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Editorial on the Research Topic

Population Neuroscience of Development and Aging

Brain development and aging involve many inter-related biological processes that are shaped
by genes and the environment from conception onwards. Population neuroscience endeavors to
identify and model such processes and influences using a combination of epidemiology, “omics”
sciences and neuroimaging, as applied in large cohorts andmeta-analytical datasets. In these efforts,
practitioners of population neuroscience are cognizant of three key challenges inherent in their
pursuits: (1) An infinite combination of factors influencing the brain from within (genes and their
regulation) and the outside (physical, built and social environment); (2) Presence of developmental
cascades that carry such influences from one time point to the next, from one organ to another, and
from one level of organization to a different one; and (3) Structural and functional complexity of
the human brain (Paus, 2013, 2016).

This Research Topic collected contributions that speak to the current advancements in
relevant methodological and conceptual issues, as well as reviews and original reports drawing on
population-based studies of brain development and aging.

On the “development” side of the lifespan continuum, four papers report original findings
obtained in four large cohorts of children, adolescents and young adults, namely the Generation
R, ABCD Study, IMAGEN and iSHARE. Lopez-Vicente et al. analyzed data acquired during
resting state with functional magnetic resonance imaging (MRI) in ∼ 3,000 children (8–
15 years of age), and provided a glimpse of developmental changes in the dynamics of
“functional connectivity” during this developmental period. Patel et al. studied the relationship
between various structural properties of the cerebral cortex in ∼11,000 10-year old children,
and reported a striking similarity between inter-regional profiles of the tangential growth
of the cerebral cortex (i.e., its surface area) as it relates—in a distinct spatial pattern
captured by the profiles—to both the general psychopathology and overall cognitive abilities.
Penninck et al. tested, in over 1,500 adolescents, whether psychopathology at 18 years of
age could be predicted by inflammation-related variations in brain structure at 14 years
of age; they complemented this work in humans by experimental studies in mice. Finally,
Tsuchida et al. showed, in a cohort of ∼1,700 university students (18–26 years of age),
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that the maturation of structural properties of white matter,
characterized by multi-modal imaging, continue to change in the
3rd decade of life, with considerable variations across MRI-based
parameters (e.g., fractional anisotropy, neurite density index) and
fiber tracts.

On the “aging” side of the lifespan continuum, this Research
Topic includes four papers that address a variety of questions
about the aging brain. Lin et al. used a modest lifespan sample
(417 individuals, 21–92 years of age), and identified striking age-
related changes in cortical thickness and curvature in older (60+
years) adults that varied as a function of their location on the
surface (gyri) vs. depth (sulci) of cortical folds. Rodriguez et al.
studied 1,400 adults (40–80 years of age) to find out whether the
type of employment (and associated mental demands) protect
brain health, with an affirmative answer especially in individuals
who continued to work in their older age. Sole-Padulles et al.
examined, in a multi-center study (∼1,400 adults over 60 years
of age), whether or not loneliness is associated with cognitive
and brain health, and concluded that this is not the case if
one excludes individuals who developed dementia at follow-up
assessments. Finally, Xiang et al. analyzed a unique sample of
250 centenarians to assess the interplay between Apolipoprotein
E (APOE) genotypes and education vis-à-vis cognitive decline,
confirming the beneficial effect of education in carriers of the e3
allele but also revealing some additional, less expected, APOE-
education interactions.

The above empirical reports are complemented by a
series of methodological, conceptual and review papers. Thus,
Balsor et al. provided a practical guide for studying the
molecular development, across the lifespan, of the human
visual cortex, addressing the key challenge of limited post
mortem proteomic and transcriptomic data. Soumaré et al.
addressed the important questions of incidental findings on
MRI scans acquired in community-based samples of young
adults, and provide a breakdown of the observed findings to
those that required medical referral, active intervention, and
clinical surveillance. Ness and colleagues asked to what extent
developmental trajectories in brain structure and function, as
obtained in large population-based samples, relate to symptom
manifestations, and how to integrate other sources of data (e.g.,
social environment) to improve relevant predictions and risk

calculations (Nees et al.). Abuga et al. provided a systematic
review aimed at estimating the magnitude of premature
mortality following childhood-onset neurological impairment
(e.g., epilepsy), and identified several risk factors associated with
premature death in these children in both high-income and
low/middle-income countries. Finally, Royse et al. carried out
a qualitative review to determine whether population ancestry
(African American, Hispanic, non-Hispanic whites) plays a
role in dementia-associated pathology and found that there are
significant differences as a function of both ancestry and sex in
the case of Tau (but not Aβ) load; given the limited literature,
no conclusions could be drawn about the possible interaction
between ancestry and sex.

The above contributions are but a few papers addressing
important questions about the development, maturation and
aging of the human brain using the population-neuroscience
framework. This type of work has been enabled by several
developments in the field, including (1) the pooling of existing
datasets facilitated by collaborative efforts of several international
consortia, such as CHARGE and ENIGMA, (2) the establishment
of large community-based cohorts, such as the UK Biobank and
the ABCD Study, and (3) open-science initiatives in the “omics”
sciences, especially those in transcriptomics and proteomics (e.g.,
Allen Human Brain Atlas, the PsychENCODE Project). We
and others have used these resources to answer a variety of
questions about the development of the human cerebral cortex
across the lifespan (Vidal-Pineiro et al., 2020; Bethlehem et al.,
2022), its genetic architecture (Grasby et al., 2020; Hofer et al.,
2020; Shin et al., 2020), cellular underpinning of inter-regional
profiles of MRI-based phenotypic variations (Shin et al., 2018;
Patel et al., 2021), and their prenatal origin (Patel et al., 2022).
Now that this Research Topic is completed, we will endeavor
to facilitate future inter-disciplinary cross-talks by publishing
papers of this and similar Research Topics in the Section on
Population Neuroimaging of Frontiers in Neuroimaging, a new
Frontiers journal launched this year.
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Apolipoprotein E (APOE) is an important risk factor for cognitive decline and Alzheimer’s
disease in aging individuals. Among the 3 known alleles of this gene: e2, e3, and e4,
the e4 allele is associated with faster cognitive decline and increased risk for Alzheimer’s
and dementia, while the e2 allele has a positive effect on longevity, and possibly on
preservation of cognitive function. Education also has an important effect on cognition
and longevity but the interplay between APOE and education is not well-characterized.
Previous studies of the effect of APOE on cognitive decline often used linear regression
with the normality assumption, which may not be appropriate for analyzing bounded
and skewed neuropsychological test scores. In this paper, we applied Bayesian beta
regression to assess the effect of APOE alleles on cognitive decline in a cohort of
centenarians with longitudinal assessment of their cognitive function. The analysis
confirmed the negative association between older age and cognition and the beneficial
effect of education that persists even at the extreme of human lifespan in carriers of the
e3 allele. In addition, the analysis showed an association between APOE and cognition
that is modified by education. Surprisingly, an antagonistic interaction existed between
higher education and APOE alleles, suggesting that education may reduce the positive
effect of APOE e2 and increase the negative effect of APOE e4 at extreme old age.

Keywords: apolipoprotein E, beta regression, blessed information-memory-concentration test, cognitive
function, centenarians

INTRODUCTION

Declines of certain cognitive abilities are common complications of aging and identifying risk
factors for cognitive decline is essential to search for therapeutic interventions. Known risk factors
for cognitive decline include older age, lower education, and genes such as apolipoprotein E (APOE)
that plays an important role in the risk for Alzheimer’s disease (Fan et al., 2019). APOE is involved
in the transport of cholesterol and other lipids between cellular structures (Mahley, 1988). The
gene has three well-characterized alleles e2, e3, and e4 that are defined by the combinations of
the genotypes of the single nucleotide polymorphisms rs7412 and rs429358. The three alleles
differ in two amino acids and result in proteins produced by the e2 and e3 alleles that bind to
high-density lipoprotein cholesterol (HDL) while e4 binds to very-low-density lipoprotein (VLDL)
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(Belloy et al., 2019). Studies have shown that e4-carriers have
increased risk for Alzheimer’s disease and accelerated cognitive
decline compared to non-carriers (Staehelin et al., 1999; Bondi
et al., 2003; Wetter et al., 2005; Belloy et al., 2019), while
e2-carriers appears to have a reduced risk for age-related
neurodegenerative disease (Henderson et al., 1995; Raber et al.,
2004; Kim et al., 2017). The review by O’donoghue et al.
(2018) lists 40 studies of the association between APOE and
cognition in longitudinal studies, but none of these studies
examined this association among individuals at extreme ages
(e.g., centenarians). Investigating the association of this gene
with cognitive decline in centenarians is important for informing
about the extent of the protective and deleterious effect of this
gene on cognitive function at the extreme of human lifespan.
In addition, examining the interaction between education and
APOE alleles could help to better characterize the long term
effect of education on cognition and the interplay between genetic
and environmental risk factors. Therefore, in this work, we
examined the association of e2 and e4 alleles of APOE with
cognitive function in centenarians enrolled in the New England
Centenarian Study (NECS) (Sebastiani and Perls, 2012), who
are enriched for carriers of the e2 allele, have varying levels
of education, and for whom we have longitudinally collected
assessments of cognitive function.

Typically, longitudinal studies of the effect of APOE on
cognitive decline use linear mixed models of data collected
from a variety of neuropsychological tests (Blair et al., 2005;
Caselli et al., 2009; Kim et al., 2017). These models rely on
the assumption that errors follow a normal distribution, which
is unbounded and symmetrically distributed. However, the
outcome of any neuropsychological test can easily violate the
normality assumption in two aspects: (1) the neuropsychological
test scores are usually defined in a limited interval between
0 and a maximum test score, and (2) the distribution of
neuropsychological test scores is often skewed. Violating the
normality assumption when modeling cognitive test scores could
lead to a poor estimation of the genetic effect on cognitive
function, and predict scores that are either negative or exceed the
maximum test value. To address this problem, we propose using
a regression model based on the assumption that the response
follows a beta distribution. Beta distribution is defined in a finite
interval and can accommodate distribution with different shapes.
Hence this distribution is well suited to model test scores and
questionnaire outcomes that can take values in a finite range
(Smithson and Verkuilen, 2006).

Beta regression was proposed by Ferrari and Cribari-Neto
(2004) and was further developed by others (Smithson and
Verkuilen, 2006; Simas et al., 2010; Figueroa-Zúniga et al.,
2013). Studies in multiple fields have utilized beta regression to
model different variables such as ischemic stroke lesion volume
(Swearingen et al., 2011), genetic distance (Branscum et al., 2007),
and understory vegetation communities (Eskelson et al., 2011). In
this paper, we use a Bayesian hierarchical beta regression model
to fit longitudinally collected neuropsychological test scores, and
we compare the results of this analysis with the conventional
linear mixed model. Using the Bayesian beta regression to analyze
the association between APOE and cognitive decline among

centenarians enrolled in the NECS is an important novelty of our
analysis (Sebastiani and Perls, 2012).

MATERIALS AND METHODS

Participants
The NECS is an ongoing study that began in 1994 as a
population-based study of centenarians living within eight
towns in the Boston area and expanded enrollment to include
centenarians, their siblings and offspring as well as controls
to North America in 2000. Enrolled participants provide
socio-demographic data, medical history, and physical function
ability (Barthel Index, Mahoney and Barthel, 1965; Sinoff and
Ore, 1997). Participants are also administered the Blessed
Information-Memory-Concentration (BIMC) test (Blessed et al.,
1968; Kawas et al., 1995), which is a brief test of global cognition
that can be administered over the phone to the participant
or with the help of a proxy. The BIMC has a maximum
total score of 37 points. Scores of 33 or greater represent no
impairment, 27–32 indicate mild impairment, 21–26 signify
moderate impairment, and less than 20 are associated with
severe impairment (Kawas et al., 1995). NECS participants are
followed annually to collect new medical events, changes in
medication and physical function ability, and are administered
the BIMC annually. In this analysis, we use the data collected
through November 2019. The data include information about
sex, education, race, ages, APOE genotypes, and BIMC scores of
participants who agreed to complete the test. Participants with
Alzheimer’s disease or dementia who could not complete the test
were not included. Genotype data for APOE were inferred from
the combinations of the SNPs s7412 and rs429358 as described in
Sebastiani et al. (2019a).

Statistical Analysis
Beta Regression Specification
A variable y defined in the interval (0, 1) follows the beta
distribution if the density function is proportional to

f
(
y

∣∣ µ, φ)
∝ yµφ−1(1− y

)(1−µ)φ−1
,

where µ represents the mean: 0 < µ < 1; the function µ(1−
µ)/(1+ φ) is the variance, and φ > 0 is the precision parameter
(Ferrari and Cribari-Neto, 2004). To parameterize the mean as a
function of covariates, it is convenient to use the logit function

g (µ) = log (µ/(1− µ)) = xTi β,

where β is a vector of coefficient and xTi is a vector of
covariates (Smithson and Verkuilen, 2006; Zeileis et al., 2010).
The beta distribution is defined in the open interval (0, 1).
To fit this model to data defined in the range (a, b), we use
the transformation y′ = (y− a)/(b− a). In our analysis, the
BIMC scores range from 0 to 37. By adding/subtracting a small
correct term from the minimum/maximum values of the BIMC
scores, we rescaled the data to the interval [0.01, 0.99] to
avoid zeros and ones.
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Bayesian Beta Regression Modeling
We were interested in modeling the association of the following
main covariates with BIMC scores: age, sex, education, and
APOE alleles. We standardized the continuous variables age and
education to generate parameters on the same scale and coded
the dichotomous variable sex 0 for female and 1 for male. Since
homozygote carriers of e2 or e4 are rare, we used the following
allele groupings in the analyses:

1. “e2 group” comprising carriers of the APOE genotypes
e2e2 or e2e3;

2. “e3 group” comprising carriers of the APOE genotype e3e3;
3. “e4 group” comprising carriers of the APOE genotypes

e3e4 or e4e4.

We used dummy codings regarding these three groups, and
we selected “e3 group” as the reference group in all of our
analyses because it is the most frequent genotype in Whites.
We performed two analyses to distinguish the beneficial effect
of the e2 group allele relative to e3 group from lack of carrying
the deleterious e4 allele. One analysis estimated the association
between APOE and BIMC scores of the e2 group relative to the
e3 group by including only the e2 groups and the e3 groups.
The other analysis estimated the association between APOE and
BIMC scores of the e4 group relative to the e3 group. For
completeness, we also performed an additional analysis that
included all three APOE groups.

We used backward selection for model fitting, and started with
the hierarchical regression model:

yij ∼ Beta(µijφ, φ(1− µij))

logit
(
µij

)
= µb0 · Isingle + bi0 ·

(
1− Isingle

)
+ βage · ageij+

βage2 · age2
ij + βsex · sexi + βedu · edui + βAPOE · APOEi+

βage.edu · agei · edui + βage.APOE · agei · APOEi+

βedu.APOE · edui · APOEi,

where yij denotes the jth cognitive test score of the ith participant,
the β coefficients are fixed effects, and bi0bi0 is the random
intercept that we used to account for within participant
correlation of the repeated measurements. Besides the covariates
of the main effects of age, sex, education, and APOE, we also
included a squared term of age and two-way interactions of these
main effects in our model. We used a piecewise random intercept
µb0·Isingle+bi0 ·

(
1− Isingle

)
to accommodate participants with

different number of test administration, where the indicator
variable Isingle is 0 for participants with only one cognitive test
score and Isingle = 1 otherwise. The random intercepts bi0 were
assumed to be independent and normally distributed, i.e., bi0∼
N(µb, σ

2
b). We specified a normal prior for the mean parameter

µb of the random intercept that µb ∼ N(0, 1000), and a gamma
distribution with the shape and scale parameters both equal to
1 for the precision parameter φ and the precision of random
intercept 1/σ2

b. With this parameterization, the participants with

only one test score would be assigned the fixed interceptµb in the
regression, while participants with more than one test score have
their own random intercept bi0.We used normal priors for all the
fixed effect parameters.

We implemented the backward model selection algorithm
using the deviance information criterion (DIC) (Spiegelhalter
et al., 2002, 2014), which is particularly useful for selection of
hierarchical models. Since DIC has a tendency to overfit (Clarke
and Clarke, 2018), we then refined the model selected by this
search by retaining only interactions and main effects with a
posterior credible interval (CI) that did not include 0. Once we
selected the final model, we also conducted a sensitivity analysis
with respect to the prior distributions. For regression coefficients
and the mean parameter of the random intercept that use the
normal priors, we reduced the variance from 1,000 to 10 and
100. For precision parameters of the beta distribution and the
random intercept that use the gamma priors, we modified the
variance of gamma priors from 1 to 100. We ran each case to
assess if the parameter estimates altered after we changed the scale
of the prior parameters. We estimated the explained variance of
the model using the regression sum of squares divided by the
total sum of squares. All analyses were conducted in R3.6 and
all Bayesian models were analyzed using Markov Chain Monte
Carlo (MCMC) implemented in the “rjags” package (Plummer,
2016). The posterior estimates of the parameters are derived from
at least 8,000 burn-in adaptions and 4,000 iterations.

Interpretation of the Results
A limitation of beta regression is that the magnitude of the
regression coefficients is not directly interpretable in terms of
changes of the outcome. To better understand the association
of APOE with BIMC scores and the interplay with education,
we estimated the fitted means (marginal effect) using inverse
transformation of the logit function, and then we rescaled the
fitted means to the original scale of the BIMC scores (0, 37). We
calculated fitted means for the e2, e3, and e4 groups for three
different education levels: low education (25% quantile of study
population’s education; 8 years), median education (median of
study population’s education; 12 years), and high education (75%
quantile of study population’s education; 15 years). For each allele
in each education level, we also calculated the corresponding age
of onset of moderate cognitive impairment (BIMC score = 26)
using the fitted trajectories of the cognitive test scores. These
ages provide a quantitatively more interpretable metric of the
genetic effects.

Comparison With the Conventional Method
For comparison with the conventional method, we performed
two analyses that focus on the effect of e2 or e4 separately
using linear mixed models. For a fair comparison, we used
the same variables as selected by Bayesian beta regression, and
we kept the random intercept term to adjust for the subject
effect. The linear mixed model was conducted in R3.6 using the
package “lme4.” We visualized the results of these two methods
by plotting the fitted BIMC scores (marginal effect) with their
credible/confidence intervals against age. In the Bayesian beta
regression, the credible interval of the fitted value was computed
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using the 2.5th and 97.5 percentiles from the MCMC samples. In
the linear mixed model, the confidence interval of the fitted values
was derived using bootstrap. We also computed a residual sum of
squares (RSS) for each method.

RESULTS

Applying Bayesian Beta Regression on
the NECS
Out of 768 total participants in the NECS dataset with APOE
genotypes, we excluded 167 participants with missing test scores,
111 participants with missing education information, and 4
participants with APOE genotype e2e4. Table 1 summarizes the
demographic characteristics and test scores at baseline of the 486
participants used in our analysis. The age range of the data used
in our analysis was 91–113 years. The APOE e3 group was the
most prevalent and used as the reference group in all subsequent
analyses. Approximately 24% of centenarians in the study carried
at least one e2 allele, while only 8% were carriers of an e4 allele.
We did not find any e4 homozygous centenarians.

The histogram in Figure 1 shows that the distribution of
the baseline BIMC scores is bounded and highly skewed. Hence
we analyzed the rescaled test scores using beta regression. The
combination of backward selection using the DIC criterion and
refinement of the model using the posterior credible intervals
produced the models that are summarized in Tables 2, 3.
The diagnostic plots (trace plots, autocorrelation plots, and the
Gelman plots of all MCMC chains) showed no indications of
lack of convergence. The sensitivity analyses also showed that
changing the prior distributions did not appreciably alter the
parameter estimates. The diagnostic plots and sensitivity analyses
are all included in Supplementary Material.

Table 2 summarizes the results of the analysis comparing
APOE e2 with APOE e3, and Table 3 summarizes the results of
the analysis comparing APOE e4 with APOE e3. The significant
coefficients are marked with bold fonts. In both analyses, age, sex,
and education were all significantly associated with BIMC scores.
Older age was associated with significantly worse performance on
the test. More years of education and male sex were associated
with significantly higher scores.

In the analysis comparing e2 with e3, the interaction
between education and e2 was significant, thus suggesting an
effect modification of education on the association of e2 with
BIMC scores. It is noteworthy that the estimates of the main
effect of education (0.063) and the interaction term (−0.062)
were opposite, so that the negative interaction between e2
and education numerically canceled out the positive effect of
education on BIMC scores in carriers of the e2 allele. This is
shown in Figure 2, in which the fitted BIMC scores in e2 carriers
remain nearly the same in different education levels. Figure 2 also
shows the positive effect of education on BIMC scores in the e3
group. Interestingly, only participants of the e3 group with low
education had a worse BIMC score compared to carriers of one
or more e2 alleles. The difference between the e2 and e3 groups
became negligible in participants with median education level,
and carriers of the e3e3 genotypes with a high level of education
obtained a better score than carriers of the e2 alleles.

To better summarize the clinical implication of these results,
we calculated the ages of onset of cognitive impairment predicted
by the fitted model. From the fitted lines, we estimated that
the ages of onset of moderate cognitive impairment were 99.5,
101.8, and 103.5 years in for e3 carriers with low, median,
and high education groups, respectively. The age of onset of
moderate cognitive impairment (BIMC score = 26) was 102.1
years in e2 carriers, independent of education. Therefore, e2

TABLE 1 | Demographic characteristics and the BIMC scores at baseline of the participants in the New England Centenarian Study.

APOE e2 (e2e2, e2e3) APOE e3 (e3e3) APOE e4 (e3e4)

N at enrollment 117 331 38

N with at least 2 follow-ups 60 170 20

Sex, male (%) 22 (18.8%) 85 (25.68%) 9 (23.68%)

Age at enrollment

91–95 (%) 4 (3.42%) 10 (3.02%) 2 (5.26%)

96–100 (%) 22 (18.80%) 55 (16.61%) 9 (23.68%)

101–105 (%) 30 (25.64%) 94 (28.40%) 10 (26.32%)

106–110 (%) 50 (42.74%) 152 (45.92%) 16 (42.10%)

111-113 (%) 11 (9.40%) 20 (6.04%) 1 (2.63%)

Mean (SD) 103.54 ± 4.59 103.32 ± 4.43 102.42 ± 4.97

Years of Education, mean (SD) 11.63 ± 3.51 11.82 ± 3.85 12.29 ± 4.05

BIMC scores at baseline

33–37 (%) 29 (24.79%) 98 (29.61%) 12 (31.58%)

27–32 (%) 33 (28.21%) 66 (19.94%) 7 (18.42%)

21–26 (%) 30 (25.64%) 91 (27.49%) 8 (21.05%)

0–20 (%) 25 (21.37%) 76 (22.96%) 11 (28.95%)

Mean (SD) 25.11 ± 8.23 25.00 ± 8.63 24.38 ± 10.20

The percentiles are with respected to each column stratum. The groups of the BIMC scores are used to classify the degree of cognitive impairment: normal, 33–77; mild,
27–32; moderate, 21–26; severe, 0–21.
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FIGURE 1 | Histogram of baseline Blessed Information-Memory-Concentration scores from the New England Centenarian Study.

TABLE 2 | Parameter estimates and 95% credible intervals from the analysis of the
BIMC scores in carriers of APOE e2 and e3 alleles using Bayesian beta regression.

Estimates 2.5% CI 97.5% CI SD

Intercept (µb) 0.592 0.489 0.695 0.053

Age −0.110 −0.138 −0.099 0.009

Sex, male 0.262 0.076 0.447 0.096

Education 0.062 0.039 0.085 0.012

APOE2 0.037 −0.162 0.186 0.088

APOE2*edu −0.063 −0.109 −0.019 0.023

All covariates were standardized and the score was rescaled to the interval (0, 1)
to fit the beta regression, so all parameters should be interpreted on the logit scale
and the effects are relative to the rescaled scores. Bold fonts highlight significant
parameters.

TABLE 3 | Parameter estimates and 95% credible intervals from the analysis of the
BIMC scores in carriers of APOE e4 and e3 alleles using Bayesian beta regression.

Estimates 2.5% CI 97.5% CI SD

Intercept (µb) 0.647 0.541 0.685 0.053

Age −0.119 −0.141 −0.098 0.011

Sex, male 0.215 0.019 0.413 0.101

Education 0.065 0.041 0.089 0.012

APOE4 −0.382 −0.664 −0.103 0.139

APOE4*edu −0.082 −0.159 −0.008 0.034

All covariates were standardized and the score was rescaled to the interval (0, 1)
to fit the Bayesian beta regression, so all parameters should be interpreted on the
logit scale and the effects are relative to the rescaled scores. Bold fonts highlight
significant parameters.

carriers were estimated to delay the onset of moderate cognitive
impairment by approximately 2 years compared to e3 carriers
with low education, but this advantage essentially disappeared
with higher education.

In the analysis comparing e4 with e3, both the main effect
term of e4 and the interaction with education were significantly
negative, thus suggesting that higher education was not sufficient
to remove the negative association of the e4 allele with BIMC
scores. This is illustrated in Figure 3 that shows the fitted BIMC
scores in the e3 and e4 groups stratified by education. Among
individuals with the e3e3 genotype, more years of education
was associated with higher BIMC scores, but the positive effect
modification of higher education was reduced in carriers of
e4 compared to e3.

From the fitted lines, the ages of onset of moderate cognitive
impairment in e4 carriers were 99.5, 98.9, and 98.57 years in
participants with low, median, and high education, respectively.
Hence, in centenarians carrying the e4 allele, more years of
education was not associated with a delay of cognitive decline.

The results of the combined analysis including all three groups
of APOE alleles are summarized in Supplementary Table 1. After
using the same model selection strategy as the previous separated
analyses, the selected model had exactly the same variables of the
two separated analyses. The direction of the effects of APOE and
the significance of the variables were consistent with the previous
analyses. The major difference was that the magnitude of the
effects of APOE decreased in the combined analysis. For example,
in the separated analysis, the beta coefficients of e2 and e4 were
0.032 and −0.382, respectively, while in the combined analysis
the beta coefficients of e2 and e4 were 0.026 and −0.326. Hence,
the analysis that combined all APOE alleles together suggested
slightly smaller but still significant effects of APOE.

Comparison With Conventional Linear
Mixed Models
The results of the analyses using linear mixed models are
summarized in Tables 4, 5. In both analyses, only the effects of age
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FIGURE 2 | Fitted Blessed Information-Memory-Concentration scores in carriers of one or more e2 alleles (dashed lines) compared to homozygotes e3e3
(continuous lines) for low education level (25% quantile, 8 years, red), median education level (12 years, black), and high education level (75% quantile, 15 years,
blue). The scores were fitted using the estimates from Bayesian beta regression, assuming sex = female. Note visually there is only one dashed line, because the
fitted lines of e2 carriers overlap in all three education groups.

FIGURE 3 | Fitted Blessed Information-Memory-Concentration test scores in carriers of one or more e4 alleles (dashed lines) compared to homozygotes e3e3
(continuous lines) for low education level (25% quantile, 8 years, red), median education level (12 years, black), and high education level (75% quantile, 15 years,
blue). The scores were fitted using the estimates from Bayesian beta regression, assuming sex = female.

and education reached statistical significance. The direction of
the main effects of e2 and e4 were consistent with those estimated
using the Bayesian beta regression. However, the effects did not
reach statistical significance.

To visualize the differences of the results from Bayesian beta
regression and the linear mixed model, we plotted the fitted

BIMC scores with their 95% credible/confidence intervals against
age in Figure 4. The plot shows that the credible intervals of
the Bayesian beta regression were slightly narrower compared
with the confidence intervals of the linear mixed model. The
linear mixed model did not fit the data of the youngest age
group well, and the fitted values as well as their confidence
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TABLE 4 | Parameter estimates from the analysis of the BIMC scores in carriers of
APOE e2 and e3 alleles using the linear mixed model.

Estimates SD T-value P-value

Intercept 23.935 0.474 50.544 < 0.001

Age −1.074 0.064 −16.844 < 0.001

Sex, male 1.251 0.859 1.457 0.146

Education 0.438 0.109 4.032 < 0.001

APOE2 0.075 0.82 0 0.092 0.927

APOE2*edu −0.430 0.229 −1.876 0.061

Bold fonts highlight significant parameters.

TABLE 5 | Parameter estimates from the analysis of the BIMC scores in carriers of
APOE e4 and e3 alleles using the linear mixed model.

Estimates SD T-value P-value

Intercept 24.386 0.495 49.233 < 0.001

Age −1.082 0.071 −15.174 < 0.001

Sex, male 1.073 0.940 1.142 0.254

Education 0.437 0.111 3.934 < 0.001

APOE4 −2.286 1.330 −1.719 0.087

APOE4*edu −0.485 0.333 −1.458 0.146

Bold fonts highlight significant parameters.

interval were even greater than the maximum BIMC score (max
score = 37). This result is consistent with our hypothesis that
using a linear mixed model with normality assumptions is not
suitable when the outcomes are bounded neuropsychological
scores. In addition, the Bayesian beta regression appeared to
better capture the gradually increasing rate of decline, but the
linear mixed model did not capture this feature. The RSS of
the Bayesian beta regression was 51032.5 for the e2 analysis
and 43151.54 for the e4 analysis, while the RSS of the linear
mixed models was slightly larger (52443.72 for the e2 analysis and
43652.30 for the e4 analysis), thus confirming that the Bayesian
beta regression fit the data better.

DISCUSSION

In this paper, we investigated the relationship between APOE
alleles and change of cognitive function in a large cohort
of centenarians enriched for carriers of the e2 allele. Instead
of using the conventional linear mixed model, we used a
Bayesian hierarchical beta regression model to characterize the
effect of APOE on cognitive function assessed through the
Blessed Information-Memory-Concentration test. Our analyses
confirmed the decline of cognitive function and the positive effect
of education on preservation of cognitive function at extreme
old age. The analysis also showed that the APOE e4 allele has
a negative association with cognitive function even at extreme
old age, and the APOE e2 allele appears to be protective only in
centenarians with low education.

Our findings are consistent with previous studies that showed
a decline of cognitive function with older age in multiple domains
(Harada et al., 2013), and the negative effect of APOE e4 on
cognitive decline in centenarians (Arosio et al., 2017; Du et al.,

2020). There is some evidence that, among centenarians, the
e2 allele confers protection from cognitive decline (Kim et al.,
2017; Sebastiani et al., 2020), in addition to increasing the chance
for longevity (Sebastiani et al., 2019a) and conferring protection
from aging-related diseases (Wolters et al., 2019; Kuo et al., 2020).
Our studies also found that carriers of e2 with low education can
delay their onset of moderate cognitive impairment. These results
suggest that targeting e2 gene products could lead to important
therapeutics for the preservation of cognitive function (Sebastiani
et al., 2019b). Interestingly, the persistence of the e4 allele in the
population has been linked to a survival advantage at a young
age and treatments that target the effect of APOE alleles at an
older age will need to consider the pleiotropic effect of this gene
(Belloy et al., 2019).

Studies have shown the importance of early education on
better cognitive function at an older age (Alley et al., 2007;
Wilson et al., 2009). However, our study showed an antagonistic
interaction between higher education and APOE alleles that
suggests higher education may reduce the positive effect of e2
and increase the negative effect of e4 at extreme old age. A study
of Japanese centenarians detected an education by APOE e4
interaction on cognition that differed by sex (Ishioka et al., 2016).
The study showed that highly educated centenarians who carried
at least one e4 allele had worse performance in the Mini-Mental
State Examination, compared to poorly educated centenarians.
Our findings are consistent with this counter-intuitive result but
go one step further and disentangle the negative association of the
e4 allele from the positive association of the e2 allele.

Our study focused on the association between APOE alleles
and cognitive decline in extreme old individuals. Our analysis
included well-known risk factors of cognitive decline such
as older age and education. However, many more factors
may affect the onset and rate of cognitive decline together
or independently of APOE. Nutrition and dietary habits, for
example, may be important risk factors to be considered in
future analyses, given the role of APOE in lipid metabolism
(Belloy et al., 2019). Studies showed that place of living changes
the association between APOE alleles and extreme human
longevity, after controlling for the overall genetic background
(Gurinovich et al., 2019), suggesting that lifestyle may modify
the genetic effect of APOE. However, we do not have data
about dietary patterns in NECS centenarians to perform these
analyses. The explained variance of our model was 0.29 for
the e2 analysis and 0.30 for the e4 analysis. These results
suggest that age, sex, APOE, and education can only explain
less than 1/3 of the variability in BIMC scores and there are
many factors, yet to be discovered, that should account for the
unexplained variance. In future work, it will be interesting to
collect data about additional physiological, medical, nutritional,
or social factors that may contribute to maintain good cognitive
function as people age and investigate their interplay with
APOE alleles.

The Bayesian beta regression we used in this analysis has
several strengths. First, this method allowed us to fit the test
scores in the range of admissible values, and to model non-linear
relations of the score with age and education. We illustrated
the advantages of Bayesian beta regression by comparing it
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FIGURE 4 | Fitted Blessed Information-Memory-Concentration test scores using Bayesian beta regression and the linear mixed models with their credible/
confidence bands. (A) Analysis in carriers of APOE e2 and e3. (B) Analysis in carriers of APOE e4 and e3.

with the conventional linear mixed model using the NECS data.
Second, to increase statistical power, we included all participants
with at least one cognitive function assessment in our model.
A piecewise random intercept was used to include subjects with
either repeated measurements or just one measurement. Finally,
we carried out a model selection using the DIC criterion and
then refined our model by credible intervals. From the diagnostic
plots of the MCMC, the final models converged well. In addition,

in previous studies (Caselli et al., 2009; Kulminski et al., 2015;
Barral et al., 2017) APOE genotype was characterized as carriers
of e4 (i.e., e2e4, e3e4, and e4e4), and non-carriers of e4 (i.e.,
e2e2, e2e3, and e3e3). This comparison could yield biased results
since the non-carriers of the e4 group might not represent the
most prevalent population. There are also studies (Kim et al.,
2017) included e2 (e2e2 and e2e3), e3 (e3e3), and e4 (e3e4 and
e4e4) in a combined analysis with dummy codings. In fact, we
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performed a combined analysis on the NECS data and found
that it produced smaller effects of e2 and e4. To eliminate these
potential bias, we divided the participants into subgroups, where
we only compared e2 carriers to e3 carriers and e4 carriers to e3
carriers separately.

Notable limitations of this study include loss to follow-up
and mortality. Due to the extreme age of the study population,
the mortality rate is considerably high: 49% of participants
included in our analysis only completed the baseline evaluation.
The absence of longitudinal data may induce bias, and thus we
used a piecewise random intercept to compensate for those only
with one record.

In conclusion, we examined the association between APOE
alleles and cognitive decline in a cohort of centenarians. We
confirmed the negative correlation between the e4 allele and
cognition even at the extreme of human lifespan, and newly
found the carrying the e2 alleles appears to be beneficial only
in centenarians with poor education. The interaction between
APOE e4 and education produced a counter-intuitive result that
is, however, consistent with other results in centenarians. The
antagonistic relation between higher education and carrying the
e4 allele may be confounded by other risk factors and warrants
more in-depth studies.
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As higher mental demands at work are associated with lower dementia risk and a key
symptom of dementia is hippocampal atrophy, the study aimed at investigating the
association between mental demands at work and hippocampal volume. We analyzed
data from the population-based LIFE-Adult-Study in Leipzig, Germany (n = 1,409,
age 40–80). Hippocampal volumes were measured via three-dimensional Magnetic
resonance imaging (MRI; 3D MP-RAGE) and mental demands at work were classified
via the O*NET database. Linear regression analyses adjusted for gender, age, education,
APOE e4-allele, hypertension, and diabetes revealed associations between higher
demands in “language and knowledge,” “information processing,” and “creativity” at
work on larger white and gray matter volume and better cognitive functioning with
“creativity” having stronger effects for people not yet retired. Among retired individuals,
higher demands in “pattern detection” were associated with larger white matter volume
as well as larger hippocampal subfields CA2/CA3, suggesting a retention effect later
in life. There were no other relevant associations with hippocampal volume. Our
findings do not support the idea that mental demands at work protect cognitive health
via hippocampal volume or brain volume. Further research may clarify through what
mechanism mentally demanding activities influence specifically dementia pathology in
the brain.
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INTRODUCTION

Mentally demanding activities at work seem to delay cognitive
decline and lower dementia risk (Valenzuela and Sachdev,
2006a,b), as longitudinal studies (Smyth et al., 2004; Karp et al.,
2009), as well as twin studies (Andel et al., 2005; Potter et al.,
2007), have shown. Therein, it seems that the effect depends
on the type of mental demand at work (MDW). A recent
analysis of a prospective multi-center cohort study following
2,315 individuals up to 11 years has shown that higher MDW
involving ‘‘information processing’’ (e.g., analyzing data) and
‘‘pattern detection’’ (e.g., detecting a figure, object, word, or
sound that is hidden in other distracting material) relate to
lower dementia risk in general, and high MDW involving
‘‘mathematics’’ and ‘‘creativity’’ delay dementia onset (Then
et al., 2015). In that cohort, other MDW did not significantly
affect dementia risk at all. To date, it is unclear why some
demands may be more protective against dementia than others.

One possible explanation for this phenomenon might be
related to potential mechanisms of howMDWand related factors
alter dementia risk. However, these mechanisms, particularly
at the neurobiological level, are largely unknown. Evidence on
this subject matter is sparse. One study reported that, among
young adults, the cognitive complexity of work demands is
associated with better white matter integrity (Kaup et al., 2018).
The only study with older adults, that we could identify, matched
people by cognitive status and observed that job complexity was
associated with a smaller hippocampal volume and more brain
atrophy (Boots et al., 2015). Hippocampal volume declined with
older age (Fjell et al., 2014; Fraser et al., 2015) and accelerated
hippocampal atrophy is implicated in Alzheimer’s dementia (AD;
Kaye et al., 1997; den Heijer et al., 2010). Hence, possibly,
the hippocampus may play a role in the protective effects of
mental demands at work on cognitive health. First human
interventional studies implementing high-resolution magnetic
resonance imaging (MRI) suggested that modifiable factors such
as cognitive and physical activity exert protective effects on
cognitive health via improvements in hippocampus plasticity
(Duzel et al., 2016). For example, twomonths ofmemory training
compared to placebo increased hippocampal volume in a group
of older adults (Engvig et al., 2014), and AD patients with
high educational attainment seem to have a larger hippocampal
volume (Shpanskaya et al., 2014). Exposure to higher demands
may thus also work on this pathway. However, the evidence is
still sparse and it remains unclear whether long-lasting mental
stimulation preserves hippocampus plasticity.

The study aimed to explore whether mental stimulation
at work protects cognitive health by preserving hippocampal
volume. Specifically, we investigated whether five types of MDW
(language and knowledge, information processing, pattern
recognition, mathematics, and creativity at work) were associated
with hippocampal volume in a cross-sectional analysis of
the large community-based ‘‘Adult Study’’ of the Leipzig
Research Centre for Civilization Diseases (LIFE). As the
effect may be dependent on being active in the workforce,
we conducted the analyses separately for those working and
those retired. Also, we tested whether hippocampal and brain

volume (HBV) mediates the association between MDW and
cognitive performance.

MATERIALS AND METHODS

Study Design
We analyzed data of the ‘‘Adult Study’’ of the Leipzig Research
Centre for Civilization DZNE (LIFE), a large population-
based study investigating the prevalence, early onset markers,
genetic predispositions, and the role of lifestyle factors in major
civilization diseases. The details of the study have been described
by Loeffler et al. (2015). Briefly, a random age- and a sex-stratified
sample of residents of the city of Leipzig was obtained from the
residents’ registry office. A letter of invitation to participate in the
study was sent to every individual on the list. The only exclusion
criterion was being pregnant.

The LIFE-Adult Study was conducted between August
2011 and November 2014. The study was approved by the ethics
committee of theMedical Faculty of the University of Leipzig and
was carried out in conformity with the principles embodied in the
Declaration of Helsinki. All participants signed written informed
consent before participation.

The assessments included physical andmedical examinations,
self-administered questionnaires, and psychometric testing,
which were administered by trained study assistants and
monitored by experienced scientists following standardized
study protocols (Loeffler et al., 2015). A subsample of participants
completed MRI at a second examination date (random sample
from population registry, n = 2,637, 18–80 years). From these,
we included all participants age 40–80 years (n = 2,271)
from the analysis. Three-hundred and four participants were
excluded due to major brain pathology (e.g., stroke, multiple
sclerosis, tumors) or bad image quality (e.g., motion artifact).
Another 10 participants were excluded because they reported
having been diagnosed with a neurological or psychiatric
disorder (n = 4 substance-related disorder, n = 2 human
immunodeficiency virus (HIV), n = 2 Parkinson’s disease,
n = 1 multiple sclerosis, n = 1 epilepsy). None of the participants
included in the analyses had dementia or major neurocognitive
disorder; we verified via cognitive testing (see ‘‘Cognitive
Performance’’ section). We also excluded 74 participants because
they were unemployed or retired with a total unemployment
period of more than three years during their life. Further,
individuals with missing data on important covariates were
excluded: n = 128 missing data on apolipoprotein E (APOE)
ε4 genotype, n = 26 missing data on having diabetes,
n = 101 missing data on hypertension, and n = 117 occupational
information could not be matched to O∗NET database. And
another n = 102 were excluded due to incomplete or invalid
cognitive testing. The total number of participants in the analysis
was n = n = 1,409.

Hippocampal and Brain Volume
To estimate volumes, we used the three-dimensional
Magnetization-Prepared Rapid Gradient Echo sequence
(3D MP-RAGE) anatomical T1-weighted images of the brain,
acquired with a 3T Siemens Magnetom Verio Syngo MR B17 at
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the University Clinic Leipzig. Generalized autocalibrating
partially parallel acquisition parallel imaging technique
(Griswold et al., 2002; according to the Alzheimer’s Disease
Neuroimaging Initiative standard protocol (Wang et al., 2014)
was applied using following scanning variables: repetition
time/ echo time 2,300 ms/ 2.98 ms; flip angle 9◦; slice/ voxel
size 1 mm/ 1.0 × 1.0 × 1.0 mm (x × y × z); slices 176; the
field of view 256 mm; bandwidth 240 Hz/Px; base resolution
256; scanning time 5 min 10 s. Clinical MRI ratings were
performed by neuroradiologists blind to further assessment
data. Volumes of intracranial volume (ICV) and total gray
and white matter volume derived from FreeSurfer analysis.
FreeSurfer (FS) version 6 was used. FS is a free software package
developed by the Athinoula A. Martinos Center for Biomedical
Imaging of Harvard University1. The images were segmented
into gray matter maps and matched to a study-specific cerebral-
/cerebellar-specific template. For better tissue segmentation
and interindividual alignment, the cerebrum and cerebellum
were estimated separately. After deleting non-brain tissue, ICV
was obtained by adding up the gray matter, white matter, and
CSF. Three-dimensional sequences of both hippocampi were
reconstructed. Automated segmentation of the hippocampal
subfields was performed by an algorithm implemented in FS
(Van Leemput et al., 2009). The subfields Cornu Ammonis (CA)
1, CA 2–3, CA 4-Dentate Gyrus, presubiculum, and subiculum
were considered for further analysis (Erickson et al., 2011;
Brickman et al., 2014). Total (left and right) whole hippocampal
and subfield volumes (in mm3), as well as ICV, were normally
distributed. We adjusted volumes of the whole hippocampus
and its subfields for ICV according to (Raz et al., 2005; Kerti
et al., 2013) using the following formula: adjusted volume (in
mm3) = raw volume (in mm3) − ß∗ (ICV − ICVmean) with ß
being the slope of the regression of the respective volume on ICV.
Manual quality control of FS labels was done by two experienced
staff members individually according to standard operating
procedures. Also, a script was programmed for validation of
delineation. Analyses were rerun and unusable or inconsistent
data were excluded from analyses.

Mental Demands at Work (MDW)
Mental demands at work (MDW) were investigated as predictors
in this study. In standardized interviews, participants provided
information on their present or, if retired, on their former
occupation. The occupations were translated into English
and coded according to the 2010 Standard Occupational
Classification of the O∗NET database2—a validated database
containing standardized occupation—specific descriptors that
were developed by the US Department of Labor/Employment
and Training Administration (USDOL/ETA). The occupation
code of every participant came with a great number of variables
that describe details of the work tasks. Each variable is indicating
on a continuous scale the level (from low to high) on which
the person is facing the particular work characteristic. For
purpose of analysis, we selected only those variables that describe

1https://surfer.nmr.mgh.harvard.edu/
2http://www.onetonline.org

‘‘mental’’ demands at work (O∗NET variables ‘‘Cognitive
Abilities’’ 1.A.1.a–1.A.2.c.3 and ‘‘Skills andworker requirements’’
2.A.1.a.1–4.A.4.c.3). By following the classification scheme of
MDW in previous analyses (Then et al., 2015), relevant variables
were combined in clusters of MDW: ‘‘language and knowledge,’’
‘‘information processing,’’ ‘‘mathematics,’’ ‘‘pattern detection,’’
and ‘‘creativity.’’ The value of each MDW is the mean of the
included variables.

Cognitive Performance
Cognitive performance was used in this study to check
whether hippocampal and brain volumemediates the association
between mental demands at work and cognitive performance
as a precondition for the effect under investigation. Cognitive
performance was assessed by trained study assistants and was
subject to regular quality control by experienced psychologists.
Participants completed the Verbal Fluency Test, the Trail Making
Test (TMT), and the Word List Test—subtests of the German
version of the neuropsychological test battery of the Consortium
to Establish a Registry for Alzheimer’s disease; (CERADplus;
Morris et al., 1989). The German version of the CERADplus
has been validated (see Aebi et al., 2002). The Verbal Fluency
Test is considered to measure verbal abilities, semantic fluency,
and semantic memory (Kraan et al., 2013). The participants are
instructed to name as many animals as possible in one minute.
The participant’s score equals the number of correctly named
animals. The TMT is considered to measure working memory,
task-switching ability (Salthouse, 2011), and executive control
(Arbuthnott and Frank, 2010). The participants are instructed,
first, to connect numbers in ascending order as fast as they
can (version A) and, second, to connect numbers and letters
alternatingly (version B).When an error is made, the participants
had to return to the number where the error originated. The
participant’s score corresponds to the number of seconds needed
to complete the test. TheWord List Test is considered to measure
memory. The participants are instructed to read out ten words
and subsequently recall them. This was repeated three times with
the same 10 words. The participant’s score is the number of
words remembered correctly.

Covariates
Age was calculated as the difference in years by subtracting the
birth date from the interview date. Gender was estimated using
the sex that was recorded in the population registry. Education, as
reported by the participant, was categorized as ‘‘low’’ for having
completed high school or less, ‘‘moderate’’ for having completed
college or a professional training school, and ‘‘high’’ for having
completed a university degree. Information on diabetes and
hypertension was obtained by asking the participant ‘‘Have
you ever been diagnosed with . . .?.’’ The APOE genotype was
identified from peripheral blood leukocytes using an automated
protocol on the Qiagen Autopure LS (Qiagen, Hilden, Germany)
and by following the method of Aslanidis and Schmitz (1999) via
Roche Lightcycler 480 (Aslanidis and Schmitz, 1999).

Statistical Analysis
Statistical analyses were performed using STATA 16 and
employed an alpha level for statistical significance of 5%
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(p < 0.05, two-tailed). Bonferroni-correction for the clusters of
MDW (five levels) would yield a significance level of p < 0.01.
All analyses were conducted separately for those actively working
and those retired, as associations might be different in people
who have retired from their job compared to those who face
MDW on a daily level.

Descriptive data analyses on differences in whole
hippocampal and brain volume and MDW concerning
characteristics of the study sample were conducted via analysis
of variance (ANOVA) and Pearson’s correlation. The association
between hippocampal and brain volume and MDW on cognitive
performance was analyzed via pairwise comparison correlations.
The main research question, the association between MDW
and hippocampal and brain volume, was analyzed via linear
regression analyses, first univariate and then adjusted for factors
that might introduce confounding due to known effects on
hippocampus volume i.e., gender and age (Pruessner et al.,
2001), education (Noble et al., 2012), diabetes (Gold et al.,
2007), hypertension (Shih et al., 2016), and APOE e4-allele
(Plassman et al., 1997).

The following sensitivity analyses were conducted: as
education is an important confounder, we analyzed potential
interaction effects using the same linear regression model
with an additional interaction term for education and MDW.
As hippocampal and brain volume deteriorates with aging,
the association under investigation might be age-sensitive.
Therefore, we analyzed potential interaction effects using the
same linear regression model as before with an additional
interaction term for age and MDW [for retired and not-retired
individuals together adjusted for being retired (yes/no)]. Finally,
we tested whether hippocampal and brain volume mediates the
association between MDW and cognitive performance using
partial least square structural equation modeling.

RESULTS

Hippocampal and Brain Volume
The mean whole hippocampus volume was 7.7 [standard
deviation (SD) 0.8], the mean ICV 1,472,315 mm3 (SD
147,104.7), the mean gray matter volume 585,876.9 mm3

(SD 61,774.2), and the mean white matter 424,326.4 mm3

(SD 50,995.6). Associations between personal characteristics
and brain parameters are shown in Table 1. Individuals
who were retired and those who were older had a smaller
hippocampal volume, less ICV, less gray matter, and less
white matter (see Tables 1, 2). Individuals with hypertension
had a smaller hippocampal volume and less gray matter.
There was no significant difference concerning hippocampal
volumes and education or APOE e4 allele (see Table 1). A
smaller hippocampal volume was associated with poorer
performance in the Word List Test and the TMT, and
less gray matter was associated with poorer performance
in all cognitive tests (see Table 2). In individuals that
were not retired, the white matter was associated with
performance in the Word List Test and the TMT A
(see Table 2).

Mental Demands at Work (MDW)
The average level of the MDW ‘‘language and knowledge’’ was
3.31 (SD 0.63), of ‘‘information processing’’ was 3.69 (SD 0.80),
of ‘‘mathematics’’ was 2.36 (SD 1.06), of ‘‘pattern detection’’ was
2.67 (SD 0.59), and of ‘‘creativity’’ was 2.99 (SD 1.24). Individuals
who were retired had, on average, significantly higher levels of
‘‘language and knowledge’’ (3.35 vs. 3.27, F = 5.88, p = 0.015),
‘‘mathematics’’ (2.49 vs. 2.23, F = 22.18, p < 0.001), ‘‘pattern
detection’’ (2.71 vs. 2.62, F = 7.33, p = 0.007), and ‘‘creativity’’
(3.09 vs. 2.89, F = 9.54, p = 0.002), but not of ‘‘information
processing’’ (3.73 vs. 3.66, F = 3.41, p = 0.065). Individuals
with higher education had significantly higher MDW levels
compared to individuals with lower education (see Table 3).
Retired men had significantly higher MDW than women; there
was no significant difference in MDW between men and women
that were still actively working (see Table 3). Further, there was
no significant difference concerning APOE e4 or diabetes status.

Higher MDW were significantly associated with a better
performance in cognitive tests that measured executive cognitive
abilities (all p < 0.001; TMT B, Verbal Fluency Test), whilst
the performance in the TMT A and the Word List Test was
only associated with a higher level in the MDW ‘‘language and
knowledge,’’ ‘‘information processing,’’ and ‘‘pattern detection’’
among those who were not yet retired (see Table 3, see
also Figure 1).

Association of Demands With
Hippocampal and Brain Volume
Higher MDW was associated with more white and gray matter
(see Table 2 and Figure 2). If adjusted for confounders, only
higher MDW ‘‘information processing’’ was associated with
larger white and gray matter volume, higher MDW ‘‘creativity’’
and ‘‘language and knowledge’’ only if not yet retired (see
Table 4). HigherMDW ‘‘pattern detection’’ was only significantly
associated withmore white and graymatter volume if the persons
had retired (see Table 4).

For hippocampal volume, there was only one significant
association between hippocampal volume and MDW in the
descriptive univariate analyses: Among those retired, a higher
level of ‘‘creativity’’ correlated with a smaller hippocampal
volume (see Table 2). This association was no longer present
when accounting for confounders (see Table 4). We considered
the different hippocampal subfields and observed that a higher
level of the MDW ‘‘pattern detection’’ was associated with
larger hippocampal subfields CA2/CA3 in retired individuals
(see Table 4). The estimates point out that the difference between
those with high and low demands is greater in younger age and
decreases with older age.

Sensitivity Analyses
Interaction effects between education and MDW were found for
retired individuals. Education interacts with ‘‘pattern detection’’
on white matter volume (moderate education b = −19,831.3,
CI95 −34,962.9 to −4,699.8, p = 0.010; high education
b = −13,588.1, CI95 −27,207.3 to −31.1, p = 0.051) and
intracranial volume (moderate education b = −49,895.7, CI95
−97,128.5 to −2,662.9, p = 0.038), indicating that individuals

Frontiers in Aging Neuroscience | www.frontiersin.org 4 January 2021 | Volume 12 | Article 62232121

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


R
odriguez

etal.
M

entalD
em

ands
and

H
ippocam

pus

TABLE 1 | Mean hippocampal and brain volume (in mm3) concerning the characteristics of the study sample (n = 1, 409).

Hippocampal volume2 White matter Gray matter ICV

Not retired Retired Not retired Retired Not retired Retired Not retired Retired

N (%) 721 (47.7) 789 (52.3) 600 (46.3) 697 (53.7) 721 (47.7) 789 (52.3) 721 (47.7) 789 (52.3)

Mean (SD) 8,110.5
(713.6)

7,343.9
(797.7)

440,912.5
(54,663.3)

410,048.5
(42,772.2)

616,548.2
(61,820.7)

557,849.0
(46,565.5)

1,494,801.0
(148,403.6)

1,451,766.7
(142,937.6)

F1 384.66 129.85 438.9 32.92

p1 <0.001 <0.001 <0.001 <0.001

Gender Male 8,135.9
(742.9)

7,183.3
(792.4)

463,028.2
(47,883.9)

429.065.3
(41,027.6)

644,587.9
(56,991.8)

580,159.6
(43,521.0)

1,569,507.5
(129,104.9)

1,533,354.7
(121,579.1)

Female 8,080.0
(676.5)

7,521.1
(766.2)

412,381.6
(49,463.4)

389,616.8
(34,403.8)

582,951.7
(49,438.5)

533,218.2
(36,300.4)

1,405,289.8
(117,332.2)

1,361,693.6
(105,930.0)

F1 1.10 3.89 160.42 187.75 235.6 267.6 314.12 442.97

p1 0.30 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Education Low 8,120.4
(693.1)

7,398.8
(796.8)

437,954.5
(53,649.5)

405,310.3
(43,938.4)

614,713.5
(65,268.6)

550,588.1
(46,902.9)

1,479,338.1
(149,924.9)

1,418,773.8
(143,087.2)

Moderate 8,193.2
(671.9)

7,337.2
(817.4)

434,644.2
(45,154.7)

404,216.5
(41,484.5)

612,291.5
(60,004.2)

549,241.7
(44,133.9)

1,480,419.5
(135,626.6)

1,433,737.0
(145,244.8)

High 8,050.2
(753.4)

7,302.5
(785.7)

447,843.9
(60,363.1)

417,585.2
(41,603.8)

620,912.1
(59,457.9)

569,215.9
(45,528.4)

1,518,347.6
(151,877.8)

1,490,322.7
(132,331.5)

F1 2.20 1.07 3.14 7.66 1.23 16.91 5.88 21.48

p1 0.11 0.34 0.044 0.001 0.293 <0.001 0.003 <0.001

APOE e4 No 8,108.5
(715.9)

7,357.3
(805.5)

441,460.1
(52,466.5)

408,982.5
(42,553.7)

616,906.9
(62,950.9)

558,195.9
(46,903.5)

1,494,868.2
(15,271.1)

1,449,386.9
(140,586.4)

Yes 8,117.2
(707.8)

7,302.1
(773.2)

438,952.2
(62,075.4)

413,485.7
(43,421.4)

615,320.1
(57,952.9)

556,770.2
(45,602.3)

1,494,571.1
(138,582.0)

1,459,166.4
(150,151.5)

F1 0.02 0.70 0.22 1.40 0.08 0.14 0.0 0.68

P1 0.89 0.40 0.643 0.238 0.773 0.712 0.982 0.409

Diabetes No 8,138.2
(700.2)

7,379.1
(789.7)

441,458.6
(55,020.1)

411,409.6
(43,710.5)

617,428.5
(62,295.9)

559,631.1
(47,019.1)

1,494,128.4
(149,160.9)

1,450,186.9
(142,902.6)

Yes 7,450.3
(723.4)

7,163.7
(816.7)

427,806.8
(44,191.6)

403,160.5
(37,075.9)

595,541.4
(45,017.6)

548,731.3
(43,203.9)

1,510,850.5
(130,274.5)

1,459,849.5
(143,399.9)

F1 26.79 7.94 1.44 3.58 3.50 5.95 0.35 0.49

p1 <0.001 0.005 0.231 0.059 0.062 0.015 0.553 0.483

Hypertension No 8169.2
(699.7)

7426.5
(800.4)

442,415.7
(56,364.8)

411,163.6
(41,694.7)

623,744.7
(62,593.8)

563,508.4
(45,029.6)

1,497,694.8
(145,837.2)

1,449,627.3
(140,500.7)

Yes 7926.3
(715.9)

7253.4
(793.3)

436,055.2
(49,324.3)

409,596.1
(43,795.8)

599,634.6
(56,702.8)

554,395.7
(48,057.6)

1,484,954.9
(156,973.3)

1,455,907.2
(146,564.7)

F1 14.6 8.42 1.51 0.22 19.01 6.73 0.90 0.34

p1 <0.001 0.004 0.219 0.638 <0.001 0.009 0.343 0.561

Notes: 1, as estimated by analysis of variance (ANOVA); 2, whole hippocampal volume in mm3 including left and right hippocampi; ICV, intracranial volume; N, number of participants; p, level of significance; SD, standard deviation; SES,
socioeconomic status. Bold indicates significance <0.05.
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with low education have a greater increase in white matter and
intracranial volume if they work in jobs with higher MDW
‘‘pattern detection’’ than individuals with moderate education.
For individuals who were not retired, education interacted
with ‘‘creativity’’ on white matter volume (moderate education
b = 11749.9, CI95 2982.3–20517.6, p = 0.009), indicating that
low-educated individuals have a greater increase in the white
matter if they work in jobs with higher MDW ‘‘creativity’’ than
moderately-educated individuals.

Interaction with age was found for higher MDW ‘‘creativity’’
(b = −211.6, CI95 −352.9 to −70.2, p = 0.003) and ‘‘language
and knowledge’’ (b = −271.9, CI95 −500.5 to −43.5, p = 0.020)
on white matter. Higher MDW ‘‘creativity’’ interacted also with
age on total hippocampal volume (b = −3.4, CI95 −5.5 to
−1.4, p = 0.001), indicating that hippocampal volume declines
faster in the age period 40–60 in individuals with higher MDW
‘‘creativity’’ than in individuals with low demands.

The potential mediating effects of hippocampal and brain
volume on the association of HDW on cognitive performance
were analyzed via structural equation modeling using latent
factor variables. Results are shown in Table 5. For retired
individuals, higher MDW was significantly associated with
better performance in cognitive testing. For individuals not
yet retired, higher MDW was significantly associated with
better performance in cognitive testing as well as hippocampal
and brain volume. For both groups, there were no indirect
associations from MDW to cognitive performance via
hippocampal and brain volume. Covariates were significantly
associated with hippocampal and brain volume and, in this way,
also indirectly associated with cognitive performance.

DISCUSSION

Since previous studies have shown that high levels of mental
demands at work (MDW) are associated with lower dementia
risk (Then et al., 2015), this study aimed to investigate
whether higher MDW protects cognitive health by preserving
hippocampal volume. Findings indicate only a significant
association between higher MDW ‘‘pattern detection’’ (not
any other MDW) with larger hippocampal subfields CA2 /
CA3 in retired individuals. However, our sample comprised only
community-based individuals without dementia and we cannot
derive any conclusions on individuals with severe cognitive
impairments. It is conceivable that associations between MDW
and hippocampal volume are sensitive to the neurodegenerative
processes of dementia, studies using clinical samples may observe
stronger effects on hippocampal size.

The lack of a general association between MDW and
hippocampal volume in our sample could be explained by
multiple factors. On the one hand, a (neuro)protective effect
of MDW may not be related to higher hippocampal plasticity.
A study that investigated associations between occupational
complexity and hippocampal volume in Alzheimer patients
found no association (Boots et al., 2015). Then again,
crude hippocampus volume might not be a valid biomarker
for hippocampal plasticity. Besides volume, hippocampus
microstructure and functional connectivity measured using
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TABLE 3 | Characteristics of the study sample (n = 1,409).

Retired Not retired

MDW
language

and
knowledge

MDW
information
processing

MDW
mathematics

MDW
pattern

detection

MDW
creativity

MDW
language

and
knowledge

MDW
information
processing

MDW
mathematics

MDW
pattern

detection

MDW
creativity

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Sex male 3.46 (0.67) 3.92 (0.78) 2.67 (1.19) 2.83 (0.59) 3.44 (1.24) 3.25 (0.67) 3.67 (0.81) 2.29 (1.11) 2.65 (0.63) 3.04 (1.26)

Female 3.24 (0.58) 3.53 (0.80) 2.28 (0.97) 2.56 (0.53) 2.70 (1.19) 3.31 (0.53) 3.65 (0.77) 2.16 (0.84) 2.59 (0.57) 2.72 (1.09)

F1 23.68 47.32 25.08 45.84 72.20 1.85 0.11 2.90 2.04 13.16

p1 <0.001 <0.001 <0.001 <0.001 <0.001 0.17 0.74 0.09 0.15 <0.001

Education low 2.93 (0.49) 3.27 (0.67) 1.96 (0.73) 2.47 (0.45) 2.34 (1.02) 2.97 (0.57) 3.34 (0.78) 1.87 (0.80) 2.43 (0.61) 2.44 (1.08)

moderate 3.24 (0.61) 3.59 (0.73) 2.34 (1.01) 2.61 (0.55) 2.90 (1.14) 3.24 (0.53) 3.61 (0.65) 2.07 (0.71) 2.62 (0.59) 2.77 (0.93)

high 3.77 (0.49) 4.21 (0.70) 3.01 (1.19) 2.96 (0.59) 3.82 (1.13) 3.58 (0.55) 3.98 (0.73) 2.67 (1.14) 2.81 (0.56) 3.39 (1.25)

F1 195.39 138.10 83.62 63.81 136.28 80.57 52.06 54.21 29.00 51.23

p1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

APOE e4 No 3.36 (0.64) 3.73 (0.81) 2.49 (1.10) 2.72 (0.57) 3.09 (1.27) 3.28 (0.62) 3.65 (0.81) 2.26 (1.03) 2.62 (0.62) 2.89 (1.22)

Yes 3.32 (0.65) 3.76 (0.83) 2.44 (1.12) 2.67 (0.59) 3.07 (1.28) 3.25 (0.59) 3.68 (0.73) 2.12 (0.87) 2.63 (0.54) 2.87 (1.10)

F1 0.50 0.20 0.41 1.20 0.06 0.29 0.11 2.30 0.02 0.05

p1 0.48 0.66 0.52 0.27 0.81 0.59 0.74 0.13 0.90 0.83

Diabetes No 3.37 (0.64) 3.75 (0.81) 2.50 (1.11) 2.71 (0.59) 3.12 (1.26) 3.28 (0.61) 3.66 (0.79) 2.24 (0.98) 2.63 (0.60) 2.89 (1.18)

Yes 3.28 (0.63) 3.66 (0.83) 2.39 (1.07) 2.69 (0.55) 2.93 (1.32) 3.18 (0.69) 3.55 (0.88) 1.99 (1.28) 2.53 (0.72) 2.95 (1.60)

F1 1.76 1.35 0.99 0.02 2.51 0.75 0.54 1.67 0.72 0.06

p1 0.18 0.25 0.32 0.89 0.11 0.39 0.47 0.20 0.40 0.81

Hypertension No 2.02 (0.85) 3.74 (0.81) 2.45 (1.09) 2.69 (0.58) 3.06 (1.26) 1.97 (0.79) 3.67 (0.80) 2.23 (0.99) 2.63 (0.60) 2.89 (1.16)

Yes 2.06 (0.83) 3.73 (0.81) 2.51 (1.13) 2.71 (0.58) 3.11 (1.28) 1.88 (0.79) 3.59 (0.76) 2.19 (1.07) 2.59 (0.63) 2.79 (1.24)

F1 0.38 0.02 0.39 0.22 0.25 1.56 1.19 0.26 0.51 1.00

p1 0.537 0.897 0.533 0.640 0.618 0.213 0.276 0.608 0.475 0.317

r (p)2 r (p)2 r (p)2 r (p)2 r (p)2 r (p)2 r (p)2 r (p)2 r (p)2 r (p)2

Verbal
Fluency

0.177
(<0.001)

0.143
(<0.001)

0.118 (0.001) 0.069
(0.051)

0.154
(<0.001)

0.159
(<0.001)

0.120 (0.001) 0.065
(0.079)

0.086 (0.021) 0.117 (0.002)

Wordlist 0.102 (0.004) 0.068 (0.06) 0.050 (0.16) 0.030 (0.40) 0.016 (0.66) 0.128 (0.001) 0.098 (0.009) 0.069 (0.06) 0.075 (0.045) 0.024 (0.53)

TMT A −0.050 (0.16) −0.040 (0.26) −0.041 (0.26) −0.050 (0.16) −0.030 (0.40) −0.107
(0.004)

−0.093
(0.013)

−0.037 (0.33) −0.085
(0.023)

−0.051 (0.17)

TMT B −0.179
(<0.001)

−0.157
(<0.001)

−0.165
(<0.001)

−0.132
(<0.001)

−0.107
(0.003)

−0.244
(<0.001)

−0.165
(<0.001)

−0.146
(<0.001)

−0.142
(<0.001)

−0.136
(<0.001)

Notes: 1, as estimated by analysis of variance (ANOVA); 2, as estimated by pairwise comparison correlations; CI, confidence interval 95%; M, mean; MDW, mental demands at work; N, number of participants, p, level of significance; r,
regression coefficient; SD, standard deviation; TMT A, Trail Making Test A with higher scores indicating poorer cognitive performance; TMT B, Trail Making Test B with higher scores indicating poorer cognitive performance. Bold indicates
significance <0.05.
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Rodriguez et al. Mental Demands and Hippocampus

FIGURE 1 | Performance in the Trail Making Test B and the Verbal fluency test by the level of mental demands at work (MDW) and age, estimated via regression
analyses separate for those that are retired and those that are not retired an adjusted for age, gender, education, APOE e4-allele, hypertension, and diabetes. (A)
Level of the mental work demand, Language & Knowledge on performance in the Trail Making Test B. (B) Level of the mental work demand, Information Processing
on performance in the Trail Making Test B. (C) Level of the mental work demand, Pattern Detection on performance in the Trail Making Test B. (D) Level of the mental
work demand, Language & Knowledge on performance in the Verbal Fluency Test. (E) Level of the mental work demand, Information Processing on performance in
the Verbal Fluency Test. (F) Level of the mental work demand, Pattern Detection on performance in the Verbal Fluency Test.

diffusion-weighted imaging and resting-state BOLD-fMRI has
been implicated in cognitive functions and might be a more
sensitive marker of cognitive impairment or dementia (Zhou
et al., 2008; Fellgiebel and Yakushev, 2011). For example, the

functional coupling of the hippocampus with dorsal sub-regions
is essential for learning (Mattfeld and Stark, 2015) and mental
demands at work that would strengthen functional connectivity
of the hippocampus could therefore help to maintain learning
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FIGURE 2 | White matter and gray matter volume by the level of MDW and age, estimated via regression analyses separate for those that are retired and those that
are not retired and adjusted for age, gender, education, APOE e4-allele, hypertension, and diabetes. (A) Level of the mental work demand, Language & Knowledge
on white matter volume. (B) Level of the mental work demand, Information Processing on white matter volume. (C) Level of the mental work demand, Pattern
Detection on white matter volume. (D) Level of the mental work demand, Language & Knowledge on gray matter volume. (E) Level of the mental work demand,
Information Processing on gray matter volume. (F) Level of the mental work demand, Pattern Detection on gray matter volume.

abilities longer in life. As cognitive training has shown to
promote hippocampal functioning (Rosen et al., 2011; Kirchhoff
et al., 2012), likely, working longer in a mentally stimulating job
could at least maintain hippocampal functionality for a longer
life period.

Findings from our study emphasize that higher MDW,
especially in ‘‘language and knowledge,’’ ‘‘information
processing,’’ and ‘‘creativity,’’ are associated with better
performance in cognitive tests. This confirms a possible
protective association between higher levels of those MDW
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TABLE 4 | Results of the regression analyses on the association between MDW and hippocampal and brain volume, separate for those that are retired and those that are not retired, adjusted for age, gender,
education, APOE e4-allele, hypertension, and diabetes.

Unadjusted Adjusted 1

Retired Not retired Retired1 Not retired1

Hippocampal volume2

b (CI 95%) P b (CI 95%) P b (CI 95%) P b (CI 95%) P

MDW language and
knowledge

−65.5 (−156.5; 25.6) 0.16 61.1 (−26.9; 148.9) 0.17 −16.2 (−91.1; 58.7) 0.671 59.4 (−10.9; 129.7) 0.098

MDW information
processing

−64.9 (−136.3; 6.3) 0.07 11.3 (−54.9; 77.6) 0.74 −10.1 (−86.5; 66.3) 0.795 −10.7 (−82.6; 61.2) 0.771

MDW mathematics −37.5 (−88.9; 13.9) 0.15 7.5 (−48.7; 63.8) 0.79 1.6 (−51.1; 54.3) 0.952 −4.1 (−63.4; 55.3) 0.893

MDW pattern detection −48.5 (−145.7; 48.6) 0.33 33.4 (−55.4; 122.3) 0.46 43.5 (−53.5; 140.5) 0.379 1.4 (−90.9; 93.7) 0.976

MDW creativity −69.9 (−114.9; -24.9) 0.002 25.5 (−21.6; 72.6) 0.29 −21.1 (−69.8; 27.7) 0.396 34.4 (−13.9; 82.7) 0.162

Hippocampal subfields2,3 CA2&3

MDW pattern detection 123.3 (22.5; 224.2) 0.017 17.6 (−87.5; 122.8) 0.742 131.1 (22.9; 239.4) 0.018 −35.9 (−143.8; 72.1) 0.514

White matter volume

MDW language and
knowledge

8,242.8 (3,495.2; 12,990.4) 0.001 9,563.9 (2,126.8; 17,000.9) 0.012 3,773.7 (−323.7; 7,871.0) 0.071 8,356.7 (3,285.4; 13,428.1) 0.001

MDW information
processing

9,657.0 (5,903.1; 13,410.9) <0.001 8,781.2 (2,864.1; 14,698.4) 0.004 5,089.9 (983.9; 9,195.8) 0.015 5,680.8 (106.3; 11,255.3) 0.046

MDW mathematics 3,133.7 (410.6; 5,856.7) 0.024 6,004.3 (1,982.5; 10,026.0) 0.003 628.5 (−2,187.6; 3,444.5) 0.661 1,915.3 (−2,294.8; 6,125.5) 0.372

MDW pattern detection 11,809.8 6,388.5; 17,231.2) <0.001 11,556.2 (4,108.8; 19,003.7) 0.002 5,491.9 (72.6; 10911.4) 0.047 5,923.1 (−1005.9; 12852.1) 0.094

MDW creativity 5,142.6 (2,787.8; 7,497.4 <0.001 7,603.6 (4,137.4; 11,069.8) <0.001 1,694.5 (−925.4; 4,314.2) 0.205 3,827.9 (527.7; 7,128.1) 0.023

Gray matter volume

MDW language and
knowledge

11,172.7 (6,316.2; 16,029.3) <0.001 11,125.8 (3,879.4; 18,372.2) 0.003 5,435.6 (1,252.9; 9,618.4) 0.011 6,654.2 (2,033.8; 11,274.7) 0.005

MDW information
processing

11,376.7 (7,482.1; 15,271.4) <0.001 9,549.5 (3,637.8; 15,461.2) 0.002 4,847.6 (508.1; 9,187.2) 0.029 4,728.1 (14.1; 9,442.1) 0.049

MDW mathematics 5,328.8 (2,706.5; 7,951.2) <0.001 7,697.3 (3,159.7; 12,234.9) 0.001 1,821.6 (−956.4; 4,599.5) 0.198 3,222.3 (−522.4; 6,967.1) 0.092

MDW pattern detection 15,126.9 (9,957.7; 20,296.2) <0.001 12,025.1 (4,776.6; 19,273.6) 0.001 6029.2 (732.8; 11,325.6) 0.026 4,171.3 (−1,699.7; 10,042.3) 0.163

MDW creativity 7,175.6 (4,732.4; 9,618.8) <0.001 8,178.6 (4,126.6; 12,330.6) <0.001 2,294.5 (−432.3; 5,021.4) 0.099 3,895.6 (657.0; 7,134.2) 0.018

ICV

MDW language and
knowledge

40,294.2 (25,402.5; 55,185.9) <0.001 21,223.4 (3,182.7; 39,264.1) 0.021 12,026.3 (−330.9; 24,383.4) 0.056 5,435.6 (1,252.9; 9,618.4) 0.011

MDW information
processing

39,658.5 (27,516.9; 51,800.2) <0.001 20,100.5 (5,650.9; 34,550.0) 0.006 13,828.0 (790.4; 26,865.6) 0.038 10,287.7 (−2,802.9; 23,378.3) 0.123

MDW mathematics 17,967.4 (9,707.6; 26,227.4) <0.001 17,513.9 (6,801.5; 28,226.4) 0.001 2,385.2 (−5994.1; 10,764.5) 0.576 6,324.8 (−4,400.9; 17,050.6) 0.247

MDW pattern detection 49,191.9 (32,572.5; 65811.2) <0.001 23,164.2 (5,368.9; 40,959.4) 0.011 11287.2 (−5,167.2; 27,741.5) 0.178 5,461.1 (−11,188.2; 22,110.4) 0.520

MDW creativity 25,298.9 (17,895.6; 32,702.3) <0.001 21,021.4 (11,754.3; 30,288.4) <0.001 4,554.3 (−3,702.4; 12,811.1) 0.279 6,743.5 (−1,869.7; 15,368.8) 0.125

Notes: 1, model adjusted for age, gender, education; 2, whole hippocampal volume in mm3 including left and right hippocampi; 3, significant findings only; APOE e4-allele, hypertension, and diabetes; b, regression coefficient; CA, cornu
ammonis; CI, confidence interval 95%; ICV, intracranial volume; MDW, mental demands at work; P, level of significance. Bold indicates significance <0.05.
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Rodriguez et al. Mental Demands and Hippocampus

TABLE 5 | Results of the structural equation modeling on the association of MDW and hippocampal and brain volume (HBV) on cognition (COG).

Retired Not retired

Loading P Loading P

Mental demands at work (MDW)
MDW language and knowledge 0.898 <0.001 0.891 <0.001
MDW information processing 0.908 <0.001 0.912 <0.001
MDW mathematics 0.873 <0.001 0.840 <0.001
MDW pattern detection 0.826 <0.001 0.844 <0.001
MDW creativity 0.886 <0.001 0.867 <0.001
Hippocampal and brain volume (HBV)1

Hippocampal volume −0.085 0.026 0.460 <0.001
White matter 0.900 <0.001 0.821 <0.001
Gray matter 0.922 <0.001 0.944 <0.001
Intracranial volume 0.959 <0.001 0.862 <0.001
Cognition (COG)
TMT B 0.776 <0.001 0.799 <0.001
TMT A 0.539 <0.001 0.785 <0.001
Verbal fluency 0.795 <0.001 0.514 <0.001
Word list 0.208 <0.001 0.635 <0.001
Covariates
Education 0.562 <0.001 0.031 0.447
Age 0.037 0.336 0.860 <0.001
Gender 0.923 <0.001 0.344 <0.001
APOE e4 0.045 0.236 0.147 <0.001
Diabetes 0.085 0.026 0.341 <0.001
Hypertension 0.059 0.121 0.552 <0.001

b P Indirect (b) Total (b) b p Indirect (b) Total (b)

MDW > HBV 0.001 0.988 0.109 0.002
MDW > COG 0.173 <0.001 0.000 0.173 0.100 0.008 −0.000 0.100
HBV > COG 0.080 0.082 −0.001 0.989
Covariates > HBV −0.580 <0.001 −0.503 <0.001
Covariates > COG −0.031 0.523 −0.046 −0.077 −0.424 <0.001 0.000 −0.423

Notes: 1, whole hippocampal volume in mm3 including left and right hippocampi; b, regression coefficient; CA, cornu ammonis; CI, confidence interval 95%; ICV, intracranial volume;
MDW, mental demands at work; P, level of significance; SE, standard error; TMT, trail making test.

and better cognitive health in old age, as a previous study
has shown concerning dementia risk (Then et al., 2015). For
those who were retired, only the association with executive
cognitive abilities (Trail Making Test B, Verbal Fluency) retained
significance, indicating that the effect might be stronger during
the active workforce participation. Indeed, previous studies
have shown that older age of retirement was associated with
a reduced dementia risk (Dufouil et al., 2014) and that high
complexity at work seems to facilitate cognitive functioning
before retirement (Finkel et al., 2009). This observation is in line
with the ‘‘use-it-or-lose-it’’ theory, which states that the active
use of cognitive abilities prevents their deterioration in old age
(Salthouse, 2006). Nonetheless, there is always the possibility
of reverse causality so that individuals with more resilience
to cognitive decline work in jobs with higher demands. Even
though a great number of previous studies demonstrated that the
training of cognitive abilities delays cognitive decline (Rizkalla,
2018). Irrespective of whether innate resilience or training effects
establish a protective association between work demands and
cognitive health in old age, it seems that the use of semantic
long-term memory involved in complex information processing
tasks plays a major role. There is no research so far explaining
this observation.

As ‘‘language and knowledge’’ and ‘‘information processing,’’
identified as possibly protective MDW in a previous study

(Then et al., 2015), were both associated with gray matter in
our analysis, it is conceivable that their effect on cognitive
performance might be mediated through their effect on
gray matter. In previous studies, cognitive training has
been shown to lead to changes in gray matter (Ceccarelli
et al., 2009; Kühn et al., 2014), which could counteract the
deterioration of gray matter in aging (Alexander et al., 2006)
and Alzheimer’s disease (Karas et al., 2004). However, in our
study, there was no indirect path to cognitive functioning.
Accordingly, there seem to be independent associations between
higher demands and brain volume and higher demands and
cognitive performance as well as between brain volume and
cognitive performance. A lack of association between brain
and cognitive functioning in individuals with high intellectual
stimulation during their life-course is commonly referred
to as cognitive reserve (Stern, 2002) and is a well-known
phenomenon. Hence, it is likely that intellectual stimulation
at work, especially in the MDW ‘‘language and knowledge,’’
‘‘information processing,’’ and ‘‘creativity,’’ take a cognitive
reserve-effect, in addition to effects that they have on
the brain.

While it is intuitive to see high demands involving language
and knowledge and more complex information processing as
cognitive training at work, this understanding does not come so
obviously for creativity. In our findings, there were associations
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between higher MDW ‘‘creativity’’ and more gray matter as
well as white matter volume among individuals that were still
working. It also seems that low-educated individuals can benefit
from the effects of MDW ‘‘creativity.’’ There is not yet any
consensus on how creative activity shows in or alters the
brain (Arden et al., 2010). It might be domain-specific (Boccia
et al., 2015); norepinephrine (Heilman, 2016) and the functional
connectivity of the default mode networkmight play a role (Beaty
et al., 2014). Thus, more research is necessary to understand
potential effects.

Our study is not without limitations. First, it is only
cross-sectional. Longitudinal analyses would reveal changes in
hippocampal volume in each individual over time—this would
give more information on a possible causal pathway. Moreover,
we did not include clinical dementia cases. Our study might
therefore underestimate the true effect size in the general elderly
population. Further, even though we adjusted for important
socioeconomic and lifestyle factors, there might be others
affecting the results, which we did not consider. Therefore, novel
model prediction statistics that are better capable to account for
in-depths individual differences, collinearities, and multiple data
points might be used in future analyses of large MRI datasets
(Bzdok and Yeo, 2017). Finally, 1 mm3 isotropic data lacks
sufficient resolution and contrast for the visualization of the
internal structure of the hippocampus (Elman et al., 2019; Wisse
et al., 2020) so that the estimates for hippocampal subfields may
not be as optimal as desired. Further studies are necessary to
confirm our findings for the subfields. Strengths of our study
include the large sample size, the well-defined population under
study, and the state-of-the-art 3T neuroimaging protocol.

CONCLUSIONS

In trying to gain a better understanding of how mentally
demanding activities at work (MDW) influence dementia risk,
our analysis explored whether high demands could maintain or
even enhance the plasticity of the hippocampus. Our findings
do not support the notion that MDW protects cognitive health
via hippocampal volume, neither via brain volume. Yet, we
observed associations between higher demands in ‘‘language and
knowledge,’’ ‘‘information processing,’’ and ‘‘creativity’’ at work
on larger white and gray matter volume and better cognitive
functioning. ‘‘Creativity,’’ however, seems to be more relevant
for individuals that are still actively working; the protective
effect might disappear when the person retires. Among retired
individuals, on the other hand, higher demands in ‘‘pattern
detection’’ were associated with larger white matter volume as
well as larger hippocampal subfields CA2/CA3, suggesting a

retention effect later in life. This finding is so important because
a previous study has identified this MDW as well as the other
three previously mentioned MDWs to be associated with a lower
dementia risk (Then et al., 2015). At this point, it is unclear
what the biological pathways are connecting them to cognitive
health in old age. Further studies are necessary to evaluate how
individuals who have high levels of mental demands at work gain
resilience against dementia.
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The cerebral cortex is a highly convoluted structure with distinct morphologic features,

namely the gyri and sulci, which are associated with the functional segregation or

integration in the human brain. During the lifespan, the brain atrophy that is accompanied

by cognitive decline is a well-accepted aging phenotype. However, the detailed patterns

of cortical folding change during aging, especially the changing age-dependencies of

gyri and sulci, which is essential to brain functioning, remain unclear. In this study, we

investigated the morphology of the gyral and sulcal regions from pial and white matter

surfaces using MR imaging data of 417 healthy participants across adulthood to old

age (21–92 years). To elucidate the age-related changes in the cortical pattern, we fitted

cortical thickness and intrinsic curvature of gyri and sulci using the quadratic model to

evaluate their age-dependencies during normal aging. Our findings show that comparing

to gyri, the sulcal thinning is themost prominent pattern during the aging process, and the

gyrification of pial and white matter surfaces were also affected differently, which implies

the vulnerability of functional segregation during aging. Taken together, we propose

a morphological model of aging that may provide a framework for understanding the

mechanisms underlying gray matter degeneration.

Keywords: aging, gyrification, cortical thickness, intrinsic curvature, gyri and sulci

INTRODUCTION

The morphology and function of the human brain change throughout the aging process. However,
themechanisms underlying how the structures of gyri and sulci are altered with age remain unclear.
In recent decades, in vivomagnetic resonance imaging (MRI) has been widely utilized to investigate
the effects of aging on the human brain (Good et al., 2001; Jernigan et al., 2001; Raz et al., 2004;
Salat et al., 2004), and these studies have provided information on how the structures of the human
brain change during the course of a lifespan. The decrease in cortical volume is the most dramatic
change that occurs during aging (Scahill et al., 2003). Nevertheless, the highly convoluted and
complex nature of the cerebral cortex implies aspects such as folding and thickness of the cortex
may have different influences on cortical morphology and brain function. In that case, in addition
to volumetric measurements, surface area, gyrification, and thickness measurements also provide
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detailed information for brain morphology (Panizzon et al.,
2009; Winkler et al., 2010; Gautam et al., 2015). The cerebrum
attains its folding structures through a complex orchestrated
set of systematic mechanisms including differential proliferation,
mechanical buckling, and differential expansion (Richman et al.,
1975; Van Essen et al., 2018; Llinares-Benadero and Borrell,
2019). Previous studies have suggested that the development of
cortical anatomy is dominated by genetic factors rather than
random convolutions (Peng et al., 2016). These genetic factors
could contribute to changes of cortical structure throughout
the lifespan (Fjell et al., 2015; Ronan and Fletcher, 2015). As
such, previous findings suggest that cortical features might also
degenerate in a non-random, systematic way.

It is worth noting that the locations of specific gyri and
sulci (e.g., central sulcus, visual cortex. . . ) are consistent in
different individuals and correspond to regional functions, and
these structures are considered structural-functional entities
(Brodmann, 1909; Welker, 1990). With this point of view,
gyrification and cortical thickness are thought to reflect the
functional aspects of the cortex, such as intelligence, behavior
complexity, and cognition (Kaas, 2013; Gautam et al., 2015).
Gyrification is thought to be a mechanical process that causes
the surface to buckle (Ronan et al., 2014; Van Essen et al., 2018),
although the primary underlying mechanism is still under debate
(Xu et al., 2010; Ronan and Fletcher, 2015; Llinares-Benadero
and Borrell, 2019). Traditionally, local gyrification index (LGI)
(Schaer et al., 2008) has been used as a proxy to probe the
regional folding degree of the human brain (Nanda et al., 2014,
Zhang et al., 2014). However, due to the ratio-principle of LGI,
it has less sensitivity compared to the intrinsic curvature on
describing the complex pattern of cortical surface, especially in
the deep brain regions, e.g., the insula (Griffin, 1994; Ronan
et al., 2011). It has been suggested that intrinsic curvature is a
more sensitive index to describe cortical folding and is presumed
to reflect the differential development and cortical connectivity
in different areas of the cortex (Ronan et al., 2014). Intrinsic
curvature of the pial and white matter surface has also been
found to be related to the structural changes of both superficial
or deeper layers of cortex (Ronan et al., 2012; Wagstyl et al.,
2016). Cortical thickness is a common feature reflecting total
neuronal body in the cortex (Nadarajah and Parnavelas, 2002).
Sulci, which are thinner than gyri, communicate locally with
neighboring structures, while gyri act as functional centers that
connect remote gyri to neighboring sulci (Fischl and Dale, 2000;
Deng et al., 2014). Stronger functional connectivity was found
in gyri than sulci, as supported by a series of experiments
(Deng et al., 2014). Previous studies have shown that cognitive
performance is associated with pattern changes in regional gyri
(Jones et al., 2006; Turner and Spreng, 2012; Gregory et al.,
2016), and that the variability of sulcal volume is found to be
related to the progression of the neurological diseases in patients
(Mega et al., 1998; Sullivan et al., 1998; Im et al., 2008). In the
healthy neurodevelopmental process, cortex nonuniformly thins
and demonstrates increased thinning in sulci compared to gyri
(Vandekar et al., 2015). Moreover, gyri and sulci exhibit opposite
trends in curvature changes during aging (Magnotta et al.,
1999) and show different kinds of specialized organizations and

connectivity (Welker, 1990). Together, the effects of aging on the
regional thickness and gyrification of the brain result in decreased
cognitive functions (Salat et al., 2004; Gregory et al., 2016).
However, sulci are recently deemed to be more functionally
segregated in structural connectivity and the increasing age
is accompanied by decreasing segregation in large-scale brain
systems (Chan et al., 2014; Liu et al., 2017). The morphological
evidence for the mechanism underlying such degeneration of the
human brain reported by the studies mentioned above and others
is not unified. Thus, investigations of distinguishing gyral and
sulcal morphology and comparing them are critical.

Previous studies have suggested that the relationship between
cortical degeneration and advancing age is not linear, and the
degeneration trajectories of cortical features might also differ
(Klein et al., 2014; Storsve et al., 2014; Cao et al., 2017).
Therefore, understanding the variations in brain morphology
and its trajectories throughout the lifetime is a crucial step toward
revealing the epicenter of aging-related degeneration of cortical
morphology, because the pattern may reflect the configuration
of connectivity of the brain (Ronan et al., 2011). By using the
image dataset that was collected by a single scanner with a large
sample size and a broad age range, this study aimed to investigate
the following three issues at both a whole-brain and a regional
level: (1) to reassure whether the effects of age on the cortical
morphological features are nonlinear across adulthood to old age,
(2) whether age differentially and/or systematically affects gyri
and sulci, (3) whether the pial and white matter surfaces display
distinct variations in their patterns during aging. We believe
that measuring detailed morphological features to depict the
degenerative pattern of the cerebral cortex could help elucidate
underlying degeneration mechanisms.

MATERIALS AND METHODS

Participant Characteristics and Image Data
Acquisition
A total of 417 healthy Chinese controls were recruited from
northern Taiwan, and their ages ranged from 21 to 92
(Male/Female: 211/206). All of the included participants had
sufficient visual and auditory acuity to undergo basic cognitive
assessment. This research was conducted in accordance with the
Declaration of Helsinki and approved by the Institutional Review
Board of Taipei Veterans General Hospital. Written informed
consent was obtained from all participants after they had been
given an overview of this study. A trained research assistant used
the diagnostic structured Mini-International Neuropsychiatric
Interview (M.I.N.I.) to evaluate each subject (Sheehan et al.,
1998). The participants’ cognitive functions were assessed using
the Mini-Mental State Examination (MMSE) (Folstein et al.,
1975), Wechsler Digit Span tasks (forward and backward),
and Clinical Dementia Rating (CDR) scale (Hughes et al.,
1982) to avoid enrolling participants with possible dementia or
cognitive impairments. Subjects who met any of the following
exclusion criteria were not enrolled in the study: (1) any Axis I
psychiatric diagnoses on the Diagnostic and Statistical Manual of
Mental Disorders-IV (American Psychiatric, 2000), such asmood
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TABLE 1 | Demographic of included healthy participants.

Demographic variables Subjects (N = 417)

Age (years) 51.90 (18.5)

Gender (male/female) 211/206

Education (years) 13.82 (5.5)

Handedness (left/right) 14/403

MMSE 28.47 (1.6)

Digits Span Forward 13.87 (2.3)

Digits Span Backward 8.29 (3.7)

TIV (cm3 ) 1352.8 (130.58)

GMV (cm3) 659.2 (77.84)

WMV (cm3) 422.6 (51.23)

CSF (cm3) 271.1 (92)

The variables are demonstrated as mean (standard deviation).

MMSE Mini-Mental Status Examination/TIV Total intracranial volume.

GMV Gray matter volume/WMV White matter volume/CSF Cerebrospinal fluid.

disorders or psychotic disorders; (2) any neurological disorders,
such as dementia, head injury, stroke, or Parkinson’s disease; (3)
illiterate; (4) an MMSE score less than 24; and/or (5) elderly
(age of 65 or over) with a CDR score over 0.5. The demographic
information for the subjects is listed in Table 1.

All MRI scans were performed on a 3 Tesla Siemens scanner
(MAGNETOM Trio TIM system, Siemens AG, Erlangen,
Germany) with a 12-channel head coil at National Yang-Ming
University. High-resolution structural T1-weighted (T1w) MRI
scans were acquired with a three-dimensional magnetization-
prepared rapid gradient echo sequence (repetition/echo time =
2,530/3.5, inversion time = 1,100ms, field of view = 256mm,
flip angle =7◦, matrix size = 256 × 256, 192 sagittal slices,
isotropic voxel size= 1mm3, and no gap). Each participant’s head
was immobilized with cushions inside the coil to minimize the
generation of motion artifacts during image acquisition.

Cortical Reconstruction
The pial and white matter surfaces of each subject were
reconstructed using an automated cortical surface reconstruction
approach in FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.edu)
according to the following steps: registration, skull-stripping,
segmentation of the gray matter, white matter and cerebrospinal
fluid, tessellation of the gray-white matter boundary, automated
topology correction, and surface deformation according to
intensity gradients to optimally place the gray-white and gray-
cerebrospinal fluid borders at the locations of the greatest shifts
in intensity, which defines the transition to the other tissue class
(Dale et al., 1999). The vertices were arranged in a triangular
grid with the spacing of approximately 1mm (∼16,000 grid
points) in each hemisphere. For any inaccuracies, the qualities
of the segmentation and surface reconstruction were checked
carefully by four researchers using the double-blinded method
(The dataset was divided into four parts. Each of the researchers
checked through two parts of the datasets, and every part was
checked twice by two different people.) The data of the subjects
were excluded if two people marked it as poor quality. For

those only marked once by the researchers, we checked the data
again and decided whether it should be removed from further
processing and analyses. A total of 15 subjects were excluded
in the end because of the poor quality. We separated both the
left and right hemispheres into gyral and sulcal regions using
FreeSurfer-generated mean curvature (concave-convex division,
Sulci: mean curvature value> 0/Gyri: mean curvature value< 0)
for further comparison.

Cortical Thickness
By calculating the shortest distance between the pial surface
and the gray matter-white matter boundary of the tessellated
surface, we obtained the vertex-wise cortical thickness. To first
validate the aging dataset, we tested the relationship between
thickness and age across the whole-brain vertices. The surface
was smoothed by a 15-mm Gaussian kernel (Fischl et al.,
1999). The effects of smoothing with 10 and 20mm kernels
can be seen in Supplementary Figures 2, 3. To investigate the
differential effects of aging between two cortical features, we
further calculated the average thicknesses of the gyral and
sulcal regions and the ratio of the gyral and sulcal thicknesses
(Gyri/Sulci ratio= Gyral thickness divided by sulcal thickness).

Intrinsic Curvature
Intrinsic curvature is a fundamental property of a surface, and its
measurements reflect higher complexity intrinsic information of
surfaces andmay provide amore sensitive measure of cortex than
other larger-scale gyrification measures (Ronan et al., 2012). In
addition to the curve values, intrinsic curvature also contains the
shape information which gives rise to an un-uniform expansion
of the surfaces and is demonstrated to have a greater spatial
frequency when quantified at a millimeter-scale (Ronan et al.,
2011). The degree of intrinsic curvature is dependent on the
degree of the differential, with a bigger differential resulting in
a greater degree of curvature, which might reflect the underlying
connectivity of the human cortex (Ronan et al., 2014). Thus, it has
been hypothesized that the higher the intrinsic curvature value,
the higher the complexity, underlying connectivity, and folding
or curves are in one region, although the direct evidence of the
relationship between intrinsic curvature and connectivity was not
presented in literature yet.

The vertex-wise intrinsic curvature was calculated using
Caret software (v5.65, https://www.nitrc.org/projects/caret/) as
the product of the principal curvatures (Ronan et al., 2011, 2012).
The post-processing and filtration of the curvature were done in
MATLAB (The MathWorks, Inc., Natick, MA, USA). We took
the absolute values of intrinsic curvature for the pial and white
matter surfaces. A low-pass filter (threshold = 2 mm−2) was
applied to minimize error, keep the curvature values compatible
with the resolution of the cortical reconstruction and remove the
abnormal values from further analysis (Ronan et al., 2011, 2012).
Additionally, the intrinsic curvature of the pial and white matter
surfaces was separately extracted for the statistical analyses. To
first validate the aging dataset, a vertex-wise analysis was applied
to look at the relationship between gyrification and age. The
surface was smoothed by a 15-mm Gaussian kernel (Fischl et al.,
1999). The effects of smoothing with 10 and 20mm kernels can
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be seen in Supplementary Figures 2, 3. Next, we calculated the
average intrinsic curvatures for gyral and sulcal regions and the
ratio of the gyri/sulci (Gyri/Sulci ratio=Gyral intrinsic curvature
divided by sulcal intrinsic curvature) at the pial and white matter
surfaces to investigate the differential aging effects.

Regional Analysis
We performed a regional analysis by dividing the cortical
surface of each subject into five lobes: frontal, temporal, parietal,
occipital, and cingulate. Insula was excluded in the analysis
because it is situated deep in the lateral sulcus. The lobes of the
brain were defined by the Desikan-Killiany atlas (Desikan et al.,
2006). The average gyri, sulci, and gyri/sulci ratio of thickness and
intrinsic curvature were calculated in each lobe.

Statistical Analyses and Curve Fitting
For each hemisphere, an age correlation analysis of cortical
thickness and intrinsic curvature (on the pial and white
matter surfaces separately) was first tested using the General
Linear Model vertex-by-vertex with gender and total intracranial
volume as covariates in order to reveal any general variation
trends on the brain surface.

The linear, quadratic and cubic models were applied in the
regression analyses across age to determine the age-dependencies
of cortical thickness (gyral thickness, sulcal thickness, and
gyri/sulci thickness ratio) and intrinsic curvature (gyral intrinsic
curvature, sulcal intrinsic curvature, and gyri/sulci intrinsic
curvature ratio on the pial and white matter surfaces separately).
For model selection, the linear (y = p∗age + p1), quadratic (y
= p∗age2 + p1∗age + p2), and cubic (y = p∗age3 + p1∗age2

+ p2∗age + p3) models were all tested using averaged whole-
brain measurements, and we chose the better model according
to the properties of goodness-of-fit, including the Akaike
information criterion (AIC) (Akaike, 1974), root mean square
error (RMSE), and R2. To test the significance of each fitted
model and minimize the type-I errors, we applied permutation-
based multiple testing on all age-dependencies, reassigning age
randomly 10,000 times. All p-values were adjusted by the
Bonferroni correction (p < 0.05).

Relationships Between Cognitive
Performance and Structural Measures
We examined whether the general cognitive performance
(MMSE/Digit span tasks) can be explained by the structural
measures of gyri and sulci on the pial and white matter surfaces,
after controlling for covariates. We further hypothesized that
different cortical measures may contribute different amounts
of effect to cognitive performance. Therefore, hierarchical
multiple regression analysis was performed in SPSS to investigate
the relationship between general cognitive performance
(MMSE/Digit span tasks, as dependent variable) and the
structural measures of gyri and sulci on the pial and white
matter surfaces (independent variables), while age, gender, TIV
and education were used as covariates of non-interest in the
regression model. To test the significance of the regression
models, we used a p-value threshold of 0.05.

Stepwise Regression Predicting Age Using
the Structural Measurements as Predictors
Stepwise regression analysis was performed to determine
the relative contribution of the structural measurement to
chronological aging. Sex and TIV were forced to enter in
the stepwise model as covariates, and the six structural
measurements including gyral/sulcal thickness and intrinsic
curvature on the pial or white surface were then all entered to
the stepwise model at once using a selection criterion of p< 0.05.

RESULTS

Aging Effect in Brain Tissue Volume
To ensure that the recruited samples are in the aging process
without muddling obvious development of brain tissues, we
firstly examined the relationship between brain tissue volume
(GMV, WMV, CSFV, and TIV) and age across 21–92 years old.
The GMV, WMV, CSFV, and TIV are plotted as a function of age
in Supplementary Figure 1. We confirmed that GMV andWMV
decrease with age, CSFV increase with age and no correlation
between TIV and age was observed in the analyzed sample.

Vertex-Wise Linear Correlations Between
Age and Cortical Measurements
Across the age range of 21–92 years, vertex-wise cortical thickness
showed a global negative linear correlation with age in both
hemispheres (Figure 1A). The vertex-wise age correlation results
showed a regional decline (uncorrected p < 0.01) of the
intrinsic curvature on the pial surface (Figure 1B). However, the
intrinsic curvature had an overall increasing pattern (uncorrected
p < 0.01) on the white matter surface (Figure 1C).

Goodness-of-Fit Tests of the Polynomial
Regression Models
We examined the goodness-of-fit of the linear, quadratic, and
cubic models, including looking at the two parameters: Root
Mean Square Error (RMSE) and Akaike Information Criterion
(AIC). For cortical thickness, quadratic models stood out to be
the best fit (Supplementary Table 1). On the pial surface, bigger
differences were found between the linear and quadratic models
in both the RMSE and AIC results (Supplementary Table 2). The
parameters of the quadratic and cubic models showed nearly
the same, but the cubic values were smaller in most cases.
The goodness-of-fit profile on the white matter surface was
identical to that of the pial surface (Supplementary Table 3).
The RMSE and AIC values were steady and smaller in the
quadratic and cubic models compared with those of the linear
model. Although some parameters were smaller using the cubic
model compared with the quadratic model, those of cubic and
quadratic models were very similar. Hence, we integrated the
findings and only looked at the quadratic effects in the following
analyses, which illustrated the aging process better but were not
over-fit (For the linear results, see Supplementary Figure 4 and
Supplementary Table 4).
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FIGURE 1 | (A) Vertex-wise age correlation in cortical thickness. (B,C) Vertex-wise age correlation in intrinsic curvature on the pial and white matter surfaces. The

threshold was set to 2. Vertices with p < 0.01, uncorrected, are colored. Blue indicates a negative correlation; red indicates a positive correlation.

Quadratic Relationship Between Age and
Whole-Brain Cortical Measurements
All fitted curves were tested using permutation tests, and
the results were all significant (p < 0.05). According to the
quadratic regression results (Figure 2, Table 2), both the cortical
thicknesses of the gyri and sulci decreased with age [Gyral R2

(lh/rh): 0.400/0.370; Sulcal R2 (lh/rh): 0.562/0.526]. The gyri/sulci
thickness ratio increased with age [R2 (lh/rh): 0.287/0.231], which
implied that the degree of decrease in the sulci was larger than
that of the gyri.

For gyrification, the aging process affected the gyri and
sulci in opposite ways on the pial surface: a negative quadratic
correlation was found with age in the sulcal region [R2 (lh/rh):
0.563/0.539], while a positive quadratic correlation was found
with age in the gyral region [R2 (lh/rh): 0.244/0.212]. Both
the gyral and sulcal intrinsic curvatures of the white matter
surface increased quadratically with age [Gyral R2 (lh/rh):
0.465/0.447; Sulcal R2 (lh/rh): 0.317/0.326]. The correlations
between age and gyri/sulci intrinsic curvature ratio on the white
matter surface were insignificant. The results were all similar
and consistent between the right and left hemispheres. The
average thickness and intrinsic curvature values are shown in
Supplementary Table 5. A correlation matrix between all the
structural measurements for gyri, sulci, and gyri/sulci ratio can
be seen in Supplementary Figure 5.

Quadratic Relationship Between Age and
Cortical Measurements of the Five Lobes
The relationship between cortical measurements and age
for the five lobes including frontal, parietal, temporal,

occipital lobe, and cingulate were examined. Most of the
age-cortical measure relationships in the frontal, parietal,
and temporal lobes were consistent with the whole-brain
results. The quadratic relationships between age and the
sulcal intrinsic curvature on the white matter surface of the
occipital lobe, gyral intrinsic curvature on the pial surface of
occipital lobe and cingulate and gyri/sulci ratio of thickness
in cingulate were not significant (p > 0.05/108) (Table 3,
Supplementary Figures 6–10).

Relationships Between Cognitive
Performance and Structural Measures
The hierarchical regression models were found significant
between MMSE and sulcal cortical thickness and gyral intrinsic
curvature on the white matter surface. In the first step, the
regression model including age, gender, education, and TIV
was significant (R2

= 0.236, p < 0.001). In the second
step, adding the whole brain sulcal cortical thickness into the
model explained additional 0.8% of variance, and the model
stayed significant (R2

= 0.244, F-change p = 0.041). In the
third step, adding the whole brain gyral intrinsic curvature
into the model also explained additional 0.8% of variance,
and the model was significant (R2

= 0.252, F-change p =

0.039). The models at the second and third steps revealed that
MMSE was positively correlated with the cortical measurements
(Figure 3; sulcal cortical thickness: β = 0.141, p = 0.029; gyral
intrinsic curvature: β = 0.109, p = 0.039). All p-values reported
here were uncorrected, and after FDR correction, all models
were non-significant.
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FIGURE 2 | Results of the regressions of age with gyri, sulci, and the gyri/sulci ratio of cortical thickness and intrinsic curvature on the pial and white matter surfaces.

The lines refer to the fitted curve for the age and measurements, and the dots indicate the distribution of that data for the subjects.

TABLE 2 | Results of quadratic regression analyses.

Age correlation Cortical thickness Intrinsic curvature (lh/rh)

(lh/rh) Pial surface White surface

Gyri –(0.400/0.370) +(0.244/0.212) +(0.465/0.447)

Sulci –(0.562/0.526) –(0.563/0.539) +(0.317/0.326)

Gyri/Sulci ratio +(0.287/0.231) +(0.617/0.560) N.A.

Only the R2 for the significant curves were shown in the table (p < 0.05/18; adjusted

by the Bonferroni correction for multiple comparisons). The variables are adjusted R2; +

represents positive correlation, – represents negative correlation.

Different Contribution of the Structural
Measurements in Chronological
Age-Dependencies
By using stepwise regression that adjusted for the sex and TIV
effect, four of the six measurements were selected into the

final model with adjusted, including mean thickness of sulci
(standardized β = −0.214, p < 0.001), mean intrinsic curvature
of the pial (standardized β = −0.524, p < 0.001), and white
surface of sulci (standardized β = 0.544, p < 0.001), and
mean intrinsic curvature of pial surface of gyri (standardized
β = −0.284, p < 0.001). All p-values were significant after
FDR correction.

The Aging Model
To summarize the various measurements and structural findings
in the current and previous studies, we suggest a putative model
of the general pattern of cortical aging (Figure 4). In this model,
the gyral intrinsic curvature of the pial surface increases slightly
with age, while the tips of the gyri stay close to the skull
[Figure 4(1)]. The gyral intrinsic curvature on the white matter
surface increases with age, so we hypothesized that the surface
may move outward, resulting in a decrease in cortical thickness
[Figure 4(2)]. The sulcal intrinsic curvature of the pial surface
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TABLE 3 | Results of quadratic regression analyses of the 5 lobes.

Lobe Age correlation Cortical thickness Intrinsic curvature (lh/rh)

(lh/rh) Pial surface White surface

Frontal Gyri –(0.414/0.259) +(0.245/0.271) +(0.448/0.457)

Sulci –(0.284/0.271) –(0.366/0.315) +(0.387/0.391)

Gyri/Sulci ratio +(0.078/ N.A.) +(0.494/0.485) N.A.

Parietal Gyri –(0.414/0.259) +(0.192/0.185) +(0.461/0.446)

Sulci –(0.483/0.478) –(0.443/0.436) +(0.223/0.201)

Gyri/Sulci ratio +(0.261/0.248) +(0.561/0.545) +(0.243/0.187)

Temporal Gyri –(0.350/0.353) +(0.228/0.197) +(0.408/0.388)

Sulci –(0.623/0.594) –(0.609/0.561) +(0.220/0.198)

Gyri/Sulci ratio +(0.493/0.426) +(0.585/0.498) +(0.202/N.A.)

Occipital Gyri –(0.117/0.142) N.A. +(0.324/0.251)

Sulci –(0.561/0.583) –(0.386/0.358) N.A.

Gyri/Sulci ratio +(0.513/0.490) +(0.418/0.314) +(0.299/0.263)

Cingulate Gyri –(0.414/0.259) N.A. +(0.358/0.220)

Sulci –(0.284/0.271) –(0.378/0.368) +(0.143/0.295)

Gyri/Sulci ratio N.A. +(0.413/0.218) +(N.A./0.121)

The significance of the curve fitting is evaluated using the permutation test, only the R2 for the significant curves were shown in the table (p < 0.05/108; adjusted by the Bonferroni

correction for multiple comparisons). The variables are adjusted R2; + represents positive correlation, – represents negative correlation.

decreases with age [Figure 4(3)], which indicates that the sulci
are getting wider and flatter on the surface with increasing age.
The pial border might also move outward, resulting in a decline
in the sulcal depth and increase in sulcal width during aging
which was reported in previous literature (Kochunov et al., 2005;
Liu et al., 2013). On the white matter surface, the sulcal intrinsic
curvature increases with age, and the gray-whitematter boundary
may move outward and becomes cusped [Figure 4(4)]. Finally,
the decreasing extent of the sulcal thickness appears larger than
that of the gyral thickness. Additionally, we found that the
trends of all correlations were consistent for both gender (see
Supplementary Figure 11), indicating that the overall pattern
of the current putative model reflects common mechanisms of
change during aging.

DISCUSSION

This study aims to reveal the pattern of the gyral and sulcal
changes on the pial and white matter surfaces during the
normal aging process using a relatively large cohort dataset. We
investigated the whole-brain vertex-wise pattern of the structural
changes during the aging process, in which the white matter
and pial surfaces showed a different association of gyrification
with age. The gyri/sulci ratio was used to highlight the difference
of cortical thinning and curvature changes between gyri and
sulci spanning across aging. Current findings suggest that,
instead of gyri, the changes of sulcal thickness and curvature
contribute more during the normal aging process. Finally, we
also concluded a putative model of aging in this study based
on previous evidence for the fundamental shape of the cortex
that accompanied by the current results, which provides a

better understanding of the cortical structure degeneration across
adulthood to old age.

As the advance of age, we observed that the curvature
decreased on the sulcal-pial surface and increased on the sulcal-
white matter surface (Figure 2). Previous studies have found
that sulcal width increases while sulcal depth decreases with age
(Kochunov et al., 2005; Liu et al., 2013). This finding partially
supports the fact that the sulcal-pial surface might flatten and
move outward instead of shrinking toward the white matter
surface, which is mainly caused by the steady production of CSF
from the choroid plexus that inflates the cerebrum during the loss
of brain parenchyma (Miller et al., 1987; Matsumae et al., 1996;
Scahill et al., 2003). Moreover, the increased curvature of the
WM surface is associated with imbalanced WM-GM shrinkage
(Deppe et al., 2014). The specific changes of sulcal morphology in
WM-GM surface can be linked with the loss of short association
fibers (U-fiber) underneath sulcus that contribute to the impaired
local clustering of the brain connections (Toro and Burnod, 2005;
Gao et al., 2014; Van Essen et al., 2018). Third, by analyzing
the gyri/sulci ratio, we found that the degree of sulcal thickness
thinning was larger than that of gyral thickness during the
normal aging process. These findings implied that the changes of
sulcal morphology are more prominent than gyral regions during
aging, which resulted in the variation in the following ways:
(1) For sulcal morphology, while the sulcal pial surface moved
outward and flatten, the GM-WM surface became cusped and the
thickness of sulci decreases. (2) For gyral regions, the curvature
on both surfaces became cusped, with mildly decreased gyral
thickness. All inferences and current evidence were integrated
and graphed in the putative model of aging (Figure 4).

One of the noticeable findings in the current study is that
gyri and sulci altered differently during the normal aging process.
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FIGURE 3 | Hierarchical multiple regression result. Left: Partial regression plot of MMSE and sulcal cortical thickness. Right: Partial regression plot of MMSE and

gyral intrinsic curvature of the white matter surface.

FIGURE 4 | The illustration of the putative morphological model of aging. This figure concludes our main findings as the following: (1) Gyral intrinsic curvature on the

pial surface slightly increases with age. (2) Gyral intrinsic curvature on the white matter surface increases with age. (3) Sulcal intrinsic curvature on the pial surface

decreases with age; sulcal width increases and sulcal depth decreases with age (4) Sulcal intrinsic curvature on the white matter surface increases with age. (1–4)

Sulcal thickness declines more than gyral thickness (see the length of the red and blue arrows).

Gyral crowns were reported having specialized and enhanced
connections and organization between cortices (Brodmann,
1909; Welker, 1990). Although common functional regions
were mostly defined in the gyral region and its adjacent sulci,
our findings suggested that the sulci itself greatly altered and
may be responsible for the decrease of functional segregation
during aging. Previous studies using diffusion-weighted imaging
have indicated that gyral regions show denser white matter
fibers than sulcal regions (Nie et al., 2012; Chen et al., 2013).
Deng et al. (2014) further supported these findings that gyri
are functional connection centers, while sulci are likely to
be local functional units connecting neighboring gyri through

inter-column cortico-cortical fibers. Moreover, Gao et al. (2014)
found association between the disintegrity in short-range fibers
and lower cognitive efficiency on prospective memory, and the
loss of the clustering coefficient has also been found to correlate
with inferior intelligence quotient (IQ) (Li et al., 2009). Taking
together, we suggest that morphological degeneration in sulcal
regions could be more vulnerable to the effects of aging. The loss
of local interconnectivity in the brain might be more pronounced
in the normal aging process. In the current study, we found
mild trends that MMSE was positively correlated with sulcal
cortical thickness and gyral intrinsic curvature on the white
matter surface. Therefore, we assumed that the sulcal thickness
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declines suggest that part of the short-ranged connectivity
changes and may influence intra-cortical brain function (Schuz
and Palm, 1989; Elston, 2003; Cullen et al., 2010; Wagstyl
et al., 2015). Moreover, targeting the cognitive correlates of
sulcal degeneration and its impact to brain topology should be
investigated in future studies.

We also found different trends of curvature changing on the
WM-GM boundary and the pial surface during aging. Based
on the retrogenesis mechanism, the differential proliferation
hypothesis (Richman et al., 1975) may support differential
degeneration process of gyrification of the pial and white matter
surfaces during aging. Changes in myelin and synapses in the
cortex could be the reason for the morphology development
and degeneration, and thereby resulting in cognitive decline
(Bartzokis, 2004; Masliah et al., 2006; Fjell and Walhovd, 2010;
Whitaker et al., 2016). Nonetheless, a direct link between cortical
myelination and gyrification still needs to be found. Although
several hypotheses of the mechanisms underlying gyrification are
currently being debated by neuroscientists, some have suggested
that gyrification is shaped or influenced by multiple mechanisms
(Ronan and Fletcher, 2015). The alterations in aging-related
gyrification could reflect the underlying cortical connections and
the functions of our brain by either pruning or degenerative
processes (Ronan et al., 2011; Jockwitz et al., 2017). The
vulnerability of sulcal cortical thinning that was discovered in
the current study could shed light on the structure-function
relationship in the human brain.

The aging model of cerebral cortex we proposed in this study
is a global effect spanning across most of the brain regions.
However, while most of the regions showing greater gyri/sulci
ratio, frontal lobe and cingulate showed similar degree of a
decrease between gyral and sulcal thickness, where the amount
of decrease was non-significant correlating with age (Table 3).
Our findings implied that the gyral and sulcal thickness in the
frontal and cingulate regions decreased to the same extent during
the normal aging process. Several studies have found accelerated
regional gray matter volume decline in the frontal lobe compared
with other lobes (Tisserand et al., 2002; Resnick et al., 2003)
and have demonstrated decreases in cortical volume specifically
in the frontal and cingulate regions. These findings consistently
suggest that the frontal and cingulate cortices may be the key
regions in the brain aging process. Another study reported a
higher increase of sulcal width in the superior frontal sulci and
a lower correlation between age and decreased sulcal depth in
the inferior and orbitofrontal sulci (Kochunov et al., 2005). This
report might support our findings that both gyral and sulcal
thickness decreased to the same degree so that sulcal width
increased significantly and sulcal depth decreased because of the
high atrophy in gyri. Moreover, the trend for sulcal gyrification
changes on the white matter surface in the occipital lobe did
not increase as we found in the whole-brain examination.
Small variations exist in different brain regions because the
development of the lobes and their functions are diverse.

In this study, we characterized the effects of age on different
structural progressions in a large sample of healthy adults.
However, this study had several limitations. First, the causality of
cortical thickness and intrinsic curvature affecting brain function

was not investigated. Due to the nature of the cross-sectional
design, we were unable to avoid cohort effect or indicate which
structure degenerated earlier or had a higher impact on the brain
function. The structure-function relationships among gyri, sulci,
and the pial and white matter surfaces and how they impact
each other still need to be examined. In this case, the envisioned
model of the degeneration of the cerebral cortex may need to
be investigated with longitudinal data. Second, to generalize the
degenerative process, the current model focused on the trends for
comprehensive changes in the cortex and brain lobes. However,
cortical variations during aging, including changes in volume and
thickness, have been found to decline regionally (Thambisetty
et al., 2010; Westlye et al., 2010). Therefore, although we posited
general aging-related alterations in the gyri and sulci of the
cortex in the model, regional variations still need to be specified.
Third, we used a simple concave-convex concept as a division of
gyri and sulci which may seem to be an arbitrary classification.
Adopting the convexity map generated by FreeSurfer to classify
cortex into gyral, sulcal and undefined regions (Liu et al., 2019;
Yang et al., 2019; Zhang et al., 2019) is recommended for
future analysis especially when looking at regional changes in
the analysis. Next, our aging model is partly based on previous
literature. The measure of sulcal width and depth was not
directly quantified in the current study. The completeness of
the aging model could be tested and reproduced with all the
measurements together. Lastly, participants with mild or severe
cognitive functions were excluded in this study, and only general
cognition assessments were conducted for current participants.
Thus, the generalizability of current findings is limited to
healthy population, moreover, its cognitive implications should
be further examined with detailed cognitions such as verbal
memory, visual executive in future studies.

CONCLUSION

This study illustrates a cortical degeneration model from the
perspective of brain morphology which provides an overview for
the brain aging process using multiple structural measurements.
We found systematical and nonuniform cortical thinning during
normal aging, that the overall degree of sulcal degeneration is
greater than gyri in terms of thickness and gyrification. These
degeneration mechanisms might relate to pruning, life-long
reshaping and neurodegenerative processes, associating with
differential brain functional degeneration and the underlying
neuronal tension. We suggest that the cortical features of gyri,
sulci, the pial and white matter surfaces should be considered
independently in future studies, which could be associated with
segregation and integration alterations in brain connectome
during aging.
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Background: Neurological impairment (NI) and disability are associated with reduced

life expectancy, but the risk and magnitude of premature mortality in children vary

considerably across study settings. We conducted a systematic review to estimate

the magnitude of premature mortality following childhood-onset NI worldwide and to

summarize known risk factors and causes of death.

Methods: We searched various databases for published studies from their inception

up to 31st October 2020. We included all cohort studies that assessed the overall risk

of mortality in individuals with childhood-onset epilepsy, intellectual disability (ID), and

deficits in hearing, vision and motor functions. Comparative measures of mortality such

as the standardized mortality ratio (SMR), risk factors and causes were synthesized

quantitatively under each domain of impairment. This review is registered on the

PROSPERO database (registration number CRD42019119239).

Results: The search identified 2,159 studies, of which 24 studies were included in

the final synthesis. Twenty-two (91.7%) studies originated from high-income countries

(HICs). The median SMR was higher for epilepsy compared with ID (7.1 [range 3.1–22.4]

vs. 2.9 [range 2.0–11.6]). In epilepsy, mortality was highest among younger age

groups, comorbid neurological disorders, generalized seizures (at univariable levels),

untreatable epilepsy, soon after diagnosis and among cases with structural/metabolic

types, but there were no differences by sex. Most deaths (87.5%) were caused by

non-epilepsy-related causes. For ID, mortality was highest in younger age groups and

girls had a higher risk compared to the general population. Important risk factors

for premature mortality were severe-to-profound severity, congenital disorders e.g.,

Down Syndrome, comorbid neurological disorders and adverse pregnancy and perinatal

events. Respiratory infections and comorbid neurological disorders were the leading

causes of death in ID. Mortality is infrequently examined in impairments of vision, hearing

and motor functions.
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Summary: The risk of premature mortality is elevated in individuals with childhood-onset

NI, particularly in epilepsy and lower in ID, with a need for more studies for vision, hearing,

and motor impairments. Survival in NI could be improved through interventions targeting

modifiable risk factors and underlying causes.

Keywords: neurological, neurodevelopmental, disability, impairment, mortality, children

INTRODUCTION

Neurological impairments (NI) are a group of disorders resulting
from damage to or dysfunction of the central nervous system
(1–3). The most prevalent domains of NI include epilepsy,
cognitive, sensorineural, and motor impairments (4, 5). The
burden of NI varies greatly between and within regions
and countries, which is attributed to epidemiological and
demographic transitions (6–10). For example, improved child
survival and persistence or emergence of risk factors for NI
have increased the burden in older children and adolescents in
LMICs (11–13).

Current evidence suggests an increased risk of premature
mortality or reduced life expectancy among individuals with
NI and disability (14–19). For instance, the risk of premature
mortality is 2–3 times higher among people with epilepsy
compared with the general population (16, 19); the risk is
highest in LMICs (16) and childhood-onset seizures (19). The
risk of mortality is also higher in structural/metabolic, untreated
and intractable epilepsy. The causes of death in epilepsy
include: (i) sudden unexplained death in epilepsy (SUDEP);
(ii) accidents/burns; or (iii) acute/chronic infectious or non-
infectious disease (16, 19), but it is unclear if mortality for other
domains of NI is related to these or other different causes. Cohort
studies are logistically intensive to conduct, which can influence
the extent to which mortality is examined following NI across the
world, particularly in LMICs.

We conducted a systematic review to: (i) estimate the
magnitude of premature mortality in individuals with childhood-
onset NI; (ii) summarize known risk factors; and (iii) describe
causes of premature mortality among individuals who died. This
evidence is required to inform medical and community-based
interventions that might improve the survival and quality of life
for individuals with NI and disability.

METHODS

We used the Preferred Reporting Items for Systematic Reviews
and Meta-analyses (PRISMA) guidelines (20) and the Centre
for Reviews and Dissemination (CRD) recommendations for
undertaking reviews in healthcare (21) for the searches,
identification, appraisal of eligible studies, synthesis, and
reporting of findings in this review. A protocol is registered
in the international prospective register of systematic reviews
(PROSPERO-registration number CRD42019119239) (22).

Search Strategy and Eligibility Criteria
A search was conducted in the PubMed, EMBASE, and Scopus
databases for cohort studies from database inception up to

TABLE 1 | Searches in PubMed.

Database Search terms

PubMed (((excess mortality OR long-term survival OR life

expectancy OR premature death OR death OR

premature mortality OR survival) AND

(neurodevelopmental disorders [MeSH Terms] or

neurologic impairment OR cognitive disability OR

motor impairment OR visual impairment OR hearing

impairment OR epilepsy)) AND (risk factors OR

causes of death OR predictors of mortality)) AND

(cohort*) Filters: Humans

31st October 2020 using terms in three groups: (i) neurologic
impairments, cognitive impairments or intellectual disability,
motor impairments, visual impairments, hearing impairments
and epilepsy; (ii) mortality, death or survival; (iii) risk factors,
predictors or causes of death (see Table 1 for details of the search
strategy in PubMed).

Two reviewers reviewed the retrieved citations in a two-stage
process. In the first stage, the first reviewer (JA) reviewed all
titles and available abstracts to identify relevant studies. The
second reviewer (SK) independently reviewed 30% of the titles
and abstracts; both reviewers compared their lists and resolved
disagreements by consensus. In the second stage, both reviewers
assessed whether the identified articles met the inclusion criteria.

Inclusion and Exclusion Criteria
We included: (i) original cohort studies of mortality following
children with NI in five domains (epilepsy and impairments
in cognitive, hearing, vision, and motor functions); (ii) studies
with a childhood-onset or diagnosis of impairment (between
the ages 0–19 years); (iii) studies reporting all-cause mortality
as the primary outcome; and (iv) studies with an appropriate
comparison group such as matched controls or the general
population. We excluded studies with adulthood-onset of NI
(≥20 years), studies of mental and psychiatric problems, studies
without an appropriate comparison group, those reporting the
same data in different papers, reviews, editorials and studies
reported in other languages that could not easily be translated
into English.

Definition of Neurological Impairments and
Data Extraction
An assessment was done on whether the definitions of NI in each
study were in alignment with the International Classification
of Diseases (ICD), the Diagnostic and Statistical Manual for
Mental Disorders (DSM), or both with the versions dependent
on the year of study. Childhood-onset epilepsy was defined
according to the International League Against Epilepsy (ILAE)
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as the presence of two or more unprovoked seizures occurring
within 12 months identified before the age of 18 years (23).
Individuals with cognitive impairment, hereafter referred to as
intellectual disability (ID), refer to those who had IQ scores <70
or z-scores <−3 based on age-appropriate neuropsychological
tests and age-inappropriate adaptive skills with a childhood-onset
(24). Historically, cognitive impairment has been conceptualized
as structural or functional limitations based on the medical
model (2, 25); however, recent definitions have used the term
ID to depict the misfit between contextual demands and
the person’s capabilities (3, 26). Motor impairments referred
to limitations in muscle control, movement, or mobility,
or complete absence of motor functioning based on valid
criteria such as the Gross Motor Function Classification System
(GMFCS) (27). Hearing impairment was defined as hearing
loss >25–30 dB in the best hearing hear (28) and vision
impairment as a deficit in sight presenting with visual acuity
worse than 6/12 (29). We extracted data on study setting,
population characteristics, cohort sizes, duration of follow-up,
comparative measures of mortality risk such as mortality rate
ratios (MRR), hazard ratios (HR) and standardized mortality
ratios (SMR), and risk factors and causes of death as reported in
the individual studies.

Quality of Studies
Guidelines from the Joanna Briggs Institute’s (JBI) critical
appraisal checklist for cohort studies were used (30) and
the Strengthening the Reporting of Observational Studies
in Epidemiology (STROBE) checklist (31) to appraise the
methodological quality of the included studies. Our emphasis on
quality was focused on: (i) reliability/sensitivity of NI diagnosis
and case ascertainment; (ii) sensitivity/reliability of mortality
case and cause of death ascertainment; (iii) representativeness
of the study population; (iv) risk of bias e.g., selection bias;
(v) follow-up duration; and (vi) use of appropriate analytic
methods. We grouped each report into an aggregate score of
four classes: class 1 studies represent those studies with an
overall score between 75 and 100%; class 2 studies scored
between 50 and 74%; class 3 studies scored between 25 and
49% and class 4 studied scored below 25% representing the
weakest evidence.

Synthesis of Evidence
We estimated the overall risk of premature mortality separately
for each domain of NI because of heterogeneity in the
diagnosis of each, and that each impairment has a unique
underlying process and prognosis. Summary measures such
as the median and range were used for descriptive analysis
of SMR, MRR, and HR reported in the included studies.
Similarly, we summarized the measures of effect on mortality
for each risk factor and cause-specific proportionate mortality
per domain of NI. Overall estimates of mortality from primary
studies could not be combined in a meta-analysis because there
was very high heterogeneity within and between the included
studies (32).

RESULTS

Search Results
The results of the systematic search are in Figure 1. A
total of 24 studies met the inclusion criteria of which 9
(37.5%) were on epilepsy, 10 (41.7%) on ID, 3 (12.5%) on
motor-related impairments or cerebral palsy (CP), 1 (4.2%)
on vision impairment and 1 on multiple domains of NI
(Supplementary Table 1). Fourteen studies (58.3%) reported
findings from population-based cohorts and 10 (41.7%) from
clinical cohorts. Of the 24 studies, 5 (20.8%) were prospective
in design while the rest (79.2%) identified study participants
retrospectively. Europe provided 11 (45.8%) studies, North
America 7 (31.8%) studies, Australia 4 (18.2%) studies, Asia one
(4.5%) study, and Africa one study (Supplementary Table 1).

Quality of Studies
Most studies (63%) were classified as class 1 or excellent quality
(Supplementary Table 1) and the median quality score for all
studies was 91% (range [55–100]). The median quality score was
similar for population-based studies and clinical cohort studies
(91% [55–100] vs. 87% [64–100]; p = 0.76). The median quality
score for retrospective cohort studies was also comparable with
the median score for prospective studies (91% [55–100] vs. 100%
[82–100], p= 0.21).

Epilepsy
Overall Risk of Mortality
The median SMR was 7.1 (range 3.1–22.4) for children with
epilepsy (Table 2), and none of these studies originated from
LMICs. The median SMR for clinical cohort studies (33–35) was
7.5 (range 7.0–22.4) and 6.8 (range 3.1–9.0) for population-based
studies (36, 37, 39, 41). One study (38) reported a MRR of 14.9
(95% CI 13.9–16.1) and the other study (40) a hazard ratio of 3.8
(95% CI 3.1–4.7).

Risk of Mortality by Age and Sex
Four studies reported a significantly higher risk of mortality in
younger children (33, 36, 38, 39), and mortality was highest
among teenagers only in one study (40). Age was not associated
with mortality in two reports (37, 41), and the age-mortality
association was not reported in two studies (Table 2). The risk
of mortality comparing boys and girls with epilepsy was similar
in most studies (Table 2). Only one study (40) reported a
significantly higher risk among boys (HR 1.3, [95% CI 1.1–1.5]).

Risk of Mortality by Epilepsy Factors
Most deaths (68.8%) occurred in the first 10 years after
epilepsy diagnosis, and mortality declined significantly in the
subsequent decades but remained higher compared with the
general populations (36, 38, 39). Mortality was higher in
structural/metabolic epilepsy compared with epilepsy of genetic
or unknown etiology in three studies (34, 35, 41). The risk
of mortality was also very high in epilepsy with comorbid
brain disorders, some of which were possible causes of epilepsy
(Supplementary Table 2).

Generalized seizures were associated with an increased
risk of mortality at the univariable level, but not at the
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FIGURE 1 | PRISMA flowchart summarizing the systematic literature search.

multivariate level (41). Mortality was increased in epilepsy
syndromes such as Lennox-Gastaut syndrome and infantile
spasms in one report (36). Most reports included in this review,
however, did not report the effect of seizure type on mortality
(Supplementary Table 2).

Mortality was also higher in: (i) epilepsy patients using
more than 2 antiepileptic drugs (AEDs) (33, 39); (ii) patients
without a 5 year terminal remission after treatment with

AEDs (41); (iii) patients from rural settings (40); and (iv)
patients with Medicare health insurance plan compared with
private/commercial insurance in one US-based study (40).

Causes of Death in Epilepsy
Most deaths (median percentage 87.5% [range 74.9–90.6])
were caused by non-epilepsy-related causes such as underlying
neurological disorders or respiratory problems (Table 3); but
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TABLE 2 | General study characteristics, overall risk, and mortality by age and sex in children with epilepsy.

Study Country or

State

Population

characteristic

Percent

quality score

(Class)

Cohort

size

Follow-

up

(years)

Measure of

mortality (95%

CI)

Age-specific mortality ratios (95%

CI)

Sex-specific

mortality ratios

(95% CI)

Males Females

Clinical-based cohort studies

Ackers et al. (33) England and

Wales

Incident cases aged

0–18 years

64 (2) 6,190 a13 SMR 22.4

(18.9–26.2)

SMR of 42.4 (95% CI 33.3–53.2) for

2–11 years; 13.8 (10.4–18.0) for

12–18 years; 20.9 (13.2–31.3) for <2

years

SMR 19.4

(15.5–23.9)

27.1

(20.9–34.5)

Berg et al. (34) Connecticut,

USA

Incident cases aged

<16 years

82 (1) 613 b7.9 SMR 7.5

(4.38–12.99)

Not reported 2.0% 2.3% (p =

0.77, SMR

not estimated)

Callenbach et al.

(35)

The

Netherlands

Incident cases 99 (1) 472 a5 SMR 7.0

(2.4–11.5)

Not reported SMR 6.6

(2.2–15.5)

7.4 (2.0–19.0)

Population-based cohort studies

Autry et al. (36) Atlanta, USA Incident cohort 10

years

99 (1) 688 a26 SMR 3.1

(2.39–3.98)

SMR of 0.3 (0.07–0.93) for <1 year;

6.0 (3.0–10.7) for 1–4 years; 10.1

(5.2–17.6) for 5–9 years; 16.7

(9.5–27.1) for 10–14 years; 3.1

(1.5–5.7) for 15–19 years; 3.3

(1.6–5.9) for 20–24 years; and 1.7

(0.0–9.7) for 25–34 years.

SMR 3.0 (2.1–4.0) 3.4 (2.1–5.1)

Camfield et al. (37) Nova Scotia,

Canada

Incident cases <17

years

99 (1) 686 b13·9 SMR 7.1

(3.2–10.9)

Age at onset 1–5 years vs. <1 year

(RRADJ 1.5, 95% CI 0.6–3.9), and

6–16 years (RRADJ 1.7, 95% CI

0.5–6.1).

Multivariable

relative risk (girl vs.

boy) 1.3 (0.6–2.9)

Christensen et al.

(38)

Aarhus,

Denmark

Incident cases 99 (1) 25,244 b13.7 MRR 14.9

(13.9–16.1)

Short-term mortality (<1 year) in

epilepsy with an onset before 5 years

(MRR 41.5, 95% CI 35.4–48.3);

long-term mortality (>1 year) (MRR

21.6, 95% CI 19.5–23.8).

Cumulative

mortality 20 years

after first epilepsy

diagnosis 7.6%

(6.8–8.4)

Cumulative

mortality

5.8%

(5.1–6.5)

Nickels et al. (39) Rochester,

MN, USA

Incident cases <18

years

73 (2) 467 b7.9 SMR 9.0

(5.4–14.4)

11 of 16 (69.8%) deaths occurred

among children aged 1 month−10

years; 4 (25%) deaths occurred in the

10–19 years age group; one (6.3%)

death occurred in the 20 years or

older age group.

Not reported Not reported

Selassie et al. (40) South

Carolina, USA

Incident cases ages

<19 years

91 (1) 13,098 a11 HR 3.8 (3.1–4.7) Mortality in children aged 13–18 years

vs. 0–5 years (HR 1.5, 95% CI

1.2–1.9); 6–12 years (HR 0.9, 95% CI

0.7–1.1).

Males vs. females

HR 1.28

(1.08–1.51)

Sillanpaa and

Shinnar (41)

Turku, Finland Incident and prevalent

cases <16 years

99 (1) 245 b40 SMR 6.4 (5.9–7.0) Age at onset (<2 years vs. ≥ 2 years):

HR 1.7 (0.8–3.5).

Mortality rate 7.3

deaths/1,000

(5.2–10.2)

6.41

deaths/1,000

(4.4–9.4)

arange.
bmean or median.
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TABLE 3 | Proportionate mortality or cause-specific mortality rates/ratios for epilepsy and non-epilepsy related causes.

Study Epilepsy-related Epilepsy-unrelated Epilepsy-unrelated sub-categories Unknown

Ackers et al. (33) 18 (11.9%) 110 (72.8%) Underlying neurological disorders (110) 23 (15.2%)

Berg et al. (34) 2 (15.4%) 10 (76.9%) 1 (7.7%)

Callenbach et al. (35) None 9 (88.9%) Respiratory problems (8) transtentoria and

brain herniation (1)

1 (11.1%)

Camfield et al. (37) 2 (7.7%) 24 (92.3%) Pneumonia (14); infection or sepsis (3),

suicide (2); shunt malfunction (1);

pulmonary embolism (1); congestive heart

failure (1); gastroesophageal reflux and

failure to thrive (1); and homicide (1)

None

Christensen et al.

(38)

None 766 (95.4%) 37 (4.6%)

Nickels et al. (39) 2 (12.5%) 14 (87.5%) None

Sillanpaa and

Shinnar (41)

33 (55%) 26 (43%) Pneumonia (12) 1 (2.0%)

Autry et al. (36) Number/proportion

not reported

Not reported Cause specific SMR for neurological

causes 19.4 (10.0–33.8); Infections and

tumors 7.4 (5.4–9.9); Cardiac deaths 3.4

(0.7–9.9)

Not reported

Selassie et al. (40) 2.8/1,000

person-years of

observation (pyo)

Not reported Developmental conditions: 5.9/1,000 pyo;

cardiovascular disorders excluding

congenital malformations 4.4/1,000 pyo;

injuries from external causes 3.8/1,000

pyo

Not reported

infections, tumors, cardiovascular disorders, and injuries were
also reported in other studies (36, 40). Status epilepticus and
sudden unexplained death in epilepsy (SUDEP) were the most
common causes of epilepsy-related mortality (Table 3).

Intellectual Disability
Overall Risk of Mortality
The median SMR was 2.9 (range 2.0–11.6) for ID; however,
one study reported a HR of 6.1 (95% CI 5.3–7.0) after
25 years of follow-up, and two studies reported crude
mortality ratios of 1.8 and 1.7, respectively (Table 4). There
was no difference in the overall risk of mortality between
studies classifying ID using the International Classification
of Disease Ninth Revision (ICD-9) or earlier versions and
the Diagnostic and Statistical Manual of Mental Disorders
Fourth Revision (DSM-IV) or earlier versions compared with
studies classified using the ICD-10 or DSM-5. Studies of
ID mainly utilized data from population-wide or state-wide
disability service providers linked retrospectively with registries
of mortality. Information about the definition of ID and
sources of mortality data for each report are provided in
Supplementary Table 3.

Mortality by Age and Sex
Mortality was highest in younger age-groups in all studies
(Table 4). The median SMR for the ages 0–19 years was 13.8
(range 6.7–21.6). Most studies reported a monotonic decline
of mortality ratios with increasing age, and mortality was
slightly higher than the respective general populations in older
age groups (60+ years), suggesting a healthy survivor effect
(Table 4). The median SMR was 4.1 (range 2.6–16.6) for females

and 2.5 (range 1.6–9.8) for males. Mortality was similarly
high in males and females in a study excluding ID cases
with significant physical impairment or comorbid/underlying
degenerative conditions (49).

Mortality by Factors Related to Intellectual Disability
The risk of premature mortality was consistently higher in severe
or profound ID compared with mild or moderate ID (Table 5).
Three studies, however, did not report mortality by the severity
of ID (44, 46, 50). Mortality in ID was significantly increased
by genetic disorders (Down syndrome and Fragile X), maternal
alcohol use, low-birth weight and postnatal injury, and the
presence and number of comorbid neurological conditions such
as epilepsy and cerebral palsy (43, 45, 48, 51) (Table 5).

Causes of Death in Intellectual Disability
Respiratory infections (34%), accidents (18%), and epilepsy
(10.7%) were the most common causes of death in ID in one
study from Western Australia (43); while, the leading causes of
death in a Swedish study were congenital malformations (SMR
46.3 [32.9–65.0]), neurological diseases (SMR 9.7 [5.5–17.0]),
mental disorders (SMR 4.0 [1.9–8.4]), and respiratory diseases
(SMR 3.3 [2.0–5.5]) (45). Diseases of the respiratory system
(21.8%), the circulatory system (19.1%) and the nervous system
(13.0%) were the most common causes of death in the Scottish
study (51). Another Scottish study (50) identified diseases of the
nervous system (33%), congenital malformations, deformations
and chromosomal anomalies (22%), and nutritional, metabolic
and endocrinal diseases (8%) as the most frequent causes of
death. Six out of 10 (60%) studies did not report the causes of
death in ID.
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TABLE 4 | General study characteristics, overall risk, and sociodemographic risk factors for mortality in people with intellectual disability.

Author and

Year of

publication

Country or

state

Percent

quality score

(Class)

Cohort size Follow-up*

(years)

Overall

measure of

mortality

(95% CI)

Risk of mortality by age Risk of mortality by sex

Females Males

Arvio et al.

(42)

Finland 64 (2) – 15 SMR 2.9

(2.9–3.0)

SMR 11.6 (95% CI

9.6–13.8) for <15 years;

SMRs decreased with

increasing age; SMR 2.0

(1.95–2.14) for >60 years

SMR 4.1

(4.0–4.3)

2.4 (2.3–2.4)

Bourke et al.

(43)

Western

Australia

91 (1) 10,593 25 Adjusted HR

6.1 (5.3–7.0)

aHR 6.0 (95% CI 4.8–7.6)

for ages 1–5 years, 12.6

(9.0–17.7) for 6–10 years,

and 4.9 (3.9–6.1) for 11–25

years.

aHR 0.8

(0.6–1.0)

(male vs.

female)

Florio and

Trollor (44)

New South

Wales,

Australia

55 (2) 40,705 6 SMR 2.5

(2.3–2.6)

0–19 years mortality rate

ratio (MRR)= 4.6, 20–49

years = 4.7, 50–69

years=2.6, 70–79

years=1.7, and 80+ years

MR=0.8

SMR 4.3

(3.8–4.7)

2.5 (2.3–2.8)

Forsgren

et al. (45)

Vasterbotten,

Sweden

99 (1) 1,478 7 SMR 2.0

(1.7–2.3)

SMR 16 (10-24) for those

0–19 years

SMR 2.6

(2.0–3.3)

1.6 (1.2–2.0)

Lauer and

McCallion (46)

New York,

United States

(USA)

73 (2) – 3 MR 1.8 MRR was 5.9 for 18–24

years and 1.8 for those 75+

years.

Mortality rate

11.2/1,000

10.9/1,000

McCarron

et al. (47)

Ireland 82 (1) 31,943 10 SMR 3.9

(3.7–4.0)

SMR 6.7 (5.9–7.5) for 0–19

years; SMR decreased with

increasing age; SMR 2.7

(2.4–3.0) for 80+ years

SMR 4.9

(4.6–5.2)

3.1 (2.9–3.3)

Tyrer et al.

(48)

Leister shire

and Rutland,

United Kingdom

91 (1) 2436 10 SMR 3.2

(2.9–3.6)

SMR 11.5 (8.1–15.8) in the

20s; diminished in older

ages; SMR 1.5 (1.2–1.8) for

70+ years

SMR 3.6

(3.1–4.2)

2.9 (2.5–3.3)

Shavelle et al.

(49)

California,

USA

91 (1) 64,207 30 MR 1.7 5–19 years (MRR = 1.4);

20–39 years = 2.0; 40–59

years = 1.8; 60+ years =

1.3

Mortality ratio

= 1 (females

and males)

Smith et al.

(50)

Scotland 73 (2) 18,278 5 SMR 11.6

(9.6–14.0)

5–14 years SMR = 21.6

(16.6–28.2); ≥ 15 years but

<25 years SMR =

7.7(5.9–10.2)

SMR of 16.6

(12.2–22.6)

9.8 (7.7–12.5)

Cooper et al.

(51)

Glasgow,

Scotland

91 (1) 961 17 SMR 2.2

(2.0–2.5)

SMR of 18.7 (0.4–37.1) for

15–25 years; 2 (1.3–7.1) for

26–35 years; 3.9 (2.3–5.4)

for 36–45 years; 3.8

(2.9–4.7) for 46–55 years;

and 1.9 (1.6–2.1) for >55

years

SMR 3.5

(2.9–4.1)

1.7 (1.4–2.0)

*range.

Cerebral Palsy
Overall Risk of Mortality
We identified 3 studies of CP (52–54) which assessed the effect
of motor impairment on the risk of mortality in children. The
risk of mortality in CP was highest between the ages of 2–15
years compared to the general population rates (SMRs>25) and
declined steadily to 2–3 times higher than the population rates
by the age of 40 years (52, 54). The study from Bangladesh did
not estimate the SMR but crude mortality rates (19.5 per 1,000

person-years) and mortality was highest in the youngest age
group (<5 years).

Motor Impairment and Mortality in Cerebral Palsy
Lack of independent ambulation was the strongest predictor
of mortality (adjusted HR 6.1, [3.3–11.8]) in the Australian
study (54). However, motor impairment was a weaker
predictor of premature mortality (MRR 1.4 [1.1–1.7]) than
ID (MRR 2.1, [1.9–2.4]) in the Western Australian study
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TABLE 5 | Mortality by severity and aetiology of intellectual disability.

Author and

Year of

publication

Overall estimate of

mortality (95% CI)

Risk of mortality by level of disability (95% CI) Mortality by cause of ID

or comorbid neurological

disorders (95% CI)
Mild Mild or

moderate

Moderate Severe Severe or

profound

Profound

Arvio et al.

(42)

SMR 2.9 (2.9–3.0) 2.3 (2.2–2.4) – – 3.4 (3.3–3.5) – – –

Bourke et al.

(43)

Adjusted HR 6.1

(5.3–7.0)

– 3.2 (2.6–3.9) – 40.6

(33.4–49.2)

– – Biomedical causes 24.4

(20.7–28.7); unknown

causes 1.8 (1.3–2.3);

Autism 2.0 (0.8–4.7)

Florio and

Trollor (44)

SMR 2.5 (2.3–2.6) – – – – – – –

Forsgren

et al. (45)

SMR 2.0 (1.7–2.3) 1.8 (1.1–2.7) 1.5 (1.1–2.0) 2.0 (1.5–2.6) 8.1

(5.6–11.7)

Mental Retardation 1.7

(1.4–2.0); MR + Epilepsy

5.0 (3.3–7.5); MR +

Epilepsy + CP 5.8 (3.4–9.8)

Lauer and

McCallion (46)

MR 1.8 – – – – – – –

McCarron

et al. (47)

SMR 3.9 (3.7–4.0) 5.0% – 7.8% 14.6% 24.8% –

Tyrer et al.

(48)

*SMR 3.2 (2.9–3.6) – – – – – – Comorbidity with Downs

Syndrome 7.60

Shavelle et al.

(49)

Mortality ratio was

167%

165% – – 185% – –

Cooper et al.

(51)

SMR 2.2 (2.0–2.5) 1.6 (1.3–1) – 2.1 (1.6–2.6) 2.8 (2.1–3.4) – 4.1 (3.1–5.2) ID with Downs Syndrome

5.3 (4.0–6.6); ID without

Downs Syndrome 1.9

(1.7–2.2)

Smith et al.

(50)

SMR 11.6 (9.6–14.0) – – – – – – –

*The study by Tyrer et al. (48) excluded participants with mild ID; those with moderate to profound ID included as one group in the analysis.

(52). The latter study further reported that the overall
disability score was a better predictor of mortality than
motor impairment and ID, separately. While mortality was
elevated among those with hearing impairment (adjusted
HR 2.9 [1.2–6.7]) and swallowing difficulties (adjusted
HR 2.3 [1.0–4.9]) in the study from Bangladesh (53), the
risk of severe motor impairment (GMFCS levels III-V) on
mortality did not reach statistical significance (adjusted HR
2.4 [0.7–8.4]).

Causes of Death in Cerebral Palsy
CP as an underlying cause of death was accountable for 79% of
deaths in the Western Australian study with 59% of the fatalities
directly resulting from respiratory problems (52). Similarly,
respiratory causes were the most common direct causes of death
in the Australian study (54). Meningitis (31.0%) and pneumonia
(27.6%) were the leading causes of death in the study from
Bangladesh (53) and most children who died were either severely
malnourished or had feeding problems.

Vision Impairment and Mortality
The study from Malmöhus, Sweden (55) reported an odds
ratio for mortality of 60.11 (95% CI 35.2–97.9) in visually

impaired children and adolescents compared with an age- and
sex-matched sample from the population. Most of the visually
impaired children had additional impairments such as CP and
ID, and respiratory diseases were the most common cause of
death in this study.

Mortality in Multiple Domains of Childhood
Neurological Impairment
The study from Kenya (14) investigated the long-term risk of
premature mortality in children aged 6–9 years with NI in 5
domains (epilepsy and impairments in cognitive, hearing, vision
and motor functions) compared with an age-matched sample
from the general population. The overall risk of mortality was
>3 times higher among those with any impairment compared to
the general population (SMR 3.2 [1.7–5.5]). Developmental delay
(adjusted HR 18.9, [2.2–160.4]) and severe malnutrition (20.9,
[3.14–139.11]) increased the risk ofmortality, and infections such
as HIV and accidents were the most common causes of death.

DISCUSSION

The studies in this systematic review reported that the measures
of mortality were significantly greater in children with NI
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compared with the general population. The estimates were
greatest for CP (SMR > 25) and lowest for ID (SMR =

2.9), with few studies reporting mortality outcomes for visual
impairment, and no data for hearing impairment. Clinical
cohort studies had higher estimates than population-based
cohort studies, probability of severity bias in the former.
These estimates should be interpreted carefully since the
methodology and follow-up periods differed across the studies,
complicating the combining of estimates across studies. The
risk of mortality following NI depends on younger age, the
severity of the primary impairment and the number and severity
of comorbid disorders. Most causes of the mortality including
infections, cardiovascular diseases, and tumors were unrelated
to NI.

Interpretation for Epilepsy
Mortality was significantly higher in children with epilepsy
compared with the reference population similar to a previous
review of mortality in pediatric epilepsy (56), and so were
the factors underlying mortality in NI (16, 19, 57). Early-
onset epilepsy occurs in a period of vulnerability to adversities
such as infections and severe epileptic encephalopathy, which
can increase the risk of mortality (58). Structural epilepsy
complicated by head injuries and infections of the brain
has poor outcomes e.g., mortality, particularly in LMICs
(16). Mortality risks are highest in intractable epilepsy with
reduced responsiveness to AEDs (19). Mortality was generally
similar in both males and females, although few studies
reported high rates in males, probably related to their
vulnerability to accidents from injuries and violence (40).
Mortality risk reduces in subsequent decades (59); implying
that those surviving may have responded better to AEDs
or had the fewest risk factors for mortality. There are
other context-specific factors for increased mortality such as
residence and type of insurance which are related to social,
economic and cultural disadvantages that influence access to
AED treatment.

Lastly, our findings concur with previous studies that most
deaths are caused by underlying comorbid brain disorders and
respiratory infections and not by seizures or epilepsy (57, 60).
Comorbidity conditions occur more frequently in those with
severe epilepsy, who are more likely to die (61). Reducing
mortality requires the management of both epilepsy and other
comorbid conditions. Risk is elevated in generalized tonic
seizures, which are often reported by many who die from
SUDEP (62, 63), a condition that is not accurately documented
in LMICs because coroner’s autopsy reports are unavailable.
Like SUDEP, status epilepticus was an infrequently identified
cause of mortality compared to non-epilepsy causes, yet it
occurs in 25–30% of people with epilepsy (64) and is known to
increase mortality in children (16, 65). In many LMICs, status
epilepticus is a complication of endemic infections that should be
additionally prevented or managed (66) and may be due to poor
access to AEDs, inappropriate treatment and delayed initiation of
treatment (67). Most reported causes of death were non-epilepsy
related e.g., cardiovascular problems, and respiratory problems,
and so a comprehensive care and public health plan for children

with epilepsy that includes other medical conditions is advised,
especially in settings where these are endemic.

Interpretation for Intellectual Disability
This review corroborates findings from a previous review (18)
that the overall risk of mortality in people with childhood-
onset ID is higher than the general population. Mortality risk
was, however, lower than that for epilepsy, which might imply
better care for ID patients in HICs, use of cohorts of milder
ID, or misreported due to stigma. Underreporting of deaths
due to stigma related to ID intellectual disability not only
underestimates the prevalence in general but also reduces the
SMRs or relative risk for deaths related to ID if these deaths are
classified under the general population. There was no single study
of ID from LMICs, where prevalence and associated mortality
may be higher (68). A median SMR of 2.9 for ID is probably
an underestimate because a majority of the studies utilized a
retrospective design which may be subject to three types of bias:
(i) over-representation of severe ID in clinic samples; (ii) loss
to follow-up bias and; (iii) bias due to incomplete data linkage
for follow up which might under-uncertain the risk of mortality
artificially lowering the SMRs (69). The risk ofmortality is highest
in the youngest age-groups, decreasing steadily with age, which is
well-appreciated in the literature (70–72). The SMRs are higher in
females than males, probably consistent with inequality in access
to care (18). The risk ofmortality is higher in severe-profound ID,
which expectedly would be associated with significant functional
limitation and disability.

Genetic causes of ID were important risk factors for mortality,
and Fragile X syndrome was not exceptional in this review,
with a remarkable reduction in life expectancy compared with
general populations. It is known that neuropsychiatric problems
like epilepsy are very common in ID (73–75) and can increase
mortality. Pregnancy and perinatal factors were important risk
factors suggesting they will not only cause ID but will worsen
its prognosis including premature mortality. Noteworthy was
maternal drug abuse and mortality in ID which can be explained
by poor parenting of the affected children (76). Children with ID
are susceptible to accidents that can be fatal and safety measures
and close supervision are encouraged. Respiratory infections
are important causes of morbidity and mortality which should
be prevented and managed to improve outcomes in children
with ID.

Interpretation for Motor Impairment in
Cerebral Palsy
Cerebral palsy (CP) had the greatest risk of mortality, which is
well-recognized in other studies (77–79). Motor impairments
and ID were the strongest predictors of premature mortality in
CP in the studies included in this review; both comorbidities
are debilitating complications of CP. Two previous studies
(80, 81), concur that additional neurological comorbidity
worsens the disability score significantly reducing the chances
of survival among children with CP. Disability scores, therefore,
offer a better prediction of survival compared with motor
impairment and/or ID, separately. Rehabilitative therapies to
manage physical impairment while optimizing the mobility
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of children with CP may improve the quality of life and
reduce the risk of mortality (82, 83). Respiratory infections
are the most common direct causes of death perhaps
because CP impairs breathing and respiratory hygiene.
Studies from LMICs settings highlight the significance
of preventing other infections such as HIV, pneumonia,
and meningitis as well as severe malnutrition to improve
CP outcomes.

Interpretation for Vision and Hearing
Impairment
Mortality is higher among visually impaired children having
comorbid and severe neurological disorders, but the study
did not provide SMRs, affecting comparisons with the general
population. Only cause-specific estimates of mortality would
separate the effects of loss of sight on mortality from the
comorbid disorders, but these data were not available for this
review. The risk of mortality for visual impairment alone
was not significantly higher in the Kenyan study, where
children with five domains of NI were followed for over
14 years to determine mortality, which was due to small
numbers. There was no single study on hearing impairments
and associated all-cause mortality, which could be due to
publication bias (4) or because this impairment is often
overlooked to follow up of mortality outcomes. In this
review, children with CP had hearing impairments which
increased the risk of premature mortality (53), suggesting
the need to give attention to morbidity and disability of
deaf children.

Limitations
The distribution of the studies identified by our searches was
sparse, with most from HICs such as Europe and North
America with fewest in Asia and Africa and none from South
America. This may affect the generalizability of these estimates
across continents or other countries, where specific studies
are needed. The follow-up periods were variable, whereby
studies with shorter follow-ups may underestimate the true
burden of premature mortality. Follow-up times were reported
differently in the primary studies, for instance, most studies
neither reported the mean nor the median follow-up duration
in years. This differential reporting of the follow-up duration
hindered the estimation of weighted median SMRs. There is
often incomplete documentation and certification of deaths
due to a lack of functional vital registration systems, which
affects case ascertainments yielding lower estimates of mortality.
Because the grading process involved qualitative judgment by
the reviewers, the interpretation of study methods and the
application of criteria might be inconsistent and unreliable.
The study populations from which we obtained the data
vary greatly in terms of population characteristics, health,
and social systems. Clinical-based estimates may overrepresent
severe forms of NI that have additional risk for mortality;
most LMICs have limited resources to do follow-up studies
of mortality, often doing these studies in high-risk zones that
are not representative of other low-risk areas. Despite these
limitations, our review obtained critical evidence that might

increase the survival of children with childhood-onset NI
and disability.

SUMMARY

The risk of premature mortality is elevated in children with
NI, or adults with childhood-onset NI, it being higher in CP
and epilepsy, and lower in ID. There are few SMR studies
for visual, hearing, and motor impairments. We recommend
future population-based follow-up studies for multiple domains
of NI in children, especially for those with visual, hearing,
and motor impairments, and in LMICs where there is a
dearth of evidence. Few studies in this review originated
from LMICs, yet these countries have a concentration of
risk factors and the highest burden of childhood NI and
disability. The similarity of risk factors and causes of death
across the five domains of NI provides an opportunity for
integration of preventive, curative and rehabilitative services.
Integrated interventions targeting modifiable risk factors, for
instance, improving access to AEDs and prompt treatment
of childhood epilepsy as well as caregiver/parental training,
child supervision, and prevention of respiratory infections
for children with ID, immunization, and improved nutrition
in LMICs, are required to improve survival and quality
of life among the affected children and families. It worth
advising the families that premature death among children
cannot be preventable in the presence of genetic causes
for NI conditions that are untreatable and progressive such
as mucopolysaccharidosis.
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Background and Objectives: Young adults represent an increasingly large proportion

of healthy volunteers in brain imaging research, but descriptions of incidental findings

(IFs) in this age group are scarce. We aimed to assess the prevalence and severity of IFs

on brain MRIs of healthy young research participants aged 18–35 years, and to describe

the protocol implemented to handle them.

Methods: The study population comprised 1,867 participants aged 22.1 ± 2.3 years

(72% women) from MRi-Share, the cross-sectional brain MRI substudy of the i-Share

student cohort. IFs were flagged during the MRI quality control. We estimated the

proportion of participants with IFs [any, requiring medical referral, potentially serious

(PSIFs) as defined in the UK biobank]: overall, by type and severity of the final diagnosis,

as well as the number of IFs.

Results: 78/1,867 participants had at least one IF [4.2%, 95% Confidence Interval (CI)

3.4–5.2%]. IFs requiring medical referral (n = 38) were observed in 36/1,867 participants

(1.9%, 1.4–2.7%), and represented 47.5% of the 80 IFs initially flagged. Referred IFs

were retrospectively classified as PSIFs in 25/1,867 participants (1.3%, 0.9–2.0%),

accounting for 68.4% of anomalies referred (26/38). The most common final diagnosis
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was cysts or ventricular abnormalities in all participants (9/1,867; 0.5%, 0.2–0.9%) and

in those with referred IFs (9/36; 25.0%, 13.6–41.3%), while it was multiple sclerosis or

radiologically isolated syndrome in participants with PSIFs (5/19; 26.3%, 11.5–49.1%)

who represented 0.1% (0.0–0.4%) and 0.2% (0.03–0.5%) of all participants, respectively.

Final diagnoses were considered serious in 11/1,867 participants (0.6%, 0.3–1.1%).

Among participants with referred IFs, 13.9% (5/36) required active intervention, while

50.0% (18/36) were put on clinical surveillance.

Conclusions: In a large brain imaging study of young healthy adults participating in

research we observed a non-negligible frequency of IFs. The etiological pattern differed

from what has been described in older adults.

Keywords: incidental findings, brainMRI, prevalence, young adults, epidemiology,multiple sclerosis, radiologically

isolated syndrome

INTRODUCTION

The widespread use of advanced brain MRI techniques in clinical
research entails increasingly frequent detection of incidental
findings (IFs). An IF is “a finding concerning an individual
research participant that has potential health or reproductive
importance and is discovered in the course of conducting
research, but is beyond the aims of the study” (1). While most
IFs are not clinically meaningful, some can reflect underlying
diseases amenable to treatment or can, in rare instances, be life-
threatening (e.g., aneurysms, neoplasms). In such cases, early
detection and treatment could be of clinical benefit for the
participant. Conversely, detecting and disclosing IFs can entail
increased clinical workload and costs, cause psychological or
financial distress to participants, and expose them to potentially
harmful interventions (1–4). However, specific guidelines on the
identification and management of brain IFs in a research setting
are currently lacking (5–7).

Young adults (18–35 years) participating in biomedical
research represent a particularly challenging group regarding IF
discovery. First, although individuals in this age group represent
a large proportion of “healthy volunteers” in brain imaging
research, descriptions of IFs in this age range are scarce. The very
few available studies were based on small or selected samples with
a broad definition of IFs, low image resolution, and no assessment
of their clinical severity (8, 9). Second, characteristics and severity
of IFs could differ by age (10, 11), with young asymptomatic
adults experiencing greater consequences with longer term effects
than older ones. In this context, a systematic description of the
prevalence and clinical relevance of IFs in young adults could
provide valuable information to notify research participants in
this age range of the likelihood and consequences of IFs.

We sought to assess the prevalence of IFs and their severity
in 1,867 young adults aged 18–35 years, participating in the
MRi-Share brain imaging substudy of the i-Share student cohort,
and to describe the standardized protocol implemented to
manage them.

Abbreviations: IFs, Incidental Findings; PSIFs, Potentially Serious Incidental

Findings; UKB, UK biobank.

MATERIALS AND METHODS

Study Design and Population
The i-Share (internet-based Students’ Health Research
Enterprise) project1 is an ongoing population-based cohort
study of French-speaking students that was launched in 2013
(i) to assess the frequency and impact of various diseases
or conditions affecting young adults, and (ii) to explore the
pathophysiology and early mechanisms underlying common
chronic disorders, including diseases occurring at a later age.
To be eligible, students had to be officially registered at a
University or another higher education institution (HEI), be
at least 18 years of age, and be able to read and understand
French (12). Students were informed about the objectives of the
study through promotion campaigns (flyers, information booths
on admission days, lectures, social media, and newsletters).
Overall, the study was conducted in >420 universities or HEIs
(96% in France), the largest recruitment coming from the
universities of Bordeaux, Versailles-Saint-Quentin-en-Yvelines,
and Nice-Sophia-Antipolis.

The MRi-Share ancillary study is a brain imaging study
embedded within the i-Share cohort, which entails a brain MRI
and a battery of cognitive tests (13). The objectives of MRi-Share
are (i) to characterize morphological and functional variability of
the brain in young adults by building a database of morphological
and functional MRI images, (ii) to describe the anatomical and
functional brain architecture in this population, and (iii) to
characterize brain connectivity and its relation with cognitive
skills. To participate in MRi-Share, i-Share participants had to be
aged between 18 and 35 years, to be registered in a University or
HEI in the Bordeaux area, to have completed the i-Share baseline
self-administered online questionnaire, and signed an informed
consent. Participants with a contraindication to brain MRI (e.g.,
claustrophobia, pacemaker, and other implanted electronic or
metal devices), pregnancy or nursing were not eligible. Between
October 2015 and June 2017, i-Share participants were invited to
take part in MRi-Share. Those interested were then invited for

1i-Share est la plus grande étude scientifique jamais réalisée sur la santé des

jeunes [Internet]. Université de Bordeaux. Available online at: https://www.i-share.

fr (accessed November 24, 2020).
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a visit during which they received detailed information on this
ancillary study and were given a virtual tour of the MRI facility.
Contraindications for the brain MRI were verified and a referent
physician answered any questions they had before signing a
written informed consent. MRi-Share participants received a
compensation of 40 euros.

MRI Protocol
The MRI acquisition protocol for MRi-Share (13) was designed
to emulate that of the UK biobank (UKB) MR imaging study
(14) as much as possible, to enable combined analyses of the
two databases, since early adulthood is currently not covered
by the UKB design. MRIs were performed on a Siemens 3T
Prisma scanner (Erlangen, Germany) with a 64-channel head
coil (gradients: 80 mT/m−200 T/m/s), between November 2015
and November 2017 at the Bordeaux Institute of BIOimaging.
The acquisition lasted about 45min and included the following
five sequences: T1-weighted (T1w) structural imaging (3D
MPRAGE, sagittal acquisition, TR/TE/TI = 2,000/2.0/880ms,
repeat × 2, 1 mm3 isotropic, 192 × 256 × 256); T2-
weighted (T2w) FLAIR structural imaging (3D SPACE, sagittal
acquisition, TR/TE/TI = 5,000/394/1800ms, repeat ×2, 1 mm3

isotropic, 192× 256× 256); Diffusion Weighted Imaging [DWI,
axial acquisition, echoplanar imaging, TR/TE = 3,540/75.0ms,
multiband ×3, 100 directions, multishell b = 0 s/mm2 (8 +

8 phase-encoding reversed), b = 300 s/mm2 (8 directions),
b = 1,000 s/mm2 (32 directions), b = 2,000 s/mm2 (60
directions), 1.75 mm3 isotropic, 118× 118× 84]; Susceptibility-
Weighted Structural Imaging (SWI, axial acquisition, TR/TE1
= 24.0/9.42ms, 0.8 × 0.8 × 3 mm3 anisotropic, 252 ×

288 × 48); and Resting-state functional MRI (2D T2∗-BOLD
resting state, axial acquisition, echoplanar imaging, TR/TE
= 850/35.0ms, multiband × 6, 2.4 mm3 isotropic, 88 ×

88 × 66). A detailed summary of acquisition parameters
for each modality is presented in Supplementary Table 1.
Following the MRI scan, each participant had to complete
a questionnaire about their thoughts while undergoing the
functional MRI and to perform two cognitive tests during
20 min.

Protocol for Assessment and Management
of Incidental Findings
Definitions and Assessment of IFs
This study is focused on IFs identified on structural brain MRI
exclusively. Within days following the MRI acquisition, T1w
and T2w FLAIR images were systematically checked visually
for quality by one of two MD investigators trained in brain
imaging with >30 years’ experience [EM, BM (also professor
of neuroradiology at Bordeaux University Hospital)]. If an IF
(defined as proposed previously) (1) was detected during this
quality control and considered to be potentially harmful for
the participant’s health, it was shown to a specialized clinical
neuroradiologist at Bordeaux University Hospital (TT, professor
of neuroradiology with >12 years’ experience) who checked the
clinical relevance of this IF to decide whether it required medical
referral. DWI and/or SWI images were used to better characterize
IFs detected on T1w and T2w FLAIR. However, raw DWI and/or

SWI images did not undergo visual quality control because those
modalities are prone to artifacts induced by eddy currents and/or
susceptibility effects; efficient quality control of these acquisitions
must be performed after some pre-processing as described
previously (13). Of note, the following IFs were not reported:
(i) T2-hyperintensities that were isolated or in small numbers
(<5), and without any features suggestive of an underlying
inflammatory condition such as ovoid shape and periventricular,
juxtacortical, or posterior fossa location; (ii) small pineal cysts.
For the latter, in the absence of recommendations the threshold
was initially set at 10mm (until May 2016), and subsequently
at 15mm, as the 10mm threshold generated too many cases
and a size >15mm was described to be potentially associated
with neurologic symptoms attributable to mass effect on adjacent
structures or hydrocephalus through the compression of the
cerebral aqueduct (15). All IFs flagged as requiring referral
were reported to a referent neurologist at Bordeaux University
Hospital (SD), and categorized as requiring immediate (e.g.,
acute stroke, encephalitis), urgent (within 1 week, e.g., malignant
brain tumor), or routine medical referral. Prior to consenting to
participate, MRi-Share participants were informed beforehand
that the study might, in rare instances, entail the discovery of
an IF, for which they might be contacted if considered to be
potentially harmful for their health, with detailed information
provided in the setting of amedical visit by a certified neurologist.
i-Share participants volunteering for MRi-Share who refused
to receive feedback about a potential IF were not eligible for
MRi-Share. Participants were also informed that the MRI exam
was not a diagnostic test and that some anomalies might not
be detected.

Disclosure and Handling of Referred IFs
The referent neurologist called the participant <48 h before the
next available neurological outpatient clinic slot, in order to
minimize the period of anxiety and stress. No diagnosis was
given by phone; participants were informed of the presence
of an imaging finding on their MRI scan requiring additional
investigation and an appointment in the outpatient clinic was
organized. In the outpatient clinic, the neurologist explained the
observed abnormality to the participant, collected information
about medical history and ongoing treatments, conducted
a physical examination, and informed the participant about
the proposed follow-up procedures, i.e., additional imaging,
blood tests and/or referral to another physician (if needed
for diagnosis or management purposes, as described in the
letter of information received prior to providing consent).
Psychological support was also proposed at the Student Health
Service center when needed. Following this interview with the
referent neurologist, the participant was systematically invited
to undergo a complementary “clinical” brain imaging (MRI
or CT-scan, with or without contrast enhancement depending
on the nature of the IF), which was interpreted by a clinical
neuroradiologist in the context of clinical care. Once the final
diagnosis was confirmed, the appropriate care was determined
by a specialist on the basis of the type, location, severity, size,
and progression of the IF, as well as clinical symptoms and
medical history.
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Potentially Serious Incidental Findings (PSIFs) and

Severity of Final Diagnosis
In order to facilitate the comparison with published studies,
we retrospectively classified IFs requiring medical referral as
potentially serious incidental findings (PSIFs) using a protocol
developed by the UKB that was not available at the time of our
study (11, 16, 17). First, IFs were defined as PSIFs if listed as
such by the UKB or if meeting their definition of PSIF, i.e., an
IF “indicating the possibility of a condition which, if confirmed,
would carry a real prospect of seriously threatening lifespan, or of
having a substantial effect on major body functions or quality of
life” (17). Finally, for participants with PSIFs who were followed-
up, final diagnoses were considered as “either: serious (if they
were likely to threaten lifespan, or have a substantial impact on
quality of life or major body function); not serious (if this was not
the case or if the diagnosis was already known); or indeterminate
(if there remained insufficient data to classify a final diagnosis as
serious or not)” (11). In participants with more than one PSIF,
the most serious final clinical diagnosis was accounted for.

Other Measurements
Information about sociodemographic and academic
characteristics, health status, personal and family medical
history, and lifestyle habits were collected through the i-Share
baseline self-administered online questionnaire. The following
variables were considered in the analyses to describe the study
sample: age at i-Share inclusion, age at MRI, sex, field of study
(healthcare/health related disciplines vs. others), self-rated health
(defined on a qualitative scale as very good or good vs. fair, bad
or very bad), having visited a physician in the past 12 months,
regular consumption of medications, history of hospitalization
in the past 12 months, familial economic situation during
childhood (rated as very comfortable or comfortable vs. fair,
difficult or very difficult), current sources of income (familial,
scholarship on social grounds, and income-generating activities
during the University year), self-reported physician-diagnosed
migraine, self-reported physician-diagnosed type 1 diabetes,
self-reported physician-diagnosed multiple sclerosis (MS),
family history of stroke or cardiovascular disease (myocardial
infarction, angina pectoris), family history of cancer, being a
current smoker, heavy drinking habits in the past 12 months
[defined as frequent episodes of binge drinking (≥6 drinks
in about 2 h on the same occasion) 2–6 times per week or
every day], use of psychoactive drugs in the past 12 months
(cannabis, ecstasy/3,4 methylenedioxymethamphetamine,
amphetamines, nitrous oxide, inhalant, or cocaine), and use of
other illicit drugs at least once in a lifetime (magic mushrooms
or other hallucinogenic plants, crack/free-base, heroin, LSD,
or ketamine).

Statistical Analyses
To assess whether MRi-Share participants were representative
of i-Share participants at large, we compared characteristics
of i-Share participants recruited at universities or other HEIs
in the Bordeaux area with respect to their participation in
MRi-Share. We first conducted univariate analyses (analysis
of covariance for continuous variables, chi-square or Fisher

exact test for categorical variables). Second, we performed
multivariable logistic regression including all variables associated
with MRi-Share participation in univariate analyses with a
p ≤ 0.05 in the model. Third, we compared MRi-Share
participants’ characteristics according to the presence or absence
of IFs. Finally, we extracted data from radiological and medical
reports to give descriptive statistics: number and proportion
of participants with IFs (any, referred, PSIFs) with their
corresponding 95% Confidence Intervals (CI) when appropriate:
overall, by type of diagnosis and severity; number of IFs.
We also presented the management of IFs. All analyses were
performed using SAS software version 9.4 (SAS Institute Inc.,
Cary, NC, USA), and a two-tailed p ≤ 0.05 was considered
statistically significant.

RESULTS

Of the 14,836 students included in i-Share with a completed
baseline questionnaire at the end of the inclusion period for the
MRi-Share ancillary study, 8,798 were recruited in universities
or other HEIs in Bordeaux or surroundings. Of these, 2,000

FIGURE 1 | MRi-Share flow diagram. *Age criteria not met, n = 4; baseline

questionnaire not completed, n = 1; presence of contra-indications to MRI,

n = 16 (metal fragments or devices, n = 3; claustrophobia, n = 4; others,

n = 9); others, n = 15. †Drop-out, n = 54; study termination, n = 41.
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students responded to the MRi-Share invitation with 1,964
meeting inclusion criteria. After excluding 95 participants for
whom the MRI could not be performed (drop out or termination
of study participation) and two participants who rescinded their
consent, our final MRi-Share study sample comprised 1,867
participants (Figure 1). Baseline characteristics of the 1,867
students included in MRi-Share are presented in Table 1. Our
study population comprised 72% of women with amean age (SD)
at i-Share inclusion and at MRI of 21.2 (2.3) years and 22.1 (2.3)
years, respectively. Among i-Share participants, participation in
the MRi-Share study was associated with older age, healthcare
or health related studies, having had a comfortable or very
comfortable familial economic situation in childhood, having

an income originating from the family or having a scholarship
on social grounds, and use of psychoactive drugs. Migraine and
current smoking were less common in MRi-Share participants
than in i-Share participants who did not take part in the
brain imaging study (multivariable logistic regression analysis,
Table 1).

IFs were detected in 78 of the 1,867 participants (4.2%, 95%
CI: 3.4–5.2%). IFs requiring medical referral (n = 38) were
found in 36 of those 1,867 participants (1.9%, 1.4–2.7%), two
participants having two IFs. Referral was deemed urgent for one
participant (0.05%, 0.0–0.3% of the study sample), and routine
for the others. Twenty six (68.4%) of the 38 IFs referred were
retrospectively characterized as PSIFs [in 25/1,867 individuals

TABLE 1 | Comparison of MRi-Share participants with other participants of i-Share Bordeaux.

MRi-Share participants

with MRI*

Other Bordeaux

i-Share participants

P† OR (95% CI)‡ P‡

(N = 1,867) (N = 6,798)

Age at MRI, years, mean (SD) 22.1 (2.3)

Age at i-Share recruitment, years, mean (SD) 21.2 (2.3) 20.7 (2.8) <0.001 1.07 (1.05–1.09) <0.001

Male Gender 27.8 (519) 24.2 (1,648) 0.002 1.10 (0.97–1.24) 0.14

Field of study

Other 46.2 (861) 71.3 (4,845) <0.001 1.00 <0.001

Healthcare 53.8 (1,002) 28.7 (1,953) 2.68 (2.41–3.00)

Self-rated health

Fair, bad or very bad 17.5 (327) 20.2 (1,371) 0.01 1.00 0.47

Very good or good 82.5 (1,539) 79.8 (5,427) 1.05 (0.92–1.21)

PCP visits 12 months before i-Share inclusion 87.1 (1,626) 86.1 (5,850) 0.23

Regular medication 23.9 (446) 23.1 (1,567) 0.44

Hospitalization 12 months before i-Share inclusion 16.7 (312) 17.5 (1,193) 0.40

Familial economic situation during childhood

Fair, difficult or very difficult 42.0 (783) 49.6 (3,371) <0.001 1.00 0.002

Very comfortable or comfortable 58.0 (1,083) 50.4 (3,427) 1.21 (1.07–1.36)

Source of income

Family 81.8 (1,528) 79.6 (5,412) 0.03 1.20 (1.03–1.39) 0.02

Scholarship on social grounds 37.9 (707) 42.6 (2,899) 0.001 1.16 (1.02–1.31) 0.02

Activities during University year 41.0 (766) 37.0 (2,517) 0.002 1.11 (0.99–1.24) 0.08

Self-reported physician-diagnosed migraine 18.3 (342) 22.9 (1,560) <0.001 0.85 (0.75–0.98) 0.02

Self-reported physician-diagnosed type 1 diabetes 0.4 (8) 0.4 (24) 0.63

Self-reported physician-diagnosed MS 0.1 (1) 0.1 (7) 0.99

Family history of CVD or stroke 14.5 (248) 13.8 (843) 0.45

Family history of cancer 11.5 (203) 11.4 (726) 0.87

Current smoker 29.1 (543) 32.1 (2,181) 0.01 0.81 (0.72–0.93) 0.002

Heavy drinking 12 months before i-Share inclusion 5.1 (92) 4.1 (268) 0.07

Use of psychoactive drugs 12 months before i-Share inclusion§ 47.4 (873) 39.4 (2,623) <0.001 1.44 (1.27–1.62) <0.001

Use of other illicit drugs at least once in a lifetime¶ 3.9 (73) 4.3 (289) 0.49

Data were collected through the baseline i-share questionnaire before the MRI was done. Values are percentages (number) unless stated otherwise. PCP, Primary care physician; MS,

Multiple Sclerosis; CVD, cardiovascular disease.

Heavy drinking in the past 12 months is defined as frequent episodes of binge drinking (≥six drinks in about 2 h on the same occasion) 2–6 times per week or every day.

*Bordeaux i-Share participants included in MRi-Share ancillary study (fulfilling inclusion criteria, with a signed consent), and a valid MRI.
†
Analysis of covariance for continuous variables; chi-square or Fisher exact test for categorical variables.

‡
Odds ratios (OR) and p-values obtained from Multivariable logistic regression models including all variables significantly associated with the participation in MRi-Share in univariate

analyses (with a p ≤ 0.05 in analyses).
§Cannabis, ecstasy/3, 4-Methylenedioxymethamphetamine, amphetamines, nitrous oxide, inhalant, or cocaine.
¶Magic mushrooms or other hallucinogenic plants, crack/free-base, heroin, LSD, or ketamine.
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(1.3%, 0.9–2.0%)]. Indeed, some lesions that in our opinion
required medical referral were not considered as such in the
UKB; moreover, for some lesions that were most likely not
serious, we preferred to formally rule out differential diagnoses or
rare complications by conducting follow-up investigations (e.g.,
brain MRI with contrast enhancement, electroencephalography).
Participants with IFs (any, requiring medical referral, or PSIFs)
did not significantly differ from those without in terms of baseline
characteristics (Table 2).

The procedure for detection and management of IFs
is outlined in Figure 2. Of the 36 participants with IFs

requiring medical referral, 35 (97.2%) were seen by the referent
neurologist, and 33 (91.7%) underwent the recommended
clinical brain imaging (MRI or CT). One participant remained
unreachable after failing to attend the scheduled appointment
with the referent neurologist and another participant refused the
recommended clinical brain imaging. In both cases, the primary
care physician was informed about the IF, with participants’
prior consent. In one participant, the IF was retrospectively
found to have already been diagnosed on a previous clinical
brain MRI prior to MRi-Share participation. In total, 30
out of the 33 (90.9%) participants with a complementary

TABLE 2 | Baseline characteristics of MRi-Share participants with MRI according to incidental findings (IFs) status*.

Participants

without IFs

Participants

with any IFs

Participants with

IFs referred

Participants

with PSIFs†
P‡ P§ P¶

(N = 1,789) (N = 78) (N = 36) (N = 25)

Age at MRI, years, mean (SD) 22.1 (2.3) 22.2 (2.5) 22.4 (2.6) 22.5 (2.2) 0.79 0.40 0.33

Age at i-Share recruitment, years, mean (SD) 21.2 (2.3) 21.3 (2.7) 21.5 (2.8) 21.8 (2.3) 0.75 0.43 0.23

Complementary brain imaging, median (min, max) 1.0 (0.0–4.0) 1.0 (0.0–4.0)

Visits with medical specialists, median (min, max) 1.0 (0.0–6.0) 2.0 (0.0–6.0)

Male Gender 27.6 (493) 33.3 (26) 22.2 (8) 20.0 (5) 0.27 0.48 0.40

Field of study

Other 46.3 (827) 43.6 (34) 50.0 (18) 44.0 (11) 0.63 0.66 0.82

Healthcare 53.7 (958) 56.4 (44) 50.0 (18) 56.0 (14)

Self-rated health

Fair, bad or very bad 17.5 (313) 17.9 (14) 27.8 (10) 28.0 (7) 0.92 0.11 0.18

Very good or good 82.5 (1,475) 82.1 (64) 72.2 (26) 72.0 (18)

PCP visits 12 months before i-Share inclusion 87.1 (1,558) 87.2 (68) 88.9 (32) 88.0 (22) 0.99 0.76 0.99

Regular medication 24.1 (431) 19.2 (15) 30.6 (11) 36.0 (9) 0.32 0.37 0.17

Hospitalization 12 months before i-Share inclusion 16.5 (295) 21.8 (17) 27.8 (10) 28.0 (7) 0.22 0.07 0.17

Familial economic situation during childhood

Fair, difficult or very difficult 41.7 (746) 47.4 (37) 50.0 (18) 48.0 (12) 0.32 0.32 0.53

Very comfortable or comfortable 58.3 (1,042) 52.6 (41) 50.0 (18) 52.0 (13)

Source of income

Family 81.8 (1,464) 82.1 (64) 77.8 (28) 76.0 (19) 0.96 0.53 0.44

Scholarship on social ground 37.6 (672) 44.9 (35) 47.2 (17) 56.0 (14) 0.19 0.24 0.06

Activities during University year 41.3 (739) 34.6 (27) 38.9 (14) 36.0 (9) 0.24 0.77 0.59

Self-reported physician-diagnosed migraine 18.2 (325) 21.8 (17) 25.0 (9) 28.0 (7) 0.42 0.29 0.20

Self-reported physician-diagnosed type 1 diabetes 0.4 (7) 1.3 (1) 2.8 (1) 4.0 (1) 0.29 0.15 0.11

Self-reported physician-diagnosed MS 0.1 (1) 0.0 (0) 0.0 (0) 0.0 (0) 0.99 0.99 0.91

Family history of CVD or stroke 14.8 (243) 7.2 (5) 9.7 (3) 15.0 (3) 0.08 0.61 0.99

Family history of cancer 11.3 (191) 16.7 (12) 15.2 (5) 22.7 (5) 0.17 0.42 0.10

Current smoker 29.5 (527) 20.5 (16) 22.2 (8) 16.0 (4) 0.09 0.34 0.14

Heavy drinking 12 months before i-Share inclusion 5.1 (88) 5.6 (4) 9.1 (3) 4.3 (1) 0.78 0.24 0.99

Use of psychoactive drugs 12 months before i-Share inclusion|| 47.7 (841) 41.6 (32) 42.9 (15) 37.5 (9) 0.29 0.57 0.32

Use of other illicit drugs at least once in a lifetime** 4.0 (72) 1.3 (1) 2.8 (1) 4.0 (1) 0.37 0.99 0.99

Data were collected through the baseline i-share questionnaire before the MRI was done. Values are percentages (number) unless stated otherwise. PCP, Primary care physician; MS,

Multiple Sclerosis; CVD, cardiovascular disease.

Heavy drinking in the past 12 months is defined as frequent episodes of binge drinking (≥six drinks in about 2 h on the same occasion) 2–6 times per week or every day.

*Bordeaux i-Share participants included in MRi-Share ancillary study (fulfilling inclusion criteria, with a signed consent) and a valid MRI (N = 1,867).
†
PSIFs (Potentially Serious Incidental Findings) are IFs referred that were retrospectively identified according to the list of PSIFs developed by the UK biobank, or its definition of PSIFs.

Analysis of covariance for continuous variables or chi-square/Fisher exact test for categorical variables are used to compare:
‡
participants without IFs vs. those with IFs; §participants

without IFs vs. those with IFs referred; ¶participants without IFs vs. those with PSIFs.
||Cannabis, ecstasy/3, 4-Methylenedioxymethamphetamine, amphetamines, nitrous oxide, inhalant, or cocaine.

**Magic mushrooms or other hallucinogenic plants, crack/free-base, heroin, LSD, or ketamine.
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FIGURE 2 | Procedure for detection and management of incidental findings (IFs). MD, medical doctor; PSIFs, potentially serious incidental findings. *Refusal by the

participant, n = 1; not necessary (previous reassuring MRI performed prior to i-Share research MRI), n = 1. †Refusal of follow-up visit, n = 2; not necessary, n = 1.

brain imaging were seen by at least one additional
medical specialist.

Table 3 presents the initial putative diagnosis for the 38
IFs of the 36 participants requiring medical referral. After
additional medical referral and ancillary examinations, the
suspected diagnosis changed for five of the 36 participants
referred (13.8%, Table 3). No conclusion could be drawn on
the final diagnosis for three participants, i.e., the one who
failed to attend the visit with the referent neurologist, the one
who refused the complementary clinical imaging, and one who
underwent the complementary brain MRI but did not attend
additional visits and ancillary examinations requested for an
accurate diagnosis. All participants with an IF seen by the
referent neurologist underwent a thorough clinical interview
to rule out any prior symptoms that could retrospectively
be attributed to the IF. Some were prescribed additional
ancillary investigations, such as an electroencephalography if
the IF was deemed to be a potential source of epilepsy. In

participants with T2 abnormalities suggestive of demyelination
based on their location, size, and morphology, a brain and spinal
cord MRI with gadolinium injection and a lumbar puncture
were performed.

Cysts/ventricular abnormalities were the most frequent
referred IFs in MRi-Share, detected in nine of 1,867 participants
(0.5%, 95% CI: 0.2–0.9% of the study sample), comprising
pineal cysts, arachnoid cysts, and hydrocephalus (Table 3,
Supplementary Table 2). Vascular abnormalities, composed
primarily of cavernomas, were the secondmost common referred
IFs in the study sample, observed in six participants (0.3%, 0.1–
0.7%). They were followed by white matter hyperintensities
suggestive of inflammatory disease observed in five participants
(0.3%, 0.09–0.7%), of whom two were diagnosed with MS (0.1%,
0.0–0.4%) according to the McDonald criteria (18), and three
with Radiologically Isolated Syndrome (RIS) (0.2%, 0.03–0.5%)
based on the Okuda and DIS-Barkhof criteria (19, 20). One of
the two MS patients had initially been diagnosed with a RIS.
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TABLE 3 | Diagnosis’ classification of the 38 incidental findings (IFs) of the 36 participants requiring medical referral according to etiology.

Initial diagnosis on research MRI N Final diagnosis after clinical brain imaging and assessment N

(N = 36 participants) (N = 33 participants)

Cysts/ventricular abn. (n = 9) Pineal cyst 5 Cysts/ventricular abn. (n = 9) Pineal cyst 5

Ventriculomegaly with stenosis of

aqueduct of Sylvius‡
1 Passive hydrocephalus with stenosis

of aqueduct of Sylvius‡§
1

Arachnoid cyst† 3 Arachnoid cyst†§ 2

Arachnoid cyst† 1

Vascular anomaly (n = 7) Cavernoma‡ 4 Vascular anomaly (n = 6) Cavernoma‡§ 4

DVA 2 DVA 2

dPVS*† 1

Inflammatory WMH (n = 12) RIS or MS*‡ 11 Inflammatory WMH (n = 5) MS‡§ 2

Inflammatory leukoencephalopathy*‡ 1 RIS‡¶ 3

Tumors (n = 3) Ependymoma† 1 Tumors (n = 4) Ependymoma†§ 1

MVNT† 2 MVNT†¶ 2

Ganglioglioma†§ 1

Cortical malformations (n = 3) Neuronal migration disorder 2 Cortical malformations (n = 3) Neuronal migration disorder 2

Focal cortical dysplasia‡ 1 Focal cortical dysplasia‡¶ 1

Other, neurological (n = 1) Basal ganglia calcifications‡ 1 Other, neurological (n = 5) Fahr’s syndrome‡¶ 1

WMH without underlying inflammatory

disease

3

Undetermined leukoencephalopathy 1

Other, non-neurological (n = 3) Hypertrophy lymphoid tissue in cavum 1 Other, non-neurological (n = 3) Hypertrophy lymphoid tissue in cavum 1

Bone lesion 1 Benign bone lesion 1

Lesion or retention in sinus 1 Cyst in sinus 1

abn., abnormalities; DVA, Developmental Venous Anomaly; MVNT, Multinodular and Vacuolating Neuronal Tumor; dPVS, dilated Virchow Robin Space; WMH, White Matter

Hyperintensities; RIS, Radiologically Isolated Syndrome; MS, Multiple Sclerosis. Thirty-four participants referred have one IF; two participants have two IFs.

Initial diagnosis could not be confirmed for three inflammatory WMH suggestive of RIS or MS.

*Initial diagnosis modified after additional medical referral and ancillary examinations: one dPVS (vascular anomaly) turned out to be a ganglioglioma (tumor), three inflammatory WMH

suggestive of RIS or MS turned out to be WMH without underlying inflammatory disease, one inflammatory WMH suggestive of inflammatory leukoencephalopathy turned out to be an

undetermined leukoencephalopathy.

In bold, Potentially Serious Incidental Findings (PSIFs) are IFs referred that were retrospectively identified according to:
†
the list of PSIFs developed by the UK biobank, or

‡
the UK

biobank definition of PSIFs.

Final diagnosis classified as §serious, or ¶ indeterminate, according to the UK biobank definition of diagnosis severity in participants with PSIFs followed-up.

Other IFs included cortical malformations, non-neurological
IFs, and Fahr’s syndrome (Table 3, Supplementary Table 2).

Among participants with PSIFs according to the UKB list
or definition and follow-up available for a final diagnosis
(n = 19), RIS or MS were the most common IFs (26.3%,
Supplementary Table 2). Serious diagnoses, as defined in
the UKB (11), occurred in 11/1,867 participants (0.6%,
0.3–1.1% of total study sample), representing 57.9% (36.2–
76.9%) of participants with PSIFs and a final diagnosis
(11/19) (Table 3). Conversely, non-serious and indeterminate
diagnoses occurred in one (0.05%, 0.0–0.3% of the study
sample) and seven (0.4%, 0.2–0.8% of the study sample)
participants, respectively.

Regarding the management of identified IFs, active
intervention was required for five participants with referred
IFs (also defined as PSIFs) (0.3%, 0.09–0.7% of the study
sample; 13.9%, 5.6–29.1% of participants with referred IFs),
and comprised surgery, medical treatment, or both. Clinical
surveillance with or without follow-up brain imaging was
prescribed for 18 participants with referred IFs (1.0%, 0.6–1.5%

of the study sample; 50.0%, 34.5–65.5% of participants with
referred IFs).

DISCUSSION

In 1,867 young students (aged 18–35 years) who underwent
3T brain MRI as part of their participation in the MRi-
Share research project, IFs were detected overall in 4.2%
(3.4–5.2%) of participants, and IFs requiring medical referral
in 1.9% (1.4–2.7%) of participants. The frequency of PSIFs
according to the UKB list or definition was 1.3% (0.9–2.0%),
while final diagnoses were considered serious in 0.6% (0.3–
1.1%) of the participants. The leading final diagnosis was cysts
or ventricular abnormalities in participants with referred IFs
(25.0%), while it was MS or RIS among those with PSIFs
followed-up (26.3%). In this young student population, the
prevalence of MS and RIS was, respectively, 0.1% (0.0–0.4%)
and 0.2% (0.03–0.5%).
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Comparison With Other Studies and
Implications of Findings
To our knowledge, only two studies have focused on brain IFs
specifically in healthy young adults (8, 9), describing a prevalence
of IFs between 5.8 and 9.4%. In one study (N = 2,536 men,
mean age: 20.5 years) (8), IFs were defined as abnormal findings
based on the sole judgment of one general radiologist. In the
other study (N = 203; mean age: 21.9 years) (9), scans were
read by a neuroradiologist, but IFs could also broadly include
variations of the norm. A subsequent meta-analysis suggested
that the rate of PSIFs in these two studies was in fact lower
than in MRi-Share, between 0.5 and 0.7% (17) vs. 1.3%. Potential
explanations for these differences with MRi-Share findings are
several fold, including differences in sample characteristics, MRI
methodology (1–1.5T vs. 3T MRI and advanced sequences such
as SWI inMRi-Share), and IF definitions. Differences in detection
protocols [single reader—in one case non-specialty (8) vs. two
consecutive subspecialty readers with >12–30 years’ experience
in brain imaging in MRi-Share] can also be highlighted. Indeed,
lesion detection in neuroradiology settings relies on the level of
expertise and experience of the reader, with non-specialty readers
(non-neuroradiologists) performing at lower accuracy compared
with subspecialty ones (neuroradiologists) (21); moreover, blind
double interpretation is supposed to reduce diagnostic errors
in radiology particularly with the added value of a specialist
neuroradiology second opinion vs. a general radiologist (22).
Recently, the UKB assessed the prevalence, type, and final clinical
diagnosis of PSIFs in 7,334 middle-aged and older research
participants (40–69 years; median age: 63 years) (11). MRI
machines (Siemens Prisma) and acquisition parameters were
the same as in MRi-Share by design (13). In the UKB, brain
PSIFs were detected in 58 participants (0.8%, 0.6–1.0%) using
two protocols: a systematic review by a radiologist for the first
1,000 scans (protocol 1, 2.3%), and a radiographer flagging for
confirmation by a radiologist for the subsequent 6,334 scans
(protocol 2, 0.6%). Serious diagnoses occurred in 0.2% (0.1–0.4%)
of the sample (protocol 1, 0.4%; protocol 2, 0.2%) representing
29.3% of those with PSIFs. The slightly higher prevalence of
PSIFs and serious diagnoses in MRi-Share could be due to
differences in the age of participants (althoughmore IFs would be
expected with increasing age) (23), selection bias, and systematic
reading by a neuroradiologist or MD investigators highly trained
in brain imaging and subsequently by a highly trained clinical
neuroradiologist in MRi-Share. Finally, a systematic review
and meta-analysis of 16 neuroimaging studies (N = 19,559
individuals) (24) and an umbrella review of two systematic
reviews (N = 27,316 individuals) (25) reported IF discovery rates
of 2.7 and 22%, respectively. However, these two studies did
not provide any additional results for young adults beyond the
aforementioned studies (8, 9).

While cysts and vascular anomalies were the most common
brain IFs overall in MRi-Share (a quarter of referred IFs),
consistent with prior research in young and pediatric populations
(8, 9, 26), PSIFs and serious IFs were both dominated by
MS or RIS (nearly a quarter of cases). MS and RIS were not
described in middle-aged and older adults from UKB, where

tumors were the dominating PSIFs, mostly of a different type
(meningioma, pituitary tumor, vestibular schwannoma) than
the few tumors seen in MRi-Share (ependymoma, multinodular
and vacuolating neuronal tumor). A similar variation of tumor
histological subtypes by age was recently reported by the Central
Nervous System tumor registry of the Bordeaux (Gironde) region
in France (27).

The relatively high frequency of MS and RIS in this sample
of healthy young adults (0.3% in total, of which 0.2% for RIS) has
important implications.MS is a potentially disabling neurological
disease with a considerable impact on quality of life (28). There is
converging evidence that patients with MS and early initiation
of disease modifying therapy (DMT) have a more favorable
outcome with a lower frequency of clinical attacks. RIS is a
syndrome described for the first time in 2009 and defined by
incident MRI findings typical of MS in persons without a clinical
history of neurological symptoms suggestive of central nervous
system demyelination (20). Despite growing research and clinical
interest in RIS, its epidemiology remains unclear. Data on its
diagnosis in various settings and populations, its natural course,
and predictors are sorely needed. Over half of RIS patients were
recently shown to develop MS over 10 years of follow-up in
the largest international series (29). Whether to treat persons
with RIS using MS DMT is debated and currently assessed in
clinical trials (NCT02739542, NCT03122652), but clinical follow-
up is strongly recommended to initiate treatment early if clinical
symptoms arise. In terms of frequency, a systematic review based
on autopsy studies and clinical registries of MRI data found
a cumulative incidence of RIS of ∼0.1% (30). Hospital-based
studies estimated a prevalence of 0.05% in the broad age group
of 0–90 years (0.15–0.7% in 15–40 years) (31, 32). Another study
that collected data from all imaging centers in a region of Sweden,
over a year, thus reflecting a population-based catchment area,
reported a prevalence of 0.1% among 1,907 individuals aged
0–91 years (33). Because it has been suggested that estimated
prevalence rates of an abnormality within the general population
cannot serve as a meaningful standard against which to interpret
rates of corresponding serious IF in a given sample (4), the need
for data in young healthy adults in a research setting is crucial.

Strengths and Limitations
Strengths of our study include: the large sample size in
an understudied age group; high resolution 3T brain
MRI; systematic screening of all images by a professor of
neuroradiology or MD highly trained in brain imaging studies
followed by a second review by a highly trained clinical
neuroradiologist (in case of IF discovery), all blinded to the
participants’ clinical status, in order to have the best accuracy
in terms of lesion detection while reducing diagnostic errors;
extensive follow-up investigations enabling more accurate
characterization of IFs. The management procedure of IFs was
optimized through consultations with the ethics advisory board
of the i-Share study and additionally reviewed by an independent
ethics adviser.

We acknowledge limitations. First, our study sample is
not representative of all young adults aged 18–35 years in
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the Bordeaux area. Only 45% of young adults pursue higher
education. Moreover, i-Share participants are not representative
of all students, as is the case in all prospective population-
based studies, regardless of the sampling method used, with a
broader participation of women and most likely a selection bias
toward students with an interest in health research. Finally, MRi-
Share participants reported significantly better socioeconomic
conditions than other i-Share participants in the Bordeaux area,
were more often students in the health sector, and older than
i-Share participants not taking part in MRi-Share. A selection
bias of MRi-Share participants toward students with a history of
neurological symptoms cannot be excluded, although compared
to other i-Share participants they tended to more often self-rate
their health as good or very good and less frequently present a
history of migraine. Second, we did not evaluate non-medical
consequences of reporting IFs to study participants. However, we
carefully designed the IF disclosure process to minimize anxiety,
offered psychological support to participants when needed, and
made arrangements withmedical specialists to reduce the waiting
time for follow-up medical visits. The financial impact of IF
disclosure was minimized by the fact that the French public
national health insurance system carries the main financial
burden of medical follow-up. Furthermore, to make up for
costs not covered by the aforementioned system, students could
access complementary private health insurances covered either
by their parents’ health insurance plans or through the purchase
of their own insurance plan at reduced cost. Third, due to its
focus on young adults, MRi-Share lacks participants of middle
and older ages; this prevented us from exploring whether the
prevalence of IFs differed across the adult lifespan through formal
statistical comparisons. Fourth, the protocol we implemented to
detect and manage brain IFs should be considered within the
specific research context of MRi-Share and might not be well-
suited in other settings, e.g., in countries where private healthcare
predominates, or for studies based on much larger samples given
the resources this would require. Guidelines on the management
of IFs are thoroughly needed. The experience described here,
complementing prior studies, will be informative for scientific
societies or expert groups devising such guidelines in the future.

What This Study Adds and Future
Directions
To our knowledge this is the largest study on IFs in young
adults in a research setting and the first that used a standardized
protocol, optimized through consultations with ethics advisors,
with two independent radiological readings of IFs. It is also
the first to report on the management and severity of IFs in
young adults. Moreover, although our results remain primarily
descriptive, as in most of the literature on incidental findings, the
fact that we used the same type of MRI scanner, the same image
acquisition protocol, and the same IF definitions as in the UK
biobank dataset, allows a qualitative comparison of findings.

Our results provide novel insight into the frequency and
severity of precisely defined IFs in young adults, and also shed
new light on the nature of these IFs, which appears to differ
notably from that in older adults. We found that, with MS,

RIS was the most common PSIF observed in young healthy
research participants, thereby highlighting the importance of
ongoing therapeutic trials on the management of RIS. We also
observed that incidentally discovered brain tumors in young
adults participating in research appeared to differ histologically
from those identified in older adults, although no formal
statistical comparisons could be performed.

In the future, our study could be complemented by a more
extensive exploration of risk factors associated with IFs and
their severity in young adults, requiring much larger samples,
and by a formal assessment of differences in prevalence and
etiology between age groups. Guidelines on the detection and
management of IFs would be highly valuable in order to optimize
the way IFs are handled and also reduce inconsistencies between
studies reporting them. In analogy with recommendations on
the management of incidental genetic findings emerging from
sequencing studies in research (34), scientific societies or expert
groups could propose a list of actionable brain MRI IFs requiring
medical referral, ideally with specific recommendations by age
group, considering the different patterns observed across the
adult lifespan and age-specific clinical implications.

CONCLUSION

Our study provides some guidance on the expected frequency
and severity of IFs on brain MRI in young healthy adults
participating in research, an understudied group, and shows
that the etiological pattern of these IFs is distinct from patterns
described in older adults. White matter lesions revealing MS
or RIS were the most common potentially serious IFs detected
in our study. Altogether, our data may inform IF detection
and management protocols in future research studies involving
brain MRIs of young adults. Given the growing frequency of
brain imaging research, with increasingly large samples and
high resolution, our findings also highlight the need for expert
guidelines on brain MRI IFs management.
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Most mental disorders originate in childhood, and once symptoms present,
a variety of psychosocial and cognitive maladjustments may arise. Although
early childhood problems are generally associated with later mental health
impairments and psychopathology, pluripotent transdiagnostic trajectories may
manifest. Possible predictors range from behavioral and neurobiological mechanisms,
genetic predispositions, environmental and social factors, and psychopathological
comorbidity. They may manifest in altered neurodevelopmental trajectories and need
to be validated capitalizing on large-scale multi-modal epidemiological longitudinal
cohorts. Moreover, clinical and etiological variability between patients with the same
disorders represents a major obstacle to develop effective treatments. Hence, in order to
achieve stratification of patient samples opening the avenue of adapting and optimizing
treatment for the individual, there is a need to integrate data from multi-dimensionally
phenotyped clinical cohorts and cross-validate them with epidemiological cohort data.
In the present review, we discuss these aspects in the context of externalizing and
internalizing disorders summarizing the current state of knowledge, obstacles, and
pitfalls. Although a large number of studies have already increased our understanding on
neuropsychobiological mechanisms of mental disorders, it became also clear that this
knowledge might only be the tip of the Eisberg and that a large proportion still remains
unknown. We discuss prediction strategies and how the integration of different factors
and methods may provide useful contributions to research and at the same time may
inform prevention and intervention.

Keywords: life span, prediction, modeling, developmental psychiatry, neurobiology, biomarker

INTRODUCTION

Mental disorders are the leading cause of years lived with disability (Whiteford et al., 2013), with
most of them having their origin early in life during childhood and adolescence (e.g., Kessler et al.,
2005, 2007; Thapar and Riglin, 2020). Despite this clear figure of disability and burden of mental
disorders along with staggering economic cost (Gustavsson et al., 2011), research in developmental
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psychiatry and into the neurobiology of mental disorders has
so far not yet led to a prolific integration of neuro-psycho-bio-
social insight into the diagnostic conceptualizations, treatment,
and prevention of mental disorders. We need to enhance
our understanding of the underlying disease mechanisms,
and to validate clinical, (neuro-)biological, and multivariate
predictors of psychopathology and therapy outcome. This also
includes the specific integration of individual needs and social
contexts and translates treatments beyond clinical settings to
individuals’ daily life.

In the present review, we will describe challenges and unmet
needs in the field of developmental psychiatry commenting
on (1) the current status on markers and mechanism of
psychopathological pathways, (2) the lack of biological
validity of diagnostic categories, and proposed approaches
of symptom dimensions, (3) clinical heterogeneity, (4) the role
of environmental influences and psychosocial risk and resilience
factors for psychopathology, and (5) methodological advances in
the field of neuroscience.

Markers and Mechanisms of
Psychopathological Pathways
A major focus in developmental psychiatry has been to
understand neurobiological and psychosocial changes to identify
targets for prevention and prediction strategies (Rosenberg
et al., 2018). For example, for attention-deficit hyperactivity
disorder (ADHD), a common mental disorder characterized by
core symptoms of impulsivity, hyperactivity, and inattention
(Polanczyk and Rohde, 2007), changes in executive functions,
in particular, in inhibition and working memory have been
reported (Faraone et al., 2015). This might be accompanied
with frontostriatal and parietal hypoactivation found during
inhibition (van Rooij et al., 2015) and spatial working memory in
ADHD, with ADHD showing persistent difficulties with working
memory operations (Martinussen et al., 2005).

Thus, obviously a wide range and diverse, rather unspecific,
pattern of neuropsychobiological responses have been observed
already for one type of mental disorder. It is therefore
not surprising that sensitivity for only one disorder in such
mechanistic links is still limited. Common mechanisms may
contribute to different forms of psychopathology and their
associated symptomatology. For example, in anxiety disorders,
shared key features may not only range along the anxiety
spectrum, but there may also be subgroups within anxiety
disorders that share common mechanisms (McTeague et al.,
2009, 2010, 2012; Flor and Nees, 2014). Mental health seems
therefore to span along construct dimensions, reflected in
neurobiological changes (Dias et al., 2015; Kotov et al.,
2017). Such aspects have been proposed by the Research
Domain Criteria (RDoC) Project, an initiative of the National
Institute of Mental Health (Cuthbert and Insel, 2010, 2013).
The RDoC project suggests to base the classification of
mental disorders on dimensions of observable behavior and
neurobiological measures related to these functions rather
than on symptom-based descriptive categorical diagnoses. Such
dimensions represent the loadings onto symptoms, where each

individual receives a dimensional score. It builds a basis for
parsing heterogeneity to be predicated by abnormalities in
multiple distinct system- and circuit-based psychobiological
changes that might be present across versus within disorders,
and manifest along dimensions (Marquand et al., 2016). This is
also important given that individual differences can already be
observed at the subclinical stage. We have shown this for conduct
problems and clinically relevant brain changes to negative
affective processing in a healthy adolescent sample: regression
analyses revealed a significant linear increase of left orbitofrontal
cortex (OFC) activity with increasing conduct problems up to
the clinical range, while in the high conduct problems group,
a significant inverted u-shaped effect indicated that left OFC
responses decreased again in individuals with high conduct
problems (Böttinger et al., 2021).

Several studies have, however, also acknowledged a general,
and thus one, dimension of psychopathology, the so-called p
factor, underlying multiple disorders (Caspi et al., 2014; Caspi
and Moffitt, 2018). This proposition of such a single p factor for
common mechanisms can be seen in line RDoC when relying on
a transdiagnostic understanding, i.e., that the same mechanism
underlies different diagnoses, yet it is different from RDoC when
we applying the heterogeneity assumption. Using data from the
longitudinal New Zealand Dunedin Multidisciplinary Health and
Development Study (Caspi et al., 2020), one of the most recent
child cohort studies examining children longitudinally into
adulthood, it was shown that the p factor significantly improved
the model fit when externalizing, internalizing, and thought
disorder subfactors were integrated and allowed to inter-correlate
(Caspi and Moffitt, 2018). This can be used as an evidence
of common a common mechanism underlying these disorders,
but, on the other hand, ignores potential individual differences
within such a mechanism, for example, on subdimensions
of this mechanism.

The p factor has also been shown to substantially overlap
with the p factor in childhood and risk for mental disorders
in adulthood (Allegrini et al., 2020), and the stability of the p
factor across childhood was highly driven by genetic influences
(Neumann et al., 2016). This may be further be seen as
an indication of a rather static marker of psychopathology,
representing an important snap-shot, but potentially being not
such valid when describing changes and developments over time.
An impact of genetic constitutions has further been unraveled
through studies on the so-called polygenic risk scores (PRS) that
reflects an individual’s inherited susceptibility to a disease. Higher
levels of PRS for internalizing problems, for example, determined
adolescents’ co-occurring internalizing/externalizing problems,
indicating common genetic components for externalizing
and internalizing disorders, and by lower levels of the
aggression PRS through greater early childhood behavioral
inhibition (Wang et al., 2020). An ADHD PRS was shown
to distinguish between individuals with a persistently high
level of ADHD symptoms (through to adolescence) from those
individuals whose symptoms declined or remitted by adolescence
(childhood-limited) (Riglin et al., 2016).

While these markers may be useful for the routine clinical
practice, not all are real indicators for underlying mechanisms
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and useful to capture an individual disease process, having been
identified through rather pragmatic pipelines. This is not an
invalid procedure per se, but needs to be carefully considered
within the respective context, i.e., whether they are used as
diagnostic, prognostic, or predictive target; otherwise, their
effectiveness might be strongly be limited or even misleading.

HOW TO DEAL WITH THE CURRENT
KNOWLEDGE ON MARKERS AND
MECHANISMS OF
PSYCHOPATHOLOGICAL PATHWAYS?

Falk et al. (2013) have already raised several important
questions in this respect. Among those questions, one covered
brain–behavior mechanisms and interactions: “What would a
‘representative group of brains’ tell us about the generalizability
of current samples and current findings regarding brain–
behavior mechanisms?” This question nicely implied what we
are referring to the heterogeneity problem, and illustrates that
thinking in a one-dimensional domain, grouping individuals in
comprehensive fashion, does not always also mean that we end
up with more concrete and specific conclusions.

And even if we have arrived at the individual level, a following
question would come up, namely, “How do individual differences
in brain structure and function affect cognitive, affective, and
behavioral outcomes and how do social situations and broader
environmental contexts interact with these processes?” For
example, several previous studies on intelligence suggested a high
heritability of the intelligence quotient; however, more recent
work indicates that for the whole population the heritability is not
as high as previously assumed (Turkheimer et al., 2003). While
the earlier studies had used samples primarily with individuals
showing a high socioeconomic status (SES), more recent studies
stem from more representative samples. Since the SES is a
significant moderator of genetic heritability, the heritability was
higher in high SES, above 70%, and in contrast with only 10%
in low SES individuals (Turkheimer et al., 2003; Henrich et al.,
2010), which would lead to inconsistent estimates of outcomes.

It is thus crucial to disentangle more specifically inter-
relationships among the factors of interest and map them
among developmental trajectories. With regard to externalizing
symptoms, some individuals have constantly high symptoms,
while intermediate groups of individuals shift up or down slowly
or rapidly. Similar patterns were observed for internalizing
symptoms. For adolescence, the internalizing trajectory was also
found being independent of high externalizing trajectories, and
persisting externalizing problem scores were associated with
decreasing internalizing scores, and early environmental risk
factors and sex predicted externalizing trajectories to a larger
extent than internalizing (e.g., Nivard et al., 2017). In this respect,
we need to specify the relevant mechanisms of change for such
shifts, and this also includes the evaluation of how the brain
develops across the life span in individuals with and without
mental disorders, that warrants further investigation (e.g., Baltes
et al., 1977; Paus, 2010; Zelazo and Paus, 2010). Moreover,

as addressed above, symptoms are highly heterogeneous and
overlapping (Moffitt et al., 2007; Caspi et al., 2020). In the
Dunedin Study (Caspi et al., 2020), for example, less than
15% of participating individuals diagnosed with externalizing
or internalizing disorders showed a homotypic symptomatology
(Caspi et al., 2020).

Strategies for understanding the etiology of mental disorders
in this respect need to capitalize on data from longitudinal,
cohort studies like the Mannheimer Risikokinderstudie
(MARS; Laucht et al., 2000b), the Adolescent Brain Cognitive
Development (ABCD) study (Karcher and Barch, 2020), the
Kinder- und Jugendgesundheitssurvey (KIGGS; Mauz et al.,
2019), the Saguenay Youth Study (Pausova et al., 2017), or the
Imaging Genetics (IMAGEN) study (Schumann et al., 2010).
Those examine the psychosocial and neurobiological etiology,
prevalence, and developmental trajectories of (sub-)clinical
symptoms indicative of vulnerability for future psychopathology
in children, adolescents, and adults. However, so far, brain
development has been investigated mainly during middle
childhood (e.g., ABCD), adolescence (e.g., IMAGEN), or early
adulthood (e.g., MARS). Up to date only few studies, such
as IMAGEN, Generation R (Jaddoe et al., 2006), Saguenay
Youth Study, or NCANDA (Rohlfing et al., 2014), pursued a
longitudinal neuroimaging design. This aggravates conclusions
about the cause and effect relationships, as brain changes
can be both a consequence of behaviors or experiences and
a causing factor.

To map and model changes over time in a non-linear fashion,
study designs need to integrate more than two assessment time
points, which is so far realized, for example, in IMAGEN starting
during adolescence and follow-ups around every 2 years. Given
the lack of neurodevelopmental studies early in life, it is still
unclear whether especially early developmental curves of the
brain serve as possible predictors for psychopathology, and
whether and how this depends on different risk constellations and
interactions between neurobiology, genes, and behavior.

It is therefore important that we obtain data very early in life
along such cohort studies and longitudinal approaches starting
already in birth, and apply a precise and comprehensive analysis
of phenotypic abnormalities (deep phenotyping), integrating
the individual components of the phenotype and thus being
able to more specifically consider age of symptom onset and
underlying psychobiosocial mechanisms (e.g., Holz et al., 2020;
Thapar and Riglin, 2020). For example, about 45% of individuals
who develop a mental disorder early in life reported aversive
experiences during childhood (Green et al., 2010). This may
depend on region-specific sensitive time windows of brain
development (Callaghan and Tottenham, 2016), during which
functionally neurobiological changes may occur as consequences
of early negative experiences (Nelson and Gabard-Durnam,
2020). Moreover, previous etiological studies showed an earlier
and more frequent manifestation at every age as well as greater
stability for externalizing compared to internalizing disorders
(e.g., Laucht et al., 2000a). They were related to very early
psychosocial risk factors, which became apparent in early
childhood and include mother–child interactions (Laucht et al.,
2000a). Moreover, age of onset was discussed as one of the
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crucial factors for the course of symptom severity in behavioral
disorders: an earlier development of symptoms is associated with
stronger burden and chronification (Perra et al., 2020). Moreover,
early risk factors also explain a substantial proportion of variance
in behavioral and neurobiological mechanisms later in life (e.g.,
Holz et al., 2014, 2015) and might be important for the persistence
of symptoms from child- into adulthood, as shown, for example,
for ADHD or anxiety disorders (e.g., Thapar and Riglin, 2020).
Thus, only the investigation of risk and resilience mechanisms
already early in life enables a proper integration of this knowledge
into prevention and early intervention programs.

Environmental Influences and
Neurobiological Measures: Focus on
Psychosocial Risk and Resilience
Under the premise to identify neurobehavioral markers as
targets for early intervention and prevention, malleability of
these markers is critical. Twin studies suggest that genetic
factors indeed contribute prominently to continuity in mental
health problems, but that environmental influences are a major
contributor to dynamic change. Further, in children younger than
5 years of age, the influence of environmental factors is even more
important than genetic factors. In short, the younger the child,
the more dependent and vulnerable it seems to be in relation to
the surrounding environment. Importantly, children differ from
adults in their unique physiological and behavioral characteristics
and the potential exposure to risks in the environment (e.g.,
Rutter et al., 2001; Ronald, 2011; Hannigan et al., 2017).

Along the proposed deep phenotyping approaches of
psychopathology, those should therefore not only address
the neurobiological, but particularly also environmental and
psychosocial domains and their dynamic interplay to identify
the complex etiology of mental disorders (Holz et al., 2020).
We need to extent existing knowledge in neuroscience research
to broader relevant populations, and the ways that macrolevel
structures (e.g., social structure, neighborhood safety, school
quality, and media exposure) influence neural processes (Paus,
2010), thus integrating social and neurobiological perspectives
(see Figure 1).

For the social domain, it has been demonstrated that
socially well-connected individuals live longer compared to
those with weaker social bonds (Holt-Lunstad et al., 2010).
Caregivers, including their parenting styles, are important factors
for developmental processes, for example, influencing emotion
regulation and emotional reactivity (Bernier et al., 2016; Holz
et al., 2018). Distress of the infant can be effectively reduced
by responsive caregivers decreasing the development of fear
over time (Leerkes et al., 2009), also in association with brain
phenotypes (Ellis et al., 2011). Interestingly, an individual’s social
ties have not only beneficial health effects, but social connections
also determine the way individuals perceive their surrounding
environment. Loneliness and social exclusion bias perception
of the social world to be more threatening or vice versa. This
is related to stronger activity in the visual cortex in response
to social stimuli, and thus greater attention to negative social
information (Cacioppo et al., 2009). A lifestyle with infrequent

and/or negative social contacts might therefore negatively affect
the processing of socioemotional and reward stimuli (Etkin et al.,
2006; Adolphs, 2010; Rademacher et al., 2010).

On the other hand, social support may be beneficial for
well-being being an important mediator in health and disease.
Specifically, receiving social support affects vmPFC brain regions
that are relevant in inhibiting activity of regions, like the dorsal
anterior cingulate cortex and anterior insula, associated with
threat and stress processing (Eisenberger et al., 2011). Moreover,
perceived social support has been shown to moderate the
well-known relationships between trait anxiety and amygdala
reactivity (Hyde et al., 2011). Adolescents with a negative
family history and relatively severe life stress showed increased
amygdala reactivity to threat (Swartz et al., 2015). Models
of environmental sensitivity (Pluess, 2015) include hypotheses
on sensitivity to processing sensory information, biological
susceptibility to context, and differential susceptibility (Aron and
Aron, 1997; Belsky et al., 2007; Boyce, 2016). It is suggested that
individuals who are more sensitive show not only a higher risk for
consequences of adverse environmental conditions (e.g., Monroe
and Simons, 1991), but are also more responsive to positive
characteristics of the environment (Pluess and Belsky, 2013).
This framework may inform initiatives that aims to identify
individuals who are most affected by adverse environmental
influences (Meaney, 2018), and in turn, who benefit most from
treatment strategies (de Villiers et al., 2018), and can also
inform prevention.

With respect to associated brain changes, the amygdala and
the prefrontal cortex (PFC) have been suggested to play a key role.
Although the volume of the amygdala rapidly enlarges within the
first years of life, structural changes process until 4 years of age
in girls and 18 years in boys (Callaghan and Tottenham, 2016).
Early life exposures might therefore result in alterations of brain
regions like the amygdala in childhood, with an influence also
of later stress specifically in boys. Aside prefrontal cortical gray
matter increases are observed until adolescence, which indicates
higher sensitivity to environmental influences during childhood
and adolescence (Callaghan and Tottenham, 2016).

However, the research on neurobiological variability and
individual differences in environmental sensitivity is scarce, and
has mostly been conducted in adult and adolescent populations.
Early childhood neurobiological phenotypes are still lacking. In
this respect, environmental variables can act as moderators of
interest and might have also contributed to the neurobiological
phenotype and thus the sensitivity marker of interest. Moreover,
environmental factors can also function as predictors. It also
becomes clear that we would benefit from studies on brain
phenotypes characterized at or shortly after birth, and thus have
been only minimally influenced by environmental experiences
(Nolvi et al., 2020). Connectivity between the amygdala, insula,
and ventral medial PFC (vmPFC), which have been implicated
in individual differences in the processing of fear and in the
risk to the development of mental disorders, has also been
identified as predictor of higher fear and sadness already in the
newborn from 6 to 24 months of age. Specifically, amygdala–
insula connectivity and amygdala–vmPFC connectivity
were relevant for fear and sadness trajectories, respectively
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FIGURE 1 | Overview on an integrative and multimodal approach to study how environmental influences dynamically shape risk and resilience on the level of
neurobehavioral adaptation at different developmental stages. There are several influences through the social environment (left) and individuals differ in their degree to
which they are exposed to environmental variation. Such variations may be reflected in neurobiopsychological and behavioral reactivity, for example, through
brain–behavior relationships or gene–environmental interactions (middle). These variations underlie life-time-dependent changes over time and together represent
trajectories of risk into and resilience for maladaptive behavior and psychopathological symptomatologies (right).

(Thomas et al., 2019), and amygdala–vmPFC connectivity
at birth predicted cognitive development at 6 months of age
(Nigg, 2006; Degnan and Fox, 2007; Gartstein et al., 2012).

At these very early times of life, it also becomes evident that
biological influences during pregnancy are rapidly influencing
developing fetal brain systems, particularly those that are altered
in mental disorders. Maternal cortisol levels during pregnancy,
indicating elevated levels of psychosocial stress, were significantly
related to stronger connectivity between the amygdala and brain
regions relevant for the processing and integration of sensory
information as well as the default mode network in females
and reduced amygdala connectivity to these regions in males
(Graham et al., 2019). Further, in females, this connectivity
mediated the association between maternal cortisol and higher
internalizing symptoms (Graham et al., 2019).

Advanced Methodological Issues to
Achieve a Better Clinical Impact
Data from population-based cohort studies might help to
increase the transfer into the clinical system selecting an
adequate and most beneficial treatment, and particularly
prevention strategy. However, the associated notion that
symptom observations and reports are highly correlated within
and also common across disorders (Hahn et al., 2017)
does, however, not mean to completely abandon categorical
approaches when parsing heterogeneity.

To pursue a promising avenue toward neuro-psycho-
biological research that can have practical impact on psychiatric
healthcare, we need to shift many of the traditional approaches
and tools, and also need to combine approaches to build on each
other. This shift becomes even more important when thinking
about the still existing translation gap into clinically useful
prevention and intervention strategies. A dimensional approach
would result in different, individually tailored, treatment
strategies depending on the occurrence of specific symptoms or
additional modulators such as comorbidity of cognitive status,
which could improve the treatment outcome. Methods applying
categorical approaches can be added providing information on
clusters or subtypes of individuals who share common features,
for example, in the case where groups with extreme phenotypes of
psychopathology still show alterations in multiple mechanisms.

To explore moderators of the neurobiological prediction
of behavior and model clinical variance, we summarize
some of the available analysis methods, which we think are
reliable in this respect. This includes methodological issues
like switching, e.g., from group-level statistics that compare
clinical with non-clinical, healthy control groups, to approaches
that characterize individual heterogeneity and developmental
processes along subclinical and clinical symptom continua
(Becht and Mills, 2020). Moreover, the use of multivariate
and computational modeling and analyses to break down
high-dimensional data from these large and representative
samples regarding brain–behavior mechanisms is required
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FIGURE 2 | Overview of the normative modeling approach as an innovative analytical framework for parsing underlying biological heterogeneity within
epidemiological cohorts without dichotomizing into cases and controls. This approach uses probabilistic regression methods, machine learning, and artificial
intelligence (AI) methods to characterize variation across the population, estimate normative models of development (e.g., brain development) during critical phases
of vulnerability, and detect individual differences in risk signatures in clinical cohorts. These models therefore enable predictions at an individual subject level within
the population, to explore how these signatures predispose individuals to somatic and mental health outcomes, such as failure to thrive, motor, and language delay,
behavioral and emotional disorders, and inferences on how deviation patterns map onto biological underpinnings informing primary and secondary prevention (early
intervention) approaches. Dots represent individual neuropsychobiosocial signatures. Blue dots represent individuals who stay in the normal range throughout
development, and red are those individuals who are in the normal range at a specific developmental time, but move then out of this range (pale red dots).

(Falk et al., 2013; Jollans and Whelan, 2018). In this context, the
propagation of a prediction or risk calculation pipelines might
be a promising avenue. Information on mechanisms underlying
symptom dimensions and trajectories may be implemented into
risk assessment and prognosis procedures to supplement clinical
decision-making.

Cross-Lagged Modeling
To provide support for developmental models, cross-lagged panel
models (CLPMs) and autoregressive latent trajectory models with
structured residuals (ALT-SR) have been used. With CLPM, as
a type of discrete time structural equation modeling, panel data
with two or more variables, measured at two or more time points,
are analyzed. In this way, any directional effects of one variable on
another variable at different time points can be estimated (Kuiper
and Ryan, 2018). The ALT-SR is an extension with a crosslagged
(or other) structure that is fit to the time-specific residuals from
a parallel process latent growth curve model. The validity of
CLPM and ALT-SR has, for example, been tested for cascades
of externalizing and internalizing disorders, which have strong
tendency to co-occur from childhood (Rhee et al., 2015; Martel
et al., 2017). Such analyses are important for understanding the
cause and nature of their co-occurrence, e.g., whether there is a
directional or reciprocal causal relation and how this is mediated,
and can have implications for treatment. Although analyses using
CPLM and ALT-SR were consistent, the use of ALT-SR resulted

in a better fit than CLPMs. Moreover, there is evidence for
effects only apparent when applying the ALT-SR. This includes
a negative effect of externalizing on internalizing problems
in adolescence, while effects of internalizing on externalizing
problems were found for both ALT-SR and CLPM (Murray
et al., 2020). With typically utilized CLPMs, between- and
within-person processes cannot be disaggregated, and thus their
parameters reflect a difficult-to-interpret blend of the two. This
disadvantage can be solved using ALT-SR (Curran et al., 2014).
With ALT-SR, effects of unmeasured between-person confounds
are partialed out (Berry and Willoughby, 2017).

Normative Modeling
Normative modeling (Marquand et al., 2016, 2019; Figure 2)
provides an innovative analytical framework for parsing
underlying biological heterogeneity within epidemiological and
clinical cohorts, providing inferences beyond the level of mean
group differences. This approach uses Bayesian regression
methods, such as Gaussian process regression, to characterize
variation across the population as a function of clinical predictor
variables, such as age, while taking predictive uncertainty
into account. These models do not require deviations to
overlap across individuals (e.g., in the same brain regions)
and enable statistical inferences at the level of the individual
participant in order to quantify deviations from the expected
normative pattern from a reference cohort. In the context
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of psychiatry, normative modeling has been used to explain
neurodevelopmental deviation patterns in clinical samples. As
such, it has been applied to study developmental variability in
cortical thickness (Zabihi et al., 2019) and brain asymmetry
(Floris et al., 2020) in autism spectrum disorders, or gray
and white matter in schizophrenia spectrum disorders (Wolfers
et al., 2018). These studies have demonstrated that age-related
deviations are predictive of clinical symptom scores and provided
evidence that clinically relevant deviation patterns have minimal
inter-subject consistency with neurobiological effects that overlap
only in a few patients. In addition, spatial deviations were often
different from classical case-control findings, thus corroborating
the need to consider large variation across subjects at the
individual level. Despite methodological challenges that may
be encountered in large population-based cohorts with missing
data and variance attributable to study site, normative modeling
provides a promising method to estimate development (e.g.,
brain development) during critical phases of vulnerability and,
thereby, derive individual risk and resilience signatures.

However, we also need to note that normative modeling
usually requires very large sample sizes and they largely depend
on the information content of the included variables. Variables
representing only unprecise measures of the mechanisms of
interest lower any added value at the clinical or individual level.
Other machine learning and computational modeling approaches
rather focus on the identification of processes and mechanisms
underlying observable data, e.g., in reinforcement learning or
dynamical systems. Parameters derived from these models can
increase the predictive value of normative modeling as well as
of other classification or clustering approaches (e.g., Brodersen
et al., 2013).

Prediction and Risk Calculation
Aside normative modeling to perform prediction analyses,
recent studies also acknowledge the development of a so-called
risk calculator (Caye et al., 2020). This might be helpful for
personalized medicine to predict, for example, adult ADHD from
childhood characteristics, based on the representative population
cohort ALSPAC-UK with 5,113 participants, followed from birth
to age 17 (Caye et al., 2020). So far, the course of ADHD could
not have been correctly predicted in the clinical setting based
on assessments in children nor could have been prevention
adequately performed for those at risk. Caye et al. (2020)
therefore aimed to combine knowledge about risk factors into
a multivariable risk score, similar to frameworks in the context
of cardiovascular diseases, instead of using information from a
single risk factor like the presence of subthreshold symptoms
or of a first-degree relative diagnosed with ADHD (Brent et al.,
2015; Taylor et al., 2015; Buntrock et al., 2016). They also
validated their risk tool using further cohorts including the
1993 Pelotas Birth Cohort (Brazil, 3,911 participants, birth to
age 18), the MTA clinical sample (United States, 476 children
with ADHD and 241 controls followed for 16 years from
a minimum of 8 and a maximum of 26 years old), and
the E-Risk cohort (United Kingdom, 2,040 participants, birth
to age 18). An add on by the knowledge and results from

neurobiological studies might provide an important link to
biomarker identifications.

OUTLOOK

A developmental perspective in psychiatry is helpful. In order to
detect mental health outcomes, studying individual differences
in brain development is a key aspect. However, so far most
longitudinal neuroimaging studies tested effects on a group level,
for example, to identify those individuals who had lower brain
volume at a baseline level or also those who show accelerated
brain volume at follow-up testing compared with individuals who
had higher brain volumes at baseline.

To overcome this constraint, such individual differences
should then also be used for prediction analyses to address
heterogeneity in developmental trajectories. Future research
needs to treat age not as a confound, but rather as the primary
effector of interest. We need to incorporate processes of brain
maturation in youth, and thus the perspective of developmental
psychiatry, when determining risk and resilience factor for
mental disorders. We need longitudinal large-scale studies and
data, starting already early in life. Moreover, it is vital to apply
a translational, transnosological, and multi-disciplinary systems
approach and go beyond on brain development, which most of
the available studies focus on. There is still a lack of integration
of molecular, immunological, endocrinological, environmental,
social, physiological, cognitive, and brain imaging readouts.
Resources should include large-scale clinical (i.e., patient-
based), at-risk, and epidemiological (i.e., population-based)
cohorts that underwent comprehensive longitudinal deep
phenotyping protocols, including state-of-the-art digital health
technologies. Applying cutting-edge bioinformatics, we can
overcome transdisciplinary research gaps and clinical service
boundaries by providing multimodal predictive signatures of
risk and protection. The combination with unique assembly of
developmental tools, models, and human cohort readouts will
allow for a deepened mechanistic understanding why children
develop trajectories resulting in disease or recovery. Insight
into the developmental mechanisms can then inform extensive
translational intervention capacities and networks.
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Introduction: The population of older adults with Alzheimer’s disease and Related
Dementias (ADRD) is growing larger and more diverse. Prevalence of ADRD is higher
in African American (AA) and Hispanic populations relative to non-Hispanic whites
(nHW), with larger differences for women compared to men of the same race. Given
the public health importance of this issue, we sought to determine if AA and Hispanic
women exhibit worse ADRD pathology compared to men of the same race and
nHW women. We hypothesized that such differences may explain the discrepancy in
ADRD prevalence.

Methods: We evaluated 932 articles that measured at least one of the following
biomarkers of ADRD pathology in vivo and/or post-mortem: beta-amyloid (Aß), tau,
neurodegeneration, and cerebral small vessel disease (cSVD). Criteria for inclusion were:
(1) mean age of participants >65 years; (2) inclusion of nHW participants and either AA
or Hispanics or both; (3) direct comparison of ADRD pathology between racial groups.

Results: We included 26 articles (Aß = 9, tau = 6, neurodegeneration = 16, cSVD = 18),
with seven including sex-by-race comparisons. Studies differed by sampling source
(e.g., clinic or population), multivariable analytical approach (e.g., adjusted for risk
factors for AD), and cognitive status of participants. Aß burden did not differ by race
or sex. Tau differed by race (AA < nHW), and by sex (women > men). Both severity of
neurodegeneration and cSVD differed by race (AA > nHW; Hispanics < nHW) and sex
(women < men). Among the studies that tested sex-by-race interactions, results were
not significant.

Conclusion: Few studies have examined the burden of ADRD pathology by both
race and sex. The higher prevalence of ADRD in women compared to men of the
same race may be due to both higher tau load and more vulnerability to cognitive
decline in the presence of similar Aß and cSVD burden. AA women may also exhibit
more neurodegeneration and cSVD relative to nHW populations. Studies suggest that
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between-group differences in ADRD pathology are complex, but they are too sparse
to completely explain why minority women have the highest ADRD prevalence. Future
work should recruit diverse cohorts, compare ADRD biomarkers by both race and sex,
and collect relevant risk factor and cognitive data.

Keywords: Alzheimer’s disease, African American, Hispanic, sex differences, tau, neurodegeneration, cerebral
small vessel disease, amyloid

INTRODUCTION

Alzheimer’s disease and Related Dementias (ADRD) are
progressive neurodegenerative illnesses clinically characterized
by difficulties with memory and other cognitive abilities such
as language and executive function (Matthews et al., 2019).
Presently, 47 million people worldwide suffer from ADRD
(Babulal et al., 2019). As the proportion of individuals older
than 65 grows, this figure is estimated to increase by roughly 10
million new cases each year (Babulal et al., 2019). In addition
to growing in number, the population of those older than 65 is
expanding to include more racial minorities. In the United States,
African American (AA) and Hispanic populations are projected
to see steep increases in the number of people diagnosed with
ADRD over the next 40 years (Matthews et al., 2019). Currently,
compared to non-Hispanic white (nHW) populations, AA are
2 times more likely and Hispanics 1.5 times more likely to be
clinically diagnosed with ADRD (Alzheimer’s Association, 2019).
When stratified by sex, women of these racial groups are at even
higher risk of being diagnosed with ADRD compared to men
(Matthews et al., 2019). In fact, there is emerging evidence that
relative to all men and nHW women aged 65 and older, AA and
Hispanic women have the first and second highest prevalence of
ADRD, respectively (Matthews et al., 2019).

There are several race-associated factors that may explain
these differences. AA and Hispanic populations are more
likely than nHW to develop cardiometabolic diseases such as
hypertension, diabetes, and obesity (Alzheimer’s Association,
2019). Such risk factors are linked to higher risk of AD largely
through their effects on cerebral vascular integrity. Exposure
to vascular risk factors increases the likelihood of cerebral
small vessel disease, which is associated with both onset and
progression of ADRD (Babulal et al., 2019). Additionally,
minorities are less likely to have access to high quality food
or exercise-friendly neighborhoods (Zlokovic et al., 2020); both
good nutrition and exercise are vital for maintaining brain
health throughout the lifespan and may help curb effects of AD
pathology on cognition (Zlokovic et al., 2020).

Because prevalence of AD is greater among all women
compared to men independent of race (Matthews et al., 2019),
any race-related factor may additionally interact with those that
are specific to sex. One proposed biological mechanism of greater
ADRD risk among women is menopausal-related changes in
endogenous estrogen production. Estrogen is thought to be
neuroprotective against pernicious effects of ADRD pathology,
so its rapid decrease during menopause may precipitate
the development of AD (Fisher et al., 2018). Others have
hypothesized that the ε4 allele of the APOE gene interacts with

sex to confer greater risk of AD among women relative to
men (Nebel et al., 2018), but the mechanisms of such effect
modification are poorly understood. In addition to biological
risk factors, it should also be noted that higher prevalence rates
of ADRD in women relative to men may be due in part to
survivor bias. That is, women have longer life expectancies than
men of their same race (Arias, 2021) and age is the greatest
risk factor for AD (Jack et al., 2015). Thus, compared to men,
women may spend more time at high risk of being diagnosed
with ADRD coupled with longer time spent with the disease
(Andersen et al., 1999).

Many risk factors for ADRD overlap in women and minorities.
Compared to men and nHW populations, both women and
minorities, respectively, are at greater risk of psychosocial risk
factors such as depressive symptoms (Barnes and Bennett, 2014;
Nebel et al., 2018). Importantly, those who experience depressive
symptoms in midlife are more likely to develop AD, potentially
due to shared neural substrates and pathways for memory
and stress hormone dysregulation, respectively (Nebel et al.,
2018). Further, both post-menopausal women and minorities
are affected by poorer sleep quality, which emerging evidence
suggests is related to ADRD pathology clearance (Grandner et al.,
2016; Nebel et al., 2018; Irwin and Vitiello, 2019).

Given these race- and sex-related discrepancies for risk factors
of ADRD, it follows that we would expect to also find race- and
sex- related discrepancies in ADRD pathology.

The hallmark pathological features of AD are extracellular
plaques made of beta-amyloid (Aß) and intracellular
neurofibrillary tangles comprised of hyperphosphorylated
tau (Jack et al., 2013). While the biological cascade of events
is complex, it is generally accepted that these proteins begin
to aggregate decades prior to symptomatology and that Aß
precedes tau which precedes neurodegeneration (Jagust, 2018).
In the beginning stages of AD, Aß and tau aggregate in the
parietal cortex and medial temporal lobe, respectively (Jagust,
2018). Progressively, these abnormal proteins begin to deposit in
other areas of the brain, ultimately yielding greater atrophy and
resultant worsening clinical symptoms.

The advent of in vivo biomarkers has been integral in
uncovering the underlying mechanisms of AD. Brain Aß load
can be estimated through positive correlation with amyloid
positron emission tomography (PET) radiotracer uptake or
negative correlation with cerebral spinal fluid (CSF) Aß-42
markers. Tau burden in the brain is positively correlated with
both PET radiotracer retention and CSF-derived total- and
phosphorylated-tau. In addition to these, cerebral Aß and tau
pathology can be measured through blood-based markers (e.g.,
Aß42/Aß40 ratio, total-tau, and phosphorylated-tau), but efforts
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to improve the sensitivity of these biomarkers are ongoing
(Zetterberg, 2019). Neurodegeneration is commonly estimated
through magnetic resonance imaging (MRI). However, it can
also be measured by CSF- or blood-derived neurofibrillary light
(NfL) chain, which is correlated positively with axonal injury
(Petzold, 2005; Olsson et al., 2016; Zetterberg, 2019). Of note,
neuroimaging biomarkers like PET and MRI provide information
regarding the severity of AD pathology as well as its topographical
distribution. In contrast, CSF- and blood-based biomarkers
reflect the severity of pathology, but do not provide insight
into its topography.

Racially diverse and representative studies that examine
ADRD pathology differences between racial groups are fairly
limited and as a result, consensus surrounding race-related
differences in Aß, tau, and neurodegeneration have not yet
been reached (Babulal et al., 2019). In contrast, work examining
sex-related differences in primarily nHW cohorts is more
common. It has been reported that compared to men, women
show similar levels of Aß (Ferretti et al., 2018), elevated tau
(Buckley et al., 2019; Ossenkoppele et al., 2020), and less
neurodegeneration (Jack et al., 2015; Sundermann et al., 2016;
Ossenkoppele et al., 2020).

The overarching goal of this review was to examine sex-
by-race differences in biomarkers of ADRD pathology. To
do this, we conducted an Ovid MEDLINE search for studies
that compare relevant AD biomarkers by race and sex-by-
race. More specifically, we summarized race- and sex-by-race-
related comparisons of Aß, tau, and neurodegeneration; this
classification system is congruent with the National Institute
on Aging and the Alzheimer’s Association’s proposed AT(N)
framework (Jack et al., 2018), which categorizes research
participants as neuropathologically normal or abnormal for
A (Aß), T (tau), and N (neurodegeneration). In addition to
these measures, we also included work related to cerebral small
vessel disease (cSVD) as recent evidence suggests that vascular
damage may affect other biological changes related to AD,
including Aß clearance (Shaaban et al., 2017); further, cSVD
is related to both race and sex, and thus may be important
to understanding differing ADRD risk profiles among minority
women (Jorgensen et al., 2018). In summary, based on existing
literature, it appears that compared to nHW, minorities exhibit
worse cSVD; compared to men, women present more tau. Thus,
we hypothesized that a combination of more severe risk profiles
for both cSVD and tau could explain why minority women have
the highest prevalence of ADRD compared to the rest of the older
adult population. Alternatively, it may be that pathology is similar
in AA and Hispanic women compared to men of their same race
and nHW populations, but that vulnerability to cognitive decline
differs between groups.

MATERIALS AND METHODS

We used Ovid MEDLINE to retrieve articles for the narrative
literature review through October 2020; line-by-line search terms
are outlined in Supplementary Table 1.

Once we completed the search and removed duplicates, we
screened articles for eligibility using titles and abstracts. During

screening, we excluded articles for the following reasons: (1) the
study was conducted in animals; (2) the study was conducted in a
sample with a mean age less than 65; (3) the study did not include
African Americans or Hispanics in the sample; (4) the study
only conducted analyses adjusting for race; (5) the study sample
included only one race; (6) the study did not include relevant
biomarkers for AD; or (7) the study sample was comprised of
individuals with other psychiatric or major illnesses or injuries.

Subsequent to title and abstract screening, we assessed full-text
articles. We excluded articles if the study did not compare an AD
biomarker by race (n = 55), if only one race was included in the
sample (n = 1), or if the mean age of the sample was younger than
65 (n = 2).

A flow diagram outlining the search process is outlined in
Figure 1, following PRISMA guidelines (Moher et al., 2009).

For each full-text article that we assessed, we noted the
characteristics that are most likely to influence results: sampling
source, multivariable analytical approach, and cognitive status of
the participants.

Differing sampling sources may yield inconsistent results
between two studies, particularly if one set of participants is
recruited from an Alzheimer’s Disease Research Center (ADRC)
and the other from the community. Compared to the rest of
the population, ADRC-recruited participants are often younger,
more educated, and more likely to have at least one APOE-
ε4 allele (Farrer et al., 1997; Snitz et al., 2018). In other
words, participants recruited from an ADRC are not necessarily
representative of the population; it follows that results identified
in such recruitment samples may not be identical to those from a
population-based sample.

Additionally, the multivariable analytical approach can
affect results if investigators do not account for factors
that influence ADRD pathology. For example, older age
is a risk factor for neurodegeneration (Jack et al., 2015).
Thus, an imbalance in chronological age between comparison
groups may lead to spurious between-group differences of
neurodegeneration. Further, other health conditions or diseases
that are outside of the nervous system, but can affect the brain,
like diabetes and hypertension (Alzheimer’s Association, 2019),
also necessitate consideration for statistical adjustment; more
frequent occurrence in one of the comparison groups can again
yield an apparent group difference in ADRD pathology.

Cognitive status of the participant is a proxy for ADRD
pathology and as such, may lead to varying results between cross-
sectional studies if the samples differ in this regard. That is, a
sample of participants who are cognitively normal would likely
only capture those with a low burden of ADRD pathology while
that comprised of clinically-diagnosed AD patients would exhibit
advanced stages of pathology. As such, these two cohorts, which
represent different parts of the natural history of AD, are not
comparable, and will likely not yield identical results.

RESULTS

In total, 26 articles were included for review. Of these, nine
measured Aß, 6 measured tau, 16 measured neurodegeneration,
and 18 measured cSVD. Seven articles additionally assessed
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FIGURE 1 | PRISMA flow diagram delineating the search for literature completed through October 2020.

sex-by-race differences. In all studies, biomarker comparisons
were made cross-sectionally. A summary of the main findings
surrounding race differences in ADRD biomarkers is shown in
Figure 2; race- and sex-by-race-specific findings are outlined in
Supplementary Table 2.

Amyloid Biomarkers
Among nine studies examining amyloid biomarkers, three used
CSF Aß-42 measurements (Howell et al., 2017; Garrett et al.,
2019; Morris et al., 2019), six used PET imaging (Gu et al.,
2015; Gottesman et al., 2016; Duara et al., 2019; Morris et al.,
2019; Amariglio et al., 2020; Han et al., 2020), and one
examined post-mortem tissue (Riudavets et al., 2006). Sources of
recruitment included clinical and community settings; notable
population-based samples included the Atherosclerosis Risk in
Communities (ARIC) study, the Harvard Aging Brain Study
(HABS), and the Washington Heights Inwood Columbia Aging
Project (WHICAP). Participant cognitive status spanned normal
cognition, mild cognitive impairment (MCI), and AD. Sample
sizes ranged from 135 to 1255. Average ages ranged from 65
to 84 years. Two of these studies examined sex-by-race related
differences, the findings of which are described in the section “Sex

Differences in Amyloid Biomarkers by Race.” In the following
section, we outline race-related differences for both male and
female participants combined.

Racial Differences in Amyloid Biomarkers
All (Riudavets et al., 2006; Gu et al., 2015; Howell et al., 2017;
Duara et al., 2019; Garrett et al., 2019; Morris et al., 2019;
Amariglio et al., 2020) but two (Gottesman et al., 2016; Han
et al., 2020) studies reported no significant racial differences
in Aß burden.

Of those that measured CSF Aß-42 concentrations, one
community-based study of 1255 adults ranging from normal
cognition, MCI, and AD reported no significant differences
between AA and nHW after adjusting for age, sex, APOE-ε4
allele status, education, clinical status, body mass index (BMI),
family history of AD, and CSF drift variables (Morris et al.,
2019). Two other studies (Howell et al., 2017; Garrett et al.,
2019), both of which recruited from ADRC and community,
similarly reported no significant CSF Aß-42 differences between
AA and nHW. One of these studies included participants with
cognitive status ranging from normal cognition to AD (Howell
et al., 2017) and the other including only those with normal
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FIGURE 2 | Summary of results for ADRD pathology differences between nHW and (A) African Americans and (B) Hispanics. CN = cognitively normal; MCI = mild
cognitive impairment; DEM = dementia. Studies that did not report cognitive status or recruitment source of their participants are not included (n = 6).

cognition and MCI (Garrett et al., 2019); results from both
studies remained non-significant after stratifying by cognitive
status and/or adjusting for covariates.

Brain PET studies also largely reported no significant racial
differences in Aß radiotracer retention for either AA or Hispanic
populations relative to nHW. Morris et al. (2019) reported
global [11−C]Pittsburgh Compound-B (PiB) standardized uptake
value ratios (SUVR) that were not statistically different in
AA compared to nHW in participants ranging in cognitive
status (normal cognition, MCI, AD) and recruited from the
community; this comparison was made after adjustment for age,
sex, APOE-ε4 allele status, education, clinical status, BMI, and
family history of AD. Similarly, work from the community-
based HABS revealed that among 296 cognitively normal
participants, AA did not statistically differ in average cortical
PiB SUVR from nHW (Amariglio et al., 2020). One study that
included 116 dementia-free AA, Hispanic, and nHW participants
from WHICAP reported similarly null racial differences such
that there were no significant differences in the proportion
of participants categorized as visually [18−F]Florbetaben (FBB)
SUVR positive by race (Gu et al., 2015); 32% of AA, 31% of
Hispanics, and 40% of nHW were FBB positive. In a study
that recruited 159 Hispanic and nHW participants ranging in
cognitive status (cognitively normal, MCI, dementia) from an
ADRC, no significant racial differences were detected in FBB
SUVR (Duara et al., 2019). Race additionally did not significantly
predict FBB SUVR in multivariable linear regression models

adjusted for age, Mini Mental State Examination (MMSE) score,
and APOE-ε4 allele status.

One post-mortem study that did not report clinical status
of participants detected no racial differences in Aß burden
among 100 participants. Using this community-based sample
that included AA and nHW brains, Riudavets et al. (2006)
reported that in each racial sample, about two-thirds of
participants exhibited Aß plaques. Further, logistic regression
analyses revealed that race did not significantly predict Aß plaque
or Aß angiopathy presence.

In contrast to these findings, the ARIC study found that
among 329 participants without dementia, AA had 2-fold greater
odds of global [18−F]Florbetapir (FBP) SUVR positivity relative to
those who were nHW (Gottesman et al., 2016). This relationship
was not explained by age, sex, education, APOE-ε4 allele
status, hypertension, diabetes, cognitive status, or white matter
hyperintensity (WMH) volume. Similarly, an ADRC-based study
of 85 participants with normal cognition reported that compared
to nHW, a higher percentage of Hispanics, but not AA, met
the threshold for FBP positivity (Han et al., 2020). Within the
study sample, 50% of Hispanics, 30% of AA, and 44% of nHW
participants were classified as FBP positive. However, no formal
statistical test assessed if these group differences were significant.

Longitudinal analyses from HABS revealed that in those
with elevated PiB SUVR at baseline, AA participants showed
annual composite cognitive decline that was 0.05 standard
deviations faster compared to nHWs (Amariglio et al., 2020).
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Although small in absolute terms, this difference was statistically
significant even after adjustment for age, sex, and baseline
Preclinical Alzheimer’s Cognitive Composite score. Additionally,
investigators from WHICAP found that higher FBB SUVR was
associated with small but significant yearly decline in average
cognition, language, and executive function in AA, but not nHW
participants (Gu et al., 2015).

Sex Differences in Amyloid Biomarkers by Race
Within these nine studies of Aß comparisons between racial
groups, two also measured sex-by-race differences; women
generally exhibited higher or similar burden of amyloid
independent of race. The ARIC study found that in both AA
and nHW participants, women were 1.7 times more likely than
men to be globally FBP positive after adjustment for age, race,
education, APOE-ε4 allele status, hypertension, and diabetes
(Gottesman et al., 2016). Additionally, when stratified by race
and sex, Riudavets et al. (2006) found that a greater proportion
of AA and nHW women displayed Aß plaques relative to men of
their respective race. However, sex was not a significant predictor
of Aß plaques in linear models adjusted for age. Results for
amyloid angiopathy were less straightforward. Among nHW
participants, a greater proportion of women were dichotomously
classified as exhibiting amyloid-angiopathy. However, among AA
participants, the number of participants showing such pathology
was roughly equal.

Summary and Synthesis
Overall, these studies do not provide strong evidence for racial
differences in Aß deposition. While the ARIC study did report
that AA had significantly greater Aß burden than nHW, this
may have been the result of geographic exposures. Most of the
AA participants in ARIC were from the Jackson, Mississippi site
(Gottesman et al., 2016); FBP SUVRs in AA participants at the
other two sites were 6% higher than all nHW participants, but
4% lower than those at the Jackson site. Thus, the true racial
difference may be overestimated in this sample. These results may
additionally be biased by the effects of smoothing the PET images
to a common resolution. That is, amyloid was quantified using
FBP, an Aß radiotracer with comparatively narrower dynamic
range than others on account of its higher non-specific white
matter retention (Wong et al., 2010; Landau et al., 2013). Others
have reported that smoothing exacerbates the effect of white
matter retention and further compresses the range of FBP
(Landau et al., 2013). Assuming that AA populations exhibit
worse neurodegeneration (and thus, less white matter) than nHW
(see section “Neurodegeneration Biomarkers”), it follows that
compared to nHW, AA participants’ PET images may exhibit
relatively less FBP white matter binding, positively skewing
SUVRs. Similar to the ARIC study, Han et al. (2020) found greater
prevalence of FBP positivity in Hispanic participants compared to
nHW. However, because this difference was not formally tested
for statistical significance, it should be interpreted cautiously.

Results from these studies similarly did not yield strong
evidence for sex differences in Aß in either direction. The findings
are in contrast to many recent studies that have largely found
no differences between men and women in terms of Aß burden

(Mielke et al., 2012; Altmann et al., 2014; Buckley et al., 2019).
However, it should be noted that most studies that have measured
sex differences in Aß have done so in largely white samples.
As such, though few in number, these findings from racially
diverse epidemiological cohorts indicate that sex differences
in Aß among other races may differ from those identified in
nHW participants.

Two articles included in this review found that compared to
nHW, AA exhibit worse cognition in the presence of comparable
Aß load (Gu et al., 2015; Amariglio et al., 2020). Before further
discussion of these studies, it should be noted that results may
be influenced by pathologies that, compared to Aß, are more
strongly associated with cognitive impairment, but were not
accounted for in analyses. Such pathologies include tau and Lewy
bodies (Schneider et al., 2012; Hedden et al., 2013; LaPoint et al.,
2017; Jansen et al., 2018; Maass et al., 2018), the latter of which
may be more common in AA with AD (Barnes et al., 2015).
Despite this limitation, evidence still suggests that in response to
Aß, AA populations potentially possess relatively less cognitive
resilience or worse cognitive adaptability to neuropathological
insult (Arenaza-Urquijo and Vemuri, 2018). These studies did
not report race-related differences in cognition separately for
men and women, but instead combined data across sexes.
However, previous work has found that compared to men,
women exhibit worse cognitive resilience in the presence of
similar burden of AD pathology, including Aß (Gamberger et al.,
2017; Koran et al., 2017). Taken together with results from studies
on racial differences, it is possible that minority women face a
double burden for risk of accelerated cognitive decline in the
presence of Aß.

Tau Biomarkers
A total of six studies measured tau, three of which did so with CSF
(Howell et al., 2017; Garrett et al., 2019; Morris et al., 2019), one
with blood (Rajan et al., 2020), one with PET imaging (Lee et al.,
2018), and one with post-mortem tissue (Riudavets et al., 2006).
Study samples were recruited from ADRC and population-based
settings, the latter of which notably included The Chicago Health
and Aging Project (CHAP) and HABS. Participant clinical status
included normal cognition, MCI, and AD. Sample sizes ranged
from 146 to 1327. The average age of cohorts ranged from 65 to
76 years. No studies included Hispanic participants. Sex-by-race
differences were reported in only one of these studies, which is
summarized in the section “Sex Differences in Tau Biomarkers by
Race.”

Racial Differences in Tau Biomarkers
Overall findings for racial differences in tau burden were
mixed. Among the CSF-derived tau studies, one ADRC- and
community-based sample of 362 participants reported racial
differences in MCI, but not cognitively normal, participants
(Garrett et al., 2019). Among MCI participants, AA displayed
less total- and phosphorylated-tau on average relative to nHW
independent of age, sex, education, family history of AD, BMI,
Montreal Cognitive Assessment (MoCA), hypertension, diabetes,
and income. However, in cognitively normal participants, AA
and nHW did not differ in either total- or phosphorylated-tau
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after covariate adjustment. In another ADRC- and community-
based study comprised of 135 participants with either normal
cognition, MCI, or dementia, investigators found racial
differences for both total- and phosphorylated-tau such that
AA exhibited less burden than nHW (Howell et al., 2017); this
difference persisted after adjustment for cognitive function, age,
sex, APOE-ε4 allele status, ABCA7 risk allele status, Aß-42,
hypertension, diabetes, and WMH volume. A third study found
racial differences in tau independent of cognitive status (Morris
et al., 2019); in a cohort of 1255 cognitively normal, MCI, and AD
participants, AA exhibited average total- and phosphorylated-tau
concentrations that were less than nHW. This difference was not
explained by age, sex, APOE-ε4 status, education, clinical status,
family history of AD, BMI, or CSF drift variables.

In contrast to the above findings, two other studies reported
no racial differences in tau load for either blood-based (Rajan
et al., 2020) or PET-based (Lee et al., 2018) markers. CHAP, which
included blood-based measurements in 1,327 participants with
normal cognition, found no significant difference in total-tau
between AA and nHW (Rajan et al., 2020). In a HABS subset
of 146 participants whose cognitive status were not reported,
investigators similarly did not find significant differences between
AA and nHW participants in [18−F]Flortaucipir (FTP) SUVR in
the amygdala, entorhinal, fusiform, or inferior temporal regions-
of-interest after adjustment for age, sex, education, and Aß
burden (Lee et al., 2018). Of exception, AA participants showed
greater FTP SUVR in the choroid plexus and hippocampus, but
the authors note that this was likely due to off-target binding of
the radiotracer and spill-in, respectively.

In a post-mortem study that did not report the overall
difference between AA and nHW in tau lesions, AA race was not
significantly associated with odds of tau lesions after adjusting for
age in a sample of 100 participants (Riudavets et al., 2006). This
study also did not report the cognitive status of participants.

Sex Differences in Tau Biomarkers by Race
Of the studies that measured tau differences between racial
groups, one also measured and reported sex differences. In a
post-mortem study that did not report the cognitive status of
participants, Riudavets et al. (2006) reported greater severity of
tau lesions in nHW women compared to men such that 96% of
nHW women exhibited tau lesions whereas only 88% of men did
so. In contrast, 96% of both AA women and men displayed tau
lesions. When broken down by region, results differed slightly
such that independent of race, a greater percentage of women
showed more advanced tauopathy. Importantly, none of the
comparisons made in this study were done so with formal
statistical analysis. Thus, they should be interpreted cautiously.

Summary and Synthesis
Studies found that tau burden among AA populations was either
less than or similar to that of nHW. These mixed findings
between studies may be due in part to the age of participants.
In vivo studies that reported less relative tau burden in AA
included participants who were younger (average age range: 65–
70 years) (Howell et al., 2017; Garrett et al., 2019; Morris et al.,
2019) compared to those that reported no differences (average

age range: 73–76 years) (Lee et al., 2018; Rajan et al., 2020).
Thus, it may be that the analyses that found no racial differences
included participants with more advanced tauopathy either due
to age (Lowe et al., 2018) or AD progression. Such discrepancies
between studies warrant that future work examine whether or
not racial differences in tau pathology at the beginning of late
adulthood and/or AD persist through the natural history of
the disease. Taken together with the lack of such differences
in the post-mortem study included in this review (Riudavets
et al., 2006), it is possible that while younger AA populations
exhibit lesser tau accumulation in relation to nHW, at some point
during the course of AD, or as individuals age, the burden of tau
converges to be comparable among the two racial groups. In other
words, compared to nHW, in AA tau accumulation may begin
later and accrue more rapidly. Findings from Howell et al. (2017)
support this hypothesis; this group reported that racial differences
were greatest among cognitively normal participants, but in those
with MCI and AD, the gap in tau burden progressively decreased.

The sex differences by race in post-mortem tau burden in
Riudavets et al. (2006) may also be influenced by age and/or
disease progression. At the time of autopsy, on average, women
were older compared to men of their respective races. Thus,
it is reasonable that a greater proportion of women would
show evidence of a more advanced disease stage. Women were
much older than men particularly among the nHW participants,
which may also have influenced the more pronounced sex-
by-race differences in pathology among nHW participants,
comparatively. These limitations notwithstanding, these sex
differences are consistent with previous work conducted in nHW
populations (Buckley et al., 2019; Ossenkoppele et al., 2020).
Future work should apply either age stratification methods or
more consistent age-adjusted analyses to further investigate sex
differences in tau among AA populations.

Neurodegeneration Biomarkers
Among the 16 studies that examined neurodegeneration, 2
measured NfL (Howell et al., 2017; Rajan et al., 2020), 4
measured total brain volume (Minagar et al., 2000; Brickman
et al., 2008; DeCarli et al., 2008; Aggarwal et al., 2010),
8 measured hippocampal and entorhinal volumes (DeCarli
et al., 2008; Zahodne et al., 2015; Howell et al., 2017;
Burke et al., 2018; Duara et al., 2019; Garrett et al., 2019;
Morris et al., 2019; Arruda et al., 2020), 4 measured cortical
thickness (Zahodne et al., 2015; McDonough, 2017; Rizvi
et al., 2018; Arruda et al., 2020), and 4 measured lateral
ventricle size (Minagar et al., 2000; Shadlen et al., 2006;
Brickman et al., 2008; Burke et al., 2018). Participants in these
studies ranged from cognitively normal, MCI, and AD and
were recruited from both ADRC and community settings. Of
those recruited from the community, notable study samples
included The Cardiovascular Health Study (CHS), CHAP,
HABS, and WHICAP. Study sample sizes ranged from 135 to
2786 and average ages ranged from 65 to 80 years. Among
these, 2 examined sex-by-race-associated differences, which are
described in the section “Sex Differences in Neurodegeneration
Biomarkers by Race”; sections “Racial Differences in NfL
Concentrations” through “Racial Differences in Lateral Ventricle
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Size” report race-related differences for both male and female
participants combined.

Racial Differences in NfL Concentrations
In an ADRC- and community-based sample comprised of 135
participants, investigators reported that CSF-derived NfL levels
were lower in cognitively normal AA compared to nHW after
adjustment for age, sex, APOE-ε4 allele status, ABCA7 risk
allele status, Aß-42, hypertension, diabetes, and WMH volume
(Howell et al., 2017). However, among those with cognitive
impairment, NfL levels did not differ between races after
covariate adjustment. Analyses from CHAP revealed in a sample
1,327 participants with normal cognition that blood plasma-
derived concentrations of NfL were lower in AA relative to
nHW across the entire cohort (Rajan et al., 2020). However,
this between-group difference was not formally tested for
statistical significance.

Racial Differences in Total Brain Volumes
A pattern emerged among studies that measured total brain
volume such that investigators consistently reported no racial
differences. Analyses from CHAP reported no significant
difference in total brain volumes between AA and nHW
participants in a sample of 575 participants who ranged from
normal cognition to dementia (Aggarwal et al., 2010). DeCarli
et al. (2008) similarly found that AA and Hispanic participants
did not display significantly different average brain volumes
compared to nHW in a sample of 401 participants with
normal cognition, MCI, and AD; this was after adjustment
for age, sex, education, and cognitive status. Finally, in a
study that included 144 participants diagnosed with AD,
Minagar et al. (2000) found no difference in visually-assessed
cortical neurodegeneration between Hispanics and nHW after
adjusting for age, gender, education, MMSE score, and disease
duration.

Of exception, in a subset of WHICAP with 702 cognitively
normal and MCI participants, Brickman et al. (2008) reported
that AA and Hispanic participants both exhibited mean total
brain volumes that were larger than that of nHW after adjusting
for age, sex, and vascular disease history.

Racial Differences in Hippocampal and Entorhinal
Volumes
Racial differences in hippocampal and entorhinal volumes among
AA populations were mixed across six studies. One WHICAP
subset that included 638 participants ranging from normal
cognition to MCI found that AA displayed greater average
hippocampal volume compared to nHW, with a small effect
size (Cohen’s d) of 0.23 (Zahodne et al., 2015). Additionally,
DeCarli et al. (2008) reported that in an ADRC- and community-
based cohort of 401 participants, among those with MCI,
AA had larger hippocampal volumes after adjustment for age,
sex, and education.

Three other studies reported smaller regional volumes in
AA relative to nHW populations. Morris et al. (2019) reported
that in a cohort of 1255 community-recruited participants
with varying cognitive status (normal, MCI, and AD), AA

displayed smaller average hippocampal volumes than that of
nHW after covariate adjustment. However, this finding was
influenced by family history of dementia. When stratified,
AA participants with family history of dementia had smaller
hippocampal gray matter volumes (GMV) than nHW with family
history of dementia. In those without such family history, no
racial differences in hippocampal GMV were detected. Similarly,
DeCarli et al. (2008) reported that among those with normal
cognition and dementia, AA had smaller hippocampal volumes;
this could not be explained by adjustment for age, sex, and
education. In another cohort of 362 participants recruited
from both ADRC and community, cognitively normal AA
participants’ average hippocampal volumes were smaller than
that of nHW independent of age, sex, educational level, BMI,
family history of AD, MoCA score, hypertension, diabetes, and
income (Garrett et al., 2019).

In contrast to those described above, two other studies
found no significant differences in hippocampal volumes between
AA and nHW participants. In one study of 135 participants
ranging from cognitively normal to AD, Howell et al. (2017)
found that race had no effect on hippocampal volume. Garrett
et al. (2019) also reported that average hippocampal volumes in
AA with MCI were not statistically different than nHW after
adjusting for covariates.

Studies that included Hispanic populations also reported
mixed findings. Four articles reported greater medial temporal
regions in Hispanics compared to nHW. In a subset from
WHICAP that only included participants with normal cognition
and MCI, Hispanic participants displayed greater average
hippocampal volumes relative to nHW with an effect size
(Cohen’s d) of 0.28 (Zahodne et al., 2015). Among those with
MCI in a study of 401 participants that recruited from both
the ADRC and community, Hispanic participants exhibited
greater hippocampal volumes relative to nHW after adjusting
for age, sex, and education (DeCarli et al., 2008). One ADRC-
based study with 226 participants ranging from cognitively
normal to AD found that compared to nHW, Hispanic
participants exhibited greater average hippocampal volumes
(Cohen’s d = 0.30) and entorhinal volumes (Arruda et al.,
2020). This group additionally reported that Hispanic race
was associated with 0.12 mm3 greater hippocampal volume
and 0.13 mm3 greater entorhinal volume independent of age,
gender, functional activities questionnaire score, and MoCA
score. In another ADRC-based study of 165 participants with
normal cognition, MCI, and dementia, Hispanics showed greater
hippocampal and entorhinal volumes relative to nHW after
adjusting for age, depression, and Geriatric Depression Scale
score (Burke et al., 2018).

Two articles reported patterns that were in contrast to
the above findings. One ADRC-based study that included
159 participants with normal cognition, MCI, and AD found
no significant difference in hippocampal volumes between
Hispanic and nHW participants (Duara et al., 2019). Similarly,
DeCarli et al. (2008) reported that among those with normal
cognition or dementia, Hispanic participants displayed smaller
hippocampal volumes relative to nHW after adjustment for age,
sex, and education.
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Racial Differences in Cortical Thickness
Findings generally suggested that compared to nHW
populations, AA display smaller cortical thickness. In WHICAP,
across 519 participants with normal cognition, MCI, or dementia,
investigators found that after adjusting for age, education, and
intracranial volume, AA exhibited smaller global cortical
thickness compared to nHW participants (Rizvi et al., 2018). In
another WHICAP subset that included 638 participants with
normal cognition and MCI, AA displayed smaller AD-composite
cortical thickness relative to nHW participants (Zahodne et al.,
2015); this difference yielded an effect size (Cohen’s d) of 0.23. An
investigation of 284 HABS participants revealed a similar pattern
such that after participants were propensity score-matched
using age, sex, education, verbal IQ, Aß burden, and white
matter hypointensity presence, bootstrap ratios found 12 of 20
AD-signature cortical thickness regions that were significantly
smaller in AA participants (McDonough, 2017).

Results regarding cortical thickness in Hispanic populations
relative to nHW were less consistent. Rizvi et al. (2018)
reported that in a WHICAP cohort of participants ranging
from normal cognition to dementia, relative to nHW, Hispanic
participants displayed smaller average global cortical thickness
after adjustment for age, education, and intracranial volume.
However, in another WHICAP analysis that only included
participants with normal cognition or MCI, AD-composite
cortical thickness was almost identical in nHW and Hispanic
participants (Zahodne et al., 2015). Similarly, in an ADRC-
based study that included 226 cognitively normal, MCI, and
AD participants, Hispanic participants did not statistically
differ from nHW in average entorhinal cortex thickness
(Arruda et al., 2020). This study additionally reported that
in a linear regression model adjusted for age, sex, education,
functional activity questionnaire score, and MoCA score,
Hispanic ethnicity was not associated with entorhinal
cortex thickness.

Racial Differences in Lateral Ventricle Size
Studies typically reported that compared to nHW, minorities
displayed significantly smaller lateral ventricles. In a subset of
2786 participants from CHS, investigators found that in those
without dementia, 8% of the AA sample and 15% of the nHW
sample exhibited large ventricular volumes (Shadlen et al., 2006).
This pattern was similar among those with dementia as 16% of
AA and 32% of nHW exhibited large ventricular volumes. In the
WHICAP cohort across 702 participants with normal cognition
and MCI, compared to being nHW, AA and Hispanic race was
associated with smaller lateral ventricle volumes independent of
age, sex, and vascular disease history (Brickman et al., 2008).
Additionally, in an ADRC-based study of 165 participants,
Hispanics exhibited left and right ventricle volumes that were
smaller in cognitively normal, MCI, and dementia participants,
compared to nHW participants with corresponding diagnoses
(Burke et al., 2018); this was after adjustment for age, education,
and Geriatric Depression Scale score. Similarly, Minagar et al.
(2000) reported in a study with 144 Hispanics and nHW
diagnosed with AD that ventricular size was smaller in Hispanics
relative to nHW after covariate adjustment.

Sex Differences in Neurodegeneration Biomarkers by
Race
Of the studies that examined racial differences in
neurodegeneration, two measured sex-by-race differences.
These studies suggested a sex difference such that women
generally displayed less neurodegeneration relative to their
male counterparts of the same race. For example, in a subset of
702 cognitively normal and MCI participants in the WHICAP
cohort, investigators found that when stratified by race, total
brain volume was larger in women compared to men in nHW,
AA, and Hispanics (Brickman et al., 2008). Despite this, a sex-by-
ethnicity interaction for total brain volume was not significant.
This group also reported that female sex was associated with
smaller ventricles independent of race. Arruda et al. (2020)
reported in an ADRC-based study among 226 Hispanic and
nHW participants that female sex was associated with greater
hippocampal volume independent of age, education, ethnicity,
functional activities questionnaire scores, and MoCA scores. This
relationship was found in both the entire cohort of cognitively
normal, MCI, and AD participants as well as in a subsample
limited to only those who were non-demented. However, this
group also found that sex did not predict entorhinal cortex
volume or thickness after covariate adjustment.

Summary and Synthesis
These studies generally reported similar amounts of global
neurodegeneration in AA and Hispanic populations relative
to nHW. This was consistent across studies that measured
neurodegeneration using NfL concentrations (Howell et al., 2017)
and total brain volumes (Minagar et al., 2000; DeCarli et al.,
2008; Aggarwal et al., 2010). Still, two studies reported lesser NfL
burden in AA participants relative to nHW (Howell et al., 2017;
Rajan et al., 2020). However, because neither analysis adjusted
for BMI, which is greater among AA populations compared to
nHW (Hales et al., 2020) and negatively correlated with NfL
concentration (Manouchehrinia et al., 2020), these estimates may
be biased by such unmeasured confounding.

It should additionally be noted that one analysis from
WHICAP found thinner global cortical thickness values in AA
and Hispanic participants compared to nHW after controlling
for age, education, and intracranial volume (Rizvi et al., 2018).
Because this analysis was conducted in a large population-based
study with higher MRI resolution and more precise segmentation
methods relative to the studies that reported no racial differences
in global neurodegeneration, it follows that this may be a more
precise estimate of the true racial differences.

The discrepant findings between studies that measured
neurodegeneration in regions characteristic of AD pathology in
AA populations may be due to differences in study samples
and methodology. For example, the articles that reported
no differences in AD-specific regional volumes or cortical
thicknesses recruited their samples at least in part from ADRCs
(Howell et al., 2017; Garrett et al., 2019). Because participants
recruited from ADRCs are generally healthier than the rest
of the population, and thus, may exhibit better brain health,
brain region size differences may have been skewed toward
the null. Other investigators conducted their studies using
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either lower resolution MRIs (Brickman et al., 2008; DeCarli
et al., 2008) or without adjusting for confounders in their
analyses (Shadlen et al., 2006; Zahodne et al., 2015). However,
studies that recruited participants from the community, used
high resolution MRI with precise segmentation methods, and
adjusted for covariates reported smaller AD-specific brain
regions among AA participants compared to nHW (McDonough,
2017; Morris et al., 2019). In consideration with results
surrounding global neurodegeneration, this pattern suggests
that differences in the size of brain regions between AA
and nHW populations may be characteristic of those affected
by AD. However, longitudinal neuroimaging studies should
examine if such racial differences exist due to preclinical brain
region sizes, differences in brain resilience (how the brain
structurally or functionally copes with neuropathological insult
(Arenaza-Urquijo and Vemuri, 2018)), or both.

In contrast to results examining regional brain sizes in AA
populations, studies generally suggested that the brain regions
that are affected by AD are larger or similarly-sized in Hispanics
compared to nHW. These findings were consistent among the
studies that did not adjust for covariates (Minagar et al., 2000;
Brickman et al., 2008; Zahodne et al., 2015; Duara et al., 2019)
and those that did (DeCarli et al., 2008; Burke et al., 2018; Arruda
et al., 2020). Of the studies that reported confounder-adjusted
results, participants ranged in cognitive status. Based on these
results, it is possible that Hispanics exhibit larger preclinical
medial temporal lobe sizes compared to nHW, which contribute
to racial differences in patterns of neurodegeneration across the
natural history of AD. However, race-specific brain resilience
mechanisms should additionally be examined.

Findings related to sex differences indicated that women
exhibit less neurodegeneration compared to men independent
of race. This is consistent with previous results conducted in
largely white samples (Jack et al., 2015; Sundermann et al., 2016;
Ossenkoppele et al., 2020). This sex-specific finding was most
consistent among Hispanic women. Taken together with results
surrounding racial differences in neurodegeneration, it is possible
that compared to their aging counterparts, Hispanic women
exhibit more brain resilience to AD pathology. This may partially
explain the higher prevalence of AD among Hispanic women
relative to nHW. Hispanic women have higher life expectancies
than nHW women (Arias et al., 2015; Arias, 2016) and the
greatest risk factor for AD is advanced age (Jack et al., 2015). As
such, it may be that the brains of Hispanic women initially fare
better in the presence of AD-related neuropathological insults
relative to nHW women, but as a result, Hispanic women live
longer to experience more time at high risk of developing AD.

Cerebral Small Vessel Disease
Biomarkers
Of the 18 studies that examined cerebral small vessel disease,
12 measured white matter hyperintensities (Minagar et al., 2000;
Shadlen et al., 2006; Brickman et al., 2008; DeCarli et al.,
2008; Aggarwal et al., 2010; Zahodne et al., 2015; Gottesman
et al., 2016; Howell et al., 2017; Burke et al., 2018; Della-
Morte et al., 2018; Rizvi et al., 2018; Amariglio et al., 2020) and

eight measured ischemic lesions and other infarcts (Riudavets
et al., 2006; DeCarli et al., 2008; Wright et al., 2008; Aggarwal
et al., 2010; Wiegman et al., 2014; Zahodne et al., 2015; Morris
et al., 2019). These studies recruited cognitively normal, MCI,
and dementia participants from both ADRC and community.
Notable population-based study samples included The Northern
Manhattan Study (NOMAS), ARIC, CHAP, CHS, HABS, and
WHICAP. Sample sizes ranged from 135 to 2786 and average
ages of cohorts ranged from 70 to 80 years. Two of these
studies examined sex-related differences, and are reported in
the section “Sex Differences in cSVD Biomarkers by Race;”
sections “Racial Differences in White Matter Hyperintensities”
through “Racial Differences in Ischemic Lesions and Other
Infarcts” report race-related differences for both male and female
participants combined.

Racial Differences in White Matter Hyperintensities
These studies generally reported that relative to nHW, AA
populations display significantly greater WMH burden whereas
Hispanic populations display significantly less WMH burden.

Of the studies included, four reported significantly higher
WMH volumes in AA relative to nHW populations, three of
which were conducted in subsets of WHICAP. Among one
such WHICAP subset of 519 participants who ranged from
cognitively normal to AD, racial differences were detected
between AA and nHW participants such that relative to
nHW and Hispanic participants, AA showed greater average
WMH volumes throughout the brain after controlling for age,
education, and intracranial volume (Rizvi et al., 2018). AA
additionally exhibited relatively greater average WMH volumes
in the frontal, temporal, parietal, and occipital regions after
covariate adjustment. In another WHICAP analysis that included
638 participants with either normal cognition or MCI, AA
displayed mean WMH volume that was larger than that of
nHW (Zahodne et al., 2015); the effect size (Cohen’s d) of this
differences was 0.49. Finally, in the third WHICAP subset, among
702 participants with normal cognition and MCI, relative to
nHW race, being AA was associated with greater WMH volumes
independent of age, sex, and vascular disease (Brickman et al.,
2008). In addition to these findings from WHICAP, another
epidemiological study, NOMAS, reported that compared to
nHW, mean WMH volume in AA participants was larger after
adjustment for age, sex, health behaviors, BMI, and vascular risk
factors (Della-Morte et al., 2018). This cohort was comprised of
1229 older adults whose cognitive status were not reported.

In contrast, six other studies reported no racial differences
in WMH between AA and nHW populations. A study
from ARIC found that in a subset of 329 dementia-free
participants, AA exhibited average WMH volumes that were
not statistically different compared to nHW (Gottesman et al.,
2016). Additionally, DeCarli et al. (2008) found in an ADRC-
and community-based sample of 401 cognitively normal, MCI,
and dementia participants that AA or Hispanic race did not
significantly predict WMH volume in a model that also included
age, gender, education, and cognitive status. Similarly, in a
subsample of 296 cognitively normal HABS participants, AA had
average WMH volume that was not statistically different from
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nHW (Amariglio et al., 2020). Another ADRC- and community-
based study of 135 cognitively normal, MCI, an dementia
participants found no statistically significant differences between
AA and nHW WMH volumes (Howell et al., 2017). Among
575 CHAP participants, AA and nHW participants did not
significantly differ in WMH volume (Aggarwal et al., 2010).
Finally, using data from 2786 CHS participants, one study found
that among those with dementia, the same proportion of AA and
nHW participants had high WMH grades (Shadlen et al., 2006),
but this was not tested for statistical significance.

In studies that measured WMH in Hispanic populations, three
reported lesser burden among Hispanics compared to nHW.
One analysis using data from 519 WHICAP participants found
that in those ranging from cognitively normal to AD, Hispanics
exhibited smaller total WMH volume compared to nHW and
AA populations (Rizvi et al., 2018); this finding was independent
of age and education. This study also found that after covariate
adjustment, Hispanics displayed relatively smaller average WMH
volumes for the frontal, temporal, and occipital regions. Burke
et al. (2018) found in an ADRC-based cohort of 165 participants
ranging from cognitively normal to dementia that race was
significantly associated with visually-rated WMH volume such
that Hispanics exhibited smaller WMH volumes relative to nHW.
This was not explained by age, education, or geriatric depression
score. This group additionally reported that after covariate
adjustment, cognitively normal Hispanic participants displayed
smaller WMH volumes relative to nHW; the magnitude of
this difference increased with worsening cognition. Additionally,
among 1229 older adults whose cognitive status were not
reported in NOMAS, investigators reported that compared to
nHW, mean WMH volume in Hispanic participants was larger
after adjustment for age, sex, health behaviors, BMI, and vascular
risk factors (Della-Morte et al., 2018).

In contrast to these findings, two studies that included
cognitively normal and MCI participants from WHICAP
reported greater WMH volumes among Hispanics relative to
nHW. One of these subsets, which included 638 participants,
reported that Hispanics displayed mean WMH volume that larger
than that of nHW, with a detected effect size (Cohen’s d) of 0.28
(Zahodne et al., 2015). The other subset reported greater WMH
volume among Hispanics relative to nHW independent of age,
sex, and vascular disease (Brickman et al., 2008).

Finally, one group reported no difference in visually-assessed
WMH burden between Hispanics and nHW in a sample of 144
participants with AD reported (Minagar et al., 2000). Further,
Hispanic race did not predict WMH burden after controlling for
age, education, gender, MMSE score, and AD duration.

Racial Differences in Ischemic Lesions and Other
Infarcts
Studies of comparisons by race for ischemic lesions and infarcts
consistently reported a lack of statistically significant differences
between nHW and either AA or Hispanic participants.

In studies that measured such biomarkers among AA and
nHW populations, four found no racial differences. Among 575
CHAP participants who were classified as either having or not
having dementia, no significant difference was detected between

AA and nHW participants exhibiting more than one infarct
(Aggarwal et al., 2010). Another community-based sample with
1255 participants ranging from cognitively normal to AD found
that the proportion of AA participants who displayed lesions
was not statistically different than that of nHW (Morris et al.,
2019). DeCarli et al. (2008) found in an ADRC- and community-
based cohort of 401 participants that subcortical infarcts did
not vary significantly between AA and nHW after adjustment
for age, gender, education, and cognitive status. Additionally,
in a subset of 638 WHICAP participants that only included
those with normal cognition and MCI, the proportion of AA
participants with infarcts did not differ significantly than that
of nHW (Zahodne et al., 2015). In another WHICAP subset of
243 participants ranging from cognitively normal to dementia,
Wiegman et al. (2014) reported that the same proportion of AA
and nHW participants exhibited at least one microbleed, though
this was not formally tested for statistical significance.

Of exception, two studies reported significant differences
between AA and nHW in ischemic lesion burden. In both of these
studies, prevalence of infarcts in AA participants was greater than
that of nHW participants (Wright et al., 2008; Qiao et al., 2016).
Analyses from NOMAS found that among 656 participants,
prevalence of at least one lesion was higher in AA participants
(22%) compared to nHW participants (14%) (Wright et al., 2008).
In a subsample of 1755 ARIC participants, investigators reported
that 41% of AA participants and 32% of nHW participants
exhibited at least one infarct (Qiao et al., 2016). Neither of these
studies reported participant cognitive status.

In terms of infarct or lesion comparisons between Hispanics
and nHW, no study reported statistically significant differences
(DeCarli et al., 2008; Wiegman et al., 2014; Zahodne et al., 2015).
One study from WHICAP that restricted to 638 participants with
normal cognition or MCI, reported that Hispanics and nHW
did not differ in the proportion of participants with infarcts
(Zahodne et al., 2015). DeCarli et al. (2008) also found that
subcortical infarcts did not vary significantly between nHW
and Hispanics in a community- and ADRC-based study after
adjusting for age, gender, education, and clinical diagnosis. In a
another subset of WHICAP with 243 participants ranging from
normal cognition to dementia, Wiegman et al. (2014) reported
that relative to nHW, the proportion of Hispanics who had at
least one microbleed did not significantly differ.

Studies included this review found that both AA and Hispanic
race modified the relationship of cSVD on cognition such
that minorities exhibited worse cognition than nHW at similar
levels of burden. For example, one community- and ADRC-
based study revealed an interaction between race and WMH
volume such that WMH was associated with greater cognitive
impairment in AA compared to nHW participants (Howell
et al., 2017). Additionally, in a subset of CHS participants,
Shadlen et al. (2006) found that infarcts were more strongly
associated with dementia in AA participants compared to
nHW. In contrast, analyses from CHAP revealed that the
rate of cognitive decline with increasing WMH volume did
not differ between nHW and AA (Aggarwal et al., 2010).
However, nHW participants consistently displayed better global
cognition compared to AA. Finally, one ADRC-based study
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found that cognitive impairment in Hispanics was worse at
similar levels of visually-assessed WMH burden compared to
nHW (Burke et al., 2018).

Sex Differences in cSVD Biomarkers by Race
Two studies assessed measurements of cSVD by sex and race.
In a subsample of 702 WHICAP participants, among those
with normal cognition and MCI, sex was not associated with
WMH volume (Brickman et al., 2008). Additionally, there
were no significant sex-by-race interactions for WMH. The
other study that reported sex-by-race differences, a post-mortem
analysis that did not report participants cognitive status, found
varying sex differences by race as related to brain infarcts
and lacunes (Riudavets et al., 2006). Among AA participants,
26% of women and 16% of men exhibited infarcts or lacunes.
However, in nHW participants, 16% of women and 26% of
men exhibited such lesions; this was not formally tested for
statistical significance.

Summary and Synthesis
Before discussing results surrounding race-related differences
in cSVD burden, it should be noted that the majority of
comparisons for these biomarkers were conducted without
covariate adjustment (Figure 2). Further, of those that
did adjust for confounders, many did not control for
cardiovascular risk factors (DeCarli et al., 2008; Burke
et al., 2018; Rizvi et al., 2018). In addition to being risk
factors for cSVD (Babulal et al., 2019), incidence and
prevalence rates of cardiovascular diseases differ between
races (Alzheimer’s Association, 2019) and sexes (Mozaffarian
et al., 2015). Thus, some estimates of race and sex-by-
race-related differences of cSVD may be biased due to
unmeasured confounding.

Overall, findings for group differences in WMH between
AA and nHW participants were mixed. Notably, the studies
that reported no significant racial differences did not adjust
for other covariates (Aggarwal et al., 2010; Gottesman et al.,
2016; Howell et al., 2017; Amariglio et al., 2020). In contrast,
those that reported relatively greater WMH in AA populations
accounted for confounders in their analyses (Brickman et al.,
2008; Della-Morte et al., 2018; Rizvi et al., 2018); these
studies are further strengthened by having been conducted
in large epidemiological cohorts. However, because they only
represent two cohorts, both from Manhattan, New York, the
findings may not generalize to other populations. Thus, the
true magnitude of racial differences is likely not captured by
these studies.

Results related to WMH burden in Hispanic populations
consistently suggested that Hispanics exhibit lower WMH than
nHW. While three studies found either no differences or greater
burden in Hispanics, these findings may be influenced by lack of
covariate adjustment (Zahodne et al., 2015) or, as the authors note
in Minagar et al. (2000), the use of semiquantitative assessments
with limited sensitivity.

In terms of comparisons between AA and nHW, only
two studies that measured infarcts or lesions reported
significant findings when comparing AA and nHW

participants; in both studies, AA showed more frequent
lesions and infarcts compared to nHW (Wright et al.,
2008; Qiao et al., 2016). These findings are consistent with
those that found greater WMH burden in AA populations
relative to nHW and are further strengthened by having
been uncovered in two large epidemiological studies,
NOMAS and ARIC. In contrast, no studies that compared
lesions or infarcts between Hispanics and nHW reported
significant differences.

Previous work has found that female sex is associated
with greater presence of lacunes and progression of WMH
(van Dijk et al., 2008). This was not reflected in the
WHICAP cohort, which found that women and men
exhibited similar average volume of WMH (Brickman
et al., 2008). In contrast, Riudavets et al. (2006) did report
greater prevalence of infarcts and lacunes in women, but
only in the AA populations. However, this comparison was
not formally tested for significance, and thus, should be
interpreted cautiously.

Several studies additionally reported a differential association
of cSVD and cognition based on race; AA and Hispanic
populations both exhibited worse cognitive function at similar
burden of cSVD, indicating worse cognitive resilience to such
pathology. These findings are particularly relevant for minority
women as previous work has suggested that progression of
WMH in women is faster than that in men (van Dijk et al.,
2008). Thus, AA and Hispanic women may face higher risk
of quickly-progressing cSVD coupled with relatively worse
cognitive outcomes in its presence.

DISCUSSION

There is currently a limited number of studies that have examined
ADRD pathology between races; there are even fewer that
have done so by both race and sex. Despite this, we found
evidence that greater prevalence of clinical ADRD among AA
populations may be driven in part by more severe AD region-
specific neurodegeneration and cSVD compared to other races.
These findings were consistent in population-based studies
among participants with varying cognitive status. However,
we also found that both Hispanic populations and women
show less severe pathology relative to nHW populations and
men, respectively; both Hispanics and women exhibit relatively
less neurodegeneration in regions affected by AD and cSVD.
Thus, differences in neurodegeneration and cSVD on their
own likely do not capture the full picture of sex-by-race
differences in ADRD.

We did not find that minorities exhibited worse risk profiles
for amyloid and tau pathology relative to nHW. Sex-by-race
differences in Aß were additionally inconsistent. Although
weak, there was some evidence for sex differences in tau
severity such that a greater proportion of AA and nHW
women exhibited more advanced tauopathy compared to men
of their same race. This finding is consistent with results
from largely nHW cohorts (Buckley et al., 2019; Ossenkoppele
et al., 2020), implying that female sex may be associated
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with greater tau burden independent of race. Given that
tau is neurodegenerative (Spillantini and Goedert, 2013), it
follows that women should experience more atrophy in regions
affected by such protein aggregation. However, as noted above,
women generally show less AD-related neurodegeneration than
men. Thus, it may be that independent of race, women
exhibit better brain resilience than men in the face of
tau accumulation.

Minorities also consistently showed worse cognition relative
to nHW in the presence of comparable ADRD pathology,
including Aß and cSVD. While the studies that reported these
race-related differences did not additionally stratify by sex,
previous work has found a similar pattern among women.
At comparable levels of Aß deposition, women exhibit worse
cognition relative to men (Gamberger et al., 2017; Koran
et al., 2017). Others have found that among those with cSVD,
women decline more quickly than men (van Dijk et al., 2008).
Considering both lines of research, these findings suggest that
minority women may be at especially high risk of cognitive
decline in the presence of more than one neuropathological
insult related to ADRD. It should be noted that while
cognitive decline is highly correlated with cSVD in older adult
populations (Prins and Scheltens, 2015), it is generally not
strongly associated with Aß aggregation directly. Rather, severity
of clinical AD symptomatology correlates more strongly with
neurodegeneration caused by tau accumulation (Hedden et al.,
2013; LaPoint et al., 2017; Jansen et al., 2018; Maass et al.,
2018). Thus, it is possible that despite potentially exhibiting
more tau and less neurodegeneration than men of their same
race (e.g., more brain resilience), minority women are more
cognitively vulnerable to neuropathological insult compared
to both men and nHW populations (e.g., worse cognitive
resilience), which may partially explain their relatively higher
prevalence of ADRD.

There is a growing body of evidence that suggests pathological
and clinical presentation of ADRD differ between men and
women (Jack et al., 2015; Sundermann et al., 2016; Ferretti
et al., 2018; Buckley et al., 2019; Ossenkoppele et al., 2020).
Results of this review indicate that race may additionally
alter these sex differences, potentially supporting emerging
evidence of greater ADRD prevalence among AA and Hispanic
women compared to other older adults (Matthews et al., 2019).
Whether race functions additively or multiplicatively with sex
on ADRD pathology, and further, downstream symptomatology,
is currently unclear. This gap in knowledge is due to the small
number of studies that have examined ADRD biomarkers by
both race and sex. As such, sites with existing biomarker and
cognitive outcomes in racially diverse cohorts should consider
conducting additional analyses on their data by (1) testing sex-
by-race interactions on pathology and cognition or (2) stratifying
by both sex and race and making biomarker and cognition
comparisons accordingly.

In terms of future data collection, investigators should
aim to recruit more racially diverse cohorts from which
ADRD biomarkers, cognition, and risk factors can be
measured, and sex-by-race analyses can be conducted;
relating biomarker and cognitive outcomes to risk factors

may help identify differential ADRD mechanisms in minority
women. Additionally, recruiting minority participants who
are representative of the target population will increase the
generalizability of study results. There is also a need for serial
biomarker measurements in these populations as all studies
included in this review were cross-sectional. As such, they
provide limited insight into the natural history of ADRD
in AA and Hispanic populations. Still, the data examined
herein suggests potentially altered trajectories of ADRD
progression in minorities and further, minority women. Finally,
it should be noted that investigators have reported difficulty
with recruiting minorities for neuroimaging and CSF studies
(Morris et al., 2019; Amariglio et al., 2020). Thus, designing
studies around emerging blood-based biomarkers, which
are less invasive, may circumvent this obstacle, allowing for
more generalizable samples and better retention rates in
longitudinal studies. Such steps to better characterize ADRD
pathology and its progression in minority women, especially
in the context of the AT(N) framework, should inform better
diagnostic and therapeutic techniques, ultimately benefiting
those potentially most at risk.

In summary, through this review, we identified that women
may exhibit more tau, but less neurodegeneration than men,
independent of race. We additionally found that women are
more likely to show relatively worse cognition at similar levels
of pathology load. Thus, women of all races may have lower
cognitive resilience to ADRD neuropathological insult compared
to men, despite also possessing higher brain resilience. While
race likely alters these sex differences, the specific mechanism
and magnitude of this effect is currently unknown. Future studies
should aim to fill this gap in knowledge by recruiting more
diverse and representative cohorts, comparing ADRD biomarker
severity by both race and sex, and collecting relevant risk factor
and cognitive data.
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Human brain white matter undergoes a protracted maturation that continues well
into adulthood. Recent advances in diffusion-weighted imaging (DWI) methods allow
detailed characterizations of the microstructural architecture of white matter, and
they are increasingly utilized to study white matter changes during development and
aging. However, relatively little is known about the late maturational changes in the
microstructural architecture of white matter during post-adolescence. Here we report on
regional changes in white matter volume and microstructure in young adults undergoing
university-level education. As part of the MRi-Share multi-modal brain MRI database,
multi-shell, high angular resolution DWI data were acquired in a unique sample of 1,713
university students aged 18–26. We assessed the age and sex dependence of diffusion
metrics derived from diffusion tensor imaging (DTI) and neurite orientation dispersion
and density imaging (NODDI) in the white matter regions as defined in the John Hopkins
University (JHU) white matter labels atlas. We demonstrate that while regional white
matter volume is relatively stable over the age range of our sample, the white matter
microstructural properties show clear age-related variations. Globally, it is characterized
by a robust increase in neurite density index (NDI), and to a lesser extent, orientation
dispersion index (ODI). These changes are accompanied by a decrease in diffusivity.
In contrast, there is minimal age-related variation in fractional anisotropy. There are
regional variations in these microstructural changes: some tracts, most notably cingulum
bundles, show a strong age-related increase in NDI coupled with decreases in radial
and mean diffusivity, while others, mainly cortico-spinal projection tracts, primarily show
an ODI increase and axial diffusivity decrease. These age-related variations are not
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different between males and females, but males show higher NDI and ODI and lower
diffusivity than females across many tracts. These findings emphasize the complexity of
changes in white matter structure occurring in this critical period of late maturation in
early adulthood.

Keywords: MRI, diffusion, white matter, DTI, NODDI, post-adolescence, cohort, cross-sectional

INTRODUCTION

Early adulthood is characterized by significant changes in lifestyle
and behavior for many, when individuals explore their identity
and various life possibilities to become fully independent. For
some, it involves the attainment of higher education and training
to acquire new skills and knowledge necessary for their planned
vocation. Although the most dramatic development in the human
brain takes place earlier in life, with the total brain volume
reaching 90% of the adult volume by the age of 5 years (Dekaban,
1978; Lenroot and Giedd, 2006), both global and regional changes
in brain structure and function persist throughout childhood
and adolescence, and some of the maturational changes continue
well into adulthood (Dumontheil, 2016). In particular, the
white matter (WM) of the brain shows a protracted course of
development, with its total volume continuing to increase up to
the fourth or fifth decade of life (Walhovd et al., 2011; Lebel
et al., 2012). The development of WM microstructure is also
sensitive to common life experiences in young adults, including
exposure to alcohol and tobacco, and other recreational drugs
(Bava et al., 2013; Gogliettino et al., 2016; Silveri et al., 2016),
changes in sleep patterns (Elvsåshagen et al., 2015; Telzer et al.,
2015), and intensive motor and cognitive training (Scholz et al.,
2009; Lövdén et al., 2010; Mackey et al., 2012; Schlegel et al.,
2012; Lakhani et al., 2016). Detailed characterization of the late
maturational processes of the WM in young adults is crucial
for elucidating how the learning and other life experiences may
shape the structural and functional organization of the brain
through their impact on the brain wiring. Understanding the
normative development during this period may also shed light
on the vulnerability of this particular period in life to various
neuropsychiatric disorders, such as substance abuse, mood and
anxiety disorders (Kessler et al., 2007).

What we know about normative WM development primarily
comes from non-invasive neuroimaging of typically developing
individuals with magnetic resonance imaging (MRI). In addition
to the macro-structural changes that can be measured with T1-
weighted images, diffusion-weighted imaging (DWI) methods
allow detailed characterizations of the WM microstructural
properties. Over the past two decades, studies using DWI
have provided much insight into the WM microstructural
changes during development (reviewed in Lebel and Deoni, 2018;
Tamnes et al., 2018; Lebel et al., 2019). The majority of these
studies quantify DWI through a diffusion tensor imaging (DTI)
model representing the direction and magnitude of diffusion
of tissue water molecules as a single tensor in each voxel
(Tournier et al., 2011). Most commonly, fractional anisotropy
(FA), which measures the degree of diffusion directionality,
is used to quantify maturational changes, with an increase

in FA attributed to myelination and increased axonal size or
packing. Other DTI measures include axial and radial diffusivity
(AD/RD), representing diffusion along the longest and shortest
axis, respectively, of the tensor modeled in each voxel, and
mean diffusivity (MD), representing the average magnitude of
diffusion. Across studies, FA increases and overall decreases in
diffusivity with increasing age are observed in most WM regions
through childhood and adolescence (e.g., Bonekamp et al., 2007;
Lebel et al., 2008; Giorgio et al., 2010; Tamnes et al., 2010; Lebel
and Beaulieu, 2011; Brouwer et al., 2012; Simmonds et al., 2014;
Pohl et al., 2016). In a large-scale, multi-cohort study, we have
recently demonstrated that such changes continue up to early to
mid-adulthood (Beaudet et al., 2020).

However, being a “signal” based model, the DTI model only
describes the diffusion process in each voxel and does not
attempt to delineate signals attributable to different biological
tissue components (Ferizi et al., 2017). Thus, changes in DTI
metrics only indicate alterations in magnitude or directionality of
diffusivity, and different biological processes that affect diffusion
properties of the tissue cannot be distinguished (Jones et al.,
2013). More concretely, FA can be increased due to myelination
or increased axonal packing but would decrease with increasing
fiber population complexity (e.g., crossing fibers). In contrast,
“tissue” based models attempt to estimate the components of
underlying tissue, typically using DWI acquisitions with multiple
b-values, and likely provide more biologically specific insights
(Alexander et al., 2019). One such model is neurite orientation
dispersion and density imaging (NODDI), which models three
tissue compartments (intra- and extra-cellular and cerebrospinal
fluid). It estimates separate indices for neurite density (neurite
density index, NDI) and fiber orientation complexity (orientation
dispersion index, ODI), together with the isotropic volume
fraction (i.e., cerebrospinal fluid compartment, IsoVF) (Zhang
et al., 2012). Several recent studies have used NODDI to examine
developmental changes in the WM microstructural properties
through infancy (Jelescu et al., 2015; Dean et al., 2017), childhood
to adolescence (Genc et al., 2017; Mah et al., 2017; Dimond
et al., 2020; Lynch et al., 2020). These studies have indicated an
age-related increase in NDI, with very little change observed in
ODI in the first two decades of life (Mah et al., 2017; Dimond
et al., 2020; Lynch et al., 2020), although studies covering a
wider age range indicate that ODI in many WM tracts starts to
increase in early adulthood (Chang et al., 2015; Slater et al., 2019).
Nevertheless, a large-scale study focusing on the period of early
adulthood to detail the late maturational changes in regional WM
properties is still lacking.

In the present study, we characterize variations in WM-
related metrics, including regional volumes and microstructural
properties measured using both DTI and NODDI, in the
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MRiShare database, a large cross-sectional cohort of young
adults undergoing university-level education (Tsuchida et al.,
2020). This study’s primary goal is to document the age-related
variations in the regional WM properties in this cohort. We also
report on the interrelations among the age effects on different
WM metrics in an effort to better understand biophysical
processes underlying the late maturational changes in the WM.
The secondary goal is to gain much-needed insights into the
sexual dimorphism of developmental processes (Lebel et al.,
2019) by investigating the effects of sex on these WM metrics and
their age-related variations.

MATERIALS AND METHODS

Participants
The MRi-Share study protocol was approved by the local
ethics committee (CPP2015-A00850-49). All participants
were recruited through the larger i-Share cohort study
(for internet-based Student Health Research enterprise).1

Participants signed an informed written consent form and
received compensation for their contribution. Out of 2,000
individuals who were enrolled between October 2015 and June
2017, 1,823 completed the MRI acquisition protocol for both
structural (T1-weighted and FLAIR) and diffusion imaging.
While the study protocol allowed enrollment of students
up to 35 years of age, almost 95% of our sample was under
26 years old. In this study, we present the estimated age effect
on WM metrics in the sub-sample of participants aged 18–26
(mean ± SD = 21.7 ± 1.8 years, N = 1,713). Age distribution
was similar in males (mean ± SD = 21.9 ± 1.8 years, N = 467)
and females (mean ± SD = 21.7 ± 1.7 years, N = 1,246), with
only a marginal difference in their mean (2 months difference in
age, p = 0.066, Welch’s t-test). The higher proportion of females
relative to males in MRi-Share is a feature observed among
university students at the French national level that is amplified
in the i-Share cohort due to an over-recruitment of students
coming from faculties in which an even greater proportion of
women are observed.

MRI Acquisition
The complete MRi-Share brain imaging acquisition and analysis
protocols of the MRi-Share study have been detailed in Tsuchida
et al. (2020). Briefly, all MRI data were acquired on the
same Siemens 3T Prisma scanner with a 64-channels head
coil (gradients: 80 mT/m–200 T/m/s) in the 2 years between
November 2015 and November 2017. The MRi-Share acquisition
protocol closely emulated that of the UKB MR brain imaging
study (Alfaro-Almagro et al., 2018), in terms of both modalities
and scanning parameters, with the exception of task-related
functional MRI that was not acquired in MRi-Share participants.
Here, we will focus on the MRi-Share structural (T1 and T2-
FLAIR) and DWI brain imaging protocol. The key acquisition
parameters for these scans were as follows;

1www.i-share.fr

- T1-weighted sagittal 3D-MPRAGE [repetition time
(TR)/echo time (TE)/inversion time (TI) = 2,000/2.0/880
ms, in-plane acceleration factor (R) = 2, spatial
resolution = 1 × 1 × 1 mm3 isotropic, matrix
size = 192× 256× 256, duration = 4 min 54 s].

- T2-weighted sagittal 3D-SPACE-FLAIR
[TR/TE/TI = 5,000/394.0/1,800 ms, R = 2, partial Fourier
(PF) = 7/8, spatial resolution = 1 × 1 × 1 mm3 isotropic,
matrix size = 192× 256× 256, duration = 5 min 50 s].

- 2D axial DWI (multi-band factor = 3, TR/TE = 3,540/75.0
ms, R = 1, PF = 6/8, fat-saturation, spatial resolution = 1.75
× 1.75× 1.75 mm3 isotropic, matrix size = 118× 118× 84,
duration = 9 min 45 s).

For the DWI we acquired 8, 32, and 64 directions each for
b-values 300, 1,000, and 2,000 s/mm2, respectively, and acquired
eight pairs of b = 0 images acquired in Anterior-Posterior (AP)
and the reverse PA phase encoding, interleaved during the b > 0
acquisition. The spatial resolution of the DWI was 1.75× 1.75×
1.75 mm3 isotropic, which was slightly better than that of UKB (2
× 2× 2 mm3 isotropic).

Image Processing
The acquired images were managed and processed with the
Automated Brain Anatomy for Cohort Imaging platform
(ABACI, IDDN.FR.001.410013.000.S.P.2016.000.31235; details
in Tsuchida et al., 2020). Below we briefly describe the
processing steps in each pipeline pertaining to the generation
of the JHU atlas ROI image-derived phenotypes presented in
the current paper.

T1 and T2-FLAIR Structural Pipeline
Our structural pipeline processed T1 and FLAIR images
for multi-channel volume- and surface-based morphometry,
primarily with SPM122 and Freesurfer v6.0.3 For generating the
regional WM volumes based on JHU atlas, we used the Jacobian-
modulated WM probability map (1 mm isotropic) outputted by
the “Unified Segmentation” framework (Ashburner and Friston,
2005) in the SPM-based volume processing branch of our
pipeline (for details, see Tsuchida et al., 2020). The same Jacobian-
modulated WM map was also used to obtain the total WM
volume (TWMV). We also obtained the total intracranial volume
(TIV) estimate based on the Freesurfer-branch of our pipeline.

Field Map Generation Pipeline
As in the UKB (Alfaro-Almagro et al., 2018), we estimated the
fieldmap images from the b = 0 images with opposing AP-PA
phase-encoding directions from DWI scans rather than from
“traditional” fieldmaps based on dual echo-time gradient-echo
images. We used all eight pairs of AP/PA b = 0 images that
were interspersed in the DWI scan to estimate the susceptibility
induced field and motion across the interspersed b = 0 scans using
the topup tool (Andersson et al., 2003) from the FMRIB Software
Library (FSL, v5.0.10).4 The resulting subject motion parameters

2https://www.fil.ion.ucl.ac.uk/spm/
3http://surfer.nmr.mgh.harvard.edu/
4https://fsl.fmrib.ox.ac.uk
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and the estimate of susceptibility induced off-resonance field
were passed to the DWI pipeline. It also generated the brain mask
based on the average distortion-corrected b0 maps, also used for
the distortion corrections in the DWI pipeline.

Diffusion MRI Pipeline
A detailed description of the preprocessing steps of DWI is
provided by Tsuchida et al. (2020). Briefly, the DWI data were
first corrected for susceptibility and eddy-current distortion
using the FSL Eddy tool, with replacement of outlier slices
(eddy_openmp as implemented in FSL v5.0.10 patch; Andersson
et al., 2016; Andersson and Sotiropoulos, 2016) and denoised
by applying non-local means filter using “nlmeans” denoising
tool (Coupe et al., 2008, 2011) as implemented in the Dipy
package (0.12.0; Garyfallidis et al., 2014).5 The resulting image
was then used to fit (1) DTI (Diffusion-Tensor Imaging; Basser
et al., 1994) modeling and (2) microstructural model fitting with
NODDI (Neurite Orientation Dispersion and Density Imaging;
Zhang et al., 2012). For fitting DTI, volumes with the highest
b-value (b = 2,000 s/mm2) were stripped from the data, as the
accuracy of the fit starts to decrease above b = 1,000 s/mm2

(Jensen and Helpern, 2010). Note that it still used multi-shell
data, using volumes with both b = 300 and 1,000 s/mm2 in
addition to b = 0 images. The diffusivity maps were further
cleaned by removing diffusivity value outliers using Random
Sample Consensus (RANSAC) approach (Choi et al., 2009), as
implemented in the scikit-learn package (0.19.1).6 The denoising,
DTI computation, and the RANSAC outlier removal were
performed by wrapping Scipy scripts, developed by Sherbrooke
Connectivity Imaging Lab.7 For NODDI, the full set of multi-
shell data was used for the fitting. We also used the empirical
values of cohort-specific isotropic and parallel diffusivity as the
dPar and dIso parameters for fitting NODDI (set to 1.5 × 10−3

and 2.4 × 10−3 mm2/s, respectively), which were obtained by
computing the mean MD within lateral ventricles and mean
AD within the corpus callosum in individual T1 space for
each subject. The preprocessing and DTI fitting were performed
using tools from FSL and the Dipy package, while the AMICO
(Accelerated Microstructure Imaging via Convex Optimization)
tool (Daducci et al., 2015) was used for NODDI fitting. For each
participant, the DWI processing pipeline produced seven images
in native space: fractional anisotropy (FA), mean, axial, and radial
diffusivity (MD, AD, and RD), based on DTI modeling, neurite
density index (NDI), orientation dispersion index (ODI), and
isotropic volume fraction (IsoVF), derived from NODDI.

Generation of JHU Atlas Region WM Phenotypes
We used the JHU ICBM-DTI-81 white matter labels atlas (Mori
et al., 2008; Oishi et al., 2008) to generate regional phenotypes
for each of the following metrics: regional WM volume and mean
values for 4 DTI (FA, MD, AD, and RD) and 3 NODDI (NDI,
ODI, and IsoVF) metrics. We used the atlas packaged with FSL
v5.0.10, which does not have the orientation or labeling issues

5https://dipy.org
6https://scikit-learn.org/stable/index.html
7https://scilpy.readthedocs.io/en/latest/

noted in other versions (Rohlfing, 2013) but is missing medial
longitudinal fasciculus and inferior fronto-occipital fasciculus
ROIs described by the authors of the atlas (Mori et al., 2008).
We extracted the WM volume and mean DTI/NODDI values
for 48 ROIs in this atlas, but in the absence of strong evidence
for the hemispheric asymmetry in the age-related changes (Lebel
and Beaulieu, 2011; Slater et al., 2019; Dimond et al., 2020), we
combined values across the right and left hemispheres for the 21
pairs of ROIs present in each hemisphere by taking the average
between the pair of ROIs, which were weighted by the respective
volumes of each ROI in the case of DTI/NODDI metrics,
to reduce the number of comparisons. Table 1 provides the
abbreviations of ROIs used in the figures and tables throughout
the manuscript, and Figure 1 presents the locations of these
ROIs. They are organized according to the broad classification
used by the author of the atlas: (1) tracts in the brainstem,
(2) projection fibers, (3) association fibers, and (4) commissural
fibers (Mori et al., 2008).

For extracting the regional DTI and NODDI values, we first
computed the rigid transform for aligning DTI and NODDI maps
to the native T1 reference space (1 × 1 × 1 mm3 isotropic)
with the SPM12 “Coregister” function. This transform was then
aggregated with the deformation field generated in the structural
pipeline to transform DTI/NODDI maps in the native DWI
space to the standard template space in one step, using the
SPM12 “Normalize” function. When computing the mean values
within each of the 48 ROIs, we used the subject-specific, spatially
normalized WM probability map, thresholded at 0.5, as an
inclusive mask. It ensured that the mean values were computed
within regions that are primarily WM, and minimized the partial
volume effects from the surrounding non-WM tissues. Figure 2
provides the example images of WM tissue map and DTI/NODDI
maps from a representative subject, with the outlines of JHU
ROIs to show the quality of alignment.

Quality Control
A detailed description of the quality control (QC) procedure for
image analysis is provided in Tsuchida et al. (2020). Briefly, all
structural scans were reviewed by one of the three experienced
MD investigators of the MRiShare study to check for major
artifacts or structural abnormalities before processing. During
image processing of the structural or DWI pipelines, pipeline-
specific QC images were generated for each subject. For the
structural pipeline that generated reference T1 images for other
modalities, a trained rater (N.B.) reviewed individual subject-
specific QC images for each step of the processing for all
subjects and verified that the quality of the SPM-based tissue
segmentation and spatial normalization were satisfactory. For
the DWI pipeline, a number of subject-specific QC images
and quantifiable QC metrics mainly related to the quality
of DWI data were generated (see Supplementary Material).
Additional QC metrics for the spatial normalization were
extracted by computing the image similarity of individual WM
tissue probability map and DTI and NODDI scalar maps to
the cohort-average maps, using Fisher z-transformed Pearson’s
correlation r between the two images. Two investigators (A.T.
and L.P.) identified and reviewed the subject-specific QC images
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TABLE 1 | Abbreviations of JHU atlas ROI names.

ROI name Abbreviation Hemisphere side ROI name Abbreviation Hemisphere side

Brainstem Association

Middle cerebellar peduncle MCP Both Fornix FX Both

Pontine crossing tract PCT Both Fornix cres or stria terminalis FX/ST Right/Left

Corticospinal tract CST Right/Left Cingulum cingulate gyrus CgC Right/Left

Medial lemniscus ML Right/Left Cingulum hippocampus CgH Right/Left

Superior cerebellar peduncle SCP Right/Left Superior fronto-occipital fasciculus SFO Right/Left

Inferior cerebellar peduncle ICP Right/Left Superior longitudinal fasciculus SLF Right/Left

Projection External capsule EC Right/Left

Anterior corona radiata ACR Right/Left Uncinate fasciculus UNC Right/Left

Superior corona radiata SCR Right/Left Sagittal stratum SS Right/Left

Posterior corona radiata PCR Right/Left Commissural

Anterior limb of the internal capsule ALIC Right/Left Genu corpus callosum GCC Both

Posterior limb of the internal capsule PLIC Right/Left Body corpus callosum BCC Both

Retrolenticular part of the internal capsule RLIC Right/Left Splenium corpus callosum SCC Both

Posterior thalamic radiation PTR Right/Left Tapetum TAP Right/Left

Cerebral peduncle CP Right/Left

for those with extreme values in any of the QC metrics, but
none of them showed any obvious signs of noticeable problems
in the raw DWI or the scalar DTI and NODDI maps and their
spatial normalization, except in a few cases where midsagittal
plots of the raw DWI revealed a zig-zag pattern indicative of the
within-volume motion in a few volumes.

Similarly, we checked the group-level distributions at the
level of individual phenotypes for any missing values and the
extreme outliers. Four subjects did not have any volumetric or
DTI/NODDI values for fornix (FX), as the WM probability map
did not overlap with this small ROI in the standard space. For the
same reason, one subject was missing data for the tapetum (TAP).
In addition, for corticospinal tract (CST; n = 4) and inferior
cerebellar peduncle (ICP; n = 6) ROIs, mean DTI/NODDI values
were not computed in the pipeline since these ROIs extended
beyond the bounding box of the DWI-derived images in the
standard space. Beyond these missing data, the extreme outliers
were rare, and each phenotype was roughly normally distributed.
Exceptions were some ROIs, in particular those surrounded by
cerebrospinal fluid and/or relatively small ROIs (e.g., FX, TAP,
brainstem ROIs), which had slightly skewed distributions, most
likely caused by slight misalignments in DWI-derived images and
structural images in standard space.

We checked for the impact of both phenotypic and QC metric
outliers by removing the “far out” outliers (Tukey, 1977), defined
as those with values below or above three times interquartile
range (IQR) from the first or third quartile, respectively, for
either the individual phenotype or any of the quantitative QC
metrics. In addition to the phenotypic and QC metric outlier
removal, we investigated the effect of including a global image
quality metric as a covariate in the model. For the WM volume,
we used the Euler number computed by Freesurfer that has
been shown to be consistently correlated with the manual rating
of the quality of the structural image (Rosen et al., 2018). For
the DWI-based metrics, we used the mean relative RMS of the
volume to volume displacement that quantifies the in-scanner

motion since a recent study has demonstrated that both DTI and
NODDI mean values were impacted by this QC metric (Pines
et al., 2020). However, the effects of outliers or inclusion of these
global quality metrics on the analyses were relatively minor (see
Supplementary Material). For simplicity, here we report the
results without any outlier removal, with total sample size of
1,713 for all ROI-metric combinations, except for FX (N = 1,709),
TAP (N = 1,712), CST (N = 1,709), and ICP (N = 1,707) ROIs.

Statistical Analysis
The primary goal of the present manuscript is to describe
the age-related variations in the regional WM volumes and
microstructural properties in young adults. Although not our
primary focus, we included sex as a covariate, and report the
global pattern, mainly to characterize any overall differences
between the two sexes at this age range and to examine any sex
dependency in the observed age effects by including age by sex
interaction term. Given our sample’s narrow target age range,
we expected most of the age-related variations in the volumetric
and diffusion metrics to be captured by a linear age model.
Indeed, the inspection of raw scatter plots (see Supplementary
Material) did not suggest any ROIs showing any clear non-linear
patterns of age-dependency. Also, a preliminary comparison of
models with and without quadratic age effect to capture any
non-linear trend showed that linear age effect models were
sufficient for each metric and ROI combinations, as judged by
the Bayesian information criterion (BIC; data not shown). Thus,
for all metrics, we tested the following model;

Y ∼ α + βAgeAge + βSexSex + βAge×SexAge× Sex

We also checked the consistency of the reported age effect
estimates on the regional WM volumes when correcting for
the global volume (TIV), and in the case of the DTI/NODDI
metrics, examined the effects of correcting for both the
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FIGURE 1 | Illustration of JHU ROIs used in the analysis. Locations of the 27 ROIs (6 medially located plus 21 pairs of ROIs in each hemisphere) from the JHU
ICBM-DTI-81 white matter labels atlas are shown in the glass brain for each broad group; (A) brainstem, (B) projection, (C) association, and (D) commissural fibers.
See Table 1 for the full ROI name corresponding to the abbreviations in the figure.

global (TIV) and regional (ROI) volumes, and report them in
Supplementary Material.

In an effort to better understand biophysical processes
underlying the late maturational changes in the WM, we
performed an exploratory analysis of the interrelations among

the age effect estimates of the WM metrics. For this, we first
computed the standardized parameter estimates (β∗) of the age
effect for each of the eight WM metrics across the 27 ROIs,
and calculated pairwise Pearson’s correlations between the β∗

values in the 27 ROIs for given metrics (e.g., FA vs. NDI, NDI
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FIGURE 2 | Examples of the WM tissue map and DTI/NODDI maps from a representative subject in the stereotaxic space. A selected axial slice from (A) the
Jacobian-modulated WM tissue map, (B) FA, (C) MD, (D) AD, (E) RD, (F) NDI, (G) ODI, (H) IsoVF maps in the stereotaxic space is shown for a representative
subject. Outlines of the JHU ICBM-DTI-81 white matter labels atlas are shown for each image to show the quality of the alignment.

vs. ODI, etc.). Note that it quantifies the correlation between
the estimates of age effects across the 27 ROIs, and not the
raw correlations between metric values in the ROIs, although
perfect correlations in the underlying raw data would result in
the perfect correlations in the estimated effects of age and sex as
well. That is, if two metrics measure a single property of WM
and are perfectly correlated, the age or sex effect estimates for
such hypothetical metrics would also be perfectly correlated. In
reality, if two metrics represent related but distinct properties that
are differentially sensitive to age or sex, correlation structures for
the respective effects would be different. To illustrate this point,
we also present a similar correlation structure for the estimated
mean values in the ROIs across the sexes (to account for the fact
that the age effect estimates also represent the value across both
sexes) using the metric values standardized across the ROIs.

All model fits were performed in R, version 3.4.4 (R Core
Team, 2018). We used the lm function as implemented in the
stats library for fitting the model. The goodness of fit was assessed
with adjusted R2. The Sex contrast was deviation-coded using
“contr.sum” setting so that parameter estimate (β) and t statistics
for non-categorical variables (i.e., age in our case) represent
those across sexes, and not for the specific reference sex (as
would be in the case of treatment-coding, in the presence of
interaction terms). Age was mean-centerd so that the intercept
represented the value at group mean age. For all analyses, we
report p-values as significant when below 0.05 after Bonferroni
correction for multiple tests (27 ROIs × 8 measures, nominal
p threshold = 0.05/216 = 0.00023). We also report generalized
eta squared (η2

G) as a measure of effect size (Olejnik and
Algina, 2003), obtained using aov_car function in afex package
(Singmann et al., 2021), including all terms in the model as the
“observed” variables. The specification of the observed variables

(as opposed to manipulated variables in other research designs)
allows the correction of the effect size estimate, which makes
this measure less dependent on specific research design features
(Olejnik and Algina, 2003).

Visualizations of statistical summaries were created with
ggplot2 (Wickham, 2016), and tables were created with the gt
package (Iannone et al., 2020) in R. Linear fitting of age effects
for each sex was performed by predicting the given WM property
in each sex using the emmeans package (Lenth, 2021). For
evaluating the interrelations between the age-related variations
in the regional WM volumes and diffusion metrics, we first
computed the β∗ values for the respective terms in each metric
using the robust standardization through refitting, implemented
with the effectsize package (Ben-Shachar et al., 2020). Then, the β∗

values across 27 ROIs were used to compute Pearson’s correlation
between the pairwise metrics. The computation of correlation
values and visualization of the results was performed using the
Ggally package (Schloerke et al., 2021).

RESULTS

The Main Effect of Age
Table 2 presents the parameter estimates (β) for age effects
for each metric (WM volume, 4 DTI and 3 NODDI metrics)
across the ROIs, and Figure 3 visually presents the summary
by showing the t statistics and effect sizes (η2

G) as heatmaps,
filtering out those that did not survive Bonferroni corrections.
Supplementary Tables 1–8 provide the complete model results,
including the confidence intervals of age β, uncorrected p-values
and η2

G, and total variance explained by the model for each
metric and ROI. Figure 4 provides selected scatter plots of age
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TABLE 2 | Summary of age effects for each diffusion phenotype across JHU ROIs.

Volume FA (×10−3) MD (×10−6) AD (×10−6) RD (×10−6) NDI (×10−3) ODI (×10−3) IsoVF (×10−3)

Brainstem

MCP −25.2 −0.0 −0.9* −1.4* −0.6 1.1* 0.7* −0.6*

PCT −2.7 −0.7 −1.9 −3.3* −1.2 0.3 1.3* −1.9*

CST −1.8 −1.3* −2.6* −5.6*** −1.1 0.2 1.9* −2.0*

ML −1.2 −1.1 −2.4* −5.1*** −1.1 2.2* 1.3 −1.5*

SCP −2.3* −0.3 −2.0*** −4.1*** −0.9* 2.0*** 0.9* −1.2***

ICP −0.4 −0.3 −2.1** −3.6*** −1.4* 2.4*** 1.1* −1.2*

Projection

ACR 3.2 1.4** −2.0*** −1.4* −2.3*** 2.9*** −0.2 −0.1

SCR 5.6 −0.6 −1.3*** −2.6*** −0.6* 2.2*** 1.2*** −0.1

PCR 3.3 0.6 −1.3** −1.3* −1.2* 2.8*** 0.4 0.5*

ALIC 1.7 0.6 −2.0*** −2.8*** −1.6*** 3.1*** 0.7* −0.4

PLIC −0.5 −0.7* −1.4*** −3.4*** −0.5 1.8** 1.3*** −0.6**

RLIC −0.9 0.8* −1.6*** −1.8** −1.5*** 3.4*** 0.5* −0.1

PTR −1.4 0.3 −1.4*** −2.2** −1.0* 2.1*** 0.5* 0.1

CP −3.9 −1.2* −2.2* −5.8*** −0.4 1.4 2.4*** −1.6*

Association

FX 2.6*** 0.7 0.3 1.1 −0.1 3.5*** 1.4* 2.0*

FX/ST −0.2 0.9* −2.2*** −3.0*** −1.7*** 3.7*** 0.8* −0.6*

CgC 8.3** 2.3*** −2.0*** −0.5 −2.7*** 3.8*** −0.5 −0.3

CgH 5.1*** 1.2* −3.0*** −3.6*** −2.8*** 6.6*** 1.6** −0.2

SFO 0.5 0.1 −1.8*** −2.8*** −1.3* 3.5*** 0.6 −0.1

SLF 6.3 1.0* −1.3*** −0.8 −1.5*** 2.6*** −0.1 0.1

EC 3.8 1.2** −1.7*** −1.4** −1.9*** 3.3*** 0.3 0.2

UNC −0.3 1.0 −1.8*** −2.1* −1.7** 4.1*** 0.8* 0.7*

SS −0.8 1.6*** −2.0*** −1.2* −2.4*** 3.9*** −0.0 0.1

Commissural

GCC 5.1 1.7*** −1.7*** −0.8 −2.1*** 2.4*** −0.4 −0.3

BCC 21.7 0.7 −1.3*** −1.5* −1.2** 2.4*** 0.3 −0.1

SCC 31.5* 1.4*** −1.5*** −1.0 −1.7*** 2.6*** 0.1 −0.5*

TAP −2.7* 2.0* −1.4* 0.5 −2.4* 2.3* −0.3 0.5

Non-standardized parameter estimates (β) for age effects for each phenotype and ROI are shown (see Table 1 for the full names of abbreviated ROIs). The unit of the age
effect is mm3/year for the volume, mm2/s/year for the diffusivity measures (MD, AD, and RD), and/year for FA and the NODDI phenotypes (NDI, ODI, IsoVF). Statistical
significance symbols (uncorrected for multiple comparisons) *0.05 < p < 0.001, **0.001 < p < 0.0001, ***p < 0.0001. Bold symbols indicate Bonferroni-corrected
significant p-values.

effects for each sex to present examples of such effects. Similar
plots of age effects for the entire metrics and ROIs are also
provided in Supplementary Figures 5–12. As evident in Table 2
and Figure 3, a number of WM ROIs showed robust age-related
variations in one or more metrics we examined.

Significant age-related increases in WM volumes were
observed only in cingulum hippocampus (CgH) and fornix (FX).
The cingulum in the cingulate gyrus (CgC) showed a significant
age-related increase when TIV or TWMV was accounted for by
including them in the model (see Supplementary Material).

In contrast, robust age effects in DTI and NODDI metrics
were observed across many ROIs, most pronounced for MD and
NDI (Figure 3). Those with significant age effects all showed an
age-related increase in NDI, and decreases in diffusivity metrics.

Many of these ROIs showed a tendency for the volumetric
increase as well, but some showed a significant NDI increase
and diffusivity decrease without any trend for volumetric increase
(see Figure 4 for examples in CgH, with the volumetric increase,
and uncinate fasciculus (UNC), without). CgH additionally
showed a significant age-related decrease in AD and a trend
for an ODI increase. The AD decrease was also observed
across many ROIs in projection fibers and brainstem ROIs
with varying degrees but was particularly pronounced in the
ROIs that represent a connected pathway of projection fibers:
superior corona radiata (SCR), posterior limb of the internal
capsule (PLIC), and cerebral peduncle (CP) (see Figure 4 for
example in PLIC), all of which also showed a significant ODI
increase with age.
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FIGURE 3 | Patterns of significant age effects across WM volume and diffusion phenotypes and ROIs. Relative statistical strengths and effect sizes of age effects
across diffusion phenotypes and ROIs are shown as heatmaps of (A) t statistics and (B) η2

G values (see Table 1 for the full names for the abbreviated ROIs). Those
that did not survive Bonferroni corrections for multiple comparisons were filtered out (set to 0) to facilitate comparisons within significant results. Positive t-scores in
pink indicate an age-related increase and negative values in green indicate an age-related decrease.

Interrelations Among the Age Effects on
the WM Properties
Figure 5 shows the correlation plot of the standardized parameter
estimates (β∗) for the age effect between pairs of metrics across
the 27 ROIs. For a comparison, Supplementary Figure 13
shows a similar plot computed for the simple regional mean
values of these metrics, calculated after standardizing values
across the ROIs.

The correlation structure of the age effect β∗ values indicated
that overall, the degree of age-related variations in the regional
mean FA values was negatively associated with RD and positively
with AD. Thus, although both AD and RD decreased with age
across the most ROIs, regions with faster age-related decreases
in RD relative to AD showed overall age-related increases in FA.
The degree of age-related variations in FA was also negatively
associated with ODI. These patterns are expected since FA is,
by definition, higher when diffusivity along the axial axis is
higher than along the radial axis and when fiber orientation
dispersion is lower. Indeed, such patterns were more evident
in the correlations of simple mean values of the regional WM
metrics, which showed a strong positive correlation between the
regional FA and AD values and also strong negative correlations
between the regional FA and RD or ODI values.

In contrast, the correlation patterns for NDI were distinct
between the regional age effects and the simple mean values: the
degree of age-related increases in NDI was positively associated
with the degree of age-related variations in the regional WM
volume and FA, and negatively associated with the age-related
decrease in RD (i.e., regions with more NDI increases showing
more volumetric and FA increases and RD decreases). In the

regional mean values, the higher NDI values were not strongly
associated with the regional WM volumes or FA and RD
values. Another difference was the non-significant but negative
correlation between the age effects on NDI and ODI, indicating
the ROIs showing more age-related increases in NDI tended
to show less ODI increases, while in the regional mean values,
NDI and ODI were weakly but positively associated, indicating
higher NDI values in ROIs with higher ODI. Note that despite
the weak correlations between the age effects on the regional
volume and FA, RD, and NDI values, the age effects in these
microstructural properties were not affected by the inclusion
of the regional volumes as a covariate in the model (see
Supplementary Material).

Dependency of Age-Related Variations
on Sex
Summary of t statistics and η2

G values for the sex effect on each
of the eight WM properties across the JHU ROIs are presented in
Figure 6 (see also Supplementary Tables 1–8).

Not surprisingly, males had larger WM volumes than females
across most of the ROIs examined. However, the difference
diminished considerably when global volume differences were
taken into account by including either TIV or TWMV in the
model (see Supplementary Material). For the diffusion metrics,
females showed higher diffusivity than males across many ROIs,
while males showed higher NDI and ODI overall. There were
relatively few regionally specific patterns in the sex effects,
although the differences were most robust in the brainstem ROIs.

Despite the widespread main effects of sex, we did not observe
any significant sex differences in the age-related variations in
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FIGURE 4 | Scatter plots of individual age effects in (A) the cingulum-hippocampus (CgH), (B) uncinate fasciculus (UNC), (C) posterior limb of the internal capsule
(PLIC), and (D) superior cerebellar peduncle (SCP) ROIs. Predicted linear regression lines are superimposed for each sex (dark red: females, dark cyan: males), with
shades indicating the 95% confidence intervals.

the WM properties (the lowest uncorrected p = 0.0008). Overall,
any non-significant sex differences in the age-related trajectory
tended to show a steeper slope in males than in females, in
particular for AD and ODI (see for example in the SCP, Figure 4
and Supplementary Figures 5–12).

DISCUSSION

The primary objective of the present study was to characterize
the late maturational changes in the regional WM properties
during post-adolescence in the large and unique sample from

the MRi-Share database. We also examined sex differences in
the WM of this sample and assessed whether the age-related
changes differed between the two sexes. Below we discuss our
main findings in relation to the existing literature, comment on
the specific features of our dataset, and methodological strengths
and limitations of the present study.

Age-Related Variations in Regional WM
Properties
We observed widespread age-related increases in the NDI as
well as decreases in diffusivity (MD, AD, and RD) across many
of the JHU ROIs in our sample of young adults aged between
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FIGURE 5 | The inter-relations between the age-related variations in the regional WM properties. Pairwise correlations of the standardized parameter estimates (β*)
for age effects in the 27 ROIs are shown. The diagonal of the plot matrix shows the distributions of β*Age for the regional WM volume and DTI/NODDI values. The
upper triangle shows Pearson’s correlation (r) values. The lower triangle shows the pairwise scatter plots of β*Age, with the colors indicating the ROI groups (blue:
brainstem, pink: projection, green: association, yellow: commissural). Statistical significance symbols (uncorrected for multiple comparisons) *0.05 < p < 0.001,
**0.001 < p < 0.0001, ***p < 0.0001. Bold-face indicates a significant correlation after Bonferroni correction for multiple comparisons (28 correlations).

18 and 26 years. Changes in FA were statistically weaker, but
ROIs with significant age effects all showed an increase with
age. Regional volumes did not vary significantly with age for
the most part but showed trends for an age-related increase
in some ROIs. The degree of age-related increases in FA and
volume in each ROI were nonetheless correlated with the degree
of age-related variations in the NDI and diffusivity. Regionally,
we observed that many ROIs in projection and brainstem fiber
groups showed primarily significant age-related decreases in
AD. In contrast, those in association and commissural fiber

groups were more characterized by decreases in RD. Several ROIs
in the corticospinal pathway additionally showed age-related
increases in ODI.

The global patterns we observed in our sample are consistent
with a wealth of literature showing a relatively protracted
maturation of human brain WM: both developmental and life-
span studies of WM volume and DTI metrics have indicated
continued increases in global WM volume and FA into young
adulthood, together with decreases in diffusivity that peaks
sometime in young to mid-adulthood (Hasan et al., 2007,
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FIGURE 6 | Patterns of significant sex effects across WM volume and diffusion phenotypes and ROIs. Relative statistical strengths and effect sizes of sex effects
across WM phenotypes and ROIs are shown as heatmaps of (A) t statistics and (B) η2

G values (see Table 1 for the full names for the abbreviated ROIs). Those that
did not survive Bonferroni corrections for multiple comparisons were filtered out (set to 0) to facilitate comparisons within significant results. Positive t-scores in pink
indicate higher values in females than in males and negative values in green indicate the opposite.

2010; Westlye et al., 2010; Lebel et al., 2012; Slater et al.,
2019; Beaudet et al., 2020; Tsuchida et al., 2020). More recent
studies using NODDI have also shown the continuous increase
of NDI through development (Genc et al., 2017; Mah et al.,
2017; Dimond et al., 2020; Lynch et al., 2020; Pines et al.,
2020) and adulthood (Billiet et al., 2015; Chang et al., 2015;
but see Kodiweera et al., 2016), peaking around the fourth
and fifth decade of life (Slater et al., 2019; Qian et al., 2020).
ODI, on the other hand, has not been reported to change
noticeably during development (Dimond et al., 2020) or show
a slight decrease in some tracts (Lynch et al., 2020) but starts
to increase during young adulthood (Chang et al., 2015; Slater
et al., 2019) that continues through aging (Billiet et al., 2015;
Beck et al., 2021).

More robust and wide-spread increase in NDI than FA
observed in our data likely results from the fact that we sampled
the FA values from the entire WM regions within each ROI,
rather than a limited “core” region with high FA values, a
common approach in studies using the same JHU atlas, as
discussed in the section on Potential limitations below. When
sampling over regions with more complex fiber organizations,
NODDI can provide more specific insights than FA, since FA can
be influenced by both the fiber density and myelination as well
as by the composition of fiber orientations (among other things)
in the sampled voxel (Zhang et al., 2012; Jones et al., 2013). This
point is corroborated by the relationships we observed between
the age effects on the regional FA and NDI or ODI; while the age-
related increase in FA was positively correlated with that of NDI,
it was negatively correlated with the degree of age-related increase
in ODI. It suggests that concomitant increases in NDI and ODI

can have an opposing impact on the regional FA, rendering it less
sensitive to the effects of age.

Regionally, we observed that cingulum WM showed a
prominent age-related increase in NDI as well as MD and RD
decreases. With concurrent RD reduction, the NDI increase is
suggestive of increased myelination (Song et al., 2005). Cingulum
WM in hippocampal region (CgH) also showed a robust
volumetric increase as well, both in terms of raw volume and
relative to TIV or TWMV. However, in these and other ROIs, the
regional volume had little impact on the observed age effects on
other WM properties, suggesting the distinct biological processes
governing the age-related changes in WM volumes and other
metrics related to microstructural properties (Lebel et al., 2019).
Previous studies have indicated cingulum to be one of the last
major tracts to mature during development, reaching peak values
in FA or minimum values in MD later than other tracts (Tamnes
et al., 2010; Westlye et al., 2010; Lebel et al., 2012). Similarly,
a higher rate of NDI growth in limbic tracts that include CgC
and CgH has been reported in a sample of 66 healthy subjects
with a mean age of 25 years (Chang et al., 2015). A more recent
and larger-scale lifespan study on regional DTI and NODDI
metrics in 801 individuals aged 7–84 years has also indicated a
relatively late peak age for NDI in CgC and CgH (Slater et al.,
2019). The cingulum bundle primarily contains fibers that link
cingulate gyrus and hippocampus (Mori et al., 2008), but also
consists of many short association fibers that interconnect medial
parts of the frontal, parietal, and temporal regions (Heilbronner
and Haber, 2014). With the diverse fiber populations that make
up this bundle, neuroimaging studies in healthy subjects as well
as in clinical populations have implicated this region for a wide
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range of cognitive functions: these include executive control,
motivation, and pain in anterior/dorsal cingulate and memory
in hippocampal region (reviewed in Bubb et al., 2018). Several
studies have also shown the link between the microstructural
integrity of the cingulum bundle and cognitive performance
in children (Bathelt et al., 2019) and older adults (Kantarci
et al., 2011; Bettcher et al., 2016). In this context, robust age-
related changes observed in the cingulum ROIs in our sample of
young adults undergoing higher-level education are particularly
interesting. Future studies should investigate the relevance of
volumetric and microstructural differences across subjects in
cingulum to cognitive and academic performance and emotional
and behavioral development.

Beyond the cingulum bundle, all association ROIs tended
to show a higher increase in NDI (average annual percentage
increase, computed from the base value at age 18) of 0.55%/year,
ranging from 0.37%/year in SLF to 0.89%/year in CgH) than
commissural (average of 0.35%/year, ranging from 0.32%/year
in GCC and 0.41%/year in TAP) and projection ROIs (average
of 0.34%/year, ranging from 0.16%/year in CP and 0.45%/year
in ACR and RLIC). The NDI increase was smallest in the
brainstem ROIs (average of 0.16%/year) and least statistically
significant. Of note, the brainstem ROIs also had the highest
estimated NDI at age 18 [mean (range) = 0.89 (0.84–0.96)],
while association fiber ROIs had the lowest estimated NDI at
the same age [mean (range) = 0.71 (0.62–0.80)]. It suggests that
most of the NDI growth in brainstem ROIs likely takes place
earlier than the age range of our sample. The observed pattern
is broadly consistent with previous DTI studies suggesting
earlier maturation in the commissural and projection fibers,
followed by association fibers, especially in fronto-temporal
regions (Tamnes et al., 2010; Westlye et al., 2010; Lebel et al.,
2012). More recent studies with NODDI also support similar
regional patterns of the developmental trajectory (Dean et al.,
2017; Slater et al., 2019; Lynch et al., 2020). For instance, in
a recent study examining the maturational timing of regional
NODDI parameters in a cross-sectional sample of 104 subjects
aged between 0 and 18 years, the NDI growth in callosal
fibers reached a plateau the earliest, followed by projection and
association fibers (Lynch et al., 2020).

While relatively modest in terms of NDI growth, we found that
the connected ROIs of projection fibers, from superior corona
radiata (SCR), through the posterior limb of the internal capsule
(PLIC), then to cerebral peduncle (CP), showed the age-related
increase in ODI and decrease in AD. It suggests the increasing
fiber complexity in this large WM bundle that contains the
pyramidal and cortico-pontine tracts. This observation is novel,
and has not been reported in previous studies examining age-
related variations in regional NODDI values in subjects with age-
range that overlaps with our study (Billiet et al., 2015; Chang et al.,
2015; Slater et al., 2019; Pines et al., 2020). None of these studies
reported notable age-related ODI increase in this projection fiber
pathway that stood out from other regions (e.g., non-brainstem
projection fiber ROI in Chang et al., 2015 and tractography-
based corticospinal tract in Slater et al., 2019). However, different
methodology in defining the tract ROI as well as modeling
strategies makes the direct comparison difficult. Future studies

are needed to confirm the validity of our observation and
investigate the functional relevance of such age-related changes.

Biophysical Interpretation of
Age-Related Variations in DTI and NODDI
The present study demonstrates the usefulness of NODDI
metrics in at least partially disambiguating the factors that
can result in the observed patterns of age-related variations
in DTI metrics: the overall age-related decreases in diffusivity
were associated with two uncorrelated increases in NDI and
ODI, with NDI increases associated with decreases in RD and
ODI with decreases primarily in AD. It indicates that the
age-related variations in DTI metrics at this age range likely
result from changes in both the intra-neurite fraction and fiber
complexity. However, it should be cautioned that as in any
other models, NODDI makes certain assumptions that over-
simplify the underlying microstructure, and it has been criticized
in recent years that some of these assumptions are invalid
and can introduce biases in the estimates (Jelescu et al., 2015;
Lampinen et al., 2017). In particular, the assumption of a single
and fixed intrinsic diffusivity for both intra- and extracellular
space that causes non-negligible biases in ODI and IsoVF,
as well as large uncertainty in the IsoVF estimation (Jelescu
et al., 2015). NDI has also been shown to be overestimated in
the tissue with lower diffusivity than assumed in the model,
such as in the gray matter and in pathology (Lampinen et al.,
2017). Even when the estimates are free from biases, the
underlying biological phenomena are not as specific as the
naming of NDI (“neurite density” index) suggests, since any
microstructural changes that can affect intra-neurite fraction
directly (increase in the number and density of axons) or
indirectly by affecting the volume of the extra-axonal space (for
example myelination). Such ambiguity is evident in a number
of speculative interpretations in the clinical applications of
NODDI in the literature (Kamiya et al., 2020). Ultimately, precise
biological interpretations of observed changes or variations
in NODDI should be validated through comparisons with
histological studies and with complementary or higher-order
diffusion models (Jelescu et al., 2020). Nonetheless, in the case
of the white matter in normal development, it is likely that
the observed patterns of NODDI and DTI metrics reflect the
myelination and remodeling of myelin, rather than an increase in
the number of axons (de Graaf-Peters and Hadders-Algra, 2006;
Sampaio-Baptista and Johansen-Berg, 2017). The correlation of
the age-related increases in NDI with decreases in RD, but
not with AD, is consistent with this interpretation. Future
studies should investigate the validity of this observation, and
also examine how such changes in young adults are affected
by cognitive and physical activities, and other lifestyle and
environmental factors.

Sex Differences in the WM Properties
and the Patterns of Age-Related
Variations
In many ROIs, we detected significant sex differences in the
regional WM properties but found very little evidence for sex
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differences in the age-related variations in the WM properties at
this age range. The sex differences in the regional WM volumes
were most likely due to differences in overall head size, as the
inclusion of TIV or TWMV diminished most of the differences.
However, we also observed globally higher diffusivity (MD, AD,
and RD) in females than in males and higher NDI and ODI in
males than in females, which cannot be accounted for by the head
size differences. While there are some studies reporting lower MD
values in males than in females in young adults and adolescents
(e.g., Lebel and Beaulieu, 2011; Herting et al., 2012), such sex
differences are often more regionally specific and not universally
detected across studies (e.g., Lebel et al., 2008; Tamnes et al.,
2010). Nonetheless, we did observe greater MD and AD over the
entire WM skeleton in females than in males in our recent large-
scale multi-cohort study (total N > 20,000) that covered most
of the adult life span (Beaudet et al., 2020), suggesting that the
greater diffusivity in females is not unique to this sample. With
regard to NODDI, one study with a young to middle-age sample
(age range of 18–55 years) reported a robustly higher NDI and
ODI in males than in females (Kodiweera et al., 2016), similar
to our findings; however, most studies do not report any sex
differences in childhood and adolescence (Genc et al., 2017; Mah
et al., 2017; Dimond et al., 2020; Lynch et al., 2020).

Despite the main effects of sex, we did not detect strong
evidence for the sex differences in the age-related variations in
our data. It is consistent with prior studies that report no or
minimal interaction between sex and age after post-childhood
in DTI (Hsu et al., 2010; Hasan et al., 2010; Tamnes et al., 2010;
Inano et al., 2011; Lebel et al., 2012; Pohl et al., 2016) or NODDI
(Cox et al., 2016; Kodiweera et al., 2016; Slater et al., 2019;
Lynch et al., 2020). It suggests that any sex-related differences
in the WM properties develop relatively early in development.
Indeed, some studies reported steeper age-related changes in both
FA and MD in boys than girls during childhood (Simmonds
et al., 2014; Reynolds et al., 2019). However, further studies are
needed to determine factors that may influence apparent sex
differences in the WM properties and their rate of change with
age in specific cohorts, such as body mass index, physical and
intellectual activities, and other behavioral differences between
the sexes that may modulate the WM properties.

Potential Limitations
As we describe more in detail in Tsuchida et al. (2020),
our sample from the MRi-Share database is drawn from
students undergoing university-level education in Bordeaux,
and as such, not necessarily a representative sample of healthy
young adults. As a consequence, our sample is dominated by
female participants, for example, and likely have different socio-
demographic backgrounds and levels of education than the rest
of the population of the same age range. They are also not
guaranteed to be perfectly “healthy,” as the i-Share study, from
which the MRi-Share participants were drawn, was designed to
investigate the physical and mental health of students, and did
not exclude those with a past or current history of mental illness,
alcohol intake, smoking habits, and/or use of any recreational
drugs and psychotropic medications. While this undoubtedly

increases the variance unaccounted for in our data, it also makes
our data more representative of the sampled population.

The MRi-Share database is also currently cross-sectional,
limiting our inference of maturational trajectory from the age-
related variations in the data. The analysis of age effects based on
cross-sectional data has been shown to lead to spurious findings
unsupported from longitudinal analysis, especially when using
quadratic models to describe non-linear patterns of age-related
changes (Fjell et al., 2010; Pfefferbaum and Sullivan, 2015). In
our sample with a relatively limited age range of 18–26 years, we
found that linear age trends were sufficient for characterizing age-
related variations in the data, thus avoiding some of the pitfalls of
fitting quadratic age models. While we still need to exert caution
when interpreting the apparent age-related variations in our data,
our findings were found to be broadly consistent with the known
age-related trajectories in WM properties.

Though our DWI preprocessing pipeline included standard
steps with susceptibility and eddy-current distortion correction
and was similar to the official UKB DWI pipeline [with additional
denoising using non-local means filter (Coupe et al., 2008, 2011)],
our study did not make use of additional preprocessing steps
such as bias field correction and Gibbs ringing correction. Recent
work has highlighted the potential impact of such preprocessing
choices on diffusion metrics and the observed age associations
(Maximov et al., 2019). We also used the version of Eddy (patch
5.0.10) before the option to correct for within-volume movement
(Andersson et al., 2017) and interactions between susceptibility
and motion (Andersson et al., 2018) implemented in the latest
version of the tool. Future investigations with this dataset may
benefit from the updated preprocessing pipeline that incorporates
these steps and examine the reliability of the findings from
the current study.

Regarding the specific methodology for characterizing the
regional WM properties, we used the ROIs based on the JHU
ICBM-DTI-81 white matter labels atlas, computing the mean
DTI/NODDI values within regions with high WM probability
based on the multi-channel tissue segmentation with T1 and
FLAIR scans. The ROIs in this atlas represent the WM regions
with relatively well-organized structures that are clearly visible
in the color-coded map of the tensor fields and should not
be conflated with tracts obtained through tractography-based
methods: The naming of these ROIs is based on the primary
WM fiber population passing through the region, but these ROIs
often represent a limited portion of a given tract, with arbitrary
boundaries, and also may contain different fiber populations. For
example, the corticospinal tract (CST) ROI in this atlas represents
a portion of the CST at the level of medulla and pons, whereas
the CST in the tractography-based methods usually refers to
the fiber population that spans from corona radiata, passing
through the internal capsule, then to the midbrain (Thiebaut de
Schotten et al., 2011; Chenot et al., 2019). Another example is the
sagittal stratum (SS) ROI, which, according to the authors of the
atlas, includes both the inferior longitudinal fasciculus and the
projection fibers from the internal capsule, therefore including
both projection and association fibers (Mori et al., 2008). We also
note that recent anatomical studies have seriously questioned the
presence of superior fronto-occipital fasciculus (SFO) in humans
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(Türe et al., 1997; Forkel et al., 2014; Meola et al., 2015; Liu et al.,
2020). Thus, this ROI most likely represents anterior thalamic
radiation, as has been noted by the authors (Mori et al., 2008).

Although tractography-based methods allow a more direct
characterization of any given tract in the WM, averaging of
diffusion metrics along the entire length of tracts of interest can
be problematic, in particular for DTI metrics, which can vary
considerably along the tract due to the variability in the fiber
tract geometry (Lebel et al., 2008; Vos et al., 2012). For this
reason, more detailed comparisons of metrics at arbitrary points
along the tract (“tract profiling”) have been proposed (Jones
et al., 2005; Colby et al., 2012; Yeatman et al., 2012; Cousineau
et al., 2017). Regardless of how to sample values from the tracts
of interests, the choice of specific tracts to be extracted, the
tracking or extraction criteria (seeding and exclusion regions
for tracking specific tracts, or inclusion or exclusion criteria
when extracting specific tracts from a whole-brain tractogram),
tracking algorithms and their hyperparameters can complicate
comparisons across studies (Côté et al., 2013). To avoid the bias
introduced by study-specific protocols, a number of automated
or semi-automated methods to extract major WM tracts have
been proposed in recent years (Zhang et al., 2008; Yendiki et al.,
2011; Yeatman et al., 2012; Wassermann et al., 2016; Wasserthal
et al., 2018; Warrington et al., 2020), but no one method has
been applied widely to characterize age-related changes in WM
properties (Lebel et al., 2019). Also, more work is needed to assess
the reproducibility and anatomical validity of different protocols
for tract reconstructions (Rheault et al., 2020).

Within the studies using the ROI-based approach, and in
particular the ROIs based on the same JHU ICBM-DTI-81 atlas,
many use the framework of Tract-Based Spatial Statistics (TBSS,
Smith et al., 2006), included with the FSL package. TBSS was
developed to overcome the limitations of voxel-based analyses
as applied to DTI metrics, namely the difficulty of aligning
complex fiber architecture across subjects and the problem of
smoothing images with highly heterogeneous noise such as FA.
Its approach is to project the highest local FA values onto
the non-linearly aligned group average or a template FA map
that has been “skeletonized” by only taking the regions with
maximal FA values with low inter-subject variability (Smith
et al., 2006). The DTI or any other maps of diffusion metrics
can then be projected to the FA-based skeleton to perform a
voxel-based comparison within the skeleton or an ROI-based
comparison using the atlas, such as the JHU atlas used in
the present study. The focus on the WM skeleton with high
FA values across subjects resolves the issue of alignment and
correspondence across multiple subjects, but by design, it biases
the characterization of the WM microstructural properties to the
very small portion of WM inside the skeleton that is only one
voxel in width, with relatively simple fiber orientations (Lebel
et al., 2019). When used together with the ROI-based approach,
the number of voxels contributing to the analyses are further
reduced. In the present study, we used less restrictive sampling
based on the WM probability map rather than the TBSS-style
FA skeleton to allow for a more complete characterization of the
regional microstructural properties. This approach also allowed
for the direct comparison of the variations in the regional volume

based on the Jacobian-modulated WM probability map and the
variations in the microstructural properties in the same region.
The inclusion of voxels outside the FA skeleton likely explain the
relative lack of age or sex effects for mean FA values in our study,
since it averages over regions with more complex fiber geometry
and makes it difficult to dissociate changes related to the axonal
diffusion properties from those related to the complexity of fiber
orientations. However, multi-component tissue models such as
NODDI can offer more specific inferences about the variations or
differences in the microstructural properties without restricting
the analysis to the WM skeleton, as we demonstrated in our study.

Another critical difference between the TBSS-based approach
and the current study is the method of spatial normalization:
after non-linear alignment of FA map to the template space,
the TBSS projects the highest FA values onto a template FA
skeleton in the standard space. Although it is meant to improve
the alignment of the core of WM tracts, concerns have been
raised with regard to the anatomical inaccuracies introduced
by such a method (Bach et al., 2014). In the present study, we
used the “Unified Segmentation” framework (Ashburner and
Friston, 2005) to perform spatial normalization based on tissue
segmentation of the structural scans, a common approach in
voxel-based morphometry studies (e.g., Takao et al., 2011; Powell
et al., 2012; Shiino et al., 2017). The non-linear deformation field
obtained from the spatial normalization of the structural scans
was then applied to DTI and NODDI maps, together with affine
transformations that co-register these maps to the reference T1
scan of each subject. Although this is not necessarily the best
available method to non-linearly align images (Klein et al., 2009),
we believe that the sampling and averaging of values within
the regions comprising hundreds of voxels (or thousands, in
many ROIs), defined based on both the template atlas label and
subject-specific WM probability map, would limit the effects of
small misalignments, especially with the large sample size in our
study. Having said that, the robustness of the findings should be
confirmed using state-of-the-art methods to align images, such as
registrations based on diffusion tensor images (Zhang et al., 2006)
or fiber orientation distributions (Raffelt et al., 2011).

CONCLUSION

In a large cohort of university students, we found a widespread
increase in NDI, with a more regionally specific increase in
ODI, indicating a continuing modulation of WM properties at
this age range. We also demonstrated the distinct patterns of
interrelations among the estimated age effects on different WM
properties that were consistent with remodeling of myelin in
post-adolescence. We did not find any evidence for a strong
sex dependency in the patterns of age-related variations. These
findings highlight the complexity of the patterns of regional WM
properties and individual variations in such patterns. Although
we focused on the basic characterization of age and sex effects
in the present study, they represent a small portion of the
variance in data, and there are large individual differences in the
regional WM volumes and microstructure. Future studies should
investigate how the maturational processes in the WM influence,
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or are influenced by, genetic, cognitive, behavioral, lifestyle and
social factors, and how they are altered in neuropsychiatric
conditions that manifest in early adulthood.
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Adolescence is a period of vulnerability for the maturation of gray matter (GM) and also
for the onset of psychiatric disorders such as major depressive disorder (MDD), bipolar
disorder and schizophrenia. Chronic neuroinflammation is considered to play a role in
the etiology of these illnesses. However, the involvement of neuroinflammation in the
observed link between regional GM volume reductions and psychiatric symptoms is not
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established yet. Here, we investigated a possible common immune-related genetic link
between these two phenomena in european adolescents recruited from the community.
Hippocampal and medial prefrontal cortex (mPFC) were defined a priori as regions
of interest (ROIs). Their GM volumes were extracted in 1,563 14-year-olds from the
IMAGEN database. We found a set of 26 SNPs that correlated with the hippocampal
volumes and 29 with the mPFC volumes at age 14. We formed two ROI-Related
Immune-gene scores (RRI) with the inflammation SNPs that correlated to hippocampal
GM volume and to mPFC GM volume. The predictive ability of both RRIs with regards to
the presence of psychiatric symptoms at age 18 was investigated by correlating the RRIs
with psychometric questionnaires obtained at age 18. The RRIs (but not control scores
constructed with random SNPs) correlated with the presence of depressive symptoms,
positive psychotic symptoms, and externalizing symptoms in later adolescence. In
addition, the effect of childhood maltreatment, one of the major environmental risk
factors for depression and other mental disorders, interacted with the RRI effect. We
next sought to validate this finding by investigating our set of inflammatory genes in
a translational animal model of early life adversity. Mice were subjected to a protocol
of maternal separation at an early post-natal age. We evaluated depressive behaviors
in separated and non-separated mice at adolescence and their correlations with the
concomitant expression of our genes in whole blood samples. We show that in mice,
early life adversity affected the expression of our set of genes in peripheral blood, and
that levels of expression correlated with symptoms of negative affect in adolescence.
Overall, our translational findings in adolescent mice and humans provide a novel
validated gene-set of immune-related genes for further research in the early stages of
mood disorders.

Keywords: immunity genes, psychiatric symptoms, adolescence, MRI, childhood maltreatment

INTRODUCTION

Some large-scale studies combining genetic and brain structural
data hypothesize the existence of shared neurobiological
mechanisms underlying prevalent psychiatric disorders, such as
major depressive disorder (MDD), attention-deficit/hyperactivity
disorder, and schizophrenia (Parker et al., 2020; Patel et al.,
2021). The central findings supporting this hypothesis are the
associations found between disorder-specific regional differences
in brain structure (e.g., cortical thickness or regional volumes)
and common clusters of genes involved in brain development
or maturation. Although they do not establish causality, these
observations point to the interplay of genetic and brain structural
underpinnings in the pathophysiology of psychiatric illnesses.
Here, we aim to further contribute to this endeavor by
applying a targeted approach, i.e., by focusing on a limited
number of genes and brain regions. The main advantage of
such an approach is the improvement of statistical power to
identify associations in smaller samples. Specifically, we will
investigate the possible association between neuroinflammatory-
related genes and regional gray matter (GM) volumes in the
hippocampus and medial prefrontal cortex (mPFC) in the
development of mood disorders (MDD and bipolar disorder)
and schizophrenia.

Although a wide range of structural abnormalities has
been associated with psychiatric disorders (e.g., Patel et al.,
2021), herein we focused on volumetric GM measurements
in the hippocampus and mPFC as regions of interest
(ROI). Indeed, reduced hippocampal and PFC volume
are among the most replicated findings in MRI studies
of depression (MacQueen et al., 2003; Schmaal et al., 2020).
Lower hippocampal volumes have been associated with
adolescent onset MDD (Chen et al., 2010; Schmaal et al.,
2016), and ventral medial PFC maturation has been related
to negative affect in the developing brain (Ducharme et al.,
2014). GM reductions in these two regions have been put
forward as indicators of the severity and stage of MDD
(Belleau et al., 2019). Still, in their review, Belleau et al.
(2019) speculate that, although hippocampal and mPFC
GM reductions have been associated with MDD, these
reductions are neither necessary nor sufficient for inducing
a depressive episode. Instead, these structural abnormalities
should be regarded as intermediary effectors driving the
progression and recurrence of depression. Consistently,
our group has reported lower volumes in both regions
as variables of interest for tackling irregular sleep habits
paving the way to psychiatric symptoms in adolescents
(Lapidaire et al., 2021).
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Our second reduction in scope, i.e., focusing on a carefully
selected set of immune-related genes rather than a genome-
wide paradigm, is founded on research putting forward
chronic neuroinflammation as a neurobiological characteristic
of MDD driving GM loss (Kubera et al., 2011; Barnes et al.,
2017). This theory, originally called the “inflammatory and
neurodegenerative hypothesis of depression” by Maes et al.
(2009), is based on multiple pieces of evidence. The first paper
demonstrating a close connection between depression and the
immune system was published in 1990 and found that MDD
was often associated with a significantly higher number of
activated T-cells (Maes et al., 1990). Since then, there have been
many consistent findings of increased levels of proinflammatory
cytokines in the cerebrospinal fluid (CSF) of patients with
depression, the most prominent being interleukin-1 (IL-1), IL-
2, IL-6, IL-8, IL-12, interferon-γ and tumor necrosis factor-
α. In addition, elevations in peripheral blood concentrations
of chemokines, adhesion molecules, acute phase proteins and
inflammatory mediators such as prostaglandins have been
observed. Lastly, depression could be induced by administrating
cytokines (see the comprehensive reviews by Raison et al., 2006
and Miller and Raison, 2015).

To our knowledge, there is no report investigating the
putative association between immune-related genetic variation
and MDD-related hippocampal and mPFC GM reductions. In
order to do so, we will combine the benefits of a candidate
gene approach and a polygenic approach. More specifically, we
will construct two “polygenic” scores using only inflammation-
related common genetic polymorphisms: one in association with
hippocampal GM volume and another in association with mPFC
GM volume. Hence, these scores will be referred to as ROI-related
immune-gene scores (RRI-scores). The IMAGEN database will
be used to access genetic and T1 imaging data in 14-year-olds, an
age of particular interest as confounding effects due to the use of
medication can be considered minimal. A second notable asset
of the IMAGEN database is the availability of follow-up data at
the age of 18, including a wide range of psychometric data. We
will use this follow-up to investigate both RRI-scores with regards
to the participants’ psychiatric symptoms later in adolescence.
Thus, we will examine whether the putative association between
neuroinflammatory genes and regional GM reductions plays a
role in the development of psychiatric symptoms.

Moreover, we will test the translational hypothesis that genetic
predisposition influences the capacity of an environmental risk
factor to induce a psychiatric disorder (Caspi and Moffitt,
2006; Bagot et al., 2014). First, we will assess whether there is
an interaction between the RRIs and the degree of childhood
maltreatment (CM) explaining negative affects at adolescence,
in the IMAGEN database. Second, we will use a translational
approach employing an animal model of early life adversity. We
will assess whether (i) mice subjected to early life adversity display
depressive-like behaviors at adolescence; (ii) the expression of the
constructed hippocampal RRI gene-set is altered in peripheral
blood in these mice; (iii) transcript levels correlate with the
severity of depression-related behavioral scores in adolescent
mice. The advantage of this combined approach is that we
use transcriptional profiling, which measures the expression

of genes and is sensitive to both genotype and environment,
to gain insight toward the (patho)physiological link between
inflammatory pathways, childhood trauma, and depression
symptoms in adolescence.

MATERIALS AND METHODS

Participants
Participants’ datasets were drawn from the IMAGEN project, a
European multi-center collaboration combining genetic, neuro-
imaging and neuropsychological data from 2223 adolescents at
baseline (BL; 14 years old). Participants were followed up 2 years
(follow-up 1; FU1) and 4 years later (FU2). An initial sample
of 1563 14-year-old adolescents was defined, for which genetic
information, T1-weighted MRI images passing the different
quality control procedures and the multiple necessary variables
were available. In order to perform correlational analyses with
psychometric measurements, subgroups of the initial sample
were constructed with participants for whom the necessary
psychometric data were available. Recruitment procedures have
been previously described (Schumann et al., 2010). Written
informed consent was obtained from all participants and
their legal guardians and verbal assent was obtained from
the adolescents.

Neuro-Imaging Data
T1-Weighted MRI
High-resolution T1-weighted anatomical MR images were
obtained by means of three Tesla scanners (Philips, Siemens,
and General Electric), using a standardized 3D T1-weighted
magnetization prepared rapid acquisition gradient echo
(MPRAGE) sequence based on the ADNI protocol.1 The full
details of the MRI acquisition protocols and quality checks
have been described previously (Schumann et al., 2010).
Image preprocessing was performed with Statistical Parametric
Mapping 12 software (SPM12) and its toolbox extension
Computational Anatomy Toolbox 12 software (CAT12). In
summary, T1-weighted images were segmented and normalized
using customized tissue probability maps. Then, the normalized,
segmented, and modulated gray matter (GM) and white matter
(WM) images were smoothed using a 8-mm full-width at half-
maximum Gaussian kernel. Total GM, WM, and cerebrospinal
fluid (CSF) volumes were computed for each participant. Total
intracranial volume (TIV) was defined as the sum of GM, WM,
and CSF volumes. Correct segmentation by CAT12 was verified
through visual evaluation of the outliers determined by the
automated quality control step “Check Sample Homogeneity”
available in CAT12.

Extraction of Regional Gray Matter Volumes
The matlab-script “get_totals.m”2 was used to extract the
hippocampal and mPFC GM volumes from the baseline GM-
segmented T1 MRI images. In order to do so, two masks were

1http://adni.loni.usc.edu/methods/mri-analysis/mri-acquisition/
2http://www0.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m
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designed (see Supplementary Figure 1) using WFU Pickatlas
software (a SPM12 toolbox extension): a bilateral hippocampal
mask, available in Pickatlas, and a mPFC mask, composed of the
Brodmann areas (BA) 10, 11, 12, 14, 24, 25, 32, and 33. Here
the medial prefrontal cortex was defined in its widest sense. For
instance, BA11 was added because it pertains to the orbito-frontal
cortex in its most medial part; BA10 pertains to the anterior
prefrontal pole but it also includes a medial part.

Genetic Data
SNP Genotyping
The DNA purification and genotyping procedures implemented
in the IMAGEN study have been previously described
(Desrivières et al., 2015). Population homogeneity was verified
with the Structure software using HapMap populations as
reference groups (Pritchard et al., 2000). Further correction for
population stratification through principal component analysis
was deemed unnecessary. After the quality control measures,
genotypic data for a total of 466 125 SNPs were considered. The
software PLINK was used to extract the SNP genotypes.

Construction of RRI-Scores
Based on an extensive literature screening, using the keywords
“chronic,” “neuroinflammation,” and “review” in PubMed, genes
encoding direct and indirect contributors to neuroinflammation
were characterized. To this end, every gene (or protein) that was
found to be related to neuroinflammation according to at least
three reviews was added to the list. Albeit not systematic, we did
consider this procedure to be appropriate for this exploratory
study. Including more genes by loosening the constraints might
be worth exploring in future research, but will not necessarily lead
to RRIs with higher predictive power. The SNPs in and around
(±5 kb) the listed immune-related genes were obtained by means
of the UCSC Genome Browser3 and only those genotyped in
the IMAGEN database were selected, a total of 674 SNPs. The
methodology used in this study to construct the two RRIs (one
associated with hippocampal GM volume, the other with mPFC
GM volume) was based on the recent guide put forward by Choi
et al. (2020). The effect of every SNP on either the hippocampal
or the mPFC GM volume was assessed by performing linear
regression analyses in R, using data from the initial sample and
the standard lm function in R. The dependent variable was the
BL GM volume of either the hippocampus or the mPFC, the
independent variable was the major allele count for the SNP of
interest (0= homozygous for the minor allele, 1= heterozygous,
2 = homozygous for the major allele). The regression was
controlled for the covariates sex, Puberty Developmental Scale
(PDS) score as a proxy of age, TIV and scanner type. Next, the
SNPs that correlated (p < 0.1 without correction for multiple
comparisons) with the hippocampal or mPFC GM volume were
selected. In order to control for linkage disequilibrium (LD) and
avoid redundancy in the SNPs included in the score, a manual
procedure analogous to SNP pruning was carried out. More
specifically, the online application LDmatrix developed by the

3https://genome.ucsc.edu

National Institute of Health4 was used to study the LD between
the SNPs. Groups of SNPs that were found in high LD (r2 > 0.5)
were replaced by the most significantly correlated SNP of that
group as representative, eliminating the other SNP(s) of that
group. Lastly, for every participant, a hippocampal RRI (HRRI)
and mPFC RRI (MRRI) were calculated based on the participant’s
genotype for the group of independent SNPs that were correlated
with the hippocampal and mPFC GM volume, respectively. More
precisely, the score was defined by the sum of minor alleles for
the included SNPs, weighted by the effect size of those alleles
individually. A normalization of the HRRI and MRRI values was
performed in order to obtain two scores ranging from 0 to 10 that
could easily be compared and combined.

Construction of Control Scores
A collection of 674 SNPs available in the IMAGEN database was
randomly selected. Using an identical methodology as described
above, a control score explaining hippocampal GM volume and a
control score explaining mPFC GM volume were designed using
these 674 random SNPs.

Questionnaire Data
Questionnaires
Five questionnaire measurements were extracted from the
IMAGEN database. First, the algorithmically calculated scores
(ranging from 0 to 5) representing the probability of depression
according to the DSM-IV (referred to as DepBand) were obtained
for participants at FU2 through the Development and Well-
Being Assessment (DAWBA), a self-administered diagnostic
questionnaire.5 Second, the Community Assessment Psychic
Experiences-42 (CAPE-42) questionnaire was used to obtain
three scores evaluating the presence of depressive symptoms
(referred to as the Depressive Dimension Score; DDS) as well as
psychotic experiences, both positive (Positive Dimension Score;
PDS) and negative (Negative Dimension Score; NDS) at FU2.
Third, the self-reported Strengths and Difficulties Questionnaire
(SDQ) at FU2 was used to construct two scores representing
externalizing and internalizing behaviors; the Externalizing
Score (ES) by summing the Conduct Problems Score and
Hyperactivity Score, the Internalizing Score (IS) by summing
the Emotional Symptoms Score and the Peer Problems Score.
Fourth, a score representing childhood maltreatment (CM)
was constructed based on information from the Childhood
Trauma Questionnaire (CTQ). This retrospective recall-based
questionnaire was administered to the participants at BL and, as
described in the manual, produces a score (ranging from 0 to
4) representing the endured stress with regards to six categories.
Participants were subsequently categorized in five groups based
on the highest score in the six subscales. Ultimately, the three
highest groups were merged, resulting in a CM score ranging
from 0 to 2. Fifth, the Alcohol Use Disorders Identification
Test (AUDIT) Score at FU2 was extracted from the database in
order to be included as a covariate in linear regression analyses
modeling FU2 GM volumes.

4https://ldlink.nci.nih.gov/?tab=ldmatrix
5http://www.dawba.info
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Correlational Analyses
The above-mentioned psychometric measurements (DepBand,
DDS, PDS, NDS, ES, and IS) were modeled separately in function
of the HRRI, the MRRI and the sum of both scores (HMRRI),
as well as the control scores. These regression analyses were
performed in R. Since the dependent variables DepBand, ES
and IS displayed probability distributions similar to a Poisson
distribution, Poisson regression (the log-linear type of the
generalized linear model) was opted for. The dependent variables
DDS, PDS, and NDS were found normally distributed. However,
a log-transformation of the dependent variable was implemented
in order to correct for the positive skewness. All regression
analyses were controlled for the covariates gender and CM.
Also, the interaction between CM and the score was evaluated.
P-values were corrected for multiple comparisons through the
Benjamini-Hochberg false discovery rate (FDR) procedure, using
the p.adjust function in R.

Animals
All experiments on mice were carried out according to
policies on the care and use of laboratory animals of
European Community legislation 2010/63/EU. The local Ethics
Committee (Comité d’éthique en expérimentation animale
Charles Darwin N◦5) approved the protocols used in this study
(protocol number 01486).

The mice were kept under standard conditions at 22 ± 1◦C,
and a 12-h light-dark cycle with food and water available
ad libitum.

Maternal Separation/Maternal Stress
Protocol
Pregnant dams (BALB/c Jico) were purchased from Centre
d’Elevage Janvier, (Le Genest St Isle, France) to arrive in our
facility 5 days before expected delivery. Dams and their respective
litters were divided into two groups. The first group (MS,
Maternaly separated; n = 3 dams) was subjected to maternal
separation/maternal stress procedure; the second group (NS, No
Separation; n= 2 dams) of dams and respective litters was kept in
standard housing conditions as controls.

The maternal separation/maternal stress protocol was adapted
from Franklin et al. (2010). The protocol combined (i) physical
separation of the pups from the mother and among them; (ii)
a short maternal stress at the end of the separation period; (iii)
unpredictability regarding the timing of the separation and the
maternal stressors.

For maternal separation the pups were placed in separate clean
compartments inside a temperature- and humidity-controlled
terrarium, to avoid any physical distress of the pups; the mother
was placed in a clean novel cage with bedding, food, and water.
Maternal separation lasted for 3 h and was applied once daily
from post-natal day 1 (P1) to P14; the timing was unpredictable.
Maternal stress was applied to the dam at the end of the 3 h
separation period and consisted of one of the following: 20 min
contention in a plastic perforated tube; 10 min forced swimming
stress; 10 min tail-suspension stress. Stressors were alternated
pseudorandomly. Both MS and NS groups were left undisturbed

between P14 and P21 (weaning). At weaning the sex of the pups
was determined (for the present cohort: 6 male and 17 female)
and they were subsequently assigned to social groups of 3–4 mice
per cage, composed of animals of same sex, and subjected to the
same protocol (MS or NS), but from more than one dams to avoid
litter effect. The sex ratio per group was, for MS: 4M/9F; and for
NS: 3M/7F. A Fisher’s exact test applied to these sex ratios is not
statistically significant (p > 0.999).

Behavioral Characterization of the Pups
at Late Adolescence
We evaluated behaviors associated with depression (anhedonia,
anxiety) in the separated (n = 13) and non-separated (n = 10)
pups at late adolescence (P52–59). Behavioral dimensions were
assessed with the Sucrose preference (anhedonia; P52) and Dark-
light tests (anxiety; P59).

Sucrose Preference
For the sucrose preference test mice were first habituated to
drink from two graduated pipettes one filled with water, and
the other with sucrose solution for 3 days, the side of the
sucrose pipette being alternated each day. On day 4 and after
an overnight (15 h) deprivation of water, the two pipettes were
presented again; one was filled with water and the other with
4% sucrose. The water and sucrose solution consumed over
a 3 h-period, were measured. The sucrose preference index
is defined as (sucrose consumed)/(sucrose consumed + water
consumed)× 100 (percentage index).

Dark-Light
The apparatus consisted of one box divided in two
compartments, an illuminated one (30 × 20 × 20 cm),
which is open, and a dark one (15 × 20 × 20 cm), which is
covered with a lid. A small aperture (width of 5.5 cm and height
of 7 cm) allows the mouse to freely move between the dark
compartment and the illuminated one. At the beginning of the
experiment, the mouse was placed in the illuminated box, facing
the aperture. Time spent in the lit box was measured during
a 10 min period.

Next, we performed a Z-normalization. For this an individual
z-score was calculated for each test and for each animal as follows:
z-score = [(individual data for observed parameter) - (mean of
control group)]/(standard deviation of control group). For both
sucrose preference and dark/light z-scores were multiplied by
−1, as decreased sucrose preference and decreased time in lit
compartment measure depressive/anxiety-like behaviors. For the
computation of means and standard deviation of control groups,
control groups were defined as NS mice; note that for control
groups the mean of z-score by behavioral dimension is equal to
zero. Subsequently, a global “depression-index” for each animal
was calculated by averaging the z-scores of the two individual
tests as previously described (Apazoglou et al., 2018).

Blood Collection
At the end of the behavioral evaluations (P60), 0.25 ml of
blood was collected from the submandibular vein and stabilized
with 1.3 ml RNAlater R© solution (Life Technologies, Ambion,
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Austin, TX). Mice were euthanized several months later by
pentobarbital injection.

RNA Isolation
Total RNAs were purified from the blood using the Mouse
RiboPure-Blood RNA isolation kit (Invitrogen), according to
manufacturer’s recommendations. After washings, total RNAs
were eluted with 0.1 mM EDTA and were subsequently submitted
to DNase treatment (DNA-freeTM kit, Life Technologies,
Ambion, Austin, TX). RNA concentration was determined using
a nanodrop ND-1000 spectrophotometer (Thermo Scientific,
Waltham, MA). Three samples (one female MS/two male NS)
did not provide enough quantities and qualities and were further
excluded from the gene expression analysis.

Candidate mRNA Expression
Quantification
850 ng of total RNA was reverse transcribed using the High-
Capacity cDNA Reverse Transcription kit (Life Technologies,
Applied Biosystems, Foster City, CA). 800 ng of the resulting
cDNA were combined with a TaqMan R© Fast advanced Master
Mix (Thermo Fisher Scientific) and real-time PCR reactions were
simultaneously run in triplicate in a thermocycler under the
following conditions: 2 min at 50◦C, 10 min at 92◦C, 45 cycles of
1 s at 95◦C, and 20 s at 60◦C, in custom array microfluidic cards
(Applied Biosystems, Pleasanton, CA) using a QuantStudioTM

7 system and data collected using QuantStudioTM Real-Time
PCR Software v1.1 (Applied Biosystems). For each of the 16
candidate genes tested (related to the SNPs included in the
HGPS), primer-probe sets were selected using the web portal
of the manufacturer (Applied Biosystems, see Supplementary
Table 5). In addition, Rab5a was universally used as a reference
gene (Hervé et al., 2017). Raw Ct values were obtained with
manual baseline settings on the ThermoFisher cloud RQ software
(Applied Biosystems), and then the relative expression level
of each mRNA was quantified by using the 2−11Ct method
(Livak and Schmittgen, 2001). In this method, each candidate
gene is quantified relative to the expression of Rab5a and each
amplification is also compared to a calibrator sample (the mean
of the samples from the NS mice).

Statistics
Behavioral Evaluation
The z-scores for anhedonia, dark light, and the global depression-
like index were analyzed separately. For each parameter,
the comparison of two independent groups (MS vs. NS)
involved Student’s t-test that were performed using the
STATISTICA software. The results are expressed as mean± SEM
(standard error).

Gene Expression
For gene expression comparisons, after observing non-
homogeneous variances for each candidate gene in each
subgroup (through the [R] function levene_test) and absence of
normality of residuals (through the [R] function shapiro_test)
of a parametric model (through the [R] function lm), a non-
parametric (by permutation) equivalent of a two-way factorial

ANOVA was performed through the [R] function aovp in the
lmPerm library. When ANOVA effects were significant, multiple
group comparisons for each gene were performed through the
[R] function pairwise.perm.t.test in the RVAideMemoire library
to provide FDR p-value adjustment.

Behavior and Gene Expression Correlations
Correlograms, allowing visualization of behavior and gene
expression data into correlation matrices were implemented
through the [R] function corrplot in the corrplot library and
variables were ordered according to first principal components.
Linear regressions with 95% confidence intervals were plotted
through the [R] functions ggplot, geom_point, and geom_smooth
(with “lm” method) in the ggplot2 library.

RESULTS

Selection of Genes and SNPs
Supplementary Table 1 lists the 90 immune-related genes
selected for this study and classifies them in 6 categories:
“Cytokines and Cytokine Receptors” (43 genes), “Oxidative
Stress Effectors” (4), “Monocytosis and Granulopoiesis” (14),
“Inflammatory Signaling Pathway” (21), “Kynurenine Pathway”
(5), and “Phospholipases” (3). For these 90 genes, 674 related
common SNPs were found genotyped in the IMAGEN database.

The Single Effects of Immune-Related
SNPs on Brain Structure
In our initial sample of 1563 14-year-old participants, the mean
bilateral hippocampal GM volume was 1.20 ± 0.109 ml and the
mean mPFC GM volume was 30.1 ± 3.42 ml. Other volumetric
data from the 14-year-olds (BL) and 18-year-olds (FU2) can be
found in Supplementary Table 2. Sex, PDS, TIV and scanner
type were all found to be significantly reacted with GM volume
(p < 0.001), regardless of the region. The individual effects of the
selected 674 SNPs on BL hippocampal and mPFC GM volume
were assessed through linear regression analyses, controlled for
sex, PDS, TIV, and scanner type. No correlation surpassed the
significance threshold of p < 0.05 after Bonferroni correction for
multiple comparisons.

Construction of the RRIs
As described in the section “Materials and Methods,” we
constructed two scores, one explaining the hippocampal GM
volume at BL (HRRI), the other explaining the mPFC GM volume
at BL (MRRI), using only immune-related SNPs. We found 26
“independent” SNPs that were considerably correlated with the
hippocampal volume and thus incorporated in the HRRI; 29
SNPs were combined in the MRRI (Supplementary Tables 3, 4).

Correlation of the RRIs With
Psychometric Data
The first psychometric measurement of interest was the
DepBand, representing depression probability at FU2 (Table 1).
Controlling for the covariates sex and CM, DepBand, could
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TABLE 1 | Correlations between depression probability (DAWBA score) at age 18 and the genetic scores.

Independent variable χ2 (df) B z p p (corr)

DepBand at FU2 HRRI 1192 (857) 0.0207 0.770 0.441 0.721

MRRI 1185 (857) 0.0764 2.811 0.00494 0.0296*

HMRRI 1186 (857) 0.0477 2.518 0.0119 0.0536

CM:HRRI 1180 (856) 0.122 3.57 0.000364 0.00327*

CM:MRRI 1184 (856) 0.0271 0.735 0.463 0.556

CM:HMRRI 1179 (856) 0.0679 2.80 0.00516 0.0310*

The DepBand score (DAWBA questionnaire) obtained at FU2 was correlated with the three RRIs (ROI-Related-Immune-gene-score) as well as the three interactions
between the scores and childhood maltreatment (CM) by means of a Poisson regression (N = 861).
χ2 (df) = residual deviance (degrees of freedom), used for Chi-Squared goodness-of-fit test; B = unstandardized regression coefficient.
* p < 0.05 (FDR-corrected).

FIGURE 1 | Correlations between RRIs (determined from their link with GM regional volumes at age 14 as described in the text) and psychometric measurements at
age 18. MPGS = MRRI, HPGS = HRRI, HMPGS = HMRRI. The colored lines are proposed regression lines for the different levels of childhood maltreatment (CM),
after controlling for CM and sex. Red: CM = 0; green: CM = 1; blue: CM = 2. The blue and green line overlap in the bottom left graph.

not be correlated with the HRRI [p(corr) = 0.721]. The MRRI,
however, positively and significantly covaried with DepBand
[p(corr) = 0.0296; Figure 1]. Since both scores were not found
redundant (p = 0.436), we also created the HMRRI by adding

up the HRRI and MRRI. The HMRRI positively covaried with
DepBand [p(corr)= 0.0536] but did not survive FDR-correction.
Next, the interactions between CM and the scores in relation
to DepBand were evaluated. The number of participants with
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a CM score of 0 was 588, 283 had a score of 1, and 108
had a score of 2. A positive and significant interaction was
observed between the HRRI and childhood maltreatment score
CM [p(corr)= 0.00327]. This suggests that, as the level of endured
trauma increases, the association between MRRI and presence of
depressive symptoms at age 18 increases as well. It is important
to note that all goodness-of-fit Chi-Squared tests for the Poisson
regressions were found significant, suggesting that the data do not
fit the model perfectly well. Alternative models were considered
but not found better.

The second psychometric tool of interest was the CAPE-42,
which consists out of three subscores (Table 2). A positive and
significant correlation was observed between the log-transformed
Positive Dimension Score, representing the amount of positive
psychotic symptoms at FU2, and the HMRRI [p(corr) = 0.0296;
Figure 1]. As no significant interactions were found between CM
and the RRIs in explaining one of the three CAPE-42 subscores,
these results are not shown in Table 2.

Lastly, the Externalizing Score (ES) and Internalizing Score
(IS) at FU2 were modeled in function of the scores, again using
Poisson regression (Table 3). A significant inverse correlation
was observed between the ES and the HRRI [p(corr) = 0.0294;
Figure 1]. We also found a significant positive interaction
between HRRI and CM in explaining the ES [p(corr)= 0.000857].

Correlation of the Control Scores With
Psychometric Data
No significant correlations were found between the control
scores and the different psychiatric symptom measurements. In
addition, we did not observe any significant interactions between
childhood maltreatment and the control scores in function of the
psychiatric symptoms.

Behavioral Effects of Early Life Stress in
Adolescent Animals
Supplementary Figures 2, 3 as well as Figure 2 show that
early life stress profoundly affects anhedonia and anxiety at late
adolescence in mice. At late adolescence, mice subjected to early
life stress between P1 and P14 show increased anhedonia and

anxiety as compared to NS mice (raw data are presented in
Supplementary Figures 2, 3 and z-score in Figure 2). The global
depression-index (Figure 2) is also significantly elevated in MS
mice indicating that early life adversity (P1–P14) induces long-
lasting negative affects still present in late adolescence (P52–P59).

Effect of Early Life Stress on Candidate
Gene Expression in Adolescent Animals
We next sought to investigate the effect of early life stress on
the transcriptional expression of HRRI set of genes. Among the
17 candidate genes, 3 were not analyzed further (IKBKG, IL12B,
IL13) because of low quality results. The remaining 14 candidate
genes were well expressed in mouse blood and subsequently
constituted the focus of our analysis as “mouse HRRI.” Figure 3
shows that maternal separation has a significant effect on the
global transcript level of mouse HRRI (p< 2.0E-16). Individually,
post-hoc analysis demonstrated significant dysregulation for
Ikbkb, Il10ra, Il10rb, Il18, Pla2g6, and Ptgs1. Among those Ptgs1
was increased while all the others were decreased in MS mice.

Correlations Between Gene Expression
and Behavior in Adolescent Mice
Figure 4 shows that among the 14 mouse HRRI genes profiled,
6 were correlated with the global depression-index (a composite
score of anhedonia and anxiety subscores). We noted that all
the genes that correlated with behavior, also highly correlated
with each other. Figure 5 illustrates the tight link between one
of the most significant altered genes, Il10rb, and depressive-like
behavior. Regression analyses for behavior and Ikbkb, Il10rb, Il18,
Pla2g6, and Ptgs1 are shown in Supplementary Figure 4.

DISCUSSION

In this translational study, we explored the link between
inflammation-related genes and brain structure, along with
early life adversity and emergence of psychiatric symptoms. We
investigated imaging genetics in a large database of community
adolescents. We formed scores aggregating inflammation genes
related with hippocampal or mPFC volumes at age 14. We found

TABLE 2 | Correlations between the clinical dimensions (CAPE-42 subscores) and the genetic scores.

Independent variable R2 B t p p (corr)

Positive Dimension (log) HRRI 0.0449 0.0115 2.01 0.0444 0.114

MRRI 0.0466 0.0134 2.38 0.0175 0.0630

HMRRI 0.0506 0.0124 3.11 0.00192 0.0296*

Negative Dimension (log) HRRI 0.0431 −0.00887 −1.06 0.289 0.520

MRRI 0.0420 0.0087 0.226 0.821 0.921

HMRRI 0.0423 −0.00342 −0.583 0.560 0.840

Depressive Dimension (log) HRRI 0.091 0.000741 0.091 0.928 0.928

MRRI 0.0933 0.0124 1.54 0.123 0.277

HMRRI 0.0952 0.00667 1.161 0.246 0.492

The three subscores of the CAPE-42 questionnaire obtained at FU2 were correlated with the three RRIs after log-transformation of the dependent variables (N = 930).
R2
= coefficient of determination; B = unstandardized regression coefficient.

* p < 0.05 (FDR-corrected).
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TABLE 3 | Correlations between Externalizing and Internalizing Score (SDQ) at age 18 and the genetic scores.

Independent variable χ2 (df) B z p p (corr)

Externalizing at FU2 HRRI 1563 (951) −0.0275 −2.90 0.00368 0.0294*

MRRI 1572 (951) −0.00262 −0.282 0.778 0.921

HMRRI 1567 (951) −0.0146 −2.22 0.0263 0.079

CM:HRRI 1547 (950) 0.0538 4.07 4.76 × 10−5 0.000857*

CM:MRRI 1572 (950) −0.00832 −0.610 0.542 0.588

CM:HMRRI 1561 (950) 0.0228 2.44 0.01473 0.0529

Internalizing at FU2 HRRI 1824 (951) −0.00465 −0.471 0.637 0.844

MRRI 1825 (951) −0.00158 −0.164 0.870 0.921

HMRRI 1824 (951) −0.00305 −0.445 0.657 0.845

CM:HRRI 1819 (950) 0.0298 2.21 0.0269 0.0807

CM:MRRI 1824 (950) −0.00118 −0.0850 0.932 0.932

CM:HMRRI 1822 (950) 0.0143 1.51 0.132 0.237

The Externalizing and Internalizing Score (SDQ) obtained at FU2 were correlated with the three RRIs as well as the three interactions between the RRIs and childhood
maltreatment (CM) by means of a Poisson regression (N = 955).
χ2 (df) = residual deviance (degrees of freedom), used for Chi-Squared goodness-of-fit test; B = unstandardized regression coefficient.
* p < 0.05 (FDR-corrected).

that these RRIs related with psychiatric symptoms at age 18.
Also, we found a set of inflammation genes that were related to
gray matter volume of hippocampal regions, and to childhood
maltreatment score in these adolescents. Expression levels of
inflammation genes associated with psychiatric symptoms (genes
from HRRI) were subsequently examined in a murine model of
early life adversity. Interestingly, expression of these genes was
significantly altered after maternal separation in mice.

Excessive activation of the immune system as well as
abnormalities in brain structure have been associated with

FIGURE 2 | Early life stress induces depressive-like behaviors in adolescent
mice. Newborn mice were either subjected to a maternal separation paradigm
between P1 (post-natal day 1) and P14 (MS, black dots) or were left
undisturbed (controls, NS, white dots). NS and MS mice were evaluated for
anhedonia and anxiety (measured in the sucrose preference and the dark-light
tests, respectively) in late adolescence, between P52 and P59. Anhedonia
and anxiety scores were z-transformed and a composite depression-index
(global z-score) was averaged. Two-tailed Student’s t-test shows increased
levels of anhedonia (df = 21; t = 4.155) and anxiety (df = 21; t = 2.202) as
well as increased depression index (df = 21, t = 4.797) in MS mice as
compared to NS. * p < 0.05; ***p < 0.0001.

depression. Furthermore, depression as well as its associated
structural abnormalities are relatively heritable. Meta-analyses
have found a heritability of 37% for depression (Sullivan et al.,
2000) and a heritability between 40 and 70% for hippocampal
volume (Gu and Kanai, 2014). Yet, characterization of the
contributing individual genetic factors has proven to be very
difficult. In a large genome wide association (GWA) study that
investigated how common genetic variants affect the structure
of subcortical regions, only a couple of genetic loci could be
significantly correlated (Hibar et al., 2015). Similarly, despite
considerable success within other illnesses such as diabetes
and rheumatoid arthritis, GWA analyses of MDD have overall
failed to produce results at the SNP level (Bogdan et al.,
2017). Explanations for this could be found in the phenotypic
heterogeneity, the lack of very large sample sizes and the
complex functional architecture of the genetic polymorphisms.
This last issue has been addressed by exploring gene-environment
interactions and applying polygenic approaches. For example, in
a recent study, structural abnormalities in schizophrenia were
explored by creating a polygenic risk score (PRS) based on the
weighted effects of SNPs found associated with schizophrenia
in a prior GWA study (Alnæs et al., 2019). Also, PRSs for
bipolar disorder and PRSs for schizophrenia both were found
to have certain predictive power with regards to depression,
corroborating prior evidence that these disorders share some
common genetic overlap (Musliner et al., 2019).

Since psychiatric disorders as well as their associated structural
abnormalities seem to involve a genetic contribution, we
hypothesized the existence of an immune-related genetic overlap
between GM structural reductions and psychiatric symptoms.
This was explored by constructing two RRIs based solely on SNPs
related to inflammatory genes: one predicting hippocampal GM
volume in 14-year-olds (HRRI), the other predicting mPFC GM
volume (MRRI). We found that both scores were correlated with
the presence of different symptoms later in adolescence.

We observed that the RRIs describing the genetic variation
in less than 30 inflammatory SNPs had small yet significant
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FIGURE 3 | Transcriptional expression of HRRI candidate genes in adolescent mice. Total RNA from blood of NS and MS mice at P60 was profiled by RT-qPCR for
14 HRRI candidate gene transcripts. The expression of each transcript was quantified relative to the expression of a reference gene, Rab5a, whereas the mean of
NS mice was used as a calibrator. Statistical analysis was realized using a permutation-based non-parametric factorial ANOVA. Yellow and blue dashed lines indicate
the mean values of all NS and MS, respectively, and highlight a significant “gene” effect between NS and MS animals (p = 0.00295). Significant multigroup
comparisons for each gene were performed by pairwise permutation t-tests and are as follows, Ptgs1 (p = 0.022), Ikbkb (p = 0.028), Pla2g6 (p = 0.022), Il10ra
(p = 0.008), Il10rb (p = 0.002), Il18 (p = 0.032). * p < 0.05; **p < 0.01.

predictive power regarding certain psychometric measurements
obtained at age 18. As expected, effect sizes were consistently
relatively small. The MRRI was found correlated with the
presence of depressive symptoms. Secondly, both HRRI and
MRRI were correlated with positive psychotic symptoms.
Schizophrenia, the main disorder linked with these symptoms,
has been consistently associated with neuroanatomical
abnormalities such as reductions in GM volume (Weinberger,
1987; Keshavan et al., 2005; Bakhshi and Chance, 2015). Thirdly,
we found a negative relationship between the HRRI and
externalizing symptoms at age 18. This seems unexpected at
first sight. A recent review addressing neuro-imaging findings
in two of the major externalizing disorders, conduct disorder
and oppositional defiant disorder, did not describe any studies
reporting increases of hippocampal GM volume (Noordermeer
et al., 2016). However, functional deficiencies in the amygdala,
common in externalizing disorders, could be explained by
abnormalities in the neighboring hippocampal complex (Yang
and Wang, 2017). Lastly, we observed positive interactions
between the scores and childhood maltreatment. This means
that the probability of developing certain psychiatric symptoms
due to a history of childhood maltreatment will be larger in the
context of a specific genetic predisposition, in this case a high
RRI. Gene-environment interactions in psychiatric diseases have
been described repeatedly. For example, a polymorphism in the
promoter region of the serotonin transporter gene was reported
to moderate the influence of stressful life events on depression
(Caspi et al., 2003).

The ability of the RRIs to predict to a limited extent the
presence of psychiatric symptoms suggests the existence of
the proposed genetic overlap. Indeed, the same variation in
immune-related genes was found to explain both GM volume
reductions in the hippocampus or mPFC and the degree of
certain psychiatric symptoms. However, it could be argued
that the RRIs predictive ability is solely due to the fact that
the RRIs are constructed in such a way that they represent
a portion of the GM volume variance. As the link between
GM volumes and psychiatric illnesses is already established,
the ability of an alternative score representing those structural
abnormalities to predict psychiatric symptoms would not be
surprising. In order to investigate this, we performed a control
study by constructing two scores on the basis of random
SNPs. These control scores did not significantly correlate with
any psychometric measurement, nor did they display any
interactions with childhood maltreatment. This higher predictive
power of the non-random RRIs points at the involvement
of the immune system. We thus not only corroborate prior
evidence for the link between structural GM reductions and
psychiatric illnesses, but also provide pioneering evidence
strongly suggesting an immune-related genetic overlap between
regional GM volumes and psychiatric symptoms, and define a
novel combination of genes involved in this link. In order to
further investigate this suggested causality, it would be interesting
to perform a longitudinal study in which brain structural changes
during adolescence are associated with the development of
psychiatric symptoms.

Frontiers in Systems Neuroscience | www.frontiersin.org 10 September 2021 | Volume 15 | Article 725413123

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-15-725413 September 25, 2021 Time: 17:4 # 11

Penninck et al. Adolescent MRI and Immune Genes

FIGURE 4 | Correlation between transcriptional expression of HRRI candidate genes and depressive-like behavior in adolescent mice. Correlation matrix graph,
correlogram, highlighting correlation between qualitative (Z_Behavior, a depression-index reflecting a composite score of anhedonia and anxiety subscores) and
quantitative (transcriptional relative level of HRRI candidate genes obtained by RT-qPCR from blood samples) variables in adolescent mice. The variables are ordered
according to first principal components. Positive correlations are displayed in red and negative correlations in blue color. The intensity of the color and the size of the
squares are proportional to the Pearson correlation coefficients. Only significant correlations are indicated by a colored square.

To further investigate the functional importance of the novel
gene-set that we defined we employed a translational approach
linking genotype and gene expression analyses. Indeed, the
phenotype during adolescence is likely to be modulated by both
genotype and environment, so that genotype analyses alone
probably cannot account for their interaction (Kent et al., 2012).
In contrast, transcriptional profiling that measures the expression
of genes is sensitive to both genotype and environment and
therefore may offer insights in pathophysiology. We focused on
blood transcriptomics, since blood signature demonstrated that
it could represent a surrogate for brain gene expression and
may predict stress-induced behaviors (Sullivan et al., 2006; van
Heerden et al., 2009; Rollins et al., 2010; Tylee et al., 2013; Witt
et al., 2013; Luykx et al., 2016; Hervé et al., 2017).

We implemented an animal model of early life adversity and
measured depression-like behaviors in adolescence. Based on the
above reported effects in human subjects we hypothesized that
early life adversity would affect not only behavior but also the
expression of our set of genes, and that expression would correlate
with symptoms of negative affects at adolescence.

Mice were subjected to a protocol of early life adversity
(maternal separation) at an early post-natal age (P1–P15).
We evaluated behaviors associated with depression (anhedonia:
sucrose preference; anxiety: dark-light box) in MS and NS
mice at adolescence (P52–P59). We measured the expression
of our genes in whole blood samples collected at the same
time-point (P60). We specifically focused on the hippocampal

gene-set since the hippocampus is a region consistently
implicated in depression and depression-like phenotypes in
humans and mice (Vythilingam et al., 2002; Turecki et al., 2012;
Apazoglou et al., 2018).

Our results showed that mice subjected to early life adversity
displayed negative affects at adolescence (Figure 2). The
expression of our mouse HRRI gene-set was altered in mice
subjected to early life adversity (Figure 3), and transcript levels
inside this gene-set correlated with depression-related behavioral
score at adolescence (Figure 4).

Within the examined gene-set, Figure 3 shows a significant
decrease for Ikbkb, Il10ra, Il10rb, Il18, Pla2g6, and an increase for
Ptgs1 transcripts.

Figure 4 shows that among these genes, three (Ikbkb, Il10rb,
Pla2g6) were significantly correlated with the global depression-
index in MS mice. Notably the three also highly correlated
with each other.

Interestingly, Ikbkb, Il10rb, and Pla2g6, which were decreased
in MS mice are implicated in inflammatory homeostasis.
Ikbkb is a regulator of the canonical NF-Kappa-B pathway a
key-pathway in immunity/inflammation (Schmid and Birbach,
2008); Il10rb encodes for the anti-inflammatory cytokine IL10
(Shouval et al., 2014), and mice invalidated for IL10 show
increased depressive-like behaviors (Mesquita et al., 2008);
Pla2g6 encodes for the iPLA2β protein, which regulates an
overall anti-inflammatory response and whose dysregulation is
associated with neurogenerative disorders (Guo et al., 2018).
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FIGURE 5 | Link between Il10rb relative level of transcriptional expression and
depressive-like behavior. Linear regressions with 95% confidence intervals (in
gray) are plotted between the depression-index and the Il10rb transcriptional
relative level obtained by RT-qPCR from blood in MS (red circles) and NS
(green triangles) adolescent mice. The Pearson correlation coefficient and the
associated p-value are indicated.

The present findings suggest an inflammatory network of
genes that most likely is involved in “depression-associated”
neuroinflammatory adaptations in the periphery and CNS.
We propose that early stressors like adversity can trigger an
imbalance between anti-inflammatory and pro-inflammatory
transcripts that may be at the origin of psychiatric symptoms
in adolescence. These transcripts might provide both
clinical biomarkers and novel targets in understanding
and preventing individual developmental trajectories of
psychiatric vulnerability.
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Studying the molecular development of the human brain presents unique challenges
for selecting a data analysis approach. The rare and valuable nature of human
postmortem brain tissue, especially for developmental studies, means the sample
sizes are small (n), but the use of high throughput genomic and proteomic methods
measure the expression levels for hundreds or thousands of variables [e.g., genes or
proteins (p)] for each sample. This leads to a data structure that is high dimensional
(p � n) and introduces the curse of dimensionality, which poses a challenge for
traditional statistical approaches. In contrast, high dimensional analyses, especially
cluster analyses developed for sparse data, have worked well for analyzing genomic
datasets where p � n. Here we explore applying a lasso-based clustering method
developed for high dimensional genomic data with small sample sizes. Using protein
and gene data from the developing human visual cortex, we compared clustering
methods. We identified an application of sparse k-means clustering [robust sparse
k-means clustering (RSKC)] that partitioned samples into age-related clusters that
reflect lifespan stages from birth to aging. RSKC adaptively selects a subset of the
genes or proteins contributing to partitioning samples into age-related clusters that
progress across the lifespan. This approach addresses a problem in current studies
that could not identify multiple postnatal clusters. Moreover, clusters encompassed a
range of ages like a series of overlapping waves illustrating that chronological- and
brain-age have a complex relationship. In addition, a recently developed workflow
to create plasticity phenotypes (Balsor et al., 2020) was applied to the clusters and
revealed neurobiologically relevant features that identified how the human visual cortex
changes across the lifespan. These methods can help address the growing demand
for multimodal integration, from molecular machinery to brain imaging signals, to
understand the human brain’s development.

Keywords: human brain, development, clustering, synaptic proteins, transcriptomic data, high dimension and low
sample size, sparsity-based algorithm
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INTRODUCTION

As molecular tools have become integrated with human
neuroscience, there has been a renewed interest in mapping
human brain development. Many studies have compared
molecular changes among age groups (Law et al., 2003;
Duncan et al., 2010; Pinto et al., 2010; Kang et al., 2011; Siu
et al., 2015, 2017; Zhu et al., 2018) using distinct life-span
stages that developmentalists have described based on physical,
cognitive, and psychosocial maturation (Sigelman and Rider,
2017). However, age-binning assumes that those stages are a
good fit for molecular development of the brain. In contrast,
other areas of human neuroscience are applying data-driven
approaches such as principal component analysis (PCA) (Bray,
2017) or unsupervised clustering (Lebenberg et al., 2018) to
identify age-related changes in brain development. Applying
cluster analysis to studying the molecular development of the
human brain is challenging because of the limited availability
of developmental postmortem tissue samples. Nevertheless,
clustering algorithms have been developed for high dimensional
biological datasets that have a small sample size (n) but
measurements from many molecular features (p) (e.g., genes
or proteins). Here we apply one of those approaches, sparse
k-means clustering (Witten and Tibshirani, 2010; Kondo
et al., 2016), to illustrate a data-driven approach for studying
brain development that uses the expression of many genes
or proteins to partition samples into age-related clusters.
Then we show that clustering can identify aspects of human
visual cortex development that are not apparent in typical
developmental ontologies.

Cellular and molecular findings from postmortem brain
tissue are used as benchmarks for linking age-related changes
in non-invasive brain imaging signals with the underlying
neurobiology. For example, many imaging studies reference
synaptic development measurements (Huttenlocher and
Dabholkar, 1997) to account for rapid changes in cerebral cortex
MRI signals during the first few years of life. More recently,
gene expression databases have been used to identify candidate
cellular and molecular features, such as those underlying cortical
thinning throughout the life-span (Vidal-Pineiro et al., 2020)
or testosterone-related structural properties of the adolescent
cerebral cortex (Liao et al., 2021). However, the rare and valuable
nature of human postmortem brain samples means that gene
expression studies have small sample sizes, especially compared
to modern MRI studies that use a population neuroscience
approach and aggregate data from hundreds or thousands of
subjects (Paus, 2016). The issue of sample size is especially
critical for brain development, as even well-established tissue
banks (e.g., NIH NeuroBioBank) have fewer than 250 samples
for most age groups and fewer than 50 for key ages of child
development. Finally, the labor-intensive nature of molecular
techniques means that studies can only use a subset of the
available samples [e.g., (Pinto et al., 2010) n = 28; (Kang et al.,
2011) n = 57; (Siu et al., 2015, 2017) n = 30; (Zhu et al., 2018)
n = 26]. Nevertheless, the high dimensional data collected by
molecular studies provide a wealth of information about how the
brain changes across the life-span.

Although MRI and postmortem studies of human brain
development face different methodological challenges, they share
many analytical approaches. Both rely on analyses from the
high dimensional toolbox to uncover information relevant to the
complexities of brain development. Differences in experimental
design, however, place distinct constraints on those analyses.
High throughput molecular tools have significantly increased
the amount of information obtained from each postmortem
sample, generating long lists of gene or protein expression values.
Those values represent a vector that describes where each sample
exists in a high dimensional space that captures the molecular
complexity of human brain development. However, the large
number of measurements but small number of samples means
that the high dimensional space is sparse with points spread
virtually equidistantly across the space. The challenge is to
determine how samples cluster together in that sparse space and
if those data-driven clusters reflect stages of human development.

Cluster analysis is not new in biology (Eisen et al., 1998;
Tamayo et al., 1999; Hastie et al., 2000, 2001), but applying it
to postmortem studies of human brain development presents
unique problems because of the small sample sizes of those
studies. When standard clustering techniques have been used
to study gene expression changes in human brain development,
clusters are found for regional and prenatal versus postnatal
groups, but distinct postnatal clusters matching developmental
stages have not been reported (Colantuoni et al., 2011; Kang
et al., 2011; Carlyle et al., 2017; Li et al., 2018; Zhu et al., 2018;
Disorder et al., 2021). Accordingly, it has been challenging to link
cognitive, perceptual, or social-emotional stages and prolonged
development found using brain imaging with the underlying
maturation of molecular mechanisms in the human brain.

Here we provide a practical guide to sparse clustering that
focuses on overcoming the small sample size problem to reveal
postnatal patterns of molecular development in the human brain.
We introduce sparsity-based clustering, and one approach in
particular, sparse k-means clustering, developed to address the
problem of datasets with a large number of observations from
proteins or genes (p) but a small number of samples (n) resulting
in a data structure that is p � n (Witten and Tibshirani,
2010). Finally, we illustrate the value of applying clustering by
interrogating the neurobiological features of the clusters to reveal
new aspects of the developing human visual cortex.

Challenges Clustering Small Sample
Sizes
Currently, transcriptomic, proteomic, and other omics datasets
of human brain development include measurements of many
molecular features from a small number of samples. The
combinatorial nature of those data makes it challenging to
use traditional statistical comparisons to understand the many
molecular changes that occur in the developing brain. Instead,
high dimensional analyses that use all of the data are needed
to classify the biological features that differentiate the human
brain across the lifespan. However, even when clustering is
used, the complexity of the findings can still be challenging to
interpret, and studies may need to group the data into predefined

Frontiers in Neuroscience | www.frontiersin.org 2 November 2021 | Volume 15 | Article 668293129

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-668293 April 13, 2022 Time: 14:32 # 3

Balsor et al. Guide to Sparse Clustering

age categories to describe the spatiotemporal dynamics of the
developing brain (Li et al., 2018).

In the mathematical notation used for clustering algorithms,
the genes or proteins are called features or observations and are
represented by p, while the number of samples is represented
by n. Most human brain development datasets are either
p ≈ n or p > n and are best described as high dimensional
datasets with more features than samples. When clustering those
data, algorithms can borrow strength from the large number
of features that represent each sample in high dimensional
space. However, if only a subset of the features contributes to
partitioning the samples into clusters, then the analyses may
run into the curse of dimensionality (Bellman, 1983). For brain
development, this means that developmentally relevant features
may become obscured as more and more genes or proteins that
do not contribute to developmental changes are included in the
dataset. A central problem in analyzing these p > n datasets
is to identify the molecular features associated with age-related
clusters from a very large set of candidate genes. Two approaches
for focusing on relevant features include either preprocessing
the data using dimension reduction methods (e.g., PCA, tSNE)
or using sparsity-based clustering algorithms that retain all of
the features but subset or reweight them during clustering (see
Supplementary Material).

Some of the common approaches to unsupervised dimension
reduction and clustering often used in neuroscience, like PCA
and tSNE, can effectively separate data points into clusters in
low-dimensional space, especially if there are large differences
in features that fall on orthogonal sets of dimensions. For
example, tSNE analysis of transcriptomic data identified separate
clusters for cortical and cerebellar development (Kang et al.,
2011; Carlyle et al., 2017), and PCA has shown that age can
explain a large fraction of the variation in protein expression
during cortical development (Pinto et al., 2015; Breen et al.,
2018). Some of these approaches represent linear combinations
of genes or proteins, and focus on reducing dimensionality
by identifying correlated features. Problems arise when the
features that differentiate clusters are not orthogonal, which
may cause linear methods like PCA breakdown and reduce
the data onto inappropriate dimensions (Chang, 1983). Thus,
traditional dimension reduction and clustering methods are
prone to pruning off too much information and, thereby,
may miss subtle but significant changes in the human brain’s
molecular development. In contrast, sparsity-based clustering
methods follow a different approach that keeps all of the features
and reweights them in a dissimilarity matrix.

Approaches to Sparsity-Based
Clustering
Because traditional dimension reduction methods may prune off
too much information or miss more subtle changes in the human
brain’s molecular development, we tested a set of sparsity-based
clustering algorithms. Here, sparsity refers to the idea that not
all 30,000 genes play a role in brain development and irrelevant
dimensions may mask clusters. Furthermore, as more and more
features are included, observations become increasingly spread
out until they are virtually equidistant. Sparsity-based clustering

is a useful approach for analyzing those high dimensional
data because the algorithms are not distance-based and can
identify a smaller number of molecular features that reflect the
spatiotemporal dynamics of neurodevelopment.

In this section, we introduce and compare four clustering
methods designed to handle data sparsity but it is not an
exhaustive review of sparsity-based clustering.

The agglomerative approach of CLIQUE (Agrawal et al., 1998)
finds grids or subspaces in high dimensional data by assigning the
desired number of equal length intervals (xi) to the grid and a
global density value (tau) as input parameters. Notably, CLIQUE
does not specify the number of clusters in the arguments, but
instead compares how many points are in each rectangle of the
grid with the overall density parameter and continues to partition
the subspaces until the density is less than tau. A rectangle in the
grid is considered to be dense if the proportion of points in it
exceeds the tau parameter. CLIQUE then identifies a cluster as
the maximal set of dense units in a subspace. For example, using
an interval (xi) of 2, each dimension of the data is partitioned
into two non-overlapping rectangles (units) and dense units
are identified for further partitioning if they contain a greater
proportion of the total number of points than the input value for
tau. This approach does not strictly partition points into unique
clusters and usually results in data points being assigned to more
than one cluster. CLIQUE is also prone to classifying points as
outliers and excluding them from the analysis.

The divisive clustering of PROCLUS (Aggarwal et al., 1999)
is based on medoids and uses a three-step top-down approach to
projected clustering. The steps involve (1) initializing the number
of clusters (k) and the number of dimensions to consider in the
subspace search, (2) iteratively assigning medoids to find the best
clusters for the local dimensions, and (3) a final pass to refine the
clusters. Typically, PROCLUS has better accuracy than CLIQUE
in partitioning points into clusters, but the a priori selection of
cluster size (k) is not easy and demands an iterative approach to
finding clusters. Furthermore, by restricting the subspace search
size, some essential features may be omitted from the analysis.

Both CLIQUE and PROCLUS were developed for datasets
with many more samples (n), often 2–3 orders of magnitude
larger than most datasets of human brain development. Although
those algorithms are accurate for large datasets with thousands
of samples, they are less well suited for discovering clusters in
small sample sizes. So we needed to test sparsity-based clustering
designed for small datasets, and this criteria led us to select
two more approaches to sparse hierarchical clustering, SPARCL
and robust and sparse k-means clustering (RSKC) (Kondo, 2016;
Witten and Tibshirani, 2018).

SPARCL was developed by Witten and Tibshirani (2010)
to adaptively select and reweigh the subset of features
during clustering thus eliminating the need for data reduction
preprocessing. The algorithm uses a lasso-type penalty to address
the challenge of clustering samples that differ on a small
number of features. The reweighted variables then become
the input to k-means hierarchical clustering. The adaptive
feature selection of SPARCL focuses on the subset of genes
or proteins that underlie differences among clusters, so this
process is similar to removing noise from the data. Thus,
SPARCL simultaneously clusters the samples and identifies the
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dominant features thereby making it easier to determine the
subset of proteins or genes responsible for partitioning samples
into different clusters.

SPARCL has many strengths for analyzing datasets with
p ≈ n or p > n; however, it can form clusters containing
just one observation (Witten and Tibshirani, 2010). A more
recent extension of the algorithm, RSKC, addresses small
clusters by assuming that outlier observations cause this
problem. RSKC uses the same clustering framework as SPARCL,
except that it is “robust” to outliers (Kondo et al., 2016).
RSKC iteratively identifies clusters in the data, then identifies
clusters with a small number of data points (e.g., n = 1)
and flags those data points as potential outliers. The outliers
are temporarily removed from the analysis, and clustering
proceeds as outlined above for SPARCL. Once all clusters
have been identified, the outliers are re-inserted in the high-
dimensional space and grouped with the nearest neighbor cluster.
Thus, RSKC identifies clusters in the data and includes all of
the data points.

MATERIALS AND METHODS

Datasets
Our lab has been studying development of human visual
cortex (V1) by quantifying expression of synaptic and other
neural proteins using a library of postmortem tissue samples
(n = 31, age range 21 days – 79 years, male/female = 18/13)
(Supplementary Table 1). In addition, genome-wide exon-
level transcriptomic data that was collected by Kang et al.
(2011) was used and the postnatal V1 data were extracted
(n = 48, age range 4 months – 82 years, male/female = 27/21)
(Supplementary Table 2). The transcriptomic data were used
to test the reproducibility and scalability of the sparsity-based
clustering. The preprocessed exon array data from Kang
et al. (2011) were downloaded from the Gene Expression
Omnibus (GSE25219). The exon-summarized expression
data for 17,656 probes were extracted, and probe identifiers
were matched to genes. If a gene was matched by two
or more probes and the probes were highly correlated
as determined by Kang et al. (2011) (Pearson correlation,
r ≥ 0.9), then the expression values were averaged for a total
of 17,237 genes.

The clustering methods were tested using three groups of
protein or gene data. The first group of protein data was
from a series of studies using the Murphy lab postmortem
samples to examine the development of molecular mechanisms
that regulate experience-dependent plasticity in human V1
(Murphy et al., 2005; Pinto et al., 2010, 2015; Williams et al.,
2010; Siu et al., 2015, 2017). Western blotting was run using
each sample (2–5 times) to probe for 23 different proteins
(Supplementary Table 3). The tissue preparation and Western
blotting methods have been described in detail previously (Siu
et al., 2017, 2018). The initial clustering tests used a subset of
seven proteins (GluN1, GluN2A, GluN2B, GluA2, GABAAα1,
GABAAα3, and Synapsin) to explore age-related clustering with
AGNES, PROCLUS, CLIQUE, SPARCL, and RSKC.

Next, the sparsity-based clustering using RSKC was explored
using all 23 proteins to determine how adding more features
changed the age-based clustering. Then the reliability of the age-
related clustering was explored by running 100 iterations of RSKC
with the 23 proteins. A heatmap illustrating the number of times
each sample was partitioned into a cluster was made to visualize
the reliability.

The scalability of RSKC was tested using a larger protein
database and the much larger gene database. These tests included
clustering a matrix with 95 proteins collected from the Murphy
lab postmortem tissue samples. This time the samples were
probed with a high density ELISA array (RayBiotech Quantibody
Human Cytokine Array 4000) and an additional 72 proteins were
measured for a total of 95 proteins (p = 95) (Supplementary
Table 4). Finally, RSKC clustering was done using the genes in the
Kang database by selecting those listed in the SynGO ontology
(n = 988) (Koopmans et al., 2019) and also the full set of genes
(n = 17,237).

The Basic Steps to Sparsity-Based
Clustering Using R
Here we describe four sparsity-based high-dimensional
clustering approaches (PROCLUS, CLIQUE, SPARCL, and
RSKC) for analyzing the development of human V1 using 7
or 23 proteins. Then we explore the scalability of the RSKC
method using two larger datasets with 95, 988, or 17,237
proteins or genes.

All of the analyses were done in the R programming language
using the integrated development environment RStudio (version
1.3.1093). The basic steps in the workflow used to examine each of
the clustering methods are illustrated in Figure 1. The text refers
to the R packages that were used and R Markdowns with code and
figures are included in Supplementary Material.

Figure 1 illustrates the steps that were used for testing
various sparsity-based clustering methods to examine if they
produce an age-related progression in the median age of clusters.
The data were prepared in an nxp matrix with each sample
forming a row and the features, either proteins or genes,
arranged in columns. Those data were used as the input to
the clustering algorithms. Here the sparsity-based algorithms
tested were PROCLUS and CLIQUE from the subspace package
(Hassani, 2015), SPARCL (Witten and Tibshirani, 2018), and
RSKC (Kondo, 2016). For the algorithms a range of k or
xi values from 2 to 9 were tested to explore the types of
clusters produced.

The results of a tSNE dimension reduction was used to
visualize clusters for all of the methods tested. However,
clustering was not done on the tSNE data itself even though
that is a commonly used approach. We used tSNE strictly as a
visualization tool because it does a good job of projecting points
from high dimensional space onto 2D so that neighboring points
reflect their similarity.

The Elbow method was used to determine the number of
clusters. Finally, the quality of the age-related clustering of the
samples was evaluated by making a boxplot to visualize the
progression of the median ages.
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FIGURE 1 | The workflow for studying age-related molecular development of the brain. First, arrange the data into an n × p matrix, where features (p) are
represented as columns and samples (n) as rows. Then, select the desired sparse clustering algorithm (e.g., CLIQUE, PROCLUS, SPARCL, and RSKC) and test its
performance along a range of clusters (k). Lastly, determine the optimal k value using the elbow method and compare the median age of clusters with boxplots.
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FIGURE 2 | Age-related organization of cases and initial clustering results. (A) A 2D tSNE scatter plot color-coded according to individual cases’ age. (B) tSNE 2D
scatter plots and box plots showing the results of agnes for k = 2, 4, 6, and 8 case clusters. The tSNE plots display individual samples as points. Points are
color-coded according to their designated cluster determined by agnes. Boxplots denote the median and interquartile range of ages in each cluster, and points
denote outliers.

This workflow was used for all of the clustering methods
described in the next section and an example R Markdown of the
analysis is included in Supplementary Material.

RESULTS

Evaluating Sparsity-Based Clustering for
Finding Age-Related Clusters
First, we evaluated the data by exploring if simply visualizing
the samples using tSNE produced an age-related organization.
The human V1 samples with seven proteins and all of the WB

runs were used as the input to the tsne package (Donaldson and
Donaldson, 2010; Figure 2A). Color-coding the samples by their
age showed a global progression in the ages with younger samples
mapped to the bottom right and older to the top left in the 2D
tSNE space. Next, we applied a commonly used agglomerative
hierarchical clustering algorithm, AGNES in the cluster package
(Maechler, 2019), to test if this clustering approach would
reveal age-related groupings of the samples. This algorithm
uses the dissimilarity matrix to merge nodes in the tree and it
partitioned these data into clusters that suggest an age-related
progression (Figure 2B). However, groups of 2 or 3 adjacent
clusters had very similar median ages indicating poor age-related
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separation of the samples. A major weakness of this hierarchical
clustering approach is that incorrect branching can never be
undone. Nevertheless, these findings show that even distance-
based hierarchical clustering of human V1 postnatal samples can
find some age-related progression of postnatal samples.

Next, we tested the two density projection sparsity-based
clustering methods that use either top-down (PROCLUS) or
bottom-up (CLIQUE) clustering with all of the observations
(n = 31) and seven of the proteins from the human visual
cortex development dataset. The outputs were visualized in 2D
using tSNE, and the data points were color-coded according
to the clusters identified by each method. Finally, to determine
if the clusters represented developmental changes in the
dataset, we plotted boxplots showing the median age of the
samples in the cluster.

PROCLUS
The PROCLUS clustering method was implemented in RStudio
using the ProClus function in the subspace package version 1.0.4
(Hassani, 2015). We explored clusters between k = 2–9, and
Figure 3 shows the results for 2, 4, 6, and 8 clusters for the human
V1 data with seven proteins and all runs included.

Visualizing the clusters found with PROCLUS (Figure 3A)
showed a mixing of the samples, but the boxplots illustrating
the ages of the samples in the clusters suggested an age-
related progression, especially for 4 or 6 clusters (Figure 3B).
The PROCLUS clusters’ age progression was somewhat better
than the hierarchical clusters but still had clusters with very
similar median ages. More importantly, some clusters had only
one or two data points, and many samples were tagged as
outliers (small gray dots) and excluded from the clusters. Thus,
PROCLUS’s iterative top-down feature identification and cluster
border adjustments performed poorly for identifying age-related
clusters of human V1 development.

CLIQUE
The bottom-up clustering method CLIQUE was tested to
determine how well this iterative approach to building clusters
performed using seven proteins to group the human V1 samples
into age-related clusters.

The CLIQUE function from the subspace package (Hassani,
2015) was used to test clustering. CLIQUE requires an input
value for the interval setting because the intervals divide each
dimension into equal-width bins that are searched for dense
regions of data points. Here we tested a range of input
interval values (xi = 2–8) and those resulted in 4–9 clusters
(Figures 3C,D).

CLIQUE allows data points to be in more than one cluster, so
to visualize the multi-cluster identities, we plotted the data points
using concentric color-coded rings. CLIQUE placed all of the data
into multiple overlapping clusters, which was true for all interval
settings (xi = 2–8). The poor partitioning of samples resulted in
no progression in the clusters’ median age (Figure 3D). Thus the
iterative bottom-up clustering of CLIQUE performed poorly for
clustering the samples into age-related groups.

Comparing these top-down PROCLUS and bottom-up
CLIQUE density methods for sparsity clustering showed that

neither algorithm was a good fit for producing age-related
clustering of the samples. PROCLUS performed somewhat better
because some of the parameters resulted in clusters with a
progression in the median cluster age; but, the number of data
points treated as outliers was unacceptably high.

SPARCL
Next, we tested a sparsity-based clustering algorithm, sparse
k-means clustering, optimized for small sample sizes (Witten and
Tibshirani, 2010). The SPARCL package (version 1.0.4) (Witten
and Tibshirani, 2018) was used to cluster the human V1 samples
with data from 7 proteins. This approach adaptively finds subsets
of variables that capture the different dimensions and includes
all samples in the clusters. SPARCL searches across multiple
dimensions in the data and adjusts each variable’s weight based
on the contribution to the clustering. Thus, the term “sparse”
in this method refers to selecting different subsets of proteins to
define each cluster.

To implement sparse k-means clustering, we used the
Kmeans.sparsecluster function in the SPARCL package (Witten
and Tibshirani, 2018). We explored a range of k clusters
between k = 2–9. The SPARCL package also includes a
function to help determine other input variables, such as the
boundaries for reweighting the variables (wbounds) to produce
optimal clustering.

Visualizing the clusters created by SPARCL showed useful
partitioning of the samples into clusters (Figure 3E) that moved
from the bottom right to the top left in the tSNE plot. Also,
the boxplots illustrate a good progression of the median cluster
age for 4 and 6 clusters. However, SPARCL is prone to making
clusters with only 1 sample, and that was the case in this example
for k = 4–9 clusters. To address that problem, we tested another
sparse k-means cluster algorithm that is robust to making clusters
of n = 1.

Robust Sparse k-Means Clustering
Finally, we tested a modified version of the SPARCL algorithm
called RSKC (Kondo et al., 2016). The RSKC algorithm was
designed to be robust to the influence of outliers that can drive
other algorithms to create clusters of n = 1. RSKC operates by
iteratively omitting outliers from cluster analysis, assigning all
remaining samples to clusters, and then reinserting outliers to the
analysis by grouping them into the nearest-neighboring cluster.

Using the RSKC package in R (Kondo, 2016) we explored
clustering for a range of k values (k = 2–9) using the human V1
dataset with 7 proteins and all runs (Figure 4). The visualization
of the clusters on the tSNE plot showed good grouping of the
samples into spatially separated clusters. The boxplots illustrate
good progression in the median ages of the clusters, especially for
4 or 6 clusters (Figure 4B). In addition, the algorithm adaptively
reweighted the proteins to identify the most robust clusters and
we plotted the weights for each of the 7 proteins (Figure 4C).
This component of RSKC identified the lifespan variations in
GluN2B, Synapsin, and GluN2A as having the greatest impact on
the clustering of the samples.

Next, the scalability of RSKC was explored using the full
dataset of 23 proteins measured for the human V1 samples
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FIGURE 3 | Comparison of various sparse clustering methods. Top-down PROCLUS subspace method across range of cluster numbers (2, 4, 6, and 8). The
clusters are visualized in tSNE 2D scatter plots of the data by color-coding each data point with its cluster identity (A) and in boxplots showing the median age of the
samples in each cluster (B). (C,D) Bottom-up CLIQUE subspace clustering method for a range of “intervals.” Different clusters are visualized as colored dots in a
tSNE representation of the data (C) and as box plots depicting the mean age of the samples (D). (E,F) Sparse clustering after varying the inputted k cluster number
(2, 4, 6, and 8). Different clusters are visualized as colored dots in a tSNE representation of the data (E) and as box plots depicting the mean age of the samples (F).
The colors in scatter plots and boxplots represent the cluster designation for all plots.
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FIGURE 4 | Age-related clustering of seven synaptic proteins for a single iteration. Expression data from seven synaptic proteins were input into RSKC and used to
identify k = 2, 4, 6, and 8 case clusters. For each k value, three plots were constructed: (A) 2D tSNE scatter plots showing samples color-coded by their cluster
designations, (B) box plots displaying the distribution of ages for each cluster, and (C) a bar graph representing the RSKC weights for all seven proteins.

(Murphy lab) (Figure 5). In this example, the average expression
value for each protein was used and the elbow plot method
identified six clusters. Figure 5 shows the results of three
separate runs of RSKC on the 23 protein dataset. All three
runs resulted in similar clustering (Figures 5A–C) with a
tight progression of age-related clustering from cluster A
with the youngest median age to cluster F with the oldest
age. The addition of more proteins to the RSKC clustering
provided greater precision for identifying the subtle changes that
represent the temporal dynamics of human V1 development.
The weights for the 23 proteins (Figures 5D–F) showed that all
of the proteins contributed to this high dimensional clustering.
Comparing the feature weights among the three runs showed
some reordering in the weight of individual proteins suggesting
that care is needed when using weights from a single run.
These weights were used to improve the visualization of the

clusters in a tSNE plot. The protein expression values for each
sample were transformed by multiplying with the corresponding
weight and those transformed data were visualized using tSNE
(Figures 5G–I). Those plots showed the separation of the clusters
in the 2D tSNE space.

Since the starting conditions for clustering can affect which
samples end up in a cluster, we tested how robust RSKC clusters
were by running the algorithm 100 times with different starting
conditions. We then plotted the results of 100 iterations in a
boxplot showing the age-related clusters and a heatmap showing
the number of times each sample fell into the different clusters
(Figures 6A,B). This analysis showed that the progression in
the age of the clusters was robust to the starting conditions
(Supplementary Table 5). Furthermore, the heatmap showed
that clusters B and C were the least stable, but the other clusters
had strong consistency for which samples were partitioned
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FIGURE 5 | Age-related clustering of 23 synaptic proteins for three single iterations. (A–C) Expression data from 23 synaptic proteins was used to identify six case
clusters. Boxplots of cluster age ordered from youngest (red) to oldest (dark blue) median age. (D–F) Bar plot visualizing RSKC feature weights for proteins. (G–I)
tSNE plot of the protein data scaled by RSKC weights and color-coded by RSKC cluster. In both (A–C) and (G–I), sample ages were reduced to sample averages to
reduce crowding.

into those clusters. The Jaccard similarity was calculated for
all cluster pairs to determine the proportion of samples shared
between the clusters. Cases were counted as shared when the
cases were partitioned to the cluster 10 or more times because
the metric is sensitive to small samples sizes. The similarity
indices ranged from 0 to 22% (adjacent pairs: A–B 12%, B–
C 22%, C–D 11%, and D–E 20%), with cluster C having the
most cases shared with other clusters. In addition, the average
feature weight for each of the 23 proteins was calculated from the
100 runs (Figure 6C) and illustrated the gradual progression of
feature weights.

Testing Robust Sparse k-Means
Clustering With Larger Numbers of
Proteins or Genes
So far, we have shown that RSKC does a good job of partitioning
samples into age-related clusters with datasets that have fewer
than 25 proteins. Here we examine if RSKC scales to larger
datasets with 2–3 orders of magnitude more features.

We ran the RSKC clustering using data collected from the
Murphy lab human V1 samples with measurements for 95
proteins (Supplementary Table 4; Figure 7A). Once again,
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FIGURE 6 | Robust, age-related clustering of 23 synaptic proteins for 100 iterations. (A) Expression data from 23 synaptic proteins was used to identify six case
clusters. The cluster designation of each case over 100 iterations of RSKC was used to visualize the distribution of case ages (in years). Boxplots denote the median
and interquartile range of ages in each cluster, and points denote outliers. (B) Heatmap visualizing the number of times each case was assigned to each cluster over
100 iterations of RSKC. (C) The average RSKC feature weight for each of the proteins from the 100 iterations.

100 iterations of RSKC clustering was used to ensure that the
clusters were robust to the starting condition. This analysis found
strong age-related clustering of the samples showing six well-
defined clusters that stepped across the lifespan. We tested if the
progression of cluster ages could arise by chance by rerunning
the clustering but on each iteration the age of the sample

was randomized. As expected, randomizing the ages resulted in
clusters with a very broad range of ages and no progression in the
mean cluster age (Supplementary Figure 1).

Next, RSKC clustering was extended to the transcriptomic
dataset from Kang et al. (2011; Supplementary Table 2). First,
RSKC was run using the 88 genes that matched the proteins in
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Figure 7A. Even though the two datasets used different samples it
was possible to compare the ages of the clusters because the range
of ages and number of samples were similar. The progression of
age-related clusters for the gene data (Figure 7B) was similar to
the protein clusters and there was a strong correlation (r = 0.81)
between the median ages of the six cluster pairs.

The strong correlation between the protein- and gene-cluster
ages was particularly interesting because previous studies have
shown that the correlation between large sets of protein and
gene expression values is notoriously low (e.g., r ∼ 0.2) (Gry
et al., 2009). To assess if the datasets used here simply had an
unusually strong similarity between the lifespan changes in the
expression values for each protein and gene pair we calculated
those correlations. To facilitate this analysis the protein and gene
expression values were normalized by calculating z-scores and
the normalized values were partitioned into six age-bins (<1, 1–5,
5–12, 12–20, 20–55, and >55 years) (Supplementary Figure 2).
The correlation coefficient was then calculated for the 88 protein-
gene pairs using the mean gene and protein expression values
from the six age bins (Supplementary Figure 3A). The mean
correlation between the 88 protein-gene pairs was r = 0.15 and
the median correlation was only slightly higher (median r = 0.21,
95% CI 0.04–0.25) (Supplementary Figure 3B). Thus, it is
unlikely that the strong correlation found between the ages of the
protein- and gene-clusters arose from a simple linear relationship
between those two types of molecular measurements. Instead, the
common cluster ages for these different omics datasets suggest
similar high dimensional patterns that RSKC uses to partition the
samples into the series of age-related clusters.

Finally, we examined how well RSKC performed on datasets
with measurements of hundreds to thousands of genes using 988
genes that overlap with the SynGO database of synaptic genes
(Koopmans et al., 2019) and then with all 17,237 genes in the
Kang dataset. The SynGO genes were analyzed to assess if a
large set of functionally genes might reveal a different pattern
of clusters from the full set of genes. The analysis of synaptic
genes showed an age-related progression of the median age of
the clusters (Figure 7C). Compared with the protein clusters
(Figure 7A), the median age of the SynGO clusters jumped
between clusters B and C (Figure 7C) and a very similar pattern of
age-related clusters was found when all 17,237 genes in the Kang
dataset were used (Figure 7D). Thus, RSKC cluster analysis of
95 proteins revealed the tightest age-related clusters, but the gene
data also resulted in the partitioning of samples into age-related
clusters. This finding contrasts with hierarchical clustering used
by Kang et al. (2011), (Supplementary Figure 8) that did not
partition postnatal samples into age-related clusters. Thus, the
optimization of sparse k-means cluster analysis (RSKC) for small
sample sizes provides another approach for analyzing the human
brain’s molecular development that is sensitive to the subtle
molecular changes that occur across the postnatal lifespan.

A Note About Selecting the Number of
Clusters
An essential step in k-means clustering is selecting k, which
denotes the number of groups to classify observation into. The

correct choice of k is often ambiguous, as there are many different
approaches for making this decision. Intuitively, an optimal k lies
in between maximum generalization of the data using a single
cluster and maximum accuracy by assigning each observation
to its own cluster. One of the most common heuristics for
determining k is the elbow plot method, where the sum of squared
distances of observations to the nearest cluster center is plotted
for various values of k. As k increases, the sum of squared
distances tends toward zero. The “elbow” occurs at the point of
diminishing returns for minimizing the sum of squared distances,
and the k value at this point is selected as the optimal number
of clusters.

To tailor the selection of k to RSKC, we applied the elbow
method to the Weighted Within Sum of Squares (WWSS), the
objective function maximized by the algorithm. WWSS was
calculated for various values of k and averaged over 100 iterations.
The elbow can be identified using the elbowPoint function in the
akmedoids package (version 0.1.5) (Adepeju et al., 2020), which
uses a Savitzky–Golay filter to smooth the curve and identify the
x where the curvature is maximized. This method found that k = 6
was the optimal number of clusters for all of the applications of
RSKC used in this paper.

There are more than 30 methods to determine the optimal
values for k and a large number of journal papers (e.g., Tibshirani
et al., 2001) and web resources (e.g., Cluster Validation Essentials)
that can be used to learn more. The R packages NbClust (Charrad
et al., 2015) and optCluster (Sekula, 2020) are particularly helpful
tools for choosing the number of clusters because they test
various methods for selecting k (Charrad et al., 2014).

APPLICATION OF ROBUST SPARSE
k-MEANS CLUSTERING CLUSTERS TO
STUDY HUMAN VISUAL CORTEX
DEVELOPMENT

Previous studies using the datasets analyzed here (Murphy
et al., 2005; Pinto et al., 2010, 2015; Williams et al., 2010;
Kang et al., 2011; Siu et al., 2015, 2017) have examined
molecular development by assigning samples into age-bins that
approximate the lifespan stages defined by developmentalists.
In contrast, the previous section describes a data-driven
approach to partitioning samples into age-related clusters using
sparse k-means clustering (RSKC). This use of unsupervised
clustering raises the possibility that it might reveal aspects
of human visual cortex molecular development that have
escaped previous analyses. This section explores some of
the information about human visual cortex development
that can be revealed by examining the content of age-
related clusters.

First, we compare partitioning of the samples into pre-
defined age-bins versus data-driven clustering of the 23
proteins for post-mortem intervals (PMIs), the proportion of
cases, and the biological sex of the cases (Supplementary
Figure 4). The distribution of PMIs was similar between
the two methods of partitioning the lifespan as was the
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FIGURE 7 | Age-related clusters for large numbers of proteins and genes. Expression data from (A) 95 synaptic and immune-related proteins, (B) 88 genes that
correspond with the protein in (A), (C) 988 synaptic genes that correspond with the SynGO gene list, and (D) 17,237 protein-coding genes was used to identify six
age-related clusters. The cluster designation of each sample over 100 iterations of RSKC was used to visualize the distribution of sample ages. Boxplots denote the
median and interquartile range of ages in each cluster, and points denote outliers.

proportion of samples and the balance of females and males
in the bins. The progression of cluster ages was apparent
when the age bins were color-coded to reflect the cluster
identity (Supplementary Figure 4G). That histogram illustrated
an interesting aspect of cortical development during young
childhood (1–4 years) where samples in that age-bin were
partitioned into five different clusters. Similar to previous studies
that observed heightened childhood heterogeneity with waves

of inter-individual variability that peak between 1 and 3 years
(Pinto et al., 2015; Siu et al., 2017). The findings here suggest
that the relationship between chronological and brain age varies
across the lifespan.

The developmental trajectories of the 23 proteins were
plotted using LOESS fits (95% CI) to the expression values
(normalized to control), and each sample was color-coded by
their cluster assignment. The LOESS curves were ordered based
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on similar trajectories to illustrate the range of developmental
patterns with some increasing (e.g., GABAAα1) or decreasing
(e.g., GABAAα2) monotonically across the lifespan while others
followed an inverted-U (e.g., gephyrin), an undulating pattern
(e.g., VGAT), or remained relatively unchanged (e.g., GABAAα3)
(Figure 8A). The range of trajectories highlights the need
for high-dimensional analyses to capture the complexity of
this development. To help describe when the expression
level of a protein in a cluster was above or below the
overall mean, we implemented the over-representation analysis
(ORA_phenotype function) described previously (Balsor et al.,
2020; Figure 8B). Briefly, for each protein, a normal distribution
was simulated using the mean and standard deviation of the
expression values for all samples. Then the boxplots were
color-coded by comparing the expression values for each
cluster with the simulated distribution. Here, the box for
a cluster was coded as over-represented (red) if the 25th
percentile was above 95% of the simulated distribution and
under-represented if the 75th percentile was below 5% of
the simulated distribution. Of course, other cutoff values
for the ORA can be implemented to be more stringent or
lenient for the color-coding (e.g., Supplementary Figure 5),
or other methods such as estimation statistics (Bernard,
2019) can be used for this step depending on the nature
of the question.

Here, the ORA identified a range of over- or under-
represented proteins in each cluster from a high of 12 proteins
in clusters C to 5 proteins in cluster F (A – 6 proteins, B –
11 proteins, C – 12 proteins, D – 8 proteins, E – 7 protein,
and F – 5 proteins). These LOESS curves and boxplots for the
expression of each protein help to describe development, but
it is challenging to synthesize an overall pattern for human V1
development when confronted with making hundreds of pairwise
comparisons. To address that problem we implemented a series
of visualizations and analyses aimed at representing the high-
dimensional nature of these data.

The first step in addressing the high-dimensional patterns
of protein expression captured by the age-related clusters was
to plot a bubble chart illustrating the expression levels of all
23 proteins for the 6 clusters. That visualization ordered the
proteins by their RSKC weight and color-coded each bubble with
the normalized mean protein expression with blue representing
low and red high expression levels (Figure 9). The visualization
helped identify that cluster D has high expression levels for
many proteins. That cluster represents older children and the
transition to adolescence (mean cluster age = 10.3 years, CI
9.6–11.1 years) when rapid changes in cortical microstructure
have been found (Norbom et al., 2021). In addition, groups of
proteins with either high or low expression can be identified
in a cluster, such as the higher expression of Golli-MBP, GFAP,
CB1, and NR2B in cluster B. Thus, this visualization shows
the mean expression for the 23 proteins in the 6 clusters, but
it is still challenging to derive what differentiates the clusters.
To address this, we applied our recently developed workflow
(Balsor et al., 2019, 2020) that includes dimension reduction,
identification of features and the construct of a plasticity
phenotype visualization to characterize the development of the

human visual cortex. This workflow is described in detail in a
previous publication (Balsor et al., 2020).

Adding Principal Component Analysis for
Dimension Reduction
This part of the workflow aims to reduce the dimensionality
of the data by identifying combinations of functionally related
proteins that we call features and using those features to capture
the high dimensional pattern of brain development. The first
step involves using PCA, a standard approach for reducing
dimensionality when studying brain development (Jones et al.,
2007; Beston et al., 2010; Bray, 2017). The scree plot showed
that the first three dimensions capture ∼60% of the variance in
the data (Supplementary Figure 6), and the correlation matrix
identified the strength of the relationship between each protein
and the 23 dimensions. For example, the expression of Gephyrin
and PSD95 was strongly correlated with Dim 1 while VGAT,
GABAAα2, CB1, and GluN1 were strongly correlated with Dim
2. In addition, the quality of the representation for each protein
on the first three dimensions was assessed using the cos2 metric.
The cos2 (cosine square, coordinates square) conveys the quality
of the representation of that variable using the projection angle
onto each PC dimension. The closer that cos2 is to 1, the better
the quality of that variable’s projection onto the dimension. The
biplots illustrate the quality of the representation of each protein
on Dim 1, 2, and 3 (Figures 10A,B) and show that some aspects
of the RSKC-defined clusters are apparent when the samples are
plotted in the PC space (Figures 10C,D). However, clustering
of the samples in PC space was less distinct than illustrated in
Figure 5 where tSNE plots were used to visualize clusters in the
RSKC-weight transformed data.

We examined which proteins were well represented by the
first three dimensions by plotting the cos2 values for Dim 1,
2, and 3 (Figures 10E–G) and the sum of the cos2 for those
dimensions (Figure 10H). The matrix of cos2 values illustrated
that only two of the proteins (GABAAα3 and Drebrin) were
weakly represented by the first three dimensions (Figure 10I).
The remaining steps focus on Dim 1, 2, and 3 because they
captured a large amount of the variance and had high-quality
representations for most proteins.

Comparing Principal Component
Analysis and Robust Sparse k-Means
Clustering
We compared RSKC and PCA by assessing the similarity of
RSKC weights and PCA cos2 values for each protein (sum of
Dim 1, 2, and 3) for the 23 proteins (Figure 11A). There was
a strong correlation (ρ = 0.72) between the two approaches;
however, some proteins fell away from the line of best fit.
Next, the differences between RSKC weights and PCA cos2

of the proteins were assessed using a Bland–Altman analysis
(Giavarina, 2015). This used the calculated differences between
the normalized measures and plotted those as the difference score
for each protein. Also, interval bands were plotted to represent
no difference between the RSKC and PCA measurements (blue
band), when RSKC measurements were greater (positive red
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FIGURE 8 | Development of proteins by age and by cluster. Expression profiles for each of the 23 proteins (A). Individual samples are represented by a single dot,
and colored according to the corresponding RSKC cluster assignment. LOESS curves for each profile are shown in black, with 95% upper and lower confidence
intervals shown bounding gray outline. Protein profiles are ordered according to similar developmental trajectories. (B) Overrepresentation analysis showing protein
expression as boxplots representing each cluster. Over-represented clusters were colored red if the 25th percentile of the RSKC cluster was greater than the 95th
percentile of a simulated normal distribution. Under-represented clusters were colored blue if the 75th percentile of the RSKC cluster was less than the 5th percentile
of a simulated normal distribution. Boxes that fell within the middle 90% of the simulated normal distribution were left gray.

band) and when PCA measurements were greater (negative red
band) (Figure 11B). The blue band was slightly offset from zero,
indicating a bias for the normalized PCA cos2 values to be greater

than the RSKC weights. The plot identified key proteins, such as
the Gephyrin and PSD95 homogenates, and Ube3A which were
more strongly represented by the RSKC weights. All three of
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FIGURE 9 | Bubble plot of mean protein expression across each cluster. Proteins are ordered by their corresponding RSKC weight with the highest weighted protein
arranged at the top, and the lowest weighted protein at the bottom and ordered by developmental cluster from left to right. The color of the dot represents
standardized protein expression for each cluster, while the size of the dot represents the RSKC weight (see legend).

those proteins are essential molecular components that regulate
the experience-dependent development of the visual cortex. For
example, Ube3A is involved in the experience-dependent cycling
of AMPA receptors (Greer et al., 2010), is required for ocular
dominance plasticity (Yashiro et al., 2009; Sato and Stryker, 2010)
and is selectively lost during aging of the human visual cortex
(Williams et al., 2010).

Using Principal Component Analysis
Basis Vectors to Identify Candidate
Plasticity Features
The proteins in the dataset are known to regulate experience-
dependent plasticity in the visual cortex (e.g. Quinlan et al.,
1999a,b; Fagiolini et al., 2003, 2004; Hensch, 2004, 2005; Hensch
and Fagiolini, 2005; McGee et al., 2005; Philpot et al., 2007;
Yashiro and Philpot, 2008; Cho et al., 2009; Gainey et al., 2009;
Smith et al., 2009; Kubota and Kitajima, 2010; Larsen et al., 2010;
Levelt and Hübener, 2012; Lambo and Turrigiano, 2013; Cooke
and Bear, 2014; Guo et al., 2017; Turrigiano, 2017; Hensch and

Quinlan, 2018). We took advantage of that a priori knowledge
and the output from PCA to identify a new set of features that
could be used to probe the neurobiology of the RSKC clusters.
Although the RSKC weights reflect the contribution of individual
proteins for partitioning the samples into clusters, the weights do
not provide insights into combinations and balances of proteins
that regulate plasticity. Thus, it is necessary to add another
analysis that can help to identify those networks and balances of
proteins that regulate experience-dependent plasticity.

This step is a semi-supervised approach to select combinations
of proteins using the PCA output (cos2 values and the basis
vectors) and the known functions of the proteins. These steps
generate a list of candidate plasticity features that are combined
to construct an extended phenotype (Dawkins, 1982). We call the
collection of features a plasticity phenotype and it can be used
to infer the plasticity state of the visual cortex. The approach is
described in detail in Balsor et al. (2020) and briefly outlined here.

Two heuristics were applied to identify combinations and
balances among the proteins, using proteins that met the cos2

cutoff shown in Figure 10H. First, the a priori knowledge
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FIGURE 10 | Examination of relevant PCA identified dimensions. PCA biplots (A–D) show protein features as vectors (arrows) and individual samples as dots on
pairings of PCA dimensions 1 and 2 (A,C) and dimensions 1 and 3 (B,D). The strength of the representation (cos2) for a protein on the given set of dimensions is
reflected by the length of the vector, and only proteins with cos2 > 0.5 are shown. The color of each point corresponds to their cluster, matching the original cluster
colors in Figure 6. Bar plots represent the quality of representation of each protein with each dimension (E–G), as well as the summed quality of representation
across all three dimensions (H). The dashed line represents cos2 cutoff value for representation of 0.5. (I) Matrix illustrating the quality of representation for each
protein with each PCA dimension, representing the strength (circle size) and direction (zero = white, positive = red) of cos2.
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FIGURE 11 | Exploring the relationship between PCA and RSKC feature identification. (A) Scatter plot showing the PCA quality of representation (cos2) for the first
three dimensions and the RSKC weights. The dashed line represents the line of best fit, and rho is Spearman’s rank correlation coefficient. (B) Bland–Altman plot
comparing PCA cos2 for the first three dimensions and RSKC weights for 23 proteins. The cos2 and RSKC weights were each computed as proportions of their
respective maximum values. The dashed blue line represents the mean difference, with the 95% confidence intervals shown as the blue shaded area. The top
dashed red line represents the upper limit of agreement (+1.96 SD) and the bottom dashed red line is the lower limit of agreement (–1.96 SD), with corresponding
95% confidence intervals shown as red shaded areas.

about the function of the proteins in plasticity and development
of the visual cortex was used to guide the inspection of the
three basis vectors (Figures 12A–C). Second, the amplitude
and direction of each protein on the basis vector were used
to select candidate features to sum or use in a relative
difference index. For example, on PC1, we noted that four
highly conserved synaptic markers (Pinto et al., 2015), the

pre-synaptic proteins synapsin and synaptophysin and the
post-synaptic proteins PSD95 and gephyrin had large positive
amplitudes, so they were summed to create one of the candidate
features (PGSS). On PC2, the receptor subunits GABAAα1 and
GABAAα2 had opposite directions, so these were used for an
index (GABAAα1:GABAAα2) because the balance between those
subunits is developmentally regulated and governs the kinetics of
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FIGURE 12 | Candidate feature identification using principal component analysis. Histograms showing the amplitude of the basis vector for each protein across (A)
dimension 1, (B) dimension 2, and (C) dimension 3. (D) The correlations between the protein sums or indices and the first three PCA dimensions. Non-gray cells
represent significant correlations after Bonferroni correction, with the color indicating the magnitude and direction of the correlation (negative = blue, zero = white,
positive = red).
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FIGURE 13 | Expression of extracted features with respect to age and by cluster. (A) LOESS trajectories illustrating the expression of protein sums and indices.
Points are colored corresponding to the clusters in Figure 8, and the 95% confidence intervals around each curve are colored in gray. (B) Boxplots show the
expression of each feature for the six clusters. A simulated normal distribution was sampled to obtain 5th and 95th percentile values. Boxes were colored red (i.e.,
over-represented) if the 25th percentile of the feature cluster was greater than the 95th percentile of the normal distribution. Boxes were colored blue (i.e.,
under-represented) if the 75th percentile of the feature cluster was less than the 5th percentile of the simulated distribution. Otherwise, boxes were colored gray.

the GABAA receptor (Gingrich et al., 1995; Bosman et al., 2002;
Heinen et al., 2004; Hashimoto et al., 2009). Finally, on PC3,
we noted that GFAP and integrin had the largest amplitudes,

and they were in opposite directions. Those two proteins are
expressed by astrocytes, and the expression of integrin receptors
is increased on reactive astrocytes (Lagos-Cabré et al., 2020), so
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FIGURE 14 | Associations between selected features and feature phenotype by cluster. (A) Correlation heat map between protein sums and indices, with strength
and direction of Pearson’s R correlation represented by the color (negative = blue, zero = white, positive = red), and arranged by similar pairwise correlations using a
wrapped dendrogram. Features were selected if they were significantly correlated with any of the first three PCA dimensions. (B) The plasticity phenotype was
visualized using color-coded horizontal bars representing the median expression of selected features across clusters. For protein sums, the color ranges from white
(zero) to gray (midpoint) to black (maximum protein sum across all features). For the protein indices, the color ranges from green (favoring the first protein in the
index) to yellow (balance of the two proteins) to red (favoring the second protein in the index). Asterisks indicate features that were found to be either over- or
under-represented. The features are arranged according to the same dendrogram generated in (A).
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FIGURE 15 | Raincloud plot showing the distribution of sample ages by
cluster. Vertical lines correspond to the bounds of pre-defined age bins.
Samples corresponding to the youngest age (i.e., 20 days) are not shown.

an index was calculated (GFAP:Integrin). Applying the heuristics
resulted in 13 candidate features, including 5 protein sums
identified using the basis vector for PC1 and 8 indices from
PC2 and PC3 (Figure 12D). The features were validated by
calculating each feature using the expression values for the 23
proteins (Supplementary Table 6) and correlating those with the
eigenvalues for the three PC dimensions (Figure 12D).

LOESS curves and boxplots were made for all of the candidate
features to illustrate how they changed across the lifespan
and identify if features were over- or under-represented in a
cluster (Figures 13A,B and Supplementary Figure 7). One
aspect of development apparent in the boxplots was the over-
representation of the protein sums in cluster D. That cluster has a
mean age of 10.3 years (SD 8.4 years), which corresponds with the
end of the critical period for developing amblyopia in children
(Lewis and Maurer, 2005; Birch, 2013) and a stage of human
cortex development often described by synaptic exuberance,
growth, and changing state of plasticity. Furthermore, animal
research has shown that excess excitation (Fagiolini and Hensch,
2000; Fagiolini et al., 2004) and expression of proteins regulating
that activity, especially PSD95 (Huang et al., 2015), can close the
critical period.

Analyzing Plasticity Phenotypes for the
Robust Sparse k-Means Clusters
Finally, the 11 features with significant correlations were used
to construct a plasticity phenotype that was combined with the
six clusters. A correlation matrix was made using the values
for the features calculated from the protein expression for each
sample (Supplementary Table 1). The matrix and surrounding
dendrogram showed that the protein sum and indices were
separated into different tree branches. The order of the features
in the correlation matrix was used for the bands in the plasticity
phenotype visualization. In the phenotype, the median of each
feature was represented as a color-coded band for the six
clusters (Figure 14B). Together, the 66 color-coded feature
bands captured the high dimensional pattern of neurobiological
changes across the lifespan. The protein sums represented by
gray levels convey a pattern with specific groups of proteins

that are highly expressed early in development (clusters A and
B) and a broad wave of expression in older childhood (cluster
D). The indices reflect the multiple timescales of molecular
development that are the hallmarks of the human visual cortex
(Siu and Murphy, 2018). However, even with undulating features
and different timescales, all appear to arrive at a similar level of
maturation in cluster E.

Combining the features and clusters into a visualization
simplified this complex dataset and facilitated linking the clusters
with sets of neurobiologically meaningful features. The asterisks
on the feature bands indicate the ones identified as over- or
under-represented in Figure 13B. Each cluster had a unique
group of features that deviate from the average, and those
represent the neurobiological mechanisms that differentiate the
age-related clusters. For example, the set of 4 red bands for the
young visual cortex (cluster A) was unique and showed that the
indices were dominated by the NMDA receptor subunits NR2B
and GluN1, the Golli family of myelin basic protein (MBP) and
the GABAAα2 receptor subunit. In contrast, the older visual
cortex (cluster F) was distinguished by a set of 3 light gray protein
sum bands, a red band indicating more GFAP and a green band
indicating more GABAAα1. Finally, the overall appearance of
the protein sums and indices for cluster D gives the impression
of a transition stage in the development of the visual cortex
when exuberant protein expression (dark gray bands) (Huang
et al., 2015) and the shift in protein balances (green bands) (e.g.,
Quinlan et al., 1999a,b; Fagiolini and Hensch, 2000; Chen et al.,
2001; Philpot et al., 2001; Fagiolini et al., 2003, 2004; Hensch,
2005; Hall and Ghosh, 2008) signals the end of the critical period.

A raincloud plot of the samples in the 6 clusters shows the
range of ages that correspond with the plasticity phenotypes
(Figure 15). The distribution of sample ages in the clusters
appears like a series of overlapping waves extending beyond the
ages of the traditional pre-defined age-bins included in Figure 15
as vertical lines. For example, for cluster D, the wave’s peak
falls into the age-bin associated with the end of the period
for developing amblyopia (5–12 years). However, cluster D also
includes younger and older samples suggesting that the end of
the sensitive period may not occur uniformly among individuals.
Furthermore, other clusters overlap the 5- to 12-year-old age-bin
suggesting that multiple phenotypes can be found during certain
age-bins. Thus, the cluster analysis helped reveal aspects of visual
cortex development that are obscured by using pre-defined age
bins, which is that chronological- and brain-age often diverge
(Cole et al., 2019).

DISCUSSION

The current study shows that the application of sparse clustering
leverages the high dimensional nature of proteomic and
transcriptomic data from human brain development to find age-
related clusters that are spread across the lifespan. In particular,
RSKC using measurements of proteins or genes from the human
visual cortex partitioned samples into clusters that progressed
from neonates to older adults. The iterative reweighting of the
measurements to focus on the proteins or genes that carry the
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most information about lifespan changes led to robust age-related
clustering of the data. Furthermore, especially for the datasets
focusing on 95 proteins or genes, the clusters represented early
development, young childhood, older childhood, adolescence,
and adulthood. Thus, sparse clustering provides a robust
approach for identifying proteomic or transcriptomic defined
brain ages that overlap with behavioral and brain imaging
findings of gradual and prolonged human brain maturation.

Many factors come into play when selecting an appropriate
clustering algorithm for a study. Here, we considered the goal
of the study (to resolve sometimes subtle age-related changes in
molecular mechanism), the structure of the dataset (p ∼ n to
p >> n), and the output of the algorithm (is it just the clusters
or is feature selection included). Sparse K-means clustering was
selected because it fit all of those considerations. We know from
previous studies of the molecular development of the human
brain that there can be subtle differences between age groups
(Murphy et al., 2005; Pinto et al., 2010, 2015; Williams et al.,
2010; Siu et al., 2015, 2017), and yet even small changes in
protein or gene expression will alter neural function. Therefore,
we looked for algorithms designed for omics datasets where
subtle changes in a subset of the genes or proteins would
identify important characteristics of the data. The development
of sparse K-means clustering by Witten and Tibshirani (2010)
was partially inspired by the need to better cluster a breast cancer
dataset. In that dataset, subtle differences in gene expression
significantly impacted patient outcomes, but standard clustering
approaches did not pick those up. In addition, sparse clustering
was developed to address datasets, like ours and the breast cancer
data where the structure is p ∼ n to p >> n. Sparse K-means
clustering is a good fit for those high dimensional structures
because it minimizes the within-cluster sum of squares with a
dissimilarity measure while maximizing the between-cluster sum
of squares by iteratively reweighting the measures. Finally, and
most importantly, sparse K-means clustering performs feature
selection. The examples in this paper show the reweighted
proteins and those distributions identifying how much each
protein contributes to partitioning the samples into clusters. That
matrix is sparse, with unimportant proteins having near-zero
weights and important ones having non-zero weights. Those
weights are essential for cluster analysis to help with making
neurobiologically relevant interpretations of brain development
from the cluster analysis.

Various other algorithms, including linear and non-linear
dimension reduction [e.g., tSNE, multidimensional scaling
(MDS), and PCA], can separate developmental samples. In this
paper, we found that both tSNE and PCA show some age-related
progress in the arrangement of the samples. Also, Kang et al.
(2011) used MDS to separate the samples across MDS 1 and
2. Then the points were color-coded by pre-defined age bins to
show a left to right flow from early prenatal to older adults.
However, it was not apparent which genes mapped on to those
dimensions. The selection of features in the form of the weights is
a key difference between sparse k-means clustering and standard
clustering approach that was critical for the current study.

The current study is not exhaustive of clustering approaches,
as the number of unsupervised clustering algorithms for
analyzing high dimensional data is rapidly expanding. For

example, new sparse clustering algorithms include innovation
at the level of the lasso-type penalty used to adjust observation
weights (Brodinová et al., 2019). Accordingly, the “best”
algorithm for understanding molecular brain development will
continue to change as new approaches are developed. Rather
than acting as a prescriptive guide for which algorithm to use,
the current study highlights the challenges raised when applying
high dimensional clustering to studies using postmortem
brain samples. In particular, developmental studies that use
postmortem human brain tissue often have more measurements
than samples (p> n) and require clustering algorithms optimized
for high dimensional data structures. The examples showed that
the RSKC algorithm worked well for a wide range of observations
(p) from 7 to 17,237. However, the age-related progression of
the 95 proteins and 88 gene datasets (Figures 7A,B) were more
distinct than the clustering using 988 SynGO or the full 17,237
gene dataset (Figures 7C,D).

The succession of age-related clusters found for the visual
cortex aligns with some critical milestones in visual development.
Using measurements of molecular mechanisms that regulate
experience-dependent plasticity, the clusters illustrated in
Figure 5 show that cluster A overlaps the start of the sensitive
period for binocular vision at 4–6 months and cluster B
the peak of that sensitive period at 1–3 years (Banks et al.,
1975). Furthermore, cluster D aligns with the maturation of
contrast sensitivity (Ellemberg et al., 1999), motion perception
(Ellemberg et al., 2002), and the end of the period for the
susceptibility of developing amblyopia (6–12 years) (Epelbaum
et al., 1993; Keech and Kutschke, 1995; Lewis and Maurer,
2005). The oldest cluster, cluster F, highlights ages when
cortical changes reduce performance on several visual tasks
(Owsley, 2011). The alignment with visual milestones suggests
that the clusters might provide insights into the molecular
mechanisms that regulate various aspects of visual development
and visual function dynamics across the lifespan. Notably,
the molecular mechanisms are well studied in animal models.
Thus, this information for the human cortex may be seen
as a bridge linking results from animal studies with human
neurobiology that can help interpret brain imaging and visual
perception findings.

By combining the RSKC clustering with PCA, we identified
plasticity-related features and constructed a plasticity phenotype
that was applied to each cluster (Figure 14). The term plasticity
phenotype has been used before to describe the waxing and
waning of gene expression in the developing brain (Smith et al.,
2019). Here we used the term to describe an extended phenotype
(Dawkins, 1982) because the proteins in the dataset have known
functions in regulating experience-dependent plasticity in the
visual cortex (e.g., Quinlan et al., 1999a,b; Fagiolini et al., 2003,
2004; Hensch, 2004, 2005; McGee et al., 2005; Philpot et al.,
2007; Yashiro and Philpot, 2008; Cho et al., 2009; Gainey et al.,
2009; Smith et al., 2009; Kubota and Kitajima, 2010; Larsen
et al., 2010; Levelt and Hübener, 2012; Lambo and Turrigiano,
2013; Cooke and Bear, 2014; Guo et al., 2017; Turrigiano,
2017). Thus, the plasticity phenotype can be used to infer the
potential for experience-dependent plasticity in the different
clusters and provide a new perspective on the maturation of the
human visual cortex.
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Each cluster had a unique set of features that were over-
or under-represented in the plasticity phenotype, and those
features were apparent in the phenotype visualization. Notably,
the features were selected using a semi-supervised approach
with a series of heuristics that included protein combinations
and balances known to regulate experience-dependent plasticity.
As a result, the unique sets of features can be compared with
the literature to infer the likely state of experience-dependent
plasticity for a cluster. For example, balances in the youngest
cluster (A) were dominated by receptors that are known to
facilitate experience-dependent plasticity in the visual cortex
(Kleinschmidt et al., 1987; Quinlan et al., 1999a,b; Philpot et al.,
2001; Fagiolini et al., 2003, 2004; Iwai et al., 2003; Hensch, 2004;
Cho et al., 2009; Jiang et al., 2010). In contrast, cluster D overlaps
the end of the period of susceptibility to develop amblyopia, and
has peaks in protein expression, especially PSD95 that are known
to close the critical period in animal models (Huang et al., 2015).
The features in cluster D also appeared to mark the transition
from juvenile features found in clusters A, B, and C to the mature
and aging patterns in clusters E and F. Moreover, the range of
ages in a cluster appeared as a series of overlapping waves in
the raincloud plot, thereby illustrating that chronological- and
brain-age have a complex relationship.

Clustering the data collected from human postmortem tissue
samples to reveal the age-related progression in the brain’s
molecular complexity is just the start of using high dimensional
analyses. The application of modern exploratory data-driven
approaches reveals novel aspects of human brain development,
such as the risk for mental illness (Li et al., 2018) or divergence
from other primates (Zhu et al., 2018). Identifying an appropriate
high dimensional clustering technique opens the door to many
other downstream analyses to interrogate different clusters’
molecular makeup. A critical benefit of clustering with RSKC
is that it outputs the feature weights. Those weights reveal
the impact of specific proteins or genes on differentiating the
brain’s molecular environment during the progression of lifespan
stages. Those proteins and genes can be used as the input to
Gene Ontology (GO) analysis to catalog the molecular processes,
cellular components, and biological processes that dominate the
stages. Or the opposite can be done as shown in the paper where
the 988 genes corresponding to the SynGO database were used to
cluster the samples. The clusters can also be used for differential
gene expression analysis to highlight which features are enriched
during various lifespan stages. For example, the top-weighted
molecular features from the RSKC analysis may be useful for
creating a phenotype that provides a biologically meaningful
characterization of the high dimensional changes that occur in
different stages of the lifespan (Balsor et al., 2020).

An interesting finding of the current study is the overlapping
ages among the clusters. While this may be viewed as imperfect
partitioning of samples by the clustering algorithms, it may
also reflect the human brain development’s true heterogeneity.
In other words, developmental periods may not necessarily be
described by a single omic phenotype. Instead, the classically
defined developmental stages may be characterized by two
or more distinct patterns of gene or protein expression
in the brain. This molecular heterogeneity may shed light

on findings such as the substantial inter-individual variation
in cortical responses measured by fMRI studies in infants
(Born et al., 2000). Also, the overlapping ages among clusters
may reflect periods of stationary fluctuations in the brain’s
developmental trajectory, representing transitions from one
molecular state to the next, similar to language development
models (Sanchez-Alonso and Aslin, 2020).

Addressing how human brain development proceeds is an
important question that will require large amounts of new data
and algorithms that capture the local and global structure of
high dimensional trajectories, including ones with gradual noisy
changes and non-linear transitions. One approach could include
repeated MRI measurements during the ages that overlap among
molecular clusters to assess if those ages have heightened intra-
or inter-individual variation in brain responses. Those studies
will help identify ages during development with gradual but
noisy change from ages with non-linear transitions in the gene
and protein expression pattern in the developing human brain.
Ultimately, the models will need to include multi-omics data
and link with brain imaging to understand how the human
brain develops fully.

CONCLUSION

The last decade has seen remarkable growth in the number
of studies examining the human brain’s molecular features. In
parallel, high throughput tools have dramatically increased the
amount of data collected for every sample. The complexity
and high dimensional nature of those datasets have spurred
the need for more guidance in selecting appropriate tools to
analyze those big data. Some studies are now collecting data
from 100 or 1000 s of human brain postmortem samples (e.g.,
PsychENCODE), but studies of development still have many
fewer tissue samples, and the ages of the cases are spread across
the lifespan. The small sample sizes of the developmental datasets
make it difficult to apply many commonly used high dimensional
clustering methods. Those methods lack the sensitivity needed
to reveal robust clusters defined by the subtle differences in
genes or proteins that occur across the postnatal lifespan. At
the same time, sparsity-based clustering algorithms designed for
small sample size have emerged. In this guide, we explored the
application of sparsity-based clustering and showed that one
algorithm, RSKC, is a good fit for revealing the subtle and gradual
changes of human brain development that occurs from birth to
aging. In the next decade, the amount of data collected from
each postmortem brain sample will only continue to grow as
single-cell RNA sequencing methods are applied to studying
human brain development. Furthermore, the push to integrate
multimodal measurements, from molecules to imaging of human
brain development will heighten the demand for robust high
dimensional analysis tools. Neuroscientists will continue to face
many challenges identifying rigorous methods to analyze those
sparse and very high dimensional datasets. Nevertheless, careful
selection of high dimensional analytical techniques that are
designed for small sample sizes can be expected to have an impact
on the discovery of novel aspects of human brain development.
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The longitudinal study of typical neurodevelopment is key for understanding deviations
due to specific factors, such as psychopathology. However, research utilizing repeated
measurements remains scarce. Resting-state functional magnetic resonance imaging
(MRI) studies have traditionally examined connectivity as ‘static’ during the measurement
period. In contrast, dynamic approaches offer a more comprehensive representation of
functional connectivity by allowing for different connectivity configurations (time varying
connectivity) throughout the scanning session. Our objective was to characterize the
longitudinal developmental changes in dynamic functional connectivity in a population-
based pediatric sample. Resting-state MRI data were acquired at the ages of 10 (range
8-to-12, n = 3,327) and 14 (range 13-to-15, n = 2,404) years old using a single, study-
dedicated 3 Tesla scanner. A fully-automated spatially constrained group-independent
component analysis (ICA) was applied to decompose multi-subject resting-state data
into functionally homogeneous regions. Dynamic functional network connectivity (FNC)
between all ICA time courses were computed using a tapered sliding window approach.
We used a k-means algorithm to cluster the resulting dynamic FNC windows from
each scan session into five dynamic states. We examined age and sex associations
using linear mixed-effects models. First, independent from the dynamic states, we
found a general increase in the temporal variability of the connections between intrinsic
connectivity networks with increasing age. Second, when examining the clusters of
dynamic FNC windows, we observed that the time spent in less modularized states,
with low intra- and inter-network connectivity, decreased with age. Third, the number
of transitions between states also decreased with age. Finally, compared to boys,
girls showed a more mature pattern of dynamic brain connectivity, indicated by more
time spent in a highly modularized state, less time spent in specific states that are
frequently observed at a younger age, and a lower number of transitions between
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states. This longitudinal population-based study demonstrates age-related maturation in
dynamic intrinsic neural activity from childhood into adolescence and offers a meaningful
baseline for comparison with deviations from typical development. Given that several
behavioral and cognitive processes also show marked changes through childhood and
adolescence, dynamic functional connectivity should also be explored as a potential
neurobiological determinant of such changes.

Keywords: brain development, fMRI, longitudinal, resting state – fMRI, linear mixed effect model

INTRODUCTION

Neurodevelopment from childhood into adolescence represents a
pivotal period, marked by several cognitive, social, and behavioral
milestones, and is also beset with the emergence of many forms of
psychopathology (Nelson et al., 2005; Paus et al., 2008; Luciana,
2013). Typical neurodevelopment provides a baseline framework
for understanding how deviations in brain development are
associated with mental and neurological illness, and it has been
characterized in vivo using structural and functional magnetic
resonance imaging (MRI) for over two decades (Giedd et al.,
1999; Rubia et al., 2000; Luna et al., 2001; Gogtay et al.,
2004; Lebel et al., 2008). More recently, resting-state functional
MRI (rs-fMRI) has been used to study brain development.
This brain imaging modality is used to measure intrinsic
functional brain connectivity, or the spontaneous, correlated
activations among brain networks (Biswal et al., 1995; Cole
et al., 2010). The connectivity patterns of these networks exhibit
high reproducibility between individuals, representing a reliable
indicator of brain development (Allen et al., 2011). Despite
widespread application, the vast majority of neurodevelopmental
studies using rs-fMRI have been cross-sectional in design, lacking
crucial insights from repeated measures (Kraemer et al., 2000).

Traditional rs-fMRI analysis approaches focus on the average
functional connectivity across the scanning session, effectively
assuming the connectivity is ‘static’. Studies of static brain
connectivity have observed intra- and inter-network connectivity
associations with age, and a number of networks show abnormal
connectivity patterns in the presence of psychiatric disorders (Di
Martino et al., 2014; Muetzel et al., 2016; Bos et al., 2017). Certain
resting-state networks, such as the precuneus and the lateral
frontal, increase their connectivity during brain development
while others, such as the right frontoparietal and sensory
networks, decrease with age (Muetzel et al., 2016). While static
brain connectivity studies provide information about topological
organization of functional brain networks during development,
changes in connectivity throughout the scanning session are
not captured by using this approach (Delamillieure et al., 2010;
Calhoun et al., 2014).

Dynamic brain connectivity is a novel functional MRI analysis
technique that allows connectivity between brain areas to vary
over time, relaxing the stationarity assumption (Allen et al.,
2014; Calhoun et al., 2014). Though several novel methods
exist to estimate dynamic connectivity, one popular framework
identifies different connectivity configurations, or states, across
the scanning session and offers summary metrics, such as the time

spent in each of these states. Although the general structure and
topology of functional connectivity states are stable across age,
there are age-related changes in the frequency of certain states
and the time spent in each of them (Hutchison and Morton,
2015; Marusak et al., 2017). In the Generation R Study (n = 774,
6–10 years old), Rashid et al. (2018) found that older children
spent more time in a state that showed a modular organization
of functional connectivity in distinguished networks (Rubinov
and Sporns, 2010), named ‘globally modularized dynamic state’.
In this state, the nodes comprising a network were positively
interconnected among them and those of different networks
were negatively correlated. Contrarily, younger children spent
more time in a globally disconnected state (Rashid et al.,
2018). In addition, girls spent more time in a default mode
modularized state compared to boys, which could indicate an
earlier maturation of functional connectivity (Rashid et al., 2018).
In the PING Study (n = 421, 3–21 years old), Faghiri et al. (2018)
showed that age was negatively correlated with the time spent
in states with strong connectivity between cognitive control and
default mode domains, while older participants stayed longer
in states showing positive intra-network connectivity within
the default mode domain. Although the number of transitions
between different states has not been associated with age in cross-
sectional studies, some of these studies observed that the overall
connectivity between intrinsic networks becomes more variable
(higher standard deviation, SD) across the scanning session
from childhood to adulthood (Hutchison and Morton, 2015; Qin
et al., 2015; Marusak et al., 2017). For instance, Marusak et al.
(2017) reported positive age associations with the variability of
functional connectivity between core neurocognitive networks,
which may afford greater cognitive and behavioral flexibility.

Currently, the literature examining associations between age
and dynamic brain connectivity indicators in children has
been comprised exclusively of cross-sectional studies. While
these studies have established the fundamental basis for our
understanding of age- and sex-related differences in functional
brain connectivity, cross-sectional neurodevelopmental research
provides limited information and it does not take into account
inter-individual variability (Kraemer et al., 2000). Therefore,
longitudinal studies are needed to explore individual growth
changes, which is of key importance to understand the deviations
in neurodevelopment after various exposures (e.g., early life
adversities) or in psychopathology (Kraemer et al., 2000;
Crone and Elzinga, 2015). Therefore, our objective was to
characterize the longitudinal developmental changes in dynamic
functional connectivity from childhood into adolescence in a
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large, population-based sample, as a follow-up of the cross-
sectional findings observed in the Generation R Study by Rashid
et al. (2018) at a younger age. We also aimed to understand
whether maturation of dynamic functional connectivity was
distinct in boys and girls, as sex differences have been observed
using rs-fMRI (Satterthwaite et al., 2015) as well as other MRI
modalities (Lenroot and Giedd, 2006; Perrin et al., 2009; López-
Vicente et al., 2020). Our main focus was on global summary
metrics of dynamic connectivity, specifically those related to
time spent in a given connectivity configuration and the number
of transitions between different connectivity configurations.
Since previous cross-sectional studies suggested that the overall
connectivity between intrinsic networks becomes more variable
during development, we additionally tested the longitudinal age
associations with the temporal variability (SD) of functional
connections across the scanning session. We hypothesized that,
over time, children would show more variable connections
and they would spend more time in modularized states. This
is in line with research indicating that brain development is
characterized by the increase of “integration” of functional
networks (Fair et al., 2007) and also with the existing dynamic
connectivity literature (Faghiri et al., 2018; Rashid et al., 2018).
Given differential developmental patterns previously reported
with various neuroimaging modalities, we hypothesized that girls
would show slightly faster development than boys, showing more
mature dynamic connectivity patterns.

MATERIALS AND METHODS

Participants
The current study is part of the Generation R Study, a population-
based birth cohort in Rotterdam, the Netherlands (Kooijman
et al., 2016). Data in this study includes rs-fMRI data acquired
at the age-10 visit (mean age 10 years, range 8-to-12, n = 3,327)
and the age-14 visit (mean age 14 years, range 13-to-15,
n = 2,404). Data collection was carried out between March
2013 and November 2015 for the age-10 visit (White et al.,
2018) and between October 2016 and January 2020 for the
age-14 visit. A flow-chart outlining data inclusion/exclusion
for the study can be found in Figure 1. Few data were
excluded due to the presence of prominent incidental findings
(nage10 = 19 and nage14 = 24). Due to excessive motion, 698
datasets (21%) were excluded from the age-10 visit and 168
datasets (7%) were excluded from the age-14 visit (see Section
“Image Quality Assurance” for details). Data were also excluded
due to poor registration (spatial normalization) (0.7% from
the age-10 visit and 0.3% from the age-14 visit). After this
filtering, the total number of datasets available for analysis in
this study was 2,586 at the age-10 visit and 2,204 at the age-
14 visit. 1,031 participants had data in both visits (Figure 1).
Supplementary Figure 1 shows the age at scan for all the
individuals with repeated measures. All parents provided written
informed consent and children provided assent (younger than
12 years) or consent (12 years or older). All study procedures were
approved by the local medical ethics committee of the Erasmus
MC University Medical Center.

Magnetic Resonance Imaging Data
Acquisition
Magnetic resonance images were acquired on a study-dedicated
3 Tesla GE Discovery MR750w MRI System (General Electric,
Milwaukee, WI, United States) scanner using an 8-channel head
coil. No hardware upgrades or major software upgrades have
taken place since the study began in 2012 in order to keep the
system stable for longitudinal research.

After a brief mock scanning session to acclimate the
participants to the MRI environment, structural T1-weighted
images were obtained using a 3D coronal inversion recovery
fast spoiled gradient recalled (IR-FSPGR, BRAVO) sequence
using ARC acceleration [TR = 8.77 ms, TE = 3.4 ms,
TI = 600 ms, flip angle = 10◦, matrix = 220 × 220, field of
view (FOV) = 220 mm × 220 mm, slice thickness = 1 mm]. 200
volumes of rs-fMRI data were acquired using an interleaved axial
echo planar imaging sequence with the following parameters:
TR = 1,760 ms, TE = 30 ms, flip angle = 85◦, matrix = 64 × 64,
FOV = 230 mm × 230 mm, slice thickness = 4 mm (White et al.,
2018). The total duration of the resting-state scan was 5 min 52 s.
Children were instructed to stay awake and keep their eyes closed.

Image Preprocessing
Data were first converted from DICOM to Nifti format using
dcm2niix (Li et al., 2016). Data were subsequently preprocessed
through the FMRIPrep package (version 20.1.1 singularity
container) (Esteban et al., 2019). Briefly, this included volume
realignment for translation and rotation motion, slice-timing
correction, and inter-subject registration.

Spatial normalization to the ICBM 152 Non-linear
Asymmetrical template version 2009c (Fonov et al., 2009)
was performed through non-linear registration with the
antsRegistration tool of ANTs v2.1.0 (Avants et al., 2008),
using brain-extracted versions of both T1w volume and
template. The resulting functional data were resampled to
3 mm × 3 mm × 3 mm isotropic voxels.

From the volume realignment, we obtained the time series
corresponding to the first temporal derivatives of the six base
motion parameters (3 translations and 3 rotations), together
with their quadratic terms, resulting in the total 24 head
motion parameters (6 base motion parameters + 6 temporal
derivatives + 12 quadratic terms) to be used as confound
regressors (see below) (Satterthwaite et al., 2013).

Group-Independent Component Analysis
and Dynamic Functional Network
Connectivity Analysis
Group-independent component analysis and dynamic functional
network connectivity analyses were performed using the
Group ICA Of fMRI Toolbox (GIFT) software1 (GroupICAT
v4.0b) (Calhoun et al., 2001; Calhoun and Adalí, 2012)
in MATLAB R2020a.

1https://trendscenter.org/software/gift
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FIGURE 1 | Flowcharts. MRI, magnetic resonance imaging; FD, framewise displacement.

Group-Independent Component Analysis
Prior to analysis, the first 4 volumes of each subject were
excluded to ensure magnetic stabilization. Resting-state data was
decomposed into functionally homogeneous regions applying
a spatially constrained group-independent component analysis
(scICA) via the multi-objective optimization ICA with reference
algorithm (Du and Fan, 2013). The scICA method is a fully
automated approach which uses aggregate component maps
from previous group ICA analysis as reference to estimate
subject specific independent components. This technique has
been previously used on adult studies (Salman et al., 2019; Du
et al., 2020). Here we used 51 reference components derived
from the Dev-CoG developmental imaging study, and grouped
them into seven networks: subcortical (SC), auditory (AUD),
sensorimotor (SM), visual (VIS), default-mode (DMN), cognitive
control (CC), and cerebellar (CB) (Supplementary Figure 2 and
Supplementary Table 1) (Agcaoglu et al., 2019).

The subject specific time courses corresponding to the
components were detrended, despiked, and the 24 motion
parameters were regressed out. As correlation among brain

networks is primarily driven by low frequency fluctuations
(Cordes et al., 2001), time courses were also filtered using a
fifth-order Butterworth low-pass filter with a high frequency
cut-off of 0.15 Hz.

Dynamic Functional Network Connectivity Analysis
Dynamic functional network connectivity (FNC) between all
independent components time courses was computed using
a tapered sliding window approach. This method provides
multiple correlation matrices (one per window per dataset) that
correspond to different temporal portions of data. We used a
window size of 25 TR (44 s) in steps of 1 TR and the alpha
parameter of the Gaussian sliding window was 3 TRs (Allen
et al., 2014; Qin et al., 2015), which yielded 171 FNC windows
per dataset. We estimated covariance from regularized inverse
covariance matrices (Smith et al., 2011) using a graphical LASSO
framework (Friedman et al., 2008) as estimation of covariance
matrices of short time series can be noisy. Also, we imposed an
additional L1 norm constraint on the inverse covariance matrix to
enforce sparsity. The regularization parameter was optimized for
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TABLE 1 | Sample characteristics.

Single measurement Repeated measurements

Age-10 visit Age-14 visit Age-10 and -14 visits

N 1,555 1,173 1,031

Age (years, mean ± SD) 10.13 ± 0.58 14.18 ± 0.67 10.15 ± 0.62; 13.85 ± 0.51

Sex (n, %)

Boys 787 (50.61) 546 (46.55) 466 (45.2)

Girls 768 (49.39) 627 (53.45) 565 (54.8)

Ethnicity (n, %)

Dutch 948 (60.96) 671 (57.2) 642 (62.27)

Other western 138 (8.87) 107 (9.12) 94 (9.12)

Non-western 440 (28.3) 363 (30.95) 274 (26.58)

Maternal education (n, %)

None or primary 38 (2.44) 30 (2.56) 24 (2.33)

Secondary 451 (29) 387 (32.99) 317 (30.75)

Higher 835 (53.7) 565 (48.17) 589 (57.13)

Household income (n, %)

Very low (<1,200€/month) 83 (5.34) 52 (4.43) 40 (3.88)

Low (1,200€–2,400€/month) 235 (15.11) 215 (18.33) 168 (16.29)

Modal and higher (>2,400€/month) 950 (61.09) 666 (56.78) 675 (65.47)

SD, standard deviation. The percentages of missing values in subjects with single measurement at age-10 visit were 2% for ethnicity, 15% for maternal education and
18% for household income. The percentages of missing values in subjects with single measurement at age-14 visit were 3% for ethnicity, 16% for maternal education and
20% for household income. The percentages of missing values in subjects with repeated measurements were 2% for ethnicity, 10% for maternal education and 14% for
household income.

each subject/visit by evaluating the log-likelihood of unseen data
in a cross-validation framework, that is, splitting time courses
into training and testing sets. Finally, to stabilize variance, the
dynamic FNC values were Fisher-Z transformed.

Clustering
Using data from both visits, we computed k-means clustering
on the resulting 171 dynamic FNC windows of 44 s from
each scan session in order to identify patterns of connectivity
that reoccur over time (within the scan session) and across
subjects and visits (between the scan sessions). The number
of clusters, or states, was set to five to match previous studies
(Faghiri et al., 2018; Agcaoglu et al., 2020). We used the
correlation distance function and the clustering algorithm was
repeated 500 times to increase the chances of escaping local
minima, with random initialization of centroid positions. We
determined the modularity of the dynamic states qualitatively.
First, a state was described as fully modularized when a clear
modular organization, thus positive intra-network connectivity
and negative inter-network connectivity, was observed. Next, if
a state was not fully modularized, but presented sub-modules
within networks with different connectivity configurations, we
defined it as being partially modularized. Lastly, if a state did not
possess any or very little characteristics of being modularized, we
labeled it as a non-modularized state.

Outcome Measures
For each individual and visit, we calculated three different
outcomes. First, the SD of the functional connections
between the 51 components as a measure of temporal
variability. Second, the mean dwell time (MDT) in each

dynamic state. This variable was obtained by first identifying
every change between states, calculating the number of
windows in each state and computing the average time a
participant remained in the specific states [for a more detailed
explanation, see Rashid et al. (2018)]. Third, the number of
transitions between states.

Image Quality Assurance
Scans with excessive motion defined as having a mean framewise
displacement (FD) higher than 0.25 mm or having more than
20% of the volumes with a FD higher than 0.2 mm, were
excluded (Parkes et al., 2018). Image co-registration was visually
inspected for accuracy by merging all co-registered images into
a single 4D Nifti image and scrolling through the images.
Scans were also screened for major artifacts (e.g., from dental
retainers, or other scanner-related artifacts) as well as whole-
brain coverage (e.g., missing from field of view). All the scans
flagged as being of poor quality for the above-mentioned
reasons were excluded.

Sample Characteristics
Descriptive characteristics of the participants are presented
with means and standard deviations or proportions. Child
sex and date of birth were determined from medical records
obtained at birth. Child ethnicity was defined based on
the country of birth of the parents and was coded into
three categories (Dutch, non-western, and other western).
Maternal education level and household income, proxies
of socioeconomic status, were assessed by questionnaire
during pregnancy.
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Statistical Analyses
Statistical analyses were conducted using the R Statistical
Software (version 3.6.0).

We compared the summary metrics (MDT in each state and
number of transitions between states) between age-10 and age-
14 visits and between boys and girls in each visit using Wilcoxon
tests. For the visit comparison we used Wilcoxon signed rank test,
while for the sex comparisons, we used Wilcoxon rank sum test.

Age was centered to the mean age of the sample at the age-
10 visit. The distributions of all the dependent variables were
visually inspected using histograms. Since MDT outcomes were
right-skewed, we applied a Box–Cox transformation (Box and
Cox, 1964) using the ‘bestNormalize’ package (version 1.6.1)
(Peterson and Cavanaugh, 2020) to obtain a more homogeneous
range of values.

The age associations with the temporal variability of
connectivity (SD) between components, and the summary
metrics (transformed MDT in each state and number of
transitions between states) were estimated using linear mixed-
effects models, implemented in the ‘nlme’ package (version 3.1-
139) (Pinheiro et al., 2019), including age and sex as fixed
effects and subject as random effect, allowing the intercept to
vary randomly across subjects. For the summary metrics, we
also tested the quadratic term of age in order to capture the
possible non-linearity in the growth changes, and we added an
interaction term of age-by-sex into the regression models to
detect potential differential age associations in boys and girls,
following a step-wise approach. We performed the likelihood
ratio (LR) test for model comparisons using ML estimation.
Stratified analyses by sex were performed when we observed
statistically significant interactions. Given the important role of
socioeconomic status in the brain development (Brito and Noble,
2014), we additionally included maternal education in the models
as a precision covariate. The models were performed separately
for each outcome. A false discovery rate (FDR) was applied to
control for Type-I error. Associations with pcorrected < 0.05 were
considered significant.

The associations between age and the summary metrics were
graphically represented in the original scale using the ‘ggplot2’
package (version 3.3.2) (Wickham, 2016). To estimate the
variation of the values in the population, we applied the bootstrap
technique (Efron, 1979), using 2,000 resamples with replacement.

RESULTS

Sample Characteristics
The sample characteristics are shown separately for participants
with a single measurement (age-10 or age-14 visit) and those with
repeated measurements in Table 1. The mean age and variation
at the age-10 visit were very similar between those with and
without repeated measurements, as well as at the age-14 visit.
The mean duration between visits was 4 years (range 1–6 years).
Although the proportion of boys and girls was balanced in the
participants with data only at the age-10 visit, there were more
girls than boys with single measurement at age-14 visit (53% girls
vs. 47% boys) and with data at both visits (55% girls vs. 45%

boys). Around 60% of the participants were of Dutch origin and
between 26 and 31% were of non-western national origin, with
small differences between single/repeated measurement groups.
The groups also differed slightly in terms of maternal education
and household income, although the relative proportions were
constant between them. The participants with data only at the
age-14 visit had the highest proportion of low (3%) or secondary
(33%) maternal education and lower household income (<2,400€
per month, 23%).

Temporal Variability in Functional
Connections Within Scan Session
Figure 2 shows the average variability (SD) in the correlations
between the time courses of the 51 components over the
measurement period across participants and visits. In general,
the SDs were between 0.20 and 0.25. The smallest variability
was observed within the VIS network, indicating more stable
connections over the scan session. The most variable connections
were observed between SM and VIS networks, CC and VIS
networks, and within the CC network.

Dynamic States
The k-means clustering method allowed us to identify five
dynamic states, or patterns of connectivity that reoccurred over
time (within the scan session) and across subjects and visits
(between the scan sessions). We obtained three modularized
states with components showing intra- and inter-network
connectivity (states 1, 2, and 3) and two non- or only partially
modularized states (states 4 and 5) (Figure 3). In state-1 (15%
of occurrences), the SC and CB networks showed positive intra-
network connectivity and negative inter-network connectivity,
mainly with the sensory networks (AUD, SM, and VIS). Thus,
the components that comprise the SC and CB networks were
positively correlated within themselves, and they were negatively
correlated with the components of the sensory networks. The
SM and the VIS networks also showed strong positive intra-
network connectivity. The frequency of occurrence of state-
1 increased with scan progression (i.e., occurred more as
the scan went on, particularly, around 7% more windows of
time were part of this state at the end of the session as
compared to the beginning) (Figure 4). In state-2 (22% of
occurrences), SM and DMN networks showed positive intra-
network connectivity and negative inter-network connectivity
between them. Other components, such as CC components,
showed opposite connectivity patterns with SM and DMN.
For instance, frontal CC components were positively correlated
with DMN and negatively correlated with SM components, and
posterior CC components showed the opposite pattern. The
frequency of state-2 decreased by 5% with scan progression
(Figure 4). State-3 (20% of occurrences) was characterized by
positive correlations within the DMN and negative correlations
between this network and the other networks, except some
CC components from the frontal lobe. The SM and the VIS
networks also showed strong positive intra-network connectivity
in this state. State-3 shared some traits with state-2. However, the
negative inter-network connectivity between DMN and the other
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FIGURE 2 | Temporal variability in pairwise functional connections between the 51 components within scan session. SC, subcortical network; AUD, auditory
network; SM, sensorimotor network; VIS, visual network; DMN, default-mode network; CC, cognitive control network; CB, cerebellar network.

networks was more “global,” although weaker, in state-3 than in
state-2, in which the inter-network connectivity was focused on
specific networks. The frequency of state-3 also decreased by 3%
of windows of time over the scan session (Figure 4).

State-4 (18% of occurrences) was non-modularized, thus
a clear modular organization of functional connectivity in
distinguished networks was absent in this state. The putamen
(SC, 1 and 2), the middle temporal gyrus (CC, 38), and
the cerebellum were negatively correlated with all the other
components. The opposite was observed in the postcentral gyrus
component (SM, 8), which was positively correlated to several
components. The frequency of state-4 increased by 4% with scan
progression (Figure 4).

Finally, state-5 (24% of occurrences) was partially
modularized, presenting sub-modules within networks with
different connectivity configurations. For instance, regarding
the SC network, the putamen (SC, 1 and 2) was negatively
correlated with visual components, while the thalamus
(SC, 3 and 4) showed positive correlations. The postcentral
gyrus component (SM, 8) was positively correlated with
visual components, and the rest of the SM components

were negatively correlated with those components. As in
state-3, the DMN was positively connected within network
and with frontal CC components. The frequency of state-
5 showed a general mild decreasing trend over the scan
session (Figure 4).

Longitudinal Changes in the Temporal
Variability
We observed increases in overall temporal variability in
functional connections between components across age
(Figure 5). The SD, which ranged between 0.20 and 0.25,
increased on average a 1% (coefficient = 0.0025) per year.
Some connections showed less variability at older ages, such
as the Insular Cortex component (CC, 44) connections with
components from other networks.

Longitudinal Changes in Dynamic States
The distributions of the summary metrics (MDT and number
of transitions) by visit and sex are depicted in the original
scale in Figure 6, and the individual observations are shown
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FIGURE 3 | Five dynamic states after clustering across all individuals and visits. Each state captures a particular connectivity ‘configuration’ a participant may display
over the course of the MRI scan. The total number and percentage of occurrences (windows of time) is listed above each state. SC, subcortical network; AUD,
auditory network; SM, sensorimotor network; VIS, visual network; DMN, default-mode network; CC, cognitive control network; CB, cerebellar network.
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FIGURE 4 | Frequency of occurrence of each state over the course of the MRI scan. Gray lines indicate the estimated occurrence profiles of each state for 100
bootstrap resamples with replacement.

in Supplementary Figure 3. We observed differences between
age-10 and age-14 visits in all the outcomes except state-2
MDT. Boys and girls also showed differences in the MDT of
states 1, 3, and 5 (age-10 visit), states 2 and 4 (both visits),
and the number of transitions between states (age-14 visit).
As outlined in the Section “Statistical Analyses”, the linear
mixed-effects models were performed using transformed MDT
outcomes (Box–Cox transform). Table 2 shows the age and
sex associations with the MDT of each state and the number
of transitions between states. Only the linear term of age
was included in the models because the LR test indicated
that the model fit was not significantly improved with the
quadratic term addition. Overall, the MDT in state-1 increased
with age, while the MDT in states 3, 4, and 5 decreased
with age. The number of transitions between states decreased
over time. Girls spent more time in state-2, less time in
states 3 and 4, and showed fewer transitions between states
compared to boys.

From baseline to follow-up, increases were observed for
the time spent (MDT) in state-1, which is characterized by
negative inter-network connectivity between subcortical and

sensorimotor networks. Thus, children spent more time in
state-1 as they grew older. Figure 7, depicts the predicted
number of windows spent in state-1 increased slightly more
in absolute terms at older ages than at younger ages. No
sex differences were observed in MDT for state-1, and
adding the age-by-sex interaction term did not improve the
model (LR test p = 0.491). Regarding state-2 (the default-
mode/sensorimotor modularized), we found differences by sex,
with girls spending around 1% more time (2 windows of time)
than boys in this state across the whole age range (Figure 7).
However, no significant interaction was observed (LR test
p = 0.051).

We observed decreases in MDT for state-3 (the default-
mode network modularized state), state-4 (the non-modularized
state), and state-5 (the partially modularized state) associated
with age. Children spent around 0.6% less time (1 window)
per year in state-3. In addition, girls spent around 0.6%
less time (1 window) in this state than boys across the
whole age period, with no age-by-sex interaction (LR test
p = 0.120) (Figure 7). Regarding state-4, we found an interaction
between age and sex (LR test p = 0.006) (Table 3 and
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FIGURE 5 | Strength of the associations between age and variability in pairwise functional connections between components. Linear mixed-effects models adjusted
for sex (random effect: subject). Only the results that survived the false discovery rate (FDR) multiple comparison correction threshold of pFDR = 0.05 are shown
here. SC, subcortical network; AUD, auditory network; SM, sensorimotor network; VIS, visual network; DMN, default-mode network; CC, cognitive control network;
CB, cerebellar network.

Figure 7). The stratified analyses showed that the negative
association between age and MDT in state-4 was stronger
in girls (Table 4). Girls spent 0.3% less time (half window)
per year in this state. In boys, the slope decreased more
slowly with age (Figure 7). The change in state-5 was
steeper, MDT decreased by 1% (2 windows) per year both
in boys and in girls, with no age-by-sex interaction (LR test
p = 0.361) (Figure 7).

The number of transitions between states decreased over time,
and this association was stronger in girls than in boys, with age-
by-sex interaction (LR test p = 0.016) (Tables 3, 4). The predicted
number of transitions changed from NT = 8.5 around age-9 to
NT = 7 at age-14 in girls (Figure 7).

Similar results were observed in the models that
were additionally adjusted for maternal education
(Supplementary Table 2).

DISCUSSION

This is the largest longitudinal population-based study describing
individual changes in dynamic brain connectivity from childhood
into adolescence. We highlight three findings that show
developmental patterns. First, we found a general increase in
the variability of the connections between intrinsic connectivity
networks with increasing age. Second, the time spent in a
modularized state increased with age, while the time spent in
less modularized states decreased with age. Third, the number
of transitions between states decreased with age. Girls showed
a more mature pattern of dynamic brain connectivity, spending
more time in a highly modularized state, less time in specific
states that were more frequently observed at a younger age,
transitioning less between states and showing a faster decrease of
time spent in a non-modularized state across age than boys.
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FIGURE 6 | Distributions of mean dwell time (MDT, number of time windows) in each state and number of transitions between states by visit and sex. Wilcoxon
signed rank test was used to compare the values between age-10 and age-14 visits and Wilcoxon rank sum test was used to compare the values between boys
and girls in each visit. *p-value < 0.05; n.s., non-significant.

TABLE 2 | Age- and sex-associations with transformed mean dwell time (MDT, number of time windows) in each state and number of transitions (NT) between states.

Age Sex (ref. boys) AIC BIC

95% CI 95% CI

Estimate Lower Upper P-value Estimate Lower Upper P-value

State-1 MDT 0.208 0.196 0.221 < 0.001* −0.052 −0.104 −0.001 0.046 12678.65 12711.02

State-2 MDT 0.001 −0.013 0.015 0.872 0.152 0.096 0.209 < 0.001* 13594.54 13626.9

State-3 MDT −0.082 −0.096 −0.068 < 0.001* −0.074 −0.130 −0.018 0.009* 13480.18 13512.55

State-4 MDT −0.036 −0.049 −0.022 < 0.001* −0.244 −0.302 −0.186 < 0.001* 13476.86 13509.23

State-5 MDT −0.171 −0.185 −0.158 < 0.001* 0.040 −0.014 0.093 0.145 13003.42 13035.78

NT −0.178 −0.221 −0.134 < 0.001* −0.292 −0.468 −0.115 0.001* 24485.35 24517.71

Linear mixed-effects models (random effect: subject). The MDT outcomes were transformed using Box–Cox. Age was centered to the mean age of the sample at age-10
visit. *P-value corrected for multiple comparisons (FDR) < 0.05. AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion.

The higher variability in the connections between networks
observed with increasing age is consistent with previous cross-
sectional studies (Hutchison and Morton, 2015; Marusak et al.,
2017). This broader repertoire of functional connections between
brain regions could be a neural substrate of a higher cognitive
complexity. Some of our findings regarding the associations
between age and the time spent in specific dynamic states are
consistent with previous research. Using cross-sectional data of

the Generation R Study, but a younger age visit than this study
(6–10 years old), Rashid et al. (2018) also found that older
children showed longer MDT in a globally modularized state,
characterized by intra- and inter-network connectivity. We found
negative age associations with MDT in state-3, in which the DMN
was negatively correlated with the other networks. We expected
this type of connectivity pattern to be positively associated with
age, given the modularity of the state and the fact that the
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FIGURE 7 | Age-associations with mean dwell time (MDT, number of time windows) in each state and number of transitions between states by sex. Linear
mixed-effects models (random effect: subject). The MDT values were transformed back to the original scale for the graphical representation of the associations.
A bootstrap technique was applied using 2,000 resamples with replacement to estimate the variation of the values in the population.

efficiency of the DMN increases as children grow older. It is
possible that state-3 is a precursor of state-2, and older children
tend to spend less time in state-3 because they transition to the
other modularized states (1 and 2).

We reported negative associations between age and time
spent in less modularized states, such as states 4 and 5. These
results are supported by previous research showing that the
developing brain is characterized by an increase of “integration”
of functional networks (Fair et al., 2007). The components of a
network in those states do not show consistent intra-network
connectivity, nor inter-network connectivity. This suggests that
the integration, or the increased connectivity within the brain
regions that comprise a network, is low. This is expected given
adolescence is a period of transition to more efficient brain
connectivity, in which widely distributed areas are integrated
into complex brain systems. This type of developmental
process, in which connections change during adolescence, has
recently been identified as “disruptive mode,” in contrast to
“conservative mode,” in which connections already established
become more strong (Váša et al., 2020). Myelination and synaptic

pruning processes that take place during brain development
likely contribute to these changes in functional connections
by supporting more efficient neuronal communication. The
establishment of these complex functional systems has an impact
on higher-order cognition (Giedd et al., 1999; Luna and Sweeney,
2004; Bunge and Wright, 2007; Fair et al., 2007).

We found negative associations between age and the number
of transitions between dynamic states. Previous studies did
not find such association during rest (Hutchison and Morton,
2015; Marusak et al., 2017). Our findings were statistically
significant, however, the change we observed was relatively small.
Given the large size of the current sample, the discrepancy in
findings could be explained by the higher power of our study.
Overall, our findings suggest that older participants show more
complex connectivity patterns and they remain longer in specific
connectivity configurations.

In terms of the composition of the different dynamic states,
or configurations, some of the connections between components
were stable between states, such as intra-network connectivity
within the SC and the VIS networks. Consistent with previous
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TABLE 4 | Sex stratified age-associations with transformed mean dwell time
(MDT, number of time windows) in state-4 and number of transitions
(NT) between states.

95% CI

Estimate Lower Upper P-value

State-4 MDT

Boys −0.016 −0.035 0.004 0.111

Girls −0.053 −0.071 −0.034 < 0.001

NT

Boys −0.120 −0.184 −0.056 < 0.001

Girls −0.227 −0.286 −0.168 < 0.001

Linear mixed-effects models (random effect: subject). The MDT outcome was
transformed using Box–Cox. Age was centered to the mean age of the sample
at age-10 visit.

work, this finding suggests that network organization in humans
is a combination of both static and dynamic connections
(Calhoun et al., 2014; Faghiri et al., 2018). The age-related
changes in the dynamic connectivity metrics reported in this
study indicate that the organization of human connectivity
patterns develop progressively across the age spectrum (Faghiri
et al., 2018). The largest change in MDT associated with age was
observed in state-1. This connectivity configuration resembles
one that has previously been identified as a “drowsiness pattern”
(Allen et al., 2014; Damaraju et al., 2014, 2020). Interestingly,
the frequency of this state increased with the scan progression,
which could indicate an increase in the fatigue or a decrease
in the anxiety of the participants along the session. At the
same time, other states that are likely related to a higher
awareness, such as state-2, showed the opposite pattern, its
frequency decreased with scan progression. The detection of this
drowsiness-related state could be beneficial for other rs-fMRI
studies, since it allows to remove the effect of potential drowsiness
from the data. Additionally, it could also prove interesting from a
clinical perspective, where a particular disorder shows differential
associations within this connectivity configuration.

Overall, girls showed a faster development of dynamic
connectivity than boys. This is consistent with previous literature
(Satterthwaite et al., 2015; Rashid et al., 2018) and may be due
to an earlier onset of puberty in girls. We observed that girls
spent more time than boys in the default-mode/sensorimotor
modularized state (state-2) state across the whole age range. In
this state, the DMN and the SM showed opposite activation
patterns and they were negatively correlated between them; when
one of those networks is activated, the other is deactivated. The
DMN has been linked to internally focused thought, episodic
memory, and planning the future (Buckner et al., 2008), while
the SM is related to the processing of external stimuli and
motor information. Hence, girls were more prone than boys
to show a connectivity configuration in which the DMN and
SM networks were negatively correlated, which could indicate a
higher efficiency in the synchronized activation and deactivation
of those networks. Similar patterns of modular organization
between sensory systems and DMN have been observed in
young adults (Allen et al., 2014). Faghiri et al. (2018) using
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cross-sectional data from a broader age range (3–21 years old),
observed that older participants spent more time in states
showing intra-network connectivity within the DMN, and inter-
network connectivity between the SM and CC networks. These
connectivity traits were similar to the ones of the default-
mode/sensorimotor modularized state (state-2) that we obtained.
However, in our study we did not find associations between age
and the time spent in this state. Girls showed 1 year of advantage
in state-3 MDT decrease in relation to boys and they showed a
faster MDT decrease across age in the non-modularized state-4,
more commonly observed in younger children. In addition, girls
transitioned less between states than boys, which also suggests
more mature connectivity.

One of the most important limitations of developmental
fMRI studies is motion (Power et al., 2012). In order to reduce
the impact of motion, we implemented various strategies at
several levels of the analysis. First, we excluded datasets with
excessive motion applying a strict threshold (Parkes et al., 2018).
Second, we used a spatially constrained group-independent
component analysis approach, only including components that
were identified as not being noise. Third, we added a standard set
of motion regressors to the dynamic FNC analysis (Satterthwaite
et al., 2013). Indeed, there was no relationship between age and
motion in our sample after excluding the datasets with excessive
motion. The drawback of these actions is that participants who
move more are underrepresented in the analyses, potentially
leading to selection bias. In fact, we observed some differences
between the participants with data only at the age-10 visit,
those with data only at age-14 visit, and those with repeated
measurements. The proportion of girls was higher in the second
visit, the socioeconomic status was lower in the participants
with data only at the second visit, while a higher socioeconomic
level was more common among those with data at the two
time points. Despite these small differences in the socioeconomic
status between the groups, the inclusion of maternal education
in the models as a precision variable did not change the results.
Future work should explore the role of socioeconomic status
on the development of dynamic connectivity. For example,
socioeconomic status has proven an important factor in
structural neurodevelopment (Brito and Noble, 2014). In this
study, we used a group ICA template generated from a model
order of 150, however, analyzing dynamic FNC with higher
and lower group ICA model-based templates would also be
interesting. Indeed, a full multi-spatial scale FNC analysis appears
to provide additional information (Iraji et al., 2021). In terms
of the tapered sliding-window approach used in this study, one
limitation is related to the selection of the window size. However,
it has been demonstrated that 44 s provides reliable connectivity
estimations and it is also sensitive to abrupt brain activity (Allen
et al., 2014; Qin et al., 2015). In addition, the observations were
weighted according the their position within the window to
avoid the effect of influential points (Allen et al., 2014). Another
relevant limitation of this study was the distribution of the MDT
outcomes with a relatively skewed distributions. Despite the
Box–Cox transformation, the residuals from the linear mixed
model for state-1 were not fully normally distributed. However,
different transformations as well as not transforming the data at

all, yielded highly similar results, and the large sample size of this
study ensures the robustness of the estimates obtained even in
non-ideal conditions (Knief and Forstmeier, 2021).

The longitudinal design, the large and multiethnic sample,
which was based on the general population, and the use of a single
MRI scanner are the main strengths of this study. Longitudinal
studies are key to study the development of the brain, since they
allow to control for interindividual variability (Kraemer et al.,
2000). The advantages of studying the brain at the population
level as opposed to using small samples include the higher
statistical power, the lower bias and the higher generalizability of
the results (Paus, 2010; White et al., 2013; LeWinn et al., 2017).
The use of a single scanner is important as it reduces vendor-
and hardware-dependent differences, and it avoids the possible
influence of the system updates on the longitudinal estimates.

To summarize, we observed longitudinal changes in
dynamic connectivity from ages 8–15 years. Particularly, as
children mature, they show: (1) a higher variability in the
connections between networks; (2) less time in less modularized
states; and (3) less transitions between states. Girls showed a
more mature pattern of dynamic connectivity. Resting-state
functional connectivity is a reliable tool for studying functional
neurodevelopment as it does not require an explicit task-
based framework and the connectivity of intrinsic networks
exhibits high reproducibility between individuals. Dynamic
brain connectivity approaches offer a more comprehensive
view of functional connectivity than static connectivity
alone and they provide summary metrics, which are likely
more reproducible than many thousands of individual edge
comparisons. In conclusion, the changes of dynamic connectivity
over the course of development presented in this work provide
a meaningful baseline for comparison in deviations from
typical development.
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General psychopathology and cognition are likely to have a bidirectional influence
on each other. Yet, the relationship between brain structure, psychopathology, and
cognition remains unclear. This brief report investigates the association between
structural properties of the cerebral cortex [surface area, cortical thickness, intracortical
myelination indexed by the T1w/T2w ratio, and neurite density assessed by restriction
spectrum imaging (RSI)] with general psychopathology and cognition in a sample
of children from the Adolescent Brain Cognitive Development (ABCD) study. Higher
levels of psychopathology and lower levels of cognitive ability were associated
with a smaller cortical surface area. Inter-regionally—across the cerebral cortex—the
strength of association between an area and psychopathology is strongly correlated
with the strength of association between an area and cognition. Taken together,
structural deviations particularly observed in the cortical surface area influence both
psychopathology and cognition.

Keywords: MRI, brain development, cerebral cortex, growth, cohort

INTRODUCTION

There is overwhelming evidence demonstrating the shared heritability of psychiatric disorders
(Anttila et al., 2018). Given the high rates of comorbidity (Plana-Ripoll et al., 2019),
commonality in genetic and environmental risk factors (Uher and Zwicker, 2017), a
transdiagnostic perspective is warranted. The “p” factor, or general psychopathology factor,
is one such approach capturing latent structures of psychopathology across many disorders
(Lahey et al., 2012; Caspi et al., 2014). Impairments in cognitive functioning are observed
across many psychiatric disorders (Gale et al., 2010; Urfer-Parnas et al., 2010). Conceptual
frameworks have suggested a bidirectional relationship between cognitive function and
psychopathology (Batty et al., 2005; Calvete et al., 2013; Schweizer and Hankin, 2018).
With the advent of large-scale magnetic resonance imaging (MRI) studies, group differences
in the structural properties of the cerebral cortex (predominantly cortical thickness) have
been reported in common psychiatric disorders (Ching et al., 2020; Hoogman et al., 2020;
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Thompson et al., 2020; Van den Heuvel et al., 2020; Patel et al.,
2021), as well as in relation to general psychopathology (Mewton
et al., 2020; Romer et al., 2021a,b) and cognitive ability (Shaw
et al., 2006; Karama et al., 2014).

In this study, we investigate the association between several
properties of the cerebral cortex, namely the surface area,
cortical thickness, the T1w/T2w ratio (potentially an index of
myelination) (Glasser and Van Essen, 2011), and neurite density
[as indexed by restriction spectrum imaging (RSI)] (White et al.,
2013), with general psychopathology and cognitive ability in a
large sample of children from the Adolescent Brain Cognitive
Development Study (ABCD) (Casey et al., 2018).

MATERIALS AND METHODS

Magnetic resonance imaging data (T1-weighted, T2-weighted,
and diffusion tensor imaging) from the ABCD study of 11,753
children (mean age, 9.9 years; 48% female) were acquired and
processed as described previously (Casey et al., 2018). For
twin pairs, only one twin was selected at random to assess
unrelated individuals only. Following quality control of the
FreeSurfer pipeline (Fischl, 2012) (as described in the ABCD
white papers) and removing outliers based on three times the
standard deviation, there were 8,869, 8,885, 8,474, and 8,301
participants for the cortical area, thickness, T1w/T2w, and
neurite density, respectively. The ABCD study conducted manual
quality control of the FreeSurfer cortical surface reconstruction
by scoring the extent/severity of artifacts, namely motion,
intensity in homogeneity, white-matter underestimation, pial
overestimation, and magnetic susceptibility artifacts. Cortical
measures were averaged between the two hemispheres for each
of the 34 regions of the Desikan—Killiany atlas derived by
FreeSurfer (Desikan et al., 2006). Cortical thickness and the
surface area were estimated through the FreeSurfer cortical
reconstruction pipeline (Fischl, 2012). Neurite density was
estimated by RSI using the restricted normalized directional
maps, indexing intracellular and directional movement of water
through neurites (White et al., 2013). The T1w/T2w ratio was
quantified as the ratio of T1-weighted and T2-weighted maps
sampled within the cortical ribbon (detailed in ABCD white
papers, and Casey et al., 2018).

A bi-factor confirmatory factor analysis on the Child
Behavior Check List (parent completed) was used to extract
a general psychopathology factor, and internalizing and
externalizing factors using the R package “lavaan” (Rosseel,
2012). A total of 12 questions from the CBCL questionnaire
were not included in the model as they occurred with very
low frequency in the sample population (<1%). The model
was fit using the diagonally weighted least squares estimators
implemented in “lavaan.” P-factor model item loadings,
model fit, and the 12 excluded questions are presented in
Supplementary Tables 1–3. The comparative fit index for
the bi-factor model is 0.964, which agrees with a generally
accepted threshold of good model fit of >0.95. To quantify
cognitive ability, a total cognitive composite score was extracted
from the youth NIH Toolbox cognitive battery. NIH Total

composite measure included the following cognitive tests:
flanker, dimensional change card, picture sequence memory,
list sorting, pattern, oral reading, and picture vocabulary
(Weintraub et al., 2013).

The relationships between psychopathology and cortical
measures were modeled using linear mixed effects where
psychopathology and cognition were modeled as a function
of fixed effects (cortical measure, age, sex, and ethnicity), and
random effects for MRI serial number (due to multiple scanners
used in the ABCD study). P-values were corrected for multiple
comparisons (34 regions tested and for each of the 4 MRI
modalities for a total of 136 tests) using False Discovery Rate
(FDR) (Benjamini and Hochberg, 1995).

To test the presence of mediation by cognition (or
psychopathology) on the relationship between the surface area
and psychopathology (or cognition), we used a simple mediation
framework implemented by the “mediation” R package (Imai
et al., 2011; Tingley et al., 2014). Specifically, we used a similar
linear mixed effects model as above, adjusting for age, sex,
ethnicity, and MRI serial number to estimate the direct effect
(i.e., average direct effect, ADE), indirect effect (average causal
mediation effect, ACME), and the proportion of total effect
mediated. Confidence intervals were estimated using quasi-
Bayesian Monte Carlo approximation (Tingley et al., 2014).

RESULTS

We reveal subtle yet robust associations between cortical
structure and general psychopathology and cognitive ability
(Figure 1 and Supplementary Figure 1). The cortical surface
area is negatively associated with psychopathology and positively
associated with cognition across all cortical regions (FDR
p < 0.05). The cortical T1w/T2w ratio and neurite density
are positively associated with psychopathology, predominately
in the frontal lobe. Sex-stratified analyses are reported in
Supplementary Figures 2, 3. Cortical thickness is associated with
cognition in eight cortical regions but shows very little association
with psychopathology (Figure 1). Little to no associations
are present between cognition and either T1w/T2w ratio or
neurite density.

Across individuals, cognitive function is weakly correlated
with psychopathology (R2 = 0.03, p < 0.0001). But across
cortical regions, we observe a robust association between the
two interregional profiles; associations between the cortical area
and psychopathology correlate—across the 34 regions—with
associations between the cortical area and cognitive function
(R2 = 0.74, p < 0.0001; Figure 2). To some extent, this
relationship between association-based profiles is found also with
thickness, T1w/T2w ratio, and neurite density. Regression model
statistics can be found in Supplementary Tables 4, 5.

Finally, we examined if cognition (or psychopathology)
mediates the relationship between the surface area and
psychopathology (or cognition, Supplementary Figure 4).
Cognition mediates between 20 and 40% of the total effect
between the surface area and psychopathology, varying across
the 34 regions (Supplementary Figures 4A,B). On the other
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FIGURE 1 | Association between general psychopathology (A) and cognitive score (B) with cortical thickness, the surface area, the T1w/T2w ratio, and neurite
density (labeled “NeuriteDens”) across the 34 cortical regions of the Desikan—Killiany atlas. Standardized effect sizes (betas) plotted on the y-axis from linear mixed
models adjusting for the effect of age, sex, and scanner effects. Error bars represent 95% confidence intervals for the estimates. Filled-in circles represent
FDR-corrected p < 0.05.
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FIGURE 2 | A plot of interregional associations between the surface area and cognition (x-axis) and interregional associations between the surface area and general
psychopathology (y-axis) across the 34 regions of the cerebral cortex. Each point represents 1 of the 34 cortical regions. Line and shaded portions represent,
respectively, linear fit and 95% confidence interval for the linear fit. Pearson correlation = −0.86, R2 = 0.74, p < 0.0001.

hand, psychopathology mediates between 6 and 13% of the total
effect between the surface area and cognition (Supplementary
Figures 4B,C). This is a tentative analysis and should be
interpreted with caution as mediation analysis of cross-sectional
data cannot assess the directionality of these results.

DISCUSSION

This report examines the relationship between multimodal
measures of the cerebral cortex with cognition and general
psychopathology in a large set of children from the ABCD
study. There are robust associations between the radial growth
of the cerebral cortex (as reflected in the cortical surface
area), and both general psychopathology and cognition, as
well as more subtle variations with cytoarchitectonic (neurite
density) and myeloarchitectonic (T1W/TW2 ratio) features.
These associations may reflect variations in developmental
trajectories likely starting prenatally (the surface area) (Rakic,
1988), and continuing postnatally (intracortical myelination,
dendritic branching) (Hill et al., 2010; Whitaker et al.,
2016; Patel et al., 2019). It is important to note that
the neurobiological underpinnings for many of these MRI-
derived indices are not fully clear, and are unlikely to be
specific to a single microstructural feature, such as myelin or
neurite density.

In addition, there is a strong, inverse relationship
between associations of the cortical area with cognition and
psychopathology, respectively. Hypothetically, this may indicate
an overlap between genetic (Shin et al., 2020) and environmental
factors imparting—in parallel—the two behavioral phenotypes

via the radial expansion of the cerebral cortex during prenatal
development and the first few years of life. A majority of the
expansion of the cerebral cortex, reflected in the surface area,
occurs during prenatal and perinatal time periods (Li et al., 2013).
Cross-disorder psychiatric genome-wise association studies
(GWAS) point toward a role in prenatal neurodevelopment
across multiple conditions, and also reveal a negative genetic
correlation with GWAS of cognitive ability (Lee et al., 2019).
Similarly, genetic studies of intelligence reveal the importance
of neurodevelopmental processes (Savage et al., 2018). Finally,
neuron progenitor specific regulatory elements are enriched with
GWAS loci associated with the cortical surface area, psychiatric
disorders (e.g., schizophrenia, autism, and major depression),
and with intelligence and education attainment (Liang et al.,
2021). Taken together, it is possible that neurodevelopment
during gestation connects the processes underlying cortical
growth with psychopathology and cognition. It is also possible
that such early developmental events cascade into later cognitive
development and psychopathology in a sequential manner (e.g.,
from lower cognitive abilities to higher psychopathology or
vice versa) (Schweizer and Hankin, 2018). We have shown that
a number of adverse perinatal events (e.g., hypoxia, maternal
hypertension) share their molecular architecture with that
underlying neurodevelopmental processes involved in cortical
growth during the same period (Patel and Paus, under review).

Finally, the mediation analysis revealed differences in
the amount of mediation by cognition as compared with
psychopathology. This aligns with the observed lower levels
of premorbid IQ in those who later develop various mental
illnesses, including schizophrenia, mood disorders, substance
use disorders, and any disorder, in general (Gale et al., 2010).
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However, it is important to note that this analysis is highly
exploratory and limited by the cross-sectional nature of the
analysis in this report. Temporal precedence is required via
longitudinal data to assess directionality and ensure correct
model specification (MacKinnon et al., 2007). Similarly,
mediation analysis relies on strong assumptions of sequential
ignorability, such that there are no unobserved covariates
that influence between the independent variable (area) and
the mediator, or between the mediator and the dependent
variable (MacKinnon et al., 2007; Imai et al., 2010). Modeling of
forthcoming longitudinal data will provide much-needed insights
into the directionality of brain-psychopathology-cognition
relationships, and possible strategies for modifying (unfavorable)
developmental trajectories.
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Sara Pudas3,4, Sandra Düzel5,6, Enikő Zsoldos7, Klaus P. Ebmeier7, Julia Binnewies8,
Christian A. Drevon9,10, Andreas M. Brandmaier5,6, Athanasia M. Mowinckel11,12,
Anders M. Fjell11,12, Kathrine Skak Madsen13,14, William F. C. Baaré13,
Ulman Lindenberger5,6, Lars Nyberg3,4,15, Kristine B. Walhovd11,12 and
David Bartrés-Faz1,16

1 Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona,
Barcelona, Spain, 2 ISGlobal, Hospital Clínic – University of Barcelona, Barcelona, Spain, 3 Department of Integrative Medical
Biology, Umeå University, Umeå, Sweden, 4 Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden,
5 Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany, 6 Max Planck UCL Centre
for Computational Psychiatry and Ageing Research, Berlin, Germany, 7 Department of Psychiatry, Wellcome Centre
for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom, 8 Department of Psychiatry, Amsterdam
Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands, 9 Vitas Ltd., Oslo, Norway,
10 Department of Nutrition, Institute of Basic Medical Sciences, Faculty Medicine, University of Oslo, Oslo, Norway, 11 Center
for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway, 12 Department of Radiology and Nuclear
Medicine, Oslo University Hospital, Oslo, Norway, 13 Danish Research Centre for Magnetic Resonance, Centre for Functional
and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark,
14 Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark, 15 Department
of Radiation Sciences, Umeå University, Umeå, Sweden, 16 August Pi i Sunyer Biomedical Research Institute (IDIBAPS),
Barcelona, Spain

Background: Loneliness is most prevalent during adolescence and late life and has
been associated with mental health disorders as well as with cognitive decline during
aging. Associations between longitudinal measures of loneliness and verbal episodic
memory and brain structure should thus be investigated.

Methods: We sought to determine associations between loneliness and verbal episodic
memory as well as loneliness and hippocampal volume trajectories across three
longitudinal cohorts within the Lifebrain Consortium, including children, adolescents
(N = 69, age range 10–15 at baseline examination) and older adults (N = 1468 over
60). We also explored putative loneliness correlates of cortical thinning across the entire
cortical mantle.

Results: Loneliness was associated with worsening of verbal episodic memory in one
cohort of older adults. Specifically, reporting medium to high levels of loneliness over
time was related to significantly increased memory loss at follow-up examinations.
The significance of the loneliness-memory change association was lost when eight
participants were excluded after having developed dementia in any of the subsequent
follow-up assessments. No significant structural brain correlates of loneliness were
found, neither hippocampal volume change nor cortical thinning.
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Conclusion: In the present longitudinal European multicenter study, the association
between loneliness and episodic memory was mainly driven by individuals exhibiting
progressive cognitive decline, which reinforces previous findings associating loneliness
with cognitive impairment and dementia.

Keywords: loneliness, episodic memory, hippocampus, cortical thickness, adolescence, cognitive decline

INTRODUCTION

Loneliness is a subjective and negative emotion related to
dissatisfaction with the quantity or quality of social connections
(Hawkley and Cacioppo, 2010). Previous literature states that
loneliness confers increased risk of all-cause mortality as well
as cardiovascular disorders (Holt-Lunstad and Smith, 2016),
which might be mediated by unhealthy lifestyle or depression
(Holwerda et al., 2016). Indeed, people who report feeling
lonely are at higher risk of depression, and, similarly, depression
reinforces feelings of loneliness (Cacioppo et al., 2006). Although
loneliness and social isolation are related, with the latter
describing an objective state of minimal social contact or even
lack of social support (Ong et al., 2016; Yanguas et al., 2018),
both entities represent independent risk factors for cognitive
decline and dementia with advanced age (Holwerda et al.,
2014; Kuiper et al., 2015; Sundström et al., 2020; Sutin et al.,
2020). While some researchers have used both terms indistinctly,
more recently, they have been differentiated, although they both
appear to be common predictors of social frailty and mortality
(Yanguas et al., 2018).

Associations between greater loneliness and lower cognitive
functioning have been found in cross-sectional studies with
advanced age (reviewed in Boss et al., 2015), as well as
in a previous longitudinal study with repeated measures of
loneliness and cognition (Wilson et al., 2007). But loneliness
does not only affect older people, and there appears to be
a U-shaped relationship, where younger and older adults
present the highest prevalence (Lasgaard et al., 2016). Hence,
interventions to alleviate loneliness among young people have
been carefully designed (reviewed in Eccles and Qualter, 2021).
Studies aiming to explore associations between loneliness and
cognitive functions among young populations are lacking, and
loneliness and stress are entangled in a way that the former may
contribute to strengthen the acknowledged implication of stress
on hippocampal neurogenesis and memory formation (see review
by Kim and Diamond, 2002).

Research attempting to identify structural brain correlates
of loneliness have emerged with previous studies using a
Voxel-Based Morphometry (VBM) approach, emphasizing that
regions linked to processing of social information, empathy
and emotional regulation would be particularly compromised;
namely, fronto-temporal and limbic areas in both young (Kong
et al., 2015; Nakagawa et al., 2015) and older adults (Cacioppo
et al., 2014; Düzel et al., 2019). These results were derived from
cross-sectional studies associating loneliness and brain structure
without investigating how progression of loneliness may relate to
brain structure in successive evaluations. Only one previous study
explored prefrontal cortical thickness and loneliness associations

before and after an exercise intervention in older adults aged
60–79 (Ehlers et al., 2017), failing to find any direct associations
with loneliness.

Due to its involvement in learning and memory (Squire, 1991;
Burgess et al., 2002) as well as emotion regulation (Santangelo
et al., 2018), the hippocampus is a key brain structure to
be considered, especially in older adults. A previous cross-
sectional study found an association between this structure and
loneliness (Düzel et al., 2019), highlighting its role in both
cognitive and social processes linked to self-perception of social
isolation. A very recent study also showed that individuals
reporting loneliness and social isolation presented higher brain
age (de Lange et al., 2021), relative to chronological age, which
is acknowledged as a marker of brain integrity and health.
There have been, however, no studies examining the association
between repeated assessment of loneliness and the brain, and
more specifically the hippocampus. In a recent review by
Campagne (2019), it was argued that loneliness is related to
circulating stress hormones, immune system as well as glutamate
system functioning. As stated above, loneliness is very much
associated with depression, anxiety and stress (Beutel et al.,
2017; Campagne, 2019). Chronic stress is acknowledged to cause
activation of the hypothalamic-pituitary-adrenal (HPA) axis,
which leads to elevated circulating glucocorticoids (Sapolsky,
1996). The hippocampus presents a high concentration of
glucocorticoid receptors and it has been demonstrated that
one of the causes associated with an accelerated damage
of hippocampal neurons is a prolonged high concentration
of corticoids (Sapolsky, 1996). The fact that loneliness is
experienced as a feeling possibly leading to mental distress further
contributes to hypothesize that loneliness might also promote
a stress-related chain, with overactivation of HPA axis, and
possible impact on hippocampal volume trajectories, particularly
among older adults. Furthermore, this putative association might
also be seen among preadolescents. Wiedenmayer et al. (2006)
found associations between cortisol levels and specific portions
of the hippocampus morphology among children, which were
positive for anterior parts and negative for lateral portions, and
loneliness has been previously linked to stress (Campagne, 2019).
Due to the complexity of the developing brain at these early
stages, with the acknowledged initial decrease of gray matter
volume and cortical thickness (Gennatas et al., 2017), it is of
relevance to explore putative associations between loneliness and
hippocampus among children, as compared to old adults.

In a recent review, authors stressed that large and diverse
longitudinal cohorts are needed to elucidate the neurobiology
of loneliness (Lam et al., 2021). In this line, it might be
relevant to explore loneliness as a long-term feeling. Likewise,
longitudinal investigation of brain structural and cognitive
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correlates of loneliness in younger and older adults, i.e., groups
that exhibit the highest loneliness rates, are required to gain
understanding of how loneliness may be associated with poor
brain health. Furthermore, a longitudinal approach offers a
unique opportunity to model how changes in loneliness status
may relate to a particular cognitive and structural trajectory, and
this is especially important when taking into account typically-
developing children as well as older adults.

With longitudinal data from the European Lifebrain
Consortium1 (Walhovd et al., 2018), we aimed to explore the
association between loneliness and verbal episodic memory,
as well as loneliness and hippocampal (HPC) volume change
across young and older participants. Furthermore, we explored
possible associations between loneliness and cortical thickness
across the cortical mantle with no previous hypothesis, as
no preceding studies had used this technique in the study of
structural correlates of loneliness. Thus, we consider this analysis
to be exploratory.

MATERIALS AND METHODS

Subjects
A total of 1,537 participants were drawn from three cohorts
within Lifebrain: BETULA (aged 60–85), BASE-II (aged 60–86),
and HUBU (aged 10–15 at baseline). Table 1 shows further
details on cohort size, waves of assessment for loneliness, verbal
episodic memory and Magnetic Resonance Imaging (MRI) of the
brain for each participating cohort. Figure 1 depicts timelines of
assessments for each cohort, indicating the year of assessment,
mean age at each particular time point and measures undertaken
at each evaluation.

A subset of the BETULA cohort with data on loneliness,
cognition and MRI was included in the study. Because this
was a study with rolling recruitment, sample size increased
at each wave of assessment (see Table 1). Exclusion criteria
included severe visual or auditory impairment, intellectual
or developmental disabilities, suspected dementia, having a
mother tongue other than Swedish, any contraindication to
MRI, neurological disorders, Mini-Mental State Examination
(MMSE) < 24, brain surgery or substantial anatomical deviations
(Nilsson et al., 1997; Gorbach et al., 2020). BASE-II cohort
included healthy community-dwelling older adults living in the
greater Berlin metropolitan area with normal or corrected to
normal vision. Exclusion criteria included MMSE scores < 25,
any history of psychiatric or neurological conditions or history
of head injuries (Bertram et al., 2014; Gerstorf et al., 2016). Two
waves of assessment with cognition and MRI were included; this
latter only for a subset of 215 (see Table 1). A third follow-up was
implemented by the GendAge study, with measures of loneliness
and cognition, but not MRI, for the majority of the initial sample
(Demuth et al., 2021).

The longitudinal HUBU cohort includes typically-developing
children older than seven who were recruited from three
elementary schools in the Copenhagen suburban area in 2007.

1https://www.lifebrain.uio.no/

Exclusion criteria included any known history of neurological
or psychiatric disorders or significant brain injury, as reported
by parents (Madsen et al., 2018). For these participants, it
is important to note that they underwent four longitudinal
assessments of loneliness and MRI, encompassing an age range
from 13 to 18 in the last time-point of loneliness evaluation and
thus covering a period from late childhood to late adolescence.

All volunteers had been drawn from studies where appropriate
informed consent was obtained from themselves or their
parents/legal guardians (Nilsson et al., 1997; Bertram et al.,
2014; Madsen et al., 2018). In addition, local ethical approvals
for data sharing were acquired for each participating site
(Walhovd et al., 2018).

Loneliness Measures
Loneliness scores had been obtained for each participating cohort
based on the following scales. For BETULA, the following item
from the Center for Epidemiological Studies – Depression scale
(CES-D; Radloff, 1977) was included: “I felt lonely in the past
week,” with scores ranging from 0 to 3 (‘0 – rarely or less
than 1 day’ to ‘3 – most or all of the time-5–7 days’). For
BASE-II, the UCLA Loneliness Scale 7 item-version was available
(Russell et al., 1984). Statements such as: “I feel isolated from
others,” were presented and scored on a 5-point Likert scale
ranging from 1 to 5 (‘1 – strongly disagree’ to ‘5 – strongly
agree’). The mean of the seven items was computed as published
elsewhere (Düzel et al., 2019), with larger values indicating
greater loneliness. For the HUBU cohort, an item included in
the Junior Eysenck Personality Questionnaire (J-EPQ, Eysenck,
1965) was the measure taken to compute loneliness among the
youngest: “Do you often feel lonely?”, which was scored from 0 to
3 (‘0 – strongly disagree’ to ‘3 – strongly agree’).

Harmonization of Loneliness
Since loneliness for the BASE-II cohort were derived from
seven Likert-based questions with a final quantitative score, as
opposed to the comparable one single Likert-based question
for BETULA and HUBU, harmonization was required. The
technique employed to harmonize loneliness into a qualitative
variable for the three cohorts was Statistical Matching (D’Orazio
et al., 2006). This method entails the assumption that distribution
of loneliness scores is comparable among cohorts. In this line,
it was assumed that the proportion of participants feeling high,
middle and low loneliness from BETULA (also old adults)
would be comparable with the ones from BASE-II. BETULA
and BASE-II are both cohorts from Northern Europe and the
European Commission analyzed the incidence of loneliness
among European from surveys administered between 2010 and
2014. Ensuing conclusions were that “the lowest share of people
who feel lonely is found in the Netherlands and Denmark (3%),
Finland (4%) as well as Germany, Ireland and Sweden (5%)”2. As
a result, the assumption of equal distribution between BETULA
and BASE-II could be accepted. The abovementioned percentage
of 5% matched perfectly the one we obtained in the Swedish
cohort of BETULA (5% of participants scored 2 or 3 in the

2https://ec.europa.eu/jrc/en/news/how-lonely-are-europeans
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TABLE 1 | Lifebrain eligible study cohorts: sample sizes and waves of assessment for each measure of loneliness, episodic memory, and magnetic
resonance imaging (MRI).

Study cohort
(city/country) and sample
characteristics

Loneliness
(N: sample size for each time point)

Memory
(N: sample size for each time point)

MRI image (T1)
(N: sample size for each time point)

BETULA (Umeå/Sweden): aged 60–85
(Nilsson et al., 1997).

Four time-points (N = 143, 185, 260,
and 250).
Interval period: 5 years.

Four time-points (N = 143, 185, 260,
and 250).
Interval period: 5 years.

Two time-points of MRI (N = 230 and
168).
Interval period: 4 years.

BASE-II (Berlin/Germany): aged 60–86
(Bertram et al., 2014).

Three time-points (N = 1325, 219, and
844). Mean interval periods ranging
from 2.3 to 3.23, with a mean of
5.54 years (SD 0.45) between first and
last assessment.

Three time-points: (N = 1323, 218, and
749). Mean interval periods ranging
from 2.3 to 3.24, with a mean of 5.57
(SD 0.45) between first and last
assessment.

Two time-points (N = 215 and 215).
Mean interval period: 2.29 years (SD
0.45)

HUBU (Copenhagen/Denmark): aged
10–15 (Madsen et al., 2018).

Four time-points (N = 69, 68, 59, and
39).
Mean interval periods from 1.11 to
1.34, with a mean interval period of
3.43 years (SD 0.43) between first and
last assessment.

Two time-points (N = 59 and 31).
Mean memory interval period: 4.04 (SD
0.23).

Four time-points (N = 66, 64, 42, and
38).
Mean interval periods from 1.08 to
1.35, with a mean interval period of
3.42 years (SD 0.45) between first and
last MRI.

FIGURE 1 | Data collection timeline for each cohort, indicating time of assessment, measures conducted for each time point, as well as mean age and standard
deviation. MRI, magnetic resonance imaging.

question “I felt lonely in the past week”) and these two scores
were joined into the category of ‘high loneliness.’ Following this,
the same percentage was applied for BASE-II. Therefore, 5% of
German participants with the highest scores of loneliness were
classified as ‘high loneliness.’ The same was done for subjects that
scored 1 (‘medium loneliness’) for BETULA, which represented
15% of the cohort. Again, the same percentage was applied
for those participants from BASE-II with the highest loneliness
scores, after having classified and ruled out the high loneliness
group. Finally, the remaining participants were categorized as
‘low loneliness,’ which represented 80% of older participants. The

loneliness scale used for the youth (HUBU) also included values
ranging from 0 to 3, making it comparable to the categories
described above. In this sample of older children and adolescents
13% of participants reported usually feeling lonely (score of 2
and 3: high loneliness) at baseline examination, while 40.7% felt
moderately lonely (score of 1, classified as medium loneliness)
and 46.3% were classified in the low group (score of 0).

The above classification of participants according to low,
medium or high loneliness was applied for all time points.
BETULA was again taken as a reference and since percentages
of high, medium and low loneliness did not significantly change

Frontiers in Aging Neuroscience | www.frontiersin.org 4 February 2022 | Volume 14 | Article 795764182

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-795764 February 22, 2022 Time: 11:35 # 5

Solé-Padullés et al. Longitudinal Loneliness, Cognition and Neuroimaging

across time points, we took the same proportions (5% for high,
15% for medium, and 80% for low) for matching the remaining
time points of BASE-II.

Verbal Episodic Memory
All three cohorts included measures of verbal episodic memory,
with words or sentences as items to be encoded and later
retrieved. Specifically, a composite score of immediate free and
cued recall of sentences was used for BETULA. More details on
memory assessment are described elsewhere (Nilsson et al., 1997).
For the BASE-II cohort, recognition accuracy from the Verbal
Learning and Retention Test (Helmstaedter and Durwen, 1990),
computed as hits minus false alarms, was used as a measure of
episodic memory. For the HUBU cohort, the Verbal Affective
Memory Test-26 (VAMT-26; Hjordt et al., 2020) was available,
which allowed to obtain a composite score from total free and
delayed recall of 10 positive, 10 negative, and 6 neutral words.

Depressive Symptoms and Life Events
For BETULA and BASE-II cohorts, a measure of mental health
status was available for each wave, matching both loneliness and
memory assessments. For the former cohort, and as mentioned
above, the CES-D scale was used. This scale contains 20 items
scored from 0 to 3 with (maximum score of 60) and a cut-off value
of 16 has been considered to identify individuals at risk of clinical
depression (Lewinsohn et al., 1997). To compute depressive
symptoms, we disregarded the item of loneliness, as previously
reported (CES-D Minus Loneliness: CES-DML; Cacioppo et al.,
2017). Baseline mean score for this cohort was 6.78 (SD: 5.74).

For the BASE-II cohort, a baseline score was available from
the 15-item version of the Geriatric Depression Scale (GDS;
Yesavage, 1988). Normal scores are considered from 0 to 5. The
baseline mean score for the cohort was 2.17 (SD: 1.67).

For the younger sample (HUBU), a measure of exposure to
negative life events was used as covariate in the statistical models.
The Child and Adolescent Survey of Experiences (CASE, Allen
et al., 2012) was available for all time points except for the
last one, matching all loneliness measures. Thirty-four negative
life events such as “family member really sick,” “been teased or
bullied,” “parent split up,” or “parent lost job” amongst others
were included. Maximum score was 34.

Magnetic Resonance Imaging and
Pre-processing
As detailed in Table 1, a subsample of 511 participants underwent
an MRI session, including a 3D structural T1-weighted scan
of the whole brain acquisition. More than one thousand
observations over time were considered for the longitudinal
analyses.

At each site, structural images were acquired with a 3 Tesla
MRI scanner, with the following parameters: (1) BETULA:
Discovery GE scanner; TR: 8.2 ms, TE: 3.2 ms, TI: 450 ms, flip
angle: 12◦, slice thickness: 1 mm, FoV 250 mm × 250 mm, 176
slices; (2) BASE-II: Tim Trio Siemens scanner; TR: 2,500 ms,
TE: 4.77 ms, TI: 1,100 ms, flip angle: 7◦, slice thickness:
1 mm, FoV 256 mm × 256 mm, 176 slices, and (3) HUBU:

Magnetom Trio Siemens scanner; TR: 1,550 ms, TE: 3.04 ms,
TI: 800 ms, flip angle: 9◦, slice thickness: 1 mm, FOV
256 mm × 256 mm, 192 slices.

Structural brain images were processed with the longitudinal
processing stream available in FreeSurfer 6.03. Hippocampal
(HPC) and estimated total intracranial volumes (TIV) were
extracted for each time-point. All images were visually inspected
for quality control.

Statistical Analyses
To explore the associations between loneliness and age on the one
hand, and loneliness and sex on the other hand, for each cohort
separately, we first conducted general linear models including
baseline loneliness as a categorical dependent variable, sex as
a fixed factor and baseline age as a covariate of interest, with
SPSS Statistics for Windows (IBM Corp. Released 2020. Version
27.0. Armonk, NY, United States: IBM Corp.). Subsequently,
partial correlations between baseline loneliness and memory were
performed for each cohort, adjusted for age and additionally for
years of education in the older cohorts. Baseline loneliness and
HPC volume associations were also examined, with age, sex, and
total intracranial volume as covariates.

To examine associations between changes in verbal
episodic memory or HPC volume and loneliness across
time-points, statistical models were computed separately for
each cohort as described below. Exploratory vertex-wise analyses
associating loneliness and cortical thickness were additionally
conducted (see below).

Loneliness and Verbal Episodic
Memory/Hippocampal Volume Associations
Linear mixed-effects models run in RStudio 1.4. (RStudio
Team, 2020) with the package lme4 (Bates et al., 2015), were
conducted to explore associations between loneliness and verbal
episodic memory and loneliness and HPC volume. We also
tested a potential differential memory decline or rate of volume
change for different levels of loneliness using a loneliness-by-age
interaction term. The outcome variable was episodic memory or
HPC volume; fixed factors included age (linear and quadratic),
sex, years of education, baseline depression (for BETULA and
BASE-II), categorical loneliness (as a time-varying covariate) and
loneliness-by-age interaction. Change in HPC volume or change
in memory was not computed prior to modeling. Interaction
terms of fix effect regression with age were used to capture
age-related changes. Since the age regression coefficient can be
interpreted as the annual rate of change of the outcome and
any interaction with it will represent an effect modifier of such
expected annual rate of change of the outcome.

Within-subject random effects included intercept. We also
considered adding random linear and quadratic terms to
model the slope as in the fixed-effects if sufficient degrees
of freedom were available (sufficient repeated measures per
subject) and also a better goodness of fit was obtained (tested
by comparing models with increasing number of random effects
with likelihood ratio tests).

3https://surfer.nmr.mgh.harvard.edu/
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To test hypotheses involving more than one fixed effect
regression coefficient, we framed them as a comparison of
nested models, using a Chi squared likelihood test for inference.
Fixed effect under hypothesis usually involved loneliness and
its interaction with the age linear term. Significance of single
fix effect regression coefficients (betas) was estimated with
two-tailed t-tests using the Satterwhite approximation for
the effective degrees of freedom with R package lmerTest
(Kuznetsova et al., 2017).

The HUBU cohort included two time-points with verbal
episodic memory performance data only overlapped with one of
the four time-points in which loneliness was assessed; hence a
multiple regression model was implemented with the difference
of verbal episodic memory performance as a dependent variable
and baseline loneliness, age, sex and negative life events as
independent variables. The model with hippocampal volume as
outcome, for this younger cohort included as fixed effects: age
(linear and quadratic), negative life events, sex and categorical
loneliness (all variables measured at each time point).

Loneliness and Cortical Thickness Associations
The same approach using linear mixed models as described above
was used to examine associations between loneliness and cortical
thickness at each vertex of extracted cortical surfaces. To account
for spatial correlation of the vertex-wise tests, we used Freesurfer’s
LME toolbox (Reuter et al., 2012; Bernal-Rusiel et al., 2013),
for each cohort separately, with an FDR-corrected significance
threshold of p < 0.05 for multiple comparisons.

RESULTS

Baseline Associations Between
Loneliness and Age, and Loneliness and
Sex
Table 2 lists main demographic variables from the three included
Lifebrain cohorts, as well as associations between loneliness and
age and loneliness and sex at baseline examination. As shown
in Table 2, there was a positive association between age and
loneliness in the BASE-II cohort, with older volunteers feeling
lonelier. No associations were observed for the BETULA or
HUBU cohorts.

For BETULA, a post hoc analysis considering all observations
was carried out to capture the component of trajectories for
both age and loneliness variables. By doing this, the association
improved, with a trend toward increased loneliness with
increasing age (χ2 = 4.9, p = 0.08).

Sex differences were seen within the BASE-II cohort, with
males reporting significantly more feelings of loneliness than
females (males: N = 671, mean = 1.60, SD = 0.62; females:
N = 654, mean = 1.52, SD = 0.64). We also observed significant
sex differences in loneliness in the younger cohort (HUBU), with
female participants having higher scores of loneliness at baseline
than males (females: N = 41, mean = 0.85, SD = 0.93; males:
N = 24, mean = 0.33, SD = 0.56). No sex differences in baseline
loneliness were observed for BETULA. TA
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Baseline Associations of Loneliness With
Verbal Episodic Memory, Hippocampal
Volume and Cortical Thickness
While at baseline, all correlations between loneliness and
episodic memory, as well as loneliness and HPC volume
were negative for all participating cohorts, they were not
statistically significant (see Table 2). Likewise, in the baseline,
i.e., cross-sectional, analysis of associations between loneliness
and cortical thickness across the cortical mantle, none of
the vertices survived FDR correction. Uncorrected results for
baseline loneliness and thickness associations are depicted in the
Supplementary Figure 1.

Longitudinal Loneliness and Verbal
Episodic Memory Change
We observed a significant effect of loneliness on verbal episodic
memory for BETULA (χ2 = 11.25, df = 4, p = 0.02). Such effect
was clearly driven by the loneliness-by-age interaction effect
with a higher degree of loneliness being associated with poorer
memory performance, only at advanced ages (Figure 2A and
Supplementary Table 1). This result entailed that with advancing
age, having medium to high levels of loneliness was associated
with decreased memory slope. Therefore, if one subject felt
lonely at baseline and these feelings of loneliness were stable
across time, their memory would be expected to decrease more
than one subject never feeling lonely at all. Likewise, the model
also predicted that if loneliness levels decreased at some point
(being high at baseline and low at posterior evaluations), then
memory levels would ‘normalize’ or the subject would ‘jump’
from the steeper decreased memory slope (Figure 2A, blue or
green slopes) to a ‘normal’ slope of memory decrease, allegedly
expected by age (Figure 2A, red slope). Therefore, the association
between loneliness and memory progress would mainly be
seen for those subjects with persistent feelings of loneliness.
It is, however, important to note that only medium loneliness
reached significant results (see Supplementary Table 1), even
though the decline in episodic memory can also be seen among
subjects categorized with high loneliness. It is likely that these
observations may reflect fewer numbers of participants classified
as high loneliness as the point estimate of the loneliness-by-age
interaction term was of the same order and in the same direction
for both loneliness levels.

No evidence for such effects were seen in BASE-II (χ2 = 1.3,
df = 4, p = 0.86, see Figure 2B and Supplementary Table 2).
Likewise, using the original measure of loneliness for this cohort
and its interaction term with age did not improve the model
significantly (χ2 = 1.20, df = 2, p = 0.57).

Analyses were repeated for both BETULA and BASE-II
after having ruled out eight and one subject, respectively,
who had developed dementia in any of the subsequent waves
of assessments. For BETULA, the previous association found
between memory and loneliness-by-age interaction was not
significant anymore: χ2 = 6.62, df = 4, p = 0.16. For BASE-II
results remained minimally changed: χ2 = 1.18, df = 4, p = 0.56.

Regression model for HUBU did not yield any significant
result (F = 0.87, df = 4, p = 0.50). Supplementary Tables 1–3

provide estimates for the fixed effects of the association between
verbal episodic memory and loneliness for all cohorts.

Longitudinal Loneliness and
Hippocampal Volume Change
Rates of annual HPC volume loss from age 60 onwards are
depicted in Figure 3 (at age 60 estimated 0.2% for BETULA
and 0.4% for BASE-II; at age 80 these were increased to 0.47
and 0.75% for each cohort, respectively). No association between
loneliness and HPC volume, as well as loneliness and HPC
volume change (loneliness-by-age interaction), where intercept
value (0) corresponds to age 60, was found for BETULA
(χ2 = 4.27, df = 4, p = 0.36; Figure 3A) and BASE-II (χ2 = 2.31,
df = 4, p = 0.68; Figure 3B). Likewise, we did not find any
associations between loneliness and HPC volume changes in the
younger cohort (HUBU: χ2 = 2.33, df = 4, p = 0.68). As seen
in Figure 3C, for this latter cohort, HPC volume increased from
age 10 to 14/15 and was followed by stabilization, emulating the
non-linear developmental pattern of increased volume during
late childhood and early adolescence accompanied by a slight
subsequent deceleration, as described elsewhere (Tamnes et al.,
2018). Supplementary Tables 4–6 provide estimates for the
fixed effects of the association between hippocampal volume and
loneliness, as well as loneliness-by-age interaction for BETULA,
BASE-II and HUBU cohorts.

Again, re-analysis disregarding the eight participants who
developed dementia along the study (8 for BETULA) yielded no
significant changes on the abovementioned statistical outputs:
BETULA: χ2 = 4.30, df = 4, p = 0.37. For BASE-II, the participant
with onset of dementia at time point 2, was missing at that
particular time point, and did not have MRI data on time point 3,
so analyses were not repeated.

Longitudinal Loneliness and Cortical
Thickness Change
Longitudinal analyses of associations between loneliness and
cortical thickness across the cortical mantle did not yield
any statistically significant vertex-wise results after correction
for multiple comparisons (FDR < 5%), in any of the
cohorts. Uncorrected results are further described in the
Supplementary Figure 1.

DISCUSSION

To our knowledge, this is the first multicenter European
study to incorporate measures of loneliness over time to
explore its cognitive and structural brain correlates in distinct
samples across the lifespan, covering periods of late childhood,
adolescence, and older adulthood.

Significant associations between age and loneliness were
observed within the German (BASE-II) cohort, with older
participants reporting increased feelings of loneliness; a result
that is in line with the acknowledged increase of loneliness in
late life, a period where one may experience a number of losses,
from the death of a spouse or friends to social disengagement
(Singh and Misra, 2009). Despite no baseline age and loneliness
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FIGURE 2 | Episodic memory predicted trajectories versus age after 60 for different loneliness levels for Betula (A) and BASE-II (B). Association between loneliness
and episodic memory change within the BETULA cohort: no effect was seen at age 60 (intercept), but from then onwards, medium and high loneliness scores were
related to poorer memory performance over time. Dotted lines show 95% confidence interval for predictions with random effects set to 0.

FIGURE 3 | Hippocampal (HPC) volume predicted trajectories versus age after 60 for different loneliness levels for BETULA (A) and BASE-II (B). (C) Depicts
hippocampal trajectories for the younger participants (HUBU cohort) from age 10 onwards, as regards the loneliness variable. Raw hippocampal volumes are shown
for HUBU, as absolute values might be more convenient in longitudinal studies of brain development (Goddings et al., 2014). Dotted lines show 95% confidence
interval for predictions with random effects set to 0.

associations were seen for the BETULA cohort, a trend toward
more loneliness with increasing age was seen after taking into
account all observations.

We also found that German male participants presented more
feelings of loneliness than their female counterparts. Notably,
these participants were born between 1927 and 1953, a generation
of working men and ‘stay-at-home’ women. Therefore, men were
more likely to experience the life-changing event of retiring from
work, and this may have intensified their feelings of loneliness, as
compared to women. Yet, the above associations were not seen
for the Swedish cohort of older adults (BETULA). This might be
partially explained by the fact that the German cohort included
more than one thousand participants at baseline examination,
compared to the 143 volunteers for the BETULA cohort. This
larger statistical power may have favored the emergence of

significant loneliness-age and loneliness-sex associations within
BASE-II. It was somehow unexpected to find more feelings of
loneliness among German men, as compared to their female
counterparts, because older women usually report increased
loneliness (Beal, 2006; Jarach et al., 2021). Despite this, it has
been recently argued that loneliness is more associated with
health, functional limitations and depression (Jarach et al., 2021),
than with social isolation itself, and we have not controlled for
physical health variables in the present study, neither have we
taken into account other generational factors (alleged ‘working
men’ versus ‘stay-at-home women’), which may have contributed
to the abovementioned associations found in BASE-II.

On the other hand, in the younger cohort, females reported
feeling lonelier than males, a finding that is in line with a recent
study, also with Danish adolescents (Eccles et al., 2020). Authors
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pointed to the possibility of a sex-based stigma when reporting
feelings of loneliness among male adolescents. No sex differences
were seen for the BETULA cohort, but bearing in mind the
few proportion of people feeling lonely and the smaller sample
size as compared to BASE-II, it is plausible that sex differences,
if any, would have emerged with a more representative sample
of lonely people.

Regarding associations between loneliness and episodic
memory over time, we found that for BETULA, those participants
reporting medium to high levels of loneliness over time displayed
more memory loss at follow-up examinations, even though
memory performance was not associated with loneliness at
baseline. Thus, self-perceived and constant feelings of loneliness
among these participants co-occurred with a decrease in memory
performance for this cohort of Swedish participants. It is worth
mentioning, however, that the model was conducted in a way that
loneliness at one time point predicted memory for that particular
time point, without taking into account previous loneliness levels.
Despite this, interpretations considering distinct trajectories of
loneliness are possible and this model predicted that low baseline
loneliness for BETULA participants, combined with increases
of loneliness feelings in any subsequent evaluation would be
equally associated with steeper episodic memory decline, for
that particular time point. Therefore, persistent loneliness but
also increases in loneliness perceptions, were associated with
episodic memory loss among this cohort of participants. In a
previous review discussing associations between loneliness and
global cognitive function as well as episodic memory, Boss
et al. (2015) suggested that some associations may disappear
after adjusting for demographic and psychosocial factors that
influence loneliness. In our study, the association between
loneliness and memory performance over time among BETULA
participants was seen while controlling for age, education, sex
and depressive symptoms, which emphasizes the relevance of
loneliness for memory maintenance in aging and reinforces the
notion that loneliness can be considered a different entity from
depression, as acknowledged also in previous studies examining
loneliness associations with cognitive decline (Wilson et al.,
2007). Nonetheless, the association was lost after having ruled out
the eight cases of dementia with onset in any of the subsequent
follow-up assessments. This fact reinforced previous evidence
suggesting that there is an association between loneliness and
cognitive impairment (Wilson et al., 2007; Sundström et al., 2020;
Sutin et al., 2020). Notably, the fact that the association did not
remain significant does not imply that there is no association
between loneliness and memory decline, but rather that if cases
of significant memory decline are excluded, then this association
is critically diminished. It is important to point out the possibility
of reverse causality. Loneliness may cause memory decline but
memory decline might also contribute to increased feelings of
loneliness. Previous data supported the notion of a bidirectional
effect between cognitive ability and loneliness among older adults
(Zhong et al., 2017; Okely and Deary, 2019).

As regards the lack of association between loneliness measures
and memory change in the BASE-II cohort, even when using the
original continuous measure of loneliness, we believe that two
main factors could be contemplated. First, the verbal memory test

(recognition accuracy) was not a comparable measure with the
recall (free and cued) that was used for BETULA. While recall
has been consistently associated with hippocampus (Aggleton
and Shaw, 1996), the role of this structure on recognition has
been more debated. Recognition can depend on recollection,
familiarity or both processes (Yonelinas, 2002), and though some
believe that the hippocampus exclusively subserves recollection,
more recent data is available indicating that both recollection
and familiarity are majorly supported by the hippocampus
(Merkow et al., 2015). Yet, memory measures used for the
two cohorts of older adults may not be completely comparable.
Second, it is possible that the considerable number of drop-
outs, particularly at the second wave of assessment, may have
constrained our analyses. After a thorough analysis on missing
data for BASE-II cohort, it was seen that a greater proportion of
missing participants at time point 3, presented increased baseline
loneliness (26.82% of missing volunteers at time point 3 had
medium to high scores of loneliness at baseline versus 20.74%
of not missing participants; χ2: 6.58, p = 0.037). Likewise, they
were also older at baseline examination [mean age: 71.24 (SD:
4.01) versus 70.16 (3.64), t = 5.02, p < 0.0001]. On the whole,
if older and more lonely participants dropped out from the
study, this could represent a ‘missing not at random’ (MNAR)
case, where it is likely that these participants were experiencing
some kind of cognitive impairment. Assuming that the drop-outs
could contain a great proportion of cognitively impaired patients
and bearing in mind that the association between loneliness and
memory decline was stronger in BETULA when the eight cases of
dementia were included, it is reasonable to think that the MNAR
could be masking some associations.

We did not find any associations between loneliness and
difference in memory performance for the HUBU cohort. While
loneliness was measured at four time points, memory testing was
only administered in two waves of assessments, and only one
of them co-occurred with the loneliness measure. An increased
number of cognitive measurements would have been ideal to
better grasp memory trajectories and possibly capture putative
associations with loneliness trajectories.

Contrary to expectations, we did not observe any statistically
significant associations between loneliness and HPC volume in
any of the cohorts, neither at baseline nor longitudinally. The
same applied for our explorative investigations for associations
between loneliness and vertex-wise cortical thickness. Our null
findings are in apparent contrast with previous reports of
cross-sectional loneliness-brain structure associations in healthy
young and older adults (Kanai et al., 2012; Kong et al., 2015;
Düzel et al., 2019). Studies with young adults pointed to
compromised left frontotemporal regions (Kanai et al., 2012;
Kong et al., 2015), whereas Düzel et al. (2019) found decreased
volume of subcortical regions and cerebellum among lonely
old adults. Although more studies are required to further
investigate a putative cortical versus subcortical association of
loneliness across aging groups, it is important to note that
risk factors for loneliness are not comparable across life stages.
For instance, a recent study with Finnish adolescents and
young adults reveled that this negative feeling is related to
social transitions and expectations, group differences, former
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destructive experiences or negative self-image among others
(Sundqvist and Hemberg, 2021); while for middle-aged and older
adults the most important factors contributing to loneliness
are the loss of a spouse, frequency of contact with significant
friends or family and the number of voluntary groups one
is engaged to Cacioppo et al. (2015). It is also important to
note that while the abovementioned studies focusing on cross-
sectional associations between loneliness and brain structure
used Voxel-Based Morphometry (VBM), we had a dual and
different focus with a longitudinal approach: first, the hypothesis
driven approach targeting the hippocampus as a subcortical
structure related to emotional processing and episodic memory;
and second, the exploratory approach of vertex-wise cortical
thickness. Thus, the association between loneliness and memory
decline in one cohort and lack of structural brain correlates
suggests that structural correlates of loneliness may either appear
later than cognitive correlates, or that the techniques employed
were not sensitive enough to capture structural changes that were
possibly too small to be detected with the current sample size.

Cacioppo et al. (2017) suggested that focus of attention is
changed among people with long-term feelings of loneliness,
and, though speculative, we believe that the result obtained
for BETULA regarding the association between loneliness
and poorer memory over time, might be partially explained
by decreased attentional resources that might in turn affect
encoding and retrieval of memories, overall resulting in poorer
performance over time, even in the absence of brain structural
changes. However, we cannot rule out the possibility that factors
interacting with loneliness such as personality traits, social
network and empathy in both young (Kanai et al., 2012; Kong
et al., 2015) and older adults (von Soest et al., 2020), which have
not been considered here, might account for lack of results in the
other cohorts or the absence of structural correlates of loneliness
among our participants.

The link between loneliness and cognitive decline has been
previously established (Holwerda et al., 2014), although the
nature of this association is poorly understood (Boss et al.,
2015). Likewise, loneliness has a notable association with global
health with a complexity that is not yet fully grasped (Yanguas
et al., 2018). As already stated, a variety of mediating intrinsic
and extrinsic factors interact with one another to converge in a
combination of social vulnerability and frailty that might lead to a
particular feeling of loneliness. More recently, it has been pointed
out that the complexity of associations between loneliness and
adverse health outcomes depend on a combination of interlinked
genetic, social behavioral, physical and socioeconomic factors (de
Lange et al., 2021).

Another issue that should be noted is the fact that only a
low proportion of older participants from our study reported
high levels of loneliness. While this is comparable with previous
studies (Victor and Yang, 2012), it may have constrained our
analyses. Differences in loneliness across European countries
have been described and the European Commission’s Joint
Research Centre concluded from surveys conducted in 2010,
2012, and 2014 that Eastern and Southern Europeans feel
lonelier and are more socially isolated than Western and
Northern Europeans (D’Hombres et al., 2018). Notably, Northern
Europeans appear to tolerate greater rates of social isolation

without having an impact on subjective measures of loneliness.
Greater satisfaction with the social network has also been
reported in the Scandinavian countries (Sundström et al., 2009).
The three cohorts included in the present study come from
Sweden, Germany, and Denmark, and this may account for
the fact that only a very low percentage of our participants
were categorized as experiencing ‘high loneliness.’ Another
explanation would be the fact that depression was an exclusion
criterion in the present study, and even though depression is
considered a different entity from loneliness, they are mutually
reinforcing (Cacioppo et al., 2006).

Taken together, abovementioned data may suggest different
associations of loneliness and brain health across European
regions and this study only included cohorts from Northern
Europe. To understand differences between European regions it
is important to note that the association between well-being and
social network is complex and may include not only quantity and
quality of relationships with family and friends, but also perceived
social support (Berkman et al., 2000), as well as access to health
resources, which may vary across European countries.

Several limitations should be considered in addition to the
low number of participants with high feelings of loneliness
already mentioned. Differences among cohorts, particularly, old
adults should be also considered. As shown in Figure 1, there
is a difference in age to consider, with BETULA participants
being slightly younger than BASE-II’s at baseline examination.
It is possible, in accordance with previous reports associating
loneliness with increased risk of dementia (Sutin et al., 2020), that
these associations are more evident in earlier stages of cognitive
decline, which would favor BETULA’s association and not BASE-
II’s. There was also a considerable time lag for loneliness
evaluation for BETULA and BASE-II. In this line, BETULA
started assessments in 1998, a period with no influence of digital
technology, and were extended until 2014. As for BASE-II, first
assessment took place in 2011. The way that one interacts with
other people has considerably changed these past 15 years even
though this may have mainly affected young people, for whom
the use of social media has become an important part of their
daily lives (Ryan et al., 2017). However, we cannot rule out the
possibility that the feelings of loneliness measured during the last
decade have been somehow influenced by digital revolution also
among old adults. Further, heterogeneity of measures of episodic
memory and loneliness should also be taken into account, as
mentioned above. While BETULA’s memory measures included
a composite of verbal free and cued recall, BASE-II’s was based
on a recognition memory test. Though normality was not met for
this subtest at baseline, this measure presented the best goodness
of fit with age as a linear effect with the expected negative slope
of memory decrease with time as compared to other memory
measures such as delayed recall. It is, however, possible that
this measure of memory was not sensitive enough to detect a
clear memory change, as expected for age. Additionally, it would
have been ideal to focus on other cognitive domains other than
memory, particularly executive functions, with specific focus on
attention, which may be influenced by stress-related processes
(Girotti et al., 2018). As regards loneliness, measures were based
on a personality or depression scale item for two cohorts, whereas
the remaining cohort included a more quantitative measure, with
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a short form of the UCLA-loneliness scale. However, these are
all accepted measures of loneliness (Yanguas et al., 2018) and
were accordingly harmonized. Also, interval periods between
evaluations, particularly for MRI, might be too short for BASE-II
and HUBU cohorts, and this may have also been a disadvantage
when exploring structural brain changes. Finally, two main
points should be considered for the youngest cohort. First, while
loneliness and MRI were conducted periodically at four time
points, only two assessments of memory were available. Second,
sample size for HUBU was not comparable to the older adults’, a
fact that may have limited representativeness.

CONCLUSION

We found associations between longitudinal measures of
loneliness and verbal episodic memory change within one of
two cohorts of healthy older adults, which was dependent
on participants’ cognitive status. After excluding dementia
cases, the previous association was no longer significant,
strengthening previous findings associating loneliness with
cognitive impairment and dementia. This study suggests that
the association between loneliness and memory decline might
be independent of hippocampal volume change or changes in
cortical thickness. Likewise, while incidence of loneliness was
increased for the younger cohort, no correlates of memory or
brain structure were evidenced. We believe this is a first step
toward other longitudinal approaches examining both cognitive
and structural brain correlates of loneliness among healthy
individuals at different life stages. Forthcoming studies would
benefit from including other European countries in an ideal
design able to identify ‘stable’ versus ‘changing’ feelings of
loneliness and with the possibility to examine further cultural
differences of self-perceived social isolation, resilience, and
association of loneliness with brain health.
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