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Editorial on the Research Topic

Recent advances in agrometeorological analysis techniques for crop

monitoring in support of food security early warning

Agrometeorological analysis is an essential component of effective crop monitoring

systems, providing cost-effective complementarity to field surveys typically used to assess

crop conditions and potential food security outcomes during each agricultural season.

Using satellite-based agrometeorological techniques to strengthen crop monitoring

can present significant cost saving to traditional field-based methods typically used

for crop assessment. However, remote-sensing-based agrometeorological methods are

not a replacement for field-based methods but complement, as the accuracy of the

satellite-based methods often cannot be fully assessed or calibrated without compatible

field-based measurements or equivalents.

In this collection, over thirty authors wrote articles that highlight critical aspects

of agrometeorological analyses applied to crop monitoring for food security early

warning. The themes covered a wide range of topics, including; (1) agrometeorological

forecasting, (2) crop monitoring (including crop water balance and the assessment of

pest damage), (3) estimation of crop production, (4) assessing water stress for croplands

at a watershed scale, and (5) how to effectively deliver agrometeorological advisories

to farmers. This set of themes can provide helpful guidance to assist practitioners

develop and strengthen practical agrometeorological analysis and advisory systems.

Frontiers inClimate 01 frontiersin.org

4

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://doi.org/10.3389/fclim.2022.950447
http://crossmark.crossref.org/dialog/?doi=10.3389/fclim.2022.950447&domain=pdf&date_stamp=2022-09-09
mailto:tmagadzire@fews.net
https://doi.org/10.3389/fclim.2022.950447
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fclim.2022.950447/full
https://www.frontiersin.org/research-topics/15224/recent-advances-in-agrometeorological-analysis-techniques-for-crop-monitoring-in-support-of-food-sec#articles
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Magadzire et al. 10.3389/fclim.2022.950447

The low-cost advantage of agrometeorology-based

techniques is significant for poorly resourced institutions

mandated with providing agrometeorological support for

food security monitoring. Mashonganyika et al. used 10m

resolution satellite data from Sentinel-2 data to estimate wheat

area in Zimbabwe, with an R-squared of 0.98 compared to

farmer-reported planted area. Focusing on Malawi, Peterson

and Husak used Sentinel-2 satellite data to map crop area with

Google Earth Engine to an accuracy of 74% compared with

official statistics. These examples illustrate the opportunity to

use vast amounts of data at low cost, harnessing the power of

cloud computing from a relatively low-end computer and on

a small budget, which would be the typical scenario in a low-

resourced institution. Mashonganyika et al. further highlighted

the economic importance of such enhanced crop monitoring for

developing country government initiatives. Many developing

countries have agricultural input subsidy programmes to help

farmers maximize agricultural productivity due to high input

costs that would otherwise curtail farming activities. However,

these subsidy programs, need to be monitored to ensure

compliance and maximize outcomes. Large-scale, field-based

crop monitoring is an expensive exercise that could quickly

be sidelined due to the financial constraints typically facing

developing country governments. The satellite-based crop

monitoring methods demonstrated in this collection can thus

play a critical role in effective crop monitoring.

Although the satellite analysis methods and services

described in these articles are currently low-cost within a

research framework, one risk in their application for operational

use is the possibility of commercialization of these services in

the future, which could put the benefits out of the reach of many

under-funded institutions. Some tools and datasets are open

access for research purposes, and operational or commercial uses

require paid licenses.

While remote sensing agrometeorological applications

have come a long way since the launch of the first earth

observation satellites, not all remote sensing methodologies for

agrometeorological monitoring have reached full maturity for

operational use, highlighting the need for continual research and

development. Adams et al. attempted to assess the impacts of

the 2020 desert locust outbreak in East Africa using satellite

data from various sensors. This proved largely unsuccessful—

the localized nature of locust outbreaks could not be easily

distinguished from senescence using satellite image analysis,

underscoring the necessity of ground truth data.

Crop production is calculated as a function of yield and

cropped area. Peterson and Husak and Mashonganyika et al.

demonstrated how crop area could be estimated from remote

sensing methods. However, to get a complete picture of crop

performance, evaluating potential yield outcomes is equally

important. Pervez et al. demonstrated an improved approach

for seasonal vegetation monitoring that combines the use of

two satellite-based analysis methods—normalized difference

evapotranspiration (NDVI) and evapotranspiration (ET)—by

identifying where each performs better, thus allowing optimal

use of these methods for seasonal vegetation monitoring, an

important step toward yield estimation.

Food and water security are inextricably linked, given

agriculture’s dependence on water. Khand et al. demonstrated

how water stresses for rainfed and irrigated croplands could

be estimated at a basin-scale and compared water stress levels

for different basins and different years. This type of basin-

scale analysis provides an opportunity for linking food security

analysis into a more holistic basin-management approach.

Crop monitoring techniques compatible with short to

medium-term forecasts facilitate planning food security,

agricultural production, and disaster risk reduction. Funk,

Turner et al. discussed a novel approach that simplifies the

dekadal water requirements satisfaction index into a seasonal-

scale parameter that can be used with medium-range to

seasonal-scale forecasts. This will allow farmers and disaster

risk reduction managers to make informed decisions regarding

options for managing upcoming seasons and refine and update

their plans as more observational data becomes available.

Ultimately, the agrometeorological techniques described

abovemust be delivered to end-users through accessible systems.

This is typically not a one-off process, as illustrated by Walker

using three case studies of agrometeorological advisories for

farmers, but rather involves extended interactions and feedback

loops with users to refine the products and achieve high levels of

acceptance and adoption by the user. Thus, agrometeorological

analysis methodologies need to be developed in consultation

with the intended users to ensure products with a high level of

societal benefit and application for food security.

Concluding remarks

Despite the opportunities availing with the steady progress

in technology, a fundamental limitation to the use and

applications of agrometeorological innovations within critical

institutions in developing countries remains the availability of

skilled personnel to undertake the types of analyses described in

this collection. Under-resourced agrometeorological institutions

in developing countries need to highlight to beneficiaries the

economic benefits of investing in their operations, both in terms

of the technological and the human resource requirements,

given the potential benefits that governments can realize

from effectively utilizing agrometeorological analysis for crop

monitoring in support of food security early warning.
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Vegetation Monitoring Optimization
With Normalized Difference
Vegetation Index and
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The majority of people in East Africa rely on the agro-pastoral system for their livelihood,

which is highly vulnerable to droughts and flooding. Agro-pastoral droughts are endemic

to the region and are considered the main natural hazard that contributes to food

insecurity. Drought begins with rainfall deficit, gradually leading to soil moisture deficit,

higher land surface temperature, and finally impacts to vegetation growth. Therefore,

monitoring vegetation conditions is essential in understanding the progression of

drought, potential effects on food security, and providing early warning information

needed for drought mitigation decisions. Because vegetation processes couple the land

and atmosphere, monitoring of vegetation conditions requires consideration of both

water provision and demand. While there is consensus in using either the Normalized

Difference Vegetation Index (NDVI) or evapotranspiration (ET) for vegetation monitoring,

a comprehensive assessment optimizing the use of both has not yet been done.

Moreover, the evaluation methods for understanding the relationships between NDVI

and ET for vegetation monitoring are also limited. Taking these gaps into account we

have developed a framework to optimize vegetation monitoring using both NDVI and

ET by identifying where they perform the best by using triple collocation and cross-

correlation methods. We estimated the random error structure in Moderate Resolution

Imaging Spectroradiometer (MODIS) NDVI; ET from the Operational Simplified Surface

Energy Balance (SSEBop) model; and ET from land surface models (LSMs). LSM ET and

SSEBop ET have been found to be better indicators for vegetation monitoring during

extreme drought events, while NDVI could provide better information on vegetation

condition during wetter than normal conditions. The random error structures of these

variables suggest that LSM ET is most likely to provide important information for

vegetation monitoring over low and high ends of the vegetation fraction areas. Over

moderate vegetative areas, any of these variables could provide important vegetation
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information for drought characterization and food security assessments. While this study

provides a framework for optimizing vegetation monitoring for drought and food security

assessments over East Africa, the framework can be adopted to optimize vegetation

monitoring over any other drought and food insecure region of the world.

Keywords: triple collocation, East Africa, vegetation monitoring, evapotranspiration, normalized difference

vegetation index

INTRODUCTION

East Africa, with around 330 million inhabitants (Gebremeskel
et al., 2019), is one of the chronically food insecure regions of
the world. Most of the people, around 80%, live in rural areas
and depend on subsistence agriculture and livestock for their
livelihood (IGAD, 2020). The agro-pastoral system of the region
heavily depends on the prevailing weather conditions, especially
rainfall, and is highly vulnerable to extreme weather and climate
events such as droughts (high climate variability). Agro-pastoral
droughts are endemic to the region and are considered the main
natural hazard that contributes to food insecurity (Gebremeskel
et al., 2019; Qu et al., 2019). However, the onset of droughts
is often slow, providing opportunities for interventions (Funk
et al., 2019). Drought begins with rainfall deficit, which leads to
soil moisture deficit, higher land surface temperature, and finally
impacts to vegetation growth. Vegetation plays an important role
in many Earth system processes. Its growth and productivity
couple the land and atmosphere as they are active components

of the water cycle, energy cycle, and other biogeochemical

processes (Lanning et al., 2019). Furthermore, plants provide

a wide range of important goods and services to humans,

ranging from forest products and fodder to food production.
Therefore, monitoring vegetation, among other variables, is
essential to understanding drought’s progression, potential effects
on food security, and early warning and information needed for
mitigation decisions. Remote sensing and land surface models
are playing an increasingly important role in assisting large-
scale land surface monitoring, by providing comprehensive
information about the dynamics of Earth’s physical, chemical,
and biological processes (Biggs et al., 2015; Zhao and Li, 2015).
The Normalized Difference Vegetation Index (NDVI), developed
with the remote sensing measurements of Near-infrared and
Red reflectance by sensors on board satellites, has been used
extensively for vegetation monitoring and drought assessments.
Earlier studies have utilized NDVI from spectral measurements
from the Advanced Very High Resolution Radiometer (AVHRR)
on board National Oceanic and Atmospheric Administration
(NOAA) satellites in monitoring vegetation and food security
assessments over Africa (Justice et al., 1986; Townshend and
Justice, 1986; Sannier et al., 1998; Anyamba and Tucker,
2005). With the launch of the Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument on board National
Aeronautics and Space Administration’s (NASA) Terra and Aqua
satellites, more recent studies have developed different methods
utilizing MODIS-NDVI for monitoring vegetation dynamics,
drought progression, and food security assessments (Brown,

2016; Klisch and Atzberger, 2016; Zewdie et al., 2017; Mbatha
and Xulu, 2018). These studies take advantage of the higher
spatial resolution and more accurate geolocation data provided
by MODIS sensors over AVHRR (Townshend and Justice,
2002). Many other indices have also been developed based on
relative changes in NDVI and land surface temperature such
as Vegetation Condition Index (VCI), Vegetation Health Index
(VHI), and Temperature Condition Index (TCI) for vegetation
monitoring and drought assessment at large scales (Kogan, 1995;
Du et al., 2013). It has been observed over East Africa that the
start of growing period is advancing with an elongated growing
season, while drought’s impact on vegetation is enhancing with
a concomitant decline in gross primary productivity (Workie
and Debella, 2018; Robinson et al., 2019). Using MODIS-NDVI
and its derivatives (VCI, TCI, VHI), Qu et al. (2019) observed
significant long-term increases in temperature and decreases in
crop health over the major growing period and associated them
with the impacts of drought events over the greater horn of
Africa. Using MODIS-NDVI, among other variables, Robinson
et al. (2019) demonstrated the negative response of vegetation
growth to the 2010–2011 drought in East Africa.

Land surface evapotranspiration (ET) is the sum of water
surface evaporation, soil moisture evaporation, and plant
transpiration from Earth’s surface to the atmosphere (Biggs et al.,
2015). ET has been used in monitoring vegetation and drought
progression. Because of ET’s dependence on land cover and soil
moisture and its direct link with carbon dioxide assimilation
in plants, ET becomes an important variable in monitoring
and estimating crop yield and biomass for decision makers
interested in food security assessments (Bastiaanssen et al., 2005).
The changes in vegetation conditions have been successfully
associated with changes in ET over the Nile basin by Alemu
et al. (2014). Baruga et al. (2019) demonstrated a connection
between agricultural droughts and high heatwaves in Uganda
using ET. Vegetation water stress has been mapped using ET
by Chirouze et al. (2013). Kimosop (2019) used ET to define
onset, duration, severity, intensity, and frequency of agricultural
drought in Kenya.

While ET can be measured directly using a variety of methods
ranging from weighing lysimeter devices to eddy covariance
and scintillometry, their applications are limited to field scale
(Allen et al., 2007). But using remote sensing measurements, ET
can be estimated both at field and regional scales. However, as
ET is the sum of multiple processes that transfer liquid water
from the surface to vapor phase into the atmosphere using heat
energy, satellite sensors cannot measure ET directly. Rather, the
spectral radiance measures they provide are used in models or
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retrieval algorithms to estimate ET. Most of the methods that
use remote sensing data to estimate ET can be categorized into
two groups: (a) vegetation-based methods and (b) surface energy
balance methods. In vegetation-based methods, remotely sensed
vegetation indices such as NDVI or Leaf Area Index (LAI) are
used with surface resistance determined from meteorological
data in Penman-Monteith (Mu et al., 2007) or Priestly-Taylor
(Fisher et al., 2008) equations to project ground-estimated ET
to a larger scale. The energy balance methods are based on the
fact that ET is a change of state of water that uses energy for
vaporization. The vaporization reduces the surface temperature,
suggesting a tight coupling between water availability and surface
temperature under water stress conditions (Biggs et al., 2015).
This allows estimating ET by using remotely sensed surface
temperature data in solving the energy balance by partitioning
net radiation between sensible, latent, and soil heat flux. The
methods of estimating ET from remote sensing inputs are well-
documented in the literature (Glenn et al., 2007; Biggs et al.,
2015); more specifically, Kalma et al. (2008) reviewed energy
balance methods that utilize surface temperature to estimate ET.
ET can also be estimated with land surface models (LSM) that
are parameterized with remote sensing inputs. LSMs yield global
estimates of the land surface states and fluxes by incorporating
global-scale, ground-based, and/or remote sensing–derived soil
moisture, vegetation, and atmospheric forcing data (Xu et al.,
2019). The advantage of LSM ET over ET from remote sensing
measurements is that it overcomes some of the shortcomings
of remote sensing measurements of land surface temperature
because of the low signal-to-noise ratio and signal saturation in
an optical sensor (Senay et al., 2013).

Vegetation monitoring using NDVI emphasizes the
vegetation conditions from a water provision perspective as
it is a measurement of vegetation vigor driven primarily by land
surface water availability, whereas the use of ET emphasizes the
vegetation conditions from a water demand perspective as it
incorporates surface and soil evaporation and plant transpiration
driven primarily by atmospheric conditions (Meza, 2005; Van
Beek et al., 2011). As the vegetation growth and productivity
processes couple the land and atmosphere, monitoring of
vegetation condition will require consideration of both
water provision and demand over any region. While there is a
consensus in using either NDVI or ET for vegetation monitoring,
drought characterization, or food security assessments, a
comprehensive assessment optimizing the use of NDVI and
ET by location has not yet been done. Moreover, the three-
way evaluation methods for understanding the relationships
between NDVI, ET from remote sensing measurements, and
ET from land surface models for vegetation monitoring are also
limited. Taking these gaps into account, this research focused
on developing a method for optimizing vegetation monitoring
by using NDVI and ET from remote sensing and land surface
models as well as exploring the relationships between them in
a three-way format (between the three variables). The specific
objectives are to (1) develop a process to estimate random errors
in NDVI, ET from remote sensing, and ET from land surface
models, (2) evaluate the spatial-temporal correlations between
these variables, and (3) assess the performance of each of these

variables in optimizing vegetation monitoring in East Africa.
To achieve these objectives, we employed Triple Collocation
(TC) analysis. We incorporated ET from two sources and NDVI
into the TC analysis. We opted for TC analysis because in TC,
random error structure of the variables can be determined
independently without treating any as perfectly observed truth in
a three-way format assuming errors in the variables are random
and uncorrelated between each other (Gruber et al., 2016). We
also used a traditional statistical measure of cross-correlation to
evaluate agreements between these variables.

MATERIALS AND METHODS

Study Area
Geographically, East Africa encompasses areas from both
northern and southern hemispheres, including Sudan, South
Sudan, Eritrea, Ethiopia, Djibouti, Somalia, Kenya, Uganda,
Rwanda, Burundi, and Tanzania, and is located between the
latitudes of 11◦S and 23◦N and longitudes of 21◦E and 51◦E.
The climate and topography vary from wet highlands covering
Ethiopian Highlands and parts of Kenya and Tanzania to arid
lowlands of eastern Ethiopia, Djibouti, and Somalia (Dinku
et al., 2011). Agriculture is the primary source of livelihood
complemented by crop production and livestock rearing. The
agro-pastoral system primarily responds to rainfall. The rainfall
regime varies from north to south. The annual mean rainfall
ranges from 800 to 1,200mm, with higher rainfall over the
Ethiopian Highlands and lower rainfall over northeastern Kenya
and Somalia (Fenta et al., 2017). Figure 1 shows the map of the
study area along with the monthly Climate Hazards Infrared
Precipitation with Stations (CHIRPS) mean rainfall computed
over the period 2000–2018 over three different administrative
boundaries in the region. Amap of CHIRPSmean annual rainfall
over the East Africa region can also be found in Figure 2A of
Fenta et al. (2017). CHIRPS is an infrared-based rainfall product,
bias corrected with climatology and gauge station observed
rainfall records. Details on the CHIRPS rainfall are provided in
Funk et al. (2015). The rainfall distribution near the equator is
typically bimodal over Kenya with the main rainy season (long
rains) between March and June followed by the second season
(short rains) in October to December. The rainy season over 5◦

north and south of the equator is typically unimodal, and most
of the rain occurs between May and October in the north (over
Sudan and South Sudan) and between November and April of
the following year in the south (Tanzania). In this study, while
compiling rainfall, NDVI, and ET time series over the wetter
half of the year, we considered two regimes: May to October for
Sudan, South Sudan, Ethiopia, Eritrea, Djibouti, and Somalia,
Kenya, and Uganda; and November to April for Kenya, Uganda,
Rwanda, Burundi, and Tanzania.

NDVI and ET From Remote Sensing
Measurements
Since 2003, NDVI and actual ET data have been produced
by the U.S. Geological Survey (USGS) Famine Early Warning
Systems Network (FEWS NET) using the operational simplified
surface energy balance (SSEBop) model (Senay et al., 2013).
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FIGURE 1 | Geographical location of East Africa and average (2000–2018) rainfall over three level 1 administrative districts, (A) Kitui in Kenya, (B) South Darfur in

Sudan, and (C) Mbeya in Tanzania. Rainfall source: Climate Hazards Infrared Precipitation with Stations.

SSEBop is one of many energy balance–based approaches for
estimating ET using remote sensing measurements. The SSEBop
setup is based on the Simplified Surface Energy Balance (SSEB)
approach (Senay et al., 2013) with a unique parameterization
for operational applications. It combines ET fractions generated
from remotely sensed MODIS thermal imagery, acquired every
10 days at 1 × 1 km spatial resolution, with reference ET using
a thermal index approach. The unique feature of the SSEBop
parameterization is that it uses pre-defined, seasonally dynamic,
boundary conditions that are unique to each pixel for the
“hot/dry” and “cold/wet” reference points (FEWSNET, 2019).
The original formulation of SSEB is based on the hot and cold
pixel principles of SEBAL (Bastiaanssen et al., 1998) andMETRIC
(Allen et al., 2007) models. While there are many NDVI and
ET products from remote sensing measurements available, the
use of MODIS NDVI (Jenkerson et al., 2010) and SSEBop ET
in this research is primarily determined by the consistency in
their method and production and their long history of readily
available data. Furthermore, SSEBop ET estimates were found
to be in good agreement with observed FLUXNET ET (Velpuri
et al., 2013).

ET From Land Surface Models
Utilizing NASA’s state-of-the-art Land Information System (LIS)
(Kumar et al., 2008) framework, FEWS NET Land Data
Assimilation System (FLDAS) incorporates multiple LSM and

produces multi-forcing estimates of land surface states and
fluxes such as ET and soil moisture. The output variables are
driven by the CHIRPS rainfall product that performs well over
data sparse regions. CHIRPS is available over a long historical
record, and complements other remote sensing products used
by FEWS NET for vegetation, drought, and food security
monitoring (McNally et al., 2017). We included ET from
three LSMs to better understand their usefulness in monitoring
vegetation and drought over East Africa. The ET from the
LSMs used in this study include Noah, Variable Infiltration
Capacity (VIC), and Catchment Land Surface Model (CLSM).
The meteorological forcing data for the LSMs come from NASA’s
Modern Era Reanalysis for Research and Applications, version 2
(MERRA 2) (Bosilovich et al., 2015). Other parameters include
GTOPO 30 elevation, MODIS International Global Biosphere
Project (IGBP) land cover for Noah, University of Maryland
(UMD) land cover for VIC (Hansen et al., 2000; Friedl et al.,
2010), National Centers for Environmental Prediction (NCEP)
monthly greenness fraction, albedo (Gutman and Ignatov, 1998;
Csiszar and Gutman, 1999), and STATSGO/FAO soil texture.
These LSMs use monthly climatology of greenness fraction
or leaf area index (LAI) derived from composites of NDVI
dataset (Myneni et al., 1997; Gutman and Ignatov, 1998;
Dirmeyer et al., 2006) to parameterize vegetation presence.
They do not require time series of vegetation information
(e.g., NDVI, LAI).
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TABLE 1 | International Geosphere Biosphere Program (IGBP) land cover classes.

Land cover

index

Description Land cover index Description

1 Evergreen

needleleaf

8 Savannas

2 Evergreen

broadleaf

9 Grassland

3 Deciduous

broadleaf

10 Permanent

wetland

4 Mixed forest 11 Cropland

5 Closed forest 12 Urban built-up

6 Open

shrubland

13 Crop/natural

vegetation

7 Woody

savannas

14 Barren/sparsely

vegetated

Noah

The Noah LSM (Chen et al., 1996) employs a single column soil-
vegetation-atmosphere transfer scheme, discretized using finite
difference methods and split-hybrid (water and energy balance)
temporal integration. We adopted model version 3.3, which runs
at a 15-min timestep and produces ET at 0.1◦ spatial and daily
temporal resolutions. ET in Noah 3.3 includes three components:
wet canopy evaporation, transpiration, and evaporation from
bare soil. The transpiration is defined using Penman-Monteith
formulation with stomatal resistance and constrains using water
storage terms that are dependent upon precipitation instead of
vapor pressure. The bare soil evaporation is parametrized with
soil moisture and the wet canopy evaporation and transpiration
are functions of the intercepted canopy water content, which
is a residual of water balance. ET is the sum of these
three components.

VIC

The VIC model is a semi-distributed macroscale hydrologic
model (Liang et al., 1994) in which ET includes similar
components as in Noah. The computation of wet canopy
evaporation and transpiration is similar to Noah, but unlike
Noah the maximum intercepted canopy water content is a
function of LAI climatology in VIC. The soil component of
VIC employs an area integration to define the soil moisture
constraint on transpiration defined using Penman-Monteith
with zero stomatal resistance. VIC runs at a 1-h timestep in
energy and water balance mode and produces ET at 0.25◦

spatial resolution.

CLSM

CLSM (Koster et al., 2000) was developed by the NASA
Global Modeling and Assimilation Office and is the land-
surface component of the Goddard Earth Observing System
model version 5 general circulation model. It simulates water
and energy balances on irregular topographically derived
catchments. ET is calculated from three water balance prognostic
variables, surface excess, root zone excess, and catchment
deficit, for the dynamically changing saturated, non-saturated,

TABLE 2 | Average correlation coefficient by country for between Noah, VIC, and

CLSM ET.

Country Noah/VIC ET Noah/CLSM ET VIC/CLSM ET

Sudan 0.94 0.97 0.93

South Sudan 0.97 0.97 0.95

Eritrea 0.90 0.95 0.88

Djibouti 0.89 0.96 0.91

Ethiopia 0.94 0.93 0.92

Somalia 0.94 0.95 0.92

Kenya 0.92 0.89 0.88

Uganda 0.91 0.89 0.92

Rwanda 0.92 0.91 0.92

Burundi 0.89 0.96 0.89

Tanzania 0.95 0.95 0.93

and below wilting areas within the catchment. The primary
soil moisture prognostic variable is the catchment deficit,
defined as the average amount of water that would have to
be added to bring the catchment to saturation. The root
zone excess and surface excess describe average amounts
of water that are out of equilibrium within the root zone
and surface across the catchment. CLSM runs at a 15-
min timestep and produces ET at 0.1◦ spatial and daily
temporal resolutions.

Data Processing
Prior to performing the analyses, all the data were collocated
in both space and time. The spatial resolution of LSM ET is
0.1◦, SSEBop is 1 km, and NDVI is 250m. Therefore, all the
datasets were resampled to 5 km spatial resolution. The three
datasets are also available at different temporal scales; LSM
ET is daily, NDVI is a 10-days composite, and SSEBop ET is
dekadal (10-days equivalent), thus all the respective datasets were
temporally aggregated to a monthly timescale. Additionally, the
NDVI time series was smoothed using the weighted least-squares
approach to remove artifacts caused by unexpected distortions
(e.g., clouds, missing data). Prior to the computation, we masked
out the areas that receive <200mm of rainfall annually as desert
regions of East Africa (Nicholson, 1996). Studies show anomalies
rather than actual values are better indicators for vegetation
conditions (Tadesse et al., 2015), therefore, we used anomalies
in the analyses. ET anomalies for any given 10-days period
were calculated by subtracting the 10-days period value from its
historical median (2003–2016). Similarly, NDVI anomalies were
calculated by subtracting the 10-days value from its historical
median (2003–2016). After computing the mean µ and standard
deviation σ , the LSM ET and NDVI anomalies were linearly
scaled to the data space of SSEBop ET using Equations (1, 2).
We also standardized anomalies for ET and NDVI to bring
them under the same scale. These composites allow qualitative
comparison of how similarly each of the datasets represents
vegetation conditions for different hydrologic regimes over the
study area. However, they do not provide direct information with
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respect to interannual comparisons between the datasets.

E′LSM = µSSEBop + (ELSM − µLSM)
σSSEBop

σLSM
(1)

E′NDVI = µSSEBop + (ENDVI − µNDVI)
σSSEBop

σNDVI
(2)

where E and E′ are the actual and scaled anomalies.
The annual maximum vegetation fraction derived from 12

years of Collection 5 MODIS NDVI data (MOD13A2) (Broxton
et al., 2014) and IGBP land cover map were processed to use them
in the relationship and error analyses between ET and NDVI by
vegetation fractions and land cover types. The descriptions of the
IGBP land cover classes are provided in Table 1.

Triple Collocation Analysis
Triple Collocation (TC) (Stoffelen, 1998) is a statistical method
for characterizing consensus and discrepancies across multiple
independent datasets. TC analysis has been used to estimate
the random errors in NDVI and ET variables. TC analysis is
particularly valuable in regions that lack in situ observations
for evaluations, as consensus anomaly estimates derived from
multiple independent datasets can be interpreted as a measure
of confidence in the absence of adequate in situ evaluation
data (van der Schalie et al., 2018). TC uses a set of three or
more linearly related and collocated variables with independent
error structures. It produces root mean square error (RMSE)

of the random error component of the individual variable, in
the absence of a variable that can be used as the absolute truth
(van der Schalie et al., 2018). We employed TC analysis to
quantify random errors in LSM ET, SSEBop ET, and NDVI
where two of the variables were measuring hydrologic flux and
the third one was measuring vegetation vigor. The variables
depict reasonable cross-correlations across most of the study
area, indicating linear relationships between them at monthly
scale. Therefore, they are suitable for TC analysis framework. As
stated before, the objective is not to validate any one variable
against a different one, but rather to evaluate the skill of these
products relative to one another and how the variables can be
used together in optimizing vegetationmonitoring in East Africa.
The TC analysis is performed with the assumption that errors
in the datasets are uncorrelated between each other and are
independent (Gruber et al., 2016). The LSMs are forced with
CHIRPS and MERRA2 inputs, whereas the primary forcing for
SSEBop is MODIS radiometric temperature data, and NDVI is
derived from MODIS surface reflectance data. In addition, there
are substantial differences in underlying modeling approaches
between LSM ET and SSEBop ET. Therefore, it is fair to assume
that errors in these datasets are independent and uncorrelated.

In this study, we have taken an ensemble mean of the

Noah, VIC, and CLSM ET anomaly time series because of
the similarities between them and designated the ensemble

mean as “LSM ET” in successive analyses. Table 2 shows the

FIGURE 2 | Annual total evapotranspiration (ET; in mm) for the period 2003–2016 from (A) Noah, (B) VIC, (C) CLSM, (D) SSEBop. The bottom row shows the

difference in ET climatology between (E) Noah minus SSEBop, (F) VIC minus SSEBop, (G) CLSM minus SSEBop, and (H) ensemble mean of Noah, VIC, and CLSM

minus SSEBop.
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correlations between Noah, VIC, and CLSM ET by country. As
required, we designated SSEBop ET as the reference variable,
which by no means assumes that the SSEBop is perfect, but
rather we assume errors in the SSEBop ET are effectively
independent from those impacting errors in LSM ET and NDVI.
Finally, the TC errors were computed for the May–October and
November–April composites for each of the datasets, using the
following equations:

εLSM =
〈(

E′LSM − ESSEBop
) (

E′LSM − E′NDVI
)〉

(3)

εNDVI =
〈(

E′NDVI − ESSEBop
) (

E′NDVI − E′LSM
)〉

(4)

εSSEBop =
〈(

ESSEBop − E′LSM
) (

ESSEBop − E′NDVI
)〉

(5)

where ε is the TC error for each dataset, E and E′ are the
actual data scaled data, respectively, and 〈−〉 is the corresponding
average over the period. TC produces the random error metric,
where numbers closer to zero indicate better performance and
vice versa.

FIGURE 3 | Standardized anomaly composites of LSM ET, NDVI, and SSEBop

ET over the wetter half of the year for the period 2004–2010. May–October for

Sudan, South Sudan, Ethiopia, Eritrea, Djibouti, Uganda, and Somalia, and

November–April for Kenya, Uganda, Rwanda, Burundi, and Tanzania.

Statistical Measure
Spatially distributed statistical measures, including long-
term annual mean, standardized monthly anomalies (spatial,
temporal), and Pearson’s correlation coefficient r, are used to
compare these variables during the wetter half of the year.

r =

∑n
i

(

Ei − E
)

(Si − S)
√

∑n
i

(

Ei − E
)2 ∑n

i (Si − S)
2
, −1 ≤ r ≤ 1 (6)

where Ei represents the LSM ET or NDVI monthly anomaly,
Si represents monthly SSEBop ET anomaly, E and S are the
respective mean, n is the total number of data records in the time
series, and the subscript i denotes the ith number of samples.
As suggested in Hain et al. (2011), we used anomalies instead of
actual values for correlation to minimize impacts of differences
in mean and standard deviation values between SSEBop ET, LSM
ET, and NDVI variables due to differences in input data and
modeling approaches.

FIGURE 4 | Standardized anomaly composites of LSM ET, NDVI, and

SSEBop ET over the wetter half of the year for the period 2011–2016.

May–October for Sudan, South Sudan, Ethiopia, Eritrea, Djibouti, and Somalia,

and November–April for Kenya, Uganda, Rwanda, Burundi, and Tanzania.

Frontiers in Climate | www.frontiersin.org 7 January 2021 | Volume 3 | Article 58998113

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Pervez et al. Vegetation Monitoring Optimization Over East Africa

FIGURE 5 | Time series anomaly cross-correlation coefficient calculated over the wetter half of the year for 2003–2016 for (A) LSM ET/SSEBop ET, (B) LSM ET/NDVI,

and (C) SSEBop ET/NDVI. (D) The difference in anomaly cross-correlation where blue (red) shading indicates LSM ET/NDVI correlation is greater (less) than

NDVI/SSEBop ET correlation. (E) The difference in anomaly cross-correlation where blue (red) shading indicates LSM ET/SSEBop ET correlation is greater (less) than

NDVI/SSEBop ET correlation. Only pixels that exhibit a statistically significant correlation at 90% confidence interval are shown (p < 0.1). (F) The difference in anomaly

cross-correlation where blue (red) shading indicates LSM ET/SSEBop ET correlation is greater (less) than LSM ET/NDVI correlation.

RESULTS

Annual ET
The annual total ET (in mm) that reflects the period 2003–2016 is
shown in Figure 2 for the LSMs and for SSEBop ET. The annual
total ET values over the land surface (top row in Figure 2) are
generally highest across the Inter-Tropical Convergence Zone
(ITCZ) and over the Ethiopian Highlands. In contrast, low ET
can be seen over Somalia. The spatial distribution of annual
ET resembles the annual rainfall gradient in the region, which
is mostly determined by surface heating and confluence of the
tropical easterlies (Novella and Thiaw, 2013). A CHIRPS-based
rainfall gradient map over East Africa is available in Figure 2A of
Fenta et al. (2017).

Over the region, high annual ET values of over 1,400mm are
found in the southern part of the Ethiopian Highlands. High ET
of around 1,000mm per year is also found in southwestern South
Sudan and adjacent areas of Lake Victoria in Uganda and Kenya.
Besides the desert areas, parts of southern Sudan, the leeward
side of the Ethiopian Highlands, eastern Somalia, and Kenya
produce ET below 200mm per year. The spatial distributions of
annual total ET for the three models are similar. The correlation
coefficient between Noah, VIC, and CLSM ET are greater than
0.8 with P < 0.1 across the study area. At country level, the

average correlation coefficient is even greater (Table 2) between
these LSM ET. The similar spatial resemblance of Noah, VIC,
and CLSM ET further justifies use of their ensemble mean. A
difference map between the LSM ensemble mean ET and SSEBop
ET is shown in Figure 2H along with differences between SSEBop
ET and individual LSM (Noah, VIC, CLSM) ET in Figures 2E–G.

Spatial Anomaly Comparison
Bearing in mind the predominantly arid conditions of the study
region, we evaluated the performances of these variables in
identifying vegetation conditions during different hydrologic
regimes. To do so, wemapped the standardized seasonal anomaly
composites of ET and NDVI over the wetter half of the year for
the last 12 years from the time series (2004/05 to 2015/16). We
used standardized anomalies because of the differences in units
for ET and NDVI. The seasonal anomaly maps are presented in
Figure 3 for the 2004/2005 to 2009/2010 seasons and in Figure 4

for the 2010/2011 to 2015/2016 seasons. The seasonal anomalies
were computed over May to October over Sudan, South Sudan,
Ethiopia, Eritrea, Djibouti, and Somalia; and over November to
April over Kenya, Uganda, Rwanda, Burundi, and Tanzania.

The droughts of 2004/2005 and 2009/2010 due to failed
rainfall (McNally et al., 2016) have been well-captured in LSMET,
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FIGURE 6 | Triple Collocation (TC) error estimates (in mm) over the 2003–2016 for (A) LSM ET, (B) NDVI, and (C) SSEBop ET. LSM ET and NDVI have been rescaled

to SSEBop ET. The difference in TC error between (D) LSM ET and SSEBop ET, (E) LSM ET and NDVI, (F) SSEBop ET and NDVI.

SSEBop ET, and NDVI. The extreme severity of the 2004 drought
over eastern Ethiopia, Somalia and the 2009/2010 drought over
South Sudan have been particularly well-depicted by LSM ET
(Gebremeskel et al., 2019), while the 2010/2011 drought over
Somalia and Kenya (Robinson et al., 2019) has been well-
portrayed by all three variables. Conversely, healthy to average
vegetation condition of 2006/2007 due to the wettest rainfall
season since 1982 across the region has been better reflected in
all three variables.

More recently, the 2015/2016 El Niño caused a dramatic
decrease in rainfall, especially over Ethiopia and Sudan, resulting
in severe drought (Qu et al., 2019), which has been well-identified
in LSM ET. While a coherent condition is portrayed by LSM ET,
NDVI, and SSEBop ET during the anomalously dry or wet years,
they tend to differ slightly during some hydrologically average
years. For example, during 2008/2009 LSMET differs fromNDVI
and SSEBop ET over South Sudan by showing below average
conditions, and in 2011/2012 LSM ET shows above average
conditions over the same area while NDVI and SSEBop ET show
below average conditions.

Temporal Anomaly Correlation
Figure 5 shows the temporal cross-correlation between the
anomalies of the variables (between LSM ET and SSEBop
ET in Figure 5A, between LSM ET and NDVI in Figure 5B,
and between SSEBop and NDVI in Figure 5C) using monthly

composites during the wetter half of the year for the period
2003–2016. This provides information about the temporal
correlation between two datasets and yields a measure of skill for
either LSM ET, SSEBop, or NDVI relative to each other. Only the
pixels that have a statistically significant correlation coefficient
at 90% confidence interval (P < 0.1) are shown on the maps in
Figure 5. In general, LSM shows good temporal agreement with
SSEBop or NDVI over Ethiopian Highlands, Kenya, Uganda, and
central Tanzania, but poor performance over South Sudan and
southern Somalia. In contrast, SSEBop ET is strongly correlated
with NDVI across much of the area. LSM exhibits statistically
significant r values over 67% of the pixels, while NDVI shows
statistically significant correlation over 77% of the pixels with
SSEBop. LSM also exhibits statistically significant correlation
withNDVI over 72% of the pixels. Although SSEBop shows better
correlation with NDVI than LSM ET, portions of the study area
are associated with statistically significant negative correlation
between SSEBop and NDVI. These results relate with findings of
Joiner et al. (2018) based on weekly climatology composites of
fraction of potential ET and NDVI over East Africa. The same
study also suggests up to 2 weeks of time lag in NDVI response.
However, we have observed, when NDVI is summarized to
monthly scale, the lag becomes less evident for the relationships
between NDVI and ET over East Africa.

Figures 5D–F shows differences in temporal cross-correlation
between the variables, comparing correlation computed between
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them. Figure 5D shows the difference in correlation between
LSM/NDVI and SSEBop/NDVI. Blue shading denotes pixels
where LSM is more strongly correlated and red shading
denotes pixels where SSEBop is more strongly correlated with
NDVI, highlighting regions where each variable shows relative
advantages and disadvantages. Similarly, in Figure 5E, blue
shading shows pixels where LSM ET is more strongly correlated
with SSEBop ET and red shading indicates pixels where NDVI
is more strongly correlated with SSEBop ET. It can be inferred
that LSM ET is not a good indicator of vegetation conditions over
South Sudan.

TC Analysis
The spatial distributions of relative error estimates computed
using Equations (3–5) for LSM ET, NDVI, and SSEBop ET are
shown in Figure 6. The TC error values are relative to SSEBop ET
and are shown inmillimeters as the LSMET andNDVI have been
linearly scaled to SSEBop ET as required by the TC computation.
The domain-averaged relative TC errors are observed to be
130mm for the LSM ET and 93mm for SSEBop ET.

Although the domain-averaged TC errors are relatively low,
there are substantial differences in spatial distribution of the
errors within the study area. LSM ET shows high TC error over
South Sudan, southern Somalia, and eastern Tanzania; NDVI
shows high TC error over eastern Sudan; and SSEBop shows
high TC error over eastern Sudan and the border region between
Kenya and Somalia. Figures 6D–F shows the difference in TC
errors between LSM, NDVI, and SSEBop to highlight areas of
high and low TC errors by each variable. The red shaded pixels
in Figures 6D,E denote where LSM has higher TC error and the
blue shaded pixels where LSM has lower TC errors compared
to TC errors in SSEBop and NDVI. It also becomes clear that
the areas of positive LSM TC errors are similar to the areas
where LSM did not correlate well with SSEBop or NDVI and vice
versa (Figures 5D,E). These similarities indicate that both TC
error and cross-correlation techniques are providing qualitatively
similar information. Similar findings are also reported by Hain
et al. (2011) while comparing three different soil moisture
datasets in the U.S.

DISCUSSION

Both LSM ET and SSEBop ET show similar spatial patterns in
annual total ET distribution but are not identical in magnitude.
The high LSM or SSEBop ET along the ITCZ and Ethiopian
Highlands can be attributed to the intense surface heating and
high precipitation amounts over the Ethiopian Highlands. All
the models agree well with very low ET over the arid regions
of eastern Ethiopia and Somalia. Precipitation is very low over
these regions because of the cool air ventilated from the western
Indian Ocean where sea surface temperatures are low along
with cool ocean currents adjacent to the East Africa land area
(Yang et al., 2015), rendering as poor vegetative growth. ET
from VIC tends to show higher estimates than SSEBop and the
other two models, especially over the Ethiopian Highlands. Over
southern Somalia, encompassing the catchments of the Juba and
Shabelle Rivers and central South Sudan, all the LSMs tend to

FIGURE 7 | The cross-correlation coefficient for the 2003–2016 as a function

of vegetation fraction for (A) LSM ET/SSEBop ET, (B) NDVI/SSEBop ET, and

(C) the difference in correlation between LSM ET/SSEBop ET and

NDVI/SSEBop ET.

underestimate ET. SSEBop ET obtains its measurement based
on radiometric temperature differences between theoretical hot
and cold pixels. The radiometric temperatures vary depending
on the amount of vegetation present. Typically, the higher the
vegetation presence, the lower the surface temperature over
well-watered locations because of the cooling effect of ET.
Therefore, the performance in ET computation is expected
to increase with increasing vegetation cover as the processes
integrate both the effects of surface evaporation and plant
transpiration. Thus, SSEBop ET could be more responsive to
changes in the presence of vegetation cover than the LSM ET.
The spatial resolution difference between LSM ET and SSEBop
ET could also have played a role in resolving energy balance while
estimating ET.

It can be inferred from Figures 3, 4 that ET from both LSM
and remote sensing measurements could be better indicators of
vegetation conditions during extreme drought events (e.g., in the
years 2004/2005, 2009/2010, and the El Niño year of 2015/2016).
Because they are mostly driven by surface energy balance, they
are more sensitive to higher atmospheric demand due to higher
temperatures and lower soil moisture, which relates to lack of
rainfall during extreme drought events. Conversely, NDVI could
be a better indicator of vegetation conditions during wetter than
normal conditions because it is more sensitive to availability of
water due to higher than normal rainfall conditions (e.g., the year
of 2006/2007).
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FIGURE 8 | The average correlation for the 2003–2016 by IGBP land cover types for (A) LSM ET/SSEBop ET, (B) LSM ET/NDVI, and (C) NDVI/SSEBop ET.

While LSM ET correlates positively with SSEBop ET and
NDVI over a majority of the study area, some areas had negative
correlation between SSEBop and NDVI. These areas of negative
correlation collocate with both dense and sparsely vegetated areas
(Figure 5C). This can be attributed to the issues in NDVI due to
signal saturation over densely vegetated areas and high noise-to-
signal ratio over areas where the presence of vegetation is very
low (Huete, 1988). To investigate these further, we plotted the
average correlation as a function of vegetation fraction and type
in Figures 7, 8, respectively. The cross-correlation does not vary
between LSM ET and SSEBop ET with the increase of vegetation
presence, but it increases between SSEBop ET and NDVI. This
means that SSEBop ET and NDVI are more influenced by
vegetation cover than it is for LSM ET (Figure 7B). On the
other hand, the correlation between LSM ET and SSEBop ET is
better over vegetation fraction <18% (Figure 7C). NDVI suffers
from high noise-to-signal ratio over areas with high albedo (low
vegetation cover) and SSEBop ET utilizes a correction factor to
adjust surface temperature while computing ET fraction over
high albedo areas (Senay et al., 2013). The correction process
might have helped correlate SSEBop ET better with LSM ET
than with NDVI over sparsely vegetated areas. The average
correlation by land cover types also confirms that neither SSEBop
ET nor NDVI performs well over evergreen and deciduous
broadleaf as well as barren/sparsely vegetated land cover types
(Figure 8C). This implies that LSM ET could be a better indicator
for vegetation condition over sparsely vegetated areas. Over
moderately vegetative areas (vegetation fraction of > 20%), a
consistent correlation (r > 0.5) can be observed between ET
and NDVI at the monthly time scale, which implies that any of
these variables could be a good indicator of vegetation condition
over moderately vegetated areas. A similar pattern of correlation
between ET and NDVI is also reported by Mbatha and Xulu
(2018) during 2002–2016 over southern Africa.

As with the cross-correlations between the variables, the
spatial variability of the random error values during the rainy
season for each variable has been evaluated as a function of the
vegetation fraction (Figure 9). The plots show that the random

errors in LSM ET are lower than the random errors in SSEBop
ET over low-density vegetated areas (vegetation fraction of 40%
or less). When the vegetation fraction increases, the error in LSM
gradually increases, but again decreases for the very high end of
the vegetation fraction (95% or more) (Figure 9A). As a remotely
sensed surface temperature–based estimation of SSEBop ET, it is
expected that the accuracy of the estimate would decrease over
areas of dense vegetation mostly due to inaccuracies in remotely
sensed surface temperature data over high densely vegetated
areas. Compared to NDVI errors, LSM ET errors are lower over
the low (20% or lower) end of the vegetation fraction and the
errors start to decrease for LSM ET as the vegetation fraction
increases toward full coverage (95% or higher). Figure 9C shows
that NDVI might have the most error over the low and high
ends of the vegetation fraction areas and therefore may not be
a good variable for vegetation monitoring over these areas. Over
these areas, LSM ET is most likely to provide better information
for vegetation monitoring. These results are also consistent with
correlation analysis (Figure 7), which indicates that LSM ET
shows better correlations compared to other two data sources
over the low-density vegetated areas.

To further investigate the random errors by vegetation type,
we plotted average TC error for each variable as a function
of vegetation type in Figure 10. Only a few pixels belong
to evergreen needleleaf forest (type 1), permanent wetland
(type 10), and urban built-up (type 12) areas in the study
area; therefore, they may not be a true representation of
the TC errors. Among other land cover types, LSM ET has
lower TC error over cropland and barren/sparsely vegetated
areas compared to TC error in SSEBop ET and NDVI. For
the remaining land cover types, TC errors in LSM ET are
higher than those in SSEBop ET or NDVI. More specifically,
LSM ET TC errors are higher over the savanna and woody
savanna land cover types collocated in South Sudan. This
could be due to vegetation parameterization differences in
LSM ET.

Finally, we compiled the TC errors for each pixel to identify
the variable with the lowest random error. The map in Figure 11
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FIGURE 9 | Average TC error difference as a function of vegetation fraction for

(A) LSM ET TC error minus SSEBop ET TC error, (B) LSM ET TC error minus

NDVI TC error, and (C) NDVI TC error minus SSEBop ET TC error.

shows the lowest TC error by variable for each pixel. Based on
this map, NDVI would provide better information for vegetation
monitoring over 41% of the study area, mostly covering parts
of Ethiopia, Somalia, and eastern Kenya. SSEBop would provide
better information over 40% of the study area, covering the
Ethiopian Highlands, South Sudan, western Kenya, Uganda, and
Tanzania, and LSM ET would provide better information for
monitoring vegetation condition over 19% of the study area,
mostly covering areas in Sudan, parts of Somalia, Eritrea, and
Ethiopia. This map can be used as a guide along with other
ancillary socio-economic information by analysts to optimize
vegetation monitoring using both ET and NDVI for drought and
food security assessments.

CONCLUSIONS

We performed cross-correlation and triple collocation analyses
to characterize relationships between ET from remotely sensed
measurements (SSEBop) and from LSMs (Noah, VIC, and
CLSM) and a biophysical variable directly computed from surface
reflectance measured by satellite sensors, NDVI. In general,
SSEBop ET and LSM ET show good spatial agreement in annual
total ET distribution following the annual precipitation gradient

FIGURE 10 | Average TC error by land cover type for (A) LSM ET TC error, (B)

NDVI TC error, and (C) SSEBop ET TC error. The corresponding vegetation

type for the numbers along the x-axis are shown in Table 1.

FIGURE 11 | Map of lowest TC error for LSM ET, SSEBop ET, and NDVI for

the 2003–2016 period.

in East Africa. However, there are differences in magnitude
between them. LSM ET and SSEBop ET were found to be
better indicators for vegetation monitoring during the extreme
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drought events, while NDVI could provide better information
for vegetation conditions during wetter than normal conditions.
Spatially, LSM ET correlates reasonably well with NDVI and
SSEBop ET over most of the study area except over South Sudan
and southern Somalia, whereas SSEBop ET and NDVI show
relatively better agreement over southern Somalia. Correlations
between the variables suggest that LSM ET could be a better
indicator for vegetation condition over sparsely vegetated areas,
while any of these variables could be a good indicator of
vegetation condition over moderately vegetated areas. The TC
error estimation technique estimated relative random error in
LSM ET, SSEBop ET, and NDVI. The errors of these variables
suggest that NDVI might have the most error over the low
and high ends of the vegetation fraction areas and therefore
may not be a good variable for vegetation monitoring over
these areas. Over these areas, LSM ET is most likely to provide
important information for vegetation monitoring. Finally, a map
was produced by compiling the lowest random error by variable
that can be used in optimizing vegetation monitoring by using
LSM ET, SSEBop ET, and NDVI over the areas where they
perform the best. The map would be useful especially over the
extremely dry landscapes of Djibouti and parts of arid and semi-
arid lands of Somalia, Ethiopia, and northern and eastern Kenya
where very high reflectance of sandy soils poses critical challenges
in comprehensive monitoring of vegetation conditions. As
NDVI emphasizes vegetation conditions from water supply
perspective and ET emphasizes vegetation conditions from
water demand, perhaps a ratio of NDVI and ET could also
be explored for comprehensive vegetation monitoring. While
this study provides a framework for optimizing vegetation
monitoring for drought and food security assessments over East
Africa, the framework can be adopted to optimize vegetation
monitoring over any other drought and food insecure regions of
the world.
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Agriculture in sub-Saharan Africa consists primarily of smallholder farms of rainfed

crops. Historically, satellite data were too coarse to account for the heterogeneity in

these landscapes. Sentinel-2 data have improved spectral resolution and much higher

spatial resolution (10m) than previously available satellites with global coverage, such

as Landsat or MODIS, making mapping smallholder farms possible. Spectral mixture

analysis was used to convert the Sentinel-2 signal into fractions of green vegetation,

non-photosynthetic vegetation, soil, and shade endmembers. Very high spatial resolution

imagery in Google Earth Pro was used to identify locations of crop and natural vegetation

classes, with over 20,000 reference points interpreted. The high temporal resolution of

Sentinel-2 (5 days repeat) allows for classification of landcover based on the phenological

signal, with natural areas having smoothly varying amounts of photosynthetic vegetation

annually, while cropped areas show more abrupt changes, and also the presence of

bare soil due to agricultural activity at some point during the year. We summarized

the endmember values using monthly medians, extracted values for the reference data

points, randomly split them into training and test data sets, and input the training data

into the random forests algorithm in Google Earth Engine to map crop area. We divided

southern and central Malawi into tiles, and found crop/no crop classification accuracies

on the test data for each tile to be between 87 and 93%. The 10m map of crop area was

aggregated to the district level and showed an R2 of 0.74 with ground-based statistics

from the Malawi government and 0.79 with a remotely sensed product developed by

the USGS.

Keywords: crop area, Africa, random forests, Google Earth Engine, phenology

INTRODUCTION

Climate variability—combined with a lack of resources, social and political instability,
pest outbreaks, and other contributing factors—have led to food-insecurity events
throughout sub-Saharan Africa, compromising the lives and livelihoods of the most
vulnerable populations (Devereux, 2009; Samasse et al., 2018; Funk, 2021). Homegrown
food production is a function of crop area and crop yield, but these components are
difficult to assess because agricultural statistics in sub-Saharan Africa are known to
be inaccurate due to poor organization and data analysis (Devereux, 2009; Carletto
et al., 2015). They are also quite coarse, being reported at the administrative unit level
for ground-based statistics, and generally, 300–1,000m pixels for satellite-based maps
(Carletto et al., 2015; Samasse et al., 2018). The recent availability of 10m Sentinel-2 data
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in Google Earth Engine (GEE) allows for efficient processing of
high spatial resolution data, making high spatial resolution crop
area maps over large areas feasible (Chivasa et al., 2017; Samasse
et al., 2018; Jin et al., 2019; Amani et al., 2020; Karlson et al., 2020;
Kerner et al., 2020; Masiza et al., 2020; Tseng et al., 2020; Verde
et al., 2020).

The high temporal (5-days repeat) resolution of Sentinel-2
data allows for the improved observation—and differentiation—
of crop and natural vegetation phenology, as well as a higher
likelihood of minimizing cloud impacts on the time series (Misra
et al., 2020). The high spatial resolution allows for fewer mixed
pixels in these landscapes characterized by smallholder farms,
which result in mosaics of fields, forests, and pastures, often
heterogeneously mixed at even the 30m Landsat scale, and
certainly at the 500m MODIS scale (Ozdogan and Woodcock,
2006; Samasse et al., 2018; Jin et al., 2019; Misra et al., 2020).
The major drawback of small pixel sizes is huge data set
size, complicating both data storage/transfer and computational
requirements. The use of GEE reduces these requirements
because: (1) the data sets are already loaded into GEE; they do
not have to be ordered, downloaded, and stored locally, and
(2) processing can be done on Google’s server cloud, effectively
bringing supercomputing to the average user, for free (Gorelick
et al., 2017).

Remotely sensed data have been used in agricultural
applications since satellites were launched in the early 1970s
(Hammond, 1975; MacDonald and Hall, 1980). Opening the
Landsat archive to free access in 2008, quasi-daily MODIS data,
and high temporal resolution Sentinel-2 data have allowed for
techniques that leverage phenology to map crops and produce
yield estimates (Lobell, 2013; Wang et al., 2020). The phenology
of crops may differ from that of natural areas in many ways,
due to growth form, irrigation, harvest, field management, and
other factors. As the season progresses, crop areas will show bare
soil due to plowing or clearing to prepare the area, followed by
a steady increase in green vegetation as crops grow, then some
vegetation die-back as crops mature, particularly in seasonal
rainfed agriculture areas. Finally, there is a rapid decrease in
vegetation amount due to harvest, leading to bare fields with
a mix of soil and crop residue. In contrast, natural areas may
show different trends. For instance, forested areas may stay
green year-round; shrublands may green up earlier than crops or
grasslands and stay green longer due to established root systems;
grasslands may show similar timing in green up to crops in
rainfed agricultural areas, but dry down would be more drawn
out due to a lack of harvest, and bare soil likely would not
be exposed.

Most of the studies using crop phenology to map crop area use
either raw bands, vegetation indices (VIs) such as the Normalized
Difference Vegetation Index (NDVI, Rouse et al., 1973), or a
combination of the two (Samasse et al., 2018; Jin et al., 2019;
Amani et al., 2020; Karlson et al., 2020; Kerner et al., 2020;
Masiza et al., 2020; Tseng et al., 2020; Verde et al., 2020). In
this study we took a different approach. Spectral mixture analysis
(SMA, Roberts et al., 2002) decomposes the signal of a pixel into
percentages/fractions of the scene components making up the
pixel. These scene components are termed endmembers (EMs),

and generally consist of the spectrally distinct constituents: green
vegetation (GV), non-photosynthetic vegetation (NPV), soil, and
shade. SMA works well on data sets that include broad spectral
coverage, such as Landsat or MODIS. The addition of bands
on the red edge for Sentinel-2 in comparison to earlier sensors
further increases the confidence that SMA produces physically
meaningful EM fractions. GV is generally highly correlated
with NDVI and other VIs focusing on vegetation greenness
[e.g., enhanced vegetation index (EVI, Huete et al., 1997)]. The
other three EM fractions provide unique information. This is
important, for instance, because a drop in NDVI in a pixel can
result from either browning of vegetation (leading to a mixture
of GV and NPV) or a partial crop harvest (leading to a mixture of
GV and newly exposed soil), and while NDVI cannot distinguish
between the two events, SMA can.

Malawi normally receives enough precipitation to produce
most of the maize and other crops required to feed its people;
there has not been a famine since 2001–2002 (Devereux 2009).
However, what makes Malawi an excellent case study are two
existing national reference data sets of crop area: (1) district-wide
statistics from the Malawi Department of Agriculture, and (2)
from a map based on manual interpretation of landcover on a
1 km grid by Gray Tappan of the U.S. Geological Survey (USGS).
We also compare our results to two global data sets, from IIASA-
IFPRI (Fritz et al., 2015) and a protype map from the European
Space Agency (ESA, ESA-CCI, 2021).

MATERIALS AND METHODS

In this study, we used 2018 Sentinel-2 data to map crop
area in central and southern Malawi (6752347 ha) at a 10m
pixel resolution. The basic approach was to manually identify
reference data points using very high spatial resolution imagery
(<1m), randomly divide that data set into training and testing,
extract phenologically-based predictor variables from Sentinel-
2 for the training data set, input those predictor variables into
random forests (RF) to map crop area, and evaluate classification
accuracy, both with the test data set, and in relation to crop
area from the two Malawi reference data sets and the two global
data sets.

Study Area
Malawi has a population of 19.1 million people, with 9.4 million
ha of land area, 3.7 million ha of which are in agriculture
according to government statistics obtained through the Famine
Early Warning System Network (FEWSNET) data warehouse.
We focused on the southern and central regions of the country,
as that captures 86% of the crop area of Malawi. Common
cash crops include tea, tobacco, and cotton. Common food
crops include maize, millet, cassava, sweet potatoes, and legumes.
Farmers in Malawi have practically no access to irrigation, and
as a result, agriculture is rain fed. Annual precipitation from
CHIRPS, a satellite- and station-based product available at 5 km
resolution (Funk et al., 2015) varies between 0.9 and 1.2m
across Malawi, with a pronounced seasonal signal (Figure 1).
Crops are planted in November/December and harvested in
April/May. Malawi contains a number of different landforms,
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FIGURE 1 | Precipitation (green) and average (2000–2020) monthly precipitation (orange) from CHIRPS for a 5 km pixel in an agricultural part of Dedza District,

Malawi, 14.34◦ S, 34.13◦ E.

including plateaus, mountains, lakes, and a large river valley,
which influence the vegetation type and phenology (Figure 2).

Training Data
We dividedMalawi into 10 × 10 tiles. This was primarily done for
logistical reasons—memory restrictions in GEE. Six tiles covered
the bulk of central and southernMalawi, with smaller areas added
to cover the remaining portions (Figure 2). We classified the
landscape into five classes: crop, open water, and three types
of natural areas—sparse, shrub, forest—differentiated based on
observed canopy cover. Air photo interpretation techniques were
applied to very high spatial resolution (1m pixels or less), true
color imagery in Google Earth Pro (GE) to identify thousands
of reference points for the crop, sparse, shrub, and forest classes,
with fewer points needed for open water (Table 1). Points were
identified in areas that were homogeneous over at least 20m.
The “show historical data” feature was used to examine all
available imagery in GE for evidence of agricultural activity,
with most imagery acquired between 2013 and 2020. Examples
of different stages of agricultural activity visible in the imagery
include fields plowed into regular rows, fields having regular
geometric shapes, fields showing different vegetation greenness
with linear distinctions—as if harvesting was in progress during
image acquisition, and crop residue arranged in linear or circular
patterns (Figure 3). For natural areas we sought to use imagery
from 2017 or 2018 to minimize any possible landcover change
effects. In contrast to agricultural areas, natural areas generally
showed irregular vegetation canopies, both in terms of canopy
shape and spacing between plants. They also do not show
linear (man-made) features. Some manually interpreted points
were able to be reused for adjacent tiles where landforms
(and hence, climate/vegetation) were similar (e.g., Orig and 1N
along the shore of Lake Malawi). Training data were added

for each tile in an iterative process until the resulting RF
classification for the tile did not contain spatially correlated
errors. Points from adjacent tiles were always used to make
an initial classification for a new tile to speed up the point
selection process. For instance, if the initial classification map
for a tile showed that forested areas were well-identified using
existing training data from other tiles, no new training points
were added for that class within the new tile. The reference
point files were saved as KMLs and converted to shapefiles for
use in GEE. Much of the effort in this research focused on the
selection, interpretation, and refining of points used to drive
the classification.

Independent Validation Data
The independent validation data used in this study came
from four independent sources, the official statistics from the
Government of Malawi for 2017, a map derived from interpreted
satellite imagery from the USGS from 2017, the global IIASA-
IFPRI crop area map from 2005 and the ESA-CCI Sentinel-2-
based map from 2016. The Malawi government data consists
of the area planted for each of 10–12 crop types at the
district level, covering nine districts in central Malawi, and
13 in southern Malawi. The crop areas were summed and
divided by the overall area of each district to get percent
crop area. It should be noted that the government statistics
for crop area may double count a field if it is intercropped
with two different crops, hence fractions can be >1.0. The
Tappan USGS map relies on expert interpretation of points
on a regular 1 km grid, primarily using Landsat and Sentinel-
2 data to make a determination of landcover at each point
using the Rapid LandCover Mapping tool (Cotillon and Mathis,
2017). A total of 28 landcover classes were used, six of
which represented agricultural areas (rainfed herbaceous crops,

Frontiers in Climate | www.frontiersin.org 3 July 2021 | Volume 3 | Article 69365324

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Peterson and Husak Crop Area Mapping in Malawi

FIGURE 2 | Study area in Malawi showing administrative districts in central and southern Malawi with fractional crop area (A), elevation for Malawi from Shuttle Radar

Topography Mission (SRTM) data (B), the six initial “tiles” used to perform the Random Forest (RF) analysis, most are 1◦×1◦ (C).

TABLE 1 | Training points generated in Google Earth Pro.

Tile

Orig 1S 1N 1W 1NW 1NWW 1SW, 1SE 1SS

Crop 2,248 2,876 741 1,376 1,323 444 361 20

Sparse 657 207 171 515 272 94 264

Shrub 1,568 3,013 1,016 275 1,327 116 146

Forest 802 737 87

Water 192

The geographical location of the primary six tiles is shown in Figure 2. 1SW, 1SE, and 1SS are west, east, and south of tile 1S, respectively.

cultivated dambo, rice, sugar cane, tea, and tree plantation). The
map was converted to binary (presence/absence) of agriculture
at the 1 km pixel scale to calculate percent crop area for each
district. The IIASA-IFPRI crop area map integrates existing
maps from various sources, ranking and weighting them before
combining them into the final global 1 km pixel crop area
product (Fritz et al., 2015). The ESA-CCI map is derived
from Sentinel-2 data and is available at 20m resolution, it is

unpublished and labeled as a prototype but is beginning to be
evaluated in the literature (Samasse et al., 2018; Alkhalil et al.,
2020).

Predictor Variables
SMA was applied to the 10m Sentinel-2 time series for central
and southern Malawi. We used the Level 1C, top of atmosphere
(TOA) reflectance product rather than the Level 2A surface
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reflectance product, as all of the Sentinel-2 data are available in
this form, allowing us an extra 2 full calendar years in analyses,
because the Level 2A data are only available from mid-2017 to
present while the Level 1C data begins inOctober 2015 inMalawi.
To identify and filter out clouds, the cloudscore algorithm was
used for cloud and cloud shadow masking (Chastain et al.,
2019). Due to the use of top of atmosphere reflectance data,
we used image EMs, derived from pure Sentinel-2 pixels of
maize, senesced vegetation, and bare soil in an agricultural
area in central Kenya, where we had an informant who could
identify landcover, rather than reference EMs convolved to

FIGURE 3 | Four different looks in Google Earth Pro at a smallholder

agriculture area in east central Malawi near 13.72◦S, 35.1◦E on 9/27/2013 (a),

10/31/2013 (b), 11/29/2014 (c), and 3/10/2020 (d). Harvest residue (HR) in

the north east corner of the 9/27 and 10/31 images identifies this area as

cropped. Plowing (PL), exposing dark, smooth soil in 11/29, and to a lesser

extent 10/31 identifies this area as cropped. The fine spatial resolution allows

for the identification of plant canopies in the southeast portion of the image,

the temporal information suggests some of them are evergreen trees, some

deciduous shrubs.

Sentinel-2 band wavelengths from hyperspectral data. Thus,
atmospheric effects are included in the image EM spectra.
SMA was performed on each individual Sentinel-2 image in
southern and central Malawi in 2018 with the same set of EMs,
breaking each pixel of each image down into its components
of GV, NPV, soil, and shade. Table 2 lists the reflectance
values used for each EM. For each pixel, the time series of
EM fractions were summarized in two different ways: (1) the
minimum, maximum, median, and range in values within each
bi-monthly time step were calculated for each EM fraction
(similar to the Jin et al., 2019 approach), and (2) the monthly
median was calculated for each EM fraction (Kerner et al.,
2020). Additionally, for each approach we calculated the annual
minimum, maximum, median, and range for each EM fraction
from the bimonthly/monthly medians. A threshold value of 0.4
for annual GV maximum was used to remove fields that showed
evidence of agricultural activity at some point in GE imagery, but
were fallow in 2018, from the crop training and test data sets.
Even though these distilled datasets contain far less information
than the five day repeat Sentinel-2 data, the resulting arrays of
EM summary statistics were still very large, on the order of 20
GB per tile.

Image Classification
In order to work within the computational limitations of GEE,
analysis was performed for each tile individually. The first step
was to separate the reference data points for each landcover class
into training and test data sets. The reference points were split
roughly 50/50 into training/test for crop and shrubs, and 80/20
for the remaining, less-populous classes. It is important that the
amount of training data per class is roughly equal in order to
obtain an accurate map (He and Garcia, 2009). The training
points were used to extract training data from the predictor
variable array. We used RF to perform the classification analysis.
Decision trees use a series of predictor variable splits to divide the
dependent variable into more and more homogeneous groups.
RF consist of an ensemble of decision trees, where trees are
made to differ by changing the subsets of data used to train
each tree, and allowing only a subset of the predictor variables
to be evaluated at each node. The results from 500 decision
trees were aggregated to produce the RF output (classified maps
and contingency tables); a large number of trees is suggested to
minimize error, with 500 being recommended in the literature
(Probst et al., 2019). RF have been shown to perform well for
this crop area classification application (Jin et al., 2019). RF were

TABLE 2 | Sentinel-2 top of atmosphere reflectance values for the four endmembers used in this study, green vegetation (GV), non-photosynthetic vegetation (NPV), soil,

and shade.

Sentinel-2 central wavelength (nm)

Endmember 490 560 665 705 740 783 842 865 1,610 2,190

GV 0.0917 0.101 0.056 0.114 0.394 0.507 0.501 0.555 0.214 0.0917

NPV 0.124 0.126 0.158 0.182 0.214 0.24 0.22 0.273 0.376 0.287

Soil 0.136 0.163 0.244 0.256 0.277 0.302 0.296 0.313 0.366 0.317

Shade 0 0 0 0 0 0 0 0 0 0
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FIGURE 4 | Sample green vegetation (GV) (A), non-photosynthetic vegetation (NPV) (B), soil (C), and shade (D) endmember (EM) trajectories for a crop area and a

natural area, showing monthly median values.
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TABLE 3 | Confusion matrices for the primary six tiles, the geographical location of the tiles is shown in Figure 2.

Crop Sparse Shrub Forest Water User’s

Orig

Crop 644 11 103 2 0 0.847368

Sparse 29 109 57 1 0 0.556122

Shrub 86 12 627 13 0 0.849593

Forest 9 2 26 150 0 0.802139

Water 0 0 0 0 47 1

Producer’s 0.838542 0.813433 0.771218 0.903614 1 0.817946

1S

Crop 1,254 19 99 7 0 0.909355

Sparse 30 179 20 0 0 0.781659

Shrub 213 14 1,364 10 0 0.851968

Forest 17 2 19 149 0 0.796791

Water 0 0 0 0 47 1

Producer’s 0.828269 0.836449 0.908123 0.89759 1 0.8693

1W

Crop 849 11 67 2 0 0.913886

Sparse 34 130 83 0 0 0.526316

Shrub 75 12 779 11 0 0.888255

Forest 9 0 31 129 0 0.763314

Water 0 0 0 0 47 1

Producer’s 0.877973 0.849673 0.811458 0.908451 1 0.852358

1N

Crop 925 11 78 0 0 0.912229

Sparse 26 136 68 0 0 0.591304

Shrub 155 17 1,095 14 0 0.854801

Forest 11 1 22 128 0 0.790123

Water 0 0 0 0 47 1

Producer’s 0.828111 0.824242 0.866983 0.901408 1 0.852597

1NW

Crop 406 18 18 1 0 0.916479

Sparse 10 69 9 2 0 0.766667

Shrub 27 16 396 29 0 0.846154

Forest 2 4 23 130 0 0.81761

Water 0 0 0 0 47 1

Producer’s 0.91236 0.64486 0.887892 0.802469 1 0.868268

1NWW

Crop 757 26 30 5 0 0.925428

Sparse 27 172 63 5 0 0.644195

Shrub 52 20 475 38 0 0.811966

Forest 13 9 25 201 0 0.810484

Water 0 0 0 0 47 1

Producer’s 0.891637 0.757709 0.801012 0.807229 1 0.840712

run on the training data, developing a model which was then
(1) evaluated with the test data and (2) applied to the entire
tile to make a map. All of the individual tile maps were then
mosaicked, and crop area values for the 22 districts in central
and southern Malawi were compared between our analysis, that
of the Malawi Department of Agriculture, the Tappan USGS
map of crop area in Malawi, the IIASA-IFPRI map, and the
ESA-CCI map.

RESULTS

The EM fraction trajectories reflect changes due to plant

phenology. To highlight the separability of the different cover

types, Figure 4 shows sample EM trajectories for a crop field and

a natural shrubland area, located within 100m of each other.

The GV EM trajectory for the natural area follows precipitation
well; green up begins in October, peak greenness occurs between
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January and March except for 2017, when the rainfall peak
was a month late (Figure 1) and the GV peak was in April,
and then there is a steady decline as the landscape dries down
during the 6 months long dry season (Figure 4). Crop greenup
is delayed a few months compared to shrub greenup, the timing
of peak greenness is later in the season, and the peak is more
pronounced than that of the natural area. Finally, there is an
extended period of near zero GV values between harvest and
planting the following growing season. Negative EM values, while
not physically meaningful, occur because SMA is amatrix algebra
transform with the constraint that fractions sum to 1.0, and can
be interpreted as the absence of that EM for that time step. For
this particular example the natural area demonstrated a higher
GV fraction than the crop fields throughout 2018, but that is not
always the case. NPV for the natural area has an inverse trend
to GV, the new green leaves are dominant at the beginning of
the season so NPV is low, then the leaves senesce, and woody
shrub material and senesced ground cover become more exposed
to the satellite, leading to an increase in NPV. A similar pattern
is present during the growing season for the crop field, although
it appears that harvest residue was left on the field in 2017 and
2018 as NPV remains high during the initial increase in GV for
those years. The soil fractions stayed relatively consistent for the
two areas in Figure 4, showing no evidence of plowing in this
particular area, which is consistent with the observation, based
on NPV, that harvest residue was left on the soil. Soil fraction was
higher for crop areas, likely due to the presence of some exposed
soil between crop rows. NPV and soil show more noise than GV,
likely due to residual cloud contamination. Shade shows a similar
pattern to GV as the landscape absorbs more light (high shade)
when it is highly vegetated, and reflects more (low shade) when
the ground is bare. Some locations experienced persistent cloud
cover during parts of the rainy season, resulting in missing data
in the satellite analysis and corresponding gaps in the plots shown
in Figure 4.

We only present output for the monthly predictor variables
(the second method of data distillation), as accuracies were
slightly better, and the predictor variable data set was half the
size of the bimonthly data set, thus it was more convenient. The
overall accuracies when compared with independent test data for
the six tiles with the most training data (Table 1) were on the
order of 85% (Table 3). We also show data for classes re-coded to
crop/no crop (Table 4), which is the more commonway that crop
area classifications are presented. Accuracies increased 5% for
five of the six tiles, with three tiles exhibiting accuracy over 90%.
Further analysis of the results in Tables 3, 4 show that the user’s
accuracy for crop tends to be a bit higher than the producer’s
accuracy, indicating a slight under-identification of agriculture in
the model results, and an expected underestimate of the overall
cropped area by a small amount. The biggest source of confusion
was between crops and shrubs, thoughmore crops were classified
as shrub than vice versa (Table 3). It may be that the diversity in
crop types and or farming intensity is more variable than shrub
types, so the crop class is more heterogeneous and thus members
of the class are more likely to appear to behave like shrubs.

Table 5 presents the variable importance values for each of
the predictor variables for each of the six tiles in Table 1, with

TABLE 4 | Confusion matrices for the primary six tiles, with the classes

aggregated to crop/no crop.

Crop No crop User’s

Orig

Crop 644 116 0.847368

No crop 124 997 0.889384

Producer’s 0.838542 0.895777 0.872408

1S

Crop 1,254 125 0.909355

No crop 260 1,757 0.871096

Producer’s 0.828269 0.933581 0.886631

1W

Crop 849 80 0.913886

No crop 118 1,175 0.908739

Producer’s 0.877973 0.936255 0.910891

1N

Crop 925 89 0.912229

No crop 192 1,481 0.885236

Producer’s 0.828111 0.943312 0.895422

1NW

Crop 406 37 0.916479

No crop 39 678 0.945607

Producer’s 0.91236 0.948252 0.934483

1NWW

Crop 757 61 0.925428

No crop 92 1,008 0.916364

Producer’s 0.891637 0.942937 0.920229

The geographical location of the tiles is shown in Figure 2.

the top ten variables for each tile in bold. There are a number of
interesting features. GV variables were generally most important.
The median GV at the beginning of the growing season ranked
high, while the median GV for the peak of the growing season
(February) showed much lower importance. Natural areas green
up earlier than crop areas, with separability being reduced at
peak greenness (Figure 4). This also points to the advantage of
monthly vs. bi-monthly variables as January and February values
would have been grouped together, reducing the signal. Natural
areas also remain green longer due to enhanced water availability
due to established root systems, and this is reflected in high
importance scores for GV variables as the season progresses.
NPV showed lower importance than GV, though January was in
the top ten for three tiles. January soil was also highly important.
Also, soil inMay, June, and July, while only in top ten importance
for the NWW tile, tended to have relatively high importance.
Hence, soil was important early in the growing season and during
the harvest season when soil may be exposed in crop areas
while natural vegetation is largely comprised of GV and NPV
(Figure 4). Shade variables were second to GV in importance,
with July and August being the most important months for four
of the tiles. At this time of the year natural vegetation would
show canopy shading due to uneven vegetation heights both
within individual plants and between neighboring plants while
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TABLE 5 | Random Forest variable importance measures for the six primary tiles, the geographical location of the tiles is shown in Figure 2.

Variable importance

Predictor variable Orig 1S 1N 1W 1NW 1NWW

GV January median 493 933 735 628 653 644

GV February median 373 703 585 471 469 519

GV March median 492 812 723 633 554 551

GV April median 494 894 736 637 594 490

GV May median 464 811 730 611 465 551

GV June median 459 877 661 556 424 589

GV July median 512 875 737 627 508 573

GV August median 438 806 672 555 538 628

GV September median 424 828 646 604 544 620

GV October median 445 816 639 623 528 609

GV November median 414 777 612 540 532 626

GV December median 442 738 630 551 546 642

NPV January median 511 845 712 609 484 514

NPV February median 356 672 573 478 457 484

NPV March median 399 676 569 556 486 504

NPV April median 388 729 601 519 481 477

NPV May median 384 801 627 522 458 524

NPV June median 412 771 599 537 412 514

NPV July median 482 746 671 580 436 496

NPV August median 402 718 660 543 460 473

NPV September median 399 705 623 507 434 509

NPV October median 406 694 591 531 418 502

NPV November median 367 644 582 530 470 511

NPV December median 401 670 600 506 463 490

Soil January median 472 791 780 613 521 521

Soil February median 456 740 679 581 468 512

Soil March median 381 647 551 520 482 545

Soil April median 377 679 574 485 465 544

Soil May median 409 651 629 550 493 598

Soil June median 403 682 617 520 457 623

Soil July median 405 685 608 517 492 501

Soil August median 376 641 585 499 445 521

Soil September median 368 684 565 441 347 520

Soil October median 338 657 552 432 339 543

Soil November median 353 603 532 429 319 616

Soil December median 380 614 578 461 341 510

Shade January median 412 763 634 544 520 592

Shade February median 380 686 595 481 538 595

Shade March median 396 685 654 555 535 503

Shade April median 411 739 581 528 449 503

Shade May median 451 728 687 563 452 577

Shade June median 420 794 628 524 475 563

Shade July median 522 903 833 693 501 570

Shade August median 563 846 813 698 498 562

Shade September median 453 804 732 613 504 590

Shade October median 444 763 651 573 500 553

Shade November median 408 681 641 571 490 572

Shade December median 422 704 667 529 496 485

GV annual maximum 455 720 648 596 464 575

(Continued)
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TABLE 5 | Continued

Variable importance

Predictor variable Orig 1S 1N 1W 1NW 1NWW

GV annual minimum 405 699 590 599 487 425

GV annual range 407 714 649 564 607 518

NPV annual maximum 383 699 604 508 455 505

NPV annual minimum 422 747 663 580 480 377

NPV annual range 422 743 618 554 499 481

Soil annual maximum 447 753 709 604 490 504

Soil annual minimum 424 801 651 566 543 371

Soil annual range 441 732 668 589 479 509

Shade annual maximum 425 720 632 577 469 549

Shade annual minimum 418 685 634 588 450 401

Shade annual range 429 747 609 560 503 523

GV refers to green vegetation and NPV is non-photosynthetic vegetation. Values in bold are the top ten most important values for each tile.

harvested crop area would be relatively flat with higher albedo.
For the remaining two tiles January was important, for similar
reasons—young crops would be too small to cast much in the way
of shadows compared to larger natural vegetation. The annual
summary variables were generally not of high importance.

Wemosaicked the maps from the individual tiles to generate a
crop area map for all of southern and central Malawi. Seam lines
were not noticeable, likely because the classification models were
accurate, so there were not differences across tile boundaries.
Table 6 presents crop area estimates for the different data sources.
Agreement in percent crop area at the district level (comparing
sets of 22 values) is high for RF, Malawi government, and Tappan
USGS data sets. R2 for fractional crop area at the district level
between RF and Malawi government is 0.74, between RF and
USGS it is 0.79, and between Malawi government and USGS it
is 0.53 (Table 6). It is interesting that the relationships between
RF and Malawi government and RF and USGS are similar,
but the relationship between Malawi government and USGS is
lower. The primary differences between the RF map and Malawi
government are possible double-counted fields and human error
in gathering data, both data sources cover the entire region.
Both RF and USGS rely on manual image interpretation to
label landcover, but RF uses all of the imagery whereas USGS
examined imagery on a 1 km grid. The Malawi government data
and USGS map have less in common. The ESA-CCI map shows
good agreement with the RF Sentinel-2map (R2 of 0.63), however
Figure 5 suggests that the ESA map systematically overpredicts
crop area in southern Malawi.

DISCUSSION

Our accuracies compare favorably with the three published
studies examining crop area in sub-Saharan African countries at
10m resolution that we are aware of Kerner et al. (2020), Tseng
et al. (2020), and Jin et al. (2019). Kerner et al. (2020) obtained
83% accuracy when classifying crop/no crop in the country of
Togo. Jin et al. (2019) obtained 85% accuracy for crop/no crop

in Kenya and Tanzania. Tseng et al. obtained 86% accuracy in
Kenya. However, our accuracy values are based on many more
samples, making them more robust.

Aside from the increase in accuracy, the main benefit of
utilizing SMA for crop area mapping is that you use the
entire electromagnetic spectrum as measured by Sentinel-2,
reprojected into a more intuitive/interpretable GV, NPV, soil,
shade data space. Jin et al. (2019) also used a suite of greenness
measures for prediction, as well as raw bands, but used additional
information on vegetation structure from radar data from
Sentinel-1. NPV and particularly shade can give information on
vegetation structure (Roberts et al., 2002). We explored the use
of Sentinel-1 data but ultimately decided against it due to some
irregularities in image registration between data from the two
sensors, and because of the presence of shadows/data gaps in
the radar data behind taller features, due to radar being side-
looking.

We chose to use TOA data rather than surface reflectance
because it allows us to do temporal analyses of crop area
over 5 years (2016–2020) rather than three (2018–2020). For
instance, 2016 and 2017 were low rainfall years in Kenya and
we could study the effect of the drought on crop area. TOA data
contain atmospheric scattering that primarily affects the visible
bands. For instance, for surface reflectance data, the blue band
(490 nm) reflectance is usually similar to red reflectance (665 nm)
for GV, whereas for TOA data there is additional blue light
(Table 2). Spatio-temporal variability in atmospheric scattering
should incur noise when using TOA vs. surface reflectance
data, however as atmospheric scattering primarily only affects
three of the ten bands it may not have had a strong effect on
EM fractions, and our classification accuracies remained high.
Other sources of noise include residual cloud contamination
and occasional geolocation errors (particularly considering the
heterogeneity of small-scale farming areas). For instance, Tremas
et al. (2015) found geolocation errors for Sentinel-2 data of
12.5m, or over 1 pixel, which could cause an agricultural area
pixel to have the EM values of a neighboring forest pixel
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TABLE 6 | Fractional crop area for each district in central (Dedza-Salima) and southern (Balaka-Mangochi) Malawi for the four reference data sets and the Sentinel-2

based analysis.

Fractional crop area per district

Government Tappan IIASA- RF

District Area (ha) Statistics USGS IFPRI ESA-CCI Sentinel-2

Dedza 371,787 0.65 0.6 0.39 0.45 0.53

Dowa 309,354 0.67 0.85 0.48 0.65 0.67

Kasungu 803,785 0.27 0.54 0.35 0.52 0.4

Lilongwe 619,355 0.6 0.76 0.39 0.63 0.64

Mchinji 314,342 0.68 0.76 0.38 0.59 0.55

Nkhotakota 436,043 0.18 0.32 0.21 0.26 0.11

Ntcheu 324,817 0.41 0.62 0.39 0.6 0.53

Ntchisi 170,980 0.64 0.73 0.50 0.58 0.53

Salima 215,985 0.29 0.64 0.21 0.36 0.42

Balaka 213,193 0.42 0.67 0.30 0.85 0.51

Blantyre 202,424 0.45 0.51 0.36 0.66 0.44

Chikwawa 488,222 0.28 0.42 0.27 0.44 0.26

Chiradzulu 76,311 1.1 0.84 0.34 0.95 0.76

Machinga 378,449 0.32 0.5 0.28 0.54 0.43

Mulanje 200,776 0.87 0.73 0.34 0.72 0.61

Mwanza 75,842 0.76 0.41 0.36 0.42 0.48

Neno 155,580 0.32 0.35 0.26 0.47 0.34

Nsanje 194,855 0.22 0.35 0.33 0.57 0.33

Phalombe 137,898 0.86 0.71 0.42 0.77 0.68

Thyolo 164,175 0.77 0.88 0.39 0.88 0.65

Zomba 253,570 0.76 0.71 0.37 0.8 0.65

Mangochi 644,604 0.42 0.47 0.23 0.45 0.29

R2 vs. G.S. 0.53 0.34 0.45 0.74

R2 vs. T.U. 0.39 0.52 0.79

R2 vs. I.I. 0.23 0.50

R2 vs. E.C. 0.63

R2 is based on comparing the two sets of 22 values. G.S. referes to Government statistics, T.U. to Tappan USGS, I.I. to IIASA-IFPRI, and E.C. to ESA-CCI.

at certain timesteps, affecting monthly median and annual
summary values.

Fritz et al. (2015) state that the global overall accuracy of the
IIASA-IFPRI map is 82.4%, but it appears to be less accurate
in Malawi, as the range in values is less than the other maps,
and agreement at the district scale was low. Our finding that the
IIASA-IFPRI map differed from the three other reference data
sets and our classification map is in line with the findings of
Samasse et al. (2018). They compared eight landcover maps in
West African countries, and found that the coarser resolution
maps, including IIASA-IFPRI, performed much worse than 30m
maps using Landsat data. Interestingly, the ESA-CCI 20m map,
using Sentinel-2 data, also performed worse than the Landsat-
based maps with accuracies 10–40% points lower. Samasse et al.
(2018) suggested the techniques and West Africa training data
used in the ESA-CCI product needed to be re-examined. Alkhalil
et al. (2020) also evaluated the ESA-CCI map in West Africa.
They found extremely low producer’s accuracies (over-prediction
of crops) for three polygons in the Sahel (0.07, 0.34, 0.03) and
less, but still some over-prediction for three polygons closer to

the coast (producer’s accuracies of 0.61, 0.72, 0.56), leading them
to declare the ESA-CCI product was not an acceptable cropmask.
Our research also showed overprediction of crop area by ESA-
CCI when compared with the RF Sentinel-2 map, particularly in
southern Malawi (Table 6, Figure 5).

RF are known as a greedy classifier, hence, a large number of
manually interpreted points were identified—a total of 20,848.
For comparison to other studies, central and southern Malawi
comprise 6,752,347 ha. Kerner et al. (2020) mapped percent crop
area in Togo (5,678,500 ha) using a different algorithm and hence,
a fraction of the reference data-−1,319 crop or no crop points
from within the country, and a global data set of 35,866 crop/no
crop points. Tseng et al. (2020) used a similar algorithm and
the same global 35,866 points, as well as 14,080 crop/no crop
points for the much larger country of Kenya (58,036,700 ha). Jin
et al. (2019) used RF to map crop/no crop in both Kenya and
Tanzania (94,730,300 ha), 4,509 points were identified in Kenya,
and 4,140 in Tanzania. The country areas are much larger than
that of Malawi; however, the agricultural portion of the countries
is much smaller than these numbers, making the comparison
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FIGURE 5 | Fractional crop area compared for the RF Sentinel-2 map and the

ESA-CCI map. The ESA-CCI map overpredicts crop area by 10–20% for many

of the districts in southern Malawi.

less straightforward, because large parts of each country could be
excluded as potentially arable. In fact, latitude and longitude were
included as predictor variables in Jin et al. (2019). Furthermore,
it is not known exactly how many fewer points would have
been needed if our analysis had been crop/no crop instead of
crop, sparse, shrub, tree, and water. Another factor is we used
roughly 50% of the data for training, 50% for testing while Jin
et al. (2019) and Kerner et al. (2020) trained on 80% of the data
and Tseng et al. (2020) trained on 90% of the data. Hence, they
leveraged their points differently, and had fewer points for robust
accuracy assessment. While our method may be less efficient
and/or an excessive amount of reference points may have been
identified, our accuracies are based on far more data points,
which increases confidence.

This study generated a crop area map for southern and central
Malawi with very high crop/no crop classification accuracies
between 87 and 93%. The approach combined some of the oldest
(air photo interpretation) and newest (cloud computing) remote
sensing techniques. Overall, we find the results presented here
to be a promising result for the potential to use GEE and RF
algorithms to produce high-quality cropped area estimates for
smallholder farms in rainfed agriculture regimes. EM phenology

predictor variables and variable importance measures combine
to produce interpretable, non-“black box” results. Accuracies for
the two most populous classes, crop and shrub, are based on
50% of the reference data points so are extremely robust. A
more accurate assessment of the cropped area in a region can
help better understand the dynamics impacting food production
and food security in vulnerable regions of sub-Saharan Africa.
The method can be repeated using the same training data to
perform the classification over multiple years which would be
useful for the identification of changing landscape dynamics and
for seasons when weather, agricultural inputs (seeds or fertilizer),
or labor impacted the amount of cropped area for a particular
season, over a region, relatively simply. The results presented here
can also be utilized to develop an agricultural mask that can be
used to better focus agroclimatic analysis over wide areas. All
these different benefits could have a positive impact on the ability
to anticipate, assess, and mitigate the impacts of cropped area on
food security over sub-Saharan Africa.
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Global food and water insecurity could be serious problems in the upcoming decades

with growing demands from the increasing global population and more frequent effect of

climatic extremes. As the available water resources are diminishing and facing continuous

stress, it is crucial to monitor water demand and water availability to understand the

associated water stresses. This study assessed the water stress by applying the water

supply stress index (WaSSI) in relation to green (WaSSIG) and blue (WaSSIB) water

resources across six major cropland basins including the Mississippi (North America),

San Francisco (South America), Nile (Africa), Danube (Europe), Ganges-Brahmaputra

(Asia), and Murray-Darling (Australia) for the past 17-years (2003–2019). The WaSSIG
andWaSSIB results indicated that the Murray-Darling Basin experienced the most severe

(maximum WaSSIG and WaSSIB anomalies) green and blue water stresses and the

Mississippi Basin had the least. All basins had both green and blue water stresses for at

least 35% (6 out of 17 years) of the study period. The interannual variations in green water

stress were driven by both crop water demand and green water supply, whereas the

blue water stress variations were primarily driven by blue water supply. The WaSSIG and

WaSSIB provided a better understanding of water stress (blue or green) and their drivers

(demand or supply driven) across cropland basins. This information can be useful for

basin-specific resource mobilization and interventions to ensure food and water security.

Keywords: evapotranspiration, green and blue water, water stress, drought, food security

INTRODUCTION

Water resources are critical for providing human needs of water, energy, and food, and preserving
healthy ecosystems (Bhaduri et al., 2016; Vanham, 2016). Increasing water demands from the
growing population and shifting lifestyles are increasing competition within and among water
use sectors (Molden, 2007). Additionally, climate change is deteriorating water resources (Scanlon
et al., 2007) and fueling more stress on water resources (Hanjra and Qureshi, 2010; Siegfried
et al., 2012), resulting in conflicts during water shortages (Eriksen and Lind, 2009; Theisen et al.,
2012; Tang et al., 2018). Water stress assessments at local to regional scale are increasingly crucial
to understand the vulnerability and resiliency of water resources. In particular, assessing water
stress associated with crop water use (or evapotranspiration) and its relationship with green
water (precipitation) or blue water (surface water and groundwater) sources provides integrated
information on food and water status.
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Global water supply is declining but the water demand has
tripled since the 1950s (Gleick, 2003). Approximately 1.4 billion
people live in river basins where water use is larger than water
recharge rates (UNDP, 2006) with the projection that more
than half of the global population will live in areas that suffer
water scarcity at least a month each year by 2050 (WWAP,
2018). Several river basins and regions with large cropland areas
that are heavily dependent on blue water irrigation could face
critical challenges for food and water security because irrigation
is the first sector to lose water when the water scarcity increases
(Molden, 2007). For example, the Ganges-Brahmaputra, the
largest basin in Asia with ∼32% of its total area as irrigated
croplands (Thenkabail et al., 2016), may face reductions in blue
water availability for irrigation due to increasing competition
among the water use sectors (Flörke et al., 2018). The southern
High Plains of the United States (U.S.), a heavy blue water-
dependent irrigated region, is diminishing due to unsustainable
groundwater withdrawal (Scanlon et al., 2012). The continuous
depletion of groundwater level would result in more than a third
of the region being unable to support irrigation within the next
30 years (Scanlon et al., 2012). With the continuous effects of
frequent and severe droughts in agriculture and its projected
effects in the future (Li et al., 2009; van Asten et al., 2011; Howitt
et al., 2014), the irrigated croplands (∼20% of the global cropland
area) may undergo severe water stress due to blue water shortages
and could cause significant reduction to food production (Siebert
and Döll, 2010; Leng and Hall, 2019).

Conversely, rainfed agriculture (∼80% of the global cropland)
is dependent on green water, which contributes to more than
half of the global food production (Rosegrant et al., 2002). Food
production in some regions is completely dependent on green
water-supplied rainfed agriculture such as in Sub-Saharan Africa
(Alexandratos, 1995). River basins with large portion as rainfed
croplands are also under food and water security threat due
to climate change-induced variabilities in precipitation (Kang
et al., 2009). For example, the largest basins in Europe—the
Danube Basin has almost two-third (∼64%) of its area as rainfed
croplands and several sub-regions could face severe water stress
due to the shortage of green water availability from the projected
reduction in precipitation (Bisselink et al., 2018; ICPDR, 2018).
For such green water-dependent cropland basins, indicators for
monitoring the crop water use and green water availability
provide useful information to detect the associated water stress.
Similarly, for the basins with blue water-dependent cropland,
indicators that monitor blue water use and availability are more
useful than other water stress indicators for better decision
making. Thus, the stress indicators that integrate the water use
and water availability information relating to the type of water
resources (i.e., blue and green) will help to better characterize
water stresses.

Water stress at a basin scale is commonly quantified as a ratio
of water demand (or water use) to water availability (Falkenmark
et al., 2007; Sun et al., 2008; Richey et al., 2015). One of the
several water stress indices to detect water stress at basin scale
is the water supply stress index (WaSSI) (Sun et al., 2008),
originally developed to simulate water stress based on water
demand and water supply on an annual time-step (Sun et al.,

2015). The WaSSI has been applied to model and predict water
stress caused by increasing human population, land-use change,
and climate change (Sun et al., 2008, 2015; Caldwell et al., 2012;
Duan et al., 2019) across several basins worldwide (Ji et al., 2012;
Eldardiry et al., 2016; McNulty et al., 2016; Tang et al., 2018;
Zhang et al., 2018). However, only a few studies have applied
the WaSSI to understand the contribution of different water
use sectors to basin water stress. Averyt et al. (2013) assessed
the contribution of different water use sectors across the 8-digit
Hydrological Unit Code (HUC8) (Seaber et al., 1987) scale basins
in the U.S. The study reported agriculture as the main sector
contributing to water stress at about two-thirds of the water-
stressed HUC8 basins in the U.S. Larger contributions to water
stress from the agricultural sector were observed across HUC8
basins in the western U.S., where there are fewer surface water
resources compared to the eastern U.S. (Averyt et al., 2013).
Similar studies with further investigation of green and blue water
use and availability across agricultural regions would help to
understand the vulnerability and resiliency of those regions for
food and water security.

This study aims to assess water stress of six major cropland-
dominated basins from six continents (Mississippi in North
America, Sao Francisco in South America, Danube in Europe,
Nile in Africa, Ganges-Brahmaputra in Asia, and Murray-
Darling in Australia) by applying the WaSSI and by associating
the index with green (WaSSIG) and blue (WaSSIB) water
resources. The WaSSIG and WaSSIB were generated for the
time period from 2003 to 2019 to investigate the significance of
green or blue water resources and associated water stresses. The
water stress information with integration to green and blue water
resources is useful for resource mobilization and interventions to
improve and ensure food and water security for human use and
the environment.

MATERIALS AND METHODS

Study Site
The six major river basins from six continents were selected
for this study (Figure 1). The selection of these basins was
based on being one of the major basins in each continent that
has large cropland areas facing challenges on water availability
for food production. The basin sizes are between 52.0 × 104

km2 (Sao Francisco Basin in South America) and 344.7 × 104

km2 (Mississippi Basin in North America). These basins have
croplands (rainfed and irrigated) varying between ∼20% (Nile
Basin in Africa) and ∼72% (Danube Basin in Europe) of their
basin area (Table 1). All basins have larger rainfed cropland areas
than irrigated cropland areas except the Ganges-Brahmaputra in
Asia, which has ∼30% of basin area irrigated and ∼22% rainfed.
The study basins cover wide variations in climate from warm
temperate humid in southeastern regions of theMississippi Basin
to arid desert in northern regions of the Nile Basin (Kottek
et al., 2006). Among the basins, the Murray-Darling (Australia)
had the lowest average annual precipitation of 436 mm/year
and the Ganges-Brahmaputra had the highest average annual
precipitation of 1,268 mm/year during the study period from
2003 to 2019 (Table 1).
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FIGURE 1 | The global map showing the location of six study basins (A), including Mississippi (B), Sao Francisco (C), Danube (D), Nile (E), Ganges-Brahmaputra (F),

and Murray-Darling (G). The dashed black color line inside the basins represents the major rivers. The croplands map is from the Global Food Security Support

Analysis Data (https://lpdaac.usgs.gov/products/gfsad1kcmv001/) and basin boundaries are from World Resources Institute (https://www.wri.org/).
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TABLE 1 | Study basins with respective continents, basin area, cropland area, irrigated area, and average (2003–2019) annual precipitation.

Basin Continent Basin area, ×104

km2

Cropland area, ×104

km2 (% of basin)

Irrigated area, ×104

km2 (% of basin)

Precipitation,

mm/year

Mississippi North America 344.7 200.8 (58%) 36.4 (11%) 817

Sao Francisco South America 52.0 24.3 (47%) 1.1 (2%) 896

Danube Europe 93.8 67.7 (72%) 5.2 (6%) 799

Nile Africa 255.9 50.7 (20%) 8.5 (3%) 654

Ganges-Brahmaputra Asia 151.0 78.2 (52%) 44.9 (30%) 1,268

Murray-Darling Australia 100.1 37.8 (38%) 7.6 (8%) 436

The basin boundaries from World Resources Institute (https://www.wri.org/) were used to calculate zonal statistics aggregated over each basin. Cropland area and irrigated area were

calculated using cropland maps from the Global Food Security Support Analysis Data (https://lpdaac.usgs.gov/products/gfsad1kcmv001/). Basin-averaged annual precipitation was

calculated using precipitation maps from Oregon State University (https://prism.oregonstate.edu/).

Green and Blue WaSSI
Water demands from different water use sectors such
as agriculture, industry, public supply, and others are
primarily supplied by precipitation (green water) and surface
water/groundwater (blue water). In this study, the water supply
stress index (WaSSI), a ratio of water use to water available,
was generated for croplands to evaluate the water stress
associated with water use and water availability. The WaSSI
was partitioned into green WaSSI (WaSSIG) and blue WaSSI
(WaSSIB) based on the supply source for either green or blue
water in the study basins. Because the green water is applied
to all croplands regardless of rainfed or irrigated, all cropland
area was used for computing WaSSIG. But this could create
an exaggerated WaSSIG over irrigated areas because part of
the crop water use (or actual evapotranspiration, ETa) is met
by irrigation. However, due to the difficulty of quantifying
the partial contributions of precipitation and irrigation to the
index, the inter-basin differences are driven by the supply source
(precipitation or runoff) to meet the ETa, representing the
total crop water demand that is met. In all basins, the relative
proportion of rainfed areas is much larger than irrigated area
except for the Ganges-Brahmaputra Basin (Table 1), thus the
basin-scale estimates are in proportion to the relative area under
rainfed or irrigation for WaSSIG. For computing WaSSIB, only
ETa from the irrigated cropland area was used as the blue water
is supplied to irrigated croplands only. Similar to WaSSIG, the
total ETa over the irrigated areas was used for WaSSIB, but the
supply is attributed to the runoff instead of precipitation. The
WaSSIG and WaSSIB for each basin and year were computed as:

WaSSIG =

1
n

∑n
1 All cropland water use (ETa)

1
n

∑n
1 Green water available (precipitation)

(1)

WaSSIB =

1
n

∑n
1 Irrigated cropland water use (ETa)

1
n

∑n
1 Blue water available (runoff)

(2)

where n is the number cropland pixels at each basin, and ETa is
the actual evapotranspiration.

The water used by crops or actual evapotranspiration (ETa)
is driven by crop water demand and availability of supply. Thus,
ETa represents the crop water demand that was met by available

water from green and blue water sources. The separation of
ETa for representing green and blue water components requires
running a water balance model (including additional data)
which will introduce additional uncertainties. Thus, the total
ETa (both green and blue water), estimated using a surface
energy balance model (detailed in the following section Data
Preparation), from the cropland and irrigated areas was assumed
to represent the green and blue water demands to compute
WaSSIG and WaSSIB, respectively. Precipitation only over the
cropland area (not for basin) was considered as the available
green water to computeWaSSIG. Not all precipitation is expected
to have been available for crop water use due to various losses
(e.g., canopy interception and runoff); however, to develop the
index, total precipitation was used to minimize uncertainties
associated to determining effective precipitation for soil moisture
and ETa. The total runoff from the basin was assumed as the
available blue water for irrigated area to compute WaSSIB.
The use of runoff as blue water instead of surface water and
groundwater is due to the limitation of obtaining reliable data
at the study basins, specifically for the groundwater that is
declining in many places, and quality data on remaining volume
and drawdown rates are limited (Reilly et al., 2008). The use
of runoff as the blue water availability assumes that there is a
strong hydraulic linkage between surface water and groundwater
at basin scales.

The evaluation of WaSSIG and WaSSIB was made at an
annual scale. The values of the indices vary from zero to infinity.
The values closer to zero indicate lower stress and the larger
values indicate higher water stress. Previous studies (Ji et al.,
2012; Averyt et al., 2013) have applied a threshold of one (1)
to represent no-stress (<1) and stress (>1) including the water
demand from several water use sectors. However, as this study
was focused on the water demand for croplands, anomalies
(deviation from the average value) of WaSSIG and WaSSIB were
used to detect the severity (magnitude) and duration of green and
blue water stresses. The WaSSIG and WaSSIB anomalies larger
than their average (2003–2019) values were considered stress and
the anomalies equal to or smaller than their average values were
considered no-stress.

WaSSIG anomaly =
WaSSIG, i − WaSSIG, avg.

WaSSIG, avg.
× 100

}
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> 0% stress (green water)

≤ 0% no− stress (green water)
(3)

WaSSIB anomaly =
WaSSIB, i − WaSSIB, avg.

WaSSIB, avg.
× 100

}

> 0% stress (blue water)

≤ 0% no− stress (blue water)
(4)

where i in WaSSIG,i and WaSSIB,i represents the study years
from 2003 to 2019. TheWaSSIG,avg. andWaSSIB,avg. are the basin
average (2003–2019) WaSSIG and WaSSIB, respectively. The
responses of WaSSIG andWaSSIB were also evaluated during dry
(lowest basin precipitation) and wet (highest basin precipitation)
years both at pixel [following Equations (1, 2) for each pixel] and
basin scales.

Data Preparation
For generating the WaSSIG and WaSSIB, four primary datasets
were used: actual evapotranspiration (ETa), runoff, precipitation,
and land cover. The ETa data were generated from the
Operational Simplified Surface Energy Balance (SSEBop) model
(Senay et al., 2013; Senay, 2018) using the Moderate Resolution
Imaging Spectroradiometer (MODIS) imagery and global
gridded weather datasets. The SSEBop model uses the surface
energy balance approach to estimate daily ETa for the satellite
overpass dates. The MODIS-scale (daily, 1-km) ETa maps were
summed to generate annual ETa maps for the study basins from
2003 to 2019. These ETa datasets were validated with 12 flux
tower sites across the six continents. The data are applied by the
U.S. Geological Survey (USGS) Famine Early Warning Systems
Network (FEWSNET) for droughtmonitoring and early warning
purposes (Senay et al., 2020). The ETa data are freely available
for download from the USGS FEWS NET Data Portal (https://
earlywarning.usgs.gov/fews).

Runoff datasets were generated using the VegET water
balance model (Senay, 2008). The VegET is a root-zone water
balance model driven by precipitation and remotely sensed
land surface phenology (Senay, 2008). Modeled runoff was used
instead of observed runoff due to limitation of complete runoff
observations for the study basins during the study period (2003–
2019). For the calibration purpose, in the first step, the modeled
runoff was compared with an observation-based global gridded
runoff (GRUN) dataset (Ghiggi et al., 2019). In the second step,
when themodeled runoff data was not within±10% of the GRUN
runoff, the modeled runoff was adjusted (by percentage) with the
global composite runoff data (Fekete et al., 2002) from the global
runoff data center (GRDC). The GRUN runoff was applied as
reference data to filter the basins for the calibration of modeled
runoff with GRDC runoff. Except for the Ganges-Brahmaputra
Basin, where the modeled runoff was within ±10% of GRUN
runoff, modeled runoff for all other basins was adjusted with the
GRDC data.

Precipitation data were obtained from the Climate Hazards
Group Infrared Precipitation with Stations (CHIRPS; https://
www.chc.ucsb.edu/data/chirps). The CHIRPS rainfall data
(0.05◦×0.05◦ spatial resolution) are generated by integrating

infrared imagery, climatology, and observed rainfall records,
and have global coverage (50◦S−50◦N, 180◦E−180◦W) ranging
from 1981 to near-present (Funk et al., 2015). These rainfall
data have been applied to support the drought monitoring
efforts by FEWS NET, especially in areas where observed
rainfall data are sparse. The land cover map to distinguish
irrigated and rainfed croplands was obtained from the Global
Food Security Support Analysis Data Crop Mask Global 1-
km dataset (GFSAD1KCM; https://lpdaac.usgs.gov/products/
gfsad1kcmv001/). The GFSAD1KCM map provides irrigated
(major and minor) and rainfed (rainfed, minor fragments, and
very minor fragments) croplands for the nominal year of 2010
(Teluguntla et al., 2015). All other globally consistent irrigated
and rainfed maps were limited for all study years; thus, the
GFSAD1KCMmap was applied in this study.

RESULTS

Dynamics of Green and Blue WaSSI
The interannual variation ofWaSSIG andWaSSIB of the six study
basins is shown in Figure 2. Overall, WaSSIG was greater than
WaSSIB for all basins except theMurray-Darling Basin indicating
more water stresses associated with green water (precipitation)
compared to blue water (runoff in this study). The average
(2003–2019) WaSSIG values were less than one (1) for all
basins (Table 1). The WaSSIG is the largest for Sao Francisco
(0.91), followed by Nile (0.78), Mississippi (0.71), Murray-
Darling (0.69), Ganges-Brahmaputra (0.69), and Danube (0.50)
(Table 2). The larger interannual variation of WaSSIG (max.
WaSSIG–min. WaSSIG) was observed for the Murray-Darling
Basin (Figure 2), indicating vulnerability to green water stress
compared to other basins. In contrast, the smallest interannual
variation of WaSSIG was for the Mississippi Basin reflecting
resiliency to green water stress.

Similar to theWaSSIG values, the averageWaSSIB values were
also less than one (1) for all basins with the exception for the
Murray-Darling Basin (Table 1). The largest WaSSIB was for
Murray-Darling (1.59), followed by Ganges-Brahmaputra (0.52),
Mississippi (0.41), Nile (0.22), Danube (0.09), and Sao Francisco
(0.09). The largest interannual variation of WaSSIB was at the
Murray-Darling Basin. This basin also had the largest WaSSIG
variation, indicating greater vulnerability to both green and blue
water stresses compared to other study basins. The smallest
variation ofWaSSIB was at the Sao Francisco Basin showingmore
resilience to blue water stress.

The plots of WaSSIG and WaSSIB anomalies (percent
deviation from the average value) show the blue and green water
stress at study basins from 2003 to 2019 (Figure 3). In general,
the WaSSIG anomalies were within ±43% of their 2003–2019
average values for all basins. In contrast, WaSSIB anomalies are
relatively larger within ±103% of their average values except for
a maximum of 224% for the year 2006, which was the driest year
for the Murray-Darling Basin. During the study period, the most
severe (maximum anomaly) green water stress was observed at
the Murray-Darling Basin (average positive WaSSIG anomaly of
+16%) and the least severe (minimum anomaly) green water
stress at the Mississippi Basin (average positive WaSSIG anomaly
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FIGURE 2 | Interannual variations of green (WaSSIG) and blue (WaSSIB) water supply stress indices across study basins including Mississippi (A), Sao Francisco (B),

Danube (C), Nile (D), Ganges-Brahmaputra (E), and Murray-Darling (F) from 2003 to 2019.

TABLE 2 | The average, minimum, maximum, and standard deviation of green (WaSSIG) and blue (WaSSIB) water supply stress indices of study basins from 2003 to 2019.

Basin WaSSIG WaSSIB

Avg. Min. Max. Std. Dev. Avg. Min. Max. Std. Dev.

Mississippi 0.71 0.63 0.76 0.04 0.41 0.31 0.52 0.06

Sao Francisco 0.91 0.77 1.12 0.11 0.09 0.04 0.17 0.03

Danube 0.50 0.37 0.63 0.05 0.09 0.06 0.19 0.03

Nile 0.78 0.69 1.05 0.08 0.22 0.16 0.40 0.06

Ganges-Brahmaputra 0.69 0.51 0.94 0.09 0.52 0.40 0.65 0.07

Murray-Darling 0.69 0.50 0.98 0.13 1.59 0.70 5.16 1.02

of +5%). For the blue water stress, the most severe was also
at the Murray-Darling Basin (+61%) and the least was at the
Mississippi Basin (+12%). Thus, the most severe blue and green
water stresses were observed at the Murray-Darling Basins and
the least severe at the Mississippi Basin.

During the 17-year study period, the WaSSIG and WaSSIB
anomalies were greater than zero (0) for at least six (6) years and
>5% for at least two (2) years for all basins. In other words, these
basins faced both green and blue water stresses for at least 35%
of the study years from 2003 to 2019. The maximum number
of years with WaSSIB anomalies greater than zero was observed
for the Mississippi (9 years) andMurray-Darling (9 years) basins.

Similarly, themaximumnumber of years withWaSSIG anomalies
greater than zero was observed at the Mississippi Basin (9 years).
These results indicate that the Mississippi Basin had the longest
period (>50% of study years) of both green and blue water
stresses. However, this basin had the least severe blue and green
water stresses compared to other basins (Figure 3).

Responses of Green and Blue WaSSI
During Dry and Wet Years
The WaSSIG and WaSSIB showed green and blue water stresses
during the dry years (Figure 4; Table 3). The intensity of green
and blue water stresses during dry years varied within and
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FIGURE 3 | Anomalies (percent deviation from average value) of green (WaSSIG) and blue (WaSSIB) water supply stress indices across study basins including

Mississippi (A), Sao Francisco (B), Danube (C), Nile (D), Ganges-Brahmaputra (E), and Murray-Darling (F) from 2003 to 2019.

across the study basins. For example, the western regions of the
Mississippi Basin faced more green and blue stresses compared
to the eastern regions of the basin (Figure 4) in the dry year of
2012. The central region of the Sao Francisco Basin had more
stress than the northern or southern regions of the basin in
the dry year 2012. Similarly, the central and eastern regions of
Danube, southern region of the Nile Basin, central region of the
Ganges-Brahmaputra Basin, and eastern region of the Murry-
Darling Basin faced maximum stress during dry years (Figure 4).
The spatially distributed maps of WaSSIG are visually clearer
than WaSSIB maps showing several green water stress regions
during the respective dry and wet years for all basins. In contrast,
blue water stress indicated by WaSSIB maps for Sao Francisco,
Danube, and Nile Basins is less evident due to the lower irrigated
area (<6%) compared to other basins.

During the dry years across all basins, the largest green
water stress (28% above average) was observed at the Ganges-
Brahmaputra Basin for the dry year 2009 when the basin
precipitation was 11% below the average precipitation. Similarly,
the largest blue water stress (224% above average) was at
the Murray-Darling Basin for the dry year 2006 when the
precipitation was 35% below average. For wet years, the least
green water stress (15% below average) was at the Sao Francisco

Basin when the precipitation was 24% above average and the
least blue water stress (52% below average) was for the Murray-
Darling Basin when the precipitation was 35% above average.
These results show that WaSSIG and WaSSIB variations followed
the trends of basin precipitation; however, the magnitudes of
green and blue water stresses varied across and within basins.
Thus,WaSSIG andWaSSIB indices can be applied for monitoring
green and blue water stresses at basin scales. For basins with the
potential spatial disconnect between the available water (runoff
and precipitation) and the point of water use (irrigation), pixel-
scale applications of WaSSIG and WaSSIB may benefit from
additional in-situ information before decisions can be made.

DISCUSSION

Drivers of Green and Blue Water Stresses
The interannual plots of WaSSIG and WaSSIB indicate the large
variations of green and blue water stresses within and across the
study basins (Figures 2, 3). These variations are primarily driven
by either demand or supply of green and blue water at the basins.
Based on the water demand and water available for crops applied
in this study, the interannual variations of green water stresses
were driven by both the demand (ETa) and supply (precipitation)
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FIGURE 4 | Spatial variation of green (WaSSIG) and blue (WaSSIB) water supply stress indices during dry- and wet-years across study basins.

for most of the basins. The differences of the percent coefficient
of variation (CV) between the green water demand and the
green water supply were within ±7% for all basins except for the
Murray-Darling Basin (Supplementary Table 1). The Murray-
Darling Basin is the basin with the largest interannual variations
in green water stress (Figure 3). The basin had the percent CV
of green water demand that was 16% greater than that of green
water supply, indicating the larger influence of water demand for
greenwater stress variations. For the blue water stress, the percent
CV of blue water supply (runoff) was larger than the percent

CV of demand (ETa) for all basins (Supplementary Table 1). The
smallest difference between the percent CVs of water demand
and supply was for the Ganges-Brahmaputra Basin (4% larger
CV for supply) and the largest difference was for the Murry-
Darling basin (29% larger CV for supply). Thus, the variation
in blue water stress was driven more by water supply than by
water demand.

The cropland area within a basin can affect green and blue
water stresses. Basins with large cropland areas tend to have
higher green and blue (when irrigated) water demands and

Frontiers in Climate | www.frontiersin.org 8 August 2021 | Volume 3 | Article 66344442

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Khand et al. Green and Blue Water Stress

TABLE 3 | Summary of green (WaSSIG) and blue (WaSSIB) water supply stress indices during dry and wet years across study basins.

Basin Dry year Wet year

Year Precipitation mm/year WaSSIG WaSSIB Year Precipitation mm/year WaSSIG WaSSIB

Mississippi 2012 646 0.71 0.52 2019 989 0.65 0.33

Sao Francisco 2012 682 1.06 0.08 2004 1,120 0.77 0.05

Danube 2011 613 0.63 0.19 2010 950 0.46 0.07

Nile 2004 548 0.81 0.26 2019 747 0.75 0.18

Ganges-Brahmaputra 2009 1,128 0.94 0.60 2013 1,384 0.62 0.48

Murray-Darling 2006 283 0.62 5.16 2010 708 0.84 0.76

therefore are more prone to water stress when the water supply
is limited. Among the study basins, the Danube Basin had the
largest cropland (∼72%); however, the maximum magnitude of
water stress (both green and blue water) was observed at the
Murray Darling Basin. Similarly, the Nile Basin had the smallest
cropland (∼20%) but the minimum water stress magnitude was
observed at theMississippi Basin. Although theMississippi Basin
had the least water stress magnitude, this basin had the longest
duration of both green and blue water stresses (9 out of 17
years). These results indicate the percent area of cropland is
not the primary factor to drive green and blue water stresses
(magnitude and duration) at these studied basins. However, the
spatial distribution of cropland within the basins can affect the
green and blue water stresses. For example, irrigated cropland
with easy access to available water may not suffer more blue water
stress during droughts compared to cropland that is far from the
available water within a basin. Other factors such as climate, crop
types (high or low water demand), infrastructure development
for irrigation systems (high or low water use efficiency), and local
and regional water management policies can influence variations
in green and blue water stresses across the basins.

Limited studies have applied theWaSSI approach for assessing
water stress across basins considered in this study. A study by
Averyt et al. (2013) in the U.S. reported about 9% (193 out of
2103) of the HUC8 basins were stressed in 2013. The agricultural
sector was the main contributor to the water stress, mostly in the
lower Mississippi Basin and most of the western U.S. Although
our study was further extended to link with green and blue
water resources, the spatial distribution of water stress regions
in the Mississippi Basin (Figure 4) is consistent with Averyt et al.
(2013). Several other studies have accounted blue and green water
availability and consumption (Schuol et al., 2008; Wada et al.,
2011; Hoekstra et al., 2012), and the potential factors that can
affect water availability for croplands (Rost et al., 2008; Liu and
Yang, 2010). For example, Ferrarini et al. (2020) reported the
potential expansion of irrigated areas in the upper and middle
regions of Sao Francisco Basin due to water availability. Our
study shows that the blue water stress at the Sao Francisco
Basin is among the lowest (Table 2); however, expansion of
irrigated areas may add stress on blue water resources in the
basin. The larger blue water stress in the Ganges-Brahmaputra
Basin and Murray-Darling Basins (Table 2) indicates the higher
vulnerability of croplands in the basin to extreme water stress,
especially during the dry seasons/years, that may lead to complete

desiccation and substantial economic disruption (Hoekstra et al.,
2012).

Model Parameter Estimation Uncertainties
Three primary parameters (precipitation, ETa, and runoff) were
applied to assess green and blue water stresses across the study
basins. The precipitation data were obtained from the gauge-
adjusted CHIRPS datasets. The CHIRPS precipitation data have
been widely validated across the globe (Paredes-Trejo et al.,
2017; Prakash, 2019; Tarek et al., 2020). A recent global-scale
evaluation of CHIRPS monthly precipitation from 2000 to 2016
with the Global Precipitation Climatology Center gauge-based
precipitation data reported error (including random and bias
components) within ±2.5% across Europe, Africa, Australia,
United States, and South America (Shen et al., 2020). The
Southeast China region had a relatively larger error at 5.6%
(Shen et al., 2020); however, this region does not cover the large
cropland areas included in this study. Additionally, these errors
are at a monthly scale and the annual scale error is smaller at
−0.06% (Shen et al., 2020).

ETa data were from the surface energy balance based SSEBop
model. The SSEBop ETa products have been applied across
different climates and land covers for monitoring water use from
a field to regional scales (Singh et al., 2014; Alemayehu et al.,
2017; da Motta Paca et al., 2019; Schauer and Senay, 2019).
The continental-scale validated ETa maps across several land
covers (Senay et al., 2020) were applied in this study which
captured seasonal and interannual variations when compared
with flux tower observations. For croplands, the SSEBop tends
to underestimate ETa at a monthly scale in North America
and Europe (up to −33%) compared to flux tower observations
without energy balance closure (Senay et al., 2020). Considering
the energy balance closure issue with flux towers, which often lag
in the order of 20% (Wilson et al., 2002), errors from SSEBop ETa
would be lower when aggregated to longer temporal scales such
as monthly and annual scales (Senay et al., 2016). Further, green
and blue water stresses in this study are evaluated at a basin-scale
(unlike a few 100m in the flux tower footprint) and therefore
these ETa-related errors are expected to be lower for monitoring
interannual water stress variations at basin scales.

Runoff estimations from the water balance VegET model
were calibrated with the observation-based GRUN and the
climatology runoff data fromGRDC. Although the VegETmodel
was calibrated when the differences in annual runoff values
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were > ±10%, the runoff estimation uncertainty may still exist
when applying the model for evaluating blue waters stress for
basins with relatively low percent cover of irrigated croplands
(for example, the Sao Francisco and Nile Basins). However, the
evaluation of green and blue water stresses severity (magnitude)
and duration with the baseline of 17-year (2003–2019) average
values, rather than the absolute values of WaSSIG and WaSSIB
for each year, would minimize the potential uncertainties from
the model parameter estimations.

Advantages and Limitations of Partitioning
Green and Blue Water Stresses
The idea of partitioning water consumed by crops into green
and blue water sources is a fairly new approach (Falkenmark and
Rockström, 2006; Rost et al., 2008; Liu and Yang, 2010; Velpuri
and Senay, 2017). The assessment of green and blue water use at
varying scales helps to identify the areas to efficiently manage and
use the available water. This study demonstrated an approach for
monitoring green and blue water stresses for croplands, which
is directly associated with food and water status. The current
study of green and blue water stresses across the six major
cropland basins provides an insight on how green and blue water
stresses vary (demand vs. supply driven) with time and space, and
identified the basins that need to address the associated water
stresses. For example, most basins had green water stress larger
than the blue water stresses highlighting the uncertainty in food
production as most of the global food production comes from
green water-dependent rainfed systems. Similarly, the Murray-
Darling Basin had the most severe (maximum WaSSIG and
WaSSIB anomalies) green and blue water stress, which indicates
that adoption of measures to improve the overall water use
efficiency for sustaining food production may be beneficial.
Proven methods and technologies can help to efficiently manage
the available water. For example, Chukalla et al. (2015) reported
that change in irrigation and mulching strategies in irrigated
agriculture can reduce the green and blue water footprint up
to 28%. Identification of regions or basins with green and blue
water stresses could be useful for specific resource allocation
and potential infrastructure development for improving green
water and blue water use efficiency. Additionally, while blue
water-based policies have been focused in the past (Sulser et al.,
2010), the basin-specific green and blue water integrative plans
and polices would help to minimize water stress and increase
food production.

Besides the advantages of partitioning green and blue water
resources, limitations exist when implementing the partitioning
approach in this study. Our study is primarily focused on
identifying an index to account for both green and blue water
stress and their variations across time and space, rather than
to accurately quantify green and blue water use as explored
in previous studies (Siebert and Döll, 2010; Hoekstra, 2019).
Thus, the equations used to compute WaSSIG and WaSSIB
and assumptions made in this study must be considered before
making decisions. For example, effective precipitation would
have applied to compute WaSSIG for an ideal condition.
However, due to additional data required for partitioning

precipitation to canopy interception, runoff, soil moisture, and
effective precipitation, and additional uncertainties associated
with these estimations, total precipitation was applied to compute
WaSSIG. The use of total precipitation may have exaggerated
WaSSIG, especially for irrigated areas due to the contribution of
blue water and reached the basin-scale WaSSIG more than one
(1). Basin-scale WaSSIG values were less than 1 for most basins
but a year (2009) in the Nile Basin and 6 years (2003, 2007, 2010,
2012, 2014, and 2019) in the Sao Francisco Basin. The frequent
WaSSIG values of more than 1 in the Sao Francisco Basin may
indicate a larger contribution of blue water across irrigated
croplands. For computing WaSSIB, reliable groundwater data
was not available. For this reason, surface runoff was considered
available blue water with the assumption of interconnections
between the surface water and groundwater at a basin-scale
analysis. This assumption may add bias to the blue water stress
estimations. For example, WaSSIB for the dry year 2006 in
the Murray-Darling Basin was relatively high, compared to
other years (Figure 2), primarily due to a substantial reduction
(87% below average) in the modeled runoff. The exclusion of
groundwater may have exaggerated the blue water stress for
the dry year in this basin. However, the calculated blue water
stress anomalies are based on the 17-year (2003–2019) average,
and therefore, the biases on the anomalies were not influenced
primarily by the unavailability of groundwater data. The green
and blue water stress anomalies are presented at an annual
scale to capture water used by all crops including main crops
grown during the growing season and other crops (e.g., cover
crops, secondary crops) grown during the non-growing season.
Thus, the annual scale analysis does not reflect monthly or
seasonal stresses. The potential water transfer (blue water) from
a year to the following year that is stored in reservoirs is not
accounted for by WaSSI indices. Another limitation included the
unavailability of consistent land cover data for all years during
the study period. Therefore, this study used the cropland data
for the nominal year 2010 based on several studies from 2007
to 2012 (Thenkabail et al., 2016). The cropland area may have
changed in the other years, which could change the water stresses.
However, the water stresses are generalized at a basin-scale and
may have minimal effects on the overall outcome of this study.
Additionally, previous studies have suggested refinement of green
and blue water estimation in croplands such as by computing soil
water balance components (Siebert and Döll, 2010), which could
improve the spatiotemporal accuracy and further enhancement
of similar green and blue water stress indices.With the availability
of consistent finer scale land cover data, groundwater data,
and associated dataset, the WaSSIG and WaSSIB indices can
be improved and implemented for monitoring water stress and
have potential applications for creating and implementing basin-
specific adaptive decision support systems to ensure food and
water security.

CONCLUSION

An approach to assess the water stress across croplands based
on green and blue water resources is demonstrated by applying
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the water supply stress index across six large cropland basins
across the globe. The results from the 17-year (2003–2019)
study show that all basins had both green and blue water
stresses for at least 35% (6 out of 17 years) of the study period.
The most severe (maximum WaSSIG and WaSSIB anomalies)
green and blue water stresses were observed for the Murray-
Darling Basin in Australia and the least severe (minimum
WaSSIG and WaSSIB anomalies) stress for the Mississippi Basin
in North America. The interannual variations in green water
stress were driven by both crop water demand and green
water supply, whereas the blue water stress variations were
primarily driven by blue water supply. This study identified the
basins and regions that may benefit from basin-specific adaptive
measures and policies for the efficient use and management
of available water. Similar studies can be implemented to
monitor the green and blue water stresses at varying scales
for developing decision support systems to ensure food and
water security.
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Sharing simple ideas across a broad community of practitioners helps them to work

together more effectively. For this reason, drought early warning systems spend a

considerable effort on describing how hazards are detected and defined. Well-articulated

definitions of drought provide a shared basis for collaboration, response planning, and

impact mitigation. One very useful measure of agricultural drought stress has been the

“Water Requirement Satisfaction Index” (WRSI). In this study, we develop a new, simpler

metric of water requirement satisfaction, the Phenological Water Balance (PWB). We

describe this metric, compare it to WRSI and yield statistics in a food-insecure region

(east Africa), and show how it can be easily combined with analog-based rainfall forecasts

to produce end-of-season estimates of growing season water deficits. In dry areas, the

simpler PWB metric is very similar to the WRSI. In these regions, we show that the

coupling between rainfall deficits and increased reference evapotranspiration amplifies

the impacts of droughts. In wet areas, on the other hand, our new metric provides

useful information about water excess—seasons that are so wet that they may not be

conducive to good agricultural outcomes. Finally, we present a PWB-based forecast

example, demonstrating how this framework can be easily used to translate assumptions

about seasonal rainfall outcomes into predictions of growing season water deficits.

Effective humanitarian relief efforts rely on early projections of these deficits to design

and deploy appropriate targeted responses. At present, it is difficult to combine gridded

satellite-gauge precipitation forecasts with climate forecasts. Our new metric helps

overcome this obstacle. Future extensions could use the water requirement framework to

contextualize other water supply indicators, like actual evapotranspiration values derived

from satellite observations or hydrologic models.

Keywords: agriculture, agricultural monitoring, early warning, food security, early action, forecasting, drought,

drought monitoring
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INTRODUCTION

A central and successful tenet of the famine early warning
community is the fact that impacts of water deficits are
predictable—water deficits anticipate reductions in food access
and availability. In the late 1970s and 1980s, plot-based studies
by the Food and Agricultural Organization (FAO) identified crop
water requirements (Doorenbos and Pruitt, 1977) and created
the Water Requirement Satisfaction Index (WRSI) model (Frère
and Popov, 1986) to estimate yield reductions based on the crop
water balance and accumulated deficits. The WRSI framework
quantifies the water required for optimal plant growth during
four main growth stages, with the vegetative and grain-filling
stages occurring when the crop water requirements are highest.
The WRSI tracks increased crop water use—and crop water
stress—, which occurs when the available soil moisture is less than
the crop’s water requirement. For regional crop monitoring, an
important step forward in operational application of the WRSI
was the combination of the WRSI formulation with gridded
rainfall, reference evapotranspiration, and soil property data
sets (Senay and Verdin, 2001, 2003; Verdin and Klaver, 2002).
These models now provide a widely used foundation for tracking
agricultural shocks in food-insecure countries. WRSI is actively
used to support the Famine Early Warning Systems Network
(FEWS NET) Food Security Outlook (FSO) process (Magadzire
et al., 2017), in which FEWS NET scientists provide forward-
looking assumptions that food security analysts use to estimate
food-insecure populations (Funk et al., 2019b). In this study,
we draw from some of the most useful aspects of the WRSI
framework and consider how advancements in forecast weather
and climate data can support new types of forward-looking crop
and rangeland monitoring applications.

Over the past few decades, the food security community has
increasingly taken advantage of the opportunities provided by
climate science (Verdin et al., 2005). FEWS NET scientists use
“staged” early warning systems that combine long-lead and short-
lead climate and weather forecasts with high-resolution satellite
observations, and hydrology and crop model simulations. The
staged system accommodates the benefits and challenges from
weather and climate information being produced by different
communities, with disparate scales and statistical distributions,
as well as the skill in long-lead time climate forecasts associated
with major climate modes like the El Niño-Southern Oscillation
and at short-lead time weather forecasts.

At the forefront of such efforts are climate services focused
on producing “seamless” or “interoperable” sets of precipitation
estimates that combine satellite observations, rain gauge archives,
weather forecasts and climate outlooks—high-resolution grids
that extend from the past into the future. A key aspect of
such systems is that the statistical distributions of the rainfall
predictions are similar to those of the observations. At weather
time scales, the Climate Hazards Center (CHC) uses quantile
mapping to produce high-resolution forecasts at weather time
scales. At climate time scales, it is also common practice to
identify analog seasons, which can also be used to generate
high-resolution “forecasts” of future rainfall based on averages
of observed blended satellite-gauge data. For example, in early

November 2020, combinations of satellite-gauge observations,
downscaled weather forecasts, and expectations based on climate
analogs, were combined and presented in a Crop Monitor
Alert1 While these “Early Estimates” were fairly accurate2, they
only presented likely precipitation outcomes. To move closer to
impacts associated with crop and rangeland water deficits, we
explore simple combinations of Growing Season Precipitation
(GSP) and estimates of crop and rangeland Water Requirements
(WR). We use GSP and WR to define a simple “Phenological
Water Balance” (PWB) metric.

WRSI tracking involves estimating, in mm, the amount of
evapotranspiration required by the crop at each time step, which
is typically a dekad, or 10-day increment3. This is the Water
Requirement (WR). The WRSI estimates water supply, in mm
per dekad, by using a “bucket” model of the soil column,
parameterized using assumptions about crop phenology (e.g.,
rooting depth) and water holding capacity, to track soil moisture
conditions throughout the growing season. TheWRSI is the ratio
of growing season actual evapotranspiration (AET) to the crop’s
water requirements (WR). This ratio quantifies the degree of crop
water stress, ranging from no stress to enough stress to cause
wilting (Smith, 1992; Senay and Verdin, 2003). The dekad is the
most common time step used in WRSI modeling, and we use it
here. Each month is divided into two 10-day dekads and a final
dekad that contains the remainder of the days in each month.

The start of the growing season (SOS) commences when
a location receives more than 25mm of rain, and is followed
by two dekads that total more than 20mm of rain combined
(AGRHYMET, 1996). Beginning with that first dekad, the WR
component of the WRSI uses Length of Growing Period (LGP)
assumptions and crop-stage-dependent coefficients (Kc) to adjust
the Reference EvapoTranspiration (RefET) corresponding to the
phenological cycle of healthy plant growth and photosynthesis
during a growing season (WR = RefET × Kc). For context,
Kc values greater than one indicate periods of the phenological
cycle in which the crop has a greater upper limit to its
atmospheric demand of moisture than the reference green-grass
crop used in the calculation of the RefET data. This will be
shown formulaically in Methods section, but can be described
generally as follows. Plants emerge, and WR increases as they
add biomass during their vegetative stage. Then, after a fixed
fraction of the LGP, cereals enter a grain-filling phase. The
energy, carbohydrates, and sugars obtained via photosynthesis
are used to increase the size and quantity of grains. Finally,
cereal crops enter a senescent stage associated with decreasing
WR. The bucket model, driven with observed precipitation and
RefET, estimates the amount of water available for extraction
as AET. When there is always sufficient moisture available to
meet the WR, the WRSI (AET÷WR) will be 100%, and there is
no water deficit-related yield reduction. Large (∼50%) seasonal
water deficits will be associated with crop failure (Smith, 1992).

1http://cropmonitor.org/documents/EWCM/reports/

EarlyWarning_CropMonitor_202011.pdf.
2https://blog.chc.ucsb.edu/?p=937.
3Dekads break each month into two 10 day periods and one final dekad containing

the remaining days in each month.
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The PWB is simpler to calculate than the WRSI, easier to
integrate with climate observations and forecasts, less impacted
by potential biases associated with the input rainfall and RefET
data sets, and unaffected by potential errors in the specification
of soil conditions. Furthermore, unlike the WRSI, the PWB is
not capped at 100%, and therefore provides more information
about exceptionally wet conditions. This feature may support
better assessments of adverse precipitation impacts in productive
agriculture areas and could mean that PWB is better equipped
for monitoring impacts of extreme precipitation events and
destructive storms related to global climate change (Trenberth
et al., 2003; Donat et al., 2016). Sub-Saharan Africa may be
experiencing more extreme precipitation events, yet information
is heavily under observed (Harrison et al., 2019).

The PWB indicator can be seen as a plant-smart form of
Aridity Index (Zucca et al., 2012) or Standardized Precipitation
Evaporation Index (SPEI) (Vicente-Serrano et al., 2010; Peng
et al., 2020). We will explore the utility of the PWB framework
for seasonal monitoring, scenario development (Husak et al.,
2013), yield estimation, trend analyses, and national agricultural
risk management. We will use seasonal precipitation as our
water supply indicator, but the approach used here could
easily be expanded to incorporate alternative variables, such
as satellite or model-based estimates of AET or soil moisture,
Normalized Difference Vegetation Index (NDVI) Values, etc.
The temporal filtering provided by the WR framework could be
used in conjunction with myriad supply-related inputs. These
filtered inputs, furthermore, could then feed into more complex
statistical or machine-learning-based estimation processes (e.g.,
Laudien et al., 2020).

This study seeks to demonstrate the utility of the PWB
framework for seasonal monitoring, prediction, trend analyses,
and risk management. In the sections below, we examine the
following questions:

• Can the PWB be used, like the WRSI, to effectively detect
agricultural and pastoral droughts? Can it provide insights into
areas with high drought risk?

• How does the PWB compare with WRSI as a basis
for estimating national and sub-national crop production
in Kenya?

• Can the PWB framework be used to combine gridded satellite
observations with weather and climate forecasts to produce
mid-season outlooks of plant water stress?

The case study presented here focuses on east Africa during
the boreal spring Long/Gu/Belg rainy season, providing an
important context for our analyses. This region, which includes
parts of Kenya, Somalia, and Ethiopia, is extremely food insecure,
and prone to both severe droughts and flooding. While March–
April–May is the core of this season, some regions may start
earlier or end later. Data and Study Region section describes
the data used and our study region, and Methods section lays
out our methods. Examining the Utility of the PWB Framework
for Monitoring Water Stress section, Examining the Utility of
the PWB Framework as a Basis for Estimation of National
and Sub-national Yields in Kenya section and, Examining the
Utility of the PWB Framework as a Basis for Translating

Integrated Rainfall Early Estimates into Assessments of Agro-
pastoral Hazards section, then examine: (1) The utility of the
PWB Framework for monitoring agro-pastoral drought; (2)
The utility of the PWB framework as a basis for estimation
national and sub-national yields in Kenya; and (3) The utility
of the PWB framework as a basis for translating integrated
rainfall observations and forecasts into assessments of agro-
pastoral hazards. Discussion and Conclusion sections present
some discussion and conclusions.

DATA AND STUDY REGION

This study uses 1981–2020 0.1◦ Climate Hazards InfraRed
Precipitation with Stations (CHIRPS) rainfall data (Funk et al.,
2015b) and 0.1◦ Penman-Monteith-based RefET estimates
produced by Michael Hobbins (Hobbins et al., 2016)4 Focusing
on the east Africa boreal spring rainy season, the study uses the
land cover designations, LGP, and crop types commonly used
by the United States Geological Survey (USGS)’s Early Warning
team5 to support FEWSNET. ThreeWRSImodeling frameworks
have been combined to provide one synoptic overview of east
Africa (Figure 1A). A “long rains” maize modeling framework
describes crop-growing conditions across the general region.
Within Ethiopia, settings for the “Belg” growing season augment
this default. Finally, in drier regions, settings for rangeland are
used to quantify outcomes in pastoral regions. This corresponds
with the USGS’s “Long rains, maize” WRSI framework6,
“Croplands Belg”7, and “Long rains, rangeland” WRSI8 The long
rains and Belg maize simulations use the same crop coefficients,
but the Belg season has been customized for Ethiopia, with
a different mask, LGP, and SOS values. Where available, Belg
cropland parameters were used in place of the long rains values.
In highland areas, the Belg LGP values can be long, 15+
dekads, representing the slow development of crops in cool high-
elevation locations. The resulting composite map provides a
snapshot of conditions over the entire region in a single view,
aiding in the interpretation of individually modeled growing
conditions and identification of conditions which may present
food-insecurity issues.

The rangeland WRSI parameters are very different from the
maize parameters. The SOS calculation uses amuch-less stringent
threshold: 10mm in dekad one, followed by a total of just
5mm in the next two dekads. The maximum Kc coefficients are
substantially lower (0.75 as opposed to 1.2), and the LGP is set to
a universal 7 dekads.

The next key modeling parameters used are modal estimates
of SOS. Using 40 years of CHIRPS data, onset dates were
calculated for each pixel, and then the most frequent SOS dekad
(i.e., the mode) was identified (Figure 1B). In this pilot study,
we use these fixed dates to begin every year’s growing season. In
practice, different dates could be identified every year. Implicit

4https://psl.noaa.gov/eddi/globalrefet/.
5https://earlywarning.usgs.gov/fews/.
6https://earlywarning.usgs.gov/fews/product/125.
7https://earlywarning.usgs.gov/fews/product/124.
8https://earlywarning.usgs.gov/fews/product/130.
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FIGURE 1 | (A) The three crop classes used to calculate Water Requirements. (B) The most frequent (modal) SOS dekad used to define the start of the season. (C)

Mean LGP values, in dekads. (D–F) Average monthly crop WR totals in mm. (G–I) Average monthly CHIRPS precipitation totals in mm.

in the WRSI simulation system developed by the U.S. Geological
Survey FEWS NET team9 This framework provides spatially
detailed information about the dominant crop or pasture type,
when we can expect the season to begin, and how the plant water
requirements are expected to evolve over time.

Commencing with the SOS dekad, LGP values (Figure 1C)
are then used to identify the end of a growing season. Static
LGP values were originally developed by WRSI modelers at
the U.S. Geological Survey (Senay and Verdin, 2001, 2003;
Verdin and Klaver, 2002) based on climatological (long-term
average) precipitation and RefET. Note that LGP will vary
dramatically depending on geographical location. A common
metric for estimating LGP is the number of consecutive dekads

9https://earlywarning.usgs.gov/fews.

in which the precipitation is greater than one half of the reference
evapotranspiration10 (FAO, 1978). In arid areas with low rainfall
and high RefET, LGP values will be low (∼7 dekads or 70 days). In
these regions, plants have a very short window through which to
receive adequate moisture to support growth. In moist, cool areas
with high rainfall and low RefET, LGP values can be much larger.
Corresponding growing seasons can extend beyond 18 dekads
(180 days). In east Africa, longitude and altitude play a huge
role in determining LGP. As seen in Figure 1C, many critical
crop-growing regions tend to be located in spatially limited,
high-mountain areas associated with the Rift Valley escarpments.
Meanwhile, inmost of Kenya, all of Somalia, andmost of Ethiopia
east of 38◦E, the growing season is very short.

10http://www.fao.org/nr/climpag/cropfor/lgp_en.asp.
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Taken together, the SOS, LGP, and Kc coefficients provide a
simple yet powerful way to automatically filter environmental
information in time. In data-sparse environments, such filtering
can be extremely useful in a food-security setting. While we
are often interested in the ultimate drivers of food access and
availability shocks, such as food production deficits, in practice,
we only have proximate indicators like precipitation, RefET,
etc. The WR framework gives us a physically plausible way to
interpret this information. This filtering can be used to augment
statistical and machine-learning-based estimation approaches
and support easy-to-implement decision support informatics.

As previously noted (Figure 1C), most of Kenya, all of
Somalia, and most of Ethiopia east of 38◦E have very short
growing seasons. Inmany of these areas, RefET andWR increases
substantially in April and May (Figures 1E,F), and precipitation
drops in May (Figure 1I). This results in a short window for crop
and pasture growth.

A few high-elevation areas with high rainfall and low RefET
provide limited areas that can support highly productive crops.
The interplay of water demand and water supply can be
visualized using long-term averages for March, April, and May
(Figures 1D–I). In March, both WR and GSP totals tend to be
relatively low, as the season becomes established and the growing
season begins. WR values increase dramatically in April, as Kc

values increase and crops typically enter their vegetative stage.
April typically represents the month of maximum rains in most
eastern regions (east of 38◦E). InMay,WR values remain high, or
even increase in this eastern region, as rains begin to subside and
climatological RefET values intensify. This intensification and the
inherently short eastern African March-April-May rainy season
can make it hard to recover from late starts or early-to-mid
season deficits.

METHODS

Building on the standard FEWS NET crop phenology
framework (Figures 1A–C), we introduce a simple agro-
pastoral Phenological Water Balance (PWB), which is a form
of tailored Aridity Index that takes into account the total
amount of Growing Season Precipitation (GSP) and crop
Water Requirements (WR) based on standard WRSI modeling
practices. In this study, we use fixed SOS dates (Figure 1B).
Beginning with each location’s SOS date, and assuming a
fixed LGP value at each pixel (Figure 1C), GSP values can
be accumulated over each year’s growing season’s dekadal
precipitation in mm (Pi).

GSP =

SOS+LGP
∑

i=SOS

Pi (1)

Equation (1) represents a simple measure of water supply.
Borrowing directly from the WRSI framework, we can then
estimate seasonal plant-specific WR values based on time-
varying crop coefficients (Kc) and time-varying dekadal RefET
values—equation (2). The WR values represent the amount of
AET required by crops or fields to maintain maximum “water

satisfaction.” As atmospheric water demand (RefET) increases,
the optimal amount of AET increases as well. But WR also
changes as plants grow. RefET formulations typically assume a
well-watered, well-developed “reference” crop, like alfalfa, that
efficiently transports water into the atmosphere. At the start of
the season, at emergence, WR values will be much lower than
this upper limit. Hence, Kc terms start low and increase during
the vegetative stage. In cereal crops, the Kc terms typically stay
high during grain filling, then drop rapidly as the plants senesce.
Rangeland Kc terms typically stay high throughout the plant’s
short (70-day) growing season (Figure 1C). The time-varying Kc

and RefET values can be combined to calculate season WR totals
in mm.

WR =

SOS+LGP
∑

i=SOS

Kci × RefETi (2)

While powerful, WRSI results can be problematic when any
of the core inputs are biased. Furthermore, because the WRSI
requires sub-monthly rainfall data, it can be difficult to connect
the WRSI framework with climate forecasts, climate change
simulations, or historical gridded rainfall archives. Finally, WRSI
does not provide information about extremely wet conditions.

Hence, we examine here the utility of combining the WR
framework of the WRSI with a simpler PWB formulation:

PWB = 100×
GSP + ε

WR+ ε
(3)

Whereas the WRSI estimates the ratio of AET and WR values,
PWB examines the ratio of GSP and WR. A small value (10mm
in this study) is added to both the numerator and denominator
to increase numerical stability in arid regions. This study will
compare PWB results with those produced using the WRSI
model, asking whether we can get reasonably comparable results
using the simpler PWB framework.

Note also that the rainfall accumulations in the numerator of
eq. 3 could be replaced by a host of other indicators, such as AET
values from hydrologic models, like the FEWS NET Land Data
Assimilation System (FLDAS) (McNally et al., 2017), hydrologic
forecast systems (Arsenault et al., 2020), satellite-based energy
balances (Senay et al., 2007, 2011; Anderson et al., 2011), or
satellite-based vegetation or soil moisture observations (McNally
et al., 2015). The WR framework, therefore, could be used to
search for consilience across multiple data sets that relate to crop
water supply.

RESULTS

Examining the Utility of the PWB
Framework for Monitoring Water Stress
This section begins by comparing PWB and WRSI values over
east Africa. As Figures 2A,B reveal, the variance structure of
WRSI and PWB is quite similar in drier, water-limited areas,
where WR > GSP, but quite different in wetter areas, where WR
< GSP. In the latter, the WRSI tends to saturate at or just below
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100%, and the WRSI standard deviation rapidly tends to zero. In
these regions, the PWB is allowed to have large values >100, and
hence, has a larger amount of variability. In many water-limited
areas, however, we find moderate-to-high correlations between
the WRSI and PWB (Figure 2C).

Note that there are potential advantages to both approaches. If
the WRSI is perfectly calibrated with the correct soil properties,
crop coefficients, plant phenology, and driven by accurate and
low-bias precipitation and RefET data, then, presumably, WRSI
values near 100 will be a reliable indicator of good yields. There
are times and places, however, where these conditions are not
met. In such cases, the simpler PWB approach might actually be
more representative. Another interesting potential application of
the PWB might be to explore negative impacts associated with
very high PWB values. It seems plausible that when PWB values
become very large, crops may experience waterlogging, reduced
photosynthesis due to reduced sunlight, or other detrimental
influences associated with extremely wet conditions. Extremely
wet conditions will not register in WRSI simulations.

As one might expect, the overall correlation between the end-
of-season WRSI and PWB is quite high in water-limited areas,
where the standard deviation of the WRSI is high (Figure 2A).
Stratifying these correlation grids by the standard deviation of
the WRSI, we find that the mean WRSI-PWB correlations are
0.28, 0.59, 0.71, 0.83, and 0.87 when σWRSI ranges from >0 to
<5, >5 to <10, >10 to <15, >15 to < 20, and >20, respectively.
Hence, the PWB and WRSI results are quite similar in water-
limited regions.

The simplicity of the PWB framework makes it easy to explore
and quantify the covariability of the supply (GSP) and demand
terms (WR). This is valuable, because the Bouchet–Morton
Complementary Relationship suggests that water-limited arid
regions will exhibit a negative relationship between RefET and
AET (Hobbins et al., 2012). Under arid conditions, reductions
in AET drive increase in RefET through energy exchanges
across the land-atmosphere interface (Hobbins et al., 2016).
In contrast, in humid regions, radiation, not water availability,
limits AET, and RefET will equal AET. In dry regions, the
lack of AET means that the Earth’s surface will need to rely
on upward radiative and sensible heat energy fluxes. So as
radiation increases, surface temperatures and RefET increase,
and as RefET increases, AET tends to decrease. And as AET
decreases, RefET increases.

Figure 2D displays an empirical regression slope grid, with
GSP predicting WR. While we might expect an inverse
relationship from first principles, the strong spatial coherence
of these slope values is nonetheless striking. Particularly in arid
pastoral regimes, we find slopes as low as −0.5 mm·mm−1. This
slope implies that a 50-mm rainfall deficit might be exacerbated
by a 25mm increase in WR. The magnitude of the plant water
deficits would be magnified by 50%, from 50 to 75mm. On a
year-to-year basis, this helps explain why pasture conditions can
collapse so rapidly in arid and semi-arid areas like southern and
eastern Ethiopia, northern and eastern Kenya, and all of Somalia,
where RefET or WR often increase with rainfall deficits.

According to the Complementary Relationship, one expects
that the mean AET and RefET will converge in humid areas

and diverge in water-limited areas, where AET decreases and
RefET increases. What we see in Figure 2D is an important
temporal expression of these interdependencies. In humid areas,
AET should follow RefET, and we do not expect precipitation to
strongly influence RefET. Regression coefficients in these regions
are very low. In dry areas, wet and dry seasons will be associated
with more or less clouds and cooler or warmer land surface
conditions, which in turn strongly modulate RefET and WR.

In Figures 3, 4 we have plotted PWB andWRSI anomalies for
four boreal spring seasons, as well as four prior signature drought
years. While not identical, there is a high level of agreement
between the PWB and WRSI anomaly figures. This suggests that
very WRSI-like results may be derived from GSP and WR. The
2017, 2018, 2019, and 2020 seasons were selected because they
provide a “whip-saw” example, with dramatic swings between dry
and wet seasons. Both the PWB and WRSI display this sequence.
But by construction, the unbounded PWB indicator provides
more information about very wet conditions in humid areas.
It is interesting to note that the PWB dry anomalies in 2017
and 2019 indicate more stress in some important areas, such as
southern Somalia, the south-central highlands of Ethiopia, and
central-western Kenya. The stronger andmore extensive drought
response of the PWB index maps can be seen even more clearly
in plots of four very dry seasons: 1984, 1993, 2000, and 2009.
In 1984 and 1993, tragic famines struck Ethiopia and Somalia,
respectively. In 2000 and 2009, strong La Niña conditions and
extremely warm west Pacific sea surface temperatures produced
widespread droughts (Funk et al., 2018b). For these very dry
years, in humid regions, the PWB anomalies suggest more
widespread water deficits than the WRSI.

Examining the Utility of the PWB
Framework as a Basis for Estimation of
National and Sub-national Yields in Kenya
We next turn to a comparison of WRSI and PWB values with
national and sub-national maize yields for Kenya. Kenya has
been selected because of its abundant crop data compared to
other countries in the region. It should be noted, however, that
this data is imperfect, given limited and changing crop survey
capacities. Two sources of yield statistics were examined: (1)
sub-national (county) level yields, obtained via the FEWS NET
DataWarehouse, and (2) national yields obtained from the FAO’s
statistical archive (FAOSTAT). At the sub-national scale, we
focused on 18 key agricultural counties11. The PWB and WRSI
time-series were very similar in 12 of these counties (R > 0.8).
In four counties, correlations were 0.5–0.79. The remaining two
counties had saturated WRSI (mean of >99%), resulting in no
relationship between the two metrics.

Overall, the correlations between county-level yields and
WRSI and PWB were relatively poor, with median correlations
of 0.36 and 0.37, respectively. While far from impressive, these
results do indicate that the performance of the WRSI and PWB

11Baringo, Elgeyo-Marakwet, Kajiado, Kiambu, Kirinyaga, Kwale, Laikipia, Lamu,

Murang’a, Nakuru, Narok, Nyandarua, Nyeri, Taita Taveta, Tana River, Trans

Nzoia, Uasin Gishu, Kilifi.
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FIGURE 2 | (A) Interannual WRSI standard deviation. (B) Interannual PWB standard deviation. (C) Interannual correlation between end-of-season WRSI and WB (D).

Slope coefficients from regression between GSP and WR in units of mm per mm.

were not statistically distinguishable. The WRSI did not perform
better than the PWB.

We next turn to comparisons with national Kenyan FAOSTAT
yields and spatially aggregated sub-national yields (Figure 5). For
these comparisons, the PWB and WRSI were averaged over key
cropping counties9. Scatterplots with national yields are shown
in panels A and B, and sub-national results are plotted in C
and D. Again, the statistical relationships are fairly weak, with
national R2 values ranging from 25 to 41%12 In general, the
scatterplots reveal more discrimination when PWB and WRSI
averages are low. When PWB and WRSI are high, the values’
relationships with yields are weak. But, when PWB andWRSI are

12Please note that, in general, very few counties exhibited positive yield

trends. In general, yield growth in Kenya is stagnant, and per capita cereal

production is declining. https://www.usaid.gov/documents/1867/contrasting-

kenyan-resilience-drought-2011-2017-full-report.

<90 and 60%, respectively, we do find consistent below-normal
yield outcomes. These seasons (1984, 1993, 2000, and 2009) are
noted in Figure 5 and are mapped in Figure 3, Figure 4. The
relationships with sub-national yields are somewhat stronger,
with R2 values of 41 and 37 percent. For both national and sub-
national yields, there are low-yield seasons that have average
WRSI and PWB values. It is not clear whether this is an issue with
the yield statistics or a function of non-weather-related factors,
such as conflict. While the PWB and WRSI performance is very
similar, the PWB is substantially less complex to calculate, and
less sensitive to parameterization.

Figure 6 presents a time-series of national yields and
standardized PWB values from Kenya’s key cropping counties.
One striking aspect of this time-series is the incredibly wet
outcomes in 2018 and 2020. The actual PWB values for
Kenya were 269 and 232%. The GSP totals far exceeded crop
water requirements. The average WRSI time-series (not shown)
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FIGURE 3 | Seasonal PWB maps, expressed as percent anomalies from the long-term average, for the four most recent years (A 2017, B 2018, C 2019, D 2020)

and four extremely dry prior years (E 1984, F 1993, G 2000, H 2009).

FIGURE 4 | End-of-season WRSI anomalies for the four most recent years (A 2017, B 2018, C 2019, D 2020) and four extremely dry prior years (E 1984, F 1993, G

2000, H 2009).

presents a very different story, with 2018 and 2020 values of
89 and 87. While these values are extremes in both time-series,
the physical implications of these values are quite distinct. A
WRSI value of about 88 indicates good cropping conditions. A

PWB value of about 250% may indicate issues associated with
extremely wet conditions. Again, PWB and WRSI maps of these
wet seasons (Figures 3, 4) demonstrate that the PWB better
reflects the dynamic range of these extremely wet seasons. Plots of
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FIGURE 5 | Comparisons (scatterplots) showing Kenyan FAOSTAT national yields (y-axis) and Plant Water Balance (A) and WRSI (B) (x-axis) in key crop-growing

counties in Kenya. (C, D) Show similar results based on sub-national yields from these counties. The FAOSTAT time-series extends from 1982 to 2019, the

sub-national yields extend from 1982 to 2016.

the GSP minus WR differences (not shown) are also useful from
this perspective.

It is worth noting that national yields appear quite static,
i.e., they are not trending upward. At the same time, the
population has grown rapidly, at about 3% per year. As we
will explore, this has resulted in exceptionally low per-capita
maize production values. But another striking feature of Figure 6
is the lack of extreme agro-hydrological deficits over the last
10 years—a period in which the number of people facing
acute food insecurity has climbed dramatically. While 2011,
2014, 2016, 2017, and 2019 had below-average PWB values,

the magnitude of these PWB deficits were relatively mild given
the historical record, with standardized anomalies of about
−0.7. Given that many of these seasons were associated with
large humanitarian crises (Funk et al., 2018a), these results
appear to indicate that non-weather drivers may be decreasing
Kenyan resilience and adaptive capacity, so that relatively
modest droughts appear associated with rather large increases in
food insecurity.

What will happen when Kenya experiences another severe
drought, a drought similar to 1984, 1993, 2000, or 2009? We
will explore this question in more detail in Examining the Utility
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FIGURE 6 | Time-series of FAOSTAT national Kenyan maize yields (blue bars) and PWB Z-scores for key crop-growing counties (orange line with dots).

of the PWB Framework as a Basis for Translating Integrated
Rainfall Early Estimates into Assessments of Agro-pastoral
Hazards section.

Examining the Utility of the PWB
Framework as a Basis for Translating
Integrated Rainfall Early Estimates Into
Assessments of Agro-Pastoral Hazards
We next describe how the PWB framework can be used
to take advantage of integrated monitoring-forecast systems.
For many years, the Climate Hazards Center has worked
toward methods that support the combination of high-resolution
gridded rainfall estimates (like CHIRPS) with weather and
climate forecasts. The basic idea is that coarse resolution
weather and climate information can be transformed such
that it has statistical distributions similar to high-resolution,
rapidly updated data streams, like CHIRPS. This makes these
forecasts inter-operable with the observations. The ability to
combine observations and predictions can be very powerful. In
terms of hydrologic modeling, the NASA Hydrologic Forecast

System (NHyFAS) (Arsenault et al., 2020) provides one good
example of linking to-date conditions and forecasts to assess
hydrologic conditions in the future. Here, we demonstrate how
the PWB framework can be used to generate forecasts of agro-
pastoral water deficits. This framework builds on two existing
forecasting resources: (1) high-resolution CHIRPS-GEFS 1–15-
day precipitation forecasts and (2) east African climate analog-
based rainfall and RefET predictions.

CHIRPS-GEFS is a bias-corrected and downscaled version of
National Center for Environmental Prediction Global Ensemble
Forecast System (GEFS) precipitation forecasts (Hamill et al.,
2013). Quantile matching is used to make GEFS forecasts
spatially compatible with various CHIRPS products13 Daily
rainfall forecasts are accumulated to create 5-, 10-, and 15-day
totals. The rank-based quantile of these totals is then quantile-
matched to the empirical distribution of CHIRPS rainfall for
the corresponding period. The result of this quantile-matching
scheme is that the average and variance of the CHIRPS data is
approximately retained in the resulting CHIRPS-GEFS values.

13https://chc.ucsb.edu/data/chirps-gefs.

Frontiers in Climate | www.frontiersin.org 10 August 2021 | Volume 3 | Article 71656857

https://chc.ucsb.edu/data/chirps-gefs
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Funk et al. An Agro-Pastoral Phenological Water Balance Framework

The CHIRPS-GEFS forecast data product is a valuable
resource for CHIRPS users, since it provides GEFS precipitation
totals and anomalies that are compatible with the historical
CHIRPS. This feature allows for the timely assessment of how
the latest forecast could alter the current agro-climatological
situation. The CHC Early Estimates provide routinely updated
analyses that combine CHIRPS and CHIRPS-GEFS.

Climate analogs can provide longer lead (1–8 months) climate
forecasts. Typically based on diagnostic drought analyses, the
identification of analog seasons (historical seasons that may
resemble current/predicted conditions) provides a simple but
powerful means of leveraging the power and detail of high-
resolution data sets and hydrologic and crop simulations. This
can be especially powerful when combined with skillful long-
lead climate forecasts of Pacific Sea surface temperatures, as
exemplified by FEWS NET long-lead forecasts for eastern Africa.
To support the FEWS NET FSO process, FEWS NET uses a
staged approach (Funk et al., 2019b) that combines tailored
1–8 month climate forecasts, down-scaled weather predictinos,
satellite observations and hydrologic simulations (McNally et al.,
2017) and forecasts (Arsenault et al., 2020).

Following the disastrous 2011 famine in Somalia (Checchi
and Robinson, 2013), the FEWS NET team carried out extensive
research that focused on understanding and predicting east
African droughts (Hoell and Funk, 2013a; Funk et al., 2014;
Hoell et al., 2014; Shukla et al., 2014). While a full description
of this work is beyond the scope of this paper, this research links
climate change-enhanced La Niña conditions to sequential dry
east African conditions in the October-to-December and March-
to-May rainy seasons (Funk et al., 2018a, 2019a). While the
best analog definitions vary by season, timing, and data source,
variations of the West Pacific Gradient (WPG) (Hoell and Funk,
2013b) are used to identify strong-gradient La Niña seasons.

In eastern Africa, this approach, combined with the latest
generation of climate forecast models, can provide surprisingly
skillful forecasts at very long leads of 6 or more months. For
the October-to-December season, many La Niña-related dry
seasons can be identified as early as June14,15 For the March-to-
May season, September forecasts of strong La Niña-like Pacific
Sea surface temperature gradients can be robust indicators of
eastern east Africa droughts16 While these forecasts explain a
relatively low amount of the overall variance (∼40%), they do
provide valuable advance notice of many sequential droughts.
The September 2020 analysis identified 2017, 1999, 2011, 2008,
2014, and 2009 as analogs. The final update17 identified 1999,
2000, 2001, 2008, 2009, 2011, 2012, and 2017.

In May of 2021 (as we write), the eastern Horn faces a
severe food crisis associated with poor late 2020 and early 2021
rainy seasons. The food security situation, already dire due to
the combined influences of conflict in Ethiopia and Somalia,
recurrent drought and flood shocks since 2016, persistently high

14https://blog.chc.ucsb.edu/?p=937.
15https://blog.chc.ucsb.edu/?p=757.
16https://blog.chc.ucsb.edu/?p=880.
17https://blog.chc.ucsb.edu/?p=946.

inflation in Ethiopia, the COVID-19 pandemic, and the desert
locust upsurge, is becoming worse.

Our focus here is to show how the PWB framework makes
it relatively simple to “stack” three sources of information
to provide spatially detailed forecasts of agro-pastoral risk—
CHIRPS observations, CHIRPS-GEFS forecasts, and analog-
based climate forecasts. In this example, we use CHIRPS
observations through the 1st dekad of April (dekad 10), CHIRPS-
GEFS forecasts for the second dekad of April, and then analog
and average CHIRPS rainfall through the remainder of the
season. In this last step, we use two different assumptions to
finish out the season. We explore one scenario that assumes
performance similar to the recent La Niña-like seasons, using
the average of our analog seasons. We also examine a “normal”
scenario that uses the 40-year (1981–2020) average of the
CHIRPS archive.

Figure 7A shows the observed+CHIRPS-GEFS precipitation
anomalies for the beginning of the 2021 growing season (dekads
1–10). To harmonize our results with those already presented, in
this example, we have used, as above, a fixed climatological start
of season (Figure 1B). Onset dates could vary from year to year
in a more sophisticated operational implementation. Through
dekad 10, much of the region had experienced rainfall deficits
ranging from about −15 to more than −90mm, with the largest
deficits occurring in the Ethiopian highlands, northeastern
Kenya, and southern Somalia. While these types of anomalies
are known to frequently occur during recent La Niña-like
seasons, the impact of elevated WR values during these events
has not been examined. Growing season analog WR anomalies
(Figure 7B) are actually fairly large (up to∼+50mm), and, more
importantly, the location of many of these increases are often
in exceptionally dry areas of Kenya, Somalia, and Ethiopia. We
can finish out the season by either assuming rainfall performance
similar to our set of analogs (Figure 7C) or simple climatological
averages (Figure 7D). The analog scenario is substantially more
pessimistic, particularly for Kenya and Somalia, where late April
and early May rains play a critical role in providing moisture for
crops.

Combining the analog-based GSP precipitation totals with
analog season WR totals allows us to generate a mid-
season analog PWB anomaly map (Figure 7E). We can use
a similar calculation based on climatological WR calculations
to create an “average” PWB projection (Figure 7F). While
more sophisticated bootstrapping approaches could be used to
generate scenarios (Husak et al., 2013), Figure 7E, F represent
a reasonable way to transform CHIRPS-GEFS and climate
analog assumptions into results bracketing likely agro-pastoral
outcomes. Contrasting the pessimistic analog with the less-
presumptive average scenario suggests that outcomes in Kenya
and Somalia may be substantially less certain than in Ethiopia.
In Ethiopia, in both the analog and average scenarios, substantial
water stress appears across much of the country.

While space limitations prevent further elaboration here,
the PWB framework does seem promising as a basis for
developing predictive agro-pastoral outlooks. In addition to
growing-season precipitation totals derived from observations,
weather, and climate conditions, similar interoperable seamless
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FIGURE 7 | An Agro-Pastoral Outlook example for 2021. (A) Early season rainfall anomalies through dekad 10. (B) Average growing season WR anomalies for analog

seasons. (C) 2021 GSP CHIRPS anomalies based on analogs for dekads 11–36. (D) Same but based on long-term averages. (E) The predicted end-of-season WB

anomalies associated with the analog forecast assumption shown in (C). (F) The predicted end-of-season WB anomalies associated with the climatological forecast

shown in (D). (C, D) All anomalies based on a 1981–2020 period of record.
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RefET observations/prediction data streams could be developed.
One-to-fifteen-day forecasts could be derived from the GEFS
(Hamill et al., 2013). At climatic timescales, these forecasts
could be derived from coupled ocean-atmosphere models
(Shukla et al., 2017), predictive hydrologic modeling systems
(Arsenault et al., 2020), or via constructed analogs (Pierce
et al., 2014). Finally, it should be noted that these outlooks
could also help capture potential disruptions associated with
extreme precipitation. Using the WRSI phenology stages,
for example, one can identify regions in the grain-filling
stage and the associated optimal WR values. When the
observed precipitation far exceeds these WR values, that
may be a clear indicator of potential negative influences
(e.g., flooding).

DISCUSSION

In his classic book on Cultural Anthropology, Clifford Geertz
explained how societies produce cultures that allow for
coordinated behavior by effectively combining “models of ” the
world and “models for” the world (Geertz, 1973). Models “of ” the
world imitate or simulate the world as it is; they resemble our
numerical models. Models “for” the world, however, are models
“for” human behavior, behaviors that imply specific and coherent
actions, actions informed by our models “of ” the world. This
distinction was first introduced by Geertz (1973) as he described
how conceptual frameworks supported coherent behavior among
tribes in Southeast Asia (Geertz, 1973). Such considerations are
relevant here because agricultural early warning systems, like the
FEWS NET (www.fews.net) (Brown, 2008; Funk et al., 2019b)
or the United States Drought Monitor (Svoboda et al., 2002) are
also “cultures” — cultures, furthermore, distributed across space,
multiple institutions, and even nations. Coherent, intelligent
behavior in these systems requires shared and crisply defined
“search patterns.” These patterns describe hazards, supporting
consensus and early action, leading to emergent collaboration
across a wide variety of factors. In this setting, models “of” the
world provide information, whilemodels “for” the world describe
impacts and (re)actions (Funk et al., 2021).

Models “of” the world may provide synoptic observations
of precipitation (Funk et al., 2015b; Huffman et al., 2020),
soil moisture (Karthikeyan et al., 2017a,b), or actual
evapotranspiration (Anderson et al., 2011; Senay et al., 2011,
2013). Complex numerical models “of” the world may offer
detailed simulations and forecasts of land (Nijssen et al.,
1997, 2014; McNally et al., 2017; Arsenault et al., 2020) and
atmospheric (Hamill et al., 2013; Gelaro et al., 2017) conditions.
In fact, every day, an ever-increasing torrent of such sources
output more and more information.

Ironically, filtering and assimilating all of this information
is increasingly challenging. But one long-standing and very
effective “model for” impact assessment, which we have explored
in this study, is crop WR. Here, we have revisited this widely
used and effective concept, using an example situated in the
boreal spring rain season of eastern Africa. We have described
how this simple yet powerful framework can guide monitoring

and prediction, providing “WRSI-like” results that are easier
to calculate, more interoperable with rainfall forecasts, and
potentially less sensitive to parameterization and potential biases
and timing issues.

Clearly communicated definitions of drought (Wilhite and
Glantz, 1985; Svoboda and Fuchs, 2016) provide a shared basis for
collaboration, response planning, and impact mitigation. In the
context of food security, the Integrated Phase Classification (IPC)
system supports the evaluation of food security status across
diverse cultural and socio-economic settings (Frankenberger and
Verduijn, 2011). More specifically, FEWS NET uses a household
food economy approach to develop food security scenarios18

that take into account a complex tableau of drivers. Many
social factors—conflict, price shocks, micro andmacro-economic
conditions—drive food insecurity. But, especially in many arid
and semi-arid regions, agricultural and pastoral water deficits
create shocks to food access and availability.

In this paper, we have used the PWB framework to
demonstrate WRSI-like performance across several important
decision support contexts. In general, we found that the easy-
to-calculate PWB index appears to perform very similarly to the
WRSI in most locations. More detailed analyses based on crop
stages could certainly be of value, and the WR framework could
be used to filter other indicators of water supply or water stress.
Satellite-observed soil moisture (Karthikeyan et al., 2017a,b) or
actual evapotranspiration (Anderson et al., 2011; Senay et al.,
2011, 2013) could be processed with WR framing, as could
hydrologic model outputs (McNally et al., 2017; Arsenault et al.,
2020) .

The simplicity of the PWB makes it relatively straightforward
to combine observations, weather forecasts, and climate analog
predictions, as demonstrated in Examining the Utility of the
PWB Framework as a Basis for Translating Integrated Rainfall
Early Estimates into Assessments of Agro-pastoral Hazards
section. Producing reasonably interoperable rainfall and RefET
estimates, at high resolutions, based on satellite and station
observations, reanalyses, weather models, and coupled global
climate models is challenging on its own. The PWB provides a
defensible way to combine such outputs, resulting in forward-
looking assessments of crop water satisfaction. The example
provided here focuses on combining Early Estimates and
climate analog predictions (Examining the Utility of the PWB
Framework as a Basis for Translating Integrated Rainfall Early
Estimates into Assessments of Agro-Pastoral Hazards Section),
but similar framing could be used with outputs from hydrologic
forecast systems like NHyFAS. NHyFAS forecasts of AET and
RefET could be translated into PWB forecasts, for example.

In addition to an expected opportunity to describe PWB-
based impact assessments, we were also surprised by two specific
aspects of this study: the very high level of covariability of WR
and GSP in arid regions (Figure 2D) and the extremely high
positive Kenyan PWB values in 2018 and 2020 (Figure 6). Both
results indicate forms of climatic hazards. During dry seasons in
arid regions, positive land surface feedbacks associated with low

18https://fews.net/sites/default/files/documents/reports/

Guidance_Document_Scenario_Development_2018.pdf.
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precipitation enhance RefET and WR values, increasing plant
water stress. But during extremely wet seasons, like 2018 and
2020, the available water may far exceed plant needs in many
areas, leading to increased runoff and potential waterlogging
and flooding.

CONCLUSIONS

Simplicity can, at times, be revealing. Because the PWB
simply uses accumulations of CHIRPS rainfall and WR, this
framework makes it very easy to assess the covariability and
relative contributions of water supply and atmospheric demand.
Explicitly calculating and analyzing the WR provides valuable
insights. Climatologically, late-season WR values make it hard
to catch up from early season rainfall deficits (Figure 1).
Interannually, the magnitude of WR increases and decreases
in dry and wet seasons can be relatively large in arid regions,
amplifying rainfall anomalies, and helping to support extreme
outcomes (Figure 2D).

In conclusion, the PWB framework seems very useful for
monitoring, prediction, trend analyses, and risk management
applications. Future work will expand our analysis to more
regions and develop more decision support-related analyses.
In general, analyzing WR along with GSP provides valuable
information by answering a simple question—was growing
season precipitation inadequate, adequate, or much more than
adequate? Spatially, this provides a picture of eastern east Africa
as a relatively small set of cool, moist highland areas with seasons
long enough to support agriculture.

Finally, we return to a simple but important result: the PWB
provides results that are, for most water-limited areas, very
similar to the WRSI. At the pixel scale, correlations were greater
than 0.8 for all regions in which the standard deviation of WRSI
was greater than 15. At the sub-national administrative unit,

the median 1981–2020 PWB/WRSI correlations were 0.8, 0.93,
and 0.82 in Kenya, Somalia, and Ethiopia, respectively. For our
Kenya crop-growing counties, the correlation between regionally
averaged PWB andWRSI was 0.85. These results suggest that the
PWB can be a useful supplement to the more intensive WRSI
modeling. When parameterized with accurate soil information
and driven with accurate climate data, the WRSI should provide
more accurate estimates that take into account soil moisture and

sub-seasonal weather variability. But WRSI-like results can be
obtained using GSP and WR. Similar analyses could incorporate
other metrics of water supply, such as satellite or model-based
estimates of AET. Both satellite and model-based estimates are
likely to capture the complementary transitions as AET decreases
and WR increases during periods of severe water stress.

In a world with increasingly extreme precipitation (Emori
and Brown, 2005; Allan and Soden, 2008) and Indo-Pacific sea
surface temperature volatility (Cai et al., 2013, 2015), East African
agricultural advances are struggling to cope with climate change
(Davenport et al., 2018). As the combination of population
growth, declining rainfall and climate volatility create increasing
food stress (Funk et al., 2005, 2015a; Funk and Brown, 2009),
improved integrated drought early warning systems (Funk et al.,
2007; Thomas et al., 2019, 2020; Funk and Shukla, 2020;
Shukla et al., 2021) and improved drought risk management
practices and policies (Pulwarty and Sivakumar, 2014; Wilhite
and Pulwarty, 2017) can help east Africa manage risk and boost
productivity. The PWB framework, discussed here, will provide a
relatively simple means of connecting satellite observations with
climate, weather and land surface model simulations, helping to
support integrated early warning systems.
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Farmers do not often use climate and weather information on a regular basis,

as the specific influence of weather parameters on farm-level decision making is

not well-known. Agromet advisories are needed for local farming systems. Effective

agrometeorological advisory systems, need tailored agricultural weather forecasts, and

two-way communication. Transdisciplinary teams together with farmers can co-develop

early warning Agromet advisory systems to address farmers’ needs. Three examples

of Agromet advisories are discussed- CAPES in Zambia, Science Field Shops in

Indonesia, and the AgriCloudmobile App in South Africa. Community Agrometeorological

Participatory Extension Service (CAPES) began in Monze, Zambia to communicate

seasonal climate forecasts to farmers through researchers and extension interactions.

Participatory groups collected spatial and temporal data about local farming systems

to highlight opportunities. Communication methods used were local radio, farmers’

days, trials, with farm visits. CAPES resulted in lifelong learning about climate and

co-development of tailored Agromet advisories to improve climate resilience. In Science

Field Shops (SFS) groups of Indonesian farmers meet experts regularly to exchange

information about climate and farming activities. Farmers measure rainfall and observe

their agroecological systems each day. At monthly meetings, the seasonal forecasts

are discussed using dialogue-discussion methods. Agrometeorological learning is

trans-disciplinary through interaction between anthropologists, agrometeorologist, and

extension personnel. SFS includes eight climate services that empower farmers to

address challenges and sustain their productivity. AgriCloud is an online weather-based

agricultural advisory system enriching weather forecasts with agricultural information

and local knowledge. Real-time overviews and warnings are tailored to farmer’s needs.

AgriCloud provides farmers, extension staff, and advisors daily updated weather-related

farm-specific advice in 11 South African official languages. AgriCloud is available

as an android mobile App, or API to use via a platform. These examples illustrate

the use of weather forecasting together with tailored forecasts and communication

systems to deliver Agromet advisories, showing different aspects of the incorporation

of local knowledge in co-developing advisories for the farmers. In the future, various

combinations can be used around the world when co-developing with the farmers.

Keywords: agromet advisories, co-development, community participation, Zambia, Indonesia, South Africa
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Walker Development of Tailored Agromet Advisories

INTRODUCTION

Effective practical local early warning agromet advisories can be
developed using participatory approaches in order to incorporate
local knowledge to farmers on a routine basis. This local and
indigenous knowledge is then used to refine the agricultural
scientific information for the local conditions and provide
information to farmers such as planting dates and suitable
crop selections according to the current and expected weather
conditions. Although farmers know about the general effects
of weather and climate on their agricultural production, it is
more difficult for them to extrapolate pertinent information
relevant to their activities directly from a standard weather
forecast (Stigter et al., 2013). Therefore, it is important that
agrometeorologists use the available scientific evidence from
research results to generate operational level agromet advisories.
An agromet advisory is a message combining weather or
climate information with specific information about the farming
systems in the form of advice on farming activities. In
South Africa, despite the existence of good historic climate
datasets (ARC-Agromet database 2021) and good daily weather
forecasts (www.weather.co.za) farmers do not often combine
this information to use in their decision making. Many are not
even aware of the detailed cumulative effects of the current
and seasonal weather forecast on their agricultural enterprises.
Therefore, it is important to formulate and operationalize
routine Agromet advisories for each farming system and location
including a range of options and management skills.

For an effective agrometeorological advisory system, aspects
needed include

- scientific weather forecasting numerical models,
- monitoring systems,
- added agricultural value for tailored forecasts, and
- a good two-way communication system to deliver messages

and receive feedback.

Some developed countries have been using especially tailored
agromet advisories that were co-developed with the farming
community for many years. Examples of such agromet services
are in Australia under the FARMSCAPE approach to decision
support where farmers, advisers, and researchers were involved
in monitoring, simulation, communication and performance
evaluation together (Carberry et al., 2002). The programme
that developed and operated for over a decade, integrated
farmer participation with the results particularly from the
APSIM farming systems model to provide a scientific approach
to decision support specifically using farmers information
about their farming operations. Another example is in Florida,
USA where a framework was developed with many activities
integrated yet running parallel, including physical, biological,
social, and economic aspects of agricultural systems (Jagtap
et al., 2002). The framework included the generation of
climate information from historic datasets and models, the
communication though interactions with stakeholders, to the
use, implementation and evaluation of the systemwhich designed
and developed agromet early warning advisories to assist the
citrus farmers in receiving information about potential low

temperatures that would adversely affect their trees. These
are well-established, scientifically based and validated early
warning services to specific parts of the agricultural sector
(Walker and Stigter, 2010). These two examples, illustrate how
the conventional weather forecast needs to be enhanced with
additional information relevant to the farming operations in the
area. However, in other countries such agromet advisory services
are not operational on a routine basis.

Many times the direct and indirect influence of the weather
on agricultural activities on a farm level and hence the decision-
making processes of farmers for specific farming systems, are
not well-defined and can include indigenous knowledge (Zuma-
Netshiukhwi et al., 2013). Therefore, these aspects need to be
part of co-investigation participatory projects, as farmers are not
able to use the highly technical scientific information provided by
the national meteorological and hydrological services (NMHS)
in their day to day decisions or seasonal planning (Elhag and
Walker, 2011). Typical conventional weather forecast only give
expected values for weather parameters such as temperature
and/or humidity and are often not related to the long-termmeans
or variability experienced in past to put them in perspective.
Agromet advisory services need to be co-developed together with
the users, the farmers, farm managers and extension workers to
formulate viable solutions (Walker et al., 2010). Transdisciplinary
teams should co- develop effective integrated systems to interpret
weather forecasts in relation to farming management decisions
and then to develop systems to routinely deliver them to the
farming community at the correct time. Such teams working
together with the farmers can co-develop and design early
warning and Agromet advisory systems to address the farmers’
specific needs and questions according to their location and
production systems (Stigter et al., 2014a,b,c). Three examples of
development of such Agromet advisories are discussed, namely
the CAPES in Zambia, the Science Field Shops in Indonesia,
and the AgriCloud mobile App in South Africa. Important
aspects needed during development of these advisory services
are highlighted.

COMMUNITY AGROMETEOROLOGICAL
PARTICIPATORY EXTENSION SERVICE

Community Agrometeorological Participatory Extension
Services (CAPES) were established in some Mujika villages
near Monze, Zambia to introduce and communicate seasonal
climate forecast to farmers through interactions between the
farmers, researchers and extension practitioners. This method
was developed during Dr. Durton Nanja’s Ph.D. study from
2007 to 2010 as he engaged the community and developed
the methods to distribute the season forecast to the farmers in
Mujika near Monze (Nanja, 2010). The process began with an
interaction with the extension staff of the Zambia Department
of Agriculture, the headmen of the villages to establish a good
working relationship in order to obtain permissions to use the
various participatory approaches to collect information from
the farmers about the currently used farming systems and the
natural resources. These interactions were typical focus group
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meetings, similar to those used by Nyumba et al. (2018) to inform
leaders in the community about the development of the agromet
services and to arrange the community communications and
interactions. During these meetings, participatory methods were
used to identify the limiting factors in the local current farming
systems (Nanja and Walker, 2009).

Prior to the community meetings, background information
about the area for which the agromet services were being
designed was obtained from secondary sources. Much of this
information was obtained by a desktop study of the available
natural resources and the current farming systems, being
collected from the appropriate government departments archives
and databases. However, as in many cases, the details needed
were at a rather large scale without sufficient detail at the local
scale of the actual farms. So the general topographic information
about the contours or lie of the land and location of the
rivers was obtained from topographic maps. The detailed soils
information was not available at the time of the study that
started in 2007, but is now accessible from the Soil Atlas of
Africa (Jones et al., 2013) namely Chromic Luvisols (with clay
subsoil), undifferentiated Acrisols (acid with clay rich subsoil)
and Lithic Leptosols (shallow soils over rock) around Monze.
The long-term climate information was obtained for two climate
stations namely Magoye weather station and Moorings rainfall
observing station from the Zambia Meteorological Department
(ZMD) Provincial Meteorological Office with 29 and 86 years
climate and rainfall records, respectively. These long-term data
can be used together with the more recent reanalysis data
available from NASA (POWER, https://power.larc.nasa.gov/) at
a spatial resolution of 0.5◦ latitude by 0.5◦ longitude across
the globe available from 1981. The other natural resources
data was collected from the appropriate departments such as
agriculture, water and environment. This information provided
a background to the area and was supplemented with general
information about the farming systems and the markets in the
area. However, as the Agromet services are to serve the farmers
themselves, one also needed to engage and interact with them and
gather information directly from such farmers.

Participatory group activities include the collection of spatial
and temporal data about the local farming systems and climatic
conditions from the communities perspective. One of the best
ways of doing this is using participatory techniques (Chambers,
2006, 2007). Such methods enable the farmers to also learn
during the process, so that there can be joint ownership of the
information together with empowerment, or enabling people
to have what they need to solve their own problems. It was
important to communicate the aims of such activities so that each
group understood the reasons behind such activities. That helped
to maintain focus during the sessions and later when prioritizing
the information. The criteria were co-developed within some
ground rules used during these activities.

Participatory techniques were used in a group context in each
of the villages to enable them “to learn by doing” as they explore
their own local resources. The techniques integrated community
and farm mapping and transect walks (IFAD, 2009) to document
the information about the lie of the land from stream or river
through the flood plain to the cultivated fields and on toward the

village and hills. Along the way during each transect walk in the
three selected villages, each person took notice of the changes in
vegetation and soils, which were then included in or provided
complementary information to the specific map of that village.
These community mapping exercises helped the villagers to
articulate and express their spatial knowledge that was recorded
by the researchers and archived local knowledge to assists in the
crop modeling, land-use planning and resource management.
These transect walks through the village and farmlands was
a form of capacity building, as the people could explore the
spatial dimension and integrate social aspects (e.g., taxi ranks and
marketing opportunities) into the natural resources information.
It is used to cross check with the other mapping activities and
help the researchers with triangulation or confirmation of certain
aspects. As a village group, they then drew a map and a transect
on a large sheet of paper to represent the variety of aspects
observed. Contributions from everyone were easily collated and
added to the map that was then used later as a basis for planning
interventions or services.

During the group discussion, the facilitator was able to
highlight the issues discussed and how the climate and weather
might affect each of them (Gandure et al., 2013). This opened
the door for further discussion later about agromet services that
were to be developed to address these locally pertinent questions.
The participatory mapping exercises were integrated with the
information from the desktop study to provide a base for further
investigations. These included the siting of future developments,
or location of a market or expansion of the agricultural activities.

Other participatory techniques used include the time lines
at various scales. Timelines are a visualization tool build up
by group contributions to show a list of sequential events
that reflects their common history or activities. They helped
to give context to the present conditions and situation so
that the villagers could reflect on the trends and development
and think strategically about a plan for the future. During
the group discussions, the facilitator drew a time line of a
flip chart and then filled it in as the farmers responded with
suggestions. For the long-term time scale (years) information
was collected about different aspects of past droughts and floods
as well as highlighting historic milestones and other significant
developments in the area. In the seasonal shorter-term (weeks or
months) farmers gave details of their farming systems and typical
operations like timing of land preparation (plowing), planting,
weeding, fertilizer top-dressing and harvest time. All the results
from these participatory activities helped the researchers to better
understand cropping operations from the farmers point of view,
and gave opportunity to highlight the critical times during the
growing season. This information was later used in the crop
modeling exercise. The daily time lines illustrated the difference
between male and female daily routines and responsibilities of
the typical complex life in the area. All this information was
then used when planning and developing the agromet services,
tailored and relevant to the specific seasonal activities in their
local farming system and their daily routines. For example,
the seasonal calendar represented the activities for the specific
dryland maize cropping with integrated cattle livestock system
and showed how the spread of their workload through the year
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was related to the local climate (similar to Hall et al., 2017). Once
the timelines were drawn by the farmers, then the critical periods
were able to be identified together with the trigger weather
parameters, such as the start of the rains. This then formed
the basis of the agromet advisory that was be developed and
distributed to the farmers on a routine basis. For example, they
highlighted that they cannot begin plowing for land preparation
and planting before they have received some rainfall, as the soil
surface is too hard for the animal traction plow to break up the
soil. This information, was then used to develop an algorithm
based on the daily weather forecasts for a certain planting season,
so as to formulate the added value agromet advisories.

Once the all the information was collected from the Mujika
villages group interactions it was collated, highlighting the
most important aspects identified by the farmers and other
participants (like agricultural camp officers). It was then used
to formulate responses to address problems and opportunities
ranked by farmers usingmatrices as a preference ranking exercise
according to their own cultural priorities (similar to Ager et al.,
2010). Here the ranking method was used, where firstly the
group brainstormed a list of the priority issues or problem
areas that they wanted to see addressed. This formed a slightly
different matrix for each group of participants, they then voted
for the top three or four priority areas that they considered
as priorities needing attention. Following the counting of the
votes, there was further discussion to bring consensus about the
highest priority issues. An ensuing analysis was then conducted
to unpack the extent of each problem, the impacts on their
farming systems and other associated effects. During this process
the opportunities to address such issues was discussed with
additional scientific perspective from the currently available
information by the researcher and camp officer and how they
could be packaged to form an agromet advisory for these
specific villages.

In Mujika for CAPES, community engagement continued via
the development of a community dissemination plan that was
formulated by the farmers and extension staff, in order to develop
and maintain a routine agromet services. This community
information dissemination plan was designed specifically by
these villages at this time, so it selected the appropriate
communication methods that could be used in Monze district.
The following methods to disseminate the agromet advisories
were initiated–weekly local radio programmes that were listened
to by farmer study “radio listening” groups; regular farmers’ days
to visit the “on-farm mother-baby” trials (see later) to investigate
a variety of aspects of the farming systems (similar to methods
used by Eldon et al., 2020; Périnelle et al., 2021); together with
training activities; farm, field and home visits, based on much
“farmer to farmer” communication techniques. This showed that
the dissemination plan was not limited to a single method, but
encompassed a variety of available methods and activities for this
district. It also did not have a linear type of flow of information,
as some of the activities were led by the researcher and extension
officers, while others were led by the farmers themselves. This
was possible as the mother-baby on-farm trials were situated at
selected farmers own properties, usually near to their homestead
(as described by Snapp et al., 2019). The idea was that the mother

trial had all the treatments in a completely replicated statistical
trial, but that each farmer with a “baby trial” only selects certain
aspects for their four plots. These are not “demonstration plots”
which are used in a top-down approach, but here the farmers
were actually carrying out their own experiments under their own
management style and environmental conditions. The mother-
baby trials were developed during an intensive participatory
engagement or focus group discussion. During that meeting, the
Mujika farmers decided that the on-farm trials should address
fertilizer, tillage practices and varieties. The treatments chosen
to be tested were two maize varieties, two tillage practices and
four fertility levels according to the forecast received (Nanja and
Walker, 2010). Then each of the nominated farmers had only
four plots to compare certain specific aspect, for example two
varieties using two tillage methods. Thus, it was easy for them
to show their visitors or fellow farmers the trials and explain
the different treatments. This also provided an opportunity for
the development of “transferable skills” amongst the farmers as
part of the empowerment and capacity building effort. As they
shared the detailed information about the on-farm trials, they
were developing their confidence and communication skills. This
proved to be a useful means of involving and stimulating the
curiosity of the other farmers in the villages, as they became
attentive in the trials and then would ask questions at the group
meetings (Makuvaro et al., 2018). This was a good learning
process formany of the farmers.Many of these activities provided
opportunities and promoted discussion which resulted in lifelong
learning about influence of climate on crop production.

The focus of these Agromet Advisories for the Mujika villages
was on the use of the seasonal rainfall outlook regularly provided
by the ZDM at the beginning of the rainfall season in spring
or early summer. The researchers, together with the extension
officers, then added pertinent farming information to the 3-
month rainfall outlook. The type of information that was
provided was for the maize crop as the main staple diet of
that area. Some of the advisories included information for the
planning of the planting of maize, such as which fields should
receive priority according to the type of soil and amount of rain
expected. Farmers then used that information to make their own
decisions concerning their agronomic activities. These advisories
included information about the selection of suitable varieties
based on the relative amount of rainfall expected during the
upcoming season, being formulated according to whether the
rain would be above normal or near normal or below normal.
Similarly, advice about application of fertilizer as basal pre-
plant or top dressing was also given according to the expected
rainfall. For example, if the rainfall outlook was for above
normal rainfall, then they should not plant on the low lying
areas near to the streams with heavy clay soils, but rather on
the more gravelly soils on the slopes. Also they could plant
longer growing season and later maturing varieties to make
better use of the available rainfall and soil water, by applying
good top dressing of fertilizers in the middle of the season.
In contrast, for below normal rainfall seasons they could plant
on the heavier soils with shorter maturing varieties and lower
fertilizer applications. Therefore, these agromet advisories were
addressing the high rainfall variability in this part of Zambia
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(Nanja, 2010) and enabled the farmers to build their resilience
to this climate variability.

These valuable interactions between the researchers, farmers
and extension personnel through the whole cropping cycle
resulted in co-development of tailored Agromet advisories. One
of the challenges was how to encourage farmers to attend
small group or large community meetings where the seasonal
climate forecast was delivered. One method used was to have
farmers explain the forecast to their fellow farmers. Another
challenge was to maintain the on-farm baby trials, as each
season 16 farmers began, during the first season 14 completed
but during the last season only half managed to complete and
harvest them. As the particular focus was on improving the
climate resilience of the cropping component of the local farming
systems, it was important that the on-farm baby trials were
managed by the specific farmers themselves. One valuable lesson
learnt was that as key farmers and extension were included in
all the activities from the beginning of the process, they were
later enthusiastic and willing to drive the dissemination of the
information themselves, in a farmer to farmer process. It also
became apparent that with the support from the researcher and
extension, farmers gained self-confidence and independence in
making changes and using the available information in their
decision making.

SCIENCE FIELD SHOPS

Science Field Shops (SFS) are groups of farmers and experts
meeting regularly to exchange information about interactions
between weather/climate and farming activities in Indonesia
(Stigter andWinarto, 2013). Farmers, in rainfall observer groups,
measure rainfall each day, together with other observations of
their agro-ecological systems (see list of climate services later).
At regular monthly meetings the seasonal forecasts are discussed
in relation to rainfall received and the farmers anticipate
conditions and options for the upcoming season. These are
two of the climate services for the farmers included in SFS,
others will be mentioned later. This agrometeorological learning
is trans-disciplinary thorough interaction with the farmers
by anthropologists from Universitas Indonesia—Department
of Anthropology, agrometeorologist from the University of
Free State, South Africa and extension practitioners from the
Indonesian Ministry of Agriculture (Winarto et al., 2018).
The transdisciplinary learning is the exploration of a range
of relevant concepts, issues or problems by integrating the
perspectives of multiple disciplines in order to connect new
knowledge and deeper understanding to real life experiences.
The anthropologists contributed with their broad approach
to understanding the many different aspects of the human
experience, by seeking cultural and historical evidence,
understand change, comparing and contrasting information,
so as to make connections and insights about farmer social
existence. The agrometorologist contributed information about
the interactions between climate/weather and farming systems,
and insights into possible adaptations to improve sustainability.
Extension practitioners are intermediaries between researchers

and farmers, helping farmers to use appropriate knowledge in
their decision making for sustainable production.

SFS principles include dialogue-discussion methods with
engagement and exchange of knowledge between farmers and
scientists (Vaarst et al., 2011; Mohtar and Daher, 2016).
Farmers, scientists, extension officers and students enter into a
conversation and discussion that has value and content around
the interrelationships between farming and the climate. This is
the place where the internal and external knowledge sets meet
and the dialogue occurs which then helps the knowledge to
be translated into the framework of the farmers’ own world
(Vaarst, 2011). Thus, “new knowledge” (as one of the SFS climate
services) appropriate to their farming systems is generated, to
serve the local farmers under their current conditions. These
dialogues serve as a platform of mutual support for the farmers
of each other while allowing for interpersonal responsiveness
resulting in a clear understanding of the situation. Therefore,
everyone benefited from such dialogues and the farmers were
able to interact and discuss the options available and evaluate
the consequences for their own farm (Vaarst et al., 2011).
These focused discussions are the process of talking about the
current situation and weather conditions in order to exchange
ideas and to reach a decision about the best possible farming
actions. Both scientists and farmers are continually learning and
applying their knowledge using climate information to think
out logical recommendations for evidence-based decisions for
optimal agricultural productivity. Therefore, the foundation of
SFS is good rapport between farmers and scientists with a
common goal of exchanging information about seasonal rainfall
forecasts to improve farming decisions.

As the SFS discussions are based on the local farming systems,
they are really a place where the farmers acquire knowledge and
agromet advisories in a face-to-face manner from each other and
the scientists. SFS include eight basic climate services (Winarto
et al., 2018), namely daily rainfall measurements; agroecological
observations in their fields; analysis/evaluation of yields amongst
farmers from different locations, across different seasons, and
different years; monthly rainfall scenario outlook discussions;
problem-solving by farmer experimentation in their fields to
develop strategies to sustain yields; exchange of scientific “new”
knowledge; organization of SFS groups and storage and digital
analysis of farmers’ rainfall data (Winarto et al., 2019, 2020). Each
of these is vital to the understanding of the farming system and
the interactions with the environment as well as the local climate
and weather phenomena.

The farmers must commit to make their own rainfall
measurement each day at the same time and keep a good record
of these measurements. This enables then to relate the conditions
and experience on their own farm to the area as a whole and also
to the seasonal forecasts. It helps them to have a good basis from
which to understand climate variability, as they can experience
first-hand that each day or week or year is not the same. They
have developed a better comprehension of the fluctuations and
even the extremes experienced in the rainfall between seasons.
Following the input from the agrometeorologist scientists during
the farmer facilitator training sessions, they could also relate
their own rainfall records to the worldwide climate indicators
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such as ENSO (El Niño—Southern Oscillation). This enables
them to appreciate and comprehend the possibilities of what can
occur in the upcoming season from the interaction of their own
farming system with the global climate variability. So when they
receive the monthly update about the current ENSO conditions,
then they are able to discuss the options in their groups and
make educated decisions about farm activities in the coming
period. This process of anticipation of the future rainfall events
and the knock-on effects on their farm as reported by Winarto
et al. (2019), has been well-developed by the farmers themselves
and shown many benefits being instrumental in improving their
sustainability and productivity over the years since SFSs were
organized in 2008.

The recording of the state of the agro-ecological conditions
in their own fields, is also a learning process that had rewarded
the farmers over the years. As they have documented the
relationships between all the various aspects, they can consider
these factors when planning for the following season. This
feedback loop has proved to be a great learning process and
provided the farmers with valuable insights into the cause and
effect relationships on their own farms. For example, as they
walked in the field every day, they observed the beginning of a
pest breakout and were able to work proactively to prevent large-
scale damage to their crops, in contrast to other farmers whomay
not enter their fields on a daily basis. In future they will also be
more diligent to check for certain pests and disease according
to the weather conditions they have been observing. Therefore,
this transdisciplinary learning from farmers to scientists in varied
fields brings a holistic view to the agricultural production system
and promotes sustainability and productivity (Mubaya et al.,
2015).

SFS are based on using transdisciplinary research principles
in practice with the farming community. The scientist team was
composed of anthropologists, agrometeorologist and extension
practitioners as well as other agricultural experts as and when
they are needed to answer specific questions from the farmers.
As the world is not segregated into compartments according to
disciplines, so to the research and applications should also be
across disciplines. The principle of transdisciplinary research is
explained as a broad concept including many ways of working
itself out in reality but all “transcends the narrow scope of
disciplinary worldviews” (Klein, 2013).

The concept of SFS has some overlapping aspects with the
FFS (Farmer Field Schools) and CFS (Climate Field Schools) in
that they are engagements between scientists and the farmers
(Van Den Berg and Jiggins, 2007; Friis-Hansen and Duveskog,
2012), and CFS address climate aspects of agriculture (Siregar and
Crane, 2011). However, the advantage of the Science Field Shops
is that they become an institution in and of themselves within
the community, led by the community members themselves. So,
unlike the FFS and CFS, where the training may take place over
a few weeks or a growing season (Van Den Berg and Jiggins,
2007), the SFS provide a continuing lifelong learning opportunity
for the farmers and they are self-governing groups like an
NGO (non-governmental organization) or a CBO (community
based organization). This lifelong learning as the continued
ongoing, voluntary, and self-motivated pursuit of knowledge by

the farmers is due to the fact that they can see the continued
benefit of the rainfall measurements groups. Therefore, as well
as enhancing social inclusion and active citizenship, there are
benefits of personal development, and farming self-sustainability,
as well as some factors of competitiveness and employability
for those engaging in these activities. These aspects of the SFS
are in contrast to a more top-down approach in FFS which
can result in the disappearance of the control group of farmers
who continue with their own traditional practices (Van Den
Berg and Jiggins, 2007). However, this presents a challenge to
upscaling SFS, as it required intensive engagements with each
different group of farmers in each new region. For this to be
successful buy-in and support from the government structures
is needed. The SFS focus on the local agricultural systems and
market opportunities to address the complex issues and priorities
of farming communities, as it is a bottom-up capacity building
lifelong learning approach through whereby farmers enhance
their analytic and problem-solving abilities as recommended by
Van Den Berg and Jiggins (2007).

A lessons learnt was that as the farmer observers gained
self-confidence in understanding their own rainfall records
relationship to the season forecasts, they were confident to speak
to the village leaders and gain their respect as advisors. So,
farmers are now making their own agromet advisories based on
their own experience and information from international climate
centers. Farmers use their rainfall observations (represented in
simple hand-drawn diagrammes) together with the scientific
interpretation of seasonal forecasts to develop tailor-made
climate services related to local farming systems. This enables
farmers to use climate information for improved management
decisions both for themselves and for their neighbors or to give
advice to the village leaders. This learning process has empowered
farmers to address challenges on their own, and sustain and
improve their productivity. Such co-development of agromet
advisories is highly beneficial and locally based, however, the
concept can be transferred to other areas and regions as the
foundation is firmly on good communication and good science
and respect across the transdisciplinary groups.

AGRICLOUD

AgriCloud is an online weather-based agricultural advisory
system that enriches weather and climate forecasts with pertinent
agricultural information and local agricultural knowledge.
Real-time personalized overviews, forecasts, and warnings are
generated and tailored to the particular farmer’s needs. This
is achievable because the users select and mark their own
specific location on a google map at registration on the smart
phone mobile App. Then users can receive the information for
this precise location from the 15 × 15 km grid used for the
weather forecasts. AgriCloud provides farmers, extension staff
and advisors in South Africa with daily updated weather-related
farm specific advice. AgriCloud does not provide a weather
forecast for the predicted rainfall and/or temperatures as on
many weather Apps, but AgriCloud provides added value that it
relevant to the dominant maize rainfed farming system.
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AgriCloud information is available via an android mobile
App; an API tailor-made for a client to use via their own platform.
During the R4A project, a USSD system was also developed for
farmers without smart mobile phones. Alternatively a client or
reseller can connect by subscription for tailor-made advisories,
information and maps delivering selected information for their
selected region. On the mobile AgriCloud App users obtain
forecasts of planting dates for rain-fed crops in the next 10
days and suitable spray conditions, for herbicides and pesticides,
according to time of day. All advisories are available in 11 South
African official languages. Advisories were based on real-time
weather observations and forecasts from ECMWF (European
Center for Medium-Range Weather Forecasts) or GFS (Global
Forecast System) numerical models and locally developed
agricultural knowledge engines with crop specific algorithms.
The AgriCloud App was developed during the “Rain4Africa”
(R4A) project funded by the Netherlands Space Office together
with Dutch partners. Data and advisories from South African
Agricultural Research Council (ARC), South African Weather
Services (SAWS) and ECMWF include ground based automatic
weather station observations, radar and satellite integrated
rainfall surfaces. The process followed for the development of
the AgriCloud agromet advisory messages was an approach
including engagements with the farming community and applied
science developments.

The science and IT developments included expansion to
the HydroNet platform (https://www.hydronet.co.za/) from
its water-climate focus to include some aspects of climate-
agriculture interactions. HydroNet is used by the catchment
management agencies as a web-based information and decision
support system for water management. It combines weather,
climate and water data and models with local knowledge to
generate location specific information in the form of area
overviews forecasts and warnings according to stakeholders
needs. The water control room is used across South Africa by
water resource managers and engineers at the Department of
Water and Sanitation via specially formulated dashboards to
generate hydrological reports. During the R4A project some of
these aspects were expanded to include aspects important for
agricultural water management as well.

Other scientific aspects included the development of
algorithms or knowledge engines (Jahanshiri and Walker, 2015)
specifically designed to address some of the critical aspects for
optimal maize cultivation. As many losses in southern African
maize production are weather related, it was important to
include the weather forecast and then develop such relationships
as explained by Myeni et al. (2019), Myeni and Moeletsi (2020).
Aspects that are critical include the correct planting dates and
control of pests and diseases. Therefore, algorithms, screening
and trigger factors were developed to use the current weather
parameters and their relationships with maize growth and
development to generate agricultural advisories on a daily basis.

The principles of response farming (Stewart, 1988; Stigter
et al., 2013) have been used in the development of the planting
advisory for the rainfed maize in South Africa. This means that a
certain amount of rainfall should be received within a stipulated
time period before one can plant. This is based on the principle

that water is needed around the seed to allow it to germinate, so
following receiving this amount of rain it is deemed that sufficient
moisture should be available in the top soil. In the AgriCloud
app both the past observed and the rainfall expected from
the medium-term weather forecast are used in this calculation
(Walker, 2020). Then farmers can use this information to make
plans for their planting activities by usually waiting for sufficient
rainfall before planting the maize seeds (Moeletsi et al., 2013a;
Makuvaro et al., 2014, 2017). The agromet advisory was presented
in the AgriCloud App as a calendar block for the following 2
weeks with green shading to show that conditions are conducive
for planting or a red shading to show that it would better not to
plant on those days. This data is updated on a daily basis so can
be available to the farmers for their own specific farm location
when they open the app. An additional feature developed for
AgriCloud was the crowd sourcing section. Here the user can give
feedback to the app developers on the current extreme weather
conditions. This is via a selection mode where one can select an
icon that represents the current weather conditions and then earn
some points for their contribution. At present the icons represent
severe weather conditions, including hail, thunderstorms, frost,
high winds, tornadoes, misty conditions, rain or floods. This
provided a two-way communication channel on AgriCloud that
can be further developed for other applications.

As a large part of the summer rainfall region in South Africa is
in the Highveld on the South African inland plateau at altitudes
above roughly 1500m but below 2100m, frost is a regular winter
occurrence. As maize is sensitive to temperatures below 10◦C, it
must be planted where there is at least a 120 day frost free window
(McMaster andWilhelm, 1997). Therefore, a first screening of the
long-term first and last frost dates was used to exclude planting
dates within such time periods (Moeletsi et al., 2013b, Moeletsi
and Walker, 2013). In this way certain dates for certain locations
will be excluded from further calculations and will return a “do
not plant” message to the farmers in those areas regardless of the
amount of rainfall they have received, due to the danger of frost
damage to the seedlings.

The farming community interactions during the R4A project
included focus group discussions with training on the use of
seasonal forecasts, and a survey through a pre-tested, structured
questionnaire to assess farmers needs and understanding of
climate change. The information collected highlighted the fact
that many farmers in rural areas do not have smart phones and
that the mobile network is poor in some locations. This hinders
their use of such Apps. It also showed that most small-scale
farmers only access the weather forecast via the TV or radio
broadcasts, and that is only available for the main centers. So they
need more detailed information for their own specific locality
as they know that there are differences from the nearest city.
Therefore, it was again highlighted that farmers need routinely
updated weather information for their own areas that they could
use when planning their farm activities. Therefore, it was vital
to develop agromet advisories for specific farming systems in
specific areas and to be able to deliver them on a routine basis.

Following the formulation of the agromet advisories, a
series of meetings were held with the personnel from the
departments of agriculture in selected provinces as a way of
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testing the AgriCloud app with the users (with more than
540 attendees). These meeting were held between May and
October 2018 and the comments received were integrated into
a revised AgriCloud App. Further engagements were via the
extension officers from October 2018 continuing into 2019,
when a number of information training type meetings were
held, with more than 1,000 extension officers attending across
6 provinces. These trainings sessions were held during the roll-
out of the AgriCloud mobile app at the beginning of the 2018
rainy season in South Africa. It is estimated that these extension
officers serve about 400,000 small-scale farmers. Some of the
comments received from them include the following stumbling
blocks encountered, such as poor access to mobile network or
little data and not understanding the functions on the smart
phones. Many extension officers also requested other functions
on the AgriCloud App, particularly pertaining to livestock and
vegetable production activities. However, by the end of the R4A
project more than 1,500 people had downloaded the AgriCloud
App from Google play store and about 70% of users were also
returning on a regular basis. This illustrates that the agromet
advisory information is being used as it has some unique aspects,
namely that it is available in the 11 South African official
languages, it is giving the information for one’s own farm on one’s
own mobile smart phone with daily updated information for the
upcoming 10-14 days.

Some of the lessons learnt during the R4A project, include the
need for continued openness to listen to the clients, extension and
farmers in this case, while maintaining regular communication
and building credibility for the usefulness of the products. One of
the big challenges was to try to evaluate the effect the increased
availability of agromet information on the dryland cropping
systems. As variation in yields is so large between years and
dependent on the rainfall amount and distribution through the
season, it was not possible to only compare production between
years. This needs to be approached in a different manner in
future, possibly by using crop modeling and historic weather
datasets. But that would not include the essential element of the
farmers decision making processes.

CONCLUSIONS

These three examples from three different countries, show
how the scientific weather forecasts can be used together
with especially co-developed tailored agricultural forecasts to
inform farmers and supply them with updated information
on a daily basis. Scientists from different disciplines were
involved in all three examples, showing the importance of trans-
disciplinary teams and how they complement each other by
bringing different skills to the team. This is especially apparent
in SFS where anthropologists were the initiator and team
leaders, as during their exchanges with the farmers, they realized
the need for expertise about climate change and adaptations.
The anthropologists gained a deeper understanding of the
interactions between weather/climate and crop production under
a changing climate. The natural scientists learnt good social
skills for interacting with farming communities during these

co-development activities and the farmers benefited from the
participatory team effort. Good communication systems are
vital to deliver and receive feedback on Agromet advisories.
The three examples highlighted different modes of stakeholder
engagement and routine delivery of the agromet advisories.
All used some form of focus group discussions, with close in-
person interactions between the researchers and the farmers.
This enabled the incorporation of local knowledge into the co-
development of pertinent advisories suitable for the farmers
and their own farming systems and situation. In SFS and
CAPES farmers formed their own groups that met regularly to
discuss the climate information and how it affected their farm
level options and decisions. So these study groups became the
made mode of regular information dissemination, as it allows
immediate feedback and detailed discussions about the topics
that arise. As AgriCloud is a mobile app, it does not offer
such an opportunity, however, the crowd sourcing function
is a step toward receiving feedback from the farmers. In
future various combinations of these methods can be used
to develop locally useful agromet advisories for other farmers
and farming systems under a variety of climatic conditions
around the world. It is vital that good weather forecasts are
available and a co-development process with farmers uses
local information about the agricultural systems to integrate
into an acceptable and appropriate communication system.
Such systems can then be used on a routine basis to reach
as many farmers and farm managers provided that there
are opportunities for two-way communication and continued
refinement and co-developed of the agromet advisories with the
farmer users.
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The overarching goal of this work is to develop and demonstrate methods that support

effective agro-pastoral risk management in a changing climate. Disaster mitigation

strategies, such as the Sendai Framework for Disaster Risk Reduction (SFDRR),

emphasize the need to address underlying causes of disaster risk and to prevent the

emergence of new risks. Such assessments can be difficult, because they require

transforming changes in meteorological outcomes into sector-specific impact. While

it is common to examine trends in seasonal precipitation and precipitation extremes,

it is much less common to study how these trends interact with crop and pasture

water needs. Here, we show that the Water Requirement (WR) component of the

widely used Water Requirement Satisfaction Index (WRSI) can be used to enhance

the interpretation of precipitation changes. The WR helps answer a key question: was

the amount of rainfall received in a given season enough to satisfy a crop or pasture’s

water needs? Our first results section focuses on analyzing spatial patterns of climate

change. We show how WR values can be used to translate east African rainfall declines

into estimates of crop and rangeland water deficits. We also show that increases in WR,

during recent droughts, has intensified aridity in arid regions. In addition, using the PWB,

we also show that precipitation increases in humid areas of western east Africa have

been producing increasingly frequent excessive rainfall seasons. The second portion

of our paper focuses on assessing temporal outcomes for a fixed location (Kenya) to

support drought-management scenario development. Kenyan rainfall is decreasing and

population is increasing. How can we translate this data into actionable information?

The United Nations and World Meteorological Organization advise nations to proactively

plan for agro-hydrologic shocks by setting aside sufficient grain and financial resources

to help buffer inevitable low-crop production years. We show how precipitation, WR,

crop statistics, and population data can be used to help guide 1-in-10 and 1-in-25-year

low crop yield scenarios, which could be used to guide Kenya’s drought management

planning and development. The first and second research components share a common

objective: using the PWB to translate rainfall data into more actionable information that

can inform disaster risk management and development planning.

Keywords: climate change, East Africa, agriculture, risk management, climate extremes, drought, disaster risk

management
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BACKGROUND AND RATIONALE

In this study, we introduce a new Plant Water Balance
(PWB) metric and demonstrate how it can be used to support
trend analyses and risk management in east Africa (0–18◦N,
20◦E−51◦E). Beginning in 2005 (Funk et al., 2005) and
continuing to the present (Gebrechorkos et al., 2019), many
studies have documented the decline in the eastern east Africa
(east Africa east of 38◦E and south of 8◦N) boreal spring “Long”
rains. This region experiences a bimodal seasonal cycle, with the
boreal spring “Long” rainy season being longer andmore copious
than the boreal fall “Short” rainy season. More details on the crop
phenology of the “Long” rains can be found in our accompanying
paper, “An agro-pastoral phenological water balance framework”
(Funk et al., 2021).

While it is generally accepted that this decline is associated

with an intensification of the Indian Ocean branch of the Walker

Circulation, as suggested in 2008 (Funk et al., 2008), the primary
driver of that intensification is likely due to changes in the Pacific,

and not Indian, Ocean (Williams and Funk, 2011; Lyon and
DeWitt, 2012). These changes involve a combination of human-
induced warming in the western Pacific and natural, La Niña-like,
cool sea surface temperatures in the equatorial eastern Pacific

(Hoell and Funk, 2013a,b; Liebmann et al., 2014). The relative
contribution of natural variability to the observed declines in

precipitation remains debated. Some studies have emphasized
Pacific Decadal Variability (Lyon, 2014; Yang et al., 2014), while
other papers have focused on anthropogenic warming in the
western equatorial north-western Pacific (Funk et al., 2018,
2019b). Other studies, however, have focused on changes in the
Indian Ocean. One study (Wainwright et al., 2019) suggested
that the recent decline is strongly associated with a shorter rainy
season, with warmer waters to the south of east Africa delaying
the onset and decreasing surface pressures over Arabia, thus
supporting an earlier cessation of the rainy season.

While decomposing the myriad potential drivers of the east
African rainfall declines (Indian vs. Pacific, natural variability
vs. climate change) is very difficult, it is not hard to identify
the substantial increase in the frequency of poor eastern east
African rains. Many of these dry seasons have been associated
with strong Pacific sea surface temperature gradients, and the
sea surface temperature gradients responsible for the decline,
can be used as a basis for prediction (Funk et al., 2014; Shukla
et al., 2014). At the same time, east Africa has also been impacted
by extreme precipitation. According to the EM-Dat emergency
database on natural and technological disasters (https://www.
emdat.be/), since 2015, 119 flood events and extreme storms
have impacted more than 11 million people. Climate science
suggests a fairly straightforward explanation for at least some
of these increases. As the atmosphere warms, saturation vapor
pressures increase. A warmer atmosphere can hold more water
vapor, which is expected to lead to more extreme precipitation
events (Emori and Brown, 2005). While data limitations make
assessments of extreme precipitation outcomes difficult in sub-
Saharan Africa, recent assessments do suggest that in well-gauged
areas, extreme events are becoming wetter, particularly in wet
areas (Harrison et al., 2019).

To help contextualize the agricultural impacts associated
with these extremes, it is useful to consider both crop water
demand and crop water supply. In this study, we show how
a new “Phenological Water Balance” (PWB) index can be
used to (i) explore changes in both very dry and very wet
growing seasons, and (ii) guide long-term risk management
strategies by helping to identify plausible 1-in-10 and 1-in-25-
year drought scenarios for Kenya. The focus of the first analysis
section is spatial. Where are the hot spots of climate change?
Where are crops and pastures experiencing more frequent
water stress? Where is increased atmospheric water demand
exacerbating the impact of rainfall deficits? In places where
rainfall is increasing, where is it probably beneficial and where
might it be harmful, in the sense that precipitation now often
exceeds plant water requirements by a large amount? The focus
of the second results section is temporal. For a given fixed
region (Kenya), that has been experiencing rainfall declines,
how bad might the next really low crop production year be?
Answering such a question is central to the integrated drought
management planning advocated by the World Meteorological
Organization1 and the UnitedNations (UN). In their 2021 special
report on drought,2 the UN Office of Disaster Risk Reduction
discusses how the combination of climate change and population
growth (Smirnov et al., 2016) is increasing drought exposure
in many developing countries; understanding and managing
these increasing drought risks will be central to meeting the
objects enumerated in the Sendai Framework for Disaster Risk
Reduction and 2030 Agenda for Sustainable Development. A
key component of management involves quantifying drought
impacts. This study uses precipitation, WR, population, and
crop statistics to generate plausible near-term projections of
low annual maize yields, maize production, and per capita
maize production.

The PWB framework builds extensively on geospatial
implementations of the “Water Requirement Satisfaction Index”
(WRSI) (Verdin and Klaver, 2002; Senay and Verdin, 2003). In
the results examined here, we use Start of Season (SOS) and
Length of Growing Period (LGP) maps to define crop-growing
seasons. Using these SOS dates and LGP, we can then calculate
Growing Season Precipitation (GSP) and growing season Water
Requirements (WR). The ratio of GSP andWR defines the PWB.
In this paper, we explore how the PWB can be used to examine
the following two questions:

1. Given the well-documented decline in the east African boreal
spring rains, can the PWB framework be used to evaluate
trends, thereby supporting monitoring at decadal time scales?
Can we identify hot spots of elevated drought or flood risk?

2. Can the PWB framework be used with crop and population
statistics to transform assumptions about precipitation into
assumptions about national maize yields in Kenya, thereby
supporting the development of plausible near-term low crop
production scenarios? These scenarios can be used by Kenyan

1https://public.wmo.int/en/programmes/integrated-drought-management-

programme.
2https://www.undrr.org/gar2021-drought.
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planning agencies to inform national-scale planning and
preparedness for agricultural shocks, leading to improved
drought management policies.

The trend analyses cover the entire east African Long rains
growing area. We show that the WR framing adds substantial
value beyond just analyzing changes in rainfall. A given decrease
in rainfall may have very different impacts depending on
local water requirements. Rainfall declines in areas where
precipitation exceeds plant water requirements may have no
negative effects. On the other hand, a relatively modest decrease
in precipitation in a water-stressed region may dramatically
increase the frequency of poor crop and pasture conditions.
Precipitation increases in such areas might be very beneficial.
But precipitation increases in areas where seasonal rainfall
substantially exceeds WR values may actually be detrimental to
crop outcomes.

The agricultural shocks analysis focuses on Kenya. The first
and second research components share a common objective:
using the PWB to translate rainfall data into more actionable
information that can inform disaster risk management and
development planning. The first research section focuses on
spatial patterns. Where are we seeing changes in risk? The second
research section focuses on temporal distributions for a given
country. How can we translate long time-series of rainfall into
actionable near-term crop production deficit scenarios?

It should be noted that while the results presented here
are regional and seasonal, the general approach taken could
be extended to multiple seasons, and on continental or global
scales; scales at which running more complicated models would
be difficult.

DATA

Terminology
Before going into specifics about particular data sets, we present
and discuss Figure 1, which schematically describes the PWB
calculation. In this figure, we describe the typical seasonal
progression of a rain-fed crop, such as maize, millet or sorghum.
Farmers are well attuned to the typical seasonal progression
of rains in their area, and these rains (shown with a solid
blue curve) tend to begin with scattered showers, increase
to a mid-season peak, and then taper off. In this paper,
we break each growing season into “dekads.” Each month is
divided into three dekads—two 10-day dekads followed by a
third dekad that contains the remaining days in the month.
In agricultural modeling, dekads are often used to represent
time-varying environmental variables, such as precipitation or
RefET. RefET will increase when radiation, surface wind, or local
vapor pressure deficits increase. It is a measure of atmospheric
water demand. Early research by the Food and Agriculture
Organization (FAO), based on plot-level crop observations,
related RefET to the seasonal progression of crop-specific Water
Requirements (WR) (Doorenbos and Pruitt, 1977), and created
the Water Requirement Satisfaction Index (WRSI) model (Frère
and Popov, 1986) to estimate crop water deficits. This framework
breaks the crop season into emergence, vegetative, grain-filling,

and senescing stages. The SOS begins when enough precipitation
has fallen to stimulate crop growth. In this study, the SOS
commences when a location receives more than 25mm of rain
in a dekad and then 20mm of precipitation in the following
two dekads (AGRHYMET, 1996). The plant begins to grow,
adding biomass and leaves. As the photosynthesis increases,
WR increases as well, typically plateauing during the vegetative
and grain-filling stages. Then, once grain filling is complete,
plants senesce, photosynthesis, and water requirements drop
rapidly. These WR changes are shown with a thick red line in
Figure 1A.

The PWB is based on the ratio of crop water supply
and crop water demand, with supply and demand being
based, respectively, on precipitation and RefET. To represent
dekadal rainfall (Pi), this study uses 1981–2020 0.1◦ Climate
Hazards InfraRed Precipitation with Stations3 (CHIRPS) rainfall
data (Funk et al., 2015c). CHIRPS is a widely used gridded
precipitation data set that was explicitly designed for drought
monitoring in food-insecure countries in Africa. One key input
is the Climate Hazards Center Precipitation Climatology4 (Funk
et al., 2015b), which is constructed using moving window
regressions, elevation, satellite observations and long-term in situ
rain-gauge averages. At monthly and sub-monthly time scales,
this climatology is combined with geostationary thermal infrared
satellite observations and station data to produce gridded
precipitation fields (Funk et al., 2015c). Several factors that
make CHIRPS well suited to operational agro-meteorological
drought monitoring are a long 40-year-plus period of record for
historical context, low latency, low bias, and good performance
in validation studies (Duan et al., 2016, 2019; Paredes Trejo et al.,
2016; Agutu et al., 2017; Beck et al., 2017, 2019; Shrestha et al.,
2017; Dinku et al., 2018; Gao et al., 2018; Retalis et al., 2018;
Rivera et al., 2018; Harrison et al., 2019; Prakash, 2019; Gummadi
et al., 2021). The CHIRPS product grows out of long-term efforts
focused on representing orographic precipitation enhancements
in data-sparse areas (Funk et al., 2003). In CHIRPS, these
effects are represented by a high-resolution climatology and
localized precipitation estimation parameters. This results in
strong performance in east Africa’s complex terrain (Dinku et al.,
2018).

Dekadal RefET values (RefETi) are represented by 0.1◦

Penman-Monteith-based RefET (Hobbins et al., 2016). 5 The
RefET is calculated using MERRA-2 reanalysis data. Radiation
and near-surface wind speeds, temperatures, and humidity are
used to calculate the amount of evapotranspiration that would
be expected if an alfalfa-like well-watered “reference” crop was
grown in each grid cell. In general, increases in radiation,
increases in temperature, and decreases in humidity make
the atmosphere more “thirsty,” increasing the associated crop
water demand.

At each location, the start of the growing season (SOS)
begins if a pixel receives more than 25mm of rain, and
is followed by two dekads that total more than 20mm of

3https://data.chc.ucsb.edu/products/CHIRPS-2.0/.
4https://data.chc.ucsb.edu/products/CHPclim/.
5https://psl.noaa.gov/eddi/globalrefet/.
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FIGURE 1 | A schematic representations of the seasonal progressions of precipitation and plant Water Requirements, (B) The calculation of Growing Season

Precipitation, and (C) The calculation of seasonal Water Requirement totals.

Frontiers in Climate | www.frontiersin.org 4 September 2021 | Volume 3 | Article 71658877

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Funk et al. Phenological Water Balance Trend Applications

rain combined (AGRHYMET, 1996). Time-varying crop-stage-
dependent coefficients (Kc) are then used to modify RefET based
on the phenological cycle of crop growth during a growing season
(WRi = RefETi x Kc).

The length of the growing period (LGP) is typically
determined by the specific genotype of the specific crop,
but farmers typically use longer LGP (more slowly maturing)
crops when they can, since longer seasons support more
photosynthesis, more production of biomass, and higher yields.
More details regarding the specifications of SOS, LGP, and crop
types can be found in our accompanying paper in this Frontiers
collection (Funk et al., 2021).

METHODS

The core of the PWB is a comparison of the amount of water
supply (precipitation) and plant water demand accumulated
over the growing season, from the first dekad associated with
SOS through to the end of season at a dekad corresponding to
SOS+LGP. The dekadal totals of precipitation andWR are shown
schematically in Figures 1B,C. Beginning with each location’s
SOS date, and assuming a fixed LGP value at each pixel, GSP
values can be accumulated over each year’s growing season’s
dekadal precipitation (Pi ).

GSP =
∑SOS+LGP

i=SOS
Pi (1)

GSP represents the amount of rainfall, in mm, between the
beginning and end of the growing season (Figure 1B). GSP can
be compared with WR, which estimates the total amount of
growing season moisture, in mm, required by crops or fields
to maintain maximum “water satisfaction.” Each dekad’s AET
value is a function of that dekad’s RefET and time-varying crop
coefficients (Kc).

At the start of the season, at emergence, Kc values start
low. They then increase during the vegetative and grain-
filling stages. In cereal crops, Kc drops during senescence,
while grassland Kc terms stay high throughout the short
(7 dekad) growing season. The WR can be calculated from
the beginning to the end of the growing season as follows
(Figure 1C).

WR =
∑SOS+LGP

i=SOS
Kci × RefETi (2)

The GSP andWR terms can then be combined to yield the PWB.

PWB = 100×
GSP + ε

WR+ ε
(3)

The epsilon term (10mm in this study) is added to both the
numerator and denominator to increase numerical stability in
arid regions. Our companion article compares PWB with WRSI
and Kenya crop yield data, exploring the utility of PWB in routine
agro-meteorological monitoring and forecast settings. Here, we
focus on the use of PWB as a basis for trend analyses and
risk assessment.

EXAMINING THE UTILITY OF THE PWB
FRAMEWORK AS A BASIS FOR
EXAMINING TRENDS IN AGRO-PASTORAL
HAZARDS?

Examining Changes in Mean Climate
Conditions
Since the early 2000s, when the FEWS NET science team first
identified the decline in the east African boreal rains (Funk
et al., 2005), dozens of papers have studied the pattern, timing,
and causes of these changes. While this is not the right venue
for a review of that literature, we do wish to briefly show how
the WR framework can provide a useful analytic foundation
for exploring decadal variations in agro-pastoral hazard trends.
Seasonal WR totals and PWB index values help to translate
changes in precipitation into impacts on crop water availability.

There is almost universal agreement among experts that the
eastern east Africa region has been substantially drier since about
1999.We contrast, therefore, changes between 1999 and 2020 and
1981–1998 (Figure 2). Figure 2A displays the well-documented
declines in GSP. Central and coastal Kenya and eastern Ethiopia
have seen substantial declines, which relate to 4 to 14% declines
in WRSI (Figure 2B). Note that change shown here is in terms of
the WRSI, which estimates the fraction (%) of the plant’s water
requirement that is satisfied. In some pastoral regions, recent
rains have often failed to meet the criteria for season onset,
and, therefore, we find large increases (i.e. delays) in the onset
dates in these areas (Figure 2C). It is interesting to note that, in
areas that rely on the boreal spring rains, we find little change
in RefET (Figure 2D). While some increases are found in Sudan
and South Sudan, that region tends to be associated with a boreal
summer rainfall maxima. This is an important result. Warming
temperatures do not appear to be associated with increasing
WR trends, at least as represented via the Penman-Monteith
calculation used in the Hobbins RefET data set. But we will return
to this point momentarily, in the context of dry seasons, and
reach a more nuanced, and more concerning, conclusion.

Figure 2E shows changes in PWB. While these maps closely
follow the changes in precipitation, it is interesting to contrast
these with the WRSI changes (panel 2B), which miss the
substantial increases in western Kenya PWB values. Finally, PWB
changes in terms of standardized anomalies (not shown) indicate
that these declines are sufficient in magnitude to tilt the odds
toward substantially more frequent droughts in central-eastern
Kenya, southern Somalia, and eastern Ethiopia.

These results help demonstrate the value of WR framing.
What we see is a tendency for TGP to increase in places where
it is not generally needed (i.e., in wet areas) and decrease
in arid regions where precipitation is desperately needed.
One recent global Standardized Precipitation Evapotranspiration
Index (SPEI) analysis (Funk et al., 2019a) found a robust global
tendency toward higher RefET in arid regions, when SPI values
were lower than −0.7. We find a similar result here. Figure 2F
shows the difference between dry season (SPI < −0.7) WR
averages over the 1999–2020 and 1981–1998 time periods. The
+30 to +70mm WR increases suggest that WR values, during
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FIGURE 2 | Changes in 1999–2020 vs. 1981–1998 agro-climatic indicators. (A) Change in growing season precipitation. (B) Change in WRSI. Note that ‘change in

%’ in this instance refers to changes in the fraction of the plant’s water requirement satisfaction. (C) Change in Start of Season (SOS). (D) Change in growing season

WR. Note that these WR changes have been inverted (multiplied by −1), to express the desiccating impacts of increasing WR. (E) Change in growing season PWB.

(F) Change in 1999–2020 vs. 1981–1998 WR when SPI values are <-0.7.

meteorological droughts, are increasing. The spatial pattern of
these increases, unfortunately, tends to align with some of the
most food-insecure areas of eastern east Africa.

Examining Changes in Extreme Growing
Season Precipitation
One interesting application of the PWB metric, not available
with the WRSI, is to examine changes in the frequency of very
wet seasons; seasons for which precipitation far exceeds WR.
To demonstrate this, Figure 3A shows the change in frequency
of the number of seasons for which GSP was more than twice
the seasonal WR values. These results could suggest that the
increases in PWB (Figure 2E), in areas that are already very
wet (Figure 3B), might actually be detrimental. An example of
this can be seen in the areas around Lake Victoria and across
southwestern Ethiopia. In non-water-limited regions, increased
cloudiness can reduce insolation and photosynthesis, while water
logging, extreme precipitation, and flooding can have detrimental
effects. In 2020, sites reporting flood impacts listed numerous
crises in these regions.6 While more detailed analyses can be

6http://floodlist.com/africa/.

carried out using hydrologic simulations from systems like the
FLDAS (McNally et al., 2017), the PWB and PWB forecasts seem
like a useful tool for interpreting hydrological extremes from
a crop-water perspective. Simply put, above-normal rains are
more likely to be detrimental when they occur in regions that
have climatologically high PWB values. A map of the recent
mean PWB values (Figure 3B) reveals quite stunning gradients.
In Kenya, for example, mean PWB values exceed 200% near
the shores of Lake Victoria, then drop to near 100% over the
span of about 100 kilometers. The same steep gradients hold
for the western highlands of Ethiopia. When rainfall increases
in places that are very wet, that will increase the frequency of
exceptionally wet growing seasons. Hence, increase precipitation
could be associated with increased agricultural disruption.

While extreme precipitation and floods can happen anywhere,
it is often very difficult to distinguish beneficial vs. hazardous
above-normal rainfall amounts in arid regions. A reference to
drought monitoring can help make this case. An experienced
agricultural drought analyst will pay special attention to rainfall
deficits in more marginal crop-growing regions. A 75mm
rainfall deficit (Figure 2A) will be much more impactful in
regions with mean PWB values of<100 (Figure 3A). Conversely,
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FIGURE 3 | (A) Change in the frequency of extreme PWB values (PWB > 200%). (B) Mean 1999–2020 east African boreal spring season PWB values.

exceptionally heavy rains are much less likely to be beneficial
when they occur in a region in which precipitation almost always
exceedsWR by a widemargin. Such considerationsmight be used
to identify more probable risk areas in forecasts and observations.

Examining Long Time-Series of PWB
Estimates
While the PWB and WRSI changes are quite similar, the
simplicity of the PWB framework makes it easy to link with
longer precipitation records, such as the Centennial Trends
archive (Funk et al., 2015a), which are almost exclusively
monthly. There are very few long-period-of-record sub-monthly
rainfall archives in Africa. The Centennial Trends and CHIRPS
data sets are built using the same high-resolution climatology
and the same stations, and hence, tend to be quite similar
on regional/seasonal time-scales. We can use the Centennial
Trends data set to place recent PWB variations in a deeper
historic context. We do so for two regions: Kenya’s main crop
growing regions7 and “eastern east Africa,” which is defined
as Ethiopia, Kenya, and Somalia east and south of 38◦E, 8◦N.
Strong linear relationships exist between regional March-April-
May Centennial Trends and CHIRPS GSP, and CHIRPS GSP
andWR. Hence, Centennial Trends PWB estimates that correlate
well with the CHIRPS/Hobbins RefET values during their period
of overlap can be constructed (RKenya =0.9, REEA =0.89). This
allows us to plausibly extend the PWB back to the early 1900s
(Figure 4). As discussed in our Centennial Trends paper, Kenya

7The counties of Baringo, Elgeyo-Marakwet, Kajiado, Kiambu, Kirinyaga, Kwale,

Laikipia, Lamu, Murang’a, Nakuru, Narok, Nyandarua, Nyeri, Taita Taveta, Tana

River, Trans Nzoia, Uasin Gishu, Kilifi.

actually has quite a few stations during this time period. The
eastern east Africa region has lower station densities, especially
prior to the 1920s.

For Kenya (Figure 4A), we see juxtaposed both a tendency
toward drier conditions and two exceptionally wet seasons (2018
and 2020). A deeper historical record reinforces how extremely
wet 2018 and 2020 actually were. This deeper record, however,
also suggests that recent (post-2009) droughts, like 2011, 2017,
and 2019, really were not too severe, given the historical archive.
These dry seasons had PWB values of around 110 percent. The
historical archive has many examples of more severe droughts
with PWB values on the order of 90 percent.

For eastern east Africa (Figure 4B), we find a much higher
level of aridity, with a 1920-to-1989 Centennial Trends PWB
mean of 59, which decreased to 52 over the 1999–2014 period—a
15% decrease. Between 1999 and 2020, 8 years were exceptionally
dry (PWB < 46). The depth of drought during these dry
seasons has also intensified as WR values increase (Figure 2F),
resulting in frequent shocks that can erode resilience and increase
vulnerability. These dry seasons can be contrasted with four very
wet seasons (2010, 2013, 2018, 2020), with PWB values twice
as large as dry seasons, i.e., 80 as opposed to 40. The skewed
distribution of rain in this region, combined with the covariance
of RefET and precipitation, sets the stage for volatile sequences
of droughts and pluvials. As with Kenya, we note that the most
recent dry seasons (2017, 2019) have not been as intense as
prior severe droughts such as 1999, 2000, 2009, and 2011, which
were associated with moderate-to-strong La Niña conditions.
Disaster mitigation strategies, such as the Sendai Framework for
Disaster Risk Reduction (SFDRR), emphasize the need to address
underlying causes of disaster risk. Long time-series of historical
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FIGURE 4 | Long time-series of (A) Kenyan and (B) Eastern east Africa PWB time-series.

PWB values (Figure 4) help inform drought management plans
by helping us anticipate the magnitude of a “typical” drought
sequence. What Figure 4 tells us is that a) there have been
many recent droughts—three out of the last five seasons (2017,
2019, and 20218)— but the actual magnitude of those droughts
has been moderate in comparison to the longer-term record.
DRR practices use past extremes as inputs into future disaster
management plans. Hence, we should prepare for substantially
more severe future droughts akin to 1999, 2000, 2009, and 2011.

EXAMINING THE UTILITY OF THE PWB
FRAMEWORK AS A BASIS FOR
ASSESSING 1-IN-10 AND 1-IN-25-YEAR
CROP PRODUCTION DROUGHT RISKS

We next turn to the topic of disaster risk management,
combining our PWB and Centennial Trends analyses with
population and agricultural statistics to construct plausible
near-term, low-yield scenarios. The intent is to demonstrate
how the PWB can be used to inform national drought risk
management planning, such as that advocated by the Sendai
Framework for Disaster Risk Reduction and the United Nations
Office for Disaster Risk Reduction.9 The first priority of the
Sendai Framework focuses on understanding risk. Agro-pastoral
hydro-climatic risks arise through the interaction of exposure,
vulnerability, and weather-related shocks. Here, we develop
plausible 1-in-10 and 1-in-25-year Kenyan yield reduction
scenarios. There are numerous actions that countries can
take to prepare for agricultural shocks: store grain to offset

8https://fews.net/east-africa/alert/may-19-2021.
9https://www.undrr.org/implementing-sendai-framework/what-sendai-

framework.

crop production deficits, establish cash reserves that can be
used to help smooth out grain price shocks, and fund social
safety net programs that can help poor households cope with
reductions in food availability and access. But investments
in these risk reduction activities diverts funds from other
potentially important sectors: health, education, transportation,
etc. It is important, therefore, to provide quantitative assessment
of drought risk. The 1-in-10 and 1-in-25-year Kenyan yield
reduction scenarios explored here provide plausible scenarios
that can be used to develop risk management planning.

As context, it is important to recognize that despite rapidly
growing economies, countries like Kenya and Ethiopia still face
serious levels of acute food insecurity. A growing wage gap
may be one factor that helps drive such insecurity. While the
annual per capita inflation-adjusted incomes of the poorest 20%
of Ethiopians and Kenyans climbed dramatically between 1993
and 2019 (Figure 5A), the gap between these incomes and the
national average income climbed even more rapidly (Figure 5B),
such that the ratio between poor and middle incomes essentially
tripled between 1993 and 2018. Poor households have to compete
with the rest of society for access to goods and services. And
countries like Kenya continue to see high food-price volatility.
Figure 5C shows wholesale maize prices in Kenya. In 2008/09,
2011, and 2017, the region experienced sequential October-
November-December and March-April-May droughts (Funk
et al., 2018), and large spikes in maize prices.

One concerning result discussed above is the fact that
the 2011 and 2017 Kenyan drought events were not actually
all that extreme, based on the historical record (Figure 4A).
Nevertheless, maize prices skyrocketed (Figure 5C). While a
huge variety of factors influence prices, some insights can be
gained from evaluating per capita maize cereal production.
This metric can be composed into a yield term and per
capita harvested area term (Funk and Brown, 2009). For
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FIGURE 5 | (A) World Bank estimates of per capita income for the poorest 20% of Ethiopians and Kenyans. (B) The gap between the per capita incomes of average

and poor Ethiopians and Kenyans. (C) Monthly nominal wholesale maize prices in Kenya. Price data obtained from the FAO price monitoring tool.
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many countries, this decomposition tends to highlight opposing
tendencies, with yields increasing and per capita harvested areas
declining. For Kenya, however, maize yield statistics suggest
stagnation around a fairly low baseline of about 1.7 tons per
hectare (ha) (Figure 6A). Kenya has primarily relied on increases
in cultivated area to increase production, with the area harvest
increasing by about 70% since the early 1980s (Figure 6B). Since
2009, however, the rate of this increase appears to have slowed.

Combining maize harvested area statistics and projections
with UN’s population statistics and projections (Figure 6C)
reveals declining per capita-harvested area. Since the 1960s, this
value has fallen precipitously, and in 2019, per capita-harvested
area was very low—just 0.042 ha person−1. Expectations for the
future trends are difficult to bracket, given the changing behavior
in harvested area trends, which grew rapidly in the 2000s and
then stagnated in the 2010s. Hence, the 2000–2019 downward
trend in per capita HA is much smaller than the 2010–2019 trend
(0.002 ha person−1 year−1 vs. −0.008 ha person−1 year−1). In
panel 6C, we have picked a value halfway between these trends to
project out through 2050. This moderate assumption leads to a
concerning 14% reduction between 2030 and 2019.

We can use this projection, along with yield assumptions,
to generate per capita cereal projections (Figure 6D). For the
average yield scenario, we have used the 2000–2019 FAOSTAT
mean (1.71 tons ha−1). The 1-in-10 and 1-in-25-year yield
assumptions are largely guided by an analysis of long records
of PWB time-series. There are 40 years of CHIRPS-driven PWB
estimates, and in that record, 4 years stand out as substantially
drier than the rest (1984, 1993, 2000, and 2008) (Figure 4A).
Using the average yield of these four seasons (1.43 tons ha−1)
as a 1-in-10-year low yield value seems plausible. This value also
matches closely with the 10th percentile value of the 1982–2019
FAOSTAT yields. Yields of 1.43 tons ha−1 would be associated
with a ∼16% reduction in national yields. Kenya’s relatively low
variability seems realistic, given that many of themost productive
crop-growing regions are in highland areas with high mean PWB
values (Figure 3B). While vigorously defending any 1-in-25-year
assumption is challenging, given substantial non-stationarity in
both society and climate, wemight select the low-2009 yield value
(1.3 tons ha−1) as a realistic worst-case scenario. This would
correspond with a 24% reduction in yields.

When examining changes in per capita crop production
(Figure 6D), it is important to recognize that the 10-year trend
in per capita harvested area effect (∼14%) is on par with the
1-in-10-year yield shock (16%). This may help explain why many
recent Kenyan food crises (2011, 2017, 2019) were induced by
moderate, not extreme, drought and yield shocks. When the next
1-in-10-year drought comes, a drought event similar to 1984,
2000, or 2009, increases in population and slowing agricultural
expansion will interact with, and likely amplify, the impact of
water deficit-induced yield reductions. By 2028, for example,
average per capita production may resemble the low value from
the 2017 drought year (∼64 kg maize person−1). A severe (1-
in-10-year) drought in 2028 could result in per capita maize
production of just 53 kg maize person−1(Figure 6D), a value
much lower than the 2009 value of ∼64 kg maize person−1. It
is very likely, therefore, that trends in population and harvested

area, combined with typical year-to-year rainfall and RefET
variability, will produce an unprecedented national-level food
shock in the near future.

DISCUSSION

Our results emphasize that many climatologically dry
areas in eastern east Africa (Figure 3B) have become drier
(Figures 2A,B,E). For dry areas in the east, recent low-rainfall
seasons have also been accompanied by larger positive WR
anomalies (Figure 2F); WR acts to amplify precipitation deficits
in eastern east Africa. While we did not find an upward tendency
in most of east Africa (Figure 2D), we did find modest WR
increases during low-rainfall seasons (Figure 2F).

Looking at longer time-series of PWB estimates (Figure 4),
it is interesting to note that recent drought years like 2017
and 2019 were not actually as bad as the strong La Niña-
related droughts in 2000, 2009, and 2011. It is not clear
whether this represents a shift in the mean or a stochastic
outcome. Perhaps recent combinations of large-scale forcing and
random weather fluctuations have not combined to produce
a really strong drought. When such a drought occurs, it
will likely be exacerbated by WR increases (Figure 2F) and
decreasing per capita-harvested areas (Figure 6D). Such an
outcome would obviously be concerning, given the serious food-
security concerns associated with 2017 and 2019 rainfall deficits.

The PWB analyses presented here also provides valuable
insights into extreme seasonal precipitation outcomes. In
general, we find a “wet-getting-wetter” and “dry-getting-drier”
tendency—in climatologically humid regions in western Ethiopia
and Kenya (Figure 3B), we find >14% increases in PWB
(Figure 2E), which are also associated with an increased
frequency of excessively wet rainy seasons (Figure 3A). Unlike
the WRSI, the PWB lets us identify and explore “excessive”
rainfall. The extreme Kenyan PWB values and increased
frequencies of extreme PWB events found near Lake Victoria and
in southwestern Ethiopia are quite concerning. To date, much
more attention has been focused on the agricultural impacts of
droughts. Relatively little work has focused on the potentially
negative impacts of extreme growing season precipitation and
associated reductions in radiation and RefET. Upward rainfall
trends in areas with high climatological PWD are unlikely to
improve crop production. This limit can also have a seasonal
interpretation. In 2018 and 2020, we found extensive areas with
PWB values of more than 200%. Even in an arid region, this
“extra” water will be unlikely to enhance agricultural outcomes.

In both humid and arid regions, and wet and dry seasons, the
complementary relationship between AET and RefET (Hobbins
et al., 2016) provides a useful way to contextualize rainfall
extremes and changes. Figure 7 shows a schematic describing
the complementary hypothesis. We have used “WR” in place of
RefET to emphasize the phenological filtering associated with the
time-varying KC coefficients.

In wet regions and seasons, where TGP > WR, AET is
energy limited. Cloudiness and cool air temperatures will tend
to reduce RefET, which acts as a cap on AET, and ultimately,
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FIGURE 6 | (A) FAOSTAT Kenyan maize yields. (B) FAOSTAT maize harvested area. (C) Observed and projected per capita harvested area, based on an assumed

decline of−0.0002 hectare per person per year for 2020 to 2050. (D) Observed and projected per capita maize production. Projections based on recent observed

yield values, and 1-in-10 year and 1-in-25-year drought year estimate (1.71, 1.43, and 1.3 tons ha−1).

photosynthesis. Furthermore, since a coarse approximation of
the local water balance can be written as runoff = GSP –
WR, when GSP is much greater than WR, runoff can increase
dramatically, helping to set the stage for floods.

In dry regions and seasons, where TGP < WR, AET is water
limited. Under such conditions, the PWB and WRSI are likely
to perform similarly. Furthermore, as aridity increases, AET and
WR are expected to be complementary, with WR increasing as
AET decreases (Figure 7). Extraction and analysis of the WR
component has really emphasized this relationship, as many of
the driest regions and seasons exhibit the largest anomalous
WR increases during below-normal rainfall seasons. In these
regions and seasons, the PWB, WRSI, or hydrologic modeling

systems like FLDAS are likely to perform better than simple
rainfall observations, because they can capture WR/precipitation
covariations in very dry regions.

The Bouchet-Morton complementary relationship (Hobbins
et al., 2016) helps us understand the spatial and temporal
covariations of RefET and precipitation. These covariations
amplify the impacts of rainfall deficits in dry areas, as well as the
impact of rainfall excesses in wet areas. Ironically, east Africa may
be experiencing more crop water deficits in dry areas and more
extreme growing season rainfall in some very wet areas.

In the literature discussing climate change and precipitation
extremes, it is common to discuss dynamic and thermodynamic
drivers (Emori and Brown, 2005). Thermodynamic controls
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FIGURE 7 | A schematic diagram of the Bouchet-Morton complementary relationship.

relate to warming in the atmosphere, and the expectation
that atmospheric saturation vapor pressure will increase with
increasing temperatures at approximately 7% per degree Celsius
of warming. Ironically, these increases can both increase
the frequency and magnitude of extreme precipitation events
(Figure 3A), while also exacerbating the intensity of droughts,
especially in dry areas (Figure 2F).

Theoretically, at global scales, climate scientists expect
mean precipitation to remain fairly stable, while extreme
precipitation increases (Trenberth et al., 2003; Allan
and Soden, 2008). Mean precipitation is fundamentally
constrained by an energy balance that involves radiation,
condensation/diabatic heating, and surface and latent
heat fluxes. Because radiation changes are quite small,
overall, changes in mean precipitation—both in models
and observations—are quite small. This constraint does not
hold at small and short spatial and temporal scales, scales
in which experts expect both dynamic and thermodynamic
exacerbation of extremes (Emori and Brown, 2005). Stable
means and more extremes imply that the frequency of dry days
would increase.

Globally (Donat et al., 2016), there is substantial evidence that
extreme precipitation is becoming more frequent. In areas of
sub-Saharan Africa with quality daily precipitation data, robust
trends over 1950–2013 indicate that extreme events have become
wetter, but that annual totals have decreased due to fewer rain
days (Harrison et al., 2019). While this study has only examined
seasonal totals, further analyses of sub-seasonal precipitation and
temperature statistics, such as consecutive dry days and growing
degree days, would be informative. For example, one recent study
(Laudien et al., 2020) found that monitoring consecutive dry days
was the best overall predictor for Tanzanian yields. Using theWR
phenological framework, multiple statistics, arising from a host of
potential data sources, could be examined during the vegetative
and grain-filling stages. Compositing multiple crop scenarios,
such as the combination of maize and grasslands analyzed here,
seems useful from a decision analytics perspective.

In Kenya and Ethiopia, these highlands are densely populated.
So, the increases in the frequency of extreme wet season
precipitation (Figure 3A) are occurring in areas with millions
of people. East of ∼38◦E, densely populated highland areas in
Kenya and Ethiopia are much more drought prone, and in these
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regions, we find substantial increases in water stress (Figure 2E).
Below and between the highlands, sparsely populated but very
food-insecure pastoralists in eastern east Africa are seeing more
frequent water deficits being exacerbated by increasing WR
demands (Figure 2F).

Our deeper dive into Kenya crop conditions and per capita
cereal production suggests that persistence of the current
trends—stagnant yields and rapidly growing population—will
likely lead, very soon, to unprecedented low levels of per capita
cereal production. Intensification of agriculture through the
adoption of improved seeds and fertilizer can help improve
yields (Davenport et al., 2018). In addition, the results presented
here point toward adaptation strategies that manage climate
(Figure 4) and price volatility (Figure 5C). Kenyan climate is
strongly impacted by the Indian Ocean Dipole and the El
Niño Southern Oscillation, and climate projections anticipate
that these drivers will become more extreme (Cai et al., 2013,
2015a,b).

In addition to planning for future food production shocks
(Figure 6D), the results presented here provide hopeful evidence
supporting improved water management as a path toward
increased resilience and more stable agricultural production.
In arid regions, well-maintained boreholes can provide access
to water during droughts (Thomas et al., 2019), and “drought
emergencies can be mitigated by investing in resilience efforts
that make safe water reliably available at strategic groundwater
abstraction locations during cycles of water stress” (Thomas et al.,
2020). In humid areas, improved water storage and expanded
irrigation could reduce risks during extremely wet seasons and
provide supplemental water during dry seasons.

In closing, we note that, while this study has focused on
an important season in an important food-insecure region,
the general methods employed here could be expanded to
multiple growing seasons and regions. This could then be
used to further explore global increases in dryland RefET
during drought (Funk et al., 2019a), as results similar to
Figure 2F are explored across larger domains. Similarly, excessive
precipitation amounts, as evaluated in Figure 3A, could be
examined globally.
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The 2019–2020 Desert Locust (DL) upsurge in East Africa threatened food security for

millions in the region. This highlighted the need to track and quantify the damaging

impacts of the swarming insects on cropland and rangelands. Satellite Earth observations

(EO) data have the potential to contribute to DL damage assessments that can inform

control measures, aid distribution and recovery efforts. EO can complement traditional

ground based surveys (which are currently further limited due to COVID-19), by rapidly

and cost effectively capturing the full spatial scale of the DL upsurge. However, EO-based

techniques struggled to accurately quantify damage from this DL upsurge due to the

sporadic and localized nature of infestations impacting scale, timing, and anomalous

vegetation conditions. This study analyzed time series data fromMODIS, the harmonized

Landsat Sentinel-2 product, and C-band radar data from Sentinel-1 to distinguish DL

damage from normal senescence or other confounding factors from January to June

2020. These data were compared to in situ locust swarm, band, and non locust

observations collected by the Food and Agriculture Organization (FAO) and PlantVillage.

The methods presented did not produce results that could confidently differentiate

senescence from locust activity, and may represent a limitation of publicly available

remotely sensed data to detect DL damage. However, the higher spatial resolution data

sets showed promise, and there is potential to explore commercially available satellite

products such as Planet Labs for damage assessment protocols.

Keywords: locust, NDVI, vegetation, damage assessment, MODIS, harmonized landsat sentinel

1. INTRODUCTION

Desert locusts (Schistocerca gregaria) (DL) are considered one of the most dangerous migratory
pests on the planet (Cressman, 2016; Gómez et al., 2018; Shrestha et al., 2021). They typically inhabit
the arid regions stretching from West Africa to the Indian subcontinent and exist in a relatively
unremarkable solitary phase (Cressman, 2016; Gómez et al., 2020; Shrestha et al., 2021). However,
under favorable climatic conditions, DL can phase change into gregarious swarms, breeding, and
devoring vegetation at massive scales (Pener, 1991; Sword et al., 2010). DL need wet, sandy soils
to lay eggs and fresh green vegetation to sustain themselves (Pener, 1991; Collett et al., 1998).
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After hatching, they exist in a hopper phase, when they do not
have wings (Pener, 1991). During the gregarious phase, these
hoppers form bands of many millions of individuals marching
together (Pener, 1991). Upon maturity, the locusts grow wings
and swarm and copulate. Once again, the locusts look for the
right soil conditions to lay eggs. This life cycle takes ∼2–3
months (Pener, 1991). Utilizing synoptic wind patterns, DL
can fly up to 100–150 km per day (Cressman, 2016; Food
and of the United, 2020). Thus, when the right precipitation
conditions occur and egg laying becomes very successful over
a short period of time, swarming occurs (Pener, 1991; Collett
et al., 1998; Sword et al., 2010). DL swarms migrate seasonally
following well documented migratory routes (Homberg, 2015).
These conditions came to fruition in late 2019 following cyclones
in the Arabian Sea. Cyclones Mekunu and Luban in 2018
provided enhanced regional rainfall, particularly on the Arabian
peninsula, and cyclone Pawan in 2019 created wind patterns
enabling the DL to invade East Africa (Salih et al., 2020). An
upsurge occurs when a very large increase in locust numbers and
multiple outbreaks occur, leading to the production of two or
more successive generations of transient-to-gregarious breeding
in complementary seasonal breeding areas (Cressman, 2016).
Since October 2019, rainfall in East Africa was anomalously high
in desert areas, creating favorable conditions for DL activity
including breeding and gregarization. Figure 1 illustrates the
3 month anomalies for the October, November, December
2019 and January, February, March 2020 time periods. These
anomalies were calculated using the Climate Hazards Group
InfraRed Precipitation with Station Data (CHIRPS) using the
deviations from the long term (since 1980) climatology. In
fact, due to the conditions outlined above, and the economic
instability in Yemen reducing strategic control, the FAO noted
in the September 2019 Desert Locust bulletin that the region
was under threat for increasing DL activity. DL migratory
patterns are also well documented, following the synoptic winds
and vegetation green up. During upsurge, a typical 1 km
squared swarm can contain 150 million locusts, and consume
as much food as 35,000 people each day (Food and of the
United, 2020). This can lead to widespread devastation of
vegetation and crops over impacted areas, severely effecting local
food security.

Control strategies vary widely across the DL impacted
areas depending upon the region, growth stage, and resource
availability (Djibo et al., 2006; Klein et al., 2021). The
FAO, the leading organization in DL control, prediction, and
support, operates the Desert Locust Early Warning System,
which uses a combination of remotely sensed, modeled, and
in-situ information to understand DL phase and spread to
inform management and control operations (Djibo et al.,
2006; Cressman, 2013). The countries along the arid regions
in northern Africa and the Arabian Peninsula are frequently
impacted by locust infestations. These “front line countries”
maintain locust control teams and report sightings and
conditions back to the FAO, including the Desert Locust Control
Organization for East Africa (DLCO-EA) and the Commission
for Controlling the Desert Locust in the Western [Africa] Region
(CLCPRO). This information feeds periodic bulletins on regional

locust activity and informs control strategies (Cressman, 2013).
Remotely sensed information, such as vegetation conditions, soil
moisture, and precipitation, provide survey teams with general
locations for favorable DL activity. These targets are of limited
utility due to their large size, coarse resolution, remoteness,
and local instability (Cressman, 2013; Ellenburg et al., 2021).
Although control measures, such as localized spraying, burning,
or trapping, ideally target sedentary eggs, widespread use of
pesticides is also common during the swarming stage. During
the most recent outbreak in West Africa, 13 million liters of
pesticides were distributed to affected countries at a cost of
about 280 million USD (Djibo et al., 2006). Many East African
countries, who do not see upsurges often, lack the national
capacity and ground presence to implement control measures
effectively (Salih et al., 2020).

Satellite EO can complement and augment ground
observations and monitoring, providing the potential to
consistently monitor surface conditions, particularly over remote
and hard to access locations. EO data have been successfully
used to identify pest breeding locations (Ellenburg et al., 2021),
monitor habitat (Klein et al., 2021), and predict distributions
(Klein et al., 2021). As it is impractical to directly map DL from
satellite observations due to spatial resolution requirements,
typically other parameters are monitored to predict where
DL are likely to thrive. For example, soil moisture and wind
direction have been used to predict the likely spread of DL
swarms for targeted interventions (e.g., Ellenburg et al., 2021).
DL populations have also been successfully forecast through
mapping emerging vegetation (Latchininsky, 2013).

Many EO-based studies include the use of optical imagery
such as Aqua and Terra MODIS and the Landsat series, deriving
Normalized Difference Vegetation Index (NDVI) and land cover
from these datasets to arrive at DL habitat as described in the
review by Klein et al. (2021). Thermal infrared sensors as well
as active radar sensors have been used to measure temperature,
precipitation, and soil moisture to identify DL habitat (Klein
et al., 2021). Limitations of using remote sensing to monitor
these proxy variables include low spatial and temporal resolution,
as DL have localized impacts and yet travel rapidly over large
areas. In addition, many EO-data layers, such as land cover and
meteorological variables, that could be useful for DL detection
are often out of date and can be time consuming and expensive
to generate.

Few studies quantify damage from DL using remote sensing
techniques, focusing instead on parameters such as NDVI,
precipitation, and wind (Klein et al., 2021). Anomalous behavior
of satellite observations such as vegetation conditions can
provide significant information on the impact of pest infestations
on vegetation (Wójtowicz et al., 2016). There have been instances
where remote sensing has been used to assess pest damage or
plant stress, but not in context of DL. Studies mapping locust
damage such as the above have not focused on S. gregaria and
the majority have relied on very high spatial resolution (VHR)
imagery or hyperspectral data (Chavez, 1994; Genc et al., 2008;
Pekel et al., 2011; Cressman, 2013). However, these data are not
widely available and are expensive and hence the methods cannot
be applied systematically (Klein et al., 2021).
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FIGURE 1 | Three month precipitation anomalies derived from the Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) for October, November,

and December 2019 (A), and January, February, March 2020 (B). The region experienced ∼50–300 mm more precipitation than average 3-monthly periods leading to

enhanced greenness throughout the region (C) showing MODIS derived NDVI anomalies from the second dekad in January 2020.

Remote sensing of vast areas using multispectral and high
spatial resolution (between 10 and 30 m) has become more
accessible in recent years, thanks in part to the launch of the
Sentinel-2 constellation that complements the Landsat series, as
well as increased access to cloud computing resources to process
high data volumes, including platforms such as Google Earth
Engine (GEE), (Nakalembe et al., 2021). Nonetheless, damage
caused by DL can be difficult to quantify with EO-data due to the
sporadic and localized nature of infestations, agro-climatology

and timing of the event. Yet, this information is valuable,
supplementing ground based surveys that inform ground control
operations, and aid distribution. In 2020, EO-based assessment
were even more critical for capturing the full spatial scale of
the DL upsurge limited ground operations due to COVID-19
related travel restrictions. Moreover, the regions in which DL
are often active are remote and sparsely populated, limiting
accessibility required to quantify impacts. However, these same
remote regions often provide valuable resources for pastoral
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FIGURE 2 | The study area includes Burundi, Djibouti, Eritrea, Ethiopia, Kenya, Rwanda, Somalia, parts of Sudan and South Sudan, Uganda, and Tanzania.

communities, wildlife, and subsistence cropland areas. With
increased variability in regional climates and control measures
hampered by global geopolitics, regional and national insecurity,
DL outbreaks of large magnitude such as the 2019–2020 upsurge
in Eastern Africa will likely increase, and the need to develop and
improve methods to detect DL damage from remote sensing will
become more valuable.

This research presents methodologies that could be used
to systematically identify vegetation damage caused by DL.
The methods are applied to the 2019–2020 DL upsurge
in East Africa described at the worst upsurge in 25 years
for Somalia and Ethiopia and worst in 70 years for Kenya
(Nakalembe, 2020). Aiming to fill gaps in the research on
using EO observations for DL detection, this work focuses on
damage detection and acknowledges the need to distinguish
DL damage from normal senescence and other confounding
factors. The methods described were designed to take into
account vegetation cycles, as migratory patterns of DL follow
peak vegetation greenness (Pekel et al., 2011; Cressman, 2013;
NOA, 2016). This investigation includes a data fusion approach
combining higher resolution data and Sentinel 1 Synthetic-
aperture radar (SAR) data. Few studies have applied Sentinel
1, VHR, and data fusion to DL damage detection (Klein et al.,
2021). Successfully identifying DL damage would enhance the
efficiency of distributing aid and measuring the efficacy of
control measures.

2. MATERIALS AND METHODS

2.1. Study Area
This study focuses on the Greater Horn of Africa (GHA) region
that experienced the 2019–2020 DL upsurge. First reports of DLs
in the GHA were received by the FAO in late 2019 (Salih et al.,
2020). Djibouti, Eritrea, and Ethiopia began their control efforts
as swarms growth increased significantly in Yemen and DLmade
their way across the Red Sea. Further, the typically “dry” season of
January–March saw abnormally high rainfall (Figure 1), creating
the perfect egg laying conditions across the arid and semi arid
regions of the GHA. Soil texture, moisture and temperature are
limiting factors for DL breeding and egg incubation, and are also
leading indicators for vegetation growth (Batten, 1969; Mukerji
and Gage, 1978; Padgham, 1981; Peng et al., 2020; Ellenburg
et al., 2021). The incubation period and subsequent life stages of
the DL vary widely depending on soil and air temperature. The
incubation period ranges between 14 and 22 days and the hopper
life stage can last for 35–45 days (NOA, 2016). Therefore, it is
expected that egg laying occurred 3–10 weeks prior to hopper
observations (Ellenburg et al., 2021) corresponding to vegetation
green up. This analysis focused on the period from December
2019 to June 2020 time frame in the GHA (Figure 2). This
time frame thus includes any areas that would be utilized for
rangelands or croplands and would directly impact food security
in the region.
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TABLE 1 | Remote sensing datasets used in this study.

Satellite Operating Spatial Temporal

Agency Resolution Resolution

AQUA/TERRA MODIS NASA 250 × 250 m Daily

Landsat 8 OLI USGS 30 × 30 m 16 days

Sentinel-2 MSI ESA 10 × 10 m 5 days

Sentinel-1 SAR ESA 10 × 10 m 12 days

2.2. Data Sets
2.2.1. Remote Sensing Data
Awide variety of remotely sensed datasets were used in this study
in order to complement spatial or temporal shortcomings of any
particular mission (Table 1). Optical data from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor on
board the AQUA and TERRA satellites offer a daily temporal
resolution but are limited spatially at 250m.Whereas the Landsat
8 and Sentinel-2 missions have revisit times of 16 and 5 days,
respectively, but have much higher spatial resolutions (30 and 10
m). The relatively low revisit periods of the Landsat and Sentinel
satellites often results in data gaps due to cloud cover. Thus, a
harmonized Landsat-Sentinel (HLS) product was created in GEE
according to the specifications outlined in Claverie et al. (2018).
The HLS dataset was used in addition to using MODIS, Landsat
8, and Sentinel-2 separately to compute vegetation condition
indices such as the NDVI (Rouse et al., 1974) and Modified Soil
Adjusted Vegetation Index (MSAVI) (Qi et al., 1994).

In addition to optical datasets, C-Band synthetic aperture
radar (SAR) data from the Sentinel 1 missions were also used.
SAR provides information about the texture of the Earth’s surface
and is not limited by cloud cover. Specifically, Sentinel-1 C-band
vertical-vertical (VV) and vertical-horizontal (VH) backscatter
are known to be sensitive to changes in vegetation conditions,
such as damage caused by hail (Bell et al., 2020) and above
ground biomass (AGB) (Pereira et al., 2018). Areas that have been
damaged by DL are expected to have lower backscatter power
due to a reduction in vegetation cover. As the cross-polarized
signal is dominated by vegetation cover, rather than the surface
(Woodhouse, 2005), the VH analysis is expected to be more
useful for distinguishing potential locust impact.

2.2.2. Ground Data
The FAOmaintains a publicly available database of locust reports
(FAO, 2020b). These reports are compiled from many sources,
but in most cases contain the geographic location of the sighting
and the life cycle stage of the locust. The general stages of
gregorious DL include egg, hopper bands, and swarm. After the
eggs hatch, juvenile DL form large groups of hoppers or hopper
bands. At this life stage the DL cannot fly. These observation
points, particularly at the swarm and hopper band stages, were
used as in-situ reference dataset for this study. Non-locust
observations, where no DL were observed at that time and place,
were acquired from PlantVillage and are available from March
2020. January and February had no non-locust locations with
which to compare the swarm and band locations. Observations

were not evenly distributed throughout the study period. Bands
and none observations increased from December 2019 to June
2020. Swarm observations increased as well, except for a lull in
May 2020.

In addition to the ground based data sets available through
FAO, the researchers also compiled ancillary information. These
ancillary datasets included survey data from the United States
Agency for International Development. This supplementary
information was used for qualitative comparisons of locust
sighting locations.

2.3. Time Series Analysis
Using the HLS and MODIS data, time series at each of the
band, swarm, and non-locust observations were analyzed for
every available non-cloudy pixel. This analysis utilized vegetation
indices such as NDVI andMSAVI tomap the presence and health
of vegetation. Typically NDVI is used tomap vegetation, however
MSAVI was developed to account for the impact of soil in areas
with low vegetation density (QI1994119) such as is prevalent in
GHA. Despite MSAVI’s expected advantages in detecting actual
vegetation conditions, the analysis showed that both NDVI and
MSAVI had very similar temporal dynamics. Thus, only the
NDVI results were used in this study for analysis and discussions.

The MODIS NDVI was compared to HLS NDVI over band,
swarm, and non-locust observations based on the number of
days before and after the observation. The HLS NDVI at the
pixel corresponding to the band sighting was averaged with
the surrounding eight pixels for all available scenes in the
study period. This time series was then smoothed using cubic
interpolation (McKinney, 2010) to remove anomalous highs and
lows. NDVI before and after the event, i.e., the time of the
band/swarm sighting, was divided by NDVI during the event.
This is termed relative NDVI. Using relative NDVI normalizes
the impact of the natural vegetative cycle and different timings
of sighting. Relative NDVI from HLS was then compared with
the equivalent MODIS NDVI. Two examples are presented
here, located in Ethiopia (Figure 3). These sites were selected as
representative of the region after a thorough analysis of random
sites distributed across the GHA. It was expected that if damage
due to DL was detected, the NDVI values would decrease after a
band sighting by a larger amount for the higher resolution HLS
data set when compared to the lower resolution MODIS data set.

2.4. Monthly Composites Analyses
2.4.1. Harmonized Landsat Sentinel 2 Analysis
Using theHLS data, NDVI andHue were calculated on amonthly
basis to account for regional cloud cover, particularly prevalent
during the rainy seasons. The benefits of using NDVI were stated
in the previous section. Hue was selected as some studies have
found value in using the hue values as a proxy for vegetation
condition in the arid and semi arid regions where locusts inhabit
(Pekel et al., 2011). Hue, saturation, and value, can be converted
from any band, however the red, green, blue, and SWIR bands
(bands 4, 3, 2, 7, and 6, respectively) were used for this analysis.
This transformation was completed for the HLS data set on
a monthly scale. Median NDVI pixel values for each month
from December 2019 to June 2020 were calculated. Monthly
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FIGURE 3 | Band observation sites in Ethiopia where NDVI derived from HLS was compared with NDVI derived from MODIS.

composites of median NDVI for the time period of 2015 (Sentinel
2 launch) through November 2019 were also created as a baseline
reference period. This represented the longest term similar data
set for comparison due to the recency of Sentinel 2 data.

2.4.2. Sentinel 1 Analysis
Cloud cover was frequently an issue, therefore, a multitemporal
analysis of Sentinel 1 C-band data was conducted, as SAR
data is able to penetrate through cloud cover (Woodhouse,
2005). Backscatter power for locust and non-locust locations
were compared to see if there were changes indicating the
presence of locust damage. First, the median backscatter was
selected from a 3-month moving window over the study area
for December 2019–June 2020. The resulting six median layers
were extracted by known DL locations [band (N = 3,799) and
swarm (N = 2,646)], and non-locust locations (N = 13,502)
to see if there was a difference in the medians of these
groups. Sightings were grouped by the same time periods as
the Sentinel 1 imagery. VH and VV backscatter power were
extracted by swarm and band sites and non-locust locations
and compared. A similar analysis was repeated at a monthly
time step to take greater advantage of the temporal resolution
of Sentinel 1. A similar analysis was repeated at a monthly
time step to take greater advantage of the temporal resolution
of Sentinel-1. Single scenes, which would have taken full
advantage of the higher temporal resolution of the Sentinel-
1 dataset, were not investigated. Evaluating monthly medians
also reduced potential impacts from speckle, or natural variation
that occurs even over homogeneous surfaces, per Woodhouse
(2005). Another reason for using the Sentinel-1 data at a monthly
timescale was that it also made the analysis comparable to
the one done using the Harmonized Landsat Sentinel-2 (HLS)
dataset, which, due to cloud cover, was likewise generated
at a monthly timescale. For that reason, use of Sentinel-1
imagery at a monthly timescale was therefore determined to be
more appropriate.

3. RESULTS

3.1. MODIS Time Series Analysis
The NDVI values were compared for MODIS and HLS at known
band, swarm, and non-locust observation sites as a function
of days before and after the observation date (Figure 4). Over
locust and non-locust sites, the relative HLS NDVI varied more
than the relative MODIS NDVI, indicating that the HLS may
have recorded greater changes in vegetation than the MODIS.
Sixteen days after the observation, themedian relative HLSNDVI
dropped slightly (<0.1) for band and non-locust sites while the
median relative NDVI at swarm sites remained nearly the same.
This indicates that the relative HLS NDVI is not immediately
detecting notable vegetation change at locust locations.

The case studies of individual band sites, #1321 (Figure 5B)
and #1700 (Figure 5A), illustrated that the average relative NDVI
over the average of the pixel corresponding to the band sighting
and the surrounding eight pixels from the HLS followed the same
trends as the relative NDVI fromMODIS, although in general the
magnitude of HLS NDVI values were lower. For example, NDVI
lows occurred at site #1321 in October, February, and May for
both datasets. Similarly, for site #1700, the peaks in November
and June appeared in both datasets. Since NDVI from both HLS
andMODIS follow the same general trends over the study period,
the differences in the NDVI change between the HLS andMODIS
during or after a band observation were potentially attributed to
vegetation change occurring at a higher spatial resolution, for
example DL damage. However, the NDVI trends at site #1321
and site #1700 do not convincingly demonstrate DL damage. At
site #1321, the HLS NDVI decreased (<0.05) at the observation
date. However, the MODIS NDVI also decreased (∼0.1). This
suggests that the vegetation change occurred over an area larger
than would be expected than if it were due to DL damage. At
site #1700, the HLS NDVI decreased (<0.05) while the MODIS
NDVI increased (∼0.05). This lack of a clear pattern in direction
and magnitude of NDVI change between HLS and MODIS
does not lend itself to identification of DL damage. Ultimately,
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FIGURE 4 | Relative NDVI of MODIS vs. HLS compared over band (A), swarm (B), and non-locust (C) sites [n = 36,820, n = 24,696, n = 72,863].

investigating a higher resolution dataset with this method may
yield interesting results for DL damage detection.

3.2. Monthly Composites Analyses
3.2.1. Harmonized Landsat Sentinel-2 Analysis
The monthly HLS composite analysis did not show definitive
evidence of damage. Band and swarm data sets were compared
to non-locust points for the months of March through June
2020 using both NDVI (Figure 6A) and Hue calculated with the
shortwave infrared band combination 7, 5, 4 (Figure 6B). Hue

was also calculated using the natural color bands (4, 3, 2) and
the shortwave infrared, near infrared, and red channels (6, 5, 4)
but the pattern was very similar to the 7, 5, 4 combination and
therefore only 7, 5, 4 is presented here.

The NDVI values showed a normal distribution and student
pair wise t-tests were performed for each month comparing band
against non locust and swarm against non locust data points.
All comparisons resulted in significant differences between the
data sets with p-values <0.05. In all months if damage was
identified, we would have expected NDVI to be higher at the
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FIGURE 5 | Time series of NDVI from MODIS and averaged HLS at site #1700 (A) and site #1321 (B). The vertical grey line indicates the date the band was observed.

none points, however this was not the case. In March and April,
NDVI is higher for the bands and swarms compared to the none
points. The reverse is true in May, and in June the means are
all very close. There was high variability in NDVI within each
month, therefore even when an NDVI value was lower it was not
conclusively due to locust activity.

The hue transformation showed a similar pattern to NDVI,
but reduced the range of values toward 0. This made
interpretation more difficult as the means became closer together
and the variance remained large across all categories. In this case
the use of hue as an index was less useful than NDVI.

3.2.2. Sentinel-1 Analysis
Results of the multitemporal analysis were inconclusive,
suggesting that a shorter time frame could reveal more
information than the multitemporal, 3-month composites. For
the monthly analysis, the VV values for bands, swarm, and none
points ranged −26 to 4 db whereas VH ranged from −33 to −4
db (Figure 7). Thus, the median backscatter power for VV tends
to be higher than VH for all locust and non-locust locations. This
trend is expected, as VV and VH respond differently to surface
characteristics. More importantly, the differences between the
median backscatter power of both swarm and band locations vs.
the non-locust locations did not clearly signal vegetation change,
including the presence of locust damage.

Taking a closer look at the median backscatter power for
VH (Figure 7), for March and April, the median backscatter
power for non-locust sites was less than the median backscatter
power for bands and swarms. For March, the absolute difference
between the non-locust the and swarm medians and the absolute
difference between the non-locust and band medians were both
<0.5 db. For April, the absolute difference between the non-
locust and swarmmedians was 0.7 db and the absolute difference
between the non-locust and band medians was 1.2 db. For May
and June, the median backscatter power for non-locust sites
was greater than the median backscatter power for bands and
swarms. For May, the absolute difference between the non-locust
and swarm medians was 1.6 db and the absolute difference
between the non-locust and band medians was 2.9 db. For
June, the absolute difference between the non-locust and swarm

medians was 1.0 db and the absolute difference between the non-
locust and band medians was 1.6 db. In addition, the ranges
for all location type had a large amount of overlap overall for
each month.

Taking a closer look at the median backscatter power
for VV (Figure 7), for March, May, and June, the median
backscatter power for non-locust sites was greater than the
median backscatter power for bands and swarms. For March,
the absolute difference between the non-locust the and swarm
medians and the absolute difference between the non-locust
and band medians were both <1.0 db. For April, the median
backscatter power for non-locust sites was less than the median
backscatter power for bands and swarms. For June, the absolute
difference between the non-locust and swarm medians and the
absolute difference between the non-locust and band medians
were both <2.0 db. For May, the absolute difference between
the non-locust and swarm medians was 1.20 db and the absolute
difference between the non-locust and band medians was 2.63
db. As with the VH, the ranges for all location types overlapped
greatly each month. Thus, there is also no consistent pattern of
VV or VH backscatter power that indicates locust damage at this
temporal and spatial resolution with this method.

4. DISCUSSION

Several methodologies were tested to attempt to detect DL
impact, however, only the HLS monthly composite analysis
showed very slight potential evidence of damage and only during
March andApril. There were several limitations, including spatial
and temporal resolution, for each methodology that did not
overcome their hypothesized utility. Time series data did not
clearly indicate vegetation change. However, these data were very
noisy and specific conclusions are uncertain. It is clear that spatial
scale could play a role in damage detection of DL.

Leveraging SAR data was also challenging. There is not an
extensive catalogue of openly available SAR data to compare
current conditions with previous, as Sentinel 1A was launched
in 2014 and 1B in 2016. This study chose to also focus on
monthly medians which did not take full advantage of the
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FIGURE 6 | (A) NDVI values at locust swarm, band, and non locust observations for the months of March through June 2020. (B) Hue values from the 7, 5, 4 band

combination at the locust swarm, band, and no locust observations for the months of March through June 2020. Neither index showed distinct differences between

locust activity and non locust activity.

temporal resolution of the Sentinel-1 data set. Future work
may want to evaluate every available SAR image for changes
in backscatter as opposed to monthly composites. Finally,
speckle, or natural backscatter variation that occurs even over
homogeneous surfaces (Woodhouse, 2005), may obscure the
relatively small areas of locust damage.

There were several confounding factors thatmade this analysis
challenging despite utilizingmethods designed to overcome these

limitations. Due to the intense rainfall from late 2019 into 2020,
the region was exceptionally green. This reduced the utility of
comparisons to similar years or anomaly analyses and we did
not systematically incorporate these methods for that reason.
This enhanced greenness not only made damage assessment
challenging, but it also may reduce the successful application
of such information for food security assessments. For example,
regionally, pasture land had higher than normal vegetation due
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FIGURE 7 | Box plots of monthly VV (A) and VH (B) median backscatter power from Sentinel 1 C-band at swarm, band, and non-locust locations for March through

June 2020.

to the enhanced rainfall, and we could expect that grazing
communities had sufficient fodder for their animals and therefore
may not have experienced food insecurity despite DL impacts.

Seasonality can also play an important role in impact analysis.
Natural senescence grasslands or crop harvesting in agricultural
areas will also confound DL damage assessments using remotely
sensed data. For this reason, disaggregating the vegetation cover
by land use type may prove important in future analyses.

The Food Security and Nutrition Working Group (FSNWG)
at the FAO completed several iterations of East African ground
based DL impact assessments after harvest (FAO, 2020a, 2021).
The first assessment involved interviews from over 10,000
agricultural households across East Africa in June and July of
2020. These interviews were conducted largely after the period
included in our remote sensing analysis. They found roughly
a third of livestock or cropping households reported losses,
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and half of those reporting indicated high losses (FAO, 2020a).
These in-person interviews do not align temporally with the
remotely sensed information we gathered from this study and
were aggregated spatially to protect individual identities. Further,
participants were asked to report presence or absence of locusts
and did not provide exact dates that could have been correlated to
results from this analysis. However, it is important to recognize
that farmers are reporting damage while the remotely sensed
information does not conclusively detect it.

In general the ground data collected by the FAO proved to
be challenging to use as a proxy for damage. While the creation,
deployment, andmomentum around crowd sourced information
is highly commendable in such a short period of time, it became
clear through this analysis that a positive or negative locust
sighting, and subsequent life stage, was not sufficient to support
the identification of locust damage with remotely sensed data.
Numerous characteristics associated with these DL populations
may also have proven important. For example, size of the swarm,
density, or activity of DL could have helped identify which DL
points might be expected to show vegetation damage. While
this type of information was available for some points, it was
not available for the majority. In many cases, DL could have
been reported while flying to other locations, so while the data
we have show locust observations at a specific latitude and
longitude, it is not known if damage would be expected at that
location. Further, DL are capable of traveling extensively and
quickly over vast distances. Thus, the same swarm may have
been reported by several individuals in the same time period,
diluting the relevant ground observation data. The successes of
the application development and deployment show significant
promise for future crowd sourced data, and what has been
collected during the course of this upsurge has been incredibly
valuable for ground based, real time DLmonitoring and other DL
applications such as supporting a finer resolution soil moisture
product for DL breeding ground forecasting (Ellenburg et al.,
2021). We hope this research will be able to inform application
updates in order to create data that can be utilized more
effectively for this purpose in the future.

Literature and personal testimonies show that Locust damage
is sporadic yet highly destructive, similar to that of a tornado;
leaving one field totally destroyed while their neighbor is spared
(Krall and Herok, 1997; Latchininsky, 2013). The spatial and
temporal resolution of the publicly available Earth observation
datasets used for this study are unlikely to capture the level
of detail associated with that destruction pattern, and may
even leave time for vegetation regrowth before a new satellite
observation can occur. The higher spatial resolution datasets, like
the Sentinel 2 satellites (10 m) have 5 day revisit times during
cloudless conditions, which are unlikely in this region.While a 10
m pixel may have a slight decline in greenness due to DL damage,
it may not be large enough to convincingly identify decline.
Therefore, establishing a decline in vegetation conditions due to
DL with data that may not temporally align with cloudless before,
during, and after satellite overpasses was challenging. Further,
creating cloud free mosaics extends the temporal time scale in
order to ensure cloud free pixels. In this region, during this time
of year, even monthly scales had cloud contaminated pixels. An

additional confounding factor is vegetation recovery. There is
limited research on how vegetation damage from DL rebounds
and with extended revisit time periods vegetation recovery may
dilute a remotely sensed signal. MODIS data, at daily revisit
times, and an extensive historical record might prove important,
however the spatial scale of 250 × 250 m was too large in this
case to assess the sporadic event. The results do show promise as
high spatial resolution data sets were evaluated, therefore, there
is potential for higher spatial resolution data from the private
sector, such as Planet, to support these types of analyses although
these data are not publicly available.

It seems as though both the complexities associated
with tracking and recording ground observations of DL,
and the limitations (spatial and temporal) associated with
current publicly available EO capabilities compound to create
circumstances that our current understanding of remote sensing
cannot overcome. The influence of these confounding factors
is challenging and frustrating, particularly in this area where
utilizing remote sensing can be an incredibly powerful tool to
help overcome data gaps and inform decisions. Nevertheless, as
more sophisticated ground data techniques evolve, additional
satellite capabilities come on line, and big data techniques
become more accessible, there is potential to continue to explore
remote sensing for these types of questions. This is particularly
important to acknowledge as climate change is currently creating
more erratic precipitation patterns in East Africa, which are
predicted to become more unpredictable with time (Thornton
et al., 2014). It is likely that these erratic precipitation patterns
will create more opportunities for DL to survive and thrive in
their current range and potentially expand that range to new
regions. While this event was a once in 70 year disaster, it is
unlikely that another 70 years will pass before seeing a similar
event (Salih et al., 2020). Supporting the infrastructure to design
and implement ground observations and remote sensing of
vegetation conditions for food security are essential to building
more resilient communities.
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A robust early warning system can alert to the presence of food crises and related drivers,

informing decision makers on food security. To date, decision-makers in Zimbabwe still

rely on agriculture extension personnel to generate information on wheat production and

monitor the crop. Such traditional methods are subjective, costly and their accuracy

depends on the experience of the assessor. This study investigates Sentinel-2 NDVI and

time series utility as a wheat-monitoring tool over the wheat-growing areas of Zimbabwe’s

Bindura, Shamva, and Guruve districts. NDVI was used to classify and map the wheat

fields. The classification model’s evaluation was done by creating 100 reference pixels

across the classified map and constructing a confusion matrix with a resultant kappa

coefficient of 0.89. A sensitivity test, receiver operating characteristic (ROC) and area

under the curve (AUC) were used to measure the model’s efficiency. Fifty GPS points

randomly collected from wheat fields in the selected districts were used to identify and

compute the area of the fields. The correlation between the area declared by farmers and

the calculated area was positive, with an R2 value of 0.98 and a Root Mean Square Error

(RMSE) of 2.23 hectares. The study concluded that NDVI is a good index for estimating

the area under wheat. In this regard, NDVI can be used for early warning and early action,

especially in monitoring programs like ‘Command Agriculture’ in Zimbabwe. In current

and future studies, the use of high-resolution images from remote sensing is essential.

Furthermore, ground truthing is always important to validate results from remote sensing

at any spatial scale.

Keywords: food security, grain yield, GIS, remote sensing, Zimbabwe

INTRODUCTION

Wheat is one of the cereal grains produced and consumed globally (Igrejas and Branlard, 2020).
It is one of the most important crops for national food security and a source of livelihood in
developing countries like Zimbabwe (Shiferaw et al., 2013). Wheat is considered the second most
important cereal crop in Zimbabwe after maize (Chawarika, 2016). It is grown during the winter
season (May–September) under irrigation, and it is the predominant crop grown during winter.
The annual wheat consumption for Zimbabwe is above 400 000 metric tons, yet imports of around
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80 percent wheat are made each year (Mutambara et al.,
2013). This is attributable to several factors such as poor
agricultural practices, lack of resources to finance wheat
production in winter and, to a certain extent, unfavorable weather
conditions. Therefore, the decision-makers must obtain accurate
information on the planting area and production of winter
wheat to determine how much wheat to import and protect
the constrained local farmers who produce 15 to 25% of wheat
required in the country.

Traditionally, the country relies on field surveys to monitor
wheat production. This method is expensive, time consuming,
and sometimes subjective (Wang et al., 2019). It is also not
feasible in a large-scale agriculture landscape to facilitate national
field crop mapping (Ouzemou et al., 2018). Therefore, cheaper
and faster ways of identifying and mapping crop fields have
become a necessity. Satellite remote sensing technology has
been successfully used to estimate wheat production through
vegetation indices (VI) time-series data at large scales (Atkinson
et al., 2012; Franch et al., 2019). Crop phenological information
can be derived from satellite data, and ground observations can
be used for verifications (You et al., 2013). It has been investigated
and practiced successfully in retrieving vegetation phenology
based on remotely sensed vegetation indices (VI) time-series at
broad scales (Atkinson et al., 2012; Zeng et al., 2020). Vegetation
index time series are good indicators reflecting the dynamics of
vegetation growth and vegetation coverage. This has provided
a basis for wheat growth monitoring in this study. Sentinel-
2 imagery was used, which provides free and open services
and data with a high spatial resolution of 10–60m (depending
on the band). It has a temporal resolution of about 5 days
(depending on the latitude) (Escolà et al., 2017a; Isbaex and
Margarida Coelho, 2021). Such spatial and temporal resolutions
and the availability of images free of charge make Sentinel-2
very appealing for crop monitoring. This includes identifying,
mapping and estimating acreage of the field crops for subsequent
yield forecasting when using yield statistical records. Therefore,
the need to integrate remote sensing in crop monitoring with
ground observations cannot be over-emphasized. However, this
involves acquiring and using big data to monitor crops in
real-time, which needs to be automated for easy management.
Cloud based solutions require hardware and software driven by
the appropriate applications, packaging and systems, and they
require high financial investments.

Vegetation Indices (VIs) are a combination of surface
reflectance at two or more different wavelengths and are designed
to highlight a specific vegetation property. Vegetation Indices
(VIs) obtained from remote sensing-based covers are simple and
effective algorithms for quantitative and qualitative evaluations
of vegetation cover, vigor, and growth dynamics. They include:
normalized difference vegetation index (NDVI), leaf area index
(LAI), vegetation condition index (VCI), enhanced vegetation
index (EVI) and soil-adjusted vegetation index (SAVI). These
vegetation indices have been applied widely in remote sensing
using different aerial and satellite platforms. Recent advances
involve Unmanned Aerial Vehicles (UAV) (do Amaral et al.,
2020), although its application is still new in Zimbabwe. The
NDVI, derived from remote-sensing (satellite) data, is commonly

used in crop assessments (Stuhlmacher, 2011). NDVI measures
the state of plant health based on the plant’s reflection of light
at specific frequencies (absorbs some waves and reflects others).
Therefore, it is instrumental in crop monitoring and evaluation
(Suárez et al., 2019).

In Zimbabwe, the estimation of the wheat area is always
a challenge because it is the only major cereal winter crop
with significant importance to the economy. Unlike other
crops such as maize, sorghum, and groundnuts typically grown
simultaneously during the rainy season, allowing assessments of
multiple crops, monitoring of winter wheat crop is expensive
because field assessments are done for a single crop. In addition,
the government of Zimbabwe is financing wheat farmers by
providing inputs under the ‘Command Agriculture’ program to
improve wheat production (Supplementary Table 1). Therefore,
cheaper and timely monitoring and evaluation techniques to
acquire the planting area of winter wheat are critical for
implementing these programs. We can improve the timing of
assessment results, reduce cost, address subjectivity, and enhance
broad-scale crop monitoring by integrating remote sensing into
the current crop assessment programs. However, studies on
remote sensing technology in crop monitoring systems are still
limited in Zimbabwe. Therefore, the main objective of this
study is to investigate the use of remote sensing data in crop
monitoring. Sentinel-2NDVI and time series analysis will be used
as monitoring tools to identify, map, and estimate the winter
wheat crop area.

METHODS AND MATERIALS

Study Area
The study was carried out in major wheat-growing districts of
Mashonaland Central province, namely Bindura, Guruve, and
Shamva (Figure 1). The province is located between 30.014 ∼

32.858 degrees East and 15.620 ∼ 17.688 degrees South. The
province primarily lies in the agro-ecological region II (Intensive
farming), with some small portions falling in regions III (Semi-
Intensive farming) and IV (Semi-Extensive farming) (Musemwa
and Mushunje, 2012). Rainfall in this region is confined to
summer and ranges frommoderate (650–800mm) to moderately
high (750–1,000mm). The soils in this area vary from sandy
loams to clays. Similarly, soil fertility varies from place to place.
It is suitable for semi-intensive and semi-extensive farming,
depending on the prevailing agro-ecological conditions (CIAT;
World Bank., 2017). Major crops grown include tobacco, soya
beans, citrus, cotton and small grains (including wheat).

Data Collection
Training of Agriculture Extension (AGRITEX) officers was
done on Global Positioning System (GPS) technology to
capacitate them to collect locational data for the wheat fields
in Mashonaland Central districts for the 2019 season. The data
was collected using Latitude/Longitude (degrees, minutes, and
seconds) coordinate system with the World Geodetic System
of 1984 (WGS84) as the reference datum. To cater to the GPS
receivers’ error margins, the GPS locations were recorded inside
the fields about 3m from the edges of the selected wheat fields.
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FIGURE 1 | Study area.

These locations and other attributes were captured in a table on a
formatted data collection sheet. The data collected included; farm
name, farm owner, farm model, an estimated area under wheat,
date of planting and date of harvesting. The coordinates were
then converted using QGIS software into shapefiles and used for
satellite image analysis, i.e., classification of the image, identifying
and mapping the fields, and computing area of the fields.

Sample Size
Six districts that grow wheat in Mashonaland Central province
were initially targeted, but a few officers collected the data.
However, only three sections were visited, namely; Bindura,
Guruve, and Shamva districts. A total of 60 GPS locations
of wheat fields were randomly collected during the survey.
Farmers contracted to the ‘Command Agriculture’ program
was our primary target, although a few commercial farmers
who have not joined the program were included. According to
statistics, Mashonaland Central had 139 farmers contracted to
this program in 2019. Although 60 fields were visited and the
relevant data was collected, not all the data collected was usable
because of its quality. Some of the coordinates were wrongly
captured, thereby falling far away from the actual fields. Some of
the data supplied had missing details of critical attributes like the
area of the fields. Such data was therefore discarded, and only
usable data were considered for the analysis. Our sample size
ultimately was 50 wheat fields (Table 1).

TABLE 1 | Sites visit in Mashonaland Central province.

District Captured Sites Useable sites

Bindura 51 43

Shamva 5 5

Guruve 2 2

Centenary 2 Nil

Total 60 50

Normalized Difference Vegetation Index
(NDVI) Data
NDVI data were derived from Sentinel 2 datasets. Sentinel 2
is a component of the Copernicus earth observation program
developed by the European Union (EU) to study the earth’s
surface. It consists of two satellites designed to acquire reflected
sunlight in the optical range of the electromagnetic wavelengths.
It is susceptible to variations in vegetation and has been extremely
useful formonitoring forests and crops (Hill, 2013). The Sentinel-
2 images (tiles 36KTG, KUG, KTF and KUF) with zero percent
cloud cover were selected and downloaded from the USGS Earth
Explorer site: https://earthexplorer.usgs.gov/ for the period 1
May to 30 September 2019. These tiles were joined together
by creating a virtual raster in QGIS. Pre-preprocessing, which
involved atmospheric correction of the Sentinel-2 images, was
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done using the Semi-Automated Classification Plugin. Sentinel-
2 contains reflectance data of 13 bands (Escolà et al., 2017a).
The temporal resolution of this product is 5 days. The spatial
resolution of Sentinel-2 images ranges from 10 to 60 meters.
The red (Band 4) and near-infrared (Band 8) spectral bands are
of significant importance to this study, with a spatial resolution
of 10 meters. Normalized Difference Vegetation Index (NDVI)
image was created from the red and near-infrared bands in
ArcGIS using the spatial analystmodule and the ‘raster calculator’
tool. The polygon for the study area was used to extract NDVI
data for the area of interest for the analysis. The NDVI index
is calculated as the ratio between the difference and sum of the
reflectance in NIR (B8) and red (B4) regions (Adão et al., 2017).

NDVI = (RNIR−R RED)/(RNIR+R RED)

The RNIR represents the reflectance of NIR radiation, while

RRED is the reflectance of visible RED radiation.
With the formula above, vegetation density at any point of

the image is highly correlated to the difference in reflected light’s
intensity in the red and infrared range divided by the sum of these
intensities (Suárez et al., 2019).

Time Series Analysis for Phenology
Extraction
We analyzed the NDVI values from May (usually the start of the
winter wheat growing season) to September (end of the season).
The value tool in QGIS was used to extract pixel data from the
NDVI images created for a start to the end of the season. The
NDVI values from the random points in the wheat fields were
used to construct time series graphs. This is because NDVI time
series from satellite data can approximate phenological stages
and thus characterize the general vegetation behavior within
its spatial footprint (Huang et al., 2019). Therefore, the wheat
crop development was studied by looking at its phenological
characteristics, including germination, leaf emergence, and up to
the start of senescence. This was used as a monitoring tool to
confirm the presence or absence during the period under study.

Mapping of Wheat Fields and Calculation
of Area Under Wheat
On the NDVI image, wheat fields were an outstanding feature
during the period under study. The image was classified into
three land-use classes using NDVI thresholds derived from
the NDVI raster map, i.e., <0.07 for water bodies, <0.3
for uncultivated land and >0.3 for the cropped area ArcGIS
software. Fifty GPS coordinates collected from the fields were
used to identify and match with the individual wheat fields
to compute the area. The area of each field was calculated
using the ‘Raster Calculator’ tool in ArcGIS. The area computed
using this method was compared to the area reported by the
farmers (Supplementary Table 4). Evaluation of this method
of determining the area under wheat was done using a linear
regression model. Coefficient of determination (R2) was used
to indicate the consistency and linear correlation between the
calculated area and the reference data (area reported by farmers).

The closer theR2 is to 1, the higher the consistency between them.
RMSE was also used to assess the model performance.

Validation of the Classification Model
The accurate location of the winter wheat fields is an essential
consideration in obtaining accurate results. Therefore, the need
to validate the classification process. A point map was created
using 100 randomly selected reference points across the NDVI
image with 30 points for water (class 1), 40 for uncultivated
(class 2), and 30 for cultivated (class 3) land-use classes
(Supplementary Table 2). The reference points were converted
to reference pixels and combined with the NDVI classified map
to extract the classified map’s pixel values. Data extracted from
the combined map was used to compute a confusion matrix
(Supplementary Table 3). Validation of this model was based on
the overall accuracy and the kappa coefficient values from the
confusion matrix, the receiver operating characteristic (ROC),
and the area under the curve (AUC) analysis. The ROC plot has
an x-axis indicating the false-positive error rate, which signifies
a wrong prediction by the model. The y-axis shows the actual
positive rate, indicating a correct prediction by the model. If
the value of AUC is ≤0.5, it means a random prediction, while
values of AUC higher than 0.5 and closer to 1 indicates a
better prediction by the model (Jiménez-Valverde, 2012; Senay
and Worner, 2019). The composite operator helps illustrate
how well two layers or maps agree on how the categories are
clustered spatially.

RESULTS

Time Series Analysis Results for the NDVI
on the Wheat Fields
Time-Series Images
NDVI images for the wheat fields understudy for dates ranging
from 5May, 11 June, 1 July, 31 July, 30 August and 29 September
2019 are displayed in Figure 2. The NDVI images show a gradual
increase in intensity on the wheat fields from May to the end
of July, then a gradual decrease after that until there was no
significant difference with the nearby environment in September.
Therefore, NDVI values assumed an upward trend from early
June to the end of July, then a downward trend after that until
September (with deeper color standing for higher NDVI values).

Time-Series Graphs
The NDVI time series graphs from the beginning of May to
the end of September 2019 are displayed in Figure 3. These
results agree with results from the time series images. There is
an increase in NDVI values from about 0.2 in May, rising to peak
values ranging from 0.4 to 0.8 in July before gradually decreasing
to around 0.2 again in September.

Classification of the NDVI Image and
Mapping of Wheat Fields
Data was collected from selected farms in Bindura, Shamva, and
Guruve districts extending from 30.80 to 31.60 E longitude and
16.60 to 17.170 S latitude. From the Sentinel-2 NDVI images,
wheat fields were an outstanding observable feature. The image

Frontiers in Climate | www.frontiersin.org 4 November 2021 | Volume 3 | Article 715837106

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Mashonganyika et al. Winter Wheat Monitoring Using NDVI

FIGURE 2 | NDVI Time-series images for part of Bindura from May to September 2019. Image Acquisition dates: (A) May 2019, (B) 11 June 2019, (C) 1 July 2019,

(D) 31 July 2019, (E) 30 August 2019, (F) 29 Septembers 2019.

acquired on 1 July 2019 was used to classify and map the wheat
fields (Figure 4). Locational data was used to identify and match
the wheat fields with their farm names, farm owners and the area
planted (as reported by the farmer).

Computation of Area Under Wheat
Hectarages of wheat fields were computed in ArcGIS to
determine the hectarage of wheat planted using satellite imagery.
The comparison between the output from these computations
with the area reported during the field visits by the farmers was
made. The locational, attribute data collected, and area of the
wheat fields are displayed in Supplementary Table 4. The sizes
of the wheat fields ranged from a minimum of 1 hectare to a
maximum of 74 hectares.

Validation of the Results for Calculating the
Area Under Wheat
The results obtained from calculating the actual hectarages was
validated using simple linear regression analysis (Figure 5), and
an R2 value of 0.9801 was attained with an RMSE of 2.23 hectares.
The regression equation for predicting the area under wheat is;

y= 0.992x−0.3127

Validation of the Classification Model
Evaluation of the classification model was done by computing
the confusion matrix and through ROC/AUC analysis. The
overall accuracy rate was 0.93, and the kappa coefficient was 0.89
(Supplementary Table 3). The ROC / AUC analysis results were

derived from the logistic regression according to the maximum
entropy (MaxEnt) theory (Figure 6). The value of AUC for this
model is 0.91.

DISCUSSION

Many nations have widely adopted remote sensing data as a
crop monitoring tool over the years. However, Zimbabwe seems
to be lagging in adopting these new technologies. Relying on
field assessments alone has proved to be costly, time-consuming
and in some cases subjective. This study investigated the use of
remote sensing data in crop monitoring. Sentinel-2 NDVI data
and time series analysis were used as monitoring tools to identify,
map, and estimate the winter wheat crop area. The NDVI from
Sentinel-2 satellite imagery could locate wheat fields and calculate
the area under wheat with relatively high precision (R2 = 0.98,
RMSE = 2.23). The classification model was evaluated using the
confusion matrix with an accuracy of 0.93 and a kappa coefficient
of 0.89 (Supplementary Table 3). ROC/AUC analysis gave an
accuracy of 91 percent (Figure 6). These results indicate a better
prediction by the model. This implies that detecting wheat fields
using Sentinel-2 NDVI as a remote sensing tool agrees with the
ground truth. Therefore, NDVI provides a simple, faster and
more reliable way of identifying wheat fields to monitor wheat
production through the winter season.

The NDVI time series images and graphs obtained in the
selected wheat fields generally showed a progression from values
of <0.2 at the start of the season to a maximum range of between
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FIGURE 3 | Time series graphs for (A) SOS Maizelands, (B) Hopedale, (C) Vale Farm, (D) Northstar, (E) Douglyn, (F) Kudukloof.

FIGURE 4 | NDVI Classified Map.
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FIGURE 5 | Scatter plot showing the relationship between reported and calculated hectarage for wheat fields in selected farms for Mashonaland Central province.

FIGURE 6 | ROC/AUC analysis results.

0.4 and 0.8, then a gradual decrease after that (Figures 2, 3).
Similar studies were carried out using EOS/MODIS in Henan
Province, China. The results obtained are consistent with the
results of this study, where a gradual increase in NDVI values
of winter wheat was observed. The signal from NDVI reached
peak value at the heading stage, then a gradual decrease toward
harvesting (Filippa et al., 2018). This study shows a similar trend,
thus confirming that NDVI values can be used for crop growth
monitoring. This increase in NDVI is related to increases in the
canopy leaf area index (LAI).

In estimating the area under a crop, accurate information
on the temporal and spatial resolution of the remote sensing
images is essential. In this study, sentinel-2 satellite data was
used to provide high-resolution images (10m), available for free.
Sentinel-2 datasets can be used in developing countries like

Zimbabwe, where high-resolution images from Light Detection
and Ranging (LiDAR) are still expensive. The NDVI from
sentinel-2 satellite data is used based on the physics of light
reflection and absorption across bands (Suárez et al., 2019). It
is known that healthy vegetation reflects light strongly in the
near-infrared band and less strongly (absorbs more) in the visible
portion of the spectrum (Suárez et al., 2019). The more a plant
absorbs visible sunlight (during the growing season), the more
photosynthesising and more productive it is (Rafezall et al.,
2020).

Conversely, the less sunlight the plant absorbs, the less
photosynthesising and the less productive it is. Therefore, a ratio
between the light reflected in the near-infrared and light reflected
in the visible spectrum will represent areas with wheat. This has
formed the basis for using this tool for crop monitoring.
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Estimating wheat areas on time will allow decision-makers
to take appropriate action toward food security. This is critical
in the Zimbabwean context, where the government is funding
special agricultural programs to improve crop production
and productivity with particular reference to the ‘Command
agriculture’ program. Several challenges are being faced in
recovering the total value of these government initiatives because
some beneficiaries do not use the inputs for the intended
program, thereby derailing the purpose of such initiatives.
Due to slackened monitoring and evaluation systems, the
government is unable to timely trace whether the farmer or
beneficiary has complied or not. Use of NDVI time series
can be used to confirm in time whether the beneficiaries
of this program have planted wheat within the anticipated
period or not. If not, the administrators of the programs
can quickly make informed decisions and prevent abuse
of resources.

This study shows that hectarages derived from the field
images (calculated area) are very close to those reported by
farmers (Supplementary Table 4). The scatter plot in Figure 2

shows a positive relationship between the area reported by
farmers and the area calculated through the classification model.
The simple linear regression analysis obtained a coefficient of
determination (R2 value) of 98%. This means eyeballing and
remote sensing determined areas are close to 1. It implies
that 98% variation in Y can be explained in X. Therefore, it
confirms that NDVI can extract winter wheat fields with high
accuracy. Previous studies in China also demonstrated that NDVI
could successfully extract winter wheat acreage with an error
of 9.66% (Qiao and Cheng, 2009). In recent wheat mapping
studies in China’s Northern Anhui Counties and Central Anhui
Counties, accuracy was obtained between 78 and 95 percent
(Zhang et al., 2019). The variation in the accuracy of mapping
was mainly due to differences in the size of the wheat fields. Large
homogeneous wheat fields were mapped with high precision
when compared to areas with smaller fields. In this study,
our most minor wheat field was one hectare, but most of the
wheat fields were in the range of 10–50 hectares; hence they
were mapped with high precision. This study can therefore
confirm that NDVI can be used successfully to estimate the area
under wheat.

It was also noted during the initial stages of the data analysis
process that the error of estimating area under wheat for this
study was high, and this was attributed to the existence of many
outliers. Most of the discrepancies came from the fact that some
farmers contracted to the ‘Command Agriculture’ program has
limited irrigation facilities on their farms but can grow more
wheat. These farmers have resorted to increasing their hectarage
by out-sourcing land from other farms with idle irrigation
facilities to which they are sub-contracted. Many farmers just
report the total area intended for wheat growing and get the
corresponding inputs without declaring such arrangements. On
the other hand, some farm owners who have sub-contracted
part of their farms to other farmers only declare their hectarage,
which is less than that observed on the satellite images. As a
result, the total area under wheat on their farms detected through
satellite imagery wasmuchmore or less than what is in the official

records for ‘Command Agriculture’ contracts. Efforts were made
to contact farmers with such scenarios to clarify these issues,
which has greatly reduced the error of the field area calculations.
Therefore, the results of this study demonstrate that satellite
imagery can more accurately be used to timely estimate the
acreage of wheat for each season.

Like most remote sensing studies on identifying and mapping
crop fields, this study comes with some limitations. For example,
the wheat fields visited were ranging from 1 to 74 hectares.
However, we noted that some smaller fields were not included in
this study because the field boundaries were not clearly defined
on the images, making it difficult to map them. Recent studies
in the Netherlands also assessed geospatial parcel parameters
on arable land and revealed the same limitation on Sentinel-
2 satellites on small agricultural plots (Vajsová et al., 2020).
Therefore, higher resolution images like UAV technology may
be recommended when mapping smaller agricultural plots.
Downloading of images were done manually because of the
limited capacity of our computer hardware and software, so we
failed to download some of the images and sourced them from
other government departments. Therefore, the need for financial
investment in these resources should be prioritized. During the
present data collection exercise, we have not considered the
influence of different farming systems in Mashonaland Central
province because the visual selection of occurrence location
points may cause substantial bias in sample selection (Araújo and
Peterson, 2012; Merow et al., 2013). Again, the three districts and
the 50 sites selected in this study may not represent the whole
country, Zimbabwe. A systematic random sampling technique is
recommended to capture the dynamics of farming systems in the
whole of Zimbabwe.

Way Forward
This study demonstrated the potential for remote sensing data to
extract wheat fields and compute the area under wheat at the early
stages of the wheat growing season, which can be used to predict
yield. This has raised the need to roll out the research to a national
level to create and deploy a near-real-time early warning system.
Therefore, we recommend that more training sites be included
across the country to ascertain the applicability of this tool in all
scenarios in the wheat growing sector.

While the results of this study remain applicable for use, future
research should consider the use of data with a finer resolution
to improve the accuracy of crop mapping. This will improve the
mapping of smaller agricultural plots and identify specific crops
in mixed crop farming, which are now a common phenomenon
in the Zimbabwean agricultural systems. The use of unmanned
aerial vehicles can be used to capture high-resolution images
and to validate satellite-derived data. One such sensor is LiDAR
(Light Detection and Ranging) technology, which provides 3D
models of croplands (Gago et al., 2015). LiDAR technology can
provide accurate maps for farmlands in crop monitoring (Rosell
and Sanz, 2012; Lin, 2015). However, the cost-benefit of using
LiDAR for smallholder farmer settings needs to be evaluated
to determine the feasibility of such investments (Escolà et al.,
2017b).
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CONCLUSION

Remote sensing technology has a great potential to timely provide
national statistics on the area under wheat for the winter season.
This study has demonstrated that Sentinel-2 NDVI data is a
powerful and valuable tool to identify and map winter wheat
fields and can be used at a national scale to calculate wheat
acreage. NDVI time series analysis proved to be a tool that
can effectively monitor wheat crop growth. A deeper analysis
will make these tools relevant in the decision making on food
security issues. In order to strengthen monitoring and evaluation
of crops in Zimbabwe, integrating the use of GIS and remote
sensing technology should be prioritized, especially for the winter
wheat crop. Results from remote sensing should be validated
with ground-truthed information to increase the confidence of
decision-makers in adopting the use of remote sensing in wheat
production monitoring in Zimbabwe.
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