,
P. cablin oil-based tincture, candle, and crystal cake have been
found effective as mosquito repellent (Das et al., 2016). Recently,
patchouli oil has been nano-encapsulated on chitosan and
evaluated for enhanced shelf life of maize seeds (Roshan et al.,
2022). Recent past, the EO has been reported very effective in
repellent action and fumigant toxicity against T. cinnabarinus
(Cheng et al., 2020). Furthermore, better performance of NEs
has been reported in literature against various insects (Badawy
et al., 2018; Abdelgaleil et al., 2019). Current study revealed
tremendous performance of the NEs over CEs against T. urticae
both in fumigant and contact toxicity assays. However, required
concentration of the emulsions was found to be very less to
cause lethal action in fumigant assay, causing suffocation to death
due to volatile nature of the chemical constituents. Nevertheless,
acaricidal action in contact toxicity has been found satisfactory.

Plant volatiles have been found effective against many
agriculturally important pests (Kundu et al., 2013a; Ahluwalia
et al., 2014; Keerthiraj et al., 2021). Comprehensive studies
have been reported on insecticidal activity of P. cablin oil. In
the present study, NEs were found to be highly effective to
cause larval mortality. Comparative assessment of the insecticidal
activity of CEs and NEs revealed higher effectiveness of

NEs due to nano sizing of the delivery system with higher
surface area and better penetration through insect cell wall.
Strong antifeedant and larvicidal action of the plant have been
reported in literature against noctuid insects (Huang et al.,
2014). NE-EO and NE-HE displayed considerable action with
respect to AI and FI against S. litura larvae even at the
lowest concentration of 31.25 µg mL−1. The salient finding
of the antifeedant action certainly corroborates the literature
report describing more than 80% feeding deterrent action
of the oil (Huang et al., 2014). Major chemical components
such as patchouli alcohol, α-bulnesene, and α-guaiene in
both EO and HE could be responsible for higher efficacy.
Though it is unclear whether the most abundant constituent,
patchouli alcohol, is only responsible for the acaricidal and
insecticidal action, further mechanism of action needs to
be studied.

CONCLUSIONS

In summary, patchouli alcohol has been identified as the major
constituent of EO and HE of P. cablin leaves. Stable NEs have
been prepared with only 0.5% saponin either for EO or HE.
The NEs of EO and HE were stable even after 30 days at room
temperature with satisfactory qualitative characteristics. The
results of acaricidal and antifeedant activities have demonstrated
promising effect of NEs of EO and HE against T. urticae
and S. litura following a dose-dependent trend, though NEs
of EO have been performed slightly better than HE. As
far as our literature survey could ascertain, this is the first
report on potential activity of NEs of P. cablin against T.
urticae. The output of the study has been well justified with
the generation of key information for the development and
utilization of NEs. However, future research regarding basic
and fundamental studies on the mechanism of action of the
compositional terpenoids is still needed for the development of
next-generation bio-acaricides.
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