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Editorial on the Research Topic

Nuclear Power Plant Equipment Prognostics and Health Management Based on Data-Driven
Methods

In response to the fierce competition in the energy market, nuclear power companies are
considering operating nuclear power plants in a more economical, efficient, and safe manner.
Besides, with the upgrading of nuclear power plants, systems and equipment are becoming
more sophisticated and expensive (Kwon et al., 2018), which poses challenges to the
timeliness, accuracy, and forward-looking of operation and maintenance (O&M) practices
(Al Rashdan and St Germain, 2018; Liu and Wang, 2019). Traditional O&M practices
with periodic maintenance as the core need to be further upgraded to meet these
requirements. As a novel O&M strategy, data-driven health management of nuclear power
plant equipment is gaining more and more attention (Patel and Shah, 2018). On the one
hand, the digitization of nuclear power plants provides a rich source of data. On the other
hand, the development of data science and technology, especially the development of
big data technology and artificial intelligence technology represented by machine learning
and deep learning, provides technical means for efficiently mining and learning laws
and knowledge from data. This Research Topic explore's the application of the latest
technical means such as big data, artificial intelligence, deep learning, etc. for the
prognostics and health management (PHM) of crucial equipment of nuclear power plants.
We include the advanced sensor technology. For example, Chu’s work Study on Measure
Approach of Void Fraction in Narrow Channel Based on Fully Convolutional Neural Network
(Chu et al.). Besides, we have three articles about the data-driven approach in condition
monitoring, which include Xu’s work Research on Time-Dependent Component Importance
Measures Considering State Duration and Common Cause Failure (Xu et al.), Huang’s work
Data-Driven-Based Forecasting of Two-Phase Flow Parameters in Rectangular Channel
(Huang et al.), and Wang’s work A Method of Containment Leakage Rate Estimation
Based on Convolution Neural Network (Wang et al.).

For the data-drive approach in fault diagnosis, we collect four articles, they are Wu’s A
Framework for Monitoring and Fault Diagnosis in Nuclear Power Plants Based on Signed
Directed Graph Methods (Wu et al.), Hu’s Data-Driven Machine Learning for Fault Detection
and Diagnosis in Nuclear Power Plants: A Review (Hu et al.), She’s Diagnosis and Prediction for
Loss of Coolant Accidents in Nuclear Power Plants Using Deep Learning Methods (She et al.), and
Wu’s A Framework of Distributed Fault Diagnosis for Nuclear Power Plant (Wu et al.). We also
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have one article for the data-driven approach in prognostics, it is
Wang’s Remaining Useful Life Prediction Based on Improved
Temporal Convolutional Network for Nuclear Power Plant Valves
(Wang et al.). Zhao’s Prognostics and health management in nuclear
power plants: an updated method-centric review with special focus on
data-driven methods (Zhao et al.) provides a systematic overview of
the full PHM spectrum and an in-depth survey of its modeling
approaches, placing a strong emphasis on the state of the art of data-
driven methods for PHM. Finally, Sun’s Development and

Validation of Multiscale Coupled Thermal-Hydraulic Code
Combining RELAP5 and Fluent Code (Sun et al.) contributes to
the simulation capability of computational tools for nuclear systems.
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Remaining Useful Life Prediction
Based on Improved Temporal
Convolutional Network for Nuclear
Power Plant Valves
Hang Wang*, Minjun Peng, Renyi Xu, Abiodun Ayodeji and Hong Xia

Key Subject Laboratory of Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin, China

Proper risk assessment and monitoring of critical component is crucial to the safe
operation of Nuclear Power Plants. One of the ways to ensure real-time monitoring is
the development of Prognostics and Health Management systems for safety-critical
equipment. Recently, the remaining useful life prediction (RUL) has been found to be
important in ensuring predictive maintenance and avoiding critical component failure. With
the development of artificial intelligent techniques, deep learning algorithms are becoming
popular for RUL prediction. Consequently, this paper presents RUL prediction techniques
for nuclear plant electric gate valves with a temporal convolution network (TCN). The main
advantage of using TCN is its ability to capture and process useful information in short-term
sensor measurement changes. Moreover, the efficiency of the proposed TCN is enhanced
by incorporating a convolution auto-encoder as a preprocessing layer in its structure,
which greatly improved the residual convolutionmode. The proposedmethod is verified on
the electric gate valves experimental dataset that represents the real-world operation of the
valve, and the result obtained is compared with other conventional data-driven
approaches. The evaluation result shows impressive performance of the proposed
model in predicting the remaining service life of the gate valves used in the nuclear
reactor control system. Moreover, the generalization of the proposed model is evaluated
on the turbofan engine benchmark dataset. The evaluation result also shows improved
performance in the predicted RUL. Broader application of the proposed TCN is envisaged
for critical components in other industries.

Keywords: remaining useful life prediction, electric gate valve, temporal convolutional network, residual
convolution, nuclear power plant

INTRODUCTION

Concerns over energy security and global warming have risen during the past decade and those
concerns have increased the NPPs share in the global energy mix due to its zero-carbon and sulfur
compound emission. Efforts toward research and development of advanced, fail-safe nuclear reactors
have also increased. Conversely, public concerns over the environmental impacts of a nuclear
accident and potential risk of radioactive release (Coble et al., 2015) have also risen globally during
the past decade and the same has delayed new nuclear projects. To ensure operational safety, relevant
equipment in NPPs are designed to the highest standards. However, the probability of component
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failure may increase over time due to prolonged and
uninterrupted operation and degradation in equipment (Lee
et al., 2006). In such a diverse and highly radioactive
environment, ensuring safe and reliable operation of
equipment is a substantial challenge (Ayo-Imoru and Cilliers,
2018).

To address the safety and reliability issues, prognostics and
health management (PHM) systems and programs are being
developed (Gouriveau et al., 2016). In a PHM system, real-
time data streams from plant sensors are preprocessed,
extracted, compressed and packaged into standard formats.
Standardization of data allows the system to accurately detect
any abnormality through comparison with threshold values. In
case of abnormality, PHM carries out system prognosis including
the application of RUL prediction techniques. The prognostic
result is usually presented as a set of potential issues and specific
remedial actions such as component replacement or stoppage and
maintenance of machinery before breakdown. PHM system can
also initiate Condition-Based Maintenance (CBM) (Jardine et al.,
2006). An overview of PHM research trends shows that three key
areas of research are in focus at the moment. These are:

(1) Historic and representative data acquisition and processing:
Nuclear power plant data are subject to export control, for
security reasons. Hence, it is difficult to directly obtain
operating data for various working conditions, different
failure modes, aging and degradation modes. Without
such historical data, it is difficult to develop deep learning
models and accurately estimate the RUL of components.
Hence, it is necessary to conduct accelerated aging and
degradation experiments on key equipment to provide
necessary data to support the development of RUL
predictive models. This experiment is being aided by the
advent of the Internet of Things (IoT) and edge computing
that enable aging and failure data acquisition (Huang, 2020).

(2) Optimal arrangement and modification of sensors:
Currently, sensor measurements and layout in the nuclear
power plant are limited due to space constraints. Therefore, it
is necessary to further optimize the sensor layout scheme for
key components of the NPP.

(3) Intelligent RUL prediction: RUL is closely related to the aging
mechanism, sensing and measurement, characteristic
parameter analysis and other front-end factors. Currently,
most industrial maintenance policy is corrective. Moreover,
the maintenance cycle is generally scheduled and is based on
experience. That is, even if the production equipment
maintains a high level of reliability, there will still be
downtime for maintenance. However, accurate RUL
prediction could aid in discovering fault or component
degradation trends before failure and support predictive
maintenance. Therefore, it is necessary to optimize the
available RUL predictive model, thus reducing the
operation and maintenance costs (Vichare and Pecht,
2006; Pawar and Ganguli, 2007).

The first two identified issues are the recent bottleneck to the
development of effective PHM technology for nuclear power

plants, and the solution requires long-term effort. The need to
make plant data available for researchers and to optimize sensor
layout can be significantly justified by demonstrating the benefits
of effective RUL prediction. Hence, this manuscript focuses on
the development of an enhanced, accurate, and generalized RUL
predictive model.

RUL prediction techniques are generally divided into three
main categories: physical model-based, data-driven, and
reliability-based methods. Each RUL prediction method has
its advantages and disadvantages. Reliability-based RUL
prediction uses methods such as probability theory and
mathematical statistics to fit observation data without relying
on any physical mechanism and has the most extensive
applicability (Kundu et al., 2019; Peng et al., 2019; Wang
et al., 2019). However, such methods need to assume prior
probability and a life distribution such as a Gaussian or Weibull
distribution with a linear relationship. However, for RUL
prediction, the relationship between measurements is
nonlinear, and the assumed probabilistic distribution
contradicts the actual situation (Tang et al., 2019; Chiachío
et al., 2020). Also, estimating the transfer probability matrix
often require a large amount of training data (Papadopoulos
et al., 2019). For physical model-based RUL prediction, the
model development is a tedious and complicated process
(Downey et al., 2019; Sato et al., 2019). Moreover, in a
complex system such as the nuclear power plant, it is
difficult to understand the degradation mechanism with
physical models and this limits the application of the method
(Mardar et al., 2019). Moreover, even if a physical model is
successfully developed, some parameters in the model are
related to material properties and stress levels which still
need to be determined through specific experiments (Mishra
et al., 2019).

The data-driven method is effective, without the bottlenecks
identified in the other models (Lee and Kwon, 2019). Deep
learning is a new branch of machine learning, developed by
stacking layers of neurons to extract the deep and complex
nonlinear relations in features and datasets (Lin et al., 2018).
A deep neural network (DNN) has stronger pattern recognition
ability than a shallow neural network and its accuracy is
significantly higher when the volume of historical data is
enough (Nguyen and Medjaher, 2019). DNNs have also been
applied for RUL prediction. Chen et al. proposed an end-to-end
RUL prediction method based on a recurrent neural network
(RNN), which could improve long-term prediction accuracy
(Chen et al., 2020). Zemouri and Gouriveau (2010) proposed a
recurrent radial basis function network and used it to predict the
mechanical RUL. Hinchi and Tkiouat (2018) proposed a
convolutional long-short-term memory (LSTM) network to
predict RUL of rolling bearings with FEMTO-ST ball bearing
datasets. Wang et al. (2020a) proposed a new recurrent
convolutional neural network that could integrate variational
inference for giving a probabilistic RUL result. Xia et al.
(2020) presented an ensemble framework with convolutional
bi-directional LSTM for RUL prediction which could
adaptively select trained base models for ensemble and further
predicting RUL. An et al. (2020) utilized convolutional stacked
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LSTM for RUL prediction of milling tools where time-domain
and frequency-domain features were combined, encoded and
denoised through unidirectional LSTM.

However, RNNs require large computational resources and
training data. Moreover, although RNNs could theoretically
remember remote historical information, the effect is not ideal
in practical applications. Compared with RNN and other
networks, a convolution neural network (CNN) has a natural
advantage in large-scale parallel processing of data, especially in
dealing with time series problems. On this basis, we propose an
improved Temporal Convolution Network (TCN) for RUL
prediction. The proposed TCN is a one-dimensional
convolution network whose structure and associated
hyperparameters were optimized and verified through actual
experimental data. Previous application of TCN include
pattern recognition tasks on the MNIST dataset, the wiki test-
103, and comparison with other model shows improved accuracy
and speed (Bai et al., 2018). Deng et al. (2019) also used TCN to
predict temporal traffic flow and optimized the hyper-parameters
in TCN through a random search strategy. To the best of the
authors’ knowledge, there are only a few research works that
utilized TCN for RUL prediction. However, these research works
did not evaluate their result on real-world representation inherent
in the electric valve dataset used for this work. This paper takes
electric gate valves as the case study and major contributions in
this work are:

(1) Three critical issues of PHM that need to be addressed are
identified and summarized.

(2) Convolutional autoencoder is integrated with TCN for
effective feature extraction.

(3) Also, the residual convolution mode in TCN is optimized
which enriches the features during RUL prediction.

(4) Comparative analysis of TCN hyper-parameters is carried
out using real-world electric valve data. Further evaluation is
also done with the turbofan benchmark dataset.

This paper is arranged as follows: The first section introduces
the background and motivation;Methodology analyzes the theory
of improved TCN network. The research objects and architecture
of RUL prediction are introduced in Experiment and System
Architecture. The simulation tests are carried out with different
datasets and the proposed model is compared with other state-of-
the-art models in Simulation Analysis. Finally, Conclusion
contains the conclusion and limitation of the work.

METHODOLOGY

Sensors associated with equipment show specific trends over a
protracted period. This relationship between sensor output and
equipment degradation can be assessed by utilizing machine
learning for precise RUL prediction. However, traditional
methods assess instantaneous values and therefore, cannot
learn features hidden in sequential time series. Bai et al.
(2018) proposed the integration of TCN and causal
convolution as a replacement of the RNN/LSTM network for

sequential task analysis. Compared to the RNN network, it has
the following advantages:

(1) For a given a sequence, the TCN could process the time-series
information in parallel rather than sequentially as RNN.

(2) RNNs often have a diminishing or exploding gradient
problem while TCN does not.

(3) RNNs retain the information at each step, which will occupy
a large amount of computer memory. However, for TCN, the
convolution kernel in each layer is shared so it is
computationally less expensive.

Therefore, this paper adopts improved TCN to mine deep
features and to predict the RUL. The proposed TCN is further
condensed and optimized to deal with sequential tasks. For the
RUL prediction problem, given a sequence of sensormeasurements
x0, x1, x2, ., xT, and the corresponding event labels y0, y1, y2, ., yT at
time T, the task is to predict the label y based on the previous sensor
input before end of time T. For this task, the TCN performs better
than ordinary CNN because of the causal relationship between the
layers of TCN. That is, TCN only uses the historical sequence of
information before T as shown in Figure 1. To consider such a
historical sequence, the TCN layers need to be deep enough.
Moreover, the availability of GPU parallel computing resources
makes it easy to train such a large network.

The historical data captured by a simple causal convolution is
only linearly related to the depth of the network, which is a great
challenge for sequential tasks that need to consider longer sequential
dependencies. Vanilla CNN has a small receptive field to cope with
such sequences. To address this, Yu and Koltun (2015) applied the
classical dilated convolution neural network to exponentially
expand the convolution receptive field). Specifically, for inputs
x0, x1, x2. . ., xT and filters f:{0, 1, . . .,k − 1}, the dilated
convolution in sequential series s could be represented as:

F(s) � ∑
k−1

i�0
f (i) × xs−d(i) (1)

where d is the dilated factor and k is the size of filters, s-d(i) refers
to the history. Dilated convolution is an effective strategy to
increase the receptive field without increasing the kernel size or
the number of parameters. When the dilation d � 1, the dilated
convolution functions as a normal convolution. The larger the
dilated factor is, the longer the input range. As a result, a better
receptive field for the convolution network is achieved as shown
in Figure 1. Consequently, the receptive field of the TCN can be
freely enlarged by changing the dilation rate.

Despite the causal and dilated convolution used for the TCN,
the model may sometimes encounter problems such as gradient
disappearance. To address this issue, the TCN structure is made
to be generic, motivated by the residual structure presented in
ResNet (An et al., 2020). In this paper, the residual convolution
takes X series of input, transforms them, and the results are
concatenated with the input. Consequently, the output of the
residual convolution is:

A � Activation(X + F(x)) (2)
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As shown in Figure 1, two layers of dilated causal convolution
and activation function are included in a residual convolution.
Moreover, dropout operation is used for regularization at each
dilated convolutional layer. After that, 1 × 1 convolution is
implemented for input X to ensure the same scale of tensors
between inputs and outputs of residual convolution.

EXPERIMENT AND SYSTEM
ARCHITECTURE

Research Object
NPPs are composed of different components. Since the method
proposed in this paper has not been verified through an
engineering application, we select electric gate valves to

FIGURE 1 | Flowchart of TCN residual convolution.

FIGURE 2 | Illustration of the electric gate valves experimental platform.
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evaluate the RUL predictive model. In NPPs, the valve is one of
the most important components, used for flow control and to
adjust the working fluid pressure. Research shows that the
proportion of nuclear power plant shutdown due to valve
failure is 19%, which is mainly caused by assembly defects,
human factors, and operating environment. Apart from
scheduled maintenance, the valve is generally not allowed to
stop for inspection and its condition could only be detected from
the outside i.e. through a nondestructive test. Moreover, for
nuclear safety-related valves, due to the limitation of
installation space and cost, there are limited redundant
provisions. Considering the importance of electric gate valve
to the safe operation of light and heavy water reactors, the run
to failure data of the gate valve is taken as the training dataset to
verify the effectiveness of the proposed RUL predictive model.

As shown in Figure 2, the electric gate valve used for this
experiment is the Z941h-25P straight screw gate valve, driven by
squirrel cage coil motor. Also, the diameter of gate valve is 50 mm
while the truncation mode is rigid single gate with nominal
pressure of 2.5 MPa. The experimental gate valves’ running
conditions are configured to closely mimic what is obtainable
in the real NPP operation.

In this paper, the external crack of the electric valve is
selected as a typical fault mode. The main reasons for the
crack are as follows: first, the uneven lattice of the valve plate
or valve body leads to a material defect. Secondly, the uneven
impact of the fluid or installation defects lead to uneven force on
the valve plate or valve body. Thirdly, the fluid corrosion effect
and the radioactive material irradiation lead to a corrosive hole
that causes leakage. To preserve the valves for further
experiments, and to ensure reproducibility and save cost,
destructive cracks are not made on the valves during the
experiment. Instead, certain reasonable assumptions and
approximations are made to design the aging parts of the
electric valve as shown in Figure 3. Three holes with 3, 5,
and 10 mm are inserted and screwed on the valve body plate.
During the experiment, the aging degrees are simulated by
slowly adjusting the rotating screw.

For an accurate RUL prediction for electric valves, the
selection of measurements to reflect the status of the electric
valve is important. In this paper, the static pressure and pressure
difference at the valve inlet and outlet is measured by static
pressure and differential pressure gauge. The electromagnetic
flowmeter is also used to measure the flow rate for analysis. To
completely represents the aging state of the electric valves, other
signal detection methods are used to measure the characteristic
parameters. The acoustic emission methods use sensors to
measure the transient stress waves on the surface of the valve
body when cracks occur. When the valve runs normally, no
acoustic emission occurs. After the valve show cracks or even
leakage, fluid flow through the leakage produces jet turbulence,

FIGURE 3 | The electric valve studied in the experiment to simulate
degradation.

FIGURE 4 | The complete architecture of the RUL predictive model.
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which in turn produces a continuous mechanical stress wave. The
sensor mounting surface is polished with sandpaper in advance to
remove any impurities. Details of the mounted valves,
components, the experiment procedure, and circuit
configuration can be found in Wang et al. (2015).

Model Architecture and Implementation
Flowchart
The architecture of the RUL predictive model based on improved
TCN described in this paper is shown in Figure 4. The whole

process is divided into the training and actual RUL prediction
phase:

Step 1. Feature engineering is carried out on the acquired data
from the experimental platform. Irrelevant features are
removed to ensure an effective and compact model. The
selected features are normalized and standardized.
Step 2. To enable the algorithms to fully take into account the
sequential characteristics, the original 2D (N * D) data collected is
preprocessed and reshaped to 3D stacked data block in the form
(n− num_steps+1) *num_steps *D, whereN is the batch length,D
is the features, and num_steps refers to sequence length of the time
series. In this paper, the sliding window with length num_steps is
adopted to the original 2D degradation data x. Since there is an
overlap between slides of each window, the total input length is
(n − num_steps + 1). In this way, the input data is not just a single
data point but a sequence of time-series data, which better reflect
the sequential characteristics of the degradation process.
Step 3. Unsupervised feature extraction by one-dimensional
convolutional auto-encoder (CAE) is implemented. The
theoretical analysis of CAE and its advantages can be found in
reference (Wang et al., 2020c). The model is developed using the
Tensorflow framework, where the encoding and decoding
processes are implemented to form the deep feature representation.
Step 4. Results of the one-dimensional CAE are concatenated
with the original data gathered from Step 2. By doing so,
significant features in the aging data could be enriched to
further develop an accurate RUL predictive model.
Step 5. The feature extraction results are transferred to the
TCN network. On the Tensorflow framework, the TCN tuple

FIGURE 5 | The trends of parameters with PF � 30 Hz, VP � 35%.

TABLE 1 | The architecture definition of ITCN.

Name Definition Default value

Network structure CAE + ITCN None
Sliding window size Size of the sliding window for data preprocessing 40 (Wang et al., 2020b)
Normalization mode Normalization of data Z-score
Encoder of CAE Layers of convolution kernel in the encoder 3
Decoder of CAE Layers of convolution kernel in the decoder 3
CAE Numbers of convolution kernel in encoder and decoder 64
CAE Size of 1D convolution in encoder and decoder 3
CAE 1D pooling size of the encoder 2
CAE 1D upsampling size of the decoder 2
ITCN Layers of ITCN units 4
ITCN The dilated rate in each unit 1-2-4-8
ITCN Number of 1D convolution in each TCN unit 64
ITCN Layers of 1D convolution in each TCN unit 2
ITCN Residual convolution mode in each TCN unit Concatenated
ITCN Size of 1D convolution kernel in each TCN unit 5 (Cui and Bai, 2019)
Keep_prob Percentage retained in dropout operations 0.99
Init_learning_rate Initial learning rate 0.001
Init_epoch Iterations using the initial learning rate 5
Max_epoch Total training times 100
Attenuation rate Attenuation rate of the learning rate 0.99
Batch_size The amount of data used in small batches 128
Loss function None RMSE
Optimization method Optimization algorithms for backpropagation Adams
Dropout coefficient Dropout coefficient 0.5
Activation function Coefficient a in Leaky ReLU 0.3
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model is first developed, which consists of 1D causal
convolution with many layers. For each causal convolutional
layer, the dilated function is used after each TCN to increase
the model receptive field.
Step 6. The residual convolution described in Research Object is
improved by concatenating the results of the convolution filter.
Moreover, the leaky ReLU activation function and sparse
dropout operation are also used instead of ReLU or Sigmoid
activation function based on the previous impressive
performance of the Leaky ReLU activation function on non-
linear sequential datasets (Wang et al., 2020b).
Step 7. When the TCN tuple unit is developed, the stack
function is adopted to construct the entire TCN network.
Step 8. During CAE and TCN training, the processed data is
randomly shuffled to avoid overfitting and then input into
CAE and TCN models.
Step 9. The loss function in this paper is the root mean squared
error (RMSE). Adam optimizer is used as the training
algorithm. During backpropagation processes, the learning
rate at the first 5 iterations is set to 0.001 without
attenuation. Then the attenuation rate of each subsequent
iteration is set to 0.99. With increasing training epochs, the
training errors decreases until it stabilized.
Step 10. When the off-line training process is completed, the
randomly selected test data is normalized as shown in step 1
and step 2. Then, the optimized TCN models are used to
predict the RUL of the electric gate valves. The model
evaluation metrics are the explained variance score, mean
absolute error, mean squared error, and R2 score.

SIMULATION ANALYSIS

Data Acquisition
The degradation of the electric-valves is measured in the
experiment. First, the water tank is filled as shown in Figure 2,
and an electric valve loop is fully opened. The inverter for the pump
is set to 15 kHz and its corresponding pump speed is about 870 r/
min. The pipeline is filled with water after some time. Then, the
driving pressure of the pipeline is 0.26MPa, the valve is in normal
operation, the pressure difference across the valve is 6 KPa and the
total flow in the pipeline is 3 m3/h. Also, relevant parameters of
acoustic emission cards are set as: sampling frequency-5,000 kHz,
digital filter band-15∼70 kHz, the interval of parameters-500 μs,
hangover time-1,000 μs, peak interval-300 μs, locking time-1,000 μs,
single-channel waveform threshold-40 dB, and single-channel
parameter threshold 40 dB.

In the experiment, the crack simulating screw is slowly
adjusted under a certain pump frequency and the electric
valve position (opening degree) to gradually increase the

FIGURE 6 | Training and testing curves with or without CAE.

TABLE 2 | Metrics with or without CAE.

Network structure Without CAE With CAE With CAE and original
data

EVS 0.858 0.958 0.957
MAE 4.35 2.97 2.07
RMSE 32.03 12.33 8.47
R2_score 0.845 0.924 0.957

TABLE 3 | Average test loss with different layers and neurons of CAE.

Numbers
of causal layers

2 3 4 5

Dilated factors 1–8 1-4-4 1-2-4-8 1-2-4-8-16
EVS 0.917 0.933 0.957 0.949
MAE 4.58 2.42 2.07 3.78
RMSE 30.68 10.44 8.47 20.60
R2 score 0.806 0.932 0.957 0.867

TABLE 4 | Average test losses of different RUL prediction models.

RUL model FCN CNN LSTM CAE +
LSTM

Improved TCN

EVS 0.342 0.68 0.67 0.902 0.957
MAE 9.84 8.151 4.74 2.94 2.07
RMSE 137.18 34.68 27.43 13.55 8.47
R2 score −0.43 0.64 0.66 0.90 0.957

Frontiers in Energy Research | www.frontiersin.org November 2020 | Volume 8 | Article 5844637

Wang et al. ETCN for Valves RUL Prediction

12

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles


leakage. Different pump frequencies and opening degrees
represent different operating conditions of the electric-valves.
In this paper, a total of five different circulating pump
frequencies (PF) and eight valve openings (VP) are set
during the experiment with a total of 40 operating
conditions. Under each operating condition, 30 groups of
experiments are carried out with various levels of screw
tightness. In each group of the experiment, the measured
variables are the frequency of the circulating pump, opening
degree of the electric-valve, pressure difference between the
front and rear of the electric-valve, and the fluid flow rate
through the valve. For acoustic emission signals acquisition,
computer software is used to automatically calculate the
amplitude, ringing count, rising time, energy, root mean
square (RMS), average signal level (ASL), and other parameters.

Moreover, the length of time for each group varies from 2 to 3 h
to provide adequate aging data. Figure 5 shows different variations
of some selected conditions under which the acoustic emission
sensors measurements were obtained. From the figure, the
amplitude of acoustic emission parameters and ringing count all
show approximately the same trend as the leakage volume
increases under a certain pump frequency and valve opening
position. When the leakage is less than a certain value, the
relevant characteristic parameter has no significant deviation.
However, when the leakage exceeds a threshold, the parameter
presents an obvious change in trend. When the leakage further
increases to a certain critical value, the parameter remains constant
again. This is because when the leakage is tiny, the leakage has little
effect on the flow in the pipeline. But, when the leakage becomes
too large, the pipeline flow is no longer under turbulent states.

Comparison of Different Model Structures
and Hyper-Parameters
For pattern recognition with deep learning, many trainable
parameters directly influence the model performance.
However, there are no generic hyperparameter selection

criteria. Hence, it is necessary to analyze and compare
different hyperparameters to obtain an optimal model for the
RUL prediction.

Optimizable hyperparameters in TCN include the learning
rate, learning rate delay factor, maximum iterations, batch
number, selection of training algorithm, and dropout
coefficient, among others. From the authors’ experience, the
fine-tuning of these hyperparameters has little impact on the
overall results. Therefore, the hyperparameters selected in this
work is motivated by the performance recorded in recent
literature. The default structure and hyperparameters of the
proposed ITCN are shown in Table 1.

In addition to the above hyperparameters, we analyzed the
effect of the CAE preprocessing layer and different dilation rates
on the predictive performance of TCN. Finally, explained
variance score (EVS), mean absolute error (MAE), RMSE, and
R2 score metrics are obtained to evaluate the performance of the
RUL predictive model.

With or Without Convolutional Auto-Encoder
First, an experiment is performed by adding the CAE layer
without changing the structure of the proposed TCN, and the
effect of the CAE layer is analyzed. Figure 6 shows the training
and test curve for the specified epochs. It is seen that the network
neither underfit nor overfit.

Metrics are calculated for further analysis, as shown in Table 2.
From the table, the metric for the model with CAE is better than
that without CAE, whichmeans CAE has a positive effect on feature

FIGURE 7 | RUL results with different algorithms.

TABLE 5 | Average test losses of different RUL prediction models.

RUL model FCN CNN CAE + LSTM Improved TCN

EVS 0.901 0.951 0.967 0.968
MAE 22.92 16.88 3.13 2.38
RMSE 29.15 20.37 17.48 9.09
R2 score 0.896 0.932 0.963 0.965
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extraction. Furthermore, after combining the feature extraction
results of CAE with the original data, the explained variance
score, RMSE, and R2 score are better than those without the
parallel structure. This is mainly because after adopting the
parallel structure of CAE and the original data, the dimension of
the feature map expanded from the original 9 dimensions to 18
dimensions, which is equivalent to enhancing the feature
performance. Therefore, the CAE layer has a significant effect on
the improved TCN network for RUL prediction.

Receptive Field With Different Layers and Dilated
Factors
After evaluating the effect of the CAE layer, we compared a
different number of causal convolution layers and the dilated
factors for TCN optimization. As shown in Figure 1, two layers of
dilated causal convolution and activation function are included in
each causal convolution layer. Table 3 shows the comparison
result. It is seen that the best metric for the predictive model is
obtained when there is four causal convolutional layer and dilated

factor is set to 1, 2, 4, 8. Therefore, it is concluded that this
structure optimizes the RUL predictive model.

Comparison of the Proposed Method With
Conventional Algorithms
To verify the performance of the proposed improved TCNmodel, a
fully connected network (FCN), Convolutional Neural Network
(CNN), LSTM model, and its variation were implemented and
compared for the same dataset. For FCN, it adopts the full
connection of neurons between different layers, which is different
from the TCN network during the training process. Therefore, by
comparing with FCN, the advantage of DNNs is demonstrated.
Also, to show that the improved TCN method is better than other
DNNs, this paper compared the results of CNN, LSTM, and TCN.
The relevant comparison results are shown in Table 4. From the
results, it is seen that the accuracy and performance of TCN are
better than other networks on the task of predicting the RUL of
electric gate valves. Moreover, two operating conditions are selected
at random, and the predicted RUL curves obtained from different

FIGURE 8 | RMSE results of ITCN vs, vanilla TCN under different operating conditions.

FIGURE 9 | Results of RUL prediction under different operating conditions.
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models are shown in Figure 7. The RUL prediction trend for the
improved TCN is the closest to the real RUL, which shows that the
best prediction is obtained from the improved TCN model. This
result is also consistent with the metric shown in Table 4.

To further verify the predictive performance and demonstrate
the generalization capability of the proposed improved TCN
model, we also applied it to predict RULs for the turbofan
engines in the NASA C-MAPSS benchmark datasets. The
C-MAPSS dataset contains the degradation history of aero-
propulsion engines operating under different fault modes. The
dataset has four subsets composed of multi-variate temporal data
obtained from 21 sensors. Detailed information on the
composition of the dataset can be found in reference (Ramasso,
2014). Due to space constraints, we evaluated the proposedmethod
only on the FD001 subset of the C-MAPSS dataset.

Similarly, the different methods mentioned in this section are
compared. The relevant comparison results are shown in Table 5.
It is seen that the improved TCN network still has the highest
accuracy for FD001 data and all TCN evaluation metrics are
better than other networks.

Remaining Useful Life Prediction Results
This section presents the RUL prediction results under different
aging conditions. As shown in Figure 8, the average RMSE of the
improved TCN and the original TCN under different operating
conditions are presented. It is seen that there is an impressive
increase in accuracy of improved TCN compared with that of the
original (vanilla) TCN under different operating conditions.

Moreover, Figure 9 is the results of the RUL prediction curve
after randomly selecting different operating conditions. It is seen
that the RMSE in Figure 8 is consistent with the RUL prediction
curve of the improved TCN, which is significantly better than the
original TCN. Moreover, it can be seen that before and at the
beginning of the equipment degradation, the errors between the
predicted curves and the real curve is large, which is mainly
caused by the sensor measurement error and noise during normal
operation. With the gradual development of degradation, the
improved TCN could better track the real RUL. As the equipment
approaches the end of life, there is a minor deviation between
predicted and real RUL but within the acceptable range.

CONCLUSION

This work proposes an improved TCN (ITCN) model for nuclear
power plant electric gate valve remaining useful life estimation.
Multi-variate training datasets that represent the degradation
history of the valve are acquired from an experimental
platform. The dataset is subsequently preprocessed and
normalized. High-performing convolution auto-encoder layers
are also integrated into the ITCN model to improve model
performance. Moreover, we experimented with different model
hyperparameters and convolution dilation factors to determine the
best parameters for the model. The research result and evaluation
metric show the impressive performance of the ITCN model. To
further verify the generalization capability of the proposed method,

the model is evaluated on NASA’s C-MAPSS dataset, to predict
RUL for aero-propulsion engines. Evaluation results show similar
impressive performance on the benchmark dataset. The results also
show that the work can be further extended to other mechanical
components and devices. Other advantages of the proposed
method are its ability to solve the problem of large computing
resources andmemory requirements that is common to LSTM and
other RNNs. The originality of this study is summarized below:

(1) We present and analyze major issues that constraint the
implementation of PHM for nuclear power systems

(2) We propose an improved TCN predictive model, based on
CAE and improved residual convolution. The parallel
structure of the TCN is augmented to enhance feature
processing for accurate RUL prediction.

(3) The proposed method is extensively evaluated using aging
characteristics of electric gate valves and other benchmark
datasets. The RUL prediction result and the comparative
analysis of other state-of-the-art models show an impressive
performance of the proposed method.

The results also show that the proposed method can be applied
to critical components and devices in other industries. It could
also enable predictive maintenance which reduces maintenance
downtime and part replacement cost, and improves productivity.
Nevertheless, we observed some limitations of the research. First,
the data acquisition procedure presented in this work needs to be
optimized. Aging and degradation modes in experiments also
need to be extended to completely reflect the real degradation
process. Further, the proposed method needs to be verified using
real degradation information from operating NPPs. Moreover,
the hyper-parameters and layer numbers of the proposed ITCN
are selected manually which is time-consuming. The application
of heuristic optimization algorithms and auto-tuners could
further optimize the predictive model performance. These
limitations will be addressed in our future work.
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Unlike the current risk monitors, Real-time Online Risk Monitoring and Management
Technology is characterized by time-dependent modeling on the state duration of
components. Given the real-time plant configuration, it eventually provides the time-
dependent risk level and importance measures for operation and maintenance
management. This paper focuses on the assessment method of time-dependent
importance measures and its risk-informed applications in real-time online risk
monitoring and management technology, including Fussell-Vesely (FV), risk
achievement worth (RAW), and risk reduction worth (RRW). In this study, the values of
component importance have been investigated with a time-dependent risk quantification
model, as well as the common cause failure treatment model. Here three options of
common cause failure treatment have been developed, assuming that the unavailability of
a component could be due to an independent factor (Option 1), a common cause factor
(Option 2), or an unconfirmed cause (Option 3). In the special case of “what if a component
is out-of-service” of the RAW numerator, a hybrid method for the RAW evaluation is
presented resulting in a balanced and reasonable RAW value. A simple case study was
demonstrated. The results showed that the absolute values and ranking order of time-
dependent importance not only reflected the effect of the cumulative state duration of
component on risk, but also comprehensively accounted for all possible situations of
component unavailability. Moreover, time-dependent importance measures improved and
provided novel insights for online configuration management, 1) ranking SSCs/events/

Edited by:
Jun Wang,

University of Wisconsin-Madison,
United States

Reviewed by:
Guohua Wu,

Harbin Institute of Technology, China
Muhammad Zubair,

University of Sharjah,
United Arab Emirates

Ming Yang,
South China University of Technology,

China

*Correspondence:
Zhijian Zhang

zhangzhijian_heu@hrbeu.edu.cn

Specialty section:
This article was submitted to

Nuclear Energy,
a section of the journal

Frontiers in Energy Research

Received: 18 July 2020
Accepted: 15 September 2020
Published: 27 November 2020

Citation:
Xu A, Zhang Z, Zhang H, Wang H,

Zhang M, Chen S, Ma Y and Dong X
(2020) Research on Time-Dependent

Component Importance Measures
Considering State Duration and

Common Cause Failure.
Front. Energy Res. 8:584750.

doi: 10.3389/fenrg.2020.584750

Abbreviations: ACT, allowed configuration time; BE, basic event; CCDP, conditional core damage probability; CCF, common
cause failure; CCCG, common cause-component group; CDF, core damage frequency; ET, event tree; FT, fault tree; FV, Fussell-
Vesely; ICDP, incremental core damage probability; IE, initiating event; IM, importance measure; IRORM, integrated platform
for nuclear power plant real-time online risk monitoring and management; LPSA, living-PSA; MCS, minimal cut set; NPP,
nuclear power plant; PRA, probabilistic risk assessment; RAW, risk achievement worth; RECAS, reliability data online
collection, analysis, and storage system; RM, risk monitor; RORM, real-time online risk monitoring and management system;
RORMT, real-time online risk monitoring and management technology; RRW, risk reduction worth; SAPHIRE, systems
analysis programs for hands-on integrated reliability evaluations; SMF, state monitoring and fault diagnostics system; SSC,
system, structure, and component; TS, technical specification.

Frontiers in Energy Research | www.frontiersin.org November 2020 | Volume 8 | Article 5847501

ORIGINAL RESEARCH
published: 27 November 2020

doi: 10.3389/fenrg.2020.584750

17

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2020.584750&domain=pdf&date_stamp=2020-11-27
https://www.frontiersin.org/articles/10.3389/fenrg.2020.584750/full
https://www.frontiersin.org/articles/10.3389/fenrg.2020.584750/full
https://www.frontiersin.org/articles/10.3389/fenrg.2020.584750/full
https://www.frontiersin.org/articles/10.3389/fenrg.2020.584750/full
http://creativecommons.org/licenses/by/4.0/
mailto:zhangzhijian_heu@hrbeu.edu.cn
https://doi.org/10.3389/fenrg.2020.584750
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles
https://www.frontiersin.org/journals/energy-research#
https://www.frontiersin.org/journals/energy- research#editorial-board
https://www.frontiersin.org/journals/energy- research#editorial-board
https://doi.org/10.3389/fenrg.2020.584750


human actions for controlling increased risk and optimizing near–term plans; and 2)
exempting or limiting temporary configurations during online operation.

Keywords: component importance measure, time-dependent, real-time online risk monitoring, common cause
failure, risk-informed operation and maintenance, configuration risk assessment

INTRODUCTION

Time-Dependent Characteristics of
Real-Time Online Risk Monitoring and
Management Technology
The safety and reliability of nuclear power plants (NPP) depend
on the inherent safety of reactor design, as well as the operational
safety under different operating conditions. The systems,
structures, and components (SSC) of NPP would experience
state changes due to random failures, maintenance, or
permanent design modifications. And the unavailability of
components may increase with operational time, which
imposes on the risk level during accident scenarios. Thus, it is
a fundamental requirement for online operation and
maintenance management to be kept informed of the current
risk level and importance measures (IMs) of NPP.

Real-time online riskmonitoring andmanagement technology
(RORMT) is based on a time-dependent living-PSA model and
an updated method of NPP (Zhang et al., 2015b). “Time-
dependent” refers to the impact of state duration on the
reliability of components. “Configuration” means the alignment
of the system, component state, environmental conditions, and
NPP scenarios. All of them affect the logical values of events
(normal, true, false) or reliability parameters (such as failure rate/
failure probability of component, frequency of initiating event (IE))
in the time-dependent living-PSAmodel, named as “RORMmodel”.

An integrated platform for nuclear power plant real-time
online risk monitoring and management (IRORM) was
developed as a generic tool for risk-informed operation, online
maintenance, and risk-informed management. It consists of four
interactive subsystems. The architecture of IRORM was
established as shown in Figure 1.

• The state monitoring and fault diagnostics system(SMF)
was developed to online monitor and identify the
operational states of systems and equipment with
running time. So it identifies the real-time configuration
of NPP via access to the digital I&C system in NPP.

• The reliability data online collection, analysis, and storage
system (RECAS) (Zubair and Zhang, 2011; Ma and Zhang,
2015) was developed to record state changes and failure
times of components. It can automatically update the failure
probability of components in time, and provide the
reliability parameters to the RORM model. In the long
run, it can provide long-term restoration of reliability
data for multi-units.

• The living-probabilistic safety assessment (LPSA) system is
used for modeling and updating an LPSA model. In case of
plant configuration changes or after a fixed period, it can
automatically be triggered to update the time-dependent

LPSA model in time. After that, a parallel computing engine
of IRORM would calculate minimal cut sets (MCS) and risk
metrics.

• A real-time online risk monitoring and management system
(RORM) is a risk monitor (RM) which is used for displaying
and evaluating time-dependent risk measures and other
related information.

PRA Importance Measures and Challenges
of Real-Time Online Risk Monitoring and
Management Technology
A variety of IMs were evaluated to identify the risk-significant
contributors (Gunnar and Jan, 1994; Kalpesh and Kirtee, 2017)
in PRA analysis, for instance, Fussell-Vesely (FV), risk achievement
worth (RAW), risk reduction worth (RRW), and Birnbaum
importance (Birnbaum, 1969). Among them, FV and RAW have
been commonly accepted in engineering practice for SSC
categorization (NRC, 2004). The computation of IMs is
performed at the level of reliability parameter, individual basic
event, event group, as well as component. The IMs of basic
events (BE) or components are ranked relatively (Kafka, 1997).
In terms of component importance, new measures were introduced
to reflect the risk fluctuation due to any events/parameters related to
a component, such as the differential importance measure (DIM)
(Borgonovo and Apostolakis, 2001), and the component DIM
(CPDIM) (Wang et al. 2008). And another treatment for
complex components uses a set of minterms (Dutuit and Rauzy,
2015). In the previous literature, several methods for component
RAW importance were discussed. For instance, the south Texas
project (STP) method (NRC, 2001a) and maximum method (NRC,
2001b) would overestimate the component RAW, while the NEI 00-
04 Rev.C method (NEI, 2002) and NEI 00-04 Rev.D method (NEI,
2003) significantly underestimates it. Here three previous methods
with respect to the RAW evaluation of components are briefly
reviewed including their limitations.

(1) The “direct method” was used for evaluating RAW directly
based on MCSs. For an event group {Z1,Z2, ...,Zk} of a
component, the unavailability of failure mode events in
the group were set as one. However, it was not
appropriate to extend the component RAW in this way
(Kuo and Zhu, 2012). First, the event group excludes the
CCF events of the component. Second, after the treatment of
the direct method, the cut sets should be minimalized again
with the Boolean laws of reduction.

(2) To improve the direct method, Check et al. (1998b) suggested
that all BE in the event group be replaced with the same
indicator, then the Boolean operation was performed to
remove the possible non-MCSs. This approach has been
widely applied in most risk monitors. However, it only
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concerned situations when the SSC-related BE can be
grouped as one module in fault trees (FT). It also believed
that the unavailability of components must be due to
independent reasons, and ignored the unavailability
situations arising from common cause factors.

(3) The balancing method (BM) (Kim et al., 2005) considering CCF
events was proposed to calculate the RAW importance of
components based onMartorell et al. (1996), as expressed inEq. 1.

RAW � 1 + FV(1 − p)
p

(1)

Here p � ∑
k

w�1
Qw � pindependent events + pCCF events indicates the

sum of probabilities of all events related to a component,
including independent failure basic events and CCF events k is
the number of events. FV � FVindependent events + FVCCF events.

But the BM had certain limitations. First, Eq. 1 is derived on
the basis that the FV importance of a component is additive. But

the basis is insufficient under some circumstances as mentioned
in Discussion. Second, the BM is not conservative when the event
group of a component consists of more than one basic event. In a
word, the methods above were not fully applicable to RORMT.

The time-dependent IMs of components depend on the
component lifetime distribution (Borgonovo et al., 2016). They
could be evaluated at any time and the ranking order of themmay
vary with time. To give support for online operation and
maintenance, the time-dependent IMs of components should
be evaluated and updated in the RORM system whenever the
real-time configuration changes. However, some technical
challenges still exist in the importance analysis of RORM.

(1) It is necessary to investigate the evaluation method and
potential benefits of time-dependent IMs, which is
influenced by the time-dependent LPSA model.

(2) It is controversial to extend the importance of a basic event to
the level of multiple BE/components (Vaurio, 2011).

FIGURE 1 | Architecture of an integrated platform for nuclear power plant real-time online risk monitoring and management (IRORM).
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(3) It still lacks consensus on updating the CCFmodel in the case
of “what if a component is out-of-service,” such as the
numerator of RAW.
In this paper, we agree that both of the independent failure events

and CCF events should be considered. Since the unavailability of
components is possibly an independent failure, common cause
failure, or failure due to an unconfirmed cause, the treatment for
unavailability has to balance each assumption. When adjusting the
probability of CCF events, it is crucial to account for each
unavailability and specific plant configuration.

To solve the problems above, this paper is organized as
follows. First, since the time-dependent IMs are affected by
both the time-dependent risk and CCF updates, the two
mathematical models of risk quantification and CCF treatment
are introduced in Mathematical Model of Real-Time Online Risk
Monitoring and Management Technology. The time-dependent
IMs are presented in Time-Dependent Importance Measures,
including FV, RAW, and RRW. The IMs of an individual
event are developed to the level of basic event groups/
components. A hybrid method for RAW evaluation is
proposed by using the three options of CCF treatment in
Mathematical Model of Real-Time Online Risk Monitoring and
Management Technology. In Case Study, a simple case study is
given for demonstration. Time-Dependent Importance Measure
for Risk-Informed Decision Making illustrates what the time-
dependent IMs contribute to risk-informed decision making,
especially for configuration risk management.

MATHEMATICAL MODEL OF REAL-TIME
ONLINE RISK MONITORING AND
MANAGEMENT TECHNOLOGY

Risk Quantification in Real-Time Online
Risk Monitoring and Management System
The RORM model is a time-dependent LPSA model used for
online risk monitoring, which is established by event trees (ET)
and FT. Here the concept of time-dependence is explained in
Appendix A. Compared with other generic risk monitor models,
there are two main enhancements of the RORMmodel. First, the
unavailability of a component changes with its state and running
time in the RORM model (as illustrated in Appendix B) while
other RMs generally consider the unavailability of components
with a fixed mission time or fixed probability. Second, the CCF
modeling and updating methods are improved in the RORM
model. The CCF updating method on the alpha model (Zubair
and Amjad, 2016; Zhang et al., 2017) considered that the failure
causes (independent failure, common cause failure, and uncertain
cause failure) would influence the reduction of common cause
component group (CCCG) order and CCF event probability.

Under any of the following three situations, the RORMmodel is
triggered to update and calculate, according to the modeling and
updating rules described (Zhang et al., 2015a; Chen et al., 2020).

(1) Updating due to configuration changes: The structural
function Φ(Ζ) of the RORM model would be updated.

Φ(Z) can be expressed in the form of minimal cut sets
(MCS).

Φ(Z) � ∪
N

l�1
MCSl � ∪

N

l�1
∩
pl

k�1
Zl,k (2)

where N is the total number of MCSs (l � 1,2,3,. . ..N). Zl,k ∈ MCSl
is the kth event ofMCSl ,MCSl � {Zl,1,Zl,2, ...Zl,pl} is the lth MCS.
pl is the number of BE under MCSl (k � 1,2,3,...pl).

Besides, the state of equipment and state duration Ts are updated if the
configuration changes, and the probability of BE at time t Ql,k(t) (refers
to Q(t) mentioned in Table A2 of Appendix B) is automatically
calculated in time for quantifying the RORM model.
(2) Regularly updating: The structural function Φ(Ζ) does not

change. Even if no configuration changes, the RORM system
automatically updates the state duration Ts, and then
performs a risk calculation every few hours (generally
whenever operators change shifts).

(3) Reliability parameter updating: The structural function Φ(Ζ)
does not change in this case. The reliability parameters (such
as running failure rates and demand probability) are not
updated whenever the risk calculation is performed. The
classical estimation method and Bayesian estimation method
in updating reliability parameters (Atwood, 2003; Zubair
et al., 2011) are also utilized in RECAS. In addition, based
on the long-term restoration of failure data, RECAS could fit
a life distribution of components by a maximum estimation
method and a goodness-of-fit test. The results of updated
parameters are used in calculating the probability of BE.
Assume that: 1) all events (including independent failure

events and CCF events) in the RORM model are mutually
exclusive, i.e., Zm∩Zn � ϕ (m≠ n). 2) after the Boolean
operation, MCSs obtained are mutually disjoint.

Within the scope of level 1 PRA, the instantaneous risk metric of
NPP refers to the core damage frequency (CDF, per unit year). If any
possible IE occurs at the current moment t, CDF(t) estimates the
frequency of core damage given the real-time plant configuration
after a predefined mission time Tm. Based on Eq. 2, the time-
dependent risk measure CDF(t) can be quantified using rare event
approximation which is mathematically expressed as

CDF(t) �∑
n

i�1
FIEi ·∑

mi

j�1
P(CDi,j(t))

� F( ∪
N

l�1
MCSl(t) � 1)

�∑
N

l�1
⎡⎣∏

pl

k�1
Ql,k(t)⎤⎦

(3)

where F(·) is frequency and P(·) refers to probability. FIEi is the
occurrence frequency of IEi. n is the number of IEs, (i �
1,2,3,. . .n). CDi,j is the core damage sequence j in the event
tree of IEi. mi is the number of CD sequences under IEi (j �
1,2,3,. . .,mi). MCSl � {Zl,1,Zl,2, ...Zl,k, ...,Zl,pl} indicates the lth
MCS and pl is the number of events under MCSl (k � 1,2,3,...pl).

Note that: MCSl is composed of IE and failure events of
equipment. So F(MCSl(t) � 1) means the occurrence
frequency of MCSl , which is the product of all events in MCSl .
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If Zl,k is IE, then Ql,k(t) � FIE(t). If Zl,k is a failure event of
equipment,Ql,k(t) refers to the probability of a basic event at time
t (refer to Q(t) mentioned in Table A2 of Appendix B).

A set of BEs with similar attributes would constitute a BE group,
such as BE related to a component, system, or safety function. For
instance, a BE group {Z1,Z2, ...,Zk} of component C. Then BEs of
the same component would not appear in one MCS simultaneously
after the Boolean operation. For example, a CCCG consists of failure
events of three redundant components A, B, and C. The
independent failure event of A (denoted as AI) and CCF events
of B and C (denoted as CBC) may occur in the same MCS, but CI,
CAC, CBC, and CABC of component C would not appear in the same
MCS. Likewise, a basic event may occur in multiple accident
sequences, but it only appears in an accident sequence at most once.

For an event group {Z1,Z2, ...,Zk} of a component C, the risk
metric CDF(t) would be expressed by a linear function as Eq. 4.

CDF(t) � ∑
k

w�1
Aw(t)Qw(t) + B(t) (4)

where Zw (w � 1, 2, ...k) is an event related to C. If any Zw is
within a CCCG, then the BE group includes both the independent
failure events and CCF events which consist of multiple BE.
Qw(t) is the time-dependent probability of Zw at time t. Here
Qw(t) is the same as Q(t) mentioned above.

∑
k

w�1
Aw(t)Qw(t) � ∑

k

w�1
F( ∪

Zw ∈ MCSl
MCSl(t) � 1)

� ∑
k

w�1
∑

Zw ∈ MCSl

F(MCSl(t) � 1)) (5)

Note that the first term refers to the sum of frequencies ofMCSs
containing any event in the event group. The second term B(t) is
the probability of other MCSs. Aw(t) indicates that the occurrence
probability of MCSs containing Zw in the case of Qw(t) � 1.

Common Cause Failure Treatment of
Unavailability
In this section, three options of what if treatment of
unavailability are derived by solving the RORM model with
adjusted CCF probability, reflecting the knowledge that a
component is out of service. They provide a new idea
considering CCF to quantify the what if risk of RAW
numerator and RRW denominator.

For an n-order CCCG, the probability of k component failures
and total failure probability are expressed in Eqs 6, 7. (1≤k≤n)

Q(n)
k � Q(n)

k0 +∑
l

j�1
Q(n)

kRj
� (p0)k(1 − p0)

n− k +∑
l

j�1
η
Rj
k P(Rj) (6)

Q(n)
t �∑

n

k�1
Ck−1
n−1Q

(n)
k (7)

where Q(n)
k is the probability of k component failures of n-order

CCCG. Q(n)
t is the total failure probability of a component in

CCCG.Q(n)
k0 � (p0)k(1 − p0)n− k is the probability of k component

independent failures of n-order CCCG.

Q(n)
kRj

� η
Rj

k P(Rj) is the probability of k component failures of
n-order CCCG due to common cause factor Rj(j � 1, 2, ...l).ηRj

k is
the coupling factor of k specific components due to common
cause Rj(j � 1, 2, ...l), especially R0 is the independent failure
factor. P(Rj) is the probability of common cause
Rj(j � 1, 2, ...l). p0refers to the independent failure probability.

Option 1: what if unavailability of SSC due to independent
factor

The independent factor refers to independent failure, or other
preventive maintenance, or tests. When i specific components are
identified to be unavailable, the probability of CCF events essentially
remains, but they are reorganized to a new CCF event group.

Q(n−i)
t � Q(n)

t

Q(n−i)
k � ∑

i

m�0
Cm
i Q

(n)
k+m

,
i � 1, 2, ..., n − 1;
k � 1, 2, ..., n − i

(8)

where Q(n−i)
t is the failure probability of a component in CCCG,

given the fact that i independent failures have occurred. Q(n−i)
k is

the probability of k component failures of n-order CCCG, given
the fact that i independent failures have occurred.

Thus, it is required to regenerate CCF events and update their
probabilities, without updating CCF parameters in this case.

Option 2: what if unavailability of SSC due to common
cause factor

Suppose that a certain common cause factor Rp(p � 1, 2, ...l) is
known to happen, then P(Rp) � 1.

Q̃(n)
kRp

� Q(n)
kRp

P(Rp)
(9)

From Eq. 9, when a known common cause factor Rp(p �
1, 2, ...l) happens and it leads to failures of i components (i ≤ n),
the probability of other remaining CCF events becomes a
conditional probability, given the fact that i components failed
due to Rp.

Q̃(n)
k Rp � Q(n)

k0 +∑
l

j�1
Q̃(n)

kRp
� (p0)k(1 − p0)

n− k + ∑
l

j�1,j≠ p
η
Rj
k P(Rj) + η

Rp
k

∣∣∣∣∣∣∣∣∣∣
(10)

For i failures of n-order CCCG due to Rp, the new failure
parameters are written as Eqs 11, 12.
i � 1, 2, ..., n − 1; k � 1, 2, ..., n − i.

Q̃(n−i)
k Rp � ∑

i

m�0
Cm
i Q̃

(n)
k+m Rp � ∑

i

m�0
Cm
i [Q

(n)
(k+m)0 +∑

l

j�1

˜Q(n)
(k+m)Rj Rp

⎤⎥⎥⎦
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

� ∑
i

m�0
Cm
i [Q

(n)
(k+m) + Q(n)

(k+m)Rp(
1 − P(Rp)
P(Rp)

)⎤⎥⎥⎦ (11)

Q̃(n−i)
t � Q(n)

t +∑
n

k�1
Ck−1
n−1Q

(n)
kRp

1 − PRp

PRp

(12)
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where Q̃(n−i)
k |RP

is the conditional probability of k component
failures of n-order CCCG with the fact that i failures occurred,
because of the common cause factor RP(p � 1, 2, ...l).

From Eqs 11, 12, the probability of a CCF event due to a
common cause factor is higher than that of an independent factor,
that is, Q̃(n−i)

t >Q(n−i)
t and Q̃(n−i)

k >Q(n−i)
k . So Option 2 is more

conservative than Option 1.
Option3:what if unavailability of SSCdue to unconfirmed cause
During the online operation of NPP, it is often impossible to

detect the reasons why a component is unavailable (except for
some voluntary planned activities such as preventive
maintenance and periodic testing). Thus, it is suggested to
estimate the probability of CCF events due to unconfirmed
causes using the expected value of Option 1 and Option 2.

Given that i components have become unavailable (i � 1, 2, . . .,
n−1), the conditional probability of Rj(j � 0, 1, 2, ...l) which lead
to the unavailability is written as

P(Rj|i) �
P(Rj)P(i

∣∣∣∣Rj)
P(i)

� Q(n)
iRj

Q(n)
i

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p0)
i(1 − p0)

n− i

(p0)
i(1 − p0)

n−i + ∑
l

j�1
η
Rj
i P(Rj)

j � 0

η
Rj
i P(Rj)

(p0)
i(1 − p0)

n−i + ∑
l

j�1
η
Rj
i P(Rj)

j � 1, 2, ..., l

(13)

where η
Rj

i is the coupling factor of i components due to cause
Rj(j � 0, 2, ...l), especially R0 is the independent failure factor.

From Eq. 13, we can obtain the expected probability value of
events as Eqs 14, 15.

E(Q(n−i)
k ) �∑

l

j�0
P(Rj|i)Q(n−i)

kRj

�
(p0)

i(1 − p0)
n− i ∑

i

m�0
Cm
i Q

(n)
k+m + ∑

l

j�1
∑
i

m�0
η
Rj
i P(Rj)Cm

i [Q
(n)
k+m + 1 − P(Rj)

P(Rj)
Q(n)
(k+m)Rj

⎤⎥⎦

(p0)i(1 − p0)n−i + ∑
l

j�1
η
Rj
i P(Rj)

(14)

E(Q(n−i)
t ) �∑

l

j�0
P(Rj|i)Q(n−i)

t

� (p0)i(1 − p0)n− i

(p0)i(1 − p0)n−i + ∑
l

j�1
η
Rj
i P(Rj)

Q(n)
t

+
∑
l

j�1
η
Rj
i P(Rj)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣1 +

[1 − P(Rj)] ∑
n

k�1
Ck−1
n−1η

Rj
k

Q(n)
t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Q
(n)
t

(p0)
i(1 − p0)

n−i + ∑
l

j�1
η
Rj
i P(Rj)

� Q(n)
t ·

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 +
∑
l

j�1
η
Rj
i P(Rj)

[1 − P(Rj)] ∑
n

k�1
Ck−1
n−1η

Rj
k

Q(n)
t

(p0)i(1 − p0)n−i + ∑
l

j�1
η
Rj
i P(Rj)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(15)

Based on three basic parameter models for CCF analysis
(Mosleh et al., 1998), Option 3 is further developed as follows:

(1) For a β-factor model, if i components are known to have
failed, the reason for i failures must be due to an independent
factor. So the CCF event probability of the (n-i) remaining
components does not change.

⎧⎪⎨
⎪⎩

Q(n−i)
1 � (1 − β)Qt

Q(n−i)
n−i � βQt

Q(n−i)
t � Q(n)

t

i � 1, 2, ...n − 1 (16)

(1) For an α-factor model (non-staggered testing scheme):

E(Q(n−i)
k ) �

(p0)
i(1 − p0)

n− iQ(n−i)
k0 + ∑

i

m�0
η
Rj
i P(Rj)Cm

i [ n
Ck+m
n

αk+m
αt
Qt + 1−P(Rj)

P(Rj) Q
(n)
(k+m)Rj]

(p0)i(1 − p0)n−i + ∑
l

j�1
η
Rj
i P(Rj)

(17)

For an α-factor model (staggered testing scheme):

E(Q(n−i)
k ) �

(p0)
i(1 − p0)

n− iQ(n−i)
k0 + ∑

i

m�0
η
Rj
i P(Rj)Cm

i [
αk+m
Ck+m−1
n−1

Qt + 1−P(Rj)
P(Rj) Q

(n)
(k+m)Rj]

(p0)
i(1 − p0)

n−i + ∑
l

j�1
η
Rj
i P(Rj)

(18)

(1) For an MGL model:

E(Q(n−i)
k ) �

(p0)
i(1 − p0)

n− i ∑
i

m�0
Cm
i Q

(n)
k+m + ∑

l

j�1
∑
i

m�0
η
Rj
i PRjC

m
i [ 1

Ck−1
m−1
(∏k+m

i�1 ρi)(1 − ρk+m+1)Qt + 1−PRj
PRj

Q(n)
(k+m)Rj]

(p0)
i(1 − p0)

n−i + ∑
l

j�1
η
Rj
i PRj

(19)

where ρi �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 i � 1

∑
m

k�i
Ck−1
m−1Qk

∑
m

k�i−1
Ck−1
m−1Qk

i � 2, 3, ...,m

0 i>m

, that is,

ρ1 � 1, ρ2 � β, ρ3 � c, ρ4 � δ, ..., ρm+1 � 0

For practical considerations, U.S. NRC has proposed methods for
CCF treatment. For instance, Appendix E.3 of NUREG/CR-5485
(Mosleh et al., 1998) discussed about the condition that one of the
components in the CCCG has failed or is under preventive
maintenance. But there are two main deficiencies. First, the
manner of CCF modeling for a three-order group in the report is
“a single common cause basic event (CABC) and three BE (AI, BI, CI)”.
This is different from what is currently used in NPP CCF analysis.
Second, the approximations of Eqs E.11, E.12 of NUREG/CR-5485
in the report are not valid.

The Risk Assessment of Operational Events handbook (NRC,
2017) had eight CCF treatment cases based on the SAPHIRE
software (NRC, 2011). In RASP, given an observed failure of a
component in the CCCG, the general consideration is to set the
BE of a failed component to TRUE and apply the conditional CCF
probability using the original CCF parameter without updating
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(e.g., α2 for CCCG � 2, α3 for CCCG � 3). That is not appropriate,
no matter that the observed failure is because of an independent
factor, or a common cause factor.

We have known that the output of RORM might change
significantly due to CCF. However, the critical CCF data are hard
to obtain. Thus, the following two CCF engineering treatments
are applied to the development of IRORM.

• CCF engineering treatment #1: Given a detected random
failure of a component

In most cases, it is difficult to quickly determine the failure
mode of a failed component online, especially to identify whether it
is due to independent failure or CCF. Thus, a tradeoff approach is
proposed as follows: for the failed component, set the intermediate
event of component “A fails” to be true. For the other components
B and C of the same CCCG, the probabilities of certain CCF events
(such as CAC, CAB, CABC) are divided by the unavailability Q(t).

• CCF engineering treatment #2: Given preventivemaintenance/
periodic testing whichwill lead component A to be unavailable.

In this case, the equipment is unavailable due to independent
reasons, but not due to failure. So the basic event “unavailability
due to test or maintenance” of A is set to true while the
probabilities of CCF events stay the same.

Another possible solution of CCF treatment #2 is to quantify
the Boolean function of the RORM model. First, delete all
possible BE of component A, and regenerate new CCF trees of
comparable components in CCCG. Then update the CCF event
probabilities as Option 1 is introduced.

TIME-DEPENDENT IMPORTANCE
MEASURES

The time-dependent IMs are influenced by the RORM model at
time t, but also the CCF treatment, as shown in Figure 2. The
importance analysis in PRA is mostly performed based on
individual BE or parameters, such as FV (Fussell and Vesely,
1972; Fussell, 1975), RAW, and RRW (Vesely et al. 1986). But for
risk-informed applications, the IMs are evaluated to identify the
risk-significant SSCs. Thus, in the next section, the time-
dependent IMs are defined and evaluated at different levels
(basic event, basic event group, and component).

Time-Dependent Fussell-Vesely
Importance
The time-dependent FV importance of a basic event Zw is defined
as the proportion of the probabilities of all MCSs containing Zw to
the time-dependent risk metric, expressed by Eq. 20.

FVZw(t) �
P( ∪

Zw ∈MCSl
MCSl))

P(∪N
l�1 MCSl))

� 1 − R−
w(t)
R(t) (20)

where ∪
Zw ∈ MCS

l

MCS
l
is the union of MCSs containing Zw. N is the

total number of MCSs. R(t) is the time-dependent risk metric of
real-time configuration.

R−
w(t) is the real-time risk level when the Boolean variable of

Zw is set to false, or the failure probability of Zw is set to zero.
For an event group {Z1,Z2, ...,Zk} of component C, it is

expressed as Eq. 21.

FVc(t) � FV( ∪
k

w�1
Zw) �

∑
k

w�1
Aw(t)Qw(t)
CDF(t) (21)

where Aw(t) indicates the occurrence probability of MCSs which
includes Zw in the case of Qw(t) � 1.

In consideration of engineering practice, FV importance of an
individual event which is related to the same component are
ranked together, including failure mode events and CCF events. If
the FV importance of component C ranks high among
components for the current configuration, its preventive
maintenance should be preferentially implemented. The
operators should be reminded to pay special attention to the
components with top FV ranking orders.

Time-Dependent Risk Achievement Worth
Importance
The time-dependent RAWZw(t) is expressed as the ratio of
R(T∣∣∣Qw(t) � 1) to the time-dependent risk level, as shown in Eq. 22.

RAWZw(t) �
R(T|Qw(t) � 1)

R(t) (22)

where T is the top event of system failure. Qw(t) is the failure
probability of Zw.

R(T∣∣∣Qw(t) � 1) is the real-time risk level what if Zw does not
exist in FT. That is, the Boolean variable of Zw is set to true, or
Qw(t) is set to one.

Note that when calculating R(T∣∣∣Qw(t) � 1), other BEs which
have interdependencies with Zw are possibly influenced. For
example, if Zw indicates the CCF failure of component A and
B, then the other events of CCCG should be updated.

For an event group {Z1,Z2, ...,Zk} of component C, RAWC(t)
is independent of Qw(t), as indicated in Eq. 23.

RAWC(t) � CDF(t)C+

CDF(t) �
∑
k

w�1
Aw(t) + B(t)
CDF(t) (23)

where Aw(t) indicates that the occurrence probability of MCSs
including Zw in the case ofQw(t) � 1. B(t) is the sum of frequencies
of MCSs that does not contain any event in the event group.

In consideration of engineering practice, RAWC(t) is
quantified based on the MCS results of real-time
configuration, but the manner of quantification is different
under the following two situations.

(1) To avoid certain failures of components: RAWC(t) refers to the
situation what if C failed. Thus, the individual BE of C are

Frontiers in Energy Research | www.frontiersin.org November 2020 | Volume 8 | Article 5847507

Xu et al. Time-Dependent IMs of Component

23

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles


updated according to Table A2 of Appendix B. And the CCF
events related toCwould follow theCCF engineering treatment
#1 in Common Cause Failure Treatment of Unavailability.

(2) To prioritize the near-term planned activities of components:
RAWC(t) refers to the situation if component C was in
maintenance/testing. Thus, the individual BE should be
updated according to Table A2 of Appendix B. And the CCF
events related to C would follow the CCF engineering treatment
#2 in Common Cause Failure Treatment of Unavailability.

Time-Dependent Risk Reduction Worth
Importance
The time-dependent RRWZw(t) is expressed as a ratio of the time-
dependent risk level to R(T∣∣∣Qw(t) � 0), as shown in Eq. 24.

RRWZw(t) �
R(t)

R(T|Qw(t) � 0) (24)

where R(T∣∣∣Qw(t) � 0) is the risk level assuming that Zw is perfect,
i.e., Zw� False or Qw(t) � 0.

For an event group {Z1,Z2, ...,Zk} of component C, we can see
that RRWC(t) is independent of Qw(t), as shown in Eq. 25.

RRWC(t) � CDF(t)
CDF(t)c− � CDF(t)

B(t) (25)

where B(t) is the sum of MCSs that does not contain any event in
the group.

The RRW importance of unavailable components answers
what would happen if it is perfect. Thus, the ranking of RRW can
be used to prioritize the maintenance actions.

Since the failure events of unavailable components no longer
exist in MCSs, RRW importance of an unavailable component is

quantified using MCSs “zero-repair configuration,” in order to
find out the missing MCSs. Here “zero-repair configuration” is a
virtual configuration with all equipment available, it is predefined
by PRA analysts and safety engineers.

The procedures of quantifying RRWC(t) are as follows:
Step 1 Obtain the MCS analysis results of the zero-repair

configuration.
Step 2 Except for C, the states of other components are set to

their real-time states, in order to generate new MCSs in case
component C becomes available again. The logical value of its
BE should be consistent with its state, as listed in Table A2 of
Appendix B.

Step 3 For component C, its state duration Ts is reset to zero,
while the state duration of other components remains unchanged.
Update the unavailability of failure events of C.

Step 4 Calculate B(t) with new MCSs.
Step 5 Determine the RRW of an unavailable component by

using the ratio of CDF(t) and B(t).

DISCUSSION

If an IM of the union of an event group is the sum of the IMs
of the individual BE, then the IM is “additive,” as expressed in
Eq. 26.

IM( ∪
k

w�1
Zw) � ∑

k

w�1
IM(Zw) (26)

For a general event group G � ∪k
w�1 Zw, the importance of G is

quantified depending on how these events are modeled in FT.

FIGURE 2 | The evaluation process of time-dependent importance measures.
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(1) When Z1,Z2, ...,Zk are connected by an OR gate, FV
importance of G is the sum of all individual event FVs,
that is, FV is additive in this case.

FVG(t) � ∑
k

w�1
FVZw(t) (27)

(2) When Z1,Z2, ...,Zk are connected by an AND gate, FV
importance of G is equivalent to the FV of any individual event.

FVG(t) � FVZ1(t) � FVZ2(t) � ...FVZw(t) � ... � FVZk(t) (28)

(3) In general, if multiple BE are not modeled in a modular FT,
there is no certain connection between the FV importance of
G and those of individual BE.

FVG(t)≠ ∑
k

w�1
FVZw(t) (29)

It is observed that in the latter two cases, the time-dependent
FV importance of G cannot directly sum up the importance of
individual BE. Specifically, in most cases, BEs of a component are
inputs of OR gate in the RORM model. Thus Eq. 27 is generally
used for the FV of a component.

For any of the three situations, neither of the RAW and RRW
for an event group are additive, as expressed in Eqs. 30, 31.

∀w � 1, 2, 3, ...k, RAWG(t)>RAWZw(t)

and RAWG(t)≠ ∑
k

w�1
RAWZw(t)

(30)

∀w � 1, 2, 3, ...k, RRWG(t)>RRWZw(t)

and RRWG(t)≠ ∑
k

w�1
RRWZw(t)

(31)

HYBRID METHOD FOR TIME-DEPENDENT
RISK ACHIEVEMENTWORTH EVALUATION

The RAWC(t) of available components should be both
configuration-dependent and time-dependent. The quantification
of the time-dependent RAW importance of a component focuses on
how to calculate the “what if risk” level as the numerator of RAWC(t)
. The treatment of “A component is unavailable” for the
numerator of RAW does not mean that “the component does
not exist or is removed from the PRA model.” Because “a
component is out of service” gives a conditional CCF
probability for the remaining components changed according
to what type a basic event is. When a component is just out of
service with an unconfirmed cause, the component could be out
of service due to a common cause factor or due to an independent

cause (such as independent random failure, preventive
maintenance, or a periodic test).

How to deal with the CCF issue in “what if” is a controversial
and tough problem. For a given event group or a component, it
should include all related BE and CCF events. But when the logical
value of a CCF event is true, it means that two ormore components
have failed due to a common cause. The probability of other CCF
events may become a conditional probability given the known
failures in the CCCG. For example, if one of the CCCG elements
(such as component C in a three-order CCCG) has been just out of
service, the probability of a CCF event which associates C with
other components (such as CBC, CAC, and CABC) will increase.

Thus, the reasons for the unavailability of SSC C in CCCG
include: 1) a what if independent cause; 2) a common cause
factor; and 3) an unconfirmed cause.

Considering the “what if” assumptions of CCF events, a hybrid
method to deal with independent failure events and CCF events is
proposed to quantify the RAW importance of SSC. The
procedures of the hybrid method are shown in Figure 3.

Step 1: Update the RORM model according to the real-time
plant configuration at time t. The updating rules are concerned
with the Boolean function updating of system failure. Qualify the
MCSs based on the updated Boolean function of the system.

Step 2The reliability data from the RECAS system are given to
quantify the failure probability of failure mode events (refer to
Table A2 of Appendix B), CCF events, and IEs, etc. As a result,
the risk measures such as CDF(t) are quantified.

Step 3For SSC C, identify all the events Zw(w � 1, 2, 3..., k)
associated with SSC C. Here Zw consists of failure mode events ZB

w
and CCF events ZC

w .
Step 4Update the probability of MCSs under the assumption

of “C is out of service.” For CCF events ZC
w , there are three

options of what if treatment considering CCF. It requires an
update in the failure probability of ZC

w as introduced in
Common Cause Failure Treatment of Unavailability. For
failure mode events ZB

w, the failure probability is set to 1. If
the failure mode events of SSC C is negated within MCSs, then
its failure probability is set to 0.

Aw(t) �
P⎛⎝ ∪

ZB
w ∈MCSl

MCSl⎞⎠

Qw(t) (32)

Step 5Calculate CDF(t)C+
based on the updated MCS and

new failure probabilities of all events, as the numerator of
RAWC(t).

CDF(t)C+ � ∑
k

w�1
Aw(t) + B(t) (33)

Step 6The final result RAWC(t) is calculated.
RAWC(t) � CDF(t)C+

/CDF(t) (34)
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CASE STUDY

Description
A typical fluid system (Figures 4A) consists of three redundant
pump trains. Each train has a 100% pump and its related valve. In
normal conditions, at least one pump train of the system supplies
water to other systems. P1, P2, and P3 are three redundant and
identical electric pumps. The running state of an electrical pump
is continuously monitored online, but its standby state cannot be
monitored. V1, V2, and V3 are check valves to control the fluid of
each pump train. All valves are non-online monitored equipment.
When a pump is running/standby, the related valve of the train is
open/closed. When the pump is tested/repaired, then the whole
pump train (including the related valve) will be out of service for
test/maintenance. When the pump happens to fail, the related
valve will be automatically triggered to close. The operating pump
train normally switches every 30 days-45 days.

Assumptions and Simplifications:

(1) If the equipment is not online monitored, the last moment to
confirm availability is the moment of on-demand action or
the end moment of periodic testing/preventive maintenance.

(2) No failure occurs when switching the operating pump train,
and no demand failure occurs when a valve transfers its state.

(3) All equipment is available and perfect at t � 0. The pump train #1
is restored to operation. The other two pump trains are in standby.

(4) The mission time of all equipment Tm � 24 h. In this case, the
time-dependent risk of the system is a conditional failure
probability of the system after the future mission time Tm

based on the real-time plant configuration.
(5) The top event of the FT model is “all the pump trains of the

system fail to supply water to other systems.”
(6) Only the CCCG of “pump operating failure” is considered in

the FT model.

FIGURE 3 | Procedures of the RAW importance calculation of SSC C.
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(7) The risk calculation of the system is triggered whenever the
configuration changes, and it is regularly calculated every
120 h if the configuration stays the same.

During a 3-month (2,160 h) operation, the system experienced
multiple configuration changes as shown in Figures 4B. Train 1 is
running, trains 2 and 3 are in standby from t � 0. At t � 720 h,
train 1 switches to standby, and train 2 begins to operate. At the
same time, V1 becomes closed and V2 becomes open. At t �
1,008 h, the standby pump train 3 starts to carry out a periodic
test. At t � 1,080 h, P2 fails randomly. Train 3 changes from
standby to operation. Then train 2 enters into online
maintenance. At t � 1,440 h, P2 returns to standby, and pump
train 3 continues to run.

RESULTS AND DISCUSSION

Time-Dependent Risk Evaluation
To demonstrate the time-dependent probabilistic model, the
Weibull and exponential distributions of components are used
as two examples. If the life distribution of the equipment is
exponential, the failure rate is constant. If the life distribution of
the equipment follows other continuous distributions such as
Weibull distribution, the failure rate varies with time. The
reliability parameters of the two examples are listed in Table 1A.

The insights of risk are inaccurate in current RMs. First, PRA
data used by RMs are based on the assumption that the “time to
failure” of continuous operating equipment is exponentially
distributed, that is, the estimated value of failure rate λ(t) is
constant. Second, for a predefined mission time of the system, the
risk level is only dependent on the plant configuration regardless

of state duration, so the risk is constant under the same
configuration. From the black lines of Figures 5A, B, we
found out that no matter what distribution the life of
equipment is, the risk levels of different configurations are
almost the same as long as the combination of available
equipment is the same, such as Config.1, Config.2, and
Config.5. Based on the above risk information of RM, we can
infer that the operating equipment is allowed to operate
continuously, with no requirements of periodic testing/
preventive maintenance or regularly switching between
redundant units. That is obviously in contrast with the
engineering experience of NPP.

The system risk of RORM varies with plant configuration and
equipment unavailability. It is a sort of saw-tooth type. Take the
blue line of Figures 5A as an example. For Config.1 (train 1 is
running, train 2 and 3 are standby), the risk rises rapidly from
baseline risk 1.860e-18 to 2.430e-13. At t � 720 h, train 1 switches
to standby, and train 2 begins to operate. At the same time V1

turns to closed and V2 turns to open. For configuration 2, firstly
the risk drops to 2.019e-18, which is quite close to the baseline
risk, then it increases to 1.751e-14. At t � 1,008 h, the standby
pump train 3 starts to carry out a periodic test. For Config.3, the
redundancy of the system is reduced, so the risk suddenly
increases to 6.794e-10. During the test, the risk rises until the
end of test. After the test of train 3, the state durations of P3 and
V3 are both reset. At t � 1,080 h, P2 fails randomly. The standby
train 3 is put into operation. Then train 2 enters into online
maintenance. After the maintenance of train 2, the state durations
of P2 and V2 are both reset. For Config.4, the risk drops to 8.954e-
14 due to P2 failure, then it increases to 1.3980e-9 with the
continuous operation of train 3. At t � 1,440 h, P2 returns to

FIGURE 4 | Description of fluid system. (A) A fluid system of three redundant pump trains. (B) Plant configurations in three months.
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standby, and train 3 continues to run. For Config.5, the risk steps
down to 3.1510e-14, and then gradually climbs to 2.633e-11.

The RORM model brings novel risk insights based on the
effect of cumulative state duration. Even if the plant configuration
remains, the risk also increases with the system running time. By
comparison of Config.1, 2, and 5, it is clear that even if the
combination of available equipment is the same, the risk levels of
different configurations vary from each other. Thus, it is
necessary to carry out periodic testing, inspection,

maintenance, and switching regularly in order to keep the risk
level within an acceptable range.

As mentioned in Time-Dependent Fussell-Vesely Importance,
the FV importance values of equipment for Config.1 and 2 are
calculated according to the parameters in Example 1, as shown in
Figure 6. We can see that the characteristics of time-dependence
greatly affect the absolute value of FV. More importantly, the
relative rankings of them also change with time. Note that in
Config.1, FVP2(t) � FVP3 (t),FVV2 (t) � FVV3 (t).

FIGURE 5 | Comparison of risk profile between RORM and other RMs. (A) Example 1-Weibull distribution. (B) Example 2-Exponential distribution.

TABLE 1A | Reliability parameters of failure events.

Component Failure mode Example 1 Example 2

Distribution Parameter Distribution λ (h-1) Pd

P1, P2, P3 FO Weibull a � 3,000,b � 4 Exponential 3.0e-5 ——

FD —— 2.10e-5 —— —— 2.10e-5
FB Weibull a � 12,500, b � 4 Exponential 2.00e-5 ——

V1, V2, V3 RPO Weibull a � 50,000, b � 3 Exponential 1.00e-5 ——

RPC Weibull a � 50,000, b � 3 Exponential 1.00e-5 ——

Notes.
1) For pumps, FO—failure during operation; FB—standby failure; FD—failure on demand
2) For valves, RPO—not keep position at open; RPC—not keep position at closed
3)Two-parameter Weibull distribution

f (x; a, b) �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b
a
(
x
a
)
b−1

e−(x
a)b , x ≥ 0

0 , x < 0

where a is the scale parameter and b is the shape parameter.
So the probability of a basic event under Weibull distribution is written as

F(t) � 1 − exp( − (TS + TA + Tm)b − Tb
S

ab
)

The failure probabilities of the same event in different configurations increase with the state duration of the equipment.
4) λ: failure rate; Pd: the probability of failure on the demand of pumps
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For the RRWcalculation, since the components in the same pump
train are in series, the RRW values of these unavailable components
are equal. For instance, RRW(P3) � RRW(V3)≈1 for the Config.3.

Common Cause Failure Treatment Options Imposed
on Risk Achievement Worth
Example 1 (Weibull distribution) is used in this section for the
validation of CCF treatment options. The BE P1-FO, P2-FO, and
P3-FO make up a CCCG (CCCG3_FO). The size of CCCG n � 3
with common cause factors l � 2. Table 1B gives the parameters
of CCCG at several different time points. The total failure
probability Q(n)

t corresponds to the time-dependent
probabilistic model of BE in Table A2 of Appendix B.

Note that the CCF model and parameters in the current PRA
model are based on statistical failure data and symmetrical
assumptions. But in the RORM model, the failure probabilities
of three components in the CCCG would be asymmetrical due to
different state duration. In this case, to simplify CCF consideration,
Q(3)

t is assumed to be the biggest value of the three conservatively.

Q(3)
t (t) � max{QP1−FO(t),QP2−FO(t),QP3−FO(t)} (35)

The coupling mechanism in CCCG might be location-related,
operational-related, maintenance-related, and manufacturer-
related, etc. The CCF coupling factors η

Rj

k , independent failure
probability p0, and the conditional probability of common cause
factor P(Rj) might depend on state duration. In this case, η

Rj

k is
assumed to be manufacturer-related, which does not vary
with time.

If A, B, and C are BE P1-FO, P2-FO, and P3-FO respectively,
the probability of failure event is expressed as

Q(3)
1 � P(A) � P(B) � P(C) � (p0)(1 − p0)

2 +∑
2

j�1
η
Rj
1 P(Rj)

(36)

Q(3)
2 � P(AB) � P(AC) � P(BC) � P(BD) � P(CD)

� (p0)2(1 − p0) +∑
2

j�1
η
Rj
2 P(Rj) (37)

Q(3)
3 � P(ABC) � (p0)3 +∑

2

j�1
η
Rj
3 P(Rj) (38)

FIGURE 6 | FV importance of component (Config.1 and 2).
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Q(3)
t � Qt(A) � Qt(B) � Qt(C) � Q(3)

1 + 2Q(3)
2 + Q(3)

3 (39)

where Q(3)
t is the total failure probability, Q(3)

i (i � 1, 2, 3)
indicates the probability of the failure event of specific
component(s) due to either independent failure factors or
common cause factors.

The results of three CCF treatment options are shown in
Table 2 if one of components in CCCG is unavailable (i � 1) at t
� 120 h. As for the updated probabilities of CCF events in
CCCG, Option 2 and Option 3 are greatly larger than those of
Option 1, because the conditional probability of a CCF event
would rise due to the occurrence of a common cause factor. So
it is proven that the engineering practice of Option 1 is not
conservative.

In RORMT, the numerator of the RAW importance of a
component is mainly influenced by what if treatment
considering CCF. That is different from other risk monitors.
The results of different methods are compared in Tables 3A–C at
different time points. Here NUREG/CR-5485 refers to Appendix
E3.1 without approximation in this report. RASP refers to the
CCF treatment case 1 (when observed failure with the loss of
function of one component in the CCCG). By comparing the
results in Tables 3A–C, it can be seen that:

(1) For components out of CCCG, RAWs of all methods are
almost the same. But for a component in the CCCG, RAW
importance values of different methods vary greatly. The
direct method only treats with the failure mode events of
the component, whose result is not accurate as discussed in
PRA Importance Measures and Challenges of Real-Time
Online Risk Monitoring and Management Technology. The
other methods consider both CCF events and failure mode
events.

(2) If a basic event of a component is within a CCCG, such as P1-
FO, P2-FO, and P3-FO, the RAW values of that component
calculated by the BM and the NUREG/CR-5485 method, are
at least two orders of magnitude higher than the other
methods. The RAW result obtained by NUREG/CR-5485
is very large, because it does not distinguish the failure cause
of the component. The probabilities of all CCF events in
CCCG are divided by the total failure probability of the
component. And the basic event probability (such as P2-FB)
is set to 1. Thus, the components within CCCG are always at

the top of the RAW ranking list. However, these results may
mislead the operator actions.

(3) Since the CCF treatment of the RASP method and Option 1
are similar, the RAW results of the two methods are quite
similar. They both set the failure mode basic event of that
component to TRUE and adjust the CCF event probability.
The difference is that RASP updates the CCF parameters
based on the reduced size of the CCCG, while Option 1
updates the CCF event probability by grouping the time-
dependent events into a new CCCG.

(4) For Option 2, the conditional probability of CCF events given
a specified common cause factor contributes to the high
RAW value. Option 3 in the hybrid method results in the
expected value of Option 1 and Option 2. Besides, it is
difficult to identify the real cause of failure (independent
cause or common cause) as soon as failure happens. It
requires more maintenance and inspection work to detect
the failure cause. Thus, Option 3 makes sense for online
applications of RORMT.

(5) Comparing the results at different times in Config.1, it is found
that the absolute values and ranking order of component
RAW would change with time for a certain configuration.

TIME-DEPENDENT IMPORTANCE
MEASURE FOR RISK-INFORMED
DECISION MAKING
Based on the current plant configuration, the time-dependent
IMs of RORM would provide risk insights in the following three
groups of activities: 1) ranking SSC activities and human actions
for prioritizing maintenance or tests and 2) exempting or limiting

TABLE 1B | Parameters of CCCG (P1-FO,P2-FO,P3-FO).

t/h 0 120 240 360 480 600 720

Q(3)
t 4.096e-9 2.748e-6 1.901E-5 6.107e-5 1.412e-4 2.717e-4 4.649e-4

P0 1.451e-9 2.722e-6 1.897E-5 6.102e-5 1.411e-4 2.716e-4 4.647e-4
P(R1) 8.000e-5 4.000e-4 6.000E-4 8.000e-4 1.200e-3 1.600e-3 2.000e-3
P(R2) 2.000e-5 1.000e-4 1.500E-4 2.000e-4 3.000e-4 4.000e-4 5.000e-4
ηR1
1 5.000e-5 5.000e-5 5.000e-5 5.000e-5 5.000e-5 5.000e-5 5.000e-5

ηR1
2 4.500e-6 4.500e-6 4.500e-6 4.500e-6 4.500e-6 4.500e-6 4.500e-6

ηR1
3 2.500e-6 2.500e-6 2.500e-6 2.500e-6 2.500e-6 2.500e-6 2.500e-6

ηR2
1 1.200e-5 1.200e-5 1.200e-5 1.200e-5 1.200e-5 1.200e-5 1.200e-5

ηR2
2 2.500e-6 2.500e-6 2.500e-6 2.500e-6 2.500e-6 2.500e-6 2.500e-6

ηR2
3 1.500e-6 1.500e-6 1.500e-6 1.500e-6 1.500e-6 1.500e-6 1.500e-6

TABLE 2 | Results of three CCF treatment options if a component is unavailable
(i � 1, t � 120 h).

Option
1 Independent factor

Option 2 Common
cause factor

Option
3 Unconfirmed cause

R1 R2

Q(2)
1 2.745e-6 5.722e-5 1.724e-5 3.149e-6

Q(2)
2 3.207e-9 7.000e-6 4.003e-6 5.597e-8

Qt(2) 2.748e-6 6.422e-5 2.125e-5 3.205e-6
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temporary configurations beyond limiting conditions for
operation (LCOs) of technical specification (TS) with allowed
configuration times.

Time-Dependent Criteria of Systems,
Structures, and Components Importance
The current risk-informed SSC categorization method for
NPP was proposed in 10CFR 50.69 (NRC, 2004). The
screening criteria of risk significant SSCs are FV and RAW
importance of components based on the average PRA model
of NPP. The average PRA model is established in a predefined
condition which usually assumes all equipment is in an
available state.

However, the 10CFR 50.69 method is offline and static, and
not appropriate for SSC importance evaluation in the RORM
model. First, the 10CFR50.69 method would not support when
some SSCs are out of service. Second, the risk IMs, and risk

significance in RORM are strongly dependent on the scenario
conditions of NPP, real-time operational state, and state
duration of a component. The same equipment will have
different importance values under different plant
configurations.

To better utilize the ranking order of IMs for online operation,
we derive a type of time-dependent criteria of SSC importance
from the operational safety criteria (OSC) of NPP. The
classification of the instantaneous risk adopted by OSC is
usually three-zone or four-zone. Take the three zones
(unacceptable risk, high risk, and low risk) of CDF for
example. The risk thresholds of CDF are predetermined by a
nuclear safety supervisory authority, i.e., threshold between low
and high risk (CDF1), between high and unacceptable risk
(CDF2). Here CDF1 is set to be several times the baseline risk
CDF0. NUMARC93-01 (NEI, 2011) recommends that the lower
limit of unacceptable risk CDF2 � 1.0e-3/yr.

TABLE 3A | RAW importance results of different methods (t � 120 h).

RAW Direct Method Balancing method NUREG/CR-5485 RASP Hybrid method (What if treatment of unavailability)

Option 1 Option 2 Option 3

R1 R2

P1 3.28 42,092.05 363,846.43 3.88 3.28 6,092.08 3,481.66 49.12
P2 6.54 42,092.05 363,836.01 3.44 2.85 6,090.65 3,480.96 48.74
P3 6.54 42,092.05 363,836.01 3.44 2.85 6,090.65 3,480.96 48.74
V1 3.28 3.28 3.28 3.28 3.28 3.28 3.28 3.28
V2 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85
V3 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85

TABLE 3B | RAW importance results of different methods (t � 360 h).

RAW DirectMethod Balancing method NUREG/CR-5485 RASP Hybrid method(What if treatment of unavailability)

Option 1 Option 2 Option 3

R1 R2

P1 7.34 12,154.05 16,373.68 7.32 7.34 3,050.38 1745.43 8.85
P2 17.75 12,154.05 16,382.91 6.56 6.58 3,049.13 1744.54 8.64
P3 17.75 12,154.05 16,382.91 6.56 6.58 3,049.13 1744.54 8.64
V1 7.34 7.34 7.34 7.34 7.34 7.34 7.34 7.34
V2 6.58 6.58 6.58 6.58 6.58 6.58 6.58 6.58
V3 6.58 6.58 6.58 6.58 6.58 6.58 6.58 6.58

TABLE 3C | RAW importance results of different methods (t � 720 h).

RAW DirectMethod Balancing method NUREG/CR-5485 RASP Hybrid method(What if treatment of unavailability)

Option 1 Option 2 Option 3

R1 R2

P1 74.71 2051.56 2,151.07 73.91 74.71 1,194.93 712.99 73.41
P2 216.96 2051.57 2,291.58 72.17 72.96 1,193.00 711.19 73.21
P3 216.96 2051.57 2,291.58 72.17 72.96 1,193.00 711.19 73.21
V1 74.74 74.74 74.74 74.74 74.74 74.74 74.74 74.74
V2 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00
V3 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00
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FIGURE 7 | Time-dependent criteria of SSC importance. (A) RAW. (B) RRW

TABLE 4A | Implications and actions of time-dependent criteria of RAWC(t)

CDF(t) RAWC(t) Implications and actions

CDF(t)<CDF1 RAWC(t)<RAW1(t) G Normal operation under TS. Normal maintenance work of C
RAWC(t)>RAW1(t) Y Planned testing or maintenance of C is allowed under current

configuration. Risk management actions should be preparedCDF(t)<CDF2 RAWC(t)<RAW2(t) and RAWC(t)>RAW1(t) Y

RAWC(t)>RAW2(t) R Planned test or maintenance of C is not allowed under current
configuration

CDF(t)>CDF2 —— R Risk management actions should be implemented immediately to
reduce risk, such as reactor shutdown under control

Range: G—Green; Y—Yellow; and R—Red

TABLE 4B | Implications and actions of time-dependent criteria of RRWC(t)

CDF(t) RRWC(t) Priority of restoring
unavailable C

CDF(t)<CDF1 RRWC(t)>RRW1(t) G High
CDF(t)>CDF1 RRWC(t)>RRW1(t) G High

RRWC(t)<RRW1(t) and RRWC(t)>RRW2(t) Y Medium
RRWC(t)<RRW2(t) R Low

Range: G—Green; Y—Yellow; and R—Red

TABLE 5 | Risk-informed insights for online operation and maintenance using relative rankings of IMs.

IM Item Risk-informed insights

FV ranking Available SSCs Confirm the current availability of SSCs in redundant trains that
compensate for the newly failed component(s)

IE Prevent certain accidents
Human action Avoid the occurrence of human error events before IE.
MCS Avoid the failure events of low-order MCSs
Accident sequence Avoid accident sequences with high frequency

RAW Ranking Available SSCs Priorities of components with greater RAW importance which
would participate in near-term planned activities Avoid certain
failures of components

RRW Ranking Unavailable SSCs Determine near-term real-time priorities for restoration of newly
failed components
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The threshold of FV, denoted as FV � C, is predetermined
based on the risk contribution of SSC, such as the top 20 in the FV
ranking. The time-dependent thresholds of RAW, and RRW for
an SSC are defined in Eqs. 40, 41. They are dependent on plant
configuration and state duration. As a result, these importance
thresholds should be updated with risk calculation.

RAWi(t) � CDFi/CDF(t), i � 1, 2, .., s − 1 (40)

RRWi(t) � CDF(t)/CDFi, i � 1, 2.., s − 1 (41)

where s is the number of risk zones.
Figures 7A indicates the time-dependent criteria of RAWC(t)

for available SSCs. In this way, the ranking order of RAW is
further graded, and it is easy for operators and maintenance
personnel to understand and execute risk management actions, as
shown in Table 4A. No matter what the instantaneous risk level
CDF(t) and importance measure RAWC(t) is, the out of service
time of equipment should be controlled based on cumulative risk
ICDP(t) and allowed configuration time (ACT) of the current
configuration as introduced in the risk-informed technical
specification (RMTS) (NEI, 2006). Figures 7B indicates the
time-dependent criteria of RRW of SSC. They give the
priorities of restoring unavailable SSCs as Table 4B.

Risk-Informed Insights for Configuration
Risk Management
Although the concepts “risk significance” and “safety
significance” are often conflated in risk-informed applications,
FV importance is generally regarded as a measure of risk
significance, while RAW is that of safety significance (Cheok
et al, 1998a; Cheok et al 1998b; NRC, 2019). But they are evaluated
based on an average PRA model over different configurations and
diverse accident sequences (Vesely, 1998). Youngblood clarified the
two concepts and proposed a different measure: the “prevention
worth” (Youngblood, 2001) of safety significance. The prevention
worth was used in top event prevention analysis (Youngblood and
Worrell, 1995; Blanchard et al. 2005).

Online risk evaluation requires quantifying the RORM model
given a specific configuration change, or given planned sequential
configuration changes. This action is to determine whether planned
or temporary plant reconfigurations are sufficiently safe, especially
when a planned configuration is overlapped with several unplanned
events. In this case, the calculation of risk is mainly affected by time-
dependent unavailability and CCF consideration.

Since temporary or emergency events might occur in the real-
time configuration, it is necessary to consider the operational
configuration changes and provide configuration-specific risk
insights by the relative rankings of IMs, such as identifying
risk-significant SSC/accident sequences/IEs/human actions.
The relative rankings of IMs are utilized as shown in Table 5.
In addition, other IMs such as Birnbaum importance (Birnbaum,
1969) and critical importance (Lambert, 1975) could also be
evaluated based on real-time plant configuration and state
duration.

It is worth noting that the uncertainty of relative ranking order
of importance (Modarres and Agarwal, 1996; Aven and Nokland,
2010) would be affected by three main factors 1) the distribution
of reliability data used, 2) the scope and quality of the RORM
model, and 3) the truncation limit of risk calculation.

For maintenance plan scheduling and plan risk assessment, the
time-dependent risk measures are also utilized in the real-time
online risk monitoring and management method (Xu et al. 2018).
If the calculated instantaneous risk or the cumulative risk for a
planned sequence of configuration changes is unacceptable,
equipment outages should be shortened and re-arranged. Also,
the ranking order of IMs of SSCs is used to prepare risk
management actions beforehand, so to strictly control the
outage duration of equipment maintenance, protecting other
risk-significant equipment, and administration control, etc.

CONCLUSION

RORMT is characterized by time-dependent modeling and
updating for online risk monitoring of NPP. It is dependent on
the real-time plant configuration and state duration of equipment.
This paper discussed the risk-informed assessment and application
of time-dependent IMs in RORMT. The time-dependent FV, RAW,
and RRW defined for individual BE and event groups of a
component. They are not only influenced by the time-dependent
risk, but also the CCF treatment. Since the RAW of a component is
particularly affected by updating the CCFmodel in the case “what if
a component is out of service,” three CCF treatment options for
component unavailability are assumed: 1) Option 1 - independent
cause; 2) Option 2 - common cause factor; 3) Option 3 -
unconfirmed cause. The updating of CCF order and CCF event
probability are discussed for the three options. Accordingly, a
hybrid method for RAW evaluation has been proposed based on
the three options. Using the hybrid method not only
comprehensively accounts for all possible unavailable causes, but
also reduces the conventional misunderstanding of component
importance. A simple case study is demonstrated through
examples of exponential distribution and Weibull distribution.

From the case study, it is found that since the time-dependent
risk of the same configuration would increase with the state
duration of the equipment, the absolute values and relative
rankings of IMs may vary with time. Thus, if the real-time
configuration changes or the state duration of a component
increases, it is necessary to re-quantify the time-dependent IMs.
Moreover, for the updated probabilities of CCF events in CCCG,
the results of Option 2 and Option 3 are much larger than those of
Option 1. The hybrid method with Option 3 generates a reasonable
value for component RAW, and it is more suitable for RORMT.

The time-dependent IMs considering state duration and CCF
would provide novel insights for online configuration risk
management: 1) ranking SSCs/events/human actions for
controlling the increased risk and optimizing near–term
plans and 2) exempting or limiting temporary configurations
beyond technical specifications with allowed configuration
times. Besides, the time-dependent criteria of SSC IMs are
established in this paper to further classify the ranking order
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of RAW and RRW. For practical engineering applications of the
proposed methods, the future research will focus on: 1) verifying
the time-dependent LPSA modeling with long-term operating
data and 2) further study on the CCF failure mechanism to
obtain the critical CCF data.
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APPENDIX A: THE CONCEPT OF TIME-
DEPENDENCE

During the online operation of NPP, the plant configuration
changes because of random failures of a component, switching
between running and standby trains, environment changes, and
other activities such as repair work, periodic testing, inspection,
and planned maintenance.

In RORMT, the state of equipment (such as valve open and
closed, electric pump operation and standby) is either
identified as “known” by the state monitoring and fault
diagnostics system timely, or manually set by the
operational maintenance personnel (after a possible time
delay).

Let the state of a component at time t be

S(t) � { 0, available state
1, unavailable state

. The state of the equipment is

classified and listed in Table A1. Following the general
practice of NPP, the maintenance/test (MT) and failed (FA)
states are considered as “unavailable”, and other states are
“available”. Thus, if S(t) � 1, then the unavailability of a
component is known to be 1. IfS(t) � 0, the component will
remain in that state until the next time its state changes. The time-
dependent unavailability function applied in RORMT would
change with the duration of the available state.

The failure of a component in FT is often represented by
multiple BE (also called failure events). The failure modes of
equipment are defined in different manners among nuclear
power units. In order to establish a generalized modeling
method and updating rules, the specific failure modes of
equipment are roughly grouped into three generalized failure
mode categories, i.e., failure on demand (FD), standby failure
(SB), and failure during operation (FO), as illustrated in
Table A1.

To better illustrate time-dependent unavailability in RORMT,
the concept of time-dependence is introduced as shown in the

timeline plot of Figure A1. Here time-dependence refers to the
real-time state duration of SSC, which is denoted as Ts.

t: the moment of risk for calculation. For real-time online risk
monitoring, t is the current moment.

t1: the completion moment of the last corrective/preventive
maintenance of a component.

t2: the moment when a particular available state of a
component first appeared after t1. For real-time online risk
monitoring, t2 refers to the real-time state of a component.

t3: the last moment to confirm that the component is in an
available state after t1. Particularly, for continually monitored
components, their states are transferred by sensors or the
monitoring unit of the components to RORM at a very high
frequency, so t3 and t can be regarded as the same moment for the
calculation, t3≈t. For unmonitored components, there is a time
delay between t3 and t, since t3 is manually recorded by the last
periodic test, on-site inspection, etc.

TA: the period when the availability of the real-time state is not
fully confirmed. TA � t-t3. For the continually monitored
components, TA≈0. For other unmonitored components, TA is
not longer than a test/maintenance period.

tIE: assuming moment when IE occurs. tIE �t.
Tm: mission time.
Ts: the real-time state duration. It is the cumulative time

interval of a specific state during the period from t1 to t3.
Note that some components may experience multiple state
transitions, thus Ts≤(t3-t2).

APPENDIX B: TIME-DEPENDENT
UNAVAILABILITY IN RORMT

The assumptions of the RORM model are as follows:

• When a component is in any available state, the real-time
state at the current time t is the same as that of t3. Its
unavailability is time-dependent on state duration.

Table A1 | Classification of equipment state and failure events in RORMT.

Available states Unavailable states

RN Operating state MT In maintenance/testing
SB Standby state FA Failed state
OP Valve open state — —

CL Valve closed state — —

ON Switch on state — —

OF Switch off state — —

Failure mode (generalized)
FD Failure on demand FO Failure during operation
FB Standby failure — —

Note:
1). For rotating equipment (such as pumps, fans, and motors, etc.), its state could be RN, SB, MT, or FA. The failure modes FD, FO, and FB are all involved.
2). For switch-type equipment (such as valves, switches, and breakers, etc.), its possible states are OP/ON, CL/OF, MT, or FA. The failure modes related to switching operation belong to
FD while other failure modes are grouped into FO.
According to the relationship between failure mode and equipment state, FO is further subdivided into two groups, i.e., certain state-related (CS) and any state-related (AS).
Certain state-related (CS): some failuremodes of FO only occur when the component is in a certain available state. For instance, not keeping a position when open, spurious action to close
can only occur when an isolation valve is open.
Any state-related (AS): some failure modes of FO may occur in any available state, such as block/rupture/leakage of valve, short circuit of breaker.
For other SSCs (such as water tanks, heat exchangers, etc.), its possible states consist of RN, MT, or FA. All the failure modes are grouped into FO.
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• When a component is in any unavailable state,
conservatively, its unavailability is assumed to be 1.

• The occurrence time of any IE in the RORM model is
assumed at the current moment, tIE �t.

• The failure events of a component in a certain state are
mutually independent. The failure events of the same
component in different operating states are also independent.

• For the online repairable equipment, the completion of
repair and recovery operation can be immediately
reported. For the equipment which cannot be repaired
online, it must be repaired during the refueling overhaul.

• No maintenance will be continued or carried out after IE.
• If the unavailable equipment has not been recovered and is

not in service at the current moment, then it cannot be used
for accident mitigation after IE occurs.

• The component/system can be considered “as good as new”
after the completion of maintenance or testing. To put it
simply, the reliability of equipment is 1.

• The state duration Ts is updated depending on its previous
operating history.

The time-dependent probability of a basic event of a
component at the current moment Q(t)is determined by its
failure modes, real-time state, and state duration of the
component, as summarized in Table A2. Specifically, Q(t) �
Q{t + Tm|S(t3) � 0} means the estimated conditional failure
probability of equipment during the future
period[Ts, (Ts + TA + Tm)], if the last moment to confirm its
available state is time point t3 and the equipment has been
available for a period of time Ts.

FIGURE A1 | Schematic diagram of time-dependent concept.
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TABLE A2 | Time-dependent probability of failure events in the RORM model.

Failure events Component
state

Failure on demand
(FD) event Standby
failure (FB) event

Failure during operation
(FO) event

Maintenance/test (UT) event

Operating state (OP) Set FD to be false Set FB to be false (a-1)

QFO,OP(t) � QFO,OP(t + Tm|S(t3) � 0)

� ∫
Tm

0

fFO(u + TRN)du

� 1 − exp(− ∫
TRN+TA+Tm

TRN

λR(u)du)

(a-2)

Set UT to be false (a-5)

Standby state(SB)

QFD,SB(t) � q(t) � QSB
0

QFB,SB(t) � QSB(t + Tm|S(t3) � 0) � ∫
TA+Tm

0

fSB(s + TSB)ds

� 1 − exp(− ∫
TSB+TA+Tm

TSB

λS(u)du)

(a-3)

QFO,SB(t) � QFO,SB(t + Tm|S(t3) � 0)

� ∫
Tm

0

fFO(u)du

� 1 − exp(− ∫
Tm

0

λR(u)du)

(a-4)

Open (OP)/Switch Off (OF) state.
Closed (CL)/Switch on (ON) state

QFD,OP/OF/CL/ON(t) � q(t) � QOP/OF /CL/ON
0 (a-6)

QCS
FO,OP/OF/CL/ON(t) � QCS

FO(t + Tm|S(t3) � 0)

� 1 − exp(− ∫
(TOP or TCL)+TA+Tm

(TOP or TCL )
λCS(u)du) (a-7)

QAS
FO,OP/OF/CL/ON(t) � QAS

FO(t + Tm|S(t3) � 0)

� 1 − exp(− ∫
(TOP+TCL)+TA+Tm

TOP+TCL
λAS(u)du) (a-8)

Set UT to be false (a-9) —

In maintenance/Test (MT) state Set FD to be false (a-10) Set Ts of any available state of this component to be 0 Set FO to be
false (a-11)

Set UT to be true (a-12) —

Failed state (FA) Set FD to be true (a-13) Set FO to be true (a-14) Set UT to be false (a-15) —

Note:
λR(t): running failure rate. λS(t): standby failure rate. For cold standby components, λS(t) ≡ 0. For hot standby components, λS(t)≠0.
λCS(t): failure rate of CS events for valves, switches, etc. λAS(t): failure rate of AS events for valves or switches, etc.
f(t) � λ(t)exp(−∫t

0
λ(u)du): probability density function for failure.

Q0: the demand failure probability of switching from a standby to operating state, or switching between an open and closed state, such as refusing to open/close, stuck in position. It is considered as a constant.
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Study on Measure Approach of Void
Fraction in Narrow Channel Based on
Fully Convolutional Neural Network
Wenjun Chu, Yang Liu, Liqiang Pan, Hongye Zhu and Xingtuan Yang*

Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key
Laboratory of Advanced Nuclear Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing, China

Void fraction is one of the key parameters for gas-liquid study and detection of nuclear
power system state. Based on fully convolutional neural network (FCN) and high-speed
photography, an indirect void fraction measure approach for flow boiling condition in
narrow channels is developed in this paper. Deep learning technique is applied to extract
image features and can better realize the identification of gas and liquid phase in channels
of complicated flow pattern and high void fraction, and can obtain the instantaneous value
of void fraction for analyzing andmonitoring. This paper verified the FCNmethod with visual
boiling experiment data. Compared with the time-averaged experimental results calculated
by the energy conservation method and the empirical formula, the relative deviations are
within 11%, which verifies the reliability of this method. Moreover, the recognition results
show that the FCN method has promising improvement in the scope of application
compared with the traditional morphological method, and meanwhile saves the design
cost. In the future, it can be applied to void fraction measurement and flow state monitoring
of narrow channels under complex working conditions.

Keywords: boiling two-phase flow, narrow channel, void fraction measurement, deep learning, convolutional neural
network

INTRODUCTION

Gas-liquid two-phase flow reserves value for the research in fields of nuclear energy, petrochemical
industry, erospace and various industrial applications (Triplett et al., 1999). In the two-phase flow
study and engineering application, the cross sectional void fraction (or frequently abbreviated to void
fraction) which functions as one of the key parameters, has important significance for determining
the flow pattern, calculating the two-phase pressure drop and analyzing heat transfer characteristics
(Winkler et al., 2012). For conventional pipeline conditions, some common methods in experiments
include quick-closing valves (Srisomba et al., 2014), X-ray/γ-ray absorption (Zhao Y et al., 2016;
Jahangir et al., 2019), differential pressure (Jia et al., 2015) and capacitive method (Jaworek et al.,
2014). However, the data obtained by these commonmethods are mostly single-point values or time-
averaged results, and the instantaneous void fraction distribution of the full flow region can hardly be
obtained (Hong et al., 2011).

In recent years, an increasing number of mini-channel systems are applied for industrial
systems such as nuclear power plant heat exchangers and refrigerators due to large surface area/
volume ratio and high transfer efficiency of heat and mass (Kawahara et al., 2002). The narrow
rectangular channel is an important structure of these systems. The flow boiling phenomenon
tends to be more complicated in narrow channels than in normal pipelines, and direct
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measurement of void fraction is limited because of the geometry
size of the flow channel. Therefore, non-contact measurement
like high-speed photography can be applied and combined with
digital technology. Compared with other methods, the high-
speed photography method can observe the detailed behavior
of bubbles without disturbing the flow, and also be able to process
multiple images and extract the instantaneous void fraction
information in a short time (Fu and Liu, 2016; Zahid et al., 2020).

Many image-processing algorithms for flow field photography
have been proposed to figure out the characteristics of the gas-
liquid interface and obtain the two-phase distribution. Some
examples include edge detection, region filling and morphological
operation. Bröder and Sommerfeld (2007) use an edge detecting
Sobel filter and spline interpolation technique to determine the
contour of in-focus bubbles in rectangular channels, and the
bubble velocity is obtained by applying particle tracking
velocimetry (PTV). Lau et al. (2013) handle the overlapping/
clustering bubbles in bubbly flow with large void fractions by the
watershedding algorithm, and segment the groups into individual
bubble areas for analyzing. Karn et al. (2015) introduce a multi-
level image analysis approach for highly turbulent bubbly flows,
which uses H-Minima transform to binarize the image and
successfully extract the bubble information by morphological
operations. Pan et al. (2018) propose the two-step
morphological method and the combined use of
morphological opening and closing operations solves the
problem of bubble boundary recognition, which improves the
accuracy of void fraction measurement. However, these
traditional algorithms depend on the extraction process and
features designed by manual experience, which have certain
influence on the recognition rate and accuracy of the void
fraction. In addition, existing research mainly focuses on
unheated test sections, while in actual boiling conditions
bubbles grow and polymerize fiercely in the flow channel,
therefore the gas-liquid interface tends to be hardly
recognized. At the same time, in operating conditions with
high heating power, the void fraction increases and the phase
distribution changes drastically, which brings difficulties for the
traditional image processing methods based on edge detection
and mathematical morphology to achieve expected results.

The Convolutional Neural Network (CNN) algorithm is based
on data extraction and supervised learning. Compared to
traditional image recognition algorithms using artificially
designed features, the multi-layer network structure of CNN
can automatically extract different levels of features from
massive training data, which avoiding errors caused by
subjectivity and improving classification accuracy. In 2015,
Jonathan Long et al. proposed a new structure of CNN—Fully
Convolutional Network (FCN) (Long et al., 2015) applied for
image segmentation. FCN model changes the last layer of the
original CNN to a convolutional layer and adds upsampling
layers to achieve any size of input images and classify the
image pixel by pixel. In addition, FCN utilizes a variety of
mature network structures which have been trained well in
huge data set to initialize its network parameters, and reduces
its design costs. For the last several years, fully convolutional
networks have been widely used in various image segmentation

tasks, such as autonomous driving (Wu et al., 2017), medical
image (Ronneberger et al., 2015) and remote sensing (Maggiori
et al., 2016). In this paper, based on the visualized experiment of
two-phase boiling conditions in a narrow rectangular channel, a
measurement approach of void fraction in narrow channels is
proposed by setting up a fully convolutional neural network to
process images of high-speed photography, and the measure
results are verified with the experimental data calculated by
the energy conservation method.

EXPERIMENTAL DEVICES AND
PROCEDURES

In order to study the heat transfer characteristics of two-phase
flow in narrow channels and the influence of different parameters
on flow stability, the visualized flow boiling experiment system is
designed and shown in Figure 1. The main part is composed of
the test section, main pump, preheater, regulating valve, gas-
water separator, flowmeter, etc. The experimental medium is
purified deionized water. After preheating, the deionized water
flows out of the main pump and is heated by the preheater to
reach a preset degree of subcooling. Then it passes into the
vertical test section and bypass to start boiling. The upwards
two-phase mixture goes through the steam-water separator and
returns to the main pump which forms a closed loop. ADMAG
AXF electromagnetic flowmeters are adopted for flow
measurement and the measuring error is ±0.4%. The
temperature measuring applies T-type thermocouples with
class I accuracy of ±0.5°C. The test data is collected by NI PXI
equipment and the sampling frequency is 10 Hz. The range of
critical parameters in the experiments is listed in Table 1.

The schematic diagram of the test section is shown in Figure 2.
The narrow channel with a rectangular cross-section is composed
of two pieces of glass. The cross-sectional size is 30 × 1.5 mm, and
the length of the rectangular flow channel is 650 mm. A
transparent heating film is evenly coated on the outside of
each glass and the heating length is 550 mm. The test section
is insulated by a transparent plexiglass barrel arranged outside,
and the low-pressure nitrogen is filled into the gap between the
barrel and the test section before power on. The image acquisition
system beside the transparent test section applies an AOS
X-MOTION high-speed camera. The photo-frequency is set to
1,000 frames per second. The resolution of the captured image is
1,280 × 300.

IMAGE PROCESSING METHOD BASED ON
FULLY CONVOLUTIONAL NETWORK

Summary of the Algorithm
Figure 3 presents original experiment image samples of the flow
channel in boiling conditions. Its characteristics include: 1) The
gas phase occupies a large proportion of the flow channel, and on
occasion the bubbles can fill the cross section of the flow channel;
2) The flow pattern is mostly slug flow or churn flow, and the
boundary between gas and liquid phase is blurred at high flow
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velocity; 3) The void fraction changes drastically and the sizes of
bubbles/slugs in different working conditions and different time
are quite different. The above characteristics, which mean the
unevenness of the gas phase distribution in space and time, are
mainly caused by the narrow channel structure and heating
conditions. As a result, it is difficult for most traditional
recognition methods based on single scales or features (such
as edges, pixel thresholds and morphological structures) to obtain
stable and efficient results. In order to solve these problems, this
paper proposes a new image segmentation algorithm of FCN
method based on deep learning technology. It can extract
information from pixel level to abstract semantic concepts
through multi-layer convolution operations. It also uses up-
sampling layers and multi-scale fusion technology to further

optimize the results and achieve higher segmentation accuracy.
At the same time, we enhance the adaptability of the FCN
algorithm by automatically learning various features from a
large amount of data at different times, which makes it
suitable for identifying complex gas-liquid images in narrow
channels.

In this paper, FCN algorithm is utilized to extract the gas phase
part in Figure 3, and realize the segmentation of gas and liquid.
The flow channel part of the original captured image (the input of
the FCN network) can be defined as C:

CW×H � {C(1),C(2),C(3),/,C(i)}, i � K (1)

Where K is the number of the experimental image set, and C(i) is
the ith single-frame image (RGB) of size W ×H. The output
pixel-level segmentation results are defined as G ：

GW×H � {G(1),G(2),G(3), . . . ,G(i)}, i� K (2)

The output of the FCN are binary images of the same size
W ×H, in which pixels value of one mean to gas phase and
value of 0 mean to liquid phase. Then the results are applied for
calculating the void fraction of the narrow channel. The
flowchart of the image-processing algorithm is shown in
Figure 4.

FIGURE 1 | Schematic diagram of the test loop.

TABLE 1 | The range of primary experimental parameters.

Parameters Units Experimental range

Inlet subcooling °C 4−17
Inlet mass flow rate kg/(s·m2) 160−432
Heat flux density kW/m2 6−18.2
Outlet vapor quantity % 0−1.8

TABLE 2 | Typical experiment conditions.

Condition number Flow rate [L·h-1] Heat flux [kW·m-2] Inlet subcooling [°C] Inlet resistance [kPa]

1 52.78 18.33 7 2.5
2 56.24 15.03 6.2 14.9
3 56.24 15.09 5 18.4
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Methods of the Fully Convolutional Network
Model
Figure 5 is an overall schematic diagram of the structure of FCN
model established in this paper. As shown in the figure, the FCN
model is mainly composed of two parts. The left part in the box is
called convolution (downsampling) part, which ismainly composed
of convolutional layers and pooling layers to extract various features
of the input image. The right box is called deconvolution
(upsampling) part, which is mainly composed of deconvolution

layers and a classification layer. It is used to restore the original
image size from the high-dimensional featuremap and identify each
pixel. The methods used in these two parts are introduced below.

Convolution (Downsampling) Part
This paper applies VGG-Net 16 (Simonyan and Zisserman, 2014)
as the basic neural network for extracting features, and sets up a
new model on this basis to save training and calculation costs.
The first half of the established FCN model retains the structure
and initial parameters of the original VGG network before the
fully connected (fc) layer. Five groups of 13 convolutional layers
of increasing size is applied to extract different scales of the
features by training 3 × 3 convolution kernels and performing
convolution operations:

c(i, j) � (X · W)(i,j) � ∑
m

∑
n

x(i +m, j + n)w(m, n) (3)

Among them, X represents the input image transferred into two-
dimensional matrix, W represents the convolution kernel, which

FIGURE 2 | Schematic diagram of the test section.

FIGURE 3 | Samples of original high-speed photography images.

FIGURE 4 | Flowchart of the image-processing algorithm.
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is the core parameter of the training and learning of the
convolution network; c(i, j) is the output of the convolution
operation at the position (i, j) of the image matrix, also known as
feature mapping. m, n are sizes of the convolution kernel and in
this paper m � n � 3. After extracting features through each
convolutional layer, a non-linear output is achieved via a layer
of RELU activation function.

VGG-Net 16 has a large number of convolutional kernels, and
after the convolution operation the output data is large and
the dimensionality is high. Therefore, a pooling layer
(downsampling) is added after each group of convolution-
activation layers to compress the image and reduce the
difficulty of the subsequent calculation. Pooling layer can also
extract the spatial details of the features to realize the spatial
invariance (such as translation and rotation) and stability of
image recognition. In this work, 2 × 2 maximum pooling
layers are applied as:

f (i, j) � max( c2i−1,2j−1 c2i−1,2j
c2i,2j−1 c2i,2j

) (4)

Where f (i, j) is the output of the pooling operation at the position
(i, j) of the image matrix, and c is the output matrix of the
convolution-activation layer.

Deconvolution (Upsampling) Part
Due to pooling operations, the output image matrix (high-
dimensional feature map) sampled by the convolution network
is 1/32 of the original image size. To resize the classification
results to the original, the three fully connected layers of VGG-
Net are removed and five upsampling (deconvolution) layers are
added after the convolution layers. Upsampling is the transpose
of convolving and the specific process of upsampling in the model
is shown in Figure 6 and compared with convolution and
pooling. The output size can be calculated by the formula:

Oout � (Oin − 1) × s − 2p + k + Op (5)

where Oout and Oin are the size of input and output, s is the
moving step size（stride）of the convolution kernel, p is the

padding size of filling the surroundings while convolving, k is the
size of the convolution kernel and Op is the number of edge
expansion rows for upsampling result to adjust its size.

The result of upsampling directly from the high-dimensional
feature map to the original image size only contains the overall
information and reveals too rough. Therefore, this paper also
utilizes a multi-scale refining structure (Cen and Jung, 2018)
commonly used in existing research, which is to add the output of
the first 4 pooling layers to the upsampling layers in sequence in
order to integrate local information with the overall spatial
architecture. Figure 7 shows that by adding the features at
different scales from the downsampling layers, the output
images tend to have more details and the recognition accuracy
is improved.

In practical training, odd-sized images are fairly common. The
convolution and pooling operation of odd-sized images in
program will round down and the upsampling process cannot
guarantee that the final output size is strictly consistent with the
original. Most existing research solve this problem by resizing the
input image to constant even size or dividing into parts and
importing by batches, which may affect the subsequent
calculation accuracy of void fraction in this paper. To solve
this problem, an additional judging operation for input size is
added before each upsampling layer, and padding (edge
expansion) operation is added for odd-sized pictures to ensure
the invariance of the input size. After upsampling, the
classification of the image is completed through the
classifier layer.

Network Training Settings
In this paper, the neural network training adopts the traditional
back propagation algorithm, and its core idea is to obtain the
partial derivative of the loss function of the samples, so as to
adjust the weight and bias of the network operation layers
(convolutional and upsampling layers in FCN model) along
the gradient descent direction to minimize the loss function.

Loss function. Since it is a binary classification problem (gas
and water), the cross entropy formula is used for the loss function:

FIGURE 5 | Schematic diagram of the network structure in this paper.
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L(R,G) � − 1
N

∑
N

i�1
[gi · log(gi) + (1 − gi) · log(1 − gi] (6)

where R and G are respectively the training input samples and
labels (ideal segmentation results), N is the total number of input
pixels, gi and gi are the label result values and their occurrence
probabilities (calculated by the network layers).

Training optimizer. In training process, the FCN model
applies the VGG-16 network pre-training value as the initial
value, and optimizing the network by the Stochastic Gradient
Descent (SGD) optimizer with momentum. SGD optimizer can

quickly find the direction of gradient descent and converge to
the global minimum through multiple iterations. Momentum
can make convergence faster to avoid staying in the local
extreme value area for a long time, and suppress the
oscillation to increase the calculation stability. Calculation
formula can be written as:

vt � γ · vt−1 + ∇f (wt), wt+1 � wt − αvt (7)

wherew is the network’s weight of layers, ∇f (w) is the gradient of
the loss function, v represents first order momentum, α is the
learning rate (lr) which affects the rate of convergence, γ is the

FIGURE 6 | Schematic diagram and visualization samples of three basic operation in FCN network of this paper. (A) Convolution. (B) Maximum pooling. (C)
Upsampling (deconvolution).

FIGURE 7 | The visualization and comparison of upsampling layers’ results after refining of different scales. (A) Visualized results: (1)The original input image; (2)
upsampling result directly from the high-dimensional featuremap; (3) upsampling result adding features of pooling layers 3 and 4; (4) upsampling result adding features of
pooling layers 1–4. (B) Schematic diagram of multi-scale refining structure. The yellow part in the image represents the recognition result of gas phase.
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momentum factor to control the influence of the momentum
which the t − 1 moment has on t moment.

Performance evaluation. In performance evaluation of the
FCN model, we use pixel accuracy (PA) and mean intersection of
union (MIoU) of foreground to measure segmentation accuracy.
PA means the proportion of correctly marked pixels to total
pixels. MIoU calculates the mean ratio of intersection between
segmentation result and ground truth mask to the union of them.
In the binary classification problem in this article, PA and MIoU
can be calculated with the following formula:

PA � G1,1

G
� G1,1

G0,0 + G0,1 + G1,1 + G1,0

MIoU � 1
2
(

G1,1

G0,1 + G1,1 + G1,0
+ G0,0

G0,1 + G0,0 + G1,0
) (8)

where Gi,j means the number of pixels that belong to class i and
are predicted to be class j. Class 0 refers to liquid phase
(background) and class 1 refers to gas phase. As defined, the
values of PA and MIoU are between 0 and 1. The closer the value
is up to one means the recognition effect is closer to the ground
truth, and the accuracy of the model is higher. Establishment of
training set. The training set used in the training network mainly
adopts the method of Pan et al. (2018), which is based on the
traditional image method of two-step morphology to process the
experimental images of narrow channels, and then manually
selects 1,500 binarized images with clear bubble morphology
and high accuracy as training samples. We partition the
samples into training set (85%) and test set (15%).
Considering the training cost and accuracy, the images are cut
and the flow channel part are selected. To avoid overfitting and
increase the stability of the model, further strategy like data
augmentation is used in the training, images receive both
horizontal and vertical flip and added to the training set.

Training environment and configuration. This paper
employs the deep learning framework Pytorch for network
construction and training. The experimental hardware
environment is AMD 4800H CPU, 16 GB memory, NVIDIA
RTX2060 graphics card for GPU acceleration.

CALCULATION RESULTS AND
VERIFICATION

Experimental Data Set
The data set used in the experiment in this paper comes from the
images collected by the visual narrow channel flow boiling
experiment system of Tsinghua University. Each working
condition point records 13,800 pictures (1,000 frames per
second and the acquisition time is 13.8 s). Three typical
conditions are chosen and the operating parameters are shown
in Table 2.

Results and Analysis
Figure 8 shows the train loss of the network and MIoU of the test
set under different learning rates and momentum factors. From
the picture, we can see the learning rate less affects the training

process, while higher momentum can effectively improve
computing stability. By comparing the results, we choose
learning rate � 0.01 and momentum factor � 0.9. After 33,500
iterations, the train loss basically converges, and the average PA
and MIoU of the test set reach 0.991 (99.1%) and 0.982 (98.2%)
respectively, which can meet the requirements for convergence
speed and training accuracy, and reduce computational
oscillation. Then the FCN model established in this paper is
applied for the experimental data set and part of the processing
results are shown in Figure 9, achieving recognition of the gas
phase in the image under the conditions of different void fraction
and different flow patterns. It can be seen that the method has
basically identified the gas phase’s morphology, especially in the
slug flow (Figure 9 a1 and a2) and churn flow (Figure 9 a3
and a4) of high void fraction. This verifies the portability and
reliability of this method for different working conditions and
flow patterns in boiling experiments.

As shown in Figure 10, the method in this paper is compared
the traditional edge detection/filling algorithm and the two-step
morphological method of Pan et al. (2018). It can be seen that in
working condition A of low void fraction, the results of FCN
method and the traditional algorithm are not much different, and
both can identify bubbles with clear boundaries and regular
shapes. The FCN method has a relatively better recognition
effect on small bubbles. In working condition B and C where
the void fraction is high, the traditional algorithm will overfill the
gap between the bubble and the vapor slug, resulting in the
unrecognizable gas phase areas and may detect an excessively
high void fraction value. The designedmorphological method can
better extract the characteristics of local irregular bubbles, but it
requires manual setting of parameters. When the pixel value of
the picture changes greatly and the threshold parameters cannot
be matched, a large block of recognition defects may occur like
Figure 10C. The method in this paper also has some local
recognition defects inside and between the bubbles, but it
basically realizes the recognition of bubble shape. It also has
better applicability for different flow patterns to improve the
overall recognition accuracy, and does not require manual
adjustment of parameters, which saves design costs.

The void fraction at the outlet of the flow channel is of
significance to the calculation of the two-phase model and
determining the flow pattern. After the gas-liquid recognition
results are obtained by the method in this paper, the numerical
matrixH(i, j) (size � M × N) near the outlet is extracted from the
output binary image. The following formula is for calculating the
void fraction of the outlet in narrow channels:

α � ∑M
i−1 ∑

N
j−1 H(i, j)

M × N
(9)

The time-dependent change of the void fraction (0–2.5 s)
obtained by the method in this paper is shown in Figure 11.
It can be seen that due to the small size of the narrow channel, the
bubble develops more rapidly after its generation, which cause the
outlet void fraction extremely fluctuates with time. In condition 1,
the flow channel is mainly dominated by annular flow, a large
section of gas column is accompanied by intermittent liquid film
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oscillation, and the proportion of outlet void fraction alternately
changes with a period of about 0.2s. Operating condition two and
three have lower heat flux density than condition 1, and are
dominated mainly by slug flow and churn flow. So we can observe
from Figure 11 that intermittent steam generation phenomenon
occurs, resulting in a rapid and regular decrease and rise of the
void fraction.., which is consistent with the high speed
photography images at the corresponding time.

For further verifying the accuracy of the neural network
recognition results, we use the theoretical method to calculate
the time-averaged void fraction under experimental conditions
and compare it with the average value obtained by the method in
this paper. The formula of energy conservation method for
calculating the mass quality of the gas at the outlet of the
narrow channel is shown in the following:

x �
P(1−k)

M − hl,out + hl,in

hv,out − hl,out
(10)

where x is the mass quality of the gas, P is the heating power, k is the
heat loss ratio, M is the mass flow rate, h is the enthalpy value, the
subscript l indicates the liquid phase, v indicates the gas phase, the

subscript in means the inlet of the test section while the out means
the outlet. In calculating the heat loss ratio k, the influence of the
parameters is analyzed and it is found that the mass flow causes less
change, indicating that the internal flow has little effect on the heat
dissipation. In addition, it is natural convection in a limited space
outside the test section, and the heat transfer conditions are basically
constant. Therefore, the two-phase heat dissipation loss ratio can be
derived by fitting the heat dissipation data of single-phase flow:

lgk � ( − 0.03338 + 2 × 10− 4 ΔT − 3 × 10− 6G)q − 6 × 10− 4 ΔT2

−0.00362ΔT − 5 × 10− 5G + 0.19232 (11)

In this formula, ΔT is the degree of subcooling (°C), G is the inlet
mass flow rate (kg/s), and q is the heat flux density (kW/m2).

So far, numerous of empirical, semiempirical and analytical
two-phase flow void fraction correlations have been developed,
and according to many review literatures these formulas can be
mainly divided into slip ratio model, Lockhart-Martinelli
parameter based model, drift flux model, KαH model, etc.
(Vijayan et al., 2000; Dalkilic et al., 2009) According to Huang
et al. (2013), the slip ratio model which essentially specify an
empirical equation for the slip ratio S is more suitable for narrow

FIGURE 8 | The influence of training parameters on the training process and test set accuracy. (A) Different learning rate (momentum factor � 0.9). (B) Different
momentum factor (learning rate � 0.01): (1) Changes of the train loss. (2) Changes of the mean iou of the test set.
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channels with relatively low outlet mass quality. Therefore,
according to the survey, three commonly used calculation
models of void fraction are selected as shown in Table 3.

The void fraction calculated by our FCN method is
instantaneous and the data is time-averaged for comparing
with the theoretical results：

FIGURE 9 | Image processing results of different flow patterns. (A) Input images. (B) Output binarized images (A1, A2: slug flow with bubbles; A3, A4: churn flow).

FIGURE 10 | Comparison of FCN model results in this paper with traditional algorithms (A) Condition A of low void fraction (B,C) Condition B and C of high void
fraction. (1) Input experimental pictures; (2) Traditional edge detection/filling algorithm; (3) Two-step morphological method; (4) FCN method.
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α � ∑K
i�1 αi

K
(12)

Where α is the time-averaged result of the FCN model, αi is the
instantaneous void fraction of the corresponding images in
experimental data set, and K is the number of the experimental
image set. The comparison results are listed in Figure 12. It shows
that the relative deviation between the method in this paper and
various empirical models is within ±11%, which illustrates the
accuracy of the FCN model proposed in this paper. In addition,
the neural network method uses the tensor operation method based
on the pre-training weights, and the processing speed has also been
improved. After further optimizing the network, it can be applied to
real-time monitoring and online void fraction identification.

CONCLUSION

In this paper, a void fraction measurement method based on fully
convolutional neural network (FCN) is proposed for the visualization
system of the narrow channel two-phase flow boiling experiment. It
can identify and extract gas phase from the flow images captured by a
high-speed camera, and calculate the void fraction at different
locations of the channel. The conclusion is summarized as follow:

(1) Introducing the FCNmethod based on deep supervised learning
and data extraction into the gas-liquid two-phase recognition.
FCN can extract information automatically from pixel level to
abstract semantic concepts through multi-layer convolution
operations. It also uses up-sampling layers and multi-scale
fusion technology to further optimize the results. The method
reduces the cost of manual design algorithm, and has extensive
value for the gas-liquid identification of two-phase flow.

(2) Aiming at problems such as blurring of the gas-liquid interface
and dramatic changes in the instantaneous void fraction when
in high vapor quality of the narrow channel, the network
structure has been adjusted to adapt specific problems. In
the working conditions of different void fraction and flow
patterns, FCN method realizes better recognition of the gas
phase in images, and also realizes the measurement of the
transient void fraction in the entire flow channel, which
improves the generality of the gas-liquid recognition algorithm.

(3) The void fraction at the outlet of the flow channel is extracted
and comparedwith the numerical results obtained by the energy
conservation method and empirical formulas. The deviation
between two methods is within ±11%, which verified the
reliability of the FCN method. In the future, this method can
be applied to real-time void fraction measurement and flow
channel monitoring in complex conditions of narrow channels.
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FIGURE 11 | Change of the outlet void fraction with time of different
working conditions (0∼4 s).

TABLE 3 | The vapor quality-void fraction conversion model selected in this paper.

Number Authors Vapor quality-void fraction
conversion model

1 Zivi (1964)
α � [1 + (1−x

x )(ρv
ρl
)S]

− 1

,S � 0.2+0.8⎡⎣
ρl
ρv
+0.2(1−x)/x

1+0.2(1− x)/x⎤⎦
1/3

2 Smith (1969)
α � [1 + (1−x

x )(ρv
ρl
)S]

− 1

,S � 0.4+0.6⎡⎣
ρl
ρv
+0.4(1−x)/x

1+0.4(1− x)/x⎤⎦
1/2

3 Chisholm
(1973) α � [1 + (1−x

x )(ρv
ρl
)S]

− 1

,S �
���������
1 − x + xρl

ρv

√

FIGURE 12 | Comparison results of the void fraction calculated by the
method in this paper and the empirical formulas.
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Development and Validation of
Multiscale Coupled Thermal-Hydraulic
Code Combining RELAP5 and Fluent
Code
Lin Sun1, Minjun Peng2, Genglei Xia2, Xuesong Wang1* and Mingyu Wu1

1Division of Reactor Engineering Technology Research, China Institute of Atomic Energy, Beijing, China, 2Fundamental Science
on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin, Heilongjiang, China

In nuclear reactor system research, the multiscale coupled thermal-hydraulic (T-H)
system code and CFD code is one of the most prevalent research areas, and it
could help improve simulation fidelity and optimize nuclear reactor design.
Additionally, a new idea known as the function fitting method (FFM) for coupling
parameter distribution has been newly proposed for exchanging data on the coupling
interface, which uses math equations to present the velocity distribution characteristics
at the coupling interface. This method could improve the simulation error and numerical
instability. To verify and validate the abovementioned FFM, a comparison between the
velocity function shape by FFM and real velocity distribution was completed. Besides, the
Edwards pipe blowdown test results were used to verify the coupled code. The results
showed good agreement with experiment results, and a better simulation accuracy
compared to previous work. The current work will establish the ability to explore
multiscale coupled thermal-hydraulic operation characteristics which permit precise
local parameter distribution.

Keywords: coupled RELAP5/fluent code, Edwards blowdown test, function fitting method, mutliscale thermal-
hydraulic code, computational fluid dynamics

INTRODUCTION

Nuclear safety is a top priority for nuclear power application and expansion. Estimate tools for
increasing safety analysis and evaluation requirements need to become better and more precise. In
the past few decades, on a system scale, the best estimate codes such as RELAP5 (Allison et al., 1993),
RETRAN (McFadden et al., 1981), CATHARE (Barre and Bernard, 1990), and MARS (Jeong et al.,
1999) have dominated nuclear reactor operation, safety analysis, and severe accident analysis.
However, these codes can only present one-dimensional transient system behaviors, which can not
provide the local characteristics of the reactor. As computational resources have dramatically
developed, component scale analysis codes like COBRA (Stewart et al., 1977), RELAP5-3D
(RELAP5-3D Code, 2012), VIPRE (Stewart et al., 1989), and local scale codes such as Fluent
(Rohde et al., 2007), CFX (Höhne et al., 2010), and Star-CCM+ (Cardoni, 2011) have emerged. These
computational fluid dynamic (CFD) codes can provide three-dimensional features, which have been
applied in pressurized thermal shock (PTS) (Egorov et al., 2004), boron dilution and distribution in
reactor vessels (Muhlbauer, 2003; Scheuerer et al., 2005), and so on. The above CFD application has
faced the challenge of the computational cost of transient safety analysis. To conquer these
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difficulties, a compromised method of developing coupled codes
based on system and CFD codes has been promoted.

Ronnie Andersson (Andersson et al., 2004) utilized a system
and CFD code to analyze turbulence intensity and dissipation on
multiphase flow in the reactor. Daniele Martelli (Martelli et al.,
2017) coupled RELAP5/MOD3.3 and Fluent to simulate a
NACIE experiment loop and loss of flow accident, which was
in good agreement with experiment data. J-J. Jeong (Jeong et al.,
1999) developed an integral modular code MARS coupled
RELAP5 and sub-channel COBRA code, which adopted a
semi-implicit method and dynamic memory allocation
method. W. L. Weaver (Weaver et al., 2002; Weaver, 2005)
developed a series of studies coupling RELAP5-3D and CFX,
D.L. Aumiller (Aumiller et al., 2001; Aumiller et al., 2002) further
coupled RELAP5-3D and CFD-FLOW3D based on the parallel
virtual machine (PVM) method, both studies used the Edwards
blowdown test to conduct the verification and validation (V&V)
process. Nolan Anderson (Anderson, 2006; Anderson et al., 2008)
also developed RELAP-3D and Fluent coupled code using PVM,
for Very High Temperature Reactor (VHTR) lower plenum
analysis.

The existing coupled code development technologies mainly
include PVM, dynamic link library (DLL) (Li et al., 2014), and
boundary files modification methods. Challenges in the
coupling process (Ivanov and Avramova, 2007) mainly
concern the method of coupling, coupling approach, spatial
mesh overlays, time step algorithms, and coupling numeric and
convergence schemes. Spatial mesh mapping, especially the data
exchange at the coupling interface plays a key role in simulation
accuracy and numerical convergence. Therefore, in this paper, a
new method called the function fitting method (FFM) for
coupling parameter distribution was proposed for coupling
RELAP5 and Fluent, aiming at providing precise data
exchange. An Edwards pipe blowdown test was used to verify
and validate the coupled code.

COUPLING METHOD

For multiscale coupled thermal-hydraulic code, the kinds of
variables that are transferred through the coupling interface
must be considered as priority. The RELAP5 code sets the
boundary conditions through time-dependent control volume
(TMDPVOL) and time-dependent junction (TMDPJUN); while
Fluent has a predetermined velocity-inlet, pressure-outlet, and
outflow boundary conditions, etc.

Assuming that the control volume Ri (RELAP5-interface) is
connected to the coupling interface between Fluent and RELAP5,
the mass and energy conservation equations are solved in the
control volume Ri. The junction j is also connected to Fluent and
RELAP5, then the momentum conservation equation is solved in
junction j, and the vector variables are stored in j (as shown in
Figure 1). In fact, the RELAP5 interface control volume Ri and
the junction j do not have realistic components in the RELAP5
system; its main function is to be used as a coupling interface,
which is also known as a “ghost cell.” This coupling interface is an
overlapped computational domain.

Under this scenario, the downstream Fluent computational
mesh is regarded as the downstream control volume of the
RELAP5 portion, and the abovementioned mass, energy, and
momentum conservation equations can be derived in the
following forms:

Pn+1
Ri − Pn

Ri � b + g1vn+1g,j + g2vn+1g,k + f 1vn+1f ,j + f 2vn+1f ,k (1)

vn+1g,j � A′(Pn+1
F − Pn+1

Ri ) + C′ (2)

vn+1f ,j � B′(Pn+1
F − Pn+1

Ri ) + D′ (3)

where, P is the pressure and v is the fluid velocity. While, the
subscript g and f stand for gas and fluid, respectively. The
superscript n and n + 1 represent the current and next
time step.

Coefficients b, g1, g2, f1, and f2 are column vectors, these
coefficient vectors are known variables under the current time
step n. b is the source term in the equation, and the coefficient
matrices g and f represent the convection effect. A′, B′, C′, and D′
are coefficients that contain only the current time step variable.

The exchange variables between RELAP5 and Fluent codes are
listed in the following Table 1.

The data transfer between the coupling interface is
bidirectional. While, Fluent passes parameters to RELAP5,
which can be calculated by surface summation or averaging.
For the mass flow rate, the sum of the Fluent surface cells is equal
to that of the RELAP5 interface.

Wn+1
gj � ∑

Nc

i�1
WN

gi (4)

Wn+1
fj � ∑

Nc

i�1
WN

fi (5)

where, W is the mass flow rate and Nc stands for the Fluent cell
numbers on the coupling interface.

Other variables like temperature, pressure, and void fraction,
are represented by Φ, and can be described as follow:

Φn+1
F �

∑
Nc

i�1
Φn+1

i |Ai|

∑
Nc

i�1
|Ai|

(6)

where, Ai is the area of cell surface i.

FIGURE 1 | The coupling interface control volumes between RELAP5
and Fluent.
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For parameters passed from RELAP5 to Fluent, one-
dimensional parameters obtained by the lumped parameter
method of RELAP5 will be converted into the two-
dimensional distribution of the Fluent interface. In past
research, these data were generally averaged on the interface,
but this method introduces errors into each calculation iteration.
While, in some studies, the coupling boundary is set further afield
so that it is far enough to minimize uneven effects on the
interface. However, these two methods do not solve the
different dimensional transformation problem of the coupling
parameters. Therefore, in this paper, we worked on solving this
issue by proposing a function fitting method for interface data.

FUNCTION FITTING METHOD

For nuclear power systems and equipment, most fluid areas are
round tubes, such as pipes and fluid machinery (pumps, valves,
etc.,). For the application of the RELAP5/CFD coupled code, the
primary system and safety system are modeled by one-
dimensional system codes to obtain the transient
characteristics. However, the pressure vessel, lower plenum,
and the core are modeled by the three-dimensional CFD code
Fluent. The connection between the system and the local
equipment are mostly long round tubes, and the fluid flow
therein can be considered fully developed. The flow and heat
transfer of single-phase and two-phase fluids for round tubes
have been widely studied. Therefore, in this paper, the function
fitting method (FFM) for coupling parameter distribution was
proposed. This method can accurately convert the one-
dimensional lumped variables into two-dimensional ones that
satisfy the corresponding physical laws, thereby effectively
improving the error of calculation instability and accelerating
calculation convergence.

Fitting Function
The original intention of this method was to transfer the one-
dimensional parameters into the two-dimensional surface ones
through appropriate function fitting, and accurately reflect the
real distribution. Therefore, for Newtonian viscous fluids, there
are many mature empirical formulas for one-dimensional flow,
and they can be used as one of the independent variables of the
fitting function.

For the fully developed single phase turbulent flow in a round
tube, the velocity distribution is relatively flat in the middle.

While, in the viscous bottom layer near the wall surface, the
velocity distribution changes sharply and the velocity gradient is
relatively large. For the velocity distribution in the tube flow, the
most influential factor is the Reynolds number and position. The
flow velocity distribution function fitting method mainly
considers the influence by friction coefficient and relative
position.

The empirical formulas for the widely recognized turbulent
flow frictional resistance coefficient are listed in Table 2.

Rr in Table 2 is the relative roughness. The friction coefficient
calculations for the Nikuradse and Colebrook models in the table
are implicit, that is, f appears on both sides of the equation;
therefore, either the equation is iteratively solved, or the solution
is interpolated in the Moody diagram (Moody, 1944). These
solution methods are very inconvenient (Haaland, 1983).
Therefore, in the function fitting method, it is preferred to
select the simple and accurate explicit friction coefficient
calculation as one of the independent variables. After a large
number of experiments, the Filonenko model was chosen because
it is applicable in a wider range of Reynolds numbers. Besides, in
related research, the experiments of scholars Romeo (Romeo
et al., 2002), Fang (Fang et al., 2011), and Yıldırım (Yıldırım,
2009) have verified that this model is more accurate among the
explicit friction relationship.

The function fitting method is also related to the position of
the one-dimensional grid to the two-dimensional grid spatial
mapping. Therefore, for the round tube coupling interface, the
radial position of the round tube is selected as another independent
variable. According to the characteristics of the flatness of the
central cross-section, and the steep edge, the fitted mathematical
function should also have the above characteristics.

The simplest and most straightforward method of the fitting
function is to use piecewise polynomial fitting. However, the
function obtained by this method requires multiple constraints,
which is not suitable for practical application. In elementary
functions, logarithmic function has the characteristics of rapid
transition in the normalized (0–1) interval. Therefore, the fitting
function must contain a logarithmic function term, which also
requires the consideration of relative distance.

The term related to the friction coefficient is in the form of the
polynomial and power function. The determination of the index
needs to be verified by a large number of calculations, so that the
obtained function conforms to the flow velocity distribution
under different flow Reynolds numbers.

Finally, the conversion formula for the function fitting
method is:

F(f , r) � 1 + 1.44f 0.45 + 2.15f 0.45 log(1 − r/R) (7)

where, F is the fitting function, r is the distance from the central
axial line, and R is the inner radius.

The f in Eq. 7 is the friction coefficient. Here, the Filonenko
model is selected, namely:

f � (0.78 lnRe − 1.64)− 2 (8)

The coupling parameter velocity conversion from the system
code RELAP5 to the CFD code Fluent can be expressed as:

TABLE 1 | Data transfer between RELAP5 and Fluent.

Sequence RELAP5 → Fluent Fluent → RELAP5

1 Pressure (P) Pressure (P)
2 Liquid density (rhof) Liquid internal energy (uf)
3 Vapor density (rhog) Vapor internal energy (ug)
4 Liquid temperature (tempf) Void fraction (voidg)
5 Vapor temperature (tempg) Liquid mass flow rate (mflowfj)
6 Void fraction (voidg) Vapor mass flow rate (mflowgj)
7 Vapor velocity (velgj)
8 Liquid velocity (velfj)
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uCFD(r) � uRELAP5[1 + 1.44f 0.45 + 2.15f 0.45 log(1 − r/R)] (9)

where, uCFD is the fluid velocity at the Fluent coupling interface,
while uRELAP5 is fluid velocity at the RELAP5 coupling junction.

In addition, for the coupling process between different
thermal-hydraulic codes, attention should also be paid to the
conservation of the coupling parameters. Especially for the
coupling parameter distribution function fitting method, it is
necessary to assure that the integral flow on the Fluent interface is
equal to the total flow at the RELAP5 coupling junction, as
follows:

Wj � ∫∫
A
ρuCFDdA (10)

where,Wj is the mass flow rate at the RELAP5 coupling junction
and A is the area of the Fluent coupling interface.

Verification and Validation of Fitting
Function
In order to verify and validate the accuracy of the function fitting
method proposed in the previous section, Fluent was used to
analyze the flow in a round tube under different conditions.
Besides, the results have been compared with the fitting function
under the corresponding Reynolds number. Since the
independent and dependent variables of the fitting function
are dimensionless, in the CFD verification, the corresponding
size and speed are also normalized accordingly. A horizontal tube
with a length of 500 mm and an inner diameter of 10 mm was
chosen; and the velocity distribution at the center of the tube was
compared with the fitting function. The selected pressure,
temperature, flow rate, and corresponding Reynolds number
were included within the pressurized water reactor (PWR)
operation and accident conditions. The specific verification
conditions are shown in Table 3.

In this V&V work, in order to accurately simulate the flow
features in the boundary layer, the y plus value was confirmed as
30; the wall surface was divided into 20 boundary layers, the grid
thickness of the first layer of the boundary layer was calculated to
be 7 × 10−4 mm, and the growth ratio was 1.1. The mesh cross
section is shown in Figure 2.

In Figure 3, the normalized velocity distribution is compared
between the fitting function and Fluent results. Under different
pressures, temperatures, velocities, and Reynolds numbers, the
fitting function represented accurate results to prove its

applicability. The x-axis of the fitting function was in a
relative position to the axial center, and the y-axis was the
normalized velocity, which determined that this function was
not constrained by specific size.

VERIFICATION AND VALIDATION OF THE
COUPLED CODE

In this paper, the Edwards pipe blowdown test was chosen to
validate the multiscale coupled one dimensional (1D) and three
dimensional (3D) code.

Edwards Pipe Blowdown Test
The original intention of the Edwards pipeline blowdown test was
to simulate the phase change process in the safety analysis of the
water-cooled reactor, which is very similar to the coolant loss
process of the PWR loss of coolant accident (LOCA). The
experimental facility contained a heating pipe filled with water,
and the pressure was maintained above the saturation point.
Before the glass plate at the end of the pipe was broken, the
pressure was adjusted to the required level. During the blowdown
test, measurement gauge stations were set up along the pipeline,
with which pressure, temperature, and density changes were
measured.

Before the blowdown process, the horizontal pipe was filled
with supercooled water (602.15 K, 7.0 MPa). The ambient
temperature was 293.15 K, and the ambient pressure was
atmospheric pressure. The pipe was 4.096 m long and had
an inner diameter of 73.15 mm. The design pressure of the
pipeline was 17.2 MPa, and the design temperature was
616.5 K. The initial experimental pressure ranged from 3.55
to 17.34 MPa, and the temperature ranged from 514.8 to
616.5 K. The experiment layout is shown in Figure 4. The
end of the pipe was the blowdown section, sealed by a
toughened glass disc, the diameter of the glass disc was
88.9 mm, and the thickness was 12.7 mm. At the beginning
of the experiment, the glass disc was ruptured by the lead pellet
from a compressed air gun, and the water in the pipe was
discharged into the environment. The reduction in the spray
area accounted for 13% of the pipe cross-sectional area. A total
of seven measuring gauge stations (GS1-GS7) were set up
along the axial direction of the pipeline, and each was
equipped with a facility for fitting fast response pressure
and temperature transducers. The pipe was heated

TABLE 2 | Single phase turbulent flow friction factor in round pipe.

Order Model Formula Reynolds number

1 von Karman (von Karman, 1937) 1	
f

√ � 2 log( 1
Rr) + 1.74 4 × 103 ≤ Re ≤ 108

2 Nikuradse (Fang et al., 2011) 1	
f

√ � 2 log(Re 	
f

√ ) − 0.8 3 × 103 ≤ Re ≤ 3.4 × 106

3 Blasius (Blasius, 1907) f � 0.316
Re1/4 Re ≤ 2 × 104

f � 0.184
Re1/5 Re ≥ 2 × 104

4 Filonenko (Fang et al., 2011) f � (0.79 lnRe − 1.64)− 2 104 ≤ Re ≤ 108

5 Colebrook (Colebrook, 1939) 1	
f

√ � −2 log(Rr
3.7 + 2.51

Re
	
f

√ ) 4 × 104 ≤ Re ≤ 108

6 Drew, McAdams, Koo (Schramm, 2006) f � 0.0056 + 1
2Re

−0.32 3 × 103 ≤ Re ≤ 3 × 106
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electrically with sheathe band heaters, formed to the curvature
of the pipe. They covered approximately 70% of the pipe
circumference and each had a capacity of 700 watts. Heat
losses were reduced by using asbestos insulation.

In order to verify the RELAP5/Fluent coupled code, the
Edwards pipe blowdown test was used as the benchmark
problem in this paper. Meanwhile, the standalone RELAP5
code and other scholar’s coupled code results (Li et al., 2014)
were compared with our work.

Simulation Model
The standalone RELAP5 model nodalization is shown in Figure 5,
in which the pipe component 003 PIPE stands for the experiment
pipe, and the single junction component 004 SNGJUN connects
the experiment pipe and rupture boundary. The time-dependent
volume component 005 stands for the ruptured end of the pipe and
also provides boundary conditions for the simulation. In RELAP5,
the bubble radius change rate in the flash evaporation process is
based on the Plesset-Zwick model (Plesset and Zwick, 1954), and
the corresponding Nusselt solution is based on the Lee-Rypley
model (Lee and Ryley, 1968):

Nub � 2.0 + 0.74Re0.5b Pr1/3 (11)

where, the subscript b represents bubbles.
In the coupled code analysis, the Edwards pipeline simulation

model was divided into two parts along the axial direction. The

upstream was modeled by Fluent, and the downstream to the end
of the pipeline was simulated by RELAP5 (as shown in Figure 6).
The downstream RELAP5 part contained 10 mass and energy
control volumes, and nine momentum junctions among each
control volume. Since the Edwards blowdown test is a strong
transient process, the maximum time step of RELAP5 was set to
0.0001 s. In each time step, the inlet boundary of RELAP5
provided the pressure, temperature, and void fraction to the
outlet boundary of Fluent; the Fluent returned the void
fraction, pressure, temperature, and mass flow rate of the gas
and liquid phase inlet boundary condition of RELAP5.

For the Fluent calculation part, the two-phase Euler model was
adopted for the multiphase flow simulation, and a bubble diameter
dbubble � 1 mm. The thermal phase change model was adopted for
the rapid and intense evaporation-condensation process (ANSYS,
2015). The water properties were based on the National Institute of
Standards and Technology (NIST) compressible gas model, which
was important to capture the spread of pressure waves.

RESULTS AND ANALYSIS

The Edwards pipe blowdown test process can be divided into two
periods: one is the rapid pressure discharge period caused by the
single-phase water loss, and the other is the slower pressure
discharge period by the loss of the two-phase mixture. The first

FIGURE 2 | Boundary layer mesh configuration on the cross section of the round pipe.

TABLE 3 | Verification experiment conditions in horizontal round pipe.

Parameter A B C

Velocity (m/s) 12.75 1.056 0.19
Density (kg/m3) 763.87 922.20 988.50
Dynamic viscosity (kg/m·s) 9.74E-05 9.74E-05 8.93E-05
Reynolds 999932.5 (1 × 106) 99984.2 (1 × 105) 10015.5 (1 × 104)
Turbulence intensity (%) 2.85 3.79 5.06
Inlet pressure (MPa) 15.5 10.5 4.5
Outlet pressure (MPa) 15 10 4
Temperature (°C) 280 150 50
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period happens almost instantaneously, at approximately 2 ms.
The second period continues until the pressure is discharged close
to the environment pressure.

Figure 7 shows the pressure variation of the GS-5. After the
blowdown started, the pressure dropped sharply due to the rapid
loss of relatively high-density supercooled water until saturation
conditions were reached. The pressure drop during the discharge
phase of the two-phase mixture was compensated by vapor
generation. The pressure results simulated by the coupled
Fluent/RELAP5 code was in good agreement with the Edwards
pipeline test results (Edwards and O’Brien, 1970). The maximum
deviation was 0.26 MPa, which corresponds to an error of 18.4%
from the experiment results, which is acceptable for two-phase
transient flow. The pressure results simulated by the coupled code
was higher than the experiment and RELAP5 results. It is worth
mentioning that the prediction of coupled analysis is not
restricted by independent RELAP5. Compared with the
coupled code with a simple boundary condition treatment
from other papers, our results were closer to the experiment
results.

Figure 8 shows the pressure variation at GS-7. The coupled
code results were within a reasonable range compared to the
experiment results. In 0–250 ms, the simulation results of the
coupled code were close to the experimental results, after which
the simulation results were higher than the experiment ones. The
maximum pressure deviation between the coupled code and the
test results was 0.41 MPa, and the corresponding error was 28%.
The pressure drop process simulated by the Fluent/RELAP5
coupled code and the standalone RELAP5 code began earlier
than in the experiment. This phenomenon was partly due to the
thermal phase change flashing model in the Fluent code. Its
flashing rate was determined by the temperature difference
between each phase and their corresponding saturation
temperature, which led to a faster pressure drop.

Figure 9 shows void fraction variation at GS-5. In the first
millisecond, the vapor generation rate was relatively slow, and the
coupled code results were slightly lower than the experiment
ones. As the blowdown process reached saturation conditions, the
largest increase rate of the void fraction occurred in the middle of
the whole process. In the following period, due to the equilibrium
state with the environment, the vapor generation rate decreased.
The error between the coupled code results and the experiment
ones can be attributed to the assumption that the average bubble
size was simplified to a fixed value (1 mm) in the Fluent model.
The size of the pre-existing nuclei in the sub-cooled liquid was
substantially smaller than the prescribed 1 mm. This indicated a
significant under-prediction of the interfacial area density
available for the initiation of flashing. While the steam bubbles
grew rapidly during the flashing process, which resulted in a
mean size much larger than 1 mm in a short period (Liao and
Lucas, 2017). Nevertheless, the uncertainty was weakened with
the increase of the void fraction. The effects of prescribed bubble
sizes were studied in Liao’s paper (Liao et al., 2013).

Figure 10 shows the mass flow rate variation of the control
volume at the coupling interface. Since there is no available
experiment data in the Edwards pipe blowdown test, the
results of the coupled code were compared with those of the
standalone RELAP5 code. The results of the coupled Fluent/
RELAP5 code showed similar trends with those of RELAP5. The
mixture mass flow rate by the standalone RELAP5 code was

FIGURE 3 | Comparison of the fitting function and Fluent results. (A) Re
� 106. (B) Re � 105. (C) Re � 104.
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larger than that of the coupled code, and the falling tendency of
the mass flow rate variation simulated by the coupled code began
earlier.

Figure 11 shows the mass flow rate variation at the break of
the pipe. After the rupture of the end of the pipe, the discharge

flow rate quickly reached the maximum value. The mass flow rate
of the break simulated by the Fluent/RELAP5 coupled code was
in good agreement with that of the standalone RELAP5, and the

FIGURE 4 | Edwards blowdown test.

FIGURE 5 | RELAP5 nodalization of the Edwards blowdown test.

FIGURE 6 | RELAP5/Fluent coupling scheme for the Edwards pipe test.

FIGURE 7 | Comparison of the pressure at GS-5.

FIGURE 8 | Comparison of the pressure at GS-7.

FIGURE 9 | Comparison of void fraction at GS-5.
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falling trend of mass flow also showed a similar relationship with
that of the pressure. Although there is a lack of experimental
results for the break mass flow rate, the results in this paper were
close to those of the standalone RELAP5. It also indicated that the
function fitting method encountered smaller errors in the
simulation, which weakened the error induced by the coupling
parameter.

CONCLUSION

In this paper, a multiscale coupled thermal-hydraulic method was
studied, and a coupled RELAP5/Fluent code was developed. To
solve the problem of exchanging different dimensional thermal-
hydraulic parameters through the coupling interface, the function
fitting method was proposed. The physical distribution of
different parameters was described by mathematical functions.
The Edwards pipe blowdown test was used to verify themultiscale
coupled thermal-hydraulic method. The results show that the
FFM can help simulate the strong transient process accurately,
and it can also improve the calculation accuracy when compared

to the previous study that used uniform parameters distribution
at the interface.
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Data-Driven-Based Forecasting of
Two-Phase Flow Parameters in
Rectangular Channel
Qingyu Huang*, Yang Yu*, Yaoyi Zhang, Bo Pang, Yafeng Wang, Di Chen and Zhixin Pang

Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu, China

In the current nuclear reactor system analysis codes, the interfacial area concentration and
void fraction are mainly obtained through empirical relations based on different flow regime
maps. In the present research, the data-driven method has been proposed, using four
machine learning algorithms (lasso regression, support vector regression, random forest
regression and back propagation neural network) in the field of artificial intelligence to
predict some important two-phase flow parameters in rectangular channels, and evaluate
the performance of different models through multiple metrics. The random forest
regression algorithm was found to have the strongest ability to learn from the
experimental data in this study. Test results show that the prediction errors of the
random forest regression model for interfacial area concentrations and void fractions
are all less than 20%, which means the target parameters have been forecasted with good
accuracy.

Keywords: data-driven method, two-phase flow, machine learning, interfacial area concentration, random forest
regression

INTRODUCTION

In various industrial equipment of nuclear power systems, gas-liquid two-phase flow phenomenon is
widespreaded. Research on the two-phase flow plays an important role in improving the safety and
operational reliability of evaluation system equipment. At present, in traditional commercial nuclear
reactor system safety analysis softwares such as Reactor Excursion and Leak Analysis Program
(RELAP) 5 (Martin, 1995) and CATHARE (Barre and Bernard, 1990), two-fluid models are widely
used in the two-phase flow and heat transfer processes. In order to improve the calculation accuracy
of the two-fluid model, it is necessary to provide more accurate closure models for the two-fluid
model, and the interface transport term must be accurately simulated (Guo, 2002). The interface
transport term can be expressed as the product of the interfacial area concentration and interfacial
transport driving force where the interfacial area concentration is defined as the interfacial area per
unit mixture volume, which represents the effective area for mass-energy exchange between different
phases. For two-phase flow system, the interfacial area concentration and void fraction are also two
of the most important parameters.

In view of the importance of parameters such as the interfacial area concentration, a variety of
measurement methods have been developed to obtain experimental data, such as probe method,
high-speed camera method, chemical method, etc., and different types of empirical correlations have
been established based on a large amount of data (Ishii, 1975; Kocamustafaogullari and Ishii, 1995;
Su, 2013). However, the scope of application of these empirical correlations is relatively limited.
Moreover, the acquisition of experimental data is costly with typical local features.
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In recent years, with the continuous development of computer
hardware, computing power as well as data collection and storage
technology, artificial intelligence technology has made a
qualitative leap in emerging applications and development in
various fields. However, in the field of engineering, especially
nuclear engineering, the application of data-driven methods,
whether it is fault diagnosis, equipment health management or
other aspects, is still subject to certain restrictions. There are
many prediction and analysis methods based on data-driven
routes, including machine learning, deep learning, information
fusion, statistical analysis methods, signal processing analysis
methods, etc. (Gammerman, 1996).

Machine learning (including deep learning), as known as
the cornerstone of artificial intelligence technology, has
become a popular research field in recent years.
Implementation of machine learning completely starts
from collecting operating parameters, constructing data
analysis models through the learning of historical data,
and then is conducted by using the trained models to give
a predicted output for the actual input parameters. A review
of the research and development status of learning-based
methods used in reactor health and management, radiation
detection and protection, as well as optimization illustrated
that, at present, more and more researchers in various fields
of nuclear science are showing enthusiasm for the data-driven
parameters or states predictions, and these methods have
become more practical with the rising of deep learning and
other techniques in the past decade (Gomez-Fernandez et al.,
2020). The most important application of machine learning
in reactor health management is to use sensor data for
parameter prediction and state classification to perform
tasks such as stateful inspection, fault diagnosis, and life
prediction control. Among them, Tennessee Valley
Authority Sequoyah Nuclear Plant uses the artificial neural
network to determine the variables that affect the heat rate
and thermal performance (Guo and Uhrig, 1992). Advanced
optimization algorithms are used to estimate local power
peaking factor estimation in nuclear fuel (Montes et al.,
2009). Nuclear reactor thermal-hydraulic research area has
also shown interests in the application of machine learning:
for instance, flow regime identification (Tambouratzis and
Pàzsit, 2010), prediction of two-phase mixture density
(Lombardi and Mazzola, 1997) and expert decision support
systems trained by deep neural networks/long short-term
memory which is developed to predict the progression of
LOCA (Radaideh et al., 2020).

The data-driven method is more desired where the prediction
task is more complex due to the enhancement of the data
availability and reduce computational difficulty in some cases.
In the present work, data-driven method is introduced in
predicting two-phase flow parameters in rectangular channels,
namely interfacial area concentration and voidfraction, by using
four machine learning models: lasso regression, support vector
regression, random forest regression and back propagation neural
network. Additionally, the performance of four models for
different parameters prediction will be discussed and
compared in the present work. The remaining sections of this

paper are organized as follows: SectionData Acquisition describes
the experimental equipment and the process of data acquisition.
The algorithms adopted in this paper are presented in Section
Algorithm. The methods and test results of this paper are
presented in Section Methodology. The result is further
analyzed and discussed in Section Discussion. The conclusions
drawn from this study are given in Section Conclusion.

DATA ACQUISITION

Introduction to the Experimental System
This experimental platform is shown in Figure 1, which can carry
out the research of the vertical air-water two-phase flow in the
channels with various cross-sectional area under normal
temperature and pressure conditions. Figure 1 is a schematic
diagram of the experimental system, and Figure 2 is the scene
photo of the experimental system.

The experimental platform is mainly composed of water
supply system, air supply system, air-water mixer,
experimental section, instrumentation, and data acquisition
system. The main part of experimental device is a rectangular
channel with the total length of the experimental section about
1,500 mm and the channel size of 66 × 6 mm. The experimental
section is all processed and bonded with transparent acrylic
material for experimental observation. Four pressure
measuring setpoints are distributed in the axial position,
namely the entrance and three positions of the impedance
void meters. The experiment uses three sets of electrodes as
the void meters, and the measurement data can also be used for
flow pattern identification and calibration. Conductivity probes
are arranged at the position of the void meters to obtain local
physical parameters such as the interfacial area concentration,
void fraction, and bubble velocity. In order to provide a clear and
intuitive explanation for the measurement data of the void meters
and the conductivity probe, a high-speed camera is placed near
the void meters and the conductivity probes. The probe
measuring setpoints are arranged in the radial position with
30 ∼ 31 measuring setpoints, and the measuring setpoint
arrangement positions are shown in Figure 3, where X
represents the radial distance of the probes.

The specific experimental parameter ranges are shown in
Table 1 and the range of experimental conditions is shown in
Figure 4. The experimental conditions are obtained by different
flow regime. Black dots represent bubbly flow, red dots represent
slug flow, green dots represent churn-turbulent flow, and blue
dots represent annular flow. As far as the maximum uncertainty
of the experiment is concerned, the values of liquid flow
measurements, gas flow measurements, probe voltage
acquisition, probe tip size measurements, and void meters are
3.2, 2.45, 1.23, 2 and 2.01%, respectively.

ALGORITHM

This chapter introduces the machine learning algorithms and
principles used in this research, including lasso regression
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(LR), support vector regression (SVR), random forest
regression (RFR) and back propagation neural network
(BPNN).

Lasso Regression
Multiple linear regression refers to the study of the influence of
changes in independent variables x1, x2, . . . , xm on dependent
variable y. The model can be expressed as:

y � β0 + β1x1 + β2x2 +/ + βmxm + ε, (1)

where β0, β1, β2, . . . , βm are unknown coefficients and ε is the
independent identically distributed normal error.

In order to solve Eq. 1, methods such as least squares are
usually used to estimate the parameters of the regression model
from the perspective of error fitting, and the optimization goal
can be expressed in matrix form as:

FIGURE 1 | Schematic diagram of the experimental loop system.

FIGURE 2 | A photograph of experimental system.

FIGURE 3 | The schematic of probe measuring setpoints in the radial
position.
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β* � argminβ

1
m

����y − Xβ
����2 (2)

However, the least squares method still has some
shortcomings when facing multiple input features, for instance
its unbiased estimation characteristics will lead to large variance.
Lasso regression (least absolute shrinkage and selection operator)
was proposed by Robert Tibshirani in 1996 based on Leo
Breiman’s non-negative garrote (Breiman, 1995; Tibshirani,
1996). It is a shrinkage estimation algorithm and its basic idea
is to minimize the residual sum of squares under the constraint
that the sum of the absolute values of the regression coefficients is
less than a constant, and to reduce the non-zero components in
the regression coefficients, thereby improving the accuracy of the
prediction and the interpretability of the regression model. The
objective equation of the lasso algorithm is:

β* � argminβ

1
m

����y − Xβ
����2 + λ

����β
���� (3)

where y is target variable, β is regression coefficient vector, X is
the data matrix corresponding to explanatory variables and λ is
the penalty parameter. Lasso regression is a quadratic
programming problem that the solving algorithms include
shooting algorithm, homotopy algorithm, etc.

Support Vector Regression
Support vector machine was originally used to deal with pattern
recognition problems (Vapnik, 1998), but its sparse solution and
good generalization make it suitable for regression problems. The
generalization from SVM to SVR is accomplished by introducing
an ε-tube, which reformulates the optimization problem to find
the best approximation of the continuous-valued function, while
balancing complexity and prediction error of prediction model.
For nonlinear support vector machine regression, the basic idea is
to map the data x to the high-dimensional Hilbert space ϕ(x)
through a nonlinear mapping ϕ, and seek the regression linear
hyperplane in this space, thereby solving the highly non-linear
problems in the low-dimensional space. The linear model in the
high-dimensional feature space is constructed as follows:

f (x) � 〈w · ϕ(x)〉 + b, (4)

where w is the weight vector, b is the bias constant and 〈w · ϕ(x)〉
is the inner product of the feature space. The optimal hyperplane
regression estimation function is converted as follows:

f (x) � ∑n

i�1(ai − a*i )k(xi, xj) + b, (5)

where ai and a*i are lagrange multipliers, k(xi, xj) � ϕ(xi) · ϕ(xj)
is kernel function. The types of kernels include polynomial kernel,
Gauss radial basis function kernel, and sigmoid kernel, etc. while
radial basis function kernel (RBF kernel) is selected as the kernel
function in the present study because in some researches RBF
kernel has been pointed out be appropriate for nonlinear systems,
which is expressed as (Zhang and Li, 2006):

k(xi, xj) � e−(‖xi−xj‖2÷σ2) (6)

Random Forest Regression
Random forest is an ensemble algorithm proposed by Breiman in
2001 (Breiman, 2001a; Breiman, 2001b). In general, the random
forest shown in Figure 5 is composed of multiple CART decision
trees, which conducts classification or regression through bagging
(bootstrap aggregating). The main idea of random forest
regression method (RFR) is to extract multiple samples from
the original sample, build a decision tree for each sample, and
then use the average of all decision tree predictions as the final
prediction result. RFR was pointed out that it has the advantages

FIGURE 4 | Schematic diagram of experimental conditions.

FIGURE 5 | The structure of Ramdom Forest.

TABLE 1 | Experimental parameters of the rectangular channel.

Experimental section Rectangle

Pipe size w × s/mm 6 × 66
Length L1/mm 1,500
Measuring point location L2/mm 266, 926, 1,482
Superficial gas velocity (jg) m/s 0–10
Superficial liquid velocity (jf ) m/s 0–3
Temperature Ambient temperature
Pressure Ordinary pressure
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of fast training speed, strong adaptability to high-dimensional
data sets, and strong robustness in the face of noise (Segal, 2004).

In principle, the random forest regression (RFR) is composed
of a set of sub-decision trees {h(x, θt), t � 1, 2, 3, . . .T}, where θt
is a random variable subject to independent and identical
distribution, x represents the independent variable, and T
represents the number of decision trees.

RFR uses the results of integrating multiple decision trees to
take the mean value of {h(x, θt)} as the regression prediction
result to eliminate the problems of overfitting and low precision
of the decision tree model. The result is expressed as

h(x) � 1
T
∑

T

t�1{h(x, θt)} (7)

The RFR algorithm implementation process is as follows:

(1) Bagging is used to randomly generate sample subsets.
(2) Use the idea of random subspace by randomly extracting

features, splitting nodes and building a regression sub-
decision tree.

(3) Repeat the above steps to construct T regression decision
subtrees to form a random forest (Pruning and other human
intervention is not allowed in the process).

(4) Take the predicted values of T sub-decision trees and take the
mean as the final prediction result.

Back Propagation Neural Network
Artificial neural network is a widely parallel interconnected
network composed of adaptable simple units; its organization
can simulate the interactive response of the biological neural
system to real world objects (Kohonen, 1988). In the development
of artificial neural networks, the error back-propagation
algorithm occupies an important place (McClelland et al.,
1986). The network based on this algorithm is referred to as
BP network, which consists of one input layer, at least one hidden
layer, and one output layer. The usually constructed BP neural
network is a three-layer network. For regression prediction, the
output layer usually has only one neuron.

Given the training set D � {(x1, y1), (x2, y2), . . . , (xm, ym)},
where xi ∈ Rd , yi ∈ R. Figure 6 shows a BP neural network
with d input neurons, one output neuron, and q hidden layer
neurons. The threshold of the output layer neuron is represented
by θ, and the threshold of the h-th neuron in the hidden layer is
represented by ch. The connection weight between the i-th
neuron in the input layer and the h-th neuron in the hidden
layer is vih, and the connection weight between the h-th neuron in
the hidden layer and the output layer neuron is ωh. The input
received by the h-th neuron in the hidden layer is αh � ∑d

i�1vihxi,
and the input received by the output layer neuron is
β � ∑q

h�1ωhbh, where bh is the output of the h-th neuron in
the hidden layer.

For training example (xk, yk), assuming that the output of the
neural network is ŷk ∈ R, that is

ŷk � f2(β + θ) (8)

Then the mean-square error of the network on (xk, yk) is

Ek � 1
2
(ŷk − yk)

2 (9)

For the hidden layer, we have

bh � f1(αh + ch) (10)

where f1(·) and f2(·) are both activation functions. In
consideration of regression prediction, f1(·) in ourstudy is
ReLU function, i.e.

f1(x) � max(0, x) (11)

The function f2(·) is preferable to the purelin function, i.e.

f2(x) � x (12)

The BP algorithm is based on a gradient descent strategy and
adjusts the parameters in the direction of the negative gradient of
the target. For the error Ek, given the learning rate η, we have

Δωh � −η zEk

zωh
� η(yk − ŷk)f1(αh + ch) (13)

Δθ � −η zEk

zθ
� η(yk − ŷk) (14)

Δvih � −η zEk

zvih
� η(yk − ŷk)ωhf ′1(αh + ch)xi (15)

Δch � −η zEk

zch
� η(yk − ŷk)ωhf ′1(αh + ch) (16)

The flow of BP algorithm is as follows:

(1) Set the network structure, input layer, hidden layer, output
layer and learning rate η, where the output layer node
number is set to 1;

(2) Randomly initialize the connection weight vih, ωh and the
threshold ch, θ in the network within the range of (0, 1);

(3) Randomly select a training sample (xk, yk), and calculate the
output ŷk of the current sample according to the current
parameters and Eq. 8;

FIGURE 6 | Basic structure of BP neural network.
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(4) Calculate the weight correction Δωh, Δvih and the threshold
correction Δθ, Δch according to Eqs 13–16;

(5) Update connection weights and thresholds:

ωh ←ωh + Δωh,

vih ← vih + Δvih,
θ← θ + Δθ,

ch ← ch + Δch.

(1) Go back to step 3) until all the training data are input;
(2) Go back to steps 2)–6) until the stop condition is reached.

METHODOLOGY

Data Preprocessing
In two-phase flow, considering the difference between the
bubbles of different shapes and sizes, the bubbles were usually
categorized into two bubble groups: group-I represents small-
dispersed and distorted bubbles, whereas group-II represents cap/
slug/churn-turbulent bubbles. (Ishii et al., 2002). Therefore, the
interfacial area concentrations and void fractions are described by
different bubbles characteristics of group-I and group-II
respectively. The present research is based on real
experimental measurement data that selects the axial distance
Z, the radial distance X, superficial gas velocity Jg and superficial
liquid velocity Jf as input features, and takes group-I interfacial
area concentration, group-II interfacial area concentration,
group-I void fraction, and group-II void fraction as outputs.

Since the units and dimensions of each input parameter are
not the same, the data needs to be standardized before modeling.
In this study, the mean variance normalization method was used
to make the processed data set conform to the standard normal
distribution, with a standard deviation of 1 and a mean of 0. The
specific formula is as follows:

dnorm � (d − μ)/σ, (17)

where dnorm is the standardized data set, d is the original data set,
μ is the average value, and σ is the standard deviation.

Model Performance Metrics
In this study, the coefficient of determination (R2), the root-
mean-square error (RMSE) and the coefficient of variation (CV)
were selected as evaluation indicators of model performances.
Supposing a series of data sets y1, . . . , yn includes n data points,
and their corresponding model prediction values are p1, . . . , pn.

The expression of the coefficient of determination R2 is

R2 ≡ 1 − ∑i(yi − pi)
2

∑i(yi − y)2
, (18)

where the closer the value of R2 is to 1, the better the effect of
model fitting.

The expression of RMSE is

RMSE �
������������
1
m

∑
m

i�1
(yi − pi)

2

√
, (19)

where m represents the number of samples, and the smaller the
value, the smaller the error between the model prediction result
and the true value.

In order to introduce the concept of percentage error rate to
further explore the performance of the model, this paper selects
the coefficient of variation (CV) to describe the model. The
expression of the CV is

CV �
����������������
(1/m)∑m

i�1(yi − pi)
2

√

y
× 100% (20)

When describing the model, the CV for a model aims to
describe the model fit in terms of the relative sizes of the squared
residuals and outcome value. The range of CV is between 0 and
100%. The smaller CV is, the more accurate the prediction of the
model is.

Hyperparameters Tuning
In this study, the hyperparameter tuning process of four
different models is implemented from using grid search

TABLE 2 | The selected hyperparameters for each output.

Model Hyperparameters Group-I interfacial
area concentration

Group-II interfacial
area concentration

Group-I void
fraction

Group-II void
fraction

LR Regularization parameter λ 0.1 0.0001 0.0001 0.0001
RFR Number of trees 50 100 50 150
RFR The maximum depth of the tree 11 11 11 11
RFR Random state 9 7 5 9
SVR Kernel function Rbf Rbf Rbf Rbf
SVR Kernel coefficient 0.1 0.1 0.0556 0.1
SVR Regularization parameter 100 100 100 94.74
SVR Size of the kernel cache (MB) 50,000 50,000 50,000 50,000
BPNN Batch size 256 512 512 512
BPNN Epochs 200 300 150 200
BPNN Processing units 128 128 128 128
BPNN Learning rate 0.05 0.05 0.001 0.001
BPNN Activiation function ReLU ReLU ReLU ReLU
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method. The basic principle is to divide the interval of each
parameter variable value into a series of small areas, and
calculate the corresponding the target value (error in usual)
determined by the combination of each hyperparameter
variable values, and select the best one by one to obtain the
minimum target value in the interval and its corresponding
optimal hyperparameter. This method ensures that the search
solution obtained is globally optimal or close to optimal. The
hyperparameters optimization process in this study also
considers the limits of the accuracy of the running results
and the computational efficiency. However, the calculation
time is not included in the model metric in this study.

For LR regression, the regularization parameter λ from Eq.
3 is considered to be the most important indicator that affects
the accuracy of the model. In theory, the larger the
regularization parameter, the stronger the model’s
robustness against collinearity. However, if the
regularization parameter is selected too big, all parameters
β will be minimized, resulting in under-fitting. If the
regularization parameter is selected too small, it will lead
to improper solution to the over-fitting problem. When
predicting the four sets of two-phase flow parameters, in
order to expand the search for the appropriate range of λ,
50 sets of λ were selected for model optimization: an

arithmetic sequence between 0.0001 and 0.1 (including 25
numbers) and an arithmetic sequence between 0.1 and 100
(including 25 numbers).

For the RFR model, the number of trees in the forest, the
maximum depth of the tree and random state are commonly
considered to be the key parameters that affect the performance
of the model. Due to the few dimensions of input variables in this
study, another hyperparameter that is often considered, namely
the number of features to consider when looking for the best split,
defaults to the maximum value 4 in this study. The three
hyperparameters mentioned above are optimized using grid
searchwith bounds selected as:

• the number of trees with bound: 50–250
• the maximum depth of the tree: 7–12
• random state: 1–12

For the SVRmodel, the kernel function is the RBF kernel which
is better for nonlinear problems. Three major hyperparameters are
also optimized using grid search with bounds selected as follows:

• Kernel coefficient with bound: 0.001–0.1
• Regularization parameter with bound: 0.1–100
• Size of the kernel cache (MB): 10,000–50,000

FIGURE 7 | Prediction of the group-I interfacial area concentration using four models and comparison with target values. (A) LASSO. (B) RFR. (C) SVR (D) BPNN.
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Last but not least, for BPNNmodel, five major hyperparameters
are optimized using grid search with bounds selected as follows:

• Batch size with bound: 512–1,024
• Epochs with bound:150–500
• Processing units: 64–128
• Learning rate: 0.001–0.05
• Activiation function: ReLU

The results of the optimum architecture of four models are
listed in Table 2. It is worth mentioning that we directly selected
ReLU, a piecewise linear function which is proven to be most
effective for BP-NN (Nair and Hinton, 2010).

Model Training, Validation and Testing
The calculations of models were performed using an Apple laptop
with Mac OS system (version 10.15), core Intel i5 5257U, 8 GB of
RAM, and Intel Iris Graphics 6100 card with 1536 MB of the
RAM. The utilization and implementation of the models in this
study are done in the Python environment (Van Rossum and
Drake, 1995).

For common machine learning problems, the data should be
divided into training set, validation set and test set. The training
set is used for model fitting, the validation set is used to adjust the

hyperparameters of the model to prevent the model from
overfitting and to make an initial assessment of the model’s
ability, and the test set is used to evaluate the generalization
ability of the final model. In this study, all data were first divided
into training set and test set at a ratio of 9:1. Cross-validation is
selected as the method of model validation in the present work.
Compared with the ordinary way with fixed validation set, cross-
validation (Kohavi, 1995) contributes to obtain as much effective
information as possible from the limited learning data. In general,
the principle of cross-validation is to learn training samples from
multiple directions, which can effectively avoid falling into local
minimums and to a certain extent avoid over-fitting problems. In
this study, the K-fold cross-validation method is used to achieve
cross-validation whose idea is to divide the training set into k sub-
samples, where a single sub-sample is retained as the data for the
validation model, and the other k-1 samples are used for training.
Cross-validation is conducted by repeating k times and each sub-
sample is validated once. Hence, mean value of k-times’
validation, or other combination methods are used to obtain a
single final estimate. In this study, the most used cross validation
method, namely 10-fold cross-validation was selected
(McLachlan et al., 2005). In this study, assuming that a group
of corresponding inputs and outputs are regarded as a data set,
the number of data sets is 3,146 in total.

FIGURE 8 | Prediction of the group-II interfacial area concentration using four models and comparison with target values. (A) LASSO. (B) RFR. (C) SVR (D) BPNN.
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DISCUSSION

In the previous section, the route that four two-phase flow
parameters obtained from rectangular channel experiments are
modeled and predicted by LR, RFR, SVR, and BPNN is
introduced in detail. Figures 7–10 respectively show the
comparison between a part of the test set data and its
corresponding real data. The blue line is the target data, that
is, the true value while the orange-red line is the predicted value
generated by the model. Each figure shows the comparison of the
predictive capabilities of the four models for a single output. The
unit of interfacial area concentration is 1/m, and void fraction is a
dimensionless parameter.

A phenomenon that can be clearly judged from the results
shows that although each picture only takes 50 test set points
(about 1/6 of the total number of test sets) and the corresponding
real values for visual display, a strong nonlinear characteristic is
still showed by the real data set. It can be seen from Figures 7–10
that the predictive ability of LR is far inferior to the other three
models. As a type of linear regression shipped with L1
regularization, one of the most crucial advantages of LR over
non-linear models is LR usually performs great if the independent
variables are linearly correlated with the dependent variable.
However, non-linearity and scattered data features are
obviously very disadvantageous and difficult for the LR

algorithm because of its difficulty to capture the nonlinearity
of dataset.

The performance of four models was measured by three
metrics: R2, RMSE and CV which are listed in Table 3. From
the general distribution of the data, all models have significantly
better predictive ability for group-I interfacial area concentration
than group-II interfacial area concentration. Similarly, the
predictive ability of all models for group-I void Fraction is
significantly better than group-II void fraction. This
phenomenon is consistent with the basic mechanism of two-
phase flow, that is, the shape and size of the bubbles at the first
interface are usually more regular and easier to predict than the
bubbles at the second interface.

From the comparison of R2 in Table 3, SVR and BPNN are
significantly weaker than RFR in explaining experimental data
in the present work. For the support vector regression, the
prediction error CV of the model for the four outputs is in the
range of 26–48%, reflecting that there is still a certain gap
between its prediction performance and actual experimental
data. It is undeniable that the main advantages of SVR are that
its computing power and complexity which do not depend on
the dimensionality of the input space, its flexibility in dealing
with nonlinear data, and its stability in dealing with slight
changes in data (Awad and Khanna, 2015). However, one of the
most prominent drawbacks of SVR is, for samples with

FIGURE 9 | Prediction of the group-I void fraction using four models and comparison with target values. (A) LASSO. (B) RFR. (C) SVR (D) BPNN.
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discordant distributing complexities, the selection of
reasonable parameters is very challenging (Liu et al., 2014),
which is considered as the reason that SVR is not very
satisfactory in terms of the data set fitting ability in the
present research.

Finally, the twomodels RFR and BPNN are compared by using
three metrics mentioned above. Although the interpretation of
the data set by the two models is within an acceptable range, the
prediction of the four outputs by RFR shows obviously higher
accuracy rate. Although the neural network has a strong function
approximation ability by preferentially fitting samples with
higher discreteness in the data fitting process to achieve
reduction in shavedness, but the learning ability of a single

learner is always limited. By contrast, random forest, which
belongs to ensemble learning, uses voting to solve the weak
learning ability of a single learner and greatly improves the
robustness of the model. For the prediction of the two sets of
interfacial area concentrations, the errors of the RFR model are
15.47% and 19.49% while for the two sets of void fractions, the
prediction errors of the RFR model are 9.62% and 17.26%.
Moreover, it is worth mentioning that in the process of data
preprocessing, the RFR requires simpler process, and the data
required by its model does not need to be scaled. Because the
numerical scaling does not affect the split point positions of the
tree structure as well as the structure of the tree model. Moreover,
the tree model cannot perform gradient descent because the tree

FIGURE 10 | Prediction of the group-II void fraction using four models and comparison with target values. (A) LASSO. (B) RFR. (C) SVR (D) BPNN.

TABLE 3 | The learning ability of the four models derived from the test set in terms of four two-phase flow parameter changes.

Metrics Group-I interfacial area
concentration

Group-II interfacial area
concentration

Group-I void fraction Group-II void fraction

R2 RMSE CV R2 RMSE CV R2 RMSE CV R2 RMSE CV

LR 0.0625 94.35 56.48% 0.2533 19.83 75.50% 0.7767 0.046 38.17% 0.5273 0.078 87.60%
RFR 0.9296 25.85 15.47% 0.9464 5.31 19.29% 0.9858 0.012 9.62% 0.9817 0.015 17.26%
SVR 0.7932 44.31 26.53% 0.7016 12.54 47.85% 0.8168 0.041 34.57% 0.8645 0.042 46.90%
BPNN 0.8536 37.29 22.32% 0.8201 9.73 37.16% 0.9271 0.026 21.81% 0.9308 0.030 33.53%
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model is constructed to find the best points by finding the optimal
split points. Therefore, the tree model is stepped with non-
differentiable step points, that means, the tree-structure model
does not need to be normalized. In general, it is the distribution of
the variables and the conditional probability between the
variables instead of the values of the variables matter in tree-
structure model. But for neural networks, the different feature
ranges of the data will lead to catastrophic consequences such as
gradient explosions. Consequently, the random forest regression
algorithm shows robustness and effectiveness by taking
advantage of the ‘wisdom of the crowds’ compared to other
models in the present study. However, according to the
mechanism of random forest regression in Section Random
Forest Regression, the random forest regression model can only
predict the data between the highest and lowest labels in the
training data. For situations where the training and prediction
inputs differ in their distributions, which named covariate shift
(Tsuchiya et al., 2015), the characteristics of random forests that
its disability to extrapolate will cause the attribute weights of its
prediction outputs to be questionable. Therefore, it can be
concluded that the explanatory and predictive capabilities of
the random forest regression model for interfacial area
concentration and void fraction in this study are better than
those of the other three models, but whether the generalization
ability of this model can be adapted to other working conditions
still requires further exploration to verify. In addition, it is worth
mentioning that, since the data used in this experiment is
obtained from a rectangular channel of one size, this means
that the size of the rectangular channel is not an input variable in
this article. Therefore, it is unclear whether the generalization
ability of the model obtained in this study can be applicable in
rectangular channels of other sizes, which will be further explored
in future research.

CONCLUSION

As an important cornerstone of artificial intelligence technology,
machine learning has been widely used in many industries and
various fields. The goal of this research is to explore the
calculation of two-phase flow parameters based on data-driven
methods in rectangular channels. In the paper, the four models,

namely lasso regression, support vector machine regression,
random forest regression and back propagation neural
network regression were compared to mine and analyze the
data collected through experiments, and the interfacial area
concentration and void fraction were analyzed and predicted
through the four models. It is found that the random forest
regression is the most prominent algorithm among the four
algorithms in terms of prediction accuracy, and meanwhile
has strong anti-noise ability and good adaptability to
nonlinear data. The prediction errors of four parameters
including group-I interfacial area concentration, group-II
interfacial area concentration, group-I void fraction and
group-II void fraction predicted by the random forest
regression are: 15.47, 19.29, 9.62 and 17.26%, respectively. In
the future, data-drivenmethods are expected to be further applied
in the prediction of other parameters of different flow conditions
in rectangular channels, and the computational accuracy and
efficiency of data-driven models could be improved further which
shows the possibility of reducing the cost of experiment and
replacing mechanical models in the nuclear reactor system safety
analysis codes.
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A Method of Containment Leakage
Rate Estimation Based on Convolution
Neural Network
Hao Wang, Jingquan Liu*, Guangyao Xie, Xianping Zhong and Xiangqi Fan

Department of Engineering Physics, Tsinghua University, Beijing, China

As the nuclear power plant containment is the third barrier to nuclear safety, real-time
monitoring of containment leakage rate is very important in addition to the overall leakage
test before an operation. At present, most of the containment leakage rate monitoring
systems calculate the standard volume of moist air in the containment through monitoring
parameters and calculate the daily leakage rate by the least square method. This method
requires several days of data accumulation to accurately calculate. In this article, a new
leakage rate modeling technique is proposed using a convolutional neural network based
on data of the monitoring system. Use the daily monitoring parameters of nuclear power
plants to construct inputs of the model and train the convolutional neural network with daily
leakage rates as labels. This model makes use of the powerful nonlinear fitting ability of the
convolutional neural network. It can use 1-day data to accurately calculate the containment
leakage rate during the reactor start-up phase and can timely determine whether the
containment leak has occurred during the start-up phase and deal with it in time, to ensure
the integrity of the third barrier.

Keywords: containment leakage rate, convolution neural network, reactor start-up phase, data extrapolation,
nuclear safety

INTRODUCTION

In a nuclear power plant, the pressure boundary formed by the containment body and numerous
perforated equipment, components and pipes that penetrate the body is the third and last barrier of a
nuclear power plant (Sakaba et al., 2004). It is responsible for the important function of preventing
radioactive materials from leaking into the external environment. The Safety Guide published by the
International Atomic Energy Agency describes in detail the safety function requirements of the
containment of radioactive materials under reactor operation and accident conditions. It emphasizes
that the integrity of the containment structure should be maintained under design basis accidents,
and the leakage rate cannot exceed the specified maximum value. Due to the existence of open-hole
equipment, components, pipelines, and isolation valves through the reactor containment, it is of
great significance to monitor the integrity of the containment.

In addition to regular containment integrity tests, it is necessary to monitor the containment
leakage rate through the on-line monitoring system during the normal operation of the nuclear
power plant (ANS, 2002). The on-line monitoring system of containment leakage rate (EPP system)
is an important monitoring system of the nuclear power plant. It can monitor the gas leakage rate of
containment during the operation of the unit, monitor the change of containment tightness, and
keep the atmospheric pressure in the containment within an allowable range. When the leakage rate
reaches the operation limit, the operator is informed to take necessary measures action.
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At present, the EPP system of CPR1000 nuclear power plants
mostly adopts SEXTEN2, which is developed by Division
technique general of Electricite de France, for on-line
monitoring of containment leakage rate during normal
operation of the reactor (EDF/DTG, 2001). SEXTEN2 adopts
the law of conservation of mass and relies on the physical model
of ideal gas conservation to calculate the containment leakage
rate. The parameters used in the calculation need to be
representative enough, which means that there is some
uncertainty in the transient process. The linear fitting method
is used to calculate the leakage rate, and a certain amount of data
accumulation is required to give the results that meet the
requirements of accuracy and uncertainty. Therefore, the
estimated leakage rate cannot be obtained until several days
after the end of the overhaul and containment closure.

At present, the research of containment leakage rate is mainly
about the method based onmass conservation and the measures to
deal with the leakage. Huang et al. (2016) studied the leakage
mechanism of the containment penetration, described the
microleakage mechanism of the interface of the static seal
structure based on the porous media seepage theory, and used
Hertz contact theory to correlate the stress with the changes of the
microstructure, and finally realized the calculation of the leakage
rate independent of any experimental data. Li. (2015) introduced
the calculation model and method of monitoring the containment
leakage rate of M310 nuclear reactor during operation, analyzed
the treatment of leakage rate curve under special conditions, and
proved the rationality and effectiveness of the EPP system. Liang
et al. (2015) analyzed the causes of the abnormal containment
leakage rate of the new CPR1000 unit and gave preventive
measures. Liu. (2017) found that the calculation of containment
leakage rate in the reactor start-up stage was not accurate, and
measures such as eliminating abnormal data were needed.

However, compared with the application of machine learning
method in other fields, we can find that there is a lack of machine
learning application in the calculation of containment leakage rate,
especially in the reactor start-up stage. One of the important
reasons is that the reactor will not shut down and restart
frequently, so there is a lack of data on the containment leakage
rate during the start-up phase of the reactor. Moreover, the
traditional method based on mass conservation can only use
the data a few days after the start-up of the reactor to deduce
the leakage rate of the start-up phase, which leaves a hidden danger
for the safety of the containment leakage rate monitoring. Based on
the above reasons, this paper proposes a convolutional neural
network (CNN) method to estimate the containment leakage rate
during the reactor start-up phase. In this paper, the data of 10 start-
up stages of CAP1000 reactor in a nuclear power plant is taken as a
case study. And major contributions in this work are:

(1) The calculation method of containment leakage rate based on
mass conservation adopted by the EPP system is introduced.

(2) CNN combined with data extrapolation is used to estimate
the containment leakage rate from high-dimensional
monitoring parameters.

(3) The result of an ordinary artificial neural network (ANN) is
compared to prove the rationality of using CNN.

This paper is arranged as follows: The first section introduces
the background and motivation; The second section introduces
the calculation method of containment leakage rate based on
mass conservation used in EPP system; The third section
describes the proposed algorithm framework, and briefly
introduces CNN. The case study and result are presented in
the following sections. Finally, the Conclusion contains the
conclusion and limitation of the work.

THE METHOD BASED ON PHYSICAL
MODELS

Based on the physical models, the containment leakage rate is
calculated according to the mass conservation of gas in the
containment and equation of state of ideal gas (Zhang et al.,
2014). The containment leakage rate cannot bemeasured directly,
so the EPP system continuously measures and collects the
pressure, temperature, humidity, and other parameters in the
containment, and obtains the leakage rate through calculation.
The containment leakage rate is defined as the mass change rate
of dry air in containment within 24 h, which is generally called the
dry air quality method (Chu and OuYang, 2010). The balance
schematic diagram of the gas mass in the containment is shown in
Figure 1 (Guo, 2020). Qld is the daily leakage rate of the
containment, Qsar is air injection flow of instrument
compressed air distribution system (SAR), T is temperature,
Pcon is average pressure in containment, H is humidity, Patm is
atmospheric pressure, Qp is leakage of other pressure equipment,
and Qleak is containment leakage rate.

Considering the influence of the above factors, the variation of total
gas mass in containment can be calculated by the following formula:

FIGURE 1 | Schematic diagram of gas mass balance in containment.
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Δm
Δt � Qleak + Qp + Qsar . (1)

Let the average daily leakage rate Qld �Qleak + Qp, and then we
can get the formula:

Qld � Δm
Δt − Qsar . (2)

Qleak is a function of Pcon and Patm. Let ΔP � Pcon − Patm, and
the function can be expressed as Qleak � f ( ΔP). Then we can get
formula 3 and formula 4.

Qld � f ( ΔP) +Qp, (3)

f ( ΔP) + Qp � Δm
Δt −Qsar. (4)

In the formula above, Δm/Δt can be calculated by basic
parameters, Qp can be calculated by SAR system. After
obtaining a series of coordinate points, Qld can be obtained by
the least square method.

With the continuous operation of the unit, the pressure
difference ΔP inside and outside the containment will change
within a certain range. The online monitoring system of
containment leakage rate calculates a ΔP and a Qld data every
day. The relationship between Qld and pressure difference ΔP was
fitted linearly. The intercept of the fitting line on the y-axis, that is,
the leakage rate Ql0 when ΔP � 0, represents the parasitic leakage
rate, which is always above the y-axis. Because the leakage rate of
containment is meaningful only when it corresponds to the
internal and external pressure difference of containment,
besides, the influence of parasitic leakage rate QP on Qleak

needs to be eliminated, and the leakage rate is converted into
the leakage rate Ql60 � 60 *α at ΔP � 60mbar, α is the linear slope.
Ql60 is the theoretically calculated containment leakage rate.

THE METHOD BASED ON CNN

The physical models mentioned above require at least five
consecutive valid Qld for the first Ql60 calculation, and the
range of ΔP should be greater than 15mbar. In the later fitting
calculation, the data points (Qld, ΔP) will gradually increase until
the full 20. That is to say, the accurate leakage rate level of the first
day can be obtained 5 days after the start-up of the overhaul, which
has a great impact on the real-time monitoring of the reactor
containment. Therefore, this paper proposes a data-driven model
based on the convolutional neural network. The leakage rate
extrapolation method is used to construct the training data set
from the historical data set to fit and predict the leakage rate
calculation when the reactor is started after the overhaul. This
method can be applied to the calculation method of containment
leakage rate in the start-up stage and fills the blank that the
containment leakage rate cannot be evaluated in the start-up stage.

Data-driven methods are widely used, ranging from simple
linear fitting, polynomial fitting to complex physical relationship
cleaning, which can be used to fit the functional relationship
between input and output. In recent years, with the rise of
artificial intelligence technology, various machine learning, and

deep learning methods have been widely used in various fields
because of their strong fitting ability and high prediction accuracy
(Peng and Liu, 2014).

In essence, the calculated value of the containment leakage rate
can be regarded as a function of the monitoring value of each
monitoring quantity

Ql60 � f (X), (5)

where X is the matrix composed of the time series of monitoring
parameters such as temperature, pressure, and humidity.

The problem solved by the data-driven model is to infer the
functional relationship y � f 10) between input X what is measured
data of the monitoring system and output y that is corresponding
to containment leakage rate Ql60 in this project. The data-driven
method assumes that the specific form of f is unknown, but
multiple groups of independent data can be obtained. In this
case, the data-driven model uses a general parametric function to
fit the data, so that the deviation between the model output value
and the actual output value is as small as possible, so the fitting
model is used as the approximation of the functional relationship
between input and output.

Algorithm Framework
Based on the data of the monitoring system, this paper presents a
calculation method of containment leakage rate using a
convolutional neural network. Figure 2 shows the flow of data
within the framework of the proposed algorithm.

As can be seen from the figure, the process of model
establishment mainly includes the following parts.

Step1: Collecting monitoring data of reactor start-up time from
the historical database.
Step2: Extrapolate the leakage rate after 5 days of containment
closure by extrapolationmethod to estimate leakage rate within
5 days after startup.

FIGURE 2 | The framework of the containment leakage rate
calculation model.
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Step3: Process raw data, such as data cleansing and data
normalization.
Step4: Divide the processed data into two subsets, the training
set and test set, and utilize the training data and modeling
algorithm to develop the model. Attention should be paid to
make sure there are enough samples in the training set.
Step5: Apply the model to the test set, and evaluate the model.
The evaluation methods include mean square error, root mean
square error, histogram or quantile map, etc.
Step6: After model evaluation, the model that does not meet
the requirements needs to be retrained, and the model that
meets the requirements is the final model.
Step7: Finally, the model can be applied to the new data to
calculate the containment leakage.

Convolution Neural Network
A convolution neural network is a kind of nonlinear model, which
can effectively process features from the original data and fit the
results (Lawrence et al., 1997). CNN combines convolution
operation with a multi-layer artificial neural network. In the
process of feature extraction of the target, the method of local
connection is adopted between the adjacent two layers of neurons,
which realizes the local information perception and judgment, and
reduces the complexity of the whole network by weight sharing,
which greatly reduces the number of weights of the whole network,
so it can quickly recognize the target (Hubel and Wiesel, 1962;
Fukushima, 1980). At present, a two-dimensional convolutional
neural network (2 days-CNN) is widely used. The standard CNN
structure is shown in Figure 3, which mainly consists of the input
layer, convolution layer, pooling layer, full connection layer, and
output layer (Lecun et al., 2010).

CASE DESCRIPTION

In this work, the real monitoring data of a nuclear power
plant is used to establish a model and predict the
containment leakage rate within a few days of reactor start-
up. In the past few years, there have been 10 overhaul and start-
up cases of the two units H1 and H2 in the nuclear power plant.
The data collected by the unit is one data point every half an
hour, and each data point contains a total of 31 dimensions

of data. The monitoring quantity includes the air intake of
the pneumatic valve in containment, temperature, humidity,
pressure, and other physical quantities related to containment
leakage rate. Some monitoring measurements are listed in
Table 1.

DATA PROCESSING

Before using the original data in the monitoring system, various
types of data processing are needed to establish a better model. In
this work, two processes are conducted.

Data Denoizing
Due to the influence of the external environment or sensor
accuracy, the original data recorded by the monitoring system
will have noise. In order to correct the noise, this paper carries out
moving average noise reduction on the original data.

The principle of moving average is to modify the amplitude of
other sampling points near a measurement point, so as to make
the vibration curve smooth enough to achieve the purpose of
noise reduction. In the moving average method, the surrounding
points are simply averaged, or the nearby points are weighted
average. In general, the average of five points nearby is based on
the following formula:

yi � ∑
N

n�1
hnxi−n i � 1, 2,/,m, (6)

where x is the data value obtained by sampling, y is the data after
moving average, m is the number of measurement data, N is the
average number of points, h is theweighted average factor. The value
of the weighted average factor conforms to the following formula:

FIGURE 3 | The structure of a standard CNN.

TABLE 1 | The important signals in the monitoring system.

Name of signal Unit Description

Qsaravg m3/h Airflow rate
Tavg °C Average temperature
Havg % Average humidity
DeltaP hPa Pressure difference
Pcon hPa Containment pressure
Patm hPa Atmospheric pressure
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∑
N

n�1
hn � 1. (7)

In this work, N is set to 5, and h is set to 0.2. Figure 4 shows the
effect of data denoizing. The left figure is the original data before
noise reduction, and the right is the data aftermoving average. It can
be seen that the burr in the original data is significantly reduced.

With moving average Without moving average.

Data Normalization
Since the range of eigenvalues of the original data varies greatly, the
ranges of all features should be standardized so that the
contribution of each feature is comparable. In addition, in some
machine learning algorithms, the objective function may not work
properly without scaling. Various linear or nonlinear scaling
methods can be used, such as rescale, mean normalization,
standardization, etc. In this article, rescale is used to scale the
range of features in [0, 1]. The general formula is as follows

Xp � X −min(X)
max(X) −min(X). (8)

Where X is an original value, Xp is the normalized value.
It is worth pointing out that the general machine learning

algorithm also needs to carry on the feature screening, in order to
improve the modeling efficiency and reduce interference, but the
deep learning algorithm has a strong processing ability for high-
dimensional signals, so there is no need for feature screening.

MODEL CONSTRUCTING

The overall modeling steps of this work can be summarized as
follows:

(1) The leakage rate Ql60 data in the historical database after
5 days of containment closure was extrapolated by the
extrapolation method, and the estimated leakage rate
within 5 days after the startup was obtained.

(2) The input of training data is the matrix composed of the time
series of each monitoring parameter in one day, and the
output is the estimated leakage rate of corresponding time
obtained by extrapolation.

(3) The CNN algorithm is used to train the neural network based
on the constructed training set, and the model fitting results
are obtained.

(4) The accuracy of the fitting model is evaluated by selecting test
data from the historical database.

Extrapolation of Leakage Rate
The leakage rate extrapolation refers to the linear fitting of the
leakage rate with time in a period after 5 days of reactor startup.
The calculated leakage rate within 5 days after the reactor startup
is extrapolated by the fitting line, which is used as the label of
data-driven model training. As shown in Figure 5.

CNN Construction
In this work, the structure of the CNN as shown in Figure 6 is
used to fit the matrix composed of the time series within one day.
The label in the training process is the leakage rate calculation
value after linear fitting extrapolation. From the C1 layer to the P2

FIGURE 4 | The data with or without moving average.

FIGURE 5 | Leakage rate extrapolation diagram.
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layer, it is responsible for feature selection, dimension reduction,
and information fusion. The input sample is the data of one day,
one data point every half hour, including 31-dimensional
parameters. After normalization, each 1488-dimension sample
in the input layer is resized to 48 × 31. For each layer, we use a 3 ×
3 convolution kernel. The first convolution layer C1 has 10
groups, and the size of each group is 46 × 29. The second
convolution layer C2 has five groups with a size of 21 × 12.
The pool size of P1 and P2 is 2 × 2, and the maximum pool is used
to reduce the number of parameters to prevent overfitting. BN
normalized layer is used to prevent gradient explosion and
accelerate convergence rate. There are 50 sigmoid neurons in
the full junction layer F1 to calculate the output value. The final
output value is the predicted leakage rate Ql60.

RESULT VERIFICATION

In this work, the 34 days data of 10 start-up processes were used to
establish the model. The 27 days data were used as the training set,
and the 7 days data were used as the test set. The loss function is the
mean square error. Figure 7 shows the change in loss function
value. It can be seen that both the training loss and test loss
decrease with the increase of model iterations and has reached a
very low level at 2000 iterations. The reduction of training loss and
test loss also shows that the modeling method is effective.

Figure 8 shows the results of this modeling. Each data point is
the Ql60 value within 5 days of the reactor startup. Intuitively, the
training set and test set of the model have good performance.

To prove the rationality of choosing CNN in this work, this
paper also uses two commonly used machine learning methods:
Artificial neural network (ANN) and Support vector regression

(SVR) to predict the containment leakage rate. All the steps are
the same, except that CNN is replaced by ANN or SVR. The
results of ANN and SVR are shown in Figure 9 and Figure 10.
And Table 2 lists the performance differences of the three
methods in the training set and the test set. R2 is the
determination coefficient of the model, which is always less
than or equal to 1, and the closer R2 is to 1, the better the
fitting effect of the model.

From the above results, it can be seen that the results of CNN
are significantly better than Ann and SVR in both training set and
test set. The reason is that the EPP system has 31 kinds of
parameters, which are recorded every half an hour. This means
that the daily containment leakage rate is determined by a 48 × 31
dimensional parameter. In this case, CNN’s advantage in fitting
high-dimensional data can be reflected.

CONCLUSION

This work proposes a containment leakage rate estimation
framework based on CNN. The data related to the
containment leakage rate used in this case comes from a real
CAP1000 nuclear power unit. The data is subsequently
preprocessed and normalized. Through data extrapolation and
CNN, the containment leakage rate of the reactor start-up phase
can be obtained. Through the actual case study, the CNN model
shows impressive performance. The comparison with ANN and
SVR also shows the good performance of CNN in this work. The
originality of this study is summarized below:

(1) We analyze the EPP system calculation method of
containment leakage rate and its shortcomings.

FIGURE 6 | The structure of the convolution neural network in this work.

FIGURE 7 | Training and testing curves.
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(2) We propose a calculation model based on data extrapolation
and CNN, which can estimate the containment leakage rate
during the start-up phase of the reactor and assist in the
assessment of containment integrity.

(3) We compare the performance of CNNwith ANN and SVR in
the model and prove that the CNN method has the best
performance in this work.

Nevertheless, we observed some limitations of the research.
First, we can do more research on the structure of CNN to make
the model perform better. Then, because the reactor will not shut
down and restart frequently, the amount of data in this work is
not particularly large. And as the data accumulates, the model
should be updated. These limitations will be addressed in our
future work.

FIGURE 8 | Prediction results of the model on training set and test set.

FIGURE 9 | Prediction results of ANN.

FIGURE 10 | Prediction results of SVR.

TABLE 2 | Comparison of results of CNN, ANN, and SVR.

Result CNN ANN SVR

Training set/Test set Training set/Test set Training set/Test set
MSE 0.00036/0.11 0.045/0.63 0.37/0.89
R2 0.99/0.78 0.95/0.49 0.57/0.38
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A Framework for Monitoring and Fault
Diagnosis in Nuclear Power Plants
Based on Signed Directed Graph
Methods
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When nuclear power plants (NPPs) are in a state of failure, they may release radioactive
material into the environment. The safety of NPPs must thus be maintained at a high
standard. Online monitoring and fault detection and diagnosis (FDD) are important in
helping NPP operators understand the state of the system and provide online guidance in a
timely manner. Here, tomitigate the shortcomings of processmonitoring in NPPs, five-level
threshold, qualitative trend analysis (QTA), and signed directed graph (SDG) inference are
combined to improve the veracity and sensitivity of process monitoring and FDD. First, a
three-level threshold is used for process monitoring to ensure the accuracy of an alarm
signal, and candidate faults are determined based on SDG backward inference from the
alarm parameters. According to the candidate faults, SDG forward inference is applied to
obtain candidate parameters. Second, a five-level threshold and QTA are combined to
determine the qualitative trend of candidate parameters to be utilized for FDD. Finally, real
faults are identified by SDG forward inference on the basis of alarm parameters and the
qualitative trend of candidate parameters. To verify the validity of the method, we have
conducted simulation experiments, which comprise loss of coolant accident, steam
generator tube rupture, loss of feed water, main steam line break, and station black-
out. This case study shows that the proposed method is superior to the conventional SDG
method and can diagnose faults more quickly and accurately.

Keywords: nuclear power plants, process monitoring, fault detection and diagnosis, signed directed graph,
qualitative trend analysis

INTRODUCTION

Nuclear power plants (NPPs) are large and complex systems. To ensure the reliability and safety of
NPPs, process monitoring and fault detection and diagnosis (FDD) are implemented to provide
online guidance for operators diagnosing the abnormal functioning of NPPs in an accurate and
timely manner (Liu et al., 2013; Liu et al., 2014).

FDD techniques can be divided into data-driven, signal-based, and model-based methods in NPP
(Ma and Jiang, 2011; Ma and Jiang, 2015). Data-driven FDD mainly relies on large datasets to
establish relationships among various parameters and faults. It does this through multiple
approaches, such as neural networks (Mo et al., 2007; Amal et al., 2011), principal component
analysis (Gajjar et al., 2017), qualitative trend analysis (Maurya et al., 2005), and others (Žarković and
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Stojković, 2017). Signal-based methods operate in the time
domain and employ techniques such as wavelet analysis, time-
frequency analysis, and spectral analysis (Ma and Jiang, 2011).
There are two main approaches for model-based FDD. The first is
based on the use of expert knowledge, such as expert systems
(Kramer and Palowitch, 1987). The second is based on graph
theory, that is, the model graphically displays relationships
among the various parameters and faults as in a Bayesian
network (Kang and Golay, 1999), a signed directed graph (Liu
et al., 2016), and a dynamic uncertain causality graph (Zhou and
Zhang, 2017).

FDD is difficult to achieve for NPPs using data-driven and
signal-based methods. On the one hand, an NPP is a complex
system and it is difficult to obtain real-time data. On the other
hand, data-driven methods of diagnosis are “black box” in nature,
which makes it difficult for operators to determine the cause of
faults. Therefore, graph methods are currently widely used for
FDD in NPPs.

As a type of qualitative FDD technique, a Signed Directed
Graph (SDG) model, which does not require a precise
mathematical model to establish, can contain a large amount
of information about faults. SDG was applied in the chemical
industry by Lapp and Powers (1977), and the concept of SDG was
proposed by Iri et al. (1979). Compared with other data-driven
methods, SDG has the significant advantage that SDG-based
FDD can reveal fault propagation paths and comprehensively
explain causes of failure (Chen et al., 2015; Maurya et al., 2004),
which has led to it becoming widely implemented in industry. To
improve the accuracy and sensitivity of SDG-based FDD, other
methods are combined with SDG, which has resulted in variants
such as the SDG-expert system (Kramer and Palowitch, 1987),
SDG-principal component analysis (Hiranmayee and
Venkatasubramanian, 1999), SDG-qualitative trend analysis
(Gao and Wu, 2010), SDG-hazard and operability (Wang and
Chen, 2009), SDG-fuzzy logic (Tarifa and Scenna, 2003; He et al.,
2014), and SDG-Bayesian network (Peng et al., 2014).

Based on the above studies, we found that almost all research
into SDG-based FDD technology has focused on inference,
diagnosis, and modeling. However, because process
monitoring is the first step of FDD in NPPs, process
monitoring itself should be more closely studied. Furthermore,
the safety threshold in NPPs is very conservative, which not only
increases the difficulty of applying FDD but also makes incipient
fault diagnosis difficult (Chung and Bien, 1994). To solve these
problems, SDG combined with principal component analysis was
proposed for FDD, and principal component analysis was applied
to solve the threshold problem in process monitoring. SDG
combined with qualitative trend analysis (QTA) is used to
determine the qualitative trends of parameters in early failure
and to conduct incipient fault diagnosis. However, SDG
combined with other methods requires more in-depth
research. Principal component analysis reduces the parameters,
so it is difficult to guarantee the accuracy of FDD. QTA obtains
the trend of parameters. When the parameters fluctuate within
the normal range, misdiagnosis may occur.

This study combines five-level threshold, QTA, and SDG
inference to solve these problems. Signed Directed Graph

Method Section introduces the SDG method; Process
Monitoring for Nuclear Power Plants Section presents the
method of process monitoring; and Monitoring and Fault
Diagnosis Framework for Nuclear Power Plants Section
proposes a combination of five-level threshold, QTA, and SDG
inference. In Application Case Study Section, we discuss a case
study, and finally, present conclusions in Conclusion Section.

SIGNED DIRECTED GRAPH METHOD

Concepts and Principles
SDGmodels are described by nodes and directed edges which can
express relationships among the parameters. An SDG model is
defined as G � (V , E), whereV � {V1,V2, . . . ,Vn}represents
parameter nodes; Vi � {+, 0,−} is defined as node states: “0”,
“+”, and “−” represent the normal state, higher than normal state
and lower than normal state, respectively; E � {E1, E2, . . . , Em}
represent branch nodes, Ei � {+,−} represents the directed edge,
where “+”, “−” indicate the cause node and effect node in positive
and negative effects, respectively, which are expressed by a solid
line or dotted line (Maurya et al., 2007). There also exists a
“coupling of relations” in the SDG model, δ+ : E→V (the cause
node of a branch); δ− : E→V (the effect node of a branch).

A fault’s propagation path can be located by SDG inference. A
“moment sample” includes all the values of the monitored
parameters at the same time. According to the “moment
sample”, if φ(δ+Ek)∅(Ek)φ(δ−Ek) � +, then the directed edge
is defined as a consistent path. An SDG model is presented as an
example in Figure 1, which also gives an example of a consistent
path. Figure 1 shows that if:

φ(A) � +,∅(A − B) � +,φ(B) � +,φ(A)∅(A − B)
φ(B) � +,∅(B − C) � −,
φ(C) � +, so φ(A)∅(A − B)φ(B)∅(B − C)φ(C) � +

then A–B–C is a consistent path. In Figure 1, if a symbol is “+”,
the model means: A increases (+) → B increases (+) → C
decreases (−), then nodes A, B, C constitute a consistent path.
A consistent path can not only describe the fault’s propagation
path but also can explain the reason why failure occurs. Thus, the
role of SDG-based FDD is to find all consistent paths in
instantaneous samples of the system.

Signed Directed Graph-Based Fault
Detection and Diagnosis
SDG inference is divided into forward inference and backward
inference. Forward inference generally starts from the selected

FIGURE 1 | Sketch map of an SDG model.
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candidate fault node to find all consistent paths; its purpose is
mainly to verify the correctness of FDD. Backward inference
generally starts from the sign nodes back to the fault nodes based
on a consistent path and is used for FDD (Mano et al., 2006).
Forward inference and backward inference are usually combined

for FDD. First, candidate faults are identified based on backward
inference and forward inference is adopted from these candidate
faults to remove false faults (Liu et al., 2014). The flow chart is
shown in Figure 2.

An SDGmodel is shown in Figure 3. According to the alarm
parameters h, d, f, candidate faults are identified based on
backward inference and identifying a consistent path. Taking d
as a starting node, d–h is a consistent path, which means nodes
A and B are candidate faults. In the same way, taking h, f as
starting nodes, then nodes A and B are again candidate faults.
When candidate parameters {d, e, f, h} are identified based on
forward inference, then the status of these candidate
parameters is obtained by process monitoring. According to
forward inference, A–e is not a consistent path, but all paths of
node B have occurred; therefore, A is a false fault and B is a
true fault.

PROCESS MONITORING FOR NUCLEAR
POWER PLANTS

The purpose of process monitoring is to assess the states of
parameters that are utilized for FDD. Here, the method of process
monitoring is based on threshold and QTA methods.

Threshold Method
The threshold method assesses a parameter’s status above the
upper limit or below the lower limit. The method is easy to
operate with software and easily understood by the operator, but
it has some disadvantages: the thresholds in NPPs are more
conservative, so alarm signals occur too late, and incipient fault
diagnosis is difficult to achieve (Daneshvar and Rad, 2010).
Therefore, the threshold method is not enough to achieve the
goal of process monitoring and other methods should be added to
improve the sensitivity of process monitoring.

Qualitative Trend Analysis
The purpose of QTA for process monitoring is to obtain a best-fit
trend of parameters to assess the state of NPPs. Trend fitting is
primarily based on linear least-squares (Frank, 1996). The main
algorithm is as follows.

FIGURE 2 | Flow chart of SDG inference.

FIGURE 3 | Example of an SDG model.
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Parameters x, y are sampled with n sets of data
(x1, y1), (x2, y2), . . . , (xn, yn). Assuming that x and y have a
linear relationship, by the least squares method, the regression
equation between x and y: y � ax + b is achieved, where a, b
minimize bias squares Q. A qualitative trend is achieved by
calculating slope a. The fitting equations are shown by Eqs.
1–3. Values of a > 0, a < 0, a � 0 indicate that the
parameter’s status is high, low, and normal respectively.

Q � ∑
n

i�1
(yi − b − axi)

2 (1)

a �
∑
n

i�1
(xi − x)(yi − y)

∑
n

i�1
(xi − x)2

(2)

b � y − ax (3)

The main disadvantage of QTA for process monitoring is that
it may lead to misdiagnosis. When the system is in a state of
disturbance, the parameters may remain high or low over a
certain period, which leads to a misdiagnosis.

MONITORING AND FAULT DIAGNOSIS
FRAMEWORK FOR NUCLEAR POWER
PLANTS
Five-Level Threshold and Qualitative Trend
Analysis
To mitigate the shortcomings of QTA and threshold methods in
process monitoring, we propose a five-level threshold combined
with QTA to improve the sensitivity of process monitoring.

1) Thresholds in nuclear power plants

Nodes are divided into two categories: parameter nodes and
fault nodes. The statuses of parameter nodes are determined by

the upper and lower limits (three-level threshold) of each
parameter. A parameter’s status may be in three states: “0”,
“1”, or “−1”. “1” indicates that the value of a parameter
exceeds the upper limit, “0” indicates that values of a
parameter are normal, and “−1” indicates that values of a
parameter are below the lower limit (He et al., 2014). The
calculation method is shown in Eq. 4:

ψi �
⎧⎪⎨
⎪⎩

−1,
0,
1,

if
if
if

ni < nil

nil < ni < nih

ni > nih

(1≤ i≤ α) (4)

2) Concept of a five-level threshold

The concept of a five-level threshold is shown in Figure 4.
“±”, “±?” stand for certain states and uncertain states of
parameters respectively (Chung and Bien, 1994). A three-
level threshold is currently used in NPPs. The five-level
threshold, which is very sensitive to a parameter’s
variability, includes the three-level threshold. When
parameters are within the three-level threshold, the status
of a parameter is considered certain. When the parameters
are between the five-level threshold and three-level threshold,
the parameter’s state is uncertain and the status of the
parameter is identified using QTA.

3) U test

It is difficult to obtain the fault data of NPPs, but normal
data are easy to acquire. Most parameters may appear as
random variability in normal data, in which the values of
parameters follow a normal distribution, but parameters may
not always do so. The U-test is applied to determine whether
the values of parameters follow a normal distribution.
Calculating coefficients of skewness and kurtosis is the first
step of the U test (Hao et al., 2009). For the time sequence
{xi, i � 1, 2, . . . ,N} coefficients of skewness g and kurtosis k can
be written as:

FIGURE 4 | Five-level threshold.
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g �
∑
n

i�1
(xi − x)3

(n − 1)σ3 , (5)

k �
∑
n

i�1
(xi − x)4

(n − 1)σ4
− 3, (6)

whereσis the standard deviation, x is the mean value, and n is the
number of samples.

∣∣∣∣g
∣∣∣∣<U1 (7)

|k|<U2 (8)

U1α � 1.96

������������
6(n − 2)

(n + 1)(n + 3)

√

(9)

U2α � 1.96

�������������������
24n(n − 2)(n − 3)

(n + 1)2(n + 3)(n + 5)

√

(10)

If Eqs. 6, 7 are satisfied, then parameters obey a normal
distribution with time.

4) U test-based five-level threshold acquisition

Because it is difficult to obtain fault data from NPPs, the five-
level threshold is obtained by handling the normal data of NPPs.
The flow chart is shown in Figure 5.

5) Five-level threshold and qualitative trend analysis

When monitored parameters obey a normal distribution, the
probability of parameters exceeding the five-level threshold is
0.00265(y < y3σ or y > y + 3σ) (Tarifa and Scenna, 1998). When
the five-level threshold is met by the maximum and minimum
values of parameters, the probability of these parameters
exceeding the five-level threshold is lower than 0.00265.
Therefore, it is reasonable to use the normal distribution to
calculate the probability of parameters used to assess the
abnormal state of NPPs.

The probability of parameters exceeding a five-level threshold
over three continuous seconds is 0.0026533 � 1.76 × 10–8, as can
be seen above. If an outside range based on the five-level
threshold over three continuous seconds is considered as an
abnormal process, then QTA based on least-square fitting can
be used to obtain qualitative trends. The parameter c is defined in
Eq. 10 and can extract qualitative trends for FDD.

c � apψi > 0, (11)

whereψiis shown in Eq. 11.

ψi �
⎧⎪⎨
⎪⎩

−1
0
1

lower than five level threshold ( − ) and higher than three level threshold ( − )
normal

higher than five level threshold ( − ) and lower than three level threshold ( − )
(12)

We propose the use of a five-level threshold in combination
with QTA for incipient fault diagnosis. However, when the
system is in a state of disturbance, the parameters may remain
high or low over a certain time, which leads to misdiagnosis. To

FIGURE 5 | Flow chart for calculation of five-level threshold.
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ensure the accuracy of FDD, SDG inference is proposed in
combination with QTA and the five-level threshold.

Framework of Combining Process
Monitoring and Signed Directed
Graph-Based Inference for Fault Detection
and Diagnosis
Five-level threshold, QTA, and SDG inference are combined to
improve the veracity and sensitivity of process monitoring and
FDD. Here, we assume that when the system is perturbed and
parameters exceed the three-level threshold, failure occurs.

The steps of process monitoring and FDD are as follows:
Step 1: The SDG model is set up based on the flow chart and

knowledge of systems in NPPs; although, at the same time, the
SDG model should be modified and verified by simulation.

Step 2: The five-level threshold is achieved by data handling.
The three-level threshold is initially applied for process
monitoring, and when alarm signals appear as defined by the
three-level threshold, candidate faults are identified by SDG
backward inference.

Step 3: According to the identification of candidate faults, each
fault is separately assessed by forward inference to determine
candidate parameters.

FIGURE 6 | Flow chart of process monitoring and FDD.
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Step 4: If the state of a candidate parameter is considered
certain by the three-level threshold, this parameter state is used
for FDD. If a candidate parameter’s state is uncertain based on the
three-level threshold, then five-level threshold and QTA are
combined to determine the state of that parameter.

Step 5: According to the parameter’s state, forward inference is
used for FDD to reject false candidate faults.

Step 6: If a fault exists, then the result is shown in the NPP
interface. If there is no fault, Steps 2–5 are repeated. The flow
chart is shown in Figure 6.

APPLICATION CASE STUDY

1) Method of SDG modeling

According to the basic steps and principles of SDG modeling,
the SDG model of a loss of coolant accident (LOCA), steam
generator tube rupture, loss of feed water, main steam line break,
and station black-out over three loops of the pressurized water
reactor are created. The SDG model of an NPP is established by

combining fundamental principles and existing knowledge. The
steps for SDG modeling in NPPs are shown in Figure 7.

Analysis of the LOCAmodel: When a small LOCA occurs, the
primary loop flow leaks, and with the containment of pressure,
the temperature will rise. With the constant flow of leaking
coolant, the pit water level will rise. The system pressure will
have a short increase, but after a period of time, the loop pressure
will continue to decrease, which reduces the system pressure and
lowers the pressurizer water level and pressure. At the same time,
the loop coolant flow will continue to decline. The LOCA of SDG
can be built based on LOCA. As with SGTR and loss of feed water,
the SDG model is built as shown in Figure 8 (abbreviations are
listed in Table 1).

2) Five-level threshold

First, three-level thresholds are achieved by NPPs according to
the steps shown in Figure 5; then the five-level threshold is
calculated and stored in a database.

3) Process monitoring and FDD

FIGURE 7 | Flow chart of SDG modeling.

FIGURE 8 | SDG model for the pressurized water reactor.
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Figure 9 shows the interface for process monitoring and FDD
when the NPP is in a normal state (parameters in black are in a
normal state; red indicates that the parameter is abnormal and the
parameter status is “1”; green indicates that the parameter is
abnormal and the parameter status is “−1”). When the NPP is in a
normal state, there are no alarm signals and the values of
parameters are displayed in real-time.

When LOCA occurs in 1000 s, the interface changed, as shown
in Figure 10. The parameters that are monitored according to the
flowchart shown in Figure 6 are shown in Figure 10. Figure 10
shows that FDD results in 2 based on a five-level threshold, QTA.
SDG inference for LOCA and results 1 are based on an unknown
threshold method. The results show that the speed of diagnosis
based on a five-level threshold is faster than that for a single-
threshold method.

When LOCA occurred, the PRB (4) first exceeded the three-
level threshold; the corresponding process monitoring on PRB (4)

is shown in Figure 11. On this basis, SDG backward inference was
used to identify LOCA candidate faults. TGRB (4) was one of the
candidate parameters based on candidate faults and SDG forward
inference.

Process monitoring on TGRB (4) based on a five-level
threshold, QTA, and SDG is shown in Figure 12. Figure 12
shows that fitting of the curve improves the speed of process
monitoring and ensures the accuracy of FDD.

When the simulator inserts a fault in 1000 s, the TGRB (4)
starts to exceed the five-level threshold at 1004 s. At 1009 s,
continuous 5 s exceeds the five-level threshold, QTA can
identify abnormal parameters. When using the normal
threshold method (three-level threshold), it is difficult to find
parameters abnormalities. QTA can detect parameter
abnormalities early, that is, within 1009–1034 s. It can
recognize that the parameters are abnormal, and the common
method can only find the parameters of abnormality after 1034 s.

TABLE 1 | Abbreviation of parameters.

Parameters Abbreviation Parameters Abbreviation

Flow of coolant in loop 1 WLOOP(1) Temperature of cold leg in loop 1 TWRCS(10)
Flow of coolant in loop 2 WLOOP(2) Temperature of cold leg in loop 2 TWRCS(20)
Flow of coolant in loop 3 WLOOP(3) Temperature of cold leg in loop 3 TWRCS(30)
Water level in steam generator 1 ZWDC2SG(1) Pressure of cold leg in loop 1 PRCS(10)
Water level in steam generator 2 ZWDC2SG(2) Pressure of cold leg in loop 2 PRCS(20)
Water level in steam generator 3 ZWDC2SG(3) Pressure of cold leg in loop 3 PRCS(30)
Flow in steam generator 1 WGOUTSG(1) The average primary pressure in reactor coolant system PPSSOLID
Flow in steam generator 2 WGOUTSG(2) Pressure of pressurizer PPZ
Flow in steam generator 3 WGOUTSG(3) Water level in pressurizer ZWPZ
Pressure in steam generator 1 PSGGEN(1) Temperature of the containment TRGB(4)
Pressure in steam generator 2 PSGGEN(2) Pressure of the containment PRB(4)
Pressure in steam generator 3 PSGGEN(3) Radioactivity of condenser RC
Radioactivity of sewage of steam generator MFPWSG(14,1) Radioactivity of the containment MFCSIC
Pit water level ZWRB(3) Pressure of second-loop PBS

FIGURE 9 | FDD interface in the normal state.
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QTA and threshold method realize parameter monitoring in
the SDG model. The abnormality of TGRB (4) is first detected,
and then the path (LOCA—TGRB (4)) is inferred based on the
SDG model; according to the state of ZWPZ, PPZ, PPSSOLID,
PRCS (17), the path is obtained: LOCA—PRCS (17)
decreases—PPSSOLID decreases—PPZ decreases—ZWPZ
decreases. The path is shown below. SDG inference to verify
the accuracy of FDD results is shown in Figure 13 for a LOCA
accident. According to the obtained path, the possible failure is
LOCA.

1) LOCA—pressure of the containment (PRB (4)) increases;
2) LOCA—radioactivity of the containment (MFCSIC) increases;
3) LOCA—temperature of the containment (TRGB (4))

increases;
4) LOCA—pit water level (ZWRB(3)) increases;
5) LOCA—pressure of cold leg in loop 1(PRCS(17))

decreases—the average primary pressure in the reactor
coolant system (PPSSOLID) decreases—pressure of
pressurizer (PPZ) decreases—water level in pressurizer
(ZWPZ) decreases.

FIGURE 10 | Interface of FDD when LOCA occurred.

FIGURE 11 | Process monitoring on TGRB (4) when LOCA occurred.
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CONCLUSION

Based on the characteristics of NPPs, this study proposes a method
of process monitoring and FDD based on SDG. This method can
increase the path of SDG, which is needed to guarantee the
accuracy of FDD. The study has provided simulation-based
examples that show the advantages of process monitoring and
FDD by use of five-level threshold, QTA, and SDG methods:

1) It improves the sensitivity of process monitoring;

2) Incipient fault diagnosis is achieved and accuracy is
improved;

3) Fault propagation paths are shown by SDG, which can explain
the causes of faults.

Because of the complex structure of NPPs, the SDG model as
established in this paper needs further refinement and will require
different methods of establishment for different types of reactors.
An SDG-based method combined with other quantitative
methods is the subject of future research.

FIGURE 12 | Process monitoring on TGRB (4) when LOCA occurred.

FIGURE 13 | Interface of SDG inference at the time the LOCA occurred.
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Žarković, M., and Stojković, Z. (2017). Analysis of artificial intelligence expert
systems for power transformer condition monitoring and diagnostics. Electr.
Power Syst. Res. 149, 125–136. doi:10.1016/j.epsr.2017.04.025

Zhou, Z., and Zhang, Q. (2017). Model event/fault trees with dynamic uncertain
causality graph for better probabilistic safety assessment. IEEE Trans. Rel. 66
(99), 1–11. doi:10.1109/tr.2017.2647845

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Guohua, Diping, Jiyao, Yiqing and Dongxu. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org March 2021 | Volume 9 | Article 64154511

Guohua et al. Monitoring and Fault Diagnosis

89

https://doi.org/10.1016/j.pnucene.2010.12.001
https://doi.org/10.1016/j.ijepes.2015.03.012
https://doi.org/10.1109/23.322777
https://doi.org/10.1016/s0947-3580(96)70024-9
https://doi.org/10.1016/s0947-3580(96)70024-9
https://doi.org/10.1016/j.jprocont.2017.03.005
https://doi.org/10.1016/s1004-9541(08)60352-3
https://doi.org/10.1016/j.compchemeng.2014.02.014
https://doi.org/10.1016/S0967-0661(99)00040-4
https://doi.org/10.1016/S0967-0661(99)00040-4
https://doi.org/10.1016/0098-1354(79)80079-4
https://doi.org/10.1016/0098-1354(79)80079-4
https://doi.org/10.1016/s0957-4174(99)00018-4
https://doi.org/10.1002/aic.690330703
https://doi.org/10.1109/tr.1977.5215060
https://doi.org/10.1016/j.nucengdes.2015.11.016
https://doi.org/10.7538/yzk.2014.48.09.1646
https://doi.org/10.1016/j.pnucene.2013.06.002
https://doi.org/10.1016/j.pnucene.2010.12.001
https://doi.org/10.1016/j.pnucene.2010.12.001
https://doi.org/10.1016/j.net.2014.12.005
https://doi.org/10.1016/j.net.2014.12.005
https://doi.org/10.1016/j.ces.2005.10.023
https://doi.org/10.1016/j.ces.2005.10.023
https://doi.org/10.1016/j.engappai.2004.03.007
https://doi.org/10.1016/j.engappai.2004.03.007
https://doi.org/10.1016/s0263-8762(07)73181-7
https://doi.org/10.1016/s0263-8762(07)73181-7
https://doi.org/10.1205/cherd.04280
https://doi.org/10.1016/j.pnucene.2007.01.002
https://doi.org/10.1021/ie403608a
https://doi.org/10.1016/s0951-8320(97)00125-7
https://doi.org/10.1016/s0011-9164(02)01065-2
https://doi.org/10.1016/j.psep.2008.06.004
https://doi.org/10.1016/j.psep.2008.06.004
https://doi.org/10.1016/j.epsr.2017.04.025
https://doi.org/10.1109/tr.2017.2647845
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


fenrg-09-665262 May 4, 2021 Time: 16:34 # 1

ORIGINAL RESEARCH
published: 10 May 2021

doi: 10.3389/fenrg.2021.665262

Edited by:
Xianping Zhong,

University of Pittsburgh, United States

Reviewed by:
Xingang Zhao,

Oak Ridge National Laboratory (DOE),
United States

Jiankai Yu,
Massachusetts Institute

of Technology, United States
Guohua Wu,

Harbin Institute of Technology, China

*Correspondence:
Jingke She

shejingke@hnu.edu.cn

Specialty section:
This article was submitted to

Nuclear Energy,
a section of the journal

Frontiers in Energy Research

Received: 07 February 2021
Accepted: 13 April 2021
Published: 10 May 2021

Citation:
She J, Shi T, Xue S, Zhu Y, Lu S,

Sun P and Cao H (2021) Diagnosis
and Prediction for Loss of Coolant
Accidents in Nuclear Power Plants

Using Deep Learning Methods.
Front. Energy Res. 9:665262.

doi: 10.3389/fenrg.2021.665262

Diagnosis and Prediction for Loss of
Coolant Accidents in Nuclear Power
Plants Using Deep Learning Methods
Jingke She1* , Tianzi Shi1, Shiyu Xue1, Yan Zhu1, Shaofei Lu1, Peiwei Sun2 and
Huasong Cao2

1 College of Computer Science and Electronic Engineering, Hunan University, Changsha, China, 2 School of Energy
and Power Engineering, Xi’an Jiaotong University, Xi’an, China

A combination of Convolutional Neural Network (CNN), Long-Short Term Memory
(LSTM), and Convolutional LSTM (ConvLSTM) is constructed in this work for the
fault diagnosis and post-accident prediction for Loss of Coolant Accidents (LOCAs) in
Nuclear Power Plants (NPPs). The advantages of ConvLSTM, such as effective feature
determination and extraction, are applied to the classification of LOCA cases. The
prediction accuracy is enhanced via the collaborative work of CNN and LSTM. Such a
hybrid model is proved to be functional, accurate, and adaptive, offering quick accident
judgment and a reliable decision basis for the emergency response purpose. It then
allows NPPs to have an Artificial Intelligence (AI)-based solution for fault diagnosis and
post-accident prediction.

Keywords: CNN, LSTM, ConvLSTM, LOCA, diagnosis, prediction

INTRODUCTION

The quick and accurate response to a Nuclear Power Plants (NPP) accident is critical to the
safety of both the plant and the public. However, the accident model needed for fault diagnosis
and post-accident prediction is hard to construct due to complex physical processes, nonlinear
parameter variations, and multiple system factors. Assumptions have to be often made, whereas
the accuracy of the model has to be sacrificed. Furthermore, most of the accidents behave as a
nonlinear process, which makes the traditional statistical methods difficult to describe the system
behavior and development trend. With the progress of machine learning, especially deep learning,
describing accident behavior using data-based Artificial Intelligence (AI) models has become an
effective way to avoid the above-mentioned problems. A large amount of simulated nuclear power
plant data from previous research works has also settled a firm base to carry out AI models for fault
diagnosis and post-accident prediction.

LOCA Classification
Loss of Coolant Accident (LOCA) is a type of severe accident that could happen during the
operation of NPPs. The break of the Primary Heat Transport (PHT) system causes a fast and large
loss of coolant, leading to the overheating of the reactor core. Hence, it is of great importance
to timely determine the LOCA situation and evaluate its development. The break size has to be
confirmed first since it determines both the flowrate at the break and the post-LOCA behavior
of the system. As mentioned, building an accurate system model for this purpose is prevented by
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the complex accident process itself. Another challenge is that the
break size varies due to different circumstances when the LOCA
is taking place.

Researchers in recent years have explored possible methods
to identify the LOCA case. Both Na et al. (2004) and Santhosh
et al. (2011) trained their neural network (NN) models using a
transient dataset generated by thermal-hydraulic codes to detect
the break size of a LOCA. Later on, multi-connected Support
Vector Machines (SVMs) were utilized to estimate the break
size such that the LOCA type can be identified (Yoo et al.,
2017). Tian et al. (2018) proposed a constraint-based random
search algorithm for optimizing NN architectures for detecting
the break size of a LOCA. Principal Component Analysis (PCA)
was adopted by Sun et al. (2019) to identify the LOCA case
happening at the Steam Generator (SG) tubes of a small modular
reactor. Tanim et al. (2020) uses the PCTRAN prototype software
to determine the unexpected interruption and loss of the coolant
of the VVER-1200 reactor and their possible consequences on
various parameters. Weglian et al. (2020) provides a single-
top PRA fault tree for comprehensive assessment of the risk
of various hazards such as the loss of coolant accidents. Deep
learning models, as a data-driven method, is seldom found in
previous LOCA diagnosis works. To avoid the complexity of
building analytical system models, this work take ConvLSTM as
a deep learning attempt to solve the LOCA diagnosis challenge.

The LOCA case is determined in this work using
Convolutional Long-Short Term Memory (ConvLSTM)
(Shi et al., 2015), which is improved in this work for data series
classification. ConvLSTM is a variant of LSTM. It replaces the
matrix multiplication of each gate in the LSTM unit with a
convolution operation, such that the basic spatial features can
be captured by convolution operations in multi-dimensional
data. The main difference between ConvLSTM and LSTM is
the input dimension. Input data to LSTM is one-dimensional.
However, ConvLSTM can handle data that are one-dimensional,
two-dimensional, and three-dimensional. The training dataset
is obtained using an NPP control system design and validation
platform (Sun et al., 2017). The design and validation platform
mainly uses shared memory technology and an engineering
simulator coupled with MATLAB/Simulink. Subsequently, the
performance can be evaluated through simulations of abrupt
load-transient changes and wide range-load changes. The
coupling of the engineering simulator and MATLAB/Simulink
generates an industry-grade simulation and validation platform,
providing an effective tool for research on barely happened
scenarios. The training dataset from such platform enables the
ConvLSTM model to recognize features of different break sizes
such that the LOCA type can be confirmed at an early stage
of the accident.

Post-accident Prediction
Tracing critical system parameters and predicting their post-
LOCA development assist the emergency response team to act
in advance, reserving the safety margin as expected. However,
knowing the break size is not enough to settle the decision basis.
Depending on the operation status, a certain size PHT break may
be followed with different system behaviors.

A nonlinear process, such as the post-LOCA trend, cannot be
easily predicted using traditional statistical methods. In the past
decade, various attempts have been taken for the prediction of
processes in NPPs, such as (1) predicting the counter-current
flow limitation at hot leg pipe during a small-break LOCA
(Jeong, 2002); (2) predicting the water vessel level using Group
Method of Data Handling (GMDH) (Park et al., 2013) and Deep
Neural Network (DNN) (Koo et al., 2018); (3) predicting the leak
flow rate of LOCA using Fuzzy Neural Network (FNN) (Kim
et al., 2014); (4) monitoring the real-time condition of a LOCA
using Time-Frequency Domain Reflectometry (TFDR) (Lee et al.,
2017); (5) using RELAP5/MOD3.3 code to predict the LOCA of
the main steam break (MSLB) on the third generation reactor
with passive safety features (Yang et al., 2019); and (6) utilizing
DNN/LSTM expert system to predict the loss of nuclear power
plant coolant accident (Radaideh et al., 2020).

This work proposes a deep learning model combined with
both Convolutional Neural Network (CNN) and Long-Short
Term Memory (LSTM) for the post-LOCA prediction. It is
considered that the prediction model has to understand the
variation caused by both the break size and the operation status.
To achieve this, the CNN part is introduced to deal with the
multi-dimensional dataset. It recognizes and extracts the key
features such that the prediction process is not misled. LSTM,
as a deep learning model for long-time series prediction, is
then utilized to calculate the post-LOCA development of critical
system parameters.

THE HYBRID MODEL FOR LOCA
DIAGNOSIS AND PREDICTION

The hybrid model constructed in this work consists of two
major modules. The modified ConvLSTM model is responsible
for LOCA diagnosis, followed by the “CNN+LSTM” module for
post-LOCA prediction.

Improved ConvLSTM for LOCA
Diagnosis
ConvLSTM model was originally proposed for prediction
purposes (Shi et al., 2015). It has been widely applied to image
and video processing areas (Feng et al., 2019; Mukherjee et al.,
2019; Niu et al., 2019). In this work, it is chosen as the classifier
for LOCA diagnosis due to the following considerations:

1. LOCA scenario consists of complicated system variations,
such as uncertain break size, flowrate drop, pressure drop,
etc. The expected classifier has to be capable of locating
the key features of these parameters and extracting them
for prediction. This can be satisfied by the convolutional
structure of the ConvLSTM.

2. The diagnosis triggered by LOCA deals with time-series
data, which is an essential function of the LOCA classifier.
ConvLSTM can apply its LSTM structure for this objective.

3. The LOCA diagnosis deals with multiple features and time-
series data. Both have to be taken care of simultaneously.
The ConvLSTM, with the assistance of certain additional
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FIGURE 1 | Structure of the improved ConvLSTM.

structures, is capable of identifying and extracting key
features from time-series data.

This work studies five Steam Generator Tube Rupture (SGTR)
LOCA cases, i.e., break size of 0.2, 0.4, 0.6, 0.8, and 1.0 cm2.
Simulations are conducted using the mentioned platform (Sun
et al., 2017) to obtain the dataset for model training and
test. Each break case is simulated with different reactor power
levels of 60, 70, 80, 90, and 100% to cover various operation
statuses when the LOCA takes place. The traditional ConvLSTM
layer is utilized in this work to extract key features from the
normalized LOCA process dataset. Following it, there are two
dense layers and a softmax function (Krizhevsky et al., 2012)
to strengthen the classification performance. Using dense layers
for classification has been verified by previous works (e.g., Kim
and Medioni, 2010; Bi et al., 2019; Zhang et al., 2019). Dense
layers used in these previous works have demonstrated qualified
classification performance, which encourages its application to
the classification of time-series data in this work. One of the
two dense layers integrates the extracted features using 500
neural cells. The other one analyzes the results from the first
one using five neural cells. Each cell in the second dense layer
represents the probability of a break size. The softmax function
is used after the dense layers, providing a probability list to
indicate the classification result, i.e., the one with the largest
probability. Critical system parameters, such as the pressurizer
pressure and the coolant flowrate, are comprehensively examined
by the model for a precise classification result. A brief illustration
of the improved ConvLSTM is shown in Figure 1; while Table 1
shows its parameter configuration.

TABLE 1 | Parameters of the Improved ConvLSTM.

Model parameters Value

Filters 30

Kernel size 4

Dense_1 cells 500

Dense_2 cells 5

Activation function Softmax

CNN+LSTM for Post-LOCA Prediction
The greatest challenge for post-LOCA prediction is the
uncertainty of the process to be predicted. Although five typical
break sizes are chosen to represent the LOCA scenarios, it is not a
full coverage yet. Even for a chosen case, different NPP operation
status at the LOCA moment could lead to various post-LOCA
situations. Therefore, the prediction model needs to be aware of
such uncertainty and be able to predict cases that are similar to
the training ones.

In order to handle the uncertainty challenge, the prediction
model is constructed with a combinational structure of CNN
and LSTM. The convolutional computation from CNN, with the
assistance of weight sharing and pooling operation, can effectively
extract the major features at the early stage of the development.
The LSTM model, as a variety of Recurrent Neural Network
(RNN), is proficient at dealing with long-time series datasets such
as LOCA data (She et al., 2019). Since the LOCA process is hard to
predict due to complicated variations, two LSTM layers are used
to increase the depth of the neural network. Two dense layers are
also applied to the prediction results processing, ensuring a result
with all necessary features.

The prediction model is trained using datasets of the five
chosen LOCA cases. Total five sets of model weights are saved
in a so-called “fault dictionary.” Once the classification results,
e.g., 0.2 cm2 break, reaches the prediction model, it looks up
the fault dictionary and loads the model with the corresponding
“weight set-0.2” trained by such case. Figure 2 below describes
the model structure and Figure 3 shows the process of using a
fault dictionary. The parameter configuration is listed in Table 2.

EXPERIMENTS AND RESULTS

Experiments of this work are divided into two major stages. The
proposed models are verified using industry simulation datasets
first. A LOCA case is then picked up for the system integration
test.

As mentioned, each LOCA case (0.2, 0.4, 0.6, 0.8, or 1.0 cm2)
is simulated under five kinds of operation status (60, 70, 80, 90,
and 100% reactor power levels). Noise signals are introduced
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FIGURE 2 | Structure of the Post-LOCA prediction model.

FIGURE 3 | Using fault dictionary for Post-LOCA prediction.

during the simulation such that the dataset is expanded and has
a wider coverage of possible situations. Seventy-five percentage
of the dataset is used for training purposes with the Rolling
Update method applied; the rest of the dataset is used for the
test experiments of both the classifier and the prediction model.
The test dataset is also plotted as the "original value" in the
result figures such that the comparison between the prediction
results and the actual LOCA trend can be illustrated. All the data
is denoised, smoothed, and then normalized to the maximum
and minimum values.

Model Verification
Classifier Model Verification
The classifier verification uses test vectors composed of 10
system parameters, including core inlet temperature, core

TABLE 2 | Parameters of the Post-LOCA prediction model.

Model parameters Value

Filters 8

Kernel size 2

Pooling size 4

LSTM_1 units 128

Dropout_1 odds 0.2

LSTM_2 units 64

Dropout_2 odds 0.2

Dense_1 16

Dense_2 1

exit temperature, core outlet supercooling degree, pressurizer
pressure, pressurizer water level, and five types of coolant
flowrates. All the parameter values in one test vector belong to
a chosen LOCA case. Adequate parameters in the test vector
lead to a narrow classification scope, which guarantees accurate
classification results.

During the classifier verification, there are totally 25 test
vectors, 5 for each break size. And all contain the 10 crucial
system parameters. They are fed into the model via a 50-
timestep process that imitates the industry sampling process. The
verification results are listed in Table 3 below.

Results in Table 3 demonstrate the classification performance
of the proposed model. All the correct classifications are obtained
at the first timestep and kept for the entire classification process.
The sole misclassification case is the 0.4 cm2 break size at 60%

TABLE 3 | Classifier verification results.

Break size
(cm2)

Test vectors Correct
results

Accuracy per
size (%)

Total accuracy
(%)

0.2 5 5 100 –

0.4 5 4 80 –

0.6 5 5 100 –

0.8 5 5 100 –

1.0 5 5 100 –

Total 25 24 – 96

The bold values represent data statistics, intermediate diagnosis results, and final
diagnosis results.
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FIGURE 4 | Functionality verification of the prediction model.

reactor power level and it is misclassified as an adjacent case (0.6
cm2 break at 60% power level).

Prediction Model Verification
The prediction model verification, however, consists of three sub-
experiments:

(1) regular test of the “0.2 cm2 break” model using a “0.2 cm2

break” test vector;
(2) comparison experiments between a “pure LSTM” model

and the “CNN+LSTM” model;
(3) adaptivity test of the “0.2 cm2 break” model using a “1.0

cm2 break” test vector.

(1) Functionality Verification

A regular test is performed to simply verify the model
functionality. A 0.2 cm2 break test vector, which is randomly
picked from the dataset, is fed into the “CNN+LSTM” model
trained by the 0.2 cm2 break dataset. The coolant flowrate
prediction result is shown in Figure 4.

The prediction given by the “CNN+LSTM” model matches
the original value closely with a loss value of 1.241 ×10−3. The
prediction capability of the proposed model is verified.

(2) Comparison Experiments

The comparison experiments are carried out for the coolant
flowrate using all break sizes at 100% reactor power level, showing
the performance comparison between the two models. The loss
values via Mean Square Error (MSE) function are listed in Table 4
to describe the difference.

With lower loss values derived by the “CNN+LSTM”
model, the comparison of the results in Table 4 clearly shows
the advantage of using the “CNN+LSTM” structure. It is
demonstrated that the CNN layer covers the shortage of the
LSTM model when facing a multi-feature process.

(3) Adaptivity Verification

The third verification experiment is to prove that the
prediction model in this work can adapt to an untrained but
similar case. This is quite meaningful to accident scenarios with
much uncertainty, such as the LOCA. For this experiment, the
coolant flowrate dataset generated from the simulation of a 1.0
cm2 break is applied to a prediction model trained by a 0.2 cm2

break dataset, both at 100% power level. The prediction generated
is illustrated in Figure 5.

The “1.0 cm2 break” prediction curve generated by a “0.2
cm2 break” model still follows the main trend of the test case.
The loss value of 3.968 ×10−3 is larger than experiment (1) but

TABLE 4 | Comparison of prediction performance.

break size 0.2 cm2 0.4 cm2 0.6 cm2 0.8 cm2 1.0 cm2

Loss value
(LSTM)

0.003815 0.003746 0.003615 0.004126 0.003937

Loss value
(CNN+LSTM)

0.001241 0.002767 0.002864 0.002099 0.003121

The bold values represent the loss value of the experimental model, and is better
than the LSTM model.
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FIGURE 5 | Adaptivity verification of the prediction model.

FIGURE 6 | Coolant flowrate prediction for 0.8 cm2 break.
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FIGURE 7 | Pressurizer pressure prediction for 0.8 cm2 break.

still within the same order of magnitude. It has to be pointed
out that 0.2 cm2 break and 1.0 cm2 break are two cases with
the biggest difference in the given dataset group. Such a result
signifies that any two of other case models can adapt to each other
even closer. That is to say, when an uncertain scenario appears,
the “CNN+LSTM” model has the potential to adapt to it and
generate a meaningful prediction.

Based on the high-accuracy classification, the prediction
showing functionality and adaptivity, and the better performance
demonstrated in the comparison experiments, the hybrid LOCA
diagnosis and prediction model has been proved to be accurate,
functional, and adaptive.

Diagnosis and Prediction Experiment
This subsection presents one of the system integration
experiments conducted from diagnosis to prediction for a
given LOCA case, 0.8 cm2 break at 100% power level. The
purpose is to demonstrate the functionality and performance of
the proposed hybrid model from a systematic view.

Predictions for two crucial system parameters, coolant
flowrate, and pressurizer pressure, are selected to be shown in
Figures 6, 7, respectively.

It is noticed that, at the beginning of both Figures 6, 7,
the prediction appears underfitting. This is often observed in
prediction using neural networks. In this work, the prediction
model is trained for each break size separately and the trained
weights are then stored in the fault dictionary. However, during
the training process, all the data belong to the chosen break

size are used, including data under different reactor power
levels. Thus, it is hard to avoid the underfitting problem when
the prediction test for 0.8 cm2 break is performed against a
certain reactor power.

The prediction curves also show underfitting at where
dramatic changes are. This is exactly what has been mentioned
as one of the great challenges to predict nonlinear processes. As
can be seen from the following figures, the prediction is trying
to catch with the sudden rises or drops. But when the quick
nonlinear changes happen consecutively, the prediction can only
develop in a lagging manner, leading to underfitting phenomena
at those sharp turning points.

CONCLUSION

A hybrid model for LOCA diagnosis and prediction is proposed
in this work. The ConvLSTM is used for fault type diagnosis,
and the LOCA prediction is produced using CNN-LSTM. The
datasets of different break sizes of LOCA are obtained from
the experimental platform. The dataset is preprocessed and
normalized for proper training and test dataset. The proposed
diagnosis and prediction model is then tested and verified
through rigorous experiments. With an improved structure, the
fault diagnosis model based on ConvLSTM successfully reaches
classification accuracy as high as 96%. The post-LOCA prediction
model established by combining CNN and LSTM has also shown
effective functionality and adaptability through three different
sub-experiments. Its loss values (MSE) for all the test cases
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are kept as low as 10−3, satisfying the accuracy expectation.
Comparing to the LSTM model, the CNN-LSTM demonstrated
its advantage of multi-feature processing, which provides a better
prediction performance.

However, the model research proposed in this article has
certain limitations. First of all, the sample datasets used in
this experiment need to be further expanded to ensure the
validity of the experiment. In addition, the model needs to be
further verified using real LOCA data from the NPPs. Moreover,
underfitting does appear in prediction results due to training
strategy and consecutive inflection points, which implies the
potential improvement of the prediction model in future work.
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Data-driven machine learning (DDML) methods for the fault diagnosis and detection
(FDD) in the nuclear power plant (NPP) are of emerging interest in the recent years.
However, there still lacks research on comprehensive reviewing the state-of-the-art
progress on the DDML for the FDD in the NPP. In this review, the classifications,
principles, and characteristics of the DDML are firstly introduced, which include the
supervised learning type, unsupervised learning type, and so on. Then, the latest
applications of the DDML for the FDD, which consist of the reactor system, reactor
component, and reactor condition monitoring are illustrated, which can better predict
the NPP behaviors. Lastly, the future development of the DDML for the FDD in the NPP
is concluded.

Keywords: data-driven method, machine learning, fault detection and diagnosis, applications and development,
nuclear power plant

INTRODUCTION

Nuclear Energy Development
Nuclear energy is of continuous interest as it can meet increasing energy demands of the world
environmentally friendly (Jamil et al., 2016). On the one hand, nuclear power plants (NPPs) consist
of many complex systems and components. On the other hand, NPPs are also highly dynamic and
non-linear (Peng et al., 2018). In addition, the latest advances come to the further Generation IV
NPPs (Yao et al., 2020). In particular, further NPPs greatly emphasize the economics, safety, and
reliability over the previous NPPs (Locatelli et al., 2013).

This future of the NPP necessitates the high performance of the fault diagnosis and detection
(FDD) in the nuclear industry (Oluwasegun and Jung, 2020). First, the FDD can be adopted in the
reactor systems, components, and conditions. Later, it allows the reactor systems and components
to be fully optimally used to their lifetime before the maintenance or disposal. Meanwhile, the FDD
can reflect the current conditions and enable further prediction of possible malfunctions (Li et al.,
2020). Therefore, an accurate and efficient FDD is of great importance to ensure the economics,
safety, and reliability of the NPP.
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Fault Detection and Diagnosis in NPP
To achieve its goal, the nuclear industry has increased popularity
in adapting the FDD techniques (Rezaeianjouybari and Shang,
2020). And the research process of the FDD methods in the NPP
can be described as follows.

First, the traditional FDD approach in the NPP belongs to the
hardware redundancy method (Betta and Pietrosanto, 2000). For
example, the same quantity can be measured by several sensors,
and the voting scheme is also introduced for the sensor fault.
However, the hardware redundancy principle can hardly suitable
for other reactor systems and components (Lu and Upadhyaya,
2005). Thus, it comes to the limit checking method. Usually,
it is adopted to monitor the specified parameter of the NPP
to see whether the parameter exceeds the predefined value or
not (Jamil et al., 2016). Nevertheless, it can only detect the
fault when it exceeds a certain value, which could ignore the
incipient fault stage. Additionally, the FDD method based on the
analytical redundancy can overcome the disadvantages of both
the hardware redundancy and limit checking approach (Nguyen
et al., 2020). Meanwhile, it can predict the incipient anomalies,
optimize the operation schedule, reduce the maintenance cost,
and improve safety at the same time. Hence, the FDD method
based on the analytical redundancy is of emerging interest in the
NPP in these years.

Currently, the FDD methods based on the analytical
redundancy can be basically classified into three main types:
physic model-based, reliability-based, and data-driven methods
(Wang et al., 2020). For the physic model-based techniques,
the mathematical models are proposed to describe the research
objects. Moreover, the reliability-based approaches adapt the
probability theory and knowledge-based statics while it requires
prior experience or knowledge of the system (Ma and Jiang, 2011;
Jamil et al., 2016). However, it is not suitable for real industrial
applications like the NPP as it is highly dynamic and non-linear
(Zhao and Wang, 2018). At last, the data-driven approaches
require no prior experience of the NPP and just only need the
previous data for the model training (Betta and Pietrosanto, 2000;
Razavi-Far et al., 2009; Wang et al., 2020). In recent years, it is
a promising technique and of interest for the FDD in the NPP
(Moshkbar-Bakhshayesh and Ghofrani, 2013; Ren et al., 2016;
Utah and Jung, 2020; Nguyen et al., 2020).

Data-Driven Machine Learning Method
The data-driven approaches tend to be more suitable and able
to predict without a prior knowledge of the NPP. At the same
time, it potentially achieves high accuracy with low economic
cost. Combined with the machine learning (ML) algorithms, the
data-driven techniques have drawn increasing attention for the
FDD in the NPP in the past decades (Ma and Jiang, 2011; Mandal
et al., 2017a,b; Wang et al., 2020).

At present, the data-driven machine learning (DDML)
methods, including the neural network, support vector machine
(SVM), dimension reduction learning (DRL), ensemble learning
(EL) or random tree (RT), regression approaches, and so on, have
been applied to predict the NPP behaviors (Jamil et al., 2016;
Saeed et al., 2020). Nevertheless, few researches concern with the

state-of-the-art progress and future trends for both the DDML
approach for the FDD and the NPP (Bartlett and Uhrig, 1992; Ma
and Jiang, 2011; Moshkbar-Bakhshayesh and Ghofrani, 2013).

Especially, Bartlett and Uhrig (1992) briefly presented the
artificial neural network (ANN) method for the FDD in the
NPP. However, it only concerns the ANN method. In 2011,
Ma and Jiang (2011) considered six areas of applications of
the FDD in the NPP. Moreover, the transient diagnosis in
the NPP was illustrated with the ANN approach (Moshkbar-
Bakhshayesh and Ghofrani, 2013). However, there are either
the specified component (system) or the outdated techniques
in the available research. As the DDML techniques in the
NPP sharp a lot in recent years (Rezaeianjouybari and Shang,
2020; Yao et al., 2020; Saeed et al., 2020), there exists a
gap in the current state-of–the-art of the DDML techniques
for the FDD in the NPP. In this review, the current
classifications, principles, characteristics, and applications of the
FDD in the NPP, followed by the discussion on the future
development of the DDML method for the NPP state prediction,
will be illustrated.

Scope of This Review
Compared with the physic model-based and reliability-based
techniques, the data-driven methods have the superior advantage
in the trade-off between the safety, reliability, and economics
of the NPP. In addition, it has been considered as a promising
future FDD direction from the encouraging results made by the
recent studies. However, to the best of our knowledge, there still
lacks research on comprehensive reviewing the state-of–the-art
progress on the DDML for the FDD in the nuclear industry.
Therefore, this review focuses on elaborating the DDML in the
NPP, introducing the applications of the DDML in the NPP
and illustrating the future development. In section “Overview of
the DDML for FDD in NPP,” principles and characteristics of
the DDML for the FDD are discussed, including the supervised
learning type, unsupervised learning type, and reinforcement
learning type. Section “Development of DDML for FDD in NPP”
shows the applications and further development of the DDML
for the FDD. Section “Conclusion” explains the conclusions and
remarks on the DDML for the FDD. It should be noted that
this review would emphasize the DDML for the FDD in the
nuclear industry.

OVERVIEW OF THE DDML FOR FDD
IN NPP

Generally, the DDML for the FDD in the NPP can be
classified into several types. First, these types include supervised
learning, unsupervised learning, and reinforcement learning
by the principle of the learning type. Second, these can be
sorted into regression, instance-based learning, neural network,
deep learning, dimension reduction, and kernel-based learning
algorithms by the algorithm type. In addition, the detailed
classifications of DDML for FDD in NPP are as shown in
Figure 1. As for the DDML, it is of emerging interest for the
FDD in the NPP. Hence, it is necessary to be illustrated in detail.
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FIGURE 1 | Detailed classifications of data-driven machine learning (DDML) for the fault diagnosis and detection (FDD) in the nuclear power plant (NPP).

Finally, the research profile of the DDML for the FDD in the NPP
is described as follows.

Supervised Learning Method
In Table 1, the ANN method, linear regression, logistic
regression, SVM, k-nearest neighbor (kNN), RT, and naive

Bayes (NB) for the FDD in the NPP belong to the supervised
learning approaches.

Artificial Neural Network Approach
A typical ANN is constructed by three parts: the structure
(the input signal, hidden layer, and output), learning algorithm
(update the synaptic weights), and activation function. For
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TABLE 1 | Status of the data-driven machine learning (DDML) of the supervised learning method for the fault diagnosis and detection (FDD) in the nuclear
power plant (NPP).

References Methods Type Characteristics

Aizpurua et al. (2018), Oluwasegun and
Jung (2020), and Po (2020)

ANN Supervised learning type Quickly adjustment; require a lot of data

Hadad et al. (2011) Linear regression Supervised learning type Direct and fast; abnormal value

Ayodeji et al. (2018) Logistic regression

Zio (2007), Liu et al. (2013), Ren et al.
(2016), Moshkbar-Bakhshayesh (2020),
Meng et al. (2020), and Wang et al.
(2021)

SVM Supervised learning type Largest geometric interval; low efficiency

Biet (2012) and Liu et al. (2013) kNN Supervised learning type Without modeling and training; large amount of calculation

Sharanya and Venkataraman (2018) RT Supervised learning type Without dimensionality reduction; overfit

Liu et al. (2013) and Chen and
Jahanshahi (2017)

NB Supervised learning type Easy to train; unable to process related parameters

example, the ANN approaches are taken for the FDD in the NPP
like the control rod drive system and accident prevention system
(Aizpurua et al., 2018; Po, 2020; Oluwasegun and Jung, 2020)
as shown in Figure 2. In Figure 2, the input signals x1, x2, . . .,
xn are the control rod step number, coil current data, vibration
data, coolant temperature, etc. They correspond to each synaptic
weight w1, w2, . . ., wn, respectively. After the procession of the
summing junction and the activation function ϕ(·), the output
y(k) is obtained. Additionally, the ANN approach can quickly
adjust to new problems. However, it requires a lot of data for the
training and it is hard to select the meta parameters.

Regression Algorithm
Especially, the linear regression assumes that the dependent
variable obeys a Gaussian distribution, whereas the logistic
regression assumes that the dependent variable follows a
Bernoulli distribution. Based on the linear regression, the logistic
regression introduces non-linear factors through the Sigmoid
function. For instance, Hadad et al. (2011) performed a linear
regression analysis to evaluate the network performance in
the NPP. In 2018, Ayodeji et al. (2018) combined the logistic
regression with the SVM for the incipient fault diagnosis in the
NPP. In particular, the regression algorithm is direct and fast
while it also needs to handle the abnormal value.

Support Vector Machine Method
The basic idea of the SVM learning is to solve the separation
hyperplane that can correctly divide the training dataset. In
Figure 3A, the formula represents the separating hyperplane.
In addition, w is the normal vector to the hyperplane with a
magnitude w. The parameter b/w is the offset amount between
the hyperplane and the origin. Furthermore, the two hyperplanes
wx − b = 1 and wx − b = − 1 are the margins of two classifies.
Overall, the distance between the two margins is 2/w. For a
linearly separable dataset, there are infinitely such hyperplanes
(i.e., perceptrons), whereas the separating hyperplane with the
largest geometric interval is the only one. It has the largest
geometric interval while the efficiency may not be high.

For the FDD in the NPP, Zio (2007) applied the SVM in the
anomalies and malfunctions occurring in the feedwater system.

Then, Liu et al. (2013) developed the SVM for monitoring the
components of NPPs. In addition, Ren et al. (2016) proposed
the SVM with sparse representation. Furthermore, Moshkbar-
Bakhshayesh (2020) utilized the SVM for the control rod system.
Meanwhile, Meng et al. (2020) combined the SVM and objective
function method for the loose parts. At last, Wang et al. (2021)
adopted the SVM together with the principal component analysis
(PCA) and clustering algorithm for the sensor faults in the NPP.

k-Nearest Neighbor Technique
The principle of the kNN technique is described in Figure 3B. In
the prediction of point xu in Figure 3B, four neighboring samples
belong to the category c1 and only one neighboring sample
belongs to the category c2. Hence, the point xu is classified as the
category c1. But from the visual observation, it should be more
reasonable to divide into circular classification. According to this
situation, a weight such as ω1, ω2, and ω3 can be also added to the
distance measurement. First, Liu et al. (2013) coupled the kNN
technique with the SVM for monitoring the components of NPPs.
Biet (2012) conducted the rotor FDD with the kNN technique
and feature section in the NPP. On the one hand, the advantages
of this algorithm are simple, easy to understand, and without
modeling and training. And it is suitable for multi-classification
problems. On the other hand, the shortcomings of this algorithm
include the lazy algorithm and a large amount of calculation when
classifying the test samples.

Random Tree Approach
The RT approach contains two parts, one is “random” and the
other is “tree.” It is based on the decision tree (DT). It can
produce very high-dimensional (many features) data without
dimensionality reduction or feature selection. And Sharanya
and Venkataraman (2018) carried out the RT for the FDD of
the coolant tower in the NPP. Meanwhile, it can judge the
importance of features. However, the RT has been shown to
overfit in some noisy classification or regression problems.

Naive Bayes Method
The NB is a classification method based on the Bayes’ theorem
and the independence assumption of characteristic conditions.
For this technique, Liu et al. (2013) combined the NB with
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FIGURE 2 | The artificial neural network (ANN) approach for the fault diagnosis and detection (FDD) in the nuclear power plant (NPP).

FIGURE 3 | The support vector machine (SVM) and k-nearest neighbor (kNN) method for the fault diagnosis and detection (FDD) in the nuclear power plant (NPP).
(A) SVM (B) kNN.

SVM for components in the NPP. In 2017, Chen and Jahanshahi
(2017) carried out the FDD of thermocouples with the naive
Bayes method in the NPP. It is fast, easy to train, and has
good performance. Meanwhile, it may fall short when the input
variables are related.

Unsupervised and Reinforcement
Learning Method
Then, the DDML methods of the unsupervised learning type for
the FDD in the NPP include the clustering (Baraldi et al., 2013;
Li et al., 2020; Wang et al., 2021) and PCA (Ayodeji et al., 2018;
Ling et al., 2020; Yu et al., 2020; Wang et al., 2021) techniques as
shown in Table 2.

Afterward, the DDML research of the reinforcement learning
type gradually developed in Table 2. The DDML such as the
singular value decomposition (SVD) (Mandal et al., 2017a), deep
Q learning network (DQN) (Lee et al., 2020), and Monte Carlo
(MC) (Rao et al., 2009; Wang et al., 2018) are adopted by the NPP.

Clustering
Clustering algorithm refers to the classification of a group of
targets. Compared with other groups of the targets, the same

group of the targets are more similar to each other. In 2013,
Baraldi et al. (2013) adopted the clustering technique for the FDD
of the pressurizer. Later, Li et al. (2020) proposed a clustering
algorithm for the transient detection in the NPP. Furthermore,
Wang et al. (2021) utilized the clustering algorithm together
with the SVM and PCA for the sensor anomalies in the NPP.
This algorithm can make the data meaningful. Meanwhile, the
results with this algorithm become difficult to interpret for the
unusual datasets.

Principal Component Analysis Approach
The PCA approach is a kind of the dimensionality reduction
method, which pursues the purpose of using less information to
summarize or describe the data. In 2018, Ayodeji et al. (2018)
operated the PCA with the radial basis function (RBF) for the
transient scenarios in the NPP. Then, Yu et al. (2020) detected
the sensor faults with the PCA approach. Afterward, Ling et al.
(2020) presented the FDD of the reactor coolant system in the
NPP. Lastly, Wang et al. (2021) utilized the PCA together with
the clustering algorithm and SVM for the sensor anomalies in
the NPP. The main operation of the PCA approach is eigenvalue
decomposition, which is easy to implement. Conversely, the
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TABLE 2 | Status of the data-driven machine learning (DDML) of the unsupervised and reinforcement learning method for the fault diagnosis and detection (FDD) in the
nuclear power plant (NPP).

References Methods Type Characteristics

Baraldi et al. (2013), Li et al.
(2020) and Wang et al. (2021)

Clustering Unsupervised learning type Make data meaningful; difficult to handle the unusual data

Ayodeji et al. (2018), Ling et al.
(2020), Yu et al. (2020), and
Wang et al. (2021)

PCA Unsupervised learning type Easy to implement; certain degree of vagueness

Mandal et al. (2017a) SVD Reinforcement learning type No noise; only suits the numerical data

Lee et al. (2020) DQN Reinforcement learning type A lot of samples; sophisticated parameter adjustment

Rao et al. (2009) and Wang
et al. (2018)

MC Reinforcement learning type Without uncertainty; high a time and space complexity

meaning of each feature dimension of the principal component
has a certain degree of vagueness, which is not as explanatory as
the original sample feature.

Singular Value Decomposition Method
The SVD method also belongs to the dimensionality reduction
means. It is to decompose a large matrix into a form that is easy to
handle. For the FDD in the NPP, Mandal et al. (2017a) introduced
the SVD method to the thermocouple sensors. This algorithm
can simplify the data, remove the noise, and hence improve the
algorithm results. In contrast, it only suits the numerical data.

Deep Q Learning Network Technique
The DQN algorithm is a method of approximating the Q learning
through a neural network. In 2020, Lee et al. (2020) focused on
developing the algorithm for converting all the currently manual
activities in the NPP power-increase process to autonomous
operations. Among them, the DQN algorithm is included. For
the DQN algorithm, it can produce a large number of samples.
Conversely, the DQN algorithm may not necessarily converge
and require sophisticated parameter adjustment.

Monte Carlo Method
The MC method has its inherent capability in simulating the
actual process and random behavior of the system. First, Rao et al.
(2009) carried out the probabilistic safety assessment with the MC
method in the NPP. Then, Wang et al. (2018) explored the cyber-
attack scenarios with the MC method in the NPP. It can eliminate
uncertainty in reliability modeling while this algorithm requires
a high time and space complexity.

Algorithm Type Method
In the past decades, the DDML studies can be classified
into regression, instance-based learning, neural network, deep
learning, dimension reduction, and kernel-based learning
algorithms and they are shown in Table 3. Especially, the
DDML of the deep learning type is popular for the FDD
in the NPP recently. In addition, it is one of the recent
advancements in the ANN (Peng et al., 2018). Furthermore,
the deep learning type includes the recurrent neural network
(RNN) (Moshkbar-Bakhshayesh and Ghofrani, 2013; Ling et al.,
2020; Rezaeianjouybari and Shang, 2020), convolutional neural
network (CNN) (Chen and Jahanshahi, 2017; Yao et al., 2020;

Chae et al., 2020), deep neural network (DNN) (Mo et al., 2007;
Chae et al., 2020; Miki and Demachi, 2020; Rezaeianjouybari and
Shang, 2020; Saeed et al., 2020; Utah and Jung, 2020), deep belief
network or dynamic Bayesian network (DBN) (Mandal et al.,
2017b; Peng et al., 2018; Oh and Lee, 2020; Vaddi et al., 2020;
Zhao et al., 2020), and restricted Boltzmann machine (RBM)
(Rezaeianjouybari and Shang, 2020).

Recurrent Neural Network Approach
The biggest difference between the RNN approach and the
traditional neural network is that each time it will bring the
previous output result to the next hidden layer and train together.
In 2013, Moshkbar-Bakhshayesh and Ghofrani (2013) studied
the advanced approaches, which include the RNN approach for
the transient diagnosis in the NPP. Then, Rezaeianjouybari and
Shang (2020) reviewed the RNN algorithm and DNN technique
for the prognostics and health management (PHM) in the NPP.
Afterward, Ling et al. (2020) presented the RNN approach and
PCA for the FDD in the reactor coolant system in the NPP.
Especially, the RNN has the ability to learn and execute complex
data conversion over a long period of time. It also may cause the
problem of the vanishing gradient.

Convolutional Neural Network Method
The CNN algorithm is iteratively trained with a certain model
to extract the features. It has been adopted for crack detection
(Chen and Jahanshahi, 2017), sensor fault conditions (Yao et al.,
2020), and pipe corrosion (Chae et al., 2020). Additionally, the
advantages of the CNN algorithm are that it can automatically
perform the feature extraction and has no pressure on the high-
dimensional data processing. Meanwhile, it needs to adjust the
parameters need and requires a large size of the sample.

Deep Neural Network Technique
The DNN technique has been proposed for the transient
detection (Mo et al., 2007), PHM (Rezaeianjouybari and Shang,
2020), fault state detection of the solenoid operated valves (Utah
and Jung, 2020), and the novel fault scheme (Saeed et al., 2020)
in the NPP. In addition, Chae et al. (2020) combined the long–
short term memory (LSTM) network with the SVM and CNN
approach to diagnose the pipe corrosion in the NPP. Finally, the
LSTM network, which is an RNN approach, was also applied for
the bear fault in the NPP (Miki and Demachi, 2020). It has a
strong learning ability while the model design is complex.
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TABLE 3 | Status of the data-driven machine learning (DDML) of the algorithm type method for the fault diagnosis and detection (FDD) in the nuclear power plant (NPP).

References Methods Type Characteristics

Moshkbar-Bakhshayesh (2020) FFBPNN Neural network type Fast classification; decrease in accuracy

Moshkbar-Bakhshayesh (2020) BPNN Neural network type Self-learning ability; low efficiency

Moshkbar-Bakhshayesh and Ghofrani
(2013), Ling et al. (2020), and
Rezaeianjouybari and Shang (2020)

RNN Deep learning type Execute complex data; vanishing gradient

Chen and Jahanshahi (2017), Chae
et al. (2020), and Yao et al. (2020)

CNN Deep learning type Automatically feature extraction; require a lot of sample

Mo et al. (2007), Chae et al. (2020), Miki
and Demachi (2020), Rezaeianjouybari
and Shang (2020), Saeed et al. (2020),
and Utah and Jung (2020)

DNN Deep learning type Strong learning ability; complex model design

Mandal et al. (2017b), Oh and Lee
(2020), Peng et al. (2018), Vaddi et al.
(2020), and Zhao et al. (2020)

DBN Deep learning type Quickly adjustment; requirement of a lot of data

Rezaeianjouybari and Shang (2020) RBM Deep learning type

Ayodeji et al. (2018) and Wang et al.
(2019)

RBF Kernel-based Type Fast in convergence; require a lot of data

Deep Belief Network and RBM Method
The DBN method is a major method of the Bayesian network
(BN). It was applied to classify the fault data of the thermocouple
sensors (Mandal et al., 2017b), accident prediction (Peng et al.,
2018), operation failure of the high temperature gas-cooled
reactor (Zhao et al., 2020), loss of coolant accident (LOCA)
identity (Oh and Lee, 2020) and cybersecurity threats (Vaddi
et al., 2020) in the NPP. Lastly, the DBN can be seen as a
stack of the RBM (Rezaeianjouybari and Shang, 2020). The DBN
and RBM method belong to the neural network (NN) method.
Hence, the pros and cons of the two techniques are the same as
the ANN approach.

Other Techniques
For the kernel-based type approach, the above SVM comes to the
first place. Followed with the SVM, the RBF was adopted for the
transients monitoring (Ayodeji et al., 2018; Wang et al., 2019). It
is fast in convergence while it requires a lot of data. In addition,
Moshkbar-Bakhshayesh (2020) investigated the feed-forward
back-propagation neural network (FFBPNN), backpropagation
neural network (BPNN), DT and SVM for the uncontrolled
withdrawal of control rods in the NPP. The advantages and
disadvantages of these methods are shown in Table 3.

DEVELOPMENT OF DDML FOR FDD IN
NPP

Currently, huge achievements have already been made in its
applications to predict the behaviors of the NPP. Therefore,
there is a need to summarize the latest applications of the
DDML in the NPP. It can also open future prospects to
improve the accuracy of the FDD and have insights into the
underlying mechanisms.

Furthermore, the DDML is a promising area with a flexible
and efficient fitting algorithm. It does not underlie physical
knowledge. Tables 4–6 summarize the approaches taken by a

wide range of authors recently. Generally, the DDML for the FDD
in the NPP can be classified into three areas: (1) reactor system,
(2) reactor component, and (3) reactor condition monitoring.

Latest Applications of DDML for FDD in
the NPP System
As shown in Table 4, the DDML has been utilized for the FDD
in the reactor coolant system (Ayodeji and Liu, 2018a; Farber
and Cole, 2020), secondary loop system (Dong and Zhang, 2020),
instrumentation control system (Holbert and Lin, 2012), and
feedwater system (Zio, 2007) in the NPP.

First, Ayodeji and Liu (2018a) proposed the SVM for the
incipient fault conditions of the reactor coolant system in the
pressurized water reactor. In addition, Farber and Cole (2020)
combined the ANN with the physical model-based method for
the loss of coolant accident (LOCA) of the reactor coolant
system. Then, Dong and Zhang (2020) presented the causality
graphs, which belong to the BN approach for the secondary
loop system in the NPP. Afterward, Holbert and Lin (2012)
integrated the fuzzy logic, which is a kind of the NN techniques
for the instrumentation control system in the NPP. At last, Zio
(2007) utilized the SVM approach for the feedwater system of a
boiling water reactor.

TABLE 4 | Latest applications of the data-driven machine learning (DDML) for the
fault diagnosis and detection (FDD) of the nuclear power plant (NPP) system.

References Methods Objectives

Ayodeji and Liu (2018a) SVM Reactor coolant system

Farber and Cole (2020) ANN + physic model

Dong and Zhang (2020) BN (Causal graphs) Reactor secondary
loop system

Holbert and Lin (2012) NN (fuzzy logic) Instrumentation control
system

Zio (2007) SVM Feedwater system
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TABLE 5 | Latest applications of the data-driven machine learning (DDML) for the
fault diagnosis and detection (FDD) of the nuclear power plant (NPP) component.

References Methods Objectives

Baraldi et al. (2013) Clustering Pressurizer

Zhang et al. (2020) RNN (LSTM)

Di et al. (2013) PCA + Regression Reactor coolant
pump

Liu and Zio (2017) SVM

Lu and Upadhyaya (2005) NN (GMDH) Steam
generator

Zhao and Upadhyaya (2005) BN (causal graphs)

Razavi-Far et al. (2009) NN (fuzzy logic)

Li et al. (2012) PCA

Ayodeji and Liu (2018b) Regression

Ayodeji and Liu (2019) ML

Oluwasegun and Jung (2020) ANN Control rod

Moshkbar-Bakhshayesh (2020) DT + FFBPNN + SVM

Biet (2012) kNN + Sparse Turbine
generator

Zhang et al. (2013) BN (causal graphs)

Ren et al. (2016) SVM + Sparse Bearing

Zhao and Wang (2018) DNN

Miki and Demachi (2020) RNN (LSTM)

Upadhyaya et al. (2003) PCA + NN (GMDH) Sensors

Mandal et al. (2017a) SVD

Mandal et al. (2017b) DBN

Choi and Lee (2020) RNN

Yu et al. (2020) PCA

Nguyen et al. (2020) Physic model

Wang et al. (2021) SVM + PCA + clustering

TABLE 6 | Latest applications of the data-driven machine learning (DDML) for the
fault diagnosis and detection (FDD) of the nuclear power plant (NPP)
condition monitoring.

References Methods Objectives

Mo et al. (2007) DNN Transient diagnosis

Moshkbar-
Bakhshayesh and
Ghofrani (2013)

ANN

Ma and Jiang
(2011)

ANN

Ma and Jiang
(2011)

ANN Loose part monitoring

Meng et al. (2020) SVM

Zhao and
Upadhyaya (2005)

BN (causal graphs) Incipient fault monitoring

Chen and
Jahanshahi (2017)

CNN + NB Crack monitoring

Chae et al. (2020) SVM + CNN + LSTM Pipe corrosion monitoring

Wang et al. (2018) MC Cyber-attack monitoring

Vaddi et al. (2020) DBN

Latest Applications of DDML for FDD in
the NPP Component
In Table 5, the reactor components, which include the pressurizer
(Baraldi et al., 2013; Zhang et al., 2020), reactor coolant pump

(Di et al., 2013; Liu and Zio, 2017), steam generator (Lu
and Upadhyaya, 2005; Zhao and Upadhyaya, 2005; Razavi-Far
et al., 2009; Li et al., 2012; Ayodeji and Liu, 2018b, 2019),
control rod (Moshkbar-Bakhshayesh, 2020; Oluwasegun and
Jung, 2020), turbine generator (Biet, 2012; Zhang et al., 2013),
bearing (Ren et al., 2016; Zhao and Wang, 2018; Miki and
Demachi, 2020), and sensors (Upadhyaya et al., 2003; Mandal
et al., 2017a,b; Choi and Lee, 2020; Nguyen et al., 2020; Yu
et al., 2020; Wang et al., 2021) are captured by different
modeling techniques.

Initially, Baraldi et al. (2013) tested the clustering for the FDD
in the pressurizer in the NPP. Later, Zhang et al. (2020) applied
the LSTM for the water lever prediction of the pressurizer.
For the reactor coolant pump, Di et al. (2013) conducted
the FDD for the reactor coolant pump with the PCA and
kernel-based regression method. Finally, Liu and Zio (2017)
predicted the leakage from the reactor coolant pump with
the SVM.

However, Lu and Upadhyaya (2005) adopted the group
method of data handling method (GMDH), which is a kind
of the NN approach for modeling the interrelationship of
the U-tube steam generator (UTSG). Zhao and Upadhyaya
(2005) presented the causal graphs for a pressurized water
reactor. Razavi-Far et al. (2009) detected the faults of the
steam generator using the fuzzy logic technique. Meanwhile,
the PCA (Li et al., 2012) and support vector regression
(Ayodeji and Liu, 2018b) are also adopted for the FDD of the
steam generator.

For the control rod, Oluwasegun and Jung (2020) provided
the health monitoring with the ANN approach. Meanwhile,
Moshkbar-Bakhshayesh (2020) predicted the uncontrolled
withdrawal of control rods transient with the DT, FFBPNN, and
SVM. In addition, Biet (2012) recoded the rotor faults of the
turbine generator with the kNN and sparse. However, Zhang
et al. (2013) developed the causal graphs for the FDD of the
turbine generator. Furthermore, the SVM plus sparse, DNN,
and LSTM approaches for the FDD of the roller bearing were
also proposed, respectively (Ren et al., 2016; Zhao and Wang,
2018; Miki and Demachi, 2020). Lastly, various techniques,
including the PCA, GMDH, SVD, DBN, RNN, and clustering,
are carried out for the sensor faults correspondingly in the NPP
as shown in Table 4 (Upadhyaya et al., 2003; Mandal et al.,
2017a,b; Choi and Lee, 2020; Nguyen et al., 2020; Yu et al., 2020;
Wang et al., 2021).

Latest Applications of DDML for FDD in
the NPP Condition Monitoring
To satisfy the reliability, safety, and economics of the
NPP, the condition identification of the NPP is expected
to become increasingly popular as shown in Table 6
(Moshkbar-Bakhshayesh and Ghofrani, 2013).

For the transient monitoring, Mo et al. (2007) proposed
the DNN for the NPP. Furthermore, the ANN method for
the transient monitoring in the NPP is mainly reviewed
(Moshkbar-Bakhshayesh and Ghofrani, 2013; Ma and Jiang,
2011). Additionally, the ANN and SVM approaches have
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been adopted for the loose part monitoring (Ma and Jiang,
2011; Meng et al., 2020). Meanwhile, the causal graphs are
also utilized for the incipient fault monitoring (Zhao and
Upadhyaya, 2005). Moreover, Chen and Jahanshahi (2017)
detected cracks on the underwater metallic surfaces from the
nuclear inspection videos with the CNN and NB techniques.
Furthermore, three approaches, including the SVM, CNN, and
LSTM, are combined for the flow-accelerated corrosion of the
pipe in the NPP (Chae et al., 2020). Especially, the new threats
of the cyber-attack scenarios in the NPP are identified with
the MC and DBN methods (Wang et al., 2018; Cyber threats:
Vaddi et al., 2020).

Further Development of DDML for FDD
in NPP
The DDML is of emerging interest in the FDD in the
NPP. As mentioned above, significant efforts have already
been taken in the prediction of the NPP behaviors. The
future development of the DDML for the FDD in the NPP
can be concluded based on the latest applications of the
DDML for the FDD in the NPP as described in sections
“Latest Applications of DDML for FDD of NPP System” to
“Latest Applications of DDML for FDD of NPP Condition
Monitoring.”

Combination of DDML and Physic Model-Based
Approach
For the DDML, the training data input and the results output.
Hence, it is commonly regarded as a “black box.” Although
the physic model-based techniques are difficult to be proposed
to describe the research objects, it still has its advantages.
However, the combination of the DDML and physic model-
based approach can help better understanding of the physical
process (Farber and Cole, 2020). Furthermore, the DDML
can be illustrated the experiment data clearly if the physic
model-based approach functions. It should be noted that
the hybrid of the DDML and physic model-based approach
may attribute to higher computational resources. Nevertheless,
it can provide reasonable and accurate insights into the
physical processes.

Hybrid of Different Time-Scale Methods
In Tables 4–6, various methods for the FDD of the reactor
systems, reactor components, and reactor condition monitoring
are illustrated generally. Among them, there are hybrid
of two or more techniques (Upadhyaya et al., 2003; Di
et al., 2013; Ren et al., 2016; Chae et al., 2020; Moshkbar-
Bakhshayesh, 2020; Wang et al., 2021). In particular, the time
scale of the physical process of each object differs, which
corresponds to its suitable methods for the FDD. Especially,
the hybrid of the two or more methods for the FDD can
be a superior solution for the evolution of the NPP. By
this hybrid, it can present both the short-time and long-time
behaviors of the NPP.

Sparse Data Treatment
Due to the safety, reliability, and economic issues, there is
usually a lack of the experiment data of the FDD in the NPP.
For a reactor system, reactor component, and reactor condition
monitoring, not every parameter or data can be obtained.
Therefore, there is a need for the DDML approach that is
suitable for the sparse data. Special DDML can meet the urgent
requirement properly.

Accurate and Fast Simulations
From the above treatment, the experiment data are hardly
obtained under some conditions. Hence, the simulations
are commonly performed to generate the training data
(Wang et al., 2020; Yu et al., 2020). An accurate and
fast simulation can understand the system, component,
or condition with relatively acceptable computation cost.
Detailed simulations are costly. One solution is to create
a database of the historic results for the simulations
and then train the DDML model. Later, DDML can also
contribute to the experiment design for reasonable relatively
fewer experiments.

CONCLUSION

In this paper, the state-of-the-art progress on the DDML
for the FDD in the nuclear industry, which is an
emerging interest on both the DDML approach for the
FDD and the NPP, is reviewed. The main conclusions
are obtained.

First, the DDML for the FDD in the NPP, which includes
the supervised learning type, unsupervised learning type, and so
on, are classified clearly with their characteristics, which help a
comprehensive overview of the DDML.

1. Then, principles of various DDML for the FDD in the NPP,
in particular, the DDML of the supervised learning type
and deep learning type are explained in detail.

2. Furthermore, the latest applications of the DDML
for the FDD, which consist of the reactor system,
reactor component, and reactor condition monitoring
are illustrated.

Lastly, the future development of the DDML for the FDD
in the NPP is concluded. Considering the accuracy, complexity,
and computation amount, the combination of the DDML and
physic model-based approach, hybrid of different time-scale
methods, accurate, and fast simulations are the future trends for
the FDD in the NPP.

Compared with the physic model-based and reliability-based
techniques, the DDML have superior advantages in the trade-
off between the safety, reliability, and economics of the NPP.
With the advancement of the information technologies and ML
algorithms, together with the hybrid of the various approaches in
different time scales, the DDML is to be a promising technique
for the advanced NPP modeling in the future.
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NOMENCLATURE

ANN The artificial neural network

BPNN The back propagation neural network

BN The Bayesian network

CNN The convolutional neural network

DBN The deep belief network or dynamic Bayesian network

DDML The data-driven machine learning

DNN The deep neural network

DRL The dimension reduction learning

DQN The deep Q learning network

DT The decision tree

EL The ensemble learning

FDD The fault diagnosis and detection

FFBPNN The feed-forward back-propagation neural network

GMDH The group method of data handling

kNN The k-nearest neighbor

LOCA The loss of coolant accident

LSTM The long–short term memory

MC The Monte Carlo

ML The machine learning

NB The naive Bayes

NN The neural network

NPP The nuclear power plant

PCA The principal component analysis

PHM The prognostics and health management

RBF The radial basis function

RBM The restricted Boltzmann machine

RNN The recurrent neural network

RT The random tree

SVD The singular value decomposition

SVM The support vector machine

UTSG The U-tube steam generator

b The model parameter

c1, c1, c3 The category in the kNN method

w The normal vector to the hyperplane

w1, . . ., wn The synaptic weights

w The magnitude

x1, . . ., xn The input signals

xu The prediction point in the kNN method

yk The output signals

ϕ(·) The activation function
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In a carbon-constrained world, future uses of nuclear power technologies can contribute to
climate change mitigation as the installed electricity generating capacity and range of
applications could be much greater and more diverse than with the current plants. To
preserve the nuclear industry competitiveness in the global energy market, prognostics
and health management (PHM) of plant assets is expected to be important for supporting
and sustaining improvements in the economics associated with operating nuclear power
plants (NPPs) while maintaining their high availability. Of interest are long-term operation of
the legacy fleet to 80 years through subsequent license renewals and economic operation
of new builds of either light water reactors or advanced reactor designs. Recent advances
in data-driven analysis methods—largely represented by those in artificial intelligence and
machine learning—have enhanced applications ranging from robust anomaly detection to
automated control and autonomous operation of complex systems. The NPP equipment
PHM is one area where the application of these algorithmic advances can significantly
improve the ability to perform asset management. This paper provides an updated
method-centric review of the full PHM suite in NPPs focusing on data-driven methods
and advances since the last major survey article was published in 2015. The main
approaches and the state of practice are described, including those for the tasks of
data acquisition, condition monitoring, diagnostics, prognostics, and planning and
decision-making. Research advances in non-nuclear power applications are also
included to assess findings that may be applicable to the nuclear industry, along with
the opportunities and challenges when adapting these developments to NPPs. Finally, this
paper identifies key research needs in regard to data availability and quality, verification and
validation, and uncertainty quantification.
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INTRODUCTION

Reducing anthropogenic greenhouse gas (GHG) emissions for
climate change mitigation while expanding energy access to
billions of people is a central global challenge of this century.
As the world’s second-largest low-carbon power source (second
only to hydropower), nuclear power makes up more than one-
quarter of annual low-carbon electricity supply worldwide and
has avoided about 60 gigatons of GHG emissions over the past
50 years (IEA, 2019). At present, approximately 10% of global
electricity generation is produced by nuclear power each year
(IAEA, 2021). To achieve deep decarbonization targets, including
the one limiting average global warming to 2°C in 2050 (Gao et al.,
2017), it is imperative to maintain the existing nuclear share of
electricity production (MIT, 2018).

Despite its important role in energy transitions tomeet climate
goals, the nuclear industry is facing an uncertain future in many
countries, not only due to the March 2011 Fukushima accident in
Japan but also more fundamentally for economic reasons. In
advanced economies such as the United States, unfavorable
market conditions—including weak growth in electricity
demand, low natural gas prices, and increasing competition
from renewables-based power supply—are putting pressure on
the financial performance of existing nuclear power plants
(NPPs), which may lead to their early retirements. One of the
first thrusts being pursued to support economical nuclear power
has been focused on life extensions of the legacy fleet, from the
initial license period of 40 years (in most cases) to 50–60 years
and possibly beyond. Life extensions are considerably cheaper
than new construction and will be cost-competitive with any
other electricity generation technology, as illustrated in Figure 1
for the projected US levelized cost of electricity associated with
different technologies in 2040. A new joint report (IEA and NEA,

2020) by the International Energy Agency (IEA) and the Nuclear
Energy Agency (NEA) also concludes that prolonging the
operation of existing nuclear assets, known as long-term
operation (LTO), is the most affordable low-carbon solution.
Unfortunately, the LTO of current NPPs alone—mostly light
water reactors (LWRs)—can only provide temporary support for
the transition to clean energy systems. New builds are necessary,
and near-term interests are rising in LWR-based small modular
reactors (SMRs) and mature Generation-IV concepts.

To achieve safe, reliable, and economical operation of NPPs,
attention is turning to enhanced plant asset management
methods within the activities of both legacy fleet LTO and
new construction. Decades of global operational experience
have shown that greater situational awareness of the condition
of key structures, systems, and components (SSCs) is essential for
managing and mitigating plant equipment degradation,
particularly the aging-related degradation due to exposure to a
harsh operating environment. While the traditional approaches
to maintenance and aging management complied with the
defense-in-depth policy (IAEA, 1996) and proved to be
adequate for maintaining safety margins in the past, they were
not optimized in terms of effort, time, or cost (Coble et al., 2012).
Historically, corrective find-and-fix maintenance policies
prevailed in the early days of the nuclear industry, which
would incur overly long facility downtime and excessively high
cost (Ayo-Imoru and Cilliers, 2018). The time-based periodic
maintenance scheduling became widely employed since the
1970s. However, this strategy is generally conservative and
often yields unnecessary planned inspection and maintenance
that challenge the economics of nuclear generation. Meanwhile, it
does not prevent plant downtime caused by unanticipated
equipment failure, which leads to a significant amount of lost
revenue: at least $1.2 million per day of plant shutdown for an

FIGURE 1 | Projected US LCOE by technology in 2040 [modified from IEA (2019)]. Note for Figure 1: LCOE � levelized cost of electricity, average cost to
build and operate a power plant over its lifetime divided by the total electricity output of the plant over the same period; it represents the break-even price of
electricity generation at a power production facility. CCGT � combined-cycle gas turbines. Estimates of nuclear lifetime extension are based on a 500 million
USD investment to extend operations for 20 years. Other cost assumptions can be found in IEA (2019).

Frontiers in Energy Research | www.frontiersin.org June 2021 | Volume 9 | Article 6967852

Zhao et al. Review of PHM in NPPs

112

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


average NPP in the United States and France (NEI, 2011; Power
Engineering International, 2017). Therefore, it is necessary to
move from uneconomic find-and-fix or periodic maintenance
strategies to the more cost-effective just-in-time repair policies.

The just-in-time repair is a predictive maintenance strategy
that relies on continuous monitoring and full awareness of the
equipment health condition throughout its life cycle, or in other
words, the use of prognostics and health management (PHM)
principles. The full PHM suite includes five modules: data
acquisition, monitoring and anomaly detection, fault
diagnostics, prognostics, and planning and decision-making.
Through appropriate detection, diagnosis and prognosis, and
mitigation actions, a robust PHM system will allow early
warning of degradation in NPPs and will potentially preclude
serious consequences due to faults and failures while helping
alleviate the burden of unnecessary maintenance activities.

This paper provides an updated method-centric review of the
full PHM suite in NPPs since the last major survey article by
Coble et al. (2015) was published in 2015. The results of that
survey are augmented with new progress made in the intervening
years. In particular, recent advances in data-driven analysis
methods—largely represented by those in artificial intelligence
(AI) and machine learning (ML)—have enhanced applications
ranging from robust anomaly detection to automated control and
autonomous operation of complex systems. PHM in NPPs is one
area where the application of those algorithmic advances can
significantly improve the ability to perform enhanced asset
management. Therefore, special attention is dedicated to the
advances in data-driven diagnostic and prognostic methods.
PHM technologies in non-nuclear power applications are also
included to assess findings that may be applicable to the nuclear
industry, along with the opportunities and challenges when
adapting these developments to NPPs. “US NPP Monitoring
and Maintenance: Historical Approach and Motivations for
Prognostics and Health Management” Section summarizes the
historical approach to monitoring and maintenance in US NPPs
and outlines the PHM needs for improving the safety and
economy of both LTO and new builds. “Prognostics and
Health Management Framework and Modeling Approaches”
Section describes the PHM framework, followed by the state
of practice for each of its five modules with a focus on data-driven
methods. “Research Needs for Deployment of Prognostics and
Health Management in Nuclear Power Plants” Section identifies
the overarching research needs to support the development and
deployment of PHM in NPPs. “Summary” Section summarizes
the key findings of this paper.

US NPP MONITORING AND
MAINTENANCE: HISTORICAL APPROACH
AND MOTIVATIONS FOR PROGNOSTICS
AND HEALTH MANAGEMENT

The United States has the largest number of commercial nuclear
reactors in the world. Its operating fleet [94 LWRs in 56 NPPs
(IAEA, 2021) as of January 2021] has steadily generated about

20% of the nation’s electricity since the mid-1990s (NEI, 2021a) at
by far the highest capacity factor [93.4% in 2019 (US DOE, 2019)]
of any energy source. Despite this performance and the fact that
nuclear makes up more than half of the nation’s clean energy
(NEI, 2021b), nine reactors have been shut down in the
United States before their licenses expired since 2012 due to
unfavorable market conditions, and an additional five units are
scheduled to retire in 2021 (US DOE, 2020a; US EIA, 2021a). The
average age of US operating reactors is almost 40 years. The
youngest unit, Tennessee’s Watts Bar Nuclear Plant Unit 2, began
operation in 2016 and was the nation’s first new reactor in
20 years (US EIA, 2021b). Meanwhile, only two commercial
reactors—2 AP1000 units at Georgia’s Vogtle plant—are
currently under construction (IAEA, 2021) in the country. To
keep America’s nuclear capacity from sharply declining and to
enable clean energy transition, the current LWR fleet is
undergoing 20-years life extensions from the original 40-years
licenses; 85 reactors1 have been approved by the US Nuclear
Regulatory Commission (NRC) to operate 60 years through the
initial license renewal applications (NEI, 2021c). To date, 53
reactors have already entered extended operation or LTO (US
NRC, 2021a). Additionally, utilities are intending to operate up to
80 years through second 20-years extensions or subsequent
license renewals; four reactors have been issued a second
renewed license for extended LTO and six additional
applications are under review (US NRC, 2021b).

To comply with the NRC’s license renewal rule [Title 10, Part
54 of the Code of Federal Regulations, or 10 CFR 54 (US NRC,
1995)] and to continue to provide secure nuclear power
generation, it is imperative to understand and manage the
effects of SSC aging in NPPs. As described in Coble et al.
(2012), the NRC monitoring and maintenance programs
usually draw a distinction between active and passive SSCs.2

The active SSCs—such as control rod drives, generators, sensors,
motors, pumps, and valves—must move to perform their
intended functions. Their performance monitoring and aging
management have been historically covered by the Maintenance
Rule (10 CFR 50.65) (US NRC, 2021c). The Maintenance Rule
provides a performance-based approach to monitoring and
improving the overall effectiveness of active component
maintenance. However, it does not directly improve the
economics of performing maintenance (Coble et al., 2012).
Under the Maintenance Rule, a large majority of maintenance
activities remain periodically scheduled. The passive SSCs—such
as reactor pressure vessels (RPVs), heat exchangers, transformers,
cables, support structures, and piping—do not move during
normal functions. Their degradation and maintenance are
managed through periodic in-service inspection as dictated by
the plant’s aging management program. As codified in 10 CFR
50.55a (US NRC, 2021d), nondestructive inspection

1The NRC has approved initial license renewal applications for 93 reactors.
Unfortunately, eight of them have since ceased operations prematurely.
2The distinction between active and passive SSCs can be complicated. For example,
pumps are active components, but their casings and support structures are
considered passive.
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requirements are specified for the in-service inspection of passive
components.

As plants enter LTO, aging becomes a more challenging
problem. Because it is of paramount importance to be warned
of impending SSC faults and failures, the frequency of periodic
inspection and maintenance will need to increase to compensate
for potentially growing failure rates over time due to wear-out
failures in active SSCs and for reduced safety margins toward the
lowest allowable level due to degraded material characteristics in
passive SSCs. The increased inspection frequency would cause
extended (and sometimes unnecessary) downtime of plant safety-
critical systems and eventually affect the industry’s
competitiveness. Transitioning from periodic maintenance
scheduling to a more continuous, just-in-time health
management approach is essential to ensure that the intended
functions of NPP assets are maintained for the period of extended
operation. Advanced monitoring techniques will provide the
necessary support to this transition, along with advances in
diagnostic and prognostic methods.

Currently, there is a growing interest in applying condition-
based (rather than time-based) maintenance for active
components and automated online monitoring (instead of
periodic inspection) for passive components through the use
of PHM. In fact, well-applied PHM technologies will benefit
not only aging LWRs but also new builds, especially LWR-based
SMRs [such as the pressurized water NuScale720 (US DOE,
2020b) and the boiling water GEH BWRX-300 (US DOE,
2020c)] and mature advanced reactor designs as part of the
Generation-IV initiative [such as TerraPower’s Natrium and
X-energy’s Xe-100 under the US Department of Energy
[DOE]’s Advanced Reactor Demonstration Program (US DOE,
2020d)], into which inherent and passive safety features are
extensively incorporated. These reactors have additional
monitoring and surveillance needs over currently operating
LWRs due to extended fuel cycles, exposure to harsher
operating environments, use of innovative materials, and
remote siting with reduced maintenance staffing levels (Coble
et al., 2015). Traditional inspection techniques and maintenance
policies will not meet such needs.

In addition to improving plant safety and reliability, PHM is
also economically attractive for reducing operations &
maintenance (O&M) costs compared to time-based and even
traditional condition-based (i.e., without the use of PHM)3

policies. The O&M costs represent a crucial disadvantage for
the nuclear industry and comprise about two thirds of total
generating costs in NPPs (Coble et al., 2015; Al Rashdan et al.,
2018). As discussed in “Introduction” Section, periodic

inspection and maintenance could lead to unnecessary and
unanticipated repair or replacement of SSCs, incurring
significant additional downtime and costs. Besides, compared
to the traditional concept of condition-based maintenance
(CBM), PHM-enabled CBM provides capabilities to achieve
more proactivity in O&M, places stronger emphasis on the
operation stage than the design stage, and rely on condition-
based, facility-specific status identification rather than population
statistics. While detailed cost-benefit analyses of using PHM in
specific NPPs are yet to be conducted, Bond et al. (2011) suggest
that applying PHM technologies to all key SSCs in the nation’s
legacy plants could result in an annual fleet-wide savings of more
than $1 billion.4 Furthermore, proper application of the complete
PHM suite—especially with automated planning and decision-
making capabilities—can effectively reduce labor reliance and
frequency of O&M activities because labor costs account for
approximately 80% of O&M costs in US plants.

PROGNOSTICS AND HEALTH
MANAGEMENT FRAMEWORK AND
MODELING APPROACHES
This paper reviews the full PHM suite, which utilizes sensor
technologies and data analytics to monitor health conditions,
detect anomalies, diagnose faults, predict the remaining useful life
(RUL), and proactively manage failures (Droguett, 2020) in
complex engineering systems such as NPP assets. The five
modules/steps of a full PHM system are depicted in Figure 2,
and each module will be elaborated on in the following
subsections. To date, there has been no universally well-
defined categorization of PHM systems partly due to lack of
unifying PHM standards, which are needed for harmonized
terminology, consistency of PHM methods, and compatibility/
interoperability of PHM technology. A number of disparate
industrial standards—mostly developed by the International
Organization for Standardization (ISO) and the Institute of
Electrical and Electronics Engineers (IEEE)—exist which
pertain to different modules of a PHM system, such as ISO
13374 series for condition monitoring (CM) of industrial
machines, ISO 13379 for diagnostics, ISO 13381 for
prognostics, and IEEE P1856 for PHM of electronic systems.
Vogl et al. (2014) surveyed existing PHM-related standards and
identified areas for development of future standards.

In a PHM system, sensory data collected from a target SSC are
continuously monitored for deviations from normal behavior,
which are indicators of incipient faults or anomalies.5 Once an
anomaly is detected, it is important to diagnose the fault, or in

3It is important to notice that PHM is not a type of maintenance by itself but rather
a set of tools that yield information which can be used as input to CBM. In other
words, CBM can be adopted with or without the use of PHM. In fact, many
traditional frameworks considered CBM but did not include the treatment of PHM
techniques/methods. To mark the difference with the traditional concept of CBM
(i.e., CBM without implementation of PHM), new terms for PHM-enabled CBM
have been introduced in the literature, including CBM+ and CBM/PHM. A
comprehensive review on the role of PHM in CBM systems, which is not the
focus of this paper, can be found in Guillén et al. (2016).

4The annual fleet-wide O&M costs in the US are estimated to be around $12 billion
in 2017 US dollars. This is calculated with an annual O&M cost of $120 per kW for
an average US plant of 36 years old (in 2017) (SargentLundy, 2018) and a total
capacity of 100 GW (NEI, 2021c).
5The terms “faults” and “anomalies” have been used interchangeably in the
literature. Technically speaking, they have a subtle difference in meaning:
anomalies refer to deviations indicated by sensor measurements, whereas faults
refer to the actual physical manifestations of such deviations in a monitored SSC.
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other words, to locate the fault to a specific component or area of
a structure (i.e., fault isolation) and to determine the root cause of
the fault (i.e., fault identification). Depending on how the SSC will
degrade, an appropriate prognostic model is then applied to
estimate its RUL. Finally, O&M planning is informed by
integrating prognostic calculations and risk assessment of
proposed mitigation actions based on the current and
postulated future health states of the target SSC to achieve
optimal (and ultimately autonomous) control and decision-
making.

Besides traditional modeling tools, the recent advancements in
AI and ML technologies provide opportunities for leveraging
emerging data-driven algorithms to effectively address PHM
problems, especially those of diagnostics and prognostics.
Details will be provided in the corresponding subsections.
Figure 3 illustrates the growing research interest in the
application of one such algorithmic example for PHM: deep
learning (DL), a quickly developing subfield of ML. Through a
systematic review of state-of-the-art DL-based PHM frameworks,
Rezaeianjouybari and Shang (2020) recently presented the

benefits and potentials of DL technologies in the PHM
paradigm, especially in the presence of high-volume and
multidimensional data streams that contain real-time
information about the degradation and health condition of the
system of interest.

Data Acquisition: Emerging Sensor
Technologies
Traditional reliability analyses rely on population statistics rather
than condition-based status identification. Thus, they do not
provide any useful insight regarding a specific SSC’s current or
future state. The process of data acquisition from the target
equipment is necessary to make an accurate, reliable
prediction of individual SSC health. Collected data can be
either event or sensory data (Atamuradov et al., 2017). Event
data are O&M logs containing actions taken by the operator or
maintenance staff in response to events that occurred to the
physical asset and are not the focus of this paper. Sensory data are
measurements tracked via sensors installed on the target

FIGURE 2 | Five modules/steps of PHM [adapted and extended from Coble et al., 2015)].

FIGURE 3 | Breakdown of published papers on DL in PHM between 2013 and September 2019 (modified from Rezaeianjouybari and Shang (2020)) Note
for Figure 3: DL architecture–share of total publications as follows: CNN (convolutional neural network)—32.1%; autoencoder—26.8%; RBM (restricted
Boltzmann machine)—19.6%; RNN (recurrent neural network)—9.2%; hybrid/emergent—6.7%; GAN (generative adversarial network)—5.6%.
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equipment. Various types of sensors are needed to monitor key
health related parameters in nuclear SSCs. Examples of such
parameters include vibration, electrical signatures (current/
voltage) and position measures in active SSCs, localized
change in material properties (mechanical, magnetic, optical,
thermal, or electrical) in passive SSCs, as well as general
measurands of process conditions (such as temperature, flow,
pressure) that may be associated with equipment degradation.

Due to the harsh operating environments (such as radiation,
high pressure, high temperature) encountered in some parts of
the NPP systems, many of the existing sensors that are widely
used in other industries for abovementionedmeasurands may not
survive. This section surveys recent research efforts to improve
sensor survivability and measurement sensitivity for nuclear
instrumentation. Some of the emerging sensing techniques,
including those in use for nuclear applications and those
which are deemed useful in the near future for CM inside
NPPs, are briefly described in the following six subsections
and compared in Table 1.

Magnetic Anisotropy
Magnetic properties of ferromagnetic materials depend on the
direction in which they are measured. This phenomenon is
known as magnetic anisotropy (Stefanita, 2008). Magnetic
Barkhausen noise (MBN)—the electromagnetic waves emitted
during a ferromagnetic material’s magnetization process—allows
one to characterize magnetic anisotropy without regard to its
origin (Spasojevic et al., 1996). Several studies have utilized MBN
to continuously or periodically monitor material structure
degradation, such as in structural steels of nuclear reactors
(McCloy et al., 2013). Another effect produced by the
movement of magnetic domain walls is the magneto acoustic
emission (MAE). Acoustic signals are generated by the sudden
and discontinuous changes in magnetization, which involve
localized deformations (Stefanita, 2008). Simply put, the
magnetic signal from a sensing coil corresponds to MBN

(Deng et al., 2018), whereas the acoustic signal from a
piezoelectric (PZT) sensor corresponds to MAE (Makowska
et al., 2017). Li et al. (2015) investigated magnetic anisotropy
of α-iron containing nonmagnetic particles for checking integrity
of a nuclear RPV and suggested the possibility of using magnetic
technologies for nondestructive evaluation of RPV
embrittlement.

Piezoelectricity
Progress in sensor technology development has enabled the use of
PZT transducers, which can be mounted on the surface or
embedded inside host structural materials. Once they are
integrated with the host structure, PZT elements are utilized
as sensors to deliver signals in real-time. Simultaneously, they can
also serve as actuators to generate diagnostic stress waves into the
structure to detect, localize, and quantify damage in the materials.
Various studies have proposed techniques using piezoelectric thin
films attached to a material surface (Komagome and Matsumoto,
2002; Takahashi and Matsumoto, 2009; Sharma et al., 2012). By
measuring the electric potential distribution on the piezoelectric
film, the location, the aperture shape, and the defect’s depth can
be estimated. The piezoelectric wafer active sensor (PWAS),
another type of PZT sensor, has emerged as one of the major
sensing techniques. PWASs were developed as convenient
enablers for generating and receiving Lamb waves—a type of
ultrasonic guided waves propagating between two parallel
surfaces without much energy loss—for structural health
monitoring in space applications (Cuc et al., 2007). Radiation
influence on their sensing capability and survivability has been
investigated to determine the reliability of PWAS-based methods
for PHM in extreme nuclear environments (Haider et al., 2017).
Additionally, research of PZT sensors using Lamb waves has been
ongoing, and their capabilities for impact localization (Si and
Baier, 2015; Park et al., 2017; Qiu et al., 2018), acoustic emission
detection (Bhuiyan et al., 2018; Bhuiyan and Giurgiutiu, 2018),
and damage detection in isotropic and composite plates

TABLE 1 | Comparison of different sensor technologies.

Sensor technology Location (surface/
embedded/remote)

Operation
type (active/
passive)

Used in nuclear/
non-nuclear
industry

References

Magnetic
anisotropy

MBN Surface Passive Nuclear/non-
nuclear

Spasojevic et al. (1996), Stefanita (2008), McCloy et al. (2013),
Li et al. (2015), Deng et al. (2018)

MAE Surface Passive Nuclear/non-
nuclear

Stefanita (2008), Li et al. (2015), Makowska et al. (2017)

Piezoelectricity Piezoelectric
thin film

Surface Active/passive Nuclear/non-
nuclear

Komagome and Matsumoto (2002), Takahashi and
Matsumoto (2009), Sharma et al. (2012)

PWAS Surface Active/passive Nuclear/non-
nuclear

Cuc et al. (2007), Daw et al. (2014), Si and Baier (2015),
Dziendzikowski et al. (2016), Ebrahimkhanlou et al. (2016),
Haider et al. (2017), Park et al. (2017), Bhuiyan et al. (2018),
Bhuiyan and Giurgiutiu (2018), Hong et al. (2018), Qiu et al.
(2018), Reinhardt et al. (2018)

Optical fiber FBG Surface/embedded Active/passive Nuclear/non-
nuclear

Morana et al. (2016), Chen (2018), Calderoni et al. (2019)

Hybrid PZT/FBG Surface/embedded Active/passive Non-nuclear Qing et al. (2005), Wu et al. (2009), Wang et al. (2020a)
Visual vibrometry Remote Active Non-nuclear Wadhwa et al. (2013), Chen et al. (2017), Davis et al. (2017)
Electrical impedance Surface Active Nuclear/non-

nuclear
Lee et al. (2014), Shin et al. (2016), Fleming et al. (2019)
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(Dziendzikowski et al., 2016; Ebrahimkhanlou et al., 2016; Hong
et al., 2018) have been explored. In-pile instrumentation
development activities using PZT sensors have also been
conducted recently—such as under several DOE Nuclear
Energy programs investigating the use of new fuels and
materials for advanced and existing reactors—to address
crosscutting needs for irradiation testing by providing higher-
fidelity, real-time data with increased accuracy and resolution
from smaller, compact sensors that are less intrusive (Daw et al.,
2014; Reinhardt et al., 2018).

Optical Fiber
Measurement techniques based on optical fibers have
demonstrated the capability to provide multi-sensing
(measuring different operational parameters within a single
sensor configuration, such as temperature, pressure, and
strain) and multiplexing (communicating data collected at
multiple locations through the single line) instrumentation.
They are intrinsically immune to electromagnetic interference,
electrically passive, and widely available at a reasonable cost.
Beyond the use as a light guide, several optical sensors and related
measurement techniques have been considered for nuclear
applications. Fiber Bragg grating (FBG) sensors have been the
focus of many research efforts due to their demonstrated
potential for high-temperature operation in a radioactive
environment and their multiplexing capability. An FBG is
achieved by creating a periodic modulation of the refractive
index of the fiber core, which generates a distributed reflector
characterized by its period and modulation depth. Several recent
studies (Morana et al., 2016; Chen, 2018; Calderoni et al., 2019)
have shown the effectiveness of certain radiation-resistant FBG
sensor types—such as femtosecond-etched FBGs and
germanosilicate singlemode FBGs—in monitoring diverse
physical parameters for in-reactor instrumentation.

Piezoelectric-Fiber Hybrid Sensor System
A hybrid PZT/FBG system offers the best decoupling of actuator
and sensor signals because the two devices apply different
mechanisms for signal transmission. The PZT transducers rely
on electrical channels to actuate or detect dynamic responses,
whereas the FBG sensors rely on optical means to measure quasi-
static or relatively low frequency responses (Wu et al., 2009). In
other words, such a hybrid system uses piezoelectric actuators to
input a controlled excitation to the structure and uses fiber optic
sensors to capture the corresponding structural response (Qing
et al., 2005). More generally, the accuracy and stability of SSC
health monitoring can be potentially improved by constructing a
hybrid sensor network and integrating multi-source sensor
information (Wang et al., 2020a). Such hybrid sensor systems
have not seen applications in NPPs but should not face hurdles
given the respective success of PZT and FBG sensors.

Visual Vibrometry
Visual testing has played a prominent role in inspecting civil
infrastructures. Recently, researchers have been able to use
computer vision techniques to analyze small motions in
videos. Those techniques amplify imperceptibly small motions

in specified frequency bands, effectively producing a visualization
of an object’s operational deflection shapes (Wadhwa et al., 2013).
Video cameras provide the benefit of long-range measurements
and enable the collection of a large amount of data at once since
each pixel can be considered as a sensor. Objects tend to vibrate in
a set of preferred modes, and the shapes and frequencies of the
modes depend on the structure and material properties of an
object. Focusing on the case where geometry is known or fixed,
information about an object’s vibration modes can be extracted
from video and used to make inferences about that object’s
material properties (Davis et al., 2017). A camera-based
vibration measurement methodology was also recently
demonstrated for civil infrastructure by measuring an antenna
tower’s ambient vibration response (Chen et al., 2017). Future
research is needed to investigate the application of visual
vibrometry inside NPPs with radiation exposure, such as for
nuclear containment systems.

Electrical Impedance
Electrical impedance–based sensing is a relatively mature
measurement field with broad nuclear applications, including
passive structure, standby component, and in-pile monitoring.
Lee et al. (2014) proposed laser-based mechanical impedance
(LMI) measurement, utilizing a fiber-guided laser ultrasound
system to generate and measure LMI response for damage
detection in NPP pipes. Shin et al. (2016) suggested an online
monitoring technique for standstill motors based on an
impedance analysis method. More recently, Fleming et al.
(2019) developed an impedance-based diameter gauge
consisting of an electrically conductive concentric ring around
fuel cladding, such that the electrical impedance between the ring
and cladding could be measured.

Condition Monitoring and Fault Detection
Condition monitoring describes a suite of activities for providing
state estimation and early warning of anomalous behavior. It is a
crucial step of the PHM framework, and the effectiveness of PHM
largely depends on the accuracy of the CM process (Ayo-Imoru
and Cilliers, 2018). The process of fault detection attempts to
recognize incipient faults and failures6 from CM data and
quantification of the inconsistencies between the actual and
the expected behavior of the monitored SSC in nominal
conditions (Atamuradov et al., 2017).

The instrumentation and control (I&C) systems in NPPs
receive large amounts of sensory data from various
components to enable and support safe and reliable power
generation by controlling the system variables. However, most
raw data collected by sensors are not ready to be used directly, and
appropriate data manipulation is required. The
multidimensionality of high-volume data and redundancy

6As defined in Isermann and Ballé (1997), a fault is “an unpermitted deviation of at
least one characteristic property or parameter of the SSC from the acceptable/
usual/standard operating conditions;” in contrast, a failure is “a permanent
interruption of the SSC’s ability to perform a required function under specified
conditions.”
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among data attributes are examples of challenges faced by CM
and fault detection. Therefore, the feature selection
process—including choosing high-quality attributes, removing
collinear features, and selecting an optimal subset from the
original data set—is usually needed (Chandrashekar and Sahin,
2014). The objective of feature selection is to find a subset of
variables from the full array of raw sensor data that can efficiently
describe the input data stream while reducing effects from error/
noise or irrelevant information (Guyon and Elisseeff, 2003).

Feature Selection Methods
Feature selection methods can be divided into three categories:
filters, wrappers, and embedded methods. Filter methods pick up
the intrinsic properties of the features measured by univariate
statistics. In general, filter methods use variable ranking
techniques as the principal criteria for variable selection. A
suitable ranking criterion is used to score the input variables,
and thresholds are applied to filter out the less relevant features.
Several studies (John et al., 1994; Blum and Langley, 1997; Kohavi
and John, 1997) have presented various definitions and
measurements for the relevance of a variable. The widely used
metrics such as mutual information, Fisher score, relief,
separability, and correlation are all under the umbrella of the
filter methods. The primary advantage of filter methods is their
speed and ability to scale to large data sets. They are
computationally light and are not prone to overfitting (Lazar
et al., 2012). They also do not rely on the learning algorithm. One
of the drawbacks of filter methods is that the selected subset might
not be optimal because a redundant subset might be obtained.
Besides, essential features that are less informative on their own
but are informative when combined with other features could be
discarded in error (Xu et al., 2010). Bommert et al. (2020) recently
published a comprehensive survey analyzing 22 filter methods
concerning runtime and accuracy in high-dimensional
classification data.

Wrapper methods use the predictor as a black box and the
predictor performance as the objective function to evaluate the
variable subset. They search through the space of feature subsets
using a learning algorithm and calculate the estimated accuracy of
the learning algorithm for each feature that can be added to or
removed from the feature subset. Also, they depend on a
classification algorithm used to evaluate the candidate solutions
(i.e., subsets of features) generated by a search algorithm and thus
are more computationally expensive. Wrapper methods often
provide more accurate results than filter methods (Pudil and
Somol, 2008), although one needs to take extra care to prevent
overfitting and wrappers usually scale poorly to large data sets
(Das, 2001). The selection process is based on a specific learning
algorithm trying to fit on a given data set. In general, it follows a
greedy search approach by evaluating all the possible combinations
of features against the evaluation criterion. For instance, the branch
and bound algorithm (Narendra and Fukunaga, 1977), genetic
algorithm (Goldberg, 1989), particle swarm optimization
(Kennedy and Eberhart, 1995), adaptive floating search (Somol
et al., 1999), recursive feature elimination (Guyon et al., 2002), and
similarity measure (Chen and Chen, 2015) are all under the
category of the wrapper methods.

Embedded methods complete the feature selection process
within the construction of the ML algorithm itself. This
method category combines the qualities of both filters and
wrappers. The search for an optimal subset of features is
embedded into the classifier construction and can be seen as a
search in the combined space of feature subsets and hypotheses.
The embedded methods use an independent measure to decide
the best subsets for a given cardinality and use the learning
algorithm to select the optimal subset among the best subsets
across different cardinalities. Therefore, they are specific to a
given learning algorithm and have the advantage of taking into
consideration the interaction of features with the classification
model (like wrapper methods) while being far less
computationally intensive (like filter methods) (Saeys et al.,
2007). Regularization and tree-based models are some
common methods that use embedded feature selection. The
weights of a classifier can also be used to rank the features for
their removal, and the features can be selected by conducting
sensitivity analysis on the corresponding weights. Several
methods (Archibald and Fann, 2007; Mundra and Rajapakse,
2010; Zhang et al., 2015a) used support vector machines (SVMs)7

as classifiers, optimizing the SVM equation and assigning weights
to each feature. In some other studies (Setiono and Liu, 1997;
Verikas and Bacauskiene, 2002; Romero and Sopena, 2008; Yang
and Ong, 2011), an artificial neural network (ANN) was applied
for the same purpose.

As examples in the nuclear field, Deleplace et al. (2020)
recently used a separability-based feature selection metric
(i.e., filter method) to enhance accuracy of fault detection in
NPP water screen cleaners; Peng et al. (2018a) applied correlation
analysis (i.e., filter method) for dimensionality reduction of NPP
transient data simulated from their personal computer transient
analyzer; Zio et al. (2006) selected features for early transient
detection by means of genetic algorithms (i.e., wrapper method);
Moshkbar-Bakhshayesh (2021) investigated six different feature
selection techniques for parameter estimation in an NPP, among
which the ANN with Bayesian regularization (i.e., embedded
method) gave the most accurate results.

Anomaly Detection Methods
One can attempt to derive first principles–based analytical
models to describe the expected nominal or faulty SSC
behavior if its underlying physical mechanisms/relationships
are well understood. In an engineering system, physics-based
models are attractive for three reasons: first, they consider
mechanical, material, and operational characteristics explicitly;
second, they can be developed and evaluated even before the
system has been built and operated; and third, they can be used to
understand behavior over a broad range of operational and
material conditions (Coble et al., 2012). Unfortunately, it is
challenging, time-consuming, and often impossible to model a
complex, nonlinear system with first principles and mathematical
functions alone (Mirnaghi and Haghighat, 2020). Furthermore,

7SVMs have become the reference for many classification problems because of their
flexibility, computational efficiency, and capacity to handle high-dimensional data.
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the physical foundation in suchmodels is inevitably diluted by the
use of simplifying (sometimes unjustified) assumptions to make
up for runtime performance or incomplete domain knowledge
(Coble et al., 2012; Zhao et al., 2020a). In contrast, data-driven
approaches have shown the potential to characterize system
operations and develop system models due to their
independence in modeling and sole reliance on system data
(Yang and Rizzoni, 2016).

With the development of sensor technologies—which enable
routine collection of online data for numerous system
variables—various anomaly detection approaches based on
multivariate statistics have gained attention. Principal
component analysis (PCA) and partial least squares (PLS) are
two basic multivariate statistical techniques (Severson et al.,
2016), and many applications based on those techniques have
been considered for detecting faults (Harrou et al., 2013; Liu et al.,
2013; Rato and Reis, 2013; Mnassri et al., 2015; Jia and Zhang,
2016; Li et al., 2016; Jiao et al., 2017; Jiang and Yan, 2018). Once
the detection method is selected, a metric for identifying faults is
needed. In PCA- and PLS-based methods, Hotelling’s t-squared
statistic (Hotelling, 1933)—a generalization of Student’s t-statistic
in multivariate hypothesis testing—is widely used to detect
anomalies with specific thresholds. The sum of squared
prediction error (Box, 1954), also known as the Q statistic, is
another metric that denotes the change of the events that are not
explained by the model of principal components (Mujica et al.,
2011). In the nuclear field, Li et al. (2019a) recently applied an
improved PCAmethod using data pre-processing and false alarm
reducing techniques for NPP sensor fault detection, which
reduced the false alarms of both t-squared and Q statistics.

Traditional multivariate statistical-based methods have
inherent limitations. Calculating monitoring statistics and
thresholds of the PCA- or PLS-based methods is made under
the assumptions that data from sensors are Gaussian-distributed
and linearly correlated and that the process is operated under a
single stationary condition (Ge et al., 2013). In practice, most of
these assumptions may be violated. Various research efforts using
data-driven methods have been developed to relax assumptions
in the traditional statistical-based methods. Independent
component analysis (ICA), finding both statistically
independent and non-Gaussian components, is a reliable
alternative for fault detection (Li and Wang, 2002). Stefatos
and Ben Hamza (2010) further introduced the dynamic ICA
technique, extending the advantages behind ICA to detect faults
in a time-correlated environment. Cai and Tian (2014) developed
a non-Gaussian process based on robust ICA to alleviate the effect
of outliers. Ajami and Daneshvar (2012) showed the validity and
effectiveness of ICA for fault detection of a typical turbine system,
which are found in an NPP.

The Gaussian mixture model (GMM) is another commonly
used technique for non-Gaussian data processing. Yu (2012)
proposed a nonlinear kernel GMM-based inferential
monitoring approach for fault detection, which projected data
from a raw measurement space into a high-dimensional kernel
space so that the GMM could be estimated in the feature space
satisfying multivariate Gaussianity. Karami and Wang (2018)
proposed an adaptive GMM for automatic fault detection in

nonlinear systems. Ma et al. (2019) presented a nuclear
application by using a GMM-based early fault detection
method on 30 sets of real data from reciprocating compressors
containing three fault types.

More recently, SVM variants—which do not require the data
to be Gaussian—have emerged. Liu and Zio (2018) developed a
k-nearest neighbors–based fuzzy SVM to reduce the
computational burden and tackle the issue of data imbalance
and outliers. Several applications exist for fault detection in NPP
assets using SVM-based models (Jamil et al., 2018; Lin and Wu,
2019; Meng et al., 2020).

Fault Diagnostics
Within the overarching area of PHM, fault diagnostics begins
after a fault has been detected during the CM process. Diagnostics
is further divided into fault isolation, which seeks to identify the
piece of equipment or component fromwhich the fault originates,
and fault identification, which determines the cause of the fault.
Logically, these two subtasks of fault diagnostics are often
performed as a single analysis. The analysis is based upon
fault symptoms, which primarily take the form of available
features or signatures of the fault, obtained in the form of
sensed data and measurements. A common classification
scheme for diagnostics problems is by modeling method, in
which the problem is approached using either a model-based
or a data-driven method. This is not a completely clear
distinction, though, as some overlap can exist between the two
approaches, and various hybrid approaches can be developed.
One specific area of overlap is in the use of rule-based expert
systems for fault diagnosis. These expert systems rely on “if-then”
rules to diagnose a system’s state given its fault symptoms. It will
be seen that the development of “if-then” rules can be done by
either model-based or data-driven methods.

This review places emphasis on developments in data-driven
methods for PHM. However, a brief review of advances in model-
basedmethods is still deemed beneficial to the reader interested in
fault diagnostics or PHM in general. As such, the following
subsections will survey model-based methods first; then rule-
based expert systems, namely those which rely on fuzzy rule
bases; and finally, data-driven methods. Additionally, the
interested reader can refer to Li et al. (2020) for a second
review of diagnostic methods.

Model-Based Methods
According to Yang (2004), who presented a review of both
model-based and data-driven methods, common model-based
methods include the use of observers or statistical filters, checks of
the parity between plant models and sensor outputs, generation of
residuals in the frequency domain, use of causal graphical models
(such as signed directed graphs and fault trees), and approaches
based on qualitative physics (such as qualitative simulation and
qualitative process theory). A common classification scheme for
these methods is that filtering, parity, and frequency approaches
are grouped as quantitative methods, and that graphical models
and qualitative physics are considered qualitative methods.

In the area of filtering-based methods, Gautam et al. (2019)
used an extended Kalman filter for fault identification and
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performed fault isolation for single and simultaneous multiple-
sensor faults in an NPP with a recursive least squares estimate. An
advancement to the parity space method was performed by Cho
and Jiang (2018) for nuclear applications, in which Fisher
discriminant analysis (FDA) was used to address the issue
where the number of fault classes exceeds the total
independent residual signatures. Lee and Shin (2018) proposed
a method using time-frequency domain reflectometry and
k-means clustering to determine the fault location and faulty
line in a multi-core I&C cable system to assure the safety and
reliability of NPP operation. Advances in qualitative causal
graphs for NPP asset fault diagnosis include those on signed
directed graphs (Liu et al., 2016) and dynamic uncertain causality
graphs (Zhao et al., 2017a).

Rule-Based Methods
Rule-based methods operate by firing specific “if-then” rules to
determine the consequence associated with a measured/detected
fault symptom. Rule bases have traditionally been developed
using expert judgment and prior knowledge about the system.
Although a system based on engineering knowledge may be
attractive, issues in classical rule-based systems can include
rule bases growing to unmanageable size to describe an
increasing number of scenarios and the potential for a rule-
based system to fail when it encounters a situation for which there
is currently no rule (Coble et al., 2012). Another large difficulty
encountered by the standard rule-based method is how to operate
when there is not complete certainty as to which rule should be
activated given the measured symptoms. This situation typically
arises when the symptom cannot be simply classified into a single
qualitative category, such as “low” or “high.” The most common
means of handling this uncertainty is by using a fuzzy rule–based
system. Similar methods have also received some attention, such
as the use of confidence degrees (Deng et al., 2017) or the
development of a belief rule-based expert system (Xu et al.,
2017). However, fuzzy rule–based fault diagnostic tools are
still the most prominently used method in the literature to
deal with uncertainty.

Fuzzy rule bases, and the fuzzy logic in general on which they
operate, act as a nonlinear mapping between inputs and outputs
by means of determining the degree of membership to which
“crisp” inputs belong to “fuzzy” qualitative states and using the
fuzzy states to determine the consequence of the given inputs.
Fuzzy rule bases have found application for fault diagnosis in
various disciplines and numerous components—many of which
are found in NPPs—including induction motors (Shetgaonkar,
2017), other standard rotating machinery (Da Silva et al., 2017),
spur gears (Krishnakumari et al., 2017), bearings (Berredjem and
Benidir, 2018), power transformers (Husain, 2018), diesel
generators (Nain and Varde, 2013), distributed sensor
networks (Bhajantri, 2018), and high-power lithium-ion
batteries (Wu et al., 2017).

Despite their advantages over traditional rule-based fault
diagnosis, fuzzy rule–based systems are the subject of ongoing
research to improve their performance. Work by Yan et al. (2019)
and Rodríguez Ramos et al. (2019) both addressed identifying
multiple faults using fuzzy rule–based systems. Du et al. (2020)

proposed a self-organizing fuzzy logic classifier based on the
harmonic mean difference for application in bearing fault
diagnosis. That approach in particular is an example of a rule-
based method also potentially being classed as a data-driven
method because measured fault features were used to train a fuzzy
classifier. As a means of further characterizing the uncertainty
present in signals and measurements, Wang et al. (2019a)
introduced an interval-valued fuzzy spiking neural P system,8

also demonstrated on an example case with the presence of
multiple faults.

Data-Driven Methods
Data-driven methods generally rely on a large amount of process
data, typically historical, to develop models and reasoning
methods (Yang, 2004). Methods traditionally classed as data-
driven methods comprise ANNs–discriminative methods (for
traditional neural networks), models based on Bayesian
statistics or utilizing Bayesian networks (BNs)—generative
methods, SVMs–discriminative, and PCA–generative (if
unsupervised) or discriminative (supervised). Often,
combinations of these methods are used. In addition, many
more methods considered as data-driven exist, which have
seen less applications in the nuclear field than those presented
in this section.

The ANNs constitute a large subject area in data-driven
methods for fault diagnostics, and research of ANNs is an
extensive field unto itself due to the vast number of techniques
and types of neural networks in use. Lin et al. (2021) developed a
nearly autonomous management and control (NAMAC) system
for advanced reactors and proposed to apply a feed-forward
neural network (FFNN) model for NAMAC’s diagnostic
digital twin (DT) layer; Gomes and Canedo Medeiros (2015)
used a network of Gaussian radial basis functions (RBFs) to
identify accidents in an NPP; Banerjee et al. (2020) demonstrated
use of an ANN to identify nuclear reactor sensor and actuator
faults in the presence of a proportional–integral–derivative
controller; Ayo-Imoru and Cilliers (2018) implemented an
ANN while using a plant simulator as a dynamic reference. A
common theme in the literature sees ANNs working in tandem
with some other technique to transform sensory data into a form
usable by the ANN. As examples, Messai et al. (2015) and Tagaris
et al. (2019) both used data from wavelet transformations; Lee
et al. (2021) transformed the number of plant state variables into a
2D image and used a convolutional neural network (CNN) to
process the image as a means of diagnosing abnormal states;
Saeed et al. (2020) implemented a long short-term memory
(LSTM) network and CNN after performing PCA; and
Ayodeji et al. (2018) tested the effectiveness of an RBF
network and an Elman neural network (ENN) after using
PCA to perform noise filtering for NPP fault diagnosis.

8Spiking neural P systems are one of the recently developed spiking neural network
(SNN) models inspired by the way neurons communicate (Wang et al., 2016).
Known as the third generation of neural networks, SNNs use time to encode
information and employ the concept of individual spikes. Those features make
SNNs biologically more realistic (Fan et al., 2020).
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Another common trend, both in the literature surrounding ANNs
for diagnostics and AI as a whole, is the increased interest in
utilizing DL methods. In application to NPP fault diagnostics, DL
architectures have been applied by Ahmed et al. (2017), Mandal
et al. (2017), Peng et al. (2018a), and Kim et al. (2019). Outside of
the nuclear industry, Yu et al. (2018) applied DL for fault
diagnosis in wind turbines, and Ren et al. (2019) developed a
DL diagnoser in autonomous vehicles.

In the current state of the industry, the application of BNs to
diagnostics is sparser than those of ANNs. Unlike black-box data-
driven methods such as ANNs, the BN approach offers
transparent model interpretability, reasoning under
uncertainty, and graphical representation capability to emulate
the target SSC’s physical behavior (Zhao and Golay, 2020).
However, constructing the BN knowledge base is a
cumbersome and time-consuming process, and problems using
BNs can become intractable for complex scenarios. Wu et al.
(2018a) developed a BN framework for fault diagnosis in NPPs
with multi-source sensor nodes, and Zhao et al. (2020b) proposed
a method to diagnose operational and on-demand failures using
dynamic BNs (DBNs). A large body of work on using BNs as fault
diagnosers also exists outside the nuclear field. Cai et al. (2017)
provided a detailed review of BNs for application in fault
diagnosis. Wang et al. (2018) proposed an improved BN
method by determining the network structure with a hybrid
technique of process knowledge and data-driven correlation,
which was validated with the Tennessee Eastman Process
open-source benchmark (Downs and Vogel, 1993). Areas
where BNs have seen application, in addition to those
discussed in Cai et al. (2017), include the general case of
industrial processes (Yu and Zhao, 2019), hydroelectric
generation systems (Xu et al., 2019), and ground-source heat
pumps (Cai et al., 2014). Lastly, as a method used in combination
with ANNs, Bayesian statistics was used in Tolo et al. (2019) as a
means of connecting a set of neural network architectures for
early accident detection in NPPs.

Research efforts directed toward SVMs have been primarily
focused on improving the optimization of SVM parameters and
then applying the SVM to the problem of fault diagnostics. In the
nuclear field, Wang et al. (2019b) developed an improved particle
swarm optimization, and Zhang et al. (2015b) used a hybrid of the
bare bones particle swarm optimization and differential
evolution. Beyond simply developing a better means of
parameter optimization, Wang et al. (2021) introduced a
hybrid least squares SVM method for fault diagnosis in NPPs.
Another approach beyond optimization was to separately train an
ensemble of SVMs and combine them after training (Ayodeji and
Liu, 2018).

Developments involving PCA are mostly fault diagnosers that
utilize PCA combined with another tool, as was observed during
the discussion of ANNs. An example of using PCA for fault
diagnosis without combination with another major method is
that of Li et al. (2018a), which presented an optimized PCA
method for fault identification and reconstruction of NPP
sensors. An approach fundamental to PCA, however, was the
development of statistical methods to reduce the number of false
alarms raised by PCA (Li et al., 2018b). Approaches having seen

fusion with PCA for fault diagnosis in NPPs include FDA (Jamil
et al., 2016), conditional Gaussian networks (Atoui et al., 2015),
multilevel flow modeling (Peng et al., 2018b), ENNs (Liu et al.,
2017), and SVMs (Xin et al., 2019). Additionally, Wang et al.
(2017) used a semiparametric PCA in combination with a BN.

Prognostics
Prognostics is one of the major tasks in PHM as its results are
directly used to support proactive decision-making for
maintenance practices. The prognostics module is typically
defined as the process of predicting the remaining time before
the equipment can no longer perform a particular function
(i.e., RUL) (Atamuradov et al., 2017). Prognostic calculations
cannot be done in isolation and depend largely on the stages of
monitoring, detection, and diagnostics: the accuracy of these
stages will all affect RUL estimation. It is desirable to develop
generalizable prognostic methods that can accurately predict the
future equipment state given a set of measurements correlated to
the equipment’s current state (Ramuhalli et al., 2020). An
appropriate estimate of the equipment’s RUL can improve
overall plant performance and reduce costs by optimizing
O&M activities. Therefore, prognostics is seen as one of the
most beneficial aspects of PHM (Hess, 2002).

Paradoxically, prognostics is an underdeveloped element of
PHM systems (Vogl et al., 2019), especially in the nuclear
industry (Coble et al., 2015; Ayo-Imoru and Cilliers, 2018).
Unlike fault detection and diagnostics, the prognostic
technology is just emerging and often is deemed immature
due to lack of uncertainty calculations, method verification
and validation, and risk assessment for PHM system
development (Saxena et al., 2010). Although many approaches
to prognostics have been proposed in the literature, the state of
practice is mainly at the research level and much of the published
work has been exploratory. There is no universally accepted
methodology for all prognostic problems (Lee et al., 2011;
Coble et al., 2012). A variety of models have been developed
for application to specific situations or specific classes of
components. As such, prognostic algorithms can be
categorized according to different criteria. Based on the recent
publications (Atamuradov et al., 2017; Lei et al., 2018; Taheri
et al., 2019; Vogl et al., 2019; Baur et al., 2020; Bektas et al., 2020;
Ramuhalli et al., 2020) that contain a comprehensive review of
prognostics, these algorithms can be loosely divided into four
categories according to their basic techniques or methodologies:
physics-based methods, knowledge-based methods, data-driven
methods, and hybrid methods.

Physics-Based Methods
Physics-based prognostic methods attempt to describe the
evolving SSC degradation process based on a comprehensive
mathematical model—usually in the form of a series of
ordinary or partial differential equations—that represents the
underlying physics of failure and encodes the first-principles
input-output relationship. The derived mathematical model is
combined with CM data to identify model parameters, which are
then used to predict the future evolution of SSC health state. A
commonly illustrated physics-based method example in the
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literature is a crack growth model for which Paris’ law (also
known as the Paris–Erdogan equation) (Paris and Erdogan, 1963)
or the Forman equation (Forman, 1972) is used to relate the
growth rate of a fatigue crack to the stress intensity factor and the
number of fatigue cycles. Some other examples include prediction
of bearing deterioration, turbine creep evolution, pipeline tube
degradation, battery life, and gearbox failure (Qiu et al., 2002;
Liao and Kottig, 2014; Hu et al., 2016).

When the failure mechanism is well known and correctly
captured, a physics-based prognostic model should yield
highly robust and accurate RUL prediction for a specific
type of component and require less data for tuning (Baur
et al., 2020). Unfortunately, the underlying physical processes
leading to failure are often not completely understood or
cannot be explicitly modeled. In this case, simplifying
assumptions and estimations must be made to facilitate
model development, raising skepticism about the model’s
applicability to real-world engineering systems (An et al.,
2015; Coble et al., 2015). Due to their nature of being
component-specific, physics-based methods can hardly be
reconfigured to fit alternative domains, and most of them
are only applicable at the component or subsystem level
(Baur et al., 2020; Bektas et al., 2020). When applied to
system-level prognostic problems or when multiple failure
modes need to be represented (which is the case for a
typical SSC in a nuclear facility), the model complexity and
associated computational cost may become prohibitive for
online analysis and decision-making. For these reasons,
Coble et al. (2015) concluded that physics-based methods
would be preferable for high-cost, high-risk equipment,
such as electronic components in which failure data needed
to develop empirical methods might not exist.

Knowledge-Based Methods
Knowledge-based (also known as experience-based or rule-
based) prognostic methods are solely built upon expert
knowledge. Such methods do not rely on a physical model of
the system. Their implementation is relatively simple; however,
they are applicable only in cases where expert knowledge exists to
mimic human-like representation and reasoning with algorithm
families that employ expert systems or fuzzy logics.

Analogous to rule-based diagnostic methods (see “Rule-Based
Methods” Section), expert systems for prognostics aim to translate
explicit knowledge from experts into human-coded “if-then”
rules that closely resemble the way a domain specialist solves
the same problem (Liao and Kottig, 2014). They do not perform
well when a huge number of rules are needed and cannot handle
new situations that are not explicitly coded. Compared with
expert systems, fuzzy logic–based prognostic methods are more
robust and can handle the uncertainty intrinsic to expert
knowledge (Jardine et al., 2006). For complex systems and in
the presence of high-volume data, fuzzy logics are typically used
in conjunction with data-driven approaches—such as ANN to
create a hybrid neuro-fuzzy (NF) model (Lei et al., 2018)—for
systematized dimensionality reduction and membership function
optimization. The stand-alone knowledge-based methods have
been much less studied or recommended by recent publications

than the other method categories (Atamuradov et al., 2017) due
to their inherent limitations.

The similarity-based prognostics is an alternative knowledge-
based approach—such as the one proposed by Liu et al. (2019)
for the RUL prediction of a gas turbine—that removes the
requirements to model qualitative knowledge from domain
experts. Although this approach is sometimes classified under
data-driven methods, it actually follows the rule-based
modeling philosophy of similarity evaluation between a
monitored case and a library of previously known failures
(Taheri et al., 2019; Bektas et al., 2020), which does not give
enough insight into the current or future condition of the
specific SSC in question.

Data-Driven Methods
Data-driven prognostic methods directly use CM data for the
target SSC and do not incorporate first-principles information or
expert knowledge. They rely on trends within the observed data to
construct mathematical models to estimate future states of the
monitored equipment. As will be further elaborated in this
section, the mathematical approaches range from conventional
statistical methods to advanced ML and DL techniques. In data-
driven methods, no mechanism or input-output relationship
needs to be known a priori to produce acceptable results, and
the method development/implementation cost is relatively low
(Diez-Olivan et al., 2019). Therefore, these methods are highly
flexible and can be deployed at any level (component, subsystem,
or system level) of the physical asset, which is of particular
interest to large, complex systems (Ramuhalli et al., 2020; Sun
et al., 2010). As shown in Figure 4, statistical-based and ML/DL-
based data-driven methods have attracted most of the research
attention in machinery prognostics. However, prognostic models
that use a data-driven approach usually require large amounts of
data covering a broad range of conditions, including run-to-failure
data for degradation models. Availability of run-to-failure data
for a particular SSC can be a key challenge (Sutharssan et al.,

FIGURE 4 | Distribution of method categories in 274 recently published
papers on machinery health prognostics [modified from Lei et al. (2018)].

Frontiers in Energy Research | www.frontiersin.org June 2021 | Volume 9 | Article 69678512

Zhao et al. Review of PHM in NPPs

122

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


2015), which is the case of safety-critical systems in NPPs (Coble
et al., 2015). The performance and confidence level of RUL
predictions are bound to the quantity and quality of available
data that are used to infer model parameters and to determine
failure thresholds. Furthermore, data-driven methods cannot
extrapolate beyond the domain spanned by the training data
(Ramuhalli et al., 2020).

Statistical-Based Prognostics
Statistical-based prognostic methods, also known as empirical
prognostic methods, are a grey-box approach that treats asset
degradation as a stochastic process subject to different sources of
variability and uncertainty (Baur et al., 2020). In statistical
methods, RUL is a random variable whose probability density
function is determined based on empirical data. Distinguished by
its data-driven nature and ability to incorporate the uncertainty
of the degradation process, this method category has been heavily
focused upon in the literature, as illustrated in Figure 4 for the
field of machinery prognostics. Multiple review papers (Si et al.,
2011; Ye and Xie, 2015; Lei et al., 2018; Taheri et al., 2019; Baur
et al., 2020; Bektas et al., 2020) have surveyed statistical-based
models systematically and have included their advancements in
recent years. To unify apparently confusing terminologies used by
different authors while minimizing repetition, a summary is
provided in this section.

Statistical-based prognostics can be generally classified into
two subcategories. Models in the first subcategory are based
upon time-series CM data that directly describe the underlying
degradation process of the monitored SSC. Both regression-
and Markovian-based models fall into this subcategory. In
regression-based models, forecasting of time-series data is
achieved by using auto-regressive moving average processes,
which assume that the future state of the target SSC is linearly
dependent of both past observations and normally distributed
random noise. These models are easy to implement with low
computational cost, but their performance is heavily affected by
the trend information of historical observations, which may be
unreliable during incipient failure stage and for long-term
forecasts (Baur et al., 2020). Recent examples of using
regression-based prognostic models include Qian et al.
(2014) for bearing wear-out, Barraza-Barraza et al. (2017)
for crack growth in aluminum plates, Nguyen et al. (2018)
for NPP steam generator degradation, and Mei et al. (2020) for
shear building structural damage. In Markovian-based models,
the degradation process is assumed to transform within a finite
state space that satisfies the Markov (or memoryless) property.
With a well-established theoretical basis to support these
models, the Markovian approach was first introduced into
the field of prognostics by Kharoufeh (2003). It was later
refined by Kharoufeh and Cox (2005) and Kharoufeh et al.
(2010). This version of Markovian models was not widely
adopted by the PHM community because all the health
states would need to be observed directly. Moreover, the
memoryless assumption may not be valid for some real
degradation processes, and a large volume of data or
empirical knowledge is typically required for constructing
the state transition probability matrix.

Models in the second subcategory rely on partially
observed state processes and indirect CM data (i.e., data
that can only indirectly indicate the underlying health state
of the monitored SSC, such as vibration data). Stochastic
filtering-based methods, which are based on the Bayes’
theorem, fall into this subcategory. Built upon DBNs,
Kalman filter and particle filter are two of the most
common types of filtering algorithms. The basic Kalman
filter algorithm is designed for linear Gaussian problems,
and some of its enhanced versions have been proposed; the
particle filter algorithm is a sequential Monte Carlo method
and is a better choice in nonlinear, non-Gaussian systems.
Due to their ability to characterize the future uncertainty of
degradation processes by updating the probabilistic state
estimation from online measurements, both filtering
methods have seen many applications in machinery RUL
prediction (Lei et al., 2018) and were introduced by
Ramuhalli et al. (2010) for prognostics of NPP
components. Similar to, yet simpler than the filtering-based
models, hidden Markov models (Ghahramani, 2001) are
extensions of the standard Markovian approach to
incorporate unobservable health states. The hidden Markov
models and their variants [e.g., hidden semi-Markov models
(Yu, 2010)] have been applied to the PHM framework since
the beginning of this century (Baur et al., 2020). However,
their capabilities are still limited by the memoryless
assumption.

Machine Learning–Based Prognostics
ML-based prognostic methods attempt to learn degradation
patterns and predict RUL directly from available observations
(or extracted features) using ML or DL techniques. Numerous
opportunities have arisen from the continuously fast-growing
trends of AI and ML to effectively address the problems of
prognostics, especially those in complex multidimensional,
nonlinear systems with large amounts of training data
representative of true data range and variability. No prior
physical understanding of the analyzed SSC is required in ML-
based methods. However, as a black-box approach, the results are
hard to interpret due to their lack of transparency. The ML-based
methods generally provide point estimates of RUL instead of a
probabilistic treatment unless additional uncertainty
quantification—usually with Bayesian inference methods—is
performed. A more fundamental comparison of statistical- and
ML-based methods can be found in Bzdok et al. (2018). A variety
of ML algorithms have been used for prognostics, which can be
loosely grouped into variants of ANN, Gaussian process
regression (GPR), and SVM.

TheANNs are the most commonmodeling techniques in data-
driven methods for prognostics (Bektas et al., 2020), just like for
fault diagnostics (see “Data-Driven Methods” Section).
Comprehensive surveys of ANN architectures—in the context
of DL—and their recent applications in machinery prognostics
have been presented by Rezaeianjouybari and Shang (2020),
Khan and Yairi (2018), and Wang et al. (2020b). Among the
multiple types of ANNs in use, FFNNs and recurrent neural
networks (RNNs) are the most popular. The FFNNs are the
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simplest form of ANN and have been mainly used to learn the
relationship between the health index9 and RUL (Lei et al., 2018).
Lin et al. (2021) recently implemented FFNNs into the prognostic
DT of their NAMAC system for advanced reactors. The RNNs,
descendants of FFNN, are distinguished by their ability to handle
time-series data explicitly. Standard RNNs suffer from vanishing
and exploding gradients when learning long-term temporal
dependencies; the gated recurrent unit (GRU) and LSTM
networks are RNN variants to remedy that problem.
Generally, GRUs are computationally less expensive and better
suited for smaller data sets, whereas LSTMs work better with large
data sets (Rezaeianjouybari and Shang, 2020). A limited number
of studies in the literature have applied GRU for prognostic tasks,
such as Zhao et al. (2018) for milling machine cutter tool wear
prediction, Li et al. (2019b) for rolling bearing RUL, and Chen
et al. (2019) for a nonlinear degradation process using the US
National Aeronautics and Space Administration’s commercial
modular aero-propulsion system simulation (C-MAPSS)
turbofan engine data. LSTM-based networks have gained
greater attention in applications of RUL prediction. Some
recent studies include Ramuhalli et al. (2020) using NPP asset
data from the feedwater and condensate system (FWCS) of a
boiling water reactor (BWR); Zhao et al. (2017b) using a
convolutional bidirectional LSTM and raw sensory data from
high-speed milling machine cutters for a real-life tool wear test;
Zhang et al. (2018), Wu et al. (2018b), and Elsheikh et al. (2019)
using different variants of LSTM on the C-MAPSS data set; Shi
and Chehade (2021) using a novel dual-LSTM framework for
both change point detection and RUL prediction on the same
C-MAPSS data; and Bampoula et al. (2021) using LSTM
autoencoders to estimate RUL in a cyber-physical production
system. Besides the above two commonly used ANNs, several
other variants—such as wavelet neural network (Javed et al.,
2014), CNN variants (Wang et al., 2019c; Zhu et al., 2019),
generative adversarial network (Khan et al., 2018), and
reinforcement learning (Kozjek et al., 2020)—can be found in
the literature of prognostics.

The GPR models build upon Gaussian processes—cumulative
damage processes of random variables with joint multivariate
Gaussian distributions—to predict future health states. In
contrast to ANNs, this approach is adaptable to both small-
and large-size data sets, although it often suffers from high
complexity in terms of computation and storage (Rasmussen,
2004). As elaborated in the modules of fault detection
(“Condition Monitoring and Fault Detection” Section) and
diagnostics (“Data-Driven Methods” Section), SVMs are well-
established supervised learning tools based on the core concept
of support vectors. Different SVM variants have been applied to the
machinery RUL prediction (Lei et al., 2018). In the nuclear domain,
Liu et al. (2015) proposed a dynamic-weighted probabilistic SVM
model to evaluate fault scenarios in the reactor coolant pump of a
typical pressurized water reactor, and Ramuhalli et al. (2020)
applied SVM with both a linear kernel and an optimized

Gaussian kernel on a BWR FWCS data source. Compared with
ANNs, SVM-based models usually perform better on small data
sets and can guarantee a unique solution (i.e., global minimum) to
a given problem. However, their performance is strongly correlated
with the selected kernel functions.

Hybrid Methods
The physics-based, knowledge-based, and data-driven prognostic
methods each have their own strengths and limitations. While
appropriate method selection depends on knowledge of the
system behavior and available data, a hybrid or fusion
approach attempts to integrate the advantages of different
method types for improved RUL prediction results.
Additionally, in the real world, no single method is deemed
adequate to account for all the possible faults and failure
modes of an analyzed system (Baur et al., 2020;
Venkatasubramanian, 2005). As shown in Figure 4, this area
of research is still at its early development stage. The hybrid
methods can consist of any combination of the previously
described approaches. Of special interest is the ensemble of
physics- and ML/DL-based techniques where both physics-of-
failure knowledge and experimental data can be properly
leveraged (Dourado and Viana, 2020). In this way, the
combined approach fosters a physical interpretation of the
input-output relationship instead of a black-box treatment
while not requiring as accurate physical understanding or
large-size data as stand-alone counterparts would do (Zhao
et al., 2020a). Another popular direction is to develop hybrid
prognostic tools under the Bayesian framework (e.g., Kalman
filter and particle filter) because of their robustness and ability to
reason under uncertainty. This direction has been the subject of
several research studies and has been applied to various
applications like rotating machinery, batteries, and electrolytic
capacitors (Taheri et al., 2019).

Some hybrid models use one method to predict health state
and another one to estimate RUL, while other models attempt to
apply both method types to RUL forecasting (Ramuhalli et al.,
2020). The selection of the actual model and method is usually
driven by the problem and specific to the application. As an
example in nuclear systems, Gurgen et al. (2020) recently
proposed a physics-guided RNN (with LSTM blocks)
prognostic model within the NAMAC system to predict the
evolution of fuel centerline temperature in loss of flow
transient conditions and demonstrated its superior
performance over pure data-driven prognosis. In other fields,
research related to the hybrid approach has been much more
active (Liao and Kottig, 2014; Atamuradov et al., 2017). Goebel
et al. (2006) combined a physics-based model of fault initiation
and an empirical model of condition-based fault propagation rate
to estimate RUL of avionic roller bearings. Liu et al. (2012)
developed a hybrid method to improve the accuracy and
transparency of long-horizon lithium-ion battery health state
forecasting by leveraging particle filter and ANN predictors
(FFNN, NF and recurrent NF). Eker et al. (2019) presented a
unified approach integrating the short-term prediction of a
physics-based model with the longer-term projection of a
data-driven model and validated with run-to-failure

9The health index, computed from diagnostics, is an indicator of the ability of the
monitored SSC to meet its functional goals.
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observations for crack growth and filter clogging. Yucesan and
Viana (2020) proposed a physics-informed neural networkmodel
that merged physics- and data-driven layers within a deep neural
network to predict main bearing failure in wind turbines.

Decision-Making
Once the current and postulated future health states of a
monitored SSC are determined based on CM data and
diagnostic/prognostic modeling, it is of crucial importance to
be able to act in a timely and correct fashion on possible
(incipient) faults/failures before they progress to becoming
emergencies. Therefore, decision-making is deemed an
indispensable module in the full PHM suite. In this context,
the process of decision-making refers to using outputs from the
previous modules—failure analysis and probability of failure
(POF) estimate from diagnostics, RUL prediction from
prognostics—to inform O&M planning and the selection of
optimal maintenance action among several alternative options
to be executed for the most beneficial operational performance.
This process can be conducted by human labors with different
operator decision support levels, or ultimately through
autonomy-enabled technologies. If properly implemented, this
module will play an impactful and beneficial role in asset integrity
management as well as planning for O&M activities and staffing
levels.

While the study of decision theories has a rich history,
autonomy—i.e., operation without relying on human
intervention—is in large part an advancement that appeared
with the invention of computers and programmable devices that
could perform fairly complex computations. Significant
technological advances in controls and autonomy have been
demonstrated in robotics, aerospace, unmanned aerial vehicles,
and self-driving automobiles. However, autonomous control
has not been extensively studied for any operating NPP or
any new reactor concept (Wood et al., 2017). The nuclear
industry lags far behind some other industries (such as
avionics and electronics) in transferring the current human-
based roles and responsibilities to cutting-edge machines,
systems, and controls. To date, NPP equipment surveillance,
diagnostics, and prognostics have been mostly used for offline
asset management and modest decision support, but those
technologies are not being fully leveraged for intelligent,
optimal O&M planning and control. To achieve the desired
operational efficiency with a reduced staffing burden,
autonomous decision-making capabilities must be developed
and demonstrated in the nuclear power context.

Given the current status and apparent gaps for NPPs, this
section first provides a summary of general approaches used in
decision-making, all of which are driven by data to a certain
extent. [See Cetiner et al. (2014) and Cetiner and Ramuhalli
(2019) for more detailed surveys]. A pioneering study in the
nuclear domain by Ramuhalli et al. (2017) is then briefly
presented to showcase the ability to integrate diagnostics and
prognostics results with supervisory control systems for making
risk-informed autonomous decisions that utilize real-time
information on component conditions.

Decision-Making Methods
Statistical Decision Theory
Statistical decision theory is concerned with making decisions
based on statistical knowledge, which sheds light on the
uncertainties involved in the decision problem. The field of
classical statistics is directed toward using sample information
arising from statistical investigation to make inferences about the
use of the data; in contrast, statistical decision theory attempts to
combine sample information with other aspects of the problem to
make the best decision. In addition to sample information, two
other types of information are typically relevant. The first is the
knowledge of possible consequences of decisions. Often this
knowledge can be quantified by determining the loss that
would be incurred for each possible decision and for various
possible values of uncertainties. The second type, prior
information, generally comes from past experience about
similar situations involving similar uncertainties. The approach
to statistics that seeks to utilize prior information is called
Bayesian analysis. The Bayesian approach is one of the most
commonly referred mathematical methods that are exclusively
used in decision-making processes in a wide range of
applications. Recent examples of applying Bayesian analysis
for decision support in nuclear systems are Cai and Golay
(2021), who proposed a DBN-based framework capable of
analyzing interactions between system status and human
activities for the 2011 Fukushima accident scenarios; and Kim
et al. (2021), who coupled functional modeling with DBN to study
a station blackout scenario leading to a seal loss of coolant
accident in an NPP.

Rule-Based Decision-Making
A rule-based model 1) identifies the system state, 2) associates the
state with a task, and 3) accesses stored rules to perform the task.
Plant operating procedures (OPs) are essentially rule-based
decision modules executed by human operators. OPs are
developed for normal operation to ensure that the plant is run
within the operational limits and conditions and to provide
instructions for the safe conduct of all modes of normal
operation. For abnormal conditions and design-basis accidents,
either event-based or symptom-based procedures are created. A
means of automating the plant procedural system is to implement
the rules through decision tables, which associate conditions with
actions to perform. In a recent paper by Hanna et al. (2020), an
answer set programming representation of an NPP was
presented, which included rules encoding the plant behavior
for fast procedure lookup.

Utility Theory
Economists developed utility theory to explain and predict
human decision-making under risk and uncertainty. The
fundamental assumption underlying utility theory is that of a
rational decision maker who always chooses the alternative for
which the expected value of the utility is maximized. Built into
this assumption is a further supposition that a code of rationality
is accepted and utilized by human decision makers, making it
possible to construct a mathematical representation that allows
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the prediction of human behavior. Utility theory can serve as a
foundational building block for a decision-making system
intended for real-time autonomous control. Given a collection
of seemingly viable alternative solutions, implementation risks
determined for each alternative can be compared to find a
minimum risk solution. Independent loss and gain functions
related to plant OPs or other decision strategies can be formulated
and represented as nonlinear relationships. An exemplary
implementation of the utility theory for NPPs can be found in
Yildiz (2003), where an influence diagram-based advisory model
was proposed to offer decision support to the plant personnel.

Markov Decision Process
For sequential decision problems in stochastic environments, the
same principle of maximum expected utility still applies, but
optimal decision-making will require reasoning about future
sequences of actions and observations. Markov decision
processes (MDPs) provide a mathematical framework for
modeling decision-making in situations where outcomes are
partly random and partly under the control of a decision
maker. MDPs have been used successfully in a wide range of
autonomous control problems—for autonomous driving (Thrun
et al., 2006; Brechtel et al., 2014) in particular—and typically solve
an optimization problem using dynamic programming (DP) for
selecting the right decision. A partially observable MDP
(POMDP) is a generalization of an MDP that models a
decision process in which it is assumed that an MDP
represents the system dynamics but not all states are
observable. Instead, the measurements received by the model
are incomplete and usually noisy predictions. Therefore, the
model must estimate a posterior distribution over a possible
state space. POMDPs compute a value function over a belief
space. A belief is a function of an entire probability distribution.
An exact solution to a POMDP yields the optimal action for each
possible belief over the state space, maximizing the value
function. However, this maximization procedure requires an
iterative algorithm that is far from practical. For any
reasonable number of states, sensors, and actuators, the
complexity of the value function is prohibitive. One
recommended solution to that challenge is the use of
differential DP—a DP-based optimal control algorithm of the
trajectory optimization class—as it optimizes only over the
unconstrained control space. A promising implementation of
POMDP can be found in Kochenderfer (2015) for an automated
airborne collision avoidance system, leading to significant
improvements to safety and operational performance of aircraft.

Discrete Event Models
Many artificial devices and systems and some natural systems
demonstrate only discrete values or outcomes. These types of
systems are best described as discrete event systems (DESs). The
opening and closing of valves or commencing a pump startup
process are examples of discrete event processes in an NPP. The
processes are typically tied to OPs, and plant operators handle
their controls. DESs satisfy the properties that 1) the state-space is
a discrete set and 2) the state-transition mechanism is event-
driven. Time in such systems is not an appropriate independent

variable, and conventional differential equation approaches such
as modern control theory do not apply to them. The DESs are
typically modeled by finite state automata or Petri nets. Those
models use a defined state-transition structure to describe the
possible events in each state of the system, and they differ in how
they represent state information. A detailed comparison between
a finite state automation and a Petri net approach can be found in
Aubry et al. (2016). Decision-making models for DESs have an
established industrial track record; applications range from
robotics to self-driving cars (Costelha and Lima, 2012; Badue
et al., 2021).

From Enhanced Risk Monitors to Supervisory Control:
A Pioneering Study
In the nuclear industry, successful implementations of
autonomous controls seek to address both the probabilistic
and deterministic aspects of decision-making. In other words,
a risk-informed decision-making framework is needed for the
plant control systems to maintain system variables within
prescribed operating ranges. As shown in Figure 5, the
probabilistic portion of the decision-making engine identifies
decision options and provides the likelihood of success for
each option given the status of the plant/systems and
component health. It captures the uncertainties associated with
sensors and those that arise from modeling assumptions used in
inferences. On the other hand, the deterministic portion further
evaluates the identified alternative success paths and generates a
single solution that represents the best operational strategy. The
evaluation metrics determine the cost function for finding the
optimal decision, and additional constraints—such as regulatory
rules and operating guidelines—can be enforced in the
deterministic assessment phase.

A study on risk-informed decision-making using real-time
equipment condition information was recently performed by
Ramuhalli et al. 2017 (Liu et al., 2012), in which the enhanced
risk monitor (ERM) methodology (Ramuhalli et al., 2014) was
integrated with a plant supervisory control system (SCS)
framework (Cetiner et al., 2016). The ERM methodology
interprets components of interest based on sensory data and
streamlines condition assessment, diagnostics, prognostics, and
risk monitors that expand on probabilistic risk assessment (PRA)
by incorporating the dynamically changing plant configuration.
The functionality of ERMs can be further augmented to include
uncertainty bounds and O&M-based risk metrics (in contrast to
the traditional safety-based metrics, such as core damage
frequency). As a proactive asset management philosophy, the
ERM methodology can offer greater situational awareness to
plant supervisory control and O&M planning routines.

The SCS framework is specifically designed to address the need
for plant coordination/control that accounts for component
degradation in its decision-making. Focused upon non-safety
systems, the SCS integrates information from multiple sources,
utilizes predefined success criteria, and evaluates plant control
actions to ensure that the plant operates within a defined
operational envelope. Using RUL and POF information from
ERMs as inputs, the decision-making module in the integrated
ERM-SCS is invoked only if any of the RUL values is estimated to
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be larger than the time to the next outage. Decision-making
involves two steps: the probabilistic assessment using data
acquired from individual ERM terminals to update the event
tree/fault tree models with real-time failure probability
estimations, and the deterministic assessment based on the
multi-attribute utility theory to rank action paths that will not
trip the plant’s safety system and generate an optimal solution for
the operational strategy of the plant. The solution is verified using
a lower-order model of the plant to ensure that the recomputed
RULs of all components fall within the prescribed criteria.

RESEARCH NEEDS FOR DEPLOYMENT OF
PROGNOSTICS AND HEALTH
MANAGEMENT IN NUCLEAR POWER
PLANTS

Implementation of PHM technologies is a key need for improving
the safety and economics of NPPs moving forward with both
LTO and new builds. “Prognostics and Health Management
Framework and Modeling Approaches” Section has provided a
method-centric survey of research in PHM since the 2015 review
(Coble et al., 2015), and it can be seen that most advances and
corresponding modeling approaches have originated in non-
nuclear applications. As such, those developments represent
the current state of the art in PHM technologies and methods.
Adapting those developments to the nuclear industry may face
additional challenges due to the unique operational framework
and licensing requirements of NPPs. Additionally, further
investigation is needed in several general areas to bring PHM
from the research arena to commercial deployment. This section
attempts to identify the overarching research needs and technical
gaps which still must be addressed to support the development
and deployment of PHM in nuclear power generation, including
challenges specific to NPPs, a unifying framework for connecting
PHM and PRA, verification and validation of PHM models, as
well as efforts to evaluate uncertainties and their propagation.

Prognostics and Health Management
Feasibility and Challenges Specific to
Nuclear Power Plants
Even though significant research has been undertaken to develop
PHM—notably, fault detection and diagnostics—for nuclear
applications, very limited pilot applications and

implementations have resulted in success outside a laboratory
setting (Hashemian, 2011; Ramuhalli et al., 2016). The vast
majority of modeling approaches described in “Prognostics and
Health Management Framework and Modeling Approaches”
Section should be widely applicable to nuclear assets in theory;
however, implementing PHM in NPPs is quite different from
implementing it in other industries because the nuclear industry
has been facing a series of specific challenges.

• Operational compatibility: As introduced in “US NPP
Monitoring and Maintenance: Historical Approach and
Motivations for Prognostics and Health Management”
Section, PHM technologies in the nuclear industry
typically differentiate between active and passive SSCs.
PHM for active SSCs is necessary to support the day-to-
day application of O&M planning and controls. The health
conditions of those assets need to be closely integrated into
real-time control decisions to manage in situ degradation of
critical equipment that could challenge the overall system’s
operation or safety. PHM for passive SSCs will inform
longer-term decision-making. The evolving degradation
of these assets under specified operational conditions
informs long-term risk assessment, maintenance
planning, and outage scheduling. For both SSC types, the
deployment of PHM systems should not pose an
unacceptable increase in risk to the existing components/
structures of the plant in terms of instrumentation
constraints (Pham et al., 2012). Typically, the number of
installed sensors available is small in NPPs—particularly for
passive SSCs (Coble et al., 2015)—because operational
compatibility is limited. Novel inspection methods and
advanced sensing techniques are needed to perform
measurements without compromising the plant’s
integrity. Optimizing sensor placement for both legacy
and new reactors is also an actively pursued research
area to provide adequate and minimally intrusive
coverage at a reasonable cost. In the case of new reactors,
such needs should be incorporated in the initial design
phase to avoid retrofitting.

• Sensor reliability: In addition to the compatibility concern,
the sensors are often considered to be a weak link in NPPs
because they are sometimes less reliable than the assets they
monitor (Pham et al., 2012). Advanced sensor validation
and qualification will help overcome sensor reliability issues.
Additionally, sensors that can withstand the harsh operating
environments (such as radiation, high pressure, high

FIGURE 5 | Core elements within the generalized framework for autonomous decision-making.
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temperature) encountered in some parts of the NPP systems
are desired, and their reliability needs to be evaluated
carefully.

• Regulatory scrutiny: Nuclear power generation is justifiably
a heavily regulated industry owing to the risks associated
with plant accidents and radiation exposure to the public.
The introduction of any new technology or methodology
that may impact safety and protection systems in an NPP is
scrutinized to such an extent that many research advances
are never implemented and deployed (Ayo-Imoru and
Cilliers, 2018). This is a significant challenge that makes
adopting PHM in the nuclear industry a very daunting task.
The SSCs in NPPs are categorized as safety-related and non-
safety-related (Pham et al., 2012). The safety-related SSCs
are relied upon to remain functional during and following a
design-basis event. For those SSCs, in many countries,
including the United States, it is impossible to add any
additional I&C or even change the maintenance practice
without prior approval from the regulators. The
implementation of PHM for such assets will certainly
bear heavy burdens of justification for approval. Another
hurdle for PHM of safety-related SSCs is that most of those
assets are stand-by during the plant’s normal operation, and
their CM can be challenging itself regardless of the
regulatory burdens. The non-safety-related SSCs do not
require regulatory treatment. However, their
unavailability may still carry significant risk in terms of
preventing safety-related SSCs from fulfilling their function,
triggering transients, or causing actuation of a safety-related
system. This fact makes non-safety-related SSCs—usually
referred to as the balance of plant assets—ideal candidates
for coverage under the PHM framework.

• Nuclear-applicable standards: As briefly mentioned in
“Prognostics and Health Management Framework and
Modeling Approaches” Section, industrial standards for
CM, diagnostics, and prognostics exist; however, those
standards are largely not specific to the nuclear industry
and have not been reviewed by the NRC (in the
United States) for application to NPPs. Additionally, a
unifying PHM standard that is applicable to generic
assets is still missing. Some of the existing and pending
standards are potentially relevant to SSCs in NPPs though.
As an example, the IEEE P1856 standard covering PHM for
electronic systems has broad applicability in digital I&C
systems of NPPs. Besides, this IEEE standard provides a
framework for developing a general PHM standard for any
complex engineering system, as well as specific standards for
nuclear SSCs. Developing nuclear-applicable PHM
standards is a desired next step. Further efforts will be
needed to have those standards reviewed and endorsed
by the regulators, without which PHM cannot be
deployed for safety-related systems (as mentioned in the
bullet point above).

• Data availability and quality: There is a growing realization
that although the nuclear power enterprise is more than
50 years old, most of the recorded operational data are not
publicly available or useful from the perspective of plant

reliability and production improvement. The underlying
cause is threefold: justifiable protection of intellectual
property and security (for safety-related data), low
availability of run-to-failure data in most SSCs, and lack
of customer needs for relevant data (until very recently).
With most modeling tools reviewed in this paper, the
effectiveness of the proposed PHM system is
unfortunately constrained by the quality of data that can
be ultimately reflected in these models. The data-driven
methods—particularly those powered by ML/DL—require
access to large quantities of data from anomalies observed in
the field to train and validate PHM models. To support
PHM development and deployment in the nuclear industry,
a long-term campaign for coupled model building and data
collection is needed, and initiatives to set a road map for
coordinated data sharing are highly recommended. In the
interim, the artificial/synthetic data obtained from high-
fidelity simulations may be used before moving to actual
operating data as they become available.

• Physics-of-failure knowledge: The NPP consists of various
complex multidimensional, nonlinear engineered systems,
many being exposed to potentially severe thermal, chemical,
and radiological stressors. The underlying physics of certain
failure modes for some systems (and their subsystems/
components) remains too poorly understood to develop
physics-based diagnostic and prognostic models. Research
efforts to enhance physics-of-failure knowledge will also
help with accurate sensor placement, especially for passive
SSCs (Coble et al., 2012). Furthermore, developing high-
fidelity physical models can be expensive and time-
consuming. It is deemed more realistic and appropriate
to leverage both experimental data and physics-of-failure
knowledge within a hybrid framework to fully describe the
failure modes and degradation process of a monitored asset.

Intersection of Prognostics and Health
Management and Probabilistic Risk
Assessment
Opportunities emerge as the modern industry moves toward the
vision of a data-driven “Industry 4.0” paradigm (Farsi and Zio,
2019). Advances in digital I&C systems, low-cost sensors, and
high-performance computing architectures offer new promises
and insights for not only PHM but also PRA as means to enhance
the safety and reliability of complex engineering systems such as
NPPs. So far, PHM has been primarily focused on developing and
implementing algorithms for component-level (or simple
subsystem-level) health assessment. Significant challenges
remain to be solved to develop system-level PHM tools,
including component interactions, environmental effects,
system nonlinearity, uncertainty propagation, and scalability
concern (Atamuradov et al., 2017). On the other hand, PRA is
mainly involved with using risk and reliability engineering
methods to provide a system-level perspective with emphasis
on engineering knowledge and systems logic modeling. Although
PRA is well-established in high-consequence industries (such as
nuclear), it has largely been used as an offline, static methodology,
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and few studies have recently attempted to incorporate online
CM data within the implementation of dynamic PRA (Moradi
and Groth, 2020). Both PHM and PRA technologies bring unique
advantages and disadvantages, and they appear to have
complementary characteristics that can be synergized in the
context of complex engineering systems.

To date, only a handful of research publications have explored
the potential intersection of PHM and PRA for complex systems.
As introduced in “From Enhanced Risk Monitors to Supervisory
Control: A Pioneering Study” Section, Ramuhalli et al. (2014)
developed an ERM framework that integrated component-
specific time-dependent failure information from PHM models
into PRA to provide a dynamic risk measure. Similarly, Yadav
et al. (2018) proposed a dynamic PRA model incorporating plant
component health conditions using a PHM model based on
sensor-based degradation data. More recently, Zhou et al.
(2020) proposed a time-dependent common cause failure
model by integrating degradation states of components
inferred from multi-sensor data and demonstrated using an
experimental study of three identical centrifugal pumps.
Moradi and Groth (2020) reviewed the limited literature on
PHM–PRA intersection and introduced a modernized risk
assessment approach to systematically integrate those two
families of techniques, considering that complex systems can
be modeled as a multilevel hierarchical structure with interactive
components. The component/subsystem-level analysis is
reflective of the model development aspects of PHM, and the
system-level analysis is reflective of those of PRA. In that vein,
further research needs include developing of a physically
interpretable logic model for learning, inference, and
information updating as well as finding suitable risk metrics
for assessing the logic model performance.

Verification and Validation
As compared to the amount of research put toward methods and
frameworks for PHM, the state of research and effort toward
verification and validation (V&V) remains nearly unchanged
from the previous review by Coble et al. (Coble et al., 2015).
A common trend in the literature is the tendency to perform
V&V as one segment of research into a full PHM system, but that
task is typically focused on a specific application rather than being
an investigation of rigorous and robust V&V methods or
frameworks. One work that has addressed this matter (Sun
et al., 2016) introduced four performance metrics and two
quantitative evaluation methods to provide one unified
procedure for determining the trustworthiness of prognostic
systems. That work was focused upon prognostics in general;
however, there are challenges specific to V&V in the nuclear
realm, namely data availability and regulation. Statistically
significant data are lacking for V&V of prognostic algorithms
across all relevant NPP SSCs. A desired action item at the overall
DOE–industry level is to develop benchmark test beds for
common data generation and collaborative method V&V
efforts. Additionally, in the United States, any V&V
methodology proposed will need approval and endorsement
from the NRC, which would require a review of all data and
models proposed to be used from a regulatory standpoint.

Uncertainty Quantification and Propagation
As emphasized throughout “Prognostics and Health
Management Framework and Modeling Approaches” Section,
the need to quantify uncertainty in PHM model predictions is of
paramount importance, especially in data-driven models. A
systematic uncertainty analysis can help reveal both reducible
and irreducible sources of variability to aid in managing the
overall uncertainty in RUL estimates, which is the last step of
PHM before integrating it with O&M planning and control
(Coble et al., 2015). The field of research in quantifying model
uncertainty is not specific to the nuclear industry and is still
evolving. A variety of uncertainty sources are involved in PHM,
all of which can be categorized as a subset of one of the following:
model input uncertainty, model discretization uncertainty, and
model form uncertainty (Ewing et al., 2018; Dewey et al., 2019).

• Model input uncertainty comes from the uncertainty of any
input parameters, such as uncertainty of material properties
(e.g., electric conductivity, elastic modulus), operating
conditions, and sensor readings. The overall accuracy of
sensors in PHM systems can be compromised by several
sources of uncertainty. Firstly, a sensor experiences a natural
variation (e.g., a temperature sensor might have a natural
uncertainty of ±0.5°). The quantization error from the
analog-to-digital converter (ADC) is another source.
Most sensors capture analog data that is then converted
into digital data through an ADC, and loss of information is
unavoidable given an ADC’s inherently limited precision.
Furthermore, as sensors age, their accuracy decreases, and
their variability increases. The level of such degradation is
generally not specified by the manufacturers and is hard to
quantify, and so-called “uncertainty of uncertainties” will
emerge over long lifespans. As a result, to accurately
estimate the overall uncertainty of sensor measurements,
all the sources of uncertainty should be acknowledged and
taken into account.

• Model discretization uncertainty refers to the uncertainty of
treating continuous parameters as discretized variables,
such as modeling space as discretized meshes and time as
time steps. Quantification of this source of uncertainty
could be achieved by comparing analytical solutions or
another numerical analysis with a different level of
discretization.

• Model form uncertainty arises from the inconsistency
between the implemented mathematical model and the
real physical world, notably simplifications and
approximations made in theories and model
implementations. This type of uncertainty source can be
estimated by validating with real-world observations or
high-fidelity simulations.

Typically, Bayesian inference methods are adopted for
quantifying the model prediction uncertainties (Atamuradov
et al., 2017; Ramuhalli et al., 2020) because they naturally
incorporate information about the target SSC with prior
knowledge (e.g., past analysis results, expert opinion) (Coble
et al., 2012). Several Bayesian uncertainty quantification
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approaches have been used in the literature, including BNs (see
“Data-Driven Methods” Section), filtering algorithms (such as
Kalman filter and particle filter, see “Statistical-Based
Prognostics” Section), relevance vector machines (Saha and
Goebel, 2008), Bayesian neural networks (Benker et al., 2020),
and their variants. Some non-Bayesian approaches have also been
proposed for use in the problem of uncertainty estimation, each
of which is well suited to specific algorithms or applications.
Examples of such approaches include closed-form equations,
bootstrapping, and Monte Carlo methods (Coble et al., 2012;
Ramuhalli et al., 2012).

In addition to evaluating uncertainty in each module of a
PHM system, it is also important to understand how uncertainty
in one module can propagate to later modules as well as how
uncertainties for individual components will propagate through
subsystems, systems, and the whole plant. The latter task can be
addressed by prognostic-informed PRA analysis in the ERM
framework (Ramuhalli et al., 2014) to integrate sources of
uncertainty and their propagation through the ERM
calculations. The resulting uncertainty bounds in the ERM
output can then be used to perform a probabilistic assessment
of the changes in plant O&M and safety risk metrics due to
component degradation.

SUMMARY

The contributions of this review paper are threefold: 1) it provides
the nuclear industry community with a systematic overview of the
full PHM spectrum and an updated in-depth survey of its
modeling approaches; 2) it places a strong emphasis on the
state of the art of data-driven methods for PHM, primarily
driven by recent advances in AI and ML; and 3) it identifies
the overarching gaps that still must be addressed by the nuclear
industry and PHM communities to support the development and
deployment of PHM in NPPs.

To achieve safe and economical operation of NPPs in a
competitive energy market, attention is turning to enhanced
methods for plant asset management and greater situational
awareness of the health condition of key SSCs throughout
their life cycles. Interest is growing in applying condition-
based (rather than time-based) maintenance for active SSCs
and automated online monitoring (instead of periodic
inspection) for passive SSCs through the use of PHM
principles. Through appropriate detection, diagnosis &
prognosis, and mitigation actions, a robust PHM system will
allow early warning of degradation in NPPs and will potentially
preclude serious consequences due to faults and failures while
helping alleviate the burden of unnecessary maintenance
activities. Proper application of the full PHM suite will
provide improvements to plant reliability and availability and
effectively reduce O&M costs and labor reliance.

The full PHM suite utilizes sensor technologies to monitor health
conditions, detect anomalies, diagnose faults, predict RUL, and
proactively manage failures in complex engineering systems such
as NPPs. A complete PHM system proceeds in five modules/steps.

1) Data acquisition: The process of data acquisition from the SSC
of interest is necessary to make an accurate, reliable prediction
of its health. Collected data can be either sensory or event data.
Sensory data are measurements tracked via installed sensors
from the target equipment and the focus of “Data Acquisition:
Emerging Sensor Technologies” Section, which introduces
some of the emerging sensing techniques that have been
used for nuclear applications or which are deemed useful
soon for CM inside NPPs.

2) Monitoring and detection: Data collected from a target SSC are
continuously monitored for deviations from normal behavior,
which are indicators of anomalies. As explained in “Condition
Monitoring and Fault Detection” Section, the process of fault
detection attempts to recognize incipient faults and failures.
Multidimensional, high-volume raw data collected by sensors
are not ready to be used directly, and appropriate feature
selection is required. “Feature Selection Methods” Section
describes the three categories of feature selection methods:
filters, wrappers, and embedded methods. In “Anomaly
Detection Methods” Section, research efforts using data-
driven methods for detecting anomalies are highlighted. In
particular, various fault detection approaches based on
multivariate statistics have gained attention.

3) Fault diagnostics: Once an anomaly is detected, it is vital to
diagnose the fault, or in other words, to locate the fault to a
specific component or area of a structure (i.e., fault isolation)
and to determine the root cause of the fault (i.e., fault
identification). As detailed in “Fault Diagnostics” Section,
diagnostics can be approached using either a model-based
method (“Model-Based Methods” Section), a rule-based
method (“Rule-Based Methods” Section), or a data-driven
method (“Data-Driven Methods” Section). The distinctions
are not completely clear, however, and various hybrid
approaches can be developed.

4) Prognostics: Depending on how the SSC will degrade, an
appropriate prognostic model is then applied to estimate its
RUL. Viewed as one of PHM’s most beneficial aspects,
prognostics is paradoxically an underdeveloped module,
especially in the nuclear industry. There is no universally
accepted methodology for all prognostic problems, and a
variety of algorithms have been developed for application
to specific situations or classes of components. Based on a
collection of recent review papers, “Prognostics” Section
divides these algorithms into four model categories:
physics-based (“Physics-Based Methods” Section),
knowledge-based (“Knowledge-Based Methods” Section),
data-driven (“Data-Driven Methods” Section), and hybrid
(“Hybrid Methods” Section) models. The data-driven
prognostic models—from conventional statistical methods
(“Statistical-Based Prognostics” Section) to advanced ML/
DL techniques (“Machine Learning-Based Prognostics”
Section)—are of particular interest to large complex
systems, and they have been the topic of most research in
the field of machinery prognostics. A hybrid approach further
integrates the strengths of different model types for improved
RUL prediction results.
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5) Decision-making: O&M planning is informed by the
integration of prognostic calculations and risk assessment
of proposed mitigation actions based on the current and
postulated future health states of the target SSC to achieve
optimal (and ultimately autonomous) control and decision-
making. As an indispensable step of the broader PHM
philosophy, the module of autonomous decision-making
has not been extensively studied in the nuclear realm.
Given the current status and apparent gaps for NPPs,
“Decision-Making” Section first summaries general
methods used in decision-making (“Decision-Making
Methods” Section). The study presented in “From
Enhanced Risk Monitors to Supervisory Control: A
Pioneering Study” Section showcases the ability to integrate
diagnostics and prognostics results with supervisory control
systems for making risk-informed autonomous decisions that
utilize real-time information on component conditions.

Even though significant research has been undertaken and
more extensive efforts are underway—such as current DOE
projects around development of DTs and autonomous control
capabilities—to develop PHM systems for nuclear applications,
the nuclear industry still lags behind some other industries in
bringing PHM from the research arena to commercial
deployment. “Research Needs for Deployment of Prognostics
and Health Management in Nuclear Power Plants” Section has
identified the overarching research needs and technical gaps
which still must be addressed to support the development and
deployment of PHM in nuclear power generation, including
PHM feasibility and challenges specific to NPPs due to the
industry’s unique operational framework and licensing
requirements; a unifying framework for connecting PHM and

PRA to synergize their complementary characteristics in the
context of complex systems; benchmark test beds for common
data generation and collaborative method V&V efforts; and
systematic uncertainty quantification and propagation,
especially in the case of data-driven methods.
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GLOSSARY

ADC analog-to-digital converter

AI artificial intelligence

ANN artificial neural network

BN Bayesian network

BWR boiling water reactor

CBM condition-based maintenance

CFR Code of Federal Regulations

CM condition monitoring

C-MAPSS commercial modular aero-propulsion system simulation

CNN convolutional neural network

DBN dynamic Bayesian network

DES discrete event system

DL deep learning

DOE Department of Energy (US)

DP dynamic programming

DT digital twin

ENN Elman neural network

ERM enhanced risk monitor

FBG fiber Bragg grating

FDA Fisher discriminant analysis

FFNN feed-forward neural network

FWCS feedwater and condensate system

GHG greenhouse gas

GMM Gaussian mixture model

GPR Gaussian process regression

GRU gated recurrent unit

I&C instrumentation and control

ICA independent component analysis

IEA International Energy Agency

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

LMI laser-based mechanical impedance

LSTM long short-term memory

LTO long-term operation

LWR light water reactor

MAE magneto acoustic emission

MBN magnetic Barkhausen noise

MDP Markov decision process

ML machine learning

NAMAC nearly autonomous management and control

NEA Nuclear Energy Agency

NF neuro-fuzzy

NPP nuclear power plant

NRC Nuclear Regulatory Commission (US)

O&M operations & maintenance

OP operating procedure

PCA principal component analysis

PHM prognostics and health management

PLS partial least squares

POF probability of failure

POMDP partially observable Markov decision process

PRA probabilistic risk assessment

PWAS piezoelectric wafer active sensor

PZT piezoelectric

RBF radial basis function

RNN recurrent neural network

RPV reactor pressure vessel

RUL remaining useful life

SCS supervisory control system

SMR small modular reactor

SNN spiking neural network

SSC structure, system, and component

SVM support vector machine

US United States

V&V verification and validation
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A fault diagnosis can quickly and accurately diagnose the cause of a fault. Focusing on

the characteristics of nuclear power plants (NPPs), this study proposes a distributed fault

diagnosis method based on a back propagation (BP) neural network and decision tree

reasoning. First, the fault diagnosis was carried out using the BP neural network and

decision tree reasoning, and then a global fusion diagnosis was performed by fusing

the resulting information. Second, the key technologies of the BP neural network and

decision tree sample construction were studied. Finally, the simulation results show

that the proposed distributed fault diagnosis system is highly reliable and has strong

diagnostic ability, enabling efficient and accurate diagnoses to be realized. The distributed

fault diagnosis system for NPPs provides a solid foundation for future research.

Keywords: nuclear power plants, distributed fault diagnosis, BP neural network, decision tree, information fusion

INTRODUCTION

Nuclear power plants (NPPs) produce a large number of monitoring signals. For example, a typical
alarm system has nearly 2,000 alarms (Mo et al., 2007). This complexity increases the difficulty of
judging the current state of the NPP. With the application of digital instrumentation and control
systems, this scenario becomes more obvious. This study focuses on how to improve the NPP
intelligence. The operational support (Wang et al., 2016; Peng et al., 2018), fault prediction and
health management (Li et al., 2018; Fan et al., 2019), and nuclear accident emergency decision-
making (Zhao et al., 2015; Zhao, 2016) are the key parts of NPP intelligence. At the same time, the
fault diagnosis can be used to obtain key signals from a large amount of data, allowing the current
operation state of the NPP to be determined. This is the key technology for improving the NPP
intelligence (see Figure 1) (Elnokity et al., 2012).

Many fault diagnosis methods for the NPPs have been developed, including those based on
neural networks (Seker et al., 2003; Mo et al., 2007; Hadad et al., 2011), Bayesian networks
(Friedman et al., 2017; Gheisari and Meybodi, 2017; Li et al., 2018), dynamic uncertainty
causal graphs (Zhou and Zhang, 2017), and signed directed graphs (Liu et al., 2016). The
fault diagnosis can be divided into data-driven, signal processing, and model-based methods
(see Figure 2) (Ma and Jiang, 2011). The data-driven methods rely on a data model to obtain
the fault state and often use neural networks or principal component analysis (Hines and
Garvey, 2007; Li et al., 2017). The signal-based methods operate in the time domain and
employ techniques such as wavelet analysis, time–frequency analysis, and spectral analysis
(Ma and Jiang, 2011). There are two main approaches for the model-based fault diagnosis.
One approach is based on the use of an expert knowledge, e.g., expert systems (Kramer and
Palowitch, 1987; Vila-Francés et al., 2013). The other approach is based on a graph theory, i.e.,
the model graphically displays relationships between various parameters and faults, such as in
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FIGURE 1 | Application of fault diagnosis in Nuclear power plants (NPPs).

a Bayesian network (Kang and Golay, 1999; Li and Ueno, 2017;
Li et al., 2017; Li and Mahadevan, 2018), first principle model
(Pantelides and Renfro, 2013), signed directed graph (Liu et al.,
2016), and uncertain causality graph (Khakzad et al., 2011).

In the early application of fault diagnosis, the expert
systems were mainly used to identify faults through the
reasoning between specific parameters and the associated faults
(Marseguerra et al., 2003). With the advancement in research, the
data-driven methods have gradually become more popular for
fault diagnosis, such as neural networks and principal component
analysis (Embrechts and Benedek, 2004; Liu et al., 2014).
Although the data-driven approach can quickly and accurately
find the relationship between the data and fault diagnosis, it is
a “black box” tool, meaning that it is difficult to determine the
relationship between the system parameters and the signs of a
fault (Zhu et al., 2006). Due to extensive study in the data-driven
methods, the fault diagnosis has started to adopt the knowledge
map approach (see Figure 3). However, with the application of
knowledge graph, it is difficult to obtain a complex model of
NPPs. Therefore, this study seeks machine learning of threshold
method (less data dependence) to complete the fault diagnosis.

The NPPs are complex industrial systems in which each piece
of equipment or subsystem completes the own task. Based on the
function and structure of NPPs, they can be described as typical
distributed systems. The various fault mechanisms of NPPs
mean that the traditional methods struggle to complete fault
diagnosis. The distributed diagnosis method takes into account
the characteristics of the system and decomposes the complex
fault diagnosis task into simple subsystems. Each subsystem uses
an appropriate method and knowledge to solve the task. Finally,
the diagnosis results for the subsystem were calculated by a
process known as information fusion to provide the operator
with a decision (Liu et al., 2016). This diagnosis strategy (as
shown in Figure 4) has been widely used for fault diagnosis

in large-scale complex systems in the aerospace and chemical
industries, among many others (Liu et al., 2014).

The main problems with fault diagnosis in complex systems,
such as NPPs, are as follows:

(1) The problems mainly include the complexity of the
diagnosis, the limitation of the diagnosis method, and
the uncertainties associated with the relevant knowledge.
The existing models cannot accurately and quickly express
the relationship in terms of the parameter coupling and
uncertainties. This directly affects the reliability of the diagnosis
results. It is difficult to construct a complete and accurate
model that effectively expresses the relationships involved in
the system.

In this study, the relationship between parameters is obtained
by a neural network, and the complex NPP system is decomposed
by a distributed neural network. The relationship between
models is simplified by the distributed neural network. The
proposed method then uses information fusion to improve the
accuracy of fault diagnosis.

(2) The parameters involved in the accident initially change
very slowly. Obtaining key information plays a very important
role in fault diagnosis. The parameters of the accident change
slowly in the early stages and do not exceed their thresholds. Since
these weak parameter changes caused by the fault are difficult to
identify, it is difficult to achieve early fault diagnosis. For example,
in the early stages of accidents involving the loss of coolant, the
parameters such as the containment pressure and temperature
slowly rise/fall (without exceeding their thresholds), and it is
difficult to identify the early signals. Thus, this study describes
the generation of samples for machine learning from the trends
of these parameters, which enables the speed of diagnosis to
be enhanced.

Fault diagnosis, as a form of artificial intelligence (i.e., pattern
recognition), is a critical and complex part of technology.
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FIGURE 2 | Classification of common fault diagnosis methods.

FIGURE 3 | Development history of NPP fault diagnosis methods.

This study focuses on the engineering and technical problems
encountered in fault diagnosis with the aim of satisfying the
real-time and accuracy requirements of diagnosis in NPPs.

The method and results reported in this study will be of
great significance in the further improvement of the NPP
fault diagnosis.
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FIGURE 4 | Logic diagram of distributed fault diagnosis.

FIGURE 5 | Basic structure of a single-layer neural network.

ARTIFICIAL NEURAL NETWORK

The basic units of neural networks are called artificial neurons.
The artificial neurons are models of biological nerves and are
generally divided into an input, an output, and an activation
function. The structure of these neurons is shown in Figure 5

(Mo et al., 2007).
The inputs can be considered as data and they are processed

by the neurons to simulate the artificial neurons. The relationship
between the quantities in Figure 5 is as follows:

ui =
∑

j

wijxj + θj (1)

Yi = f (ui), (2)

where xj is the input signal, w is the internal structure of the
neuron, ui is the connection weight (i.e., the binding strength),
θj is the threshold, f (ui) is an activation function, and Yi is the
output signal. The activation function acts as a linear or non-
linear function. The structure of the neural network is explained
in the following subsections.

Back Propagation Neural Network
Back propagation (BP) neural networks use a multi-layer feed
forward structure for machine learning. The standard three-layer
network structure is shown in Figure 6 (Rohde et al., 2011).

The BP learning is divided into two parts: forward propagation
and pre-propagation. The output of forward propagation in each
layer is transmitted only to the neurons in the next layer. If the
output layer cannot attain the desired output, it will transfer data
through backpropagation and then modify the input connection
weights of the neurons until the error reached the required degree
of accuracy.

The principle of the BP neural network is through input and
the hidden layer get output. Then the error between the actual
output and the output is calculated, and the error function is
used to adjust the connection weights between the layers of
the network and the threshold of the neurons. When the error
requirements are met, the relationship between input and output
is established, so this method can be used to solve problems such
as pattern recognition and classification (Liu et al., 2015).

Neural Network for Fault Diagnosis
To realize fault diagnosis in NPPs, first it is necessary to obtain
data to process the samples and then apply machine learning to
the samples to obtain a neural network diagnosis model. After
the training model has been obtained, when the data undergo
processing for input to the neural network, output is the type of
fault. A diagnosis flowchart is shown in Figure 7.

Sample Construction Using Thresholds
and Trends
The training samples are constructed according to the trend
of the parameters. The trend is specified as either “rising,”
“declining,” or “normal.” This method can identify abnormalities
before the parameters reach their thresholds. However, some
parameters also exhibit upward or downward trends when the
NPP is in normal operation. Therefore, we must consider the
normal fluctuation range of the parameters.

Combined with the operation data from an NPP simulator,
the changes in parameters can be analyzed. For different
operating conditions, we can modify the normal values and
the upper and lower bounds of the parameter fluctuations.
This method not only reduces the difficulty of neural network
training but also solves the problem of BP network diagnosis in
different conditions.

As shown in Figure 8, a value of 0.75 represents the situation
when a parameter rises and exceeds the upper limit of normal
fluctuation, or when the parameter exceeds the upper threshold.
This threshold reduces the size of the BP sample. A parameter
that is decreasing and falls below the lower limit of normal
fluctuation is represented by a value of 0.25. The scenario in
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FIGURE 6 | Back propagation (BP) network model.

FIGURE 7 | Framework of neural network for fault diagnosis.

FIGURE 8 | Parameter status division and representation.
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which a parameter is falling, but still exceeds the upper limit of
normal fluctuation, is expressed by a value of 0.5 as shown in
Figure 8. This can be understood as the parameter approaching
the normal range. Similarly, a parameter that is below the lower
limit of fluctuation but is increasing is represented by a value of
0.5, as shown in Table 1.

TABLE 1 | Parameter thresholds combined with trends for sample construction.

Sample input (parameters) Sample output (fault type)

WFWA WFWB LSGA LSGB LOFWP FIVA FIVB

0.5 0.5 0.5 0.5 0 0 0

0 0 0.25 0.25 1 0 0

0 0.75 0.25 0.5 0 1 0

0.75 0 0.5 0.25 0 0 1

WFWA, No. 1 steam generator feed water flow; WFWB, No. 2 steam generator feed

water flow; LSGA, wide range water level of steam generator No. 1; LSGB, wide range

water level of steam generator No. 2; LOFWP, loss of main feed pump, FIVA, No. 1 steam

generator feed valve is wrongly closed; and FIVB, No. 2 steam generator feed valve is

wrongly closed.

DECISION TREE FOR FAULT DIAGNOSIS

Theory
A decision tree is a tree structure that is used to classify data
records. A leaf node of this tree represents a record set. The tree
is established according to the different values of the available
data. By establishing nodes and branches, a decision tree can
be generated (Han and Kambr, 2001). Recently, the inductive
learning of decision trees is widely used in risk assessment and
fault diagnosis. The basic idea of decision trees is shown in
Figure 9.

This classification in a tree structure is simple and easy to
understand. Each path from the root node to the leaf node
corresponds to an IF-THEN rule. The relationships between
parameters and the outputs were clearly expressed.

Distributed Framework of Decision Tree
Model
When the decision tree method is used to solve diagnosis tasks,
it is necessary to establish a decision tree model. The diagnosis
results of each sub-diagnosis system are comprehensively solved
to obtain the final diagnosis results. This is similar to the

FIGURE 9 | Flowchart of decision trees.

FIGURE 10 | Decision tree model of containment monitoring and the main coolant system (RM1, radioactivity level in the containment; PRB, pressure in the

containment; WLR, the main coolant leakage flow rate; WUP, pressurizer safety valve flow; and WLD, lower leakage pipeline flow).
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construction of BP neural network samples. The decision tree
model makes up for the poor interpretability of “black box”
BP neural networks. Additionally, the algorithm selects the
characteristic parameters that can distinguish all kinds of faults
as the root node and intermediate node of the decision tree.
This greatly simplifies the rules and reduces the complexity
of reasoning. The accuracy of the results can be improved by
combining the decision tree method with a BP neural network.
Figure 10 shows the decision tree model for “containment
monitoring” and the “main coolant system.”

In Figure 10, each rectangle represents a monitoring
parameter and each ellipse represents an accident type. Each
path from root node to leaf node can be transformed into
corresponding IF-THEN rules. For example:

IF (PRB = “high” and RM1 = “normal”), THEN fault type =
“main stream line break (containment)”

IF (PRB= “high” and RM1= “high”), THEN fault type= “loss
of coolant accident”

IF (PRB = “normal” and RM1 = “high”), THEN fault type =
“fuel handling accident (containment).”

The fault diagnosis system is divided into multiple sub-
diagnosis systems, each incorporating the corresponding
monitoring parameters. When a fault occurs, it may affect the
parameters of multiple subsystems. Therefore, the decision tree
model established for each subsystem is only preliminarily solved
in the sub-task space, and rules may not be sufficient for the
diagnosis. Through the reasoning between various systems, the
diagnosis can be accurately completed, which is a characteristic
of the distributed diagnosis method.

EVIDENCE THEORY

Based on the diagnosis results for each NPP subsystem, it is
necessary to adopt an appropriate method to achieve an overall
decision. An evidence theory is a kind of uncertain reasoning and
decision-making method that can handle inaccurate, uncertain,
and fuzzy problems. As a good decision model, the evidence
theory has been widely used in multi-sensor information fusion,
target recognition, and uncertain information decision-making
(Uren et al., 2016).

Basic Principles of Evidence Theory
Multi-source information fusion, known as data fusion, was
proposed in the 1970’s (Dempster, 1967). The data fusion
improves the decision-making process when the available
information is uncertain, but it can give rise to ambiguous
and contradictory problems. The Dempster–Shafer theory (DST)
fusion model requires mutual exclusion between the elements
using evidence rules. For 2 = {θ1, θ2, . . . , θn}, evidence A and
B, the basic corresponding functions m1 and m2, and the DST
evidence combination rules are (Smarandache and Dezert, 2006):

m(C) =





∑
Ai∩Bj=C

m1(Ai)m2(Bj)

1−K ,∀C ⊂ 2,C 6= ∅

0, ∀C = ∅

, (3)

K =
∑

Ai∩Bj=∅

m1(Ai)m2(Bj) < 1, (4)

where K is the degree of conflict between evidence A and B.
A larger value of K implies that there is more conflict between
evidence A and B. For multiple pieces of evidence mi, the fusion
of results given by Equation (3) can be regarded as new evidence,
which is then integrated into the next piece of evidencemi.

The DST fusion theory is based on two fusion models: the
classic model (DSmC) and the hybridmodel (DSmH). The fusion
rule of DSmC is defined as

∀A 6= ϕ ∈ D2,mMf (2)(A)
1
= [m1 ⊕m2 ⊕ . . .mk](A)

=
∑

X1 ,...,Xk∈D
2

(X1∩...∩Xk)=A

k∏

i=1

mi(Xi) (5)

The fusion rule of DSmH is defined as

mM(2)(A) = ϕ(A)[S1 + S2 + S3], (6)

TABLE 2 | Basic trust distribution table.

Evidence source Basic belief assignment θ1 θ2 θ1

⋃
θ2

E1 m1 0.2 0.7 0.1

E2 m2 0.6 0.2 0.2

TABLE 3 | Fusion examples.

Diagnostic system Identification framework

(diagnosable fault set)

θ1 θ2 θ3 θ4 θ5 θ6 θ7

System 1 0.02 0.04 0.02 0.98 – – –

System 2 – – – – 0.03 0.04 0.98

System 3 – – – – 0.02 0.01 –

“–” indicates that the diagnostic system cannot diagnose the fault.

TABLE 4 | Identification framework after refinement and coarsening.

Diagnostic subsystem New identification framework

θ4 θ7 2̃

Subsystem 1 0.9245 0 0.0755

Subsystem 2 0 0.9333 0.0667

Subsystem 3 0 0.9412 0.0588

TABLE 5 | Final fusion results.

θ4 θ7 θ4 ∩ θ7 2̃ θ4 ∩ 2̃ θ7 ∩ 2̃ θ4 ∩ θ7 ∩ 2̃

Fusion results 0 0 0.8121 0.0002961 0.003579 0.07524 0.1088
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where S1 =
∑

X1 ,X2 ,...,Xk∈D
2

(X1∩X2∩...∩Xk)=A

k∏

i=1

mi(Xi)

S2 =
∑

X1 ,X2 ,...,Xk∈∅

[u(X1)∪u(X2)∪...∪u(Xk)=A]
∨[u(X1)∪u(X2)∪...∪u(Xk)∈∅∧(A=Ii)]

k∏

i=1

mi(Xi)

S3 =
∑

X1 ,X2 ,...,Xk∈D
2

(X1∪X2∪...∪Xk)=A
(X1∩X2∩...∩Xk)∈∅

k∏

i=1

mi(Xi)

Suppose that the identification framework consists of two
elements, i.e., 2 = {θ1, θ2}, and there are two independent and
reliable sources of evidence, E1 and E2. The reliability assignment
of the corresponding elements is presented in Table 2.

Therefore, for multiple pieces of evidence, obtaining the final
consistent fusion decision results requires the support of evidence
theory. The fusion results under different fusion rules are given
as follows:

According to the DS fusion rules in Equations (3) and (4), the
fusion results are

m(θ1) = 0.40741,m(θ2) = 0.55556,m(θ1
⋃

θ2) = 0.032037

According to the DST classical model fusion rules in Equation
(5), the fusion results are

m(θ1) = 0.22,m(θ2) = 0.3,m(θ1
⋃

θ2) = 0.02,

m(θ1
⋂

θ2) = 0.46

Under the distributed diagnosis strategy, the task of the system
is divided into various subtask spaces. The information fusion

FIGURE 11 | Structure of distributed fault diagnosis system for NPPs.
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is then carried out using evidence theory. Finally, the single or
concurrent fault is identified.

Distributed Integration Method
Assume that the diagnostic results for a subsystem at a given time
are as listed in Table 3, where θ1 − θ7 represent seven different
fault types. The faults can be diagnosed by the following different
diagnostic subsystems.

1. The union set of elements in the identification framework
of diagnostic subsystems is the basic element of the identification

framework. The refined unified identification framework is 2 =

{θ1, θ2, θ3, θ4, θ5, θ6, θ7}.
2. The rule based on the evidence theory produces an

“explosion” when the number of elements is too large. The aim
of this identification framework is to extract useful information
from the evidence by setting a threshold. When the reliability
value of a fault in the diagnostic subsystem exceeds the
threshold, as for θ4 and θ7 in Table 3, the remaining elements
θ1, θ2, θ3, θ5, and θ6 are merged into one element 2, which
represents the set of elements other than θ4 and θ7. The reliability
value of 2̃ is the sum of the reliability values of its elements.

FIGURE 12 | Real-time diagnosis result of steam generator (BP neural network method).

FIGURE 13 | Real-time diagnosis results of the main water supply system (BP neural network).
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Finally, the reliability values of each piece of evidence under
the new identification framework are normalized to obtain the
results listed in Table 4.

The DST fusion rule can then be used with the DST rule
applied for the fusion of evidence with small conflict rates. The
final fusion results are presented in Table 5.

Framework of Distributed Fault Diagnosis
The NPP fault diagnosis system adopts a distributed frame
structure. The structure is shown in Figure 11, and it mainly

includes a knowledge base, fault diagnosis, and global-level
fusion diagnosis. The knowledge base integrates the BP neural
network fault-diagnosis knowledge with the decision tree model-
reasoning knowledge.

CASE STUDIES

To verify the diagnostic ability of the distributed fault diagnosis
system for a single fault, random faults were inserted into a

FIGURE 14 | Global-level fusion diagnosis results (BP neural network method).

FIGURE 15 | Real-time diagnosis result of steam generator (decision tree method).
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simulator. The distributed fault diagnosis system provided real-
time operation data for the NPP through the operation database
and then identified the fault types.

The division of systems in the distributed fault diagnosis of
NPPs is based on the distributed principles. The diagnosis tasks
are decomposed and assigned to each diagnosis module. The
subsystem division methods are based on (1) system structure,
(2) system function, and (3) time series. After considering
the importance of each system of safe operation, monitoring
parameters, and other factors, this study uses a method based on

the combination of system structure and function to divide the
subsystems. The main monitoring parameters of each subsystem
are listed, and the resultants are divided into reactor core system,
containment monitoring system, radiation dose monitoring
system, main water supply system, steam generator, main line
steam system, main coolant system, equipment-valve system,
equipment-pump system.

The sample is achieved by a software PCTRAN simulator.
It was taken as the data source for the present study and it is
a reactor transient and accident simulation software developed

FIGURE 16 | Real-time diagnosis results of the main water supply system (decision tree method).

FIGURE 17 | Global-level fusion diagnosis result (decision tree method).
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by the Micro-Simulation Technology Company (United States).
As PCTRAN can be operated on a personal computer, it is
convenient for nuclear power operation staff and researchers
to study. Since its first release in 1985, the Micro-Simulation
Technology Company has developed many versions of PCTRAN
to suit different types of NPP (Po, 2004).

Steam Generator Tube Rupture Accident
After running the simulator under normal working conditions
for 40 s, a tube rupture accident in the No. 1 steam generator,
covering 100% of the cross-sectional area of the tube, was

generated. The steam generator and the main water supply
system successively diagnosed the tube rupture fault. The
probability of the fault occurrence in the other seven diagnostic
modules remained close to zero. This indicates the normal
operation of the subsystem. The fusion diagnosis obtains the final
fusion decision results. The diagnostic results of the BP neural
network method are shown in Figures 12–14. The diagnostic
results of the decision tree model are shown in Figures 15–17.

Both the BP neural network method and the decision tree
model obtained the correct diagnosis results in a short time,
with the steam generator module diagnosing the fault earlier

FIGURE 18 | Global-level fusion diagnosis result (BP neural network method).

FIGURE 19 | Global-level fusion diagnosis result (decision tree method).
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than the main water supply system. This is because the steam
generator module can quickly diagnose such faults bymonitoring
the leakage flow and other parameters. When the fault occurs,
the flow increases rapidly. As the main water supply system is
monitoring the steam generator water level and other parameters,
the symptoms are relatively slow to appear, so the fault diagnosis
takes a longer time. In addition, the probability of fault-
occurring results is improved by the mutual verification of both
the methods.

Loss of Coolant Accident
The nuclear power simulator was operated under normal
conditions for 40 s, and then a loss of coolant accident from a
hole measuring 3 cm2 was inserted. After 10 s, the probability
of the coolant loss accident exceeded 90% in the main coolant
system, containment monitoring, and radiation dose monitoring
modules of the distributed fault diagnosis system. Three sets
of evidence pointed to the coolant loss accident, while the
probability of the failure in the remaining six sub-modules
remained close to zero. The diagnosis results of the BP neural
network method and decision tree model method are shown in
Figures 18, 19.

The time difference between the two methods for fault
diagnosis is not obvious, because the thresholdmethod combined
with the trend of the parameters is used to monitor the
operation state of each parameter, which improves the diagnosis
speed. However, the decision tree reasoning method selects the
characteristic parameters that have the greatest effect on fault
classification as nodes, and it does not require all signs to appear.
Therefore, for some faults, the decision tree method has a faster
diagnosis speed.

CONCLUSION

According to the proposed distributed diagnosis method, the
identification of faults in NPPs was decomposed into several

subsystems. The steam generator tube rupture accident and
loss of coolant accident, respectively, use BP neural network
and decision tree, for fault diagnosis. Through the distributed
diagnosis, the diagnosis results of different subsystems were
merged. This method not only reduces the number of samples in
machine learning but also increases the speed of sample learning.
The threshold value of parameters was obtained to construct
sample, and the speed of diagnosis was improved by obtaining
the trend of parameters. Information fusion was used for the
diagnosis results, thus reducing the complexity of the fusion
process and improving the accuracy of the diagnosis results. The
simulation results show the superiority of the method proposed
in this study.

The diagnosis ability of the distributed fault diagnosis system
for NPPs can be extended to different power conditions. The fault
diagnosis of NPPs after the protection intervention will be the
topic of future research.
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