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Editorial on the Research Topic

Biotyping in Psychiatry

Since Wilhelm Griesinger’s famous statement that “all mental illnesses are cerebral illnesses” (aka
brain mythology), there have been recursive calls for a global revision of psychiatric classifications
to better accommodate for mental disorders as disorders of the brain (1). However, the cleavage
between current diagnostic systems for mental disorders (which rely upon presenting signs and
symptoms) and contemporary neuroscience has not been bridged, to the point that the Research
Domain Criteria (RDoC) paradigm was launched as an alternative approach to optimize the
identification of relevant neurobiological and behavioral systems involved in the pathogenesis
of mental disorders (2). The basic inspiration of the RDoC was to reclassify mental diseases
based on biological markers ranging from genes to circuits, physiology, behavior. Specifically,
the central heuristic architecture of the RDoC is the deconstruction of human behavior and
brain function into neuropsychological “domains” (i.e., “negative valence systems,” “positive
valence systems,” “cognitive systems,” “social processes,” “arousal and regulatory systems,” and
“sensorimotor”) and related subcomponents, thereby facilitating the identification of multilevel
neurobiological substrates.

This move was essentially motivated by the empirical observation that polythetic diagnostic
systems for mental disorders, such as the DSM and ICD, are taxed by high degrees of inter-class
overlaps, comorbidity and heterogeneity, as well as diverse disease course and response to
treatment within the same diagnosis (3). However, although the RDoC initiative was launched
by the National Institute of Mental Health more than a decade ago, the gap between traditional
research based on syndromic classification and RDoC-based investigation remains monumental
and largely unaddressed (4). An obvious, pragmatic strategy to reduce such gap (and finally
actualize Griesinger’s hope) is to progressively move toward a hybrid system systematically
enriching the biological fingerprints of present diagnostic categories, given that a fully biomarker-
driven diagnostic system is still a rather distant and futuristic goal. Such a process will necessitate
the iterative refinement of interim diagnostic systems and the establishment of standardized
methodologies tomaximize generalizability. For example, adopting a dimensional, trans-diagnostic
perspective to reclassify symptoms could help the understanding of the pathophysiology of
psychiatric illnesses in terms of onset, syndromic aggregation of signs and symptoms, and later
outcomes. This might also inspire more precise treatment targets or preventive interventions.
Therefore, this special Research Topic addresses promising new avenues centered around biotyping
in psychiatry. The nine collected studies (2 systematic reviews, 1 mini-review, and 6 original
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investigations) specifically focus on biotyping in order to redefine
or reclassify existing mental diseases or to identify biomarkers
necessary for such biotyping.

As per the two systematic reviews, first Fatih et al. addressed
long-term intracortical inhibition (LICI) as a biomarker in
neuropsychiatric disorders. They reviewed 113 articles on
psychiatric disorders as well as neurologic disorders. The
results indicate that although LICI may have utility as
a biomarker of GABAB functioning, many studies present
heterogenous methodology and inconsistent findings, thereby
requiring a more substantial effort to increase shared standards
in the field. Second, Miranda et al. conducted a systematic
review of functional magnetic resonance imaging from the
perspective of unsupervised machine learning applications
for disease subtyping. However, the results for all explored
diseases are inconsistent, indicating the need for concerted,
multisite data collection in order to measure the generalizability
of results.

The mini-review by Sugiyama et al. addresses the
electrophysiological index for sensory processing dysfunctions
in psychiatric disorders on the basis of findings of the
auditory steady-state response (ASSR). They propose that
ASSR amplitude, phase, and resetting responses are sensitive
indices for investigating sensory processing dysfunction in
psychiatric disorders.

As per the six empirical contributions presented in this
topic, two focus on hippocampal subfield studies. Sasabayashi
et al. conducted a hippocampal subfield volumetry across
illness stages. They suggested that the reduced hippocampal
subfield volumes may represent a common biotype associated
with psychosis vulnerability. On the other hand, Tai et al.
investigated the pathophysiology which protects against
progressive hippocampal atrophy by altering neuronal plasticity
or inducing neurogenesis. Egger et al. conducted a functional
transcranial Doppler study of cerebral blood flow velocity
patterns in patients with schizophrenia. The results support
the view that schizophrenia, particularly symptom load and
thus severity, influences performance in neurocognitive
tasks whilst being related to distinct brain hemodynamic

patterns. Takahashi et al. conducted an eye movements

investigation as a non-invasive potential biomarker for the
diagnosis of major depressive disorder. Free-viewing test,
Lissajous trajectories of the smooth pursuit eye movement
test, and fixation stability test were adopted. They suggested
that the detailed parameters of eye movements can assist in
differentiating depressive patients from healthy comparisons.
Koshiyama et al. investigated an identification of the neural
sources and their dynamic interactions using resting-state
electroencephalography. This study provides evidence that
abnormal resting-state electroencephalography oscillations
are driven by patterns of hyper-connectivity across multiple
frequency bands and a distributed network of the frontal,
temporal and occipital brain regions that are involved in visual
and auditory information processing in schizophrenia patients.
Dong et al. investigated the prefrontal hemodynamics of
patients with major depressive disorders using a head-mounted
functional near-infrared spectroscopy.

Taken together, these articles explored state-of-the-art
approaches to identify biomarkers or biotypes using a variety
of methods, including long-term intracortical inhibition,
resting-state or task-based functional connectivity, functional
transcranial Doppler. However, to accelerate progress and
minimize the risk of inconsistent results and generalizability
problems, the next wave of biotyping research should establish
standardized methods and adopt transdiagnostic approaches
with a sufficient sample size.
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Background: Patients with schizophrenia show abnormal spontaneous oscillatory

activity in scalp-level electroencephalographic (EEG) responses across multiple

frequency bands. While oscillations play an essential role in the transmission of

information across neural networks, few studies have assessed the frequency-specific

dynamics across cortical source networks at rest. Identification of the neural sources

and their dynamic interactions may improve our understanding of core pathophysiologic

abnormalities associated with the neuropsychiatric disorders.

Methods: A novel multivector autoregressive modeling approach for assessing effective

connectivity among cortical sources was developed and applied to resting-state EEG

recordings obtained from n = 139 schizophrenia patients and n = 126 healthy

comparison subjects.

Results: Two primary abnormalities in resting-state networks were detected in

schizophrenia patients. The first network involved the middle frontal and fusiform gyri

and a region near the calcarine sulcus. The second network involved the cingulate gyrus

and the Rolandic operculum (a region that includes the auditory cortex).

Conclusions: Schizophrenia patients show widespread patterns of hyper-connectivity

across a distributed network of the frontal, temporal, and occipital brain regions.

Results highlight a novel approach for characterizing alterations in connectivity in

the neuropsychiatric patient populations. Further mechanistic characterization of

network functioning is needed to clarify the pathophysiology of neuropsychiatric and

neurological diseases.

Keywords: resting-state electroencephalography (EEG), effective connectivity, schizophrenia, source level

analysis, biomarker, temporal cortex, frontal cortex
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INTRODUCTION

Neurophysiologic abnormalities are commonly studied in
patients with schizophrenia in response to experimental stimuli,
cognitive, tasks, and even at rest. Neural oscillations play an
essential role in cortico-cortical transmission and the integration
of information across neural networks supporting critical brain
functions, including perception, attention, and other higher-
order cognitive functions (1–7).

Neural oscillations can be measured in the scalp
electroencephalogram via a variety of analytic and experimental
settings [e.g., spontaneous, evoked, induced, and emitted (8–
10)], which have productively resulted in the identification
of abnormalities across a broad range of conditions in
schizophrenia patients. Task-related (i.e., evoked and induced)
high frequency oscillatory abnormalities in schizophrenia
patients, especially for gamma band oscillations (i.e., above
30Hz), have been consistently reported among the myriad
neurophysiological abnormalities seen in schizophrenia
(8, 9, 11–17), and are associated with multiple cognitive deficits
in patients (18). In contrast to the widely studied stimulus-
or task-evoked gamma oscillations, spontaneous oscillatory
abnormalities in schizophrenia, particularly in the gamma band,
have been relatively less studied.

Resting-state EEG does not require behavioral responses to
stimuli or cognitive tasks for elicitation and is already widely used
as part of routine neurologic and psychiatric assessments (19).
Spontaneous oscillations arise from the synchronous firing of
neurons in distributed neuronal networks and are characterized
at broadband frequency ranges detectable via scalp sensors. Such
oscillations can also be characterized via the flow of spectral
information among their calculated neural sources. Identification
of the primary contributing neural sources as well as the dynamic
interactions among sources of spontaneous EEG activity may
elucidate fundamental pathophysiologic abnormalities associated
with the illness which may ultimately yield clinically relevant
applications (biomarkers of illness, risk of illness, or sensitivity
to therapeutic interventions).

A recent review article reported that schizophrenia patients
showed increases in the canonical theta, alpha, and beta bands,
but with no difference in the delta band activity in scalp level
responses (20). Despite enthusiasm for measures of gamma band
phase locking and synchronization to steady-state stimulation
(8, 21), resting state gamma band activity has not been commonly
studied. Moreover, while such scalp-level responses have been
extensively described, the spatial information of neural network
dynamics underlying frequency-band specific resting-state EEG
activity in schizophrenia patients is largely unknown. To our
knowledge, only one paper, by Andreou et al. (22) reported
increased resting-state gamma-band functional connectivity
across the Rolandic operculum, a region that includes superior
temporal and inferior frontal gyri, in schizophrenia patients.

In this study, a novel multivector autoregressive modeling
method was developed and applied to assess the effective
connectivity of resting-state EEG activity among cortical sources
in schizophrenia patients and healthy comparison subjects.
This data-driven approach enables an analysis of cortical

network dynamics with directed information flow [e.g., Granger
causality (23); increased or decreased EEG phase coherence
between two cortical regions] using a correlation with a time
delay. We hypothesized that patients with schizophrenia would
show abnormal increased frequency-specific oscillations (e.g.,
gamma-band activity) across frontotemporal cortical networks.
Furthermore, we aimed to characterize the networks associated
with other frequency bands in schizophrenia patients and healthy
comparison subjects.

MATERIALS AND METHODS

Subjects
EEG data from n = 147 healthy comparison subjects and n =

159 schizophrenia patients was processed. Recordings from n =

2 healthy comparison subjects and n = 5 schizophrenia patients
were dropped in the quality control step in the pre-processing of
EEG. In the sample of n = 145 healthy comparison subjects and
n = 154 schizophrenia patients, age and sex were significantly
different between the groups. Therefore, we removed the subjects
of extreme value of age and sex, and used a final sample of n= 126
healthy comparison subjects and n = 139 schizophrenia patients
in the effective connectivity analysis (Supplementary Method 1,
Supplementary Table 1). Resting-state spectral characteristics
assessed at a single principal component analysis (PCA)-based
composite scalp sensor level were previously reported (24).
Antipsychotics, anxiolytics, and anticholinergics were prescribed
for 125, 27, and 42 schizophrenia patients, respectively. Since
anxiolytics and anticholinergic medications are known to have
potential impacts on resting state scalp EEG (25, 26), separate
analyses of schizophrenia patients who did not have either
anxiolytics nor anticholinergics (N = 80) were also conducted.
Written informed consent was obtained from each subject. The
Institutional Review Board of University of California San Diego
approved all experimental procedures (071831, 170147).

Electroencephalography Recording and

Pre-processing
Participants sat in a comfortable chair in a quiet room and were
instructed to relax and with their eyes open. Subjects were closely
monitored via a one-way mirror throughout this brief 5min
session. The recording could be paused if subjects appeared to
be drowsy either by direct observation or as indicated in their
EEG/EOG recordings. The recording would then be resumed
after the subject was reminded to keep their eyes open.

EEG was continuously digitized at a rate of 1,000Hz (nose
reference, forehead ground) using a 40-channel Neuroscan
system (Neuroscan Laboratories, El Paso, Texas). The electrode
montage was based on standard positions in the International
10–5 electrode system (27) fit to the Montreal Neurological
Institute template head used in EEGLAB (28). The system
acquisition band pass was 0.5–100Hz. Offline, EEG data
were imported to EEGLAB 14.1.2 (29) running under Matlab
2017b (The MathWorks, Natick, MA). Data were high-pass
filtered [finite impulse response (FIR), Hamming window, cutoff
frequency 0.5Hz, transition bandwidth 0.5]. EEGLAB plugin
clean_rawdata() including artifact subspace reconstruction
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(ASR) was applied to reduce high-amplitude artifacts (30–35).
The parameters used were: flat line removal, 10 s; electrode
correlation, 0.7; ASR, 20; window rejection, 0.5. Mean channel
rejection rate was 4.2 % [standard deviation (SD) 2.3, range
0–15.8]. Mean data rejection rate was 2.0% (SD 3.5, range 0–
22.4). The rejected channels were interpolated using EEGLAB’s
spline interpolation function. Data were re-referenced to average.
Adaptive mixture independent component analysis (ICA) was
applied to the pre-processed scalp recording data to obtain
temporally maximally independent components (ICs).

Source Localization Using an Equivalent

Current Dipole Model
The values in the column of the mixing matrix derived from
ICA were mapped on to the scalp electrodes to obtain IC
scalp topography, which represents scalp projection of ICA-
derived effective EEG sources inside the brain (36). A previous
study showed that this scalp topography is modeled well by an
equivalent current dipole model, and in fact the “dipolarity”
of IC scalp topography correlates with the mutual information
reduced by ICA (37). Thus, even though ICA is agnostic on
spatial information (electrode locations, electric forward model
of the brain, or spatial information about location of the
EEG generators), minimizing the mutual information in the
decomposed signals naturally achieves a physiologically valid
dipolar spatial projection pattern. These findings are often
taken as evidence of physiological validity of ICA when applied
to scalp-recorded EEG data (independence-dipolarity identity).
This estimation of equivalent current dipoles was performed
using Fieldtrip functions (38). Two symmetrical dipoles were
estimated for scalp topographies (39).

Selection of Independent Components

Representing EEG
To select brain ICs among all types of ICs, EEGLAB plugin
ICLabel() was used (40). The inclusion criteria were (1) “brain”
label probability > 0.7 and (2) residual variance i.e., var[(actual
scalp topography) – (theoretical scalp projection from the fitted
dipole)]/var(actual scalp topography)< 0.15. Seven subjects were
removed because they did not have minimum of 4 brain ICs. The
mean number of ICs remained was 12.5 (SD 4.5, range 4–25). To
ensure consistency across computations, recordings longer than
300 s were truncated to 300 s. Mean data length was 297.7 s (SD
8.9, range 202–300).

Effective Connectivity Analyses
To calculate the grand-mean effective connectivity across
ICs for each group, we applied EEGLAB plugin groupSIFT,
which recently demonstrated successful application in other
neuropsychiatric disorders (41). Renormalized partial directed
coherence [RPDC (42)] was calculated across ICs (single window,
logarithmically distributing 50 frequency bins from 2 to 55Hz).
This generated a connectivity matrix with the dimension of IC×

IC for each participant. The grand-average optimummodel order
determined via the elbow detection method was 7.1 (SD 0.6) i.e.
delayed effective connectivity up to about 64ms was utilized. An
autocorrelation function (ACF) test showed that probability for

the residual to be white was 0.81 (SD 0.04). Data consistency (43)
was 88.2 % (SD 4.3). The estimated equivalent dipole locations of
the corresponding ICs were convolved with 3-D Gaussian kernel
with 20mm full width at half maximum (FWHM) to obtain
probabilistic dipole density (truncated at 3 σ). The dipole density
inside the brain space is segmented into anatomical regions
defined by custom automated anatomical labeling [AAL (44)];
the original 88 anatomical regions in AAL were reduced to 76
by summarizing basal and deep limbic regions into two umbrella
regions, upper and lower basal. The labels “upper basal” and
“lower basal” were originally matched to ventral mid-cingulate,
“mid-cingulate” as dorsal mid-cingulate, and “insula” as inferior
frontal. The individual IC × IC connectivity matrix was thus
mapped to a 76 × 76 connectivity matrix, on which RPDC
was also mapped as a weighting factor to modulate pairwise
dipole density to calculate graph edges. For both groups (healthy
comparison subjects and schizophrenia patients), including a
minimum of 70% of unique subjects was set to be an inclusion
criterion for each graph node to be analyzed in the next stage.
Also, for the group comparison (healthy comparison subjects
and schizophrenia patients), 48/76 graph nodes showed overlap
between the groups, which explained 82.3% of total dipole
density, consistent with findings from Loo et al. (41). For the
statistics of RPDC in the frequency domain, a weak family-wise
error rate control was applied (45, 46). The brain graphs were
visualized using BrainNet Viewer software (47).

RESULTS

The connectivity matrix that represents the group-difference
[healthy subjects (N = 126) and schizophrenia patients (N =

139)] of each EEG band activity [a pre-defined p < 0.0001,
corrected; two-tailed (48)] is shown in Supplementary Figure 1.
The results revealed 10 graph edges (effective connectivity,
i.e., increased or decreased EEG phase coherence between
two cortical regions) for delta band (1–4Hz), 16 for theta
band (4–8Hz), 14 for alpha band (8–14Hz), 11 for beta
band (14–30Hz) and 8 for gamma band (30–50Hz) activity
(Figures 1–3). The connectivity results of healthy comparison
subjects and schizophrenia patients are separately shown in
Supplementary Figure 2.

The matrix of the group-difference [healthy subjects (N =

126) and schizophrenia patients who were not treated with
anxiolytics or anticholinergics (N = 80)] of each EEG band
activity (p < 0.0001, corrected; two-tailed) is also shown in
Supplementary Figure 3. We revealed 10 graph edges for delta
band, 14 for theta band, 17 for alpha band, 17 for beta band and
6 for gamma band activity (Supplementary Figures 4, 5).

Delta Band Activity (1–4Hz)
Decreased effective connectivity from a region near the calcarine
sulcus to the fusiform, temporal and middle cingulate gyri
was detected in delta band in schizophrenia patients compared
to healthy subjects (Figures 1–3). A bidirectional increased
interaction between the rightmiddle temporal gyrus and the right
middle cingulate gyrus was also observed. These connectivities
were more prominent in the right hemisphere.
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FIGURE 1 | Difference of effective connectivity in each EEG band activity between healthy subjects (N = 126) and schizophrenia patients (N = 139). SZ,

schizophrenia; HCS, healthy comparison subject; L, left; R, right; Front Mid, middle frontal; Front Inf Oper, opercular part of inferior frontal; Cing Ant, anterior cingulate;

Cing Mid Dors, dorsal middle cingulate; Cing Mid Vent, ventral middle cingulate; Cing Post, posterior cingulate; Temp Sup, superior temporal; Temp Mid, middle

temporal; Temp Inf, inferior temporal; Rolandic, Rolandic operculum; Supramarg, Supramarginal.
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FIGURE 2 | Abnormal effective connectivity of resting-state EEG activity in schizophrenia patients. Red arrow indicates high effective connectivity and blue arrow

indicates low connectivity in schizophrenia patients relative to healthy comparison subjects. Sphere size indicate amount of total outflow in each node. SZ,

schizophrenia; HCS, healthy comparison subject; Front Mid, middle frontal; Front Inf Oper, opercular part of inferior frontal; Cing Ant, anterior cingulate; Cing Mid Dors,

dorsal middle cingulate; Cing Mid Vent, ventral middle cingulate; Cing Post, posterior cingulate; Temp Sup, superior temporal; Temp Mid, middle temporal; Temp Inf,

inferior temporal; Rolandic, Rolandic operculum; Supramarg, Supramarginal.
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FIGURE 3 | Neural networks underlying resting-state EEG activity in schizophrenia patients. Difference of effective connectivity between healthy subjects (N = 126)

and schizophrenia patients (N = 139) is shown; Asterisks (*) indicate the increased or decreased information flows observed in schizophrenia patients who did not

have either anxiolytics nor anticholinergics (N = 80) compared to healthy subjects (N = 126). SZ, schizophrenia; HCS, healthy comparison subject; Front Mid, middle

frontal; Front Inf Oper, opercular part of inferior frontal; Cing Ant, anterior cingulate; Cing Mid Dors, dorsal middle cingulate; Cing Mid Vent, ventral middle cingulate;

Cing Post, posterior cingulate; Temp Sup, superior temporal; Temp Mid, middle temporal; Temp Inf, inferior temporal; Rolandic, Rolandic operculum; Supramarg,

Supramarginal.
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Theta Band Activity (4–8Hz)
Theta band effective connectivity demonstrated a similar right-
sided asymmetry centered on the temporal and middle cingulate
gyri in schizophrenia relative to healthy subjects (Figures 1–3).
Decreased effective connectivity from a region near the calcarine
sulcus to the fusiform, temporal and middle cingulate gyri was
also detected in theta band activity in schizophrenia patients
compared to healthy subjects. The bidirectional increased
interaction between the right middle cingulate gyrus and right
middle temporal gyrus was also seen in theta band activity
in schizophrenia patients relative to healthy subjects. Increased
effective connectivity from the right fusiform gyrus to the right
middle frontal gyrus was seen in schizophrenia relative to
healthy subjects.

Alpha Band Activity (8–14Hz)
The overall pattern of alpha connectivity is similar with those
observed in theta band activity (Figures 1–3). Increased effective
connectivity from the right middle cingulate gyrus to the
Rolandic operculum (a region that includes auditory cortex and
spans Broadmann areas 41 and 42) was detected in schizophrenia
relative to healthy subjects. Increased effective connectivity from
the right fusiform gyrus to the right middle frontal gyrus and
the bidirectional increased interaction between the right middle
cingulate gyrus and the right middle temporal gyrus were also
seen in schizophrenia relative to healthy subjects.

Beta Band Activity (14–30Hz)
Abnormal patterns of connectivity were observed among
temporal, middle cingulate and occipital regions. These networks
overlapped across beta and alpha band activity in schizophrenia
patients compared to healthy subjects (Figures 1–3). Increased
effective connectivity from the right middle cingulate gyrus to
the Rolandic operculum was also seen in schizophrenia relative
to healthy subjects. Increased bidirectional information flows
between the right middle frontal gyrus and the right fusiform
gyrus were detected in schizophrenia patients compared to
healthy subjects.

Gamma Band Activity (30–50Hz)
The increased bidirectional information flows between the right
middle frontal gyrus and the right fusiform gyrus were also
detected in gamma band activity in schizophrenia patients
compared to healthy subjects (Figures 1–3). Although the
abnormal neural network was overlapped across gamma and
beta band activity in patients compared to healthy subjects, the
overall structure was simpler and more localized for gamma vs.
beta band activity. This relatively simpler structure for gamma
band suggests that higher frequency abnormal networks in
schizophrenia compared to healthy subjects consisted of more
independent local networks that therefore did not connect with
other regions.

DISCUSSION

Schizophrenia patients showed broad and widespread hyper-
connectivity of cortical networks underlying resting-state EEG

activity. Specifically, the following findings were detected; (1)
decreased information flows from a region near the right
calcarine sulcus to the right fusiform gyrus in delta band
activity, and bidirectionally increased interactions between the
right fusiform gyrus and the right middle frontal gyrus in beta
and gamma band activity (i.e., “visual network”; Figure 4); (2)
Increased information flow from the right middle cingulate
gyrus to the Rolandic operculum across alpha and beta bands
in schizophrenia patients compared to healthy subjects (i.e.,
“auditory network”; Figure 4); With few minor exceptions, these
results were largely confirmed in a subgroup of schizophrenia
patients who were not on anxiolytics or anticholinergics.

The present results replicate abnormal effective connectivity
between frontotemporal regions in schizophrenia patients (22).
Increased functional connectivity of alpha band activity at the
superior parietal and the occipital lobe area at scalp levels of EEG
in schizophrenia patients (N = 28) were previously reported by
Liu et al. (49); we successfully replicate and extended the results
showing the involvement of frontotemporal regions. We also
previously reported that abnormal spontaneous gamma band
activity measured via a spatial PCA of scalp channel data was
associated with verbal memory performance (24). Although the
PCA method used in the prior study provides a data-driven
approach for characterizing macroscale/global oscillatory effects
at the scalp, the neural interactions among sources were not
assessed. The current results suggest that the spontaneous global
gamma band abnormalities observed in schizophrenia patients
at the scalp level appear to be generated by interactions between
prefrontal and temporal regions.

A previous study by Andreou reported increased theta-
band resting-state connectivity across midline, sensorimotor,
orbitofrontal regions and the left temporoparietal junction in
schizophrenia patients (N = 19) (50), consistent with our
findings of right dominant increased effective connectivity
among the temporal and middle cingulate gyri in broad band
EEG activity including theta band activity. Inconsistencies in the
laterality of effects, however, may be due to the difference of age
or clinical severity. For example, the mean age of schizophrenia
patients in the Andreou et al. study (50) was 23.5 vs. 44.6 years in
the current study. Despite this difference in theta, our finding of
increased alpha connectivity at the right temporal region at scalp
levels of EEG in schizophrenia patients is fully consistent with the
findings of Liu et al. (49).

Of note, despite the temporal differences between neural
activity detected by very low frequency blood oxygenation-
dependent (BOLD) hemodynamic responses and EEG, our
resting-state EEG connectivity findings are also fully compatible
with functional magnetic resonance imaging study (fMRI)
findings of default mode network abnormalities in schizophrenia
patients (51). The present findings of greater connectivity
between the middle frontal, anterior cingulate and middle
temporal gyri regions, is consistent with greater default mode
network activation in schizophrenia (52).

Networks Centered at the Visual Cortex
The effective connectivity networks centered in the calcarine
sulcus and the fusiform gyrus in broad band EEG activity
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FIGURE 4 | Two major abnormal networks associated with either visual and auditory information processing detected in schizophrenia patients at rest.

were unexpected. The calcarine sulcus is a deep fissure
that starts in the temporal lobe that continues into the
occipital lobe with the primary visual cortex (V1) centered
in this region. The fusiform gyrus is large region in the
inferior temporal cortex that also has a functional role in
visual information processing (53), including object and
face recognition, and the recognition of facial expressions
(Figure 4). Indeed, despite these unexpected associations,
results are consistent with Morita et al. (54) findings of
associated eye movement impairments with gray matter cortical
thickness in schizophrenia patients in the middle frontal
and fusiform gyri and the lateral occipital cortex. Although
speculative, patients with schizophrenia may show abnormal
excessive simultaneous activation of various perception-
related brain regions, which may ultimately contribute to
clinical symptoms such as hallucinations, aberrant salience,
and delusions.

Networks Centered at the Auditory Cortex
Increased information flows were detected in schizophrenia
patients from the right middle cingulate gyrus converging on
the right Rolandic operculum (Figure 4). In the current analysis,
primary auditory cortex is located in the region labeled the
Rolandic operculum. Previous studies have demonstrated that
deficits in early auditory information processing in schizophrenia
patients as indexed by mismatch negativity (48, 55) and gamma-
band auditory steady-state responses (9, 56, 57) are supported
by distributed networks where the genesis of the responses
are detected in the superior temporal gyrus (a region that
includes auditory cortex) which subsequently propagate across
other temporal and frontal brain regions. The present results
suggest that resting state abnormalities in schizophrenia patients
are present across multiple frequency bands and over relatively
large spatial networks. Measures of network connectivity from
cingulate gyrus to the auditory cortex may be therefore
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account for multiple neurophysiologic biomarkers and show
promise as a future candidate biomarker of abnormalities in
schizophrenia patients.

Limitations
Results of this study should be considered in the context
of several limitations. First, this is a cross-sectional cohort
study of a heterogeneous sample of schizophrenia patients,
the majority of whom were prescribed complex medication
regimens. While comparisons of patients prescribed vs. not-
prescribed medications that are known to impact resting state
scalp responses (i.e., anxiolytics or anticholinergics) and healthy
subjects showed similar patterns of results, it is possible that
other medications including antipsychotics or symptoms may
contribute to the observation of abnormal network dynamics.
Carefully controlled prospective randomized controlled trials are
needed to disentangle medication effects. Despite efforts were
made to obtain medical/prescription records for all subjects,
self- and informant reports of medication compliance, ultimately
medication compliance could not be confirmed for the majority
of patients in this study. As such, more rigorous analyses of
medication doses and connectivity analyses were not pursued.
Second, only 40 EEG channels were used for the analyses in
this study. Future studies may benefit from the use of high-
density EEG recordings with at least 64 channels (58), individual
MRI data, and digitized scalp sensor locations rather than
template head models and reliance on standardized electrode
locations for potentially improved accuracy of source dynamics.
Third, while we believe that elaboration of neural system
dynamics reported here will be broadly applicable to multiple
neuropsychiatric disorders, we acknowledge the possibility that
results from schizophrenia patients with an established illness
may not generalize to other populations like clinical high risk
or first episode psychosis. Nonetheless, given improvements in
medical care and life expectancy, patients with more chronic
schizophrenia are likely to represent an increasing proportion of
the total schizophrenia population; characterization of abnormal
network dynamics among real-world patients via data-driven
approaches for assessing network dynamics may ultimately
be useful for application as biomarkers the development of
therapeutics for this largely underserved population.

CONCLUSIONS

Results of this study provide evidence that abnormal
resting-state EEG oscillations are driven by patterns of
hyper-connectivity across multiple frequency bands and a

distributed network of the frontal, temporal and occipital brain
regions that are involved in visual and auditory information
processing in schizophrenia patients. Future studies of the
neural mechanisms underlying the networks detected in
this study, in both future clinical and animal studies, are
needed to clarify the pathophysiology of neuropsychiatric and
neurological diseases in support of the development of novel
therapeutic interventions.
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Sensory processing is disrupted in several psychiatric disorders, including schizophrenia,

bipolar disorder, and autism spectrum disorder. In this review, we focus on the

electrophysiological auditory steady-state response (ASSR) driven by high-frequency

stimulus trains as an index for disease-associated sensory processing deficits. The

ASSR amplitude is suppressed within the gamma band (≥30Hz) among these patients,

suggesting an imbalance between GABAergic and N-methyl-D-aspartate (NMDA)

receptor-mediated neurotransmission. The reduced power and synchronization of the

40-Hz ASSR are robust in patients with schizophrenia. In recent years, similar ASSR

deficits at gamma frequencies have also been reported in patients with bipolar disorder

and autism spectrum disorder. We summarize ASSR abnormalities in each of these

psychiatric disorders and suggest that the observed commonalities reflect shared

pathophysiological mechanisms. We reviewed studies on phase resetting in which a

salient sensory stimulus affects ASSR. Phase resetting induces the reduction of both the

amplitude and phase of ASSR. Moreover, phase resetting is also affected by rare auditory

stimulus patterns or superimposed stimuli of other modalities. Thus, sensory memory

and multisensory integration can be investigated using phase resetting of ASSR. Here,

we propose that ASSR amplitude, phase, and resetting responses are sensitive indices

for investigating sensory processing dysfunction in psychiatric disorders.

Keywords: ASSR, gamma-band oscillation, phase resetting, electroencephalography, magnetoencephalography,

schizophrenia, bipolar disorder, autism spectral disorder

INTRODUCTION

Recent studies have identified multiple shared genetic associations and other commonalities
among psychiatric disorders. For example, genome-wide association studies suggest shared
molecular pathomechanisms between schizophrenia and bipolar disorder (1, 2), whereas
large-scale imaging analyses have revealed similar white matter abnormalities (3) in patients with
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schizophrenia and bipolar disorders. Recent genetic (2, 4)
and neuroimaging studies (5, 6) have also demonstrated
shared molecular and neurostructural abnormalities between
schizophrenia and autism spectrum disorder. Currently,
psychiatric disorders continue to be classified based on observed
symptoms rather than underlying pathogenic mechanisms.
Classifications such as the International Classification of Diseases
(ICD) (7) and the Diagnostic and Statistical Manual of Mental
Disorders (DSM) (8) have contributed to the standardization
of diagnoses and treatment in clinical practice; however,
they provide little information regarding neurobiological
mechanisms and treatment targets. Indeed, overemphasis on
differential diagnosis according to symptom clusters and clinical
history has revealed little about the pathological mechanisms
underlying these psychiatric disorders. Therefore, it is important
to investigate common biological abnormalities across multiple
psychiatric disorders. To address this issue, the National Institute
of Mental Health is currently attempting to construct a biological
framework for understanding the etiology and symptomology of
psychiatric disorders (9).

A common symptom of multiple psychiatric disorders is
sensory processing dysfunction (10, 11). Neurophysiological
approaches such as magnetoencephalography (MEG) and
electroencephalography (EEG) can reveal the electrical activity
of neuronal ensembles at high temporal resolution, thereby
providing quantitative indices of illness that also reflect disease-
associated abnormalities at the cellular level. In this review,
we focus on the auditory steady-state response (ASSR), an
electrophysiological response driven by a train of stimuli
delivered at a sufficiently high rate. ASSR recorded using
MEG or EEG has been reported to reach maximum amplitude
at approximately 40Hz (12, 13). Previous MEG (14) and
positron-emission tomography (15) studies have reported that
ASSR originates in the primary auditory cortex and associated
subcortical areas (16). The ASSR has been interpreted as
a reflection of oscillatory gamma-band activity representing
auditory objects (17–19). Moreover, neural oscillations in the
gamma frequency band are believed critical for information
processing across cortical networks (20, 21). For example,
gamma-band activity increases in the visual (22, 23), auditory
(24, 25), and somatosensory cortices (26) in response to
modality-specific sensory stimuli. Gamma-band activity is also
related to working memory and increases in the hippocampus
and prefrontal cortex during memory processing (27–29).
Therefore, gamma-band activity is involved in a wide range
of brain activities, from low-level sensory processing to higher
cognitive functions. Further, ASSR amplitude and phase are
believed to reflect the balance between inhibitory GABAergic
activity and excitatory glutamatergic activity mediated by the
N-methyl-D-aspartate (NMDA) receptor (30–32). Thus, ASSR
abnormalities as measured by MEG and EEG can reveal aspects
of aberrant neurotransmission and neuronal excitation within
specific brain circuits.

In 1999, Kwon et al. first demonstrated that patients with
schizophrenia showed reduced power and synchronization of
the 40-Hz ASSR (33), and subsequent studies by other groups
replicated this finding (34–37). A meta-analysis also concluded

that 40-Hz ASSR deficits are robust in schizophrenia (38). These
ASSR deficits are consistent with anatomic abnormalities of
the auditory cortex observed by magnetic resonance imaging
(39, 40). Such ASSR deficits at gamma frequencies have
also been discovered in bipolar disorder (41–43) and autism
spectrum disorder (44). In this review, we first summarize
ASSR abnormalities in each of these psychiatric disorders
and discuss the potential commonalities in pathophysiology
suggested by these observations. Second, we review studies
suggesting that modulation of ASSR amplitude and phase
by rare auditory patterns or addition of multimodal stimuli,
termed phase resetting, also yield useful index for psychiatric
disorders. We propose that ASSR is a sensitive index for
investigating sensory memory and multisensory integration
deficits in psychiatric disorders.

ASSR Deficits in Psychiatric Disorders
Schizophrenia
Most studies documenting ASSR deficits in schizophrenia have
been conducted in the chronic disease phase, suggesting a
relationship with symptom expression. Intriguingly, however,
reduced evoked power and phase locking of the 40-Hz ASSR
have also been documented in first-episode patients (35), high-
risk individuals before the onset of psychosis (37), and in first-
degree relatives (45, 46). In contrast, individuals with schizotypal
personality disorder did not exhibit ASSR deficits (46, 47). These
findings suggest that these ASSR deficits reflect pathological
development independent of disease course or the side effects of
long-term antipsychotic medication.

These ASSR deficits are most consistently observed at 40Hz,
whereas responses are usually intact at 20 and 30Hz [although
reduced ASSR at 30Hz (35) and enhanced ASSR at 20Hz (48)
have been reported]. Recent studies have also reported impaired
evoked ASSR power and phase locking at 80Hz in schizophrenia
(36, 49), and these abnormalities were associated with the severity
of hallucinations (36) and negative symptoms, such as flat affect,
anhedonia, and poverty of speech (49). Tada et al. reported
that deficits in the 40-Hz ASSR during a 300–500ms train were
associated with more severe clinical symptoms and cognitive
deficits (37). Moreover, patients with schizophrenia taking new
generation antipsychotics exhibited significantly increased 40-Hz
ASSR synchronization (45). Collectively, these findings indicate
that ASSR may also be a useful quantitative index for current
clinical symptoms and treatment response.

Bipolar Disorder
Patients with bipolar disorder show a pattern of ASSR deficits
similar to that of patients with schizophrenia. To our knowledge,
O’Donnell et al. first reported reduced evoked ASSR power at
20, 30, 40, and 50Hz as well as reduced phase synchronization
at 20, 40, and 50Hz among patients with unmedicated bipolar
disorder during manic or mixed episodes using EEG (41). Such
ASSR deficits have also been documented in depressive (42),
euthymic (43), and manic (41) states in the first episode (35) and
the chronic state (41–43) and in both medicated (42, 43) and
unmedicated patients (41).
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In contrast to a comparative group of patients with bipolar
disorder, no ASSR deficits were observed in a parallel group
with major depressive disorder (50). In fact, to our knowledge,
only one study has reported ASSR deficits in major depressive
disorder (51), and reduced ASSR power was found at 30Hz but
not at 40Hz as observed in patients with bipolar disorder and
schizophrenia (51). These findings suggest that major depressive
disorder and bipolar disorder have distinct neurophysiological
bases and further that 40-Hz ASSR can be used to distinguish
bipolar disorder from major depressive disorder (50).

Autism Spectrum Disorder
Wilson et al. first reported reduced 40-Hz ASSR power in 7–17-
year-old children and adolescents with autism using MEG (52),
with a greater reduction in the left hemisphere. Thereafter, Rojas
et al. found reduced evoked power and phase locking of left and
right 40-Hz ASSRs among both adults with autism and parents of
children with autism (53), suggesting that ASSR is a useful index
for diagnosis and risk evaluation. However, utility may be limited
to adults as ASSR amplitude increases from childhood through
adolescence and plateaus in early adulthood (54). Further, no
significant deficits in 20- and 40-Hz ASSRs were found among
5–7-year-old children with autism spectrum disorder (55).

Shared Pathophysiology Among Psychiatric

Disorders
Patients with schizophrenia, bipolar disorder, and autism
spectrum disorder demonstrate similar patterns of ASSR
deficits, suggesting shared neural circuit dysfunction. One
emerging hypothesis is that ASSR deficits reflect dysfunction
of the GABAergic and/or NMDAergic systems. Blockers of
NMDA receptors, such as phencyclidine and ketamine, evoke
psychotic symptoms in healthy individuals, exacerbate positive
symptoms in patients with schizophrenia, and induce various
schizotypic electrophysiological and behavioral abnormalities in
experimental animal models (56). For instance, Sohal et al.
demonstrated that optogenetic downregulation of parvalbumin-
positive GABAergic interneuron activity in mice reduced
gamma-band oscillations (57), whereas Sivarao et al. reported
that the 40-Hz ASSR in awake rats depended on the degree
of NMDA receptor channel blockade (30). Collectively, these
findings are consistent with evidence implicating GABA (58)
and/or NMDA (59) transmission impairment in schizophrenia.

Post-mortem brain studies of patients with schizophrenia and
bipolar disorder have also reported reduced interneuron density
in the cerebral cortex and hippocampus (60). Similar to the
GABAergic dysfunction in bipolar disorder is the therapeutic
efficacy of the mood stabilizer valproate, which has been shown
to increase GABA turnover in rat brain (61). Moreover, valproate
has been reported to increase GABA levels in human plasma,
suggesting that it enhances GABA activity in the central nervous
system (62). However, poor understanding of the mechanism
of action of valproate in bipolar disorder is a limitation
(63), and valproate is not effective in treating schizophrenia
or autism spectrum disorder, despite sharing the GABAergic
dysfunction hypothesis. A recent study of induced pluripotent
stem cell-derived organoids from patients with schizophrenia
and bipolar disorder found enhanced GABAergic specification

(64), suggesting that the reduction in GABAergic neurons
observed after disease onset is a compensatory response to
maintain the excitatory/inhibitory balance within neural circuits
during cortical development.

Conversely, 40-Hz ASSR deficits have not been observed in
patients with major depressive disorder. Hirano et al. showed
that spontaneous gamma band activity is high in patients with
schizophrenia and that the degree of 40-Hz ASSR deficits was
associated with increased spontaneous gamma-band activity
(65). Moreover, ketamine, an NMDA receptor antagonist, was
effective in treating depression (66) and increases resting-
state gamma-band activity (67). Therefore, patients with major
depressive disorder, in contrast to those with schizophrenia,
may have reduced spontaneous gamma-band activity, and
consequently, ASSR deficits may not have been observed.
However, spontaneous gamma-band activity has not yet been
investigated in patients with major depressive disorder. The
number of reports on ASSR in major depressive disorder is small,
and similarities and differences with other diseases that have
ASSR deficits need to be discussed in the future.

Dysfunction of the GABAergic system has also been
implicated in autism spectrum disorder. For example, multiple
mouse models of autism established via toxins or manipulation
of associated genes exhibit reduced number of neocortical
parvalbumin-positive inhibitory neurons (68). A post-mortem
study also reported reduced GABA-synthesizing enzymes in
parietal and cerebellar cortices of patients with autism spectrum
disorder (69), whereas a protonmagnetic resonance spectroscopy
study reported reduced GABA concentration in the auditory and
frontal cortices of living patients (70). These GABAergic deficits
may result in a relative excess of glutamatergic activity. Indeed,
Fatemi’s hyper-glutamatergic hypothesis of autism spectrum
disorder posits that deficits in GABA-synthesizing enzymes and
increased GABA uptake by astrocytes led to excess cortical
glutamate (71).

Autism spectrum disorder and schizophrenia also share
behavioral symptoms such as difficulties with social cognition,
social interaction, and executive functions (72). In fact, autism
spectrum disorder was initially believed to be an early
stage of schizophrenia (73). Furthermore, an altered ratio of
excitatory to inhibitory cortical activity has been reported
in both autism spectrum disorder and schizophrenia (74).
Yizhar et al. demonstrated that psychosocial dysfunction, a
trait common to both disorders, was associated with increased
excitation/inhibition ratio in mouse prefrontal cortex (75).
Therefore, understanding the causes of excitation/inhibition
imbalance could provide clues to the pathophysiology of these
disorders as well as to novel treatment strategies. Further, ASSR
could be a sensitive electrophysiological indicator reflecting the
excitation/inhibition imbalance common among schizophrenia,
bipolar disorder, and autism spectrum disorder.

Perspectives on Neurophysiological
Research Using Phase Resetting of ASSR
Phase resetting is a phenomenon that occurs when a stimulus
perturbs the phase within a neural oscillation. Resetting the
phase of ongoing neural oscillation induces the synchronization
of different neurons or brain regions (76). Phase resetting
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FIGURE 1 | Phase resetting of the auditory steady-state response (ASSR). (A) Modulation of the ASSR by stimulus intensity (sound pressure). Repeated presentation

of a 25-ms pure tone (upper middle) elicits the 40-Hz ASSR. An abrupt increase in sound pressure at 700ms causes a reduction in amplitude and phase

(Continued)
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FIGURE 1 | (phase resetting). The location of estimated dipoles (left panel), source-strength waveforms (middle), and enlarged waveforms on an expanded time axis

(right) are also shown. (B) Increasing sound pressure reduces ASSR latency. The Y-axis shows changes in the peak latency interval over time relative to the control

condition. The control stimulus is a 1,000-ms train of clicks at 40Hz. The test stimuli are a 500-ms train of clicks identical to the control stimulus and a subsequent

500-ms click-train of the same frequency but altered sound pressure compared with the control stimulus (−5, −10, −15, 5, 10, or 15 dB). The degree of phase

resetting depends on the magnitude of the sound pressure change. (C) Modulation of the ASSR by deviant stimuli (odd ball condition). The Y-axis shows changes in

the peak latency interval over time compared with the control-only (left) and test-only (right) conditions. The control stimulus is a 1,200-ms train of 25-ms pure tones.

The test stimulus is a similar train of pure tones in which the tone sound pressure at 700ms is increased by 15 dB. Under an oddball paradigm, phase resetting is

observed when either the control or test stimulus is rare (deviant). (D) Modulation of the ASSR by multimodal stimulation. The Y-axis shows changes in the peak

latency interval over time compared with the control condition. As the test stimulus, an electrical pulse is presented to the dorsum of the left or right hand at 700ms

during the train of 25-ms pure tones. Tactile stimulation causes phase resetting of the ASSR, and this cross-modal effect is observed from approximately 50–125ms

after the onset of tactile stimulation.

is the fundamental mechanism underlying synchronization,
and neural synchronization is believed to play a role in
information processing (77), neuronal communication (78),
motor coordination (79), and memory (80). For example,
in clinical research, epilepsy is considered a disease that
results from neuronal hyper-synchronization (81). The
generation of resting tremor in Parkinson’s disease has
been suggested to be owing to abnormal synchronization
of neuronal activity (82). In schizophrenia, the disruption of
neural synchronization is believed to be related to fragmented
cognitive experience (83).

A salient sensory stimulus on ASSR causes phase resetting
that modulates the amplitude and phase (Figure 1A) Rohrbaugh
et al. first reported that a foreground auditory stimulus reduced
both the amplitude and latency of a 40-Hz ASSR evoked by
a background rhythmic probe stimulus (84–86). In addition,
phase resetting of the 40-Hz ASSR has been reported following
a sudden change in stimulus frequency or intensity (87). In a
study using an oddball paradigm, button pressing in response to a
rare stimulus also caused phase resetting of the 40-Hz ASSR (88).
Furthermore, Ross et al. reported that the ASSR was modulated
by changing stimulus onset (19), violating the periodicity of a
sound stimulus (89), and introducing an interfering stimulus
(90). These findings suggest that perturbing stimuli reset the
oscillations and shift the ASSR phase back to that of the
driving source (90).

Our recent study indicated that increasing the sound
pressure can induce a proportionate reduction in ASSR latency
(Figure 1B) (91). We also demonstrated that ASSR latency
can be shortened without changing the physical characteristics
of the peripheral input (92). Using an oddball paradigm,
we found that a control stimulus with unchanging sequence
shortened the ASSR latency when presented with a low
probability among other stimulus patterns (Figure 1C). These
findings indicate that ASSR phase resetting can be induced
by an intrinsic comparison process based on sensory memory.
Sensory memory impairment has been reported in several
neurological and psychiatric disorders, primarily using mismatch
negativity (MMN) (93), a negative component of the event-
related potential elicited by a deviant stimulus embedded
in repetitive stimuli (an oddball paradigm), with maximum
negativity at Fz and positivity at the mastoid (94). Mismatch
negativity reflects the automatic change detection process based
on short-term sensory memory and thus serves as an index
of sensory memory disruption (95). For example, patients

with schizophrenia (96, 97), autism spectrum disorder (98),
and Alzheimer’s disease (99) have all demonstrated smaller
auditory MMN waveforms than healthy controls. Although
previous studies have reported that ASSR is modulated by
selective attention (100, 101), our paradigms (91, 92), such as
oddball paradigms which are typically used to detect MMN,
do not require conditions of attention. Changes in ASSR
during such odd ball paradigms (91, 92) may facilitate efficient
assessment of sensory memory impairments in psychiatric
disorders because such measurements do not require multiple
stimulus repetitions, thereby reducing experimental time and
patient burden.

We also recently demonstrated reduced ASSR latency
by simultaneous tactile stimulation (Figure 1D) (102),
strongly suggesting that cross-modal input increases the
speed of ongoing auditory processing. This cross-modal ASSR
paradigm may thus permit the assessment of multimodal
sensory integration with high test–retest reliability (103).
Moreover, the 40-Hz ASSR is considered superior for
providing information on processing speed compared with
other sensory paradigms because peak latency can be measured
reliably every 12.5ms. Indeed, our findings of reduced ASSR
latency during multimodal stimulation are consistent with
previous studies demonstrating faster object recognition
using both auditory and visual features compared with either
modality alone and with the appearance of unique early-onset
multimodal ERP waveforms originating from both sensory
and frontal cortex (104, 105). Although previous studies have
shown impaired multisensory integration in patients with
schizophrenia (106) and autism spectrum disorder (107),
psychophysical rather than neurophysiological indicators
were assessed. We suggest that the ASSR serves as a robust
electrophysiological index of multisensory integration deficits in
psychiatric disorders.

CONCLUSION

Patients with schizophrenia, bipolar disorder, and autism
spectrum disorder all exhibit deficits in the ASSR at gamma-
band frequencies, suggesting shared pathomechanisms including
dysregulation of cortical excitatory/inhibitory balance.Moreover,
ASSRmagnitude and phase reflect auditorymemory, multimodal
sensory integration, and the comparison of incoming sensory
stimuli with previous memory traces. Thus, ASSR could be
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a sensitive electrophysiological index for sensory processing
deficits in psychiatric disorders.
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20. Uhlhaas PJ, Haenschel C, Nikolić D, Singer W. The role of oscillations

and synchrony in cortical networks and their putative relevance for

the pathophysiology of schizophrenia. Schizophr Bull. (2008) 34:927–

43. doi: 10.1093/schbul/sbn062

21. Bosman CA, Lansink CS, Pennartz CM. Functions of gamma-band

synchronization in cognition: from single circuits to functional diversity

across cortical and subcortical systems. Eur J Neurosci. (2014) 39:1982–

99. doi: 10.1111/ejn.12606

22. Gray CM, König P, Engel AK, Singer W. Oscillatory responses in cat visual

cortex exhibit inter-columnar synchronization which reflects global stimulus

properties. Nature. (1989) 338:334–7. doi: 10.1038/338334a0

23. Tallon-Baudry C, Bertrand O. Oscillatory gamma activity in humans

and its role in object representation. Trends Cogn Sci. (1999) 3:151–

62. doi: 10.1016/S1364-6613(99)01299-1

24. Fukushima M, Saunders RC, Leopold DA, Mishkin M, Averbeck BB.

Spontaneous high-gamma band activity reflects functional organization

of auditory cortex in the awake macaque. Neuron. (2012) 74:899–

910. doi: 10.1016/j.neuron.2012.04.014

25. Polomac N, Leicht G, Nolte G, Andreou C, Schneider TR, Steinmann S,

et al. Generators and connectivity of the early auditory evoked gamma band

response. Brain Topogr. (2015) 28:865–78. doi: 10.1007/s10548-015-0434-6

26. Faivre N, Dönz J, Scandola M, Dhanis H, Bello Ruiz J, Bernasconi

F, et al. Self-grounded vision: hand ownership modulates visual

location through cortical β and γ oscillations. J Neurosci. (2017)

37:11–22. doi: 10.1523/JNEUROSCI.0563-16.2016

27. Carr MF, Karlsson MP, Frank LM. Transient slow gamma

synchrony underlies hippocampal memory replay. Neuron. (2012)

75:700–13. doi: 10.1016/j.neuron.2012.06.014

28. Lundqvist M, Rose J, Herman P, Brincat SL, Buschman TJ, Miller EK.

Gamma and beta bursts underlie working memory. Neuron. (2016) 90:152–

64. doi: 10.1016/j.neuron.2016.02.028

29. Yamamoto J, Suh J, Takeuchi D, Tonegawa S. Successful execution of working

memory linked to synchronized high-frequency gamma oscillations. Cell.

(2014) 157:845–57. doi: 10.1016/j.cell.2014.04.009

30. Sivarao DV, Chen P, Senapati A, Yang Y, Fernandes A, Benitex Y, et al.

40Hz Auditory steady-state response is a pharmacodynamic biomarker

for cortical NMDA receptors. Neuropsychopharmacology. (2016) 41:2232–

40. doi: 10.1038/npp.2016.17

31. Light GA, Zhang W, Joshi YB, Bhakta S, Talledo JA, Swerdlow NR.

Single-dose memantine improves cortical oscillatory response dynamics

in patients with schizophrenia. Neuropsychopharmacology. (2017) 42:2633–

9. doi: 10.1038/npp.2017.81

32. Tada M, Kirihara K, Koshiyama D, Fujioka M, Usui K, Uka T, et al. Gamma-

band auditory steady-state response as a neurophysiological marker for

excitation and inhibition balance: a review for understanding schizophrenia

and other neuropsychiatric disorders. Clin EEG Neurosci. (2020) 51:234–

43. doi: 10.1177/1550059419868872

Frontiers in Psychiatry | www.frontiersin.org 6 March 2021 | Volume 12 | Article 64454122

https://doi.org/10.1038/ng.2711
https://doi.org/10.1016/S0140-6736(12)62129-1
https://doi.org/10.1038/s41380-019-0553-7
https://doi.org/10.1126/science.aaa8954
https://doi.org/10.1016/j.schres.2007.10.024
https://doi.org/10.1371/journal.pone.0025322
https://doi.org/10.1176/appi.ajp.2010.09091379
https://doi.org/10.1038/sj.mp.4001979
https://doi.org/10.3389/fpsyg.2019.00103
https://doi.org/10.1073/pnas.78.4.2643
https://doi.org/10.1121/1.429600
https://doi.org/10.1152/jn.00048.2008
https://doi.org/10.1523/JNEUROSCI.22-23-10501.2002
https://doi.org/10.1023/A:1021470822922
https://doi.org/10.1016/0378-5955(94)00185-S
https://doi.org/10.1016/S0378-5955(02)00285-X
https://doi.org/10.1093/schbul/sbn062
https://doi.org/10.1111/ejn.12606
https://doi.org/10.1038/338334a0
https://doi.org/10.1016/S1364-6613(99)01299-1
https://doi.org/10.1016/j.neuron.2012.04.014
https://doi.org/10.1007/s10548-015-0434-6
https://doi.org/10.1523/JNEUROSCI.0563-16.2016
https://doi.org/10.1016/j.neuron.2012.06.014
https://doi.org/10.1016/j.neuron.2016.02.028
https://doi.org/10.1016/j.cell.2014.04.009
https://doi.org/10.1038/npp.2016.17
https://doi.org/10.1038/npp.2017.81
https://doi.org/10.1177/1550059419868872
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Sugiyama et al. ASSR as a Psychiatric Index

33. Kwon JS, O’Donnell BF, Wallenstein GV, Greene RW, Hirayasu Y,

Nestor PG, et al. Gamma frequency range abnormalities to auditory

stimulation in schizophrenia. Arch Gen Psychiatry. (1999) 56:1001–

5. doi: 10.1001/archpsyc.56.11.1001

34. Light GA, Hsu JL, Hsieh MH, Meyer-Gomes K, Sprock J, Swerdlow NR,

et al. Gamma band oscillations reveal neural network cortical coherence

dysfunction in schizophrenia patients. Biol Psychiatry. (2006) 60:1231–

40. doi: 10.1016/j.biopsych.2006.03.055

35. Spencer KM, Salisbury DF, Shenton ME, McCarley RW. Gamma-band

auditory steady-state responses are impaired in first episode psychosis. Biol

Psychiatry. (2008) 64:369–75. doi: 10.1016/j.biopsych.2008.02.021

36. Tsuchimoto R, Kanba S, Hirano S, Oribe N, Ueno T, Hirano Y,

et al. Reduced high and low frequency gamma synchronization in

patients with chronic schizophrenia. Schizophr Res. (2011) 133:99–

105. doi: 10.1016/j.schres.2011.07.020

37. Tada M, Nagai T, Kirihara K, Koike S, Suga M, Araki T, et al. Differential

alterations of auditory gamma oscillatory responses between pre-onset

high-risk individuals and first-episode schizophrenia. Cereb Cortex. (2016)

26:1027–35. doi: 10.1093/cercor/bhu278

38. Thuné H, RecasensM, Uhlhaas PJ. The 40-Hz auditory steady-state response

in patients with schizophrenia: a meta-analysis. JAMA Psychiatry. (2016)

73:1145–53. doi: 10.1001/jamapsychiatry.2016.2619

39. Wright IC, Rabe-Hesketh S,Woodruff PW, David AS,Murray RM, Bullmore

ET. Meta-analysis of regional brain volumes in schizophrenia. Am J

Psychiatry. (2000) 157:16–25. doi: 10.1176/ajp.157.1.16

40. Honea R, Crow TJ, Passingham D, Mackay CE. Regional

deficits in brain volume in schizophrenia: a meta-analysis of

voxel-based morphometry studies. Am J Psychiatry. (2005)

162:2233–45. doi: 10.1176/appi.ajp.162.12.2233

41. O’Donnell BF, Hetrick WP, Vohs JL, Krishnan GP, Carroll CA, Shekhar A.

Neural synchronization deficits to auditory stimulation in bipolar disorder.

NeuroReport. (2004) 15:1369–72. doi: 10.1097/01.wnr.0000127348.64681.b2

42. Oda Y, Onitsuka T, Tsuchimoto R, Hirano S, Oribe N, Ueno T, et al.

Gamma band neural synchronization deficits for auditory steady

state responses in bipolar disorder patients. PLOS ONE. (2012)

7:e39955. doi: 10.1371/journal.pone.0039955

43. Rass O, Krishnan G, Brenner CA, Hetrick WP, Merrill CC, Shekhar A, et al.

Auditory steady state response in bipolar disorder: relation to clinical state,

cognitive performance, medication status, and substance disorders. Bipolar

Disord. (2010) 12:793–803. doi: 10.1111/j.1399-5618.2010.00871.x

44. Rojas DC, Wilson LB. γ-band abnormalities as markers of autism spectrum

disorders. Biomark Med. (2014) 8:353–68. doi: 10.2217/bmm.14.15

45. Hong LE, Summerfelt A, McMahon R, Adami H, Francis G, Elliott A, et al.

Evoked gamma band synchronization and the liability for schizophrenia.

Schizophr Res. (2004) 70:293–302. doi: 10.1016/j.schres.2003.12.011

46. Rass O, Forsyth JK, Krishnan GP, Hetrick WP, Klaunig MJ, Breier A, et al.

Auditory steady state response in the schizophrenia, first-degree relatives,

and schizotypal personality disorder. Schizophr Res. (2012) 136:143–

9. doi: 10.1016/j.schres.2012.01.003

47. Brenner CA, Sporns O, Lysaker PH, O’Donnell BF. EEG synchronization

to modulated auditory tones in schizophrenia, schizoaffective disorder,

and schizotypal personality disorder. Am J Psychiatry. (2003) 160:2238–

40. doi: 10.1176/appi.ajp.160.12.2238

48. Vierling-Claassen D, Siekmeier P, Stufflebeam S, Kopell N. Modeling

GABA alterations in schizophrenia: a link between impaired inhibition and

altered gamma and beta range auditory entrainment. J Neurophysiol. (2008)

99:2656–71. doi: 10.1152/jn.00870.2007

49. Hamm JP, Gilmore CS, Picchetti NA, Sponheim SR, Clementz BA.

Abnormalities of neuronal oscillations and temporal integration to low- and

high-frequency auditory stimulation in schizophrenia. Biol Psychiatry. (2011)

69:989–96. doi: 10.1016/j.biopsych.2010.11.021

50. Isomura S, Onitsuka T, Tsuchimoto R, Nakamura I, Hirano S, Oda

Y, et al. Differentiation between major depressive disorder and bipolar

disorder by auditory steady-state responses. J Affect Disord. (2016) 190:800–

6. doi: 10.1016/j.jad.2015.11.034

51. Chen J, Gong Q, Wu F. Deficits in the 30-Hz auditory steady-state response

in patients with major depressive disorder. NeuroReport. (2016) 27:1147–

52. doi: 10.1097/WNR.0000000000000671

52. Wilson TW, Rojas DC, Reite ML, Teale PD, Rogers SJ.

Children and adolescents with autism exhibit reduced MEG

steady-state gamma responses. Biol Psychiatry. (2007) 62:192–

7. doi: 10.1016/j.biopsych.2006.07.002

53. Rojas DC, Maharajh K, Teale P, Rogers SJ. Reduced neural synchronization

of gamma-band MEG oscillations in first-degree relatives of children with

autism. BMC Psychiatry. (2008) 8:66. doi: 10.1186/1471-244X-8-66

54. Rojas DC, Maharajh K, Teale PD, Kleman MR, Benkers TL, Carlson

JP, et al. Development of the 40Hz steady state auditory evoked

magnetic field from ages 5 to 52. Clin Neurophysiol. (2006) 117:110–

7. doi: 10.1016/j.clinph.2005.08.032

55. Ono Y, Kudoh K, Ikeda T, Takahashi T, Yoshimura Y, Minabe Y, et al.

Auditory steady-state response at 20Hz and 40Hz in young typically

developing children and children with autism spectrum disorder. Psychiatry

Clin Neurosci. (2020) 74:354–61. doi: 10.1111/pcn.12998

56. Jentsch JD, Roth RH. The neuropsychopharmacology of

phencyclidine: from NMDA receptor hypofunction to the dopamine

hypothesis of schizophrenia. Neuropsychopharmacology. (1999)

20:201–25. doi: 10.1016/S0893-133X(98)00060-8

57. Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and

gamma rhythms enhance cortical circuit performance. Nature. (2009)

459:698–702. doi: 10.1038/nature07991

58. Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin

interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci.

(2012) 35:57–67. doi: 10.1016/j.tins.2011.10.004

59. Kantrowitz JT, Javitt DC. N-methyl-D-aspartate (NMDA)

receptor dysfunction or dysregulation: the final common

pathway on the road to schizophrenia? Brain Res Bull. (2010)

83:108–21. doi: 10.1016/j.brainresbull.2010.04.006

60. Benes FM, Berretta S. GABAergic interneurons:

implications for understanding schizophrenia and

bipolar disorder. Neuropsychopharmacology. (2001) 25:1–

27. doi: 10.1016/S0893-133X(01)00225-1

61. Löscher W. Valproate enhances GABA turnover in the substantia nigra.

Brain Res. (1989) 501:198–203. doi: 10.1016/0006-8993(89)91044-5

62. Shiah IS, Yatham LN, Baker GB. Divalproex sodium increases plasma

GABA levels in healthy volunteers. Int Clin Psychopharmacol. (2000) 15:221–

5. doi: 10.1097/00004850-200015040-00005

63. Rosenberg G. The mechanisms of action of valproate in neuropsychiatric

disorders: can we see the forest for the trees? Cell Mol Life Sci. (2007)

64:2090–103. doi: 10.1007/s00018-007-7079-x

64. Sawada T, Chater TE, Sasagawa Y, Yoshimura M, Fujimori-

Tonou N, Tanaka K, et al. Developmental excitation-inhibition

imbalance underlying psychoses revealed by single-cell analyses of

discordant twins-derived cerebral organoids. Mol Psychiatry. (2020)

25:2695–711. doi: 10.1038/s41380-020-0844-z

65. Hirano Y, Oribe N, Kanba S, Onitsuka T, Nestor PG, Spencer KM.

Spontaneous gamma activity in schizophrenia. JAMA Psychiatry. (2015)

72:813–21. doi: 10.1001/jamapsychiatry.2014.2642

66. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh

DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in

treatment-resistant major depression. Arch Gen Psychiatry. (2006) 63:856–

64. doi: 10.1001/archpsyc.63.8.856

67. Rivolta D, Heidegger T, Scheller B, Sauer A, Schaum M, Birkner K, et al.

Ketamine dysregulates the amplitude and connectivity of high-frequency

oscillations in cortical-subcortical networks in humans: evidence from

resting-state magnetoencephalography-recordings. Schizophr Bull. (2015)

41:1105–14. doi: 10.1093/schbul/sbv051

68. Gogolla N, Leblanc JJ, Quast KB, Südhof TC, Fagiolini M, Hensch TK, et al.

Common circuit defect of excitatory-inhibitory balance in mouse models

of autism. J Neurodev Disord. (2009) 1:172–81. doi: 10.1007/s11689-009-

9023-x

69. Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR.

Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in

autistic parietal and cerebellar cortices. Biol Psychiatry. (2002) 52:805–

10. doi: 10.1016/S0006-3223(02)01430-0

70. Rojas DC, Singel D, Steinmetz S, Hepburn S, Brown MS.

Decreased left perisylvian GABA concentration in children

Frontiers in Psychiatry | www.frontiersin.org 7 March 2021 | Volume 12 | Article 64454123

https://doi.org/10.1001/archpsyc.56.11.1001
https://doi.org/10.1016/j.biopsych.2006.03.055
https://doi.org/10.1016/j.biopsych.2008.02.021
https://doi.org/10.1016/j.schres.2011.07.020
https://doi.org/10.1093/cercor/bhu278
https://doi.org/10.1001/jamapsychiatry.2016.2619
https://doi.org/10.1176/ajp.157.1.16
https://doi.org/10.1176/appi.ajp.162.12.2233
https://doi.org/10.1097/01.wnr.0000127348.64681.b2
https://doi.org/10.1371/journal.pone.0039955
https://doi.org/10.1111/j.1399-5618.2010.00871.x
https://doi.org/10.2217/bmm.14.15
https://doi.org/10.1016/j.schres.2003.12.011
https://doi.org/10.1016/j.schres.2012.01.003
https://doi.org/10.1176/appi.ajp.160.12.2238
https://doi.org/10.1152/jn.00870.2007
https://doi.org/10.1016/j.biopsych.2010.11.021
https://doi.org/10.1016/j.jad.2015.11.034
https://doi.org/10.1097/WNR.0000000000000671
https://doi.org/10.1016/j.biopsych.2006.07.002
https://doi.org/10.1186/1471-244X-8-66
https://doi.org/10.1016/j.clinph.2005.08.032
https://doi.org/10.1111/pcn.12998
https://doi.org/10.1016/S0893-133X(98)00060-8
https://doi.org/10.1038/nature07991
https://doi.org/10.1016/j.tins.2011.10.004
https://doi.org/10.1016/j.brainresbull.2010.04.006
https://doi.org/10.1016/S0893-133X(01)00225-1
https://doi.org/10.1016/0006-8993(89)91044-5
https://doi.org/10.1097/00004850-200015040-00005
https://doi.org/10.1007/s00018-007-7079-x
https://doi.org/10.1038/s41380-020-0844-z
https://doi.org/10.1001/jamapsychiatry.2014.2642
https://doi.org/10.1001/archpsyc.63.8.856
https://doi.org/10.1093/schbul/sbv051
https://doi.org/10.1007/s11689-009-9023-x
https://doi.org/10.1016/S0006-3223(02)01430-0
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Sugiyama et al. ASSR as a Psychiatric Index

with autism and unaffected siblings. Neuroimage. (2014)

86:28–34. doi: 10.1016/j.neuroimage.2013.01.045

71. Fatemi SH. The hyperglutamatergic hypothesis of autism. Prog

Neuropsychopharmacol Biol Psychiatry. (2008) 32:911, author reply

912–3. doi: 10.1016/j.pnpbp.2007.11.005

72. Cheung C, Yu K, Fung G, Leung M, Wong C, Li Q, et al. Autistic disorders

and schizophrenia: related or remote? An anatomical likelihood estimation.

PLOS ONE. (2010) 5:e12233. doi: 10.1371/journal.pone.0012233

73. Kolvin I. Studies in the childhood psychoses. I. Diagnostic criteria and

classification. Br J Psychiatry. (1971) 118:381–4. doi: 10.1192/bjp.118.545.381

74. Gao R, Penzes P. Common mechanisms of excitatory and inhibitory

imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med.

(2015) 15:146–67. doi: 10.2174/1566524015666150303003028

75. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, et al.

Neocortical excitation/inhibition balance in information processing and

social dysfunction. Nature. (2011) 477:171–8. doi: 10.1038/nature10360

76. Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase

synchronization and large-scale integration. Nat Rev Neurosci. (2001) 2:229–

39. doi: 10.1038/35067550

77. Singer W. Synchronization of cortical activity and its putative role in

information processing and learning. Annu Rev Physiol. (1993) 55:349–

74. doi: 10.1146/annurev.ph.55.030193.002025

78. Fries P. A mechanism for cognitive dynamics: neuronal

communication through neuronal coherence. Trends Cogn Sci. (2005)

9:474–80. doi: 10.1016/j.tics.2005.08.011

79. Schnitzler A, Gross J. Normal and pathological oscillatory communication

in the brain. Nat Rev Neurosci. (2005) 6:285–96. doi: 10.1038/nrn1650

80. Fell J, Axmacher N. The role of phase synchronization in memory processes.

Nat Rev Neurosci. (2011) 12:105–18. doi: 10.1038/nrn2979

81. Netoff TI, Clewley R, Arno S, Keck T, White JA. Epilepsy

in small-world networks. J Neurosci. (2004) 24:8075–

83. doi: 10.1523/JNEUROSCI.1509-04.2004

82. Hurtado JM, Lachaux JP, Beckley DJ, Gray CM,

Sigvardt KA. Inter- and intralimb oscillator coupling

in parkinsonian tremor. Mov Disord. (2000) 15:683–

91. doi: 10.1002/1531-8257(200007)15:4<683::aid-mds1013>3.0.co;2-#

83. Tononi G, Edelman GM. Schizophrenia and the mechanisms

of conscious integration. Brain Res Brain Res Rev. (2000)

31:391–400. doi: 10.1016/S0165-0173(99)00056-9

84. Rohrbaugh JW, Varner JL, Paige SR, Eckardt MJ, Ellingson RJ. Event-related

perturbations in an electrophysiological measure of auditory function:

a measure of sensitivity during orienting? Biol Psychol. (1989) 29:247–

71. doi: 10.1016/0301-0511(89)90022-7

85. Rohrbaugh JW, Varner JL, Paige SR, Eckardt MJ, Ellingson RJ. Auditory

and visual event-related perturbations in the 40Hz auditory steady-

state response. Electroencephalogr Clin Neurophysiol. (1990) 76:148–

64. doi: 10.1016/0013-4694(90)90213-4

86. Rohrbaugh JW, Varner JL, Paige SR, Eckardt MJ, Ellingson RJ. Event-

related perturbations in an electrophysiological measure of auditory

sensitivity: effects of probability, intensity and repeated sessions.

Int J Psychophysiol. (1990) 10:17–32. doi: 10.1016/0167-8760(90)

90041-B

87. Makeig S, Galambos R. The CERP: event related perturbation

in steady-state responses. In: Basar E, Bullock T, editors. Brain

Dynamics: Progress and Perspectives. Berlin: Springer. (1989). p.

375–400. doi: 10.1007/978-3-642-74557-7_30

88. Rockstroh B, Müller M, Heinz A, Wagner M, Berg P, Elbert T. Modulation

of auditory responses during oddball tasks. Biol Psychol. (1996) 43:41–

55. doi: 10.1016/0301-0511(95)05175-9

89. Ross B, Pantev C. Auditory steady-state responses reveal amplitude

modulation gap detection thresholds. J Acoust Soc Am. (2004) 115(5 Pt

1):2193–206. doi: 10.1121/1.1694996

90. Ross B, Herdman AT, Pantev C. Stimulus induced desynchronization

of human auditory 40-Hz steady-state responses. J Neurophysiol. (2005)

94:4082–93. doi: 10.1152/jn.00469.2005

91. Motomura E, Inui K, Kawano Y, Nishihara M, Okada M. Effects

of sound-pressure change on the 40Hz auditory steady-state

response and change-related cerebral response. Brain Sci. (2019)

9:203. doi: 10.3390/brainsci9080203

92. Sugiyama S, Kinukawa T, Takeuchi N, Nishihara M, Shioiri T, Inui K.

Change-related acceleration effects on auditory steady-state response. Front

Syst Neurosci. (2019) 13:53. doi: 10.3389/fnsys.2019.00053

93. Bartha-Doering L, Deuster D, Giordano V, am Zehnhoff-Dinnesen A,

Dobel C. A systematic review of the mismatch negativity as an index for

auditory sensory memory: from basic research to clinical and developmental

perspectives. Psychophysiology. (2015) 52:1115–30. doi: 10.1111/psyp.12459

94. Näätänen R, Gaillard AW, Mäntysalo S. Early selective-attention effect

on evoked potential reinterpreted. Acta Psychol (Amst). (1978) 42:313–

29. doi: 10.1016/0001-6918(78)90006-9

95. Näätänen R, Jacobsen T, Winkler I. Memory-based or afferent processes in

mismatch negativity (MMN): a review of the evidence. Psychophysiology.

(2005) 42:25–32. doi: 10.1111/j.1469-8986.2005.00256.x

96. Shelley AM, Ward PB, Catts SV, Michie PT, Andrews S,

McConaghy N. Mismatch negativity: an index of a preattentive

processing deficit in schizophrenia. Biol Psychiatry. (1991)

30:1059–62. doi: 10.1016/0006-3223(91)90126-7

97. Catts SV, Shelley AM, Ward PB, Liebert B, McConaghy N, Andrews S,

et al. Brain potential evidence for an auditory sensory memory deficit in

schizophrenia. Am J Psychiatry. (1995) 152:213–9. doi: 10.1176/ajp.152.2.213

98. Chen TC, Hsieh MH, Lin YT, Chan PS, Cheng CH. Mismatch negativity to

different deviant changes in autism spectrum disorders: a meta-analysis. Clin

Neurophysiol. (2020) 131:766–77. doi: 10.1016/j.clinph.2019.10.031

99. Pekkonen E, Jousmäki V, Könönen M, Reinikainen K, Partanen

J. Auditory sensory memory impairment in Alzheimer’s

disease: an event-related potential study. NeuroReport. (1994)

5:2537–40. doi: 10.1097/00001756-199412000-00033

100. Skosnik PD, Krishnan GP, O’Donnell BF. The effect of selective attention

on the gamma-band auditory steady-state response. Neurosci Lett. (2007)

420:223–8. doi: 10.1016/j.neulet.2007.04.072

101. Bidet-Caulet A, Fischer C, Besle J, Aguera PE, Giard MH, Bertrand O.

Effects of selective attention on the electrophysiological representation of

concurrent sounds in the human auditory cortex. J Neurosci. (2007) 27:9252–

61. doi: 10.1523/JNEUROSCI.1402-07.2007

102. Sugiyama S, Kinukawa T, Takeuchi N, Nishihara M, Shioiri T, Inui K. Tactile

cross-modal acceleration effects on auditory steady-state response. Front

Integr Neurosci. (2019) 13:72. doi: 10.3389/fnint.2019.00072

103. Tan HR, Gross J, Uhlhaas PJ. MEG-measured auditory steady-

state oscillations show high test–retest reliability: a sensor

and source-space analysis. NeuroImage. (2015) 122:417–

26. doi: 10.1016/j.neuroimage.2015.07.055

104. Giard MH, Peronnet F. Auditory-visual integration during multimodal

object recognition in humans: a behavioral and electrophysiological study.

J Cogn Neurosci. (1999) 11:473–90. doi: 10.1162/089892999563544

105. Senkowski D, Molholm S, Gomez-Ramirez M, Foxe JJ. Oscillatory beta

activity predicts response speed during a multisensory audiovisual reaction

time task: a high-density electrical mapping study. Cereb Cortex. (2006)

16:1556–65. doi: 10.1093/cercor/bhj091

106. Tseng HH, Bossong MG, Modinos G, Chen KM, McGuire P,

Allen P. A systematic review of multisensory cognitive-affective

integration in schizophrenia. Neurosci Biobehav Rev. (2015)

55:444–52. doi: 10.1016/j.neubiorev.2015.04.019

107. Baum SH, Stevenson RA, Wallace MT. Behavioral, perceptual,

and neural alterations in sensory and multisensory function

in autism spectrum disorder. Prog Neurobiol. (2015) 134:140–

60. doi: 10.1016/j.pneurobio.2015.09.007

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Sugiyama, Ohi, Kuramitsu, Takai, Muto, Taniguchi, Kinukawa,

Takeuchi, Motomura, Nishihara, Shioiri and Inui. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Psychiatry | www.frontiersin.org 8 March 2021 | Volume 12 | Article 64454124

https://doi.org/10.1016/j.neuroimage.2013.01.045
https://doi.org/10.1016/j.pnpbp.2007.11.005
https://doi.org/10.1371/journal.pone.0012233
https://doi.org/10.1192/bjp.118.545.381
https://doi.org/10.2174/1566524015666150303003028
https://doi.org/10.1038/nature10360
https://doi.org/10.1038/35067550
https://doi.org/10.1146/annurev.ph.55.030193.002025
https://doi.org/10.1016/j.tics.2005.08.011
https://doi.org/10.1038/nrn1650
https://doi.org/10.1038/nrn2979
https://doi.org/10.1523/JNEUROSCI.1509-04.2004
https://doi.org/10.1002/1531-8257(200007)15:4<683::aid-mds1013>3.0.co;2-
https://doi.org/10.1016/S0165-0173(99)00056-9
https://doi.org/10.1016/0301-0511(89)90022-7
https://doi.org/10.1016/0013-4694(90)90213-4
https://doi.org/10.1016/0167-8760(90)90041-B
https://doi.org/10.1007/978-3-642-74557-7_30
https://doi.org/10.1016/0301-0511(95)05175-9
https://doi.org/10.1121/1.1694996
https://doi.org/10.1152/jn.00469.2005
https://doi.org/10.3390/brainsci9080203
https://doi.org/10.3389/fnsys.2019.00053
https://doi.org/10.1111/psyp.12459
https://doi.org/10.1016/0001-6918(78)90006-9
https://doi.org/10.1111/j.1469-8986.2005.00256.x
https://doi.org/10.1016/0006-3223(91)90126-7
https://doi.org/10.1176/ajp.152.2.213
https://doi.org/10.1016/j.clinph.2019.10.031
https://doi.org/10.1097/00001756-199412000-00033
https://doi.org/10.1016/j.neulet.2007.04.072
https://doi.org/10.1523/JNEUROSCI.1402-07.2007
https://doi.org/10.3389/fnint.2019.00072
https://doi.org/10.1016/j.neuroimage.2015.07.055
https://doi.org/10.1162/089892999563544
https://doi.org/10.1093/cercor/bhj091
https://doi.org/10.1016/j.neubiorev.2015.04.019
https://doi.org/10.1016/j.pneurobio.2015.09.007~
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


ORIGINAL RESEARCH
published: 22 March 2021

doi: 10.3389/fpsyt.2021.642048

Frontiers in Psychiatry | www.frontiersin.org 1 March 2021 | Volume 12 | Article 642048

Edited by:

Tae Young Lee,

Pusan National University Yangsan

Hospital, South Korea

Reviewed by:

Minah Kim,

Seoul National University Hospital,

South Korea

Minji Bang,

CHA Bundang Medical Center,

South Korea

Na Hu,

Sichuan University, China

*Correspondence:

Daiki Sasabayashi

ds179@med.u-toyama.ac.jp

Specialty section:

This article was submitted to

Neuroimaging and Stimulation,

a section of the journal

Frontiers in Psychiatry

Received: 15 December 2020

Accepted: 19 February 2021

Published: 22 March 2021

Citation:

Sasabayashi D, Yoshimura R,

Takahashi T, Takayanagi Y,

Nishiyama S, Higuchi Y, Mizukami Y,

Furuichi A, Kido M, Nakamura M,

Noguchi K and Suzuki M (2021)

Reduced Hippocampal Subfield

Volume in Schizophrenia and Clinical

High-Risk State for Psychosis.

Front. Psychiatry 12:642048.

doi: 10.3389/fpsyt.2021.642048

Reduced Hippocampal Subfield
Volume in Schizophrenia and Clinical
High-Risk State for Psychosis

Daiki Sasabayashi 1,2*, Ryo Yoshimura 3, Tsutomu Takahashi 1,2, Yoichiro Takayanagi 1,4,

Shimako Nishiyama 1,5, Yuko Higuchi 1,2, Yuko Mizukami 1, Atsushi Furuichi 1,2, Mikio Kido 1,2,

Mihoko Nakamura 1,2, Kyo Noguchi 6 and Michio Suzuki 1,2

1Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama,

Japan, 2 Research Center for Idling Brain Science, University of Toyama, Toyama, Japan, 3 Faculty of Medicine, University of

Toyama, Toyama, Japan, 4 Arisawabashi Hospital, Toyama, Japan, 5Health Administration Center, University of Toyama,

Toyama, Japan, 6Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical

Sciences, Toyama, Japan

Magnetic resonance imaging (MRI) studies in schizophrenia demonstrated volume

reduction in hippocampal subfields divided on the basis of specific cytoarchitecture

and function. However, it remains unclear whether this abnormality exists prior to the

onset of psychosis and differs across illness stages. MRI (3 T) scans were obtained from

77 patients with schizophrenia, including 24 recent-onset and 40 chronic patients, 51

individuals with an at-risk mental state (ARMS) (of whom 5 subsequently developed

psychosis within the follow-up period), and 87 healthy controls. Using FreeSurfer

software, hippocampal subfield volumes were measured and compared across the

groups. Both schizophrenia and ARMS groups exhibited significantly smaller volumes

for the bilateral Cornu Ammonis 1 area, left hippocampal tail, and right molecular layer

of the hippocampus than the healthy control group. Within the schizophrenia group,

chronic patients exhibited a significantly smaller volume for the left hippocampal tail

than recent-onset patients. The left hippocampal tail volume was positively correlated

with onset age, and negatively correlated with duration of psychosis and duration

of medication in the schizophrenia group. Reduced hippocampal subfield volumes

observed in both schizophrenia and ARMS groups may represent a common biotype

associated with psychosis vulnerability. Volumetric changes of the left hippocampal tail

may also suggest ongoing atrophy after the onset of schizophrenia.

Keywords: hippocampal subfield, hippocampal tail, at-risk mental state, schizophrenia, volumetry, magnetic

resonance imaging, CA1, molecular layer of the hippocampus

INTRODUCTION

There is increasing evidence supporting that abnormality of the hippocampus, which subserves
a range of roles in learning, memory, and emotional regulation (1, 2), functions in the
symptomatology and cognitive impairment of schizophrenia (3, 4). Importantly, the hippocampus
is not a uniform structure but rather an aggregate of anatomically and functionally different
substructures [e.g., the Cornu Ammonis (CA), dentate gyrus (DG), molecular layers, and
subiculum; (5)]. Based on the notion of differently affected hippocampal subfields in schizophrenia
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(6–8), an etiological hypothesis claimed that exaggerated pattern
completion induced by aberrant dentate-to-CA3 connections
generated psychotic associations (9), whereas another hypothesis
argued that hippocampal hypermetabolism originating from
CA1 was related to acquired psychotic symptoms and mnemonic
interference (10). However, much of the hippocampus-mediated
mechanism involved in the onset and progress of psychosis
remains unknown. Thus, examining functional or structural
abnormalities of the hippocampal subfields, and assessing their
potential roles as psychosis biotype constructs may be of
interest (11).

A hippocampal volume deficit is among the most robust
magnetic resonance imaging (MRI) findings in schizophrenia
patients (12–14). However, it remains unclear when such
hippocampal abnormalities occur, i.e., either before or after
onset, or both, due to inconsistent findings in individuals with
an at-risk mental state (ARMS) (15) [reduced hippocampal
volume (16–18) or no differences (19–24)] and in patients
with schizophrenia [progressive volume loss (19, 25, 26) or
no atrophy over time (27–30)]. These discrepancies among
previous studies may be partly explained by the possibility
that hippocampal reduction exists only in specific subfields
(16, 21). However, limited studies of hippocampal subfields
reported mixed results [reviewed by Haukvik et al. (31) and
Hu et al. (32)], with schizophrenia patients having prominent
volume reduction in the CA1 (33) or more widespread
reductions in the CA2/3, CA4/DG, presubiculum, subiculum,
and CA1 (34, 35). Similar findings were reported in a few
studies examining hippocampal subfield volumes in ARMS
individuals (23, 36). Hippocampal subfield segmentation on
the MRI methodology is under development (37), which
may partly explain the heterogeneity of the results. Although
diverse relationships between severe psychotic symptoms (34,
38, 39) or poor cognitive performance (34, 36, 40) and
volume reductions in CA4/DG, CA2/3, CA1, and subiculum
has been reported in schizophrenia patients, it remains
unknown whether hippocampal abnormalities are related to
subclinical psychotic or cognitive manifestation in ARMS
individuals. Further studies are required to examine the
hippocampal subfield volume changes in psychotic disorders
using a more comprehensive and fine-grained segmentation
protocol, ideally in multiple disease phases, including the
prodromal stage.

This MRI study investigated volumetric alterations of the
hippocampal subfield and their relevance to psychotic symptom
or cognitive function in schizophrenia patients, including recent-
onset and chronic patients, and ARMS individuals compared
with healthy controls. We applied a novel segmentation
algorithm using an ex vivo atlas (41), which was reported
to have superior compatibility with existing histopathological
information to the conventional one using only an in vivo atlas
(42, 43), in order to label the hippocampal subfields. Based on
recent MRI findings (23, 33, 36, 40), we predicted that both
schizophrenia and ARMS subjects have reduced volumes of the
specific hippocampal subfields, but that disease chronicity and/or
medication may affect the findings. As hippocampal subfield
atrophy and clinical symptoms or socio-cognitive deficits in

ARMS were reported to be less severe compared to schizophrenia
(36, 44), we also predicted their associations predominantly
in schizophrenia.

MATERIALS AND METHODS

Study Participants
Seventy-seven patients with schizophrenia, 51 individuals with
ARMS, and 87 healthy control subjects were included in the
current study (Table 1). Between December 2013 and August
2019, the study participants were recruited and examined at
the clinics of the Department of Neuropsychiatry, Toyama
University Hospital.

The schizophrenia patients were assessed by the Structured
Clinical Interview for DSM-IV Axis I Disorders Patient Edition
(SCID-I/P) (45) and a detailed chart review, and fulfilled both
the DSM-IV-TR (46) and DSM-5 (47) criteria. Recent-onset
schizophrenia (ROSz) patients were defined by a duration of
psychosis <1 year (n = 24, age = 24.5 ± 10.1 years, duration
of psychosis = 0.4 ± 0.2 years) (48, 49), whereas chronic
schizophrenia patients were defined as those with a duration of
psychosis >3 years (n = 40, age = 32.4 ± 8.5 years, duration
of psychosis = 9.9 ± 6.4 years) (50). As an additional analysis,
we also defined the chronic schizophrenia patients as those with
a duration of psychosis > 10 years (n = 16, age = 36.1 ± 7.2
years, duration of psychosis = 16.2 ± 5.6 years) to limit them
to more chronic patients. Sixty-five patients with schizophrenia
were receiving antipsychotics at the time of MRI. They were
treated with risperidone (n= 7), paliperidone (n= 4), olanzapine
(n = 25), quetiapine (n = 4), aripiprazole (n = 17), perospirone
(n = 6), blonanserin (n = 9), zotepine (n = 1), clozapine (n
= 1), haloperidol (n = 2), levomepromazine (n = 6), and/or
fluphenazine (n= 1).

Through a local early intervention service in Toyama (51),
ARMS individuals who were diagnosed by the Japanese version
of the Comprehensive Assessment of At Risk Mental States
(CAARMS) (15, 52) were recruited. All 51 ARMS individuals
didn’t exceed the threshold for psychosis on the CAARMS at
baseline (Table 1). The ARMS individuals were prospectively
followed (mean= 3.7 years, SD= 3.0 years), and subdivided into
five individuals (9.6%) who later developed psychosis (ARMS-P)
and 28 who did not develop psychosis during clinical follow-up
of at least 2 years (ARMS-NP). Based on the DSM-IV-TR criteria,
all psychotic disorders in ARMS-P subjects were diagnosed
as schizophrenia. Regarding psychiatric comorbidities, ARMS
subjects were also diagnosed with pervasive developmental
disorders (PDD) (n = 5), attention-deficit and disruptive
behavior disorders (n = 1), depressive disorders (n = 6),
anxiety disorders (n = 8), dissociative disorders (n = 1),
eating disorders (n = 1), adjustment disorders (n = 9),
schizotypal personality disorders (n= 3), or avoidant personality
disorders (n = 1). At the timing of MRI, 11 subjects
(21.6%) were receiving a low dosage of antipsychotics for
their severe psychiatric conditions in accordance with the
clinical guidelines for early psychosis (53). Simultaneously,
5 subjects (9.8%) were taking antidepressants (imipramine
equivalent doses = 112.5 ± 65.0 mg/day), and 14 subjects
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TABLE 1 | Demographic and clinical data of the healthy comparison (HC), at-risk mental state (ARMS), and schizophrenia (Sz) groups.

HC ARMS Sz Statistics

(n = 87) (n = 51) (n = 77)

Sex, male/female (n) 46/41 29/22 39/38 Chi-square = 0.48, p = 0.788

Age (years) 26.3 ± 3.9 18.3 ± 4.2 28.8 ± 9.4 F (2, 214) = 41.59, p < 0.001; ARMS < HC < Sz

Height (cm) 165.7 ± 8.3 164.1 ± 8.0 164.3 ± 8.8 F (2, 214) = 0.77, p = 0.465

Intracranial volume (ml) 1553 ± 126 1485 ± 144 1501 ± 168 F (2, 214) = 3.74, p = 0.025a; ARMS < HC, Sz

JART-IQb 110.0 ± 6.8 97.3 ± 9.3 101.2 ± 8.7 F (2, 181) = 43.06, p < 0.001; ARMS < Sz < HC

Handedness (right/left/mixed) 60/8/19 31/3/17 63/2/12 Chi-square = 9.33, p = 0.053

Socioeconomic status 6.3 ± 0.8 3.1 ± 1.4 4.4 ± 1.3 F (2, 214) = 131.15, p < 0.001; ARMS < Sz < HC

Parental socioeconomic statusc 5.9 ± 0.9 4.9 ± 0.9 4.9 ± 1.3 F (2, 213) = 21.36, p < 0.001; ARMS, Sz < HC

Age at onset (years) 22.8 ± 8.1

Duration of psychosis (years) 5.6 ± 6.5

Medication dose (HPD equivalent, mg/day) 3.0 ± 3.2 (n = 11) 10.6 ± 8.3 (n = 65) F (1, 75) = 8.73, p = 0.004; ARMS < Sz

Medication type (atypical/typical/mixed) 10/1/0 56/0/9 Chi-square = 139.39, p < 0.001

Duration of medication (years) 0.6 ± 0.8 (n = 6) 6.1 ± 6.8 (n = 56) F (1, 61) = 3.79, p = 0.056

PANSS positive 12.3 ± 3.4 15.5 ±6.3 F (1, 124) = 10.47, p = 0.002; ARMS < Sz

PANSS negative 16.4 ± 6.9 18.2 ± 7.5 F (1, 124) = 1.98, p = 0.162

PANSS general 31.9 ± 7.9 35.0 ± 11.5 F (1, 124) = 2.71, p = 0.102

CAARMS subscale scores

Unusual thought global rating scale 3.6 ± 1.4

Unusual thought frequency scale 3.6 ± 1.9

Non-Bizarre ideas global rating scale 3.9 ± 1.1

Non-Bizarre ideas frequency scale 4.4 ± 1.3

Perceptual abnormalities global rating scale 3.1 ± 1.6

Perceptual abnormalities frequency scale 3.1 ± 1.9

Disorganized speech global rating scale 2.5 ± 1.3

Disorganized speech frequency scale 4.1 ± 2.4

BACS subdomain z-scores

Verbal memory −0.7 ± 1.4 −1.3 ± 1.4 F (1, 112) = 6.05, p = 0.015; Sz < ARMS

Working memory −0.8 ± 1.3 −0.9 ± 1.3 F (1, 112) = 0.16, p = 0.692

Motor function −0.9 ± 1.3 −2.0 ± 1.5 F (1, 112) = 19.59, p < 0.001; Sz < ARMS

Verbal fluency −0.9 ± 1.4 −0.9 ± 1.1 F (1, 112) = 0.024, p = 0.877

Attention and processing speed −0.3 ± 1.4 −1.2 ± 1.3 F (1, 112) = 12.03, p < 0.001; Sz < ARMS

Executive function −0.4 ± 1.3 −0.7 ± 1.8 F (1, 112) = 0.87, p = 0.354

BACS mean z-score −0.7 ± 1.0 −1.2 ± 1.0 F (1, 112) = 7.13, p = 0.009; Sz < ARMS

SCoRS global rating score 5.3 ± 2.2 5.0 ± 2.5 F (1, 102) = 0.43, p = 0.516

SOFAS 50.2 ± 10.5 47.3 ± 14.3 F (1, 87) = 1.19, p = 0.279

Values represent the mean ± SD unless otherwise stated.

ARMS, At-Risk Mental State; BACS, Brief Assessment of Cognition in Schizophrenia; CAARMS, Comprehensive Assessment of At-Risk Mental State; IQ, Intelligence Quotient; JART,

Japanese version of National Adult Reading Test; HC, healthy controls; HPD, haloperidol; PANSS, Positive and Negative Syndrome Scale; SCoRS, Schizophrenia Cognition Rating

Scale; SOFAS, Social and Occupational Functioning Assessment Scale; Sz, schizophrenia.
aAge was used as a covariate.
bData missing for 33 subjects.
cData missing for one subject.

(27.5%) were taking anxiolytics (diazepam equivalent doses =

5.1 ± 2.2 mg/day). Omega-3 fatty acids were not used in
any subjects.

Healthy control subjects with no personal or family (first-
degree relatives) history of psychiatric diseases who were
screened by the SCID-I Non-patient Edition (45) were recruited
from hospital staff, University students, and members of the
local community.

All participants in the present study were physically healthy
at the time of MRI and had no lifetime history of serious
head trauma, neurological illness, substance abuse, steroid use,
or other serious physical diseases. One hundred and sixty-
one of the 216 subjects were also included in our previous
study that investigated subregional volumes of the thalamus
and basal ganglia in schizophrenia and ARMS (54). The
Committee on Medical Ethics of Toyama University approved
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this study. Written informed consent was received from all study
participants. If the participants were under the age of 20, their
parent or guardian also provided written consent.

Clinical Assessment
Clinical symptoms of the schizophrenia and ARMS subjects were
rated by the Positive and Negative Syndrome Scale (PANSS)
(55), whose scores consisted of the positive items, negative
items, and general psychopathology. Cognitive assessments
were conducted using the Brief Assessment of Cognition
in Schizophrenia (BACS) (56, 57). The BACS scores from
their six subdomains (verbal memory, working memory,
motor speed, verbal fluency, attention, and executive function)
were standardized by calculating z-scores, where the mean
score of the healthy Japanese was set to zero and the
standard deviation was set to one (58). The Schizophrenia
Cognition Rating Scale (SCoRS) (59–61) were also conducted
to measure the cognitive abilities related to daily-living
functioning or functional capacity. Among 20 items of the
SCoRS, global rating scale (range 1–10, higher ratings mean
greater impairment in daily living skills) was adapted as a
representative value. Social functioning was evaluated by the
Social and Occupational Functioning Assessment Scale (SOFAS)
(62), whose score (range 0–100, higher ratings mean better
functioning) corresponded to the social functioning domain
of the Global Assessment of Functioning Scale in the DSM-
IV-TR (46). All assessments were administered by experienced
psychiatrists and trained psychologists.

MRI
Study participants were scanned using a 3-T Magnetom Verio
(Siemens Medical System, Inc., Erlangen, Germany) with a
three-dimensional magnetization-prepared rapid gradient echo
(MPRAGE) sequence yielding 176 contiguous T1-weighted
slices of 1.2-mm thickness in the sagittal plane. The imaging
parameters were as follows: repetition time= 2,300ms, echo time
= 2.9ms, flip angle= 9◦, field of view= 256mm, and matrix size
= 256× 256. The voxel size was 1.0× 1.0× 1.2 mm.

Measurement of Hippocampal Subfields
Preprocessing of the T1-weighted images, including the
correction for intensity non-uniformity in MRI data (63), was
performed using the FreeSurfer pipeline (version 6.0, http://
surfer.nmr.mgh.harvard.edu) (64, 65). One trained researcher
(RY) blinded to the subjects’ identities visually inspected all
reconstructed images, and manually edited them to improve
their subcortical and temporolimbic segmentations. The
hippocampal region was automatically segmented into 12
different subfields using a new algorithm, which was based
on a computational atlas assembled from ex vivo MRI data
of post-mortem medial temporal tissue and in vivo MRI data
informing about neighboring extrahippocampal structures
(41). All subfield outputs were also visually inspected to
ensure no robust mislabeling. We measured the intracranial
volume (ICV), and volume of the entire hippocampus and
12 hippocampal subfields: hippocampal tail, subiculum, CA1,
hippocampal fissure, presubiculum, parasubiculum, molecular

layer hippocampus (HP), granule cell and molecular layer
of the dentate gyrus (GC-ML-DG), CA3, CA4, fimbria, and
hippocampus-amygdala-transition-area (HATA).

Statistical Analysis
Clinical and demographic differences among groups were
examined by one-way analysis of variance (ANOVA) or chi-
square test.

Absolute regional volumes were analyzed using the repeated
measures multivariate analysis of variance (MANCOVA),
with age and ICV as covariates, diagnosis (e.g., healthy
controls vs. ARMS vs. schizophrenia, ARMS-P vs. ARMS-
NP, ROSz vs. chronic schizophrenia, and ARMS vs. ROSz
vs. chronic schizophrenia) and sex as between-subject factors,
and hemisphere and hippocampal subfields (12 regions) as
within-subject variables. We assessed the effects of subfield by
lower order MANCOVA only when we detected significant
diagnosis-by-subfield-by-hemisphere interactions (Table 2) in
order to prevent possible type I errors. Post-hoc Newman-Keuls
tests were employed to follow-up the significant main effects
or interactions.

Test-retest reliability of FreeSurfer automated hippocampal
subfield segmentation has been established using 3T-MRI data
(66, 67). For validation analyses, however, we also combined
parts of the subfields to set up the merged hippocampal subfields,
such as CA1, subiculumcombined (subiculum + presubiculum
+ parasubiculum), and other (GC-ML-DG + CA3 + CA4)
subfields on the basis of previous studies (68, 69). Using the
same repeated measures MANCOVA model, absolute regional
volumes of these merged subfields were analyzed among the
schizophrenia, ARMS, and control groups.

Relationships between the absolute volume of the
hippocampal subfields with significant group differences
(i.e., hippocampal tail, subiculum, CA1, and molecular layer
HP; Table 2) and clinical or socio-cognitive variables [e.g., age
at onset, duration of psychosis, medication dose, duration of
medication, PANSS (positive, negative, and general), BACS
(mean z-scores), SCoRS global rating score, and SOFAS] in the
schizophrenia and ARMS groups were explored by Pearson’s
partial correlation coefficients controlled for age, sex, and ICV.

The significance threshold was set at p < 0.05 (two-sided).
For correlation analyses, a Bonferroni correction was applied to
correct for multiple comparisons.

RESULTS

Sample Characteristics
Demographic and clinical characteristics of the sample are
summarized in Table 1. Groups were matched for sex, height,
and handedness, but there were significant differences in age,
ICV, premorbid Intelligence Quotient, and personal/parental
socioeconomic status. The schizophrenia patients were
characterized by higher PANSS positive scores, lower BACS
measures, and greater amounts of antipsychotics than
ARMS individuals.

Frontiers in Psychiatry | www.frontiersin.org 4 March 2021 | Volume 12 | Article 64204828

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Sasabayashi et al. Hippocampal Subfield Abnormalities in Psychosis

TABLE 2 | Absolute volume of the hippocampal subfields in the HC, ARMS, and Sz groups.

Region of Interest

(mm3)

HC (n = 87) ARMS (n = 51) Sz (n = 77) Multivariate analysis of covariates Post-hoc tests

(Male 46,

Female 41)

(Male 29,

Female 22)

(Male 39,

Female 38)

Diagnosis × Subfield × Hemisphere Sz vs. HC ARMS vs. HC

Mean ± SD Mean ± SD Mean ± SD F(22,2299) P P P

Entire hippocampus 1.79 0.01

Left 3523.5 ± 310.5 3403.5 ± 340.3 3378.0 ± 312.2

Right 3615.6 ± 343.7 3429.0 ± 312.8 3495.5 ± 361.8

Hippocampal tail – –

Left 551.8 ± 65.9 522.7 ± 53.6 520.0 ± 58.3 1.76 × 10−5 5.67 × 10−5

Right 570.6 ± 70.5 542.7 ± 67.6 554.6 ± 55.6 0.08 5.51 × 10−4

Subiculum – –

Left 445.5 ± 47.9 430.3 ± 50.8 432.3 ± 47.0 0.12 0.10

Right 454.8 ± 48.3 424.4 ± 48.4 439.9 ± 50.1 0.06 8.30 × 10−5

CA1 – –

Left 635.9 ± 72.4 619.8 ± 69.5 612.3 ± 63.5 1.15 × 10−3 1.54 × 10−2

Right 676.9 ± 92.2 643.5 ± 73.5 652.5 ± 75.5 2.40 × 10−4 2.30 × 10−5

Hippocampal fissure

Left 150.5 ± 25.4 154.0 ± 29.5 153.1 ± 26.6 0.70 0.86

Right 144.8 ± 21.8 143.5 ± 23.1 154.2 ± 26.8 0.62 0.85

Presubiculum – –

Left 320.1 ± 33.6 311.4 ± 41.0 306.3 ± 39.0 0.23 0.38

Right 313.1 ± 35.5 296.4 ± 34.6 299.8 ± 42.2 0.34 0.19

Parasubiculum – –

Left 65.2 ± 10.1 63.6 ± 9.2 60.4 ± 9.9 0.98 0.82

Right 61.3 ± 9.8 59.8 ± 8.2 57.3 ± 9.6 1.00 1.00

Molecular layer HP – –

Left 576.1 ± 56.0 558.4 ± 59.7 552.7 ± 54.8 7.77 × 10−3 0.06

Right 597.6 ± 65.6 563.5 ± 54.8 575.5 ± 60.9 2.56 × 10−3 1.97 × 10−5

GC-ML-DG – –

Left 303.5 ± 33.9 295.3 ± 37.4 291.6 ± 35.6 0.55 0.73

Right 307.8 ± 36.0 292.1 ± 30.4 298.2 ± 40.6 0.60 0.27

CA3 – –

Left 200.4 ± 25.8 195.4 ± 27.1 195.4 ± 26.3 0.88 0.74

Right 207.4 ± 29.6 198.8 ± 26.8 206.2 ± 33.4 0.85 0.57

CA4 – –

Left 260.1 ± 29.0 253.2 ± 32.7 249.0 ± 29.1 0.34 0.55

Right 260.4 ± 30.0 248.4 ± 26.3 253.8 ± 34.9 0.58 0.46

Fimbria – –

Left 102.8 ± 16.8 94.1 ± 16.8 99.5 ± 20.9 0.62 0.69

Right 103.5 ± 18.1 96.3 ± 17.2 97.9 ± 22.5 0.84 0.82

HATA – –

Left 62.2 ± 7.5 59.2 ± 6.0 58.5 ± 8.4 1.00 1.00

Right 62.3 ± 7.4 59.4 ± 8.0 59.9 ± 9.2 1.00 1.00

ARMS, at-risk mental state; CA, Cornu Ammonis; GC-ML-DG, granule cell and molecular layer of the dentate gyrus; HATA, hippocampus-amygdala-transition-area; HC, healthy controls;

HP, hippocampus; Sz, schizophrenia.

Bold font indicates statistical significance.

Volumetric Analyses
On comparison among the schizophrenia, ARMS, and control
groups, MANCOVA of the hippocampal volume revealed
a significant diagnosis-by-subfield-by-hemisphere interaction.

We therefore separately evaluated the group differences in
hippocampal subfields for each hemisphere. Compared with
controls, the schizophrenia group had a smaller volume in the
bilateral CA1, bilateral molecular layer HP, and left hippocampal
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tail, and the ARMS group had a smaller volume in the
bilateral hippocampal tail, bilateral CA1, right subiculum, and
right molecular layer HP (Table 2). However, the hippocampal
volumes did not differ between the schizophrenia and ARMS
groups. ARMS subsample without comorbid PDD diagnosis (n
= 46) also exhibited a smaller volume in the hippocampal tail
(p = 3.20 × 10−5 for left side and p = 6.78 × 10−5 for right
side), CA1 (p = 2.29 × 10−2 for left side and p = 9.54 × 10−6

for right side), and subiculum (p = 3.02 × 10−2 for left side and
p = 6.69 × 10−5 for right side) bilaterally, as well as in the right
molecular layer HP (p = 1.15 × 10−5) compared with controls
(Supplementary Table 1).

There were no significant differences in the hippocampal
volumes between the ARMS-P and -NP groups
(Supplementary Table 2).

On comparison between the ROSz and chronic schizophrenia
groups, a significant diagnosis-by-subfield-by-hemisphere
interaction was observed by MANCOVA [F(11, 660) =

3.58, p < 0.001]. Post-hoc analyses demonstrated that the
left hippocampal tail was significantly reduced in chronic
schizophrenia patients compared with ROSz patients (p =

1.58 × 10−4) (Supplementary Table 3). Similarly, re-defined
chronic schizophrenia patients (duration of psychosis >10
years) exhibited a significant volume reduction only in the left
hippocampal tail compared with ROSz patients (p = 2.42 ×

10−4) (Supplementary Table 4).
Direct comparison among the ARMS, ROSz, and chronic

schizophrenia groups showed a significant diagnosis-by-subfield-
by-hemisphere interaction [F(22, 1199) = 3.19, p < 0.001], and
the post-hoc tests indicated that the left hippocampal tail was
significantly reduced in chronic schizophrenia group compared
with ROSz (p = 2.82 × 10−5) and ARMS (p = 8.28 × 10−3)
groups, as well as in ARMS group compared with ROSz (p= 3.81
× 10−2) group (Supplementary Table 5).

For the analysis of merged hippocampal subfields,
a significant diagnosis-by-hemisphere interaction was
observed by MANCOVA [F(2, 209) = 5.12, p = 0.01].
Post-hoc analyses demonstrated that sum of the merged
hippocampal subfield of the right hemisphere was significantly
reduced in ARMS individuals compared with controls
(p = 5.80 × 10−3) (Supplementary Table 6). However,
MANCOVA showed no significant interactions involving
diagnosis-by-subfield, supporting the utility of more detailed
subfield analyses.

The results of these comparisons remained essentially the
same even when medication (dosage and duration) was included
as a covariate.

Correlation Analyses
The left hippocampal tail volume was positively correlated with
onset age and negatively correlated with duration of psychosis
in patients with schizophrenia (Figure 1, Table 3). In the
schizophrenia group, volume reduction of the left hippocampal
tail was significantly associated with long-term medication use,
whereas the hippocampal subfield volume was not associated
with antipsychotic medication dosage (Figure 1, Table 3). In

ARMS individuals, we found no significant relationship between
the hippocampal volume and clinical or socio-cognitive variables.

DISCUSSION

In the present MRI study, we have investigated hippocampal
subfield volumes based on a reliable ex vivo atlas cross-sectionally
across multiple stages of psychosis. The schizophrenia and
ARMS groups had significantly smaller volumes of the CA1,
hippocampal tail, and molecular layer HP than healthy controls,
suggesting that hippocampal abnormalities in these specific
subfields represent a static vulnerability marker of psychosis.
On the other hand, the volume loss in the left hippocampal
tail preferentially observed in the chronic stage of psychosis,
which was related to early onset age and long-term duration of
psychosis, may reflect a regional progressive pathological process
after onset.

Our finding of reduced hippocampal volume, especially
in the CA1, hippocampal tail, and molecular layer HP, was
partly consistent with four previous studies (23, 33, 43, 70) in
psychotic disorders that assessed hippocampal subfields using a
recent version of segmentation by Iglesias et al. (41). On the
other hand, previous studies (34, 35, 39) mainly employing an
earlier version of segmentation by Leemput et al. (42) reported
widespread volume reductions centered on the CA2/3, CA4/DG,
and subiculum. Different segmentation methods among the
studies may be partly responsible for these discrepancies;
the segmentation protocol by Leemput et al. (42) may have
underestimated CA1 volumes and overestimated CA2/3 or
subiculum volumes compared withmanual demarcation (71, 72).
In addition, although the relationship between hippocampal
subfield morphology and antipsychotic medication has not
been well-documented (31), we cannot exclude the potential
confounding effects of antipsychotic medication on the results,
in consideration of experimental findings of alterations in
hippocampal neurogenesis (73) and hippocampal volumes (74)
after antipsychotic treatment. Indeed, we noted a relationship
between the hippocampal tail and medication duration, but
not medication dosage. The discrepancy might be partly due
to the inseparable effects of duration of medication and
psychosis, or to the opposite effects of medication dosage
on hippocampal anatomy in acute and long-term treatment
(75). As the group difference remained significant even when
we added medication duration and dosage as covariates in
the analytical model, reduced volume of the hippocampal
subfields in our schizophrenia cohort cannot be explained only
by antipsychotic drug action. Although we failed to detect
a significant relationship between hippocampus atrophy and
clinical symptoms or cognitive deficits, further studies are
required to clarify each specialized role of functional/structural
abnormalities of the CA1, molecular layer HP, and hippocampal
tail in the pathophysiology of schizophrenia.

Partially consistent with a previous study of an ARMS
cohort (23, 36), clinically high-risk subjects for psychosis
demonstrated reduced volumes in the CA1, molecular layer
HP, hippocampal tail, and subiculum, most of which were also
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FIGURE 1 | Relationship between the absolute volume of left hippocampal tail and clinical variables in the Sz group. Relationship between the absolute volume of the

left hippocampal tail and (A) onset age, (B) duration of psychosis, and (C) duration of medication in patients with schizophrenia.

observed in schizophrenia patients. Because the exclusion of
ARMS individuals with PDD diagnosis did not change the
conclusion of the study, the hippocampal findings in ARMS
may not be explained only by the coexistence of PDD. However,
volumes of these subfields did not differ between schizophrenia
and ARMS subjects or between ARMS individuals with and
without subsequent transition to psychosis in contrast to a few
previous findings (36, 76). As rather small sample size of the
ARMS-P individuals (n = 5) in our cohort could partly explain
such discrepancy, their role as a biological discrimination for
subsequent psychosis should be further tested in a larger ARMS-
P cohort. Reduced hippocampal subfield volumes commonly
observed in schizophrenia and ARMS groups should represent a
common biotype involved in vulnerability to psychosis. Recently,
approaches that can alter some biotypes, such as deficits in
hippocampal perfusion or sensory gating (76–78), have been
considered as early interventions for psychosis (79, 80). As
aerobic exercise and cognitive enhancement therapy can prevent
the hippocampal volume decreases over time in early psychosis
(81, 82), this biotype may be one of the target candidates for
prophylactic treatment in the future.

In contrast to the conventional notion that hippocampal
abnormality is a stable feature of schizophrenia (27–30), the
combination of the more marked hippocampal tail atrophy
in chronic patients relative to recent-onset patients and its
relationship with onset age or duration of psychosis suggests a
progressive decrease in the hippocampal subfield volume. Direct
group comparison also showed the role of illness stages on the
hippocampal tail (ROSz > ARMS > chronic schizophrenia),
but this result should be interpreted with cautions due to
relatively small sample size of ROSz group and significant
group difference in age (although statistically controlled).
Although the hippocampal tail has not been well-investigated
neuroanatomically (41), previous cross-sectional MRI studies
reported that reduced volume of this subfield was observed
in schizophrenia patients with a longer duration of psychosis
(33, 40) in contrast with those with a shorter duration of
psychosis (33, 70). Conversely, two longitudinal studies (33,
39) demonstrated that patients with schizophrenia exhibited
progressive volume loss in several hippocampal subfields, such
as CA1-4, DG, and subiculum, as opposed to putative ongoing
atrophy only in the hippocampal tail in this cohort. These studies
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(33, 39) supported the progressive pathology of schizophrenia
(19, 25, 26) by confirming that the symptomatic deterioration
was synchronized with the decrease in hippocampal volume,
although they had limitations; their cohorts were characterized
by a relatively small sample size, short-term follow-up period,
and mixture of recent-onset and chronic patients. Future large-
scale longitudinal studies are required to directly examine the
trajectory of the hippocampal subfield atrophy at varying stages
of psychotic disorders, focusing on the spatial distribution of
subregional deficits.

Although the current MRI study was unable to sufficiently
clarify the etiological role of the hippocampus in psychotic
disorder, our finding of focal shrinkage in the CA1 and
subiculum [molecular layer HP was classified as part of the
subiculum or CA fields in most previous segmentations (41, 42)]
that developed around onset partly supports the hippocampal
hyperactivity models (83, 84). Among them, Small et al. (10)
proposed the early involvement of CA1 (and subiculum) in the
pathophysiological process responsible for psychosis because it
has greater expression of the N-methyl-D-aspartate (NMDA)
receptor (85) and may be especially vulnerable to glutamate-
mediated neurotoxicity (86). Therefore, excess extracellular
glutamate that accumulates preferentially in the CA1/subiculum
in the early disease stage affects metabolic demand and blood
flow, and causes eventual volume loss in the corresponding
region (7, 76, 87). Dysfunction of gamma-aminobutyric acid
(GABA)-ergic interneurons, which were proposed to underlie
the metabolic and structural alterations in these hippocampal
subfields, may propagate to other hippocampal subfields and
drive feedforward excitation of the hippocampal trisynaptic
circuit (88, 89), leading to the clinical features of schizophrenia
and cognitive impairments (90–93). Furthermore, the finding of
reduced NMDA receptor related proteins only in the dentate
molecular layer in schizophrenia post-mortem brains may
imply the specific role of molecular layer in this cascade (94).
Alternatively, we previously suggested that only the hippocampal
tail exhibits progressive atrophy across the disease stages in
contrast to the assumption that hippocampal subfield volume
losses extend along the trisynaptic pathway [e.g., CA3-4 and
DG; (33)]. In this regard, even though demarcation of the
hippocampal tail was slightly different from that in the present
study, the cumulative adverse effects of psychotic episodes
on the left hippocampal tail have been reported (95). In
methylazoxymethanol acetate treated rats as a developmental
disruption model of schizophrenia (96), a reduction in synaptic
innervation and excitatory synaptic transmission was observed
especially in the dorsal hippocampus (97). Thus, the nature
of static or progressive structural/functional changes of the
hippocampus, particularly in the posterior portion where fewer
studies have focused, remains unclear.

Some limitations to the present study should be delineated.
First, in order to label the hippocampal subfields, we adopted a
new and validated segmentation protocol (41), but it was based
on only a T1 sequence, as employed in most previous studies
(23, 43, 70).Wemay be able to obtain more reliable segmentation
utilizing an additional T2 sequence (98). Second, hippocampal
morphometric changes may be affected not only by intrinsic
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factors of psychosis, but also by potential confounding factors
such as antipsychotics (99), comorbid anxiety and depression
(100), and prolonged stress (101). Future studies should try to
replicate the current hippocampal findings in antipsychotic-naïve
schizophrenia patients whose comorbid symptoms are well-
managed. Thirdly, there are no consensus operational definitions
for “resent-onset” or “chronic” schizophrenia [e.g., DSM-IV-TR;
(46)]. Although our results did not change significantly between
different chronic definitions, potential role of illness stages on
the hippocampal volume should be further tested in future
longitudinal studies in various illness stages. Fourthly, although
the established reliability of automated subfield segmentation
(66, 67), our results of significant group difference predominantly
in relatively large hippocampal subfields (CA1, molecular layer
HP, and hippocampal tail) may raise the possibility of technical
issue that prevents accurate group comparison of smaller
subfields. Lastly, volume reduction of the hippocampal subfields,
especially in the CA1, was also noted in other neuropsychiatric
illnesses such as post-traumatic stress disorder, major depressive
disorder, and bipolar disorder (102, 103). On the other hand,
volume reductions in the CA2/3 and presubiculum were
more pronounced in schizophrenia than in bipolar disorder
(31), possibly contributing to discrimination among psychiatric
disorders. Thus, whether our hippocampal findings belong to a
common biotype across psychiatric disorders or a distinct biotype
of the schizophrenia spectrum should be investigated.

In conclusion, this MRI study demonstrated that both
schizophrenia and ARMS groups exhibit smaller hippocampal
volumes, especially in CA1, hippocampal tail, and molecular
layer HP subfields. Reduced volume of the left hippocampal
tail in schizophrenia was associated with illness chronicity
and antipsychotic medication. The hippocampal subfield
atrophy may represent a potential biotype that accounts for
psychosis vulnerability, but further studies are needed to
clarify how it is involved in the formation and development of
psychotic disorders.

DATA AVAILABILITY STATEMENT

The datasets utilized for this article are not available immediately
because we do not have permission to share them. Requests

to access the datasets should be directed to Daiki Sasabayashi,
ds179@med.u-toyama.ac.jp.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Committee on Medical Ethics of Toyama
University. Written informed consent to participate in this
study was provided by the participants’ legal guardian/next
of kin.

AUTHOR CONTRIBUTIONS

DS, TT, YT, andMS conceived the present study and its methods.
DS conducted statistical analyses and wrote the manuscript.
DS, SN, YH, YM, AF, MK, and MN recruited participants, and
were involved in clinical and diagnostic assessments. DS and RY
analyzed MRI data. KN provided technical support for MRI and
data processing. DS, AF, MN, and TT managed MRI and clinical
data. TT, YT, and MS contributed to the writing and editing
of the manuscript. All authors contributed to and approval the
final manuscript.

FUNDING

This study was supported by JSPS KAKENHI Grant Numbers
JP18K15509, JP19H03579, and JP20KK0193 to DS, JP16K04349
to SN, JP18K07549 to YT, JP18K07550 to TT, and JP20H03598
to MS, the SENSHIN Medical Research Foundation to YT, DS,
and YH, THE HOKURIKU BANK Grant-in-Aid for Young
Scientists to DS, and by the Health and Labor Sciences
Research Grants for Comprehensive Research on Persons with
Disabilities from the Japan Agency for Medical Research
and Development (AMED) Grant Number 20dk0307094s0201
to MS.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyt.
2021.642048/full#supplementary-material

REFERENCES

1. Kim JJ, DiamondDM. The stressed hippocampus, synaptic plasticity and lost

memories. Nat Rev Neurosci. (2002) 3:453–62. doi: 10.1038/nrn849

2. Sweeney P, Yang Y. Neural circuit mechanisms underlying emotional

regulation of homeostatic feeding. Trends Endocrinol Metab. (2017) 28:437–

48. doi: 10.1016/j.tem.2017.02.006

3. Harrison PJ. The hippocampus in schizophrenia: a review of the

neuropathological evidence and its pathophysiological implications.

Psychopharmacology. (2004) 174:151–62. doi: 10.1007/s00213-003-1761-y

4. Lieberman JA, Girgis RR, Brucato G, Moore H, Provenzano F, Kegeles

L. Hippocampal dysfunction in the pathophysiology of schizophrenia: a

selective review and hypothesis for early detection and intervention. Mol

Psychiatry. (2018) 23:1764–72. doi: 10.1038/mp.2017.249

5. Schultz C, Engelhardt M. Anatomy of the hippocampal formation. Front

Neurol Neurosci. (2014) 34:6–17. doi: 10.1159/000360925

6. Ghose S, Chin R, Gallegos A, Roberts R, Coyle J, Tamminga

C. Localization of NAAG-related gene expression deficits to the

anterior hippocampus in schizophrenia. Schizophr Res. (2009)

111:131–7. doi: 10.1016/j.schres.2009.03.038

7. Schobel SA, Lewandowski NM, Corcoran CM, Moore H, Brown T,

Malaspina D. Differential targeting of the CA1 subfield of the hippocampal

formation by schizophrenia and related psychotic disorders. Arch Gen

Psychiatry. (2009) 66:938–46. doi: 10.1001/archgenpsychiatry.2009.

115

8. Talati P, Rane S, Kose S, Blackford JU, Gore J, Donahue MJ. Increased

hippocampal CA1 cerebral blood volume in schizophrenia.Neuroimage Clin.

(2014) 5:359–64. doi: 10.1016/j.nicl.2014.07.004

Frontiers in Psychiatry | www.frontiersin.org 9 March 2021 | Volume 12 | Article 64204833

mailto:ds179@med.u-toyama.ac.jp
https://www.frontiersin.org/articles/10.3389/fpsyt.2021.642048/full#supplementary-material
https://doi.org/10.1038/nrn849
https://doi.org/10.1016/j.tem.2017.02.006
https://doi.org/10.1007/s00213-003-1761-y
https://doi.org/10.1038/mp.2017.249
https://doi.org/10.1159/000360925
https://doi.org/10.1016/j.schres.2009.03.038
https://doi.org/10.1001/archgenpsychiatry.2009.115
https://doi.org/10.1016/j.nicl.2014.07.004
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Sasabayashi et al. Hippocampal Subfield Abnormalities in Psychosis

9. Tamminga CA, Stan AD, Wagner AD. The hippocampal

formation in schizophrenia. Am J Psychiatry. (2010) 167:1178–

93. doi: 10.1176/appi.ajp.2010.09081187

10. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA. A

pathophysiological framework of hippocampal dysfunction in ageing

and disease. Nat Rev Neurosci. (2011) 12:585–601. doi: 10.1038/nrn3085

11. Clementz BA, Sweeney JA, Hamm JP, Ivleva EI, Ethridge LE, Pearlson GD.

Identification of distinct psychosis biotypes using brain-based biomarkers.

Am J Psychiatry. (2016) 173:373–84. doi: 10.1176/appi.ajp.2015.14091200

12. Haijma SV, van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn

RS. Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects.

Schizophr Bull. (2013) 39:1129–38. doi: 10.1093/schbul/sbs118

13. van Erp TG, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen

OA. Subcortical brain volume abnormalities in 2028 individuals with

schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol

Psychiatry. (2016) 21:547–53. doi: 10.1038/mp.2015.63

14. Okada N, Fukunaga M, Yamashita F, Koshiyama D, Yamamori H, Ohi K.

Abnormal asymmetries in subcortical brain volume in schizophrenia. Mol

Psychiatry. (2016) 21:1460–6. doi: 10.1038/mp.2015.209

15. Yung AR, Yuen HP, McGorry PD, Phillips LJ, Kelly D, Dell’Olio

M. Mapping the onset of psychosis: the Comprehensive Assessment

of At-Risk Mental States. Aust N Z J Psychiatry. (2005) 39:964–

71. doi: 10.1080/j.1440-1614.2005.01714.x

16. Wood SJ, Kennedy D, Phillips LJ, Seal ML, Yücel M, Nelson B.

Hippocampal pathology in individuals at ultra-high risk for psychosis:

a multi-modal magnetic resonance study. Neuroimage. (2010) 52:62–

8. doi: 10.1016/j.neuroimage.2010.04.012

17. Dean DJ, Orr JM, Bernard JA, Gupta T, Pelletier-Baldelli A, Carol

EE. Hippocampal shape abnormalities predict symptom progression in

neuroleptic-free youth at ultrahigh risk for psychosis. Schizophr Bull. (2016)

42:161–9. doi: 10.1093/schbul/sbv086

18. Harrisberger F, Buechler R, Smieskova R, Lenz C, Walter A, Egloff L.

Alterations in the hippocampus and thalamus in individuals at high risk for

psychosis. NPJ Schizophr. (2016) 2:16033. doi: 10.1038/npjschz.2016.33

19. Velakoulis D, Wood SJ, Wong MT, McGorry PD, Yung A, Phillips L.

Hippocampal and amygdala volumes according to psychosis stage and

diagnosis: a magnetic resonance imaging study of chronic schizophrenia,

first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatry.

(2006) 63:139–49. doi: 10.1001/archpsyc.63.2.139

20. Buehlmann E, Berger GE, Aston J, Gschwandtner U, Pflueger MO,

Borgwardt SJ. Hippocampus abnormalities in at risk mental states

for psychosis? A cross-sectional high resolution region of interest

magnetic resonance imaging study. J Psychiatr Res. (2010) 44:447–

53. doi: 10.1016/j.jpsychires.2009.10.008

21. Witthaus H, Mendes U, Brüne M, Ozgürdal S, Bohner G, Gudlowski Y.

Hippocampal subdivision and amygdalar volumes in patients in an at-

risk mental state for schizophrenia. J Psychiatry Neurosci. (2010) 35:33–

40. doi: 10.1503/jpn.090013

22. Klauser P, Zhou J, Lim JK, Poh JS, Zheng H, Tng HY. Lack of evidence for

regional brain volume or cortical thickness abnormalities in youths at clinical

high risk for psychosis: findings from the longitudinal youth at risk study.

Schizophr Bull. (2015) 41:1285–93. doi: 10.1093/schbul/sbv012

23. Ho NF, Holt DJ, Cheung M, Iglesias JE, Goh A, Wang M. Progressive decline

in hippocampal CA1 volume in individuals at ultra-high-risk for psychosis

who do not remit: findings from the longitudinal youth at risk study.

Neuropsychopharmacology. (2017) 42:1361–70. doi: 10.1038/npp.2017.5

24. Sasabayashi D, Takayanagi Y, Takahashi T, Katagiri N, Sakuma A, Obara C.

Subcortical brain volume abnormalities in individuals with an at-risk mental

state. Schizophr Bull. (2020) 46:834–45. doi: 10.1093/schbul/sbaa011

25. Ebdrup BH, Skimminge A, Rasmussen H, Aggernaes B, Oranje B,

Lublin H. Progressive striatal and hippocampal volume loss in initially

antipsychotic-naive, first-episode schizophrenia patients treated with

quetiapine: relationship to dose and symptoms. Int J Neuropsychopharmacol.

(2011) 14:69–82. doi: 10.1017/s1461145710000817

26. Rizos E, Papathanasiou MA, Michalopoulou PG, Laskos E, Mazioti A,

Kastania A. A longitudinal study of alterations of hippocampal volumes

and serum BDNF levels in association to atypical antipsychotics in a

sample of first-episode patients with schizophrenia. PLoS ONE. (2014)

9:e87997. doi: 10.1371/journal.pone.0087997

27. Lieberman J, Chakos M, Wu H, Alvir J, Hoffman E, Robinson D.

Longitudinal study of brain morphology in first episode schizophrenia. Biol

Psychiatry. (2001) 49:487–99. doi: 10.1016/s0006-3223(01)01067-8

28. Wood SJ, Velakoulis D, Smith DJ, Bond D, Stuart GW, McGorry

PD. A longitudinal study of hippocampal volume in first episode

psychosis and chronic schizophrenia. Schizophr Res. (2001) 52:37–

46. doi: 10.1016/s0920-9964(01)00175-x

29. Whitworth AB, Kemmler G, Honeder M, Kremser C, Felber S,

Hausmann A. Longitudinal volumetric MRI study in first- and

multiple-episode male schizophrenia patients. Psychiatry Res. (2005)

140:225–37. doi: 10.1016/j.pscychresns.2005.07.006

30. Mamah D, Harms MP, Barch D, Styner M, Lieberman JA, Wang L.

Hippocampal shape and volume changes with antipsychotics in early stage

psychotic illness. Front Psychiatry. (2012) 3:96. doi: 10.3389/fpsyt.2012.00096

31. Haukvik UK, Tamnes CK, Söderman E, Agartz I. Neuroimaging

hippocampal subfields in schizophrenia and bipolar disorder:

a systematic review and meta-analysis. J Psychiatr Res. (2018)

104:217–26. doi: 10.1016/j.jpsychires.2018.08.012

32. Hu N, Luo C, Zhang W, Yang X, Xiao Y, Sweeney JA.

Hippocampal subfield alterations in schizophrenia: a selective

review of structural MRI studies. Biomark Neuropsychiatry. (2020)

3:100026. doi: 10.1016/j.bionps.2020.100026

33. Ho NF, Iglesias JE, Sum MY, Kuswanto CN, Sitoh YY, De Souza J.

Progression from selective to general involvement of hippocampal subfields

in schizophrenia.Mol Psychiatry. (2017) 22:142–52. doi: 10.1038/mp.2016.4

34. Mathew I, Gardin TM, Tandon N, Eack S, Francis AN, Seidman

LJ. Medial temporal lobe structures and hippocampal subfields in

psychotic disorders: findings from the Bipolar-Schizophrenia Network on

Intermediate Phenotypes (B-SNIP) study. JAMA Psychiatry. (2014) 71:769–

77. doi: 10.1001/jamapsychiatry.2014.453

35. Haukvik UK, Westlye LT, Mørch-Johnsen L, Jørgensen KN,

Lange EH, Dale AM. In vivo hippocampal subfield volumes

in schizophrenia and bipolar disorder. Biol Psychiatry. (2015)

77:581–8. doi: 10.1016/j.biopsych.2014.06.020

36. Vargas T, Dean DJ, Osborne KJ, Gupta T, Ristanovic I, Ozturk S.

Hippocampal subregions across the psychosis spectrum. Schizophr Bull.

(2018) 44:1091–9. doi: 10.1093/schbul/sbx160

37. Wisse LE, Biessels GJ, Geerlings MI. A critical appraisal of the hippocampal

subfield segmentation package in FreeSurfer. Front Aging Neurosci. (2014)

6:261. doi: 10.3389/fnagi.2014.00261

38. Kuhn S, Musso F, Mobascher A, Warbrick T, Winterer G, Gallinat J.

Hippocampal subfields predict positive symptoms in schizophrenia:

first evidence from brain morphometry. Transl Psychiatry. (2012)

2:e127. doi: 10.1038/tp.2012.51

39. Kawano M, Sawada K, Shimodera S, Ogawa Y, Kariya S, Lang DJ.

Hippocampal subfield volumes in first episode and chronic schizophrenia.

PLoS ONE. (2015) 10:e0117785. doi: 10.1371/journal.pone.0117785

40. Nakahara S, Turner JA, Calhoun VD, Lim KO, Mueller B, Bustillo JR.

Dentate gyrus volume deficit in schizophrenia. Psychol Med. (2020) 50:1267–

77. doi: 10.1017/s0033291719001144

41. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M.

A computational atlas of the hippocampal formation using ex vivo, ultra-

high resolution MRI: application to adaptive segmentation of in vivo MRI.

Neuroimage. (2015) 115:117–37. doi: 10.1016/j.neuroimage.2015.04.042

42. Leemput KV, Bakkour A, Benner T, Wiggins G, Wald LL,

Augustinack J. Automated segmentation of hippocampal subfields

from ultra-high resolution in vivo MRI. Hippocampus. (2009)

19:549–57. doi: 10.1002/hipo.20615

43. Sone D, Sato N, Maikusa N, Ota M, Sumida K, Yokoyama K. Automated

subfield volumetric analysis of hippocampus in temporal lobe epilepsy using

high-resolution T2-weighed MR imaging. Neuroimage Clin. (2016) 12:57–

64. doi: 10.1016/j.nicl.2016.06.008

44. Hou CL, Xiang YT, Wang ZL, Everall I, Tang Y, Yang C.

Cognitive functioning in individuals at ultra-high risk for

psychosis, first-degree relatives of patients with psychosis and

Frontiers in Psychiatry | www.frontiersin.org 10 March 2021 | Volume 12 | Article 64204834

https://doi.org/10.1176/appi.ajp.2010.09081187
https://doi.org/10.1038/nrn3085
https://doi.org/10.1176/appi.ajp.2015.14091200
https://doi.org/10.1093/schbul/sbs118
https://doi.org/10.1038/mp.2015.63
https://doi.org/10.1038/mp.2015.209
https://doi.org/10.1080/j.1440-1614.2005.01714.x
https://doi.org/10.1016/j.neuroimage.2010.04.012
https://doi.org/10.1093/schbul/sbv086
https://doi.org/10.1038/npjschz.2016.33
https://doi.org/10.1001/archpsyc.63.2.139
https://doi.org/10.1016/j.jpsychires.2009.10.008
https://doi.org/10.1503/jpn.090013
https://doi.org/10.1093/schbul/sbv012
https://doi.org/10.1038/npp.2017.5
https://doi.org/10.1093/schbul/sbaa011
https://doi.org/10.1017/s1461145710000817
https://doi.org/10.1371/journal.pone.0087997
https://doi.org/10.1016/s0006-3223(01)01067-8
https://doi.org/10.1016/s0920-9964(01)00175-x
https://doi.org/10.1016/j.pscychresns.2005.07.006
https://doi.org/10.3389/fpsyt.2012.00096
https://doi.org/10.1016/j.jpsychires.2018.08.012
https://doi.org/10.1016/j.bionps.2020.100026
https://doi.org/10.1038/mp.2016.4
https://doi.org/10.1001/jamapsychiatry.2014.453
https://doi.org/10.1016/j.biopsych.2014.06.020
https://doi.org/10.1093/schbul/sbx160
https://doi.org/10.3389/fnagi.2014.00261
https://doi.org/10.1038/tp.2012.51
https://doi.org/10.1371/journal.pone.0117785
https://doi.org/10.1017/s0033291719001144
https://doi.org/10.1016/j.neuroimage.2015.04.042
https://doi.org/10.1002/hipo.20615
https://doi.org/10.1016/j.nicl.2016.06.008
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Sasabayashi et al. Hippocampal Subfield Abnormalities in Psychosis

patients with first-episode schizophrenia. Schizophr Res. (2016)

174:71–6. doi: 10.1016/j.schres.2016.04.034

45. First MB, GibbonM, Spitzer RL,Williams JBW. Structured Clinical Interview

for DSM-IV Axis I Disorders. Washington DC: American Psychiatric

Press. (1997).

46. American Psychiatric Association. Diagnostic and Statistical Manual of

Mental Disorders. 4th ed. Text Revision. Washington DC: American

Psychiatric Association Press (2000).

47. American Psychiatric Association. Diagnostic and Statistical Manual of

Mental Disorders. 5th ed.Washington DC: American Psychiatric Association

Press (2013).

48. Flaum MA, Andreasen NC, Arndt S. The Iowa prospective

longitudinal study of recent-onset psychoses. Schizophr Bull. (1992)

18:481–90. doi: 10.1093/schbul/18.3.481

49. Breitborde NJK, Srihari VH, Wood SW. Review of the operational

definition for first-episode psychosis. Early Interv Psychiatry. (2009) 3:259–

65. doi: 10.1001/archpsyc.57.7.692

50. Takahashi T, Kido M, Sasabayashi D, Nakamura M, Furuichi A,

Takayanagi Y. Gray matter changes in the insular cortex during

the course of the schizophrenia spectrum. Front Psychiatry. (2020)

11:659. doi: 10.3389/fpsyt.2020.00659

51. Mizuno M, Suzuki M, Matsumoto K, Murakami M, Takeshi K,

Miyakoshi T. Clinical practice and research activities for early psychiatric

intervention at Japanese leading centres. Early Interv Psychiatry. (2009)

3:5–9. doi: 10.1111/j.1751-7893.2008.00104.x

52. Miyakoshi T, Matsumoto K, Ito F, Ohmuro N, Matsuoka H.

Application of the Comprehensive Assessment of At-Risk Mental

States (CAARMS) to the Japanese population: reliability and validity

of the Japanese version of the CAARMS. Early Interv Psychiatry. (2009)

3:123–30. doi: 10.1111/j.1751-7893.2009.00118.x

53. International Early Psychosis Association Writing Group. International

clinical practice guidelines for early psychosis. Br J Psychiatry Suppl. (2005)

48:s120–4. doi: 10.1192/bjp.187.48.s120

54. Takahashi T, Tsugawa S, Nakajima S, Plitman E, Chakravarty MM, Masuda

F. Thalamic and striato-pallidal volumes in schizophrenia patients and

individuals at risk for psychosis: a multi-atlas segmentation study. Schizophr

Res. (2020). doi: 10.1016/j.schres.2020.04.016. [Epub ahead of print].

55. Kay SR, Fiszbein A, Opler LA. The positive and negative

syndrome scale (PANSS) for schizophrenia. Schizophr Bull. (1987)

13:261–76. doi: 10.1093/schbul/13.2.261

56. Keefe RS, Goldberg TE, Harvey PD, Gold JM, Poe MP, Coughenour L. The

Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and

comparison with a standard neurocognitive battery. Schizophr Res. (2004)

68:283–97. doi: 10.1016/j.schres.2003.09.011

57. Kaneda Y, Sumiyoshi T, Keefe R, Ishimoto Y, Numata S,

Ohmori T. Brief assessment of cognition in schizophrenia:

validation of the Japanese version. Psychiatry Clin Neurosci. (2007)

61:602–9. doi: 10.1111/j.1440-1819.2007.01725.x

58. Kaneda Y, Omori T, Okahisa Y, Sumiyoshi T, Pu S, Ueoka Y. Measurement

and treatment research to improve cognition in schizophrenia consensus

cognitive battery: validation of the Japanese version. Psychiatry Clin Neurosci.

(2013) 67:182–8. doi: 10.1111/pcn.12029

59. Keefe RS, Poe M, Walker TM, Kang JW, Harvey PD. The Schizophrenia

Cognition Rating Scale: an interview-based assessment and its relationship to

cognition, real-world functioning, and functional capacity. Am J Psychiatry.

(2006) 163:426–32. doi: 10.1176/appi.ajp.163.3.426

60. Kaneda Y, Ueoka Y, Sumiyoshi T, Yasui-Furukori N, Ito T, Higuchi Y.

Schizophrenia Cognition Rating Scale Japanese version (SCoRS-J) as a

co-primary measure assessing cognitive function in schizophrenia. Nihon

Shinkei Seishin Yakurigaku Zasshi. (2011) 31:259–62.

61. Higuchi Y, Sumiyoshi T, Seo T, Suga M, Takahashi T, Nishiyama

S. Associations between daily living skills, cognition, and real-world

functioning across stages of schizophrenia; a study with the Schizophrenia

Cognition Rating Scale Japanese version. Schizophr Res Cogn. (2017) 7:13–

18. doi: 10.1016/j.scog.2017.01.001

62. Goldman HH, Skodol AE, Lave TR. Revising axis V for DSM-IV: a review

of measures of social functioning. Am J Psychiatry. (1992) 149:1148–

56. doi: 10.1176/ajp.149.9.1148

63. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic

correction of intensity nonuniformity inMRI data. IEEE TransMed Imaging.

(1998) 17:87–97. doi: 10.1109/42.668698

64. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I.

Segmentation and surface reconstruction. Neuroimage. (1999) 9:179–

94. doi: 10.1006/nimg.1998.0395

65. Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation,

flattening, and a surface-based coordinate system. Neuroimage. (1999)

9:195–207. doi: 10.1006/nimg.1998.0396

66. Brown EM, Pierce ME, Clark DC, Fischl BR, Iglesias JE, Milberg

WP. Test-retest reliability of FreeSurfer automated hippocampal

subfield segmentation within and across scanners. Neuroimage. (2020)

210:116563. doi: 10.1016/j.neuroimage.2020.116563

67. Chiappiniello A, Tarducci R, Muscio C, BruzzoneMG, Bozzali M, Tiraboschi

P. Automatic multispectral MRI segmentation of human hippocampal

subfields: an evaluation of multicentric test-retest reproducibility. Brain

Struct Funct. (2021) 226:137–50. doi: 10.1007/s00429-020-02172-w

68. Joie RL, Fouquet M, Mezenge F, Landeau B, Villain N, Mevel K.

Differential effect of age on hippocampal subfields assessed using a

new high-resolution 3T MR sequence. NeuroImage. (2010) 53:506–

14. doi: 10.1016/j.neuroimage.2010.06.024

69. Flores R, Joie RL, Landeau B, Perrotin A, Mezenge F, Sayette V. Effects of

age and Alzheimer’s disease on hippocampal subfields: comparison between

manual and FreeSurfer volumetry. Hum Brain Mapp. (2015) 36:463–

74. doi: 10.1002/hbm.22640

70. Baglivo V, Cao B, Mwangi B, Bellani M, Perlini C, Lasalvia A. Hippocampal

subfield volumes in patients with first-episode psychosis. Schizophr Bull.

(2018) 44:552–9. doi: 10.1093/schbul/sbx108
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Deviations in activation patterns and functional connectivity have been observed in

patients with major depressive disorder (MDD) with prefrontal hemodynamics of patients

compared with healthy individuals. The graph-theoretical approach provides useful

network metrics for evaluating functional connectivity. The evaluation of functional

connectivity during a cognitive task can be used to explain the neurocognitive mechanism

underlying the cognitive impairments caused by depression. Overall, 31 patients with

MDD and 43 healthy individuals completed a verbal fluency task (VFT) while wearing

a head-mounted functional near-infrared spectroscopy (fNIRS) devices. Hemodynamics

and functional connectivity across eight prefrontal subregions in the two groups were

analyzed and compared. We observed a reduction in prefrontal activation and weaker

overall and interhemispheric subregion-wise correlations in the patient group compared

with corresponding values in the control group. Moreover, efficiency, the network

measure related to the effectiveness of information transfer, showed a significant

between-group difference [t (71.64) = 3.66, corrected p < 0.001] along with a strong

negative correlation with depression severity (rho = −0.30, p = 0.009). The patterns

of prefrontal functional connectivity differed significantly between the patient and control

groups during the VFT. Network measures can quantitatively characterize the reduction

in functional connectivity caused by depression. The efficiency of the functional network

may play an important role in the understanding of depressive symptoms.

Keywords: major depressive disorder, fNIRS, functional connectivity, verbal fluency task, efficiency

INTRODUCTION

Impairments in cognitive functions, such as attention, working memory, and executive function,
have been reportedly observed in patients with major depressive disorder (MDD). Studies
comparing patients and healthy controls have reported that these impairments are associated with
abnormal patterns of brain activity. When compared to healthy individuals, patients with MDD
have been reported to display aberrant neuropsychological characteristics. Earlier studies have used
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functional magnetic resonance imaging (fMRI) to reveal reduced
prefrontal activation during digit-sorting tasks (1) and verbal
fluency tasks (VFTs) (2), imbalance between left and right
prefrontal activation during emotional judgment (3), and
reduced activation in the right nucleus accumbens during the
monetary incentive delay task (4).

The association between prefrontal cortex (PFC) activation
and depressive symptoms has also been investigated using
near-infrared spectroscopy (NIRS). Multichannel NIRS is an
emerging neuroimaging tool that in addition to detecting the
spatiotemporal characteristics of brain function using a non-
invasive, portable, and restraint-free technique (5), has been
validated in psychiatry patients (6). Recently, studies using NIRS
have reported a reduction in prefrontal hemodynamic activation
in patients with MDD during the VFT, along with a strong
negative correlation between the severity of depression and
changes in oxygenated hemoglobin (HbO2) (7–9). However, the
functional connectivity has not yet been investigated in depth.
Some recent studies have characterized distinct resting-state
MRI based-functional connectivity in patients with MDD (10),
apathetic depression (11), and remitted MDD (12). Kawano et al.
reported a strong negative correlation between the HAMD-21
score and average HbO2 concentration in the frontal lobe (9);
however, they did not assess the functional connectivity.

Since the human brain consists of a complex network
responsible for its function, considerable attention has been
given to the graph theory approach for explaining functional
deviations in brain organization resulting from neurological
disorders such as schizophrenia (13–15), Alzheimer’s disease
(16, 17), bipolar disorder (18), attention-deficit hyperactivity
disorder (19), and depression (20, 21). Although a majority of
the earlier studies on functional connectivity relied on fMRI and
electroencephalography (EEG) (21), functional NIRS (fNIRS)
can be considered as a reasonable alternative for detecting
changes in brain functional networks, owing to its high temporal
resolution. A recent review paper on the application of fNIRS
in MDD research provided comprehensive evidence that the
functional connectivity measured by fNIRS is potentially useful
for assessing MDD (22). Zhu et al. reported that patients
with affective disorders exhibit significantly reduced connectivity
in the PFC using resting-state fNIRS (23). Rosenbaum et al.
conducted a functional connectivity analysis on patients with
late-life depression (24) and further examined functional
connectivity in the cortical areas of the default mode network
(25). However, to the best of our knowledge, no studies have
investigated the differences in functional connectivity during the
VFT task.

In this study, we sought to perform an fNIRS-based
functional connectivity analysis to investigate PFC activation
patterns during the VFT. Unlike the aforementioned studies,
which mainly focused on resting-state functional connectivity,
we hypothesized that the functional connectivity elicited by
cognitive stimulation (using the VFT in this case) differs between
patients with MDD and healthy individuals, and that these
differences can be visually described by the prefrontal functional
network. As a decrease in verbal fluency has been primarily
found in patients with MDD, functional connectivity during

TABLE 1 | Participant demographic data (N = 74).

Variable Control (N = 43)

Mean (SD)

Patient (N = 31)

Mean (SD)

p-value

Age (years) 34.26 (12.47) 39.48 (13.82) 0.093

HAMD 2.02 (1.99) 23.55 (9.47) <0.001

HAMA 1.42 (1.67) 22.32 (10.78) <0.001

BDI-II 5.33 (3.96) 25.48 (12.21) <0.001

STAI-state 31.44 (6.75) 54.94 (11.98) <0.001

STAI-trait 35.49 (8.78) 59.58 (11.99) <0.001

HAMD, hamilton rating scale for depression; HAMA, hamilton rating scale for anxiety;

BDI-II, beck depression inventory; STAI, state-trait anxiety inventory.

the VFT may play an important role in characterizing MDD.
Moreover, we calculated graph theory-based connectivity metrics
to quantitatively characterize functional connectivity in each
group. We identified the measures that demonstrated significant
between-group differences based on the connectivity metrics.

MATERIALS AND METHODS

Participants
We enrolled 43 healthy participants (age: 34.26 ± 12.47 years,
control group) and 31 patients (age: 39.48 ± 13.81 years,
patient group) with MDD who were undergoing treatment at
the university hospital. The participants in the patient group
had already been diagnosed with MDD according to the
Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (26) by a board-certified psychiatrist. The participants’
symptoms of depression and anxiety were assessed using the
Hamilton Depression Rating Scale (HAMD) (27), Hamilton
Anxiety Rating Scale (HAMA) (28), Beck Depression Inventory
(BDI-II) (29), and State-Trait Anxiety Inventory (STAI) (30),
which was composed of two subscales (STAI-state and STAI-trait,
respectively). We excluded patients with an HAMD scores < 8
and healthy individuals with an HAMD scores > 8.

Table 1 represent the demographic data for all enrolled
participants. All participants were recruited from theDepartment
of Psychiatry, Inje University Ilsan Paik Hospital. The study
was conducted in accordance with the Declaration of Helsinki
and was approved by the Institutional Review Board of
Inje University Ilsan Paik Hospital (2017–10–013). All the
participants provided written informed consent prior to
undergoing the fNIRS experiment.

NIRS Device
A head-mounted wireless NIRS system (NIRSIT; OBELAB
Inc., Seoul, Korea) was used to obtain HbO2 values from the
prefrontal region of the human brain. The NIRS system consists
of 24 lasers sources (780/850 nm; maximum power under 1 mW)
and 32 photodetectors with multiple source-detector spacing
(1.5, 2.12, 3.0, 3.35 cm) resulting in 204 measurement points at a
sampling rate of 8.138Hz (31). We used 48 channels created by a
3.0 cm separation between the source and the detector for further
analysis. We aligned the marking point on the front of the device

Frontiers in Psychiatry | www.frontiersin.org 2 May 2021 | Volume 12 | Article 65981438

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Dong et al. fNIRS-Based Functional Connectivity in MDD

to the center between the eyes to ensure that the same brain
region was recorded. Before wearing the device, the subject’s
hair were finger-combed away from the forehead to minimize its
influence on the measurements. After fixing the device position
from the front, the strap and the Velcro hooks on the back were
securely fixed to prevent the device frommoving while recording.

Activation Task
Participants were instructed to perform the VFT while wearing
the wireless head-mounted fNIRS device. The VFT is a type
of cognitive assessment, in which participants are asked to
produce as many words as possible from a category (semantic or
phonemic) in a given period of time. In this study, phonemic VFT
was conducted. This task is usually employed in psychological or
neuropsychological assessments to detect cognitive impairment
(32, 33). The entire procedure consisted of three blocks; each
block had a 30-s initial rest and a 60-s VFT (30-s pre-task
and 30-s task). Participants were asked to repeat aloud the four
Korean consonants, “g,” “n,” “d,” and “r” during the pre-task.
During the task, participants were instructed to produce as many
Korean words as possible beginning with a designated consonant
(randomly presented among the eight consonants, “g,” “n,” “d,”
“r,” “m,” “b,” “s,” and “h”).

Data Analysis
The detected light signals were filtered using high and low-
pass filters at 0.005Hz and 0.1Hz, respectively, to eliminate
cardiovascular artifacts and environmental noise. We rejected
poor-quality channels with a signal-to-noise ratio under 30
dB prior to extraction of the hemodynamic data to prevent
misinterpretation. The location of the 48 NIRS channels with
color-scaled rejection ratios of each subject group are provided
in Supplementary Figure 1. Subsequently, the hemodynamic
responses were extracted using the modified Beer-Lambert law
(34) and baseline corrected with the last 5 s of the pre-task as
baseline for each block. The average amplitude of the baseline
was subtracted. Following baseline correction, we obtained the
block averaged responses for each channel. As mentioned in
Section 2.2, we only used 48 channels in the prefrontal region.
As shown in Figure 1, the 48 channels were grouped into eight
subregions: the right and left dorsolateral PFC (labeled R1 and
L1); the ventrolateral PFC (R2 and L2); the frontopolar PFC (R3
and L3); and the orbitofrontal cortex (R4 and L4). We obtained
averaged hemodynamic responses within each subregion, such
that each participant’s recording became aN-by-8matrix wherein
N indicated time-domain sample numbers and 8 indicated the
number of subregions.

The hemodynamic parameters obtained were analyzed to
evaluate the functional connectivity. Specifically, functional
connectivity was measured using the strength of temporal
correlation of hemodynamics between every possible pair of
the subregions. Subsequently, computed prefrontal correlation
coefficients were used to extract network measures to represent
the global network characteristics, such as density, clustering
coefficient, and efficiency. We applied weight thresholding to the
correlation coefficients to quantitatively measure and compare
the functional connectivity between the two groups. Correlations

below the threshold value were set to 0 and were assumed to
be weak and non-significant links across a threshold range of
0 to 0.95 with increments of 0.05, as they could have been
spurious connections. Suprathreshold correlations were set to 1;
therefore, we were able to obtain a binary adjacency matrix for
each threshold value (35). Subsequently, we calculated the three
most commonly used global connectivity measures as functions
of the threshold value, namely, density, clustering coefficient, and
efficiency. Data processing and analysis were performed using
MATLAB 2018b (Mathworks, Inc., Natick, MA) and network
measures were extracted using the brain connectivity toolbox,
which is built into the MATLAB environment (36).

Statistical Analysis
We used a two-sample t-test to assess between-group differences
in age, psychological scores, representative means, and functional
connectivity measures. Homogeneity of variance was assessed
using Levene’s test for the equality of variance in a two-sample
t-test. The degree of freedom was adjusted if the equality of
variance was not assumed based on the results of Levene’s test.
Functional connectivity analysis was performed by calculating
Pearson’s correlation coefficients between every pair of the
represented mean values for the eight subregions. P-values
obtained from the statistical tests were corrected using the false
discovery rate (FDR) for multiple comparisons (37). Following
the FDR correction, p-values under 0.05 were considered
statistically significant. All statistical analyses were performed
using IBM SPSS Statistics 23 (IBM Corp. Armonk, NY).

RESULTS

Age and Psychological Test Scores
First of all, the two groups in this study had no significant
differences in age [t (72) = −1.701, p = 0.093]. However,
the comparison of the five psychological test scores using two-
sample t-tests revealed statistically significant between-group
differences. The HAMD scores in the patient group (mean ±

standard deviation: 23.55 ± 9.47) were significantly higher than
those in the control group (2.02 ± 2.00) [t (31.93) = −12.46,
corrected p < 0.001]. Similarly, the HAMA scores in the patient
group (22.32± 10.78) were significantly higher than those in the
control group (1.42 ± 1.67) [t (31.03) = −10.70, corrected p <

0.001]. Moreover, the remaining three scores showed statistically
significant between-group differences [BDI-II, t (34.59)=−8.86,
corrected p < 0.001; STAI-state, t (43.66)=−9.85, corrected p <

0.001; STAI-trait, t (72)=−9.99, corrected p < 0.001].

Task Performance
We measured the number of correct words and the reaction
time as task performance metrics during each VFT task.
Between-group differences were assessed using two-sample t-
tests. The word counts in the control group (25.40 ± 6.34) were
significantly higher than those in the patient group (19.77± 7.53)
[t (71)= 3.48, p= 0.001]. Similarly, reaction times in the control
group (3,257.84 ± 711.64 msec) were significantly lower than
those in the patient group (4,368.26 ± 1,995.05 msec) [t (35.54)
=−2.97, p= 0.005].
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FIGURE 1 | Labeling of the eight subregions mapped by 48 channels “R” indicates the right hemisphere, while “L” indicates the left hemisphere.

fNIRS Activation
Figure 2 shows the average hemodynamic responses during
the VFT in each group. As shown in the figure, the HbO2
concentration during the VFT was higher in the control group
than in the patient group. Figure 3 illustrates the transient
hemodynamic responses in each subgroup. The transients of the
48 channels are provided in Supplementary Figure 2. During
the task period, the control group showed significantly higher
HbO2 concentrations than the patient group and returned to
baseline after the task (not shown in the figure). Moreover, the
gap between the two groups was greater in R2, R4, L2, and L4
compared with the other subregions.

Functional Connectivity
The strength of the temporal correlation of hemodynamics
between all pairwise combinations of the eight subgroups was
calculated using Pearson’s correlation coefficient. As shown in
Figure 4A, the strength of the between-subgroup correlation was
higher in the control group than in the patient group. The average
of the correlation coefficients of the 28 pairs in the control group
(0.68 ± 0.12) was higher than that of the patient group (0.49 ±

0.16). Figure 4B shows the spatial distribution of the correlations
between each pair of subregions. These figures allow us to observe
the areas in which connections are either stronger or weaker.
Remarkably, strong interhemispheric connections (e.g., R1-L1,
R2-L2, R3-L3, R4-L4) were observed in the control group, but
not in the patient group.

We tested the normality of the network measures for each
threshold value and evaluated group differences using two-
sample t-tests. First, a significant difference in the clustering
coefficient was observed only at the threshold level of 0.90. The
clustering coefficient at 0.9 was significantly larger in the control
group (1.01 ± 0.25) than in the patient group (0.76 ± 0.43) [t
(44.522)= 2.96, corrected p= 0.05] with a difference of 0.17 (95%
CI, 0.082 to 0.43). In contrast, density and efficiency exhibited
statistically significant between-group differences at all threshold
levels (p< 0.05). The most significant difference in density was
observed at a threshold level of 0.8. At this threshold level,

the density in the control group (0.77 ± 0.30) was significantly
higher than that in the patient group (0.55 ± 0.21) [t (72) =
3.61, corrected p = 0.02] with a difference of 0.22 (95% CI,
0.097 to 0.33). As shown in Figure 5A, the most significant
difference in efficiency was also found at the threshold level of
0.8. At this threshold level, the efficiency in the control group
(0.56 ± 0.28) was significantly higher than that in the patient
group (0.34 ± 0.22) [t (71.64) = 3.66, corrected p < 0.001],
with a difference of 0.058 (95% CI, 0.097 to 0.33). Moreover,
we measured the correlation coefficient between the efficiency
at this threshold level and the corresponding HAMD scores. A
Spearman’s correlation revealed a significant negative correlation
between these two factors (rho = −0.30, p = 0.009), as shown
in Figure 5B.

DISCUSSION

In this study, we performed functional connectivity-based
comparisons between patients with MDD and healthy
individuals and calculated the subregional functional
connectivity using temporal correlations of the hemodynamics
of every pair of subregions of the PFC using a functional
connectivity approach. The functional connectivity in each
group (control and patient) was visually represented by varying
the thickness according to the strength of the subregional
functional connectivity. Network measures were calculated to
quantitatively evaluate and compare two networks, and the
most informative metric was identified as the network measure
representing the greatest difference between the two groups
(control vs. patient).

The visualization of functional connectivity allowed us to
understand subregion-wise functional connection characteristics
between the two groups. We observed a clear absence of
interhemispheric correlations in patients with MDD. This result
is consistent with a previous study indicating that patients with
MDD show interhemispheric connectivity deficits in resting-
state (38).
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FIGURE 2 | Activation maps of the two groups during the verbal fluency task.

FIGURE 3 | Transient oxygenated hemoglobin concentration during the verbal fluency task. The green line represents the control group while the blue line represents

the patient group. The shaded regions represent the standard errors of the mean.

The network measures used in our study are known
to characterize basic aspects of network organization (35).
Density reflects the overall wiring cost of the network.

The clustering coefficient indicates network segregation, while
efficiency reflects the network integration (36). Of the two
measures, we focused extensively on efficiency, since it showed
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FIGURE 4 | (A) Correlation maps of the verbal fluency task for the two groups. The image shows the lower diagonal of the cross-correlation matrix. The rows and

columns of the matrix represent the subgroup, while the cells of the matrix contain the color-coded correlation coefficient of the corresponding pair. The blue cells

indicate a lower between-subgroup correlation, while higher between-subgroup correlations are indicated in magenta. (B) Subregion-based functional connectivity

The line width indicates the strength of the correlation, as determined by the correlation coefficient (R) between each pair of subregions.

a significant between-group difference. We observed a strong
negative correlation between fNIRS measures and the severity of
depression, which is in line with other two studies (8, 9). Unlike
these studies, which calculated correlations based on changes in
HbO2 from a single channel (8) or an entire frontal channel
(9), we used the network measure instead of HbO2 changes
in this study; thus, we were able to offernew interpretations of
the relationship between fNIRS measurement and depression
severity. As efficiency is a measure of the effectiveness of
information transfer, efficiency may play an important role in
understanding decreased responsiveness in patients with MDD,
including a slower reaction time (4). Although the Spearman’s
rho between reaction time and efficiency was not statistically
significant in our study (rho = −0.21, p = 0.073), efficiency
was the most negatively correlated network metric of the
three. Future studies with a larger population may provide

experimental evidence. Thus, the results so far demonstrate
that these network metrics may be used as valid biomarkers
of MDD.

Since most previous studies have focused primarily on
resting-state functional connectivity (23–25), this study is
distinct in that it suggests task-related functional connectivity.
While Rosenbaum et al. have also investigated the functional
connectivity during task performance as well as at rest (24,
25), the task adopted in these studies on late-life depression
was a trail-making test that is often used for screening visual
attention and task switching. This study uses the VFT adopted
in the majority of previous studies of MDD. Therefore, we
believe that our findings provide meaningful evidence that
functional connectivity may be used to understand the behavioral
and neurological characteristics of decreased verbal fluency in
patients with MDD.
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FIGURE 5 | (A) Efficiency as a function of the threshold value. The green squares indicate efficiency in the control group while the blue squares indicate efficiency in

the patient group. The error bar indicates the standard deviation. The magenta double asterisk indicates a significant difference at the level of 0.001, while red

asterisks indicate a significant difference at the level of 0.05 (p-values were FDR-corrected). (B) Scatter plot of the efficiency at a threshold of 0.80 vs HAMD scores.

The red line indicates the least-squares line. FDR, false discovery rate; HAMD, hamilton depression rating scale.
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Long-interval intracortical inhibition (LICI) is a paired-pulse transcranial magnetic

stimulation (TMS) paradigm mediated in part by gamma-aminobutyric acid receptor B

(GABAB) inhibition. Prior work has examined LICI as a putative biomarker in an array

of neuropsychiatric disorders. This review conducted in accordance with the Preferred

Reporting Items for Systematic Reviews andMeta-Analyses (PRISMA) sought to examine

existing literature focused on LICI as a biomarker in neuropsychiatric disorders. There

were 113 articles that met the inclusion criteria. Existing literature suggests that LICI

may have utility as a biomarker of GABAB functioning but more research with increased

methodologic rigor is needed. The extant LICI literature has heterogenous methodology

and inconsistencies in findings. Existing findings to date are also non-specific to disease.

Future research should carefully consider existing methodological weaknesses and

implement high-quality test-retest reliability studies.

Keywords: cortical inhibition, electroencephalography, electromyography, long-interval intracortical inhibition,

transcranial magnetic stimulation

INTRODUCTION

Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter of the central
nervous system (1). Cortical inhibition is the physiologic mechanism that modulates cortical
excitability and neuroplasticity via the suppression created by the GABAergic neurotransmission
(2, 3). Prior studies suggest that GABA and cortical inhibition have a role in the pathophysiology
of neuropsychiatric disorders. It has been speculated that GABAergic neurotransmission is
altered in various brain based disorders such as mood disorders, psychotic disorders, anxiety,
attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, neurocognitive
disorders, epilepsy, movement disorders, and stroke (4–11). A variety of pre-clinical methods have
been used to investigate the role of GABA in the pathophysiology of neuropsychiatric disorders.
The safe and non-invasivemeasurement of GABAergic inhibitory neurotransmission is challenging
in clinical studies (12–14).

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that
utilizes magnetic fields to stimulate nerve cells for the treatment of depression and as a
neurophysiological probe (15). Single- and paired-pulse TMS paradigms are frequently used
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to assess cortical inhibitory and excitatory mechanisms (16–
18). Prior research indicated that the pairing of a conditioning
stimulus with a subsequent test stimulus at varying interstimulus
intervals generates either intracortical inhibition or facilitation
based on the duration of interstimulus interval and intensity of
the conditioning stimulus (19, 20). Facilitation and inhibition
is measured by either electromyographic (EMG) recordings
of motor-evoked potentials or electroencephalography (EEG)
recordings (21). TMS-EMG has been used to measure the
cortical inhibition in the motor cortex. Subsequent studies with
TMS-EEG have facilitated the study of the dorsolateral pre-
frontal cortex which is implicated in the pathophysiology of
neuropsychiatric conditions (22, 23).

Long-interval intracortical inhibition (LICI) is a paired-pulse
technique with suprathreshold conditioning and test stimuli
applied at interstimulus intervals of 50–200ms leading to
suppression of cortical activity. Prior work suggests that the
inhibitory effects of LICI are mediated by GABAB receptors
(24). The interstimulus interval that produces LICI corresponds
to the timing of GABAB inhibitory post-synaptic potentials
(25). Furthermore, pharmacological studies demonstrated that
GABAB receptor agonist baclofen, GABA uptake inhibitor
tiagabine and GABA structural analog vigabatrin potentiate
LICI (26–28). Moreover, short-interval intracortical inhibition
(SICI), a TMS paired paradigm mediated by GABAA activity, is
suppressed by LICI which could be explained with pre-synaptic
GABAB mediated inhibition of interneurons (29).

Numerous prior studies have examined cortical excitatory and
inhibitory measures using TMS to understand the underlying
pathophysiology of neuropsychiatric disorders. Studies of LICI
suggest that GABAB mediated inhibition is altered in various
brain based conditions such as mood disorders and psychotic
disorders, epilepsy, Parkinson’s disease, traumatic brain injury,
and dementia. In clinical practice and research, psychiatric
disorders are diagnosed based on a checklist approach to
symptoms with either Diagnostic and Statistical Manual of
Mental Disorders 5th Edition (DSM-5) criteria or structured
interviews (30). Treatment response ismonitored with interviews
and rating scales of symptom severity. Clinical interviews
and rating scales have inherent reporting biases. Therefore,
the development of non-invasive, quantitative diagnostic, and
prognostic biomarkers is essential. Previous studies suggest that
LICI might have utility as a diagnostic and prognostic biomarker
in neuropsychiatric disorders. There are no prior comprehensive
systematic reviews examining studies of LICI. This systematic
review sought to summarize the literature examining LICI
alterations in brain based disorders. A second goal was to
synthesize the existing evidence focused on LICI as a diagnostic
and prognostic biomarker for neuropsychiatric disorders. Finally,
we review recent work with LICI paradigms related to cognitive
neuroscience literature and methodological challenges.

MATERIALS AND METHODS

Search Strategy
This systematic reviewwas conducted according to the guidelines
of Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) (31, 32). The literature search was performed

using the internet databases Embase, EMB Reviews, Medline,
APA PsychINFO, Scopus, and Web of Science up to April 8th,
2021. The search strategy was designed in consultation with an
experienced medical reference librarian. The full search strategy
and search terms used for the literature search are described in
the Supplementary Material.

Study Selection
Studies were included if the following criteria were met: (a)
articles in English; (b) original articles including participants with
major neurologic and psychiatric disorders; (c) cortical inhibition
was measured with a TMS LICI paradigm. Studies were excluded
according to the following criteria: (a) animal studies; (b)
review articles, letters to the editor, short communication papers,
correspondence articles; (c) published conference abstracts,
lectures, and presentations; and (d) study contained only healthy
participants. Two authors reviewed articles for inclusion (PF
and MK) The articles that met inclusion criteria were included
in the review, and the articles that met exclusion criteria were
excluded from the review. The senior authors (FF and PC)
were consulted for any discrepancies or questions regarding
inclusion of articles. The references of the included articles were
reviewed, and additional papers fulfilling the eligibility criteria
were included in the review.

Data Extraction
The full texts of the eligible articles were reviewed in depth
by PF and MK. Data were extracted by PF and the extracted
data was verified by MK and PC, JV, and FF. Extracted data
included authors, publication year, study design, number of
patients and healthy controls, age and sex of control and
patient group, stimulation area of cortex, muscle measured [first
dorsal interosseous (FDI) and abductor pollicis brevis (APB)],
diagnostic assessment instruments (EMG, EEG), stimulation
parameters (stimulus intensities, interstimulus interval),
medications, interventions, outcomes, and outcome measures.

Outcomes
The primary outcome of this review focused on alterations in
LICI in neuropsychiatric disorders in comparison to healthy
controls. As mentioned in the introduction, LICI measurements
consist of delivering two consecutive TMS pulses that are 50–
200ms apart in which a conditioning stimulus is followed
by a test stimulus. LICI is quantified as the ratio of the
amplitude of the evoked potential (EP) elicited following a
test stimulus to the EP elicited by the conditioning stimulus
(conditioned/unconditioned EP). Therefore, an increase in the
exact value of the ratio (greater conditioned EP amplitude)
implies reduced inhibition or lower cortical inhibition, whereas
a decrease in the exact value of the ratio (smaller conditioned
EP amplitude) indicates increased inhibition or greater cortical
inhibition. To maintain consistent terminology throughout this
review for clarity, reduced cortical inhibition will be referred as
reduced/decreased LICI or LICI deficit; and increased cortical
inhibition will be referred as enhanced/increased LICI. Given
that both reduced and enhanced LICI have been reported in
the studies included in this review, “LICI impairment” will refer
to any significant difference between clinical populations and
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FIGURE 1 | PRISMA diagram. *Records identified from the references of full-text articles.

healthy controls. Additional outcomes examined correlational
analyses of LICI and suicidal remission, suicidal severity,
symptom severity, functional connectivity, social cognition,
cortical silent period (CSP), synaptic plasticity, visuomotor
reaction time, motor dexterity, GABA levels measured with
proton magnetic resonance spectroscopy (1H-MRS), functional
decline, fatigue, and cognitive functioning. The cortical areas of
interest were the motor cortex and the dorsolateral pre-frontal
cortex (DLPFC). The studies of interest assessed LICI with either
EMG or EEG.

RESULTS

Search Results
The detailed description of the search results is shown in the
PRISMA flow diagram included in Figure 1. A total of 188

articles were selected for full-text inspection after the title and
abstracts of all records were screened. The reviewers identified
37 additional studies through checking the quoted references
of full texts of the above-mentioned articles. Finally, 113
articles that met inclusion criteria were included and reported
in the systematic review. Overall, LICI was investigated in 2
articles for ADHD, 3 articles for bipolar disorder, 9 articles for
depression, 4 articles for neurodevelopmental disorders, 9 articles
for schizophrenia, 5 articles for substance use, and 3 articles
for other psychiatric disorders. Among the articles investigating
neurological disorders, LICI was studied in 9 articles for
dementia, 20 for epilepsy patients, 21 for movement disorders,
3 for multiple sclerosis, 6 for stroke patients, 12 traumatic brain
injury patients and 7 for other neurological disorders. The main
findings and full data extraction are summarized in the tables
provided in the Supplementary Material.
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TABLE 1 | LICI in patients with ADHD.

References Subjects Method ISI LICI

Buchmann et al. (33) 18 ADHD, 18 HC TMS-EMG 100, 200, 300ms ↓

Hoeppner et al. (34) 21 ADHD, 21 HC TMS-EMG 100, 200, 300ms ↔

ISI, Interstimulus interval; ADHD, Attention deficit hyperactivity disorder; LICI, Long-interval

intracortical inhibition; HC, Healthy controls.

LICI in Psychiatric Disorders
LICI in Patients With ADHD
The LICI paradigm in ADHD patients was investigated with
TMS-EMG motor cortical measures in two prior studies. One
study enrolled adult subjects and the other enrolled pediatric
subjects (Table 1). Buchmann et al. examined alterations in LICI
among 18 children diagnosed with ADHD compared to 18
healthy control (HC) children. The study evaluated the influence
of methylphenidate (MPH) treatment on LICI among children
with ADHD. It was shown that baseline LICI was reduced in
drug naïve ADHD subjects at an interstimulus interval (ISI)
of 100ms (p = 0.001). Treatment with MPH potentiated LICI
yielding values similar to healthy controls. For ADHD subjects
a reduction in symptoms correlated with LICI improvements
following MPH administration (p < 0.05) (33). Hoeppner et al.
evaluated 21 adult ADHD patients in a cross-sectional study
and demonstrated that there was no significant LICI deficit in
the patient population compared to age and gender-matched
healthy controls (34). These studies indicated significant LICI
deficit in children with ADHD, whereas there was no significant
LICI difference between adult ADHD patients and healthy
controls (33, 34). Therefore, cortical maturation with aging
might explain the loss of LICI deficit in the adult ADHD
population (34).

LICI in Patients With Bipolar Disorder
Prior studies measuring LICI in patients with bipolar disorder
(BD) used TMS-EMG to investigate motor cortex activity
(Table 2). Ruiz-Veguilla et al. studied trait and state-dependent
LICI deficits in 19 adult patients with BD in the depressed phase
vs. 28 healthy controls. In the BD sample, 15 patients who were
receiving a combination of lithium/valproate plus antipsychotic
treatment were assessed 3 months later to evaluate the influence
of symptom remission on LICI. Results demonstrated that
there was no significant LICI deficit in patients with BD vs.
healthy controls at baseline, and LICI did not significantly
change with symptom remission at follow-up (35). A cross-
sectional study by Basavaraju et al. investigated LICI in 39
medication naïve patients with BD in a manic episode, 28
remitted first-episode mania patients treated with antipsychotic
medications or an antipsychotic plus mood stabilizer, and 45 HC.
The LICI measures were significantly enhanced in medication
naïve patients who were in a manic episode compared to
HC (p = 0.021). There was no significant difference in LICI
between the patients who were in a manic episode and those
who remitted, and there was no significant difference in LICI
between the remitted patients and HC. Correlation of symptom

TABLE 2 | LICI in patients with bipolar disorder.

References Subjects Method ISI LICI

Ruiz-Veguilla et al. (35) 19 BD, 28 HC TMS-EMG 100, 150, 250ms ↔

Basavaraju et al. (36) 67 BD, 45 HC TMS-EMG 100ms ↑

Basavaraju et al. (37) 39 BD, 45 HC TMS-EMG 100ms ↑

ISI, Interstimulus interval; BD, Bipolar disorder; LICI, Long-interval intracortical inhibition;

HC, Healthy controls. ↑: increased, ↔: no significant difference.

severity, measured with Young’s Mania Rating Scale (YMRS),
and LICI was non-significant (36). Another cross-sectional study
by Basavaraju et al. evaluated Mirror Neuron Activity (MNA)
using LICI, and its correlation with symptom severity in the same
group of 39 medication naïve BD patients in a manic episode
and 45 HC. MNA was measured while subjects were observing
a goal-directed activity. Enhanced MNA assessed with LICI was
detected in the medication naïve symptomatic BD patients (p =

0.033). LICI mediated putative MNA was significantly correlated
with symptom severity (p= 0.038) (37).

The studies examining BD patients had varied results
demonstrating both normal LICI and enhanced LICI relative
to HC. These results are interesting as studies with other
neurophysiological paradigms have shown inhibitory deficits
in BD (36). Possible explanations and supporting evidence of
enhanced LICI in bipolar disorder comes from the studies
showing manic symptoms triggered with baclofen and elevated
GABA/Creatine ratio in anterior cingulate cortex of patients with
BD (38). These results might be affected by study flaws such
as larger manic sample and medication naïve condition (36) or
small sample size (35).

LICI in Patients With Depression
Seven prior studies in depressed patients examined cortical
inhibition measured with TMS-EMG. Two other studies
investigated bothDLPFC andmotor cortex LICI paradigms using
EEG (Table 3).

Croarkin et al. investigated the association of pre-treatment
LICI levels with treatment response in 16 children and
adolescents with major depressive disorder (MDD) who were
initiated on treatment with fluoxetine. Treatment-resistant
subjects had greater LICI deficits at baseline relative to treatment
responders at each ISIs of 100, 150, 200ms (p = 0.01, 0.03,
0.01) (39). A cross-sectional study examining the relationship
between cortical inhibition and age evaluated LICI in 14 youth
with MDD and 19 age-matched HC. Results suggested that
increased LICI at 200ms was associated with older age in
depressed youth in both right and left hemispheres (p = 0.034,
0.002), whereas there was no significant association with age
in the control group (40). LICI was assessed in depressed
adolescents with and without a history of suicidal behavior and
compared to HC in a study by Lewis et al. Depressed adolescents
with a history of suicidal behavior exhibited decreased LICI
at interstimulus intervals of 100ms and 150ms relative to
HC (p = 0.0002, 0.0009) and depressed adolescents without
suicidal behavior (p = 0.0049, 0.0418). Moreover, increased
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TABLE 3 | LICI in patients with depression.

References Subjects Method ISI LICI

Croarkin et al. (39) 8 treatment responder MDD, 8

treatment resistant MDD

TMS-EMG 100, 150, 200ms ↓ in treatment resistant subjects

Croarkin et al. (40) 14 MDD 19 HC TMS-EMG 100, 150, 200ms ↑ with age in adolescents

Sun et al. (41) 33 TRD TMS-EEG 100ms ↑ at baseline correlated with

decreased suicidality following

MST

Sun et al. (42) 23 TRD TMS-EEG 100ms ↓ following MST in patient with

resolved SI

Lewis et al. (43) 37depressed, 17 depressed + SB,

20 HC

TMS-EMG 100, 150, 200ms ↓ in depressed subjects with SB

Jeng et al. (44) 20 TRD, 16 non-TRD, 36 HC TMS-EMG 100, 200ms ↓ in TRD subjects

Lewis et al. (45) 10 Depressed TMS-EMG 100, 150ms ↑ associated with decrease in SI

following antidepressant

treatment

Balzekas et al. (46) 5 Depressed TMS-EMG 100, 150, 200ms Comparison not measured

Doruk Camsari et al. (47) 15 MDD, 22 HC TMS-EMG 100, 150, 200ms ↔

ISI, Interstimulus interval; TRD, Treatment resistant depression; LICI, Long-interval intracortical inhibition; MST, Magnetic seizure therapy; MDD, Major depressive disorder; SI, Suicidal

ideation; HC, Healthy controls; SB, Suicidal behavior. ↓: decreased, ↔: no significant difference.

suicidal severity correlated with the reduction in LICI at ISI
of 100 and 150ms (43). Jeng et al. investigated LICI in 20
adult patients with treatment-resistant depression, 16 adult
patients who responded to treatment for MDD, and HC to
evaluate the utility of LICI as a biomarker in distinguishing
treatment response. LICI was significantly reduced in treatment-
resistant subjects relative to treatment responders or HC, and
decreased LICI was correlated with higher symptom severity
(p < 0.001). This study also demonstrated a reduction in LICI
in treatment after 3 months of SSRI treatment (p = 0.002)
(44). Lewis et al. examined LICI change and its association
with change in suicidal ideation (SI) in depressed adolescents
treated with antidepressants and found that decreased SI was
associated with enhanced LICI measured at 100ms when
controlling for depression severity (p = 0.021). Adolescents with
prior suicidal behavior had a greater reduction in follow up
LICI relative to those without a previous history of suicidal
behavior (p = 0.038) (45). In a cross-sectional study by Balzekas
et al., the association between LICI and cortical connectivity,
measured with resting-state functional magnetic resonance
imaging, was found to be non-significant (46). Doruk Camsari
et al. investigated the change of LICI with antidepressant
treatment and found no significant post-treatment alteration in
LICI (47).

Sun et al. investigated pre-treatment LICI in DLPFC and
motor cortex, as a biomarker for suicidal remission after
Magnetic Seizure Therapy (MST). This study examined 33
treatment-resistant adult depression patients and revealed that
remission of suicidal ideation, measured with the Scale for
Suicide Ideation (SSI), was correlated with greater LICI in
DLPFC at baseline (p = 0.02) although pre-treatment LICI in
the motor cortex was not significantly correlated with treatment
outcome (41). Another study by Sun et al. examined changes
in neuroplasticity, using LICI, and suicidal ideation following
MST treatment in adults with treatment-resistant depression.

Results showed that LICI in DLPFC was reduced following MST
treatment in patients with resolved suicidal ideation and that the
decrease in LICI was correlated with SSI score reduction (p =

0.048, 0.044). There was no significant finding for LICI in the
motor cortex (42).

Two studies showed significantly more impaired LICI in
treatment-resistant subjects compared to treatment responders.
Furthermore, greater LICI deficits in depressed patients with
suicidal ideation compared to non-suicidal depressed patients
were indicated. Supporting this, enhanced LICI following MST
treatment was shown to predict the reduction in suicidal ideation
while another study showed the correlation of alteration in LICI
and the improvement in suicidal ideation. These results are
consistent with the findings showing both GABAA and GABAB

mediated cortical inhibitory deficits in the pathophysiology of
depression (14) in different age groups (48). Moreover, these
findings suggest that LICI might be a used as a prognostic
biomarker evaluating depressed patients. Regarding suicidal
ideation and suicidal behavior, literature was limited to the papers
in our review. It is known that impaired behavioral inhibition
(i.e., impulsivity) is central to the pathophysiology of suicide.
It might be postulated that cognitive and behavioral inhibitory
deficits result from cortical inhibition alterations in brain regions
vital for inhibitory control, such as the anterior cingulate gyrus
(49, 50).

LICI in Patients With Neurodevelopmental Disorders
LICI in neurodevelopmental disorders was investigated in Fragile
X and patients with autism spectrum disorder (ASD) using
TMS-EMG (Table 4). Oberman et al. evaluated LICI in 2
subjects with Fragile X, 2 with ASD, and 5 HC and found
no significant LICI difference across these three groups (51).
Another study examining LICI alteration in ASD with a larger
sample size of 36 patients with ASD and 34 HC had similar
results showing no significant LICI deficit in individuals with
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TABLE 4 | LICI in patients with neurodevelopmental disorders.

References Subjects Method ISI LICI

Oberman et al. (51) 2 Fragile X, 2 ASD, 5 HC TMS-EMG 100ms ↔

Enticott et al. (52) 36 ASD, 34 HC TMS-EMG 100ms ↔

Morin-Parent et al. (53) 18 Fragile X, 18 HC TMS-EMG 100ms ↑

Bernardo et al. (54) 14 Rett syndrome, 9 epilepsy control, 11 HC TMS-EMG 100, 150ms ↓ in Rett syndrome patients

ISI, Interstimulus interval; ASD, Autism spectrum disorder; LICI, Long-interval intracortical inhibition; HC, Healthy controls. ↑: increased, ↔: no significant difference.

TABLE 5 | LICI in patients with schizophrenia.

References Subjects Method ISI LICI

Fitzgerald et al. (55) 18 SCZ, 8 HC TMS-EMG 100ms ↔

Farzan et al. (56) 14 SCZ, 14 BD, 14 HC TMS-EEG 100ms ↓ in DLPFC of SCZ, ↔ in BD

Mehta et al. (57) 54 SCZ, 45 HC TMS-EMG 100ms ↔

Mehta et al. (58) 54 SCZ, 45 HC TMS-EMG 100ms ↔ MNA

Radhu et al. (59) 38 SCZ, 27 OCD, 46 HC TMS-EEG 100ms ↓ in DLPFC of SCZ, ↔ in OCD

Basavaraju et al. (60) 18 SCZ with EBD, 32 SCZ w/o EBD TMS-EMG 100ms ↔

Lett et al. (61) 80 SCZ, 115 HC TMS-EEG 100ms ↔

Radhu et al. (62) 19 SCZ, 30 FDR of SCZ, 13 OCD, 18 FDR

of OCD, 49 HC

TMS-EEG 100ms ↓ in DLPFC of SCZ, ↔ in OCD

Goodman et al. (63) 12 SCZ with cannabis use, 11 cannabis

free SCZ, 10 controls with cannabis use,

13 cannabis free controls

TMS-EMG 100, 150, 200ms ↔

ISI, Interstimulus interval; HC, Healthy controls; LICI, Long-interval intracortical inhibition; MNA,Mirror neuron activity; DLPFC, Dorsolateral pre-frontal cortex; OCD, Obsessive-compulsive

disorder; SCZ, Schizophrenia; EBD, Ego boundary disturbance; BD, Bipolar disorder; FDR, First degree relative. ↓: decreased, ↔: no significant difference.

ASD (52). Morin-Parent et al. studied LICI in 18 individuals with
molecular Fragile X diagnosis (7 of them receiving psychotropic
medication) and compared these patients to 18 age and gender-
matched HC, and results demonstrated that LICI was enhanced
in Fragile X subjects relative to HC (p = 0.011). When the
analysis was limited to only non-medicated Fragile X individuals,
results demonstrated a similar trend of enhanced LICI although,
the significance was lost (p = 0.060) (53). Bernardo et al.
investigated LICI in Rett syndrome patients comparing them to
non-Rett syndrome epilepsy patients and health controls. LICI
was reduced in the Rett syndrome patients relative to epilepsy
and healthy controls (p = 0.002). Furthermore, impaired motor
performance was significantly associated with decreased LICI (p
= 0.003) (54).

LICI in Patients With Schizophrenia Spectrum

Disorders
Five prior studies examined the motor cortex, TMS-EMG LICI in
patients with schizophrenia (SCZ). Three studies focused on both
DLPFC and motor cortex, and 1 study focused on only DLPFC
using EEG (Table 5).

In a study including 18 SCZ patients (9 were medicated
with antipsychotics) and 18 HC, Fitzgerald et al. demonstrated
that there was no significant difference across groups regarding
LICI (55). A cross-sectional study by Mehta et al. examined a
larger sample size of 54 SCZ patients and 45 HC, and they also
found no significant LICI difference in SCZ patients relative to

HC. There was also no significant correlation between social
cognition measures and LICI in both groups (57). Another study
by Mehta et al. evaluated MNA using LICI in the same group of
above-mentioned subjects and showed that action observation
did not have a significant effect on LICI. Further, there was
no significant correlation between MNA and social cognition
in both SCZ patients and HC (58). Basavaraju et al. examined
LICI to investigate MNA with a sample of 50 SCZ patients, 18
with ego boundary disturbances (EBD) and 32 without EBD,
and demonstrated no significantMNAdifference between groups
(60). Goodman et al. examined the effect of cannabis use on LICI
in SCZ patients in a study involving 4 groups of subjects: 12
cannabis dependent SCZ patients, 11 cannabis free SCZ patients,
10 cannabis dependent controls, and 13 cannabis free controls.
The findings demonstrated that cannabis use did not significantly
alter LICI in either the SCZ group or control group; likewise, LICI
was not significantly different in SCZ subjects and controls (63).

Farzan et al. investigated alterations in LICI assessed with
gamma oscillations in DLPFC and motor cortex of 14 patients
with SCZ, 14 patients with BD, and 14 HC. The study revealed
that SCZ patients had significantly impaired cortical inhibition
of gamma oscillations in DLPFC relative to BD patients and
HC (p < 0.01, p < 0.01), whereas there was no significant
difference between BD subjects and HC. Notably, in this study,
LICI measured from the motor cortex did not differ significantly
across SCZ patients, BD patients, and HC (56). Another study
targeting DLPFC in SCZ patients as compared to OCD patients
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and HC demonstrated that SCZ patients had significantly
greater LICI reduction relative to OCD group and HC (p =

0.0465, 0.004, respectively). There were no significant differences
between the OCD and HC samples. Once again there were no
significant differences in LICI measures from the motor cortex
among the three groups. However, the study revealed that SCZ
symptom severity, measured with the Brief Psychiatric Rating
Scale (BPRS), was correlated with a deficit in LICI (p = 0.0457)
(59). Radhu et al. examined LICI in SCZ and OCD patients and
their unaffected first-degree relatives compared to HC. Results
exhibited that SCZ patients had greater LICI deficit in the
DLPFC relative to first-degree relatives (p = 0.03) and HC (p =

0.032). First degree relatives had impaired LICI compared to HC
patients, but this was not statistically significant. LICI measures
in themotor cortex did not differ across SCZ patients, first-degree
relatives, and HC. Likewise, there was no significant difference
across OCD patients, first-degree relatives, and HC in either the
motor cortex or DLPFC (62).

Lett et al. investigated LICI in the DLPFC using TMS-
EEG and examined the correlation between GAD glutamic acid
decarboxylase 1 (GAD1) variant and LICI in SCZ patients and
HC. It was shown that GAD1T allele carrier healthy controls had
greater LICI cluster size (p = 0.003), whereas patients with SCZ
who were allele carriers had a lower cluster size (0.04) (61).

The studies examining LICI in motor cortex of SCZ
patients failed to show any significant correlation between
LICI alterations and neural correlates of SCZ symptoms
(i.e., MNA for ego boundary disturbances). Whereas,
studies investigating LICI in DLFPC of SCZ demonstrated
significant findings. The dysfunctional frontal inhibitory
neurotransmission might be underlying the cognitive function
deficits present in SCZ principally the working memory
performance (59, 64, 65).

LICI in Patients With Substance Use Disorder
Prior studies examined LICI in nicotine, cocaine, alcohol, and
cannabis users (Table 6). Four of those studies examined the
motor cortex using TMS-EMG, whereas one study investigated
the DLPFC using TMS-EEG. Another study investigating the
effects of cannabis use on LICI in SCZ patients is mentioned
above in the “LICI in patients with Schizophrenia Spectrum
Disorders” section.

In a cross-sectional study involving 10 abstinent cocaine-
dependent subjects and 10 HC, results demonstrated no
significant LICI deficit in cocaine users relative to the control

group (66). Gjini et al. confirmed the same finding, showing
no significant difference of LICI, in their study evaluating 52
abstinent cocaine-dependent subjects and 42 HC (69). Lang
et al. demonstrated that there were no differences in LICI
among subjects using nicotine and subjects who were not using
nicotine (67). Fitzgerald et al. investigated LICI alterations
in 42 chronic cannabis users and showed that there was no
significant difference in LICI relative to the non-user control
group (68).

Naim-Feil et al. investigated the alteration of LICI in DLPFC
of 12 alcohol-dependent subjects post-detoxification and 14 HC.
Results revealed that the alcohol-dependent group had greater
reduction in LICI in both left and right DLPFC relative to the
control group (p= 0.003, p= 0.006) (70).

The studies regarding substance use disorders suggested that
LICI measurements from DLPFC tend to reveal more significant
differences than LICI measurements from motor cortex. The
prior negative findings with LICI paradigms in substance use
disorders are important to ponder and reconcile with pre-
clinical studies showing the alterations in the GABAergic
changes of brain after chronic cocaine administration (71,
72) as well as modulatory effects of GABAergic agents in
cocaine addiction treatment (73, 74). As mentioned in the
above studies alterations in GABAergic circuits were in the
relative brain regions for addiction, such as the DLPFC [59].
Collectively, these findings suggest that patients with substance
use disorders may have underlying GABAergic deficits in pre-
frontal neurocircuitry. Further studies utilizing TMS-EEG to
investigate the cortical inhibition in potentially affected brain
regions are essential to explicate the role of LICI in substance
use disorders.

LICI in Patients With Other Psychiatric Disorders
A study investigating LICI over DLPFC and motor cortex in
psychopathic offenders through TMS-EEG indicated that LICI
was impaired in DLPFC (p = 0.005) but not in the motor cortex
relative to healthy subjects (Table 7). Moreover, psychopathic
offenders displayed worse working memory performance (p =

0.005), measured with the letter-number sequencing test, which
demonstrated a non-significant but trending correlation with
LICI in DLPFC (p = 0.069). Healthy subjects showed better
working memory performance associated with greater LICI in
DLPFC (p = 0.005) (75). Salas et al. showed that there were no
abnormalities of motor cortex LICI in individuals with chronic
insomnia relative to good sleepers (76). LICI alteration was

TABLE 6 | LICI in patients with substance use.

References Subjects Method ISI LICI

Sundaresan et al. (66) 10 cocaine users, 10 HC TMS-EMG 50, 100ms ↔

Lang et al. (67) 19 nicotine users, 19 HC TMS-EMG 50, 100, 150ms ↔

Fitzgerald et al. (68) 42 cannabis user, 19 HC TMS-EMG 100ms ↔

Gjini et al. (69) 52 cocaine users, 42 HC TMS-EMG 50, 100ms ↔

Naim-Feil et al. (70) 12 alcohol dependent, 14 HC TMS-EEG 100ms ↓ in DLPFC

ISI, Interstimulus interval; HC, Healthy controls; LICI, Long-interval intracortical inhibition; DLPFC, Dorsolateral pre-frontal cortex. ↓: decreased, ↔: no significant difference.
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TABLE 7 | LICI in patients with other psychiatric disorders.

References Subjects Method ISI LICI

Hoppenbrouwers et al. (75) 13 psychopathic offenders, 15 HC TMS-EEG 100, 150, 250ms ↓ in DLPFC

Salas et al. (76) 18 chronic insomnia, 10 HC TMS-EMG 100ms ↔

Li et al. (77) 26 GAD, 35 HC TMS-EMG 100ms ↔

ISI, Interstimulus interval; HC, Healthy controls; LICI, Long-interval intracortical inhibition; DLPFC, Dorsolateral pre-frontal cortex; GAD, Generalized anxiety disorder. ↓: decreased, ↔:

no significant difference.

TABLE 8 | LICI in patients with dementia.

References Subjects Method ISI LICI

Brem et al. (78) 16 AD, 13 HC TMS-EMG 100ms ↓

Benussi et al. (79) 27 FTD, 24 HC TMS-EMG 50, 100, 150ms ↔

Benussi et al. (80) 79 AD, 61 FTD, 32 HC TMS-EMG 50, 100, 150ms ↓ in FTD, ↔ in AD

Fried et al. (81) 9 AD, 15 DM, 12 HC TMS-EMG 100ms High reproducibility of LICI

indicated

Benussi et al. (82) 113 FTD mutation carrier FDR,

75 mutation non-carrier FDR

TMS-EMG 50, 100, 150ms ↓ in FTD mutation carriers

Assogna et al. (83) 17 probable FTD TMS-EMG 50, 100, 150ms ↑ following

palmitoylethanolamide luteoline

administration

Benussi et al. (84) 186 FTD TMS-EMG 50, 100, 150ms ↓ in GRN mutation carriers

Benussi et al. (85) 171 FTD, 74 HC TMS-EMG 50, 100, 150ms ↓

Benussi et al. (86) 66 FTD TMS-EMG 50, 100, 150ms ↔ no association with whole

brain fluidity

ISI, Interstimulus interval; HC, Healthy controls; LICI, Long-interval intracortical inhibition; FTD, Frontotemporal dementia; AD, Alzheimer’s disease; GRN, Granulin; FDR, First

degree relative.

investigated by Li et al. evaluating 26 patients with generalized
anxiety disorder who were medication naive and 35 age and
sex-matched controls, and it was demonstrated that LICI did
not differ significantly in patients with anxiety relative to
HC. Nevertheless, decrements in LICI correlated with higher
symptom scores measured with the Hamilton Anxiety Rating
Scale (p= 0.020) (77).

LICI in Neurologic Disorders
LICI in Patients With Dementia
Among 9 studies investigating the role of LICI in dementia, 6
studied subjects with frontotemporal dementia (FTD), 2 with
Alzheimer’s disease (AD), and 1 investigated both disorders
(Table 8). The motor cortex was the area of interest for all the
studies. Brem et al. studied LICI alterations in 7 AD patients
taking acetylcholinesterase inhibitor (AChEI) medication, 9
AD patients taking AChEI medication with memantine, and
13 HC. The study demonstrated reductions in LICI in
the group receiving AChEI medications and those receiving
AChEI medication+memantine relative to HC subjects (p =

0.025, 0.015). Impairments in cognitive functioning, measured
with Alzheimer’s Disease Assessment Scale-Cognitive Subscale
(ADAS-Cog), were significantly associated with LICI deficit (p
= 0.010) (78). Benussi et al. examined the LICI alterations in
FTDmutation carriers, 13 pre-symptomatic and 14 symptomatic,
relative to HC. Although there was no significant LICI deficit in
FTD mutation carriers, symptomatic carriers had greater LICI

deficit compared to the other groups (79). In a study investigating
the role of LICI as a biomarker distinguishing AD from FTD (n
= 79 AD, n = 61 FTD, n = 32 HC) Benussi et al. did not detect
any significant difference of LICI between AD and FTD patients
or AD patients and HC. The LICI impairment in the FTD group
was significantly greater relative to controls at ISI of 150ms
(80). Fried et al. demonstrated LICI’s high reproducibility in AD
patients and HC with a prospective cohort study (α = 0.88, 0.98)
(81). Another study by Benussi et al. examined LICI as a disease
progression biomarker in FTD mutation carriers and non-
carrier at-risk individuals. 113 subjects carrying monogenic FTD
mutation and 75 non-carriers with affected first-degree relatives
were evaluated, and years from symptom onset were determined
by subtracting the age of the participant from mean familial
age at symptom onset. Reduced LICI was detected in mutation
carriers relative to non-carriers at 20 years before expected
symptom onset (p < 0.001) (82). Assogna et al. examined change
in LICI following palmitoylethanolamide luteoline (PEA-LUT)
administration and found that LICI was increased after PEA-
LUT (83). In another cross-sectional study the same group
demonstrated that LICI was more reduced in GRN mutation
carriers relative to non-carrier first-degree relatives and there
was no significant association of LICI with behavioral symptoms
(84). LICI alteration in different phenotypes of FTD and its
correlation with functional decline and symptom severity were
studied in another study of Benussi et al. LICI was demonstrated
to be impaired in all phenotypes (behavioral variant of FTD,
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agrammatic variant of Primary Progressive Aphasia, semantic
variant of PPA) of FTD relative to HC (p < 0.05). Disease
duration, functional decline, and increased symptom severity
were significantly associated with LICI deficit in FTD patients (p
< 0.001) (85). LICI’s association with brain network connectivity
and fluidity was examined by Benussi et al. and they indicated
that there was no significant relation (86).

These studies of LICI have examined Alzheimer’s disease and
Frontotemporal Dementia. Alzheimer studies have presented
varied results. Several prior studies have shown the modulatory
effect of GABAB stimulation in Alzheimer’s disease (87).
Interaction between the cholinergic and GABAergic systems as
well as inhibitory interactions between SAI and LICI might
explain the difference between AD group and HC. However, the
findings in FTD patients were quite consistent, showing LICI
deficits in the patient population. The results showing LICI deficit
detected before symptom onset in FTD mutations carriers and
LICI’s correlation with functional decline underlie the potential
utility of LICI as a biomarker estimating the disease progression.

LICI in Patients With Epilepsy
LICI in epilepsy was studied in 20 studies (Table 9). Brodtmann
et al. demonstrated reduced LICI at ISI of 200–300ms in
idiopathic generalized epilepsy (IGE) patients, and significant
facilitation instead of inhibition was observed at the same
intervals in the IGE group (p < 0.05) (88). Valzania et al.
demonstrated impaired LICI in progressive myoclonic epilepsy
patients relative to HC at the ISI of 100–150ms and facilitation of
motor evoked potential at 50ms ISI (p< 0.001) (89). Manganotti
et al. studied juvenile myoclonic epilepsy patients and found
no significant LICI difference relative to HC (90). Molnar et al.
did not find any significant effect of bilateral anterior thalamus
deep brain stimulation (DBS) on LICI in epilepsy patients,
and LICI was impaired in all DBS stimulus conditions (off,
cycling, and continuous) at ISI of 50ms (p = 0.0003, 0.0015,
0.0001) (91). Badawy et al. demonstrated facilitation instead of
inhibition in both hemispheres of IGE patients using the LICI
paradigm; thus, LICI was reduced relative to HC (p < 0.01 at
ISI of 250ms). Similar findings were also demonstrated with

TABLE 9 | LICI in patients with epilepsy.

References Subjects Method ISI LICI

Brodtmann et al. (88) 7 IGE, 16 HC TMS-EMG 50–400ms ↓

Valzania et al. (89) 12 IGE, 8 HC TMS-EMG 50, 100, 150, 250ms ↓

Manganotti et al. (90) 15 JME, 12 HC TMS-EMG 30–400ms ↔

Molnar et al. (91) 5 Epilepsy, 9 HC TMS-EMG 50–200ms ↓

Badawy et al. (92) 35 IGE, 27 focal epilepsy, 29 HC TMS-EMG 200–400ms ↓ in IGE and focal epilepsy

Badawy et al. (93) 59 IGE, 47 focal epilepsy, 32 HC TMS-EMG 50–300ms ↓ at baseline, ↑ following AED

treatment in seizure free subjects

Badawy and Jackson (94) 26 migraine, 22 focal epilepsy,

28 IGE 19 HC

TMS-EMG 50–400ms ↓ in migraine, IGE and focal

epilepsy

Badawy et al. (95) 11 focal epilepsy, 13 IGE, 17 HC TMS-EMG 50–400ms ↓ IGE and focal epilepsy

Badawy et al. (96) 30 refractory epilepsy, 35 seizure

free on monotherapy, 12 seizure

free on dual therapy

TMS-EMG 100–300ms ↓

Badawy et al. (97) 46 JME, 41 JAE, 50 GE-TCS, 20

HC

TMS-EMG 100–300ms ↓

Badawy et al. (98) 85 TLE, 20 HC TMS-EMG 100–300ms ↔

Badawy et al. (99) 11 IGE, 11 focal epilepsy, 10 HC TMS-EMG 100–400ms ↓

Badawy et al. (100) 21 isolated seizure, 20 IGE, 18

focal epilepsy, 20 HC

TMS-EMG 100–300ms ↓ in IGE and focal epilepsy

Badawy et al. (101) 46 TLE, 39 Extra-TLE, 20 HC TMS-EMG 100–300ms ↓ at baseline, ↑ following AED

treatment in seizure free subjects

Silbert et al. (102) 10 IGE, 12 HC TMS-EMG 100–350ms ↓ in migraine, IGE, and focal

epilepsy

Pawley et al. (103) 28 moderately controlled

epilepsy, 40 poorly controlled

epilepsy, 28 HC

TMS-EMG 50–250ms ↓ IGE and focal epilepsy

Bauer et al. (104) 40 IGE, 69 focal epilepsy, 95 HC TMS-EMG 50–250ms ↓

Bolden et al. (105) 30 IGE, 24 HC TMS-EEG 50–200ms ↓

Bolden et al. (106) 30 IGE, 22 HC TMS-EEG 50–200ms ↔

Huang et al. (107) 41 poorly controlled TLE, 71

well-controlled TLE, 44 HC

TMS-EMG 50–300ms ↓

ISI, Interstimulus interval; JAE, juvenile absence epilepsy; LICI, Long-interval intracortical inhibition; GE-TCS, Generalized epilepsy with tonic-clonic seizures; IGE, Idiopathic generalized

epilepsy; TLE, Temporal lobe epilepsy; HC, Healthy controls; AED, Antiepileptic drug; JME, Juvenile myoclonic epilepsy; PME, Progressive myoclonic epilepsy.
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ipsilateral LICI measures of focal epilepsy patients (p < 0.01
at ISI of 250ms) but there was no significant impairment in
the contralateral hemisphere relative to HC (92). Additionally,
Badawy et al. examined the effect of the antiepileptic drug
treatment in epilepsy patients and showed that in seizure-free
IGE patients, LICI was restored post-treatment in the dominant
hemisphere at interstimulus intervals of 50, 150, 250, and 300ms
(p < 0.01). Focal epilepsy patients who were seizure-free post-
treatment also had restored LICI in the ipsilateral hemisphere
at interstimulus intervals of 250–300ms (p < 0.05). IGE and
focal epilepsy patients with ongoing seizures did not have any
significant change in LICI post-treatment (93). Badawy and
Jackson examined LICI in migraine and epilepsy patients and
demonstrated LICI impairment in migraine, IGE, and focal
epilepsy patients relative to HC at the interstimulus interval
of 250ms (p < 0.05). Results showed that LICI had greater
reduction in focal epilepsy (p < 0.05) and IGE patients (p
< 0.01) relative to migraine patients (94). In a prospective
cohort study, the reproducibility of LICI in drug naïve epilepsy
patients was investigated by measuring LICI in two separate
sessions 4–20 weeks apart. Results suggested that LICI was
reduced in epilepsy patients relative to HC at baseline, and
there was no significant intersession variability in both patient
and control groups (95). In another longitudinal study, Badawy
et al. investigated the effect of the antiepileptic drug on LICI
over time by evaluating epilepsy patients in 4 phases 1–2
weeks, 2–6, 12–18, and 30–36 months apart. Results showed
that refractory IGE and focal epilepsy patients demonstrated
worsening LICI over time whereas in seizure-free IGE and focal
epilepsy patients, significant improvement of LICI and decreased
cortical excitability was observed with antiepileptic medications
(96). In a cross-sectional study, Badawy et al. compared patients
with juvenilemyoclonic epilepsy (JME), juvenile absence epilepsy
(JAE), and generalized epilepsy with tonic-clonic seizures (GE-
TCS). All drug naïve patients (JME, JAE, and GE-TCS) groups
demonstrated lower LICI relative to HC (p < 0.01). JME patients
had greater impairment in LICI compared to JAE and GE-TCS
subjects (p < 0.05) (97). Temporal lobe epilepsy (TLE) patients
were examined for LICI in a cross-sectional study by Badawy
et al. and results revealed that LICI in the ipsilateral hemisphere
of drug naïve TLE patients was reduced relative to HC (p< 0.01).
Refractory TLE subjects demonstrated the same findings but LICI
impairment also applied for the contralateral hemisphere, and
the refractory group demonstrated more reduced LICI compared
to seizure-free and drug naïve TLE patients (98). Another cross-
sectional study evaluated the role of glucose levels in LICI
alteration and found that in both healthy controls and epilepsy
patients (IGE and focal epilepsy) LICI in both hemispheres was
reduced in the fasting state relative to the postprandial state (p
< 0.05) (99). In another study, Badawy et al. included patients
having isolated unprovoked seizures and revealed this sample
of patients had reduced LICI relative to HC (p < 0.01), though
impairment in LICI was lower compared to IGE patients (p <

0.01) and focal epilepsy patients (p < 0.05) (100). Focal epilepsy
patients with different epileptogenic regions were examined in
a cross-sectional study, and it was demonstrated that LICI was

reduced in drug naïve, refractory, and seizure-free TLE and extra-
TLE patients relative HC (p < 0.05). Notably, in drug naïve and
seizure-free patients significant LICI impairment was only seen
in the ipsilateral hemisphere. Refractory groups demonstrated
lower LICI relative to seizure-free and drug naïve TLE and extra-
TLE patients (p < 0.05) (101). Silbert et al. studied IGE patients
and found that LICI was not significantly different between
unmedicated IGE patients and HC, whereas IGE patients on
antiepileptic drug treatment had enhanced LICI relative to
unmedicated IGE patients (p < 0.001) and HC (p= 0.003) (102).
Pawley et al. investigated LICI in longstanding uncontrolled
epilepsy patients and revealed that LICI in poorly controlled
or moderately controlled generalized epilepsy patients did not
differ significantly from HC. In focal epilepsy patients, poorly
controlled and moderately controlled epilepsy was associated
with enhanced LICI compared to HC (p = 0.040) (103). Bauer
et al. demonstrated similar findings showing no significant LICI
differences across HC, IGE, and focal epilepsy patients (104).
Bolden et al. also found that controlled IGE patients, treatment
resistant IGE patients, and HC did not have a significantly
different LICI. Nevertheless, results demonstrated that patients
with lower LICI performed worse in attention tasks (105).
A companion study by the same research group found that
participants with the excitatory response on LICI demonstrated
greater mood disturbance relative to participants with the
inhibitory response (106). In a cross-sectional study, Huang et al.
studied TLE patients and demonstrated that LICI was stronger
in poorly controlled and well-controlled TLE patients relative to
HC at interstimulus intervals of 50, 100, and 200ms (p = 0.026,
0.002, 0.001) (107).

The majority of the studies demonstrated reduced LICI in
patients with various seizure disorders. However, some studies
demonstrated normal or increased LICI in patients with epilepsy.
It would be anticipated that patients with seizure disorders
have GABAergic inhibitory deficits, as this is supported by
previous studies that have consistently shown the alterations
in GABAergic transmission, especially in patients with absence
seizures as well as in mouse models of generalized and focal
seizures (108). The non-significant findings in studies of LICI
with epilepsy patients might related to small intertrial intervals,
the selection of the hemisphere (i.e., dominant vs. ipsilateral)
examined in analyses (104) or the criteria used to classify
participants as treatment-refractory (105).

LICI in Patients With Movement Disorders
LICI was investigated in dystonia, Huntington’s disease, and
Parkinson’s disease patients (Table 10). Chen et al. studied 8
patients with writer’s cramp and 18 HC in a cross-sectional study
and showed that LICI measured from the left (symptomatic)
hemisphere at 50–80ms interstimulus interval was reduced
in dystonia patients relative to HC during voluntary muscle
contraction (p = 0.02) (111). The study did not find any
significant results for LICI alteration at rest and in the right
hemisphere. In another cross-sectional study, Espay et al.
compared LICI in psychogenic dystonia, organic dystonia
patients, and HC during rest and active muscle contraction.
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TABLE 10 | LICI in patients with movement disorders.

References Subjects Method ISI LICI

Berardelli et al. (109) 20 PD, 11 HC TMS-EMG 100–250ms ↑

Tegenthoff et al. (110) 13 HD, 21 HC TMS-EMG 1–999ms Prolonged in classical HD

patients

Chen et al. (111) 8 Dystonia, 18 HC TMS-EMG 20–200ms ↓ during voluntary contraction,

↔ at rest

Valzania et al. (112) 13 PD, 12 HC TMS-EMG 40–300ms ↑

Romeo et al. (113) 10 ET, 8 HC TMS-EMG 100, 150, 200ms ↔

Rona et al. (114) 10 Dystonia, 11 HC TMS-EMG 100–250ms ↑

Priori et al. (115) 16 HD, 28 HC TMS-EMG 100–250ms ↔

Chen et al. (116) 7 HD, 7 HC TMS-EMG 50–200ms ↔

Pierantozzi et al. (117) 29 PD, 29 HC TMS-EMG 20–200ms ↓, restored following

Apomorphine

Cunic et al. (118) 12 PD, 8 HC TMS-EMG 50–200ms ↔

Bares et al. (119) 12 PD, 10 HC TMS-EMG 200–250ms ↔

Sailer et al. (120) 10 PD, 10 HC TMS-EMG 100ms ↔

Espay et al. (121) 18 dystonia, 12 HC TMS-EMG 50–200ms ↓

Cantello et al. (122) 18 PD, 12 HC TMS-EMG 50–300ms ↑

Fierro et al. (123) 14 PD, 8 HC TMS-EMG 80ms ↓ in non-medicated PD patients

Chu et al. (124) 11 PD, 9 HC TMS-EMG 100, 150ms ↓

Meunier et al. (125) 17 dystonia, 19 HC TMS-EMG 90ms ↔

Barbin et al. (126) 20 PD, 10 HC TMS-EEG 100ms ↓ in dyskinetic PD patients

Lu et al. (127) 12 PD, 12 ET, 12 HC TMS-EEG 100ms Comparison not measured

Philpott et al. (128) 28 HD, 17 HC TMS-EMG 100ms ↓

Latorre et al. (129) 10 DTS, 7 PWT, 10 ET, 10 HC TMS-EEG 100ms ↔ baseline, PAS induced LICI ↓

in ET and HC

ISI, Interstimulus interval; ET, Essential tremor; LICI, Long-interval intracortical inhibition; PWT, Primary writing tremor; PD, Parkinson’s Disease; DTS, Dystonic syndrome; HC, Healthy

controls; PAS, Paired associative stimulation; HD, Huntington’s disease. ↑: increased, ↓: decreased, ↔: no significant difference.

The results indicated that organic dystonia patients had an
impaired LICI relative to healthy controls at rest (p = 0.009).
Psychogenic dystonia patients did not differ significantly from
controls at rest. However, psychogenetic dystonia patients
demonstrated significantly greater LICI compared to patients
with organic dystonia. Results for LICI measured during active
muscle contraction were not significant (121). Meunier et al.
examined the influence of paired associative stimulation and
motor learning on LICI in dystonia patients. It was demonstrated
that LICI decreased following learning of simple motor tasks
and paired associative stimulation in HC (p < 0.01), but both
did not have a significant effect in dystonia patients (125). In
a cross-sectional study Latorre et al. examined LICI alteration
in dystonic syndrome, primary writing tremor and essential
tremor patients relative toHC. Baseline LICI was not significantly
different across groups but paired associative plasticity induced
LICI was significantly decreased in essential tremor patients and
HC whereas it did not change in dystonic syndrome and primary
writing tremor patients (129).

LICI alteration in Huntington’s disease (HD) was investigated
by Tegenthoff et al. and the results of their study demonstrated
that LICI was prolonged in classical hypotonic-hyperkinetic HD
patients relative toHC. In contrast,Westphal variant HD patients
had a shortened LICI relative to classical type HD patients (p <

0.05) (110). A cross-sectional study by Priori et al. indicated that
there were no significant LICI differences across HD patients and
HC (115). Philpott et al. compared asymptomatic HD patients,
symptomatic HD patients, and HC and found that both patient
groups had a significantly impaired LICI relative to controls (p
= 0.02). In pre-HD patients, LICI deficit was correlated with
the number of CAG repeats (p = 0.01), and LICI was negatively
correlated with behavioral symptoms in both groups (128).

Berardelli et al. examined LICI measures in Parkinson’s
disease (PD) and the potential impact of L-dopa treatment on
LICI. The results revealed that PD patients had an enhanced LICI
relative to HC at interstimulus intervals of 150 and 200ms (p
< 0.05). Following L-dopa treatment, LICI values were restored
approaching healthy subjects (p = 0.01) (109). Valzania et al.
demonstrated similar findings showing enhanced LICI in PD
patients relative to HC at interstimulus intervals of 40, 50, and
75ms (p < 0.01) (112). Chen at al. studied 7 PD patients with
Globus Pallidus internus (GPi) stimulators and did not show
any significant difference in LICI between PD patients and HC.
Additionally, there was no difference in LICI in patients with
PD when the GPi stimulator was turned on, off, or to half
the amplitude (116). Pierantozzi et al. investigated the effect of
apomorphine infusion on LICI in PD patients and demonstrated
that baseline LICI was reduced in PD patients relative to HC and
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apomorphine infusion enhanced and restored LICI (117). Cunic
et al. studied PD patients with subthalamic nucleus stimulators
and showed that there was no significant LICI difference between
patients and HC at baseline, and stimulation conditions did
not affect LICI levels in PD patients (118). In a cross-sectional
study, Bares et al. did not find any significant LICI impairment
in L-dopa or dopamine agonist naïve PD patients relative to
HC (119). Sailer et al. presented similar findings in their study,
showing no significant LICI alteration in PD patients relative to
HC both in the presence or absence of dopaminergic medications
(120). Cantello et al. had contradictory results demonstrating
enhanced LICI in PD patients relative to HC in both affected and
less affected hemispheres at only 250ms interstimulus interval
(122). Fierro et al. collected LICI measures in PD patients with
and without L-dopa treatment and following rTMS. LICI was
reduced in patients with PD who were not taking L-dopa relative
to those who were taking L-dopa (p = 0.005) and HC (p <

0.016). LICI improved following rTMS in PD patients without
L-dopa (p < 0.01), but there was no significant effect of rTMS
in PD patients who were taking L-dopa (123). LICI reduction
in PD patients both on and off medication relative to HC was
demonstrated by Chu et al. at interstimulus intervals of 100–
150ms (p = 0.035) (124). Barbin et al. compared dyskinetic
PD patients to non-dyskinetic PD patients on and off L-dopa
treatment. The results revealed that among medication and
unmedicated PD subjects, dyskinetic PD patients had a reduced
LICI relative to HC (p < 0.05). Conversely, there was no
significant difference between non-dyskinetic PD patients and
controls. LICI was only significantly different between dyskinetic
and non-dyskinetic patients when L-dopa was present (p <

0.05) (126). Lu et al. examined the effect of paired associative
stimulation (PAS) on LICI in Essential Tremor (ET), PD patients,
and HC and demonstrated that PAS induced a reduction in LICI
irrespective of group (p < 0.01) (127). Patients with essential
tremor were investigated by Remeo et al. and there was no
significant difference in LICI between the patient group and
HC (113).

Studies examining LICI in patients with Parkinson’s disease
have presented mixed results. Several studies have shown
enhanced LICI in the patient population. One suggested
mechanism for this difference was larger motor-evoked
potentials (MEPs) of conditioning stimulus (109). Conversely,
several other studies have shown impairment in LICI, which
is consistent with repeated findings of a shorter silent period
in patients with Parkinson’s disease (16, 130). Decreased
MEP facilitation of test stimulus in patients due to increased
tonic activity might explain the impairments in LICI (122).
Studies have varied in their methodology in terms of the
Parkinson’s disease treatment and TMS protocol, which might
also contribute to the discrepancies in findings. Findings also
varied in Huntington’s disease some results indicating normal
LICI and some showing reduced LICI in HD patients. Inhibition
impairments in HD have been shown before and might be
attributed to increased excitability and constant preparation
for movement (128). Discrepancies between findings could
be related to the methodologic issues that might confound
the results such as coil type and active contraction vs. resting

muscle. In dystonia, studies have shown LICI impairment in
dystonic patients compared to healthy controls. Previous studies
showing the effectiveness of GABAB receptor agonist baclofen
also support our findings (131, 132).

LICI in Patients With Multiple Sclerosis
Three prior studies examined LICI in the context of Multiple
Sclerosis (MS) (Table 11). In a cross-sectional study, Mori et al.
examined the correlation between disability scores and LICI
levels in MS patients, and the study did not result in any
significant findings for LICI (133). Nantes et al. compared MS
patients with HC and examined the association between LICI
and cortical damage measured with MRI. It was demonstrated
that LICI did not differ across relapsing-remitting MS patients,
progressive MS patients, and HC. Additionally, there was no
significant correlation between measures of cortical damage
and LICI in MS patients (134). Squintani et al. investigated
the role of LICI in the improvement of spastic hypertonia in
MS patients following 9-tetrahydrocannabinol and cannabidiol
(THC: CBD) oromucosal spray treatment. The results showed
that LICI impairment in MS patients relative to HC (p < 0.05)
significantly improved after THC: CBD treatment for 4 weeks (p
< 0.05) (135).

Findings have varied with respect to multiple sclerosis. The
dysfunctional GABAergic transmission and cortical inhibition
in MS patients have been demonstrated in the literature and
baclofen, which acts on GABAB receptors, is known as a reliable
agent in treating spasticity, which is a common debilitating
symptom in patients with MS (136, 137). The study included
in our review presented significant LICI deficit in MS patients
with treatment resistant spasticity (135). Therefore, stratified
analysis, according to spasticity, might be required to reveal the
association between LICI and MS symptoms.

LICI in Patients With Stroke
LICI in stroke patients was studied in 6 studies (Table 12). LICI
and its evolvement over time were examined in post-stroke
patients by Swayne et al. Results demonstrated no significant
change in LICI over time measured at 1, 3, and 6 months
following stroke. LICI in the affected hemisphere was reduced
in the patient group relative to healthy controls (p = 0.029),
and it was correlated with poorer clinical scores in the acute
period and 3 months post-stroke but not at 6 months (138).
In a cross-sectional study, Kuppuswamy et al. investigated the
association between post-stroke fatigue and LICI and did not
demonstrate any significant relation (139). Schambra et al. failed
to demonstrate any significant LICI difference across acute
and chronic stroke patients and controls (140). In a double-
blinded placebo-controlled randomized cross over study, the
same group examined the effect of theophylline treatment on
LICI in 18 chronic stroke patients. There was no significant LICI
change in the theophylline group relative to placebo in chronic
stroke patients (141). Mooney et al. compared chronic stroke
patients and HC based on LICI and investigated its correlation
with GABA concentration measured with magnetic resonance
spectroscopy. LICI was found to be enhanced in chronic stroke
patients relative to HC in the ipsilesional motor cortex (p <
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TABLE 11 | LICI in patients with multiple sclerosis.

References Subjects Method ISI LICI

Mori et al. (133) 89MS TMS-EEG 100ms Comparison not measured

Nantes et al. (134) 36MS, 18 HC TMS-EMG 100ms ↔

Squintani et al. (135) 19MS, 19 HC TMS-EMG 100ms ↓

ISI, Interstimulus interval; MS, Multiple Sclerosis; LICI, Long-interval intracortical inhibition; HC, Healthy controls. ↓: decreased, ↔: no significant difference.

TABLE 12 | LICI in patients with stroke.

References Subjects Method ISI LICI

Swayne et al. (138) 10 stroke patients, 10 HC TMS-EMG 100ms ↓

Kuppuswamy et al. (139) 70 stroke patients TMS-EMG 100ms Comparison not measured

Schambra et al. (140) 41 stroke patients, 21 HC TMS-EMG 100ms ↔

Schambra et al. (141) 18 stroke patients TMS-EMG 150–250ms Comparison not measured

Mooney et al. (142) 12 stroke patients, 16 HC TMS-EEG 100ms ↑

Mooney et al. (143) 10 stroke patients, 12 HC TMS-EMG 100, 150 ↑

ISI, Interstimulus interval; HC, Healthy controls; LICI, Long-interval intracortical inhibition. ↑: increased, ↓: decreased, ↔: no significant difference.

0.001), whereas there was no significant association between LICI
and metabolite concentrations in stroke patients and HC (142).
Another study by the same group confirmed the same finding
by demonstrating greater LICI in the ipsilesional motor cortex
of chronic stroke patients relative to HC at the ISI of 150ms
and indicated that LICI did not change significantly following
motor skill learning task in both chronic stroke patients and
HC (143).

Studies have presented mixed results in stroke. Studies
that found alterations in LICI discussed the methodological
differences (using single ISI vs. using range of ISI) as an
explanation for the discrepancy between studies (142). On the
other hand, it has been consistently shown that LICI has not
changed after interventions. Animal studies demonstrated the
importance of GABAB mediated inhibitory transmission in post-
stroke recovery (144). Baclofen was also shown to be effective
compared to conventional medical management in increasing
quality of life in patients with post-stroke spasticity (145).
Stratified analysis of patients, according to spasticity, might reveal
differences in LICI between patients with a history of stroke and
healthy controls.

LICI in Patients With Traumatic Brain Injury
Most prior studies examining LICI alteration after traumatic
brain injury (TBI) focused on the motor cortex and used EMG
measures except for one prior TMS-EEG study (Table 13).
Tremblay et al. investigated LICI in 12 football players with
concussion history that occurred more than a year ago and
14 non-concussed players. The findings demonstrated that
athletes with concussion history had a significantly enhanced
LICI relative to non-concussed (p = 0.05) (146). De Beaumont
et al. confirmed the same finding showing enhanced LICI in
concussed football players (p < 0.03), which was found to
be correlated with the number of previous concussions (p <

0.05) (147). Another study by De Beaumont et al. examined

the effect of LICI on synaptic plasticity, measured with paired
associative stimulation (PAS) inducing long-term potentiation
(LTP)/ long-term depression (LTD) effects in concussed football
players and non-concussed control groups. Results indicated
enhanced LICI in the concussed group at baseline, which was
correlated with suppressed synaptic plasticity (p = 0.037) (148).
A study including 40 retired concussed Australian football
players and 20 HC, presented contradictory results relative to
previous findings indicating that concussed athletes had reduced
LICI relative to HC (p > 0.001). Additionally, reduction in
LICI was associated with poorer performance in finer motor
dexterity (p = 0.049) (149). Tremblay et al. assessed LICI and
its association with metabolic disruption after TBI, 1H-MRS.
Unlike previous studies, results demonstrated that there was no
significant LICI difference in concussed players relative to non-
concussed. Nevertheless, GABA levels measured with 1H-MRS
were positively correlated with LICI in concussed players (p
= 0.001) (150). Another study investigating cortical inhibition
in concussed football players examined LICI during the acute
asymptomatic phase following concussion (1–4 weeks after), and
results indicated that there was no significant LICI alteration in
concussed players relative to non-concussed (151). Lewis et al.
compared retired elite rugby players, community-level rugby
players, and non-contact sport players as controls and found that
LICI was enhanced in elite players relative to controls, whereas
there was no significant difference between community-level
players and controls (152). Seeger et al. evaluated children 4-
weeks after mild TBI (mTBI), which included 35 symptomatic
and 27 asymptomatic subjects, all with mTBI, and 28 HC.
Findings indicated that the symptomatic mTBI group had
reduced LICI relative to HC, and reduction in LICI was
associated with increased post-concussion symptom severity
(p = 0.027, 0.012). This study was different from previous
TBI studies as it contained both female and male subjects,
and results demonstrated that females had more pronounced
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TABLE 13 | LICI in patients with traumatic brain injury.

References Subjects Method ISI LICI

Tremblay et al. (146) 12 concussed, 14 HC TMS-EMG 100ms ↑

De Beaumont et al. (147) 21 concussed, 15 HC TMS-EMG 100ms ↑

De Beaumont et al. (148) 13 concussed, 19 HC TMS-EMG 100ms ↑

Pearce et al. (149) 40 concussed, 20 HC TMS-EMG 100ms ↓

Tremblay et al. (150) 16 concussed, 14 HC TMS-EMG 100ms ↔

Powers et al. (151) 8 concussed, 8 HC TMS-EMG 100ms ↔

Lewis et al. (152) 51 concussed, 22 HC

62 with TBI, 22 HC

TMS-EMG 99ms ↑ in elite players, ↔ in

community players

↓ in symptomatic patients

Seeger et al. (153) 25 concussed, 25 HC TMS-EMG 100ms ↓

Pearce et al. (154) 20 PCS, 20 recovered

concussed, 20 HC

TMS-EMG 100ms ↑ in PCS patients, ↔ in

recovered patients

Pearce et al. (155) 17 TBI, 15 HC TMS-EMG 100ms ↑ measured with EMG, ↔

measured with EEG

Opie et al. (156) 78 PPCS, 29 asymptomatic TBI,

26 HC

TMS-EEG 100ms ↔

King et al. (157) 12 concussed, 14 HC TMS-EMG 100ms ↑

ISI, Interstimulus interval; TBI, traumatic brain injury; LICI, Long-interval intracortical inhibition; PCS, Post-concussion syndrome; HC, Healthy controls; PPCS, Persistent post-

concussive symptoms. ↑: increased, ↓: decreased, ↔: no significant difference.

TABLE 14 | LICI in patients with other neurologic disorders.

References Subjects Method ISI LICI

Salerno et al. (159) 21 ALS, 12 HC TMS-EMG 55–255ms ↓

Zanette et al. (160) 35 ALS, HC TMS-EMG 50–300ms ↓

Tamburin et al. (161) 8 cerebellar syndrome, 14 HC TMS-EMG 30–500ms ↑

Kang et al. (162) 12 PKD, 10 HC TMS-EMG 80ms ↓

Siniatchkin et al. (163) 16 migraine, 15 HC TMS-EEG 60–120ms ↔

Canafoglia et al. (164) 10 ULD, 5 LBD, 16 HC TMS-EMG 30–100ms ↓ in LBD patients

Cosentino et al. (165) 24 migraine, 24 HC TMS-EMG 100ms Comparison not measured

ISI, Interstimulus interval; PKD, Paroxysmal kinesigenic dyskinesia; LICI, Long-interval intracortical inhibition; ULD, Unverricht-Lundborg Disease (ULD); ALS, Amyotrophic lateral sclerosis;

LBD, Lafora body disease; HC, Healthy controls. ↑: increased, ↓: decreased, ↔: no significant difference.

LICI (p = −0.016) (153). A cross-sectional study by Pearce
et al. showed reduced LICI in concussed rugby players, 15–
21 years after the injury, relative to HC, and LICI alteration
was associated with slower motor dexterity (p = 0.03, p <

0.01) (154). In another study by Pearce et al. LICI alteration in
post-concussion syndrome (PCS) was investigated evaluating 20
concussed subjects with PCS, 20 asymptomatic subjects with a
history of concussion, and 20 HC. Results indicated that LICI
was enhanced in the PCS group relative to recovered subjects
and controls (p < 0.001); furthermore, worsened fatigue and
poorer amplitude discrimination was associated with altered
LICI (p < 0.001, 0.02) (155). A prospective cohort study by
King et al. involving 78 children with persistent post-concussive
symptoms, 29 asymptomatic with TBI history, and 26 age
and gender-matched HC, examined LICI alteration 1 and 2
months post-injury and its association with the persistence of
symptoms. It was shown that LICI did not differ across groups

at 1 and 2 months post-injury; likewise, it did not significantly
change over time (157). Opie et al. examined LICI in the
motor cortex of adult subjects with history of mTBI and HC
using both EMG and EEG. Results demonstrated that LICI
measured with EMG was enhanced in subjects with a history
of mTBI relative to healthy controls (p < 0.0001) whereas
TMS-EEG measures for LICI did not significantly differ across
groups (156).

The majority of the studies have shown enhanced LICI in
groups with a history of concussion compared to healthy controls
or non-concussed athletes. However, several studies showed
reduction in LICI in patients with a history of concussion.
Authors discussed that the etiology of the trauma (American
football vs. Australian football), number of concussions, and
severity of the injury might be confounding the results (149).
Excessive GABAergic activity that occurs after a concussion is
thought to be a protective mechanism against the excessive
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glutamatergic activity, which is thought to be an initial response
to brain injury (146). Nevertheless, animal studies pointed out
that excess GABAergic inhibition might be responsible for TBI
instead (158). Therefore, regardless of the timeline after the
trauma, excessive GABAergic activity seemed to be associated
with TBI.

LICI in Patients With Other Neurological Disorders
Two prior studies examined LICI paradigms in patients with
Amyotrophic Lateral Sclerosis (ALS). Salerno et al. demonstrated
that LICI was reduced in bulbar ALS (p = 0.01) and spinal ALS
(p = 0.02) relative to HC at the ISI of 155ms (159) (Table 14).
However, the difference between the two ALS groups was not
significant. Zanette et al. confirmed the same results showing
reduced LICI in ALS patients (p< 0.01), specifically in those with
upper motor neuron involvement (p < 0.05) (160). Tamburin
et al. studied ataxic patients with pure cerebellar syndrome
and demonstrated that LICI was enhanced in the patient group
relative to HC at ISI of 200–500ms (p = 0.007) (161). In a cross-
sectional study, Kang et al. revealed that LICI was reduced in drug
naïve paroxysmal kinesigenic dyskinesia patients relative to HC
(162). Patients with migraines were studied by Siniatchkin et al.
and results showed no significant LICI alteration in migraine
without aura patients (163). Cosentino et al. indicated that there
was a correlation between impaired LICI measured with test
stimulus of 150% restingmotor threshold and increasedmigraine
disease duration (165). Canafoglia et al. investigated LICI in
genetically different progressive myoclonus epilepsy syndromes.
They found that LICI was significantly impaired in Lafora Body
Disease (LBD) relative to HC at ISI of 80–100ms, but the LICI
difference between LBD and Unverricht-Lundborg Disease was
not significant (164).

DISCUSSION

The search for biomarkers in neuropsychiatric disorders
spans several decades and arguably has progressed slower for
psychiatric disorders as compared to neurological disorders. The
interest for ongoing research in neuropsychiatric biomarkers
is catalyzed by concern for poor clinical outcomes, enhanced
diagnostics, and interventional development. Descriptive
diagnostic approaches to psychiatric disorders are necessary
clinical realities that often fail to provide valid neurophysiological
constructs of disease. In general, psychiatric research is
plagued by variable methodologies, meager effect sizes, and
limited replications.

This was the first systematic review of LICI as a putative
biomarker in neuropsychiatric disorders. Broadly, present
LICI findings are somewhat mixed and not disease specific.
Impairments of LICI have been demonstrated in ADHD,
depression, schizophrenia, epilepsy, ALS, and dementia. There
were mixed and inconsistent findings in bipolar disorder,
neurodevelopment disorders, substance use disorders, multiple
sclerosis, stroke, and TBI. Among the studies, LICI has been
investigated as a diagnostic and prognostic biomarker, a predictor
of treatment response, and a marker of symptom severity.
Few studies investigated the reproducibility of LICI. It is also

important to highlight that many of the studies focused on
bipolar disorder, depression, schizophrenia, dementia, epilepsy,
and TBI had overlapping samples among separate manuscripts
(36, 37, 39–42, 57, 79, 80, 85, 97, 99). This creates additional
challenges in considering the validity, reliability, and synthesis of
existing neuropsychiatric LICI literature.

Impairment in LICI in neuropsychiatric diseases has been
mostly demonstrated in the direction of reduced cortical
inhibition, however, increased cortical inhibition (increased
LICI) has also been shown, especially in bipolar disorder, TBI,
and Parkinson’s disease. It is possible that the disruption of
the networks directly associated with the inhibitory GABAergic
activity results in reduced LICI whereas, an insult to the
networks associated with increased excitatory activity leads to
a compensatory increase in GABAergic activity resulting in
increased cortical inhibition (increased LICI). Even though there
is not sufficient evidence to suggest whether the disruption of
inhibitory/excitatory balance in neuropsychiatric disorders is
state or trait dependent, several studies have shown restoration
of LICI following symptoms remission (93, 155). It is important
to highlight a substantial limitation of the present review. A
number of studies that were included examined the response
to paired-pulse stimulation with ISIs of 200–300ms and were
referred to as LICI. However, work by Cash et al. suggests that
stimulation with ISIs at these durations produces a period of
late cortical disinhibition that is distinct from LICI (166). These
studies were included as the intent was to provide and exhaustive
review of prior work with LICI and many of the studies included
measurements with ISIs above and below 200ms. This is an
important confound in interpreting the results and could explain
some of the broad discrepant findings.

Broadly, TMS-EMG and TMS-EEG measures of LICI are
appealing from a practical standpoint. Cortical inhibition
measures with TMS are relatively inexpensive, easy to collect,
straight forward to analyze, and have demonstrated high
test-retest reliability. The prior work focused on LICI has
important methodologic limitations to consider for future
studies. Medication regimens in clinical populations must be
carefully considered with respect to both safety and as confounds.
These factors must be characterized and accounted for in future
research. When ethically and pragmatically feasible, medicated
and unmedicated patient populations should be tested. Disease
progression or staging should be carefully described in future
studies. Methodology to standardize TMS coil orientation
and stimulus intensity is an important future consideration.
Electrical field modeling and stereotactic neuronavigation are
invaluable tools in establishing reliable study protocols. Further
considerations include an online inspection of MEP or TMS-
evoked potential data to monitor for artifact and signal-to-
noise ratio. Standardized pre-processing and post-processing
methodology with detailed published descriptions are additional
considerations. Studies with TMS-EEG present unique challenges
as recent work has advocated for careful peripheral sensory
controls as peripheral effects may have presented confounds in
prior TMS-EEG work. Experts have advocated for standardized
approaches, the methodology that controls for peripheral effects,
and data sharing.
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CONCLUSION

Current studies with LICI have methodologic weaknesses and
discordant findings. Future study, with rigorous methodology
is needed to develop LICI paradigms for risk assessment,
screening, diagnosis, prognosis, andmonitoring treatment effects
in neuropsychiatric disorders. With further work, measures of
LICI could be rapidly translated into clinical settings.
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Heidelberg, Germany, 6 Klinikum am Weissenhof, Weinsberg, Germany

Introduction: Schizophrenia is a severe psychiatric disorder, with executive dysfunction

and impaired processing speed playing a pivotal role in the course of the disease. In

patients with schizophrenia, neurocognitive deficits appear to be related to alterations

in cerebral hemodynamics. It is not fully understood if psychopathological symptom

load (i.e., presence and severity of symptoms) is also related to alterations in cerebral

hemodynamics. We aim to study the relationship between psychopathological symptom

load and cerebral hemodynamics in the Middle Cerebral Artery (MCA) during a cognitive

task in patients with schizophrenia and healthy controls.

Methodology: Cerebral hemodynamics in the MCA were examined in 30 patients with

schizophrenia and 15 healthy controls using functional Transcranial Doppler (fTCD) during

the Trail Making Test (TMT). Psychopathological symptoms were measured using the

Brief Psychiatric Rating Scale (BPRS). Patients were dichotomized according to BPRS

scores: mild-moderate (BPRS < 41, n = 15) or marked-severe (BPRS ≧ 41, n = 15).

Mean blood flow velocity (MFV) in the MCA and processing speed of the TMT were

analyzed. Cerebral hemodynamics were analyzed using the general additional model

(GAM) with a covariate analysis of variance (ANCOVA) for group comparisons.

Results: Patients and healthy controls were comparable regarding demographics.

Patients had a slower processing speed for the TMT-A (patients-severe:

52s, patients-moderate: 40s, healthy-controls: 32s, p = 0.019) and TMT-B

[patients-severe: 111s, patients-moderate: 76s, healthy-controls: 66s, p < 0.001)].

Patients demonstrated differing hemodynamic profiles in both TMTs: TMT- A [F (6, 1,792)
= 17, p < 0.000); TMT-B [F (6, 2,692) = 61.93, p < 0.000], with a delay in increase in MFV

and a failure to return to baseline values.
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Conclusions: Patients with schizophrenia demonstrated slower speeds of processing

during both the TMT-A and TMT-B. The speed of processing deteriorated with increasing

psychopathological symptom load, additionally a distinct cerebral hemodynamic pattern

in the MCA was observed. Our results further support the view that severity of

schizophrenia, particularly psychopathological symptom load, influences performance

in neurocognitive tasks and is related to distinct patterns of brain hemodynamics.

Keywords: transcranial doppler, schizophrenia, symptomalogy, trail making test, cognition, hemodynamics

INTRODUCTION

Schizophrenia is a severe psychiatric disorder which is
characterized by hallucinations, delusions and blunted affect
(1). Although not part of the diagnostic criteria, cognitive
impairment is also a common feature of schizophrenia, often
occurring before the onset of the first psychotic episode
and continuing throughout the course of the disease (2, 3),
with cognitive impairment and executive functions playing a
pivotal role for outcome and prognosis, as well as being major
determinants of quality of life and well-being (4, 5).

Cognitive impairment and executive function are measured
by numerous neuropsychological assessment tools, including the
Trail Making Test (TMT)-A and TMT-B. In contrast to other
neuropsychological instruments, the TMTs are easy to use; their
interpretation is straightforward. Consequently, they are widely
used in both research and clinical practice (6, 7). The TMTs are
considered to be sensitive to cognitive dysfunction and frontal
lobe integrity, assessing graphomotor activity, visual scanning,
selective attention, mental flexibility and executive functioning
(6, 7). Patients with schizophrenia show impaired performance
in the TMT, with deficits in processing speed and inefficient
simultaneous processing strategies (6, 8). There is evidence that
in patients with schizophrenia, the frontal lobes, particularly the
dorsolateral prefrontal cortex (DLPFC), play a pivotal role in
executing the TMTs (9, 10).

Cognitive performance is partly determined by the brain’s
ability to increase blood supply to the areas activated during
a cognitive task. Due to the skull’s anatomic conditions, the
increase in diameter of the cerebral arteries is limited; an increase
in cerebral blood supply is achieved by increasing blood flow
velocity in the cerebral arteries. Therefore, we consider Mean
Flow Velocity (MFV) a valid indicator for brain activity (11, 12).
Transcranial Doppler (TCD) is a versatile, non-invasive method
for assessing the cerebral arteries’ functioning and hemodynamic
characteristics (11, 13). TCDprovides a continuousmeasurement
of blood flow velocity with high temporal resolution. However,
TCD has low anatomical resolution and is not able to deliver
a direct brain image. Despite this limitation, TCD has been
used to study physiological and hemodynamic conditions in
several neurological diseases and psychiatric disorders (11, 13,
14). The neurocognitive impairment in schizophrenia appears
to be related to alterations in blood flow in several brain areas,
including the DLPFC (15–18).

The middle cerebral arteries (MCA) irrigate the brain’s lateral
hemispheres, including the DLPFC, subcortical structures, basal

ganglia and the striatum (19). A number of these structures,
principally the DLPFC, striatum and thalamus, are activated
during the TMT (17), making fTCD a suitable method for the
physiological and hemodynamic assessment of brain activity in
these areas during a neurocognitive task (20). Previous studies
using functional TCD (fTCD) in patients with schizophrenia
and healthy controls showed clear differences in the MCA
hemodynamic pattern during the TMT (14); to what extent
there are also hemodynamic differences between those affected
with schizophrenia, in relation to the number and severity of
symptoms (i.e., symptom load) is thus far unexplored.

Our study aims to determine the relationship between
psychopathological symptom load (in healthy controls and
patients with schizophrenia) and cerebral hemodynamics in
the MCA during a neurocognitive task. New results may
contribute to increased use of fTCD as an assessment tool
in neuropsychiatric disorders, particularly schizophrenia. We
examined cerebral blood flow velocity during the TMT in
patients with schizophrenia and healthy controls, using a
visuomotor control task to compensate for hemodynamic
changes resulting solely from the motor and visual activities
during the TMT.

MATERIALS AND METHODS

Subjects
Thirty patients fulfilling the WHO-ICD 10 (21) criteria for
schizophrenia participated in this study; they were age and
sex-matched with 15 healthy controls. The healthy controls
had no medical, neurological or psychiatric condition at the
time of examination; they were recruited for a previous study
conducted by our research group, using the same examination
protocol and equipment (14). All participants were right-handed.
All patients with schizophrenia were taking antipsychotic
medication. The following exclusion criteria applied to patients:
1. affective disorder (according to ICD-10: F3); 2. organic brain
disorder (according to ICD-10: F0); 3. active substance abuse
disorder (according to ICD-10: F1) in the 3 months before
inclusion; 4. unstable neurological; or 5. medical condition. Basic
demographic characteristics of the participants were collected.
Besides the participants’ education, we included the mean
education of their parents to disentangle poor educational
performance attributable to early onset of the disorder or familial
accumulation. The competent ethics committee approved the
study, all participants provided written informed consent.
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Clinical Assessment and Psychometric

Measurements
Within 24 h of the fTCD measurement, psychopathological
symptoms were assessed using the Brief Psychiatric Rating
Scale (BPRS) (22), overall clinical severity of symptoms was
assessed using the Clinical Global Impression Scale (CGI) (23).
For this study, the daily antipsychotic dose was converted to
chlorpromazine equivalents according to current guidelines (24,
25). Effects of antipsychotics on the extrapyramidal system were
examined using the Simpson- Angus Scale (SAS) (26) and the
Barnes Akathisia Scale (BAS) (27, 28).

The BPRS is one of the most frequently used scales to measure
psychopathology in patients with schizophrenia, systematically
assessing the presence and severity of symptoms. It consists
of 18 single items assessing different symptoms. Each item is
evaluated according to a seven-item Likert scale, ranging from
“1” (not present) to “7” (extremely severe). Thus, the sum score
ranges from 18 to 126. We used the BPRS sum score as a
measure of the psychopathological symptom load. Participants
were classified according to BPRS sum scores, as “non-affected”
or healthy controls; those with a diagnosis of schizophrenia and
a BPRS score below 41 points were classified as “mild-moderate,”
those with a BPRS score of 41 points or more were classified as
“marked- severe”(29).

Equipment and Cerebral Blood Flow

Measurements
Doppler measurements were performed using a Multi-Dop X
instrument (DWL Elektronische Systeme GmbH, Sipplingen-
Germany). Two dual 2 MHz transducers were attached and
fixed with a headband. Both MCAs were insonated at depths
of 48–55mm through the temporal bone window. The 2 MHz
transducers were fixed with a headband, so motion artifacts of
the head did not alter the position of the transducers. This
approach is supported by published evidence demonstrating that
functional transcranial Doppler is fairly robust to movement
artifacts (30). As indicated by measurement artifact data, we
screened for MFV values outside the 60–150% range of the
mean MFV recording of a subject before, after and during the
cognitive task.

Cerebral Hemodynamics and Cognitive

Task
Subjects were asked to abstain from caffeine and nicotine
consumption 2 h prior to the examination (31). MFV data
were continuously recorded during the psychological paradigm,
integrating MFV data for each cardiac cycle. Participants
underwent a standardized briefing. They were instructed about
the nature of the study and the psychological paradigm. To
reduce learning effects, the cognitive task was presented only
once.We administered the TMTs as a paper and pencil test. In the
TMT-A, subjects had to connect 25 numbers in ascending order
(i.e., 1, 2, 3,..., 25). In the TMT-B, participants had to connect
numbers (1–13) and letters (A–L) alternately in ascending order
(i.e., 1, A, 2, B, 3, C,..., 13, L). Subjects had to solve the TMTs as
quickly and accurately as possible. In the control task participants

were asked to randomly connect circles placed in a 10 by
10 cm square. Lines had to be drawn at a pace of 1.0 or 0.5Hz
to simulate the pace of the TMT-A (0.89+−0.21Hz) and the
TMT-B (0.46+−0.15Hz). The control task simulates visuomotor
scanning during the TMTs. The control task was placed randomly
before or after each TMT, with a break of 60 s between each task.

Statistical Analysis
Data are presented in tables using simple descriptive statistics
(mean, standard deviation, percentages). For the analysis of
group differences, specific statistical tests were performed.
Continuous data were analyzed using a univariate analysis of
variance (ANOVA), with a secondary t-test to evaluate model
differences. The chi-square test was applied to categorical data. A
post hoc power analysis was conducted, using the effect sizes for
differences in completion time between the TMT-A and TMT-B.

For the purposes of analysis, the MFV consisted of the
following elements, following procedures used in a previous
study (20): (a). integration ofMFV from 100Hz sampling to 1Hz;
(b). normalization of digitized data with reference to pre-and
post-task rest phases (60s intervals of rest with 30s between the
first and last 15s); and (c) relative MFV (relative to resting state)
values, averaged and converted to percentage values. All MFV
values in this paper are relative MFV, i.e., cerebral blood flow
velocity change compared with resting phase values. For analysis
of the TMT-A and B, the time to be analyzed was dictated by the
time required by the fastest participant to complete the task.

The general additional model (GAM); was used for graphical
representation, as well as to statistically evaluate the change in
mean flow velocity over time (in seconds), controlled for side
and sex. The advantage of non-parametric tests, such as the
general additional model, lies in their greater flexibility regarding
assumptions about data (32–34). The GAM allows for regression
and weight analysis at both fixed and random variable level
(or for discrete and continuous variables) (33). Using a non-
parametric test allows for a realistic visual comparison of flow
velocity, facilitating the inference of its clinical relevance (35,
36). Accordingly, a better representation of dynamic and inter-
dependent results such as blood flow is provided. However,
the mathematical and statistical analysis and consequently,
comparison of the GAMs outcomes is more complex (34, 37).
Therefore, a covariate analysis of variance (ANCOVA) was used
to evaluate differences in the GAM of blood flow velocity
obtained for each group and side. Thus, allowing us to determine
whether a statistical difference between the hemodynamic curves
was demonstrated., A pairwise-comparison was conducted to
determine the time frames in which the curves differed from
one another.

RESULTS

Demographics and Clinical Characteristics
Patients and control subjects were comparable regarding age,
sex and years of parent’s education. Years of own education
for those with schizophrenia was significantly shorter than
healthy controls, with no difference between severity groups.
Patients with a marked-severe psychopathological symptom
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load obtained significantly higher CGI-S scores than those
with moderate symptomatology [3.60 ± 1.06 vs. 5.20 ± 0.68,
F(1, 28) = 24.44, p < 0.001]. The duration of illness and
hospitalization rates did not differ significantly between patient
groups. Each participant with a diagnosis of schizophrenia had
an antipsychotic prescribed, some two. Most antipsychotics
prescribed were second-generation antipsychotics. There were
no significant differences regarding the antipsychotics prescribed
(data not shown) and dose (as chlorpromazine equivalents).
Furthermore, the rate of extrapyramidal motor symptoms and
akathisia was also similar (see Table 1). The post hoc power
analysis reached a power of 1-ß of 0.99.

TMT Performance
In comparison to healthy controls, patients with schizophrenia
required significantly more time to complete both TMTs.
Furthermore, more severely ill patients took significantly longer
to complete the test than those classified as mild-moderately ill;
TMT-A [patients-severe: 52.3 ± 30.8; patients-moderate: 40.2 ±
12.7; healthy-controls: 31.0 ± 7.4, F(2, 42) = 4.38, p = 0.019] and
TMT-B [patients-severe: 66.2 ± 18.9; patients-moderate: 75.5
± 22.9; healthy-controls: 111.1 ± 20.9, F(2, 42) = 19.08, p <

0.001]. Since the fastest performance on the TMT-A was 20s,
and for the TMT-B 30s, these are the time periods considered for
statistical analysis. There was no statistically significant difference
between groups regarding the rate of errors on the TMTs
(see Table 1).

Mean Cerebral Blood Flow Velocity During

the TMT-A
For healthy-controls, there was a significant change in MFV over
time [F(s)(3.991, 4.912) = 15.43, p < 0.001], with a hemispheric
difference in MFV [F(1, 266) = 10.55, p = 001]; in the post
hoc pairwise analysis we identified that the hemispheric (right
> left) difference was only significant for the first 10 s of the
measurement period. For those mildly-moderately affected, there
was also a change of MFV over time [F(s)(7.403, 8.356) = 6.707, p
< 0.001], we did not find a hemispheric difference in the MFV
[F(1, 266) = 0.979, p = 0.323]; with the post hoc pairwise analysis
also demonstrating no hemispheric differences at any time
point. Finally, in those with higher psychopathological symptom
load, we found a change in MFV over time [F(s)(8.087, 8.767)
= 9.746, P < 0.001], with a hemispheric difference (left >

right) in the MFV [F(1, 266) = 7.71, p < 0.001]; the post
hoc pairwise comparison indicating that this difference was
only significant during the middle phase of the measurement
(s 9 to 14). There is a statistically significant difference
between the curves of the three groups under comparison
[F(6, 1,792) = 17, p < 0.000].

Group differences and hemispheric differences inMFV during
the TMT-A are graphically represented (Figure 1). The mean
flow velocity in both middle cerebral arteries shows a similar
pattern for all three groups during the TMT-A; in the first 5–
10 s, there is an increase in blood flow followed by a steady
decrease. Healthy controls reached the peak of blood flow 2 s
faster than those with schizophrenia. Furthermore, those with
marked-severe psychopathological symptom load show a delayed

and higher increase and a slighter decrease in the blood blow
velocity in the left MCA.

Mean Cerebral Blood Flow Velocity During

the TMT-B
Healthy controls demonstrate a change of MFV over time
[F(s)(4.890, 5.952) = 23.04, p < 0.001], without a hemispheric
difference in MFV [F(1, 406) = 0.693, p = 0.405] during the
TMT-B. Those mild-moderately affected also showed a change
in MFV over time [F(s)(8.106, 8.779) = 18.62, p < 0.001], without
a hemispheric difference in MFV [F(1, 406) = 1.117, p = 0.291],
the post hoc pairwise comparison, however, demonstrated a
difference for the first eight s of the measurement period.
Those more severely affected also demonstrated a change in
MFV over time [F(s)(5.750, 6.882) = 3.888, p < 0.001], and a
hemispheric difference in MFV [F(1, 406) = 28.42, p < 0.001];
with the pairwise post hoc comparison revealing a significant
difference for the first 5 s and in the middle phase of the
measurement period (s 18 to 21). There is a statistically
significant difference between the curves of the three comparison
groups [F(6, 2,692) = 61.93, p < 0.000).

Group differences and hemispheric differences inMFV during
the TMT-B are graphically represented (Figure 2). Healthy
controls reach a peak in blood flow after 5 s, with a continuous
decrease. Those with mild-moderate psychopathological
symptom load also reach the first peak after 7 s, followed by a
slight decrease and a second lower peak. Finally, those with more
severe schizophrenia show a discrepancy between both MCAs.
Both MCAs form two peaks, the first just a few seconds after
beginning the task, the second after 20 s. The right MCA shows
a lower increased MFV, demonstrating a lower initial peak than
the left MCA 20 s after beginning the task.

DISCUSSION

Using an age and gender-balanced sample population,
including patients with schizophrenia and healthy controls,
we examined the mean blood flow velocity during the TMT-A
and TMT-B in the middle cerebral artery using functional
transcranial doppler. In our study, participants with a higher
psychopathological symptom load (represented by higher BPRS
scores) demonstrated slower processing speed (with similar
accuracy) during the TMT-A and TMT-B, compared with
participants with fewer symptoms and healthy controls.
The hemodynamic pattern also demonstrated a clearly
distinguishable profile between patients with schizophrenia
and healthy controls. The differences were more marked in
those with higher symptom severity and when the complexity
of the cognitive task increased (i.e., TMT-B over TMT-A).
In summary, our results demonstrate a relationship between
psychopathological symptom load, cognitive demand, decreased
processing speed and distinct hemodynamic patterns in the
MCA during the TMT-A and TMT-B.

Healthy controls in our study demonstrate in both the TMT-
A and TMT-B, an initial increase in cerebral blood flow, which
returns smoothly to baseline values, thus reproducing previous
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TABLE 1 | Demographic and clinical characteristics of the sample.

Non- affected Mild-moderate Marked-severe

N = 15 N = 15 N = 15

Demographic Variables Statistics p

Age (in years) 33.87 (7.68) 34.05 (7.73) 32.40 (5.38) F (2, 42) = 0.222 0.80

Sex (male/female) 10/5 10/5 12/3 X2
(2, 45) = 0.865 0.65

Education (in years) 19.17 (4.17)a 13.07 (2.60)a 13.10 (2.48)a F (2, 42) = 18.313 <0.001

Parents‘ Education (in years) 15.47 (3.83) 14.70 (3.00) 13.97 (3.03) F (2, 42) = 0.769 0.47

Clinical variables

BPRS – 30.27 (4.91)b 43.73 (3.67)b F (1, 28) = 72.421 <0.001

CGI-S – 3.60 (1.06)b 5.20 (0.68)b F (1, 28) = 24.436 <0.001

Chlorpromazine equivalent dosage (mg/d) 531.67 (165.69) 543.33 (176.14) F (1, 28) = 0.035 0.85

EPS – 3.47 (2.10) 4.93(7.91) F (1, 28) = 0.481 0.49

BAS – 0.53 (0.74) 1.07 (0.96) F (1, 28) = 2.89 0.10

Duration of illness (in years) – 8.67 (6.91) 12.20 (4.04) F (1, 28) = 2.922 0.09

Number of hospitalizations – 3.47 (2.03) 5.13 (4.70) F (1, 28) = 1.587 0.22

Cognitive performance

TMT-A (duration in seconds) 31.00 (7.43)c 40.20 (12.66)c 52.27 (30.84)c F (2, 42) = 4.388 0.019

TMT-B (duration in seconds) 66.20 (18.89)c 75.53 (22.98)c 111.13 (20.99)c F (2, 42) = 19.085 <0.001

Pairwise comparison: anon-affected > mild-moderate and marked-severe; bmarked-severe > mild-moderate: cmarked-severe < mild-moderate < non-affected.

FIGURE 1 | Bilateral Mean Flow Velocity changes from baseline in the Middle Cerebral Artery during the duration of the TMT-A (in seconds), according to

psychopathological symptom load [F (6, 1,792) = 17, p < 0.000].

findings in healthy subjects (38). Patients with schizophrenia
fail to reproduce this pattern. Firstly, the increase in MFV is
delayed; secondly, the MFV fails to return to baseline values.
The differences in the hemodynamic pattern for patients with
schizophrenia are accentuated, as psychopathological symptom
load and cognitive demand increases (i.e., TMT-B over TMT-
A). Processing speed may mediate the demonstrated differences
in hemodynamic pattern according to symptom severity and

cognitive demand for the TMT-A and TMT-B. This lends further
support to the notion that neuronal activity and cerebral blood
flow are closely coupled; with MFV resulting from the activation
of (or correspondingly the failure to deactivate) cortical areas in
the MCA’s irrigation territory (9, 12, 19, 39, 40). Patients with
schizophrenia demonstrate increased brain activity (as indicated
by a higher MFV) for lower performance (i.e., slower processing
speed) compared to healthy controls (16).
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FIGURE 2 | Bilateral Mean Flow Velocity changes from baseline in the Middle Cerebral Artery during the duration of the TMT-B (in seconds), according to

psychopathological symptom load [F (6, 2,692) = 61.93, p < 0.000].

Neuroimaging studies demonstrate different brain activation
patterns for the TMT-A and TMT-B. In the case of the
TMT-A, areas involved in graphomotor speed, visual scanning,
and selective attention are activated, whereas for the TMT-
B, activated areas relate to mental flexibility and executive
functioning (8). Previous findings also report a positive
correlation between the TMT-B and hemodynamic activity
in the MCA; this may be due to activation of the DLPFC,
temporal cortex, basal ganglia and the thalamus during the
TMT-B (17, 18). Several of these neuroanatomical areas are also
involved in psychopathology and the neurocognitive anomalies
related to schizophrenia (14, 41). Studies (including ours)
using fTCD demonstrate a correlation between performance
and hemodynamic patterns (14–16). This lends support to
the view that factors inherent to schizophrenia as well as to
other conditions characterized by executive dysfunction, such
as dysfunctional neuronal integrity, accelerated white matter
aging, hypoperfusion and increased vascular resistance (42–
45) may play a role. Since our sample was matched for age
and gender, we cannot make any inferences regarding the
effects of aging on our results. In the absence of a direct
anatomical image, taking into account that the irrigation territory
of the MCA is extensive, our findings in this respect are
not conclusive.

Our study has some other limitations which must be taken
into account in order to better understand and interpret
our findings. The lack of further neurocognitive assessments
limits our results to the cognitive abilities measured by the
TMTs. Taking into account that patients and healthy controls
showed similar error rates (i.e., both were accurate), the

main difference between the subsamples is processing speed.
Medication, particularly antipsychotics, can impair cognitive
performance, whether directly or through side effects (46–
50), Furthermore, they can also influence hemodynamics
(47). In our design, we did not directly control for this
potentially confounding factor. Nonetheless, we did not find a
difference regarding the dose and side effects of antipsychotics
among patients with schizophrenia. Those with a higher
psychopathological symptom load had a longer course of
the disease with higher rates of hospitalization, which may
be related to more severely impaired cognitive performance
(51, 52). The influence of systemic circulation on cerebral
blood flow, especially heart rate and arterial blood pressure,
is controlled for using a random motor activity (53, 54).
The control task aims to compensate for subtle alterations
in circulation and other confounding factors through relative
values compared to resting phase values before and after the
paradigm (53). Furthermore, all participants were medically
and neurologically stable, with no circulatory anomalies at the
time of the study. Other potential confounders, such as anxiety,
hypo- or hyperventilation (55), were not observed during the
measurement procedure.

In summary, patients with schizophrenia performed less
satisfactorily on both TMTs. Performance deteriorated with
increasing symptom load, parallel with a distinct cerebral blood
flow pattern in the MCA. Our results further support the view
that schizophrenia, particularly symptom load and thus severity,
influences performance in neurocognitive tasks, whilst being
related to distinct brain hemodynamic patterns. Furthermore,
these results support the use of fTCD as a brain imaging
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technique capable of studying brain hemodynamics during
neurocognitive tasks.
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Background: Despite their high lifetime prevalence, major depressive disorder (MDD)

is often difficult to diagnose, and there is a need for useful biomarkers for the

diagnosis of MDD. Eye movements are considered a non-invasive potential biomarker

for the diagnosis of psychiatric disorders such as schizophrenia. However, eye

movement deficits in MDD remain unclear. Thus, we evaluated detailed eye movement

measurements to validate its usefulness as a biomarker in MDD.

Methods: Eye movements were recorded from 37 patients with MDD and 400 healthy

controls (HCs) using the same system at five University hospitals. We administered

free-viewing, fixation stability, and smooth pursuit tests, and obtained 35 eye movement

measurements. We performed analyses of covariance with group as an independent

variable and age as a covariate. In 4 out of 35 measurements with significant

group-by-age interactions, we evaluated aging effects. Discriminant analysis and receiver

operating characteristic (ROC) analysis were conducted.

Results: In the free-viewing test, scanpath length was significantly shorter in MDD

(p = 4.2 × 10−3). In the smooth pursuit test, duration of saccades was significantly

shorter and peak saccade velocity was significantly lower in MDD (p = 3.7 × 10−3,

p = 3.9 × 10−3, respectively). In the fixation stability test, there were no significant group

differences. There were significant group differences in the older cohort, but not in the

younger cohort, for the number of fixations, duration of fixation, number of saccades,

and fixation density in the free-viewing test. A discriminant analysis using scanpath

length in the free-viewing test and peak saccade velocity in the smooth pursuit showed

MDD could be distinguished from HCs with 72.1% accuracy. In the ROC analysis,
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the area under the curve was 0.76 (standard error = 0.05, p = 1.2 × 10−7, 95%

confidence interval = 0.67–0.85).

Conclusion: These results suggest that detailed eye movement tests can assist in

differentiating MDD from HCs, especially in older subjects.

Keywords: major depressive disorder, free-viewing test, fixation stability test and smooth pursuit test, alerted

aging effect, discriminant analysis, eye movements

INTRODUCTION

Major depressive disorder (MDD) is a common global disorder
that affects over 264 million people (1). Depression is ranked
as the single largest contributor to global disability (7.5% of all
years lived with a disability) (2) and has been one of the top
three leading causes of health loss for nearly three decades (3).
The lifetime prevalence of MDD was reported to be 14–17%
with a 1-year prevalence of 4–8% (WHO, 2020). Many studies
have attempted to elucidate the pathophysiology of depression;
however, it remains poorly understood. Stressful events,
genetic vulnerability, environmental interactions, abnormalities
in several neurotransmitters, inflammation, as well as alterations
in neuropeptides and hormones have been investigated as causes
of MDD (4–6). Natural disasters (7), pandemics such as COVID-
19 (8–10), and cultural differences (11–14) also have a huge
impact on the development of MDD.

Clinically, it is difficult to diagnose mood disorders in patients
with MDD and bipolar disorder (15). For example, during
the initial evaluation, patients with bipolar disorder sometimes
show only depressive symptoms and thus receive antidepressants
based on a diagnosis of MDD, which may cause several critical
problems (16, 17). For this reason, objective indices for MDD are
needed; however, to date, none have been established.

Eye movements are considered a potential biomarker for
the diagnosis of mental illness (18, 19). We previously showed
an integrated score using three measurements (scanpath length
during a free-viewing test, horizontal position gain during the fast
Lissajous paradigm in a smooth pursuit test, and the duration of
fixations during the far distractor paradigm of a fixation stability
test) could distinguish between patients with schizophrenia (SZ)
and HCs with 82% accuracy (20). A recent review has provided
convincing evidence of eye-movement abnormalities in SZ (21,
22). However, Smyrnis et al. (23) noted that the sensitivity of
eye movement deficits to differentiate psychiatric patients from
healthy controls (HCs) was not high enough to be clinically
relevant for diagnostic purposes. In the previous study (20), our
group reported that eye movement can be a useful biomarker for
schizophrenia. In order to use eye movements as a diagnostic
tool, it is necessary to discriminate schizophrenia from other
psychiatric disorders. Therefore, we conducted the same tasks
used in the previous studies.

As listed in Table 1, several studies have used different
methods to evaluate eye movements in MDD. Iacono et al.
(24) reported that the performance of the MDD group was
not significantly different from that of the HC group regarding
smooth-pursuit eye movement (SPEM), but smooth-pursuit

tracing errors were greater for those with a higher frequency
of episodes of the disorder. Abel et al. (25) studied smooth
pursuit gain and catch-up saccade (CUS) in affective disorders
and found that when the constant stimulus velocity was 5◦/s,
but not 20◦/s, MDD patients had higher CUS rates than HCs.
Malaspina et al. (26) studied the effects of electroconvulsive
therapy (ECT) on SPEM with severe MDD and reported that
SPEM was transiently disrupted but pursuit performances were
improved after two sessions of ECT and at 2 months follow-up.
They concluded that SPEM abnormalities may be a state marker
in severeMDD. Flechtner et al. (27) explored SPEM in thirty-four
MDD patients and found they exhibited lower pursuit gain and
higher CUS rates than HCs. Flechtner et al. (28) also reported
that SPEM performance was not influenced by medication or
clinical state in a test-retest study. Fabisch et al. (29) reported
no significant difference between unipolar depressed patients
and HCs. Li et al. (31) reported that compared with the HC
group, the MDD group had a significantly shorter duration and
more saccades in a fixation stability test. Taken together, these
studies indicate inconsistent findings regarding eye movement
abnormalities in MDD.

In the present study, we recorded eye movements and
determined the detailed characteristics of eye movements in
MDD patients at multiple facilities. We then examined how eye
movements might be useful for differentiating between MDD
and HCs.

MATERIALS AND METHODS

Subjects
Patients with MDD recruited from Kyushu University Hospital,
Osaka University Hospital, The University of Tokyo Hospital,
and Nagoya University Hospital were diagnosed by two or more
trained psychiatrists according to criteria from the DSM-IV
based on the Structured Clinical Interview for DSM-IV (SCID).
All subjects were biologically unrelated, were of Japanese descent,
and had no history of ophthalmologic disease, or neurological/
medical conditions that might influence the central nervous
system. Specific exclusion criteria included atypical headaches,
head trauma with loss of consciousness, thyroid disease, epilepsy,
seizures, substance-related disorders, or intellectual disability.
HCs were recruited through regional advertisements and were
evaluated for psychiatric, medical, and neurological concerns
using the non-patient version of the SCID to exclude individuals
with current or past contact with psychiatric services or who had
received psychiatric medication. Eye movements were recorded
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TABLE 1 | Demographic and clinical characteristics of the study subjects and major findings of patients with MDD in eight eye movement studies.

MDD patients Healthy controls

Age (years) Male Currently on medication Age (years) Male

Study Task N Mean SD N % N % N Mean SD N % Parameters Major findings in

MDD

Iacono et al. (24)a SPEM 25 37.9 12.9 5 20 N/A N/A 46 35.0 11.9 8 22.9 RT, RMSE All variables: no

significance

Abel et al. (25)b SPEM 16 48.4 12.4 16 100 4 25 21 37.5 10.9 21 100 TWAG, CUS rates,

CUS amplitude

Higher CUS rates

in 5◦/s SPEM

Malaspina et al. (26) SPEM 18 28.9 5.6 N/A N/A 0 0 20 30.6 7 N/A N/A % abn, Large

saccades

All variables: no

significance

Flechtner et al. (27) SPEM 34 46.9 11 9 26.5 30 88.2 42 34.3 10.9 20 47.6 Pursuit gain, CUS,

Anticipatory

saccade, BUS,

SWJ

Lower pursuit gain

Flechtner et al. (28)c SPEM 34 46.9 11 9 26.5 34 100 42 34.3 10.9 20 47.6 Pursuit gain, CUS,

Anticipatory

saccade, BUS,

SWJ

All variables: no

significant

difference

between all time

Fabisch et al. (29) SPEM 19 34.4 8.3 19 100 19 100 21 37.8 5.9 21 100 Peak gain, CUS

error, CUS

velocities

All variables: no

significance

Chen et al. (30) FVT 19 28.3 4.7 N/A N/A 0 0 19 27.9 4.6 N/A N/A NF, tFD, aFD More NF, longer

tFD and aFD

Li et al. (31) FST 60 25.4 7.2 N/A N/A 0 0 60 24.2 6.1 N/A N/A NF, FD, Number of

saccades,

Saccade path

More NF and

number of

saccades, shorter

FD, longer

saccade path

FVT NF, Duration of

saccade, Saccade

amplitude, mFD,

Saccade path

Shorter duration of

saccade, longer

mFD

SPEM, Smooth pursuit eye movement; FVT, Free-viewing test; FST, Fixation stability test; RT, Reaction time; RMSE, Root mean square error; TWAG, Time-weight average gain; CUS, Catch-up saccade; BUS, Back-up saccade; SWJ,

Square wave jerk, NF, number of fixations; tFD, total fixation duration; aFD, average fixation duration; FD, fixation duration; mFD, mean fixation duration.
aThis study analyzed remitted MDD.
bThis study analyzed affective disorders (MDD non-psychotic = 10, MDD psychotic = 1, bipolar depression non-psychotic = 4, schizoaffective disorder = 1).
cA longitudinal study by Flechtner et al. (27).
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TABLE 2 | Demographics of the HC and MDD groups.

HCs MDD χ
2 or t p-value

Male/female 201/199 18/19 0.04 0.85

Age (years) 35.3 ± 14.8 49.5 ± 11.6 −7.0 8.6 × 10−9*

Education (years) 15.4 ± 2.3 14.5 ± 2.4 2.1 0.41

Premorbid IQ 107.7 ± 8.1 106.9 ± 10.9 0.38 0.71

Current IQ 107.1 ± 12.0 100.4 ± 13.5 2.7 6.7 × 10−3*

Onset age (years) 36.9 ± 13.6

Duration of illness (years) 13.0 ± 8.4

HAM-D 12.0 ± 6.3

IMP (mg) 187.9 ± 150.4

DZP (mg) 6.0 ± 5.9

CPZ (mg) 61.9 ± 117.1

Premorbid IQ was estimated using the Japanese Adult Reading Test.

Current IQ was estimated using the Wechsler Intelligence Scale short form.

HAM-D, Hamilton Depression Rating Scale; IMP, imipramine; DZP, diazepam; CPZ, chlorpromazine.

*p < 0.05.

from 51 patients with MDD and 519 HCs, who were recruited
from Kyushu University (28 MDD, 29 HCs), Osaka University
(15 MDD, 333 HCs), The University of Tokyo (6 MDD, 70
HCs), Nagoya University (2 MDD, 48 HCs), and Nara Medical
University (0 MDD, 40 HCs). Each facility used a common
protocol and analysis manual, and quality control was performed
every 2months to ensure uniformity of the data.We used the data
from 37 patients with MDD and 400 HCs, for which the quality
of the data was ensured by rigorous quality checks. Current
symptoms of depression were evaluated using the Hamilton
Depression Scale (HAM-D) (32) and the total dosages of
prescribed the antidepressant benzodiazepine or antipsychotics
were calculated using imipramine (IMP), diazepam (DZP),
and chlorpromazine (CPZ) equivalents (mg/day) (33). The
demographic information of the study subjects is shown in
Table 2. Based on the criteria for depression (34), 15 patients
showed mild depression, 9 showed moderate depression, 1
showed severe depression and 9 were euthymic. HAM-D scores
of the three patients were unknown.

The study was performed in accordance with the World
Medical Association’s Declaration of Helsinki and was approved
by the Research Ethical Committees of Kyushu University,
Osaka University, The University of Tokyo, Nagoya University,
and Nara Medical University. All participants provided written
consent to the study after a full explanation of the study
procedures. Anonymity was preserved for all participants.

Eye Movement Recordings and Processing
of Eye Movement Data
The subjects faced a 19-inch liquid crystal display monitor placed
70 cm from the observers’ eyes. Visual stimuli were presented
using MATLAB (The Mathworks, Natick, MA, USA) via the
Psychophysics Toolbox extension (35). The eye movements and
pupil areas of the left eye were measured at 1 kHz using the
EyeLink1000 Plus (SR Research, Ontario, Canada) system.

Eye position data were smoothed with a digital FIR filter
(−3 dB at 30Hz), and the eye velocity and acceleration traces
were obtained using a two-point forward difference algorithm to
identify saccadic eye movements. Eye movement records were
segmented into the blink, the saccade, and the fixation periods.
Further details are described in Supplementary Methods.

Eye Movement Paradigms and Extracted
Measurements
We administered 3 eye movement paradigms (free-viewing test,
fixation stability test, and smooth pursuit test) and obtained
35 eye movement measurements comprising 13 measurements
from the free viewing test, 16 measurements from the smooth
pursuit test, and 6 measurements from the fixation stability
test. We chose the examinations of eye movements used in
the previously published reports (18, 36, 37). Examples of eye
movement examinations are shown in Figure 1. Each paradigm
is discussed in detail below.

The free-viewing test was performed using images from
five categories that involved buildings, everyday items, foods,
fractal patterns, and noise (four images for each category). The
subjects were instructed to freely view the presented image for
8 s (Figure 1A). We measured the number and the median
duration of the fixations, the number of saccades, the median
durations, the amplitude, the mean and the peak velocity of
saccades, the scanpath length, and the fixation density (38). The
medians over each image were calculated for each eye movement
measurement. In addition, we examined the main sequence
relation of the saccades of individual subjects (for details, see
Supplementary Methods).

In the smooth pursuit eye movement test, subjects were
required to track a moving target for 20 s. The target moved
horizontally and vertically with a Lissajous trajectory (Figure 1B)
and the trial was repeated twice. We measured the number and
the median duration of fixations, along with the number, median
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FIGURE 1 | Eye movement paradigms. (A) Free-viewing test*. (B) Lissajous trajectories of the smooth pursuit eye movement test. (C) Fixation stability test. The fixed

target (center) and a distracter stimulus (right). *This image example is a photo taken by the author which is not the actual one used for the test.

duration, amplitude, mean, and peak velocities of saccades. In
addition, we measured the position gain, the velocity gain, the
common logarithm of the signal-to-noise ratio (SNR), and the
root mean square error (RMSE) for the horizontal and vertical
eye movements separately in each trial.

For the fixation stability test, subjects were required to
maintain their gaze on a fixed target presented at the center of
the monitor (Figure 1C). A few seconds (1–2 s randomly) after
the central fixed target was continually presented, a distracter
stimulus appeared at 3◦ right or left of the central fixed target
and presented for 5 s. We measured the number of fixations,
the median duration of fixations, the number of saccades, the
number of microsaccades, and the scanpath length for each trial.
The trial was repeated four times, and we calculated the mean of
each eye movement measure over all the trials.

Because some eye movement measurements are influenced by
optical devices (39), we divided subjects into naked eye, glasses,
and soft contact lens groups and normalized the measurements.
Z-scores are dimensionless mathematical tools that allow for
the mean-normalization of results within groups. Z-scores are
standardized scores (by the group mean and group standard
deviation) and no normal assumption is made. They indicate
how many standard deviations (σ ) an observation (X) is above
or below the mean of a control group (µ).

z =

X − µ

σ
,

where X represents individual data for the observed
measurement and µ and σ represent the mean and the
standard deviation for the control group, respectively.

Statistical Analysis
All statistical analyses were performed using SPSS 26.0 (IBM
Corp., Armonk, NY, USA). Group comparisons of demographic
variables were performed using a two-tailed t-test or a χ

2-test
when appropriate.

Because we previously reported that age should be considered
when investigating eye movements (40) and other studies also

indicated significant effects of age on saccadic eye movements
and smooth pursuit eye movements (41, 42), we performed
analyses of covariance (ANCOVAs) with the group factor as an
independent variable and age as a covariate for z score of each eye
measurement. We performed a correction with a false discovery
rate (FDR) of 0.05 (Benjamini–Hochberg procedure) for each
measurement, considering the nature of multiple comparisons.
When significant group-by-age interactions were observed, to
evaluate the age effect, we divided MDD and HCs into two
cohorts (younger and older cohorts) stratified by the median
age of MDD, 48 years [HC group: younger cohort (N = 314),
older cohort (N = 86); MDD group: younger cohort (N = 19),
older cohort (N = 18)]. Then, we examined the simple main
effects of group in younger and older cohorts using a general
linear model.

For associations between eye movement measurements and
demographics, we conducted multiple regression analyses using
the stepwise method with eye movement measurements, which
showed a significant difference between groups, where eye
movement measurements were dependent variables, and age,
medication (CPZ, DZP, and IMP equivalents), and HAM-D
scores were independent variables. The significance level was set
at p < 0.05.

A linear discriminant analysis was performed using
statistically significant measurements as independent valuables
between groups. After the discriminant analysis, the discriminant
score was calculated. Optimal sensitivity and specificity of
the discriminant score to differentiate between MDD and
HCs were determined via receiver operating characteristic
(ROC) curve analysis using a non-parametric approach. We
calculated the Youden index for each cutoff value [(sensitivity
+ specificity) – 1] to find the cutoff values that maximized the
discriminating power.

In addition, 37 HCs were randomly selected to
match ages between groups by a technician who was
unrelated to this study, and we performed t-tests to
evaluate age-matched group differences in eye movement
measurements. A linear discriminant analysis was
also performed.
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TABLE 3 | Results of ANCOVA.

HCs (n = 400) MDD (n = 37) Age-by-group interaction Effect of group

Median SD Median SD df F-value p-value F-value p-value

Free-viewing test

Number of fixations 23.00 3.32 21.50 4.93 1,433 5.07 2.5 × 10−2* N/A N/A

Duration of fixation 254.50 46.30 267.00 86.41 1,433 5.51 1.9 × 10−2* N/A N/A

Number of saccades 21.00 3.80 20.00 5.33 1,433 7.19 7.6 × 10−3* N/A N/A

Duration of saccades 42.38 5.59 42.50 6.65 1,433 0.10 0.75 0.91 0.34

Saccade amplitude 4.00 1.17 3.60 0.99 1,433 0.00 0.99 0.66 0.42

Average saccade velocity 93.94 19.25 81.99 17.50 1,433 0.12 0.73 2.51 0.11

Peak saccade velocity 185.10 44.55 181.81 43.85 1,433 0.73 0.39 0.01 0.91

Scanpath length 110.70 28.81 92.56 34.98 1,433 2.19 0.14 8.30 4.2 × 10−3**

Fixation density 0.88 0.39 0.92 0.51 1,433 9.58 2.1 × 10−3* N/A N/A

Main sequence vmax 436.81 119.83 419.68 107.90 1,433 0.39 0.53 0.41 0.52

Main sequence s 9.29 4.40 7.63 3.95 1,433 0.00 0.95 0.13 0.72

Main sequence v0 33.93 9.88 32.60 10.27 1,433 0.57 0.45 0.01 0.94

Number of blinks 1.00 1.49 1.00 1.31 1,433 3.64 0.06 0.45 0.50

Smooth pursuit test

Horizontal SNR 2.03 0.16 2.02 0.18 1,433 2.74 0.10 0.00 0.95

Horizontal position gain 1.01 0.03 1.00 0.03 1,433 0.93 0.33 0.34 0.56

Horizontal RMSE 8.35 4.18 8.78 4.11 1,433 2.30 0.13 0.39 0.53

Vertical SNR 1.84 0.20 1.80 0.20 1,433 1.22 0.27 0.27 0.60

Vertical position gain 0.96 0.07 0.95 0.09 1,433 0.67 0.41 1.18 0.28

Vertical RMSE 14.03 7.94 13.83 9.69 1,433 1.56 0.21 0.15 0.70

Number of fixations 58.25 13.77 60.00 13.99 1,433 0.17 0.68 1.00 0.32

Duration of fixations 259.88 69.00 250.75 79.92 1,433 1.29 0.26 4.27 0.04

Number of saccades 56.00 15.71 59.50 13.85 1,433 0.16 0.69 0.73 0.39

Duration of saccades 30.13 5.63 34.50 9.41 1,433 3.62 0.06 8.54 3.7 × 10−3**

Saccade amplitude 1.94 0.62 2.38 0.71 1,433 3.22 0.07 5.40 0.02

Average saccade velocity 65.13 11.71 70.80 9.85 1,433 0.00 0.96 1.42 0.23

Peak saccade velocity 98.05 38.71 136.46 46.52 1,433 2.32 0.13 8.41 3.9 × 10−3**

Horizontal velocity gain 0.85 0.11 0.77 0.14 1,433 0.85 0.36 4.60 0.03

Vertical velocity gain 0.76 0.13 0.70 0.16 1,433 0.59 0.44 1.43 0.23

Number of blinks 1.00 4.00 1.00 2.57 1,433 0.10 0.76 0.24 0.62

Fixation stability test

Number of fixations 3.00 2.46 3.25 2.71 1,433 0.25 0.62 0.10 0.75

Duration of fixation 2057.19 1492.87 1422.50 1558.35 1,433 0.21 0.64 0.50 0.48

Number of saccades 1.50 2.30 2.00 2.53 1,433 0.91 0.34 0.04 0.85

Scanpath length 1.13 2.21 1.36 2.43 1,433 0.23 0.63 0.02 0.89

Number of microsaccades 6.25 3.51 6.50 4.17 1,433 0.46 0.50 0.13 0.72

Number of blinks 0.00 0.97 0.00 0.70 1,433 2.68 0.10 0.04 0.84

RMSE, Root mean square error; SNR, signal-to-noise ratio; N/A, not applicable.

*p < 0.05.

**Represents significant after false discovery rate correction.

RESULTS

Demographics and Eye Movement
Measurements
The demographics of both groups are shown in Table 2.

There was no difference in the sex ratio between

the two groups (p = 0.85) or years of education

(p = 0.41); however, age was significantly different
(p= 8.6× 10−9).

Overall, 35 eye movement measurements were obtained in
this study. In the HC group, 189 subjects were naked eyes, 124
wore glasses, and 87 had soft contact lenses, whereas 20, 14, and
3 were naked eyes, wore glasses, or had soft contact lenses in the
MDD group, respectively (Supplementary Table 1).
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FIGURE 2 | Simple main effects of group. (A) Number of fixations, (B) duration of fixation, (C) number of saccades, and (D) fixation density in the free-viewing test.

*p < 0.01.

Differences Between Groups
Table 3 shows the mean ± SD of 35 measurements for
both groups. In the free-viewing test, there was a significant
group difference in scanpath length [F(1, 433) = 8.3, p = 4.2
× 10−3] but the other measurements were not significantly
different (0.11 < p < 0.94). In the smooth pursuit test,
there were significant group differences in duration of saccades
[F(1, 433) = 8.5, p = 3.7 × 10−3] and peak saccade velocity
[F(1, 433) = 8.4, p = 3.9 × 10−3] but the other measurements
were not significantly different (0.02 < p < 0.95). There were
no significant group differences in the fixation stability test
(0.48 < p < 0.89).

Differences in Younger and Older Cohorts
In 4 out of 35 measurements, there were significant interactions
between age and group [F(1, 433) = 5.1, p = 2.5 × 10−2) for
number of fixations; F(1, 433) = 5.5, p = 1.9 × 10−2 for duration
of fixation; F(1, 433) = 7.2, p= 7.6× 10−3 for number of saccades;
and F(1, 433) = 9.6, p= 2.1× 10−3 for fixation density) (Table 3).
For the number of fixations, the group effect was significant in
the older cohort [F(1, 433) = 17.8, p = 2.9 × 10−5] but not in the
younger cohort [F(1, 433) = 1.3, p = 0.26]. For the duration of
fixation, the group effect was also significant in the older cohort
[F(1, 433) = 30.7, p = 5.3 × 10−8] but not in the younger cohort
[F(1, 433) = 0.19, p= 0.67]. For the number of saccades, the group
effect was significant in the older cohort [F(1, 433) = 15.0, p = 1.2
× 10−4] but not in the younger cohort [F(1, 433) = 2.4, p= 0.12].
Finally, for the fixation density, the group effect was significant
in the older cohort [F(1, 433) = 12.4, p = 4.8 × 10−4] but not the
younger cohort [F(1, 433) = 1.3, p = 0.26], which suggests altered
aging effects in MDD (Figure 2).

Correlations Between Eye Movement
Measurements and Demographics
No correlations were statistically significant with scanpath
length in the free-viewing test. The duration of saccades and
peak saccade velocity in the smooth pursuit test had no
correlations other than age (R = 0.44, p = 0.02, R = 0.47,
p= 0.01, respectively).

Discriminant Analysis and ROC Analysis
Significant group differences were observed in scanpath length
in the free-viewing test, and duration of saccades and peak
saccade velocity in the smooth pursuit test. We selected scanpath
length of the free-viewing test and peak saccade velocity of
the smooth pursuit test for the discriminant analysis using z
score for each parameter, because these values were statistically
significant between groups and were obtained by independent
tests. According to the linear discriminant analysis, we correctly
classified 72.1% of the subjects using the resubstitution method
and correctly classified 71.9% of the subjects using the leave-
one-out cross-validation method. The discriminant score was
calculated using the following formula: discriminant score = –
0.52 × (z score of scanpath length) + 0.83 × (z score of
peak saccade velocity). Figure 3 shows the ROC curve of the
discriminant score between the MDD and HC groups. The area
under the curve (AUC) of the ROC analysis in MDD vs. HCs
was 0.76 (standard error = 0.05, p = 1.2 × 10−7, 95% CI = 0.67
– 0.85), indicating that the discriminant score for the scanpath
length in the free-viewing test and the peak saccade velocity in
the smooth pursuit test could be used to differentiate between
MDD and HC subjects with moderate accuracy. The Youden
index indicated a favorable cutoff point of 0.39, which resulted
in 81% sensitivity and 69% specificity.

Age-Matched Group Analysis
The results of the t-test are shown in Supplementary Table 2.
These were: the scanpath length for the free viewing test
(raw p = 0.01, d = 0.6); the duration of saccades and peak
saccade velocity for the smooth pursuit test (raw p = 3.9
× 10−3, d = −0.7; raw p = 1.5 × 10−3, d = −0.8,
respectively), but none of them were significant after FDR
correction. According to the linear discriminant analysis, we
correctly classified 75.7% of the subjects using the resubstitution
method and correctly classified 73.0% of the subjects using
the leave-one-out cross-validation method. The discriminant
score was calculated using the following formula: discriminant
score = – 0.63 × (scanpath length) + 0.80 × (peak saccade
velocity). Supplementary Figure 1 shows the ROC curve of the
discriminant score between the MDD and HC groups in age-
matched group analysis. AUC of the ROC analysis in MDD vs.
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FIGURE 3 | Receiver-operator curve (ROC) to predict patients with major

depressive disorder. Area under the ROC = 0.76 (standard error = 0.05,

p = 1.2 × 10−7, 95% confidence interval, 0.67–0.85).

HCs was 0.77 (standard error = 0.06, p = 6.5 × 10−5, 95%
CI = 0.66 – 0.88). The Youden index indicated a favorable
cutoff point of 0.03, which resulted in 73% sensitivity and
81% specificity.

DISCUSSION

The present study investigated eye movement measurements of
MDD using free-viewing, fixation stability, and smooth pursuit
tests. The results are as follows: (1) MDD showed a significantly
shortened scanpath length in the free-viewing test and a longer
duration of saccades and higher peak saccade velocity in the
smooth pursuit test compared with HCs; (2) altered aging effects
of MDD were observed for the number of fixations, duration of
fixation, number of saccades, and fixation density; and (3) the
AUC of the ROC analysis was 0.76 (standard error= 0.05, p= 1.2
× 10−7, 95% CI= 0.67 – 0.85).

The current findings are partially consistent with a previous
study (31) that reported MDD patients exhibited fewer saccades
and a shortened scanpath length in the free-viewing task
compared with HCs. In addition, they found that MDD patients
had a significantly shorter gaze time and more saccades in the
fixation stability test. However, in the present study, there were
no significant differences in the fixation stability test between
MDD and HC subjects. These differences between studies might
be because the previous study by Li et al. (31) did not compensate
for multiple tests, and thus their results should be interpreted
carefully. Hsu et al. (43) investigated temporal preparation in
MDD using a saccadic eye movement task where subjects were
required to make a saccade between a central and an eccentric

visual target. Patients with MDD showed a larger number
of saccades initiated prior to the appearance of the expected
stimulus, indicating reduced temporal preparation in MDD.
In addition, the authors reported that oculomotor impulsivity
interacted with temporal preparation. In our study, there were
no significant differences in the duration of fixation and the
number of saccades in the fixation stability test between groups,
suggesting that oculomotor impulsivity was not observed in
MDD. However, differences in experimental design may account
for the reported discrepancies.

Our previous study (20) reported that during the free-viewing
test, patients with SZ also had a significantly shortened scanpath
length compared with HCs. Based on this result, it appears that
the decline in the scanpath length in MDD may be less severe
than that in SZ. Egaña et al. (44) reported significant shortened
scanpath in SZ compared with HCs was resulted from the
increasing occurrence of undetected microsaccades. Our future
study will examine this issue for shortened scanpath length in
MDD. In the smooth pursuit test, there were significant declines
in horizontal and vertical position gains in SZ, but there were
no significant changes in position gain in MDD. However, there
were significant differences in the duration of saccades and peak
saccade velocity, which may indicate that patients with MDD
compensate with position error by catch-up saccade. It will be
necessary to clarify the commonality and heterogeneity of eye
movement parameters in psychiatric disorders in future studies.

Altered aging effects of MDD including the number of
fixations, duration of fixation, number of saccades, and fixation
density are also of particular interest. Indeed, accelerated
brain aging was reported in MDD patients (45). In terms
of symptoms, Dunlop et al. (46) suggested that accelerated
aging was associated with greater impulsivity and depression
severity. A genetic study by Han et al. reported that patients
with MDD had a degree of epigenetic and methylation
change that was reflective of an older age. In particular,
they suggested that MDD patients were 8 months biologically
older than people without MDD (47). The current finding
on different patterns of aging effects between MDD and HCs
suggests that MDD patients may show different age-related
changes from HCs, which could relate to disease characteristics.
We hope to confirm these findings in a larger cohort in
the future.

The results of discriminant analysis and ROC analysis suggest
that the combination of scanpath length by free-viewing test
and peak saccade velocity by smooth pursuit test are potential
biomarkers to differentiate between MDD and HCs. In the
present study, we also performed age-matched group analysis
and found no significant differences after FDR correction in
the eye movement variables that were significantly different
in the main ANCOVA. However, in terms of effect sizes
comparing MDD and HCs, the impacts of eye movements
seem to be more significant compared to other indices. For
example, in a structural brain imaging study with mega-
analysis methods (48), patients with MDD had a significantly
thinner cortical gray matter in the orbitofrontal cortex, anterior
cingulate gyrus, posterior cingulate gyrus, insula, and temporal
lobes compared to HCs (Cohen’s d effect size: −0.10 to
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−0.14), whereas the effect sizes of our present study were
0.60–0.77. In addition, the study using MRI as a biomarker
reported that patients with MDD were distinguished from
HCs with a sensitivity of 77% and specificity of 78% (49),
which was comparable to the present results. Therefore, it
may be reasonable to select variables of eye movements
as potential biomarkers. It will be important to utilize the
same measurements for the differentiation of other psychiatric
disorders. Further study of the eye movement measurements in
psychiatric disorders other than SZ and MDD, such as bipolar
disorder, anxiety disorder, obsessive-compulsive disorder, and
autism spectrum disorder may identify eye movement-related
biological differences across psychiatric disorders. In future
clinical applications, it may be necessary to narrow down the
parameters to be used.

Several limitations of this study must be considered.
First, differences in group age might have influenced the
discrimination analysis because we used the peak saccade
velocity in the smooth pursuit test as an independent variable,
which is associated with age. To obtain more accurate results,
demographically-matched groups should be used in future
analyses. Second, patients with MDD had various disease
status including mild-to-moderate severity and remission with
medication. Furthermore, the sample size was relatively small.
Thus, larger numbers of samples with all types of depressive
states ranging from mild to severe will be required to
determine whether the abnormalities are traits or a state of the
disorder. As shown in age-matched group analyses, although
the effect sizes were large, significant differences would only
be found with larger sample sizes in an exploratory study.
Therefore, we need to confirm further our results in another
extensive age-matched data set as a confirmatory study. Third,
the current study cannot answer the question of whether
the current findings are specific to MDD or not. It will
thus be important to investigate other psychiatric disorders
such as bipolar disorder. Our future study will perform
direct comparisons among disorders, including schizophrenia,
with larger sample size. Finally, the neural basis of these
age-related eye-movement abnormal changes remains poorly
understood. Thus, to determine the neural basis of these age-
related eye-movement abnormalities, functional neuroimaging
studies including functional magnetic resonance imaging,
electroencephalography, or magnetoencephalography should be
combined during the eye-movement tasks.

CONCLUSION

In the current study, MDD patients had a significantly
shortened scanpath length in the free-viewing test and
a longer duration of saccades and higher peak saccade
velocity in the smooth pursuit test compared with HCs.
In addition, altered aging effects of MDD were detected
for the number of fixations, duration of fixation, number
of saccades, and fixation density. The discriminant score
calculated by the scanpath length in the free-viewing test and
peak saccade velocity in the smooth pursuit test might be

used to differentiate between MDD and HCs with moderate
accuracy. These results suggest that detailed eye movement
tests can assist in differentiating MDD from HCs, especially in
older subjects.
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Background: Psychiatric disorders have been historically classified using symptom

information alone. Recently, there has been a dramatic increase in research interest not

only in identifying the mechanisms underlying defined pathologies but also in redefining

their etiology. This is particularly relevant for the field of personalized medicine, which

searches for data-driven approaches to improve diagnosis, prognosis, and treatment

selection for individual patients.

Methods: This review aims to provide a high-level overview of the rapidly growing field

of functional magnetic resonance imaging (fMRI) from the perspective of unsupervised

machine learning applications for disease subtyping. Following the PRISMA guidelines

for protocol reproducibility, we searched the PubMed database for articles describing

functional MRI applications used to obtain, interpret, or validate psychiatric disease

subtypes. We also employed the active learning framework ASReview to prioritize

publications in a machine learning-guided way.

Results: From the 20 studies that met the inclusion criteria, five used functional MRI data

to interpret symptom-derived disease clusters, four used it to interpret clusters derived

from biomarker data other than fMRI itself, and 11 applied clustering techniques involving

fMRI directly. Major depression disorder and schizophrenia were the two most frequently

studied pathologies (35% and 30% of the retrieved studies, respectively), followed by

ADHD (15%), psychosis as a whole (10%), autism disorder (5%), and the consequences

of early exposure to violence (5%).

Conclusions: The increased interest in personalized medicine and data-driven disease

subtyping also extends to psychiatric disorders. However, to date, this subfield is at

an incipient exploratory stage, and all retrieved studies were mostly proofs of principle

where further validation and increased sample sizes are craved for. Whereas results for

all explored diseases are inconsistent, we believe this reflects the need for concerted,

multisite data collection efforts with a strong focus on measuring the generalizability

of results. Finally, whereas functional MRI is the best way of measuring brain function

available to date, its low signal-to-noise ratio and elevated monetary cost make it a poor
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clinical alternative. Even with technology progressing and costs decreasing, this might

incentivize the search for more accessible, clinically ready functional proxies in the future.

Keywords: functional MRI (fMRI), personalized medicine, disease subtyping, biotypes, machine learning,

unsupervised learning, clustering, translational psychiatry

INTRODUCTION

Psychiatric Disease Prevalence
Psychiatric disorders have a long history of being classified based
solely on their associated symptoms, with the first systematic
analysis attempts dating back as far as the late 1800s (1). Since
the introduction of the Diagnostic Manual of Mental Disorders
(DSM) back in 1952 (2), and most notably since the inclusion
of operationalized criteria in 1978 in the DSM-III (3), statistics
on discrete pathological entities and their combination began to
accumulate, yielding the potential of understanding psychiatric
epidemiology in a consistent way. The last version of the DSM
manual (DSM-5), published in 2013 (4), contains 297 discrete
disorders categorized into 11 broad classes, grouped by evidence
of co-occurring symptoms. Current prevalence estimates indicate
that, on average, more than one in six individuals (17.6%) have
experienced at least one common psychiatric disorder within
the last year and almost three in ten (29.2%) during their
lifetime (5). In an attempt to assess both the severity of the
disorders and the response after individual treatment, several
standardized symptom scores have been developed, including
the Hamilton Depression Rating Scale (HAM-D) for Major
Depression Disorder and the Positive and Negative Syndrome
Scale (PANSS) for Schizophrenia, among others.

Heterogeneity and Alternatives to

Symptom-Based Diagnosis
Symptoms and clinical information can be relatively easy
to acquire, and their analysis can be useful to understand
the symptom prevalence in the population and assess the
effectiveness of treatment on a broad scale (6). They do
not, however, necessarily reflect anything about the underlying
mechanisms causing them. Furthermore, given the complexity
of the genetic and environmental factors at play, the same
set of symptoms can arise from different causes, while the
same biological causes may lead to different symptoms or
phenotypes (7, 8). This is particularly important when analyzing
the response to treatment, where the outcome is challenging
to predict based on the symptoms alone, and response to
medication is vastly heterogeneous, being treatment-resistant
variants of disease not uncommon (9). For example, current
estimates indicate that about 30 and 34% of medicated patients
diagnosed with depression and schizophrenia, respectively, do
not respond to treatment even after trying two or more drugs
(10, 11). This can be interpreted as an indication of the
underlying mechanistic heterogeneity of these symptom-defined
disorders. In light of this concern and with the advantage of
new technologies and an increasing amount of related data,
several initiatives have embarked on the quest to find data-
driven mechanistic disease definitions that may aid the issue.

One of the most important to date has been the Research
Domain Criteria (RDoC), which was introduced by the NIH
(National Institute of Health) in 2009 as a framework to guide
research projects in the understanding of mental disorders from
a combination of different perspectives, including not only self-
reported symptoms but also genomics, circuits, and behavior,
among others (12). The ideas behind these mechanistic-based
classifications have the potential of expanding our knowledge
of mental disorders themselves, advancing biomarker discovery,
and helping improve prognosis prediction and identify the best
treatments for individual patients whose overlapping symptoms
have distinct etiological causes, in a notion that is very much in
line with those of personalized medicine (13).

Functional MRI for Disease Subtyping
The idea of using multivariate pattern analysis to unravel
the heterogeneity mentioned above and unveil subgroups
of patients within already defined diseases is not new (12,
14, 15). However, the advent of massive biological related
datasets (the so-called high-throughput biology) in areas such
as genomics, transcriptomics, and proteomics, and the newly
available techniques to study the brain in a non-invasive way,
opened a whole new field of possibilities to study not only
the underlying mechanisms of symptom-related clusters but to
search for biologically defined subtypes of disease (or biotypes) as
well. Although initial hopes were put mainly on genetics, over
the years an increasing number of Genome-Wide Association
Studies (GWAS) have revealed that brain disorders tend to be
associated with a high number of genetic variants with tiny
effect sizes (16–18). Furthermore, individual genetic alterations
often overlap among symptom-defined diseases (19). While
some progress in genetic biomarkers has been made using
disease-specific polygenic risk scores (PRS), the usage of genetics
alone for determining brain disease subtypes has been mostly
elusive (20, 21). However, one of the most promising fields
to pursue this aim has been neuroimaging, with Magnetic
Resonance Imaging (MRI) as arguably its most proficient method
to date. This technique has been increasingly used to study
not only the structure of the brain (structural MRI) but also
to measure changes in the blood oxygen levels surrounding
particular regions as a proxy of neuronal activation (BOLD fMRI)
(22). One of the most prevalent uses of this technology has
been task-based fMRI, in which an experimental design matrix,
typically convolved with a mathematical function modeling the
hemodynamic response (called hemodynamic response function,
or HRF), is set to explain the observed signal using a General
Linear Model (GLM). While this approach has a substantial
amount of literature behind it and is highly flexible due to
relying on a Linear Model assumption (23), it has some
notorious drawbacks. First, the most common analyses rely
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on mass univariate tests, which statistically assess differences
in activation on each voxel separately, assuming independence
even among contiguous regions in space. Second, it depends
on an experimental task design, which, even though it can be
a powerful tool for answering specific questions, is relatively
hard to perform, difficult to generalize, and prone to habituation
(24). An alternative that gained momentum over the last two
decades has been resting-state fMRI, in which the subjects
perform no particular task. Since it was first employed in 1995
(25), this approach allowed researchers to study the relationship
between brain regions over time, which has been proven to
be a useful tool to study both functional connectivity (Resting-
State Functional Connectivity–RSFC), based on voxel correlation
and yielding undirected connectivity networks) and effective
connectivity (Resting-State Effective Connectivity–RSEC), based
on causal modeling and yielding directed connectivity networks).
Regardless of the analysis tool, most studies largely converged in
reporting multiple robust resting-state networks across the brain,
such as the primary sensorimotor network, the primary visual
network, frontoparietal attention networks, and the well-studied
default mode network (26). In addition, Seeley et al. proposed
in 2007 the concept of Intrinsic connectivity networks, which
refers to correlated brain regions that can be captured in either
resting state or task-based neuroimaging data (27). Furthermore,
recent studies interestingly show that the contribution of task
performing to an individual’s established connectivity networks
is rather small (28), suggesting the possibility of utilizing already
generated task-based fMRI data for RSFC as well (29).

The idea of the brain having stable connectivity between
its different regions that can be altered in illness has been an
influential hypothesis for disease subtyping. Given its potential
generalizability and the robustness of the obtained results
(26, 30), resting-state connectivity is currently the most used
fMRI approach for both searching for and validating distinct
mechanisms underlying brain disease, in an attempt to explain
the aforementioned vast heterogeneity.

Unsupervised Machine Learning on

Psychiatric Disease Subtyping
Automated pattern recognition (i.e., machine learning) can be
used to unveil subtypes in psychiatric disease in an unsupervised
way (i.e., without the presence of hardcoded labels indicating for
example if a disease is present or not). Given the complexity
of the data at play, this set of approaches has been proven
extremely useful in various settings and data domains, mainly
for clustering and dimensionality reduction (13, 28). While the
former deals with the process of finding subtypes in itself, the
latter encapsulates a set of methods to project the data into lower-
dimensional manifolds (31), in an attempt to reduce dataset
size while retaining the most valuable information, which can
substantially aid downstream model training.

In the case of functional MRI, unsupervised machine learning
has been extensively used given the unstructured nature of the
data. Its main uses include but are not restricted to parcellation
of the brain into discrete functional subunits (unraveling of
brain connectivity networks), the study of brain connectivity

dynamics (how those networks develop over time), and grouping
subjects according to their connectivity features (used for disease
subtyping in itself). While the first two mentioned uses fall into
the dimensionality reduction category, the third is inherent to
clustering, and it will be part of the focus of this review.

Over the years, many clustering algorithms have been
proposed. While a thorough classification of them is out of the
scope of this review, an introductory, coarse grain subdivision
of those applied in the analyzed studies, based on their general
properties, can be found in Table 1.

With Great Power Comes Great

Responsibility
While extremely useful when properly used, there are some
inherent issues to clustering that are worth discussing before
delving into the literature. For starters, clustering is in itself
an ill-defined problem (34). This means that, unlike in other
machine learning domains such as classification, there is neither
a unique well-defined solution nor a unique definition of what
a cluster is. That said, different algorithms will make different
assumptions on the data that will intrinsically lead to distinct
(although potentially overlapping) solutions. The choice may
then rely on knowing these assumptions hold on a particular
dataset, or on the empirical interpretation of a particular set
of retrieved components using external variables (such as using
fMRI to validate symptom or biomarker clusters, as will be
presented later).

In addition, many popular clustering algorithms (although
not all of them) require users to define the number of clusters
they expect beforehand (typically codenamed k). While there
are some exceptions (such as handwritten digit recognition, for
example, where there are exactly 10 classes to detect), clustering
is about understanding data, and recognizing the best number
of components to define is, in most cases, a problem in itself.
To solve it, researchers often rely on heuristics that compare the
solutions achieved within a range of different values, exploiting
a certain definition of cluster that the algorithm at hand uses.
Besides, there is no guarantee that there are clusters at all in the
data. Therefore, it is important to test the null hypothesis of no-
clusters in our setting as well. This can be done by adding k=1 to
the range of values to test or using statistical methods (35).

Last but not least, there is the problem of generalizability,
arguably one of the holy grails of machine learning as a whole.
The whole point of unveiling disease subtypes from our data is
to extend the results to at least a broader subset of the general
population. If a solution is only valid within the boundaries
of a particular study but breaks apart on different datasets, we
say that the model overfits the data it’s been trained on. To
counter this issue, it is common practice to run these algorithms
multiple times with different subsamplings of the dataset (by
removing random sets of samples using predefined schemes, such
as cross-validation, bootstrap, or Jackknife), and to assess how
much the clustering solution is affected. If clusters are highly
stable across samples (as measured by established metrics, such
as the Adjusted Rand Index or the Jaccard Index), the solution is
said to be robust (34, 36). While these approaches are extremely
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TABLE 1 | Coarse classification of clustering algorithms.

Algorithmic family Distance-based clustering Graph-based clustering Model-based clustering

Description A similarity/distance matrix between

samples is computed, and the raw

distance between samples is used for

grouping similar objects together.

The similarity/distance matrix is

thresholded to establish deterministic

connections (edges) between

samples, yielding a graph. Distance

metrics at the graph level are used for

determining clusters (called

communities)

A parameterized model (typically a

multimodal probability distribution) is

fitted to the data. Training consists of

finding the model parameters that

best model the data.

Advantages - Relatively low time complexity

- High Computing Efficiency (they

scale well to large datasets)

- Variety of highly efficient algorithms

to deal with graphs (32)

- Can capture the geometry of

complex manifolds, a feature of

interest in realistic datasets (33)

- High flexibility

- Well-defined metrics for model

selection (one can check how well

a given model fits the data using

likelihood based metrics).

- Natural approach to soft clustering

(probabilities are reported)

Limitations - Sensitive to the selected

distance metric

- Number of clusters usually needs to

be manually preset

- Low flexibility

- Time complexity increases

dramatically with the number of

edges in the graph (proportional to

the number of samples).

- Sensitive to how the graph is

constructed

- High time complexity (don’t scale

well for large datasets)

- Flexibility comes at a cost (one

must think carefully about which

type of model to apply).

Examples (mentioned across this review) K-means, Hierarchical Agglomerative

Clustering, fuzzy c-means, Spectral

clustering, Q-Factor analysis

Walktrap, Modularity maximization

(Newmann’s)

Gaussian Mixture Models (GMMs),

Variational Bayesian GMMs

useful to test generalizability inside our data distribution, further
validation steps are usually required to extend a solution to other
settings, such as contrasting results to data obtained on different
hospitals, or from different ethnicities [involving, for example,
schemes such as leave-one-site-out cross-validation and external
validation (37)]. The bottom line is: If a subtyping study aims to
draw conclusions for a certain population, generalizability to that
population should be thoroughly tested.

For a detailed review on machine learning for clinical
psychiatry with a special focus on testing generalizability, please
refer to (13, 38). For details on the existing unsupervised learning
methods for disease subtyping, see Marquand et al. (39). For
details on machine learning methods for resting-state fMRI data,
refer to Khosla et al. (26).

This review will analyze the reported use to date of fMRI
data for unveiling subtypes in several psychiatric disorders, and
as a tool for validating subtypes reported after the analysis of
other data modalities (such as symptom information, genetics, or
structural MRI). The strengths and weaknesses of each approach
will be discussed.

METHODS

This study followed the Preferred Reporting Items for Systematic
reviews and Meta-Analysis (PRISMA) statements (40). A
complete flow chart of the process is shown in Figure 1. The
research question intended to delve into was defined using
the PICo guidelines for qualitative systematic reviews (41):
What is the state of the art in the usage of unsupervised
subtyping for explaining the heterogeneity in psychiatric disease

symptomatology? What role does functional MRI play in
this process?

Search Methods for Article Retrieval
A systematic search of original articles was carried out on
the PubMed database, including all non-review articles from
the date of database creation up to 25 May 2020. The
string “(unsupervised learning OR clustering OR dimensionality
reduction OR subtyping) AND functional MRI” was entered
on the search engine to retrieve all available papers in which
functional MRI was used either for brain disease subtyping or for
validation of brain disease subtypes obtained via other methods,
which should include at least one of symptom information and
structural MRI data.

Article Filtering
All retrieved studies were downloaded and analyzed using
PubMed metadata to filter review articles (“D016428:Journal
Article”, but “D016454:Review” absent in the “publication_types”
metadata field). The remaining studies were analyzed using
the ASReview (Automatic Systematic Reviews) python package
(42). This active-learning-based recommender system trains a
classifier on the provided papers’ abstracts and presents the user
with the most relevant articles to review. While all abstracts
included in this step were carefully studied, this tool has been
proven useful for prioritization. Studies whose abstracts met
the exclusion criteria (see below) were discarded. The rest was
selected for full-text review.

Inclusion/Exclusion Criteria
We retained all original non-review studies in which functional
MRI was used either for brain disease subtyping directly or
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FIGURE 1 | Paper selection pipeline. PRISMA flowchart (represented as a

ribbon plot, which flows from top to bottom) that schematizes the employed

pipeline. A total of 144 articles were retrieved from PubMed using the string

“(unsupervised learning OR clustering OR dimensionality reduction OR

subtyping) AND functional MRI”. Two articles were included after the manual

search, yielding a total of 146 input studies. After several systematic filters,

which included the exclusion of reviews, duplicated articles, and relevance to

the defined inclusion criteria, a total of 20 articles were included in the review.

for validation of brain disease subtypes obtained via other
methods, including at least one of symptom information and
structural MRI data. Disease subtyping had to be carried out
in an unsupervised way (no labels based on prior information
except for case/controls). Precise definitions of the methods and
their validation had to be included. As, given the heterogeneity
of results, we think that cluster validation is currently one of
the most important discussion topics in the field, articles trying
to replicate or validate the results of included studies were
also incorporated.

Data Extraction for Systematic Analysis
For each article included in the final review, a set of systematically
collected pieces of information was extracted and added
as an entry to a table (see Tables 2–4). This information
includes: (a) publication year, (b) reference, (c) pathology, (d)
data domain used for clustering, (e) sample size (clustering),
(f) data domain utilized for validation/interpretation, (g)
sample size (validation/interpretation), (h) feature selection
/ dimensionality reduction algorithms utilized, (i) clustering
algorithm(s) employed, (j) cluster number selection criteria,
(k) robustness assessment, (l) inclusion of healthy controls at
clustering time1 (m) testing against continuum (null hypothesis
- absence of clustering structure in the data), (n) number of

1Both direct inclusion of healthy controls or indirect referencing to normative

samples (i.e. by clustering differences between diagnosed patients and matched

controls) were considered.

reported subtypes, (o) featured brain areas/networks that were
recovered using fMRI.

Characteristics of the Included Studies
The 20 retrieved studies were classified into one of three
categories based on the nature of the analyzed subtypes and the
usage of functional MRI (Figure 2A). The classes are: (a) fMRI
used for validation of subtypes obtained via unsupervised learning
of symptom-related data, (b) fMRI used for validation of subtypes
obtained via unsupervised learning of biomarkers other than fMRI
(including structural MRI), and (c) fMRI used for brain disease
subtyping itself. Over the next three sections, we will analyze these
three cases separately, summarizing the results that the respective
studies reported and discussing the assumptions they make and
the advantages and disadvantages that they imply.

Regarding the pathological entities under study, most of
the articles analyzed patients diagnosed with major depression
disorder and schizophrenia (35 and 30%, respectively). Psychosis,
attention-deficit/hyperactivity disorder, autism disorder, and the
consequences of early violence were also included (Figure 2B).

RESULTS

fMRI Used for Validation of Subtypes

Obtained via Unsupervised Learning of

Symptom-Related Data
The unsupervised classification of psychiatric symptoms is not
new: to our knowledge, the first papers were published back
in the 1970s (12, 14, 15). The novelty of the studies presented
here relies on interpreting and validating symptom clusters in
terms of their underlying functional mechanisms. By comparing
functional MRI data coming from patients on different clusters
(or between particular clusters and healthy controls), researchers
can potentially explain which mechanisms may be at play when
yielding distinct sets of symptoms. The following paragraphs will
explore the five papers that fall into this category.

Major Depression Disorder
In a pioneering study, Taubner et al. (43) addressed the
symptomatic heterogeneity in a cohort of 20 patients with severe
depression by clustering the personality features obtained from
the Shedler-Westen Assessment Procedure (SWAP-200). As this
assessment relies on clinical judgment rather than on a patient
questionnaire, it is usually considered less noisy than other
alternatives (44). Besides, as it is purely based on observed
symptoms, it does not rely on any theoretical assumption about
the mechanisms underlying depression.

In their setup, they applied a well-established method called
Q-Factor analysis (45) to uncover a potential clustering structure
in their data. This method aims to decompose the data matrix (of
samples by features) into different components (called “factors”).
The “Q” in the name indicates that factors refer to groups of
individuals rather than to groups of features, as is the case in
standard factor analysis. By employing an elbow method (45)
on the variance explained by their factors, researchers decided to
retain the two most prominent components in their data.
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TABLE 2 | Retrieved articles in which fMRI was used to interpret symptom-based clusters.

Publication

year

Reference Pathology Data used

for

clustering

sample size

(symptoms)

Data used

for

validation

sample size

(fMRI)

Dimensionality

reduction

Clustering Cluster

number

selection

Robustness

testing

Healthy

Controls

included

Testing

against

continuum

Reported

subtypes

Featured

brain areas/

networks

2013 Taubner et al.

(43)

MDD SWAP-200

(44)

20 task fMRI

(dysfunctional

relationships)

20 Raw features Q-Factor

analysis

(45)

variance

explained

(elbow

method)

(45)

No No No 2 orbitofrontal

cortex, ventral

striatum,

temporal

pole,

middle frontal

gyrus

2015 Geisler et al.

(46)

SCZ behavioral

and cognitive

scores

129 task fMRI

SIRP

(47)

165 PCA K-means

(36)

previous

literature (48)

No No No 4 planum

temporale,

parietal

operculum,

precuneus

cortices

2018 Dickinson

et al. (49)

SCZ PANS scores

(50, 51)

549 rsfMRI 182 Raw features GMMs

(52, 53)

BIC (35) 1,000 model

initializations

(no left-out)

No Yes 3 frontoparietal

working

memory

network

2018 Maglanoc

et al. (54)

MDD BDI–BAI

(54, 55)

1,084 rsfMRI sFC

dFC

251 Raw features GMMs

(52, 53)

BIC

(35)

100 model

initializations

(no left-out)

Yes No 5 default mode

network,

frontotemporal

network

2020 Chen et al.

(56)

SCZ PANS scores

(50, 51)

1,545 rsfMRI 84 NMF

(57)

fuzzy

C-means (58)

fuzzy

silhouette

index,

Xie/Beni

index,

partition

entropy

(31)

bootstrap

resampling,

leave-one-

site-out

cross-

validation

No Yes 2 ventromedial

frontal cortex,

temporoparietal

junction,

precuneus
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TABLE 3 | Retrieved articles in which fMRI was used to interpret biomarker-based clusters.

Publication

year

Reference Pathology Data used

for

clustering

Sample size

(symptoms)

Data used

for

validation

Sample

size (fMRI)

Dimensionality

reduction

Clustering Cluster

number

selection

Robustness

testing

Healthy

Controls

included

Testing

against

continuum

Reported

subtypes

featured

brain areas/

networks

2016 Clementz

et al. (58)

Psychosis biomarker

panels

1,872 – – PCA

(57)

K-means

(36)

GAP Statistic

(59)

Jackknife

(34)

No Yes 3 –

2016 Meda et al.

(60)

Psychosis – – rsfMRI 1,125 – – – – No – – cuneus-

occipital,

fronto-

parietal,

cerebellar-

occipital,

default mode,

bilateral

temporo-

parietal,

fronto-parietal

2018 Chen et al.

(61)

ASD sfMRI

(VBM)

356 rsfMRI 356 NMF

(57)

K-means

(36)

Silhouette

index

(62)

random

splitting (34)

Yes,

Indirectly

No 3 default mode,

frontoparietal,

cingulo-

opercular,

sensory-

motor,

occipital

2019 Kaczkurkin

et al. (63)

MDD sfMRI

(cortical

thickness)

1,141 rsfMRI 40 raw features HYDRA

(64)

Adjusted

Rand Index

(62)

cross-

validation

(34)

Yes No 3 frontal

regions, right

amygdala,

right

hippocampus
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TABLE 4 | Retrieved articles in which fMRI was used to cluster subjects into biotypes.

Publication

year

Reference Pathology Data used

for

clustering

Sample

size (fMRI)

Data used

for

validation

Sample

size

(validation)

Dimensionality

reduction

Clustering Cluster

number

selection

Robustness

testing

Healthy

Controls

included

Testing

against

continuum

Reported

subtypes

featured brain

areas/

networks

2014 Du et al. (65) SCZ functional

connectivity

93 – – Recursive

feature

elimination

K-means,

HAC

(36)

based on

previous

knowledge

algorithm

reinitialization

- no data

perturbation

Yes No 5 frontal, parietal,

precuneus,

cingulate,

supplementary

motor, cerebellar,

insular, and

supramarginal

cortices

2014 Brodersen

et al. (66)

SCZ effective

connectivity

41 PANSS

symptom

scale

41 raw features -

weights of DCM

models

VBGMM

(36)

automatic not reported Yes Yes 3 visual–parietal–

prefrontal

working-memory

network

2014 Gates et al.

(67)

ADHD effective

connectivity

80 – – raw features -

weights of DCM

models

Walktrap

(68)

automatic network

permutation

Yes Yes 5 dorsolateral

prefrontal and

frontal cortices,

intraparietal

sulcus, inferior

parietal lobule

2014 Yang et al.

(69)

SCZ functional

connectivity

51 PANSS

symptom

scale

51 raw functional

connectivity

features

maximal

clique

(70)

automatic cross-

validation

Yes Yes 2 precuneus-angular

gyri

2015 Costa Dias

et al. (71)

ADHD functional

connectivity

106 behavioral

measures

101 meta-analytic

masking

(NeuroSynth)

(72)

Walktrap

(68)

automatic random

perturbation

Yes Yes 3 nucleus

accumbens,

default mode

network

2017 Drysdale

et al. (73)

MDD functional

connectivity

220 HAM-D

scores

(symptoms)

1188 CCA (functional

connectivity -

symptoms)

(74)

HAC

(36)

CH index

(75)

random

splitting

(34) external

validation in

independent

samples

No No 4 limbic and

frontostriatal

networks

2017 Price et al.

(67)

MDD effective

connectivity

80 clinical data 80 raw features -

weights of DCM

models

Walktrap

(68)

automatic network

permutation

No Yes 2 default mode

network, dorsal

anterior cingulate

nodes

2018 Lin et al. (76) ADHD functional

connectivity

80 behavioral

measures

80 CCA (functional

connectivity -

symptoms)

(74)

K-means,

spectral

clustering

(36)

jaccard,

silhouette,

gap

- No Yes 1 default-mode,

cingulo-opercular

and subcortical

networks

2018 Tokuda et al.

(77)

MDD functional

connectivity -

biomarker

data

134 CATS score,

response to

medication

134 raw features custom

multi-view

co-clustering

automatic cross-

validation

Yes Yes 5 default mode

network, angular

gyrus node

(Continued)
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Furthermore, functional MRI data from an individually
tailored task paradigm using dysfunctional relationship patterns
were obtained from each patient whose data was used for
clustering, and a whole-brain correlational analysis was done
comparing the fMRI GLM parameters with the individual
values extracted within the SWAP-200 factors. This way, they
cataloged their two retrieved components as indicators of
“Depressive personality” or “Emotional-Hostile-Externalizing
Personality”, based on the analysis of the 20 SWAP-200 features
that contributed the most to their partition. Moreover, the
second component was linked to abnormal connectivity in
the orbitofrontal cortex [strongly associated with cognitive
processing and decision making (81)], the ventral striatum (a
critical component of the reward system), and the temporal pole
(involved in social emotion processing).

Even though they use simple, established methods, their
sample size may be too low to derive reliable and generalizable
conclusions. The authors call the study a hypothesis-generating
experiment that might be followed up in the future. However,
the recovery of previously reported, relevant activation networks
seems promising.

A different approach, with a larger sample size (n = 1,084),
was employed by Maglanoc et al. in 2018 (54). In this study,
researchers used symptom data derived from Beck’s depression
and Beck’s anxiety inventories (BDI and BAI, respectively) (55,
82), and combined individuals with and without a history of
depression. These scoring systems, unlike the aforementioned
SWAP-200, are self-assessed. Their reliability and competence
to discriminate between subjects with and without anxiety and
depression, however, has been extensively tested (83).

To cluster the symptom data, researchers applied a likelihood-
based approach inspired by Gaussian Mixture Models (52, 53).
One of the main advantages of this method is that it allows tuning
the most suitable number of clusters in the data with a well-
defined metric (the most common being the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC)
(36)), by letting users select the solution that maximizes the
likelihood of the trained model given the data. Several drawbacks
should be considered, though, as this algorithm assumes the
data is structured in a way in which clusters of patients in
the feature space follow Gaussian distributions, which is not
necessarily the case. Moreover, this approach will always report
a solution (there is always a combination of parameters that
maximizes the likelihood given the assumptions of the model,
regardless of how good the fit to the actual data is). In this
study, although a robustness analysis is carried out and the
reported stability indices across 100 iterations are high, it is
unclear if perturbations to the data were applied at all, or if the
authors merely re-ran the algorithm on the same dataset. In the
latter case, we would recommend taking their stability claims
with caution.

Following the method described above, this study reported a
five-component solution where clusters seem to differ mainly by
disease severity. The authors noted, however, that severity alone
did not explain the retrieved components, as (in concordance
with their hypothesis) different clusters were enriched in distinct
sets of symptoms.
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FIGURE 2 | Characteristics of retrieved studies. (A) Donut plot representing the number of selected studies for each of the three defined categories: (a) fMRI used for

validation of subtypes obtained via unsupervised learning of symptom-related data, (b) fMRI used for validation of subtypes obtained via unsupervised learning of

biomarkers other than fMRI (including structural MRI), and (c) fMRI used for brain disease subtyping directly. (B) Donut plot representing the most prevalent brain

disorders that the included studies analyzed.

Finally, the authors attempted to interpret the retrieved
components using resting-state functional MRI from a subset
of the initial subjects (n = 251), from which they obtained
both dynamic and static functional connectivity networks
(dFC and sFC, respectively). While this did not lead to any
conclusion for dFC networks, significant results for two of
the clusters were found for sFC in the default mode and
the frontotemporal networks, both of which are extensively
associated with depression in the literature (84, 85).

Schizophrenia
The other three studies in this section focused on clustering
subjects with Schizophrenia. Having in mind how evident
cognitive decay is in patients with the disease (86), Geisler et al.
(46) decided in 2015 to search for subtypes on a set of 18
features derived from behavioral and cognitive scores, instead
of pure clinical variables. This built on previous research on
Schizophrenia subtyping, where it had been reported that clusters
based on pure clinical features were longitudinally unstable:
psychotic symptoms and disorganization, in particular, are highly
variable across time, which causes subjects to change labels often
when models are trained using diagnostic systems directly (48).

The dimensionality of the dataset as mentioned above (n =

129) was reduced using a linear principal component analysis
(PCA), which works by projecting the data into its subsequently
orthogonal most prominent modes of variation. A four-cluster
solution was later obtained running the K-means algorithm (39)
on the first eight components of this reduced space. While
a standard pipeline in data science, successfully applied in a
plethora of domains, researchers selected both the number of
principal components to keep and the number of clusters (as
K-means requires the user to define this beforehand) to match
previous literature (47), without a concrete analysis of how
this selection would affect their solution. In these cases, as was
suggested above for Maglanoc et al., there are several pipelines to

follow and determine the number of groups present in the data in
a systematic way (36). As many already presented unsupervised
algorithms, K-means will always report a solution for the given
number of clusters, and special care needs to be taken to avoid
subtypes that might be overfitting the dataset. Consequently,
while the authors were able to interpret their four obtained
clusters in terms of their mean feature values, it remains unclear
whether this corresponds to the optimal cluster solution in terms
of robustness and generalizability.

Once obtained, the clusters’ correlates with both structural
and task functional MRI [during a blocked working memory
paradigm called SIRP (87)] were explored and compared to
healthy controls (n = 165). This yielded specific patterns of
cortical thickness changes in the hippocampus, the lingual gyrus,
the occipital face, and Wernicke’s areas for different clusters,
all previously linked to schizophrenia in the literature (49, 88,
89). Interestingly, task fMRI correlates were found for two of
the clusters. One of them, defined by face episodic memory,
slowed processing speed, and increased verbal fluency, showed
an increased neural activity in the planum temporale [one of
the main reported brain areas for language processing (90)].
The other, defined by a deficit in general intellectual function,
was found to be correlated with increased neural activity in
the parietal operculum and precuneus cortices [both linked to
schizophrenia in the literature (91, 92)].

In 2018, Dickinson and colleagues published an article (49)
in which they attempted a different approach by clustering
data coming from the Positive And Negative Syndrome Score
(PANSS), a widely-used standardized schizophrenia-specific
symptom scale proposed by Kay et al. in 1987 (88, 89).
Using a sample of 549 individuals comprising only diagnosed
patients, they attempted unsupervised subtyping using the two-
step SPSS clustering algorithm (90, 91), which fits a likelihood-
based model to the data in a way that allows the handling
of both categorical and continuous variables in the same
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model. By minimizing the aforementioned Bayesian Information
Criterion (BIC) across different numbers of clusters (92), the
authors obtained an optimal solution with three components,
characterized as deficit (with enduring negative symptoms
and diminished emotionality), distress (with high emotionality,
anxiety, depression, and stress sensitivity), and low-symptomatic.
While the algorithmwas run 1,000 times with random reordering
of the data, no pipeline with cross-validation (leave out sample)
approach was reported. This carries the risk of biasing the
robustness estimates, as readers cannot know if the reported
clusters would hold in an even slightly different dataset.

Meanwhile, a subsample of 182 patients balanced across
clusters was exposed to functional MRI scans during a working
memory task. Here, their three components showed differential
activation of the frontoparietal working memory network,
including the right dorsolateral prefrontal (DLPFC) and left
parietal cortices, and the left anterior cingulate, all of which
had been linked to schizophrenia before (50, 51, 93). The low-
symptom group in term showed significantly greater activation
in the right DLPFC than the two more symptomatic groups, a
healthier patternmainly linked to workingmemory and cognitive
flexibility (94).

Lastly, a similar approach was followed by Chen et al. in 2020
(56). Using a bigger sample of 1,545 patients diagnosed with
schizophrenia, they used Non-Negative Matrix Factorization
(NMF) to reduce the dimensionality of patients’ PANSS score
data. NMF compresses the feature space into a user-defined
number of factors by decomposing the data into two non-
negative matrices: a basis matrix (called dictionary) with
factors as columns, and a factor-loading matrix representing
symptomatology of individual patients in the training set (57).
Besides, the algorithm imposes an orthonormality constraint that
promotes a sparse, more interpretable, representation (95). Using
this approach, the extensive PANSS data was reduced to just four
values (one per retrieved factor) per individual. These reduced
data were then clustered into two components using the fuzzy C-
means algorithm (96), which can be thought of as a soft version of
the k-means mentioned above, in which each subject is assigned
a probability of belonging to each cluster instead of a hard cluster
label only. This helps to deal with outliers, usually yielding more
robust solutions in real-world data (97).

It is important to highlight here the extensive validation
pipeline that this study, in contrast to the previously mentioned
in this section, applied in each described step. For dimensionality
reduction, we highlight that several standard factor concordance
indices (98, 99) were computed for a range of factors across
10,000 runs on random half-splits of the data. Clustering stability
was tested by subsampling, bootstrap resampling, and leave-
one-site-out replication on a deliberately heterogeneous external
sample of 490 patients recruited from nine hospitals across Asia,
Europe, and the US. In both steps of the pipeline, the most robust
solutions of four factors and two clusters were kept.

In addition, the two clusters, when projected on the
original PANSS data, were revealed to be mainly representing
patients with more prominent positive and negative symptoms
respectively. Using functional MRI data derived from a balanced
sample of 84 patients, researchers applied a Support Vector

Machine [a classification algorithm (100)] to sort subjects in both
clusters using functional connectivity features. An overall feature
importance analysis of this classifier was used to interpret the
components on the functional side, showing the ventromedial
frontal cortex, the temporoparietal junction, and the precuneus
as the most critical networks whose connectivity differed
between clusters. All of these networks have not only been
linked to Schizophrenia before but also, in concordance with
the authors’ interpretation of their clusters, to discriminating
between positive and negative symptoms (97–99).

fMRI Used for Validation of Subtypes

Obtained via Unsupervised Learning of

Biomarker Data
In this second section, we will discuss three studies (published
across four papers) in which the obtaining of biotypes was
attempted applying unsupervised learning techniques to sets
of biomarkers other than functional MRI itself. This is a
particularly important approach, born from the assumption that
different biological manifestations of disease can lead to the same
phenotypic outcome (as discussed in more detail below).

Psychosis
The first study is composed of two articles, published by
Clementz et al. and Meda et al. in 2016 (58, 60), on identifying
psychosis biotypes. While the first article deals with the obtaining
of the biotypes themselves, the second analyses their functional
correlates using resting-state functional connectivity.

The term psychosis refers to several pathologies that lead
to a deteriorated perception of reality (101). In concordance
with what was explained above, the authors claim that
different etiologies underlying psychotic symptoms do not
necessarily overlap with the available symptom-defined labels
(schizophrenia, schizoaffective disorder, and bipolar disorder
with psychosis), as symptomatic outcomes may represent the
convergence of distinct biological entities. With this in mind,
they gathered 1,872 samples from patients diagnosed with any
of these diseases (n = 711), their first-degree relatives (n = 883),
and comparable healthy subjects (n = 278). The data consisted
of biomarker panels comprising neuropsychological markers,
cognitive assessment tasks [such as stop signal and saccadic
control (101, 102)], and auditory paired stimuli and oddball
evoked brain responses assessed by electroencephalography
(EEG). Patient data were used for clustering, while relatives and
controls served for result validation. Authors further reduced
the dimensionality of their dataset by running a Principal
Component Analysis (PCA) per modality, selecting the number
of components to keep using the elbow in the variance explained
curve (92). This yielded a reduced set of 9 features, which were
fed into a K-means algorithm from which authors reported a
three-component solution. Cluster selection was carried out by
maximizing the gap statistic (59), which is higher for solutions
in which distances between data points within a cluster are
consistently smaller than distances between clusters. Cluster
robustness to perturbation was assessed via Jackknife (103),
an approach in which the model is trained as many times
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as individuals in the dataset, leaving each time a different
individual behind.

As hypothesized, cluster assignment did not merely
recapitulate the DSM derived labels: they observed that clusters
(or biotypes) differed beyond outcome severity, and manifested
distinct overall profiles, such as (1) impaired cognitive control
and low sensorimotor response, (2) impaired cognitive control but
exaggerated sensorimotor response and (3) near-normal cognitive
and sensorimotor characteristics. Furthermore, differential
cortical thickness of key brain areas was found via voxel-based
morphometry (VBM) such as the frontal, cingulate, temporal,
and parietal cortices, as well as the basal ganglia and thalamus.

In the follow-up study, individuals in an independent sample
(n = 1,125) were assigned to the already defined clusters.
When comparing patients to relatives and healthy controls,
the authors found significantly reduced functional connectivity
(both globally and across specific biotypes) in nine networks
consistent with previous reports (104–109), and with areas
known to be compromised in psychiatric disorders in general,
including cognitive control, working memory, attention and
introspective thought maintenance. Importantly, all these deficits
are claimed to track cognitive control factors more closely,
suggesting potential implications for both disease profiling and
therapeutic intervention.

The remaining two studies used structural MRI to find disease
subtypes and projected their findings into resting-state functional
connectivity data afterward.

Autism Disorder
The first of the two, published by Chen et al. in 2018 (61),
attempts to find Autism Disorder (ASD) subtypes in a sample
of 356 diagnosed patients. Taking into account the evidence of
atypical neuroanatomy within patients with ASD (110), and the
fact that subjects exhibiting different clinical symptoms showed
distinct brain structural abnormalities (111), the authors used
features extracted from a voxel-based morphometry analysis on
structural MRI. Interestingly, the clustering was not performed
on these features directly. Instead, researchers computed the
structural difference between each ASD diagnosed patient and
a set of matched healthy controls (n = 403), and then
applied the aforementioned Non-negative Matrix Factorization
algorithm for dimensionality reduction into 60 components
representing differences in brain structure between cases and
controls. By applying a simple K-means algorithm, authors were
able to retrieve a three-component solution. Cluster number
selection was carried out by maximizing the silhouette index
(62), a statistic that, as many presented already, reflects how
concentrated the values of the resulting components are within
their respective clusters. While robustness analyses were carried
out (by running the algorithm 10 times with random 80% subsets
of the data), it is worth mentioning that authors do not report
having tested the presence of clusters at all in the data (i.e.,
number of clusters equals to one).

When validating and interpreting their results, authors
first reported differences in disease severity between clusters,
as assessed by the Autism Diagnostic Observation Schedule

(ADOS) score (112). Besides, when comparing the resting-
state functional connectivity networks for each patient in each
cluster to healthy controls, they found statistically significant
differences in two of the clusters. In both cases, ASD patients
showed diminished connectivity in the default mode network,
the frontoparietal network, the cingulo-opercular network,
the sensory-motor network, and the occipital network, all
of which had been linked to autism disorder before (113–
117). While more validation studies are needed, this paper
provides evidence toward ASD not being a neuroanatomically
homogeneous disease.

Internalizing Disorders
The last study in this section focused on finding structural
subtypes in subjects with internalizing disorders, which are
characterized by anxiety, depressive, and somatic symptoms. In
this study, Kaczkurkin et al. (63) took a different approach to
disease subtyping. Instead of clustering diagnosed patients in a
fully unsupervised way, they used a semi-supervised approach
called HYDRA (64), which uses the binary case-control labels
to find different disease subtypes regarding their difference to
controls. This way, the approach is conceptually similar to the
paper by Chen et al. cited immediately above, although the
difference between cases and controls is not processed directly,
but a part of the clustering algorithm.

Thus, using HYDRA in volumetric and cortical thickness data
from 1,141 individuals (715 cases and 426 controls), they found a
two-cluster solution when maximizing robustness as assessed by
the Adjusted Rand index (ARI) during a 10-fold cross-validation
scheme (which consists of running the algorithm 10 times, each
leaving a different random tenth of the data out). In addition,
the functional connectivity of 40 subjects balanced across these
two defined categories was obtained in the frequency space (118),
which has the advantage of enabling the direct comparison of
structural and functional measures using the same atlas (119).
The functional measures reflect the average connectivity of a
particular region of interest, in this case, delimited by differential
structural features. By physically delimiting their functional
search by the structural characteristics of their clusters, authors
make the assumption that detected changes in connectivity would
be directly influenced by the changes in structure, which is a
debated concept that was not put directly in place by the studies
proposed so far (120, 121). When interpreting the retrieved
clusters, researchers reported that one of them was marked
by reduced cortical thickness, and showed impaired cognitive
performance and higher levels of psychopathology. On the
functional side, moreover, this same cluster displayed abnormal
connectivity in frontolimbic regions, which is consistent with
poorer cognitive performance as reported in the literature (122).

fMRI Used for Brain Disease Subtyping

Directly
The last results subsection will deal with studies in which
biotype obtaining was attempted from functional MRI data itself.
Eleven articles (ten original studies and a relevant replication)
comprising four disorders were included, of which ten relied
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on resting-state functional or effective connectivity and one in
a task-based setting.

Schizophrenia and Related Disorders
Starting with Schizophrenia and its related disorders, in 2014,
Du et al. (65) published an article in which the distinction
between Schizophrenia (SZ) itself, psychotic bipolar disorder
(BD), Schizoaffective disorder with depressive episodes (SADD),
and Schizoaffective disorder with manic episodes (SADM), all of
which share overlapping sets of symptoms and genetic landscapes
(123, 124), was recapitulated using functional connectivity data
clustering (65). This built upon the fact that, for all four,
differences in functional connectivity between cases and controls
had been reported, which had significantly raised the interest in
delineating the functional implications of these diseases over the
last few years (125, 126). In addition, the authors attempted to
shed light on the controversy on whether SAD is an entity in
itself or the manifestation of some degree of interaction between
SZ and BD (127). To process their data, they used Independent
Component Analysis [ICA, a standard technique for obtaining
correlated brain networks (128)] to yield functional connectivity
data from a sample of 93 subjects, balanced across all diagnosis
categories (including healthy controls).

While pioneering the use of unsupervised learning on resting-
state data, this paper illustrates one of the major issues with
feature selection in clustering (129). Given that, a priori, this
study deals with a high number of brain connectivity features
and a relatively low number of samples, the authors proceeded
to reduce the dimensionality of their data. However, instead of
using an unbiased technique such as the aforementioned PCA
or NMF, the authors fitted classifiers to discriminate between
the five classes in a supervised manner and retained the most
informative features. They accomplished this by using a standard
technique called Recursive Feature Elimination (130), which
measures how impactful the removal of certain features (in this
case brain networks) is for a classifier to distinguish between
entities. Even though they arrive at a nearly perfect 5-cluster
solution (recapitulating their original four diseases and healthy
controls), the problem arises from the fact that the features they
used were selected to overfit the classification they already had,
which makes the clustering trivial. Furthermore, we believe a
warning of caution should be raised on the final conclusion of
the study, which uses the distances between retrieved clusters
(which had been artificially maximized) as evidence to support
the hypothesis of Schizoaffective disorder being an independent
etiological entity.

Another article that dealt with dissecting the mechanistic
underpinnings of Schizophrenia and its potential subtypes was
published by Brodersen et al. in (66, 86). In this proof-of-concept
study, the authors employed Dynamic Causal Modeling (DCM)
to retrieve a directed connectivity model from a balanced sample
of 83 subjects, including diagnosed patients and healthy controls.
While they present a plethora of demonstrative approaches
in their study, here we will only discuss their unsupervised
clustering, which implicated two separate pipelines: first, authors
were able to recapitulate the classification between cases and
controls with relatively high accuracy (∼71%) using only

clustering on the whole sample. Second, and arguably more
interesting to this review, the exclusion of the healthy controls
led to a clustering solution of three components (n = 41), which
seemed to differ mainly by symptom severity, as assessed by the
aforementioned PANSS scale.

To reach these solutions, researchers applied a Variational
Bayesian Gaussian Mixture Model, a variant of the likelihood
approach presented above for Maglanoc et al. which runs
automatic cluster selection by estimating how many components
of a prior distribution are present in the data. While this
algorithm is appealing for small studies, finite Gaussian Mixture
Models as the ones presented above are still preferred in many
settings, given their lower computational complexity and their
fewer associated implicit biases (131).

While a mere pilot study where the main goal was to explore
and define a working pipeline, the authors use these results
as an argument to defend the exclusion of healthy controls
in the unsupervised learning procedure, as the likelihood of
the already-known binary factor is high (the variance in the
data might in many cases be dominated by the disease-control
distinction). However, we believe that a follow-up study should
review if these premises hold in a bigger sample, and assess how
generalizable and robust the solutions are using internal and
external validation, as was highlighted throughout the review.

A different approach was taken by Yang et al. in 2014
(69) when investigating early-onset Schizophrenia (EOS) in a
small sample of 52 individuals, balanced across medication-naïve
diagnosed patients and age and gender-matched healthy controls.
The authors used a pipeline called gRACIAR (generalized
ranking and averaging independent component analysis by
reproducibility) (132) to obtain both subject-specific functional
connectivity networks (via Independent Component Analysis)
and a meta graph concerning intersubject similarity within
each functional connectivity network. Using a maximal-clique
community detection algorithm, a clustering procedure that,
unlike all presented above, works on a graph level (70),
researchers reached a clustering solution for each of the retrieved
networks. Importantly, the similarity thresholds for drawing the
edges of the mentioned metagraph were selected based on the
average solution robustness to permutation tests during cross-
validation.

While no communities (the equivalent to clusters in graph
theory) were retrieved for the majority of the explored networks,
two of them yielded interesting results. First, a component
involving the precuneus-angular gyri (PCU-AG, associated
with the default mode network), was detected to significantly
recapitulate the case-control separation, which suggested a novel
association between these functional connectivity features and
EOS. Second, a network involving bilateral superior temporal
gyri and bilateral inferior frontal gyri yielded a solution enriched
in diagnosed patients, which seemed to recapitulate the difference
between positive and negative symptoms (as assessed for example
with the PANSS scale).

While the retrieved clusters revealed little new about the
disease substructure across subjects as a whole, this approach
allowed for the discovery of associations within networks that
had not been previously reported. Furthermore, the question
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of whether more interesting clustering solutions from an EOS
functional subtyping point of view could be retrieved with a
bigger sample size remains.

Major Depression Disorder
Shifting to Major Depression Disorder, Drysdale et al. (73)
reported in 2017 a four-cluster solution from resting-state
functional connectivity data, using a training sample of 220
diagnosed patients. For dimensionality reduction, they applied an
algorithm called Canonical Correlation Analysis (CCA), which,
instead of selecting the most prominent modes of variation in
one dataset as many of the approaches presented above (such
as PCA or NMF), takes two data modalities and returns a space
in which the correlation between them is maximized (74). In
this case, the authors decided to apply it to a combination of
the functional connectivity data, coming from fMRI, and the
subjects’ HAM-D scores [one of the most common self-assessed
symptom scales for MDD (133)]. This type of analysis can be
particularly useful for high-dimensional data where the major
components of variability are not expected to be related to the
problem at hand. In this case, the assumption is that there might
be other sources of variance, such as sex, age, brain size, etc. that
might overshadow the implications in functional connectivity
of potential MDD subtypes. This way, a transformation of the
biological data that correlates with psychiatric symptomatology
is reported, making it likely that the downstream clustering will
focus on relevant connectivity features.

After applying this pipeline, the authors retained the first
two canonical variates (which one could see as analogous to
principal components in this context) obtained fromCCA, which
they interpreted as anhedonia and anxiety-related by checking
correlation with individual symptoms. Using a Hierarchical
Agglomerative Clustering approach, they reached a four-
component solution by maximizing the so-called Calinski-
Harabasz (CH) index, a statistic similar to the Silhouette
presented before, that measures how similar a datum is to its
own cluster compared to others (75). Drysdale et al. (73), These
components lay on each of four quadrants defined by two axes,
interpreted by the authors as anhedonia and anxiety-related.
Interestingly, both clusters associated with high anxiety profiles
were linked to abnormal connectivity patterns in the frontal
amygdala [fear-related behavior and reappraisal of negative
emotional stimuli (134)] and abnormal hyper-connectivity in
the reward system was especially pronounced in anhedonia-
related clusters.

Aside from providing innovative methods and focusing
thoroughly on the generalizability of the achieved results, this
article incentivized active discussion in the field, especially after
a replication attempt published by Dinga et al. in 2019 (78).
When failing to reproduce the original results after applying
nearly the same pipeline on a smaller independent cohort of
187 diagnosed individuals, the authors highlighted potential
statistical weaknesses in the original study.

First, they claimed there was a statistical bias in the reported
CCA results.While the original article alleged that both canonical
variates’ correlation with symptoms were statistically higher
than random, the problem arose from a two-step process that

Drysdale et al. applied. From the functional connectivity matrices
obtained from fMRI, they selected voxels whose activations were
most correlated with symptoms and then employed only those
features on the CCA analysis. Furthermore, the first selection
step was ignored in the statistical tests they ran [based on
Wilk’s lambda statistic, typically used for this purpose across
the literature (135)], and permutation testing in the replication
study showed that the significant correlations between symptoms
and connectivity faded away when taking into account this pre-
selection of voxels. This made it seem likely that the original
procedure was selecting noise in the direction of the hypothesis.
Moreover, CCA is known to be prone to overfitting (reporting
correlates between modalities that are much stronger than they
would be on an independent dataset). While Drysdale et al. did
not evaluate this problem directly, 10-fold cross-validation in the
replication revealed it was a significant issue, raising even more
caution toward the reported CCA factors.

Lastly, even whenDrysdale et al. assessed internal and external
validation of their findings (by measuring cluster stability across
10,000 random splits of the data, and using an independent
multisite dataset, respectively), they did not test the null
hypothesis of whether there was an inherent clustering structure
in the data against the possibility of a continuum (a single,
unimodal distribution). When testing this using previously
described methods (79), they found no significant evidence
supporting a clustering structure. In summary, while some details
of the proceedings were not the same as in the original, this
article shows how important thorough statistical testing (which
considers every step involved in all relevant pipelines) is in these
complex scenarios of multiple data integration and how crucial
replication attempts are. While Dinga et al. do not discard the
possibility of subtypes of depression that are identifiable at a
functional level, they raise a warning of caution about the lack
of strong evidence supporting it, and call for more extensive
methodological evaluation in an incipient field.

In another pioneering study, Price et al. were the first to our
knowledge, in 2017, to use effective connectivity to build directed
resting-state networks using causal modeling forMDD subtyping
(67). The pipeline employed (called Group Iterative Multiple
Model Estimation, or GIMME) has been shown to reliably
recover both the presence and direction of connectivity among
brain regions per individual in simulations (136). Using a sample
of 80 diagnosed patients with Major Depression, the authors
built a similarity matrix between model parameters among
individuals, which they thresholded into a graph. Here, they
reached a two-component solution via a clustering algorithm
called Walktrap (68), which works under the assumption that
short-distance random walks in a graph tend to stay in the same
community. It is a hard-clustering algorithm, in the sense that a
label is assigned to every patient, without any associated metric
reflecting how confident the model is in each case. Furthermore,
even though this approach arrives automatically to an optimal
number of clusters in the data (according, that is, to its own
definition of what a cluster is), neither cluster robustness analyses
nor estimates of how generalizable their solution might be on
external data were provided in this study. Besides, although
innovative in their methodologies based on causal, directed
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connectivity, their method is computationally demanding, which
limits the resolution of the brain activation networks they can use
when compared to methods based on functional connectivity.

Mapping back their retrieved components to functional
connectivity, authors observed that one of the two retrieved
groups showed a connectivity pattern across DMN nodes
concordant with what was previously reported on average
depressed patients (85). The other subgroup showed, however,
a different pattern in this region, with increased dorsal
anterior cingulate-driven connectivity paths. This group also had
significantly higher comorbidity with an anxiety disorder and
highly recurrent depression, which led to a poorer outcome of the
disorder. Interestingly, altered connectivity in anterior cingulate
regions (belonging to the DMN) has beenmore recently linked to
persistent sadness and higher recurrence rates (137), which goes
in concordance with these results.

In summary, while the employed sample size is small and
further validation is highly encouraged, this study illustrates how
graph theory and causal modeling can be used together to shed
light on the mechanistic heterogeneity behind major depression
in particular and brain disorders in general.

As previously mentioned, an issue that researchers often
encounter when applying clustering algorithms to a problem is
that, even when a relevant structure is present in the data, it can
be overshadowed by variance factors that are ultimately unrelated
to the problem. The most typical ways of dealing with this issue
are to control for known confounders in our models, such as age
or sex (138), to directly model and remove their variability (139),
or to transform data in a way that maximizes its correlation with a
highly informative variable [as previously presented for CCA and
symptom scores (73)]. Tokuda et al. (77), however, introduced
a custom algorithm that tackled the problem in a very different
way: they arrived at multiple solutions (or views) simultaneously,
which corresponded to different modes of variation in the data.
This way, they could select a posteriori if any of them was actually
related to subtypes of disease (in this case MDD) and still extract
potentially useful insights about their samples from the rest.
Furthermore, each of these views attempts to solve a so-called
co-clustering problem, in which both subjects and features are
grouped. This means that individual solutions won’t be forced
to adopt all the available information, ideally using only those
features that are relevant to them. Moreover, the algorithm they
propose is capable of simultaneously dealing with categorical and
continuous variables, allowing researchers to integrate resting-
state functional connectivity data with other data domains,
such as BDI questionnaires, biomarker panels, genetics, and
methylation data from a preselected set of related genes.

When applying this approach to a sample of 134 subjects,
balanced across diagnosed patients and healthy controls, the
authors reached a five-component solution after selecting the
view that maximized the Cohen’s D coefficient [a statistic
that measures effect size (140)] between the two groups.
Interestingly, two clusters were mainly composed of controls,
whereas the other three included diagnosed patients almost
exclusively. Moreover, these threeMDD-related reported clusters
were observed to differ significantly by functional connectivity
between the Angular Gyrus (and other already reported brain

areas in default mode network), child abuse trauma scale scores
(CATS), and selective serotonin reuptake inhibitor treatment
outcomes (although all of these were used directly for clustering).
Cluster stability (robustness) was tested via leave-one-out cross-
validation (similar to the aforementioned Jackknife) on the whole
pipeline, but no external validation was accounted for. While
the employed sample size is relatively small, and the results
demand replication in independent datasets, this article proposes
an innovative and assertive approach with a high potential for
integrating distinct data domains.

Attention Deficit Hyperactivity Disorder
Another article that relied on effective directed connectivity, and
applied the aforementioned GIMME algorithm, was published in
2014 by Gates et al. (120). In this study, the authors attempted to
cluster a sample containing also 80 individuals, balanced across
subjects diagnosed with attention-deficit/hyperactivity disorder
(ADHD) and healthy controls.

After following a pipeline nearly identical to the one presented
above for Price et al. (67), the study reported a solution with
five components, two of which were almost exclusively composed
of ADHD-diagnosed patients. First, researchers generated a
network in which subjects were connected when the similarity
between their directed connectivity patterns is high (how high
was determined by measuring cluster robustness under a cross-
validation scheme). For clustering, they used a hard community
detection similar to the Walktrap mentioned above, which
partitions the network into non-overlapping communities by
maximizing a metric called modularity (that compares the
number of edges within a community to those that connect it to
other partitions) (141).

The obtained subgroups were reported to be highly
distinguishable by their differential connectivity in regions
such as the dorsolateral prefrontal and frontal cortices, the
intraparietal sulcus, and the inferior parietal lobule, all of which
had been previously linked to ADHD in the literature (142).
Furthermore, the inclusion of healthy controls at clustering
time, and their presence even in clusters highly dominated
by diagnosed subjects, made it interesting to consider that
the reported brain findings may reflect liability for ADHD in
subgroups that are biologically at risk. Rather than ADHD
per se, the controls in these groups may represent individuals
at risk for ADHD who had sufficient protective factors in
their development (or their genome) to avoid exhibiting the
syndrome. Although inconclusive, this article, as many in this
review, provides evidence toward the presence of biological
subtypes in yet another psychiatric disease, which can be
recovered at a functional level.

Using a functional connectivity pipeline on a sample of 106
children (aged 7–12 years), including both diagnosed patients
and controls, Costa Dias et al. also attempted to find data-
driven subtypes of ADHD in their article published in 2015
(71). One of the main highlights of this study is that, in
order to reduce the original dimensionality of their functional
connectivity data obtained from resting-state fMRI, the authors
restricted the problem physically, by including only brain areas
that had been previously reported as related to the disease.
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To accomplish this, they built a mask using a meta-analytic
tool called NeuroSynth (143), which yielded a set of brain
regions that highly overlapped with the reward system. This
constitutes a well-studied connectivity hub, which interacts with
other brain networks to promote decision-making, and has been
extensively shown to be altered in ADHD (72). From the resulting
connectivity features, researchers extracted a meta-correlation
matrix that was thresholded into a graph, and applied the same
network-based modularity-based algorithm mentioned for the
previous paper by Gates et al. Using this approach, authors
arrived at a three-cluster solution, whose stability was assessed
by randomly perturbing the aforementioned network 20 times.
Robustness was then assessed using a metric called variation
of information (VOI), which measures how much information
differs between the two sets of community assignments, and
varies from 0 (identical) to 1 (completely dissimilar) (144).

This article reported that connections between the nucleus
accumbens and the default mode network were atypical in
ADHD across all the three subgroups, a finding that was
previously reported by the same group (145). The authors,
however, arrived at this conclusion by comparing diagnosed
patients to controls in each of the three reported communities.
Furthermore, one of the main drawbacks of this study was that
it seems to have failed to recapitulate disease manifestation along
with the clustering solution, making it seem likely that the factors
of variance captured by the applied methods do not correspond
to the disease axis. Specifically, this would mean that the most
prominent mode of variation in connectivity across the reward
system does not correspond, at least in their sample, to the
manifestation of the disease.

Having this issue in mind, Lin et al. published in 2018 (76)
what constituted the last attempt to date (to our knowledge) to
find biotypes of ADHD using resting-state fMRI. In this article,
the authors used a sample of 80 diagnosed subjects and 123
matched healthy controls, to extract networks that, across the
entire dataset, were differentially activated between both groups.
This approach yielded differential activations predominantly
between the default-mode, cingulo-opercular and subcortical
networks, all of which had been previously reported as related to
ADHD as a whole (62, 146). They then attempted to use this data
to specifically contrast what they called a dimensional biotype (i.e.
heterogeneity arises from variation over a continuum of the same
entity) against a categorical biotype (different pathological entities
explain the observed variability in the data, which converge in
similar symptomatology).

To further deal with unwanted modes of variation, they
applied a variant of the aforementioned canonical correlation
analysis (CCA) to bring into the picture the maximum
correlates between their differential functional connectivity and
symptomatic scores. From this analysis, they were able to retrieve
just one significant mode of covariation between both data
modalities, which was interpreted as the first piece of evidence
supporting a dimensional biotype. Moreover, they attempted to
cluster the data using two distance-based clustering algorithms:
K-means and spectral clustering, both of which yielded an
optimal solution supporting the absence of discrete biotypes in
the data. This was concluded after maximizing the robustness

of the obtained results, as measured by already presented
metrics, such as the Jaccard and silhouette indices, and the gap
statistic (59).

While the overall conclusion of this paper supports the idea of
ADHD being a single biological entity, we believe the presented
evidence is inconclusive, and that a few concerns should be
raised. For starters, while the sample size is said to be large
enough to deal with the applied clustering algorithms given their
number of features (34), this may not consider the complex
feature selection/extraction that was employed. It is possible that
even though it is technically possible to apply these algorithms
to a sample this small, not enough variation is captured in their
original dataset to represent with confidence potential categorical
biotypes that might exist in the population. Second, the first step
in their feature extraction pipeline involved the usage of only
those networks that were differentially activated between cases
and controls overall. While this can be useful, as mentioned,
to dissect modes of variation that are related to the problem at
hand, it also carries the risk of leaving behind brain connectivity
features that might differ significantly between controls and
particular subsets of patients (the biotypes). In other words,
filtering by overall variation might bias the data toward features
that correspond to a dimensional biotype.

Consequences of Early Trauma
The last study presented in this section, published by Sellnow
et al. in 2020 (80), delves into the functional consequences
of extreme stress in early childhood. Early stress events (such
as interpersonal violence -IPV- or severe trauma) are one
of the major causes of subsequent psychopathology, and no
systematic studies had attempted to disentangle their underlying
heterogeneity in neither the type nor the magnitude of their
consequences (147).

To tackle this problem, the authors used a sample of
114 adolescent girls (aged 11–17), from which they obtained
functional MRI data during an emotion processing task in a
blocked design. After filtering the voxels of interest using a meta-
analytic mask obtained from the aforementioned NeuroSynth
(related to emotion processing), the GLM-first order coefficients
were concatenated and clustered across individuals using the
K-means algorithm. After selecting the best model using the
already presented elbow method on the cluster validity index [a
statistic that, like many introduced before, compares intra-cluster
to inter-cluster density (34)], they reached a three-component
solution, shown robust via leave-one-out cross-validation.

At a functional level, the retrieved clusters were
distinguishable by engagement of the medial prefrontal
cortex, the anterior insula, and the hippocampus, all involved
in emotion processing (which is not surprising, given brain
features had been filtered using a meta-analytic mask using this
criterion). Interestingly, when analyzing the relationship between
each cluster and external measures of interpersonal violence
(IPV) and internalizing symptoms, the authors managed to
report a ‘healthier’ component, in which exposure to violence
had been lower, and two clusters with high symptom severity,
that seemed to differ on the presence or absence of sexual assault.
Furthermore, IPV exposed a negative correlation with symptom
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reduction over Trauma-Focused Cognitive Behavioral Therapy
(TFCBT), which led the authors to suggest the feasibility of
their methodology to predict treatment outcomes based on
functional information.

As many studies presented in this review, this last one
attempts to set the ground for further exploration of an incipient
field. One concern about their methods, though, is the high
dimensionality of the used data. Having retained 3,970 voxels
after filtering, and using a GLM with blocks of 4 different
tasks, each of the 114 individuals ended up represented by
15,880 values. Although one could argue that these features
are far from independent (after all, they represent the task-
importance of voxels that are contiguous in space), this extremely
high relationship between dimensions and samples can lead to
overfitting, severely decreasing the generalizability of the models
to external samples. This problem, often referred to as the
“curse of dimensionality”, is a very common drawback to many
machine learning models which usually justifies the need for
dimensionality reduction (148).

DISCUSSION

One Problem, Multiple Approaches:

Top-Down, Bottom-Up, and

Polytopic Learning
Throughout this article, we gave an overview of the most recent
attempts to subtype psychiatric disease in a data-driven manner.
Across 20 studies, we illustrated how functional MRI, arguably
the most relevant proxy of brain function to date, was applied to
both validation and interpretation of clusters retrieved with other
techniques, and as part of the clustering pipelines themselves.

Furthermore, these categories are encapsulated within two
broad ways of dealing with subtyping in data-driven medicine,
which we would like to call top-down and bottom-up approaches.
The former corresponds to what was presented in the first
section of this review: the use of data comprehending the
clinical and behavioral manifestation of disease, and the attempt
to validate the retrieved components relying on the elemental
biology. The latter is the opposite (second and third sections):
clusters are defined based on the biology and validated at a
clinical/behavioral level.

In this context, the first section of the results illustrated
how unsupervised learning could be used to detect subgroups
in psychiatric symptom data (Table 2). As briefly discussed
in the introduction, this approach is likely to yield disease
symptomatic states rather than biological entities, given that
different sets of symptoms do not necessarily reflect distinct
etiologies. Symptomatic profiles, moreover, are sensitive to
treatment and environmental perturbations, among others. This
may reflect in patients changing cluster assignments during the
course of their disease, making the usage of this type of solution
hard for diagnostic and prognostic models. Along the same lines,
however, this type of approach can be very helpful to better
evaluate the state of a patient at a given time, which constitutes
an arguably different but equally relevant problem than the one
we are presenting here.

The second and third sets of articles (Tables 3, 4) focused
on a bottom-up approach. When clustering biomarkers, the
assumption is that the data capture the manifestation of the
disorder at a lower level (hence bottom), yielding results that
are potentially closer to uncovering pathological origins. This
is particularly relevant when considering that distinct biological
entities (which can have distinct optimal treatments) can
converge to an equivalent symptomatic profile. For example,
studies have shown how different genetic alterations that
produced different structural consequences led to the same set
of autistic-like behavioral traits in mice (49).

Among the methodologies overviewed in the second section,
structural MRI clustering (encompassing 2/20 studies) and
its projection into functional data deserve special mention,
as several studies have shown that psychiatric disorders
have structural implications (149). While diseases such
as Autism or Schizophrenia are generally recognized as
neurodevelopmental disorders with brain structure being
affected, there are inconsistencies regarding the regional
specificity of the neuroanatomical findings (149), making the
importance of structural subtyping apparent. Furthermore,
the search for functional correlates of these subtype-specific
functional alterations relies on assuming that an altered structure
may lead to an altered function. By combining the two data
types, it is possible to test this hypothesis, retrieving multiple
domains affected by the disorder that may be coupled with a
non-trivial causal relationship.

Delving into the third and last set of articles (Table 4),
we want to highlight that fMRI is the most direct measure
of brain function we have to date. Although not ideal, it
constitutes arguably the best available proxy for the biological
manifestation of brain disease. This carries the potential
to shed light on mechanistic biotypes reflecting distinct
pathological entities that overlap at higher levels. Both task
and resting-state approaches have been explored, although the
vast majority (10/11) of studies opted for the latter given its
more straightforward implementation and potentially broader
conclusions and generalizability (39).

It shouldn’t go unnoticed that many studies (4/20, all in the
third section) integrate both symptom and biological data in
several clever ways. This set of approaches, which lies arguably
in the interface of the top-down and bottom-up presented above,
belong to what has been called polytopic learning (39). By either
combining both kinds of data for clustering directly (77) or
relying on multimodal transformations such as CCA (73, 76,
78), researchers seek to bridge the gap between origin and
manifestation of disease, in search of what have been described as
endophenotypes (150). We think this has an incredible potential
a priori, as illustrated by the many proofs of principle in
this review. However, it implies extending the dimensionality
of the datasets and, up to now, limiting sample sizes for
reaching strong conclusions. However, the future, in this regard,
looks promising.

Deep Validation of Retrieved Biotypes
As previously mentioned throughout this review, the interest
in disease classification (and sub-classification) is far from

Frontiers in Psychiatry | www.frontiersin.org 17 October 2021 | Volume 12 | Article 665536101

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Miranda et al. fMRI for Psychiatric Disease Subtyping

new. Aside from expanding basic knowledge, taxonomy as
a whole serves the purpose of recognizing distinct, stable
entities that may be treated differently, which can directly
lead to improving people’s lives. In this sense, unsupervised
learning has the potential to help researchers discover these
entities given the right data, models, and experimental designs.
Whereas, in other medical subfields clinical application is
more tangible (151, 152), psychiatry carries the weight of a
perfect storm: on top of currently relying on fuzzy symptom-
defined labels, relevant functional data collection is expensive,
making sample sizes to date (as seen throughout this review)
limitingly low.

This is far from discouraging though, as the field is still
at an early stage where methodological exploration seems
to be the rule. It does highlight, however, the importance
of thoroughly validating the retrieved results on several
equally relevant dimensions, in what some authors have called
deep validation (153) of biotypes. This concept encompasses
three main axes: (1) replication of clustering solutions in
independent data, to assess methodological generalizability
(2) application of a retrieved clustering solution to new
independent data (without reclustering), to gauge whether the
new assignments correspond to clinically meaningful outcomes,
and (3) extension of clustering solutions defined in a cross-
sectional manner to a longitudinal setting, to determine if
baseline components yield, for example, differential trajectories
of disease progression.

When exploring how these three concepts were touched
upon across the systematically retrieved literature, we found
that the first deep validation component, which goes in line
with the notion of generalizability discussed above, was the
most explored throughout the available corpus. Even in mostly
proof-of-principle settings, 15 out of 20 studies engaged in
robustness and generalizability analyses (Tables 2–4). Most of
them, however, yielded intra-sample reports (by partitioning
one available dataset instead of using truly external data) which
can lead to inflated generalizability estimates (37). While nearly
all studies (17/20, Tables 2–4) undertook an interpretation of
their solution using clinically relevant measures, only four of
them (56, 58, 60, 73) attempted to report generalizability across
multiple data collection sites, using truly external data. Moreover,
only two (60, 73) attempted the application of the retrieved
biotypes to an independent sample (second deep validation
component). Among these, interestingly, Drysdale et al. (73)
reported significant differences in outcome after the patients
were treated with transcranial magnetic stimulation (TCMS),
which constitutes a perfect illustration of the potential utility
of biotyping as mentioned above. Furthermore, only one of the
retrieved studies to date has engaged in longitudinal validation
(56). This one, unsurprisingly, used symptom data to cluster
given its easier collection across time.

While the landscape we found is far from ideal, the lack
of thorough, standard deep validation pipelines reflects, in our
opinion, the scarcity of relevant available data in such an early
stage of the field rather than deep methodological flaws.

Methodological Heterogeneity: Should We

Strive for Standardization?
Whereas most of the papers followed overall similar formulas
(data preprocessing, select relevant features or reduce the
dimensionality of the dataset, and cluster the available samples),
we observed vast methodological variability in every step along
the way.

As differences in dimensionality reduction approaches were
discussed throughout the corpus of the article, in this section
we will focus on the coarse classification of clustering algorithms
provided in Table 1. Here, we observed that the majority (12/20)
of the studies employed distance-based methods. An equal
number of papers applied algorithms that work at the graph
level andmodel-based approaches (4/20 each). Whereas we think
that, given the fuzzy nature of the available labels and how
important the measure of uncertainty in the medical setting is
(154), model-based approaches may be the most intuitive way to
go, we found the preference for simpler, computationally cheaper
models understandable given the incipient state of the field. It is
refreshing to see, however, that even at this incipient stage several
customized algorithms, designed specifically with the problem of
biotyping in mind, have been presented (77, 120).

A topic that deserves special attention is the inclusion of
healthy controls. Of the 20 retrieved studies, 6 decided to treat
healthy controls as any other sample, one utilized them indirectly
by clustering differences between matched subjects (61), and
one treated them as a normative reference for semi-supervised
learning (63) (Tables 2–4). As made evident by the variability in
the literature [the strongest retrieved example being the three
retrieved papers on ADHD (67, 71, 76)], this is not a closed
topic and valid arguments on both sides exist. On the one hand,
their inclusion may lead to an obvious first mode of variation
in the data. This can lead to clustering algorithms finding the
division between cases and controls as the dominant solution,
which would yield no new insights on disease functioning.
On the other hand, however, if sufficient data modalities are
available and subtypes are prominent enough, the inclusion of
healthy controls makes sense as a way to represent the true
nature of the population. Finding clusters enriched in healthy
controls can thus be interpreted as a mild form of validation.
Moreover, individuals in disease-enriched clusters who were not
diagnosed might correspond to early stages of disease, or be a
consequence of the presence of protective factors that may lead
to further investigation.

Finally, the available variability opens an important question:
Should we strive for methodological standardization to remove
potential dependencies of the results on the employed metrics?
For now, we do not think so. First, because at such an
early stage it is important to develop proofs of principle that
work on the intended data, and no single algorithm has yet
shown sufficient advantage. Second, because we think that
the biggest source of inconsistency across the literature today
comes from the data itself, not the algorithms employed. If
the retrieved clusters are strong enough, researchers should be
able to retrieve overlapping solutions regardless of the clustering
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methodology. A word of caution here is, though, that as different
algorithms make different assumptions, we should make sure
they are met in the datasets we use. We strongly believe that
the future of the field lies in concerted efforts to acquire
more data.

Overview of the Field and Where to Go Next
Psychiatric disease subtyping is at the moment at an incipient,
exploratory stage. While much remains to be answered and
no irrefutable evidence of functionally relevant subtypes was
presented, all the cited proofs of principle introduced valid,
potential ways to move the field forward once the current
limitations are overcome.

Aside from the algorithmic heterogeneity mentioned above,
the number of different data modalities to choose from should
not go unnoticed. Although we focused mainly on the functional
aspect of disease and functional MRI as the most promising
way of measuring it, psychiatric diseases can manifest at many
levels, which can be captured across several different axes
that can be included in any clustering effort. Other imaging
techniques, such as the already discussed structural MRI or
diffusion tensor imaging (DTI, useful for measuring white matter
consistency across the brain) have also been used to detect
relevant subtypes (38). Furthermore, the genetic components
of many of these subtypes should not be ignored. As the
dimensionality of this data is extremely high (millions of
genetic variants per subject) and individual polymorphism
contributions are generally small, however, genetic data is
rarely useful for unsupervised learning. Supervised approaches,
however, which aim to classify individuals among already defined
labels, have shown more success (37). Lastly, in addition to
questionnaires and more traditional clinical datasets, a data
modality that gained momentum over the last few years is
digitomics (electronic health records, mobile sensor data) (37,
155, 156). We think that, given sufficient sample sizes, the
future lies in multimodal integration and, as stated previously,
polytopic learning.

Furthermore, fMRI results may depend on external
unmeasured factors, which often results in low signal-to-
noise ratios and poor test-retest reproducibility (157). A relevant
consequence of these limitations is that the sample sizes needed
to capture the modes of variation in line with psychiatric
subtypes are, to date, limitingly high. This demands concerted
efforts to increase data collection, which are fortunately being
accounted for, with new multi-site data collection consortia
starting to collect functional data for psychiatric disease machine
learning (158–160).

Although its details are out of the scope of this review,
something that should not go unnoticed is that any effort
in acquiring knowledge that aims to be transferable to the
clinic needs to comply with standards of fairness (161). In
this case, this reflects the need for models to be thoroughly
tested across samples representative of the entire population to
which they ought to be applied. As functional MRI hardware
is expensive, bias in data collection toward richer societies
is a significant risk (161). Fortunately, new technological

advancements, such as portable MRI (162), also make the
future look brighter in this regard: by reducing costs and
the required infrastructure, solutions like this one can
help bridge this gap and facilitate data collection across
the world.

Moreover, the aforementioned limitations of fMRI, even
if robust subtypes are available, make it a relatively poor
clinical tool (163). This means that, even if robust subtypes
at the functional level are detected, their application in
clinical workflows might need to rely on technologies other
than functional MRI. This could be achieved for example
by training supervised classifier models to recognize these
functionally defined subtypes based on data from other
modalities, such as combinations of genetics, digitomics, and
imaging (37).

Finally, all the retrieved studies aimed to find subtypes
within already defined broad categories. Although several
transdiagnostic efforts using other, readily available data
modalities exist (38, 164), none to date have, to the best
of our knowledge, applied functional MRI as part of their
pipelines. As new, larger datasets are made available, the goal
of shedding light on the functional aspects of trans diagnosis
becomes reachable.

CONCLUSIONS

As mentioned throughout this article, further data-driven
stratification of psychiatric diseases can help dissect the vast
heterogeneity present in the field today. An improved diagnosis,
presumably based on biological mechanisms that precede
symptom manifestation, is not only a goal in itself but also
key for improving disease prognosis and direct personalized
treatment. Functional MRI, and brain connectivity, in particular,
is positioned as the best tool to date to acquire insights into
brain function, and the interest in using it for uncovering sub-
entities of brain disease remains high. The presented results
are however mixed, and much remains to be done in terms
of increasing sample sizes, standardizing data collection, and
providing models with strong assessments of generalizability and
fairness, crucial for a future translation of any model to the
clinic (13).
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Background: Hippocampal atrophy has been consistently reported in major depressive

disorder with more recent focus on subfields. However, literature on hippocampal

volume changes after antidepressant treatment has been limited. The first-line treatments

for depression include antidepressant medication (ADM) or cognitive-behavior therapy

(CBT). To understand the differential effects of CBT and ADM on the hippocampus, we

investigated the volume alterations of hippocampal subfields with treatment, outcome,

and chronicity in treatment-naïve depression patients.

Methods: Treatment-naïve depressed patients from the PReDICT study were included

in this analysis. A total of 172 patients who completed 12 weeks of randomized

treatment with CBT (n = 45) or ADM (n = 127) were included for hippocampal subfield

volume analysis. Forty healthy controls were also included for the baseline comparison.

Freesurfer 6.0 was used to segment 26 hippocampal substructures and bilateral whole

hippocampus from baseline and week 12 structural MRI scans. A generalized linear

model with covariates of age and gender was used for group statistical tests. A linear

mixed model for the repeated measures with covariates of age and gender was used

to examine volumetric changes over time and the contributing effects of treatment type,

outcome, and illness chronicity.

Results: Of the 172 patients, 85 achieved remission (63/127 ADM, 22/45 CBT).

MDD patients showed smaller baseline volumes than healthy controls in CA1, CA3,

CA4, parasubiculum, GC-ML-DG, Hippocampal Amygdala Transition Area (HATA), and

fimbria. Over 12 weeks of treatment, further declines in the volumes of CA1, fimbria,

subiculum, and HATA were observed regardless of treatment type or outcome. CBT

remitters, but not ADM remitters, showed volume reduction in the right hippocampal

tail. Unlike ADM remitters, ADM non-responders had a decline in volume in the bilateral

hippocampal tails. Baseline volume of left presubiculum (regardless of treatment type)

and right fimbria and HATA in CBT patients were correlated with a continuous measure

of clinical improvement. Chronicity of depression had no effect on any measures of

hippocampal subfield volumes.
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Conclusion: Two first-line antidepressant treatments, CBT and ADM, have different

effects on hippocampal tail after 12 weeks. This finding suggests that remission achieved

via ADM may protect against progressive hippocampal atrophy by altering neuronal

plasticity or supporting neurogenesis. Studies with multimodal neuroimaging, including

functional and structural analysis, are needed to assess further the impact of two different

antidepressant treatments on hippocampal subfields.

Keywords: hippocampal atrophy, depression, antidepressant medication, cognitive behavioral theory,

hippocampal tail

INTRODUCTION

Major depressive disorder (MDD) affects more than 16.1
million American adults (6.7% of the US population) older
than 18 each year (1) and is a significant public health
concern throughout the world (2) First-line treatments for MDD

include antidepressant medication (ADM) or cognitive-behavior
therapy (CBT). Both treatments have roughly equivalent
efficacy for achieving remission, which is the goal of acute-
phase treatment for depression (3). Both treatments yield

heterogeneous responses, with a large proportion of patients
still having symptoms even after treatment. Several studies have
reported that these variabilities in treatment responsiveness
have been associated with specific clinical characteristics of
MDD, such as the age of onset, comorbidity, duration of
illness, past treatment, recurrence, or anxiety (4). Many
studies, including the STAR∗D trial, the largest controlled
study of sequential MDD treatments, have investigated the
effectiveness of different treatments for patients who fail to
get sufficient relief from their initial ADM. Results of these
studies indicate a declining probability of response with each
additional treatment failure. However, the structural neurology
underlying outcomes to treatments and their change with
different types of treatment has received only little study
to date.

The hippocampus (HC) is an important brain region involved
in memory and emotion regulation. Smaller HC volumes
have been consistently reported in MDD (5, 6). Despite well-
documented whole HC atrophy in depression, there is mixed
evidence concerning subregional morphology in HC volumes.
Many studies show MDD patients have smaller volumes of
HC subregions in the bilateral subiculum, Cornu Ammonis
(CA)1, CA2, CA3, and tail regions (7, 8). In contrast, a recent
study by Cao et al. did not find any difference in HC subfield
volumes in MDD patients when compared to healthy controls
(9). Additionally, MacQueen et al. examined the posterior HC
volumes, reporting larger bilateral HC tail volumes at pre-
treatment in eventual remitters than non-remitters treated with
ADM (10). Following the MacQueen study, two recent studies
with large cohorts replicated that larger HC tail volume is
associated with remission achieved with ADM treatment (11, 12).

In the past decade, neuroimaging studies techniques
have improved substantially, providing new insights into
HC functional and structural brain alterations resulting

from different treatments. Sheline et al. showed that ADM
treatment counteracts the volume reduction in MDD patients
(13). Additionally, other studies found that ADM stimulates
neurogenesis in the dentate gyrus of adult rodents by increasing
the number of neural progenitor cells (NPCs) (14, 15). A recent
meta-analysis of treatment effects by Enneking et al. compared
different modalities of effective treatments, including ADM,
CBT, and electroconvulsive therapy (ECT) for MDD patients
(16). ECT had the most robust volume changes in subcortical
structures, including the hippocampus-amygdala complex,
anterior cingulate cortex, and striatum. However, there was
not sufficient evidence to determine the structural brain effects
resulting from CBT treatment.

To date, there have been no studies directly comparing
different subfield volume changes of the HC after two first-
line treatments, CBT versus ADM. In order to understand
treatment-specific effects on the HC, we analyzed longitudinal
neuroimaging dataset collected at baseline and after 12 weeks
of treatment in adults with MDD. We investigated differential
changes patterns associated with (1) specific treatment (CBT
versus ADM), (2) clinical outcome (remitter vs. nonremitter),
and (3) chronicity (chronic vs. nonchronic).

METHODS

Participants
MDD patients from the Predictors of Remission to Individual
and Combined Treatments (PReDICT) study were included in
this analysis (17). Briefly, in the PReDICT study adults aged 18–
65 with moderate to severe, non-psychotic and treatment-naïve
MDD were randomly assigned to 12 weeks of treatment with
either CBT (16 1-h individual sessions) or one of two ADM,
duloxetine (30–60 mg/day) or escitalopram (10–20 mg/day),
in a 1:1:1 manner. Patients enrolled met DSM-IV criteria for
MDD and had never previously received ≥4 weeks of ADM
treatment or ≥4 sessions of an evidence-based psychotherapy
for MDD or dysthymia. To ensure patients had at least
moderate severity MDD, patients had to score ≥18 at screening
and ≥15 at baseline on the 17-item Hamilton Depression
Rating Scale (HDRS-17) (18). Patients were excluded if they
met DSM-IV lifetime criteria for a psychotic disorder, bipolar
disorder, or dementia, or if they had a current (past-year)
diagnosis of eating disorder, dissociative disorder, or obsessive-
compulsive disorder. Additionally, patients with any current

Frontiers in Psychiatry | www.frontiersin.org 2 December 2021 | Volume 12 | Article 718539110

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Tai et al. Treatment-Specific Hippocampal Volume Changes

primary DSM-IV disorder other than MDD were excluded
(17). All participants provided written informed consent before
beginning study procedures and the study was approved by the
Emory Institutional Review Board.

A total of 172 patients (127 ADM and 45 CBT) completed
the 12 weeks of treatment and had usable structural magnetic
resonance imaging (MRI) scans at baseline and week 12. For
comparison purposes, we analyzed MRI data from 40 healthy
control subjects without a current or past history of psychiatric
or neurological disorder who were scanned once as part of
separate imaging studies conducted on the same scanner at
Emory University.

Clinical Outcomes and Chronicity
Patients were divided by their clinical outcomes and chronicity
of their major depressive episode. Patients were split into
four outcome groups based on the HDRS-17 change over
the 12 weeks of treatment. Remitters had an HDRS-17
score ≤7 at both weeks 10 and 12. Responders without
remission had a ≥50 % decrease from baseline but did
not meet the remission definition. Partial responders had a
30–49% decrease in HDRS-17 score. Non-responders had a
<30% decrease. Additionally, patients were divided into two
groups (chronic and non-chronic) using a cut-point of 104
weeks (i.e., 2 continuous years) for their major depressive
episode length at the time of screening. Patients were also
subdivided by the reported number of depressive episodes (1, 2,
and ≥3).

MRI Acquisition
MRI scanning was performed using a 3T Siemens TIM Trio
(Siemens Medical Systems, Erlangen, Germany) at Emory
University. Two longitudinal high-resolution T1-weighted
magnetization-prepared rapid gradient echo (MPRAGE) scans
were acquired at the start of the study (baseline) and after
12 weeks of treatment. The acquisition parameters are the
following: sagittal slice orientation; slice thickness = 1.0mm; in-
plane resolution= 1.0× 1.0mm; matrix= 240× 240; repetition
time= 2,300ms; inversion time= 900ms; flip angle= 9◦.

Hippocampal Subfield Volume Calculation
The hippocampal subfield segmentation module implemented
in Freesurfer 6.0 was used to estimate a total of 26 different
segmented subfields, 13 for each side of the brain (19). A
further description of the algorithm can be found in Iglesias
et al. (20). The segmented hippocampal subfield masks were
carefully checked visually, and no substantial error was detected.
The volumes of the hippocampal subfield were extracted based
on the segmented masks. In addition, the whole HC volume
of each hemisphere was also extracted. The volumes in all
discussed analyses use the following normalization formula to
account for different total brain volumes of subregions between
subjects (Equation 1). The estimation of total intracranial
volume of each subject was calculated using the standard
Freesurfer pipeline. Further discussion of subfield volumes in

this paper will assume the use of the normalized volume unless
otherwise noted.

Equation 1. Brain Volume Normalization:

%Normalized Volume of Interest

=

Hippocampal Subfield

Total Intracranail Volume
∗ 100

Statistical Analysis
For the current analyses, the two antidepressants were combined
to form one ADM group. This was done to increase
statistical power and is justified based on the absence of
any literature demonstrating differences in clinical efficacy
or neurological volume effects between these medications
(Supplementary Table 1). All statistical analyses were conducted
using Jamovi software (21). A general linear model was used
to compare the group difference at baseline including: (1)
healthy controls vs. treatment-naive MDD, and (2) CBT-
treated vs. ADM-treated remitters. A linear mixed model
with repeated measures was used to examine the longitudinal
volume changes of the HC subfield regardless of treatment,
outcome, or chronicity. Furthermore, a linear mixed model
with interaction evaluated: (1) treatment-specific effect—time
× treatment (CBT-treated vs. ADM-treated remitters); (2)
treatment-specific outcome effect—time × outcome (remitters
vs. non-responders); and (3) chronicity effect—time× chronicity
(chronic vs. nonchronic). Following any significant interaction
findings, a post-hoc paired t-test was performed to validate
the results. Lastly, a correlation analysis was performed
between HC subfield volume at baseline and volume changes
(Equation 2) over time and HDRS-17 changes (Equation 3). All
statistical analyses included age and gender as covariates. Two
statistical significance thresholds were applied to all analyses:
(1) pUncorrected <0.05 and (2) pBonferroni <0.05, which takes
26 different regions (considering both left and right brain), to
get pUncorrected <0.0019. Both alphas are reported to capture
potentially significant factors.

Equation 2. Brain Volume Change:

1BV = BVBaseline − BVWk12

where BVBaseline is the %Normalized Volume of Interest at
baseline and BVWk12 is the % Normalized Volume of Interest at
week 12.

Equation 3.HDRS-17 Change:

1HDRS =
HDRSBaseline1 − HDRSWk2

HDRSBaseline
∗ 100

where HDRSBaseline is the HDRS-17 score at baseline and
HDRSWk12 is the HDRS-17 score at week 12.

A legend for the 26 different subfields (left and right) is as
follows (Figure 1): (1) hippocampal tail, (2) subiculum, (3) CA1,
(4) hippocampal fissure, (5) presubiculum, (6) parasubiculum,
(7) molecular layer, (8) Granule Cell Molecular Layer of the
Dentate Gyrus (GC-ML-DG), (9) CA3, (10) CA4, (11) fimbria,
(12) Hippocampal Amygdala Transition Area (HATA), and (13)
unilateral whole hippocampus.
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TABLE 1 | Demographics and baseline characteristics of participants with MDD.

Characteristic Study group

Healthy controls MDD

N 40 172

Female 24 (60.0) 104 (60.5)

Age, mean (SD), yrsA 36.5 (8.76) 39.0 (11.5)

Outcome, treatment N

Remitter, total/ADM/CBTA - 85 / 63 / 22

Responder, total/ADM/CBTA - 36 / 29 / 7

Partial-responder, total/ADM/CBTA - 25 / 17 / 8

Non-responder, total/ADM/CBTA - 26 / 18 / 8

No. lifetime episodes

1 - 90 (52.3)

2 - 26 (15.1)

≥3 - 56 (32.6)

Chronic episode (≥2 yrs) - 57 (33.1)

Symptom severity, HDRS-17 score Baseline MDD Week 12 MDD

All participants, mean (SD)A 18.9 (3.32) 7.22 (5.72)

Remitter, mean (SD)A 18.7 (3.51) 2.82 (2.21)

Responder, mean (SD)A 20.2 (3.11) 7.64 (2.31)

Partial-responder, mean (SD)A 18.3 (2.43) 11.7 (1.95)

Non-responder, mean (SD)A 18.6 (3.45) 16.7 (4.12)

MDD, Major depressive disorder; HDRS-17, Hamilton Depression Rating Scale; ADM,

Antidepressant medications; CBT, Cognitive behavioral therapy.
AUnless otherwise indicated, data are expressed as number (percentage) of participants.

RESULTS

Clinical Characteristics and Treatment
Outcomes
The demographic and clinical characteristics of the participants
are presented in Table 1. There was no significant difference in
age between the healthy controls (36.5 ± 8.57 years) and the
MDD group (39 ± 11.5 years). There were also no significant
differences in age among the four treatment outcome groups. At
the baseline, MDDpatients had anHDRS-17 score of 18.9± 3.32.
After 12 weeks treatment, MDD patients had a HDRS-17 score
of 7.22 ± 5.72, which was significantly reduced (t (171) = 24.7,
p < 0.001) and 85 patients (49.4%) had remitted. Detailed HC
subfield volumes are presented in Supplementary Table 2.

Baseline Hippocampal Subfield Volume Differences

Between Healthy Controls and Treatment Naive MDD

Patients
Fifteen hippocampal subfields out of 26 regions were
significantly smaller in MDD patients compared to healthy
controls (pUncorrected <0.05) at baseline: (1–2) bilateral CA1,
(3–4) bilateral CA3, (5–6) bilateral CA4, (7–8) bilateral
parasubiculum, (9–10) bilateral GC-ML-DG, (11–12) bilateral
Molecular layer, (13–14) bilateral HATA, (15) right Fimbria
(Supplementary Table 3). Interestingly, the bilateral whole
HC volumes were also smaller in MDD patients although

this finding did not survive after Bonferroni correction
(Supplemantary Table 3). With Bonferroni multiple comparison
correction (pBonferroni <0.05), only eight subregions out of 15
significant substractures survived including bilateral CA3, CA4,
parasubiculum, left HATA, and right GC-ML-DG (Figure 2).

Baseline Hippocampal Subfield Volume Differences

Between ADM- and CBT-Treated Patients
There were no statistical baseline differences in hippocampal
subfield volumes between ADM-treated (n = 127) and CBT-
treated (n = 45) patients. However, ADM-treated remitters (n
= 63) showed smaller hippocampal baseline volumes in right
fimbria (pUncorrected = 0.019) and HATA (pUncorrected = 0.042)
than CBT-treated remitters (n= 22) (Figures 3A,B).

Baseline Hippocampal Subfield Volume Associated

With Outcome
Left presubiculum volume at baseline showed a significant
relationship with the percentage change of HDRS-17 scores.
Larger HC volume in the left presubiculum was positively
associated with clinical improvement (R2

= 0.056, p = 0.038).
In addition, the CBT-treated group (n = 45) showed a positive
relationship between clinical improvement and volume of the
right fimbria (R2

= 0.182, p = 0.022) and HATA (R2
=

0.169, p = 0.032), but no such relationship was obtained
for the ADM-treated patients (n = 127) (Figure 1). Post-hoc
analysis by group found that remitters had larger volumes
at baseline in the left presubiculum (pUncorrected = 0.019)
and parasubiculum (pUncorrected = 0.04) than non-responders
regardless of treatment. Within ADM-treated patients, there
were no volumes that showed statistically significant differences
between remitters and non-responders, but within CBT-treated
patients, remitters had larger baseline volumes than non-
responders in the whole right HC (pUncorrected = 0.025) and
various subregions including left GC-ML-DG (pUncorrected =

0.032) and CA4 (pUncorrected = 0.04), and right CA1 (pUncorrected
= 0.011), GC-ML-DG (pUncorrected = 0.02), molecular layer
(pUncorrected = 0.029), HATA (pUncorrected = 0.029). Additional
statistical results of these comparisons are presented in
Supplementary Table 4.

Baseline Hippocampal Subfield Volume Associated

With Chronicity, Number of Episodes, or Symptom

Severity
There were no statistical differences in any HC subfields between
chronic and non-chronic groups or by number of past episodes
at baseline. Additionally, there were no interaction effects of time
and chronicity (Supplementary Table 5). Lastly, there was no
significant findings between symptom severity (HAMD score)
and baseline volumes.

Hippocampal Subfield Volume Changes Across

Treatments (Time Effects)
Regardless of treatment (ADM or CBT), MDD patients
demonstrated longitudinal HC volume reduction over 12 weeks
in six subregions, including bilateral HATA, left subiculum, left
CA1, left Fimbria, and right tail (pUncorrected < 0.05). Notably,
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FIGURE 1 | Total volumes of 26 hippocampal subfield used in analysis broken by treatment group and time. BL, Baseline; Wk12, Week 12; CBT, cognitive behavioral

therapy; ADM, antidepressant medications. (A) whole hippocampus, (B) hippocampal subfields.

bilateral HATA and left CA1 were smaller compared to healthy
controls at baseline and continued to decrease over 12 weeks with
treatment (Figure 2). Only the left HATA survived after multiple
comparison corrections (pBonferroni < 0.05). The left whole HC
volume also decreased over time (pUncorrected < 0.05). Figure 2
presents HC volume changes over 12 weeks of treatment and
Supplementary Table 4 presents detailed statistical results.

Treatment-Specific Hippocampal Subfield Volume

Changes (Treatment Effects)
Only remitters are included in treatment-specific change
analyses because finding pathological changes in the remitters
could help explain the clinical outcomes as they showed

the largest improvement. Interestingly, there were differential
treatment-specific HC subfield volume changes in the right
HC tail (pUncorrected = 0.035) and HATA (pUncorrected =

0.03): remitters to CBT demonstrated decreased volumes over
time, whereas ADM remitters showed no volume changes
(Supplementary Table 6). Figure 3 presents treatment-specific
volume changes in the right HC tail and HATA.

Hippocampal Subfield Volume Changes Associated

With Outcome (Outcome Effects)
There was no statistical relationship between clinical
improvement (percent change of HDRS-17 scores) and HC
subfield volume changes. In addition, there were no significant
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FIGURE 2 | Hippocampal subfield volume differences between treatment-naive MDD and Healthy controls, and hippocampal volume changes over 12 weeks of

treatments. (A) Hippocampal subfield volumes in coronal and sagittal images. (B) Bilateral whole hippocampus volume changes. Right whole hippocampus volume at

baseline was significantly smaller than healthy controls (pUncorrected < 0.05) (C) 26 hippocampal subfield volume in healthy controls, baseline and week 12 in

treatment-naive MDD patients. Fifteen substructures including bilateral CA1, CA3, CA4, parasubiculum, GC-ML-DG, molecular layer, HATA, and right fimbria are

shown significant volume reduction in the MDD patients compared to healthy controls (pUncorrected < 0.05). The bilateral CA3, bilateral CA4, bilateral Parasubiculum,

left HATA, and right GC-ML-DG results survived multiple comparison corrections (pBonferroni < 0.05). Notably, six subregions (red box), including bilateral HATA, left

subiculum, left CA1, left Fimbria, and right tail, showed a volume reduction between baseline and week 12 (pUncorrected < 0.05). The left HATA is highly significant

(pBonferroni <0.05). *pUncorrected < 0.05, ***pBonferroni < 0.05, BL, baseline; Wk12, week 12.

interaction effects in time-by-outcome among four different

outcome groups, including remitters, responders, partial

responders, and non-responders. However, the left HC tail

(pUncorrected = 0.03) had a significant interaction effect between
remitters and non-responders regardless of treatment. Left

HC tail volume in non-responders significantly decreased
over time, but no volume change occurred in remitters

(Supplementary Table 7). Post-hoc analysis in each treatment
group revealed that the left tail volume reduction was only
significant in the ADM-treated patients. There were no
significant interaction effects between time and outcomes in
the CBT group. Interestingly, the post-hoc analysis also found
volume reduction in the right HC tail (F = 6.37, pUncorrected =

0.01) with the ADM-treated patients (Figure 4).
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FIGURE 3 | Treatment specific hippocampal volume differences between CBT-treated and ADM-treated remitters at baseline and changes after 12 weeks of

treatment. CBT-treated remitters showed larger HC volumes at baseline in (A) Right fimbria and (B) Right HATA. Notably, CBT-treated patients show significant volume

reductions over 12 weeks of treatment in (B) Right HATA and (C) Right hippocampal tail. In contrast, ADM-treated patients showed no changes. The solid line

represents p-values from the post-hoc paired t-test between baseline and week 12 volume. BL, baseline, Wk12, week 12. CBT, cognitive behavioral therapy; ADM,

antidepressant medication.

FIGURE 4 | Interaction effects between time and outcome (remitters vs. non-responders). A significant interaction effect between remitters (n = 85) and

non-responders (n = 26) regardless of treatment was found (A) in the left hippocampal tail. Post-hoc analysis in the ADM-treated patients show differential volume

changes between remitters (n = 63) and non-responder (n = 18) (B) in the left and (C) right hippocampal tails. The solid line represents p-values from the post-hoc

paired t-test between baseline and week 12 volume. BL, Baseline; Wk12, Week 12; CBT, cognitive behavioral therapy; ADM, antidepressant medication.

DISCUSSION

The main aim of this study was to explore the differential
effects of treatment types, treatment outcomes, and chronicity
of depression on hippocampal substructures using a longitudinal
neuroimaging dataset from baseline and following 12 weeks
of treatments. This study is the first to directly compare

the effects of antidepressant medication vs. cognitive behavior
therapy in hippocampal subfield volume changes in a large
cohort of treatment-naive MDD (n = 172) patients. Differential
treatment-specific volume changes were found in HC subregions
between remitters to ADM and CBT. CBT remitters showed a
volume reduction in the right hippocampal tail, which did not
occur in ADM-treated remitters. In contrast, non-responders in
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ADM-treated patients showed volume reductions in the bilateral
hippocampal tails while remitters in ADM-treated patients had
unchanged volumes. This finding suggests the importance of
hippocampal tail volumes in considering the effects of ADM
treatment, consistent with prior research (10). ADMmay protect
against progressive hippocampal atrophy by altering neuronal
plasticity or supporting neurogenesis (22). The other notable
results from this study are: (1) various hippocampal subregion
volumes are smaller in patients with MDD compared to healthy
controls, which is consistent with previous findings (6); (2) six
hippocampal subregion volumes demonstrated decreases after
12 weeks of treatment regardless of treatment or outcome,
particularly the highly significant finding of left HATA volume
reduction; (3) larger baseline right fimbria and HATA volumes
in the CBT-treated patients were positively associated with
clinical improvement.

Consistent with previous reports, the MDD patients in our
study showed significantly smaller bilateral whole HC volumes
at baseline compared to healthy controls (5). Additionally, our
results indicate various HC subregions are smaller in MDD
compared to healthy controls. Roddy et al. recently suggested
that hippocampal subregion atrophy starts with principal
substructures, including CA regions, and possibly progresses
to an expanding pattern of substructure involvement including
subiculum, dentate, and molecular layer. Furthermore, they
reported no peripheral HC substructure involvement, including
HATA, tail, presubiculum, and parasubiculum. However, our
results show significant volume reductions in both principal and
peripheral regions in treatment-naive depression and no relation
of these changes to chronicity of depressive episode.

Two recent studies reported the importance of hippocampal
tail volumes in the prediction of remission with antidepressant
medication (11, 12). Maller et al. showed that MDD patients
had larger hippocampal tail volumes than healthy controls
at baseline, and this larger volume was associated with both
a diagnosis of MDD and a greater chance of remission to
ADM (11). In contrast, Nogovitsyn et al. reported smaller
hippocampal tail volumes in MDD patients than healthy
controls, and the size of hippocampal tail volumes in depression
patients was positively associated with remission status, including
early and later remission with antidepressant medication.
Although the two studies reported opposite results in baseline
hippocampal tail volumes in MDD vs. control subjects, both
studies agreed that larger hippocampal volume was associated
with remission in ADM-treated patients. Our analysis did
not show a difference in hippocampal tail size compared
to healthy controls at baseline. Furthermore, there were
no differences between remitters and non-responders in
hippocampal tails at baseline. However, these two studies
also showed that the HC tail did not change over time
in ADM remitters suggesting that hippocampal tail volumes
were sensitive to ADM treatment. Additionally, previous
studies demonstrated HC volume increase with 8 weeks of
citalopram treatment as well as with 3 years of treatment with
various antidepressant medications (23, 24). These findings may
reflect the effects of ADM on suppressing toxic stress and

enhancing neurogenesis and synaptic plasticity as previously
reported (25–28).

We found that the right fimbria and HATA volumes at
baseline were positively associated with clinical improvement
specifically in CBT-treated patients. The fimbria is an important
white matter relay connecting the HC to the paraventricular
nucleus of hypothalamus and other limbic regions. A previous
study demonstrated that deep brain stimulation of fimbria-fornix
enhanced learning and memory capability (29). Additionally,
HATA atrophy might affect the integrity of the hippocampal-
amygdala network that is critical to cognition. This suggests that
patients with significant decline in fimbria and HATA volume
are less responsive to CBT and, therefore, may warrants further
research in MDD patients. Nevertheless, the benefits achieved
with CBT treatment of MDD is likely related to other neural
effects rather than hippocampal tail volume changes.

Hippocampal atrophy with chronicity has been consistently
reported in depression. Previously Sheline et al. reported that
longer untreated periods in recurrent depression are associated
with volume decline in the HC (14). Unlike their report,
we found no baseline differences between chronic and non-
chronic groups and no significant differences in volumes changes
during treatment between these subgroups. This discrepancy
may be due to reduced statistical power stemming from
group comparisons using a two year cut off instead of a
correlation analysis employing a continuous measure of episode
duration. We used group analysis because retrospective self-
report for duration of illness is often highly inaccurate, so
categorical classification is a more conservative approach to the
data (30). Our analysis also showed no statistical relationship
between depression severity and volume reduction at baseline
as previously reported by Frodl et al. (31) and Nils et al.
(32). Furthermore, we found no significant relationship between
baseline severity and volume changes after 12 weeks of treatment
(Supplementary Table 8).

Interestingly, after 12-weeks of antidepressant treatment,
six HC substructures show significant longitudinal volume
reduction regardless of treatment and outcomes. Left HATA and
left CA1 were smaller at baseline compared to healthy controls,
and they continued to decrease over 12 weeks of treatment. In
contrast, the remainder of the abnormal substructures at baseline
compared to healthy controls show no longitudinal changes. This
finding is consistent with our chronicity findings which show
no differences between chronic and non-chronic groups. These
findings suggest there is no progressive atrophy in these HC
substructures once atrophy happens in depressed patients, which
may suggest a floor effect in HC subfields.

A recent study using the same imaging dataset, but analyzing
functional magnetic resonance imaging (fMRI), in treatment-
naive depressed patients treated with ADM or CBT identified
that the functional connectivity of the subcallosal cingulate
cortex (SCC) with three brain regions (ventromedial frontal,
ventrolateral frontal/anterior insula, and dorsal midbrain)
differed between remitters to CBT or ADM (5). Greater
hyperconnectivity between the SCC, one of the critical hub
regions in depression networks, and these three regions
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predicted remission with ADM; in contrast, hypo-connectivity
predicted remission with CBT (5). Further studies may
consider volumetric analysis. Combining the multiple structural
data with volumetric-connectivity associations could create a
more multifactorial approach for better understanding MDD.
Additionally, direct comparison with recurrent or treatment-
resistant depression cohorts could also be considered to evaluate
the effects of past treatments and disease progression toward
treatment-resistant depression.

Our study has limitations, including different sample sizes
between ADM- and CBT-treated patients and HC subfield
segmentation with a 1mm resolution using a single modality.
There were more remitters in the ADM group (n = 63) than
CBT (n = 22) due to two different antidepressant medications
(duloxetine and escitalopram) in our protocol. Additionally,
the sample size of CBT non-responders (n = 8) is relatively
small, limiting the statistical inferences that can be drawn
regarding outcome effects. In addition to the sample size,
the recent version of Freesurfer (Freesurfer 6.0) allows both
T1 and T2 images to improve HC subfield segmentation
performance. However, our analysis only used T1 images
because there were no reliable T2 images available. Importantly,
interaction effects, including treatment- and outcome-specific
findings, did not survive after Bonferroni multiple comparison
corrections. The small magnitude of changes in HC subfield
volume limited our ability to find significance after multiple
comparison corrections.

To the best of our knowledge, there have been no direct
comparisons of hippocampal subfield morphological changes
between antidepressant medication and cognitive behavior
therapy with treatment outcomes in a large sample. This
study advances our understanding of first-line antidepressant
treatment effects on hippocampal substructures. In particular,
we demonstrate differential treatment-specific effects on
hippocampal tail volume changes after 12 weeks of treatments.
Remitters with antidepressant medication had preserved
hippocampal tail volume but CBT remitters did not. We
further show hippocampal tail volume reduction in non-
responders with antidepressant medication. The observation
that no hippocampal tail volume changes in remitters with
antidepressant medication may reflect the action of suppressing
stress toxic effects and increasing neurogenesis factors, consistent
with animal studies (33).
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