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Editorial on the Research Topic

SARS-CoV-2: From Genetic Variability to Vaccine Design

1 INTRODUCTION

The whole world has been at a standstill for more than 2 years now due to the pandemic of COVID-
19, the disease caused by the SARS-CoV-2 virus. The first case of COVID-19 was detected inWuhan,
China in December 2019, and the rest, as they say, is history. The disease has claimed more than
6million lives worldwide. SARS-CoV-2 is a positive-stranded RNA virus with a length of about 30 kb
encompassing non-structural and structural proteins. Spike glycoprotein, a structural protein
present on the virus surface plays an important role in binding with human ACE2 and other
receptors. Since its detection in Wuhan, the virus has mutated several times and has given way to
variants such as B.1.1.7 (Alpha), B.1.351 (Beta), B.1.525 (Eta), B.1.427/B.1.429 (Epsilon), B.1.526
(Iota), B.1.617.1 (Kappa), B.1.617.2 (Delta), C.37 (Lambda), P.1 (Gamma), P.2 (Zeta), P.3 (Theta),
and B.1.1.529 (Omicron).

In the initial days of the pandemic, there was little to no knowledge of this deadly virus. Thus, to
understand the virus, whole genome analysis, and viral protein-based comparisons were carried out
which concluded that SARS-CoV-2 is mostly related to bat SARS-like coronaviruses. Though there
have been viruses like SARS-CoV-1 and MERS-CoV which belong to the same family of
Coronaviridae just like SARS-CoV-2, outbreaks were sporadic and they did not cause global
pandemics. Moreover, since the virus shared similarities with other viruses, its prediction was
yet another challenge that the research community faced. Also, phylogenetic analyses were carried
out by different researchers around the world to understand the virus mutations which mostly take
place in the Spike glycoprotein. In fact, tools like Nextstrain have been used to visualize the virus
evolution as well. These efforts by the researchers helped in a lot of ways to understand the virus’s
spread and its mutations. However, the studies are mostly focused on the structural proteins,
especially Spike glycoprotein of SARS-CoV-2 while research on non-structural proteins is still
underway. Such proteins can be investigated further to understand the virus and its mutations better.

The efforts of the researchers have also paved the way for the development of vaccines to fight
against this deadly virus. There are several vaccines like Oxford-AstraZeneca, Pfizer-BioNTech,
Moderna, Novavax, Covaxin, Sputnik V, and Johnson & Johnson which have been developed to date
by scientists around the world. However, the developed vaccines are primarily designed to generate
neutralizing antibodies against Spike glycoprotein. Moreover, due to the waning antibody response
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and some emerging variants like Omicron being somewhat
resistant to the antibody response evoked by these vaccines,
the long-term sustainability of these vaccines is a bit
questionable. In this regard, T-cell responses against
coronaviruses can last for a very long time which has been
demonstrated by SARS and MERS viruses as well. All these
factors have motivated us to have an issue on “SARS-CoV-2:
From Genetic Variability to Vaccine Design” to benefit the
scientific community. The articles covered in this issue are
discussed in the subsequent section.

2 RESEARCH TOPIC ORGANIZATION

This Research Topic is divided into three main sections: two
papers discuss the prediction of the SARS-CoV-2 virus, four
papers cover the virus mutations, and six papers discuss the
various vaccines and therapeutics for COVID-19.

In the first part, we have focussed on the prediction of the virus
by using machine learning and deep learning techniques. We
believe that this section will appeal to researchers working in the
field of artificial intelligence. This section is especially interesting
as while one paper has worked to predict SARS-CoV-2 by using
genomic information, the other one has used machine learning to
reveal pathological factors for diseases associated with airway
smooth muscle inflammation on multi-omics levels.

The second part encompasses the mutations in the virus.
Understanding the virus mutation is very important as the
mutations lead to the various variants of the virus. The works
in this part mostly deal with multiple sequence alignment (MSA)
to reveal the virus mutations. What makes this section non-trivial
is the fact that MSA has been performed with a huge number of
SARS-CoV-2 sequences by all the contributions.

The third and final section discusses the various vaccines and
therapeutics that can be used to fight against SARS-CoV-2. As
discussed earlier, though there are several vaccines already
approved by different medical agencies, their sustainability is
not known till now. Thus, apart from the vaccine host immune
system modulation can also be considered to find alternative
solutions. Also, epitope-based vaccines and other therapeutics
can be taken into account. Furthermore, vaccination, COVID-19
incidence, and mortality have also been explored in one work in
this section. Moreover, Spike glycoprotein and ORF8 protein of
SARS-CoV-2 are also analyzed to provide clinical and therapeutic
implications.

2.1 Prediction
In Saha et al., deep learning based predictor viz. COVID-
DeepPredictor has been proposed to predict unknown
sequences of SARS-CoV-2 as well as other pathogens like
SARS-CoV-1, MERS-CoV, Ebola, Dengue, and Influenza.
COVID-DeepPredictor uses Long Short Term Memory as
Recurrent Neural Network where k-mer technique is used to
generate Bag-of-Unique-Descriptors. COVID-DeepPredictor
achieves 100% prediction accuracy on validation datasets while
on test datasets, the accuracy is as high as 99%.

Zhang et al. explore SARS-CoV-2 infection in airway smooth
muscles which may play an important role in several other
inflammatory diseases as well. They have used machine-
learning-based computational approaches to identify specific
regulatory factors that contribute to the activation and
simulation of airway smooth muscles. This will lead to the
identification of potential regulatory mechanisms linking
airway smooth muscle tissues and inflammatory factors which
will eventually help in identifying specific pathological factors for
diseases associated with airway smooth muscle inflammation on
multi-omics levels.

2.2 Mutation
In Lin et al., multiple sequence alignment using a conserved
sequence search algorithm has been optimized to align
24,768 sequences from the GISAID dataset. This will help in
conserved sequence searches to segment long sequences as well as
make large-scale multisequence alignment possible, thereby
facilitating comprehensive gene mutation analysis.

In Saha et al., multiple sequence alignment of 71,038 SARS-
CoV-2 genomes from 98 countries have been performed to
identify hotspot mutations in SARS-CoV-2. This has led to the
identification of 45 unique hotspot mutations. Such mutations
include L452R, T478K, E484Q, and N501Y.

In Biswas et al., database DbNSP InC has been reported which
provides information on the NSPs of SARS-CoV-2 extracted
from patients in India. It provides functional information,
mutations observed in samples of Indian patients, primary and
secondary structural analyses, strain and mutation analyses as
well as mutations observed in the deceased, mild, and
asymptomatic patients samples along with the distribution of
mutations across different Indian states and phylogenetic
analysis.

In Cueno et al., the authors have generated spike models of
endemic HCoVs (HCoV 229E, HCoV OC43, HCoV NL63,
HCoV HKU1, SARS CoV, MERS CoV), original SARS-CoV-
2 and variants of concern (Alpha, Beta, Gamma, and Delta). They
propose that structural similarities among the pathogens may
help ascertain immune cross-reactivity while differences may
result in viral infection.

2.3 Vaccine and Therapeutics
In Majumdar et al., the differences in COVID-19 death and
infection ratio between the urban and rural population in India
have been explored to discuss the role of the immune system,
comorbidities, and associated nutritional status that may play role
in the death rate of COVID-19 patients in such populations.
Furthermore, they have also focussed on strategies for developing
masks, vaccines, and other diagnostics to combat COVID-19.

InMazzocco et al., a novel in-silico approach based on artificial
intelligence and bioinformatics methods have been put forth to
support the design of epitope-based vaccines. Their methods have
also been evaluated for predicting the immunogenicity of
epitopes. They have also discussed the potential applicability
of such epitopes for the development of a vaccine eliciting
cellular immunity for COVID-19.
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In Somogyi et al., selection of immunoprevalent SARS-CoV-2-
derived T cell epitopes using an in-silico cohort of HLA-
genotyped individuals with different ethnicities has been
considered. The results of this work are significant for the
development of highly efficient epitope-based vaccines against
various pathogens and diseases as well.

In Valcarcel et al., the focus is on analyzing structural
similarities of ORF8 protein of SARS-CoV-2 with
immunological molecules such as IL-1, thereby contributing to
the immunological deregulation observed in COVID-19.

In Fukutani et al., the association between vaccine
implementations, the occurrence of new cases, and mortality rate
have been tracked. They have used CaVaCo (Cases, Vaccinations,
and COVID-19) tool to retrieve the COVID-19 cases as well as the
deaths and vaccination data to compare and correlate vaccination
coverage of the countries with other parameters.

In Bensussen et al., a minimalmathematical model of the effect of
the extra copy of TMPRSS2 on ORF8 production and persistence in
the infected cells of a Down syndrome patient having COVID-19
disease has been proposed. Their results support the hypothesis that
people with Down syndrome have a high susceptibility to COVID-
19 due to the overproduction of TMPRSS2.
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The COVID-19 disease for Novel coronavirus (SARS-CoV-2) has turned out to be

a global pandemic. The high transmission rate of this pathogenic virus demands

an early prediction and proper identification for the subsequent treatment. However,

polymorphic nature of this virus allows it to adapt and sustain in different kinds

of environment which makes it difficult to predict. On the other hand, there are

other pathogens like SARS-CoV-1, MERS-CoV, Ebola, Dengue, and Influenza as

well, so that a predictor is highly required to distinguish them with the use of their

genomic information. To mitigate this problem, in this work COVID-DeepPredictor is

proposed on the framework of deep learning to identify an unknown sequence of

these pathogens. COVID-DeepPredictor uses Long Short Term Memory as Recurrent

Neural Network for the underlying prediction with an alignment-free technique. In

this regard, k-mer technique is applied to create Bag-of-Descriptors (BoDs) in order

to generate Bag-of-Unique-Descriptors (BoUDs) as vocabulary and subsequently

embedded representation is prepared for the given virus sequences. This predictor is

not only validated for the dataset using K-fold cross-validation but also for unseen test

datasets of SARS-CoV-2 sequences and sequences from other viruses as well. To verify

the efficacy of COVID-DeepPredictor, it has been compared with other state-of-the-art

prediction techniques based on Linear Discriminant Analysis, Random Forests, and

Gradient Boosting Method. COVID-DeepPredictor achieves 100% prediction accuracy

on validation dataset while on test datasets, the accuracy ranges from 99.51 to

99.94%. It shows superior results over other prediction techniques as well. In addition

to this, accuracy and runtime of COVID-DeepPredictor are considered simultaneously

to determine the value of k in k-mer, a comparative study among k values in k-mer,

Bag-of-Descriptors (BoDs), and Bag-of-Unique-Descriptors (BoUDs) and a comparison

between COVID-DeepPredictor and Nucleotide BLAST have also been performed. The

code, training, and test datasets used for COVID-DeepPredictor are available at http://

www.nitttrkol.ac.in/indrajit/projects/COVID-DeepPredictor/.

Keywords: long-short term memory, SARS-CoV-2, sequence analysis, virus prediction, genomic information
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1. INTRODUCTION

The first case of COVID-19 surfaced in Wuhan, China in
December 2019 (Huang et al., 2020; Meng et al., 2020; Yan
L. et al., 2020). In no time it spread to 212 countries and
territories (Worldometer, 2021) worldwide creating a pandemic
in its wake. SARS-CoV-2 falls in the same family as SARS-CoV
and MERS-CoV (all belong to the family of coronavirus) and
mainly targets the respiratory system (Zhou et al., 2020). As of
8th January 2021, over 885 million cases of COVID-19 have been
reported worldwide, with more than 1,906 thousand cases of
death and 63.6 million cases of recovery (Worldometer, 2021).

SARS-CoV-2 is defined as an enveloped, positive-sense,
single-stranded RNA virus with a genome of around 30 kilobases
in length (Weiss and Navas-Martin, 2005; Su et al., 2016; Cui
et al., 2019). RNA viruses generally have very high mutation
rates (Jenkins et al., 2002; Woo et al., 2009). Genetic mutation
can occur infrequently between viruses of the same species but of
divergent lineages. The resulting mutated viruses may sometimes
cause an outbreak of infection in humans e.g., the case of
SARS-CoV-2. Coronavirus results from zoonotic transmission to
human and shows symptoms of pneumonia, fever, and breathing
difficulties (Guan et al., 2003; Alagaili et al., 2014). Human
to human transmission has also been confirmed for SARS-
CoV-2 (Chan et al., 2020; Huang et al., 2020). Next-generation
sequencing usingmetagenomic analysis has recently been used to
identify the genetic features of SARS-CoV-2 (Zhou et al., 2020).

There have been several analysis regarding SARS-CoV-
2. This include whole genome analysis of a virus and
viral protein-based comparisons which have resulted in the
conclusion that SARS-CoV-2 is mostly related to two bat
SARS-like coronaviruses (Chan et al., 2020; Lu et al., 2020).
Phylogenetic analysis of full genome alignment and similarity
plot show that SARS-CoV-2 has high similarity with bat
coronavirus RaTG13 (Paraskevis et al., 2020). Furthermore,
another study (Wan et al., 2020) has shown that spike protein
receptor-binding domain (RBD) of SARS-CoV-2 binds with host
receptor angiotensin-converting enzyme 2 (ACE2), just like other
Sarbecovirus strains, thus making the claim that SARS-CoV-2
originated from bat very likely (Letko et al., 2020; Liu and Wang,
2020).

As the genomic structure of SARS-CoV-2 is similar to
the other viruses of the same family, and it shows similar
symptoms like them, the early prediction of SARS-CoV-2 is
a very challenging task. Ozturk et al. (2020) have used deep
neural networks with X-ray images for automated detection
of SARS-CoV-2 cases. The results show that the method has
a prediction accuracy of 98.08% for binary classes (COVID
vs. No-Findings) and 87.02% for multiple classes (COVID vs.
No-Findings vs. Pneumonia). Another work (Yan Q. et al.,
2020) where deep learning has been used to predict age-
related macular degeneration (AMD) which is a leading cause
of blindness among the elderly population. The results show
an average area under the curve (AUC) value of 0.85. On
the other hand, the authors in Koohi-Moghadam et al. (2019)
have used deep learning approach to predict disease-associated
mutation of metal-binding sites in proteins. The prediction

results depict AUC as 0.90 and an accuracy of 0.82. These
encouraging results show that deep learning has the potential
for highly accurate prediction. This led us to devise a predictor
based on deep learning which uses genomic sequences of
pathogenic viruses. In this work, a deep learning technique,
viz. COVID-DeepPredictor based on Long-Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997; Tang et al., 2019)
is developed. Though, LSTM has been profusely used in many
works for text classification (Jin et al., 2019; Liu et al., 2019;
Zhang et al., 2019), to the best of the authors’ knowledge, this
is the first attempt to use LSTM for the prediction of SARS-CoV-
2 using genomic sequences of virus considering alignment-free
approach. For this purpose, k-mer technique is used to generate
Bag-of-Descriptors (BoDs) and consequently Bag-of-Unique-
Descriptors (BoUDs) as vocabulary. Subsequently embedded
representation is prepared for the given virus sequences using
BoDs and BoUDs. It is worth mentioning that, though SARS-
CoV-2 is a single-stranded RNA virus, the genomic information
of a virus is captured in the form of DNA sequence. These DNA
sequences are used in this work to predict SARS-CoV-2 and other
pathogenic viruses viz. SARS-CoV-1,MERS-CoV, Ebola, Dengue,
and Influenza. COVID-DeepPredictor achieves 100% prediction
accuracy on validation dataset while on test datasets, the accuracy
ranges from 99.51 to 99.94%. COVID-DeepPredictor also shows
superior results over the existing prediction techniques based
on Linear Discriminant Analysis, Random Forests, and Gradient
Boosting Method. Moreover, apart from prediction accuracy,
critical analysis like the choice of k in k-mer by considering the
accuracy and runtime of COVID-DeepPredictor simultaneously,
a comparative study of Bag-of-Descriptors (BoDs) and Bag-
of-Unique-Descriptors (BoUDs) for different values of k and
a comparison between an alignment-based technique viz.
Nucleotide Basic Local Alignment Search Tool (BLASTN) and
COVID-DeepPredictor as alignment-free technique.

2. MATERIALS AND METHODS

In this section, description of dataset preparation that has been
used in this work are elucidated, a brief description of Long-Short
Term Memory (LSTM) and the detailed discussion of proposed
COVID-DeepPredictor are put forth.

2.1. Data Preparation
The datasets of SARS-CoV-1, MERS-CoV, Ebola, Dengue, and
Influenza have been downloaded from NCBI (National Center
for Biotechnology Information)1. Dataset for SARS-CoV-2 has
been downloaded from NCBI and GISAID (Global Initiative on
Sharing All Influenza Data)2. The total number of complete or
near-complete genomic sequences of all the pathogenic viruses
amounted to 4,643, named as Initial dataset. Additionally, the
recent complete or near-complete SARS-CoV-2 sequences of
3,030 during January 2020 to August 2020 are taken from NCBI
whereas 2,410 (from February 2020 to July 2020) and 4,000
(from June 2020 to December 2020) sequences are considered

1https://www.ncbi.nlm.nih.gov/genome/viruses
2https://gisaid.org/CoV2020
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from GISAID. For our training purpose, 1,500 samples from
4,643 sequences are taken randomly for training. To ensure that
representatives from all the six pathogenic viruses are available
and to avoid imbalance class problem, 250 samples from each
pathogenic viruses are taken in the training dataset. In order
to perform testing, five different test datasets are created and
named as Testdata-1, Testdata-2, Testdata-3, Testdata-4, and
Testdata-5. It is important to mention that Testdata-1 consists
of the remaining 3,143 sequences out of 4,643 sequences, while
Testdata-2 contains 200 sequences each for MERS-CoV, SARS-
CoV-2, Ebola, Dengue, and Influenza and 90 sequences of SARS-
CoV-1 from different sources. Moreover, Testdata-3, Testdata-
4, and Tetsdata-5 comprise of recent SARS-CoV-2 sequences
fromNCBI andGISAID respectively along with other pathogenic
viruses. The statistics of Initial dataset as well as training and
testing datasets are given in Table 1. It is worth mentioning that
in this work more than 10,000 SARS-CoV-2 genomic sequences
have been used from January 2020 to December 2020 considering
different sources in order to develop COVID-DeepPredictor.

All the experiments are performed with the training and
testing datasets as mentioned in Table 1. For the visualization of
all the virus sequences (SARS-CoV-1, MERS-CoV, SARS-CoV-2,
Ebola, Dengue, and Influenza), t-distributed Stochastic Neighbor
Embedding (tSNE) (Hinton and Roweis, 2003) is applied on
4,643 sequences after generating the count vector (Khattak et al.,
2019) using k-mer technique (Manekar and Sathe, 2018; Solis-
Reyes et al., 2018). In this regard, the number of clusters
known apriori is six and such embedded representation of virus
sequences is shown in Figure 1A along with the distribution
of initial SARS-CoV-2 sequences in 56 countries in Figure 1B.
It is to be noted that COVID-DeepPredictor is developed in
MATLAB R2020a.

2.2. Long-Short Term Memory
Long-Short Term Memory (LSTM) is a type of recurrent neural
network (sub-branch of deep learning) which is capable of
learning order dependence in sequence prediction problems.
The main components of an LSTM network are sequence input
layer and an LSTM layer. A sequence input layer provides
text as an input into the LSTM network. An LSTM layer
learns long-term association between steps of sequence data.
Elaborately speaking, an LSTM network acquires a context
vector from previous time step and an input vector from the
given data. This is used to calculate the next context and
gate vectors to control memory cell state vector (Kim et al.,
2018). With an input data at time t and a context vector h,
a raw cell vector and input vectors for each gate are created
by one hidden layer. At the input gate, the cell vector is then
multiplied by the input vector. The cell input is added to given
previous cell vector weighted by the forget vector. Then the
resultant vector is controlled by the output vector. The update
of the cell is controlled by the control gate. LSTM is mainly
trained using Back-propagation Through Time and mitigates
the vanishing gradient problem that is quite rampant in RNN.
In LSTM, the memory cells and the gates can store time
and thus can eliminate old observations overcoming vanishing
gradient problem.

To sum up, LSTM consists of four gates, input gate (it), forget
gate (ft), control gate (Ct), and output gate (ot). Considering a
sentence S = x1, x2, ..., xK , where K is the length of a sentence,
the equations for LSTM can be depicted as:

it = sigm(Wi × [ht−1, xt]+ bi) (1)

ft = sigm(Wf × [ht−1, xt]+ bf ) (2)

C̃t = tanh(Wc × [ht−1, xt]+ bc)

Ct = ft × Ct−1 + it × C̃t

(3)

ot = sigm(Wo × [ht−1, xt]+ bo)

ht = ot ∗ tanh(Ct)
(4)

Here, W are weight matrices, ht−1 is the hidden layer which
is used updated by the output layer and is also responsible for
updating the output and tanh and sigm, respectively represent the
tanh-activation and sigmoid-activation functions.

2.3. COVID-DeepPredictor
The main objective of COVID-DeepPredictor is to correctly
predict the virus classes based on the given genomic sequences
of the different pathogenic viruses using an alignment-free
technique. To achieve this, the entire genomic sequence is
initially divided into descriptors of sequences called as Bag-of-
Descriptors (BoDs) using the popular k-mer technique. Here,
descriptors are patterns of the genomic sequences of length k.
Thereafter, Bag-of-Unique-Descriptors (BoUDs) as vocabulary
are created using such BoDs. With the use of BoDs and BoUDs,
an embedded representation is created of size N × M where N
is the number of genomic sequences and M is the indices of
the descriptors in vocabulary. This embedded representation is
then used to train COVID-DeepPredictor. Since we have divided
the genomic sequences into descriptors and represented in the
form of tokens, they behave like texts, thus boiling down to a
text classification problem. The pipeline of the proposed COVID-
DeepPredictor is shown in Figure 2.

3. RESULTS

To validate COVID-DeepPredictor, experiments are conducted
on genomic sequences of different pathogenic viruses. In this
regard, MATLAB R2020a is used on an Intel Core i5-8250U
CPU @ 1.80 GHz machine with 8 GB RAM and Windows 10
operating system. The parameters of the underlying predictor,
LSTM of COVID-DeepPredictor have been set experimentally.
In this regard, the number of hidden units for LSTM layer
is set as 80. Next, to use the LSTM layer for a sequence-
to-label prediction problem, the output mode is set to “last.”
Finally, a fully connected layer with the same size as the
number of classes, a softmax layer and a prediction layer are
added as well. Mini-batch gradient descent is used to train
LSTM. The mini-batch size is specified as 16 and the gradient
threshold is set to 2. The COVID-DeepPredictor is compared
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TABLE 1 | Description of initial, training, and test datasets.

Dataset Virus name Number of Max. length Avg. length Source

sequences of sequence of sequence of sequence

Initial dataset

SARS-CoV-1 340 30,311 29,515 NCBI-SARS-CoV-1

MERS-CoV 291 30,150 29,983 NCBI-MERS-CoV

SARS-CoV-2 2,402 29,986 29,507 GISAID-SARS-CoV-2

Ebola 300 19,897 18,976 NCBI-Ebola

Dengue 300 11,195 10,746 NCBI-Dengue

Influenza 1,010 2,347 2,322 NCBI-Influenza

Training dataset

SARS-CoV-1 250 29,765 29,520 NCBI-SARS-CoV-1

MERS-CoV 250 30,123 29,999 NCBI-MERS-CoV

SARS-CoV-2 250 29,927 29,334 GISAID-SARS-CoV-2

Ebola 250 19,897 18,979 NCBI-Ebola

Dengue 250 11,195 10,748 NCBI-Dengue

Influenza 250 2,347 2,333 NCBI-Influenza

Testdata-1

SARS-CoV-1 90 30,311 29,494 NCBI-SARS-CoV-1

MERS-CoV 41 30,150 29,887 NCBI-MERS-CoV

SARS-CoV-2 2,152 29,986 29,527 GISAID-SARS-CoV-2

Ebola 50 19,034 18,964 NCBI-Ebola

Dengue 50 10,764 10,737 NCBI-Dengue

Influenza 760 2,341 2,318 NCBI-Influenza

Testdata-2

SARS-CoV-1 90 30311 29494 NCBI-SARS-CoV-1

MERS-CoV 200 30,423 29,066 NCBI-MERS-CoV

SARS-CoV-2 200 29,855 29,850 GISAID-SARS-CoV-2

Ebola 200 18,798 18,762 NCBI-Ebola

Dengue 200 10,731 10,692 NCBI-Dengue

Influenza 200 2,341 2,323 NCBI-Influenza

Testdata-3

SARS-CoV-1 90 30,311 29,494 NCBI-SARS-CoV-1

MERS-CoV 220 30,423 29,162 NCBI-MERS-CoV

SARS-CoV-2 3,030 29,903 29,780 NCBI-SARS-CoV-2

Ebola 220 18,871 18,850 NCBI-Ebola

Dengue 220 10,690 10,677 NCBI-Dengue

Influenza 220 2,341 2,323 NCBI-Influenza

Testdata-4

SARS-CoV-1 90 30,311 29,494 NCBI-SARS-CoV-1

MERS-CoV 250 30,423 29,277 NCBI-MERS-CoV

SARS-CoV-2 2,410 30,423 29,726 GISAID-SARS-CoV-2

Ebola 250 18,871 18,852 NCBI-Ebola

Dengue 250 10,757 10,538 NCBI-Dengue

Influenza 250 2,316 2,316 NCBI-Influenza

Testdata-5

SARS-CoV-1 90 30,311 29,494 NCBI-SARS-CoV-1

MERS-CoV 250 30,423 29,277 NCBI-MERS-CoV

SARS-CoV-2 4,000 29,903 29,798 GISAID-SARS-CoV-2

Ebola 200 18,798 18,762 NCBI-Ebola

Dengue 220 10,690 10,677 NCBI-Dengue

Influenza 250 2,316 2,316 NCBI-Influenza

with other predictors based on Linear Discriminant Analysis
(LDA), Random Forests (RFs), and Gradient Boosting Method
(GBM). For LDA, the discriminant type is considered to be
pseudo-linear, for Random Forests, the number of trees taken
are 50 and for GBM the maximum depth of the tree is 10 and
maximum iterations are taken as 100. All these parameters are
set experimentally.

Each predictor has been evaluated using K-fold cross-
validation (K = 10) technique followed by further validation
on unseen test datasets. The cross-validation partition uses
random non-stratified sampling method which is applied to
prepare the training and validation datasets resulting in a total
of 1,500 samples. The training and validation datasets consist
of all the pathogenic virus classes; SARS-CoV-1, MERS-CoV,
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FIGURE 1 | Visualization of virus sequences and their spread. (A) Embedded representation of SARS-CoV-1, MERS-CoV, SARS-CoV-2, Ebola, Dengue, and

Influenza (k=3) (B) 56 countries considered for COVID-DeepPredictor are spread across the globe.

FIGURE 2 | Pipeline of COVID-DeepPredictor. The pipeline is depicted in the form of a flowchart and then represented diagrammatically where the symbols are

defined as above.

SARS-CoV-2, Ebola, Dengue, and Influenza. For each predictor,
the descriptors of the sequences of the viruses are created using
k-mer method. Thereafter to train the COVID-DeepPredictor
and the other compared predictors, an embedded matrix of size
N×M is created with the use of BoDs and BoUDs.

To determine the performance of COVID-DeepPredictor and
the other predictors, Confusion Matrix (Luque et al., 2019)
is considered. In confusion matrix, True Positives (TP) refer
to a data being correctly identified and they are represented

by the diagonal elements. The remaining predictions lead to
an error ǫ. Moreover, False Positives (FP) for a particular
class refer to the sum of the values in the corresponding
column, excluding the TP and False Negatives (FN) for a
class is the sum of the values in the corresponding row,
excluding the TP. Lastly, True Negatives (TN) for a class is
the sum of all columns and row, barring the one for itself.
To evaluate the results of COVID-DeepPredictor, metrics like
Accuracy, Precision, Recall, and G-Mean have been considered
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which can be deduced from a confusion matrix. They can be
calculated as:

Accuracy:

TP + TN

TN + FP + FN + TP
(5)

Precision:

TP

FP + TP
(6)

Recall:

TP

TP + FN
(7)

G-mean:

TP
√
(TP + FP)(TP + FN)

(8)

Different existing state-of-the-art predictors based on Linear
Discriminant Analysis (LDA), Random Forests (RFs), and
Gradient Boosting Method (GBM) are used in this work for
comparison purposes. LDA is a very popular machine learning
tool for prediction. In LDA, each dependent variable is expressed
as a linear combination of other features. RFs are ensemble
learning methods which build numerous decision trees during
training and as an output produces the class that is the mode
of the classes. GBM is also an ensemble learning model which
produces a prediction model in the form of an ensemble weak
prediction models, usually decision trees.

For conducting the experiments, first and foremost, we need
to determine the value of k in k-mer. In order to do this,
the experiments have been conducted on five test datasets as
mentioned in section 2. The results are shown in Figures 3A–E,
where k is varied from 3 to 15 with accuracy and running time
of COVID-DeepPredictor. It can be seen from figures that the
accuracy is higher at k = 3 for all the five test datasets. Although,
the same accuracy can be found for other k values as well, e.g.,
in Figure 3A k = 9, 11, and 13 show the same accuracy, as we
increase the k-mer value, the run time increases. This trend of
increasing time with the increasing value of k-mer has also been
shown in Solis-Reyes et al. (2018). Keeping this in context, we
have taken the value of k in k-mer to be 3 as with this value, the
run time is least. For the compared predictors based on LDA, RF,
and GBM, the k values are similarly determined as 13, 4, and
4, respectively. In this work, K-fold cross-validation with K =
10 is used. The average results in terms of accuracy for the test
datasets are shown in Figure 4A. Moreover, apart from accuracy,
different metrics such as precision, recall and g-mean have also
been computed for the test datasets and reported in Table 2.
As can be seen from the results of Figure 4A, for COVID-
DeepPredictor the accuracy ranges from 99.51 to 99.94%. Thus,
the experiments establish the fact that COVID-DeepPredictor
can detect SARS-CoV-2 with a very high accuracy. The confusion
matrices as circos plots for Testdata-1 and Testdata-2 (k = 3)
are shown in Figures 4B,C. It can be seen from Figures 4B,C

that there is only one misprediction, where SARS-CoV-1 has
been wrongly predicted as SARS-CoV-2. The confusion matrices

for Testdata-3, Testdata-4, and Testdata-5 (k = 3) are shown in
Supplementary Figure 2.

COVID-DeepPredictor is performed on a validation dataset
as well. Accuracy, precision, recall, and G-mean values of the
prediction for the validation dataset are 100, 100, 100, and
1%, respectively (k=3). As we have used K-fold cross-validation
with K = 10, ten convergence plots of COVID-DeepPredictor
are generated. One of the corresponding convergence plots
for COVID-DeepPredictor is given in Figure 4D. The blue
line indicates the training accuracy and the black line is the
validation accuracy. All the convergence plots are shown in
Supplementary Figure 1. The Bag-of-Unique-Descriptors of the
six virus classes, SARS-CoV-1, MERS-CoV, SARS-CoV-2, Ebola,
Dengue, and Influenza are shown in Figures 4E–J for k=3.

4. DISCUSSION

SARS-CoV-2 is a global pandemic and since human to human
transmission (Chan et al., 2020; Huang et al., 2020) is confirmed
for SARS-CoV-2, the need for its early prediction has become
imperative. Viral outbreaks of this kind call for timely and
prompt analysis of the genomic sequences to help the prediction
of the virus in its early stages. COVID-DeepPredictor can be used
by pathogen laboratories for the prediction of SARS-CoV-2 very
quickly and as concluded from the results, most accurately. It is
worth mentioning over here that for COVID-DeepPredictor to
be effective, there must be at least two virus classes present in the
training input sequences.

COVID-DeepPredictor has two functions for: (a)
training, testing, and accordingly saving an LSTM
model [COVIDdeepPredictor()] and (b) loading a pre-
trained LSTM model for testing on unseen test dataset
[COVIDdeepPredictorLoad()]. There is a main code
COVIDmain.m which loads both COVIDdeepPredictor()
and COVIDdeepPredictorLoad(). If users want to have their
own training model and also get the results for a test dataset,
they need to use only COVIDdeepPredictor() and disable
COVIDdeepPredictorLoad(). On the other hand, if they want to
use a pre-trained model, they can disable COVIDdeepPredictor()
and run only COVIDdeepPredictorLoad() to get the results for
test datasets.

For ease of users, training and testing files are provided
to make them acquainted with the functionalities of
COVIDdeepPredictor(). Trainingdata.csv is the input file
for training and any one of the test files among Testdata-1.csv,
Testdata-2.csv, Testdata-3.csv, Testdata-4.csv, and Testdata-5.csv
can be used for testing. The results of the prediction will have
the sequence ID, predicted virus name, along with its sequence
which will be stored in Results.csv.

On the other hand, in case of COVIDdeepPredictorLoad(),
only any one of the test files needs to be provided to get the
results in Results.csv. Similarly, new training and test datasets
can be prepared by the users after following the same structures
of the training and testing files as provided. This is important
so that new training models of COVID-DeepPredictor can
be prepared for different set of viruses or similar kind of
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FIGURE 3 | Choosing k value of k-mer for COVID-DeepPredictor based on accuracy and running time. (A) Testdata-1, (B) Testdata-2, (C) Testdata-3, (D) Testdata-4,

(E) Testdata-5.
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FIGURE 4 | Results related to COVID-DeepPredictor. (A) Prediction performance of COVID-DeepPredictor and other compared methods in terms of average

accuracy for the five test datasets. Circos plots of confusion matrix for COVID-DeepPredictor (k=3) for (B) Testdata-1 (C) Testdata-2. (D) Convergence plot of

COVID-DeepPredictor. Word cloud of k-mer descriptors (k=3) of genome sequences for (E) SARS-CoV-1 (F) MERS-CoV (G) SARS-CoV-2 (H) Ebola (I) Dengue (J)

Influenza.
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TABLE 2 | Prediction performance of COVID-DeepPredictor and other compared methods on test datasets.

Method DataSet k-mer Average Average Average Average

accuracy precision Recall G-Mean

COVID-DeepPredictor

Testdata-1

3 99.867 99.914 99.336 0.996

LDA 13 98.981 91.845 98.015 0.948

RF 4 98.409 97.577 90.024 0.937

GBM 4 98.524 97.611 90.121 0.937

COVID-DeepPredictor

Testdata-2

3 99.513 99.527 99.423 0.994

LDA 13 98.807 98.814 98.925 0.988

RF 4 96.788 96.981 97.264 0.971

GBM 4 97.844 97.542 97.991 0.977

COVID-DeepPredictor

Testdata-3

3 99.877 99.595 99.686 0.996

LDA 13 99.650 98.981 99.162 0.989

RF 4 99.250 97.727 98.440 0.981

GBM 4 99.265 97.728 98.891 0.983

COVID-DeepPredictor

Testdata-4

3 99.860 99.637 99.682 0.996

LDA 13 98.885 97.281 97.648 0.974

RF 4 99.371 98.414 99.325 0.988

GBM 4 99.441 98.922 99.444 0.991

COVID-DeepPredictor

Testdata-5

3 99.940 99.766 99.808 0.997

LDA 13 99.380 97.467 97.927 0.976

RF 4 99.580 98.519 99.371 0.989

GBM 4 99.590 98.956 99.763 0.993

The results highlighted in bold show that COVID-DeepPredictor has superior performance as compared to the other predictors.

tasks. It is to be noted that the pre-trained model is provided
in Supplementary Material, where the value of k for k-mer
is 3. The choice of k has been done experimentally as it
takes computationally less amount of time and provides higher
accuracy. Sample files for training, testing, pre-trainedmodels for
COVID-DeepPredictor and the code of the software are available
in Supplementary Material for re-usability3.

Setting the appropriate value of k in k-mer is very important
to achieve the desired results in a text classification problem. As
this work is based on the underlying concept of text classification,
k-mer has a very important role to play. Thus, to determine the
value of k in k-mer, extensive experiments have been performed.
It can be observed from Figures 3A–E that with the increasing
value of k, the run time of COVID-DeepPredictor is also on the
rise. Therefore, to choose the appropriate value of k, apart from
the accuracy, the run time of COVID-DeepPredictor also needs
to be taken into account. For Testdata-1, at k = 9, 11, and 13, the
accuracy is same as at k = 3. Similarly, for Testdata-2, Testdata-3,
Testdata-4, and Testdata-5, similar accuracies can be observed at
k = 3, 11, 13, k = 3, 4, 5, 13, k = 3, 4, and k = 3, 13, respectively.
Although, the accuracies are same at these k-mer values, run
time is increasing as can been seen from Figures 3A–E. Thus, the
smallest k-mer value has been chosen without compromising on
the accuracy. From Table 2 and Figure 4A, it is quite evident that
with k = 3, COVID-DeepPredictor shows the best results among
all the compared predictors.

3http://www.nitttrkol.ac.in/indrajit/projects/COVID-DeepPredictor/

To understand the relation among k-mer, size of BoDs and
BoUDs, Table 3 is reported. From this table, we can see that the
sizes of both BoDs and BoUDs increase with the increase in k-mer
for each virus class. In the table, “All” represents all the six virus
classes taken together. For example, at k = 15 for training dataset
of all virus classes, the sizes of BoDs and BoUDs are 30193594
and 518372, respectively for 1,500 sequences while for the same
k, for Testdata-1, the sizes of BoDs and BoUDs are 70595908
and 581774 respectively for 3,143 sequences. On the other hand,
for k = 3, less number of BoDs and BoUDs are generated. Here,
as expected, the BoD values for “All” are the summation of the
BoDs of the individual virus classes. On the contrary, BoUD is
less than the summation of the BoUDs of the six virus classes.
This can be attributed to the relatedness between different virus
classes. For example, SARS-CoV-1, MERS-CoV, and SARS-CoV-
2 are more related and thus they may share unique descriptors
(BoUDs) resulting in the intersection of the BoUDs when all the
virus classes are considered together. Apart from this, BoDs and
BoUDs for the varying k have also an impact on the accuracy and
run time of COVID-DeepPredictor as well which can be observed
by combining Figure 3 and Table 3.

The main advantage of COVID-DeepPredictor is that it uses
k-mer technique which is an alignment-free technique. Most
analysis based works attempted so far have used alignment
based techniques. Although, they are highly successful in
detecting similarities in sequences of viruses, they take a lot of
computational time. Also, alignment based techniques have the
underlying constraint of homologous sequences which may not
be the case every time. To mitigate these problems of alignment
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TABLE 3 | Bag-of-Descriptors and Bag-of-Unique-Descriptors for each virus class.

k-mer Virus Name
Training dataset Testdata-1 Testdata-2 Testdata-3 Testdata-4 Testdata-5

BoD BoUD BoD BoUD BoD BoUD BoD BoUD BoD BoUD BoD BoUD

3

SARS-CoV-1 16000 64 5760 64 5760 64 5760 64 5760 64 5760 64

MERS 16000 64 2642 81 12831 90 14083 67 16003 67 16003 67

SARS-CoV-2 16000 64 138336 181 12800 64 193920 64 154240 64 256000 64

Ebola 16000 64 3200 64 14248 125 14741 125 16661 125 14248 125

Dengue 16000 64 3212 75 12827 82 14080 64 16496 138 14080 64

Influenza 16000 64 48688 90 12803 67 14080 64 16000 64 16000 64

All 96000 64 201838 181 71269 125 256664 125 225160 141 322091 125

5

SARS-CoV-1 255723 1024 92053 1024 92053 1024 92053 1024 92053 1024 92053 1024

MERS 256000 1024 42012 1054 204674 1081 225101 1029 255821 1029 255821 1029

SARS-CoV-2 255578 1024 2202055 1446 204592 1023 3099528 1024 2465318 1024 4091752 1024

Ebola 255966 1024 51195 1024 208766 2461 227294 2104 257985 2104 208766 2461

Dengue 253210 1024 50659 1044 202616 1054 222741 1024 253923 1493 222741 1024

Influenza 200176 1022 608293 1093 159407 1020 175272 1015 201513 1007 201513 1007

All 1476653 1024 3046267 1548 1072108 2555 4041989 2106 3526613 2293 5072646 2452

7

SARS-CoV-1 2804578 15151 1008955 15813 1008955 15813 1008955 15813 1008955 15813 1008955 15813

MERS 2928952 12897 479752 12526 2293586 15184 2528113 15111 2879852 15113 2879852 15113

SARS-CoV-2 2649879 12330 22899216 15728 2137492 11100 32349863 14073 25724590 12971 42685988 14211

Ebola 2443931 13407 490077 14109 1947490 18116 2143135 17557 2435668 17562 1947490 18116

Dengue 1681474 15764 337983 13206 1332951 15733 1454478 14773 1650576 16470 1454478 14773

Influenza 513627 10642 1545260 9627 407434 8175 447771 8253 510118 6824 510118 6824

All 13022441 16365 26761243 17235 9127908 20509 39932315 18815 34209759 19521 50486881 20334

9

SARS-CoV-1 6628103 74045 2384098 99891 2384098 99891 2384098 99891 2384098 99891 2384098 99891

MERS 6789715 36574 1109206 32462 5266196 68377 5811335 68421 6628997 68503 6628997 68503

SARS-CoV-2 6477353 39782 56109728 87633 5264550 29600 79603531 62655 63327698 47111 105111057 65922

Ebola 4441121 38632 888076 42449 3510149 52268 3873871 69072 4403894 69127 3510149 52268

Dengue 2552607 85437 510925 39245 2032038 84400 2230265 59231 2503617 83849 2230265 59231

Influenza 576353 25781 1736059 20908 458593 15572 504138 15921 571045 11662 571045 11662

All 27465252 170456 62738092 176102 18915624 190230 94407238 191127 79819349 194988 120435611 188263

11

SARS-CoV-1 7307627 107764 2628669 164654 2628669 164654 2628669 164654 2628669 164654 2628669 164654

MERS 7433338 43970 1214507 37565 5761632 93236 6358646 93410 7254330 93587 7254330 93587

SARS-CoV-2 7255552 50534 62870692 146218 5905735 34664 89280255 94001 71036334 64429 117924347 100857

Ebola 4708196 47084 940996 50512 3714237 64927 4101614 91849 4663098 91945 3714237 64927

Dengue 2670007 136386 534074 51172 2126694 135576 508411 19304 2619237 132259 508411 19304

Influenza 580256 33741 1752556 26635 462340 18759 2334852 85407 576053 13648 576053 13648

All 29954976 385098 69941518 425910 20599307 465475 105212447 491662 88777721 504060 132606047 448483

13

SARS-CoV-1 7368667 122008 2650637 191450 2650637 191450 2650614 191438 2650614 191438 2650614 191438

MERS 7491153 47114 1223927 39330 5806329 101342 6408044 101572 7310682 101788 7310682 101788

SARS-CoV-2 7320339 54634 63432818 171269 5959215 36016 90082938 109721 71677120 72455 118991161 117831

Ebola 4733413 51117 946000 53465 3732476 70736 4122922 100238 4687630 100355 3732476 70736

Dengue 2679746 163142 535989 57918 2134755 162571 2344694 99695 2629120 157280 2344694 99695

Influenza 580108 39489 1752528 30935 462251 21020 508334 21713 15101 575971 15101 575971

All 30173426 466701 70541899 523579 20745663 569846 106117546 607703 88970267 622408 135044728 578236

15

SARS-CoV-1 7374678 133005 2652762 211394 2652762 211394 2652739 211383 2652739 211383 2652739 211383

MERS 7495710 49814 1224682 40764 5809898 106916 6412005 107189 7315184 107441 7315184 107441

SARS-CoV-2 7326267 57890 63484669 189982 5964143 37021 90156005 123153 71735232 79346 119088222 132184

Ebola 4737182 54589 946752 55755 3735616 75678 4126489 106635 4691704 106770 3735616 75678

Dengue 2680123 185342 536022 63800 2135271 184450 2345444 111850 2629444 177592 2345444 111850

Influenza 579634 44695 1751021 34958 461851 23061 507894 23904 575480 16471 575480 16471

All 30193594 518372 70595908 581774 20759541 630327 106200576 673741 89599783 689040 135712685 642812
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TABLE 4 | Runtime comparison of COVID-DeepPredictor and BLASTN.

Alignment-free technique Alignment-based

technique

Number of sequences COVID-DeepPredictor (k=3) BLASTN

of SARS-CoV-2 [Training and Testing (in min)]

50 1.26 1 h 15 min

100 1.27 2 h 40 min

200 1.28 4 h 30 min

300 1.29 6 h 35 min

400 1.31 9 h 10 min

based techniques, alignment-free techniques (Kari et al., 2015)
can be used. Alignment-free techniques are meant to be fast
and can work with a large number of sequences. To prove the
advantage of COVID-DeepPredictor over BLASTN4, which is an
alignment-based technique, Table 4 is reported where different
input sequences of size 50, 100, 200, 300, and 400 of SARS-
CoV-2 are taken. For 50 sequences, BLASTN takes 1 h 15 min
to align the sequences and to produce the subsequent results.
Thereafter, such results are further required to be analyzed by
machine intelligence technique to predict the virus class which
takes some additional time as well. On the contrary, COVID-
DeepPredictor successfully completes the job of training and
testing, which involves prediction, in just 1.26min. Similar results
are also seen for the other varying sequences as well. Thus, we can
conclude that an alignment-free technique is significantly faster
than an alignment based technique.

5. CONCLUSION

In the current scenario of global pandemic, it has become
very important to predict SARS-CoV-2 as early as possible as
both the affected and the number of death cases are increasing
exponentially everyday. However, polymorphic nature of SARS-
CoV-2 allows it to adapt and sustain in different kinds of
environment which makes SARS-CoV-2 very hard to predict. In
such scenarios, the proposed COVID-DeepPredictor can be very
useful for predicting SARS-CoV-2 and other kinds of pathogenic
viruses based on their genomic information very quickly as
it uses an alignment-free technique. The results for COVID-
DeepPredictor are highly encouraging as it shows prediction
accuracy in the range of 99.51 to 99.94% for test datasets.
Human health being the main concern of this work, the code
for COVID-DeepPredictor along with the pre-trained model are
also provided so that the scientific community can reap as much
benefit as possible from it. Apart from SARS-CoV-2, COVID-
DeepPredictor can also be used by pathogen laboratories to
recognize the other five pathogenic viruses (SARS-CoV-1,MERS-
CoV, Ebola, Dengue, and Influenza) very easily and accurately

4https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=

BlastSearch&BLAST_SPEC=&LINK_LOC=blasttab&LAST_PAGE=blastn

from a given genomic sequence. To achieve good performance,
data preprocessing and the experiments are carried out on
real-life datasets. Moreover, comparisons with popular existing
prediction methods based on Linear Discriminant Analysis,
Random Forests, and Gradient Boosting Method are also
performed to show the superiority of COVID-DeepPredictor.
Additionally, accuracy and runtime of COVID-DeepPredictor
are taken together to determine the value of k in k-mer,
comparison among k values in k-mer, Bag-of-Descriptors (BoDs)
and Bag-of-Unique-Descriptors (BoUDs) is considered along
with a comparative study between COVID-DeepPredictor and
Nucleotide BLAST.
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Smooth muscles are a specific muscle subtype that is widely identified in the tissues of
internal passageways. This muscle subtype has the capacity for controlled or regulated
contraction and relaxation. Airway smooth muscles are a unique type of smooth
muscles that constitute the effective, adjustable, and reactive wall that covers most
areas of the entire airway from the trachea to lung tissues. Infection with SARS-CoV-2,
which caused the world-wide COVID-19 pandemic, involves airway smooth muscles
and their surrounding inflammatory environment. Therefore, airway smooth muscles
and related inflammatory factors may play an irreplaceable role in the initiation and
progression of several severe diseases. Many previous studies have attempted to reveal
the potential relationships between interleukins and airway smooth muscle cells only
on the omics level, and the continued existence of numerous false-positive optimal
genes/transcripts cannot reflect the actual effective biological mechanisms underlying
interleukin-based activation effects on airway smooth muscles. Here, on the basis
of newly presented machine learning-based computational approaches, we identified
specific regulatory factors and a series of rules that contribute to the activation and
stimulation of airway smooth muscles by IL-13, IL-17, or the combination of both
interleukins on the epigenetic and/or transcriptional levels. The detected discriminative
factors (genes) and rules can contribute to the identification of potential regulatory
mechanisms linking airway smooth muscle tissues and inflammatory factors and help
reveal specific pathological factors for diseases associated with airway smooth muscle
inflammation on multiomics levels.

Keywords: smooth muscles, multiomics signatures, Monte Carlo feature selection, machine learning, rule
learning

INTRODUCTION

Smooth muscles are a specific muscle subtype that is widely identified in the tissues of
internal passageways, such as vessels, and internal organs, including the lungs and intestines.
This type of muscle has the capacity for controlled or regulated contraction and relaxation.
Various types of smooth muscles are distributed all over the human body. Airway smooth
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muscle is a unique smooth muscle type that constitutes the
effective, adjustable, and reactive wall covering most of the entire
airway from the trachea to lung tissues (Chung, 2000; Lam et al.,
2019). Similar to that of other smooth muscles, the coupling
of excitation and contraction is the basic approach of airway
smooth muscles to realize their unique basic biological function:
maintaining the normal and effective ventilation of the lungs
(Cieri, 2019).

Airway smooth muscle is regulated by various internal and
external factors to maintain the balance required for pulmonary
oxygen exchange (Dahl et al., 2018; Reyes-García et al., 2018).
Cytokines, such as IL-13 and IL-17, have been confirmed to
participate in the regulation of airway smooth muscles (Pascoe
et al., 2017; Ba et al., 2018; Zhang et al., 2019; Koziol-White et al.,
2020). A systematic analysis of human airway smooth muscle
cells (ASMCs) has confirmed that interleukins, including IL-13
and IL-4, participate in the regulation of the hypo-responsiveness
of smooth muscle subtypes (Koziol-White et al., 2020). IL-17
has been confirmed to participate in the typical inflammatory
reactions of ASMCs (Bexiga et al., 2018; Thompson et al., 2018).
The identification of IL-17 together with multiple interleukins
as candidate regulators validates the specific contributions of
interleukins to the actions of ASMCs.

As discussed above, interleukins, such as IL-13 and IL-
17, are functionally correlated with the biological processes of
ASMCs, and interactions between interleukins and ASMCs may
also be correlated with various diseases. Asthma is a typical
respiratory inflammatory disease that has been widely reported
to be functionally correlated with airway smooth muscles in an
inflammatory environment (Bousquet et al., 2000; Salter et al.,
2017; Ramakrishnan et al., 2019; Tliba and Panettieri, 2019).
For example, the migration of human airway smooth muscles
has been confirmed to be regulated by cytokines, including IL-
13 and IL-17, and further contribute to the pathogenesis of
asthma (Salter et al., 2017). Moreover, infection with SARS-CoV-
2, which caused the worldwide COVID-19 pandemic, involves
airway smooth muscles and their surrounding inflammatory
environment (Frohman et al., 2020; Sungnak et al., 2020).
Therefore, airway smooth muscles and related inflammatory
factors (like interleukins) may play an irreplaceable role in the
initiation and progression of several severe diseases. Studies on
the interactions between airway smooth muscles and related
interleukins and the detailed contributions of interleukins
to the biological or pathological activation of ASMCs may
contribute to the explanation of the detailed pathogenesis of
inflammatory pulmonary diseases and help the identification
of potential effective biomarkers for drug discovery and
treatment improvement.

Many previous studies have attempted to reveal the potential
relationships between interleukins and ASMCs at different omics
levels. Recently, a specific study on the relationships between
asthma-promoting cytokines (IL-13 and IL-17) and ASMCs
tried to identify key regulatory factors on the transcriptomics
and epigenetics levels. Researchers identified 225 genes around
differentially methylated regions by using independent IL-13
and IL-17 and combined interleukins and 2014 differentially
expressed transcripts by comparing different cytokine-stimulated

groups (Thompson et al., 2019). However, the continued
existence of numerous false-positive optimal genes/transcripts
cannot reflect the actual effective biological mechanisms
underlying interleukin-based activation effects on airway smooth
muscles. In this study, on the basis of newly presented
computational approaches based on machine learning, we first
identified specific regulatory factors (genes) that contribute
to the activation and stimulation of airway smooth muscles
by IL-13, IL-17, or the combination of both interleukins on
the epigenetic and/or transcriptional levels. Next, we also
established a series of rules based on essential genes that
contribute to distinguishing quiescent and interleukin (either
independent or combined)-activated ASMCs in a quantitative
manner. Our results, including detected discriminative genes
and quantitative rules, corresponding to different patterns,
can contribute to the identification of potential regulatory
mechanisms underlying interactions between airway smooth
muscle tissues and inflammatory factors (IL-13 and IL-17) and
help reveal specific pathological factors for diseases associated
with airway smooth muscle inflammation on multiomics levels.

MATERIALS AND METHODS

Data
In March 2020, researchers from the University of Chicago
released the gene methylation and expression data of ASMCs
under the stimulation of multiple inflammatory factors to the
Gene Expression Omnibus database (GSE146377) with more
than 500 samples (either transcriptomics or methylation data).
All the transcriptomics and gene methylation data were generated
from the primary cultured ASMCs. In this study, we aimed at
interpreting the biological significance of lung smooth muscle
and related inflammatory factors during the initiation and
progression of multiple diseases like COVID-19 which has
ravaged all over the world recently. Following the goal, we
downloaded the methylation and gene expression profiles of
primary cultured ASMCs exposed to IL-13, IL-17, IL-13 + IL-
17, and vehicle from the Gene Expression Omnibus database
under the accession number of GSE146377. Only samples with
methylation and gene expression data were analyzed. Each
of the IL-13, IL-17, IL-13 + IL-17, and vehicle groups had
64 samples. Methylation data were generated with Infinium
MethylationEPIC and included 786,326 probes. The expression
levels of 18,279 genes were profiled with Illumina HumanHT-12
V4.0 expression beadchip. We aimed to investigate the responsive
genes of ASMCs to IL-13, IL-17, and IL-13 + IL-17.

Monte Carlo Feature Selection
The methylation and gene expression profiles of ASMCs have
much more features than samples. The Monte Carlo feature
selection (MCFS) (Dramiñski et al., 2007) was deemed to be
excellent in tackling such type of dataset. It is a powerful and
widely used feature selection technology.

To evaluate the importance of features, MCFS generally
includes the following steps: (i) the selection of random feature
subsets with m features from the original whole M features
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(m « M); (ii) the learning of a classification model on the
bootstrap dataset for each feature subset, which generates p
decision trees from classification model; (iii) the production of
p × t decision trees by repeating the above steps t times; and
(iv) the calculation of the relative importance score (RI) for each
feature. Among the constructed p × t decision trees, a given
feature may occur in some of them. The split on a node using such
feature in each of these decision trees can reflect its importance,
which can be measured by the information gain achieved by such
split. Furthermore, the classification ability of the decision tree
should also be included. Thus, the contribution of a feature in
a decision tree can be the determined by the information gain
achieved by the split, the number of samples in the split node and
the classification ability of the tree. The RI value of a feature f
can be the sum of contributions on all constructed decision trees,
which is defined as

RIf =

pt∑
τ=1

(wAcc)u
∑
nf (τ)

IG(nf (τ))(
no. in nf (τ)

no. in τ
)v (1)

where wAcc is the weighted accuracy, and nf (τ) is a node of
feature f in the decision tree τ. The information gain of nf (τ)
is expressed as IG(nf (τ)), and (no. in nf (τ)) is the number of
training samples in nf (τ). u and v are two weighting factors,
which is suggested to one.

After all investigated features are assigned the RI values, a
feature list is produced by the decreasing order of RI values
of features. In this study, we adopted the MCFS program
downloaded from http://www.ipipan.eu/staff/m.draminski/mcfs.
html. For convenience, default parameters were used.

Incremental Feature Selection
Incremental feature selection (IFS) (Liu and Setiono, 1998) is
an iterative feature selection approach, which can find the best
number of features for a given classification algorithm. For a
feature list (e.g., a list produced by the MCFS method), IFS always
generates lots of feature subsets, each of which contains some top
features in the list. For example, the first feature subset contains
the top one feature in the list, the second feature subset consists of
the top two features, and so forth. Then, for each feature subset,
a classifier can be built based on a given classification algorithm
and samples represented by features in the subset. Finally, all
constructed classifiers are evaluated by a cross-validation method
(e.g., 10-fold cross-validation) (Kohavi, 1995). The classifier with
the best performance is extracted, which were called the optimum
classifier in the study. Furthermore, the corresponding feature
subset was termed as the optimum feature subset.

Classification Algorithm
As mentioned in section “Incremental Feature Selection,”
a powerful classification algorithm is necessary for the
IFS method. This study tried four classification algorithms:
random forest (RF) (Breiman, 2001), support vector machine
(SVM) (Cortes and Vapnik, 1995), k-nearest neighbor (kNN)
(Cover and Hart, 1967), and repeated incremental pruning to
produce error reduction (RIPPER) (Cohen, 1995). Their brief
descriptions are as follows.

Random Forest
Random forest (Breiman, 2001) is an assemble classification
model that is based on multiple decision tree classifiers. Each
decision tree is constructed using randomly selected samples and
features. Although decision tree is a relative weak classification
algorithm, RF is much power and always an important choice
for building different classification models (Tang et al., 2018;
Baranwal et al., 2019; Zhao et al., 2019; Jia et al., 2020; Liang
et al., 2020). The predicted sample label of RF is obtained on
the basis of the aggregated votes of decision tree classifiers. The
subtle difference among decision trees in RF causes the potential
overfitting of learned models. Thus, RF usually adopts the final
consensus results in accordance with the average of all decision
trees’ predictions. This study adopted the tool “RandomForest”
in Weka (Frank et al., 2004; Witten and Frank, 2005), which
implements the RF algorithm. The major parameter, number of
decision trees, was set to 10.

Support Vector Machine
Support vector machine (Cortes and Vapnik, 1995) is a statistical
learning-based classification algorithm. Similar to RF, SVM is
another essential candidate for constructing classification models
(Sang et al., 2020; Zhou et al., 2020a,b). It first transforms original
data from a low-dimensional space to a high-dimensional space
by using a kernel function and then divides the data samples
of each label in accordance with the principle of data interval
maximization in high-dimensional space. It further predicts the
new samples’ label in accordance with the interval to which
this new sample belongs to. In this work, the tool “SMO” in
Weka software (Frank et al., 2004; Witten and Frank, 2005)
was employed to construct the SVM classifier. The training
procedures are optimized by the sequential minimal optimization
algorithm (Platt, 1998). The kernel was a polynomial function
and the parameter C was set to 1.0.

k-Nearest Neighbor Classification
k-nearest neighbor is another classification model with a voting
scheme (Theilhaber et al., 2002; Zhang and Srihari, 2004; Yu et al.,
2016; Chen et al., 2017a). Given a query sample and one training
dataset, kNN includes several computation steps to determine
its class: (1) the calculation of the sample distance between the
query sample and training samples; (2) the ranking of training
samples on the basis of their distances to the query sample; (3)
the selection of k training samples with the least distance to the
query sample (i.e., kNNs, and k usually ranges from 1 to 10); (4)
the estimation of the label distribution of such k nearest training
samples; and (5) the prediction of labels for the query sample by
using the class label with the highest distribution frequency. In
this work, the tool “IBk” in Weka (Frank et al., 2004; Witten and
Frank, 2005) was used to build the kNN classifier. The distance
between samples was defined as the Euclidean distance.

Rule Learning
In addition to the above black-box classification algorithms, we
also applied a rule learning algorithm, RIPPER (Cohen, 1995), to
generate classification rules for enhancing model interpretation.
This algorithm starts to generate rules for the class containing
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least samples. When a rule is produced, covered samples are
removed. Other rules are yielded on the rest samples. Each rule
generated by RIPPER is represented by an IF–ELSE statement.
For instance, If (GPR44 ≥ 7.200) and (ZC3H12A ≤ 8.211),
THEN class = IL-13. Rules in such form can provide human-
readable predictions for new samples. In this study, tool “JRip”
in Weka (Frank et al., 2004; Witten and Frank, 2005) was utilized
to learn RIPPER rules.

Performance Evaluation
The Matthew correlation coefficient (MCC) (Matthews, 1975;
Chen et al., 2017a,b; Zhao et al., 2018), a widely used evaluation
measurement, was applied to evaluate the performance of the
classification model through 10-fold cross-validation (Kohavi,
1995). MCC ranges from−1 to +1. The classification model with
an MCC of +1 has the best performance. Our analyzed data were
organized into four categories. Thus, the multiclass version of the
MCC (Gorodkin, 2004) was calculated as follows:

MCC =
cov(X, Y)

√
cov(X, X)cov(Y, Y)

(2)

where X is a 0–1 matrix indicating the predicted class of each
sample, Y is a 0–1 matrix representing the actual classes of all
samples, and cov(·, ·) represents the covariance of two matrixes.

In addition, the accuracy on each category and overall
accuracy (ACC) were also calculated to fully indicate the
performance of each model.

RESULTS

In this study, we employed several computational methods
to investigate the methylation and gene expression profiles of
ASMCs. Samples were divided into four groups: the control
group, IL-13 stimulation group, IL-17 stimulation group, and
combined (IL-13 and IL-17) stimulation group. We organized the
data into three types: the methylation data of the four groups, the
expression data of the four groups, and the combined data of the
four groups. For each type of data, we utilized a similar analytical
pipeline. The entire procedures are illustrated in Figure 1.

Results for Methylation Data
For methylation data, we first used MCFS to evaluate
each feature, obtaining a feature list, which is available in
Supplementary Table 1. Due to the huge number of methylation
features, IFS only constructed the top 5000 feature subsets.
A RF, SVM, or kNN classifier was built on each feature subset,
which was further evaluated by 10-fold cross-validation. The
performance of each classifier, including accuracies on four
categories, ACC and MCC, is provided in Supplementary
Table 2. For an easy observation, a curve with MCC as Y-axis
and number of used features as X-axis was plotted for each
classification algorithm, as shown in Figure 2. The SVM
exhibited the best performance and had the MCC of 0.831 when
top 4940 features were used. For RF and kNN, the best MCC was
0.710 and 0.182, respectively, which was based on top 629 and 4
methylation features. Accordingly, the optimum SVM, RF, and

kNN classifiers were built using corresponding optimum feature
subsets. The ACCs of these classifiers are listed in Table 1 and the
accuracies on four categories are illustrated in Figure 3A. Besides
the black-box classifiers, we also tried the rule learning algorithm,
RIPPER, in IFS method. Similarly, we still considered the top
5000 feature subsets. The performance of RIPPER classifiers
is provided in Supplementary Table 2 and the corresponding
curve is shown in Figure 2. The optimum RIPPER classifier
yielded the MCC of 0.319 when top 1264 features were used,
the corresponding ACC was 0.488 (Table 1). Figure 3A shows
the four accuracies on four categories yielded by such classifier.
This performance was insufficiently satisfactory for such a
rule-based approach.

Results for Gene Expression Data
The similar analytical pipeline was applied on the gene expression
data. A feature list was first obtained according to the results of
MCFS, which are provided in Supplementary Table 3. Then, we
applied IFS with 1 as an interval to build classifiers with one of the
four classification algorithms. To save time, we still considered
top 5000 features. Each classifier was evaluated by 10-fold cross-
validation. Obtained measurements are listed in Supplementary
Table 4. The corresponding curves were plotted in Figure 4,
from which we can see that the four optimum classifiers with
different classification algorithms yielded the MCC of 0.870,
0.928, 0.990, and 0.897, respectively, and adopted the top 24, 40,
3440, and 794 features, respectively. The corresponding ACCs are
listed in Table 1 and accuracies on four categories are shown in
Figure 3B. Similar to the results on the methylation data, the
optimum SVM classifier was still best (MCC = 0.990). As for
the optimum RIPPER classifier, its performance was much better
than that for the methylation data. It produced the MCC of 0.897
and ACC of 0.922 (Table 1). This performance was sufficiently
satisfactory. Accordingly, we used top 794 features, which was
adopted to build such classifier, to construct rules with RIPPER,
obtaining seven rules, where three rules were for IL-13, two rules
for control, one rule for both of other two categories. These
rules are listed in Table 2. A further analysis would be given in
section “Optimal Rules for Distinguishing the Different Statuses
of ASMCs.”

Results for Combined Data
Finally, for combined data, we did the same test. The feature
list yielded by the MCFS method is provided in Supplementary
Table 5. The IFS method was applied on such list using one of the
four classification algorithms. Also, only top 5000 features were
considered. The accuracies on four categories, ACCs and MCCs
for each classification algorithm are listed in Supplementary
Table 6 and a curve for each algorithm was plotted in Figure 5
to show the trends of the performance. It can be observed
that SVM consistently achieved the best performance among
all algorithms. Its MCC was 0.969 when 3103 top features
were used. The ACC was 0.977 (Table 1) and accuracies on all
categories are shown in Figure 3C. The performance of other
optimum classifiers are listed in Table 1 and Figure 3C. The
optimum RIPPER classifier also provided good performance of
MCC = 0.891, which used top 42 features. In view of this,
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FIGURE 1 | Entire procedures for analyzing methylation and gene expression profiles of airway smooth muscle cells (ASMCs). The methylation and gene expression
profiles of ASMCs are retrieved from Gene Expression Omnibus database. The cells are classified into four categories (control, IL-13, IL-17, and IL-13 + IL-17). Three
datasets with different combination of profiles are constructed. Each dataset is first analyzed by Monte Carlo feature selection method, producing a feature list. The
list is fed into the incremental feature selection method, incorporating one of the four classification algorithms. The results includes: (1) essential signatures from
different levels; (2) quantitative rules; (3) efficient classifiers.

FIGURE 2 | Performance curves of IFS with RF, SVM, kNN, and RIPPER under different numbers of features for methylation data. SVM yields the highest MCC of
0.831.

we obtained seven rules, listed in Table 3, based on these
42 features and RIPPER. Among these seven rules, two rules
were for IL-17, three rules were for IL-13, and one rule was

for both of other two categories. We would analyze them in
section “Optimal Rules for Distinguishing the Different Statuses
of ASMCs.”
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TABLE 1 | Performance of the best classification model on three datasets with different classification algorithms.

Dataset Classification algorithm Number of features ACC MCC

Methylation kNN 4 0.387 0.182

RF 629 0.781 0.710

SVM 4940 0.871 0.831

RIPPER 1264 0.488 0.319

Gene expression kNN 24 0.902 0.870

RF 40 0.945 0.928

SVM 3440 0.992 0.990

RIPPER 794 0.922 0.897

Methylation+ gene expression kNN 4 0.883 0.844

RF 96 0.938 0.917

SVM 3103 0.977 0.969

RIPPER 42 0.918 0.891

The results for RIPPER indicated that datasets containing only
epigenetic data with RIPPER and the MCC of 0.319 might be
unacceptable for further analyses and that the use of methylation
data might be ineffective for constructing reliable quantitative
rule-based models for distinguishing the different statuses of
ASMCs. Expression data and combined data could provide an
optimal RIPPER MCC of approximately 0.900, validating the
reliability and efficacy of the features and rules learned from
the two datasets.

Enrichment Results
For all three datasets, the best optimum classifiers all used SVM
as the classification algorithm. In detail, for methylation data,
the optimum SVM classifier adopted top 4940 features, while
the optimum SVM classifiers used top 3440 and 3103 features,
respectively, for other two datasets. Their corresponding genes
were called optimum signatures (genes) for the corresponding
dataset. To reveal the potential biological functions that optimum
genes are correlated with, we performed GO enrichment analyses
using R package (topGO v2.38.1) on them. The results are
provided in Supplementary Table 7. Of the optimum genes on
epigenetic and transcriptomics levels, they enriched five and 39
GO terms, respectively, while 68 GO terms were enriched by the
optimum genes on both epigenetic and transcriptomics levels. An
analysis would be performed in section “Go Enrichment Analyses
for Optimal Signatures for Distinguishing the Different Statuses
of ASMCs.”

DISCUSSION

We applied multiple machine learning models to identify
potential multi-omics signatures on the epigenetic and
transcriptomic levels. By using our newly presented
computational methods, we not only identified a group of
effective signatures (genes) that were remarkably correlated
with the interactions between interleukins (IL-13, IL-17, or
their combination) and ASMCs, but also established specific
rules to distinguish four ASMC statuses: quiescent, IL-13
activated, IL-17 activated, and IL-13–IL-17 combined activated.

Similar signature analyses have been validated under three
conditions, i.e., single transcriptomics level, single epigenetic
level, and combined transcriptomics and epigenetic levels. All
the identified signatures and rules were validated on the basis of
recent publications, indicating the efficacy and accuracy of our
prediction. Given the limitation of this manuscript’s length, we
only chose several typical genes for introduction. The detailed
discussion on the signatures and rules is given below.

Optimal Signatures for Distinguishing the
Different Statuses of ASMCs
Signatures on the Epigenetics Level
The top-ranked gene in our prediction list obtained from
the epigenetic dataset is BEND6 with specific methylation
alterations on the first exon (cg08811259). BEND6 has
been widely reported to be functionally correlated with the
Notch signaling pathway (Dai et al., 2013). Early in 2008,
the Notch signaling pathway was confirmed to regulate the
hyper-responsiveness and inflammation of ASMCs (Okamoto
et al., 2008) via multiple interleukins, including IL-13 (Lee
et al., 2001) and IL-17 (Plé et al., 2015). Therefore, given
that the methylation alteration of BEND6 has been validated
to affect the Notch signaling pathway, this methylation
probe together with its target gene BEND6 are potential
biomarkers for distinguishing ASMCs with or without
interleukin stimulation.

The next probe (cg26074603) targets the 5′ UTR of
KCNC2. This gene is a core regulator of the voltage-gated
potassium channel and has been confirmed to participate in the
pathogenesis of multiple diseases, including extratemporal
epilepsy (Vetri et al., 2020) and spinocerebellar ataxia
(Rajakulendran et al., 2013). Moreover, KCNC2 has been
reported to participate in pulmonary neutrophilic inflammation
in the lungs and airway; this condition can involve local smooth
muscles (Nadadur et al., 2005). Although direct evidence
confirming that interleukins may affect the contribution of
KCNC2 to the inflammation of airway smooth muscles does
not exist, previous studies have confirmed that KCNC2 indeed
interacts with multiple interleukins, including, IL-13 and IL-1
(Haas et al., 1993), partially validating our prediction.
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FIGURE 3 | Accuracies on all categories yielded by the optimum classifiers on three datasets. (A) Methylation data; (B) gene expression data; (C) combined data.

The next optimal gene on the methylation level is MAST4,
which is targeted by the probe cg06040990. This gene is
a microtubule-associated protein kinase (Sun et al., 2006)
that has been widely reported to participate in multiple
inflammatory-associated biological processes (Gongol et al.,
2017; Cortes et al., 2020). MAST4 is a part of the PTEN
signaling pathway (Valiente et al., 2005; Sotelo et al., 2012), which

has been confirmed to mediate the IL-13-induced stimulation,
hyper-responsiveness, and inflammation, of airway smooth
muscles, thus validating this predicted target gene (Jiang et al.,
2012). Similar conclusions have also been further validated in
later studies (Hu et al., 2014; Khalifeh-Soltani et al., 2018).
Therefore, MAST4 is definitely correlated with the interleukin-
mediated stimulation of airway smooth muscles.
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FIGURE 4 | Performance curves of IFS with RF, SVM, kNN, and RIPPER under different numbers of features for expression data. SVM generates the highest MCC
of 0.990.

TABLE 2 | Rules by RIPPER on expression data.

Index Condition Result

1 (GPR44 ≥ 7.200) and (ZC3H12A ≤ 8.211) IL-13

2 (SEMA3A ≤ 9.623) and (NFKBIZ ≤ 10.612) IL-13

3 (MYOM1 ≥ 7.527) and (MAP3K8 ≤ 9.269) IL-13

4 (NFKBIZ ≤ 10.483) and (MAP3K8 ≤ 8.234) Control

5 LSS ≤ 10.932 Control

6 CCL26 ≤ 9.291 IL-17

7 Others IL-13 and IL-17

Signatures on the Transcriptomics Level
Similar to the analyses based on the methylation-level dataset, our
other analyses also identified a group of genes (transcripts) that
contributes to distinguishing the different statuses of ASMCs.
All such genes/transcripts have also been further validated to be
effective in accordance with recent publications.

The first gene in our prediction list is MAP3K8, a member
of the serine/threonine protein kinase family. MAP3K8 has
been confirmed to be associated with typical differential
expression levels in systematic neutrophilic inflammation
involving airway tissues (Fu et al., 2013). Although no direct
reports have confirmed the regulatory roles of IL-13 and IL-17
in MAP3K8-medicated airway inflammation responses, MAP3K8
has been widely reported to perform an interleukin-dependent
inflammatory regulatory role during multiple biological or
pathological processes (Glossop and Cartmell, 2009; Kim et al.,
2014; Sánchez et al., 2017), implying the specific role of such a
gene in the different statuses of ASMCs.

The next gene that contributes to cell classification on the
transcriptomics level is CCL26, a functional secretory factor that
contributes to immune regulatory and inflammatory processes in
human bodies (Sangaphunchai et al., 2020). This gene has also
been reported to be differentially expressed in airway tissues and
participates in the inflammatory response in lung and airway
tissues during the pathogenesis of asthma (Sangaphunchai et al.,
2020). It has been directly reported to be functionally correlated
with IL-13 (Higham et al., 2020; Min et al., 2020) and IL-
17 (Kamijo et al., 2020; Mamber et al., 2020) in focal regions
surrounding airway smooth muscles at the transcriptomics level
and is further pathologically correlated with several chronic
lung diseases, including chronic obstructive pulmonary diseases
(Min et al., 2020). Therefore, given its functional correlation
with the potential regulatory effects of IL-13 and IL-17 on
airway smooth muscle inflammation, the predicted gene CCL26
is definitely an effective signature for cell classification on the
transcriptomics level.

CISH, also known as SOCS, is predicted to be important
for the classification of ASMCs with different interleukin
stimulation statuses. CISH is present at specific expression
levels in Treg cells in allergic-associated airway inflammation
(Zheng et al., 2020), implying the specific regulatory role of
CISH in airway regional inflammation on the transcriptional
level. SOCS can also participate in the regulation of human
monocyte inflammatory responses involving IL-13 and IL-
4 (Wolde et al., 2020), confirming its potential classification
capacity at the gene expression level. Summarizing the specific
biological regulatory role of CISH in airway tissues reveals
that CISH is a potential regulatory factor of interactions
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FIGURE 5 | Performance curves of IFS with RF, SVM, kNN, and RIPPER under different numbers of features for combined data. SVM produces the highest MCC of
0.969.

TABLE 3 | Rules by RIPPER on combined data.

Index Condition Result

1 (COL17A1 ≤ 7.226) and (NFKBIZ ≥ 10.687) IL-17

2 (CCDC86 ≤ 9.636) and (NFKBIZ ≥ 10.454) IL-17

3 (DTNA ≤ 7.176) and (NFKBIZ ≤ 10.496) IL-13

4 (CCL11 ≥ 12.814) and (MAP3K8 ≤ 9.294) and
(SLIT2 ≤ 11.423)

IL-13

5 PPFIBP2 ≥ 9.582 IL-13

6 MAP3K8 ≥ 8.957 IL-13 and IL-17

7 Others Control

between interleukins and airway smooth muscles on the
transcriptomics level.

Combinatory Signatures on the Epigenetic and
Transcriptomics Level
Epigenetic- and transcriptomics-level data may be applicable
for distinguishing different ASMC statuses on the basis of
combinatory signatures. Here, we integrated epigenetic- and
transcriptomics-level data to identify specific signatures at the
dual-omics levels by using our presented computational method.
In accordance with the prediction list, most of the top-ranked
features are the same as the features identified through the above
transcriptomics-only analyses. Therefore, we further discussed
the epigenetic contribution of the top three genes that have
already been discussed on the transcriptomics level to provide
wide and solid literature support.

As discussed above, MAP3K8 has been validated to be
a transcriptomic regulator that can be used to distinguish

different stimulation statuses. The abnormal methylation status
of this gene is correlated with multiple chronic pathological
conditions, such as lung adenocarcinoma (Tsay et al., 2015)
and autoimmune lung injuries (Diaconu et al., 2010; Xie
et al., 2018). Although no direct evidence has shown that the
methylation alteration of MAP3K8 is functionally correlated with
interleukins, such as IL-17, in the inflammation of airway smooth
muscles, a recent publication on colorectal cancer has indicated
that the methylation of MAP3K8 controls focal inflammatory
responses via the regulation of related interleukins (Hartley,
2020). Therefore, in addition to its unique contribution on the
transcriptomics level, MAP3K8 is an effective epigenetic regulator
of interleukin-mediated airway smooth muscle activation.

CCL26, the next predicted gene, is ranked second on the
transcriptomic level but fourth on the epigenetic level. It is
also associated with specific methylation status in lung- and
respiratory-related tissues under various pathological conditions,
including lung adenocarcinoma (Dong et al., 2020) and asthma
(Kim et al., 2020). CCL26 has been validated to be regulated
by specific interleukins, such as IL-13 (Lyles and Rothenberg,
2019), and further studies have validated that the methylation
status of CCL26 is greatly altered during the inflammatory
responses of ASMCs under either pathological or physical
conditions (Grozdanovic et al., 2019). Therefore, CCL26 can also
be regarded as a methylation signature of interleukin-mediated
inflammation involving ASMCs in addition to its role as an
effective transcriptomics signature.

Recently, in correspondence with our prediction, a review of
the inflammation profiling of asthma involving airway smooth
muscles identified CISH as a potential methylation biomarker
for airway regional inflammation. Furthermore, CISH has been
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reported to exhibit different methylation patterns in different
asthma statuses with different interleukin profiles (Vermeulen
et al., 2020), validating the specific role of CISH in inflammatory
lung diseases on the methylation level.

Collectively, all the optimal signatures have been validated
even at the dual-omics level by recent publications. Summarizing
the classification model of datasets on different levels revealed
that the optimal features on transcriptomics level are similar
to those based on combinations but different from those
on the methylation level, indicating that transcriptomics-level
datasets may perform better than other datasets in indicating
the different activation statuses of airway smooth muscles under
interleukin stimulation.

Optimal Rules for Distinguishing the
Different Statuses of ASMCs
In addition to the above specific signatures for distinguishing
the different statuses of ASMCs, we established a group of
effective quantitative rules for cell classification by using the
RIPPER computational method. In accordance with the above
discussion, we focused on the quantitative rules obtained by
using transcriptomics-level data and the dataset combining
transcriptomics- and epigenetic-level data.

Rules on the Transcriptomics Level
We identified seven rules to distinguish the four groups of
cells on the transcriptomics level. The first three rules are
defined to identify groups under only IL-13 stimulation and
involved genes GPR44, ZC3H12A, SEMA3A, NFKBIZ, MYOM1,
and MAP3K8. We have already analyzed the specific role of
MAP3K8 in IL-13- or IL-17-stimulated inflammation involving
ASMCs (Hartley, 2020). For other quantitative parameters, we
took GPR44 and MYOM1 as two typical examples. GPR44
encodes a receptor for prostaglandin D2. IL13 participates in
the activation of Th2 cells, on which our target gene GPR44 is
expressed. Therefore, GPR44 can be reasonably predicted to have
a greater expression level in the group under IL-13 stimulation
(Huang et al., 2016) or at least greater expression than that
in the controls and IL-17 stimulation. Another parameter of
MYOM1 is increased expression level in the IL-13 stimulated
group, and we found some evidence confirming that MYOM1
is up-regulated during IL-13-mediated interleukin stimulation
under inflammatory conditions, (Campbell and Hardman, 2020)
although few publications have shown potential correlations
between MYOM1- and IL-13-mediated stimulation.

Similar to the rules identified for IL-13 stimulation group,
the specific gene MAP3K8 remains important for low expression
levels in control group. A unique parameter, LSS, is down-
regulated in controls but up-regulated in all activated ASMCs.
LSS has been widely associated with nonspecific inflammation
in human beings (Vykhovanets et al., 2006; Qin et al., 2013;
Li et al., 2016). Therefore, interleukin-mediated airway smooth
muscle activation can definitely trigger the up-regulation of
LSS, indicating that the down-regulated expression of LSS may
be an effective signature for controls without inflammatory
reactions on any levels. CCL26 in the unique rule identifying
IL-17 stimulation group is the only quantitative parameter for

identifying the IL-17 stimulated group. As analyzed above, on
the transcriptomics level, CCL26 has been already confirmed
to be up-regulated under stimulation by IL-13 (Wolde et al.,
2020). Therefore, the low expression level of CCL26 may
be used to further distinguish samples under only IL-17
stimulation from samples under combined stimulation. Finally,
the remaining samples are reasonably stimulated by IL-13 and IL-
17, thus validating the efficacy and accuracy of our quantitative
predictive rules.

Rules on Epigenetic and Transcriptomics Levels
By combining epigenetic and transcriptomics data, we also
obtained a group of combined signatures with specific
quantitative thresholds that reflect expression or methylation
tendency. In accordance with the combined rules and in
correspondence with our above discussion on the comparison
of the contributions of methylation and transcription
features to cell classification, all the optimal parameters are
simply transcriptomics features. The detailed discussion
is provided below.

The first two rules identify IL-17 stimulation group. Both
rules include the up-regulation of NFKBIZ, a specific regulator
of interleukin-mediated immune responses (Garg et al., 2015).
Previous studies have already connected the up-regulation of
NFKBIZ with the stimulation of IL-17 (Göransson et al., 2009;
Chapman et al., 2010). This connection corresponds with our
prediction. Another effective parameter, CCDC86, is positively
correlated with IFNG and IL-13. Therefore, the low expression
level of CCDC86 may indicate that a group may not be stimulated
by IL-13 and further confirms that a group is stimulated by
only IL-17 but not the combination of interleukins. NFKBIZ
remains one of the most significant parameters for IL-17
stimulation group. The up-regulation of NFKBIZ indicates the
stimulation of IL-17. Therefore, the down-regulation of NFKBIZ
may distinguish this group from the combined stimulation
and IL-17 stimulation groups. In addition, the high expression
of PPFIBP2 is correlated with IL-13-associated inflammatory
immune responses, and samples not fitting all the above rules can
definitely be classified as control group.

Go Enrichment Analyses for Optimal
Signatures for Distinguishing the
Different Statuses of ASMCs
As several GO terms were extracted for different datasets, we
selected some of them for analysis.

GO Enrichment Analyses for Signatures on the
Epigenetics Level
As shown in Supplementary Table 7, we only identified five
enriched GO terms of different clusters. We chose GO:0046872
(metal ion binding) for detailed discussion. For metal ion
binding, correlated with ciliary base, calcium ion binding
has been shown to regulate the ASMCs related inflammatory
reactions via regulating the function of ciliary base (Aisenberg
et al., 2016), validating accuracy of the optimum signatures on
the epigenetics level.
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GO Enrichment Analyses for Signatures on the
Transcriptomics Level
For specific GO enrichment generated from signatures on
transcriptomics level, only 39 enriched GO terms were identified.
The detailed results can be seen in Supplementary Table 7.
Here, we chose two terms as for detailed discussion: (1)
GO:0005925 (focal adhesion) and (2) GO:0001666 (response
to hypoxia). Early in 2014, a systematic network analyses
on the transcriptomics profiling of airway smooth muscle
tissue confirmed that focal adhesion associated pathways play
irreplaceable role for physical or pathological inflammatory
effects like asthma related inflammation (Yick et al., 2014). As
for another enriched GO term named as hypoxia, similar with
focal adhesion, hypoxia has also been shown to be correlated
with the inflammatory activation of ASMCs. Based on related
transcriptomics studies (Ricciardi et al., 2008; Yang et al., 2014),
hypoxia has been confirmed to be directly correlated with
dendritic cell mediated inflammatory responses. Therefore, it
is also reasonable for us to enrich our optimum genes at
transcriptomics level in such GO term.

GO Enrichment Analyses for Signatures on the
Epigenetic and Transcriptomics Levels
As shown in Supplementary Table 7, we identified 68 enriched
GO terms of different clusters. We chose GO:0051301 (cell
division) and GO:0017147 (Wnt-protein binding) for detailed
analyses. For multi-omics data, the GO term seems to be more
general. Cell division has been widely shown to be correlated with
inflammatory responses in the airway related tissues (McWilliam
et al., 1996; Lambrecht et al., 2000; Grausenburger et al., 2010).
Therefore, it is reasonable for potential biomarkers distinguishing
different ASMCs inflammatory status to enrich in such GO
term. As for Wnt-protein binding, WNT and beta-catenin
signaling pathway, which involves multiple WNT proteins, has
been widely reported to be correlated with the inflammatory
responses of ASMC (DiRenzo et al., 2016; Kumawat et al., 2016;
Koopmans, 2017).

All in all, as we have discussed above, for the first
time, we recognized the functional enrichment pattern of
multi-omics biomarkers. Biologically, we identified multi-
omics level regulation associated biological entity (functions,
processes, or cellular components), laying a foundation for fully
demonstration on the inflammatory factor medicated regulations
on ASMCs. Methodologically, we confirmed that the application
of multi-omics biomarkers for GO enrichment analyses may
improve the efficacy and accuracy for disease associated
function exploration, providing an alternative approach for
pathological studies.

CONCLUSION

Via multiple machine learning models, we identified a group
of signatures for the different statuses of ASMCs on the
transcriptomics, epigenetic, or dual-omics level and established
several quantitative rules on the multiomics level for the
classification of cells with different biological/pathological

statuses. All the qualitative signatures and quantitative rules have
been validated by recent publications, confirming the efficacy
and accuracy of our analyses. By summarizing the results, we
conclude that the use of transcriptomics data may be more
appropriate than that of epigenetic data to classify ASMCs under
different activation conditions. Moreover, we conclude that the
combined use of transcriptomics and epigenetic data is highly
effective and accurate for cell classification.
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SARS-CoV-2 has caused a worldwide pandemic. Existing research on coronavirus
mutations is based on small data sets, and multiple sequence alignment using a global-
scale data set has yet to be conducted. Statistical analysis of integral mutations and
global spread are necessary and could help improve primer design for nucleic acid
diagnosis and vaccine development. Here, we optimized multiple sequence alignment
using a conserved sequence search algorithm to align 24,768 sequences from the
GISAID data set. A phylogenetic tree was constructed using the maximum likelihood
(ML) method. Coronavirus subtypes were analyzed via t-SNE clustering. We performed
haplotype network analysis and t-SNE clustering to analyze the coronavirus origin and
spread. Overall, we identified 33 sense, 17 nonsense, 79 amino acid loss, and 4
amino acid insertion mutations in full-length open reading frames. Phylogenetic trees
were successfully constructed and samples clustered into subtypes. The COVID-19
pandemic differed among countries and continents. Samples from the United States and
western Europe were more diverse, and those from China and Asia mainly contained
specific subtypes. Clades G/GH/GR are more likely to be the origin clades of SARS-
CoV-2 compared with clades S/L/V. Conserved sequence searches can be used
to segment long sequences, making large-scale multisequence alignment possible,
facilitating more comprehensive gene mutation analysis. Mutation analysis of the SARS-
CoV-2 can inform primer design for nucleic acid diagnosis to improve virus detection
efficiency. In addition, research into the characteristics of viral spread and relationships
among geographic regions can help formulate health policies and reduce the increase
of imported cases.

Keywords: SARS-CoV-2, multiple sequence alignment, phylogenetic tree, t-SNE, haplotype network analysis
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) is a novel coronavirus, which is the etiologic agent of the
disease, coronavirus disease 2019 (COVID-19) (Li et al., 2020).
SARS-CoV-2 emerged in late 2019 in Hubei Province, China
(Chen et al., 2020; Zhou et al., 2020), and spread worldwide
with incredible rapidity, resulting in a global pandemic. As of
October 13, 2020, more than 38 million people have been infected
worldwide with approximately 1,090,000 deaths. The number
of newly diagnosed cases has increased dramatically with tens
of thousands confirmed daily. In Europe, the case fatality rate
exceeded 7%, and those in France and Belgium have reached
unprecedented levels at 24.5 and 33.4%, respectively (World
Health Organization, 2020; Worldometer, 2020).

Analysis of virus mutation sites is necessary for applications,
including vaccine development (Ma et al., 2020) and primer
design for virus nucleic acid detecting. It is reported that
conserved sequence-based mRNA vaccines (Freyn et al.,
2020) and peptide vaccines (Herrera-Rodriguez et al., 2018)
have successfully made the vaccinated generate immunity to
multistrains of the same virus. The conserved sequences have
great potential in long-acting vaccine design. Multiple sequence
alignment (MSA) methods are invariably used for automated
identification of mutation sites and widely used in SARS-CoV-
2 sequence analysis (Lai et al., 2020; Wu et al., 2020) in the
early stage of the pandemic. With the fast increase of SARS-CoV-
2 sequencing data, it is significant to improve the efficiency of
the current MSA algorithms to fit the large-scale data set. We
developed a new method for conserved sequence searching. Large
data sets containing long sequences, such as the SARS-CoV-
2 data set, can be optimized by pruning conserved sequences
to fit current MSA algorithms. MSA methods invariably detect
conserved sequences, and, using our approach, conserved
sequence identification is independent of MSA.

Using data from the GISAID database (Elbe and Buckland-
Merrett, 2017), we analyzed COVID-19 strains from around
the world on an unprecedented scale. All the mutations in
SARS-CoV-2, including 33 sense, 17 nonsense, and amino acid
loss/insertion mutations, were identified using MSA. Further,
based on the results of MSA, we constructed phylogenetic trees
and used the t-SNE method to cluster SARS-CoV-2 subtypes.
Our findings demonstrate the characteristics of viral spread and
uncover relationships among countries and continents.

MATERIALS AND METHODS

Data Source and Data Selection
The SARS-COV-2 sequences used in this study were all collected
from the GISAID (Elbe and Buckland-Merrett, 2017) database
and were download on May 14, 2020.

To identify mutations in full-length sequences and determine
global spread relationships, the download parameters were set
as, “complete(>29,000 bp)” and a total of 24,768 sequences were
retrieved. According to codon table and DNA translation rules,
sequences were compared with annotations of NC_045512.2

from NCBI (Benson et al., 2018) and high-quality open reading
frame (ORF) regions with no degenerate bases (including N)
translated into amino acid sequences for each record. The
number of sequences for each ORF are shown in Supplementary
Table 1. Further, 9,308 sequences with 12 full-length, high-
quality ORF regions and a clear collection date were available
for use in building phylogenetic trees and t-distributed stochastic
neighbor embedding (t-SNE). The coding language used was
Matlab (R2020a for windows).

Conserved Sequence Searching
A new strategy to evaluate conserved sequences was developed
based on the breadth-first search algorithm. The search queue “q”
was initiated using 20 one-length protein segments (single amino
acid). Considering qi as the ith string in the queue and dj as the
jth sample sequence of the data set, pi, Eq. 1 was used to evaluate
the probability of conservation:

pi =

∑n
j=1 f

(
qi, dj

)
n

, f
(
qi, dj

)
=

{
1 if qi and dj match

0 otherwise
(1)

The conserved sequence search algorithm (pseudo code in
Supplementary Data 1) is shown in Figure 1.

The match function, “strcmp,” was applied in Matlab. In
another coding language, the KMP (Knuth et al., 1977) algorithm
can improve the string matching speed. In this approach, the
conserved sequences in queue q with length >5 can avoid
ectopic repeats.

Multiple Sequence Alignment (MSA) and
Mutant Site Analysis
Multiple sequence alignment was conducted for each ORF data
set. Identification of conserved sequences can efficiently separate
long sequences into short segments, which can greatly reduce the
alignment time cost so that it reaches a tolerable level. The MSA
function used was “multialign” in Matlab. Statistical analysis of
mutant sites was conducted directly using aligned sequences.

Phylogenetic Tree Construction and
Haplotype Network Analysis
We constructed the maximum likelihood (ML) tree using Raxml-
ng (Kozlov et al., 2019) (v.0.8.0 BETA) software.

Sample sequences (n = 9,308) with full-length translated
ORF and clear collection date were selected; however, these
were still too long [length > 7,000 nucleotides (nt)] for use
in MSA; in general, samples with long sequences and large
data sets lead to excessively high time costs for phylogenetic
tree construction. Therefore, sequence pruning was necessary.
According to Shannon’s information theory (Shannon, 1948),
the information entropy of any segment in sequence can be
calculated by Eq. 2:

Hi = pi × log
(
pi
)

(2)

Clearly, if conserved sequence qi with pi → 100% has
information entropy Hi → 0, it can be easily proven that
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FIGURE 1 | Conserved sequence searching algorithm. The queue was initiated by 20 amino acids. qi was considered a conserved sequence when pi ≥ threshold;
in this project, the threshold was set as 100%. Twenty new conserved sequence candidates were built by adding new amino acids to the end of the confirmed
candidate conserved sequences and added to the end of the searching queue q.

deleting qi from all sequences will not substantially influence the
results of phylogenetic analysis.

Considering the limitations of phylogeny performance time
cost and visualization, we pruned sequences by deleting highly
conserved bases with pi > 99.9%. Pruned sequences with exactly
the same sequence were reduced to 1 as a representative, resulting
in a final selected 1,291 samples.

We performed 50 tree searches using 25 random and
25 parsimony-based starting trees on each DNA data
substitution matrix in Raxml-ng, and we got a ML and
lowest AIC/AICs/BIC score with GTR + GA model. One
thousand bootstrap replicates with seed 2020 were conducted
and the transfer bootstrap expectation (tbe) metric was
calculated to map onto the best-scoring ML tree to generate
proportional support values.

Phylogenetic trees were visualized using iTOL (Letunic and
Bork, 2019). Larger clade naming rules refer from GISAID (S:
C8782T, T28144C; L: C241, C3037, A23403, C8782, G11083,
G25563, G26144, T28144, G28882; V: G11083T, G26144T; G:
C241T, C3037T, A23403G; GH: C241T, C3037T, A23403G,
G25563T; GR: C241T, C3037T, A23403G, and G28882A). It
is worth noting that the marker variant C241T for clade
identification is not included in ORF region. We count the
C241T base frequency in each haplotype and give the C241T base
information lost samples an inferred subtype if 100% frequency
base exist; otherwise, the samples will be labeled as “Other.”

The haplotype map with median-joining network (Bandelt
et al., 1999) was created by PopART (version 1.7) (Leigh and
Bryant, 2015), and 9,308 full ORF region sequenced samples are
identified into 300 haplotypes by 77 variant sites (pi < 99.5%).
For better visualization and clearer topology of the haplotype
network, we deleted the haplotypes with a single case, and in total,
153 haplotypes are used in haplotype network construction.

t-Distributed Stochastic Neighbor
Embedding (t-SNE)
Samples with 12 high-quality, full-length ORF regions, and a clear
collection date (n = 9,308) were subjected to t-SNE unsupervised
clustering. The t-SNE function used was “tsne” in Matlab. Results
were visualized using the “gscatter” function in Matlab. The
distance function used was the PAM250 matrix (for amino acid
sequence) and BLOSUM45 matrix (for nucleotide sequence).
For each aligned amino acid sequence, each amino acid was
considered as a dimension of the sample. The distance between
sample Si and Sj was calculated using Eqs 3 and 4:

Distancei,j =
∑length(S)

k=1 PAM250(Si(k), Sj(k)) ∧ 2
length(S)

(3)

Distancei,j =
∑length(S)

k=1 BLOSUM45(Si(k), Sj(k)) ∧ 2
length(S)

(4)
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In Eq. 3, Si(k) is the kth amino acid of the amino acid sequence
Si. In Eq. 4, Si(k) is the kth base of the nucleotide sequence Si. To
reduce overlap, the final coordinate of each sample was adjusted
to a short radius from the origin position, which did not influence
cluster information.

RESULTS

Mutations of SARS-CoV-2 ORF Regions
SARS-CoV-2 full-length nucleotide sequences (n = 24,768) were
collected from GISAID up to May 14, 2020, and translated into
amino acid sequences. Due to the presence of degenerate bases,
the size of the available high-quality amino acid sequence data set
for analysis of mutant sites was <24,768. The final sequence set
size was as follows: ORF1a (n = 16,863), ORF1b (n = 14,252), S
(n = 16,851), ORF3a (n = 23,390), E (n = 24,344), M (n = 23,513),
ORF6 (n = 24,199), ORF7a (n = 21,690), ORF7b (n = 21,953),
ORF8 (n = 24,288), N (n = 23,176), and ORF10 (n = 24,043).

According to the MSA of each ORF region (available in
Supplementary Data 2), 50 mutation sites with frequencies >1%
were detected, including 33 sense and 17 nonsense mutation sites
(Supplementary Tables 2, 3 and Figure 2).

Mutations were present in the ORF1ab, S, ORF3a, M, ORF8,
and N regions with more than half of mutations in the ORF1ab
region. Given the differences in length of ORFs, ORFs with a
higher proportion of mutations (number of mutation sites/ORF
length) were ORF8 (2.48%), ORF3a (1.09%), and N (1.67%).
ORFE, ORF6, ORF7ab, and ORF10 were completely conserved
across the entire length of the ORF region. Notably, the S
region, which is the SARS-CoV-2 antigen recognition protein,
contained only one sense mutation site D614G encoded by
A23403G; hence, current data indicate that the S region is highly
conserved. Although the D614G spike protein variant has proved
it is more infectious than D614 strains (Korber et al., 2020;
Yurkovetskiy et al., 2020), it is equally sensitive to neutralization
by monoclonal antibodies targeting the receptor-binding domain
(Yurkovetskiy et al., 2020).

Amino acid loss and insertion mutations are listed in
Supplementary Tables 4, 5, respectively. The location referred to
in these tables is based on the NC_045512.2 nucleotide sequence
as a prototype. As shown, the majority of amino acid loss and
insertion mutations only occurred in a single sample although
loss mutation No. 7 and insertion mutation No. 1 had higher
frequencies than other mutations of this type.

Phylogenetic Trees and Haplotype
Analysis
The ML phylogenetic tree is shown in Figure 3. The complete
phylogenetic tree in normal format with bootstrap support
value and leaf labels is shown in Supplementary Figure 1. The
large clade branches have high tbe-supported values (>0.75).
Deeper branches’ tbe-supported values are sometimes lower. We
have similar main group results as the neighbor-joining (NJ)
tree in GISAID; what is different from GISAID’s NJ tree is
that our results show clades G/GH/GR are closer to the root
than clades S/L/V.

Figure 4 depicts the median-joining network haplotype result.
Haplotypes L1, S6, V3, G1, GR1, and GH1 are the biggest
haplotypes of their belonging clades. Clade S and clade G play
important roles in coronavirus strain differentiation. Compared
with big haplotypes in clades L/S/V, big haplotypes in clades
G/GH/GR have more connections to other haplotypes, consistent
with the fact that wider spreading will inevitably provide more
mutant opportunities and, thus, lead to more sub-haplotypes and
haplotype connections.

t-SNE Unsupervised Clustering Reveals
International Spread Relationships
The t-SNE method is widely used in single-cell RNA sequencing
investigations to cluster different cell types. In this study, t-SNE
was used to cluster coronavirus gene subtypes according to
amino acid sequence.

Each cluster can be considered as a subtype, and labeling
the samples according to current clade naming rules, t-SNE
clustering does have good performance in sequence subtype
identification, at both the nucleotide (Figure 5B) and amino-
acid levels (Figure 5D). Samples in the same subtype are more
closely related in terms of spread characteristics. Labeling the
samples by geographical information (Figures 5A,C), as the
figures show, cases from China were mainly concentrated in
cluster a, and cases from the United States were present in all
main clusters. Most of the smaller clusters as well as most cases
in cluster b were from the United States. Clustering of western
European cases coincided with those from the United States,
indicating that their spread relationships were closer than those
of others. Compared with other countries/continents, cases in
the United States and western Europe appeared to include more
clusters, indicating more sources of spread or a longer history of
mutation accumulation.

Cluster development and the process of COVID-19 spread in
recent months are shown in Figure 6. Cluster b contained only
cases from the United States in the early stage of the pandemic,
and it also contained other North American and Oceania cases in
subsequent months. Cases in cluster a showed a limited increase,
and those in clusters b, c, d, and e have grown rapidly. Compared
with the early stages of the pandemic, the number of clusters has
not increased substantially with the main mutations in SARS-
CoV-2 occurring before March 18, 2020.

DISCUSSION

Conserved Sequence Searching and
MSA Optimization
Traditional conserved sequence analyses rely on MSA tools,
such as ClustalW (Larkin et al., 2007), MUSCLE (Edgar, 2004),
and T-coffee (Di Tommaso et al., 2011). ClustalW calculates
a distance matrix by pairwise alignment, builds a guide tree,
and makes progressive alignment based on the guide tree.
It is the most widely used tool for MSA, but it is also the
slowest. T-coffee generates more accurate results than other
methods; however, it is more applicable for small data sets
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FIGURE 2 | Mutations of full length on SARS-CoV-2 ORF region. The NC_045512.2 SARS-CoV-2 sequence from NCBI was used as the reference. Adjacent ORF
areas are distinguished by different colors. (A) Sense mutation sites. Mutation sites are marked with a thin black vertical line. Details of sense mutant sites are
presented in Supplementary Table 2. (B) Nonsense mutation sites. Sense mutation sites are indicated by dashed lines for comparison. Nonsense mutation sites
are marked as thin, black vertical lines. Details of nonsense mutant sites are presented in Supplementary Table 3.

FIGURE 3 | ORF region based maximum likelihood (ML) phylogenetic tree. The ML tree is displayed in unrooted mode; the deepest branches are colored to
represent different subtypes. Major lineages are colored and named. Bootstrap support values are indicated by circles on nodes for support of 0.75 and above. The
circles with bootstrap support values over 0.9 are highlighted by a black border. Label information is present in Supplementary Figure 1, and in Newick format in
Supplementary Data 3. Configuration files for iTOL visualization are also in Supplementary Data 3.

(n < 100 advised) and short-length sequence data, and the
alignment speed is inadequate. MUSCLE is faster than the first
two methods; however, it has a high memory requirement and
cannot match long sequences. Compared with these current
methods, our method using conserved sequence searching runs
more rapidly in large data sets under time complexity described
byO(NLsampleLlongest conserved sequence). Taking conserved segments
as anchors to separate a long sequence into several short

sequences can effectively improve the efficiency of traditional
MSA methods, which makes them feasible for long sequences
and large-scale data sets. Our method can only be applied for
conserved sequence searching; however, its implementation can
assist in application of other MSA methods for phylogenetic tree
construction although it cannot perform this function directly.
Further, the optimization approach is best applied to intraspecific
data sets as there may be insufficient conserved sequences for
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FIGURE 4 | ORF region based median-joining haplotype network map. The black circles are the median vectors; circle size is proportional to the numerosity of the
haplotypes. Each haplotype appears as a pie chart and is colored according to the geography distribution of the haplotype. Mutations are shown as hatch markers.
Haplotypes are labeled in the format of “subtype_order,” and Supplementary Table 6 list the prototype sequence of each haplotype.

pruning in other analyses; however, for applications such as
primer design, our method of conserved sequence searching has
unparalleled advantages compared with other MSA approaches.

Necessity of Long-Term Conserved
Regions Analysis
In our results statistics, the sense and nonsense mutations in
SARS-CoV-2 have occurred up to April 5, 2020. Some research
(Zhou et al., 2020; Yu et al., 2020) discusses the relationship
between SARS-CoV-2 and bat SARSr-CoVs although we only
focus on intraspecific subtype differentiation and mutations of
SARS-CoV-2. Compared with other research on SARS-CoV-2
mutations (Kim et al., 2020; Ugurel et al., 2020), we had the
same results in the main mutations, we list more rare mutation
sites in order to have a more comprehensive presentation, but

we did not statistical analyze the mutations on a non-coding
region, such as C241T.

The COVID-19 pandemic is lasting; however, its duration is
relatively short compared with other viral epidemics, and this
epidemic may become a long-term public health event (Kissler
et al., 2020). New mutations occurring in currently conserved
sequences, even conserved ORF regions, remain possible and
will bring new challenges for nucleic acid-based diagnosis and
vaccine development. Nucleotide mutations in the coronavirus
may result in failures of detection. Therefore, it is necessary
to avoid frequently mutated areas when designing primers
for nucleic acid diagnosis, and primers should be updated in
real time, according to mutations in the viral nucleic acid.
Therefore, MSA is important for updating primers used for
nucleic acid-based diagnosis and improving detection rates.
Hence, continuous MSA analyses of new sequencing data are
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FIGURE 5 | ORF region based t-SNE clustering. Each point is a sample, and point colors represent the sample source. A key is provided in the upper right corner of
the figure. The main clusters are marked from a to f with red arrows. (A) A total of 9,308 full length ORF region nucleotide sequences t-SNE results, points are
colored by geography labels. (B) A total of 9,308 full length ORF region nucleotide sequences t-SNE results, points are colored by clade labels. (C) A total of 9,308
full length ORF region amino acid sequences t-SNE results, points are colored by geography labels. (D) A total of 9,308 full length ORF region amino acid sequences
t-SNE results, points are colored by clade labels.

necessary. The influence of rare mutations prune to phylogeny
and haplotype analysis.

To improve the efficiency of phylogenetic tree construction,
bases conserved in more than 99.9% of samples were pruned,
and although rare mutations may possibly be technical artifacts
rather than biological mutations (De Maio et al., 2020), the
resolution of the tree is still influenced. In haplotype analysis, we
pruned more rare mutations (pi < 0.5% ) for better visualization,
which may lose some subtype connections linked by these rare
haplotypes. In addition, ignoring the non-coding region is also
another kind of sequence over pruning. Because we did not
use the non-coding region in phylogenetic tree construction,
we would lose information from some important variants,
such as C241T on 5′-UTR even though we used many more
haplotypes in the phylogenetic tree and haplotype network

construction than other research and provided more details
in SARS-CoV-2 subtype differentiation in the early stage of
the pandemic.

t-SNE Clustering in Sequence Analysis
The t-SNE method provides a new perspective for sequence
data analysis. The comparison (Figures 5B,D) between t-SNE
clustering results and current clade identification results
prove the good performance of t-SNE in sequence-based
subtype identification.

Our t-SNE results clearly demonstrate the relationships
among countries/continents in the pandemic (Figure 6);
however, the cases that occurred in the early period of
the pandemic do not tell the origins of their belonging
subtypes. One subtype strain may have already spread
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FIGURE 6 | Period t-SNE result. t-SNE results according to collection date order. (A) Collection date from December 24, 2019 to February 2, 2020. (B) Collection
date from December 24, 2019 to March 4, 2020. (C) Collection date from December 24, 2019 to October 3, 2020. (D) Collection date from December 24, 2019 to
March 16, 2020. (E) Collection date from December 24, 2019 to March 25, 2020. (F) Collection date from December 24, 2019 to April 5, 2020.
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widely in another region but not be detected due to limited
testing ability. From this perspective, providing universal viral
nucleic acid detection capability remains highly desirable for
analysis of SARS-CoV-2 and requires international cooperation
and information sharing.

CONCLUSION

In this research, we developed a breadth-first search-based
conserved sequence searching method for MSA optimizing and
applied it on GISAID’s SARS-CoV-2 data set for sequence
analyzing. Our phylogenetic tree and haplotype network results
show that clade S and clade G play important roles in SARS-
CoV-2 subtype differentiation history. In addition, we show the
feasibility of t-SNE clustering in sequence data-based subtype
classification. Overall, our research provides new ideas for
sequence analysis, which can provide benefits for SARS-CoV-2
sequence-based researches.
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Hotspot Mutations in SARS-CoV-2
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Since its emergence in Wuhan, China, severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2) has spread very rapidly around the world, resulting in a global pandemic.
Though the vaccination process has started, the number of COVID-affected patients is still
quite large. Hence, an analysis of hotspot mutations of the different evolving virus strains
needs to be carried out. In this regard, multiple sequence alignment of 71,038 SARS-CoV-
2 genomes of 98 countries over the period from January 2020 to June 2021 is performed
using MAFFT followed by phylogenetic analysis in order to visualize the virus evolution.
These steps resulted in the identification of hotspot mutations as deletions and
substitutions in the coding regions based on entropy greater than or equal to 0.3,
leading to a total of 45 unique hotspot mutations. Moreover, 10,286 Indian sequences
are considered from 71,038 global SARS-CoV-2 sequences as a demonstrative example
that gives 52 unique hotspot mutations. Furthermore, the evolution of the hotspot
mutations along with the mutations in variants of concern is visualized, and their
characteristics are discussed as well. Also, for all the non-synonymous substitutions
(missense mutations), the functional consequences of amino acid changes in the
respective protein structures are calculated using PolyPhen-2 and I-Mutant 2.0. In
addition to this, SSIPe is used to report the binding affinity between the receptor-
binding domain of Spike protein and human ACE2 protein by considering L452R,
T478K, E484Q, and N501Y hotspot mutations in that region.

Keywords: COVID-19, deletions, entropy, hotspot mutations, SARS-CoV-2 genomes, substitution

1 INTRODUCTION

COVID-19 caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was first
identified in late December 2019 and has a high transmission rate (Zhu et al., 2020). The WHO
declared this outbreak as a pandemic on March 11, 2020 (Cucinotta and Vanelli, 2020). Like other
coronaviruses, SARS-CoV-2 is also an enveloped single-stranded RNA virus containing nearly 30 K
nucleotide sequences (Alexandersen et al., 2020). SARS-CoV-2 encompasses 11 codding regions,
which include ORF1ab, Spike (S), ORF3a, Envelope (E), Membrane (M), ORF6, ORF7a, ORF7b,
ORF8, Nucleocapsid (N), and ORF10.

Though the vaccination process has started, the virus is evolving and spreading all across the
world, causing fresh waves every few months. Since the virus is mutating frequently, it creates new
variant of the original virus. Among several variants, B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma),
and B.1.617.2 (Delta) are declared as variants of concern (Singh et al., 2021). In this regard, the
variant B.1.1.7 was first identified in the United Kingdom, which contains E484K, N501Y, D614G,
and P681H mutations in Spike glycoprotein (Tang et al., 2020). In December 2020, the variant
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B.1.351 was first detected in South Africa, with mutations such as
K417N, E484K, N501Y, D614G, and A701V (Tang et al., 2021).
The Brazilian variant P.1 also has almost the same mutations as
the B.1.351 variant, but instead of A701V, the P.1 variant has
H555Y mutation (Faria et al., 2021). On the other hand, the
variant B.1.617.2 was first identified in India with L452R, T478K,
D614G, and P681Rmutations in Spike glycoprotein (Bernal et al.,
2021).

To understand the new variants of SARS-CoV-2, Tiwari and
Mishra (2021) have performed phylogenetic analysis of 591
SARS-CoV-2 genomes where they have found 43 synonymous
and 57 non-synonymous mutations in 12 protein regions. They
found the most prevalent mutations in the Spike protein,
followed by NSP2, NSP3, and ORF9. They have also
highlighted several distinct SARS-CoV-2 features as
compared with other human-infecting viruses. Yuan et al.
(2020) have analyzed 11,183 global sequences where they
have identified 119 single-nucleotide polymorphisms (SNPs)
with 74 non-synonymous and 43 synonymous mutations. The
mutational profiling shows that the highest mutation has
occurred in Nucleocapsid, followed by NSP2, NSP3, and
Spike. From China, India, the United States, and Europe, 570
SARS-CoV-2 genomes are analyzed by Weber et al. (2020),
where they have identified 10 individual mutations where most
of the mutations altered the amino acids in the replication-
relevant proteins. Sarkar et al. (2021) have performed a genome-
wide analysis of 837 Indian SARS-CoV-2 genomes, where 33
unique mutations were observed, among which 18 mutations
were identified in India in five protein regions (six in Spike, five
in NSP3, four in RdRp, two in NSP2, and one in Nucleocapsid).
The isolated Indian sequences were classified into 22 groups
based on their coexisting mutations. This study highlights
several mutations identified in various protein regions, which
also help to identify the evolution of virus genome across
various geographic locations of India. Saha et al. (2020) have
performed phylogenetic analysis of 566 Indian SARS-CoV-2
genomes to identify several mutations. As a result, 933
substitutions, 2,449 deletions, and two insertions have been
identified from the aligned sequences. In another study, Saha
et al. (2021) have performed genomic analysis of 10,664 SARS-
CoV-2 genomes, resulting in 7,209 substitutions, 11,700
deletions, 119 insertions, and 53 SNPs.

Motivated by the aforementioned analysis, in this work, we
have performed multiple sequence alignment (MSA) of 71,038
SARS-CoV-2 genomes using MAFFT (Katoh et al., 2002)
followed by their phylogenetic analysis using Nextstrain
(Hadfield et al., 2018) to visualize the virus evolution. This led
to the identification of hotspot mutations as deletions and
substitutions in the coding regions based on entropy greater
than or equal to 0.3. Furthermore, as a demonstrative example,
10,286 Indian sequences are considered from 71,038 global
SARS-CoV-2 sequences. For all the non-synonymous
substitutions (missense mutations), the functional
consequences of amino acid changes in the respective protein
structures are calculated using PolyPhen-2 and I-Mutant 2.0.
Finally, SSIPe is used to report the binding affinity between the
receptor-binding domain (RBD) of Spike protein and human

ACE2 protein by considering the hotspot mutations in that
region.

2 METHODS

In this section, the dataset collection for the SARS-CoV-2
genomes is discussed along with the proposed pipeline.

2.1 Data Preparation
For MSA and phylogenetic analysis, 71,038 global SARS-CoV-2
genomes are collected from Global Initiative on Sharing All
Influenza Data (GISAID)1, and the Reference Genome (NC
045512.2)2 is collected from the National Center for
Biotechnology Information (NCBI). The SARS-CoV-2
sequences are mostly distributed from January 2020 to June
2021 globally. Moreover, to map the protein sequences and
changes in the amino acid, Protein Data Bank (PDB) is
collected from Zhang Lab3 (Zhang et al., 2020; Wu et al.,
2021), and it is then used to show the structural changes. All
these analyses are performed on the High Performance
Computing facility of NITTTR, Kolkata; and for checking the
amino acid changes, MATLAB R2019b is used.

2.2 Pipeline of the Work
The pipeline of this work is provided in Figure 1A. Initially, MSA
of 71,038 global SARS-CoV-2 genomes is performed using
MAFFT, which is followed by their phylogenetic analysis using
Nextstrain. The corresponding phylogenetic tree is shown in
Figure 1B. MAFFT merges local and global algorithms for
MSA, and it uses two different heuristic methods such as
progressive (FFT-NS-2) and iterative refinement (FFT-NS-i).
To create a provisional MSA, FFT-NS-2 calculates all-pairwise
distances from which refined distances are calculated. Thereafter,
FFT-NS-i is performed to get the final MSA. As MAFFT uses fast
Fourier transform, it scores over other alignment techniques. On
the other hand, Nextstrain is a collection of open-source tools,
which is useful for understanding the evolution and spread of
pathogen, particularly during an outbreak. By taking advantage of
this tool, in this work, the evolution and geographic distribution
of SARS-CoV-2 genomes are visualized by creating the metadata
in our High Performance Computing environment.

Once the alignment and the phylogenetic analysis are
completed, hotspot mutations as deletions and substitutions
are identified in the coding regions based on entropy greater
than or equal to 0.3. Furthermore, 10,286 Indian sequences are
considered as an example to identify such mutations as well. The
corresponding phylogenetic tree for Indian sequences is shown in
Figure 1C. Moreover, using the codon table, amino acid changes
in the SARS-CoV-2 proteins for the corresponding mutations are
highlighted as well. The hotspot mutations are identified
considering their entropy values, which are calculated as:

1https://www.gisaid.org/
2https://www.ncbi.nlm.nih.gov/nuccore/1798174254
3https://zhanglab.ccmb.med.umich.edu/COVID-19/
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E � ln 5 +∑ λδc [ ln (λδc) ] (1)

where λδc represents the frequency of each residue c occurring at
position δ and 5 represents the four possible residues as
nucleotides plus gap. Thereafter, the amino acid changes in
the SARS-CoV-2 proteins for the non-synonymous deletions
and substitutions for both global and Indian sequences are
graphically visualized as shown in Figure 1D. Finally, these
changes are also used for the evaluation of their functional
characteristics and are visualized in the respective protein
structure as well.

3 RESULTS

The experiments in this work are carried out according to the
pipeline as given in Figure 1A. Initially, MSA of 71,038 global SARS-
CoV-2 genomes across 98 countries is carried out using MAFFT
followed by their phylogenetic analysis using Nextstrain, which
revealed five clades: 19A, 19B, 20A, 20B, and 20C. The number of
sequences for each country is reported in Supplementary Table S1.
This resulted in the identification of hotspot mutation points as
deletions and substitutions in the coding regions based on entropy. In
this regard, only those hotspot mutations are considered whose
entropy values are greater than or equal to 0.3. The entropy
values for each of the genomic coordinates for both global and
Indian sequences are provided in Supplementary Table S2. The
mutation statistics by considering different threshold values of
entropy for each category are reported in Table 1. Based on the
results in this table, the entropy value of 0.3 is considered as the
threshold for choosing the hotspot mutations. It is to be noted that
choosing a threshold value as either 0.2 or 0.1 will lead to a huge
amount of hotspotmutations, which is not desired. As a consequence

of choosing entropy threshold of 0.3, 45 unique hotspotmutations are
identified, which resulted in 39 non-synonymous deletions and
substitutions with nine unique deletions and 22 unique amino
acid changes. Also, out of the 98 countries that are considered for
global analysis, India with 10,286 sequences is taken as an example to
demonstrate the mutations for a particular country as well. In this
regard, 52 unique hotspot mutations provide 45 non-synonymous
deletions and substitutions with five unique amino acid changes for
deletions and 36 unique amino acid changes for substitutions. The
analysis on other countries with the most number of sequences is
provided in the Supplementary Material. The phylogenetic trees in
radial and rectangular views considering global analysis are shown in
Figures 2A,B, respectively, while for Indian sequences, such views are
provided in Figures 2D,E, respectively. These phylogenetic trees
respectively show the evolution of the global and Indian SARS-CoV-2
genomes over the months. For the benefit of the readers, it is
important to mention that the number of sequences does not
have any direct relationship with the number of hotspot
mutations. The number of hotspots is based on the entropy value,
which in turn depends on the frequency of mutations at a given
genomic coordinate. So evenwith smaller number of sequences, if the
frequency of mutations is higher than that with larger number of
sequences, it will producemore hotspotmutations. Thus, with 71,038
global sequences, 45 unique hotspot mutations are identified, while
for 10,286 Indian sequences, 52 such mutations are identified.

The list of hotspot mutations for the global and Indian SARS-
CoV-2 genomes along with their associated details is respectively
provided in Tables 2 and 3. For example, in Table 2, genomic
coordinate 28,881 in Nucleocapsid with nucleotide changes G >A
and G > T has the highest entropy value of 0.773655. India also
shows the same mutation but with an entropy value of 1.14807 as
shown in Table 3. Please note that mutations like G28881A and
G28883C may have an impact on antigenicity of Nucleocapsid

FIGURE 1 | Pipeline of the workflow.
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protein (Yuan et al., 2020). The entropy values for the
corresponding nucleotide changes for global analysis are
shown in Figure 2C, while for India, the same is shown in
Figure 2F. It is to be noted that the total number of unique

amino acid changes for deletions and substitutions is less than the
number of non-synonymous deletions and substitutions. One of
the reasons for this can be that if there are deletions at consecutive
genomic coordinates, the corresponding amino acid changes are

FIGURE 2 | Phylogenetic analysis of (A, B, C) global and (D, E, F) Indian SARS-CoV-2 genomes.
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the same. For example, as can be seen from Table 2, at the three
consecutive genomic coordinates 11,288, 11,289, and 11,290,
deletion has occurred with the amino acid change as S106-.
Thus, though the number of non-synonymous deletions is 3,
the number of unique amino acid change is 1. This is true for
other such changes as well.

The amino acid changes in protein for the non-synonymous
deletions and substitutions as reported in Tables 2 and 3 are
visualized in Figure 1D; Supplementary Figure S1. All the amino
acid changes in the protein for the non-synonymous substitutions
or missense mutations for the global sequences are shown in
Figure 3, while the same for the Indian sequences are depicted in
Figure 4. The month-wise virus evolution in terms of entropy for

both global and Indian genomic sequences is visualized
respectively in Figures 5 and 6, while the corresponding
entropy values are reported in Supplementary Tables S3 and
S4. For example, it can be seen from both the figures that both
P681H and P681R, which are part of the variant of concerns
Alpha or B.1.1.7 and Delta or B.1.617.2, have evolved over time
globally and for India as well. It is to be noted that due to the lack
of appropriate number of sequences, the data of January and
February 2020 have been merged for the global analysis, while for
India, such merging is for the months January toMarch 2020. Also,
please note that since the calculation of entropy is performed on
aligned sequences, only coding regions are considered for the
identification of hotspot mutations, as the non-coding regions

TABLE 2 | List of hotspot mutations for 71,038 global SARS-CoV-2 genomes along with the protein change.

Genomic coordinate Overall entropy Nucleotide change Amino acid
change

Protein coordinate Gene

28,881 0.773655 G > A, G > T R > K, R > M 203 Nucleocapsid
28,883 0.663399 G > C G > R 204 Nucleocapsid
28,882 0.663308 G > A R > R 203 Nucleocapsid
23,604 0.642160 C > A, C > G P > H, P > R 681 Spike
11,296 0.502171 T > - F > - 108 NSP6
21,993 0.500865 A > - Y > - 144 Spike
11,291 0.499603 G > - G > - 107 NSP6
28,280 0.491543 G > C D > H 3 Nucleocapsid
23,063 0.484066 A > T N > Y 501 Spike
21,770 0.476393 G > - V > - 70 Spike
3,267 0.475810 C > T T > I 183 NSP3
11,288 0.474924 T > - S > - 106 NSP6
11,289 0.472836 C > - S > - 106 NSP6
21,765 0.471435 T > - I > - 68 Spike
21,767 0.469881 C > - H > - 69 Spike
11,290 0.467890 T > - S > - 106 NSP6
21,766 0.467479 A > - I > - 68 Spike
21,768 0.467116 A > - H > - 69 Spike
21,769 0.466151 T > - H > - 69 Spike
11,293 0.465319 T > - G > - 107 NSP6
11,292 0.464056 G > - G > - 107 NSP6
11,294 0.463926 T > - F > - 108 NSP6
24,914 0.461770 G > C D > H 1118 Spike
6,954 0.461746 T > C I > T 1412 NSP3
28,977 0.460661 C > T S > F 235 Nucleocapsid
21,992 0.460243 T > - Y > - 144 Spike
913 0.460233 C > T S > S 36 NSP2
11,295 0.459624 T > - F > - 108 NSP6
5,986 0.459543 C > T F > F 1089 NSP3
28,282 0.459253 T > A D > E 3 Nucleocapsid
28,048 0.458864 G > T R > I 52 ORF8
14,676 0.458373 C > T P > P 412 RdRp
23,271 0.458086 C > A A > D 570 Spike
28,281 0.458038 A > T D > V 3 Nucleocapsid
27,972 0.457841 C > T Q > * 27 ORF8
5,388 0.457761 C > A A > D 890 NSP3
28,111 0.457624 A > G Y > C 73 ORF8
23,709 0.456643 C > T T > I 716 Spike
24,506 0.455921 T > G S > A 982 Spike
15,279 0.455884 C > T H > H 613 RdRp
16,176 0.455573 T > C T > T 912 RdRp
21,991 0.455314 T > - V > - 143 Spike
25,563 0.442049 G > T Q > H 57 ORF3a
22,227 0.310063 C > T A > V 222 Spike
28,253 0.300528 C > T, C > - F > F, F > - 120 ORF8
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exhibit high entropy values and can be misleading while selecting
such mutation points as hotspot mutations. Furthermore, the
evolution of the mutation points for global SARS-CoV-2
genomes pertaining to the different variants of concern like
Alpha, Beta, Gamma, and Delta as declared by the WHO is also
reported respectively in Figures 7A,B,C,D. It can be observed from
the figures that the popular mutation D614G, which is common in
all the variants though predominant in the earlier months of the

pandemic, has waned over time. Also, the mutation T478K, which is
unique to the Delta variant, is known to facilitate antibody escape
(Planas et al., 2021). Some important hotspot mutations like H69-,
V70-, Y144-, A222V, N501Y, A570D, P681H, and P681R identified
in this study are associated with the different SARS-CoV-2 variants
of concern like Alpha, Beta, Gamma, and Delta.

The unique and common hotspot mutations between global
and Indian sequences are represented in the form of Venn diagram

TABLE 3 | List of hotspot mutations for 10,286 Indian SARS-CoV-2 genomes along with the protein change.

Genomic coordinate Overall entropy Nucleotide change Amino acid
change

Protein coordinate Gene

28,881 1.14807 G > A, G > T R > K, R > M 203 Nucleocapsid
23,604 0.8631 C > A, C > G P > H, P > R 681 Spike
28,882 0.69019 G > A R > R 203 Nucleocapsid
28,883 0.68846 G > C G > R 204 Nucleocapsid
26,767 0.68419 T > C, T > G I > T, I > S 82 Membrane
28,253 0.65534 C > T, C > - F > F, F > - 120 ORF8
25,469 0.6227 C > T S > L 26 ORF3a
29,402 0.61955 G > T D > Y 377 Nucleocapsid
22,917 0.61006 T > G L > R 452 Spike
27,638 0.60866 T > C V > A 82 ORF7a
25,563 0.55354 G > T Q > H 57 ORF3a
22,444 0.53665 C > T D > D 249 Spike
18,877 0.52834 C > T L > L 280 Exon
26,735 0.52715 C > T Y > Y 71 Membrane
28,854 0.51198 C > T S > L 194 Nucleocapsid
24,410 0.49845 G > A D > N 950 Spike
21,987 0.49717 G > A G > D 142 Spike
21,618 0.48836 C > G T > R 19 Spike
27,752 0.48264 C > T T > I 120 ORF7a
22,034 0.47915 A > - R > - 158 Spike
22,995 0.47879 C > A T > K 478 Spike
28,461 0.46436 A > G D > G 63 Nucleocapsid
15,451 0.44421 G > A G > S 671 RdRp
23,012 0.44086 G > C E > Q 484 Spike
22,033 0.4385 C > - F > - 157 Spike
16,466 0.43082 C > T P > L 77 Helicase
22,032 0.42673 T > - F > - 157 Spike
11,201 0.42554 A > G T > A 77 NSP6
28,249 0.41704 A > - D > - 119 ORF8
5,184 0.40139 C > T P > L 822 NSP3
22,031 0.40074 T > - F > - 157 Spike
313 0.39475 C > T L > L 16 NSP1
22,029 0.38676 A > - E > - 156 Spike
5,700 0.38604 C > A A > D 994 NSP3
20,396 0.38407 A > G K > R 259 endoRNAse
3,267 0.37579 C > T T > I 183 NSP3
22,030 0.3738 G > - E > - 156 Spike
28,251 0.36694 T > - F > - 120 ORF8
28,248 0.36497 G > - D > - 119 ORF8
24,775 0.36197 A > T Q > H 1071 Spike
21,895 0.35931 T > C D > D 111 Spike
28,280 0.35905 G > C D > H 3 Nucleocapsid
28,250 0.35546 T > - D > - 119 ORF8
28,252 0.351 T > - F > - 120 ORF8
11,418 0.34861 T > C V > A 149 NSP6
9,891 0.34766 C > T A > V 446 NSP4
17,523 0.33196 G > T M > I 429 Helicase
3,457 0.3314 C > T Y > Y 246 NSP3
4,965 0.32981 C > T T > I 749 NSP3
22,022 0.31618 G > A E > K 154 Spike
1191 0.30404 C > T P > L 129 NSP2
21,846 0.30253 C > T T > I 95 Spike
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in Figures 8A,B, which shows the unique and common non-
synonymous hotspot mutations, while the unique and common
amino acid changes are shown in Figure 8C. As shown in
Figure 8A, there are 37 and 44 unique mutations in global and
Indian sequences, while eight are common in both. For non-
synonymous hotspot deletions and substitutions, there are 32
and 38 unique mutations in each category, while the common
number of such mutations is seven as reported in Figure 8B. For
amino acid changes, as shown in Figure 8C, these statistics are
22, 32, and nine. The Venn diagram showing the common and
unique hotspot mutations for global and Indian sequences with
Alpha, Beta, Gamma, and Delta variants of SARS-CoV-2 is
reported in Supplementary Figure S2. For example, in
Supplementary Figure S2A, there are four unique mutations
in both global sequences and Alpha variant, while there are nine
mutations that are common to both.

4 DISCUSSION

There are spurts of new waves in almost every country around the
globe. India has already gone through the massively catastrophic
second wave, and according to the experts, a third wave is imminent.
This can be attributed to the fact that the virus is evolving and new
strains are getting identified, thereby making the study of this ever-
evolving virus all the more important. The functional characteristics

of some important mutations in the global and Indian SARS-CoV-2
genomic sequences are reported in Table 4.

Structural changes in amino acid residues may sometimes lead to
functional instability in proteins due to change in protein translations.
To judge their characteristics, these changes are demonstrated through
sequence and structural homology-based prediction for the hotspot
deletions and missense mutations for global and Indian sequences in
Table 5. The tools used for these predictions are PolyPhen-2
(Polymorphism Phenotyping) (Adzhubei et al., 2010) and I-Mutant
2.0 (Capriotti et al., 2005). PolyPhen-24 works with sequence,
structural, and phylogenetic information of missense mutations,
while I-Mutant 2.05 uses support vector machine (SVM) for the
automatic prediction of protein stability changes upon missense
mutations. PolyPhen-2 is used to find the damaging hotspot
mutations, and I-Mutant 2.0 determines protein stability. To
determine if a mutation is damaging using PolyPhen-2, its score is
considered, which lies between 0 and 1. If the score is close to 1, then a
mutation is considered to be damaging. It can be concluded from
Table 5 that out of the 22 unique amino acid changes for substitutions
in global sequences, 14 are damaging, while for Indian sequences, 24
are damaging out of 36 changes. It is important to note that in case of
protein, damaging mostly defines instability. Generally, this is used for

FIGURE 3 |Highlighted amino acid changes in the protein structures for the non-synonymous substitutions or missense hotspot mutations for global SARS-CoV-2
genomes in (A) NSP3, (B) ORF3a, (C) Spike, (D) ORF8, and (E) Nucleocapsid.

4http://genetics.bwh.harvard.edu/pph2/
5https://folding.biofold.org/i-mutant/i-mutant2.0.html
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FIGURE 4 |Highlighted amino acid changes in the protein structures for the non-synonymous substitutions or missense hotspot mutations for Indian SARS-CoV-2
genomes in (A) NSP2, (B) NSP3, (C) NSP4, (D) NSP6, (E) RdRp, (F) helicase, (G) endoRNAse, (H)ORF3a, (I)Membrane, (J) Spike, (K)ORF7a, and (L) Nucleocapsid.
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human proteins. As a consequence, if the human protein is damaging
in nature because of mutations, then the human protein–protein
interactions may occur with high or low binding affinity. Now in
case of virus, similar consequences may happen, which means that if
the virus protein is damaged because of mutations, it may interact with

human proteins with similar binding affinity. As a result, the virusmay
acquire characteristics like transmissibility and escaping antibodies
(Alenquer et al., 2021; Harvey et al., 2021).

Another important parameter to judge the functional and
structural activities of a protein is protein stability, which dictates

FIGURE 5 | Month-wise evolution of global SARS-CoV-2 genomes based on entropy.
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the conformational structure of a protein. Any change in protein
stability may cause misfolding, degradation, or aberrant
conglomeration of proteins. I-Mutant 2.0 uses free energy change
values (DDG (kcal/mol)) to predict the changes in the protein stability
wherein a negative value of DDG indicates that the protein has a

decreasing stability, while a positive value indicates an increase in
stability. For example, the very lowDDG value of G25563T shows that
there is a decreased protein stability, thereby resulting in a reduction of
virus virulence (Cheng et al., 2021). The results from I-mutant 2.0 show
that out of the 14 and 24 unique damaging changes for global and

FIGURE 6 | Month-wise evolution of Indian SARS-CoV-2 genomes based on entropy.
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Indian sequences, 10 and 18 changes respectively decrease the stability
of the protein structures. Figure 9 shows the binding affinity between
the RBD of Spike protein and human ACE2 protein performed using
SSIPe6 (Huang et al., 2019) for the fourmutations of SARS-CoV-2, viz.,
L452R, T478K, E484Q, and N501Y, taking place in such domain. The

region marked in red shows the exact positions (471–492) where the
binding takes place. To report the binding affinity using SSIPe, initially
the RBD region of Spike protein (Woo et al., 2020) is docked with
humanACE2 protein7 using PatchDock8. The best docked structure is

FIGURE 7 | Month-wise evolution of (A) Alpha (B.1.1.7), (B) Beta (B.1.351), (C) Gamma (501.V3), and (D) Delta (B.1.617.2) variants in global SARS-CoV-2
genomes.

FIGURE 8 | Venn diagrams of global and Indian SARS-CoV-2 genomes to represent common hotspot mutations.

6https://zhanggroup.org/SSIPe/

7https://www.rcsb.org/structure/1R42
8http://bioinfo3d.cs.tau.ac.il/PatchDock/patchdock.html
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TABLE 4 | Functional characteristics of some important mutations.

Mutations Functional characteristics

H69- Leads to conformational changes in Spike protein (Meng et al., 2021; McCarthy et al., 2021)
V70- Leads to conformational changes in Spike protein (Meng et al., 2021; McCarthy et al., 2021)
Y144- Reduces affinity of antibody binding (McCarthy et al., 2021)
L452R Increases the binding ability of the ACE2 receptor and can also reduce the attaching capability of vaccine-simulated

antibodies with Spike protein (Garcia-Beltran et al., 2021)
T478K Facilitates antibody escape (Planas et al., 2021)
E484Q Associated with reduced sera neutralization (Greaney et al., 2021)
N501Y Highest binding affinity with human receptor cell hACE2 and resistant to neutralization (Luan et al., 2021)
P681H Near furin cleavage site, may affect transmissibility of the virus (Boehm et al., 2021)
P681R Near furin cleavage site, may affect transmissibility of the virus (Boehm et al., 2021)

TABLE 5 | Sequence and structural homology-based prediction of non-synonymous substitution as hotspot mutations along with their protein structural stability for 71,038
global SARS-CoV-2 genomes.

Change in Change in Mapped with PolyPhen-2 I-mutant 2.0

Nucleotide Amino acid Coding regions Prediction Score Stability DDG (kcal/mol)
G28881A R203 K Nucleocapsid Probably damaging 0.969 Decrease −2.26
G28881T R203M Nucleocapsid Probably damaging 0.998 Decrease −1.52
G28883C G204R Nucleocapsid Probably damaging 1 No change 0
C23604A P681H Spike Not generated Not generated Decrease −0.92
C23604G P681R Spike Not generated Not generated Decrease −0.79
G28280C D3H Nucleocapsid Probably damaging 1 Increase 0.34
A23063T N501Y Spike Benign 0.145 Decrease −0.34
C3267T T183I NSP3 Not generated Not generated Decrease -0.1
G24914C D1118H Spike Probably damaging 0.998 Decrease −0.1
T6954C I1412T NSP3 Benign 0.026 Decrease −2.78
C28977T S235F Nucleocapsid Probably damaging 0.998 Increase 2.43
T28282A D3E Nucleocapsid Probably damaging 0.997 Decrease −0.02
G28048T R52I ORF8 Probably damaging 1 Decrease −0.09
C23271A A570D Spike Benign 0.031 Decrease −1.32
A28281T D3V Nucleocapsid Probably damaging 1 Decrease −0.22
C5388A A890D NSP3 Probably damaging 1 Decrease −1.09
A28111G Y73C ORF8 Probably damaging 0.994 Increase 1.04
C23709T T716I Spike Possibly damaging 0.696 Decrease −0.95
T24506G S982A Spike Probably damaging 0.996 Decrease −1.36
C22227T A222V Spike Benign 0.001 Increase 0.48
T26767G I82S Membrane Possibly damaging 0.951 Decrease −2
C25469T S26L ORF3a Benign 0.017 Increase 0.92
G29402T D377Y Nucleocapsid Probably damaging 1 Increase 0.51
T22917G L452R Spike Benign 0.04 Decrease −1.4
T27638C V82A ORF7a Possibly damaging 0.732 Decrease -2.18
G25563T Q57H ORF3a Probably damaging 0.983 Decrease −1.12
C28854T S194L Nucleocapsid Probably damaging 0.994 Increase 0.45
G24410A D950N Spike Possibly damaging 0.731 Increase 0.15
G21987A G142D Spike Benign 0.051 Decrease −1.17
C21618G T19R Spike Benign 0.004 Decrease −0.12
C27752T T120I ORF7a Possibly damaging 0.915 Decrease −0.26
C22995A T478K Spike Benign 0 Decrease −0.09
A28461G D63G Nucleocapsid Benign 0 Decrease −0.57
G15451A G671S RdRp Probably damaging 1 Decrease −0.29
G23012C E484Q Spike Possibly damaging 0.786 Decrease −0.48
C16466T P77L Helicase Probably damaging 1 Decrease −1.03
A11201G T77A NSP6 Possibly damaging 0.577 Decrease −0.7
C5184T P822L NSP3 Benign 0.007 Decrease −0.54
C5700A A994D NSP3 Probably damaging 0.972 Decrease −0.78
A20396G K259R endoRNAse Benign 0 Decrease −0.49
A24775T Q1071H Spike Possibly damaging 0.998 Decrease −1.19
T11418C V149A NSP6 Possibly damaging 0.865 Decrease −3.43
C9891T A446V NSP4 Probably damaging 0.999 Increase 0.64
G17523T M429I Helicase Possibly damaging 0.649 Decrease −1.26
C4965T T749I NSP3 Probably damaging 0.996 Decrease −0.92
G22022A E154 K Spike Not generated Not Generated Decrease −1.4
C1191T P129L NSP2 Possibly damaging 0.888 Decrease −0.53
C21846T T95I Spike Probably damaging 0.999 Decrease −1.8
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then provided as an input to SSIPe. Table 6 further reports the
binding affinity values for the four mutations. A strongly favorable
mutation is usually defined as the one that has DDG value ≤
−1.5 kcal/mol, while a strongly unfavorable mutation is the one
that has DDG value ≥1.5 kcal/mol. The DDG value of −0.769 kcal/
mol for E484Q indicates that this is a favorablemutation, while DDG
values of 1.083, 1.248, and 0.236 kcal/mol for L452R, T478K, and
N501Y indicate that these mutations are somewhat unfavorable.
These results corroborate our earlier explanation that because of
mutation, virus–human protein–protein interactions may occur
with high or low binding affinity.

Supplementary Figure S3 shows the percentage of nucleotide
change and frequency of nucleotide change for hotspot mutations
for global and Indian sequences. For example, in Supplementary
Figure S3A, the occurrence of nucleotide change G > A in 71,038
global sequences is almost 45%, while the number of times it occurs
in 45 hotspot mutations is two, as is also evident fromTable 2. It can
also be seen from Supplementary Figures S3B, S3D that 10 and 16
out of 39 and 45 non-synonymous mutations are from C to T,
thereby representing abundant transition. This transition increases
the frequency of codons for hydrophobic amino acids and provides
evidence of potential antiviral editing mechanisms driven by host
(Yuan et al., 2020). Also, more C-to-T transition means less CpG
abundance, indicating rapid adaptation of virus in host. This CpG
deficiency, which leads to evasion of host antiviral defense
mechanisms, is exhibited themost in SARS-CoV-2 virus (Xia, 2020).

5 CONCLUSION

With the imminent third wave, it is very crucial to understand the
evolution of SARS-CoV-2. In this regard, MSA of 71,038 SARS-
CoV-2 genomes of 98 countries over the period from January 2020
to June 2021 is performed using MAFFT followed by phylogenetic
analysis to visualize the evolution of SARS-CoV-2. This resulted in
the identification of hotspot mutations as deletions and
substitutions in the coding regions based on entropy, which
should be greater than or equal to 0.3. Consequently, a total of
45 unique hotspot mutations out of which 39 non-synonymous
deletions and substitutions are identified with nine unique amino
acid changes for deletions and 22 unique amino acid changes for
substitutions. Moreover, 10,286 Indian sequences are considered
from 71,038 global SARS-CoV-2 sequences as a demonstrative
example, which gives 52 unique hotspot mutations, resulting in
45 non-synonymous deletions and substitutions with five unique
amino acid changes for deletions and 36 unique amino acid
changes for substitutions. Some important mutations in such
sequences pertaining to the Delta variant of SARS-CoV-2 are
T19R, G142D, E156-, F157-, L452R, T478K, and P681R.
Furthermore, the evolution of the hotspot mutations along with
the mutations in variants of concern is visualized, and their
characteristics are also discussed. Moreover, for all the missense
mutations, the functional consequences of amino acid changes in
the respective protein structures are calculated using PolyPhen-2

FIGURE 9 | Binding between RBD region of Spike protein (specifically 471–492 the region marked in red)) and human ACE2 protein. RBD, receptor-binding
domain.

TABLE 6 | Binding affinity of the mutations in RBD region of Spike protein and human ACE2 protein.

Genomic coordinate Nucleotide change Amino acid
change

Protein coordinate DDG (kcal/mol) SSIPscore EvoEFscore

22,917 T > G L > R 452 1.083 2.083 −1.91
22,995 C > A T > K 478 1.248 1.779 −0.77
23,012 G > C E > Q 484 −0.769 1.098 −5.22
23,063 A > T N > Y 501 0.236 0 0.09

Note. RBD, receptor-binding domain.
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and I-Mutant 2.0. Finally, SSIPe is used to report the binding
affinity between the RBD of Spike protein and human ACE2
protein by considering L452R, T478K, E484Q, and N501Y
hotspot mutations in that region.
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The novel coronavirus 2 (nCoV2) outbreaks took place in December 2019 in Wuhan
City, Hubei Province, China. It continued to spread worldwide in an unprecedented
manner, bringing the whole world to a lockdown and causing severe loss of life
and economic stability. The coronavirus disease 2019 (COVID-19) pandemic has also
affected India, infecting more than 10 million till 31st December 2020 and resulting
in more than a hundred thousand deaths. In the absence of an effective vaccine,
it is imperative to understand the phenotypic outcome of the genetic variants and
subsequently the mode of action of its proteins with respect to human proteins and
other bio-molecules. Availability of a large number of genomic and mutational data
extracted from the nCoV2 virus infecting Indian patients in a public repository provided
an opportunity to understand and analyze the specific variations of the virus in India and
their impact in broader perspectives. Non-structural proteins (NSPs) of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV2) virus play a major role in its survival
as well as virulence power. Here, we provide a detailed overview of the SARS-CoV2
NSPs including primary and secondary structural information, mutational frequency of
the Indian and Wuhan variants, phylogenetic profiles, three-dimensional (3D) structural
perspectives using homology modeling and molecular dynamics analyses for wild-type
and selected variants, host-interactome analysis and viral–host protein complexes, and
in silico drug screening with known antivirals and other drugs against the SARS-CoV2
NSPs isolated from the variants found within Indian patients across various regions of the
country. All this information is categorized in the form of a database named, Database
of NSPs of India specific Novel Coronavirus (DbNSP InC), which is freely available at
http://www.hpppi.iicb.res.in/covid19/index.php.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2)
is responsible for the global pandemic of coronavirus disease
2019 (COVID-19) (Gorbalenya et al., 2020). The SARS-CoV2
is an enveloped non-segmented positive sense single-stranded
RNA virus. It belongs to the Nidovirales order and Coronaviridae
family (Fehr and Perlman, 2015). Its genomic length is
∼29,900 base pairs, making it one of the largest known RNA
virus genomes (Fehr and Perlman, 2015; NC_045512, 2020).
The genomic structure contains a 5′ cap structure and 3′
ploy(A) tail with 11 open reading frames (ORFs). One major
characteristic feature of SARS-CoV2 genome is that almost two-
thirds of the genome (∼20 kb) corresponds to the replicase
gene (ORF1ab), which expresses a polyprotein. The remaining
part of the genome ∼10 kb encodes other structural and
accessory proteins. The replicase gene is followed by the ORF2
spike glycoprotein (S), ORF3a, ORF4 envelope (E) gene, ORF5
membrane (M) gene, ORF6, ORF7a, ORF7b, ORF8, ORF9
nucleocapsid phosphoprotein (N), and ORF10 (Wu et al., 2020;
Yoshimoto, 2020). Among these, spike, envelope, membrane, and
nucleocapsid proteins are the structural proteins, while the rest
are accessory proteins. The ORF1ab polyprotein is composed of
16 non-structural proteins (NSPs).

The NSPs of any virus are encoded by the virus genome but
are not included in the virus particle. For coronaviruses, NSPs
play important roles in RNA synthesis and processing, helping
in its survival as well as virulence power (Snijder et al., 2016).
For SARS-CoV2, the first NSP (NSP1), also known as the leader
protein, binds with 40S ribosomal subunit and plays an inhibitory
role in mRNA translation (Narayanan et al., 2020; Thoms et al.,
2020). The second NSP, NSP2, binds with host proteins and
disrupts host cell environment (Angeletti et al., 2020; Yoshimoto,
2020). The third NSP (NSP3), the longest protein of SARS-CoV2,
has 1,945 amino acids and is a papain-like protease. NSP3 plays
multiple roles in host cells, including regulation of IRF3 and
NF-kappaB signaling (Frieman et al., 2009). NSP3, NSP4, and
NSP6 together play a role in host membrane rearrangements
necessary for viral replication (Angelini et al., 2013). NSP5 is a
3C-like protease and cleaves at 11 distinct sites of the polyprotein
to yield other NSPs (Muramatsu et al., 2016; Yoshimoto, 2020).
NSP6 is known to locate at endoplasmic reticulum and generates
autophagosomes (Forni et al., 2017; Benvenuto et al., 2020).
The NSP7–NSP8 cofactors and NSP12 catalytic subunits create
the core polymerase complex (Peng et al., 2020; Wang et al.,
2020). Apart from creating complex with NSP7, NSP8 creates
complex with accessory protein ORF6 also (Kumar et al., 2007).
Both NSP9 and NSP10 are small non-enzymatic proteins and
assist in the function of NSP12 (Zhang et al., 2020). NSP10 also
interacts with NSP14 and NSP16. The NSP16–NSP10 complex
provides protection to the virus from the host’s innate immune
system (Lin et al., 2020; Viswanathan et al., 2020). NSP11
consists of only 13 amino acids, of which the first nine are
identical to the first nine amino acids of NSP12 (Yoshimoto,
2020). NSP12 is the RNA-directed RNA polymerase (RdRp)
and is responsible for the replication and transcription of the
RNA genome. Several probable drugs, including remdesivir, are

targeted to NSP12 (Shannon et al., 2020). NSP13 is the helicase
protein, and its binding with NSP12 enhances helicase activity
(Yoshimoto, 2020). NSP13, NSP14, and NSP15 can suppress
interferon production and host signaling (Yuen et al., 2020).
NSP14 is the guanine-N7 methyltransferase and plays a vital
role in the RNA replication process (Romano et al., 2020).
NSP15 is the endoribonuclease and is also a probable target of
various drugs. NSP16 is the 2’-O-methyltransferase. Both NSP14
and NSP16 play vital roles in creating RNA cap in the viral
genome (Krafcikova et al., 2020). Due to their pivotal roles
in the replication as well as in the life cycle of SARS-CoV2,
it is important to study the frequency, nature, and probable
outcomes of the mutations that are being observed at the NSP
regions of the virus.

The COVID-19 pandemic has spread in India, the second
most populated country in the world. The total number of
infected persons is 10,266,674 on 31 December 2020, which
resulted in 148,738 deaths (Ministry of Health and Family
Welfare Goverment of India, 2020) along with enormous
socioeconomic disturbance (Gopalan and Misra, 2020), and the
situation remains alarming to date. In this context, we have
focused on the sequences of NSPs of SARS-CoV2 extracted
from Indian patients and created a database, Database of
NSPs of India specific Novel Coronavirus (DbNSP InC). In
this manuscript, we are reporting our database, DbNSP InC,
which provides exhaustive information on the NSPs of SARS-
CoV2 observed in Indian patients. It provides the functional
information; mutations observed in Indian patients samples;
comparison of mutations with the Wuhan samples; primary and
secondary structural analyses; strain and mutation analyses; and
mutations observed in the deceased, mild, and asymptomatic
patients samples along with the distribution of mutations across
different Indian states and phylogenetic analysis. DbNSP InC
is enriched with three-dimensional (3D)/tertiary structures of
wild-type (WT) and mutated NSPs. The information on host
protein interaction is also provided as interactive interactome
networks of NSPs with host proteins and structure of host
protein complexes. Molecular dynamics (MD) analysis was also
performed in order to investigate the stability of the proposed
complexes. In silico drug screening with known antiviral and
other drugs was performed against the SARS-CoV2 NSPs isolated
from the variants found within Indian patients across various
regions of the country. The database is freely available at http:
//www.hpppi.iicb.res.in/covid19/index.php.

MATERIALS AND METHODS

Sequence and Mutation Data Collection
The protein sequences of SARS-CoV2 virus were collected
from the EpiCoV database of GISAID (2020). The database
was searched up to 8 October 2020 using keywords “hCoV-
19”, “India”, and “human”. It provided 2,338 complete
and high-coverage nucleotide sequences. Sequences with
genomes > 29,000 bp were considered complete. Sequences with
<1% Ns (undefined bases) were considered as high-coverage
sequences. Corresponding protein sequences for different NSPs
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were extracted. Database specific renaming (code) was done
for each sequence based on the Indian state from where it was
collected. Additional metadata for the sequences, which include
location of sample collection, patient status, and other relevant
information, were also collected.

Along with the sequences from India, human coronavirus
2019 (hCoV-19) sequences for samples collected from Wuhan,
China, from where the pandemic initiated were also extracted
from the GISAID database. Search with keywords “hCoV-
19”, “China/Wuhan/”, and “human” yielded 255 sequences,
which were used in our analysis. Sequences from different
continents (North America, South America, Europe, Africa, Asia,
and Oceania) were also collected in a similar fashion from
the GISAID database, for comparing frequencies of the most
frequent mutations of Indian samples in the global context.
National Center for Biotechnology Information (NCBI) reference
sequence NC_405512.2 (NC_045512, 2020) was considered as a
reference sequence for calling the mutations. These sequences
(NC_405512.2) were collected from the human sample in
Wuhan, China, in December 2019.

Alignments, Phylogeny, and Mutation
Frequency Calculation
Redundancy filter criteria via CD-HIT server (Fu et al., 2012)
were applied to extract unique representative NSP sequences
and to exclude redundant sequences, for each NSP of protein
family. The number of CD-HIT runs was kept one, with
sequence identity cutoff 1.0 (100% identity). It provided clusters
of sequences that are less than 100% identical. The cluster
representative sequences along with the NCBI reference sequence
were aligned using the MUSCLE protein sequence alignment tool
(Madeira et al., 2019). MUSCLE also constructed a phylogenetic
tree for the cluster representative sequences. The tree files in
the newick format were further used to construct an interactive
phylogenetic tree using javascripts file phylotree.js (Shank et al.,
2018). In-house python (version 3.4) codes were used for
extracting mutations from alignment data files and calculating
mutation frequencies.

Metadata Analysis
Using the metadata of disease severity status of patients, we
analyzed the association of different mutations with disease
severity status. Fisher’s exact test was performed using the
following contingency table (Hoffman, 2019) for deceased
samples,

Mutated Not mutated Total
Not deceased a b a + b
Deceased c d c + d
Total a + c b + d a + b + c + d = N

where N is the total number of sequences. Similar tables
were used for mild and asymptomatic samples. The probability
of obtaining a given set of result, p-value, is provided by a

hypergeometric distribution,

p =

( a+ c
a

)( b+ d
b

)
( N

a+ b

) (1)

where
( i

j

)
denotes binomial coefficient of any given variable

i and j.

Strain Specific Mutational Count and
Substitution Score Calculation
Distributions of mutation frequencies for Indian sequences were
estimated according to their prevalence in various Indian states
as the origin of the infected patients. The substitution scores
for each cluster representative sequence were calculated using
the point accepted mutation (PAM) matrix 250 (Dayhoff, 1969).
The substitution scores are displayed as “Strain and mutation
analyses” column in the DbNSP InC database. The cells are
colored according to the substitution score of the observed
mutations. Blank cell means no mutation was observed. All
interactive plots were constructed using Google Chart API.

Primary Structure Analysis and
Secondary Structure Prediction
Primary structure analysis was done using the ProtParam tool of
ExPASy server (Artimo et al., 2012) where information regarding
amino acid sequence, molecular weight, isoelectric point (pI),
amino acid composition, number of negatively and positively
charged residues, instability index, aliphatic index, and average
of hydropathicity of each reference NSP sequence are provided.
Additionally, an option is implemented within the module
where same information for NSP variants extracted from Indian
patients can be retrieved via live search.

Similarly, secondary structure analysis was done using
the PSIPRED program (Buchan and Jones, 2019) where the
likelihood of each residue forming a helix, strand, or coil is
provided along with a confidence score. For each protein, brief
functional information, collected from the UniProt (The UniProt
Consortium, 2019) was also provided.

Structure Prediction of Wild-Type and
Mutant Non-structural Proteins
SARS-CoV2 WT proteins for which the 3D structures are
available were extracted from the Protein Data Bank (PDB)
(Burley et al., 2019). 3D structures of WT NSPs for which
structures are not available were modeled via homology modeling
approach using the MODELER program (Webb and Sali, 2016).
WT NSPs models were also collected from the Zhang lab COVID-
19 resource (Zhang Lab, 2020) for comparison purposes.

Similarly, 3D models of the mutant (India specific) NSPs
were generated using the MODELER. One hundred ensemble
model structures were generated for each WT and mutant
protein, and the best possible model was selected based on the
MODELER DOPE score. All the 3D models were evaluated
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using various structure validation tools such as PROCHECK
(Laskowski et al., 1993), ERRAT (Colovos and Yeates, 1993),
Verify3D (Eisenberg et al., 1997), QMEAN (Benkert et al.,
2011), and ProSA (Wiederstein and Sippl, 2007). Images of
the protein structures were created by the CHIMERA software
(Pettersen et al., 2004).

Host Protein Interactome Network
Analysis
The SARS-CoV2 NSP and human protein–protein interactome
(PPI) network (PPIN) was constructed using the interaction
data made available by Gordon et al. (2020a,b) and Biogrid
(Stark et al., 2006). We have considered only experimentally
validated interactions. A total of 802 human interactor proteins
were extracted for 15 SARS-CoV2 NSPs. Further, first layer
interactors of the human proteins were collected from the
STRING (Szklarczyk et al., 2019) database (version 11).

With the use each of this network, a network analysis
approach was implemented to identify five types of topologically
important nodes (TINs), namely, hubs, central nodes (CNs),
bottlenecks (BNs) (Yu et al., 2007), global network perturbing
proteins (GNPPs), and local network perturbing proteins
(LNPPs) (Bhattacharyya and Chakrabarti, 2015). Network
and node indices like degree, betweenness, closeness, and
clustering coefficients were calculated from the extracted
viral–human PPIN for identifying the TINs. TINs were
calculated using previously reported methods and protocols
(Bhattacharyya and Chakrabarti, 2015).

A network representation of important nodes of these NSPs
and human proteins network is displayed in an interactive
3D network viewer at the DbNSP InC database. Additional
functional details about the important network proteins are
made available via GeneCards (Stelzer et al., 2016) link
embedded within the interaction viewer window. The network
is constructed using javascript-based open source technologies
(three.js and 3d-force-graph.js).

Generation of Viral–Host Protein–Protein
Interaction Complex
Three-dimensional structures (models) of the selected complexes
of SARS-CoV2 NSPs and human proteins (with known
3D structures) were predicted by a widely used protein
docking program, PatchDock (Schneidman-Duhovny et al.,
2005). PatchDock allows geometric shape complementarity
matching with the help of geometric hashing and pose-
clustering techniques. The top 100 solutions from PatchDock-
based docking score were clustered according to the root mean
square deviation (RMSD) in CHIMERA software (Pettersen et al.,
2004) to determine the largest docked clusters. The top scoring
solution from the largest cluster was selected as representative
pose with the assumption that clusters having a higher number
of similar frames are more likely to possess the best possible
interaction pose.

One hundred and thirteen complex structures were generated
using seven known NSP structures and 41 predicted (5 WT and
36 mutant) NSP proteins with 28 human proteins of known

structures. The human proteins were chosen based on the
availability of high-quality crystal structures.

PISA software (Krissinel and Henrick, 2007) was used
to calculate the structural and chemical properties of the
macromolecular interfaces such as interface area, free energy
of dissociation, presence of hydrogen bond and salt bridges.
The strength of the binding at the interface was estimated
via free energy of formation (1Gint) and solvation energy
(SE) gain (1Gsolv). Various types of molecular interactions,
such as hydrogen bond and salt bridges, formed by the two
interacting chains at the interface were also calculated and
provided within the respective window of the complexes at the
DbNSP InC database.

Calculation of fraction of conserved native contacts (FNATs)
with respect to a reference complex/interface is a standard
complex evaluation criterion. FNAT is the number of native
(correct) residue–residue contacts in the docked (predicted)
complex divided by the number of contacts in the original
(known). According to Critical Assessment of PRedicted
Interactions (CAPRI) (Lensink et al., 2020) criteria, predicted
complexes with 10% ≤ FNAT <30% are regarded as acceptable
predictions, 30% ≤ FNAT <50% as medium-quality predictions,
and FNAT≥50% as high-quality predictions. In this case, we have
evaluated the alteration of the interface formed by the mutant
NSPs with respect to the WT protein complex via calculation of
FNAT. FNAT values of both the chains forming the complex are
provided in the DbNSP InC database.

Molecular Dynamics Analysis
The 3D structures of WT and mutant NSPs as well as complexes
of NSPs (WT and mutant) and human proteins were subjected
to MD simulation to study the impact of mutation on the
structural dynamics by using the Desmond (Bowers et al., 2006)
MD simulation package. Further, MD simulations of the NSPs
complexed (docked) with antiviral drugs were also performed
using the GROMACSv4.5.3 simulation package (Abraham et al.,
2015) to understand the structural and energetic stabilities of the
proposed protein–drug complexes.

In Desmond (Krissinel and Henrick, 2007) MD simulations,
OPLS_2005 force field parameters (Kaminski et al., 2001) were
used to generate the coordinates and topology of the molecules.
The system was solvated with TIP3P (Mark and Nilsson,
2001) water, and counter ions were added to neutralize the
overall charge of the system. Orthorhombic periodic boundary
conditions were defined to specify the shape and size of the
simulation box buffered at 10-Å distances from the molecules.
A hybrid method combining the steepest decent and the
limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS)
algorithm (Saputro and Widyaningsih, 2017) was used to
minimize the energy of the system. Further, the system was
equilibrated in NVT followed by NPT conditions using default
protocol of Desmond. Finally, the production run was performed
at 300K temperature and 1 atm pressure with a time step of
2 fs for 200 ns. The temperature and pressure of NPT ensemble
were regulated by using Nosé–Hoover chain thermostat (Evans
and Holian, 1985) and Martyna–Tobias–Klein barostat (Martyna
et al., 1994), respectively. Reversible reference system propagator

Frontiers in Genetics | www.frontiersin.org 4 March 2021 | Volume 12 | Article 62664263

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-626642 March 3, 2021 Time: 17:19 # 5

Biswas et al. Database for SARS-CoV2 Non-structural Proteins in India

algorithms (RESPA) (Tuckerman et al., 1992) was used for
integrating the equations of motion. Trajectories were recorded at
every 4.8 ps and analyzed by Desmond “simulation analysis tool.”
Energy profile during simulation was analyzed by “simulation
quality analysis tool” of Desmond package. RMSD and root
mean square fluctuations (RMSFs) of the protein residues were
analyzed using the “simulation event analysis” module.

Each antiviral drug complexed with SARS-CoV2 NSPs
obtained from docking analyses was subjected to MD simulation
using the GROMACSv4.5.3 simulation package (Abraham et al.,
2015). Coordinates and topology files of receptor molecule
were generated with Amberff99sb force field (Case et al., 2005).
The topology and coordinate files of ligands were generated
using ACPYPE (AnteChamber PYthon Parser interface) (Sousa
Da Silva and Vranken, 2012). A cubic simulation box was
defined and filled with TIP3P water (Mark and Nilsson, 2001)
molecules. Two-stage minimization of the system was performed
using the steepest-descent (Nocedal and Wright, 2006) and
conjugate-gradient (Straeter, 1971) minimization algorithms.
The system was equilibrated under NVT (constant number of
particles, volume, and temperature) and NPT (constant number
of particles, pressure, and temperature) conditions for 500 ps at a
temperature of 300K and 1 atm pressure. After equilibration step,
final production run was performed under NPT condition for
10 ns at 300K temperature and 1 atm pressure. Trajectories were
saved at the interval of 0.02 ps, and a total of 500,000 snapshots
were recorded. A total of 100 snapshots, recorded at the interval
of 100 ps, were used to calculate the binding free energy using
g_mmpbsa tool (Kumari et al., 2014).

High-Throughput Virtual Screening of
Antivirals and Known Drugs Against the
Novel Coronavirus 2 Non-structural
Proteins
A high-throughput virtual screening (HTVS) technique was
employed to identify the efficient binders of NSP structures that
may serve as potential inhibitors for various NSPs. In this work,
two different small molecule datasets were utilized to identify the
potential binders. For the screening of first dataset, all known
antiviral drugs (111 compounds) were collected from DrugBank
(2020) database, were docked onto the NSP structures (NSP5,
NSP12, NSP13, NSP14, NSP15, and NSP16), and were ranked
by using all the fitness scores (GoldScore, ChemPLP, Chemscore,
and ASP) of GOLD docking software (Jones et al., 1997). The
GOLD software optimizes the fitness score of many possible
docking solutions using a genetic algorithm. The following
parameters were used in the docking cycles: population size
(100), selection pressure (1.10), number of operations (100,000),
number of islands (5), niche size (2), crossover weight (95),
mutation weight (95), and migration weight (10). The docking
scores were normalized to 0 to 1 scale by using the following
formula:

ScoreNormalized =
(S− Smin)

(Smax − Smin)
(2)

where S is raw docking score of a particular molecule, and Smax
and Smin are the maximum and minimum docking scores in the
top quartile solutions, respectively.

For the screening of second dataset, all the small molecule
known drugs and/or drug-like substances available in the
DrugBank (2020) database (8,736 compounds) were extracted,
and the same strategy used for the screening of antiviral drugs
(described above) was followed to identify the potential inhibitors
for NSP structures.

Antivirals and known drug molecules commonly appearing
(at least in three scoring schemes) among the top 25% solutions
of each fitness score were considered as probable inhibitors
of the target SARS-CoV2 NSPs. The probable inhibitors were
identified and ranked based on the average normalized score. All
the probable inhibitors identified from the antiviral drug dataset
were subjected to MD simulation followed by binding free energy
calculation to check the stability of the protein–ligand complex.

RESULTS

Mutational Frequency Analysis of the
Indian and Wuhan Novel Coronavirus 2
Variants
Mutations were identified within the sequences of NSPs collected
from India and Wuhan, China. The mutation frequencies were
calculated, and their distribution plots for each NSP are displayed
in the database DbNSP InC under the column “Mutation
frequency.” Higher (≥2.5% of the total 2,338 samples) frequencies
of mutations in NSPs from the Indian samples were observed
especially for NSP2, NSP3, NSP4, NSP5, NSP6, NSP12, NSP14,
and NSP16. On the other hand, NSP1, NSP7, NSP8, NSP9,
NSP10, NSP13, and NSP15 show lower mutation frequencies
(<2.5%) for the Indian samples. Figure 1A lists the mutations for
different NSPs within the Indian population where the mutation
frequency is more than 2.5%.

We observed in NSP12 that the RdRp has the most observed
mutations at site 323, having a mutation frequency of 78.44%
and that the mutation is from amino acid proline (P) to leucine
(L). NSP12 sequences possess another mutation at site 97(A→V)
having a frequency of 13.9%. NSP3 is the longest NSP and has a
maximum number of mutations. The highest mutation frequency
(20.02%) observed for NSP3 is at 994(A→D). NSP3 has two
more frequently mutated sites, 1198(T→K) having a mutation
frequency of 12.75% and 1285(S→F) 9.58% frequency. NSP2 has
a mutation at site 496(Q→P) of 3.21% frequency. NSP4 has a
mutation at site 380(A→V) with a frequency of 6.42%, while
NSP5 has a mutation at site 254(S→F) with a frequency of 2.65%.
Similarly, NSP6, NSP14, and NSP16 have mutations at the sites
37(L→F), 177(L→F), and 298(N→L) with mutation frequencies
of 14.16, 3.12, and 4.66%, respectively.

We compared the mutations observed in Indian sequences
with the mutations observed in Wuhan sequences and found
significant differences in these two types of samples (Figure 1A).
For NSP1, mutation frequencies are low for both the Indian and
Wuhan samples. However, for NSP2, site 198(V→I) has been
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FIGURE 1 | Mutation analysis of non-structural proteins (NSPs) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) sequences having
frequencies ≥2.5% in India. (A) Comparison of mutation frequencies for different NSPs from samples collected from India (blue) and Wuhan, China (red). Dashed
lines are drawn to separate NSPs. (B) Distribution of mutations in different Indian states. (C) Occurrence of mutations in different types of patients.
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FIGURE 2 | Co-occurrence of most frequent mutations. Node color indicates
different non-structural proteins (NSPs). Node size indicates mutation
frequency. The smallest node corresponds to 62 sequences, while the largest
node corresponds to 1,834 sequences. Edge width and color represent the
number of sequences (N) where the mutations have co-occurred.

mutated in 2.75% of the Wuhan samples and 1.37% of the Indian
samples (Supplementary Figure S1). No mutation was observed
at site 496 of NSP2 for the Wuhan samples, indicating that a
mutation at 496(Q→P) is specific to the Indian samples. For
NSP3, the Wuhan samples showed a mutation at 1937(T→I),
which was not observed in the Indian samples (Supplementary
Figure S1). However, the Indian samples have shown three highly
mutated sites (994, 1198, and 1285) as shown in Figure 1A. On
the other hand, 230(E→G) site of NSP4 has 3.53% mutation
frequency for the Wuhan samples and no mutation for the Indian
samples (Supplementary Figure S1). Similarly, site 120(G→C)
of NSP5 has 3.14% mutations for the Wuhan samples but no
mutations for the Indian samples. For NSP6, a mutation at
37(L→F) was observed for both the Indian and Wuhan samples,
having frequencies of 14.16 and 4.71%, respectively. NSP7, NSP8,
NSP9, and NSP10 appear to have very low mutating sites for
both the Indian and Wuhan samples. For the Wuhan samples,
NSP12 mutated only at site 415(F→S) with a frequency of 6.67%
(Supplementary Figure S1). NSP13, NSP14, NSP15, and NSP16
showed a mutation frequency <2.5% for the Wuhan samples.

State-Wise and Strain-Wise Mutational
Analyses of the Indian Variants
We analyzed the presence of mutations across samples collected
from different Indian states. The information of the state was
not available for some samples, which are marked as “–” in the
DbNSP InC database. Other state names are mentioned in an
abbreviated form. The abbreviation information is provided at
the “Info” page of the database.

We observed marked differences in the mutation frequency
across the Indian states, indicating regional accumulation

of certain mutation types. Figure 1B shows the state-wise
appearances of different mutations. Figure 2 shows the co-
occurrence of mutations across different samples. For example,
two major mutating sites, 994(A→D) and 1198(T→K), for NSP3
never co-appeared in the same sample. We also noticed that
57.69% of mutations at 994(A→D) was observed in Maharashtra
(MH) state (Figure 1B). For mutation 1198(T→K), 28.52%
mutations appeared at samples from the state of Telangana (TG)
and 18.46% from Delhi (DL). Similar accumulation of certain
mutation types was noticed in NSP12 also. The most frequent
variant within Indian patients [NSP12: 323(P→L)] has 26.72%
representation from the state of Gujarat (GJ), followed by TG
(24.21%) and MH (18.21%) (Figure 1B). However, for site 97,
only 3.38% mutations were observed at samples from GJ and
9.23% for MH. TG has the highest contribution (27.08%) for a
mutation at site 97. It indicates that sequences having a mutation
at 323 have a tendency of not to be mutated at site 97. However,
West Bengal (WB) shares 7.38 and 7.58% of mutations at sites
97 and 323, respectively, indicating a possible co-occurrence
of these two mutations. The strain-wise analysis also revealed
similar features of the mutual exclusiveness of mutations at sites
97 and 323 for sequences from GJ and TG. We observed 22
sequences have a mutation at both sites 97 and 323. Out of these
22 sequences, 15 are from WB indicated the existence of a variant
of NSP12 where both 97 and 323 sites are mutated.

Figure 2 shows the existence of a broad edge between
994(A→D) of NSP3 and 323(P→L) of NSP12, which is due
to their co-occurrence in 19.76% samples. We observed that
mutations 1198(T→K) of NSP3 and 97(A→V) of NSP12
occurred simultaneously at 12.49% of samples. Two other broad
edges are connected with 37(L→F) of NSP6. These are due to a
co-occurrence of 37(L→F) of NSP6 with 1198(T→K) of NSP3 in
10.91% samples and a co-occurrence of 37(L→F) of NSP6 with
97(A→V) of NSP12 in 10.95% samples.

From the PAM 250 matrix (Dayhoff, 1969), we observed
that the substitution scores for T→K, A→V, and A→D are
0, indicating that the mutations are tolerable whereas the
substitution score of -3 at 323(P→L) mutation (Supplementary
Figure S2) indicates probable deleterious impact. We observed
mutations 323(P→L) of NSP12 and 1285(S→F) of NSP3,
both having substitution scores of -3, which co-occurred at
4.94% samples (Supplementary Figure S2 and Figure 2).
Mutations 323(P→L) of NSP12 and 298(N→L) of NSP16, both
having substitution scores of -3, co-occurred at 4.53% samples.
Mutations 496(Q→P) of NSP2 and 380(A→V) of NSP4 have
substitution scores of 0. On the other hand, L→F mutation
observed at site 37 of NSP6 and at 177 of NSP14 has a substitution
score of +2 (Supplementary Figure S2).

Patient Status and Disease
Severity-Wise Mutational Analysis
We further analyzed the metadata available with the sequencing
data in order to associate the observed mutations with the clinical
status/manifestation of the patients. We found, out of 2,338
sequences, that the patient status of 74 sequences was marked as
deceased. Forty-seven sequences had patient status “mild,” and 30
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were marked as “asymptomatic.” We analyzed the mutations in
these samples, and comparative plots of occurrence of mutations
for these three types of samples are provided in the DbNSP
InC database as “Mutation in different types of patients” for
different NSPs and are partially reconstructed in Figure 1C. We
observed that NSP2 mutation 496(Q→P) was present in 9.46%
of deceased samples. For NSP3, both mutations 994(A→D) and
1198(T→K) are mostly associated with mild and asymptomatic
samples, respectively. Mutation 37(L→F) of NSP6 has a similar
trend; 31.91% mild samples and 63.33% of asymptomatic samples
showed 37(L→F) mutation, whereas only 1.35% deceased
samples had a mutation at 37(L→F). On the contrary, a mutation
at 323(P→L) of NSP12 was present in 93.24% of the deceased
samples; 51.06% of mild samples and 23.33% of asymptomatic
samples have 323(P→L) mutations. Another major mutation
of NSP12, 97(A→V) is mostly associated with mild (21.28%)
and asymptomatic (63.33%) samples. For NSP14, mutations at
177(L→F) are associated only with deceased (8.11%) samples.
These were not observed in the asymptomatic and mild type
of samples. We did not find patient status data for NSP4 and
NSP5 mutations. Since the number of samples having patient
status is quite small, to explore the statistical significance of our
observations, we performed Fisher’s exact test. The mutations
having p-value ≤ 0.05 in Fisher’s exact test are listed in
Supplementary Table S1 along with their significance level.

Structural Analysis of the Wild-Type and
Mutant Non-structural Proteins
Three-dimensional model structures of 5 WT NSPs and
36 mutant NSPs extracted from Indian patients were

generated, and their structural validations were done using
various structure validation tools (Table 1). 3D structures
were modeled via homology modeling approach using
the MODELER program (Webb and Sali, 2016). WT NSP
models collected from the Zhang lab COVID-19 resource
are also displayed for comparison purposes (Zhang Lab,
2020). 3D coordinates of these models are made available
via the DbNSP InC database, and the corresponding
links are provided under the “3D/Tertiary structure
analysis” analysis column. Figure 3 shows the structures
of the most frequently mutated NSP proteins along with
their WT structures.

Viral–Host Protein–Protein Interaction
Network Analysis
We found a total of 802 human interactor proteins for 15
NSPs. The viral–host PPIN was constructed for each NSP
to identify TINs/proteins, namely, hubs, CNs (Bhattacharyya
and Chakrabarti, 2015), BNs (Yu et al., 2007), GNPPs,
and LNPPs (Bhattacharyya and Chakrabarti, 2015). Further,
important interacting proteins (IIPs) were identified using
overlap among any two TINs as described in our earlier report
(Bhattacharyya and Chakrabarti, 2015). Table 2 shows the
number of IIPs extracted from the SARS-CoV2 and human PPIN.
These IIPs may play crucial roles in mediating viral–human
interactions. The network representation of these important
proteins is displayed in an interactive 3D network viewer
at the DbNSP InC database for each NSP. Figure 4 shows
the network for NSPs where different TINs are marked in
different colors.

TABLE 1 | Information of homology models/crystal structures of frequently mutated (mutation frequency ł2.5% in India) NSPs and corresponding wild type NSPs.

NSP Mutation Sequence length Template/crystal
structure pdb id

Verify3D (%)
(Eisenberg et al.,
1997)

ERRAT (%)
(Colovos and
Yeates, 1993)

QMEAN (Benkert
et al., 2011)

NSP2 Wild typea 1–638 NA 76.96 42.05 −13.1

496(Q→P) 1–638 Wild type 79.47 34.92 −12.34

NSP3 Wild typea 1–1945 NA NA 50.50 −9.46

994(A→D) 1–1945 Wild type NA 42.87 −8.71

1198(T→K) 1–1945 Wild type NA 43.44 −9.03

NSP4 Wild typea 1–500 NA 72.60 49.06 −10.88

380(A→V) 1–500 Wild type 80.20 42.87 −10.58

NSP5 Wild typeb 1–306 6w63 93.11 97.24 0.30

254(S→F) 1–306 6w63 91.83 93.96 −0.74

NSP6 Wild type 1–290 ab initio 83.10 96.44 −2.1

37(L→F) 1–290 Wild type 87.93 90.78 −2.45

NSP12 Wild typeb 1–932 6yyt 87.34 96.70 −1.53

97(A→V) 1–932 6yyt 85.87 73.6 −2.19

323(P→L) 1–932 6yyt 88.1 75.95 −1.98

NSP14 Wild typeb 1–527 5c8t 85.39 62.28 −2.6

177(L→F) 1–527 Wild type 88.05 55.23 −2.91

NSP16 Wild typeb 1–298 6w75 76.06 90.95 −0.79

298(N→L) 1–298 Wild type 96.31 84.43 −1.65

aModel structure is adopted from Zhang Lab (2020).
bCrystal structure.
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FIGURE 3 | 3D structures (shown in cartoon representation) of the most frequently mutated non-structural proteins (NSPs) along with their wild-type (WT) structure.
(A) NSP2(WT), (B) NSP2[496(Q→P)], (C) NSP3(WT), (D) NSP3[994(A→V)], (E) NSP4(WT), (F) NSP4[380(A→V)], (G) NSP5(WT), (H) NSP5[254(S→F)],
(I) NSP6(WT), (J) NSP6[37(L→F)], (K) NSP12(WT), (L) NSP12[323(P→L)], (M) NSP14(WT), (N) NSP14[177(L→F)], (O) NSP16(WT), and (P) NSP16[298(N→L)].

TABLE 2 | Number of important interacting proteins (IIPs) for each NSP-human
protein interaction network.

NSP Number of
interactors

Number of
IIPs

NSP1 12 3

NSP2 20 4

NSP4 33 4

NSP5 37 3

NSP6 25 3

NSP7 133 11

NSP8 232 8

NSP9 76 4

NSP10 26 4

NSP12 102 6

NSP13 83 5

NSP14 14 2

NSP15 9 2

Generation of 3D Structures of Viral
Non-structural Proteins and Human
Interacting Proteins
Extensive protein–protein docking approach implemented via
PatchDock program was employed to generate 113 complex
structures using 7 known NSP structures and 41 predicted (5

WT and 36 mutant) NSP proteins with 28 human proteins with
known structures (Supplementary Table S2). Further, structural
and chemical properties of the predicted interfaces such as
interface area, free energy of dissociation, presence of hydrogen
bond and salt bridges, free energy of formation (1Gint), and
SE gain (1Gsolv) were calculated to characterize the interfaces
(Supplementary Table S2). Finally, using FNAT-based criteria,
we have evaluated the alteration of the interface formed by
the mutant NSPs with respect to the WT protein complex.
Supplementary Table S2 and Figure 5 show the interfaces that
may have altered significantly in complexes formed by the mutant
proteins. Almost 45% of the complexes formed by the mutant
NSPs show a significant alteration (FNAT ≤50% for both viral
and human proteins forming the probable interaction interface)
of the binding interface with respect to that formed by their WT
counterparts (Figure 5A). Thirty-four percent of the complexes
formed by the mutant NSPs show a significant alteration of
the interface (FNAT ≤50%) in either viral or human protein
partners. However, the complexes formed by the WT and mutant
NSPs are found to be energetically stable as shown by relatively
low deviation of overall energy of the complexes before and
after 100 ns of MD simulations (Figure 5B). Figure 5C shows
one of the examples of a significant alteration of the binding
interfaces in NSP12 and human interactor protein, peptidyl-
prolyl isomerase like-3 (PPIL3), perhaps due to the mutation at
position 323(P→L) of NSP12.
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FIGURE 4 | Network view of the interactome of non-structural proteins (NSPs) with their human interactor proteins and their first layer of interactors. Different
topologically important nodes (TINs) are marked in different colors. Red, NSPs; yellow, protein–protein interactors; green, hubs; blue, bottlenecks; cyan, central
proteins; orange, local network perturbing protein (LNPP); purple, global network perturbing proteins (GNPPs); magenta, important interacting proteins (IIPs).

In silico Drug Screening With Known
Antiviral and Other Drugs Against the
Novel Coronavirus 2
Non-structural Proteins
A total of 111 antiviral compounds and 8,736 known drugs
and/or drug-like substances available in the DrugBank (2020)
were screened against the NSP WT structures using the GOLD
docking software (Jones et al., 1997) where all the fitness scores
(GoldScore, ChemPLP, Chemscore, and ASP) were implemented.
Compounds commonly appearing (at least in three scoring
schemes) among the top 25% solutions of each fitness score
were considered as probable inhibitors and were further ranked
based on the average value of normalized fitness scores. Figure 6
shows the top five antiviral and known drugs that are likely
to act as inhibitors for the SARS-CoV2 NSPs. Several antivirals
such as indinavir, nelfinavir, inarigivir soproxil, and doravirine
were found to be targeting multiple NSPs. Similarly, known
drugs like montelukast and GSK-1004723 seem to bind three
or more NSPs as probable targets. Interestingly, the types of
antiviral drugs and their relative ranks based on the normalized
docking score changed significantly with respect to the WT when
the screening was performed against the most frequent mutants
of the targeted NSPs {NSP5[254(S→F)], NSP12[323(P→L)],
NSP13[253(Y→H)], NSP14[177(L→F)], NSP15[109(K→N)],
and NSP16[298(N→L)]} (Figure 7). These findings indicate that
drug sensitivity can get altered due to the mutations in the NSPs.

MD simulations implemented by GROMACS were also
undertaken to evaluate the structural and energetic stabilities
of the drug–NSP complexes retrieved from the molecular
docking-based screening procedure. Drug–NSP complexes with
progressive stabilized binding free energy profiles suggest better
stability. Figure 7 shows higher a fraction of the WT complexes
that remain stable (±20% deviation) or getting more stable
(>20% deviation) in terms of binding free energy throughout
the duration of the simulation. For most of the NSPs, the
highest peaks observed either for no deviation or at positive

binding energy deviation ranges indicate the stability of the
complexes (Figure 8).

Molecular Dynamics Analysis
Structural flexibilities represented by RMSD and RMSF of the
WT and mutant NSPs were calculated and compared to evaluate
the probable structural and functional alterations that might
be due to the mutations. The current version of DbNSP InC
provides MD results of WT and mutated NSP1, NSP2, NSP5,
NSP8, and NSP12. Figure 9 shows the RMSD, RMSF, and
energy profiles of selected mutants from NSP2 and NSP12 as
examples to demonstrate marked variations with respect to their
WT counterparts. For NSP2, a mutation at 496(Q→P) resulted
in lower RMSD (Figure 9A) and higher energy (Figure 9C),
whereas RMSF remains almost equally fluctuating compared with
WT NSP2 (Figure 9B). For the most prevalent mutation in India,
323(P→L) of NSP12, RMSD has increased (Figure 9D), RMSF
(Figure 9E) has reduced significantly, and energy has reduced
(Figure 9F) compared with those in the WT variant. It indicates
that 323(P→L) is likely to be a stable mutation for NSP12.

Similarly, viral–human protein complexes were also
undertaken for MD simulations, and the energy profiles of
the complexes during the simulation run were compared
between selected mutants and their respective WT NSPs. The
current version of DbNSP InC provides MD results of complexes
of WT and mutant NSP1, NSP2, NSP4, NSP5, NSP9, NSP12,
and NSP13. For each NSP, a complex with one human interactor
protein was simulated. The interactor protein was selected
based on their topological importance in the corresponding
interactome network. Figure 10 shows the representative data
for NSP2 and NSP12. For WT and mutant 496(Q→P) complex
of NSP2 with human protein EIF4E2, RMSD (Figure 10A),
RMSF (Figure 10B), and energy variation (Figure 10C) are
shown. EIF4E2 is known to be associated with interferon gamma
signaling and innate immune system pathways (Stelzer et al.,
2016). In the interactome of NSP2, EIF4E2 appears as an IIP,

Frontiers in Genetics | www.frontiersin.org 10 March 2021 | Volume 12 | Article 62664269

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-626642 March 3, 2021 Time: 17:19 # 11

Biswas et al. Database for SARS-CoV2 Non-structural Proteins in India

FIGURE 5 | (A) Fraction of conserved native contacts (FNATs) of non-structural protein (NSP)–host protein–protein interactome (PPI) complexes formed by the
mutant NSPs were calculated with respect to the complexes formed by the wild-type (WT) NSPs. FNAT for both human and viral proteins are plotted. Green, purple,
orange, and blue points indicate mutant NSP–human PPI complexes with FNAT values in quadrants I, II, III, and IV, respectively. Percentage values show frequency
of each quadrant FNAT complex. (B) The percentage of total energy deviation before and after 100 ns of molecular dynamics (MD) simulation in WT and mutants
NSP complexed with partner human proteins. (C) An example where host protein peptidyl-prolyl isomerase like-3 (PPIL3) (red) has a different binding site for
wild-type NSP12 (purple) and mutant (P323L) (cyan) sharing only 18% common residues at the interface.

indicating its topological significance. The binding of EIF4E2
with NSP2 may disrupt the immune response of host. The
EIF4E2–NSP2 complex is being targeted by zotatifin drug
and is under clinical trial (Yoshimoto, 2020). Supplementary
Table S2 shows that EIF4E2 complex has a lower average
docking score with mutant NSP2 [496(Q→P)] compared with
WT complex. The RMSD profile (Figure 10A) shows that the
mutant complex is less stable than the WT complex. Although
496(Q→P) mutation results in slightly lower energy (more
stable from) (Figure 9C), binding of EIF4E2 makes the complex
less energetically favorable (Figure 10C) than their respective
WT counterparts.

Figures 10D–F show the outcomes of MD simulation for
complex of WT NSP12 and mutant 323(P→L) with human
protein PPIL3. PPIL3, a protein coding gene, helps in protein-
folding events (Stelzer et al., 2016) and appears as an IIP in the
interactome network of NSP12 (Figure 4). Figure 10D shows that

PPIL3 has a stable complex with the mutated structure of NSP12
compared with the WT structure. Supplementary Table S2 also
shows that the mutant complex has a higher average docking
score compared with the WT structure, while RMSFs are quite
less for most of the residues (Figure 10E). The favored association
of PPIL3 with most prevalent mutant variation of NSP12 may
disrupt the protein-folding mechanisms of host.

DISCUSSION

COVID-19 disease has caused an unprecedented pandemic,
affecting millions around the globe in manifolds. A complete
understanding of the underlying virus, SARS-CoV2, is an
utmost necessity. Compared with the source samples from
Wuhan, SARS-CoV2 has already demonstrated several mutations
across the globe, and the mutations are often region specific
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FIGURE 6 | High-throughput virtual screened drugs targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) non-structural proteins (NSPs). Top five
antivirals and other known drugs are shown at the right and left sides, respectively, along with the numbers indicating the target NSPs.

FIGURE 7 | (A) The percentage of antiviral drug variability within the best five predicted antivirals against wild-type (WT) and mutant non-structural proteins (NSPs).
“By rank” variability was calculated via matching the same drug at the same ranked position within the top five scored drugs, whereas “overall” match was calculated
by finding the commonly appearing antiviral drugs within the top five predicted drugs against WT and mutant, respectively. (B) The boxplot representation of the
docking score of top five ranked antiviral drugs against the wild-type and mutant NSPs, respectively. Median and mean of the scores are shown as line (–) and plus
sign (+), respectively. Statistically significant differences (p-val ≤0.01) of docking scores are marked with ***.

(Khan et al., 2020; Mercatelli and Giorgi, 2020). In this context,
we concentrate on the Indian variants of SARS-CoV2 genomes.
The major part of the SARS-CoV2 genome consists of a poly-
protein, which comprises 16 NSPs. Our database, DbNSP InC,
is dedicated to holistic studies of NSPs of SARS-CoV2 virus
obtained from samples collected from different places of India.
It showcases the mutational variations of SARS-CoV2 virus
along with the impact of the mutations in different aspects

including disease severity and spread in different Indian states.
This database provides a pool of combinatorial information
regarding the probable impact of the mutations on structural and
energetic stabilities of the viral NSPs and subsequently on host
protein interaction. Moreover, it also provides critical and useful
information about the probable antivirals and known drugs that
could be testified for development of effective drugs against the
novel coronavirus 2 (nCoV2) virus. We are hopeful that DbNSP
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FIGURE 8 | Deviation in binding/docking free energy between pre and post simulation derived drug–non-structural protein (NSP) complexes. (A–F) The fraction of
screened drugs and their average binding energy deviation for NSP5, NSP12, NSP13, NSP14, NSP15, and NSP16. The X-axis represents the percentage of
average binding energy deviation, and the Y-axis represents the fraction of screened molecules.

FIGURE 9 | Molecular dynamics (MD) simulation of wild-type (WT) and mutant structures. (A) Root mean square deviation (RMSD) plot, (B) root mean square
fluctuation (RMSF) plot, and (C) energy plot for NSP2 WT and 496(Q→P) mutant. (D) RMSD plot, (E) RMSF plot, and (F) energy plot for complex of NSP12 and
323(P→L) mutant. The mutant sites are marked by blue arrows in (B,E).

InC database will be a very useful repository to understand the
nature of the nCoV2 variants that prevailed in India and their
probable impact on the patho-physiology of the disease.

Over the last 1 year, numerous works have been performed
to characterize the SARS-CoV2 proteins and the associated
mutations. Several databases and online resources have been
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FIGURE 10 | Molecular dynamics (MD) simulation of wild-type and mutant non-structural protein (NSP) complex with human interactor proteins. (A) Root mean
square deviation (RMSD) plot, (B) root mean square fluctuation (RMSF) plot, and (C) energy plot for complex of NSP2 with EIF4E2. (D) RMSD plot, (E) RMSF plot,
and (F) energy plot for complex of NSP12 with peptidyl-prolyl isomerase like-3 (PPIL3). The mutant site is marked by arrows in (B,E).

developed to aid the fight against the deadly COVID-19
pandemic. Databases like EpiCoVTM platform from GISAID
(GISAID, 2020), NCBI-SARS-CoV2 resources (NCBI-SARS-
CoV2 Resources, 2020), COVID-19 data portal (EMBL-EBI,
2020), Virus Pathogen Database and Analysis Resource (ViPR)
(Pickett et al., 2012), GESS (Fang et al., 2021), CovDB (Zhu
et al., 2020), and ViruSurf (Canakoglu et al., 2021) systematically
categorized thousands of nCoV2 genome sequences deposited
from all over the world. Similarly, resources like Cov3D
(Gowthaman et al., 2021), SWISS-MODEL SARS-CoV2 portal
(Swiss-Model, 2020), and Zhang lab COVID-19 resource (Zhang
Lab, 2020) developed 3D models for SARS-CoV2 proteins for
structural characterizations, whereas exhaustive experimental
characterization of host protein interactions was revealed by
works from Gordon et al. (2020a,b). In addition, countless efforts
have been put forward using in silico drug screening approaches
to identify potential inhibitors of the SARS-CoV2 proteins. Some
of the works from India also highlighted the genomic diversity
and the phylogenetic profiles of the prevalent strains in the
country (Banu et al., 2020; Thakur et al., 2020; INDICOV, 2021;
Jain et al., 2021; Phylovis, 2021). However, most of these works are
discrete in nature, and a combined unified effort characterizing a
country- or region-specific mutational profile of the SARS-CoV2
proteins, especially for the NSPs, is warranted. DbNSP InC aims
to encompass the country- and state-specific mutational profile
of the prevalent SARS-CoV2 genomes and to further provide
a comprehensive characterization of the frequently observed
mutations in terms of the probable impacts on their structure,
function, and interactions with host proteins and target small
molecule inhibitors. To the best of our knowledge, this kind of

large-scale, multilevel characterization of country (India) specific
SARS-CoV2 NSP mutational analysis followed by estimation
of the probable impact of the mutant proteins has not been
reported before.

The mutation analysis of the NSP sequences of SARS-CoV2
virus collected from Indian patients reveals several mutations
that were not observed in the samples collected in Wuhan,
China, from where the virus spread by human contact. Also,
some mutations, which are frequently observed in the Wuhan
samples, were not observed in the Indian samples. It seems
that NSP12 (RdRp) is the most changing protein among the
NSPs found in the Indian population. The mutation at site 323
of NSP12 is caused by change of amino acid from P to L.
This mutation was observed in 78.44% samples. Moreover, this
mutation was observed in 93.24% of samples where patients did
not survive. It implies that 323(P→L) mutation of NSP12 is the
most lethal mutation among all mutations of all NSPs. From
the PAM250 substitution matrix, the score of P→L transition
is -3, indicating strong dissimilarity between the mutated and
reference sequences. However, 323(P→L) mutation of NSP12 is
not unique to the Indian samples. Although not observed in the
Wuhan samples, its occurrence is already reported as prevalent
in European countries and also in North America (Kannan et al.,
2020; Pachetti et al., 2020). This mutation also has a prevalence
of a co-occurrence with other mutations (Pachetti et al., 2020).
NSP12 creates the core polymerase complex with NSP7 and NSP8
(Hillen et al., 2020; Peng et al., 2020; Wang et al., 2020), and site
323 locates near the binding interface of NSP8 and NSP12 (Hillen
et al., 2020). The proline (P) amino acid creates hydrogen bond
with NSP8 (Mutlu et al., 2020). The P→L mutation is preferable
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to NSP8–NSP12 binding and thus promotes viral replication
(Kannan et al., 2020). Hence, the role of 323(P→L) mutation
needs attention while designing antiviral drugs targeting the
polymerase complex. Moreover, 323(P→L) of NSP12 has a
strong co-occurrence with spike protein mutation at 614(D→G)
worldwide (Kannan et al., 2020). Supplementary Figure S3
illustrates the co-occurrence of 323(P→L) and 614(D→G) in
the Indian samples also. 323(P→L) is also known to co-
occur with 241(C→U) mutation of 5′-UTR of SARS-CoV2
(Kannan et al., 2020). These co-occurrences perhaps enhance
the viral activity, making it lethal for human survival. The other
mutation 97(A→V) of NSP12 appeared in Singapore, Malaysia,
and Europe (GISAID, 2020). 1198(T→K) mutation of NSP3
is prevalent in Asian countries, such as Singapore Malaysia,
and also in the United Kingdom (GISAID, 2020). 37(L→F)
mutation of NSP6 is also observed in other countries including
in samples from Wuhan, China (Figure 1A and Supplementary
Figure S1). It reduces the stability of the protein structure
(Benvenuto et al., 2020; Mercatelli and Giorgi, 2020). Hence,
this mutation appears favorable to human beings, and also, it
is not associated with deceased samples (Figure 1C). We also
compared the frequencies of the most frequent mutations in
India in the global scenario. Supplementary Figure S4 compares
the frequencies of the mutations shown in Figure 1A in different
continents. Here, Asian data are considered, excluding India
data. We observed 323(P→L) mutation of NSP12 across the
globe. Mutation 37(L→F) of NSP6 is also observed in different
continents but more frequently in India and Asia. Mutations
97(A→V) of NSP12 and 1198(T→K) of NSP3 appear specific
to India and Asia. Mutation 994(A→D) of NSP3 emerges as
specific to India.

Depending on the availability, the crystal structures and/or
3D models of WTs and mutated NSPs are listed in the DbNSP
InC database. The crystal structures are available for WTs NSP5,
NSP7, NSP9, NSP10, NSP12, NSP15, and NSP16. We have
constructed 3D model structures of WTs NSP1, NSP6, NSP8,
NSP13, and NSP14 by homology modeling, and we further
validated them using multiple structure validation tools. 3D
models retrieved from the Zhang Lab (2020) are also shared
for comparison purposes. In general, validation scores of our
models are comparable and/or better than those obtained from
the Zhang lab models. We observed for NSP1 that QMEAN and
Verify3D scores are better for our model than the corresponding
scores from Zhang lab NSP1 model, whereas our model has
a lower ERRAT score. For NSP6, our model obtained better
scores for all the validation methods, whereas for NSP8, ProSA
z-score and ERRAT quality factor are comparable with those
of the Zhang lab. For NSP13, the QMEAN score is better,
but Verify3D and ERRAT scores are not compared with that
achieved from the Zhang lab-derived model. Verify3D and
QMEAN scores are better for our NSP14 model. However, we
have listed the WT model structures NSP2, NSP3, and NSP4
obtained from the Zhang lab in our DbNSP InC database.
Based on the crystal and modeled structures of WT NSPs,
36 mutant model structures were generated. All these 3D
models were evaluated using various structure validation tools
such as PROCHECK (Zhang Lab, 2020), ERRAT (Laskowski

et al., 1993), Verify 3D (Colovos and Yeates, 1993), QMEAN
(Eisenberg et al., 1997), and ProSA (Benkert et al., 2011). The
validation scores of these mutant models are comparable and/or
better than those of the WT counterparts. This advocates their
comparable stability and utilization of these mutant structures
in downstream analyses of protein–protein interaction as well as
protein–drug interactions.

We further constructed interactome for each NSP with
their human host proteins, along with their first layer of
interactors. The virus–host protein interactome is necessary
for understanding how the virus proteins interact with human
immune systems and proteins involved in various biological
pathways (Perrin-Cocon et al., 2020). We observed that NSP8
has the highest number of interactors, 232, followed by NSP7,
which has 133 interactors (Table 2). NSP7 interactome produced
the highest number of IIPs, 11, followed by NSP8, which has
8 IIPs. Overall, 59 IIPs were identified out of 802 human
interactor proteins for 15 NSPs. A composite interactome
involving all 15 NSPs and their 802 human interactors (first
layer) were also created to examine the interconnectivity between
them where only NSP10 and NSP6 interactomes were found
to be disjointed (Supplementary Figure S5). Guided by the
interactome analysis, we generated 113 complex structures
using 48 (WT and mutant) NSP and 28 human proteins.
Further, structural and chemical properties calculated from
the predicted interfaces have shown significant alterations of
the interface formed by the mutant NSPs with respect to the
WT protein complex. These findings may provide mechanistic
insight toward differential host interaction pattern of the
variants NSPs, which could relate to varied host responses of
the patients infected with the variant nCoV2 virus. However,
these preliminary analyses need to be verified by in-depth
experimental studies to establish altered interaction and its
connections to the patho-physiology of the disease. Nevertheless,
our findings on host protein interactions provide clues and
direction to future in-depth analyses of specific viral–host protein
interaction studies.

A total of 111 antiviral and 8,736 known drugs were screened
against various enzymes (NSP5, NSP12, NSP13, NSP14, NSP15,
and NSP16) of SARS-CoV2 using a rigorous HTVS procedure
to identify the probable candidate that can act against SARS-
CoV2 NSP enzymes. Several drug candidates have been identified
that can act on multiple targets (Figure 6). The antiviral drug
indinavir is targeting five SARS-CoV2 enzymes (NSP5, NSP13,
NSP14, NSP15, and NSP16). Indinavir is a known HIV-1
protease inhibitor (Lv et al., 2015). Some of these antivirals (e.g.,
remdesivir, nelfinavir, and tipranavir) are part of ongoing clinical
trials (ASHP, 2021), whereas drugs like nilotinib, lapatinib,
indinavir, nelfinavir, tipranavir, montelukast, and telmisartan are
also reported as potential inhibitors of NSPs (Ghahremanpour
et al., 2020). Nelfinavir has also been identified as a SARS-
CoV2 protease inhibitor by supervised MD simulation (Bolcato
et al., 2020). It also appears as a drug effective in saving SARS-
CoV2-affected cells from death (Ianevski et al., 2020; Musarrat
et al., 2020). Similarly, other antiviral drugs like doravirine,
alamifovir, inarigivir, and inarigivir soproxil were found to target
multiple targets. Among the drug bank drugs, montelukast

Frontiers in Genetics | www.frontiersin.org 15 March 2021 | Volume 12 | Article 62664274

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-626642 March 3, 2021 Time: 17:19 # 16

Biswas et al. Database for SARS-CoV2 Non-structural Proteins in India

targets three NSPs. Montelukast has anti-inflammatory effects,
reduces oxidative stress, and appears as a potential treatment of
COVID-19 (Fidan and Aydoğdu, 2020). It is currently being used
in a clinical trial (Clinical Trials Gov, 2020). The other known
drugs neladenoson bialanate and menaquinone were also found
to act against multiple SARS-CoV2 enzymes. Menaquinone
(vitamin K2) deficiency may lead to severity for SARS-CoV2-
infected patients and appears as a supplementary in reducing
COVID-19 mortality rate (Berenjian and Sarabadani, 2020).
These multi-target drugs can be efficient drug candidates against
SARS-CoV2. However, screening against the mutant forms of
the NSPs yielded quite different antiviral drug populations, at
least within the top five ranked antivirals selected based on the
normalized composite docking scores (Figure 7). This finding is
exciting and indicates a probable alteration of drug sensitivity of
the NSPs due to the acquired mutations. However, further in-
depth testing is required to confirm the likelihood of the effective
alteration of drug sensitivity. Several studies have been reported
in the past few months involving drug screening against SARS-
CoV2 proteins. However, to the best of our knowledge, our study
is one of the few (Swiss-Model, 2020; Gowthaman et al., 2021)
to screen both antivirals and other known drugs against all six
WT and mutant NSPs (NSP5, NSP12, NSP13, NSP14, NSP15,
and NSP16) together. This composite HTVS provides a uniform
perspective and platform for shortlisting drugs that could be
further testified via in-depth cell free and cell-based assays. Drug
repurposing with approved or investigational drugs is perhaps the
most effective, rational, and timely strategy for identification of
effective drugs against COVID-19. We believe that our findings,
which have been made freely available through DbNSP InC, will
help the community to attest to the effectiveness of some of the
top-scoring drugs.

We have further complimented our molecular modeling
and docking analyses with rigorous, atomistic, and solvent-
implicit MD simulations. Atomic-level MD simulations offer
a computational route toward characterizing both structural
and energetic stabilities of protein–protein as well as protein–
ligand complexes. In the absence of sufficient experimental
information regarding the host protein and drug binding
properties of the SARS-CoV2 NSPs, we utilized MD simulations
to characterize and evaluate the predictive docking complexes
formed by the WT and mutants. Findings from the MD
simulation studies suggest acceptable structural and energetic
stabilities of the 3D models as well as protein–protein complexes
formed by them. Similarly, our MD simulations using the
drug–NSP complexes retrieved from the molecular docking-
based screening procedure provide additional screening and
filtering criteria for selection of the most likely drug candidates.
Drug–NSP complexes with progressive stabilized binding free
energy profiles suggest better stability and hence can be
used as a selection tool. Our MD analyses with drug–NSP
complexes show that a higher fraction of the complexes
remains stable (±20% deviation) or becomes more stable
(>20% deviation) in terms of binding free energy throughout
the duration of the simulation. This would definitely aid
current and future drug discovery and re-purposing efforts
against COVID-19.

CONCLUSION

In conclusion, DbNSP InC emerges as a platform where
researchers can get updated information on NSPs of SARS-
CoV2 specific to Indian patients. Since many of the mutations,
reported in our manuscript as well as provided in DbNSP
InC, are observed globally, the corresponding analysis bears
relevance even in the global context. In the future, we will
enrich DbNSP InC by including more information obtained via
structure analysis, host protein interaction, MD simulation, and
drug screening. The database will also be updated regularly with
the availability of newer sequencing and mutational data.
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Structural Insights on the SARS-CoV-2
Variants of Concern Spike
Glycoprotein: A Computational Study
With Possible Clinical Implications
Marni E. Cueno* and Kenichi Imai

Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan

Coronavirus disease 2019 (COVID-19) pandemic has been attributed to SARS-CoV-2
(SARS2) and, consequently, SARS2 has evolved into multiple SARS2 variants driving
subsequent waves of infections. In particular, variants of concern (VOC) were identified to
have both increased transmissibility and virulence ascribable to mutational changes
occurring within the spike protein resulting to modifications in the protein structural
orientation which in-turn may affect viral pathogenesis. However, this was never fully
elucidated. Here, we generated spike models of endemic HCoVs (HCoV 229E, HCoV
OC43, HCoV NL63, HCoV HKU1, SARS CoV, MERS CoV), original SARS2, and VOC
(alpha, beta, gamma, delta). Model quality check, structural superimposition, and
structural comparison based on RMSD values, TM scores, and contact mapping were
all performed. We found that: 1) structural comparison between the original SARS2 and
VOCwhole spike protein model have minor structural differences (TM > 0.98); 2) the whole
VOC spike models putatively have higher structural similarity (TM > 0.70) to spike models
from endemic HCoVs coming from the same phylogenetic cluster; 3) original SARS2 S1-
CTD and S1-NTD models are structurally comparable to VOC S1-CTD (TM � 1.0) and S1-
NTD (TM > 0.96); and 4) endemic HCoV S1-CTD and S1-NTD models are structurally
comparable to VOC S1-CTD (TM > 0.70) and S1-NTD (TM > 0.70) models belonging to the
same phylogenetic cluster. Overall, we propose that structural similarities (possibly
ascribable to similar conformational epitopes) may help determine immune cross-
reactivity, whereas, structural differences (possibly associated with varying
conformational epitopes) may lead to viral infection (either reinfection or breakthrough
infection).

Keywords: conformational epitopes, endemic HCoV, SARS-CoV-2, spike glycoprotein, variants of concern

INTRODUCTION

Coronaviruses (CoV) are categorized as enveloped positive-stranded RNA viruses belonging to
family Coronaviridae, order Nidovirales, and subfamily Othocoronavirinae comprising four genera
(King et al., 2018). Currently, seven human-infecting CoVs have been identified as early as the 1960s,
namely: human CoV (HCoV)-229E (1962), HCoV-OC43 (1967), severe acute respiratory syndrome
(SARS)-CoV 1 (SARS1) (2002), HCoV-NL63 (2004), HCoV-HKU1 (2005), and Middle East
respiratory syndrome (MERS)-CoV (2012) [all six are endemic to the human population] with
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SARS-CoV 2 (SARS2) (2019) being the latest CoV capable of
infecting humans (Hamre and Procknow, 1966; Kapikian et al.,
1969; Ksiazek et al., 2003; Fouchier et al., 2004; Woo et al., 2005;
Zaki et al., 2012; Zhu et al., 2020). Moreover, the spike (a common
structural protein among the CoVs) is classified as a class I viral
fusion protein involved in host tropism, viral entry and
pathogenesis, and host immune response induction (Lu et al.,
2015; Millet and Whittaker, 2015; Hulswit et al., 2016; Li, 2016).
Additionally, the spike has three segments, namely: the large
ectodomain which is divided into the S1 receptor-binding subunit
(involved in viral attachment) and S2 membrane-fusion subunit
(assists virus-cell fusion) (Hulswit et al., 2016; Li, 2016), single-
pass transmembrane anchor, and short intracellular tail (Li,
2016).

Among the human-infecting CoVs, only SARS2 infection
resulted to a pandemic causing the coronavirus disease 2019
(COVID-19) (Tay et al., 2020). Moreover, multiple SARS2
variants were produced ascribable to various mutations
occurring within the spike and, among the SARS2 variants
produced, variants of concern (VOC) were identified to have
increased transmissibility and virulence while having decreased
response to available therapeutic strategies (Koyama et al., 2020).
Considering VOC are a product of mutational changes occurring
within the spike and structural orientation modifications are a
product of amino acid alterations which in-turn may affect viral
pathogenesis (Chen and Bahar, 2004), we hypothesize that the
VOC spike glycoprotein may have structural modifications that
may affect both immune cross-reactivity and viral pathogenesis.
However, this has likewise not been fully investigated. A better
understanding of the possible structural differences and
similarities occurring within the VOC spike proteins may give
us a better understanding of the potential of cross-reactivity to
occur and, likewise, could give a possible explanation for the
occurrence of both SARS2 reinfection and breakthrough
infections which in-turn may lead to novel therapeutic strategies.

MATERIALS AND METHODS

SARS2 VOC and HCoV Spike Modeling
Representative CoV spike amino acid sequences were collected from
the National Center for Biological Information (NCBI) website. In
order to obtain an accurately generated representative spike model,
at least five sequence models were initially analyzed, whereby, spike
models having similar Root Mean Square Deviation (RMSD) values
and Template Modeling scores (TM-scores) based on
superimposition done by TM-align (Zhang and Skolnick, 2005)
were utilized for further downstream analyses. For generating SARS2
VOC spike models, the following representative amino acid
sequences were used with Genebank accession number indicated:
alpha (QTC11018), beta (QTJ24451), gamma (QRX39401), and
delta (QUF59047). For generating the endemic HCoV spike
models, the following representative amino acid sequences were
usedwithGenebank accession number indicated: 229E (ABB90513),
OC43 (AXX83297), NL63 (QED88040), HKU1 (ARB07617),
SARS1 (AAR07625), MERS (AHX00731), and original SARS2
(YP_009724390). Similarly, representative original SARS2 spike

S1 C-terminal domain (S1-CTD) and N-terminal domain (S1-
NTD) models were generated based on UniProt reference
number P0DTC2. All models generated were through the Phyre2
web server (Kelley and Sternberg, 2009) while Jmol applet (Herraez,
2006) was used for protein visualization.

Spike Model Quality Assessment
All CoV spike models generated throughout the study were initially
assessed for quality before further downstream analyses. In this
regard, protein model:crystal structure superimposition and contact
mapping were performed. Representative crystal structure used for
model quality comparison was the 2021 strain (PDB ID: 7BNM)
which already has the D614G mutation (Tomaszewski et al., 2020).
Moreover, a monomeric 7BNM crystal model (based on the 7BNM
crystal structure) was generated using Phyre2 and superimposed to
the 7BNM crystal structure to likewise serve as an additional model
quality check. Representative CoV spikemodels and crystal structure
were superimposed using TM align (Zhang and Skolnick, 2005). For
this study, we considered spike models as suitable for further
downstream analyses if TM scores between superimposed
sequence model:crystal structure, crystal model:crystal structure,
and crystal model:sequence model are close to 1.0. Subsequently,
CMView applet (Contact type: Cα; Distance cut-off: 8.0;
Needleman-Wunsch alignment) was used to determine protein
common contact among the superimpositions made (Vehlow
et al., 2011). Briefly, higher common contact would indicate that
there is more structural similarities between the superimposed
models and crystal structure (Holm and Sander, 1996) which in-
turn implies that the generated spike models are suitable for further
downstream analyses.

CoV Spike Model Comparison
Three different sets of protein structural differentiation were
performed: 1) whole protein structural comparison among VOC
spikemodels, whereby, all generatedmodels were compared (RMSD
value, TM score, common contact) to the original SARS2 and among
VOC spike models through superimposition and contact mapping;
2) whole protein structural comparison between VOC and endemic
HCoVs spike models, whereby, generated VOC spike models were
compared (RMSD value, TM score, common contact) to generated
endemic HCoV spike models also through superimposition and
contact mapping; and 3) spike domain structural comparison,
whereby, generated S1-CTD and S1-NTD models derived from
the VOC and endemic HCoV spike models were compared (TM
score only) through original SARS2:VOC and VOC:endemic HCoV
superimposition. RMSD value, Tm score, and protein common
contact were established using TM align and CMView, respectively.

RESULTS

Generated Spike Models Are Fit for
Downstream Analyses
Model quality assessment has been highly recommended before
performing any downstream structural analyses using generated
protein structures from either experimental (i.e. crystallized) or
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theoretical (i.e. computer-based) approaches (Berman et al.,
2006). To determine the quality and correctness of all spike
models generated, both protein structural superimpositions
and contact mapping were done. Representative SARS2 crystal
structure (Figure 1A), generated SARS2 crystal model
(Figure 1B) and SARS2 sequence model (Figure 1C) were all
utilized for superimposition. We found that TM scores between
crystal structure:crystal model [TM (based on the crystal
structure): 0.94939] (Figure 1D), crystal structure:sequence
model [TM (based on the crystal structure): 0.94992]
(Figure 1E), and crystal model:sequence model [TM (based on
the crystal model): 0.99508] (Figure 1F) were TM > 0.90 which
we considered adequate for further analyses (Hevener et al.,
2009). Additionally, protein contact mapping between crystal
structure:crystal model [common contact: 86.2%] (Figure 1G),

crystal structure: sequence model [common contact: 86.2%]
(Figure 1H), and crystal model:sequence model [common
contact: 98.8%] (Figure 1I) have high common contact
(>85%), thereby, insinuating that there is high protein contact
similarity between the structures. Taken together, these results
would suggest that the generated spike models are fit for further
downstream structural analyses.

Original SARS2 and VOC Spike Models
Putatively Have Minor Structural
Differences
Both protein structure and conformation dynamics are
associated to biological function (Chen and Bahar, 2004).
To establish the possible spike structural variations among

FIGURE 1 | Quality check of generated monomeric SARS2 spike protein models. Representative SARS2 (A) 7BNM crystal (B) 7BNM model, and (C) sequence
model of monomeric spike proteins are presented. Superimposition between (D) 7BNM crystal and 7BNMmodel (E) 7BNM crystal and sequence model, and (F) 7BNM
model and sequence models are shown. TM scores relative to the 7BNM crystal (when superimposed with either the 7BMmodel or sequence model) and 7BNMmodel
(when superimposed with the sequencemodel) of the superimposed protein structures are indicated below. SARS2 7BNM crystal (green), 7BNMmodel (blue), and
sequence model (pink) are presented.
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the VOC, spike models of each VOC (alpha, beta, gamma,
delta) and the original SARS2 were superimposed and
analyzed using RMSD values, TM scores, and contact map
overlap (CMO) analyses. Measurements involving RMSD
values focus on similarities between superimposed atomic
coordinates (including amino acid residues), whereas,
measurements involving TM scores focus on similarities
between protein structures regardless of protein size
(Zhang and Skolnick, 2005; Kufareva and Abagyan, 2012).
Additionally, common contacts obtained through CMO
analyses provide information related to pairwise spatial
and functional relationship of residues within a protein

while unifying certain features related to protein folding
and structure prediction (Wang and Xu, 2013; Bittrich
et al., 2019). Original SARS2 and VOC spike models used
were generated by Phyre2 (Supplementary Figure S1). As
seen in Figure 2A, alpha, gamma, and delta variants are
possibly similar with the original SARS2 (RMSD <1.00),
whereas, the beta variant has a higher structural difference
compared to the original SARS2 and other VOC (RMSD
>1.00). These observations are likewise generally consistent
with TM scores (Figure 2B). Moreover, CMO analyses
between the original SARS2 and VOC showed similar
common contact (95%) between the original and both
alpha (Figure 2C) and beta (Figure 2D) variants while
both gamma (Figure 2E) and delta (Figure 2F) variants
had higher common contact at 100 and 99.5%, respectively.
Taken together, we hypothesize that no major structural
difference within the spike glycoprotein occurred among
the original SARS2, alpha, gamma, and delta variants
(RMSD <1.00; TM > 0.99), whereas, the beta variant
putatively may have differed with regards to atomic
coordinates when compared to the original SARS2 and
VOC (RMSD >1.00). However, considering TM score, we
likewise presume that no major structural difference occurred
in the beta variant (TM > 0.98). Furthermore, similar
common contact between the alpha and beta variants could
suggest similar functional residues in both variants, whereas,
the close to similar common contact (0.5% difference)
between gamma and delta variants may likewise imply that
functional residues are somewhat the same albeit with some
minor difference. These results are consistent with SARS2
maintaining its genomic integrity across propagation
(Mercatelli and Giorgi, 2020) and varying VOC
transmissibility (Campbell et al., 2021). In this regard, we
postulate that the overall spike model among VOC generally
did not have a major deviation in terms of protein structural
conformation from the original SARS2 spike model.
Nevertheless, the minor structural deviation observed may
contribute to each VOC having a unique biological
characteristic especially in terms of viral transmissibility
and immune evasion consistent with an earlier report
(Campbell et al., 2021) showing that the effective
reproduction numbers of the VOC differ among
themselves, namely: alpha (4% compared to alpha), beta
(4% compared to beta), gamma (10% compared to alpha;
17% compared to beta), and delta (55% compared to alpha;
60% compared to beta; 34% compared to gamma).

It is worth mentioning that the spike model of the gamma
variant potentially has similar atomic coordinates (RMSD
value), protein structure (TM score), and functional
residues (CMO analyses) when compared to the original
SARS2 spike model. Considering the gamma variant is more
transmissible compared to the original SARS2 (Campbell et al.,
2021), we hypothesize that the biological difference between
the gamma variant and original SARS2 in terms of spike
function is mainly associated with amino acid residue
changes and not on protein structural variations.
Additionally, it is also worth mentioning that individuals

FIGURE 2 | Structural comparison of the original SARS2 and VOC spike
models based on the whole protein. (A) RMSD values and (B) TM scores of
superimposed spike models are tabulated. TM scores normalized to a spike
model are distinguished by the presence or absence of a parenthesis.
Contact maps of the (C) original SARS2 and alpha variant (D) original SARS2
and beta variant (E) original SARS2 and gamma variant, and (F) original
SARS2 and delta variant are shown. Common contact of the protein
structures being compared are labeled below. Contacts present in both
protein structures (black) and present in one of the protein structures [either
pink (first protein structure uploaded: original SARS2) or green (second protein
structure uploaded: VOC)] are indicated.
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infected with the beta variant have a higher chance of needing
critical care and death occurrence compared to infections
associated with alpha, gamma, and delta variants (Callaway,
2021) possibly due to high levels of immune evasion associated
to the beta variant (Madhi et al., 2021). In this regard, we think
that the difference in atomic coordinates of the beta variant
(RMSD >1.00) compared to the other VOC (RMSD <1.00) is a
contributing factor in COVID-19 infection severity.

Admittedly, additional work is needed to further explore
these two points.

VOC Spike Models May Have Varying
Structural Similarity to Endemic HCoVs
Among the known endemic HCoVs, both 229E and NL63 strains
are classified under the alpha-CoV phylogenetic cluster while the

FIGURE 3 | Structural comparison of the original SARS2 and endemic HCoV spike models based on the whole protein. (A) RMSD values and (B) TM scores of
superimposed spikemodels are tabulated. TM scores normalized to a spikemodel is distinguished by the presence or absence of a parenthesis. Contact maps of the (C)
alpha variant relative to other endemic HCoV (D) beta variant relative to other endemic HCoV (E) gamma variant relative to other endemic HCoV, and (F) delta variant
relative to other endemic HCoV are shown. Common contact of the protein structures being compared are labeled below. Endemic HCoVs [HCoV 229E (229E),
HCoV OC43 (OC43), HCoV NL63 (NL63), HCoV HKU1 (HKU1), SARS-CoV-1 (SARS1), and MERS CoV (MERS)] are indicated. Contacts present in both protein
structures (black) and present in one of the protein structures [either pink (first protein structure uploaded: VOC) or green (second protein structure uploaded: endemic
HCoV)] are presented.
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other remaining strains are classified under the beta-CoV
phylogenetic cluster which is further divided into lineages,
specifically: OC43 and HKU1 belong to the A lineage; SARS1
and SARS2 belong to the B lineage; and MERS belong to the C
lineage (Hamre and Procknow, 1966; Kapikian et al., 1969;
Ksiazek et al., 2003; Chiu et al., 2005; Woo et al., 2005; Letko
et al., 2020; Zhu et al., 2020). To determine the potential spike
structural differences and similarities between VOC and endemic
HCoVs, model superimposition and analyses (RMSD values, TM
scores, and CMO analyses) were performed. All endemic HCoV
spike models were generated by Phyre2 (Supplementary
Figure S2). In terms of atomic coordinates (RMSD values), we
found that VOC spike models differed (RMSD >2.6) from
endemic HCoVs (Figure 3A). However, in terms of protein
structure (TM scores), we observed that VOC spike models
(Figure 3B) potentially have similar protein structural
conformation (TM > 0.50) (Yang et al., 2015). Moreover,
VOC spike models putatively have high structural similarity
when compared to endemic HCoVs in the same phylogenetic
cluster [SARS1 (TM > 0.90), OC43 (TM > 0.85), HKU1 (TM >
0.849), MERS (TM > 0.70)] while those in a different
phylogenetic cluster have lower structural similarity [229E
(TM > 0.569), NL63 (TM > 0.57)]. Interestingly, in terms of
CMO analyses, we found that endemic HCoV spike models have
the same common contact difference when compared to spike
models from the alpha (Figure 3C) and beta (Figure 3D) variants
which we suspect to be due to alpha and beta variants having
putatively the same functional residues (common contact)
consistent with our earlier results (Figures 2C,D) and reported
biological characteristics wherein effective reproduction numbers
between the two variants are the same (Campbell et al., 2021). In
contrast, both gamma (Figure 3E) and delta (Figure 3F) variants
have varying common contact when compared to the endemic
HCoV spike models which we likewise believe to be attributable to
the difference in functional residues between the two variants
consistent with our earlier results (Figures 2E,F) and reported
biological characteristics wherein the effective reproduction
numbers of both gamma and delta variants differ between the
two (Campbell et al., 2021). Noticeably, VOC spike models have
high common contact (74.2–74.6%) with SARS1 which
coincidentally belongs to the same lineage as that of SARS2.
This would emphasize the close structural dynamics between
SARS1 and VOC spike models which we attribute to high
nucleotide similarity (Robson, 2020). Taken together, we
postulate that the overall VOC spike models have varying
atomic coordinates and functional residues while generally
having the same protein structural conformation when
compared to the endemic HCoV spike models.

Considering the results at this point (Figures 2, 3), we wish to
highlight that data obtained from RMSD values, TM score, and
CMO analyses were all based on superimposing full-length CoV
spike protein models. However, since it is probable that the
protein structural dynamics along a receptor binding site may
be composed of different atomic coordinates (particularly,
protein length and structure) while having a similar binding
surface (Di Rienzo et al., 2017) [consistent with what we observed
(TM > 0.98) (Figure 2B)], further structural comparison is

merited which would mainly focus on both S1-CTD and S1-
NTD of the VOC spike models.

VOC S1-CTD and S1-NTD Models Are
Structurally Comparable to the Original
SARS2 and Endemic HCoV
S1 subunit of CoV spike glycoproteins is made up of the
C-terminal domain (S1-CTD) and N-terminal domain (S1-
NTD) which in-turn have been associated to host cell binding
(Hulswit et al., 2016; Li, 2016). To elucidate the structural
similarities and differences within the SARS2 S1-CTD and S1-
NTD, VOC S1-CTD and S1-NTD models were superimposed
with models from the original SARS2 and endemic HCoV.
Structural analyses were done using TM score measurements.
Surprisingly, when comparing the original SARS2 and VOC S1-
CTD models, we found that they are structurally similar (TM �
1.00) (Figure 4A). Moreover, ocular inspection of the model
superimposition between the original SARS2 and VOC S1-CTD
models showed no difference (Figures 4B–E). SARS2
pathogenesis and host tropism were linked to the
SARS2 furin-like cleavage site (FLC) (Xing et al., 2020),
however, protein structural analyses have shown that the
SARS2 S1-CTD [alternatively known as the receptor binding
domain (RBD)] is unaffected in the absence of the SARS2 FLC
(Cueno et al., 2021; Papa et al., 2021). This emphasizes the
structural importance of maintaining the structural
conformation of the SARS2 S1-CTD with regards to viral
pathogenesis and host tropism consistent with our results. In
this regard, we postulate that regardless of successive SARS2
variants being generated, S1-CTD would most likely maintain
its structural conformation. In contrast, we observed that the
original SARS2 and VOC S1-NTD models had varying
structural differences (TM > 0.95) (Figure 4F) which can be
further seen upon ocular inspection of the model
superimposition between the original SARS2 and VOC S1-NTD
models (Figures 4G–J). Mutations along the S1-NTD have been
linked to viral escape from humoral immune response (Graham
et al., 2021; Kemp et al., 2021) and S1-NTD was shown to bind to
heme metabolites (in particular to biliverdin and bilirubin) which
has been proposed to have a role in immune evasion (Rosa et al.,
2021). This could putatively mean that structural alterations within
the S1-NTD may contribute to immune evasion. Admittedly,
additional experimentation is needed to further prove this point.

Subsequently, when comparing VOC and endemic HCoV S1-
CTD models, we noted a consistent structural difference
(Figure 4K) which we ascribe to VOC S1-CTD models being
structurally similar (Figure 4A). On the other hand, when VOC
and endemic HCoV S1-NTD models were structurally compared
(Figure 4L), we likewise observed varying structural differences
consistent with our earlier results (Figure 4F). Noticeably, both
S1-CTD and S1-NTDmodels belonging to the same phylogenetic
cluster (SARS1, OC43, HKU1, MERS) possibly have the same
structural conformation (TM > 0.50) (Yang et al., 2015) with the
VOC S1-CTD and S1-NTD models, respectively. These results
are consistent with our earlier work and further emphasizes the
possibility of the receptor binding structural conformation (S1-
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CTD and S1-NTD) being somewhat conserved in the same
phylogenetic cluster and lineage (Cueno and Imai, 2021).

It is worth mentioning that gamma and delta S1-NTD models
have similar TM scores (Figure 4F) when compared to the

original SARS2 S1-NTD insinuating that both variants have
similar S1-NTD structural conformation. Considering both S1-
CTD and S1-NTD models are structurally similar between the
gamma and delta variants while having varying viral

FIGURE 4 | Structural comparison of the VOC spike models relative to the original SARS2 and endemic HCoV based on S1-CTD and S1-NTD models. (A–J)
Original SARS2 and VOC. (A) TM scores of superimposed S1-CTD models. TM scores normalized to a spike model are distinguished by the presence (original SARS2)
or absence (VOC) of a parenthesis. Structural superimposition of SARS2 S1-CTD models between (B) original SARS2 and alpha variant (C) original SARS2 and beta
variant (D) original SARS2 and gamma variant, and (E) original SARS2 and delta variant are shown. (F) TM scores of superimposed S1-NTD models. TM scores
normalized to a spikemodel are distinguished by the presence (original SARS2) or absence (VOC) of a parenthesis. Structural superimposition of SARS2 S1-NTDmodels
between (G) original SARS2 and alpha variant (H) original SARS2 and beta variant (I) original SARS2 and gamma variant, and (J) original SARS2 and delta variant are
shown. Original SARS2 is colored magenta while the VOC is colored cyan. (K–L) VOC and endemic HCoV. (K) TM scores of superimposed S1-CTDmodels. TM scores
normalized to VOCmodels. (L) TM scores of superimposed S1-NTDmodels. TM scores normalized to VOCmodels. Endemic HCoVs [HCoV 229E (229E), HCoV OC43
(OC43), HCoV NL63 (NL63), HCoV HKU1 (HKU1), SARS-CoV-1 (SARS1), and MERS CoV (MERS)] are indicated.
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transmissibility (Campbell et al., 2021), we hypothesize that
amino acid residue changes unique in each variant play a
significant role in contributing to viral pathogenesis (Harvey
et al., 2021). In a possible future work, it would be interesting
to test this hypothesis.

DISCUSSION

SARS2 genome has mutated consistently with genetic changes
occurring almost every week (Day et al., 2020; Mercatelli and
Giorgi, 2020). Similarly, nonsynonymous nucleotide changes
occurred which in-turn causes amino acid changes (Day et al.,
2020). Additionally, these mutations are either high-effect
(contribute to viral adaptation and fitness) or low-effect
mutations (deleterious and rapidly purged) (Frost et al., 2018;
Harvey et al., 2021). Moreover, heavily mutated SARS2 lineages
have emerged since the original SARS2 was detected in December
2019 giving rise to VOC (Harvey et al., 2021; Sanyaolu et al.,
2021). Throughout this study, we attempted to show that VOC
spike models have structural similarities and differences with the
original SARS2 and endemic HCoV spike models.

Spike protein binding is the initial step in all CoV infections
which is why it is the first CoV antigen targeted by the immune
system (Hulswit et al., 2016; Li, 2016; Salvatori et al., 2020). In
general, epitopes found along antigen regions are classified as
either sequential (continuous or linear amino acid stretch) or
conformational (discontinuous amino acid stretch) epitopes
(Jerne, 1960; Benjamin et al., 1984; Gershoni et al., 2007).
Moreover, antigen:antibody complexes formed are mainly
composed of conformational epitopes (∼90%) (Haste
Andersen et al., 2006). Additionally, antibody paratopes
found in the antibody variable region primarily identify and
interact with antigen epitopes thereby forming epitope:
paratope complementarity which goes beyond amino acid
sequence recognition but instead protein structure dynamics
(Vojtek et al., 2019). Furthermore, every antibody paratope
could interact with multiple antigen epitopes which in-turn
could induce a polyclonal immune response resulting to cross-
reactivity (Sewell, 2012; Vojtek et al., 2019). These would
highlight the potential significance of protein structure
formation (particularly conformational epitopes) when
considering SARS2 immune response induction. In fact, it
was found that viral epitopes (such as Influenza and CMV) that
lack sequence identity with SARS2 are able to stimulate an
immune response (Mahajan et al., 2021) which we believe is
attributable to similar protein structural formation. In this
regard, we postulate that high VOC S1-CTD and S1-NTD
structural similarity (TM > 0.70) with either the original
SARS2 or endemic HCoV could putatively have cross-
reactivity with the original SARS2 and endemic HCoV spike
models (Ladner et al., 2021) possibly ascribable to having
multiple similar conformational epitopes that are
considered valuable in neutralizing viral pathogenesis
(Khare et al., 2021). This is consistent with previous work
showing that T cell frequencies against the original SARS2
have likewise been correlated to VOC (Stankov et al., 2021)

which we suspect to be due to structural similarity (particularly
S1-CTD). Moreover, VOC have been shown to partially escape
humoral immune response, however, VOC are found to be
unable to escape cellular immune response among
convalescent donors and vaccinees (Geers et al., 2021). This
would highlight the putative significance of cellular immune
response [particularly Th1 and Tfh cells (Poland et al., 2020) ]
in providing lasting protection against VOC and, more
importantly, the T cell-recognizing conformational epitopes
that can counteract viral infectivity (Khare et al., 2021).

It is worth mentioning that VOC emergence is distinguished
by having reduced susceptibility to polyclonal antibody responses
which can potentially lead to increased reinfections or
breakthrough infections (Geers et al., 2021). In this regard, we
speculate that both reinfections and breakthrough infections are
ascribable to T cell-recognizing conformational changes along the
VOC spike glycoprotein [particularly S1-NTD (Graham et al.,
2021; Kemp et al., 2021)]. Admittedly, these speculations would
need both laboratory and clinically-derived data to prove.

In summary, we putatively showed that: 1) minor structural
differences occur in the whole original SARS2 and VOC spike
protein model; 2) the whole VOC spike models possibly have
differing structural similarity to spike models from endemic
HCoVs, wherein, those belonging in the same phylogenetic
cluster have high structural similarities while those belonging
in a different phylogenetic cluster have low structural
similarities; 3) original SARS2 S1-CTD and S1-NTD models
are structurally similar to VOC S1-CTD and S1-NTD models;
and 4) endemic HCoV S1-CTD and S1-NTD models are
structurally similar to VOC S1-CTD and S1-NTD models
belonging to the same phylogenetic cluster. Overall, we
propose that structural similarities (possibly ascribable to
similar conformational epitopes) may help determine
immune cross-reactivity, whereas, structural differences
(possibly associated with varying conformational epitopes)
may lead to viral infection (either reinfection or
breakthrough infection)
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Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent
of coronavirus induced disease-2019 (COVID-19), is a type of common cold virus
responsible for a global pandemic which requires immediate measures for its
containment. India has the world’s largest population aged between 10 and 40 years.
At the same time, India has a large number of individuals with diabetes, hypertension
and kidney diseases, who are at a high risk of developing COVID-19. A vaccine
against the SARS-CoV-2, may offer immediate protection from the causative agent
of COVID-19, however, the protective memory may be short-lived. Even if vaccination
is broadly successful in the world, India has a large and diverse population with over
one-third being below the poverty line. Therefore, the success of a vaccine, even
when one becomes available, is uncertain, making it necessary to focus on alternate
approaches of tackling the disease. In this review, we discuss the differences in COVID-
19 death/infection ratio between urban and rural India; and the probable role of the
immune system, co-morbidities and associated nutritional status in dictating the death
rate of COVID-19 patients in rural and urban India. Also, we focus on strategies
for developing masks, vaccines, diagnostics and the role of drugs targeting host-
virus protein-protein interactions in enhancing host immunity. We also discuss India’s
strengths including the resources of medicinal plants, good food habits and the role
of information technology in combating COVID-19. We focus on the Government of
India’s measures and strategies for creating awareness in the containment of COVID-19
infection across the country.

Keywords: SARS-CoV-2, genetic variations, host immuno-modulation, repurposed drugs, vaccines, medicinal
plants, CT scans, artificial intelligence
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) outbreak, caused
by the novel coronavirus (SARS-CoV-2) has emerged as a
global epidemic and posed serious worldwide public health
concerns owing to the contagious nature of the virus and
high death rate. Transmission through droplets facilitated
its rapid spread and caused panic across the globe. There
were 80,776,890 confirmed cases worldwide till December
30, 20201. India has also been largely affected by instances of
COVID-19. SARS-CoV-2 viral protein interacts with various
host proteins to mediate viral entry and replication in the
human host (Khorsand et al., 2020). Targeting virus and
host protein-protein interactions or downstream signaling
cascades using novel or repositioned drugs, serves as one of
the strategies for COVID-19 therapy. Several drugs such as
remdesivir, dexamethasone, hydroxychloroquine, ivermectin,
azithromycin, tocalizumab, famotidine, thalidomide have been
evaluated in different countries for their efficacy in treating
COVID-19 (Omolo et al., 2020). Convalescent plasma therapy
has been recommended by FDA as an alternative therapeutic
strategy for severe forms of COVID-19 infection2. Vaccination
has been considered as the major option for containing the
COVID-19 pandemic. Presently, 172 vaccine candidates
are in developmental stage, while 63 have entered clinical
trials3. The Oxford COVID-19 group have clinically proven
the safety of the ChAdOx1 nCoV-19 vaccine in triggering
humoral and cellular immune response against SARS-CoV-2.
The vaccine is presently under the phase 3 trial program
across the world (Folegatti et al., 2020). The phase 3 trials of
Covishield, the Oxford vaccine in India have been conducted
under the supervision of Serum Institute of India, Pune and
the vaccine has been approved for emergency supply and
use in India4,5. COVAXIN has been developed as India’s first
indigenous vaccine by Bharat Biotech in association with
Indian Council of Medical Research (ICMR). COVAXIN has
currently gone into Phase III clinical trial after successful
completion of Phase I and II clinical trials started by Bharat
Biotech from July, 2020 onwards6. Recently, the Drug Controller
General of India (DCGI) has granted emergency approval
to COVAXIN in India7. The Ministry of Ayush under the
Govt. of India has emphasized the importance of exploiting
medicinal herbs in the context of COVID-19. Indian indigenous
medicinal plants with immune regulating properties have
often served to boost immunity and render protection against

1Covid19.Who.Int/
2https://www.fda.gov/Vaccines-Blood-Biologics/Investigational-New-Drug-Ind-
or-Device-Exemption-Ide-Process-Cber/Recommendations-Investigational-
Covid-19-Convalescent-Plasma
3https://www.who.int/Publications/M/Item/Draft-Landscape-of-Covid-19-
Candidate-Vaccines
4https://Timesofindia.Indiatimes.Com/India/Oxford-Covid-Vaccine-Set-to-
Become-First-to-Get-Approval-in-India-Report/Articleshow/80059745.Cms
5https://Vaccine.Icmr.Org.In/Covid-19-Vaccine
6https://www.bharatbiotech.com/covaxin.html
7https://www.expresspharma.in/covid19-updates/dcgi-approves-covishield-and-
covaxin-for-restricted-emergency-use-in-india/

viral infections (Akram et al., 2018; Mohanraj et al., 2018).
Besides these, the Govt. of India has adopted certain strategies
such as social distancing and extensive lockdown for effective
containment of COVID-19 and has launched the artificial
intelligence (AI) based mobile application Aarogya Setu to create
public awareness.

Computational bioinformatics and AI have been exploited for
better management of COVID-19. Machine learning techniques
(MLTs) have been employed for taxonomic and hierarchical
classification of SARS-CoV-2 strains (Randhawa et al., 2020).
Computational approaches used in CRISPR based detection
systems and neural network for COVID-19 detection have
increased diagnostic accuracy (Alimadadi et al., 2020; Li
et al., 2020). Deep learning technology based on pulmonary
CT scan images has successfully allowed differentiation of
COVID-19 from other respiratory diseases such as community
acquired pneumonia (Li et al., 2020). Novel text mining
based collection of COVID-19 related big data, followed by
subsequent analyses using advanced machine learning techniques
have enabled real time surveillance of viral epidemiology
and live tracking of COVID-19 cases. Access to these digital
big data through mobile applications allows potential risk
assessment and rapid information dissemination in public for
creating social awareness and better mitigation of COVID-19
(Alimadadi et al., 2020; Bragazzi et al., 2020; Srinivasa Rao
and Vazquez, 2020; Ting et al., 2020). Besides, bioinformatics
tools and AI are of prime importance in drug discovery
and vaccine development for SARS-CoV-2. Repurposing of
existing drugs and computation based drug target identification
have been extensively performed to accelerate the therapy of
COVID-19. In silico docking and deep learning based drug
designing have been employed to develop novel drugs against
SARS-CoV-2 (Alimadadi et al., 2020; Bragazzi et al., 2020;
Senior et al., 2020). A deep learning system Alphafold was
designed by Google DeepMind for identification of protein
structures linked with COVID-19 that might be valuable
for vaccine formulation (Senior et al., 2020). Vaxign reverse
vaccinology tool amalgamated with machine learning has
also been used to predict vaccine candidates for COVID-
19 (Ong et al., 2020). B-cell epitopes and MHC Class II
epitopes can also be predicted using bioinformatics tools for
peptide based vaccine development (Jabbari and Rezaei, 2019).
Potential vaccine adjuvants can also be screened using the AI
based program named Search Algorithm for Ligands (SAM)
(Ahuja et al., 2020).

In a nutshell, this review highlights the current scenario
of COVID-19 across India, with special emphasis on
death/infection ratio in urban and rural India and disease
association with co-morbidities. This review also deals with
strains of SARS-CoV-2 circulating in India and the immuno-
modulatory action of viral proteins. It discusses the various
diagnostic kits, masks and disinfection techniques in use for
diagnosing and combating COVID-19. This review further
focuses on various approaches that may be followed to
tackle the problem of SARS-CoV-2 infection (summarized
in Figure 1), including immuno-regulating drugs, drugs
targeting host-viral protein-protein interactions, vaccines
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FIGURE 1 | Schematic representation of the possible strategies for modulating the host immune system in order to control SARS-CoV-2 infection.

and Indian herbs and plants with medicinal and immuno-
modulating properties. Lastly, it deals with role of AI and various
Government strategies adopted in India for addressing the
COVID-19 pandemic.

GENERAL SCENARIO IN INDIA

COVID-19 Infection and Death Rate in
States and Union territories (UTs) of
India: Association With Lifestyle Habits,
Proximity to Airport and Urbanization
The first case of COVID-19 in India was diagnosed in March,
2020. From that time onwards, there has been rise in the
incidence of COVID-19 in India with 2,871 and 101,077 active
cases on April 3, 2020 and June 2, 2020 respectively. The number
of active cases reached a peak of 1,018,454 on September 17,
2020 followed by a decrease to 528,428 active cases on November
4, 2020 and 258,747 active cases on December 30, 2020 and
(as evident from Figure 2A). Till December 30, 2020, there

has been a total of 10,267,283 confirmed cases in India with
a total of 148,774 deaths8. In terms of total number of cases,
India occupies the second position after United States and is
followed by developed nations such as Brazil, Russia, France,
and the United Kingdom (as shown in Supplementary Table 1).
The numbers of daily new cases have reduced considerably in
December, 2020 as compared to that in September, 2020. There
has been a consistent increase in percent recovery from April
to December with a minimum recovery rate of 69.06% in April
3, 2020 to a recovery rate of 98.51% on December 30, 2020 (as
shown in Figure 2B). Likewise, the death percentage has declined
to 1.49% on December 30, 2020 after a surge of 30.94% in April 3,
2020 (see text footnote 71). The decrease in COVID-19 deaths (in
terms of death/total confirmed case ratio) across different states
of India from June, 2020 to December, 2020 has been tabulated in
Supplementary Table 2.

States and cities of India harboring busy international airports
(such as Kolkata in West Bengal; Ahmedabad, Surat in Gujrat;
Mumbai in Maharashtra; New Delhi in Delhi and Chennai

8https://Www.Worldometers.Info/Coronavirus/Country/India/
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FIGURE 2 | Schematic representation of trend of COVID-19 pandemic in India. (A) Total no. of active cases in India. (B) Percentage death and recovery in India.
Panels (A) and (B) have been adopted from https://www.worldometers.info/coronavirus/country/india/.

in Tamil Nadu) have shown high COVID-19 death rates. The
total number of confirmed cases and death rates in Indian
cities with important international airports has been tabulated in
Supplementary Table 3.

The incidences of COVID-19, death/total cases ratio and
death rate have been higher in urban India than in rural
areas. The death rate in urban India showed a decline in
November, 2020 but, there is no significant change in the rural
COVID-19 death rate (as evident from Figure 3, Table 1 and
Supplementary Table 4). Early COVID-19 cases in India were
primarily diagnosed in cities. Subsequent to the movement
of migrant laborers from urban to rural areas and easing of
transportation between rural and urban areas, there has been
an increase in COVID-19 cases in rural India. High population
density, greater economic activity, infrastructure development
and movement of people contribute to constraints in social
distancing in urban areas. Urban food habits (fast food, alcohol
consumption), lifestyle patterns (improper sleep pattern, lack of

physical exercise, stress) and high levels of pollution result in
non-communicable lifestyle diseases (such as obesity, diabetes,
and hypertension), which create additional complications in
COVID-19 patients. Instances of such disorders are lower
among rural population. Besides, rural lifestyle practices such
as consumption of hot food, prolonged periods of sun exposure
due to agricultural field work, lesser crowding, limited instances
of handshaking may prove to be advantageous in conferring
protection from COVID-19 (Mishra S. et al., 2020). Correlation
analyses carried out in rural and semi rural areas indicate very
weak positive correlation of COVID Fatality Rate (CFR) and
hypertension; mild negative correlation of CFR with diabetes,
implying that CFR is not necessarily related to co-morbidities
such as hypertension and diabetes in rural areas9. Although,

9https://Www.Thehindu.Com/Data/Data-Lower-Covid-19-Fatality-Rate-in-
Rural-Areas-Not-Necessarily-Due-to-Lower-Share-of-Co-Morbidities-among-
Rural-Population/Article32620632.Ece
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FIGURE 3 | Schematic representation of the difference in death rate [expressed as (Death/total confirmed case) × 100] in the urban and rural Indian population
along with the probable factors contributing to the variation in death rate (%). The green downward arrow denotes decrease death rate (%) in urban India and the red
upward arrow denotes slight increase death rate (%) in rural India.

reduced to some extent by the Swachh Bharat Mission, a
large proportion of rural households avail open defecation and
public toilet facilities. Also, many rural households travel long
distances to carry drinking water from community source. Social
distancing becomes a difficult proposition in such situations
(Mishra S. V. et al., 2020). Further, many rural households
do not have exclusive rooms for individuals, thus making
self isolation difficult. So, careful monitoring of urban-rural
movement and augmentation of rural healthcare facilities,
wherever necessary, is required to control rise in rural COVID-19
cases and death rates.

Association of COVID-19 With Other
Co-morbidities in India
Globally, common co-morbidities such as hypertension, diabetes,
asthma, cardiovascular disease (CVD), chronic obstructive
pulmonary disease (COPD), obesity, chronic kidney disease
(CKD), cerebro-vascular accident (CVA), malignancy, and
inflammatory conditions have been noted to worsen health
status in COVID-19 positive patients (Renu et al., 2020).
Medications used in these conditions often lead to upregulation
of Angiotensin-converting enzyme 2 (ACE−2) receptor; thereby
enhancing the possibility of ACE2 mediated viral entry

and susceptibility to SARS-CoV-2 infection (Shahid et al.,
2020). Communicable diseases such as tuberculosis and HIV-
AIDS (Human immunodeficiency virus – Acquired Immuno
Deficiency Syndrome) have also been associated with escalated
severity and death rate in COVID-19 patients across the
world. Sporadic studies from different Indian states/cities such
as West Bengal and Jaipur revealed association of one or
more co-morbid conditions with deaths in COVID-19 patients.
Computational analysis based on Boolean search highlighted
diabetes as the most prevalent co-morbidity in Indian COVID-
19 patients, followed by hypertension (Singh and Misra, 2020).
Co-morbidities in COVID-19 patients result in increased medical
complications, incidence of hospitalization and high mortality
rate. In order to deal with medical complications arising
from COVID-19, it is vital to have knowledge regarding the
SARS-CoV-2 strains and the viral mode of action within
the host system.

SARS-CoV-2 Strains Available in India
and Their Evolution
Phylogenetic studies denote the causative agent of COVID-19
as belonging to the family Coronaviridae. Viruses belonging to
this family have a single-stranded, (+) sense RNA genome of
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TABLE 1 | Percentage death rate in urban and rural population across some states of India.

Sl.No States Urban or rural Districts considered for study Death rate (in %) (as
on 10.06.2020)

Death rate (in %) (as
on 04.11.2020)

Death rate (in %) (as
on 30.12.2020)

1. West
Bengal

Urban Kolkata, North 24 Parganas, South 24
Parganas, Howrah, Hooghly

4.45 2.24 2.15

Rural Malda, Paschim Medinipur, Purba Medinipur,
Nadia, Puruliya

0.91 1.08 1.15

2. Odisha Urban Khordha, Nayagarh, Cuttack, Puri, Malkangiri 0.44 0.55 0.64

Rural Ganjam, Balangir, Debagarh, Mayurbhanj,
Jagatsinghapur

0.12 0.51 0.62

3. Bihar Urban Patna, Gaya, Nalanda, Bhagalpur, Bengusarai 0.56 0.68 0.70

Rural Samastipur, Banka, Madhubani, Kaimur,
Madhepura

0.31 0.47 0.50

4. Uttar
Pradesh

Urban Lucknow, Ghaziabad, Agra, Meerut, Kanpur
Nagar

4.14 1.75 1.60

Rural Allahabad, Azamgarh, Jaunpur, Sitapur,
Gorakhpur

2.22 1.50 1.53

5. Jharkhand Urban Ranchi, Dhanbad, Bokaro, Purbi Singhbhum,
Ramgarh

1.95 1.08 1.12

Rural Giridih, Palamu, Hazaribagh, Pashchimi
Singhbhum, Simdega

0.38 0.52 0.57

6. Madhya
Pradesh

Urban Bhopal, Indore, Gwalior, Jabalpur, Ujjain 4.21 1.91 1.61

Rural Dindori, Jhabua, Bhind, Morena, Rewa 2.74 0.75 0.73

7. Haryana Urban Gurgaon, Panipat, Faridabad, Rohtak, Sonipat 2.12 0.87 0.92

Rural Palwal, Rewari, Mewat, Jhajjar, Fatehabad 0 1.19 1.41

Death rate = (Death/total confirmed case) × 100; Death rate computed with data obtained on 10.06.2020, 04.11.2020 and 30.12.2020
https://Bing.Com/Covid/Local/India.

∼30 kb (Yadav et al., 2020). During the 18th to 19th centuries,
viruses from these families were known to cause infections only
in animals (Cui et al., 2019). The first time it was discovered
in humans was in mid 1965. This strain was referred as
HCoV 229E in the United States. This was followed by an
outbreak of coronavirus in France caused by another member
of the same family, HCoV OC43 that led to 501 confirmed
cases in 2000–2001. Till date seven different coronaviruses
have been identified in this family that cause infection in
humans. There have been five subsequent outbreaks in two
decades prior to the recent pandemic caused by SARS-CoV-
2 in December 2019 that originated from Wuhan city, China.
Bioinformatics based analyses on SARS-CoV-2 genomes isolated
from different countries shows its close relation with two bat
origin SARS-CoV (bat-SL-CoVZC45 and bat-SL-CoVZXC21).
Further, in-depth analysis of SARS-CoV-2 sequence exhibits
96.3% genome similarity with Bat CoV RaTG13 (Yadav et al.,
2020). Upon comparison of SARS-CoV-2 with SARS-CoV, six
different mutations were identified in ORF1a/b, S, ORF7b,
and ORF8 genes. Moreover, similarity between RdRp and
3CLPro proteins has been reported. ORF8 and ORF10 show no
homology with that of SARS-CoV strain (Kaur et al., 2020).
Till now, no confirmed animal reservoir has been identified,
although pangolins are claimed to be natural reservoirs due
to the high similarity of the spike region between human
SARS-CoV-2 and pangolin SARS-CoV (Andersen et al., 2020).
Viruses belonging to this family have an anomalous feature
of rapid mutation in their genome that causes variability in

the strain. Studies are being conducted to understand the
genetic diversity and evolution to establish a reference sequence
for SARS-CoV-2 through mathematical modeling and Single
Nucleotide Polymorphism (SNP) analysis of all the available
sequences (Wang et al., 2020b). In the context of therapeutic
drug and vaccine development, it is essential to monitor and
track local and global genetic variations in the genome (Yin,
2020). A study of 3636 SARS-CoV-2 RNA sequences from 55
different countries revealed a remarkable mutation in the S
protein at D614 amino acid position (D614G) among all the
high-frequency mutations and was classified as A2a subtype.
These high-frequency mutations in the SARS COV-2 genome
have resulted in 11 different clusters of related sequences.
Among these, O type is an ancestral type that arose from
China. SARS-CoV-2 genotypes A, B, C have been described
previously. These have been further divided into subtypes B,
B1, B2, and B4 on the basis of mutations in the ORF8 region
of SARS CoV-2. Genotype A possesses a mutation that is
carried by all the B2 subtypes. A1a, a subtype of A, possesses a
mutation similar to type C that may merge all these previously
reported genetic variations in one cluster. There is inadequate
information about the A2a subtype of SARS-CoV-2 that had
spread widely in March. The A2a genotype of SARS CoV-2
consists of a non-synonymous mutation located near the S1-
S2 junction similar to the A2 subtype. This non-synonymous
mutation could possibly impact viral entry into the host cell
(Biswas and Majumder, 2020). Thus, A2a variants could be
important genetic variants for the development of effective
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vaccines and drugs against this virus. Further, sub-genotypes
A3, A7, A1a, A2, and A6 have evolved from genotype A due
to variation at the ORF1a, ORF3a, S, and nucleotide T514C
respectively (Samaddar et al., 2020). Another group in India
has examined 591 different novel coronaviruses and grouped
them in five different clades. A total of 43% synonymous and
57% non-synonymous nucleotide substitutions were observed.
The maximum number of non-synonymous substitutions was
observed in the S protein (Saha et al., 2020). The presence of
four SNPs at genomic positions 241, 3037, 144410, 23405 among
50–60% of the novel coronavirus population was deciphered
by combining different bioinformatics (Tiwari and Mishra,
2020). However, epidemiological studies undertaken from time
to time and surveillance of genetic variants among humans as
well as in animals could be a major aid in the management
of such outbreaks.

VIRAL MODE OF ACTION:
IMMUNO-MODULATORY ACTION OF
VIRAL PROTEINS

Binding of SARS-CoV-2 spike (S) protein with host cell
angiotensin-converting enzyme 2 (ACE2) aided by TMPRSS2
mediates viral entry. SARS-CoV-2 viral proteins (enlisted
in Table 2 and Supplementary Table 5) modulate host
immune system and antagonize IFN response. COVID-19
pathophysiology is associated with aggressive pro-inflammatory
responses (including IL-6, IL-1β, IP-10, macrophage
inflammatory protein 1α (MIP1α), MIP1β and MCP1) and
airway damage. Disease severity depends on viral load and
the host immune response. Severe COVID-19 patients exhibit
high level of pro-inflammatory macrophages, neutrophils
and monocytes, which contribute to the cytokine storm with
very high plasma levels of TNF, IL-12, IL-6, IL-10, IL-7,
G-CSF, IP-10, MIP1α, and MCP1 (Chen et al., 2020; Liao
et al., 2020; Zhou et al., 2020). Vigorous pro-inflammatory
response leads to airway epithelial and endothelial cell
apoptosis, respiratory microvascular damage, vascular leakage
and edema, thereby causing hypoxia and compromising
blood gas exchange, resulting in acute respiratory distress
syndrome (ARDS) (Ye et al., 2020; Zhang B. et al., 2020).
Activation of complement pathways has been associated with
microvascular injury and thrombosis in severe COVID infection
(Magro et al., 2020).

DIAGNOSTIC METHODS, THERAPEUTIC
STRATEGIES AND GOVERNMENT
INITIATIVES TO COMBAT COVID-19 IN
INDIA

COVID-19 Diagnosis in India
Similarity in signs and symptoms with other respiratory
infectious diseases (fever, chills, cough, and shortness of breath)
put an extra burden on specialized COVID-19 diagnosis (Kaushik

et al., 2020). Clinical manifestation of COVID 19 patients vary
day to day and asymptomatic carriers of SARS-CoV-2 pose
a challenge to our diagnostic approaches. ICMR and WHO
have categorized COVID-19 as mild, moderate, and severe10

(Sivasankarapillai et al., 2020). Accurate and rapid diagnosis
is needed to minimize substantial morbidity and mortality.
Virus isolation, electron microscopy, genomic sequencing-
the standard procedures for coronavirus diagnosis are time-
consuming and costly. Thus, to examine a large number of
patients, serological and laboratory-based methods such as
CBC, AST, ALT, creatinine, LDH, ferritin examination, and
molecular-based assays are being used on priority (Balachandar
et al., 2020). India has set up several diagnostic and ilabs
all over the country to test COVID-19 patients on the basis
of qRT-PCR (Kaushik et al., 2020; Lamba, 2020). Diagnosis
depends on several SARS-CoV-2 proteins, namely, spike (S),
M, envelope (E), N, RdRp and ORF-1b-nsp14 (Alagarasu
et al., 2020; Mourya et al., 2020). Initially, in India the
first two SARS-COV-2 viruses were identified and confirmed
by screening for viral genes (E, RdRp, and N protein of
SARS-CoV-2) in 881 suspected cases by RT-PCR and next-
generation sequencing (Yadav et al., 2020). The limited supply
of positive controls has been overcome by the introduction of
in vitro transcribed RNA from the National Institute of Virology
(NIV) (Choudhary et al., 2020). SOPs for types of specimen
collection and transportation were initially documented by
ICMR-NIV (Gupta et al., 2020). To enhance the speed of
detection, various rapid detection kits, CT scan and X-ray
based techniques have been introduced from time to time.
However, lack of accuracy of these techniques has prevented
them from being used as standard procedures (Iyer et al.,
2020). The production of IgG and IgM against COVID-19
takes 10–15 days from infection. This is a limitation for any
antigen and antibody-based rapid detection kit (Hou et al.,
2020). Recently, a CRISPR based fast and highly accurate
diagnostic approach for COVID-19 has been introduced which
employs nucleic acid readout of SARS-COV-2 (Lotfi and Rezaei,
2020). However, its implementation is highly challenging. CSIR-
Institute of Genomics and Integrative Biology (CSIR-IGIB),
India has also developed an efficient and accurate detection
tool named Feluda based on CRISPR-Cas9 technology, as
an alternative to current gold standard RT-PCR technique.
Feluda has received approval from the DCGI for commercial
launch11. In continuing efforts to discover a fast and rapid
detection technique for SARS-CoV-2, an aptamer based assay
has been developed at Translational Health Science and
Technology Institute (THSTI). In this assay, nasal swab is
used as the specimen for detection12. Gargle lavage sample
collected from COVID-19 patients was identified as an easy,
alternative showing comparable efficiency as nasopharyngeal and
oropharyngeal swab samples (Mittal et al., 2020). Monitoring

10https://www.expresshealthcare.in/covid19-updates/icmr-revises-treatment-
protocol-for-covid-19-patients/421792/
11https://Science.Thewire.In/the-Sciences/Explained-Feluda-Covid-19-Test-
India-Crispr-Technology/
12https://Journosdiary.Com/2020/07/12/Aptamer-Based-Assay-Developed-for-
Coronavirus-Detection/

Frontiers in Genetics | www.frontiersin.org 7 February 2021 | Volume 12 | Article 63736295

https://www.expresshealthcare.in/covid19-updates/icmr-revises-treatment-protocol-for-covid-19-patients/421792/
https://www.expresshealthcare.in/covid19-updates/icmr-revises-treatment-protocol-for-covid-19-patients/421792/
https://Science.Thewire.In/the-Sciences/Explained-Feluda-Covid-19-Test-India-Crispr-Technology/
https://Science.Thewire.In/the-Sciences/Explained-Feluda-Covid-19-Test-India-Crispr-Technology/
https://Journosdiary.Com/2020/07/12/Aptamer-Based-Assay-Developed-for-Coronavirus-Detection/
https://Journosdiary.Com/2020/07/12/Aptamer-Based-Assay-Developed-for-Coronavirus-Detection/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-637362 February 12, 2021 Time: 11:8 # 8

Majumdar et al. Modulating Host Immunity in COVID-19

TABLE 2 | Comparative list of SARS-CoV and SARS-CoV-2 viral proteins involved in modulating the host anti-viral immune response.

Sl.No. Viral
protein

Category Host immuno modulating function of viral proteins

SARS-CoV SARS-CoV-2

1. M protein Structural Protein
(Important
component of viral
envelope)

Increased M protein expression is linked with RIG-I, TBK1, IKKε,
and TRAF3 and hence, prevention of IRF3 and IRF7 activation. This
results in significant decrease in induction of the interferon-β
promoter by dsRNA (Weiss and Leibowitz, 2011).

–

2. N protein Structural Protein
(Encodes for
Nucleocapsid
protein)

Overexpression is associated with decreased IFN response via
inhibition of IRF3 and NF-κB responsive promoter mediated
activation (Weiss and Leibowitz, 2011).

–

3. Nsp1 Non-Structural
Protein

Suppresses the activation of IRF3, c-Jun and NF-κB, thereby
blocking the interferon response and subsequent activation of
interferon-dependent anti-viral proteins (such as ISG15 and ISG56)
(Weiss and Leibowitz, 2011).

Modulates and suppresses the host
anti-viral immune response (Gordon
et al., 2020).

4. Nsp3 Non-Structural
Protein

Serves as papain like protease with de-ubiquitinating activity; could
act as Type I Interferon antagonist (Weiss and Leibowitz, 2011).

–

5. Nsp13 Non-Structural
Protein

– Targets innate immune pathways such
as Interferon (IFN) and NF-κB pathways
(Azkur et al., 2020).

6. Nsp15 Non-Structural
Protein

– Targets the Interferon (IFN) pathway
(Azkur et al., 2020).

7. ORF3a Accessory Protein Raises level of fibrinogen in lungs. Activates the NLRP3 inflammasome
(Gordon et al., 2020).

Activates the NLRP3 inflammasome (Chen et al., 2019).

Activates caspase-1.

Activates NF-κB and JNK which in turn leads to upregulated
expression of pro-inflammatory cytokines (such as IL8 and
RANTES) (Narayanan et al., 2008).

Mediates IL-1β and IL-18 secretion
(Chen et al., 2019; Gordon et al., 2020).

Induces increased apoptosis via caspase 8 and caspase
9-mediated pathways. Bax, p53 and p38 MAP kinase are also
involved in ORF3a mediated apoptosis (McBride and Fielding,
2012; Chen et al., 2019).

8. ORF3b Accessory Protein Enhances the production of cytokines and chemokines by
regulating the transcriptional activity of RUNX1b. Inhibits Type I
interferon (IFN) production and signaling (Narayanan et al., 2008;
McBride and Fielding, 2012).

IFN antagonist; regulates IRF3 activity
(Gordon et al., 2020).

9. ORF6 Accessory Protein Promotes DNA synthesis. Serves as a Type I Interferon (IFN)
antagonist (Gordon et al., 2020).

Hampers Type I IFN production and signaling (Narayanan et al.,
2008; McBride and Fielding, 2012).

10. ORF7a Accessory Protein Triggers inflammatory response through activation of NF-κB and IL8
promoter region (Narayanan et al., 2008).

Mediates virus induced apoptosis
(Gordon et al., 2020).

Promotes pro-inflammatory cytokines (such as IL8 and RANTES)
production (McBride and Fielding, 2012).

11. ORF8b Accessory Protein Blocks the IFN-β signaling pathway by ubiquitin-proteasome
mediated degradation of IRF3 (Wong et al., 2018).

–

12. Orf9b Accessory Protein – Serves as a Type I Interferon (IFN)
antagonist (Azkur et al., 2020).

13. Orf9c Accessory Protein – Targets the NF-κB pathway and hence
the anti-viral innate immune response
(Azkur et al., 2020).

of patients before and after recovery through epidemiological
and immunological assays in the large cohort would help
understanding the prognosis and pathogenesis of COVID-19 and
shall also aid in preventing community transmission and post
recovery complications.

Detection Equipment
Standard diagnosis for infection requires real-time thermal
cyclers which are used to perform RT-PCR, a robust and reliable
detection technology (Corman et al., 2020). Technology centres
under MSMEs began manufacturing components of Real Time
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Quantitative Micro PCR System in order to assemble the devices
at a manufacturing unit in Visakhapatnam to ramp up the testing
procedure13. Apart from RT-PCR based testing, other approaches
have also been demonstrated which involve two-step detection
methods involving more affordable thermal cyclers (conventional
PCR) and fluorescence spectrometers14.

The Treatment of SARS-CoV-2 Infection
and COVID-19: The Present Scenario
The SARS-CoV-2 infection and the COVID-19 pandemic have
posed an unprecedented challenge to the medical fraternity.
The treatment is restricted to the best supportive care and
experimental medications. Targeting the viral entry, interaction
of the virus with its host and the downstream signaling pathways
using novel or repurposed drugs, is one of the strategies for the
management of COVID-19. Several agents (enlisted in Table 3
and Supplementary Table 6) have been tried based on their
role in similar viral infections, or their prospective action on the
novel corona virus.

Indian Pharmaceuticals Cadila has tested the
immunomodulator drug named Sepsivac (containing heat-killed
Mycobacterium W (Mw)), on COVID-19 patients at PGIMER,
Chandigarh in partnership with the Council of Scientific and
Industrial Research (CSIR) to reduce the mortality of critically ill
COVID-19 patients and have obtained promising results15.

Apart from these drugs, the US FDA has approved use of
convalescent plasma for severe life-threatening COVID infection
as an investigational new drug (Duan et al., 2020). Its use has
been documented in a series of cases (Huang et al., 2020; Zeng
et al., 2020)16. One small trial with five ventilated patients showed
success. Its role is still not clear and US FDA is facilitating
the use of hyperimmune globulin for COVID treatment (Mehta
et al., 2020). US FDA recommended the use of convalescent
plasma for emerging infections including COVID-19 on May
1, 2020 (see text footnote 2). The Indian Council of Medical
Research (ICMR) began clinical trials with convalescent plasma
in India to evaluate its safety and efficiency in controlling
COVID-19 symptoms17,18. ICMR has recommended use of
convalescent plasma for COVID-19 therapy. A plasma bank
has been established in Delhi and Project PLATINA has
been established in Maharashtra for treatment cum trial with
plasma therapy19.

13https://Pib.Gov.In/Pressreleasepage.Aspx?Prid=1623027
14https://Www.Hindustantimes.Com/India-News/Iisc-Comes-up-with-
an-Affordable-Two-Step-Method-to-Scale-up-Rt-Pcr-Testing/Story-
Xbztkyjilgeldprouohp6o.html
15https://Www.Hindustantimes.Com/Health/Indian-Trials-on-Multiple-
Covid-19-Drugs-Make-Progress-Have-Atmanirbhar-Bharat-Tilt/Story-
Nk0owrrrsyragqhvrk2a9i.html
16https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-
update-fda-coordinates-national-effort-develop-blood-related-therapies-covid-19
17https://Www.Indialegallive.Com/Special-Story/Convalescent-Plasma-Therapy-
a-Treatment-for-Covid-19/
18https://Www.Medrxiv.Org/Content/10.1101/2020.09.03.20187252v2
19https://Swachhindia.Ndtv.Com/Coronavirus-Outbreak-Explained-What-Is-
Convalescent-Plasma-Therapy-and-How-Effective-Is-It-in-Treating-Covid-19-
Patients-46568/

Another approach for developing drugs targeting host
immunity has been to express SARS-CoV-2 proteins in human
cell lines and identify their human protein interacting partners.
Of 332 interactions, 66 human proteins were found as druggable
candidates that could be targeted by 29 FDA approved drugs,
12 compounds in clinical trials and 28 compounds in preclinical
stage (Gordon et al., 2020). Further screening has helped in
the identification of two pharmacological candidates that inhibit
mRNA translation and are predicted to regulate Sigma1 and
Sigma2 receptors. Besides, inhibitors targeting endocytosis have
shown activity in vitro against other coronaviruses such as SARS
CoV and MERS-CoV. These include chlorpromazine, ouabain
and bufalin (de Wilde et al., 2014; Burkard et al., 2015). Their
efficacy against SARS CoV-2 is yet to be tested. However,
very high EC50/Cmax (half-maximal effective concentration
value/peak serum concentration level) ratio at the typical dosages
used is limiting their possible clinical use.

Natural killer cells play a role in the clearance of SARS-
CoV. NK cell based products are in various stages of trial
as anti-COVID-19 agents. The US-based Company Celularity
has developed placenta derived NK cells CYNK-001 (Tu et al.,
2020). Recombinant Interferon Type I exhibits broad spectrum
activity against coronaviruses (Cinatl et al., 2003b; Sheahan et al.,
2020). Clinical trials are currently in motion for the treatment of
COVID-19 pneumonia (NCT04293887). Trials are also ongoing
to test the efficacy of mesenchymal stem cells from the umbilical
cord and dental pulp to attenuate the inflammatory response
of COVID-19 (NCT04293692, NCT04269525, NCT04288102,
NCT04302519). The World Health Organization’s (WHO)
Solidarity trial including randomized and controlled clinical trials
are set to test several protocols against COVID-19.

COVID-19 Vaccine Developments –
Present Indian Scenario
In the global fight against COVID-19, scientists from different
countries are trying to decipher a potential therapeutic drug,
vaccine, and early diagnostic tools. The SARS-CoV-2 ‘S’ protein
interacts with the ACE2 receptor and is a glycosylated protein,
making this protein a good candidate for vaccine development
(Othman et al., 2020). Globally several vaccine generation
methods are being used against COVID-19, including a live
attenuated vaccine, inactivated vaccine, replicating viral vector,
non-replicating viral vector, DNA vaccine, peptide-based vaccine,
recombinant protein, virus-like particle (VLP) and mRNA-based
vaccine (Le et al., 2020). According to the WHO, there are
currently 63 COVID-19 vaccines in clinical development and
172 vaccine candidates in pre clinical developmental stage as
on 6th January, 2021 (see text footnote 3). Out of these 63
vaccines, about 20 vaccine candidates are in Phase III clinical
trial (as enlisted in Table 4). Among these 20 vaccines, the
efficacy report is available for five vaccines that include “BNT162
(Pfizer), mRNA 1273 (Moderna), chAdOX1nCOV19 (University
of Oxford and AstraZeneca), BBIBP-CorV (Sinopharm) and
Sputnik-V (Gamaleya Research Institute)20. However, only

20https://Www.Thelancet.Com/Journals/Lanmic/Article/Piis2666-
5247(20)30226-3/Fulltext
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TABLE 3 | List of immuno-modulating drugs which are tried for COVID-19.

Sl.No. Name of drugs Type of anti viral or immune boosting action

1. Chloroquine and
Hydroxychloroquine
(HCQS)

May keep the virus out of host cells by blocking host receptor glycosylation or by breaking down viral protein production.

May lead to suppression of pH-dependent steps of viral replication (Choudhary and Sharma, 2020).

May exert immune-modulatory effects by inhibiting TNF-α and IL6 production and may serve as a potent autophagy inhibitor.

Active against SARS-CoV-2 in vitro (Yao et al., 2020).

Leads to fast symptomatic improvement (fever, cough and chest imaging) (Cortegiani et al., 2020)

HCQS and azithromycin combination leads to early viral clearance compared to HCQS alone (Gautret et al., 2020).

US-FDA have cautioned against the use of HCQS for COVID-19 outside hospital settings
https://Medicaldialogues.In/Medicine/News/Fda-Cautions-against-Use-of-Chloroquine-or-Hcqs-in-Covid-19-65165 (accessed on
May 5.2020)..

2. Corticosteroids Exert immune-modulatory effects by inhibiting expression of genes encoding inflammatory molecules (Shaffer, 2020).

Dexamethasone proven to be a life saving drug for severe COVID-19.

3. Tocilizumab, Sarilumab
and Situximab

Monoclonal antibody (MAb) antagonists of the IL6 receptor.

Drugs commonly used for treatment of rheumatoid arthritis.

Severe forms of COVID-19 are associated with elevated levels of IL6, causing acute respiratory distress syndrome (ARDS) even
upon reduction of viral load.

These MAbs may play a vital role in reducing IL6 level and reduce instances of ARDS in COVID-19 patients (Chan et al., 2013; Luo
et al., 2020; Michot et al., 2020; Shaffer, 2020).

4. Fluvoxamine This serotonin re-uptake inhibitor may serve as an immune modulatory agent and shut down the inflammatory cascade from the
endoplasmic reticulum by binding to the sigma-1 receptor (Shaffer, 2020).

5. Remdesivir Antiviral pro drug.

The active analog of the pro drug inhibits the viral RNA dependent RNA polymerase (RdRp) and preventing viral replication.

Remdesivir also evades the proofreading mechanism (exoribonuclease) of coronavirus (Ferner and Aronson, 2020; Wang M. et al.,
2020) https://Www.Fda.Gov/Media/137564/Download (downloaded on May 5, 2020)..

6. Azithromycin Broad spectrum macrolide antibiotic.

Used mainly for treatment of pulmonary, enteric and genitourinarytract infections. Acts as an acidotropic lipophilic weak base which
modifies the pH of the endosome and trans-Golgi network and affects viral replication.

Interferes with viral entry by binding to viral spike (S) protein and humanreceptor protein ACE2 (angiotensin converting enzyme-2).

May exert interferon mediated anti viral immune response (Choudhary and Sharma, 2020; Damle et al., 2020).

7. Baricitinib, Fedratinib,
and Ruxolitinib

Potent JAK inhibitors selectively inhibiting JAK-STAT signaling https://Www.Chictr.Org.Cn/Showprojen.Aspx?Proj=49088 (Spinelli
et al., 2020; Stebbing et al., 2020).

Exerts anti-inflammatory effects.

Might be effective in controlling the cytokine storm in COVID-19.

Baricitinib is also predicted to hamper ACE2 mediated endocytosis (Richardson et al., 2020).

8. Gimsilumab,
Lenzilumab,
Namilumab

These are anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) antibodies. Blocks the inflammatory pathway in its
early steps.

Being clinically tested for efficacy in COVID-19 (Tay et al., 2020).

9. Thalidomide Synthetic glutamic acid derivative.

Possess anti-inflammatory, anti-fibrotic, anti-angiogenesis, and immuno-modulatory effects.

Inhibits and downregulates COX2, PGE2, TNF-α, IL6 and IL1.

Used to treat severe H1N1 influenza-associated lung injury.

Being tested for its efficacy in treating cytokine storm and reducing lung injury and respiratory complications in COVID-19
https://Clinicaltrials.Gov/Ct2/Show/Nct04273529,https://Clinicaltrials.Gov/Ct2/Show/Nct04273581 (Khalil et al., 2020).

10. Nafamostat and
Camostat

Serine protease inhibitors which prevent SARS-CoV-2 entry by acting as antagonists to the serine protease TMPRSS2 (Yamamoto
et al., 2016; Hoffmann et al., 2020; Zhang H. et al., 2020).

11. Famotidine H2 receptor antagonist; may bind to SARS-CoV-2 encoded papain like protease and impair entry of SARS-CoV-2 (Shaffer, 2020).

12. Ivermectin Broad spectrum anti-parasitic macrolide drug.

Functions by binding and impairing the cell transport proteins that are vital for entry into the nucleus (Choudhary and Sharma, 2020).

13. Favipiravir Inhibits virus replication by binding and blocking the RdRp enzyme (Furuta et al., 2013).

Its incorporation in RNA also terminates viral protein synthesis (Jin et al., 2013).

Classically used against influenza virus.

Also acts on SARS-CoV-2 replication; used for mild and moderate COVID cases (Agrawal et al., 2020).

(Continued)
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TABLE 3 | Continued

Sl.No. Name of drugs Type of anti viral or immune boosting action

14. Lopinavir/ Ritonavir Antiretroviral protease inhibitors, successfully used in HIV infection (Huang et al., 2015).

Combination of lopinavir/ritonavir used successfully for treatment of SARS with significantly fewer adverse clinical outcomes (Chu
et al., 2004).

Lopinavir/ Ritonavir with Interferon 1b found promising in the marmoset model (Chan et al., 2015).

15. APN01 Soluble form of ACE2 delivered in high concentrations.

Could potentially block SARS-CoV-2 entry into target cells. Under clinical trial
https://Pipelinereview.Com/Index.Php/2020022673884/Proteins-and-Peptides/Apeirons-Respiratory-Drug-Product-to-Start-Pilot-
Clinical-Trial-to-Treat-Coronavirus-Disease-Covid-19-in-China.html.

three vaccines are available with the data published in peer
reviewed journals till 5th January, 2021 namely, mRNA1273,
BNT162, and chAdOX1nCOV19 (Baden et al., 2020; Polack
et al., 2020; Voysey et al., 2020). Supporting data to answer
such important question such as duration of herd immunity
upon vaccination, requirement of booster doses for long term
immunity and whether vaccine could help in the prevention
of transmission is available for only chAdOX1nCOV19 vaccine
till to date. Further, safety of the above mentioned vaccines
needs to be evaluated in the populations that have not
been included in the trials such as pregnant women (see
text footnote 21).

Apart from this, global mass immunization also encountered
several challenges including financial, logistic and vaccine
storage-related issues. The upper middle income countries
started the vaccination in 2020. However, successful global
vaccination or complete eradication of virus is possible only
when low income and middle income countries get immunized
in parallel. To overcome this situation, an International initiative
termed COVAX facility has been set up to ensure equitable
access to vaccine doses in Low income and middle income
countries (LCMICs). COVAX aims at fixed vaccination for 20%
of population belonging to the LCMICs by 2021. The vaccine will
be provided by the AstraZeneca21.

In India, COVAXIN, an indigenous inactivated COVID-
19 vaccine, stable at 2–8◦C, manufactured by Bharat Biotech
(Hyderabad, India) has currently entered the Phase III Human
clinical trial and has recently been given emergency approval
in India by the DCGI (see text footnote 7)22. A plasmid DNA
based vaccine, ZyCoV-D has been developed by Ahmedabad-
based pharma company Cadila Healthcare (Zydus Cadila). It
has been claimed that this vaccine is stable for 3 months at a
temperature of 30◦C and longer at 2–8◦C. This thermostability
could be beneficial for nationwide vaccination program due
to minimalistic cold storage requirements. Phase III human
clinical trials are being initiated for this vaccine. Besides these
indigenous vaccines, several non indigenous vaccines of foreign
origin are presently in various stages of clinical trial in India.
Covishield, the vaccine developed by Oxford University and
AstraZeneca has entered phase III trials in collaboration with

21https://Www.Thelancet.Com/Pdfs/Journals/Lanmic/Piis2666-5247(20)30226-
3.Pdf
22https://Www.Indiatoday.In/News-Analysis/Story/Why-Covaxin-Covishield-
Best-Option-for-India-against-Covid19-Pandemic-1755517-2021-01-03

the Serum Institute, Pune, India. Serum Institute has applied
to DCGI for emergency regulatory authorization for Covishield
use in India and has submitted additional requisite vaccine
datasheet in this regard. This vaccine has been approved
for emergency use in United Kingdom and has become the
first COVID-19 vaccine candidate to have obtained emergency
approval in India (see text footnote 4)23. Covishield has the
advantage of storage at 2–8◦C24. Besides this, Dr. Reddy’s
Laboratories Limited and Sputnik LLC (Russia) have been
jointly conducting the clinical trial of Sputnik-V, the world’s
first registered vaccine in India. This vaccine, ranking among
world’s top 10 vaccine candidates is presently in Phase II
Human Clinical Trial in India25. The Biological E’s novel
Covid-19 vaccine is also in the Phase I/II Human Clinical
Trial in India (see text footnote 5). Ecological studies have
highlighted lower number of infections and reduced COVID-
19 mortality in countries, where BCG vaccination is made
mandatory (Urashima et al., 2020). Randomized controlled
trials of BCG-Danish have been conducted in Netherlands and
Australia (NCT04327206, NCT04328441). Serum Institute, Pune,
India has conducted phase III trial of BCG vaccine VPM1002
to evaluate cross-protection to COVID-1926. BCG vaccine could
serve as a booster of innate immunity against COVID-19 via
metabolic and epigenetic changes in a process called trained
immunity (Netea et al., 2020).

Another important vaccine, BNT162 from Pfizer, which has
already been rolled out in United Kingdom, United States and
received emergency use approval in more than 10 countries,
has extreme cold chain and storage requirement at −75◦C
to keep its potency intact27. Similarly, Moderna vaccine also
has stringent storage requirement at −20◦C28. Such stringent
refrigeration needs may be difficult to achieve in developing
countries and may render mass vaccination in India extremely
challenging. Although India has cold storage facilities, they

23https://Www.Thehindu.Com/Sci-Tech/Health/Uk-Becomes-First-Country-to-
Approve-Astrazeneca-Oxford-Vaccine-for-Covid-19/Article33451081.Ece
24https://Www.Businesstoday.In/Coronavirus/Oxford-Serum-Institute-Vaccine-
Stored-Fridge-Temperature-2-8-Degrees/Story/422741.html
25https://sputnikvaccine.com/about-vaccine/
26https://health.economictimes.indiatimes.com/news/pharma/serum-institute-
conducting-phase-iii-clinical-trial-of-tuberculosis-vaccine-dbt/77210270
27https://www.pfizer.com/news/hot-topics/covid_19_vaccine_u_s_distribution_
fact_sheet
28https://indianexpress.com/article/explained/covid-19-vaccine-storage-optimal-
temperature-cold-chain-india-explained-quixplained-7063369/
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TABLE 4 | List of vaccines in Phase III trial across the world.

Sl.No. Name of
vaccine

Nature of vaccine Clinical Trial Phase Country of origin

1 Ad5-nCoV Recombinant vaccine
(adenovirus type 5 vector)

Phase III CanSino Biologics Inc/ Beijing Institute of Biotechnology (China)

2 Covishield (Code
name: AZD1222)

Replication-deficient viral vector
vaccine (adenovirus from
chimpanzees)

Phase III (received
approval for emergency
use in United Kingdom
and India)

The University of Oxford; AstraZeneca; IQVIA; Serum Institute of
India (Multinational) (see text footnote 4)
https://Www.Bbc.Com/News/Health-55280671

3 CoronaVac Inactivated viral vaccine
(formalin with alum adjuvant)

Phase III Sinovac (China)

4 COVAXIN Inactivated viral vaccine Phase III (approved for
emergency use in India)

Bharat Biotech; National Institute of Virology (India) (see text
footnote 7)

5 JNJ-78436735
(formerly
Ad26.COV2-S)

Non-replicating viral vector Phase III Johnson & Johnson (Janssen Pharmaceutical) (United States)

6 mRNA-1273 mRNA-based vaccine Phase III (received
approval and presently
in use in United States)

Moderna; National Institute of Allergy and Infectious Diseases
(NIAID) (United States)
https://Www.Nature.Com/Articles/D41586-020-03593-7

7 New Crown
COVID-19
Vaccine

Inactivated vaccine Phase III Wuhan Institute of Biological Products; China National
Pharmaceutical Group (Sinopharm, China)
https://Www.Precisionvaccinations.Com/Vaccines/New-
Crown-Covid-19-Vaccine

8 NVX-CoV2373 Protein based vaccine (Full
length recombinant SARS
CoV-2 spike protein
nanoparticle vaccine
adjuvanted with Matrix M)

Phase III Novavax (Maryland); Serum Institute of
Indiahttps://Ir.Novavax.Com/News-Releases/News-Release-
Details/Novavax-Announces-Covid-19-Vaccine-Clinical-
Development-
Progress,https://Www.Verywellhealth.Com/Novavax-Covid-19-
Vaccine-5093292

9 BNT162 (3
LNP-mRNAs)

mRNA-based vaccine Phase II/III (Already in
use in United Kingdom
and United States)

Pfizer; BioNTech; Fosun Pharma; Jiangsu Provincial Center for
Disease Prevention and Control
(Multinational)https://Www.Thehindu.Com/News/International/
Uk-Approves-Pfizer-Biontech-Covid-19-Vaccine-for-
Use/Article33228634.Ece
(https://www.nature.com/articles/d41586-020-03593-7)

10 Sputnik-V
Vaccine (rAd26-
S+rAd5-S)

Adeno viral vector based
technology

Phase III Gamaleya Research Institute; Health Ministry of the Russian
Federation (Russia)

11 BBIBP-CorV Inactivated viral vaccine Phase III Sinopharm + Beijing Institute of Biological Products (China) (Xia
et al., 2021)

12 Recombinant SARS-CoV-2
vaccine

Phase III Anhui Zhifei Longcom Biopharmaceutical; Institute of
Microbiology, Chinese Academy of Sciences (China)

13 INO-4800 DNA based vaccine Phase II/III Inovio Pharmaceuticals and International Vaccine Institute
(South Korea)

14 CoVLP Coronavirus-Like Particle based
vaccine

Phase II/III Medicago Inc. (Canada)

15 CVnCoV RNA based vaccine Phase II/III CureVac AG (Germany)

16 UB-612 Multitope peptide based
S1-RBD-protein based vaccine

Phase II/III COVAXX; United Biomedical Inc

17 ZyCoV-D nCov
vaccine

DNA based vaccine Phase III Cadila Healthcare Ltd. Zydus Cadila,
(India)https://Economictimes.Indiatimes.Com/Markets/Stocks/
News/Cadila-Healthcare-Gains-3-as-Dcgi-Plays-Phase-Iii-
Trials-of-Covid-Vaccine/Articleshow/80091363.Cms

18 QazCovid-in Inactivated viral vaccine Phase III Research Institute for Biological Safety Problems (Rep of
Kazakhstan)

19 SARS-CoV-2
vaccine (vero cell)

Inactivated viral vaccine Phase III Institute of Medical Biology; Chinese Academy of Medical
Sciences (China)

20 AG0301-
COVID19

DNA based vaccine Phase II/III AnGes + Takara Bio + Osaka University (Japan)

Vaccine Information obtained from World Health Organization (WHO) as on 06.01.2021 (see text footnote 3).
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are limited and there are constraints especially in the case
of handling large numbers of doses in a country as densely
populated as India. Ramping up of cold chain and restructuring
of cold storage facilities with synergistic aid from food storage
and supply cold chain, may aid in overcoming vaccine storage
issues to some extent29. Another important factor involved
in mass vaccination is the economic burden. The COVAX
facility (led by WHO, CEPI, and GAVI) have emerged to
financially support and enable equitable distribution of COVID-
19 vaccines across the world30. The Government of India
(GOI) has also taken initiatives to bear the entire cost of
vaccination and ensure mass immunization at nominal price31.
The Global Alliance for Vaccines and Immunizations (GAVI)
has estimated an expenditure of $1.4 billion to $1.8 billion
on part of India (the second most populous country after
China) for the first phase vaccination, even after support
from the COVAX facility32. Moderna vaccine, apart from its
cold requirement, is highly priced (at $10–450 per dose),
which might be difficult to cater to the Indian population.
However, aid from COVAX alliance and Government may help
Moderna reduce its cost for India. Covishield and COVAXIN
are reasonably priced with respect to the Indian scenario.
Covishield have been priced at $3 per dose for government
and approximately, $10 for private entities. Because of their
local origin and normal refrigeration temperatures, these two
vaccines will be easy for handling and supply chain distribution
in India33,34.

COVID-19 mass vaccination drive in India shall soon be
initiated with 30 crore people receiving the vaccines in the first
phase. Healthcare workers, frontline workers and individuals
aged above 50 will be vaccinated first according to the
recommendations of the National Expert Group on Vaccine
Administration for COVID-19 (NEGVAC). In this regard, the
COVID Vaccine Intelligence Network (Co-WIN) system has
been developed as a digital platform for registration and real time
monitoring of vaccination to pre registered individuals in India35.

Neutralizing Antibodies: Another
Approach
Neutralization of the virus by antibodies is an important
strategy for containing SARS-CoV-2. In SARS-CoV, the RBD122

29https://Health.Economictimes.Indiatimes.Com/News/Pharma/Ramping-
up-Cold-Storage-Facilities-Critical-as-India-Preps-for-Covid-19-Vaccine-
Experts/78550153
30https://Www.Who.Int/Emergencies/Diseases/Novel-Coronavirus-2019/Covid-
19-Vaccines
31https://Www.Livemint.Com/Budget/News/Govt-Will-Bear-the-Entire-Cost-of-
Covid-19-Vaccination-Guleria-11608563339012.html
32https://Science.Thewire.In/Health/India-Covid-19-Vaccine-First-Phase-1-8-
Billion/
33https://indianexpress.com/article/explained/coronavirus-vaccines-india-
covishield-bharat-biotech-covaxin-7131057/
34https://Timesofindia.Indiatimes.Com/Life-Style/Health-Fitness/Health-
News/Coronavirus-Vaccine-Can-India-Get-Its-Hands-on-Modernas-Covid-
19-Vaccine-3-Challenges-We-Have/Photostory/79411299.Cms?Picid=79411390
35https://Www.Livemint.Com/News/India/India-S-Covid-19-Vaccination-Drive-
to-Start-Soon-Registrations-Details-to-Guidelines-All-You-Need-to-Know-
11608363252706.html

(amino acids 318 to 510) of the S protein is primarily being
targeted by neutralizing antibodies (Wong et al., 2004). The
RBD of SARS-CoV and SARS CoV-2 are poorly conserved,
so the majority of the monoclonal antibodies to SARS-CoV
do not bind with or neutralize SARS CoV-2 (Wang et al.,
2020a). Therapeutic monoclonal antibodies to SARS CoV-2
are being developed with the aid of phage library display,
cloning of human B cell sequences from recovering patients
and mouse immunization and hybridoma isolation. Anaïve
semi synthetic library has been used to identify the anti-SARS-
CoV-2 RBD human monoclonal antibody. This approach holds
promise since the entire RBD remains conserved as of now
(Parray et al., 2020). However, caution must be exercised, since
animal studies of SARS CoV infection show that neutralizing
antibodies to S protein may increase lung injury by aggravating
inflammatory responses (Liu et al., 2019). Anti-S-IgG mediated
proinflammatory responses occur due to binding of virus-anti-S-
IgG complex with the Fc receptors (FcR) present on monocytes
and macrophages (Liu et al., 2019). In addition, virus-anti-S-IgG
complex may trigger the classical complement pathway leading
to cellular damage.

Indian Government Initiatives and
Strategies to Combat COVID-19
Personal Protective Equipment
Personal Protective Equipment (PPE) including face piece
respirators, gloves, shoe covers and face shields are necessary
for the protection of health workers from infection36. N95
respirators, surgical masks or cloth masks are recommended
to prevent respiratory transmission. Cloth masks may possibly
be cost-effective in preventing community transmission in
densely populated Asian countries (Sra et al., 2020). Unlike
N95 respirators, simple cloth and surgical masks are non-
disposable and can be potentially decontaminated routinely using
alcohol/detergent washing, and moist heat treatment (Viscusi
et al., 2009). To prevent contact transmission, disposable gloves
are recommended for patient examination. Government of
India is funding enterprises and enabling transfer of advanced
technology for increased PPE production37. However, supply of
raw materials may be dependent on import and could be a bottle
neck for large scale production in India (Feinmann, 2020).

Disinfection Instruments
COVID-19 may potentially remain transmissible on inanimate
surfaces up to several days. Effective disinfection could be
achieved using biocidal chemicals such as 70% ethanol, 0.1%
aqueous sodium hypochlorite and 0.5% hydrogen peroxide
solutions (Kampf, 2020; Kampf et al., 2020). 60–70% ethanol
is recommended for sterilizing high-end biomedical equipment,
while 0.1% aqueous sodium hypochlorite could be a viable
solution for decontamination of large areas such as mass
transit systems, hospital outdoors etc. Scientists from the

36https://www.health.state.mn.us/facilities/patientsafety/infectioncontrol/ppe/
index.html
37https://www.investindia.gov.in/siru/personal-protective-equipment-india-INR-
7000-cr-industry-in-the-making
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Council of Scientific and Industrial Research (CSIR), India have
claimed to develop a spraying procedure by using induction
charged electrostatic spraying apparatus involving lower amounts
of chemicals, charge based disinfection and large coverage
in comparison with conventional high-volume sprayers38,39

(Lyons et al., 2011). In line with other countries, drone-based
disinfection methods have been proposed by Indian enterprises40.
Concern about the potential hazards of inhaling the aerosolized
disinfectants still poses a challenge for large area disinfection
(Kim et al., 2020).

Biomedical Equipment
Various medical equipment such as ventilators, sensor
equipments including pulse-oximeter, infrared thermometer,
multi parametric photo plethysmography (PPG) sensor,
portable X-ray machine, fiberoptic bronchoscopes, video
laryngoscopes, are required in monitoring and treatment of
COVID-19 patients (Wax and Christian, 2020). The ventilator
is a crucial equipment for critically ill patients with respiratory
problems (Iyengar et al., 2020). Ventilators are costly (∼$30,000)
and there is a world-wide shortage of ventilators during
the pandemic. India alone has a requirement for tens of
thousands of ventilators41. There is global endeavor to enhance
production, lower cost and find alternatives. Engineers from
Rail Coach Factory have claimed production of a low-cost
prototype ventilator42. Scientists at the CSIR laboratories are also
developing 3D printed automatic ventilators and mechanical
ventilators43 (Iyengar et al., 2020). An alternative for the
ventilator, “Artificial Manual Breathing Unit (AMBU)” has
been designed by researchers from the Postgraduate Institute
of Medical Education and Research, Chandigarh (Iyengar
et al., 2020). Recently, an Indian manufacturer has reported
production of state-of-the-art ventilator costing less than $2000
(Agrawal, 2020).

Indigenous Medicinal Plants for Combating
COVID-19
Antiviral herbal therapy has made enormous progress in the
past decade (Dhama et al., 2018). Various medicinal plants
and bioactive phyto-metabolites have been widely explored for
effective control of several viral diseases such as influenza,
hepatitis, human immunodeficiency virus (HIV), herpes simplex
virus (HSV) and coxsackievirus infections (Akram et al.,
2018). India harbors a diverse variety of medicinal plants and
herbs with therapeutic potential (Mohanraj et al., 2018). The
major indigenous medicinal plants with immuno-modulatory
properties, which can potentially be explored for their role

38https://Www.Igi-Global.Com/Chapter/Fundamentals-of-Electrostatic-
Spraying/232957
39https://Www.Tribuneindia.Com/News/Nation/Csio-Develops-Electrostatic-
Disinfection-Technology-to-Combat-Covid-78098
40https://Pib.Gov.In/Pressreleasepage.Aspx?Prid=1620351
41https://Www.Medrxiv.Org/Content/10.1101/2020.03.26.20044511v1.Full.Pdf
42https://Www.Tribuneindia.Com/News/Nation/Rail-Coach-Factory-
Kapurthala-Develops-Ventilator-66118
43https://Www.Csir.Res.In/Csir-Labs-Initiatives-against-Covid-19

in boosting immunity and rendering protection from SARS-
CoV-2 infection, have been summarized in Table 5 and
Supplementary Table 7.

The Ministry of Ayush under the Govt. of India has
recommended use of indigenous herbal plants and spices
namely, tulsi, cinnamon, dry ginger, black pepper, turmeric,
coriander, cumin and garlic for enhancing immunity44.
Besides, the Ministry of Ayush has formulated a collection
of four ayurvedic herbs namely, ashwagandha, guduchi,
yasthimadhu, peepli; and a drug named Ayush 64 for combating
COVID-19. The Ministry of Ayush along with the CSIR
have initiated the process of validating the efficacy of these
formulations against COVID-19 in the month of May,
2020 and the outcomes of these trials are expected to be
available soon45,46,47.

Artificial Intelligence in Combating COVID-19
The worldwide outbreak of SARS-CoV-2 has resulted in
a tremendous dearth of clinical equipment. In order to
contain the pandemic effectively, large scale testing and
diagnosis are required. This is evident from the successful
containment of SARS-CoV-2 virus in countries that have
been able to perform mass testing of possibly infected people
and contact tracing. RT-PCR serves as the gold standard
test for validating SARS-CoV-2 infection. Inadequate testing
capability in most countries, along with the high dependency
of the RT-PCR test on the swab technique, has spurred the
need to search for alternative methods that allow COVID-
19 diagnosis.

CT scan in COVID-19
The chest X-ray and thoracic computed tomography (CT) are
examples of easily accessible medical imaging equipment, which
assists clinicians in diagnosis. CT images may serve as a visual
indicator of coronavirus infection for radiologists (Duncan and
Ayache, 2000). While RT-PCR may take up to 24 h and needs
multiple tests for conclusive results, chest CT combined with
certain health symptoms can be used as an effective diagnostic
tool in clinical practice for rapid screening of COVID-19
patients. There is a high chance that COVID-19 patients can
be diagnosed accurately by using chest radiography images (van
Ginneken et al., 2001; Sluimer et al., 2006). However, manual
examination of CT scans for COVID-19 diagnosis is a labor-
intensive and time-taking process. Besides, clinical presentation
of COVID-19 in CT images is similar to other forms of
viral pneumonia, which makes diagnosis even more difficult.
A dependable computer-aided diagnostic system for COVID-19

44https://www.ayush.gov.in/
45https://Newsonair.Nic.In/News?Title=Ministry-of-Ayush%2c-Csir-
Working-Together-on-Validating-Four-Ayush-Formulations-against-Covid-
19&Id=388575 (accessed on June 22, 2020).
46https://timesofindia.indiatimes.com/life-style/health-fitness/home-
remedies/covid-19-ministry-of-ayush-starts-clinical-trials-for-
ashwagandha-and-4-other-ayurvedic-herbs-here-is-what-you-need-to-
know/photostory/75692669.cms
47https://www.hindustantimes.com/india-news/trials-for-4-ayush-
formulations-against-covid-19-to-start-within-a-week-says-minister/story-
XU9RsNDC3vLrFukt3gOApK.html
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TABLE 5 | List of medicinal plants with major immune modulating properties.

Sl.No. NAME OF PLANTS Type of anti viral or immune targeting effects exerted

1. Turmeric Curcumin in turmeric is an immune-modulatory agent.

Has an anti-viral, anti-microbial, anti-inflammatory and anti-oxidant activity.

Reduces pro-inflammatory cytokines like TNF-α, IFN-γ, IL-1 and IL-8 via interaction with signal transducers such as NF-κB,
JAKs/STATSs, MAPKs and β-catenin (Lelli et al., 2017; Kahkhaie et al., 2019).

2. Ashwagandha Activates immune response.

Triggers Th1 cytokines and interferon expression.

Increases expression of co-stimulatory molecules and integrins (Khan et al., 2009).

3. Cinnamon Inhibits allergen specific immune responses.

Protects from systemic inflammation and lung injury by attenuating NLRP3 inflammasome activation (Sharma et al., 2016; Xu et al.,
2019; Ose et al., 2020).

4. Cardamom Has anti-microbial activity (Agnihotri and Wakode, 2010).

Exerts anti-inflammatory effect by inhibiting mediators such as COX2, TNF-α and IL-6 (Majdalawieh and Carr, 2010; Kandikattu
et al., 2017).

5. Holy Basil Exerts anti-inflammatory effects by modulating cellular and humoral immunity.

Elevates IFN-γ and IL-4.

Increases percentages of T-helper cells and NK-cells (Mondal et al., 2011; Kamyab and Eshraghian, 2013).

6. Cumin Thymoquinone in cumin has immuno-modulatory and anti-inflammatory properties. Suppresses inflammation by downregulation of
COX2, IL-6, TNF-α and NO production, and enhancement of IL-10 production.

Modulates cellular and humoral immunity and regulates Th1/Th2 immune response. Enhances NK cell mediated cytotoxicity
(Majdalawieh and Fayyad, 2015; Gholamnezhad et al., 2016, 2019).

7. Neem Has anti-inflammatory, antibacterial and antioxidant effects.

Attenuates release of pro-inflammatory cytokines such as TNF-α and IL-6, thus modulating immune response; inhibits MCP-1
(monocyte chemoattractant protein-1) expression and recruitment of inflammatory cells (Hao et al., 2014; Lee et al., 2017).

8. Saffron Has anti-inflammatory, radical scavenging and immuno-modulatory properties (Bolhassani et al., 2014; Moshiri et al., 2015).

9. Amlaki Has anti-inflammatory and immune-regulating activities.

Promotes NK cell function and Antibody-dependent cellular cytotoxicity (ADCC) (Yang and Liu, 2014).

10. Brahmi Has immunomodulatory effectsHttp://Nopr.Niscair.Res.In/Handle/123456789/41986.

Mediates anti inflammatory effects by preventing the release of pro-inflammatory cytokines such as IL6 and TNF-α from microglial
cells and the immune cells of the brain (Nemetchek et al., 2017).

11. Moringa Activates CD8+ T cells, promotes IL-10, IL-2, IL-6 and TNF-α production (Coriolano et al., 2018).

12. Liquorice Root
(Yashtimadhu)

Glycyrrhizin, the active compound of the liquorice root, inhibits SARS-associated coronavirus replication (Cinatl et al., 2003a).

Reduces virus uptake by host cells (especially in case of influenza virus) (Mousa, 2017).

Glycyrrhizin also stimulates IFN-γ production by T cells.

Exerts anti-inflammatory effects by inhibiting iNOS, COX2, IL-1β, TNF-α, IL-5 and IL-6 or by blocking trans-activation of NF-κB
(Kuang et al., 2018; Fouladi et al., 2019).

13. Shatavari Modulates the Th1/Th2 balance; promotes IgG secretion and IL-12 production; and inhibits IL-6 production (Pise et al., 2015).

14. Coriander Has anti-inflammatory activity and boosts immunity (Li et al., 2016).

15. Kapikacchu (Velvet
Beans)

Modulates immune mediators such as NF-κB, IL-6, IFN-λ, TNF-α, IL-1β, iNOS and IL-2 in the central nervous system (Rai et al.,
2017).

Boosts the innate immune response (Saiyad Musthafa et al., 2018).

16. Ajwain Acts as an anti-inflammatory agent and exerts bronchodilatory effect (Boskabady et al., 2005, 2007; Bairwa et al., 2012).

17. Manjishtha Serves as potential anti-inflammatory agent and immune modulator.

Increases functions of the lymphatic systemHttp://Www.Ijtsrd.Com/Papers/Ijtsrd9616.Pdf (Shen et al., 2018).

18. Bibhitaki Boosts immunityhttps://Www.Netmeds.Com/Health-Library/Post/Bibhitaki-5-Ways-This-Traditional-Fruit-Boosts-Your-Immunity.

19. Guduchi, Giloy
(Tinospora)

Serves as anti-oxidant and anti-inflammatory agent.

Regulates NF- êB signaling and production of pro-inflammatory mediators (Dhama et al., 2017; Haque et al., 2017).

20. Haritaki Possesses anti-inflammatory and wound healing properties (Ratha and Joshi, 2013).

21. Cinchona Bark Source of chloroquine, a common anti-malarial drug; exerts an effect on SAR CoV-2 by immune modulation and blockage of viral
entry (Lentini et al., 2020).

22. Shatapushpa (Fennel) Suppresses the immune response (Darzi et al., 2018).

Regulates Th17 and Treg immune response (Zhang et al., 2018).

23. Triphala Exerts an anti-inflammatory effect via decreased expression of inflammatory mediators such as IL-17, COX-2, iNOS, TNF-α, IL-1β,
VEGF, IL-6 and RANKL by preventing NF-κB activation (Peterson et al., 2017).

(Continued)
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TABLE 5 | Continued

Sl.No. NAME OF PLANTS Type of anti viral or immune targeting effects exerted

24. Jatiphala (Nutmeg) Has immuno-modulatory functions.

Macelignan in nutmeg has anti-inflammatory property and inhibits Th2 cytokines such as IL-4 (Shin et al., 2013).

25. Jatamansi Has anti-inflammatory, immuno-modulatory and wound-healing properties (Pandey et al., 2013; Han et al., 2017).

26. Vidanga Ameliorates pro-inflammatory cytokines and suppresses TNF-α production (Shirole et al., 2015).

27. Gokshura (Tribulus) Can reduce inflammation and fibrosis in the lungs by lowering the expression of IL-6, IL-8, TNF-α and TGFβ1 (Qiu et al., 2019).

28. Bhringaraj (Eclipta) Exerts anti-inflammatory effects by regulating the NF-κB pathway and the production of pro-inflammatory mediators (Feng et al.,
2019).

29. Punarnava (Boerhavia) Has anti-inflammatory properties (Mishra et al., 2014).

Punarnavine, an alkaloid in Boerhavia exerts immuno-modulatory activities by reducing TNF-α, IL-1β, IL-6 production, and by
increasing the titer of circulating antibody (Manu and Kuttan, 2009).

30. Bhunimba
(Andrographis)

Has anti-inflammatory and immuno-modulatory effects (Islam et al., 2018).

31. Shankha pushpi (Dwarf
morning glory)

Possesses anti-bacterial and immuno-modulating activity (Nguyen et al., 2016).

32. Vidari (Indian Kudzu) Serves as an immune booster and an anti-inflammatory agent by inhibiting inflammatory mediators such as CRP, NF-κB, COX-2,
iNOS, TNF-α, IL-1β and IL-6 (Maji et al., 2014).

may have huge implication in clinical practice for improving the
detection efficiency while alleviating the radiologist’s workload
(Dong et al., 2020; Shi et al., 2020). COVID-19 lesions in CT
scans have a wide range of presentation in terms of appearance,
size, and location in lungs, so, developing a system using
either classical image processing approaches or conventional
machine learning techniques relying on handcrafted features,
is a challenging task. Recently, artificial intelligence (AI) has
shown promise. It warrants better safety, higher accuracy and
efficacy in imaging compared to the traditional, laborious
imaging workflows. Alongside pioneering the basic clinical
research, AI have enormous application in recent COVID-19
scenario which include provision for well allocated imaging
platform, segmentation of infected and unaffected regions of
lungs, clinical evaluation and diagnosis (Wang J. et al., 2020;
Wang X. et al., 2020).

Role of deep learning
Deep learning technology which lies central to current concept of
Artificial Intelligence has been effective in automated detection
of lung diseases with high diagnostic accuracy. However, there
are challenges when developing AI-empowered deep learning
technologies for COVID-19 screening (Oh et al., 2020; Roy
et al., 2020). Most of the deep learning based methods require
annotating the lesions in CT volumes for effective disease
detection. Annotating lesions and labeling of annotations are
laborious and time consuming, and hence, are not desirable in
times of rapid COVID-19 outbreak and simultaneous shortage
of radiologists. Therefore, the major challenge of AI-empowered
solutions is to determine the potential of a deep learning
model based on patients’ chest CT volumes for automated
and accurate COVID-19 diagnosis. It should require nominal
expert annotation and should be easily trained, which will
be extremely advantageous in developing AI solution rapidly
for COVID-19 diagnosis. Due to the constraints of hardware
resources, a major challenge is to educate a deep learning model
using volumetric CT scans. Another problem is the inter-class

similarity and variation across pneumonia lesions. Finally, the
lung CT scan images from patients with pneumonia harbor
large portions of non-lesion regions, which exhibit wide range
of complex tissue level variations. These non-lesion regions
often exert a negative impact on the overall performance of
AI-based solutions.

Mobile Applications and Social Distancing Strategies
Aarogya Setu has been developed as a digital mobile COVID-19
tracking application, by the National Informatics Centre under
the initiative of the Ministry of Electronics and Information
Technology, Govt. of India, for effective awareness, management
and mitigation of COVID-19 (Kodali et al., 2020)48,49. The
Delhi Government has also launched the Delhi Corona app to
create public awareness regarding availability of hospital facilities
for COVID-19 treatment and also for complaint redressal
regarding refusal to admit COVID-19 patients by hospitals with
available facilities50,51,52. Apart from these mobile applications,
the Govt. of India has promoted strict social distancing to
contain spread of COVID-19 amongst the Indian population
(Paital et al., 2020).

DISCUSSION

The COVID-19 health crisis has created a stir in the whole world
including in India. There has been a global endeavor in terms
of disease diagnosis, drug repurposing and vaccine development

48https://en.wikipedia.org/wiki/Aarogya_Setu
49https://static.mygov.in/rest/s3fs-public/mygov_159056978751307401.pdf
(retrieved on June 23, 2020).
50https://www.ndtv.com/india-news/arvind-kejriwal-launches-delhi-corona-app-
for-information-on-availability-of-hospital-beds-in-delhi-2239276
51https://indianexpress.com/article/explained/delhi-corona-mobile-application-
covid-19-6438796/
52https://Www.Thehindu.Com/News/Cities/Delhi/Kejriwal-Launches-
Delhi-Corona-App-for-Real-Time-Information-on-Availability-of-Hospital-
Beds/Article31729239.Ece (retrieved on June 23, 2020).
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to combat this pandemic. In addition to actively participating in
these efforts to improve therapeutics and vaccine development
against SARS-CoV-2; the Government of India has taken several
initiatives and measures to further contain the disease. The total
numbers of active cases in India reached a peak in the month
of September, 2020 and have reduced subsequently. Although
there have been 148,774 deaths in India till December 30, 2020;
the recovery rate of COVID-19 patients in India has increased
to about 98.51% as on December 30, 2020 (see text footnote 8).
COVID-19 infection may exert detrimental long term effects on
organs such as lungs, liver, kidney, brain. and heart (Heneka
et al., 2020). These may even last after recovery from COVID-
19 and lead to life-threatening health issues53. Several clinical
parameters such as blood levels of inflammatory mediators,
neutrophil to lymphocyte ratio (NLR) and CT scan severity
score have been evaluated for highlighting disease progression
and the risk for development of post recovery complications
such as pulmonary fibrosis, ARDS, neurological disorder or even
multi-organ failure (Feng et al., 2020). Identification of blood
borne easily detectable biomarkers could potentially stratify
COVID-19 based on its severity and enable early prediction of
progression to post recovery complications, thereby leading to
better post COVID care and effective control of deaths due to
such complications.
53 https://Www.Thehindu.Com/Sci-Tech/Health/the-Hindu-Explains-What-Are-
the-Long-Term-Effects-of-Covid-19/Article32651206.Ece
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The heavy burden imposed by the COVID-19 pandemic on our society triggered the
race toward the development of therapies or preventive strategies. Among these,
antibodies and vaccines are particularly attractive because of their high specificity, low
probability of drug-drug interaction, and potentially long-standing protective effects.
While the threat at hand justifies the pace of research, the implementation of therapeutic
strategies cannot be exempted from safety considerations. There are several potential
adverse events reported after the vaccination or antibody therapy, but two are of utmost
importance: antibody-dependent enhancement (ADE) and cytokine storm syndrome
(CSS). On the other hand, the depletion or exhaustion of T-cells has been reported to
be associated with worse prognosis in COVID-19 patients. This observation suggests
a potential role of vaccines eliciting cellular immunity, which might simultaneously
limit the risk of ADE and CSS. Such risk was proposed to be associated with FcR-
induced activation of proinflammatory macrophages (M1) by Fu et al. (2020) and Iwasaki
and Yang (2020). All aspects of the newly developed vaccine (including the route of
administration, delivery system, and adjuvant selection) may affect its effectiveness and
safety. In this work we use a novel in silico approach (based on AI and bioinformatics
methods) developed to support the design of epitope-based vaccines. We evaluated
the capabilities of our method for predicting the immunogenicity of epitopes. Next, the
results of our approach were compared with other vaccine-design strategies reported in
the literature. The risk of immuno-toxicity was also assessed. The analysis of epitope
conservation among other Coronaviridae was carried out in order to facilitate the
selection of peptides shared across different SARS-CoV-2 strains and which might be
conserved in emerging zootic coronavirus strains. Finally, the potential applicability of
the selected epitopes for the development of a vaccine eliciting cellular immunity for
COVID-19 was discussed, highlighting the benefits and challenges of such an approach.
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INTRODUCTION

As of August 6, 2020, more than 19 million cases of COVID-19
were reported worldwide, leading to more than 700 thousands
deaths1. The disease was first recorded on December 26,
2019, when a 41-year-old patient with no history of hepatitis,
tuberculosis, or diabetes was hospitalized at the Central Hospital
of Wuhan due to respiratory problems (Wu F. et al., 2020). The
metagenomic RNA sequencing of bronchoalveolar lavage (BAL)
fluid sample obtained from that patient led to the identification
of the seventh coronavirus (CoV) strain known to infect humans.

Coronaviruses are well known human respiratory pathogens
associated with the common cold. Until the 21st century they
were neglected by the medical world, but the emergence and
subsequent spread of the SARS-CoV in the 2002/2003 season
raised interest in this virus family and increased awareness of the
potential threat. At present, there are four seasonal coronaviruses
infecting humans and they cluster within alphacoronaviruses
(HCoV-NL63, HCoV-229E) and betacoronaviruses (HCoV-
OC43, HCoV-HKU1) genera. Further, three zoonotic strains
were reported – severe acute respiratory syndrome coronavirus
(SARS-CoV; 2002–2003), the Middle East respiratory syndrome
coronavirus (MERS-CoV; 2012-), and SARS-CoV-2 (2019-), all
of which belong to the betacoronavirus genus (Wu A. et al.,
2020). The highly pathogenic species cluster in two subgenera –
sarbecoviruses (SARS-CoVs) and merbecoviruses (MERS-CoVs)
(Hu et al., 2018; Wu F. et al., 2020; Zhou et al., 2020).

While generally, viruses infect one host, some have broader
specificity or can cross the interspecies borders, causing
outbreaks, epidemics, and pandemics. In this context, it is worth
mentioning viruses like the Ebola virus, dengue fever virus, Nipah
virus, rabies virus, or Hendra virus. However, these are well
known and long studied animal viruses that only sometimes
enter the human population. Coronaviruses are slightly different,
as among the myriads of viral species and subspecies found
in animals, it is unlikely to predict the place, the time, and
the genotype of the coronavirus that will emerge. The classic
transmission route of these viruses encompasses the spillover of
the bat species to wild or domesticated animals, rapid evolution in
this intermediate host, and subsequent transmission to humans.
Coronaviruses emerge at different sites of the globe where the
interaction between humans and animals is broad, such as the
Asian wet markets and the dromedary camel farms in the Arabian
peninsula. While these high-risk regions were identified, the next
spillover may occur in Europe or the Americas, as sarbecoviruses
are prevalent around the globe (Andersen et al., 2020).

The coronavirus genome is a single-stranded RNA of positive
polarity, which ranges in size from 26,000 up to 32,000 bases.
Two-thirds of the genome on the 5′ end are occupied by two
large open reading frames (ORFs) that may be read along
due to the ribosomal slippery site. The resulting polyprotein
undergoes subsequent autoproteolysis, and the matured proteins
form the complete replicatory machinery and re-shape the
microenvironment of the infection. Downstream of the 1ab
ORFs, a number of ORFs are found that encode structural

1https://coronavirus.jhu.edu/map.html

and accessory proteins (Cui et al., 2019; Song et al., 2019).
Four major structural proteins are: spike surface glycoprotein
(S), envelope protein (E), membrane glycoprotein (M), and
nucleocapsid phosphoprotein (N). Of them the S protein is the
primary determinant of the species and cell tropism, interacting
with the receptors and co-receptors on the host cells (Li, 2016;
Zhu et al., 2020).

Evolutionary studies indicate that CoV genomes display high
plasticity in terms of gene content and recombination (Forni
et al., 2016). The long CoV genome expands the sequence space
available for adaptive mutations, and the spike glycoprotein used
by the virus to engage target cells can adapt with relative ease
to exploit homologs of cellular receptors in different species.
While coronaviruses are rapidly evolving, their mutation rate is
lower than expected for an RNA virus. The large genomes require
proofreading machinery to maintain their functions, and proteins
required for such activity are among the 1a/1ab proteins.

While sarbecoviruses and merbecoviruses are associated with
severe, potentially lethal diseases and are known for their
epidemic potential in humans and animals, several years of
research did not allow for the development of effective and
safe vaccines. In addition to the high variability and ability
to elude immune recognition, there are several aspects to be
considered. First, the antibody-dependent enhancement (ADE)
of the infection was previously reported for some coronaviruses,
including sarbecoviruses. ADE is based on the fact that the
virus exploits non-neutralizing antibodies to enter the host’s
cells utilizing the Fc receptor (FcR). The ADE phenomenon was
originally observed for antibodies specific to certain dengue virus
serotypes developed after a primary infection. During subsequent
dengue infections, caused by a different virus serotype, these
antibodies were able to recognize the virus but were not capable of
neutralizing it. Instead, antibodies bridged the dengue virus and
the Fc receptors of the immune cells, such as macrophages and
B-cells, mediating viral entry into these cells and transforming
the disease from a relatively mild illness to a life-threatening
infection. A similar mechanism was later observed for HIV and
Ebola infections (Takada et al., 2003, 2001; Guzman et al., 2007;
Whitehead et al., 2007; Beck et al., 2008; Dejnirattisai et al.,
2010; Willey et al., 2011; Katzelnick et al., 2017). Importantly,
ADE has also been reported for some coronaviruses. The best-
documented ADE cases are associated with feline infectious
peritonitis virus. It was shown that immunization of cats with
feline coronavirus spike protein leads to increased severity during
future infections due to the induction of infection-enhancing
antibodies (Corapi et al., 1992; Hohdatsu et al., 1998). Further,
some studies show that antibodies induced by the SARS-CoV
spike protein enhance viral entry into FcR-expressing cells (Kam
et al., 2007; Jaume et al., 2011; Wang et al., 2014). It was confirmed
that this Abs-dependent SARS-CoV entry was independent
of the classical ACE2 receptor-mediated entry (Jaume et al.,
2011). A recent study investigated the molecular mechanism
behind antibody-dependent and receptor-dependent viral entry
of MARS-CoV and SARS-CoV pseudoviruses in vitro (Wan et al.,
2019). The authors demonstrated that MERS-CoV and SARS-
CoV neutralizing monoclonal antibodies (mAbs) binding to the
receptor-binding domain region of the respective spike protein
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were capable of mediating viral entry into FcR-expressing human
cells, confirming the possibility of coronavirus-mediated ADE.
Given the critical role of antibodies in host immunity, ADE
causes serious concerns in epidemiology, vaccine design, and
antibody-based drug therapy.

The consequences of ADE may be dramatic, as it may
cause lymphopenia and induce or increase the frequency of the
cytokine storm syndrome (CSS). This may result directly from
the active infection of immune cells, which in response produce
large amounts of the inflammatory markers or indirectly,
when virus-antibody complex binds to FcR and activates pro-
inflammatory signaling, skewing macrophages responses to the
accumulation of pro-inflammatory M1 macrophages in lungs.
The macrophages secrete inflammatory cytokines, such as MCP-1
and IL-8, which lead to worsened lung injury (Fu et al.,
2020). In both animal models and patients who eventually
died from SARS, extensive lung damage was associated with
high initial viral loads, increased accumulation of inflammatory
monocytes/macrophages in the lungs, and elevated levels of
serum pro-inflammatory cytokines and chemokines (IL-1, IL-6,
IL-8, CXCL-10, and MCP1) (Channappanavar et al., 2016).
Moreover, during the SARS-CoV outbreak in Hong Kong
(2003–2004), 80% of the patients developed acute respiratory
distress syndrome after 12 days from the diagnosis, coinciding
with IgG seroconversion (Peiris et al., 2003). Another study by
Huang et al. (2020) highlighted an increased release of IL-1β,
IL-4, IL-10, IFNγ, MCP-1, and IP-10 in COVID-19 patients.
Interestingly, compared with non-severe cases, severe patients in
the intensive care unit showed higher plasma concentrations of
TNFα, IL-2, IL-7, IL-10, MIP-1A, MCP-1, and G-CSF, supporting
the hypothesis of a possible correlation between CSS and severity
of the disease. An extensive study done by Liu et al. (2019)
demonstrated that anti-spike IgGs enhanced the induction of
pro-inflammatory cytokines (i.e., IL-6, IL-8, and MPC-1) in
Chinese rhesus monkeys through the stimulation of alternatively
activated monocyte-derived macrophages (MDM) upon SARS-
CoV rechallenge. The presence of high MDM infiltrations
was shown by histochemical staining of the lung tissue from
3 deceased SARS patients. The blockade of Fc-receptors for
IgG (FcγRs) reduced proinflammatory cytokine production,
suggesting a potential role of FcγRs for the reprogramming
of alternatively activated macrophages. Putting these results in
the context of other works in literature (Pahl et al., 2014), one
has to consider that anti-S IgG may promote pro-inflammatory
cytokine production and, consequently, CSS development.

Taking into account the risk associated with the improper
humoral response and high variability of sites targeted by
the neutralizing antibodies, together with the low effectiveness
of IgG-mediated immunity during mucosal infection, it is of
importance to consider the anticoronaviral vaccine in a broader
perspective. This may include alternative delivery systems/routes
based on, e.g., virus-like particles and intranasal delivery
for the IgA mediated response, but it is also important to
consider combining the humoral response with the cell-mediated
response. Ideally, such an approach might allow for the design
of a vaccine carrying carefully selected epitopes to induce only
the neutralizing antibodies and epitopes targeted for induction

of the cellular response. While neutralizing antibodies impair
the virus entry, activated CD8+ cytotoxic T-cells can identify
and eliminate infected cells. Moreover, CD4+ helper T-cells are
required to stimulate the production of antibodies. Antibody
response was found to be short-lived in convalescent SARS-CoV
patients (Tang et al., 2011) in contrast to T-cell responses, which
have been shown to provide long-term protection (Peng et al.,
2006; Fan et al., 2009; Tang et al., 2011), up to 11 years post-
infection (Ng et al., 2016). The activation of CD8+ cytotoxic
T-cells capable of recognizing and destroying infected cells
represents a crucial second line of defense against the virus
that should be considered. The importance of both CD8+ and
CD4+ T-cell activation has been reported in several SARS-CoV
studies for both animal models and humans (Channappanavar
et al., 2014). Moreover, several recent studies indicate a strong
correlation between the reduction of lymphocyte counts (CD4+
and CD8+) and the severity of COVID-19 cases (Chen et al.,
2020; Liao et al., 2020; Wan et al., 2020).

The selection of epitopes capable of eliciting either B-cell or
T-cell responses is a critical step for the development of subunit
vaccines. Most of the efforts in this area are directed toward
the stimulation of neutralizing antibodies, whereas the cellular
immune response is less explored. Considering the importance
of T-cell activation for vaccine efficacy, the focus of the work
here presented is on the latter. Despite the apparent similarity
between SARS-CoV and SARS-CoV-2, there is still a considerable
genetic variation between these two. Thus, it is not trivial to
assess if epitopes eliciting an immune response against previous
coronaviruses are likely to be effective against SARS-CoV-2, with
the exception of identical peptides shared among subgenera.
A restricted list of SARS-CoV epitopes identical to those present
in SARS-CoV-2 and resulting positive in immunoassays, has
been recently reported (Ahmed et al., 2020). Nonetheless, the
29 T-cell epitopes described therein are mostly limited to S, N,
and M antigens and encompass an exiguous number of Class
I Human Leukocyte Antigen (HLA) alleles. In order to extend
the search area to other epitopes, computational predictive
models might be applied. Methods for the selection of vaccine
peptides are typically based on the predicted binding affinity
(or probability of presentation on the cell surface) of peptide-
HLA (pHLA) complexes or defined by the physicochemical
properties of the peptides (Baruah and Bose, 2020; Grifoni
et al., 2020; Lee and Koohy, 2020). These methods take into
account only restricted parts of processes contributing to the
final immunogenicity of an epitope, and thus their prediction
capabilities are limited. In addition to pHLA binding, proteasome
cleavage, pHLA loading, and presentation, as well as direct
activation of CD8+ T-cell to the pHLA complex should be
taken into account.

Here, we use a machine learning model for the prediction of
epitope immunogenicity. The model is trained on data including
the experimental T-cell immunogenicity data of viral epitopes.
We validate our model on publicly available immunogenicity
data of epitopes from the Coronaviridae virus family (held out
from training). Assessment of the risk of immuno-toxicity and
the analysis of epitope conservation among different strains
are also performed.
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MATERIALS AND METHODS

Presentation Data
A curated dataset containing peptides presented by class I
HLAs on the surface of host cells was extracted from publicly
available databases (Abelin et al., 2017; Di Marco et al., 2017;
Sarkizova et al., 2020). The presentation of each peptide
within the dataset was experimentally confirmed by mass-
spectroscopy experiments. All peptides were of human origin
and were presented on the surfaces of monoallelic human
cell lines (see Figure 1 and Table 1). Synthetic negative data
(non-presented peptides) were also prepared based on human
proteome (GRChg38, release 98).

Immunogenicity Data
All peptides collected from the IEDB database (Vita et al.,
2019) were of viral origin and were confirmed in experimental
immunoassays. Similar data were extracted from selected
publications (Wang et al., 2004; Chen et al., 2005; Tsao et al.,
2006; Liu et al., 2010; Zhang, 2013; Ogishi and Yotsuyanagi,
2019). The number of pHLAs (per immunoassay category) used

FIGURE 1 | Venn diagram showing the number of unique and common
peptides among datasets.

TABLE 1 | The total number of pHLAs included in our model from each dataset.

Source publication No. pHLAs

Abelin et al. (2017) 22,999

Di Marco et al. (2017) 22,889

Sarkizova et al. (2020) 146,739

for training is given in Table 2. Most of the peptides were
obtained from human hosts, with a minority obtained from
transgenic mice. Only peptides containing 8–11 amino acids were
included in the analysis. In some cases, multiple experimental
settings and protocols were used to validate immunogenicity
for a given pHLA, occasionally leading to non-consensual
results. Each pHLA was considered immunogenic if at least one
experiment conducted on human cells positively confirmed that
immunological event. If no experiments conducted on human
cells were available, the pHLA was considered immunogenic,
if at least one such confirming experiment was conducted in
transgenic mice. The remaining pHLAs were used as negative
examples. From this dataset we held out the Coronaviridae family
as a separate test set.

Predictive Model Design
Our computational methods are based on machine learning
and predict (1) the probability of pHLAs to be presented on
the host’s cell surface and (2) the immunogenicity of such
complexes. The model for pHLA presentation is based on
artificial neural networks and has been trained on a curated
collection of peptide presentation data (Abelin et al., 2017; Di
Marco et al., 2017; Sarkizova et al., 2020). Both peptide sequence
and HLA type were taken into consideration as separate inputs.
We use bootstrapping and select 80% of positive examples during
training with the remaining ones used for early stopping. We then
ensemble the results of a collection of 27 such neural networks.
Our model is pan-specific and can be used to generate predictions
for any peptide and any canonical class I HLA (i.e., A, B, and C).
Note, that the accuracy of our method depends on the considered
HLA type, as in the case of other machine learning methods for
predicting pHLA properties.

The model mentioned above was also used as a starting point
for training the immunogenicity model. The latter was fine-
tuned using the viral peptide immunogenicity data collected
from IEDB (Vita et al., 2019) and Ogishi and Yotsuyanagi
(2019). The immunogenicity model was validated using a Leave
One Group Out (LOGO) cross-validation scheme with groups
defined by viral families. The final model is an ensemble of 11
models – one per each LOGO split. An additional group “others”
was defined by aggregating data from viruses that belong to
several families, having a small number of observations. Such
an approach provides data splits according to the virus families
and leads to a better measure of performance on virus families
not seen in training (e.g., Coronaviridae). Moreover, it reveals
the differences in model performance on various virus families.

TABLE 2 | The number of pHLA complexes used for training per
immunogenic assay group.

Source publication Negative Positive

IFN(γ) 23,249 2,598

Cytotoxicity 218 524

Proliferation 7 34

cytokines/chemokines 0 13

TNF(α) 1 8
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FIGURE 2 | The number of pHLA complexes with confirmed immunogenicity in the curated database per virus family (logarithmic scale). Families counting less than
55 observations are aggregated in the “other” group.

The final predictions of our model (called ArdImmune Rank) are
obtained by combining the predictions of both models (i.e., the
pHLA presentation and the immunogenicity model).

Both models were implemented in Python 3.7 using the
keras 2.4.3 package, which is a high-level API of TensorFlow.
For our usage TensorFlow with GPU support was deployed,
i.e., tensorflow-gpu 2.2.0. For GPU-based computations we used
cudnn 7.6.5 and cudatoolkit 10.2.89 and a machine equipped with
NVIDIA Tesla V100 GPU card with CUDA R© 7.0 architecture,
640 Tensor Cores, 5,120 CUDA R© Cores and 32 GB HBM2 GPU
Memory. Additionally, scikit-learn, pandas, and numpy were used
to perform standard machine learning tasks while images were
produced using matplotlib and seaborn.

Validation Scheme
In order to validate the ArdImmune Rank model over different
virus families not seen during the training procedure, a LOGO
strategy was applied. The peptides associated with coronaviruses
were held out from the dataset and left for testing purposes
only. At each LOGO iteration, the dataset was split into training
and validation sets, and the model was tested accordingly.
Peptides within the training set highly similar to the ones in the
validation set were removed from the training set. The similarity
of peptides was assessed using a clustering algorithm classifying
their sequences into groups of peptides sharing a common root
(differing only by short prefixes or suffixes of lengths of at most
three amino acids). The number of pre-processed peptides in

each group is given in Figure 2. Finally, the immunogenicity
model (an ensemble of 11 models from the LOGO scheme) was
validated on the held-out Coronaviridae dataset.

SARS-CoV-2 Data Analysis
Selection of HLA Alleles
Class I HLA types were chosen based on their frequency
of occurrence in the United States and Europe. HLA-allele
frequency data were downloaded from2, accounting for all the
populations within the regions of choice and all ethnicities.
The overall frequency for each allele was computed as the
weighted average with weights corresponding to the size of
each population, separately for the United States and Europe,
encompassing all ethnic populations. All HLA-alleles with
frequency ≥ 0.01 were chosen for the study.

Toxicity/Tolerance Evaluation
In order to evaluate the risk for a given pHLA to be cross-
reactive or tolerogenic with respect to self-epitopes within the
human proteome, a procedure for the evaluation of potential
toxicity/tolerance was implemented. Initially, each SARS-CoV-
2 peptide was queried against the reference human proteome
(GRChg38, release 100) using the BLASTp algorithm and a
BLOSUM45 substitution matrix. All matches with E-values less
than or equal to four were included in the analysis. The selected
peptides are available in Supplementary Data 1.

2http://www.allelefrequencies.net/
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Selection of Peptides
The dataset consisting of SARS-CoV-2 peptides was generated
according to the following procedure: (1) all the reference
sequences of the virus proteins were collected from the NCBI
database3, (2) from each protein, all possible peptides of length
8–11 amino acids were selected. In addition, for proteins encoded
by the ORF1a and ORF1ab genes (i.e., pp1a, pp1ab, respectively),
the peptides within the cleavage sites were excluded. Finally, all
the peptide duplicates were removed from the dataset. A total of
47,612 peptide sequences were collected.

Estimation of SARS-CoV-2 Genome
Diversity
The analysis of conservation of SARS-CoV-2 genomic sequences
was performed using 8,639 complete genomic sequences
obtained from the GISAID database4 and GenBank5. All
sequences were aligned to the SARS-CoV-2 reference genome
(NCBI Reference Sequence: NC_045512.2). The R DECIPHER
package (Wright, 2015) v2.14.0 was used to perform the
multiple sequence alignment (MSA) of long SARS-CoV-2
whole genome sequences. The following parameters were
applied: AlignSeqs(sequences, iterations = 2, refinements = 1,
gapOpening = c(−18, −16), gapExtension = c(−2, −1),
FUN = AdjustAlignment, processors = 18). In order to align short
sequences with partial fragments of the SARS-CoV-2 genome,
the R Biostrings v2.54.0 package was used, adopting the following
parameters: Biostrings:pairwiseAlignment(pattern = sequences,
subject = reference_genome, type = “local,” and scoreOnly = F).
Next, all the nucleotides within the coding cDNA sequence
(CDS) regions of the reference genome were translated
into amino acids using the translate function available
in the R Biostring package v2.45.0 (Pagès and DebRoy,
2020) with the following parameters: Biostrings:translate
[DNAStringSet(sequences), if.fuzzy.codon = “solve”]. The
Standard Genetic Code provided by default was used for the
encoding. All the fuzzy codons were marked as unknown amino
acids by setting the if.fuzzy.codon = “solve” parameter. For each
protein, all sequences containing indels or being inconveniently
aligned were removed. Inconvenient sequences include those
having short reading frameshifts, marked as transcription
artifacts. Mutation frequencies for both long and short genomics
fragments were computed for each amino acid in the SARS-CoV-
2 proteome. The mutation frequency of each amino acid was
defined as the ratio between the number of translated protein
sequences containing the mutation and the number of sequences
containing a valid nucleotide (sequences containing unknown
nucleotides in this position were excluded). The maximum
mutation frequency score for each peptide was computed as the
maximum value of the mutation frequency scores among all
amino acid positions of the peptide. Mutation frequency values
for all positions within SARS-CoV-2 proteome are available in
Supplementary Data 2.

3https://www.ncbi.nlm.nih.gov/search/all/?term=SARS-CoV-2
4https://bigd.big.ac.cn/ncov/release_genome?lang=en
5https://www.ncbi.nlm.nih.gov/genbank/sars-cov-2-seqs/

Datasets for External Comparison
In order to highlight similarities and differences of our approach
with respect to other methods, we compare the scores of our
model with scores relative to the same pHLAs reported in a list of
selected studies. A peptide missing from the reference proteome
(“QSADAQSFLNR”) was removed. Only peptides between 8 and
11 amino acids were considered. The peptides arising from the
cleavage sites of the ORF1a/ab polyprotein were also removed
from the datasets. These sites are defined as nucleic acids within
the NCBI reference sequence: NC_045512.2 but outside the range
of the ORF1a/ab coding sequences.

The ORF1a and ORF1ab cleavage sites were corrected for
reading frameshift which occurs for ORF1ab (as opposed to
ORF1a), when independently translating RNA polymerase and
nsp11, respectively.

1. Baruah and Bose (2020): Five epitopes from the surface
glycoprotein of SARS-CoV-2 and their corresponding
HLA class I supertype representative were reported
by the authors (Table 1 in the reference publication).
Bioinformatics protocols, machine learning methods, and
structural analysis were applied in the original paper for the
selection of these pHLAs.

2. Lee and Koohy (2020): 19 A∗02:01 restricted epitopes
were selected applying TCR-specific Position Weight
Matrices (PWM) previously published by the authors.
The geometric mean of the three scores was used as
an estimator for immunogenicity (Tables 4, 5 in the
reference publication).

3. Grifoni et al. (2020):

a. 1st dataset: 386 SARS-CoV-2 CD8+ predicted
epitopes were collected (Supplementary Table 6 in
the reference publication) and 41 peptides were
excluded as a result of our filtering procedure.

b. 2nd dataset: 28 SARS-CoV-2 CD8+ epitopes
mapped to immunodominant SARS-CoV epitopes
were selected (Table 5 in the reference publication).
One peptide was excluded as a result of our filtering
procedure.

4. Gupta et al. (2020): 10 HLA-A∗11:01 restricted peptides
from the surface glycoprotein of SARS-CoV-2 were
selected by the authors (Table 4 in the reference
publication). Bioinformatics protocols, machine learning
methods, and structural analysis were used for the selection
of those pHLAs. A candidate with an optimal docking
score is reported.

5. Prachar et al. (2020): 138 peptides with pHLA complex
stability measurements performed using Immunotrack’s
NeoScreens R© assay were made available by the
authors. A peptide absent in our dataset was excluded
from the comparison.

6. Rammensee et al. (2020): 5 HLA class I peptides were used
by the authors for the experimental vaccination of self-
experimenting healthy volunteers. IFNγ ELISPOT assays
for the measurement of CD8+ activation were negative for
all these peptides.
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FIGURE 3 | Predictive performance of the selected models on the Coronaviridae dataset. ArdImmune Rank, blue bars; MHCflurry, orange bars. netMHCpan, green
and red bars for the predicted binding affinity (BA) and ligand likelihood (EL); IEDB immunogenicity, purple bars.

7. Smith et al. (2020): Predictions for ∼615 k peptides were
extracted from the Supplementary Table 1 of the reference
publication. Approximately 7,600 peptides were excluded
as a result of our filtering procedure.

The ArdImmune Rank percentile rank for the pHLAs des-
cribed in the above datasets was computed for groups of peptides
according to their HLA allele. Only pHLAs with a binding affinity
percentile rank score < 0.02 (computed using NetMHCpan 4.0)
were considered. The predictions were calculated separately for
peptides of structural and non-structural origin.

RESULTS

Model Performance
The performance of our method on the test set encompassing
Coronaviridae epitopes (excl. SARS-CoV-2 epitopes) is shown
in Figure 3. In addition, the results of our approach are
compared to those obtained by other commonly used pHLA
binding affinity and pHLA presentation probability predictors,
namely netMHCpan 4.0 (Jurtz et al., 2017) and MHCflurry
(O’Donnell et al., 2018), as well as the IEDB immunogenicity
predictor, version 3.0 (Calis et al., 2013). For both binding affinity
tools [MHCflurry and netMHCpan (BA)], the binding affinity
predictions in nanomoles (nM) are converted into (0, 1) range
with a widely used logarithmic transformation [i.e., first the
predictions are bounded from above by 50,000 nM and from
below by 1 nM and then transformed with

(
1− log10x

log1050,000

)
.

The difference in the predictive performance (measured with
ROC AUC) of our model with respect to the other methods is
statistically significant (and ranges from 0.10 to 0.39). Moreover
(as verified on our training dataset across virus families), the high
Pearson correlation between the results produced by the binding
predictors (corr. coeff. ρ = 0.88) and the low correlation of such
results with the predictions of our model (ρ = 0.45 and ρ = 0.53)

demarcate substantial differences between our approach and the
approaches based on those methods for predicting immunogenic
epitopes (see Figure 4).

We apply the LOGO cross-validation scheme according to the
procedure described in the Materials and methods section. While
we observe a significant variation in ROC AUC scores depending
on the tested groups (i.e., virus families), the performance of
each method is not correlated with the number of observations
within each group. The Pneumoviridae family might be an
outlier in our dataset as the predictive performance of all the
considered models are substantially different for this family than
those observed for the other families. Although some groups
display a noticeable correlation between pHLA immunogenicity
and pHLA binding affinity predictions (e.g., Pneumoviridae and
Orthomyxoviridae), this trend is not confirmed across all groups.
The performance (median ROC AUC across virus families) of our
method is comparable to those obtained for binding affinity and
ligand likelihood predictors, usually with a smaller variance of
prediction performance (see Figures 5, 6).

Note that the Coronaviridae dataset (Figure 3) is the most
relevant dataset to the problem at hand, but it also is a very
small dataset containing 67 epitopes. Hence, the variation of
performance of the selected methods is expected to be high
and their performance on the training set (Figures 5, 6) might
be different (note also that in the LOGO validation – in
Figures 5, 6 – we use a single immunogenicity model instead
of 11 models, as in Figure 3). On the other hand, evaluation
on the Coronaviridae dataset might still reflect performance of
the selected methods on the epitopes from the SARS-CoV-2
genome. The dataset encompassing all other virus families used in
our LOGO cross-validation procedure (training dataset) is much
larger, but is also very heterogeneous. For example the Poxviridae
family contains predominantly Vaccinia virus, which is a model
organism with mostly non-immunogenic epitopes reported in
IEDB. Namely, there are 1.6% immunogenic observations in
the Poxviridae family, whereas for Herpesviridae 62% of the
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FIGURE 4 | The pairwise relationships between the predictions of the selected models on the training set – (1) ArdImmune Rank, (2) MHCflurry, (3) netMHCpan (BA),
(4) netMHCpan (EL), and (5) IEDB immunogenicity. Lower triangle – scatterplots with linear regression models fitted (yellow lines) and Pearson’s correlation
coefficients (PCC) that measure linear correlations between two variables. Diagonal and upper triangle – the prediction distributions obtained by kernel density
estimations (1D-KDE and 2D-KDE, respectively).

observations are immunogenic. Moreover, IEDB observations
are very small in size within some families (e.g., Adenoviridae
with N = 58) and much larger in others (e.g., Poxviridae with
N = 21709). In such a situation, the large variance of performance
of predictive methods when evaluated on different viral families
is expected and originates from both the underlying biological
and experimental factors, as well as from the small number of
observations for some virus families.

The model was then used to predict the immunogenicity
of peptides from the SARS-CoV-2 proteome. Target peptides
and HLA types considered for the analysis were selected
according to the procedure described in the “Selection of
peptides” and “Selection of HLA alleles” sections, respectively.
A considerable number of peptides with high scores are observed
in both structural and non-structural proteins, encompassing
different HLA alleles. Structural epitopes are dominated by the
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FIGURE 5 | Predictive performance of the selected models obtained in a LOGO cross validation and measured with ROC AUC. ArdImmune Rank, blue bars;
MHCFlurry, orange bars; NetMHCpan (BA), green bars; NetMHCpan (EL), red bars; IEDB immunogenicity, purple bars.

FIGURE 6 | Predictive performance of the selected models, averaged across virus groups in the training dataset.

Spike protein, whereas the non-structural ones mostly originate
from the ORF1a/ORF1ab-encoded polyproteins. Peptides with
percentile rank ≤ 2 presented across the selected HLAs, were
considered for both structural (Table 3) and non-structural
(Table 4) viral proteins. We noticed that some HLA alleles
exhibit a large number of highly-ranked peptides, in particular
A∗02:01, A∗11:01, A∗24:41 and C∗12:03. Interestingly, the
presence of some of these alleles was earlier reported to be

statistically correlated with the immune protection in SARS
cases. Namely, A∗02:01 was found to present immunogenic
peptides (Ahmed et al., 2020; Lee and Koohy, 2020) whereas
A∗11:01-restricted epitopes were proposed to be included in a
SARS-CoV vaccine by Sylvester-Hvid et al. (2004). Groups of
peptides predicted to be associated with multiple HLAs are shown
in Figure 7. These epitopes originate from both structural and
non-structural antigens.

Frontiers in Genetics | www.frontiersin.org 9 March 2021 | Volume 12 | Article 602196118

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-602196 March 20, 2021 Time: 13:43 # 10

Mazzocco et al. CD8+ Epitopes for SARS-CoV-2 Vaccines

FIGURE 7 | Peptides presented across multiple HLAs. Immunogenicity scores are reported for epitopes from both structural (top) and non-structural (bottom)
proteins. Peptide-HLA combinations marked in gray are predicted non-binders (netMHCpan 4.0 percentile rank > 2). For the remaining pHLAs, the color relates to
the percentile rank of our predictions for a given HLA type (0.95 means that the prediction is among top 5% of the predictions for that particular HLA allele).
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TABLE 3 | Peptides with ArdImmune Rank percentile rank ≤ 2 obtained from SARS-CoV-2 structural proteins, sorted by (1) the number of HLA types capable of binding
and presenting given peptide and (2) the median rank across different HLA types.

No. Peptide Prot. start Prot. end Protein HLA% rank ≤ 2 Median HLA%_rank Max mut. freq

1 TNVYADSFVIR 393 403 S 0.994 A24:41| A24:51| B39:54|
C02:02| C03:04| C12:03

0.00012

2 VGGNYNYLYR 445 454 S 0.989 A24:41| A24:51| B38:01|
C12:03

0.00013

3 YDPLQPEL 1,138 1,145 S 0.995 C04:01| C04:43| C05:01 0.00049

4 SNGTHWFVTQR 1,097 1,107 S 0.989 C02:02| C03:04| C12:03 0.00012

5 RGVYYPDKVFR 34 44 S 0.983 A24:51| B08:01| B39:54 0.00012

6 SFVIRGDEVR 399 408 S 0.989 B18:01| B56:43| C02:02 0.00012

7 SDNIALLV 214 221 M 0.995 A01:01| C05:01 0.00047

8 KRSFIEDLLF 814 823 S 0.99 C07:01| C07:02 0.00024

9 VYDPLQPEL 1,137 1,145 S 0.989 C04:01| C04:43 0.00049

10 IRGWIFGTTL 101 110 S 0.992 C06:02| C07:02 0.00012

11 VQIDRLITGR 991 1,000 S 0.992 A31:29| B08:01 0.00000

12 SAPHGVVFL 1,055 1,063 S 0.984 C04:01| C04:43 0.00024

13 NVYADSFVIR 394 403 S 0.986 B08:01| B39:54 0.00012

14 AYNVTQAFGR 267 276 N 0.989 B56:43| C03:04 0.00035

15 STGSNVFQTR 637 646 S 0.986 A24:41| B38:01 0.00000

16 LPFFSNVTW 56 64 S 0.996 B35:01 0.00024

17 AYANRNRFLYI 38 48 M 0.995 A24:02 0.00058

18 ASANLAATKM 1,020 1,029 S 0.995 A11:01 0.00024

19 RNRFLYIIKL 42 51 M 0.995 C07:01 0.00023

20 SIAIPTNFTI 711 720 S 0.995 C03:13 0.00024

21 SFKEELDKYFK 1,147 1,157 S 0.994 B18:01 0.00049

22 THWFVTQRNFY 1,100 1,110 S 0.994 B15:93 0.00012

23 HFPREGVFVS 1,088 1,097 S 0.994 B54:18 0.00012

24 KFPRGQGVPIN 65 75 N 0.993 B07:02 0.00035

25 LEPLVDLPIGI 223 233 S 0.992 A02:01 0.00000

26 LPFNDGVYF 84 92 S 0.991 B35:01 0.00049

27 EAEVQIDRLI 988 997 S 0.991 B44:02 0.00000

28 QYIKWPWYI 1,208 1,216 S 0.991 A24:02 0.00024

29 AFFGMSRIGM 313 322 N 0.991 C01:57 0.00071

30 LTDEMIAQY 865 873 S 0.99 A01:01 0.00024

31 ASAFFGMSRI 311 320 N 0.99 A11:01 0.00012

32 VVVLSFELL 510 518 S 0.989 C03:13 0.00013

33 GTHWFVTQR 1,099 1,107 S 0.989 A31:29 0.00012

34 SQRVAGDSGF 184 193 M 0.989 B15:93 0.00000

35 DLPKEITVAT 163 172 M 0.988 B54:18 0.00012

36 NATRFASVY 343 351 S 0.987 B35:01 0.00024

37 KTFPPTEPKK 361 370 N 0.993 A03:01 0.00036

38 PFGEVFNATRF 337 347 S 0.986 A24:02 0.00024

39 VFQTRAGCL 642 650 S 0.986 C01:57 0.00012

40 PRGQGVPI 67 74 N 0.986 B07:02 0.00035

41 YNSASFSTFK 369 378 S 0.986 A01:01 0.00025

42 VLNDILSRL 976 984 S 0.984 A02:01 0.00012

43 YSRYRIGNYK 196 205 M 0.984 C07:01 0.00012

44 ATSRTLSYYKL 171 181 M 0.984 A11:01 0.02876

45 IYQTSNFR 312 319 S 0.983 B18:01 0.00014

46 KFLPFQQFGR 558 567 S 0.983 A31:29 0.00036

47 IPFAMQMAY 896 904 S 0.982 B35:01 0.00000

48 LKPFERDIST 461 470 S 0.982 B54:18 0.00025

49 TQDLFLPFF 51 59 S 0.982 C05:01 0.00292

50 STEKSNIIRGW 94 104 S 0.982 B44:02 0.00073

Peptides marked in red are considered as highly variable (HV) due to maximum mutation frequency score ≥ 0.05.
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TABLE 4 | Peptides with model percentile rank ≤ 2 obtained from SARS-CoV-2 non-structural proteins, sorted by (1) the number of HLA types capable of binding and
presenting given peptide and (2) the median rank across different HLA types.

No. Peptide Prot. start Prot. end Protein HLA% rank ≤ 2 Median HLA%_rank Max mut. freq

1 LLKYDFTEER 4,662 4,671 ORF1ab 0.991 A24:51| B08:01| B18:01| B38:01| B39:54| B56:43| C02:02|
C12:03

0.00012

2 LDGISQYSLR 570 579 ORF1a 0.997 A24:41| A24:51| B08:01| B38:01| B39:54| C03:04| C12:03 0.00372

3 LVQAGNVQLR 3,330 3,339 ORF1a 0.993 A24:41| A24:51| B08:01| B18:01| B38:01| B39:54| B56:43 0.00565

4 LSHFVNLDNLR 2,518 2,528 ORF1a 0.997 A24:51| B08:01| B38:01| B39:54| C02:02| C03:04| C12:03 0.00414

5 VNGYPNMFITR 5,991 6,001 ORF1ab 0.995 A24:41| A24:51| B39:54| C02:02| C03:04| C12:03 0.00036

6 IFGADPIHSLR 1,153 1,163 ORF1a 0.993 B08:01| B18:01| B38:01| B39:54| B56:43 0.00332

7 GDYGDAVVYR 5,527 5,536 ORF1ab 0.997 A24:41| A24:51| B08:01| B38:01| B39:54 0.00084

8 EKFKEGVEFLR 633 643 ORF1a 0.986 A24:51| B08:01| B56:43| C02:02| C03:04 0.00371

9 VYMPASWVMRI 3,653 3,663 ORF1a 0.998 A24:02| A24:41| A31:29 0.00412

10 YLFDESGEFK 906 915 ORF1a 0.995 A01:01| C04:01| C04:43 0.00413

11 NRPQIGVVREF 5,813 5,823 ORF1ab 0.993 B15:93| C06:02| C07:01 0.00024

12 MRPNFTIKGSF 3,393 3,403 ORF1a 0.997 C06:02| C07:01| C07:02 0.00425

13 TFEEAALCTFL 3,174 3,184 ORF1a 0.992 B44:02| C04:01| C04:43 0.00399

14 PKVKYLYFIK 4,223 4,232 ORF1a 0.993 C02:02| C03:04| C12:03 0.00398

15 VNRFNVAITR 5,882 5,891 ORF1ab 0.991 C02:02| C03:04| C12:03 0.00000

16 STFNVPMEK 2,600 2,608 ORF1a 0.989 A03:01| A11:01| C07:01 0.00550

17 FYDFAVSKGF 4,811 4,820 ORF1ab 0.988 C04:01| C04:43| C07:02 0.00048

18 NMFITREEAIR 5,996 6,006 ORF1ab 0.99 C02:02| C03:04| C12:03 0.00060

19 PIHFYSKWYIR 38 48 ORF8 0.988 C02:02| C03:04| C12:03 0.00023

20 NYMPYFFTL 2,167 2,175 ORF1a 0.981 A24:02| C01:57| C07:02 0.00415

21 AFPFTIYSLL 8 17 ORF10 0.98 C04:01| C04:43| C07:02 0.00168

22 HVGEIPVAYR 110 119 ORF1a 0.991 A31:29| B08:01| B18:01 0.00206

23 VGILCIMSDR 5,894 5,903 ORF1ab 0.983 A24:41| A24:51| C02:02 0.00132

24 GNFYGPFVDR 3,442 3,451 ORF1a 0.983 A24:41| A31:29| B08:01 0.00467

25 AVFDKNLYDKL 1,176 1,186 ORF1a 0.998 A03:01| A11:01 0.00386

26 VFDEISMATNY 5,696 5,706 ORF1ab 0.998 C04:01| C04:43 0.00024

27 TFHLDGEVITF 1,543 1,553 ORF1a 0.997 C04:01| C04:43 0.00440

28 SSRLSFKELL 4,755 4,764 ORF1ab 0.996 C06:02| C07:01 0.00012

29 RIFTIGTVTLK 6 16 ORF3a 0.995 A03:01| A11:01 0.01995

30 VITFDNLKTLL 1,550 1,560 ORF1a 0.994 C04:01| C04:43 0.00385

31 VVYRGTTTYKL 5,533 5,543 ORF1ab 0.993 A03:01| A11:01 0.00024

32 FYDFAVSKGFF 4,811 4,821 ORF1ab 0.993 C04:01| C04:43 0.00048

33 YAFEHIVY 6,682 6,689 ORF1ab 0.993 B15:93| B35:01 0.00024

34 KTDGTLMIERF 5,241 5,251 ORF1ab 0.992 A01:01| C05:01 0.00000

35 AYITGGVVQL 599 608 ORF1a 0.991 A24:02| C01:57 0.00427

36 VPWDTIANYA 2,133 2,142 ORF1a 0.991 C04:01| C04:43 0.00401

37 SFDLGDEL 142 149 ORF1a 0.99 C04:01| C04:43 0.00014

38 RRVVFNGVSF 3,163 3,172 ORF1a 0.989 C07:01| C07:02 0.00399

39 VYMPASWVMR 3,653 3,662 ORF1a 0.992 A31:29| C01:57 0.00412

40 LYENAFLPFA 3,606 3,615 ORF1a 0.987 C04:01| C04:43 0.17819

41 QFTSLEIPR 5,910 5,918 ORF1ab 0.987 B18:01| B56:43 0.00060

42 VFPPTSFGPLV 4,712 4,722 ORF1ab 0.986 C04:01| C04:43 0.55016

43 FGADPIHSLR 1,154 1,163 ORF1a 0.999 C04:01| C04:43 0.00332

44 ILGTVSWNLR 1,367 1,376 ORF1a 0.985 C03:04| C12:03 0.00398

45 NFNVLFSTVF 4,704 4,713 ORF1ab 0.985 C04:01| C04:43 0.00012

46 VYMPASWVM 3,653 3,661 ORF1a 0.985 C01:57| C07:02 0.00412

47 AFDKSAFVNL 6,355 6,364 ORF1ab 0.984 C04:01| C04:43 0.00029

48 STFNVPMEKL 2,600 2,609 ORF1a 0.983 A03:01| A11:01 0.00550

49 SGAMDTTSYR 3,218 3,227 ORF1a 0.984 B38:01| B39:54 0.00508

50 VYDYLVSTQEF 3,810 3,820 ORF1a 0.983 C04:01| C04:43 0.00412

Peptides marked in red are considered as Highly Variable (HV) due to maximum mutation frequency score ≥ 0.05.

Frontiers in Genetics | www.frontiersin.org 12 March 2021 | Volume 12 | Article 602196121

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-602196 March 20, 2021 Time: 13:43 # 13

Mazzocco et al. CD8+ Epitopes for SARS-CoV-2 Vaccines

TABLE 5 | The most frequently mutated positions within the SARS-CoV-
2 proteome.

No. Protein Protein position Mutation frequency

1 ORF1ab 4,715 0.5502

2 S 614 0.5478

3 ORF3a 57 0.1789

4 ORF1a 3,606 0.1781

5 N 203 0.1770

6 N 204 0.1765

7 ORF1a 265 0.1646

8 ORF3a 251 0.1439

9 ORF8 84 0.1384

10 ORF1ab 5,865 0.0926

11 ORF1ab 5,828 0.0924

12 ORF1a 765 0.0668

13 ORF1a 739 0.0590

SARS-CoV-2 Genome Diversity Analysis
In order to enable the exclusion of peptides originating from
genetically highly variable areas, the mutation frequency
of each amino acid within the SARS-CoV-2 genome was
computed (see section “Materials and Methods” for details).
The genes that those peptides originate from are likely to
mutate, hence the inclusion of such peptides might lower
the vaccine efficacy over time. From the analysis of 8,639
complete genome sequences, obtained from different SARS-
CoV-2 isolates, which then were translated into protein
sequences, the mutation frequency at each amino acid
position was computed.

For each peptide in the SARS-CoV-2 proteome, the maximum
mutation frequency was calculated (see section “Materials and
Methods”), and peptides with the resulting score ≥ 0.05 (marked
in color in Tables 3, 4) are considered to be highly variable
(HV) and should be disregarded as vaccine components. 13
amino acid positions were observed to contain mutations in
at least 5% of the selected sequences. Among these, as many
as nine amino acid positions were mutated in more than
10% of the selected sequences, while two positions showed
mutations in fully half of the samples (more than 50%). In
Table 5 we present the most frequently mutated positions within
the SARS-CoV-2 proteome. Mutation frequency values for all
positions are available in the Supplementary Data 2. Figures
presenting distribution of mutation frequency are available in the
Supplementary Data 3.

Within the top-50 immunogenic peptides originating from
the SARS-CoV-2 structural and non-structural proteins (NSPs),
1 and 3 HV peptides were found, respectively.

Toxicity/Tolerance Results
Each peptide derived from the SARS-CoV-2 proteome was
studied to ascertain the lack of similarity with peptides present
in the reference human proteome. When administered in
a vaccine, epitopes highly similar to peptides presented by
the host’s healthy tissues could either trigger an unwanted
immune self-reaction or be tolerated by the immune system.

In both cases, these peptides should be eliminated from the
vaccine composition. A total of 11 SARS-CoV-2-derived peptides
with moderate similarity to human proteins were found (E-
value ≤ 4). Of these, four were significantly similar (E-
value ≤ 1) and thus should be avoided (see Supplementary
Data 1). None of these peptides were found within the top-100
ranked peptides.

Comparison With Other Methods
Results from a list of selected publications were compared with
percentile ranks computed by our method for the same pHLAs.
We did not find any significant correlation with the in silico
predictions from Grifoni et al. (2020), Lee and Koohy (2020), and
Gupta et al. (2020) highlighting a clear distinction between our
methodology and the procedures used in these studies. Although
the best candidate selected by Gupta et al. is not among our best
candidates for HLA-A∗11:01, it is scored by the model as the
top candidate among those proposed by the authors. A moderate
negative correlation (ρ ∼= −0.45) was observed between the
percentile rank scores of our method and the scores presented
by Smith et al. (2020). Although our top peptide candidates
associated with the HLAs proposed by Baruah and Bose (2020)
do not include any of the five peptides proposed by the authors,
we noticed a consensus between the HLA percentile rank of
the pHLAs selected by the authors, and our percentile rank
scores (Figure 8).

The immunogenicity scores predicted by our model were
then compared with the experimental measurement of pHLA
binding stability done by Prachar et al. (2020). Peptide candidates
with low immunogenicity ranks are enriched in regions with
a low stability percentage. The results are shown in Figure 9,
on the left. The immunogenicity score is expressed as the
complement to 100 of the immunogenicity percentile rank.
The stability percentage is defined relative to reference peptides
(see Prachar et al., 2020 for details). The concordance between
high immunogenicity (or low immunogenicity rank) and high
stability percentage is more noticeable after the exclusion of
peptides with low predicted binding affinity (Figure 9, right).
The Spearman correlation between pHLA stability percentage
and the predicted immunogenicity (ρ = 0.392) is higher than the
correlation between the stability percentage and the predicted
binding affinity (ρ = 0.313). The binding affinity was computed
using NetMHCpan 4.0 (Jurtz et al., 2017).

A noticeable difference in the distributions of experimentally
measured pHLA stability percentage was obtained by ranking
using binding affinity predictors and our immunogenicity
predictions. A clear distinction between stable and unstable
pHLAs was obtained through the selection of the top-10%
and the bottom-10% scores predicted by the immunogenicity
model, whereas the use of filters relying on standard binding
affinity thresholds (e.g., 100 nM) leads to a less defined
separation (Figure 10).

Finally, we report low scores for all the five class I pHLAs
which were experimentally confirmed to be non-immunogenic
by Rammensee et al. (2020). None of these peptides were
recommended by ArdImmune Rank as a candidate to be included
in a vaccine formulation against SARS-CoV-2.
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FIGURE 8 | The HLA percentile ranks of the five peptides selected by Baruah et al. as computed from Baruah score and ArdImmune Rank.

FIGURE 9 | Comparison between ArdImmune Rank percentile ranks for pHLA immunogenicity and pHLA stability data measured by Prachar et al. (2020) Scatter
plots and kernel density estimations are shown with (right) and without (left) the exclusion of pHLA predicted non-binders (Kd percentile rank ≥ 2). The complement
of the ArdImmune Rank percentile rank is shown on the y-axis (higher value = lower rank), while the stability percentage as reported by Prachar et al. (2020) is shown
on the x-axis.
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FIGURE 10 | Distribution of stability percentage for different filtering procedures. The respective pHLA stability score densities of the 10% top ranked and the 10%
lowest ranked peptides in terms of predicted immunogenicity is shown on the left. The pHLA stability score densities computed according to the binding affinity
ranges reported by Prachar et al. (2020). (Kd ≥ 100 nM, Kd < 100 nM, based on predicted binding affinity) is shown on the right.

DISCUSSION

The high selective pressure exerted upon coronaviruses, caused
by the need of a viable host for survival, together with their
high genetic variability, facilitates their rapid evolution and the
prompt generation of escape mutants. Despite the vigorous effort
of the industry, vaccine design, clinical trials, and production
require at least several months and most likely several years.
Many investigations aimed at developing vaccines protecting
humans and animals from coronaviruses were initiated in the
last few decades, setting the basis for the recent scientific
advancement in COVID-19 treatment. Nonetheless, a limiting
aspect associated with the approval and commercialization of
a vaccine is that the demand for a vaccine is limited to the
outbreak period, and its market value is proportional to the
number of people affected. This represented a major issue for the
development of vaccines for SARS and MERS (Du et al., 2009;
Dhama et al., 2020). In addition, the majority of coronavirus
biotherapeutics (i.e., antibodies and vaccines) are designed to
leverage neutralizing antibodies directed against the S protein.
Safety issues such as those associated with the ADE and CSS
events, make the development of vaccine and antibody-based
therapies even more problematic.

In combination with the stimulation of humoral immune
response, which is aimed at the direct neutralization of the virus,
the targeted elimination of infected cells is a crucial element of
the immune response against viruses. This might be induced
either by the administration of a vaccine eliciting protective
CD8+ Cytotoxic T Lymphocyte (CTL) or by transferring
CD8+ cells engineered to recognize viral antigens specifically.
Previous studies have confirmed a strong correlation between
the depletion and exhaustion of T-cells and worse prognosis
in critical coronavirus patients (Diao et al., 2020) highlighting
the potential of vaccines inducing T-cell responses for COVID-
19 prevention. This strategy has beneficial features such as
a lower risk of stimulating ADE and CSS with respect to
antibody-based strategies (Jaume et al., 2011; Channappanavar
et al., 2016) and the stimulation of the immune response
against intracellular epitopes not reachable by the antibodies but
potentially highly immunogenic. In both cases, the selection of
effective immunogenic epitopes is of paramount importance.

The aim of this study was to identify SARS-CoV-2
epitopes for the development of a vaccine composition focused

on T-cell activation. We investigated several aspects pre-
determining whether viral epitopes may induce an effective
T-cell response, including the MHC-I peptide presentation and
immunogenicity potential, SARS-CoV-2 genome variability, and
possible toxicity/immune tolerance of the peptides considered.

In contrast to the majority of works on this topic either
relying of pHLA binding and presentation events or modeling
single pHLA structural interactions, the model applied herein
was designed to leverage simultaneously information about
the propensity of a peptide to be presented by its cognated
HLA and the probability that such pHLA is immunogenic,
inferred from similar experimental data. As we show in Figure 3
when evaluated on the experimentally-validated Coronaviridae
immunogenicity data, our approach has higher performance
than the widely-used predictors assessing pHLA binding affinity,
presentation or immunogenicity (i.e., IEDB).

By applying our method, a considerable amount of highly
scored T-cell epitopes was found across the SARS-CoV-2
proteome, encompassing the structural proteins and NSPs,
as shown in Tables 3, 4. The majority of selected epitopes
were conserved across different SARS-CoV-2 isolates. Only 16
epitopes were excluded because of their significant mutability
(see Table 5). The availability of epitopes from NSPs allows for
the design of vaccine components dedicated to T-cell responses,
and might be further integrated with other components focused
on B-cell responses. The adoption of such a compartmentalized
strategy might help to lower the risk of non-neutralizing
antibody production, which constituted a reason of concern
during the development of a vaccine formulation for SARS.
Moreover, during the early stages of viral infection, the expression
of non-structural proteins is significantly higher than the
expression of structural ones. The targeted stimulation of
the immune response toward epitopes originating from non-
structural proteins might be useful to induce an immune
response at the early phase of the disease. Some highly
ranked peptides were found to be presented across multiple
HLAs and could be used to increase population coverage
while decreasing the number of epitopes needed to be
included in the vaccine formulation. This aspect could be
particularly relevant for solutions relying on delivery systems of
limited capacity.

The risk of eliciting potentially harmful and sometimes deadly
(Linette et al., 2013) cross-reactivities is an issue to be carefully
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addressed in vaccine design. On the other hand, epitopes shared
with proteins from the host could also be tolerated by the
host’s immune system, being not useful for vaccine purposes.
Considering the importance of such an aspect, the analysis of
potential toxicity and tolerance was addressed in this study,
leading to the identification of four highly ranked epitopes
having a certain degree of similarity with proteins within the
human proteome. Such peptides were removed for safety and
efficacy reasons.

The substantial difference between the selection of pHLA
candidates performed by our methodology with respect to
those presented by Grifoni et al. (2020), Lee and Koohy
(2020), and Gupta et al. (2020) highlights a clear distinction
between these approaches. Nonetheless, our method supported
the selection of top candidates in small datasets obtained
by applying hand-crafted filtering stages (Baruah and Bose,
2020; Gupta et al., 2020). The mild correlation with the
results from Smith et al. (2020) might indicate the usage
of equivalent components during some steps of the selection
process. A relative concordance between the pHLA stability
scores from Prachar et al. (2020) and the associated immunogenic
scores computed by our method was observed (Figure 9).
Moreover, we show that the peptide ranks produced by our
immunogenicity model have a higher correlation with the
experimentally measured pHLA stability than the ranks obtained
by methods relying solely on binding affinity or ligand likelihood
predictions. This observation is consistent with works reported
in the literature (Harndahl et al., 2012). We also obtained low
immunogenicity scores for all five peptides which have been
experimentally confirmed by Rammensee to be unable to activate
CD8+ lymphocytes.

CONCLUSION

In this paper we suggested a SARS-CoV-2 vaccine composition
in the form of the list of epitopes optimized for their
(predicted) immunogenicity and HLA population coverage. Our
motivation is that cellular immune response is fundamental
for an effective SARS-CoV-2 vaccine and it also mitigates
the risks of ADE and CSS which are typically associated
with modalities relying on the activation of humoral immune
response. We showed that the predictive model, on which
our methodology is based outperforms, on Coronaviridae data,
other methods used to date for the design of epitope-based
vaccines against SARS-CoV-2. Our approach differs from other
existing methods and shows a higher correlation with the
measured pHLA stability in comparison with methods based
solely on binding affinity predictions. The limitations of our
method have the same roots as those found in other in silico
approaches based on predicting various pHLA properties,
i.e., the accuracy of these predictive methods. We expect
that with the increasing amount of experimentally validated
data and with further algorithmic enhancements in the field
of artificial intelligence, the accuracy of such models and
the effectiveness of vaccine design will continue to improve.
Computational methods have proven to be of considerable

support in optimizing the vaccine design process on several
occasions. Moreover, a notable improvement in the predicting
skills of such methods has been recorded in recent years,
admittedly due to the increasing advancements in machine
learning coupled with a surge in the availability of powerful
computational resources. However, it is important to mention
that such tools do not represent a substitute for the laboratory
experiments necessary to verify and optimize the safety and
efficacy of vaccines. Their role is to support the design of
such experiments in order to reduce their number, the time
needed and cost.
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eniko.toke@treosbio.com

Specialty section:

This article was submitted to

Computational Genomics,

a section of the journal

Frontiers in Genetics

Received: 22 March 2021

Accepted: 24 May 2021

Published: 23 June 2021

Citation:

Somogyi E, Csiszovszki Z, Molnár L,
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Long-term immunity to coronaviruses likely stems from T cell activity. We present

here a novel approach for the selection of immunoprevalent SARS-CoV-2-derived T

cell epitopes using an in silico cohort of HLA-genotyped individuals with different

ethnicities. Nine 30-mer peptides derived from the four major structural proteins

of SARS-CoV-2 were selected and included in a peptide vaccine candidate to

recapitulate the broad virus-specific T cell responses observed in natural infection.

PolyPEPI-SCoV-2-specific, polyfunctional CD8+ and CD4+ T cells were detected in

each of the 17 asymptomatic/mild COVID-19 convalescents’ blood against on average

seven different vaccine peptides. Furthermore, convalescents’ complete HLA-genotype

predicted their T cell responses to SARS-CoV-2-derived peptides with 84% accuracy.

Computational extrapolation of this relationship to a cohort of 16,000 HLA-genotyped

individuals with 16 different ethnicities suggest that PolyPEPI-SCoV-2 vaccination will

likely elicit multi-antigenic T cell responses in 98% of individuals, independent of ethnicity.

PolyPEPI-SCoV-2 administered with Montanide ISA 51 VG generated robust, Th1-biased

CD8+, and CD4+ T cell responses against all represented proteins, as well as binding

antibodies upon subcutaneous injection into BALB/c and hCD34+ transgenic mice

modeling human immune system. These results have implications for the development

of global, highly immunogenic, T cell-focused vaccines against various pathogens

and diseases.

Keywords: global vaccine, HLA-genotype, ethnic diversity, SARS-CoV-2 immunity, in silico clinical trial

INTRODUCTION

The pandemic caused by the novel coronavirus SARS-CoV-2 is still evolving after its outbreak
in late 2019, reaching second/third peak in a single year. After demonstration of high protective
efficacy against symptomatic COVID-19 in large phase III studies, the first vaccines are rapidly
being approved for emergency use (Forni et al., 2021). Both the approved vaccines and the
numerous vaccine candidates under clinical development are predominantly designed to generate
neutralizing antibodies against the viral Spike (S) protein (WHO, 2020). But lessons learned
from the SARS and MERS epidemic as well as COVID-19 pandemic indicate potential challenges
(Altmann and Boyton, 2020; Green, 2020; Hellerstein, 2020; Peiris and Leung, 2020). Due to waning
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antibody responses and continuously arising mutations in the
S protein, long-term durability of protection remains unknown
(Callaway, 2021; Williams and Burgers, 2021). However, T
cell responses against coronavirus proteins can last for over a
decade, as demonstrated for MERS and SARS, and data collected
till today for SARS-COV-2 seem to support this expectation
(Channappanavar et al., 2014b; Le Bert et al., 2020; Schwarzkopf
et al., 2021).

Importantly, virtually all subjects with a history of SARS-CoV-
2 infection mount T cell responses against the virus, including
seronegatives and subjects with severe disease (Grifoni et al.,
2020; Hellerstein, 2020; Peng et al., 2020; Zou et al., 2020).
Moreover, correlation between defective T cell responses and
COVID-19 severity was observed (Diao et al., 2020). Higher
CD8+ T cell counts were also associated with improved overall
survival in cancer patients hospitalized for COVID-19 (Huang
et al., 2021).

T cell responses are diverse, recognizing 30–40 SARS-CoV-2-
epitopes in each person (Tarke et al., 2021). They are directed
against the whole antigenic repertoire of the virus, and less
dominated by the S-protein (Nelde et al., 2020; Sekine et al.,
2020; Tarke et al., 2021). This diversity is associated with
asymptomatic/mild disease and likely confers protection against
viral escape by mutations.

The first COVID-19 vaccines, while engender robust humoral
responses, have mixed potential for inducing CD8+ T cell
responses (Anderson et al., 2020; Ewer et al., 2020; Jackson et al.,
2020; Sahin et al., 2020; Zhang et al., 2021). Multi-epitope CD8+

T cell responses against the S protein, as revealed for two studies,
were obtained for only a fraction of subjects (24–60%) (Ewer
et al., 2020; Sahin et al., 2020). Multi-epitope responses against
multiple viral antigens could be theoretically elicited by vaccines
using whole virusmaterial, but the assessment of cellular immune
reactions was not included in their studies (Zhang et al., 2021).

Therefore, strategies to better mimic the heterogeneity of
multi-specific T cell immunity caused by the natural infection
would be required to leverage the vital role of both CD8+ and
CD4+T cell responses in reducing the impact of COVID-19 and
potentially provoking long-term immune responses (Dan et al.,
2021).

The core problem that afflicts T cell-epitope selection,
however, is that each human has a unique immune response
profile to pathogens. Indeed, for SARS-CoV-2, the infection
or the disease course varies according to the genetic diversity
represented by different ethnicities and human leukocyte antigen
(HLA) alleles, however, the reason is not yet well-understood
(Aldridge et al., 2020; Nguyen et al., 2020; Pan et al., 2020;
Poland, 2020; Mohammadpour et al., 2021). HLA alleles are the
molecular determinants of antigen-specific T cell activation, to
kill infected cells. Each human has six major HLA class I and
eight major HLA class II alleles, therefore larger populations have
hundreds of different alleles and their numerous combinations in
each HLA-genotype. As a result, each person’s T cells recognize
30–40 epitopes derived from SARS-CoV-2 and only a fraction of
them are shared between convalescents, as recently reported by
Tarke et al. in a very comprehensive study (Tarke et al., 2021).
To capture this heterogeneity during a global SARS-CoV-2 T

cell focused vaccine design effort, epitope mapping based on
limited number of frequent HLA alleles has been used widely
(Ferretti et al., 2020; Nelde et al., 2020). However, in reality, these
epitope mapping studies have a low yield (cca. 10%) in terms
of confirmed T cell response in HLA-matched subjects (Nelde
et al., 2020; Tarke et al., 2021). Therefore, actionable strategies
to target not alleles but individuals and ethnic populations are
required. We hypothesize that all HLA alleles (HLA genotype) of
a subject regulate immune responses capable of killing infected
cells, therefore we propose epitope mapping that involves real-
subjects with complete HLA-genotype instead of single HLA
alleles split from the complexity of allele combinations.

We present here a novel, computer-aided approach for the
selection of immunogenic peptides using an ethnically diverse
in silico human cohort of individuals with complete HLA
genotypes. We selected multiple, so called Personal Epitopes
(PEPIs, restricted to multiple HLA alleles of a person) shared
among high proportion of subjects in each ethnic group of this
model population. PolyPEPI-SCoV-2 contains 9 peptides and
targets all four major structural proteins of SARS-CoV-2. We
demonstrated, that T cells against each selected epitopes were
present in majority of COVID-19 convalescent subjects tested,
and the frequency was in good agreement with the frequency
determined for the in silico cohort. More importantly we found,
that subjects’ complete HLA-genotype influenced their peptide-
specific anti-SARS-CoV-2 immune responses, as hypothesized.
Immunogenicity and safety of the designed candidate vaccine
were confirmed in two mouse models, resulting in the induction
of robust CD8+ and CD4+ T cell responses, against all four
targeted SARS-CoV-2 proteins. Our novel approach enables, for
the first-time, computational determination of the epitopes that
immune systems of individuals in large cohorts can respond to,
likely an indispensable tool for both the design of a global vaccine
and for post-vaccination surveillance.

MATERIALS AND METHODS

Donors
Donors were recruited based on their clinical history of SARS-
CoV-2 infection. Blood samples were collected from convalescent
individuals (n= 15) at an independent medical research center in
The Netherlands under an approved protocol (NL57912.075.16.)
or collected by PepTC Vaccines Ltd (n = 2). Sera and PBMC
samples from non-exposed individuals (n = 10) were collected
before 2018 and were provided by Nexelis-IMXP (Belgium).
All donors provided written informed consent. The study was
conducted in accordance with the Declaration of Helsinki. Blood
samples from COVID-19 convalescent patients (n = 17; 16
with asymptomatic/mild disease and one with severe disease)
were obtained 17–148 days after symptom onset. Surprisingly,
one positive IgM antibody response was found among the
healthy donors, which was excluded from further analysis.
Demographic and baseline information of the subjects are
provided in Supplementary Table 1. HLA genotyping of the
convalescent donor patients from The Netherlands was done by
IMGM laboratories GmbH (Martinsried, Germany) using next-
generation sequencing. This cohort uses a total of 46 different

Frontiers in Genetics | www.frontiersin.org 2 June 2021 | Volume 12 | Article 684152129

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Somogyi et al. Immunoprevalent Peptides in COVID-19

HLA class I alleles (15 HLA-A∗, 18 HLA-B∗, and 13 HLA-C∗)
and 35 different HLA class II alleles (14 DRB1, 12 DQB1, and
9 DPB1). HLA-genotype data of the subjects is provided in
Supplementary Table 2.

In silico Human Cohorts

Model Population (n= 433)
TheModel Population is a cohort of 433 individuals, representing
several ethnic groups worldwide, for whom complete HLA
class I genotypes were available (2 × HLA-A, 2 × HLA-
B, 2 × HLA-C). The Model Population was assembled from
90 Yoruban African (YRI), 90 European (CEU), 45 Chinese
(CHB), 45 Japanese (JPT), 67 subjects with mixed ethnicity
(US, Canada, Australia, New Zealand), and 96 subjects from
an HIV database (MIX). HLA genotypes were determined
using PCR techniques, Affymetrix 6.0 and Illumina 1.0 Million
SNP mass arrays, and high-resolution HLA typing of the
six HLA genes by Reference Strand-mediated Conformational
Analysis (RSCA) or sequencing-based typing (SBT). This cohort
uses a total of 152 different HLA class I alleles (49 HLA-
A∗, 71 HLA-B∗ and 32 HLA-C∗) representative for 97.4%
of the alleles documented in the current global Common,
Intermediate and Well-Documented (CIWD) database, well-
representing also major ethnicities (database 3.0 released 2020)
(Supplementary Table 3) (Hurley et al., 2020). The frequency of
the A∗, B∗, and C∗ alleles of the Model population correlates
with the frequency documented for >8 million HLA-genotyped
subjects of the CIWD database (R = 0.943, 0.869, 0.942,
respectively, p < 0.00001) (Supplementary Figure 1).

HLA Class II Cohort (n= 356)
A second cohort of 356 individuals with characterized HLA class
II genotypes (2 × HLA-DRB, 2 × HLA-DP, and 2 × HLA-DQ)
at four-digit allele resolution was obtained from the dbMHC
database, an online available repository operated by the National
Center for Biotechnology Information (NCBI) (Helmberg et al.,
2004). HLA genotyping was performed by SBT. This cohort uses
a total of 150 different HLA class II alleles (41 DRB1, 66 DQB1,
and 43 DPB1).

Large, US Cohort (n= 16,000)
The database comprising anonymized HLA genotype data from
16,000 individuals was created by obtaining 1,000 donors from
each of 16 ethnic groups (500 male and 500 female) from the
National MarrowDonor Program (NMDP) (Gragert et al., 2013).
The 16 ethnic groups were: African, African American, Asian
Pacific Islander, Filipino, Black Caribbean, Caucasian, Chinese,
Hispanic, Japanese, Korean, Native American Indian, South
Asian, Vietnamese, US, Mideast/North coast of Africa, Hawaiian,
and other Pacific Islander. The ethnic groups represented in this
large US cohort covers the composition of the global population
but they were not weighted for their global representativeness
(we intentionally used n = 1,000 subjects for each ethnicity).1

HLA genotyping was performed by NMDP recruitment labs
using sequence-specific oligonucleotide (SSO) and sequence

1Demographics of the world https://www.quora.com/What-are-all-the-races-

and-their-world-population-demographics-the-entire-world.

specific primer (SSP) methods with an average “typing resolution
score” >0.7. This cohort uses a total of 497 different HLA
class I alleles (136 HLA-A∗ 240 HLA-B∗ and 121 HLA-C∗)
representative for 99.8% of the alleles documented in the current
global Common, Intermediate and Well-Documented (CIWD)
database (database 3.0 released in 2020) (Hurley et al., 2020) and
140 HLA class II alleles (105 DRB1 and 35 DQB1, DPB1 was
not available). HLA-alleles covered by this cohort are provided
in Supplementary Table 4.

Animals
CD34+ Transgenic Humanized Mouse (Hu-mouse)
Female NOD/Shi-scid/IL-2Rγ null immunodeficient mice
(Charles River Laboratories, France) were humanized using
hematopoietic stem cells (CD34+) isolated from human cord
blood. Only mice with a humanization rate (hCD45/total CD45)
>50% were used during the study. Experiments were carried out
with 20–23-week-old female mice.

BALB/c Mouse
Experiments were carried out with 6–8 week old female BALB/c
mice (Janvier, France).

Vaccine Design
Tailoring PolyPEPISCoV-2 to SARS-CoV-2 Genetics
SARS-CoV-2 structural proteins (S, N, M, E) were screened and
nine different 30-mer peptides were selected during a multi-step
process. First, sequence diversity analysis was performed (as
of 28 March 2020 in the NCBI database).2 The accession IDs
were as follows: NC_045512.2, MN938384.1, MN975262.1,
MN985325.1, MN988713.1, MN994467.1, MN994468.1,
MN997409.1, MN988668.1, MN988669.1, MN996527.1,
MN996528.1, MN996529.1, MN996530.1, MN996531.1,
MT135041.1, MT135043.1, MT027063.1, and MT027062.1. The
bolded ID represents the GenBank reference sequence. Then,
the translated coding sequences of the four structural protein
sequences were aligned and compared using a multiple sequence
alignment (Clustal Omega, EMBL-EBI, United Kingdom). Of
the 19 sequences, 15 were identical; however, single AA changes
occurred in four N protein sequences: MN988713.1, N 194
S->X; MT135043.1, N 343 D->V; MT027063.1, N 194 S->L;
MT027062.1, N 194 S->L. The resulting AA substitutions
affected only two positions of N protein sequence (AA 194
and 343), neither of which occurred in epitopes that have been
selected as targets for vaccine development.

Recent report (Feb.2021) established four different lineages
by analyzing 45,494 complete SARS-CoV-2 genome sequences in
the world. Most frequent circulating mutations from this report
identified 11 missense amino acid mutations, one in S protein
(D614G), three located in N protein (R203K with two different
DNA substitutions and G204R), and further seven mutations in
NSP2, NSP12, NSP13, ORF3a, and ORF8 (Wang et al., 2021).
None of these amino acid positions were included in the nine 30-
mers, supporting the proper selection of the conservative regions

2U.S. National Library of Medicine Severe acute respiratory syndrome

coronavirus 2 https://www.ncbi.nlm.nih.gov/genome/browse#!/viruses/86693/.
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and intention to identify universal vaccine candidate peptides.
Additionally, none of PolyPEPI-SCoV-2 peptides is affected by
the presently, emerging mutant SARS-CoV-2 strains, except
one single amino acid substitution: B.1.1.7 (UK, 17 mutations:
delH69, V70, and Y144, substitutions in S: N501Y, A570D,
D614G, P681H, T716I, S982A, D1118H; in N: D3L, S235F; and
five mutant positions in ORF1ab), B.1.351 (South Africa, 10
mutations: amino acid substitutions in S: L18F, D80A, D215G,
R246I, K417N, E484K, N501Y, A701V; in N: T205I, a single P71L
change that affected one amino acid position in our peptide E1,
and one non-affecting mutation in ORF1ab) or B.1.1.28.1 (Brazil,
16 mutations in S: L18F, T20N, P26S, D138Y, R190S, K417T,
E484K, N501Y, H655Y, T1027I; in N: P80R, and five mutations
in ORF1ab), or B.1.617 (India, “double mutant” with S protein
substitutions L452R, E484Q, D614G), B.1.618 (India, “triple
mutant” with S protein delH145-146, and substitutions L452R,
E484Q, D614G) either3 (Rambaut et al., 2020; Thomson et al.,
2021; O’Toole et al., 2021a,b; Tada et al., 2021). Further details
on peptide selection are provided in the Results section and the
resulting composition of the nine selected 30-mer peptides is
shown in Table 1.

Cross-Reactivity With Human Coronavirus Strains
The sequence of PolyPEPI-SCoV-2 vaccine was compared with
that of SARS-CoV, MERS-CoV and common (seasonal) human
coronavirus strains to reveal possible cross-reactive regions.
According to Centers for Disease Control and Prevention (CDC),
common coronaviral infections in the human population are
caused by four coronavirus groups: alpha coronavirus 229E
and NL63, and beta coronavirus OC43 and HKU1. Pairwise
alignment of the structural proteins was also performed using
UniProt database with the following reference sequence IDs:
229E: P15423 (S), P15130 (N), P19741 (E), P15422 (M); NL63:
Q6Q1S2 (S), Q6Q1R8 (N), Q6Q1S0 (E), Q6Q1R9 (M); OC43:
P36334 (S), P33469 (N), Q04854 (E), Q01455 (M); HKU1
(Isolate N1): Q5MQD0 (S), Q5MQC6 (N), Q5MQC8 (E),
Q5MQC7 (M) (Consortium, The UniProt, 2018). In addition, the
coronavirus strains were aligned with the nine 30-mer peptides
comprising the PolyPEPI-SCoV-2 vaccine. For the minimum
requirement of an epitope, eight AA-long regions were screened
(sliding window) as regions responsible for potential cross-
reactivity. In addition, shorter (and longer) length matching
consecutive peptide fragments were recorded and reported
during the analysis.

No Cross-Reactivity With Human Protein Sequences
The selected immunogenic peptide candidates of PolyPEPI-
SCoV-2 were analyzed by Basic Local Alignment Search (BLAST)
analysis to identify any unwanted immunogenic regions in the
vaccine that overlap with any proteins or peptides of the human
proteome, available at blast.ncbi.nlm.nih.gov. All nine 30-mer
peptide sequences were evaluated for homology with human
proteins by comparing the sequences against the human protein
database (taxid:9606). No cross-reactivity defined by at least
eight consecutive amino acid match has been found between the

3WHO. Retrieved 6 May 2021. “COVID-19 Weekly Epidemiological Update.”

PolyPEPI-SCoV-2 peptides and proteins in the human proteome,
consequently, no related autoimmune reactions are expected due
to sequence similarities.

Peptides and PolyPEPI-SCoV-2 Vaccine Preparation
The 9-mer (s2, s5, s9, n1, n2, n3, n4, e1, m1) and 30-mer (S2,
S5, S7, N1, N2, N3, N4, E1, M1) peptides were manufactured by
Intavis Peptide Services GmbH&Co. KG (Tübingen, Germany)
and PEPScan (Lelystad, The Netherlands) using solid-phase
peptide synthesis. Amino acid sequences are provided in Table 1

for both 9-mer test peptides (Table 1, bold) and the 30-mer
vaccine peptides. Research grade PolyPEPI-SCoV-2 vaccine for
the animal study was prepared by dissolving equal masses of the
nine 30-mer peptides in DMSO (Sigma, Hungary) to achieve
at a concentration of 1 mg/mL and then diluted with purified
water to a final concentration of 0.2 mg/mL and stored frozen
until use. Ready-to-inject vaccine preparations were prepared by
emulsifying equal volumes of thawed peptide mix solution and
Montanide ISA 51 VG adjuvant (Seppic, France) following the
standard two-syringe protocol provided by the manufacturer.

Epitope Prediction and Analysis
Prediction of ≥3HLA class I allele binding epitopes (PEPIs)
for each individual was performed using an Immune Epitope
Database (IEDB)-based epitope prediction method. The antigens
were scanned with overlapping 9-mer to identify peptides that
bind to the subject’s HLA class I alleles. Selection parameters
were validated with an in-house set of 427 HLA-epitope pairs that
had been characterized experimentally by using direct binding
assays (327 binding and 100 non-binding HLA-epitope pairs).
Both specificity and sensitivity resulted in 93% for the prediction
of true HLA allele-epitope pairs. HLA class II epitope predictions
were performed by NetMHCpan (2.4) prediction algorithm for
overlapping 15-mer peptides.

Preclinical Animal Study Design
Thirty-six Hu-mice and 36 BALB/c mice received PolyPEPI-
SCoV-2 vaccine (0.66 mg/kg/peptide in 200 µL solution; n =
18) or 20% DMSO/water (Sigma, Hungary and MilliQ purified
water) emulsified in Montanide ISA 51 VG (Seppic, France)
adjuvant (200 µL vehicle; n = 18) administered subcutaneously
on days 0 and 14; the follow up period ended on day 28.
Samples from days 14, 21, and 28 were analyzed (n = 6 per
cohort). The studies were performed at the Transcure Bioservices
facility (Archamps, France). The mice were monitored daily
for unexpected signs of distress. Complete clinical scoring was
performed weekly bymonitoring coat (score 0–2), movement (0–
3), activity (0–3), paleness (0–2), and bodyweight (0–3); a normal
condition was scored 0.

All procedures described in this study have been reviewed
and approved by the local ethic committee (CELEAG) and
validated by the French Ministry of Research. Vaccination-
induced T cell responses were assessed by ex vivo ELISpot and
intracellular cytokine staining (ICS) assays of mice splenocytes
(detailed below). Antibody responses were investigated by the
measurement of total IgG in plasma samples (detailed below).
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TABLE 1 | PolyPEPI-SCoV-2 peptides and comprising PEPI frequencies within the in silico human cohort.

SARS-CoV-2

fragment

ID Peptide (30-mer) Class I PEPI Class II PEPI B cell epitope in

SARS (ref)

S (35–64) S2 GVYYPDKVFRSSVLHSTQDLFLPFFSNVTW 71% 94% N/A

S (253–282) S5 DSSSGWTAGAAAYYVGYLQPRTFLLKYNEN 84% 97% N/A

S (893–922)
†

S9 ALQIPFAMQMAYRFNGIGVTQNVLYENQKL 93% 99% IgM, 50% (n = 4)

(Guo et al., 2004)

N (36–65)
†

N1 RSKQRRPQGLPNNTASWFTALTQHGKEDLK 36% 36% IgG, 62% (n = 42)

(He et al., 2004; Liu

et al., 2006)

N (255–284) N2 SKKPRQKRTATKAYNVTQAFGRRGPEQTQG 48% 22% N/A

N (290–319)
†

N3 ELIRQGTDYKHWPQIAQFAPSASAFFGMSR 54% 50% IgG, 34% (n = 42)

(He et al., 2004)

IgG, IgM, 50% (n =
4) (Guo et al., 2004)

N (384–413)
†

N4 QRQKKQQTVTLLPAADLDDFSKQLQQSMSS 23% 36% IgG, IgM, 95% (n =
42) (He et al., 2004)

IgG, IgM, 75% (n =
4) (Guo et al., 2004)

M (93–122) M1 LSYFIASFRLFARTRSMWSFNPETNILLNV 90% 100% N/A

E (45–74) E1 NIVNVSLVKPSFYVYSRVKNLNSSRVPDLL 46% 100% N/A

Combined frequency of PolyPEPI-SCoV-2 PEPIs

At least one peptide 100% 100% N/A

At least two peptides 100% 100%

At least three peptides 97% 100%

Bold: 9-mer HLA class I PEPI sequences; underlined: 15-mer HLA class II PEPI sequences within the PolyPEPI-SCoV-2 comprising 30-mer peptides. Percentages show the proportion

of individuals from the model population with at least one HLA class I (CD8+ T cell specific) PEPI or at least one HLA class II (CD4+ T cell specific) PEPI. Peptides labeled
†
contain

experimentally confirmed B cell epitopes with antibody (Ig) responses found in convalescent patients with SARS. N/A, data not available.

ELISpot/FluoroSpot Assays
Ex vivo ELISpot assays for animal studies were performed as
follows. IFN-γ-producing T cells were identified using 2 ×
105 splenocytes stimulated for 20 h/peptide (10µg/ml, final
concentration). Splenocytes were treated with 9-mer peptides (a
pool of four N-specific peptides, N-pool (n1, n2, n3, n4), a pool
of three S-specific peptides, S-pool (s2, s5, s9), an E protein-
derived peptide, e1 or a M protein-derived peptide, m1) or
with 30-mer peptides pooled the same way as 9-mers (N-pool
comprising peptides N1, N2, N3, and N4), S-pool comprising
peptides S2, S5, and S9, and individual peptides E1 and M1.
ELISpot assays were performed using Human IFN-γ ELISpot
PRO kit (ALP; ref 3321-4APT-2) from Mabtech for Hu-mice
cohorts and Mouse IFN-γ ELISpot PRO kit (ALP; ref 3321-
4APT-10) from Mabech for BALB/c mice cohorts, according
to the manufacturer’s instructions. Unstimulated (DMSO) assay
control background spot forming unit (SFU) was subtracted from
each data point and then the delta SFU (dSFU) was calculated.
PMA/Ionomycin (Invitrogen) was used as a positive control.

Ex vivo FluoroSpot assays for convalescent donor testing
were performed by Nexelis-IMXP (Belgium) as follows: IFN-
γ/IL-2 FluoroSpot plates were blocked with RPMI-10% FBS,
then peptides (5µg/mL final concentration) or peptide pools
(5µg/mL per peptide final concentration) were added to the
relevant wells. PBMCs of N = 17 convalescent donors and
N = 4 healthy controls were retrieved from cryogenic storage
and thawed in culture medium. Then, 200,000 PBMC cells/well

were plated in triplicate (stimulation conditions) or 6-plicates
(reference conditions) and incubated overnight at 37◦C, 5% CO2

before development. Development of the FluoroSpot plates was
performed according to the manufacturer’s recommendations.
After removing cells, detection antibodies diluted in PBS
containing 0.1% BSA were added to the wells and the FluoroSpot
plates were incubated for 2 h at room temperature. Before read-
out using the Mabtech IRISTM automated FluoroSpot reader, the
FluoroSpot plates were emptied and dried at room temperature
for 24 h protected from light. All data were acquired with a
Mabtech IRISTM reader and analyzed using Mabtech Apex TM
software. Unstimulated (DMSO) negative control, CEF positive
control (T cell epitopes derived from CMV, EBV and influenza,
Mabtech, Sweden), and a commercial SARS-CoV-2 peptide pool
(SARS-CoV-2 S NMO defined peptide pool (3622-1)—Mabtech,
Sweden) were included as assay controls. Ex vivo FluoroSpot
results were considered positive when the test result was higher
than DMSO negative control after subtracting non-stimulated
control (dSFU).

Enriched FluoroSpot assays for convalescent donor testing
were performed by Nexelis-IMXP (Belgium) as follows: PBMCs
were retrieved from cryogenic storage and thawed in culture
medium. The PBMCs of N = 17 convalescent donors and
N = 5 healthy controls were seeded at 4,000,000 cells/24-
well in presence of the peptide pools (5µg/ml per peptide)
and incubated for 7 days at 37◦C, 5% CO2. On days 1 and
4 of culture, the media were refreshed and supplemented

Frontiers in Genetics | www.frontiersin.org 5 June 2021 | Volume 12 | Article 684152132

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Somogyi et al. Immunoprevalent Peptides in COVID-19

with 5 ng/mL IL-7 or 5 ng/mL IL-7 and 4 ng/ml IL-2 (R&D
Systems), respectively. After 7 days of culture, the PBMCs were
harvested and rested for 16 h. The rested PBMCs were then
counted using Trypan Blue Solution, 0.4% (VWR) and the
Cellometer K2 Fluorescent Viability Cell Counter (Nexcelom),
and seeded on the IFN-γ/Granzyme-B/TNF-α FluoroSpot plates
(Mabtech) at 200,000 cells/well in RPMI 1640 with 10%
Human Serum HI, 2mM L-glutamin, 50µg/ml gentamycin, and
100µM β-ME into the relevant FluoroSpot wells containing
peptide (5µg/mL), or peptide pool (5µg/mL per peptide), in
triplicates. The FluoroSpot plates were incubated overnight at
37◦C, 5% CO2 before development. All data were acquired
with a Mabtech IRISTM reader and analyzed using Mabtech
Apex TM software. DMSO, medium only, a commercial
COVID peptide pool (SARS-CoV-2 S N M O defined peptide
pool [3622-1]—Mabtech), and CEF were included as assay
controls at a concentration of 1µg/ml. The positivity criterion
was >1.5-fold the unstimulated control after subtracting the
background (dSFU).

Intracellular Cytokine Staining Assay
Ex vivo ICS assays for preclinical animal studies were performed
as follows: splenocytes were removed from the ELISpot plates
after 20 h of stimulation, transferred to a conventional 96-well
flat bottom plate, and incubated for 4 h with BD GolgiStopTM

according to the manufacturer’s recommendations. Flow-
cytometry was performed using a BD Cytofix/Cytoperm Plus
Kit with BD GolgiStopTM protein transport inhibitor (containing
monensin; Cat. No. 554715), following the manufacturer’s
instructions. Flow cytometry analysis and cytokine profile
determination were performed on an Attune NxT Flow
cytometer (Life Technologies). A total of 2 × 105 cells
were analyzed, gated for CD45+, CD3+, CD4+, or CD8+

T cells. Counts below 25 were evaluated as 0. Spot counts
≥ 25 were background corrected by subtracting unstimulated
(DMSO) control. PMA/Ionomycin (Invitrogen) was used as
a positive control. As an assay control, Mann-Whitney test
was used to compare negative control (unstimulated) and
positive control (PMA/ionomycin) for each cytokine. When
a statistical difference between controls was determined, the
values corresponding to the other stimulation conditions were
analyzed. The following stains were used for Hu-mice cohorts:
MAb11 502932 (Biolegend), MP4-25D2 500836 (Biolegend),
4S.B3 502536 (Biolegend), HI30 304044 (Biolegend), SK7 344842
(Biolegend), JES6-5H4 503806 (Biolegend), VIT4 130-113-
218 (Miltenyi), JES1-39D10 500904 (Biolegend), SK1 344744
(Biolegend), JES10-5A2 501914 (Biolegend), JES3-19F1 554707
(BD), and NA 564997 (BD). The following stains were used
for BALB/c mice cohorts: 11B11 562915 (BD), MP6-XT22
506339 (Biolegend), XMG1.2 505840 (Biolegend), 30-F11 103151
(Biolegend), 145-2C11 100355 (Biolegend), JES6-5H4 503806
(Biolegend), GK1.5 100762 (Biolegend), JES1-39D10 500904
(Biolegend), 53-6.7 100762 (Biolegend), eBio13A 25-7133-82
(Thermo Scientific), JESS-16E3 505010 (Biolegend), and NA
564997 (BD).

Ex vivo ICS assays for convalescent donor testing were
performed by Nexelis-IMXP (Belgium). Briefly, after thawing

200,000 PBMC cells/well, PBMCs were seeded in sterile round-
bottom 96-well plates in RPMI total with 10% human serum HI,
2mM L-glutamine, 50µg/mL gentamycin, and 100µM 2-ME in
the presence of peptides (5µg/mL) or peptide pool (5µg/mL
per peptide). After a 2-h incubation, BD GolgiPlugTM (BD
Biosciences) was added to the 96-well plates at a concentration
of 1 µl/ml in culture medium. After a 10-h incubation, plates
were centrifuged (800 g, 3min, 8◦C) and incubated for 10min
at 37◦C and Zombie NIR Viability dye (Biolegend) was added
to each well. Plates were incubated at room temperature for
15min, shielded from the light. After incubation, PBS/0.1%
BSA was added per well and the plates were centrifuged (800 g,
3min, 8◦C). Thereafter, cells were incubated in FcR blocking
reagent at 4◦C for 5min, and then staining mixture (containing
anti-CD3, Biolegend, anti-CD4, and anti-CD8 antibodies; BD
Biosciences) was added to each well. After 30min of incubation
at 4◦C, washing, and centrifugation (800 g, 3min, 8◦C), cells
were permeabilized and fixed according to the manufacturer’s
recommendations (BD Biosciences). After fixation, cytokine
staining mixture (containing anti-IFN-γ, anti-IL-2, anti-IL-4,
anti-IL-10 and anti-TNF-α antibodies, Biolegend) was added to
each well. Plates were incubated at 4◦C for 30min and then
washed twice before acquisition. All flow cytometry data were
acquired with LSRFortessaTM X-20 and analyzed using FlowJo
V10 software. DMSO negative control was subtracted from each
data point obtained using test peptides or pools.

Antibody ELISA
ELISAs for mouse studies were performed for the quantitative
measurement of total mouse IgG production in plasma samples
using IgG (Total) Mouse Uncoated ELISA Kit (Invitrogen,
#88-50400-22) for BALB/c cohorts and IgG (Total) Human
Uncoated ELISA Kit (Invitrogen, #88-50550-22) for Hu-mice
cohorts according to the manufacturer’s instructions. Analyses
were performed using samples harvested at days 14, 21, and
28 (n = 6 per group per time point). Absorbance were read
on an Epoch Microplate Reader (Biotech) and analyzed using
Gen5 software.

Euroimmune ELISA assays for convalescent donors
were performed to determine S1-specific IgG levels via the
independent medical research center, The Netherlands. The
Anti-SARS-CoV-2 ELISA plates are coated with recombinant
S-1 structural protein from SARS-CoV-2 to which antibodies
against SARS-CoV-2 bind. This antigen was selected for
its relatively low homology to other coronaviruses, notably
SARS-CoV. The immunoassay was performed according to the
manufacturer’s instructions.

ELISAs were performed by Mikromikomed Kft (Budapest,
Hungary) using a DiaPro COVID-19 IgM Enzyme Immunoassay
for the determination of IgM antibodies to COVID-19 in
human serum and plasma, DiaPro COVID-19 IgG Enzyme
Immunoassay for the determination of IgG antibodies to
COVID-19 in human serum and plasma, and DiaPro COVID-
19 IgA Enzyme Immunoassay for the determination of
IgA antibodies to COVID-19 in human serum and plasma,
according to the manufacturer’s instructions (Dia.Pro
Diagnostic Bioprobes S.r.l., Italy). For the determination
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of N-specific antibodies, Roche Elecsys R© Anti-SARS-CoV-
2 Immunoassay for the qualitative detection of antibodies
(including IgG) against SARS-CoV-2 was used with a COBAS
e411 analyzer (disk system; ROCHE, Switzerland) according to
the manufacturer’s instructions.

(Vero C1008 (ATCC No." should be replaced with "(Vero
C1008, ATCC No.

Pseudoparticle Neutralization Assay
Neutralizing antibodies in mice sera were assessed using a
cell-based Pseudoparticle Neutralization Assay. Vero E6 cells
expressing the ACE-2 receptor (Vero C1008 ATCC No. CRL-
1586, US), were seeded at 20 000 cells/well to reach a cell
confluence of 80%. Serum samples and controls (pool of
human convalescent serum, internally produced) were diluted
in duplicates in cell growth media at a starting dilution of
1/25 (for samples) or 1/100 (for controls), followed by a serial
dilution (2-fold dilutions, five times). In parallel, SARS-CoV-
2 pseudovirus (prepared by Nexelis, using Kerafast system),
with Spike from Wuhan Strain (minus 19 C-terminal amino
acids) was diluted as to reach the desired concentration
(according to pre-determined TU/mL). Pseudovirus was then
added to diluted sera samples and pre-incubated for 1 h at
37◦C with CO2. The mixture was then added to the pre-
seeded Vero E6 cell layers and plates were incubated for 18–
24 h at 37◦C with 5% CO2. Following incubation and removal
of media, ONE-Glo EX Luciferase Assay Substrate, Promega,
Cat. E8110) was added to cells and incubated for 3min at room
temperature with shaking. Luminescence was measured using
a SpectraMax i3x microplate reader and SoftMax Pro v6.5.1
(Molecular Devices). Luminescence results for each dilution
were used to generate a titration curve using a 4-parameter
logistic regression (4PL) using Microsoft Excel (for Microsoft
Office 365). The titer was defined as the reciprocal dilution
of the sample for which the luminescence is equal to a pre-
determined cut-point of 50, corresponding to 50% neutralization.
This cut-point was established using linear regression using 50%
flanking points.

Statistical Analysis
Significance was compared between and among groups using
t-tests, Mann-Whitney tests, or Permutation statistics using
Montecarlo simulations, as appropriate. p < 0.05 was considered
significant. Pearson’s test and/or Spearman’s test was performed
to assess correlations. The correlation was considered strong if R
> 0.7, moderate, if 0.5 < R ≤ 0.7 and weak, if 0.3 < R ≤ 0.5.
Dependent variables were determined using Fisher Exact test for
a 2× 2 contingency table.

RESULTS

Tailoring PolyPEPI-SCoV-2 to Individuals’
Genetic Profile
During the design of PolyPEPI-SCoV-2, we used the HLA
genotype data of subjects in the in silico human cohort (Model
Population) to determine the most immunogenic peptides
(i.e., HLA class I PEPI hotspots, 9-mers) of the four selected

SARS-CoV-2 structural proteins aimed to induce CD8+ T cell
responses. The sequences of the identified 9-mer PEPI hotspots
were then extended to 30-mers based on the viral protein
sequences to maximize the number of HLA class II binding
PEPIs (15-mers) aimed to induce CD4+ T cell responses as
detailed below.

First, we performed epitope predictions for each subject in
the in silico human cohorts for each of their HLA class I and
class II alleles (six HLA class I and class II alleles) for the
AA sequence of the conserved regions of 19 known SARS-
CoV-2 viral proteins using 9-mer (HLA class I) and 15-mer
(HLA class II) frames, respectively (Figure 1A; section Materials
and Methods). Then, we selected the epitopes restricted to
multiple (≥3) autologous HLA alleles (PEPIs) to account for
the most abundantly presented epitopes. We identified several
HLA-restricted epitopes (average, 166 epitopes only for S1
protein) for each person. In contrast, PEPIs are represented
at much lower level in all ethnicities (average, 14 multi-HLA
binding epitopes, Figure 1A). Of note, we did not observe
any difference in SARS-CoV-2 S1-protein specific epitope
generation capacity of individuals with different ethnicities based
on their complete HLA genotype, which does not seem to
explain the higher infection and mortality rates observed in
BAME. Instead, we observed heterogeneity in the frequency
of the shared PEPIs in the different ethnic groups, especially
for protein N, having high impact on the design of a
potential global vaccine (Figure 1B). Combination of targets with
different frequencies inside- and between ethnic groups into
a vaccine candidate with high global coverage is feasible only
by performing “in silico clinical trials” in large populations of
real subjects.

Therefore, to maximize multi-antigenic immune responses
at both the individual and population/ethnicity levels, and also
considering the chemical and manufacturability properties of the
peptides, we selected a total of nine 30-mer peptides from four
structural proteins of SARS-CoV-2: three peptides from spike
(S), four peptides from nucleoprotein (N), and one peptide from
each matrix (M) and envelope (E). No peptides were included
from the receptor-binding domain (RBD) of S protein. Overall,
each member of the Model Population had HLA class I PEPIs
for at least two of the nine peptides, and 97% had at least three
(Table 1). Each subject had multiple class II PEPIs for the vaccine
peptides (Table 1).

We identified experimentally confirmed linear B cell
epitopes derived from SARS-CoV, with 100% sequence identity
to the relevant SARS-CoV-2 antigen, to account for the
potential B cell production capacity of the long peptides
(Ahmed et al., 2020). Three overlapping epitopes located in
N protein- and one epitope in S protein-derived peptides
of PolyPEPI-SCoV-2 vaccine were reactive with the sera of
convalescent patients with severe acute respiratory syndrome
(SARS). This suggests that the above antigenic sites on the
S and N protein are important in eliciting humoral immune
response against SARS-CoV and likely against SARS-CoV-2,
in humans.

None of the peptides involved in PolyPEPI-SCoV-2
composition are cross-reactive with the human genome at
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FIGURE 1 | Design of PolyPEPI-SCoV-2. (A) Hotspot analysis of SARS-CoV-2 Spike-1 protein in the ethnically diverse in silico human cohort. Analysis was performed

by predicting ≥3 HLA allele binding personal epitopes (PEPIs) for each subject. Left panel: Each row along the vertical axis represents one subject in the model

population, while the horizontal axis represents the SARS-CoV-2 S-1 protein sequence. Vertical bands represent the most frequent PEPIs, i.e., the dominant

immunogenic protein regions (hotspots). Colors represent the number of epitopes restricted to a subject’s: red, 3; green/blue, 4; black, >5 HLA class I allele. Right

panel, average number of epitopes/PEPIs found for subjects of different ethnicities. (B) Heterogeneity of peptide frequencies in different ethnic groups. CEU, Central

European; CHB, Chinese; JPT, Japanese; YRI, African; Mix, mixed ethnicity subjects.

minimal epitope level, as assessed by BLAST analysis (see section
Methods). As expected, PolyPEPI-SCoV-2 contains several (eight
out of nine) peptides that are cross-reactive with SARS-CoV due
to high sequence homology between SARS-CoV-2 and SARS-
CoV. Sequence similarity is low between the PolyPEPI-SCoV-2
peptides and common (seasonal) coronavirus strains belonging
to alpha coronavirus (229E and NL63), beta coronavirus (OC43,
HKU1) and MERS. Therefore, cross-reactivity between the
vaccine and prior coronavirus-infected individuals remains
low and might involve only the M1 peptide of the vaccine
(See section Materials and Methods; Supplementary Table 5).
However, none of the peptides involved in the PolyPEPI-SCoV-2
vaccine composition is affected by the emergent SARS-CoV-2
variants and mutations known to date (See Materials and
Methods for the analysis).

PolyPEPI-SCoV-2-Specific T Cell
Responses Detected in COVID-19
Convalescent Donors
Next, we aimed to demonstrate that shared PEPIs identified for

the in silico cohort are also present in the T cell repertoire of

natural SARS-CoV-2 infection by investigating vaccine-specific T

cells circulating in the blood of COVID-19 convalescent donors

(donor information are reported in Supplementary Tables 1, 2).

First, the reactivity of vaccine peptides with convalescent

immune components was investigated in 17 convalescent and

four healthy donors using ex vivo FluoroSpot assay which can

detect rapidly activating, effector phase T cell responses. Vaccine-

reactive CD4+ T cells were detected using the nine 30-mer
vaccine peptides grouped in four pools according to their source
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protein: S, N, M, and E peptides. CD8+ T cell responses were
measured using the 9-mer test peptides as well corresponding
to the shared HLA class I PEPIs defined for each of the nine
vaccine peptides, grouped into four pools (s, n, m, and e peptides;
Table 1, bold). Significant amount of vaccine-reactive, IFN-γ-
expressing T cells were detected with both 30-mer (average
dSFU: 48.1) and 9-mer peptides (average dSFU: 16.5) compared
with healthy subjects (Figure 2A). Detailed analysis of the four
protein-specific peptide pools revealed that three out of the 17
donors reacted to all four structural proteins with the 30-mer
vaccine peptides; 82% of donors reacted to two proteins and 59%
to three proteins. Notably, highly specific 9-mer-detected CD8+

T cell responses could be also identified against at least one of
four proteins in all 17 donors and against at least two proteins in
53% (Supplementary Table 6).

As determined by ICS assay, stimulation with 9-mer test
peptides resulted in an average T cell make up of 83% CD8+

T cells, and 17% CD4+ T cells (Supplementary Figures 2A,B).
The 30-mer peptides reacted with both CD4+ and CD8+

T cells in average ratio of 50:50 (Supplementary Figure 2B).
Functionality testing of the T cells revealed that CD8+ T cells
primarily produced IFN-γ, TNF-α, and IL-2 (with small amounts
of IL-4 and IL-10), while CD4+ T cells were positive for
mainly IL-2 and IFN-γ. Recall responses demonstrated clear
Th1 cytokine characteristics; Th2 responses were not present
in the recall response detected with 30-mer vaccine peptides
(Supplementary Figure 2C).

Next, we determined whether the ex vivo detected T cells
could also expand in vitro in the presence of vaccine peptides.
Using enriched FluoroSpot, significant numbers of vaccine-
reactive, IFN-γ-expressing T cells were detected with both 30-
mer (average dSFU = 3,746) and 9-mer (average dSFU = 2,088)
peptide pools compared with healthy subjects (Figure 2B). The
intensity of the PolyPEPI-SCoV-2-derived T cell responses (30-
mer pool) were also evaluated relative to the responses detected
with a commercial, large SARS-CoV-2 peptide pool (SMNO)
containing 47 long peptides derived from both structural (S,
M, N) and non-structural (open reading frame ORF-3a and 7a)
proteins. Interestingly, the magnitude of T cell responses were
similar for the two peptide pools despite of the difference in their
size, suggesting more prevalent responses for our peptide mix. In
addition, the vaccine pool was favored by the COVID-19 donors,
while healthy donors preferred the commercial peptide pool,
confirming improved specificity of PolyPEPI-SCoV-2 peptides to
SARS-CoV-2, in conformance with the result of cross-reactivity
analysis with common coronavirus strains (Figure 2B).

To confirm and further delineate the multi-specificity of
the PolyPEPI-SCoV-2-specific T cell responses of COVID-
19 recovered individuals, we defined the distinctive peptides
targeted by their T cells. We first deconvoluted the peptide pools
and tested the CD8+ T cell responses specific to each of the 9-mer
HLA class I PEPIs corresponding to each vaccine peptide using in
vitro expansion (Figure 2C; Supplementary Figure 3). Analysis
revealed that each 9-mer peptide was recognized by several
subjects; the highest recognition rate in COVID-19 convalescent
donors was observed for n4 and n3 (93%), s9 (87%), s2, n1, m1
(80%), e1 (60%), s5, n2 (40%) (Figure 2C). Detailed analysis of

the nine peptide-specific CD8+ T cell responses revealed that
100% of COVID-19-recovered subjects had PolyPEPI-SCoV-2-
specific T cells reactivated with at least one peptide, 93% with
more than two, 87% with more than five, and 27% had T cell
pools specific to all nine vaccine peptides. At the protein level,
87% of subjects had T cells against multiple (three) proteins
and eight out of the 15 measured donors (53%) reacted to all
four targeted viral proteins (Figure 2C). These data confirm
that PolyPEPI-SCoV-2-peptides are dominant for an individual
and shared between COVID-19 subjects. Convalescents’ T cells
recognizing PolyPEPI-SCoV-2-specific 9-mer peptides were fully
functional, expressing IFN-γ and/or TNF-α and/or Granzyme-
B (Supplementary Figure 4). For our cohort of convalescent
subjects, the breadth and magnitude of vaccine-specific T cell
responses were independent of time from symptom onset,
suggesting that these T cells are persistent (for at least 5 months)
(Supplementary Figure 5).

As an external validation, we determined the frequency
of PolyPEPI-SCoV-2-specific T cell responses in a second
convalescent cohort reported by Tarke et al. Uniquely, this study
reports individual T cell response data to predictedMHC I and II-
epitope pairs. Eight of our nine peptides (identical or overlapping
sequences with at least eight amino acids) were tested for 42
convalescent subjects, with average 4.5 out of eight peptides being
tested per subject.

We found that each of the eight peptides (100%) were shared
between at least three subjects tested, peptide N3 was found for
13/27 (48%) of subjects (Supplementary Figure 6). Furthermore,
26/42 (62%) of subjects had T cell responses specific for at least
one, 14/42 (33%) for at least two and 8/42 (19%) for at least three
PolyPEPI-SCoV-2 peptides (Supplementary Figure 6). These
data confirm the immunoprevalent nature of our peptides in
an independent cohort of convalescents using an ex vivo T cell
receptor dependent Activation Induced Marker (AIM) assay.

Correlation Between
PolyPEPI-SCoV-2-Reactive T Cells and
SARS-CoV-2-Specific Antibody Responses
T cell-dependent B cell activation is required for antibody
production. For each subject, different levels of antibody
responses were detected against both S and N antigens of SARS-
CoV-2 determined using different commercial kits (Table 1). All
subjects tested positive with Euroimmune ELISA against viral S1
subunit (IgG-S1) and a Roche kit tomeasure N-related antibodies
(IgG-N). All subjects tested positive for DiaPro IgG and IgM
(except two donors), 7/17 for DiaPro IgA detecting mixed S1 and
N protein-specific antibody responses (Supplementary Table 1).

We next evaluated the correlation between PolyPEPI-SCoV-
2-specific CD4+ T cell reactivities and antibody responses
(Figure 3). The total amount of PolyPEPI-SCoV-2-reactive
CD4+ T cells correlated with IgG-S1 (R = 0.59, p = 0.02,
Figure 3A). Next, the subset of CD4+ T cells reactive to specific
S1 protein subunit-derived peptides of the PolyPEPI-SCoV-2
vaccine (S2 and S5) were analyzed and the correlation was
similar (R = 0.585, p = 0.02, Figure 3B). T cell responses
detected with N protein derived PolyPEPI-SCoV-2 peptides
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FIGURE 2 | PolyPEPI-SCoV-2-specific T cells detected for COVID-19 convalescent donors. (A) Highly specific vaccine-derived 9-mer peptide-reactive CD8+ T cells

and 30-mer peptide-reactive CD4+ T cells detected by ex vivo FluoroSpot assay. Test conditions: S-pool contains the three peptides derived from S protein; N-pool

contains the four peptides derived from N protein; M and E are the pepti/des derived from M and E proteins, respectively, in both the 9-mer and 30-mer pools. (B)

IFN-γ producing T cells activated with 30-mer peptides in one pool, 9-mer peptides in one pool, and a commercial SNMO peptide pool detected using enriched

FluoroSpot assay. (C) IFN-γ producing CD8+ T cells activated by individual 9-mer peptides corresponding to each of the 30-mer peptides with the same name

(Table 1 bold), detected using enriched FluoroSpot assay. dSFU, delta spot forming units, calculated as background corrected spot counts per 106 PBMC.

Significance was calculated using Permutation statistics with Montecarlo simulations; *p < 0.05, **p < 0.00005.

(N1, N2, N3, and N4) presented a weak but not significant
correlation with IgG-N (Figure 3C). These data suggest a link
between PolyPEPI-SCoV-2-specific CD4+ T cell responses and
subsequent IgG production for COVID-19 convalescent donors.
Interestingly, IgA production correlated with PolyPEPI-SCoV-
2-specific memory CD4+ T cell responses (R = 0.63, p =
0.006, Figure 3D, although Spearman test did not confirm the
correlation). T cell responses reactive to the SMNO peptide pool
exhibited no correlation with any of the antibody subsets. This
suggests that not all CD4+ T cells contributed to B cell responses,
consequently to IgG production.

Correlation Between Multiple Autologous
Allele-Binding Epitopes (PEPIs) and CD8+

T Cell Responses
We investigated the HLA-binding capacity of the immunogenic
peptides detected for each subject.

First we determined the complete HLA class I genotype for
each subject and then predicted the number of autologous HLA
alleles that could bind to each of the nine shared 9-mer peptides
used in the FluoroSpot assay. Then we matched the predicted
HLA-binding epitopes to the CD8+ T cell responses measured
for each peptide in each patient (total 15 × 9 = 135 data
points, Supplementary Figure 7). The magnitude of CD8+ T cell
responses tended to correlate with epitopes restricted to multiple
autologous HLA alleles (RS = 0.188, p = 0.028, Figure 4A).
In addition, we observed that the magnitude of CD8+ T cell
responses generated by PEPIs (HLA ≥3) (median dSFU = 458)
was significantly higher than those generated by non-PEPIs
(HLA < 3) (median dSFU= 110), (p= 0.008) (Figure 4B).

Across the 135 data points there were 98 positive
responses and 37 negative responses recorded. Among the
98 positive responses 37 were generated by PEPIs, while
among the 37 negatives only seven were PEPIs, the others
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FIGURE 3 | Correlation between SARS-CoV-2-specific antibody levels and PolyPEPI-SCoV-2-specific IFN-γ-producing CD4+ T cells in COVID-19 convalescent

individuals. (A) T cell responses reactive to 30-mer pool of PolyPEPI-SCoV-2 peptides were plotted against the IgG-S1 (Euroimmune). (B) Average T cell responses

reactive to S1 protein subunit-derived 30-mer peptides (S2 and S5) was plotted against IgG-S1 (Euroimmune). (C) T cell responses reactive to 30-mer N peptide pool

comprising N1, N2, N3, and N4 was plotted against total IgG-N measured with Roche Elecsys® assay. (D) T cell responses reactive to 30-mer pool of

PolyPEPI-SCoV-2 peptides were plotted against the IgA antibody amounts measured by DiaPro IgA ELISA assay. R: Pearson correlation coefficient.

were epitopes restricted to <3 autologous HLA alleles
(Supplementary Figure 7). Overall, the 2 × 2 contingency
table revealed association of T cell responses with PEPIs (p =
0.041, Fisher Exact) but not with HLA-restricted epitopes (p
= 1.000, Fisher Exact) (Figure 4C). For each subject between
one and seven peptides out of nine proved to be PEPIs. Among
the predicted PEPIs, 37/44 (84%) were confirmed by IFN-γ
FluoroSpot assay to generate specific T cell responses in the given
subject (Figure 4D; Supplementary Figure 7).

These data demonstrate that subjects’ complete HLA-
genotype influence their CD8+ T cell responses and
multiple autologous allele-binding capacity is a key feature
of immunogenic epitopes. PEPIs in general underestimated
the subject’s overall T cell repertoire, however they precisely
predicted subjects’ PEPI-specific CD8+T cell responses.

Predicted Immunogenicity in Different
Ethnicities
Since the T cell responses detected in convalescents validated
our hypothesis that PEPIs determined for an individual’s HLA
genotype generate CD8+ T cell responses with high predictive
value, we used this knowledge to determine the scalability of
our approach and estimate the global coverage of our vaccine

candidate. As expected, the measured peptide-specific CD8+ T
cell frequencies obtained in the convalescent population were in
good agreement with their predicted PEPI frequencies and also
with the frequency of shared PEPIs of the Model Population (n
= 433) cohort used for the design (100% for at least one peptide
for both predicted PEPIs and measured CD8+ T cell frequencies;
93% measured T cell response vs. 100% predicted for at least
two peptides) (Figure 5A; Table 1). The polypeptide-specific
T cell responses were however underestimated by both the
individual HLA-genotypes and the Model Population compared
to measured T cell responses.

To estimate the scalability of our in silico model, we
determined the PEPI frequencies for a large cohort of 16,000
HLA-genotyped subjects distributed among 16 different ethnic
groups obtained from a US bone marrow donor database. The
ethnic groups covered in this cohort are representative for the
composition of the global population and involves 99.8% of the
alleles cataloged in the CIWD database for > 8 million human
subjects globally (compared to 97.4% in the Model Population)
(see section Methods) (Hurley et al., 2020). The CIWD database
contains frequent alleles (documented for≥ 5 subjects) as well as
rare alleles (documented for <5 subjects). The PEPI frequencies
obtained for our Model Population (n = 433) and this large US
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FIGURE 4 | Correlation between multiple autologous HLA allele-binding epitopes and PolyPEPI-SCoV-2-specific IFN-γ-producing CD8+ T cell responses in

COVID-19 convalescent individuals. (A) Correlation between multiple autologous HLA allele-binding epitopes and magnitude of T cell responses. Rs, Spearman

coefficient (confirmed by Pearson correlation analysis, too) (B) Magnitude of CD8+ T cell responses detected for PEPIs (binding ≥ 3 autologous HLA class I alleles)

and for non-PEPIs (binding <3 autologous HLA class I alleles) by enriched FluoroSpot assay, (p = 0.008, t-test). Median and individual data for each subject are

presented, n = 15 (C) Variable dependency analysis using 2 × 2 contingency table and Fisher Exact test. (D) Confirmation of Personal Epitopes (PEPIs) by IFN-γ

producing CD8+ T cells for each subject [Positive Predictive Value (PPV) = True positive/Total predicted = 37/44 (84%)]. dSFU, delta spot forming units calculated as

non-stimulated background corrected spot counts per 106 PBMC; PBMC, peripheral blood mononuclear cells.

cohort (n = 16,000) were in perfect alignment, suggesting high
global coverage ensured by the high number of frequent alleles
covered in theModel Population and an overall low impact of the
rare alleles found in the individuals’ HLA-genotype (Figure 5A;
Supplementary Figures 8A–C). In the large US cohort, most
subjects had a broad repertoire of predicted PEPIs that based
on the above findings will likely be transformed to multiple
virus-specific memory CD8+ T cell clones: 98% of subjects were
predicted to have PEPIs against at least two vaccine peptides, and
95, 86, and 70% against three, four, and five peptides, respectively
(Figure 5A).

In silico testing revealed that 96–99% of subjects in each
ethnic group will likely mount robust cellular responses, with
both CD8+ and CD4+ T cell responses against at least
two peptides in the vaccine (Figure 5B). This predicted high
response rate was also true for the ethnicities reported to have
worse clinical outcomes from COVID-19 (Black, Asian) (Pan
et al., 2020). Based on these data, we expect that the vaccine

will provide global coverage, independent of ethnicity and
geographic location.

We also used this cohort (and comprising ethnic groups)
to assess theoretical global coverage as proposed by others,
by filtering the sub-populations having at least one of the
six prevalent HLA class I alleles considered to cover 95% of
the global population (Maiers et al., 2007; Gonzalez-Galarza
et al., 2019; Ferretti et al., 2020). Using this approach, we
observed significant heterogeneity at the ethnicity level. While
we confirmed that the selected six HLA alleles are prevalent
in the Caucasian and North American cohorts (91–93%), the
frequency of these alleles was lower in all other ethnic groups,
especially in African populations (48–54%) (Figure 5C). We
concluded that the proposed prevalent HLA allele set may cover
the HLA frequency in an ethnically weighted global population,
but epitope selection for vaccination purposes based only on
these alleles would discriminate some etnnicities. Therefore, we
propose using a representative model population that is sensitive
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FIGURE 5 | Predicted global coverage in a large population with different ethnicities. (A) Proportion of subjects having predicted HLA class I PEPIs against

PolyPEPI-SCoV-2 peptides in different cohorts and the frequency of experimentally measured CD8+ T cell responses in the COVID-19 convalescent cohort (n = 15),

obtained by FluoroSpot assay. (B) Proportion of subjects having both HLA class I and class II PEPIs against at least two peptides in the PolyPEPI-SCoV-2 vaccine. (C)

Theoretical global coverage estimated based on the frequency of six prevalent HLA alleles (A*02:01, A*01:01, A*03:01, A*11:01, A*24:02, and B*07:02), as proposed

by Ferretti et al. (2020). CAU., Caucasian; HISP., Hispanic; n = 16,000.

to the heterogeneities in the human race and that allows selecting
PEPIs shared among individuals across ethnicities.

PolyPEPI-SCoV-2 Vaccine Candidate
Induced Broad T Cell Responses in Two
Animal Models
Preclinical immunogenicity testing of PolyPEPI-SCoV-2 was
performed to measure the induced immune responses after

one and two vaccine doses that were administered 2 weeks
apart (days 0 and 14) in BALB/c and Hu-mouse models.
After immunizations, no mice presented any clinical score
at day 14, 21 or 28 (score 0, representing no deviation
from normal), suggesting the absence of any side effects or
immune aversion (Supplementary Tables 7A,B). In addition,
the necropsies performed by macroscopic observation at each
timepoint did not reveal any visible organ alteration in spleen,
liver, kidneys, stomach and intestine (Supplementary Table 7C).
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Repeated vaccine administration was also well-tolerated, and no
signs of immune toxicity or other systemic adverse events were
detected. Together, these data strongly suggest that PolyPEPI-
SCoV-2 was safe in mice.

Vaccine-induced IFN-γ producing T cells were measured after
the first dose at day 14 and after the second dose at days 21 and
28. Vaccine-induced T cells were detected using the nine 30-mer
vaccine peptides grouped in four pools according to their source
protein: S, N, M, and E, to assess for the CD4+ and CD8+ T cell
responses. CD8+ T cell responses were also specifically measured
using the short 9-mer test peptides corresponding to the shared
HLA class I PEPIs defined above for each of the nine vaccine
peptides, in four pools (s, n, m, and e peptides; Table 1 bold).

In BALB/c mice at day 14, PolyPEPI-SCoV-2 vaccination
did not induce more IFN-γ production than the Vehicle
(DMSO/Water emulsified with Montanide), this latter resulting
in unusually high response probably due to Montanide mediated
unspecific responses. Nevertheless, at days 21 and 28, the second
dose of PolyPEPI-SCoV-2 increased IFN-γ production compared
to Vehicle control group by 6-fold and 3.5-fold for splenocytes
detected with the 30-mer and 9-mer peptides, respectively
(Figure 6A).

In immunodeficient Hu-mice at day 14, PolyPEPI-SCoV-
2 vaccination increased IFN-γ production by 2-fold with
splenocytes specific for the 9-mer pool of peptides, but no
increase was observed with 30-mer-stimulated splenocytes. At
days 21 and 28, the second dose of PolyPEPI-SCoV-2 boosted
IFN-γ production by 4- and 2-fold with splenocytes detected with
the 30-mer and 9-mer pools of peptides, respectively (Figure 6B).
Importantly, both 9-mer-detected CD8+ T cells and 30-mer-
detected CD4+ and CD8+ T cell responses were directed against
all four viral proteins targeted by the vaccine in both animal
models (Figures 6C,D; Supplementary Figures 9A–F). Since the
Hu-mousemodel was developed by transplanting humanCD34+

hematopoietic stem cells to generate human antigen-presenting
cells and T- and B-lymphocytes into NOD/Shi-scid/IL-2Rγ

null immunodeficient mice, this model provides a real human
immune systemmodel (Brehm et al., 2013). Therefore, the robust
multi-antigenic CD4+ and CD8+ T cell responses obtained in
this model indicate that the vaccination resulted in properly
processed and HLA-presented epitopes and subsequent antigen-
specific T cell responses by the human immune cells of
the Hu-mice.

ICS assay was performed to investigate the polarization of
the T cell responses elicited by the vaccination. Due to the
low frequency of T cells, individual peptide-specific T cells
were more difficult to visualize by ICS than by ELISpot, but a
clear population of CD4+ and CD8+ T cells producing Th1-
type cytokines of TNF-α and IL-2 were detectable compared
to animals receiving Vehicle in both BALB/c and Hu-mouse
models (Figures 6E,F; Supplementary Figures 10, 11). For IL-4
and IL-13 Th2-type cytokines, analysis did not reveal any specific
response at any time point. Low levels of IL-5 and/or IL-10
cytokine-producing CD4+ T cells were detected for both models
but it was significantly different from Vehicle control only for
BALB/c mice at day 28. Even for this cohort the Th1/Th2 balance
remained shifted toward Th1 for five out of six mice (one outlier)

confirming an overall Th1-skewed T cell response elicited by the
vaccine (Supplementary Figure 11).

PolyPEPI-SCoV-2 vaccination also induced humoral
responses, as measured by total mouse IgG for BALB/c and
human IgG for Hu-mouse models. In BALB/c mice, vaccination
resulted in vaccine-induced IgG production after the first dose
(day 14) compared with Vehicle control group. IgG elevation
were observed for both BALB/c and Hu-mouse models at later
time points after the second dose (Figures 6G,H). IgG levels
measured from the plasma of Hu-mice (average 115 ng/mL,
Figure 6H) were lower than for BALB/c (average 529 ng/mL,
Figure 6G) at D28. This is consistent with the known limitation
of the NOD/Shi-scid/IL-2Rγ null immunodeficient mouse
regarding its difficulty generating the human humoral responses
that lead to class-switching and IgG production (Brehm et al.,
2013). Humanization rate of ∼50% in the Hu-mouse model
further reduces the theoretically expected IgG levels. Despite
these limitations, the dose-dependent human IgG production
indicates vaccine-generated human humoral responses. As
expected, given that PolyPEPI-SCoV-2 peptides do not contain
conformational B cell epitopes, vaccination did not result in
measurable neutralizing antibodies as assessed from the sera of
Hu-mice using PNA assay. A 50% Neutralizing Antibody Titer
(NT50) was undetectable at the assay detection limit of 1:25
dilution, for each tested samples (data not shown).

DISCUSSION

We demonstrated that PolyPEPI-SCoV-2, a polypeptide vaccine
candidate comprising nine synthetic long (30-mer) peptides
derived from the four structural proteins of the SARS-CoV-
2 (S, N, M, E) mimics the diversity of T cell immunity
produced by natural SARS-CoV-2 infection, in each subject.
The peptides were prospectively selected based on their
frequency for an ethnically diverse, HLA-genotyped in silico
cohort and their frequency was subsequently demonstrated
in a group of convalescent subjects. Each (100%) selected
peptide achieved an unprecedented recognition rate in 40–
93% of convalescents, demonstrating their immunoprevalence in
COVID-19. In comparison a comprehensive screening of 5,600
predicted epitopes restricted to 28 frequent HLA class I alleles
in 99 COVID-19 convalescent subjects revealed 101/454 (22%)
epitopes shared between at least two subjects (Tarke et al., 2021).
As an external validation, T cells reactive to each of our peptides
investigated (eight out of nine) were reported also for this larger
cohort of convalescents, 62% of subjects having ex vivo recall
responses specific to one or more PolyPEPI-SCoV-2 peptides
(Tarke et al., 2021).

On the individual level, the PolyPEPI-SCoV-2-specific T cell
repertoire used for recovery from asymptomatic/mild COVID-
19 was extremely diverse: each donor had an average of seven
different peptide-specific T cell pools, with multiple targets
against SARS-CoV-2 proteins; 87% of donors had targets against
at least three SARS-CoV-2 proteins and 53% against all four,
1–5 months after their disease onset. Despite 87% of subjects
had CD8+ T cells against S protein, we found that S-specific
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FIGURE 6 | Induction of cellular and humoral immune responses by PolyPEPI-SCoV-2 vaccine in mouse models. Animals received PolyPEPI-SCoV-2 or Vehicle

subcutaneously at days 0, 14. IFN-γ-producing T cell responses elicited by PolyPEPI-SCoV-2 expressed as fold change in BALB/c (A) and Hu-mouse (B) models

compared to the respective Vehicle cohorts; diversity of vaccine-induced T cell responses after two doses at day 28 in BALB/c (C) and Hu-mouse (D) models by ex

vivo ELISpot. Test conditions: stimulation with 30-mer S-pool (three S-peptides), N-pool (four N-peptides), M-peptide, E-peptide, or 9-mer pools (s-pool, n-pool, e1,

m1 peptides). For Fold change calculation the average dSFU values of the 30-mer and 9-mer stimulation conditions are pooled. (E,F) PolyPEPI-SCoV-2 induced Th1

(Continued)
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FIGURE 6 | response and no significant Th2 cytokine induction shown as average of vaccine-specific CD4+ and CD8+ T cells producing IL-2, TNF-α, IFN-γ, IL-5 or

IL-10 in BALB/c (E) and Hu-mouse (F), using Intracellular cytokine staining. Mean +/-SEM are shown. 2 × 105 cells were analyzed, gated for

CD45+CD3+CD4+/CD8+. Average percentage was obtained by pooling the background-subtracted values of the 30-mer stimulation conditions for each cytokine for

CD4+ and CD8+ splenocytes. IgG production measured from the plasma of BALB/c (G) and Hu-mice (H). N = 6 animals at each time point, *p < 0.05, **p < 0.001

(Mann-Whitney U).

(memory) T cells represented only 36% of the convalescents’
total T cell repertoire detected with our peptides; the remaining
64% was distributed almost equally among N, M, and E proteins.
These data support the increasing concern that S protein-based
candidate vaccines are not harnessing the full potential of human
anti-SARS-CoV-2 T cell immunity, especially since diversity of T
cell responses was associated with mild/asymptomatic COVID-
19 and they are vital for long-term immunity.

We demonstrated that individuals’ anti-SARS-CoV-2 T cell
responses reactive to the PolyPEPI-SCoV-2 peptide set are HLA
genotype-dependent. Specifically, predicted, multiple autologous
HLA binding epitopes (PEPIs) determine antigen-specific CD8+

T cell responses with 84% accuracy. This suggests, that PEPIs
overcome the unexplained high false positive rates generally
observed using only the epitope-binding affinity as the T cell
response predictor (Lorincz et al., 2019; Toke et al., 2019; Nelde
et al., 2020; Wells et al., 2020; Tarke et al., 2021). Particularly,
this predictive value compares favorably to the 10–25% positive
epitope-specific T cell tests obtained inHLA-matched COVID-19
subjects reported by two recent publications (Nelde et al., 2020;
Tarke et al., 2021).

Our vaccine design concept, targeting multi-antigenic
immune responses at both the individual and population
level, represents a novel target identification strategy that has
already been used successfully in cancer vaccine development
to achieve unprecedented immune response rates correlating
with initial efficacy in the clinical setting (Hubbard et al., 2019).
For COVID-19, we focused on selecting fragments of the
SARS-CoV-2 proteins that contain overlapping HLA class I and
II T cell epitopes that can generate diverse and broad immune
responses against the whole virus. Therefore, we selected
long 30-mer fragments to favor generation of multi-antigenic
effector responses (B cells and cytotoxic T cells) and helper T
cell responses.

PolyPEPI-SCoV-2 vaccine elicits the desired humoral
responses as well as the CD8+ and CD4+ T cells responses
against all four SARS-CoV-2 proteins in vaccinated BALB/c and
humanized mice. Particularly, the robust, truly vaccine-induced
immune responses obtained in the humanized mice suggest that
immune responses obtained in mice are relevant also in humans.

The interaction between T and B cells is a well-known
mechanism toward both antibody-producing plasma cell
production and generation of memory B cells (Parker, 1993).
During the analysis of convalescents’ antibody subsets, we
found correlations between antigen-specific IgG levels and
corresponding peptide-specific CD4+ T cell responses. This
correlation might represent the link between CD4+ T cells and
antibody production, a concept also supported by total IgG
production in the animal models. Binding IgG antibodies can
act in cooperation with the vaccine induced CD8+ killer T cells
upon later SARS-CoV-2 exposure of the vaccinees. This interplay

might result in effective CD8+ T cell mediated direct killing of
infected cells and IgG-mediated killing of virus-infected cells
and viral particles, inhibiting Th2-dependent immunopathologic
processes, too.

In this way, it is expected that both intracellular and
extracellular virus reservoirs are attacked to help viral clearance
in the early stage of infection blocking progression to severe
COVID-19, even in the absence of neutralizing antibodies
(Parker, 1993; Kar et al., 2020).

This hypothesis may be supported by previous animal
challenge studies demonstrating that reactivated T cells provided
protection from lethal dose infection with SARS (Zhao et al.,
2010; Channappanavar et al., 2014a). Moreover, a study
reported that CD8+ T cells contribute to the protection of
convalescent macaques against re-challenge with SARS-CoV-
2 in the setting of waning and subprotective antibody titers
(McMahan et al., 2020). For mRNA-based COVID-19 vaccines
it was suggested that binding antibodies and T cell responses
are responsible for early protection against COVID-19 and
lack of neutralizing antibodies indicate they are not absolutely
required for protection (Kalimuddin et al., 2021). As of yet, the
role of T cell responses in the protection against SARS-CoV-2
infection or COVID-19 has not been directly demonstrated. We
acknowledge that, historically, T cell-focused vaccines represent
an uncharted territory in the development of highly effective
vaccines where antibody-based vaccines already demonstrated
major role. However, the pandemic is still evolving and it would
be important to understand the body’s response to infection and
to vaccines in order to develop the most effective vaccine or
vaccination strategy.

Although PEPIs generally underestimated the subject’s overall
T cell repertoire, they are precise target identification “tools”
and predictors of PEPI-specific immune responses. In addition
both predicted PEPI frequencies and related T cell response
frequencies obtained for the convalescent cohort were in good
alignment with the predicted PEPI frequencies obtained for the
in silicomodel population used for vaccine design. Therefore, our
findings could be extrapolated to large cohorts of 16,000 HLA-
genotyped individuals and 16 human ethnicities, representative
for global population. Based on this, PolyPEPI-SCoV-2 will
likely generate meaningful, multi-antigenic CD8+ and CD4+ T
cell responses in ∼98% of the global population, independent
of ethnicity. In comparison, a T cell epitope-based vaccine
design approach based on globally frequent HLA alleles, as
proposed by others, would miss generation of immune responses
for ∼50% of Black Caribbean, African, African-American, and
Vietnamese ethnicities. We propose, HLA-genotypes should be
taken into consideration during the development of widely
desired, second-generation, “universal” vaccines focusing not
only on humoral but cellular responses, too (Dai and Gao, 2021).
We believe, focusing on several targets in each subject would
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better recapitulate the natural T cell immunity induced by the
virus, potentially leading to long-term memory responses and
protection against mutations.

The present study has limitations. The limited number of
donors studied did not allow validation of the performance
of our approach. Further statistically powered studies would
be required to demonstrate immunoprevalence of the selected
peptides in large cohorts of convalescents with different ethnic
background, immune status, age, etc. Nevertheless, the study
presents a novel in silico approach for the selection of
immunogenic epitopes for an individual or a population, and
promising initial confirmation at both individual and population
level in two independent convalescent cohorts. Translation
of predicted anti-SARS-CoV-2-specific T cell responses based
on HLA- genotypes to T cell responses obtained upon
vaccination should be carefully interpreted even in the light of
immunogenicity data obtained in vaccinated animals modeling
human immune system. HLA-genotype-dependent vaccine-
specific T cell responses can be validated in a clinical study
involving HLA-genotyped individuals.

Due to the well-known limitations of the NOD/Shi-scid/IL-
2Rγ null immunodeficient mouse model for producing robust
IgG antibodies, we opted to measure total IgG as demonstration
of the vaccine’s capacity to induce humoral responses in human
immune systems. Therefore, split to individual SARS-CoV-2
antigen-specific antibody responses need to be confirmed in
further (preferably human-like or human) models. Similarly, this
study does not provide evidence for the pre-clinical efficacy of
the vaccine. A challenge study will be performed in rodent model
to investigate the impact of the vaccine-induced T and B cell
responses on functional immunity and on the disease pathology
upon SARS-CoV-2 exposure.

Synthetic polypeptide-based platform technology is
considered a safe and immunogenic subunit vaccination
strategy with several advantages over platforms using whole
antigens: limits unwanted antigenicity, induces robust cellular
responses and can be less reactogenic (Wu et al., 2008; Atsmon
et al., 2012; Crooke et al., 2020; Kanduc and Shoenfeld, 2020;
Poland, 2020; Vojdani and Kharrazian, 2020). Synthetic peptide
manufacturing at multi-kilogram scale is relatively inexpensive
and peptides are generally stable for years (>6 months
stability demonstrated for PolyPEPI-SCoV-2). Therefore, the
manufacturing and distribution of peptide vaccines could benefit
from the well-established processes of the existing multinational
or nation-sized facilities. Peptide-based vaccines have had only
limited success to date, but this can be attributed to lack of
knowledge regarding which peptides to use. Such uncertainty
is reduced by an understanding of how an individual’s genetic
background is able to respond to specific peptides. As we
demonstrated here, this knowledge drives to the desired
and predicted immune responses, both on individual and
population level.

In conclusion, our multi-antigen targeting peptide set has
the potential to lead to a versatile second-generation tool
against COVID-19. Potential clinical opportunities include:
PolyPEPI-SCoV-2 used either alone or in combination with
other vaccines focused on neutralizing-antibody responses in

COVID-naïve subjects or used as a booster agent to broaden
or strengthen immune responses in vaccinated or COVID-
convalescent subjects, or used in early infection or in “long
COVID” (therapeutic setting) or as a diagnostic tool in
monitoring SARS-CoV-2-specific T cell responses. In addition,
“in silico clinical trial” in large, ethnically diverse cohorts allows
for continuous and rapid monitoring of the global coverage
and cross-protection with the appearance of new viral variants,
potentially de-risking the success of clinical trials and likely an
indispensable tool for global post-vaccination surveillance.
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Current therapeutic strategies and vaccines against SARS-CoV-2 are mainly focused on
the Spike protein despite there are other viral proteins with important roles in COVID-
19 pathogenicity. For example, ORF8 restructures vesicular trafficking in the host cell,
impacts intracellular immunity through the IFN-I signaling, and growth pathways through
the mitogen-activated protein kinases (MAPKs). In this mini-review, we analyze the main
structural similarities of ORF8 with immunological molecules such as IL−1, contributing
to the immunological deregulation observed in COVID-19. We also propose that the
blockage of some effector functions of ORF8 with Rapamycin, such as the mTORC1
activation through MAPKs 40 pathway, with Rapamycin, can be a promising approach
to reduce COVID-19 mortality.

Keywords: SARS-CoV-2, COVID-19, ORF8, structural biology, COVID-19 therapeutics

INTRODUCTION

The SARS-CoV-2 appeared in Wuhan at the end of December 2019 with the consequent crisis in
the health systems due to the lack of an effective treatment to face a then unknown disease with
a mortality of 10%. The implementation of physical distancing leads to an overall reduction in
incidence by 13% (Islam et al., 2020). At the time of writing, 190 million infections and 4.14 million
deaths have been reported. Although the mortality rate is reducing the number of infected patients
is increasing, and there is still no effective pharmacological protocol against the disease. More than
a year after the start of the pandemic, available vaccines are still uncertain since the virus genome
has shown high genetic variability (Islam et al., 2020). Therefore, new drug strategies are needed for
the prevention and treatment of the infection caused by this virus and the aftereffects of the disease.
One of the most relevant characteristics of the virus is the strong immune response in some patients,
in addition to some long-lasting pathologic consequences observed in convalescence patients.

The proteins encoded in the nine open reading frames (ORFs) of SARS-CoV-2 do not appear to
be necessary for viral replication. However, they participate in the modulation of the metabolism
of the infected host cells, the vesicular trafficking and packing of new viral particles, and the
modification of the innate immunity (Gordon et al., 2020). From this group of proteins, ORF8 is
the most connected hub with 47 links, and one of these links is the Tor1a (Torsin-1a) protein, that
is involved in the quality control of protein folding in the ER (Hill et al., 2018; Gordon et al., 2020).
ORF8 acts on ER to modulate the unfolded protein response (UPR) by up regulation of the ER-
resident chaperones GRP78 and GRP94 leading to stimulate ATF6 and IRE1 pathways. Although,
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it does not seem to have any influence on the PERK pathway
(Rashid et al., 2021; Figure 1). Thus, during SARS-CoV-2
infection, ORF8 takes the role of a central organizer of the activity
of the virus-host hybrid network (the interactome model of viral
components with the host proteins) toward the production of
new virions (Díaz, 2020).

Coronaviruses show high genetic variability, and the structure
of the SARS-CoV-2 genome consist of a set of conserved genes
with an exceptionally low or null rate of mutation, together with
a set of genes with high rate of variation. For example, of the
11,113 ORF8 sequences analyzed by Pereira (2020), the L84S
substitution is the mutation that has been positively selected
during the course of the pandemic. In 58 sites with this mutation
the change in position 84 from leucine (observed in 85% of the
sequences) to serine (observed in 15% of the sequences) stands up
(Vilar and Isom, 2021; Zinzula, 2021). In the last group, the gene
ORF8 (ORF8) has a notable tendency to recombine and undergo
deletions that exceed the evolutionary capacity of its analogs
in other coronaviruses, facilitating SARS-CoV-2 adaptability to
new reservoirs and hosts (Abdelrahman et al., 2020; Zinzula,
2021). Despite the fact that truncations in ORF8 become more
common as the pandemic progresses, and that these changes have
apparently no influence on the replication of the virus, they are
associated with non-synonymous mutations that increases the
affinity of protein S for its receptor producing genetic variants
with greater contagion capacity and an increased epidemiological
persistence (Pereira, 2020).

During the first 6 months of the 2020 pandemic, 240
different non-synonymous mutations and 2 deletions in ORF8
have been found in 45,400 sequences. Approximately, 50%
of these mutations are detrimental to the ORF8 protein, and
25% of them are among the conserved amino acids of other
variants of coronavirus in animals. These mutations, regardless
of their effects on ORF8 itself, can influence the biology of
SARS-CoV-2 and slow down the discovery of new drugs,
vaccines, and diagnostics against this coronavirus (Chan et al.,
2020; Velazquez-Salinas et al., 2020; Alkhansa et al., 2021).
An observational cohort study made in Singapore in the first
3 months of 2020, highlighted that an infection process with the
D382 ORF8 variant induced late onset of pneumonia with milder
symptoms, compared to the patients infected with the wild type
(WT) ORF8. This result was associated with a lower probability
of developing hypoxia and a better recovery from the disease
(Young et al., 2020), possibly due to an elicited immune response
in the absence of a fully functional ORF8. The most distinctive
characteristic of severe COVID-19 is the accumulation of high
levels of pro-inflammatory cytokines, chemokines, and growth
factors that are systemically released and are associated with
lung injury. However, in patients infected with the D382 ORF8
variant all these molecules were found in lower concentrations
together with high levels of gamma interferon (IFN-γ), and other
cytokines responsible for the activation of T cells, in contrast
with patients infected with WT (Su et al., 2020). In 2018, a
29-nucleotide deletion in ORF8 was reported in the SARS-CoV
genome, which was acquired during the first stage of person-to-
person transmission. These observations point to the fact that
these genomic changes relate to the deletion mutations of ORF8,

given SARS-CoV-2 some advantage in its process of adaptation
to humans (Muth et al., 2018).

The new ORF8 encodes a 121 amino acid secretory protein
with 55.4% nucleotide similarity, and 30% protein identity
with SARS-CoV counterpart. However, despite this genomic
divergence, they share structural similarities as they both present
a cavity with adequate electrostatic charges for protein–protein
interaction (Neches et al., 2021). Structurally, SARS-CoV-2 ORF8
is a dimer in which each chain is made up of an alpha helix,
followed by six-stranded chain β sheet, and an N-terminal
hydrophobic signal peptide (1–15 aa of length) that promotes
its import into the ER lumen where it can interact with a
wide range of host proteins (Gordon et al., 2020; Rashid et al.,
2021). This, together with two dimerization interfaces, means
that ORF8 has a high possibility of forming unique complexes
that can take part in immunological activity. This dimerization
is probably an adaptative characteristic absent in homologs from
other coronaviruses (Flower et al., 2020).

Among the functions that ORF8 plays in the evasion of the
immune system are the activation of IL-17 signaling pathway,
and the promotion of the expression of pro-inflammatory factors,
supporting the lower intensity and late response to pneumonia
caused by the D382 ORF8 variant. Additionally, association
of ORF8 deletion variant (D382 variant) with milder disease
outcome strongly supports the importance of ORF8 protein as
a therapeutic target against SARS-CoV-2 (Sharma et al., 2021).
However, the search for direct inhibition drugs of ORF8 is
difficult due to the globular structure and high variability of this
viral component. Another distinct function of ORF8 protein,
different form SARS-CoV 29 nucleotide deleted versions- ORF8a
and ORF8b (Pereira, 2021), is the regulation of the amount of
MHC-I on the surface of the infected cell through a mechanism
of lysosomal degradation dependent on autophagy. This results
in dysregulated and deficient antigen presentation, hindering
the recognition and elimination of infected cells (Zhang et al.,
2020; de Sousa et al., 2020). Recently, computational experiments
of homology modeling and molecular coupling suggested that
a high expression of ORF8 and the surface glycoprotein may
interact with heme porphyrin in the 1-beta chain of hemoglobin,
resulting in a significant decrease in gas exchange processes and
aggravating hypoxia in patients with severe disease (Liu and Li,
2020). However, these observations are still under investigation
because of their clinical implications.

The joint action of ORF8, Nsp1, and Nsp6 results in a
significant decrease in the production of IFN-I through different
mechanisms to suppress signaling and produce failures and
incorrect immune response, which favors the replication and
transmission of the virus, to other host cells (Xia et al., 2020).
Another example of this synergy is Nsp5, Nsp7, ORF3b, and
M that can act together with ORF8 in more than one cell
organelle, as in the case of stress-induced to ER (Figure 1;
Gordon et al., 2020).

The diverse immune response evasion strategies generating an
adaptative advantage for SARS-CoV-2 survival and propagation
could be a result of functional mimicry that intensifies the host-
pathogen interaction. An example of this functional mimicry
comes from in silico simulations of ORF8-substrate complexes
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FIGURE 1 | SARS-CoV-2 ORF8 protein interaction map. ORF8 modulates vesicular traffic through the unfolded protein response (UPR) and, therefore, ER stress by
stimulating the ATF6 and IRE1 pathways through the upregulation of the GRP78 and GRP94 chaperones. Likewise, this process is linked to other intracellular
interactions in the nucleus, Golgi apparatus, cytoskeleton, mitochondria, cytoplasm, and membrane. Rapamycin (Sirolimus) could indirectly decrease the effects of
ORF8 by blocking FKBP7 and FKBP10 but not PERK pathway. Created with BioRender.com.

with F1 and C3b. The results of the coupling suggest that
ORF8 can have interactions based on its mimicry with host
targets inside and outside of the ER. Even a high extracellular
concentration of ORF8 could have unknown interactions with
other cell types different from lung alveolar type 2 cells based
on possible putative functions conferred by its Ig-like structure.
According to the structural alignment of the monomer of SARS-
CoV-2 ORF8 (PDB: 7JTL) with SARS-CoV ORF7a (PDB: 1XAK)
(Dali Server, Z-score = 4.6, RMSD = 2.4) they share two sets of
structural disulfide bonds generating a fold like Ig conformation
(Flower et al., 2020). Using the Dali server (Holm, 2020), result
in more than one hundred immunoglobulins reporting a Z score
higher than 3.9, and RMSD values between 2.7 and 3.6. The most
outstanding results are shown in Table 1, in which it is possible
to identify their role in mimicking possible host factors.

ORF8 mimics ALCAM (CD166), which is a structural protein
that can activate ERK (Ibáñez et al., 2006). Once activated,
ERK stimulates cell growth through the indirect activation of
mTORC1 (Saxton and Sabatini, 2017). Some observations in vitro
from MERS-CoV replication determine that mTORC1 activity is
crucial for viral replication, and that the drug Rapamycin can
abrogate 60% of the production of new virions (Kindrachuk et al.,
2015). Additionally, ORF8 also mimics DNAM-1 (CD266), which
is an important molecule that activates Natural Killer (NK) cells
(Zhang et al., 2015; Wang et al., 2019), and has been implicated

in the regulation of T CD8+ activation (Gilfillan et al., 2008),
which can be used by the virus as a potent mechanism to evade
the immune response. Moreover, ORF8 also has similarities with
OX-2 (CD200) (Hatherley et al., 2013), which is an inhibitory
molecule of macrophages (Gordon et al., 2020). Other effect
of the structural mimicry of ORF8 is its ability to activate the
immune response by itself due to its similarity with the soluble IL-
1β receptor and IL-1RA agonists, stimulating the inflammation
process. ORF8 also mimics CD79B (3KG5-A) and CD80 (1DR9-
A), which are antigens required to activate B and T cell effector
functions, respectively (Vasile et al., 1994; Trzupek et al., 2019).
However, ORF8 is not precisely equal to such antigens, and
can produce an incomplete stimulation of the receptors. In
a biological context, incomplete stimulation produces anergy
(Rollins and Gibbons, 2017), which may be used by SARS-CoV-2
to enhance its replication.

DISCUSSION

Current pharmacological strategies to control SARS-CoV-
2 infection are mainly focused on inhibiting spike-ACE2
interaction, and to block viral RNA synthesis. Some examples
of these drugs are Remdesivir, Lopinavir and Ritonavir, which
have been tested on many clinical trials around the world
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TABLE 1 | Highlights of PDB 7JTL comparative studies using dali server.

PDB_Chain Description Z Rmsd %id Reference Overlap

5A2F_A CD166 ANTIGEN 5.9 3.1 5 Chappell et al., 2015

PDB_Chain Description Z Rmsd %id Reference Overlap

1IRA_Y INTERLEUKIN-1 RECEPTOR ANTAGONIST 5.3 3.0 7 Schreuder et al., 1997

PDB_Chain Description Z Rmsd %id Reference Overlap

3O4O_C INTERLEUKIN-1 β RECEPTOR 5.0 2.7 14 Wang et al., 2010

(Continued)
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TABLE 1 | Continued

PDB_Chain Description Z Rmsd %id Reference Overlap

3KG5_A B-CELL ANTIGEN RECEPTOR COMPLEX-ASSOCIATED 4.2 3.9 9 Radaev et al., 2010

PDB_Chain Description Z Rmsd %id Reference Overlap

1DR9_A T LYMPHOCYTE ACTIVATION ANTIGEN 4.1 3.8 10 Ikemizu et al., 2000

Match Protein overlap in cyan and ORF8 in red. Alignment conservation setting: 2 Bits.

(McKee et al., 2020). Unfortunately, these drugs have little or
no effect on patients of COVID-19 (WHO, 2021). Therefore,
it is urgent to find novel viral therapeutic targets to control
COVID-19. In this regard, evidence shows that cells in which
ORF8 is expressed, MHC-I molecules selectively target lysosomal
degradation by autophagy and hinder antigen presentation by
reducing the recognition and clearance of infected cells. Other
pathways of recognition interrupted by the presence of ORF8
are IFN-I signaling, and NF-κB functions. ORF8 also activates
the ERK pathway through CD166 signaling (Bouhaddou et al.,
2020) and it stimulates growth pathways directly as reported
by Gordon et al. (2020). Likewise, ORF8 mimics immune
molecules such as IL-1β, activating immunological effector
signals from B cells and inhibitory molecules from immune
cells such as macrophages, CD8+ T lymphocytes and NK cells
(Table 1). These facts pointed out the multi-organizational
role of ORF8 inside the host cells. The central question that
remains is how all these functions are contributing to ensure
viral replication. It seems that all ORF8 interactions are focused
on provide an intracellular favorable environment to viral
seems that all ORF8 interactions favor a suitable environment
for viral replication through activated growth pathways and
downregulated immune system, all through the inactivation of

macrophages, NK cells, B cells and CD8+ T lymphocytes, making
ORF8 a feasible therapeutic target (Supplementary Figure 1).
This complex network of interactions contributes to worsen the
immune deregulation observed in severe cases of COVID-19
(Pasrija and Naime, 2021).

Consequently, ORF8 is a feasible therapeutic target to
simultaneously shut-down viral replication and host immune
downregulation. However, ORF8 is a highly mutating region
of the SARS-CoV-2 genome, which decreases the feasibility of
ORF8 as a good therapeutic target (Zinzula, 2021), hindering
the search for inhibitory drugs. A valid approach to overcome
this obstacle is either targeting ORF8 immunological functions or
its growth-promoting functions. In general, several RNA viruses
such as hepatitis C virus, influenza A virus, Zika virus, and
MERS-CoV require a specific metabolic environment and have
their own activator mechanisms that ensure the intracellular
proliferation of the virus (Karam et al., 2021), In the particular
case of SARS-CoV-2, ORF8 can activate the mTOR-PI3K-AKT
signaling pathway with a MAPK-dependent process to ensure
a proliferative environment. This favorable environment can be
blocked with inhibitors of mTORC1 like Rapamycin. It has been
reported for the case of MERS-CoV replication that Rapamycin
was able to reduce 60% of this virus (Kindrachuk et al., 2015).
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Thus, the blockage of growth pathways to prevent ORF8 biding
interactions can be a better option than the targeting of several
immune cells to stop viral infection.

It is possible that Rapamycin, as a co-adjuvant treatment,
can improve clinical outcome because it is able to block viral
interactions that promotes cell growth, and viral replication.
Moreover, Rapamycin can reduce pro-inflammatory cytokines
decreasing cell damage in patients with severe COVID-19
(Bischof et al., 2021). The metabolic changes conferred by
SARS-CoV-2 infection in renal epithelial cells and lung air-
fluid interface (ALI) cultures, showed that SARS-CoV-2 infection
reduces the oxidative metabolism of glutamine while maintaining
reductive carboxylation, increasing the activity of mTORC1. The
work of Mullen et al. (2021) provide evidence of mTORC1
activation in lung tissue from COVID-19 patients, and that
mTORC1 inhibitors reduce viral replication in renal epithelial
cells and lung ALI cultures. These results suggest that targeting
mTORC1 can be a feasible treatment strategy for COVID-
19 patients, although more studies are required to determine
the mechanism of inhibition and potential efficacy in patients.
Rapamycin (Sirolimus) was chosen as it can interact through its
methoxy group with the immunophilin binding protein FK506
(FKBP12) forming the rapamycin-FKBP12 complex that is highly
specific to the mTOR protein, inhibiting effector processes such
as antigen-induced T cell proliferation and cytokine-induced
proliferative responses. From the family of polyketide macrolide
drugs, Rapamycin (Sirolimus) it is the most studied and unlike
Tacrolimus, it does not inhibit calcineurin (PP2B). Despite the
fact that the effectiveness of Rapamycin has already been proven
as a promising anti-covid drug, the interaction effects with
another anti-inflammatory compounds are still to be discovered
and open the possibility to have better therapeutic results with
lower doses, avoiding toxic effects during the treatment.

The actual evidence shows that the variations observed in
the most unstable region of the SARS-CoV-2 genome result in
changes in the structure and functions of a set of proteins that
counteract the immune response of the host (Supplementary
Figure 1). However, SARS-CoV-2 seems not to have a mechanism
that allows viral replication under non-permissive conditions
(Figure 1). In consequence, the blockage of the activation
of cell growth pathway through the inhibition of mTORC1
activity can be a therapeutic strategy that the virus possibly
cannot counteract. Nonetheless, more research is necessary to
explore the therapeutic use of Rapamycin against the SARS-CoV-
2 infection.

CONCLUSION

ORF8 is the most linked protein in the virus-host hybrid
molecular network formed during the SARS-CoV-2 infection.
The structural properties of ORF8 suggest functional mimicry
with several immunological molecules such as the IL-1β receptor,
resulting in immune system evasion that helps the virus to
adapt to new hosts. Additionally, ORF8 restructures the vesicular
trafficking in the host cell, and enhances the activity of the
growth pathway through the mitogen-activated protein kinases
(MAPKs). However, the high mutation rate of ORF8 decreases
its feasibility as a good therapeutic target. In consequence,
the blockage of the activation of cell growth pathway through
the inhibition of mTORC1 activity with Rapamycin can be a
therapeutic strategy that the virus possibly cannot counteract.
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Coronavirus disease 19 (COVID-19) has struck the world since the ending of 2019.
Tools for pandemic control were scarce, limited only to social distance and face mask
usage. Today, upto 12 vaccines were approved and the rapid development raises
questions about the vaccine efficiency. We accessed the public database provided by
each country and the number of death, active cases, and tests in order to evaluate how
the vaccine is influencing the COVID-19 pandemic. We observed distinct profiles across
the countries and it was related to the vaccination start date and we are proposing a
new way to manage the vaccination.
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INTRODUCTION

A new SARS-Cov-2 associated disease is commonly known as coronavirus disease 19 (COVID-19)
and present as a spectrum of clinical manifestations ranging from asymptomatic, minor flu-like
symptoms to acute respiratory distress syndrome, pneumonia, and death (Sharma et al., 2020).
Rapidly, the COVID-19 became a worldwide public health emergency and several attempts to
control its dissemination were proposed by non- pharmacological interventions. The most used
interventions were social distancing and the use of face masks, since there was no antiviral
treatment or any effective vaccine (Randolph and Barreiro, 2020). In the last year, several vaccine
candidates were in development, as a result of the great effort to contain the pandemic. However,
due to the rapid vaccine development, uncertain questions have been raised in common media,
such as the vaccine production capacity to attempt the global demand and its efficacy (Chen,
2020). The emergencial development of COVID-19 vaccines occurred extremely fast, integrating
various tools and vaccine platforms. In the future, this technology will be useful to quickly develop
vaccines against other new emerging diseases (Hodgson, 2020). Each government must have its
own platform for vaccination tracking, in order to perform the monitoring of vaccine coverage
and to early identification of possible adverse effects (Hanney et al., 2020). In 2020, we developed a
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FIGURE 1 | Worldwide distribution of vaccines. (A) Proportional of usage of
vaccines by countries represented in a sector graph. (B) Daily distribution in all
countries with a top six countries highlighted.

recursive sub-typing screening surveillance system able to
perform automated genomic surveillance accessing all the
sequences deposited in different repositories for mining,
subtyping and performing a genomic surveillance. This system
was also able to evaluate the vaccination profile in Brazil by
accessing the global vaccination program dataset. As a result
the system was able to identify new zika lineage occurrences
(Kasprzykowski et al., 2020) and revealed a decrease in children
vaccination in the last years in Brazil (Césare et al., 2020).
Given the relevance of the SARS-Cov-2 pandemic, we adapted
our system to track the association between implementation of
vaccines, occurrence of new cases and mortality over time.

MATERIALS AND METHODS

To evaluate the COVID-19 vaccination, we developed an
application of this tool to real-time access a public access
COVID-19 database provided in a cross-country database of
COVID-19 (Hasell et al., 2020). CaVaCo (Cases, Vaccinations,
and COVID-19) tool allows us to retrieve the COVID-19
cases, deaths and vaccination data to compare and correlate
countries vaccination coverage with other parameters. The tool
was developed in R (Wickham and Grolemund, 2016), powered
to download and standardize the data automatically. As a result
the correlation between number of daily vaccines by number
of new cases, number of new deaths and number of tests
is performed, using the spearman correlation. To access the
real-time tool, access: http://kaiju.bahia.fiocruz.br/sample-apps/
CaVaCo/.

TABLE 1 | Correlation between the numbers of vaccines against the number of
new cases and new deaths in the country have started the vaccination.

Cases Deaths N_of_days

Rho coefficient P-value Rho coefficient P-value

Afghanistan 0.737 9.67876E-11 0.297 0.026230439 56

Albania −0.702 1.5955E-15 −0.132 0.200294507 96

Algeria −0.355 0.124947226 −0.023 0.923070238 20

Andorra 0.171 0.127808994 −0.123 0.2738076 81

Angola 0.762 2.04949E-10 0.074 0.610931829 49

Antigua and
Barbuda

0.596 3.99133E-05 0.247 0.119180346 41

Argentina 0.274 0.003181829 0.035 0.71201508 114

Australia 0.472 0.000138566 0.139 0.289253571 60

Austria 0.581 8.1842E-12 −0.413 4.09028E-06 116

Azerbaijan 0.665 2.0045E-13 0.428 1.52276E-05 95

Bahamas −0.084 0.817442415 0.432 0.213058411 10

Bahrain 0.821 1.53122E-30 0.562 2.29498E-11 120

Bangladesh −0.129 0.235845636 −0.098 0.369853974 86

Barbados 0.769 1.76922E-13 0.249 0.049489179 63

Belarus −0.581 2.97413E-09 −0.495 9.68988E-07 88

Belgium 0.553 1.765E-10 −0.339 0.000228344 114

Belize −0.152 0.422511874 −0.247 0.187607437 30

Bolivia −0.131 0.239039865 −0.47 7.18512E-06 83

Botswana −0.738 0.262135213 −0.632 0.367544468 4

Brazil 0.306 0.002733153 0.641 3.29746E-12 94

Bulgaria 0.602 2.1644E-12 0.376 4.43204E-05 112

Cambodia 0.645 2.88954E-05 0.407 0.015217248 35

Canada 0.111 0.211429123 −0.676 1.46437E-18 129

Chile 0.521 1.6939E-09 0.267 0.003674764 117

China −0.548 2.11955E-11 −0.363 2.52497E-05 128

Colombia 0.763 3.73228E-13 0.53 8.10472E-06 63

Costa Rica −0.005 0.968928062 −0.133 0.302256683 62

Cote d’Ivoire −0.667 1.21673E-07 −0.092 0.52432257 50

Croatia 0.422 3.31679E-06 −0.2 0.033482549 113

Cyprus 0.592 4.55219E-11 −0.309 0.001502789 103

Czechia −0.276 0.002743769 −0.03 0.745564613 116

Denmark −0.156 0.096400077 −0.711 5.64755E-19 115

Dominican
Republic

−0.197 0.139137365 −0.214 0.106540076 58

Ecuador 0.17 0.111648671 0.125 0.24157091 89

Egypt 0.334 0.007902683 −0.343 0.006353965 62

El Salvador 0.065 0.658542705 −0.45 0.001318082 48

Equatorial
Guinea

0.411 0.209233119 0.181 0.594070448 11

Estonia 0.403 7.97801E-06 0.528 1.37048E-09 115

Eswatini 0.05 0.839790752 0.012 0.961032401 19

Finland 0.496 3.53742E-08 −0.002 0.984810853 110

France 0.419 3.22325E-06 −0.097 0.302673079 115

Gabon 0.017 0.964546145 0.152 0.696613433 9

Gambia −0.363 0.183775848 −0.038 0.891645336 15

Georgia 0.714 3.3297E-07 0.298 0.06509552 39

Germany 0.077 0.409459266 −0.672 1.45921E-16 116

Ghana 0.536 0.0027202 0.586 0.00083082 29

Greece 0.807 1.20134E-27 0.564 5.35719E-11 115

Guatemala 0.162 0.24210615 0.089 0.521713212 54

Guinea 0.354 0.14947453 0.323 0.191635298 18

Guyana 0.593 3.10376E-07 0.463 0.000131385 63

Honduras 0.22 0.184078772 0.133 0.427631584 38

Hungary 0.719 1.5585E-19 0.742 2.16927E-21 115

India 0.881 1.2858E-32 0.681 1.60918E-14 97

Indonesia −0.874 1.8398E-32 −0.721 2.69614E-17 100

Iran 0.501 6.28703E-06 0.578 8.77196E-08 73

Iraq 0.756 1.25194E-09 0.52 0.00021189 46

Ireland −0.801 8.60646E-26 −0.379 4.51725E-05 110

Israel 0.711 4.70919E-20 0.696 5.44762E-19 122

Italy 0.349 0.000123357 −0.146 0.117036098 116

Jamaica 0.132 0.449153159 0.101 0.563670349 35

Japan 0.729 8.62366E-12 −0.583 4.23837E-07 64

Jordan 0.578 5.89729E-10 0.819 1.29465E-24 97

Kazakhstan 0.788 4.2308E-18 0.258 0.020992955 80

Kenya 0.152 0.302319625 0.645 7.30516E-07 48

(Continued)
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TABLE 1 | Continued

Cases Deaths N_of_days

Rho coefficient P-value Rho coefficient P-value

Kuwait 0.92 5.90966E-38 0.825 9.00643E-24 91

Kyrgyzstan 0.364 0.200594765 0.444 0.111919261 14

Latvia −0.334 0.000993721 −0.383 0.000139038 94

Lebanon −0.176 0.151851246 −0.394 0.000887308 68

Liechtenstein −0.027 0.799263967 −0.209 0.044703081 93

Lithuania −0.24 0.009513178 −0.78 5.82682E-25 116

Luxembourg 0.384 0.000573533 −0.127 0.270387032 77

Malawi 0.057 0.744125998 −0.091 0.604507315 35

Malaysia −0.321 0.015926702 −0.189 0.163141237 56

Maldives −0.25 0.027255853 −0.146 0.20234993 78

Mali 0.382 0.198295213 0.377 0.203554459 13

Malta −0.423 2.18047E-05 −0.164 0.113838248 94

Mauritania 0.328 0.274642718 0 1 13

Mexico −0.6 7.14745E-13 −0.388 1.41634E-05 118

Moldova −0.482 0.000520045 −0.075 0.614125617 48

Monaco 0.057 0.562869113 0.177 0.072673617 104

Mongolia 0.596 4.87635E-06 0.312 0.027613831 50

Montenegro −0.83 1.39318E-16 −0.002 0.984983613 61

Morocco −0.405 0.000130867 −0.151 0.171129017 84

Mozambique 0.414 0.125247712 0.468 0.078739952 15

Myanmar 0.534 2.23273E-05 0.617 4.17262E-07 56

Namibia −0.233 0.199540931 −0.07 0.703377868 32

Nepal −0.536 1.24587E-07 −0.208 0.056620063 85

Netherlands 0.563 3.62332E-09 −0.578 1.09621E-09 94

Nigeria −0.47 0.000658627 −0.323 0.023420163 49

North
Macedonia

−0.184 0.141337842 0.308 0.012558504 65

Norway 0.194 0.037338479 −0.193 0.0391789 115

Oman 0.744 1.70361E-15 0.727 1.54321E-14 81

Pakistan 0.85 1.10786E-16 0.275 0.039973983 56

Palestine 0.375 0.078301362 0.018 0.933625998 23

Panama −0.607 1.15805E-10 −0.655 1.03082E-12 93

Papua New
Guinea

−0.134 0.694830743 −0.304 0.364208929 11

Paraguay 0.532 2.39756E-05 0.735 1.10315E-10 56

Peru 0.152 0.26207624 0.087 0.522670769 56

Philippines 0.743 2.96125E-10 0.508 0.000120473 52

Poland 0.584 7.38759E-12 0.219 0.018833951 115

Portugal −0.785 1.84683E-25 −0.801 3.53171E-27 116

Qatar 0.953 1.57075E-63 0.76 5.05664E-24 121

Romania 0.295 0.001391266 0.488 3.06984E-08 115

Russia −0.942 1.35517E-61 −0.731 1.17779E-22 128

Rwanda −0.183 0.16240758 0.152 0.247662124 60

Saint Lucia 0.09 0.540947937 −0.121 0.41287011 48

Saint Vincent
and the
Grenadines

0.201 0.336375569 0.261 0.207778613 25

San Marino −0.599 3.45821E-05 −0.096 0.54909611 41

Sao Tome and
Principe

−0.154 0.600169081 −0.379 0.182026033 14

Saudi Arabia 0.718 4.51089E-18 0.767 8.35156E-22 106

Senegal −0.218 0.096446802 −0.153 0.245958698 59

Serbia 0.19 0.057375795 −0.016 0.87312687 101

Seychelles 0.011 0.921462236 0.113 0.324517823 78

Singapore −0.107 0.298611556 0.044 0.670464492 97

Slovakia −0.489 7.71715E-08 −0.127 0.189701311 108

Slovenia −0.323 0.000406873 −0.803 2.20051E-27 116

South Africa 0.049 0.717938189 0.019 0.891011593 56

South Korea 0.506 7.03271E-05 0.033 0.808115573 56

Spain −0.663 1.22683E-10 −0.644 5.86039E-10 74

Sri Lanka 0.151 0.203361052 0.089 0.452643727 73

Suriname −0.254 0.056169252 −0.25 0.060694914 57

Sweden 0.222 0.080308246 −0.565 1.38924E-06 63

Switzerland 0.338 0.008830615 −0.604 4.1967E-07 59

Taiwan 0.018 0.927252954 −0.203 0.290198758 29

Thailand 0.531 0.000104799 −0.034 0.819580758 48

Togo −0.299 0.09095591 −0.03 0.869058406 33

Trinidad and
Tobago

0.393 0.002273168 0.239 0.071135107 58

Tunisia 0.829 3.90157E-11 0.796 8.3898E-10 40

(Continued)

TABLE 1 | Continued

Cases Deaths N_of_days

Rho coefficient P-value Rho coefficient P-value

Turkey 0.383 9.18204E-05 −0.005 0.96031409 99

Uganda 0.369 0.022487201 0.11 0.509511091 38

Ukraine 0.679 6.5518E-09 0.669 1.2839E-08 57

United Arab
Emirates

0.311 0.001169005 0.035 0.722547459 106

United
Kingdom

−0.557 3.83837E-10 −0.521 7.28931E-09 108

United States −0.78 1.94261E-26 −0.774 8.82158E-26 123

Uruguay 0.799 7.33099E-13 0.886 1.18631E-18 53

Uzbekistan 0.815 1.19672E-05 0.124 0.60357372 20

Venezuela 0.484 0.000278054 0.558 1.74225E-05 52

Zambia −0.6 0.208 −0.676 0.140357387 6

Zimbabwe 0.056 0.664808883 −0.269 0.034558192 62

*Countries without enough number of observations to perform a correlation analysis
were excluded
The up to date table is available in http://kaiju.bahia.fiocruz.br/sample-apps/
CaVaCo/
List of countries: Afghanistan, Albania, Algeria, Andorra, Angola, Anguilla, Antigua
and Barbuda, Argentina, Armenia, Aruba, Australia, Austria, Azerbaijan, Bahamas,
Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Bermuda, Bhutan,
Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Cambodia,
Cameroon, Canada, Cape Verde, Cayman Islands, Chile, China, Colombia, Congo,
Costa Rica, Cote d’Ivoire, Croatia, Curacao, Cyprus, Czechia, Denmark, Djibouti,
Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, England, Equatorial
Guinea, Estonia, Eswatini, Ethiopia, Faeroe Islands, Falkland Islands, Fiji, Finland,
France, Gabon, Gambia, Georgia, Germany, Ghana, Gibraltar, Greece, Greenland,
Grenada, Guatemala, Guernsey, Guinea, Guyana, Honduras, Hong Kong,
Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Isle of Man, Israel, Italy,
Jamaica, Japan, Jersey, Jordan, Kazakhstan, Kenya, Kosovo, Kuwait, Kyrgyzstan,
Laos, Latvia, Lebanon, Lesotho, Libya, Liechtenstein, Lithuania, Luxembourg,
Macao, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania, Mauritius, Mexico,
Moldova, Monaco, Mongolia, Montenegro, Montserrat, Morocco, Mozambique,
Myanmar, Namibia, Nauru, Nepal, Netherlands, New Zealand, Nicaragua, Niger,
Nigeria, North Macedonia, Northern Cyprus, Northern Ireland, Norway, Oman,
Pakistan, Palestine, Panama, Papua New Guinea, Paraguay, Peru, Philippines,
Poland, Portugal, Qatar, Romania, Russia, Rwanda, Saint Helena, Saint Kitts
and Nevis, Saint Lucia, Saint Vincent and the Grenadines San Marino, Sao
Tome and Principe, Saudi Arabia, Scotland, Senegal, Serbia, Seychelles, Sierra
Leone, Singapore, Slovakia, Slovenia, Solomon Islands, Somalia, South Africa,
South Korea, South Sudan, Spain, Sri Lanka, Sudan, Suriname, Sweden,
Switzerland, Syria, Taiwan, Thailand, Timor, Togo, Tonga, Trinidad and Tobago,
Tunisia, Turkey, Turks and Caicos Islands, Uganda, Ukraine, United Arab Emirates,
United Kingdom, United States, Uruguay, Uzbekistan, Venezuela, Vietnam, Wales,
Zambia, and Zimbabwe.

PERSPECTIVE

So far (April 23, 2021), there are 10 vaccines approved and being
used worldwide (until: CanSino, Covaxin, EpiVacCorona,
Johnson & Johnson, Moderna, Oxford/AstraZeneca,
Pfizer/BioNTech, Sinopharm, Sinovac, and Sputnik V). From
the 193 countries that started vaccination (List of countries
below) the majority have started the vaccination program
using Oxford/AstraZeneca vaccine (n = 135, 37.9%) while
25% had chosen the Pfizer/BioNTech and 10.4% Moderna and
the remaining 26.7% used CanSino, Covaxin, EpiVacCorona,
Johnson & Johnson, Sinopharm, Sinovac, and Sputnik V
(Figure 1). Using the date available up to April 23, 2021, we
performed a correlation analysis between the numbers of new
cases with the daily vaccinations. As a result, 60 countries
presented positive correlations (Table 1) and 27 countries
with negative correlation (Table 1). Despite the vaccination,
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the number of new cases has been still increasing in these
countries. This finding reinforces the need to keep social distance
and the use of face masks recommendations to reduce the
virus transmission. In other hand the decreasing number of
vaccinations and cases can depict a positive correlation and
the number of days and the percent of vaccine population
could inform how successfully the vaccination program is
going. These recommendations should be employed until at
least the immunization starts to show a significant reduction
in the number of cases (Ahmed et al., 2021). The countries
with negative correlation started to have a reduction in the
number of new cases and the vaccination should maintain the
decreasing number of cases, since the isolation alone is not able
to control the COVID-19 (Hellewell et al., 2020). The same
approach has employed with the number of new deaths and we
observed 37 countries with positive correlations and 33 countries
have negative correlations (Table 1). These results show that
implementation of vaccines is not the final solution and the
maintenance of the non-pharmacological interventions should
not be abandoned once the increase of new cases and deaths are
indicating the population remains vulnerable to SARS- COV2
infection (Billon-Denis and Tournier, 2020). On the other hand,
the negative correlation in certain countries point to a success en
route to the vaccination program in reducing both the COVID-
19 cases and related deaths. Only 5 countries have positive
correlation between the number of vaccination and the number
of tests positive for COVID-19 in February 2, 2021 (This data was
discontinued). These countries remained testing the population
even though the vaccination started. Only Sweden presented a
negative correlation (Supplementary Table 1). This approach
is useful for pandemic surveillance and the stop of population
testing is dangerous and does not prevent the identification of
new waves (Holt, 2021). The correlation between the cases/deaths
and the vaccination numbers could be a powerful indicator of
disease control, since a certain coverage is required for population
protection. The continuous follow up of the correlation patterns
from the beginning of the vaccination can be used to track
the immunization program in each country. Additionally with
the genomic surveillance can reveal how the vaccine responds

against the introduction of new COVID-19 variants, as previously
described (Korber et al., 2020). The present study has some
limitations, such as the heterogeneity of strategies applied by the
different countries indicated that an individual analysis of specific
countries should be performed to evaluate in more granularities
the distinct epidemiologic situations, to minimize this effect the
number of days used in the correlation analysis are depicted
in the table. Some countries displayed substantial missing data
or discontinue measuring few variables, like the number of test
to COVID-19 in their database. This analysis uses numerical
measurements and it cannot reflect the entire national behavior
or public politics. Also the present analysis cannot handle or
correct numeric bias or outlier interferences. However, taking
together these data and applying statistics methods allowed us to
monitor the vaccination process in countries or in sub national
units. Recursive evaluation of immunization and COVID-19
morbimortality has potential to provide a unique tool to aid
decision-making strategies to overcome the current pandemic.
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This manuscript intends to be a “letter to the editor” with some complementary
commentaries to the manuscript by Valcarcel et al. (2021). In that work, ORF8 was
characterized as a notable SARS-CoV-2 protein able to downregulate the function of
MHC-I (Zhang et al., 2021) and which shares structural similarities with human
immunoglobulins (including interleukins) that can eventually produce immune
dysregulation (Valcarcel et al., 2021). It is not still clear if all COVID-19 patients are
equally susceptible to this ORF8-mediated immune dysregulation, but Down syndrome
(Ds) patients with COVID-19 have more health complications, such as cardiac diseases,
and higher rate of mortality than the general population, especially in those over 40 years old
(Hüls et al., 2021). Ds is an important comorbidity since these patients have an extra copy of
the TMPRSS2 gene, which probably produces enhanced levels of the transmembrane
TMPRSS2 protease for S protein priming, facilitating the SARS-CoV-2 infection of the
target cells (Hoffmann et al., 2020; De Toma and Dierssen, 2021).

Therefore, we proposed a minimal mathematical model of the effect of the extra copy of
TMPRSS2 on ORF8 production and persistence in the infected cells (Figure 1A), which
reasonably fits with the experimental data reported in literature. According to the model results,
we found that systemic levels of ORF8 are considerably higher and persists up to 40 days in patients
with Ds (Figures 1B, C) in contrast with patients without Ds. These results support our hypothesis
that the high susceptibility of people with Ds to be infected by SARS-CoV-2 is a consequence of the
overproduction of TMPRSS2, which produces high systemic levels of ORF8 with the subsequent
immune dysregulation, lung inflammatory effects, and cardiac damage that worsen the disease
(Espinosa, 2020).

Additional consequences of the overproduction of ORF8 in Ds patients with COVID-19
are as follows: 1) the several structural similarities of this viral protein with the nitric oxide
synthase can alter the serum concentrations of NO, reducing the protective function of this
gas against arrhythmias (Burger and Feng, 2011); 2) ORF8 can also be an important factor to
aggravate the cytokine storm due its high degree of structural mimicry with immunoglobulins
and their receptors (Valcarcel et al., 2021), with the subsequent small protoembolic events
that cause a cardiovascular damage similar to that of older Ds patients never infected with
Covid-19 (Colvin and Yeager, 2017; De Toma and Dierssen, 2020). 3) Taking into
consideration that chromosome 21 also harbors multiple genes involved in the immune
response, and their overexpression induces the dysregulation of interleukins IL-10, IL-22, and
IL-26 prior to infection (De Weerd and Nguyen, 2020), the presence of high levels of ORF8
could also be an important factor to aggravate the cytokine storm in Ds patients with
COVID-19.

However, it is necessary to do more theoretical, experimental, and clinical research to elucidate
the precise role of ORF8 in the immune dysregulation, lung inflammatory effects, and cardiac
damage in this group of patients.
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APPENDIX

The model we used in this work takes into account the levels of
the Spike-ACE2-TMPRSS2 complex (IC) that allows the
internalization of the SARS-CoV-2 genomic RNA (gRNA)
and the systemic levels of ORF8. To model ORF8 systemic
levels, we considered the half-life of the protein (Can et al.,
2020) as well as the effect of neutralizing antibodies against

ORF8 (Hachim et al., 2020) (Figure 1A). Next, we used ex vivo

data obtained from COVID-19 patients (Bar-On et al., 2020;

Hachim et al., 2020; Peng et al., 2020; Wölfel et al., 2020) to

estimate parameters and to calibrate the model congruently

with previous observations (Peng et al., 2020). The model was

numerically solved using the Runge–Kutta 4-5 method and

MATLAB software.
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