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Editorial: Computational Genomics
and Structural Bioinformatics in
Microbial Science
Dhaval Acharya1, Mohammed Kuddus2 and Saumya Patel3*

1Department of Microbiology, B. N. Patel Institute of Paramedical and Science, Gujarat, India, 2College of Medicine, University of
Hail, Hail, Saudi Arabia, 3Department of Botany, Bioinformatics & Climate Change Impacts Management, School of Science,
Gujarat University, Gujarat, India
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Editorial on the Research Topic

Computational Genomics and structural Bioinformatics in Microbial Science

Microbes play a crucial roles in the lives of hosts (plants, animals, humans) and in almost any
environment one can think of. The goal of this Research Topic was to gather a collection of high-
quality original papers on the general theme of Computational Genomics and Structural
Bioinformatics in Microbial Science. This Research Topic collection from Frontiers in Genetics
brings together 11 articles focused on computational analysis of genomic microbiology as well as
computational analysis of nucleotide or amino acid sequences and structures from genomic and
metagenomic data.

The first paper by Bharathi et al. provides new insight into the understanding of
Methanobrevibacter ruminantium M1 (MRU) growth physiology and lifestyle in the ruminants,
and its potential to reduce anthropogenic greenhouse gas emissions worldwide. They have predicted
and assigned a precise function to hypothetical proteins (HPs) and categorized them as metabolic
enzymes, binding proteins, and transport proteins using a combined bioinformatics approach.
Moreover, they propose newmethane mitigation interventions that target the key metabolic proteins
to reduce methane emissions in ruminants.

In the next paper, Choure et al., elaborate on a comparative metagenomic analysis of two alkaline
hot springs, Chhoti Anhoni and Badi Anhoni of Madhya Pradesh, India, and decoded the
extremophiles for industrial enzymes. The objective of this study was to undertake, analyze, and
characterize the microbiome to find out the inhabitant microbial population, and their functional
characteristics. The study showed the presence of different unassigned bacterial taxa with great
abundance, which indicates the potential of novel genera or phylotypes. Furthermore, the functional
analysis of microbiomes revealed that most of the genes are associated with functions related to
metabolism and environmental information processing.

Joshi et al. sequenced and analyzed the total number of 502 SARS-CoV-2 genomes from
Gujarat, India to understand its phylogenetic distribution and variants against global and national
sequences to understand its role in pathogenesis. The SARS-CoV-2 genomes they found, namely
C28854T (Ser194Leu), showed an allele frequency of 47.62 and 7.25 percent in patients who dies
from Gujarat and worldwide datasets, respectively, among the missense mutations. They
concluded that SARS-CoV-2 genomes from Gujarat are forming distinct clusters under the
GH clade of GISAID. Rampelli et al., developed G2S, a bioinformatic tool for taxonomic prediction
of the human fecal microbiome directly from the oral microbiome data of the same individual. This
tool can be used in retrospective studies, where fecal sampling was not performed, especially in the
field of paleomicrobiology.
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Liu et al. developed a novel algorithm called DRAGoM for
family-based ncRNA homology searches against metagenomic
sequencing data (Detection of RNA using Assembly Graph from
Metagenomic data). This tool can improve taxonomic analysis
through facilitating the use of ncRNA families as taxonomic
biomarkers. Andreu-Sánchez et al., benchmarked seven
bioinformatic tools for genetic variant, calling in
metagenomics data and evaluating their performance. This
benchmark showed probabilistic tools that can be used to call
metagenomes and recommendations of GATK’s tools as reliable
variant callers for metagenomic samples.

Sevugapperumal et al. reported a draft genome sequence of B.
amyloliquefaciens strain CB, which was isolated from the
rhizospheric soil of a cotton plant, and which can be used as a
reference sequence to explore and map specific genes related to
antimicrobial peptide (AMP) genes and other important
enzymes. The genome interpretation of B. amyloliquefaciens
strain CB indicated antagonistic potential due to AMPs
imparting various antifungal, antibacterial, and antiviral
properties as well plant growth promotion, leading to strong
prospects for uplifting sustainable agriculture.

Liu et al. attempted to reconstruct the biogeographical
structure according to functional traits and the
evolutionary lineage of B. amyloliquefaciens using
comparative genomics analysis. Nimavat et al. analyzed
2,349 genome sequences of SARS-CoV-2 submitted in
GISAID by a single institute pertaining to infections from
the Gujarat state to know their variants and phylogenetic
distributions with a major focus on the spike protein. The
D614G variant in spike protein has been reported to have a
very high frequency of >95% globally followed by the L452R
and P681R.

Ahmad et al.modeled methyltransferase as antibiotics against
foodborne pathogens. Its interactions were analyzed against a
membrane protein of the Gram-positive and Gram-negative
bacteria through in silico protein–protein interactions and
established that it is a conclusively useful enzymobiotics agent.

The variety of the topic contributions by authors, including
theoretical considerations and research articles, shed light on
current advances in Computational Genomics and Structural
Bioinformatics in Microbial Science and support further
approaches for research in integrative microbial science.
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Functional Prediction and
Assignment of Methanobrevibacter
ruminantium M1 Operome Using a
Combined Bioinformatics Approach
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(Central University), Aizawl, India

Methanobrevibacter ruminantium M1 (MRU) is a rod-shaped rumen methanogen with
the ability to use H2 and CO2, and formate as substrates for methane formation in
the ruminants. Enteric methane emitted from this organism can also be influential
to the loss of dietary energy in ruminants and humans. To date, there is no successful
technology to reduce methane due to a lack of knowledge on its molecular machinery
and 73% conserved hypothetical proteins (HPs; operome) whose functions are still
not ascertained perceptively. To address this issue, we have predicted and assigned
a precise function to HPs and categorize them as metabolic enzymes, binding proteins,
and transport proteins using a combined bioinformatics approach. The results of our
study show that 257 (34%) HPs have well-defined functions and contributed essential
roles in its growth physiology and host adaptation. The genome-neighborhood analysis
identified 6 operon-like clusters such as hsp, TRAM, dsr, cbs and cas, which are
responsible for protein folding, sudden heat-shock, host defense, and protection against
the toxicities in the rumen. The functions predicted from MRU operome comprised of
96 metabolic enzymes with 17 metabolic subsystems, 31 transcriptional regulators, 23
transport, and 11 binding proteins. Functional annotation of its operome is thus more
imperative to unravel the molecular and cellular machinery at the systems-level. The
functional assignment of its operome would advance strategies to develop new anti-
methanogenic targets to mitigate methane production. Hence, our approach provides
new insight into the understanding of its growth physiology and lifestyle in the ruminants
and also to reduce anthropogenic greenhouse gas emissions worldwide.

Keywords: methanobrevibacter, methane mitigation, hypothetical proteins, protein function, molecular
machinery

INTRODUCTION

Enteric methane emission from ruminants is of great concern not only for its impact on
global warming potential but also for ensuring the long-term sustainability of ruminant-based
agriculture. Methane emission from rumen methanogens (163.3 million metric tons of CO2
equivalents) represents a loss of about 5–7% of dietary energy in ruminants (Hristov et al., 2013;
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Chellapandi et al., 2017a, 2018; Chellapandi and Prathiviraj,
2020). Methanobrevibacter genus is a dominant rumen
methanogenic archaea (61.6%) in which Methanobrevibacter
ruminantium M1 (MRU) accounted for 27.3% (Janssen and
Kirs, 2008). MRU is a hydrogenotrophic rumen methanogen
that use H2 to reduce CO2 for methane biosynthesis. It also uses
formate as a carbon source for its growth and energy metabolism
(Kaster et al., 2011). This is the first genome sequence to be
completed for rumen methanogen. It is a circular chromosome
(2.93 Mbp) consisting of 2,278 coding-genes and 144 metabolic
pathways with 722 reactions, 557 enzymes, and 751 metabolites
(Leahy et al., 2010). However, the MRU genome consists of 756
coding-genes (73%) annotated as hypothetical proteins (HPs). It
suggests that the entire proteome functions of this organism are
not yet known and have to be elucidated to date.

The function of only 50–70% of coding-genes has been
annotated with reasonable confidence in the most completely
sequenced bacterial genomes using automated genome sequence
analysis (Loewenstein et al., 2009). The characterization of
proteins with unknown biological function is known as
operome (Greenbaum et al., 2001; Chellapandi et al., 2017b;
Prathiviraj and Chellapandi, 2019). Putative genes with known
orthologs and no orthologs are termed as conserved hypothetical
proteins and uncharacterized proteins, respectively (Mazandu
and Mulder, 2012; Shahbaaz et al., 2013). Several approaches
have been developed for assisting the function of operome
from prokaryotic genomes using the information derived from
sequence and structural motifs (Sivashankari and Shanmughavel,
2006; Chellapandi et al., 2017b; Singh and Singh, 2018;
Prathiviraj and Chellapandi, 2020a; Sangavai et al., 2020).
No one has been employed a combined bioinformatics
prediction approach including sequence, structure, and literature
confidences for functional assignment of operome and its
contribution to metabolic subsystems and cellular machinery.
A precise annotation of the operome of a particular genome
leads to the discovery of new functions for the development of
veterinary and human therapeutics (Ijaq et al., 2015).

The conserved domain-based functional assignment was done
for HPs from Pongo abelii and Sus scrofa. It has provided a
hint for genome-wide annotation in poorly understood genomes
(Jitendra et al., 2011). The structure-based approach has been
applied to predict the function of operome from Mycoplasma
hyopneumoniae (da Fonsêca et al., 2012). Functional and
structural domain analysis (Namboori et al., 2004), integrated
genomic context analysis (Yellaboina et al., 2007) and literature
mining (Doerks et al., 2012), functional enrichment analysis
(Mazandu and Mulder, 2012), and genome-scale fold-recognition
(Mao et al., 2013) have been used to annotate the potential
function of operome from Mycobacterium tuberculosis H37Rv.
Sequence-based and structure-based approaches have been used
to define and prioritize some HPs from Candida dubliniensis,
Vibrio cholerae O139, and Staphylococcus aureus as therapeutic
targets for the treatment of their infections in humans (McAdow
et al., 2011, 2012; Bharat Siva Varma et al., 2015; Islam
et al., 2015). Besides, only one HP (MJ_0577) was functionally
annotated in Methanococcus jannaschii using a structural-based
approach (Zarembinski et al., 1998).

Many in silico attempts have been focused on the functional
prediction of operome from human pathogens and no reports on
rumen methanogens. Several genome-scale metabolic networks
have been reconstructed for methanogenic archaea with a low
fraction of HPs functionally assigned by sequence similarity
analysis (Chellapandi et al., 2018; Prathiviraj and Chellapandi,
2020a). Since, functional annotation of operome is a great
concern not only for implementing our fragmentary knowledge
on the potential drug targets but also for genome refinement and
improved microbial genome-scale reconstructions (Poulsen et al.,
2010; Mazandu and Mulder, 2012; Prathiviraj and Chellapandi,
2019). Thus, we have employed a combined bioinformatics
approach for functional assignment, and categorization of
operome from MRU with a biological knowledgebase. The
predicted functions of operome allow us to comprehend its
growth physiology and metabolic behavior in the rumen
environment. Several methanogenic antibiotics, inhibitors, and
vaccines have been currently available for enteric methane
mitigation, but these are a narrow spectrum and species-specific
activity (Pulendran and Ahmed, 2006). The present approach
is used to predict new anti-methanogenic targets from its
precisely annotated operome that resolves the current demand
for veterinary therapeutics.

MATERIALS AND METHODS

Dataset Preparation
We retrieved protein sequences of 756 HPs in the MRU
genome from the National Centre for Biotechnology Information
(NCBI)1 and Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa et al., 2018) using a simple text mining
approach (Le and Huynh, 2019; Le et al., 2019). We used broad
ranges of source types such as keywords, “hypothetical proteins,
unknown, uncharacterized, and putative” to retrieve the protein
sequences from the NCBI and KEGG (Chellapandi et al., 2017b).
The FASTA sequences of all HPs were taken separately to carry
out sequence analysis. For functional annotation and assignment
of MRU operome, we used six different prediction tasks as
detailed below (Figure 1). The overall information about similar
or identical functions of HPs predicted from each task was
manually evaluated to reasoning out the functional assignment
of operome. The prediction tools used for each functional
annotation were more robust and confident for our analysis
similar to the previous works on archaeal and bacterial operome
(Prathiviraj and Chellapandi, 2019; Sangavai et al., 2020). E-value
is the number of expected hits of a similar score that could
be found just by chance. Like p-value, we used e-value for the
scoring of each prediction from the dataset and represented in
Supplementary Data.

Conserved Motif Analysis
A motif is a short segment of a protein sequence or structure,
which may be conserved in a large number of different proteins.
It can be used to determine the function or conformation

1http://www.ncbi.nlm.nih.gov
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FIGURE 1 | Experimental workflow of a combined bioinformatics approach employed for functional annotation of operome from MRU.

of a protein. The conserved motifs in each protein were
searched out against the KEGG-Motif search tool2, InterProScan
(Quevillon et al., 2005), and Pfam library (Finn et al., 2016).
To improve the lineament of prediction, cut off value was
set as 10−5 and DUF (domains with unknown functions)
were removed from the dataset. We found motif similarity
hits for 756 HPs out of which 257 HPs were chosen for
further analysis.

2http://www.genome.jp/tools/motif/

Conserved Domain Analysis
Conserved domains in each protein were identified by the NCBI-
CDD v3.16 search tool using the position-dependent weight
matrices. Additionally, composition-based statistics adjustment
was used to remove low complexity composition for statistical
significance using the RPS-BLAST version 2.2.28 (Marchler-
Bauer et al., 2015). The query sequence was compared with
domain architecture and profiles in the domain databases, after
that, the compositionally biased conserved region was identified
by the SMART (Letunic et al., 2012). The PROSITE profile
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was scanned for detection of the protein domains, families, and
functional sites and associated patterns in the protein sequence
using ScanProsite (de Castro et al., 2006). The probable function
of HPs was predicted with the InterPro database based on the
domain and important sites in the sequences (Finn et al., 2016).

Structural Analysis
The secondary structural elements (helix, sheets, extended coil,
and loops) in each protein were predicted from the sequences
using SOPMA (Geourjon and Deléage, 1995). We identified
structural and functional characteristics by PSI-BLAST similarity
searching against the protein data bank3 (Altschul et al.,
1997). The sequence similarity hits were selected for finding
the alignment of functional residues of a protein of known
function with the sequence of HPs using ClustalW (Thompson
et al., 2002). Fold assignment, target-template alignment, model
building, and model evaluation were carried out with the Swiss
Model (Biasini et al., 2014). QMEAN was a composite scoring
function describing the major geometrical aspects of protein
structures as described below.

Sweightedaverage(x) =
6i(GDT∗TS(x,i)QMEAN(i))

6iQMEAN(i)

where, the GDT_TS score as the target function. We evaluated the
structural quality and accuracy of the resulted homology models
based on the potential function as below (Benkert et al., 2008).

QMEAN5 score = 0.3× Scoretorsion 3−residue + 0.17×

Scorepairwise Cβ/SSE + 0.7×

Scoresolvation Cβ + 80× ScoreSSE PSPIRED

+45× ScoreACCpro

Evolutionary Trace Analysis
The evolutionary relationships to deduce the functionality of
operome were inferred using the SIFTER (Radivojac et al., 2013).
It was used to predict the protein function and Gene ontology
term using the following confidence score.

Sg(f) = 1−
k∏

i=1

(1− Sg(f))

where, Sg(f) confidence score as the default prediction for a
query protein g, Sgi(f) is the probability domain has function f
(Sahraeian et al., 2015).

Analysis of Physicochemical Properties
The physiochemical properties including molecular weight,
theoretical pI, instability index, aliphatic index, and grand
average of hydropathicity of HPs were predicted from their
sequences using the Expasy’s Protparam server4. The instability
index provides an estimate of the stability of a protein. An

3www.rcsb.org/
4http://web.expasy.org/protparam/

instability index <40 is predicted to be stable, and a value >40 is
predicted to be unstable. The instability index uses the following
weight values.

II =
(

10
L

)
∗

i=L−1∑
i=1

DIWV(x[i]x[i+ 1])

where, L is the length of the sequence, DIWV(x[i]x[i+1]) is the
instability weight value for the dipeptide starting in position I
(Guruprasad et al., 1990). The aliphatic index of a protein is
defined as the relative volume occupied by aliphatic side chain
amino acids using the following equation.

Aliphatic index X(Ala) + a ∗ X(Val) + b ∗ (X(Ile) + X(Leu))

Where, X(Ala), X(Val), X(Ile), and X(Leu) are mole percent
(100 X mole fraction) (Ikai, 1980). The GRAVY value for a
protein is calculated as the sum of the hydropathy values of all
of the amino acids divided by the number of residues in the
sequence (Kyte and Doolittle, 1982).

Analysis of Protein Subcellular
Localization
The subcellular localization of every protein was predicted with
PSORTb version 3.0.2 based on the hydrophobicity index of
amino acids (Yu et al., 2010). The propensity of a protein
for being a membrane protein was predicted by SOSUI 2.0
based on the physicochemical parameters (Mitaku et al., 2002).
The transmembrane helix and topology of each protein were
detected by the TMHMM 2.0 (Krogh et al., 2001) and HMMTOP
(Tusnády and Simon, 2001) using the Hidden Markov Model.
The signal peptide and location of the cleavage site in the peptide
chain were predicted with the SingnalP 4.0 based on a neural
network model (Petersen et al., 2011).

Literature Search
The literature survey is the stepping-stone and an essential
skill toward the accomplishment of structural and functional
analysis provides of proteins (Hubbard and Dunbar, 2017).
A process of uncovering useful knowledge from a collection of
data from bioinformatics and literature databases is referred
to as a knowledge-based discovery (Chellapandi et al., 2017b).
Functional assessment of operome was strengthened by
extracting relevant experimental supports from available
literature in NCBI-PubMed5. A maximum confidence score was
set as 12 levels (6 levels from predictions and 6 levels from the
literature mining) in which 50% score systematically enumerated
and assigned from overall prediction approaches. The rest of
them was assigned by manual annotation based on the strength
of the literature validation. For example, if the predicted function
is similar or identical in all prediction approaches, a maximum
confidence score will be assigned as 6. The literature-based
confidence score for each predicted function of HPs assigned as;
6- MRU, 5- Phylogenetic neighbors, 4- Methanogens, 3- Archaea,

5https://www.ncbi.nlm.nih.gov/pubmed/
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2- Bacteria, and 1- Eukaryotes. We have set a confidence score
interval as 3–6 for both computational prediction and biological
knowledge base and then neglected the predicted function of a
protein with a low confidence score (<3).

Functional Categorization
We classified the predicted function of HPs based on conserved
domain, protein fold, family, and biological function using
the CATH database (Knudsen and Wiuf, 2010). The genome-
wide analysis was performed to identify the order of gene
clusters covering the predicted function of HPs using a genomic
context approach (Yellaboina et al., 2007). Gene-neighborhood
or adjutant genes were identified by exploring the MRU genome
in the KEGG database. Metabolic information of HPs was
collected from the MetaCyc (Metabolic Pathways from all
Domains of Life) database (Caspi et al., 2014). The resulted data
were used to assign the functions of hypothetical proteins of
the understudied genome. The overall structural and functional
information was manually analyzed to categorize the molecular
involvement of HPs in respective metabolic subsystems and the
cellular process of the understudied organism.

RESULTS

Functional Classification and
Categorization
All predicted protein functions were classified and categorized
according to their protein folds, molecular function, subsystems,
and transmembrane topologies as shown in Figure 2. About
20% of operome encompasses a Rossmann fold consisting of a
nucleotide cofactor binding domain of some NAD+-dependent
dehydrogenases, in particular to ribonucleases (Barbas et al.,
2013). Fourteen percent of operome belongs to rubrerythrin
that constitutes non-haem iron proteins. This functional fold is
responsible for oxidative stress protection in anaerobic bacteria
and archaea (Prakash et al., 2018). The arcR repressor mutant
fold occupies 4–5% of operome, which performs the functions
of small homodimeric proteins involved in transcriptional
regulation by sequence-specific DNA binding (Vershon et al.,
1986; Homa and Brown, 1997). MRU operome contains phoA
fold (3–4%) that fused with the cell surface glycoprotein signal
sequence similar to Haloferax volcanii (Kandiba et al., 2013). It
indicates the importance of some protein folds for conferring
oxidative tolerance and cell wall assembly. We found 91 HPs
involving in the metabolic reactions with a confidence score
>5. A total of 23 HPs is entailed in the small molecule
reactions and 15 HPs required for the biosynthesis of cofactors,
prosthetic groups, and electron carriers. About 9 HPs are
essential to the protein modification reactions whereas 4 HPs
contributed to the formation of precursor metabolites for the
energy-driven process of this organism. Approximately 50% of
drug targets are transmembrane proteins as they play many
roles in transport, cell signaling, and energy transduction
processes (Terstappen and Reggiani, 2001). We predicted 91 HPs
having transmembrane helixes based on their conservation of
membranous helix ratios. The α-helix bundle and the β-barrel are

predicted as fold classes in many membrane proteins. Archaeal
transmembrane proteins have two or more α-helixes consisting
of hydrophobic amino acids.

Operon-Like Organization
The genome-wide analysis discovered 32 coding genes for
HPs, which are all clustered separately, form 6 operon-like
organizations (hsp, TRAM, dsr, cbs, anti-toxin, and cas) in the
MRU genome (Figure 3). Molecular chaperones such as hsp70,
hsp60, and hsp80 resemble some bacterial genomes than the
eukaryotic homologs (Gaywee et al., 2002). The hsp gene cluster
is essential for chaperone-assisted protein folding in Achaea
(Dokland, 1999; Benaroudj and Goldberg, 2000; Large et al.,
2009). The assimilatory sulfite reductase (dsrHFEBA) gene cluster
detected from this genome provides the importance for the
oxidation of accumulated intracellular sulfide and thiosulfate
in the diverse environmental niche. The presence of cbs, anti-
toxin, and cas gene clusters confers host defense response (innate
immunity) to this organism against foreign genetic elements
in the rumen ecosystem (Louwen et al., 2014; Chellapandi and
Ranjani, 2015). The anti-toxin system plays a vital role in toxicity
neutralization (Unterholzner et al., 2013).

Cell Division Systems
In this study, we assigned the function of 9 HPs contributing a
major role in the cell cycle process in which 8 HPs have shown
new functions to this organism (Table 1). AAA+ ATPase, cell
division inhibitor, cell division control protein, DNA replication
protein 6-2, and structural maintenance of chromosomes
protein-1 is highly conserved within the archaeal domain and
performs archaeal-specific cell cycle process, DNA repair, and
replication fidelity (Kalliomaa-Sanford et al., 2012; Grogan,
2015). A proteasome is a central player in energy-dependent
proteolysis and forms a nano-compartment where proteins are
degraded into oligopeptides by processive hydrolysis. The 20S
proteasome is a catalytic core responsible for this processing.
AAA+ ATPase plays several roles in mediating energy-dependent
proteolysis by the proteasome (Forouhar et al., 2011; Maupin-
Furlow, 2013). Moreover, it contains a P-loop motif involved in
the origin of recognition during DNA replication initiation even
if conventional C-terminal winged-helix DNA-binding elements
lacked (He et al., 2008).

Transcriptional Regulatory Systems
A total of 26 HPs predicted as functional candidates in which 20
HPs have shown new functions to the transcriptional regulation
process of this organism (Table 2). Transcriptional regulatory
proteins identified from MRU operome can express a set of
proteins that protect cellular proteins against a sudden heat-
shock stress, copper and arsenic toxicities, protein folding, and
nitrogen starvation (Thieringer et al., 1998; Giaquinto et al.,
2007; Chang et al., 2014; Prathiviraj and Chellapandi, 2020a,b).
Bro N-terminal domain protein has an N-terminal domain
with ALI motif that influences host DNA replication and/or
transcription (Makarova et al., 2009). HrcA repressor contains
a motif of winged helix-turn-helix transcription repressor. It
controls the transcription of heat-shock repressor proteins and
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FIGURE 2 | Functional classification of MRU operome based on the protein fold (A), functional category (B), subpathway systems (C), and transmembrane
topologies (D). AAB, Amino acid biosynthesis; AAT, Aminoacyl-tRNA charging metabolic clusters; ACD, Aromatic compounds degradation; C1UA, C1 Compounds
utilization and assimilation; CHB, Carbohydrates biosynthesis; CSB, Cell structures biosynthesis; CPEB, Cofactors, prosthetic groups, electron carriers biosynthesis;
FALB, Fatty acid and lipid biosynthesis; GPME, Generation of precursor metabolites and energy; INM, Inorganic nutrients metabolism; NNB, Nucleosides and
nucleotides biosynthesis; PMR, Protein-modification reactions; RR, RNA-reactions; SMD, Secondary metabolites degradation; tRR, tRNA reactions; OTR, Other
reactions.

protects cellular proteins from being denatured by heat (Liu et al.,
2005; Prathiviraj and Chellapandi, 2020b). Hsp70 and Hsp80
from MRU operome perform renaturation of luciferase similar
to that found in M. mazei (Zmijewski et al., 2004). Hsp60s are
more similar to the type II chaperonins found in the eukaryotic
cytosol involved in macromolecular assembly and protein folding
(Large et al., 2009). TRAM protein regulates the RNA chaperone
activity that is essential for MRU to grow and survive in a cold
environment (Zhang et al., 2017).

Biosynthesis of Macromolecules
We predicted the function of 20 HPs exhibiting new metabolic
roles in this organism and the rest of 76 HPs has shown
known functions (Table 3 and Supplementary Table S1).
Saccharopine dehydrogenase (NAD/P, L-lysine-forming) (lysA)
and succinylglutamate desuccinylase (astE) genes identified
from MRU operome, which are responsible to mediate the

biosynthesis of L-lysine and L-glutamate. LysA protein contains
a motif of LOR/SDH bifunctional conserved region that converts
L-saccharopine into L-lysine via l-α-aminoadipate pathway (Xu
et al., 2007). Cheng et al. (2010), revealed a cross-talk between
fungi and methanogens which may occur in host animals since
the l-α-aminoadipate pathway is very specific to fungi. The
second enzyme transforms N2-succinylglutamate into succinate
and glutamate. Therefore, both enzymes proposed to be involved
in amino acid biosynthesis of MRU as reported earlier on other
methanogens (Enzmann et al., 2018).

The 2-enoyl-CoA hydratase catalyzes the second step
in the physiologically important β-oxidation pathway of
fatty acid metabolism in MRU (Agnihotri and Liu, 2003).
Glycogen phosphorylase catalyzes the phosphorolysis of α-1,
4 glycosidic bonds in glycogen to yield glucose-1-phosphate
for glycolysis (Rath et al., 2000). Interestingly, MRU operome
has the ability to synthesis enterobacterial-like common
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FIGURE 3 | Detection of gene clusters from MRU operome responsible for protein folding (A), cold adaptation (B), sulfite tolerance (C), binding with adenosyl
groups (D), degradation of the labile antitoxin (E), and defense/virulence system (F). The green arrow represents a gene with a known function. hsp, Heat shock
protein; TRAM, RNA modification protein; dsr, Dissimilatory sulfate reductase; cbs, cystathionine beta-synthase; cas, CRISPR-associated gene.

antigen as it contains dTDP-4-amino-4, 6-dideoxygalactose
transaminase (rffA). This enzyme catalyzes the conversion
of TDP-4-keto-6-deoxy-D-glucose to TDP-D-fucosamine
similar to the enterobacteria family (Meier-Dieter et al.,
1990; Hwang et al., 2004). The presence of phosphatidate
cytidylyltransferase (cdsA) provides evidence of the biosynthesis
of archaeal-specific phospholipids. It catalyzes sn-glycerol
3-phosphate into an L-1-phosphatidylglycerol-phosphate
precursor-like Escherichia coli (Carter et al., 1968). We found an
AMMECR1 motif in phosphomevalonate decarboxylase from
MRU operome, which converts (R)-mevalonate 5-phosphate
to isopentenyl diphosphate in the mevalonate pathway, as
reported in Methanocaldococcus jannaschii (Grochowski
et al., 2006). Results of our study revealed that the MRU
genome has shown a metabolic potential for the biosynthesis
of enterobacterial-like common antigen, archaeal-specific
phospholipids, and isopentenyl diphosphate, a precursor
required for cell wall biogenesis.

Cofactors, Prosthetic Groups, Electron
Carrier Biosynthesis
We predicted the function of some HPs involving in the
biosynthesis of coenzyme F420, flavin, and electron carriers in
MRU. F420-0: L-glutamate ligase is a key enzyme identified
from MRU operome, which converts multiple γ-linked
L-glutamates to the polyglutamated F420derivative in the

biosynthesis of coenzyme F420 (Li et al., 2003). As reported
in bacteria and plants, MRU operome has diamino hydroxy
phosphoribosyl aminopyrimidine reductase (ribD) that converts
2, 5-diamino-6-(5-phospho-D-ribosylamino)pyrimidine-4(3H)-
one into 5-amino-6-(5-phospho-D-ribosylamino)uracil in flavin
biosynthesis pathway (Garfoot et al., 2014). Cytidylyltransferase
belongs to the NTP transferase superfamily encoded by
mocA gene (mru_1116) of the MRU genome. It catalyzes the
cytidylation of the molybdenum cofactor demanded many
functional enzymes (Fay et al., 2015). Energy-converting
hydrogenase B subunit O consists of a conserved motif of
IHPPAH, which generates low potential electrons required for
autotrophic CO2 assimilation as reported in Methanococcus
maripaludis (Major et al., 2010).

Aromatic Compounds Degradation
Systems
Pyrogallol hydroxytransferase (athL) detected from MRU
operome has a carboxypeptidase regulatory-like domain. It
is involved only in the regulation of peptidase catalyzing the
conversion of pyrogallol into phloroglucinol. Phloroglucinolcan
stimulates the gut microbiota and decreases the partial pressure
of H2 in the rumen. It suggests the capture of excess H2
generated from methanogenesis inhibition can be promoted by
phloroglucinol utilization in the rumen (Martinez-Fernandez
et al., 2017). Interestingly, we assigned a precise function to HP
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TABLE 1 | Functional annotation of operome involved in the cell division process
of MRU.

Locus tag Assigned function Gene

0080| 0744| 0939|
1172| 1932

AAA+ ATPase atad3A

0647 Cell division inhibitor sepF

1346 Cell division control protein minE

1419 DNA replication protein 6-2 cdc6-2

1654 Structural maintenance of chromosomes protein 1 smc1

TABLE 2 | Functional annotation of operome involved in the transcriptional
regulatory process of MRU.

Locus tag Assigned function Gene

0757 Bro N-terminal domain protein dxs

0349 Nitrogen repressor nrpR

1052 Heat-inducible transcriptional repressor hrcA

1099 Translation initiation factor 3 tif3

1366| 2156 Arsenical resistance operon repressor arsR

1862 Copper-sensing transcriptional repressor csoR

0488| 0490| 0499| 0658|
0764| 0780| 0790| 0801|
0930| 1131| 1147| 1150|
1364| 1590| 1796

Transcription factor tf2B

1185 Cold shock protein

1108 DEAD/DEAH box helicase polB

0877 Preprotein translocase secY

Mru_0476 as phenylacetate-CoA oxygenase in phenylacetate
catabolic pathway. This enzyme converts phenylacetyl-CoA
to a 2-(1, 2-epoxy-1, 2-dihydrophenyl) acetyl-CoA. Archaea
harboring key genes of this pathway are some members of
the Halobacteria, which may have acquired a multitude of
bacterial genes (Kennedy et al., 2001; Notomista et al., 2003).
As shown by our analysis, MRU can degrade pyrogallol
and phenylacetate produced by gut microbial in ruminants
(Martinez-Fernandez et al., 2017).

Detoxification Systems
MRU operome plays a key role in formaldehyde, inorganic
arsenate, and copper detoxification process. It contains 6-
phosphogluconate dehydrogenase (gntZ) gene as homologous to
methanotrophic bacteria such as Methylophilus methylotrophus
and Methylobacillus flagellates (Chistoserdova et al., 2000). The
presence of arsenate reductase (arsC) and Cu+-exporting ATPase
(copA) provides a defense system to its cells against inorganic
arsenate and copper toxicities (Liu et al., 2007).

Macromolecule Modification Systems
MRU operome contains α-2, 3-sialyltransferase gene coding
protein having a Rossmann fold with the architecture of the
α-β complex. This enzyme catalyzes the transfer of sialic acid
from CMP-N-acetyl-β-neuraminate to membrane proteins and
lipids of the cell wall of MRU (Koga et al., 1993). Dolichyl-
phosphate-mannose-protein mannosyltransferase is identified
as carbohydrate carriers to transfer mannosyl residues to

the hydroxy group of serine or threonine residues during
the post-translational protein modification process of MRU
(Podar et al., 2013).

Membrane Transport Systems
We observed 16 HPs contributing to the transport systems
of this organism (Supplementary Table S2). MRU operome
encompasses genes coding for transporter proteins responsible
for maintenance of metal homeostasis in particular to magnesium
and manganese ions and uptake/export of vitamin, sulfite,
and tricarboxylate (Winnen et al., 2003; Weinitschke et al.,
2007; Hattori et al., 2007, 2009; Rodionov et al., 2009;
Rosch et al., 2009; Mayer et al., 2012; Karpowich et al.,
2015). The presence of PurR-regulated permease regulon
and Na+/H+ antiporter protein carries out the exchange
Na+ for H+ across the cytoplasmic membrane of archaea
(Rimon et al., 2012). Cell-cell communication and intra-species
electron transfer can be mediated by preprotein translocase
predicted from its operome, as described for hydrogenotrophic
methanogens and E. coli (Cooper et al., 2017). Translocation
sheath protein has an N-terminal domain that mediates
the translocation of SPI-2 TTSS effector proteins in MRU
(Nikolaus et al., 2001).

D-Gluconate Catabolic System
As shown by our analysis, we proposed a putative D-gluconate
catabolic pathway exclusively present in MRU for the
biosynthesis of archaeal membrane phospholipids (Figure 4).
The presence of six HPs with predicted functions evidences
the existence of this pathway in this organism. Klemm et al.
(1996), identified a gntP gene to be involved in gluconate
uptake by E. coli. Haloferax volcanii contains a DeoR/GlpR-type
transcription factor, which has shown its potential role as a
global regulator of sugar metabolism and to cotranscribe with
the downstream phosphofructokinase (pfkB) gene (Rawls et al.,
2010). As similar to Pseudomonas aeruginosa, MRU operome
has D-gluconate kinase gene despite a membrane-bound
D-gluconate dehydrogenase gene to synthesize phospholipids
(Matsushita et al., 1979; Schlictman et al., 1995; Kulakova et al.,
2001). As similar to archaea, the utilization of gluconate in MRU
leads to a branch point for two central metabolic pathways:
the Entner-Doudoroff pathway and phospholipids biosynthesis
(Bräsen et al., 2014).

DISCUSSION

The function of operome is obscure and quite unsettling in
prokaryotic genomes. Understanding important knowledge
gaps in the unknown function of operome can unravel
their cellular and molecular mechanisms. The functionality
of proteins with unknown function have been identified,
characterized, and validated with a broad spectrum of
genetic and biochemical experiments (Mills et al., 2015).
Several computational methods have been used to describe
the physiological states of methanogens from the predicted
functions of operome (Chellapandi and Prisilla, 2018;

Frontiers in Genetics | www.frontiersin.org 8 December 2020 | Volume 11 | Article 59399014

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-593990 December 10, 2020 Time: 23:25 # 9

Bharathi et al. Functional Prediction and Assignment

TABLE 3 | Functional annotation of operome involved in different metabolic subsystems of MRU.

Locus tag Assigned function EC Gene

Biosynthesis

Amino acids biosynthesis

1696 Carbamoyl-phosphate synthase (glutamine-hydrolyzing) 6.3.5.5 carB

1737 Saccharopine dehydrogenase (NAD/P, L-lysine-forming) 1.5.1.7| 1.5.1.8 lys1

Aminoacyl-tRNA charging metabolic clusters

0488| 0490| 0499| 0764| 0780| 0790|
0801| 1131| 1147| 1150| 1364| 1590|
1796

Methionine—tRNA ligase 6.1.1.10 metG

1493 Tryptophanyl-tRNA synthetase (Membrane bound) 6.1.1.2 trpS

Carbohydrates and Cell structures biosynthesis

1418 dTDP-4-amino-4,6-dideoxygalactose transaminase 2.6.1.59 rffA

1886 Glycogen Phosphorylase 2.4.1.1 glgP

1469 UDP-glucose 4-epimerase 5.1.3.2 galE

1462 Pantothenate synthase 6.3.2.1 panC

0480 Pyruvate kinase 2.7.1.40 pykA

Cell structures biosynthesis

1065 CDP-glycerol glycerophosphotransferase 2.7.8.12 tagF

1589| 1957 Thiamine monophosphate synthase 2.7.7.39 tagD

Cofactors, Prosthetic groups, Electron carriers biosynthesis

2219 Cobalamin biosynthesis protein CbiB 6.3.1.10 cbiB

0947 Coenzyme F420-0:L-glutamate ligase 6.3.2.31 cofE

1116 CTP: Molybdenum cofactor cytidylyltransferase 2.7.7.76 –

1450 Energy-converting hydrogenase B subunit O 1.6.5.3 ehbO

0776| 0785 Gamma-glutamyl cyclotransferase 2.3.2.4 ykqA

1937 Glutathione peroxidase 1.11.1.9 gpxA

0035 NUDIX hydrolase 3.6.1.22 nadM

0596 4-Hydroxybenzoate octaprenyltransferase 2.5.1.39 ubiA

1550 5-Formyltetrahydrofolate cyclo-ligase activity 6.3.3.2 mthfs

1831 Dihydroneopterin aldolase 4.1.2.25 folB

1209 Nicotinate-nucleotide pyrophosphorylase [carboxylating] 2.4.2.19 nadC

0277 NUDIX hydrolase 3.6.1.22 nudC

2172 Riboflavin kinase 2.7.1.161 ribK

0432 Tocopherol cyclase 5.5.1.24 vte1

1728 Phosphomevalonate decarboxylase 4.1.1.99 pmd

Fatty acid and lipid biosynthesis

0460 Dolichol kinase 2.7.1.108 dolk

1693 Integral Membrane bound Phosphatidate cytidylyltransferase 2.7.7.41 cdsA

Metabolic regulators biosynthesis

0939 6-Phosphofructo-2-kinase| Fructose-2,6-bisphosphate 2-phosphatase 2.7.1.105| 3.1.3.46 pfkfb3

0393 (K18532 adenylate kinase
[EC:2.7.4.3])

Adenylate kinase 2.7.4.3 adk

Nucleosides and nucleotides biosynthesis

0425 L-Threonylcarbamoyladenylate synthase 2.7.7.87 yrdC/sua5/ywlC

1890 Phosphoribosylaminoimidazole carboxylase 4.1.1.21 purE

0720 Uridylate kinase (DNA binding protein) 2.7.4.22 pyrH

Catabolism

Alcohols degradation

0528 Coenzyme B12-dependent diol dehydrase 4.2.1.28 pduC

Amino acids degradation

2016| 0381 Succinylglutamate desuccinylase 3.5.1.96 astE

Aromatic compounds degradation

1622 4-Carboxymuconolactone decarboxylase 4.1.1.44 pcaC

0476 Phenylacetate-CoA oxygenase 1.14.13.149 paaJ

0313 Pyrogallol hydroxytransferase 1.97.1.2 athL

(Continued)
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TABLE 3 | Continued

Locus tag Assigned function EC Gene

C1 Compounds utilization and assimilation

2132 Bifunctional formaldehyde-activating enzyme 4.2.1.147/4.1.2.43 fae-hps

1013 Phosphogluconate dehydrogenase (NAD+-dependent, decarboxylating) 1.1.1.343 gntZ

Inorganic nutrients metabolism

1280| 1936 NADPH-dependent FMN reductase 1.5.1.38 ssuE

0224| 0376 Phosphonoacetate hydrolase (membrane bound) 3.11.1.2 phnA

Secondary metabolites degradation

1330 Carbohydrate kinase (Integral membrane-bound) 2.7.1.4 pfkB

2120 Quercetin dioxygenase 1.13.11.24 qodI

Macromolecule modification

0421 Alpha-2,3-sialyltransferase 2.4.99.4 siat4a

Small molecule reactions

1938 Arsenate Reductase (Thioredoxin) 1.20.4.1 arsC

0134 Type I restriction-modification system M subunit HsdM 2.1.1.72 hsdM

0674| 1683| 1749 Succinate dehydrogenase (quinone) 1.3.5.1 sdh

1013 Phosphogluconate dehydrogenase (NAD+-dependent, decarboxylating) 1.1.1.343 gntZ

2194 2-Enoyl-CoA Hydratase 3.4.21.92 clpP

0747 2-Polyprenylphenol 6- hydroxylase 1.14.13.- ubiB2

0202 Aconitate hydratase 4.2.1.3 acnA

2180| 2184| 2185 Acyltransferase 2.3.1.13 glyat

0496 ATP pyrophosphatase 3.6.1.8 thiI

0062| 0063| 1113| 1172 ATP-dependent DNA helicase 3.6.4.12 ashA

2196 Choloylglycine hydrolase 3.5.1.24 –

0156| 0041 DNA binding E3 SUMO-protein ligase 6.3.2.- piaS4

0174 (K09723 DNA replication factor GINS) DNA primase small subunit 2.7.7.- priA

2069 DNA-3-methyladenine glycosylase 3.2.2.20 tag

1108| 2173 DNA-directed DNA polymerase 2.7.7.7 polB

1660| 1699| 1734 Flavin reductase 1.5.1.36 hpaC

1442 Geranylgeranyl reductase 1.3.1.83 chlP

1290| 1291 Lincosamide nucleotidyltransferase 2.7.7.- inuA

0930 Manganese-dependent inorganic pyrophosphatase 3.6.1.1 ppaC

0223 Membrane-bound O-acyltransferase 2.3.1.- rimL

1242 Nucleoside Triphosphate Pyrophosphohydrolase 3.6.1.8 mazG

1605| 0049 Nucleotide diphosphatase 3.6.1.9 ENPP

2146 Oligosaccharyl transferase 2.4.99.18 STT3

1588 Succinylglutamate desuccinylase /aspartoacylase 3.5.1.15 aspA

0100 Peptidoglycan-associated polymer biosynthesis 2.-.-.- csaB

1555 Pseudouridine-5’-monophosphatase 3.1.3.- HDHD1

1964 Sterol 3-beta-glucosyltransferase (Phosphorylating) 2.4.1.173 –

1631 UDP-N-acetylglucosamine 2-epimerase (non-hydrolyzing) 5.1.3.14 wecB

0835 von Willebrand/Integrin A Domains 3.6.4.- hepA

Protein-modification reactions

1344 Lysine carboxypeptidase 3.4.17.3 CPN1

1375 Membrane-bound dolichyl-phosphate-mannose-protein mannosyltransferase 2.4.1.109 pomT

0791 Methylated-DNA—[protein]-cysteine S-methyltransferase 2.1.1.63 –

1884 Nucleotide-activated 6-deoxyhexose biosynthesis 2.4.1.109 pomT

2158 Putative pyruvate formate-lyase 1.97.1.4 pflX

1801| 1867 Ribosomal-protein-alanine N-acetyltransferase 2.3.1.128 rimI

1389| 1514 S-Adenosyl-L-methionine-dependent methyltransferase 1.16.1.8 mtrR

1096 Serine/threonine protein kinase with TPR repeats 2.7.11.1 bub1

1563 Proteasome endopeptidase complex 3.4.25.1 psmA

1311| 0426 tRNA-splicing ligase 6.5.1.3 rtcB

(Continued)
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TABLE 3 | Continued

Locus tag Assigned function EC Gene

Energy metabolism

Generation of precursor metabolites and energy

2214 Fuculose 1-phosphate aldolase 4.1.2.17 fucA

1894 Fumarate hydratase 4.2.1.2 fumA

FIGURE 4 | The proposed D-gluconate catabolic pathway in MRU was discovered from the functional annotation of its operome. D-Gluconate is imported into the
cytoplasm by the predicted gluconate transporter (gntP) gene. It can be phosphorylated to D-gluconate-6-phosphate by D-gluconate kinase (gntK), which is then
converted to D-ribulose-5-phosphate by the catalytic action of NAD+-dependent phosphogluconate dehydrogenase (gntZ). D-Ribulose-5-phosphate is next
oxidized to hexulose-6-phosphate by 3-hexulose phosphate synthase (hxlA) and converted into β-D-fructofuranose 6-phosphate with phospho-3-hexuloisomerase
(phi1). The 6-phosphofructose 2-kinase phosphorylates β-D-fructofuranose 6-phosphate into β-D-fructose 2, 6-bisphosphate, which then interconverted from
D-fructose-6-phosphate to β-D-fructofuranose 6-phosphate by fructose-2, 6-bisphosphate 2-phosphatase. In an alternative way, β—D-fructofuranose 6-phosphate
is phosphorylated to D-glucopyranose 6-phosphate by 6-phosphofructo-2-kinase. Glucopyranose 6-phosphate is converted to 1D-myo-inositol 3-monophosphate
by D-glucose 6-phosphate cycloaldolase (ino1) and reduced to myo-inositol by inositol-phosphate phosphatase (suhB).

Prathiviraj and Chellapandi, 2019). There are several functional
measures (structural and functional motifs) to be considered
for computational predictions of operome from available

microbial genomes. The present study employed to collect
comprehensive information derived from sequence similarity,
conserved domain, motif, structure, fold, protein-protein
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interaction, subcellular localization, phylogenetic inference,
and gene expression profile as the predictive measures
to assign a precise molecular function to MRU operome.
Collective information of them provides a hint to predict
some distinct motifs and annotate the function of each
protein accurately for studying growth physiology in the
rumen ecosystem.

Generally, the protein sequence is less conserved than the
tertiary structure of a protein (Illergård et al., 2009). In this
study, experimentally solved structures and accurate protein
folding offered the major importance to deduce some level of
a functional description of a protein, as described by Nealon
et al. (2017). Characterization of binding motifs and catalytic
cores present in the proteins and functional categorization in
the cell has been achieved by using the predictive measures
derived from overall proteome information (Shapiro and Harris,
2000). Many protein domains have unknown functions, but
they may contribute to the metabolic regulation of organisms
(Kotze et al., 2013). It implied the possibility of finding a
new domain and motif as well as discovers additional protein
pathways and cascades from functionally annotated operome
(Ijaq et al., 2015). Functional prediction and assignment of
prokaryotic operome have been either only sequence-based
or structure-based strategies. In our study, a combination of
bioinformatics tools with 6 different prediction schemas and
additional literature evidence with a 6-level confidence score was
applied to improve the prediction accuracy of our functional
assignment (Figure 1). Compared to earlier functional prediction
approaches, our approach provides a strong emphasis to reveal its
metabolic subsystems and cellular mechanisms from the assigned
function of operome.

The mechanisms of molecular pathogenesis and virulence
of many pathogenic organisms and drug targets discovery
are being considered an accurate prediction of operome
function as an important biological knowledgebase
(Amavisit et al., 2003; Lamarche et al., 2008; Kumar et al.,
2014). Several bioinformatics tools have been utilized for
functional prediction of operome from different pathogenic
organisms (Kumar et al., 2014, 2015; Singh et al., 2017;
Shrivastava et al., 2017). It clearly described that all of
them are pathogenic organisms but no reports on rumen
methanogens yet. It was the first computational study to
characterize the function of MRU operome, a potential
methanogen for enteric methane emission in the ruminants via
enteric fermentation.

The Rossmann was a novel and ancient fold found in
5, 10-methenyltetrahydromethanopterin hydrogenase, a key
enzyme of hydrogenotrophic methanogenesis. It explains the
possibility of hydrogenotrophic lifestyle in MRU, as described by
Leahy et al. (2010). The reduction potentials of rubredoxin fold-
containing proteins are known to be involved in biochemical
processes including carbon fixation, detoxification, and fatty acid
metabolism (Prakash et al., 2018; Prathiviraj and Chellapandi,
2020). Cofactors or other prosthetic groups are more attractive
to stimulate enzyme activity in hydrolytic reactions of archaea.
Transmembrane helixes are generally independently stable
in a membrane or membrane-like environment, which are

important for signal recognition, transport phenomena,
energy translocation, and conservation in the living cell (von
Heijne, 1988; Jennings, 1989). Concerning the functional
importance, we classified and categorized the function of MRU
operome in this study.

In this study, six operon-like clusters were identified from
MRU operome. The functions of predicted gene clusters
were contributed in chaperone-assisted protein folding,
host defense response, and toxicity neutralization of MRU.
Some transcriptional regulatory systems predicted from its
operome have shown to protect cellular proteins against
sudden heat-shock stress, nitrogen limitation, and heavy
metal homeostasis. MRU genome contains many pathway
holes, which hinder its accurate metabolic reconstruction
at the genome-scale. In our study, we detected some key
genes missing in the metabolic network of this organism.
Consequently, complete metabolic subsystems were annotated
for the biosynthesis of L-lysine, L-glutamate, enterobacterial-
like common antigen, archaeal-specific phospholipids, and
isopentenyl diphosphate. MRU operome can produce
coenzyme F420 and flavin and electron carriers. Cell wall
lipids and membrane proteins have been synthesized
from the function of some HPs through macromolecule
modification reactions. This organism has well-established
transporter systems to maintain metal homeostasis and
uptake/export of vitamin, gluconate, sulfite, and tricarboxylate.
D-Gluconate catabolic pathway was uniquely discovered
from MRU operome for the biosynthesis of archaeal
membrane phospholipids.

CONCLUSION

The functional assignment of operome is a mandatory process for
a better understanding of the metabolic and molecular processes
of this organism. The predicted functional properties of its
operome afford us not only for new structural information but
also for new molecular functions essential for the lifestyle in
the rumen ecosystem. A major operome covers all functional
counterparts needed to perform diverse metabolic pathways and
regulatory processes. Some imperative physiological functions
(oxidative stress, archaeal-specific membrane phospholipids, etc.)
of this organism are revealed from this study. The genome-
neighborhood analysis found six main gene clusters (hsp,
tram, dsr, cbs, anti-toxin, and gas), which are contributed to
the energetic metabolism and defense systems. MRU operome
contains 119 metabolic enzymes with 18 sub-pathways and 25
binding proteins that recognize the DNA, RNA, metal, and
membrane for cellular function. Interestingly, we discovered
a putative D-gluconate catabolic pathway for the biosynthesis
of archaeal-specific membrane phospholipids. Several virulence-
associated and vaccine targeted proteins have been identified
from MRU operome. It suggests the development of new
methane mitigation interventions that target the key metabolic
proteins to reduce methane emissions in ruminants. Functional
prediction and assignment of its operome are thus very important
to comprehend the cellular machinery at the systems-level for
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anti-methanogenic compounds discovery. Nevertheless, all of
our predicted functions of its operome should be evaluated
and validated experimentally with protein expression and
purification, crystallization, and structure determination studies.
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Hot springs are considered to be a unique environment with extremophiles, that are

sources of industrially important enzymes, and other biotechnological products. The

objective of this study was to undertake, analyze, and characterize the microbiome

of two major hot springs located in the state of Madhya Pradesh explicitly, Chhoti

Anhoni (Hotspring 1), and Badi Anhoni (Hotspring 2) to find out the inhabitant

microbial population, and their functional characteristics. The taxonomic analysis of

the microbiome of the hot springs revealed the phylum Proteobacteria was the most

abundant taxa in both the hot-springs, however, its abundance in hot-spring 1 (∼88%)

was more than the hot-spring 2 (∼52%). The phylum Bacteroides (∼10–22%) was found

to be the second most abundant group in the hot-springs followed by Spirocheates

(∼2–11%), Firmicutes (∼6–8%), Chloroflexi (1–5%), etc. The functional analysis of the

microbiome revealed different features related to several functions including metabolism

of organics and degradation of xenobiotic compounds. The functional analysis showed

that most of the attributes of the microbiome was related to metabolism, followed by

cellular processes and environmental information processing functions. The functional

annotation of the microbiomes at KEGG level 3 annotated the sequences into 279

active features that showed variation in abundance between the hot spring samples,

where hot-spring 1 was functionally more diverse. Interestingly, the abundance of

functional genes from methanogenic bacteria, was higher in the hot-spring 2, which

may be related to the relatively higher pH and temperature than Hotspring 1. The

study showed the presence of different unassigned bacterial taxa with high abundance

which indicates the potential of novel genera or phylotypes. Culturable isolates (28) were

bio-prospected for industrially important enzymes including amylase, protease, lipase,

gelatinase, pectinase, cellulase, lecithinase, and xylanase. Seven isolates (25%) had

shown positive results for all the enzyme activities whereas 23 isolates (82%) produced

Protease, 27 isolates (96%) produced lipase, 27 isolates produced amylase, 26 isolates

23
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(92%) produced cellulase, 19 isolates (67%) produced pectinase, 19 isolates (67%) could

produce lecithinase, and 13 isolates (46%) produced gelatinase. The seven isolates,

positive for all the enzymes were analyzed further for quantitative analysis and identified

through molecular characterization.

Keywords: microbiome, Hotsprings, extremophiles, microbial diversity, industrial enzymes

INTRODUCTION

Extremophilic microorganisms thrive in diverse and extreme
conditions and constitute a major part of the biosphere (Mirete
et al., 2016). The thermophiles and hyper-thermophiles live in

high-temperature environments such as hot springs, though few
of these can survive in co-existing, more than one extreme

conditions, like acidic or alkaline hot springs. The accessibility
of thermophiles to survive at high temperatures is related
to their incredibly thermostable macromolecules present in
them (Brock, 2001). These thermophilic microorganisms have

been studied extensively for thermostable enzymes such as
amylases, cellulases, chitinases, pectinases, xylanases, proteases,
lipase, and DNA polymerases, etc. that has unique features of
biotechnological processes (Singh et al., 2011).

Thermophilic microorganisms are an excellent source of
thermostable enzymes and have been utilized in the greater
part of industrial applications, for example, food, papers,
pharmaceutical, cleansers, etc. (Schuler et al., 2017; Roy et al.,
2020). Thermophilic microorganisms are also more stable than
their mesophilic partners to natural solvents, cleansers, low and
high pH, and other extreme conditions (Demirjian et al., 2001).
Therefore, industrially important enzymes from thermophiles
such as amylase (extracellular), protease (extracellular),
lipase (extra/intracellular), gelatinase (extracellular), pectinase
(extra/intracellular), cellulase (extra/intracellular), lecithinase
(extracellular), and xylanase (extracellular) has been used
extensively. Most of these enzymes are found to be optimally
active at temperatures close to the host organism’s optimal
growth temperature. However, some of the extracellular and
cell-bound hyperthermophilic enzymes were optimally active
at temperatures above, sometimes far above than the host
organism’s optimum growth temperature (Vieille and Zeikus,
2001).

The Geological Survey of India has identified about 340 hot
springs located in different parts of India, which are characterized
by their orogenic activities (Chandrasekharam, 2005; Craig et al.,
2013). All these hot springs have been classified and grouped
into nine geothermal provinces based on their geo-tectonic setup
that includes the Himalayas, Naga-Lushai province, Sohana,
West coast, Andaman-Nicobar Islands, Cambay, Son-Narmada-
Tapi (SONATA), Godavari, and Mahanadi valleys. Geothermal
resources along Son-Narmada lineament viz. Choti and Badi
Anhoni form the most promising resource base in central
India (Shanker, 1986). The lineament is one of the most
important lineaments/rifted structure of the sub-continent. It
runs across the country in an almost East-West direction and
has a long history of tectonic reactivation. It contains several

known thermal spring areas, the most interesting one being
those situated at Anhoni (Saxena et al., 2017). There are several
hot springs situated in Madhya Pradesh at several locations
like Anhoni in Chhindwara district, hot and boiling sulfur
springs that flow along within the forest. Anhoni is particularly
known for its ’boiling water kund’ (kund means a small pond),
Choti Anhoni near Pipariya, Badi Anhoni near Panchmarhi,
Chavalpani at Pachmarhi, Anhoni Samoni (it is different from
the aforementioned Anhoni springs), Babeha hot spring is in
the Mandla district, and Dhuni Pani, Amarkantak. The alkaline
hot springs have pH more than seven and can range from
8.5 to 12. Other alkaline hot-springs have also been studied,
from other parts of world, such as the Great Rift Valley in
northeastern Africa, which has been characterized to have high
levels of carbonates, chlorides, and silica compounds (Jones et al.,
1998). The organisms surviving in such alkaline hot springs
acquire necessary adaptations. The bacteria present in such
environments are either alkaliphilic or alkalitolerant, that are
known as alkalithermophilic bacteria, and these organisms have
enzymes to support their growth and survival in such extreme
conditions. These alkalithermophiles are often reported to be
chemolithoautotrophic (Sorokin and Kuenen, 2005).

Several studies have been done to analyze the microbial
diversity of different hot-springs around the globe. The
microorganisms growing in different ecological zones
(e.g., hot springs and deep-sea) can be categorized into
moderate thermophiles (growth optimum, 50–60◦C),
extreme thermophiles (growth optimum, 60–80◦C), and
hyperthermophiles (growth optimum, 80–110◦C) (Gupta
et al., 2014). The natural habitats of the thermophiles include
continental solfataras, deep geothermally heated oil-containing
stratifications, shallow marine, and deep-sea hot sediments,
and hydrothermal vents. The hyperthermophiles have
also been isolated from hot industrial environments. These
hyperthermophiles with the highest growth temperatures are
members of the genera Pyrobaculum, Pyrodictium, Pyrococcus,
and Melanopyrus belonging to Archaea. However, the isolation
and growth of pure cultures of novel hyperthermophiles has
been a challenge, which mostly remains unculturable, and may
be assessed using metagenomics and next-generation sequencing
technologies (López-López et al., 2013).

The present study was taken to analyze the taxonomical
and functional diversity of the microbiome of two alkaline
hot-springs with idea to analyze the genetic pool of thermophilic
microorganisms as a source of industrially important enzymes.
This research describes the insights of their microbial
diversity, including strategies followed by enzyme screening
and quantifications.
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MATERIALS AND METHODS

Collection of Samples
Water samples were collected from the Choti and Badi Anhoni
Hot Springs (22.65◦N latitude and 78.36◦E longitude) situated
in Panchmari, Madhya Pradesh (India). Physiological parameters
of water samples were measured on-site using HANNA HI2300
EC/TDS/NaCl multi-probe system according to the manual. The
sample of Choti Anhoni and Badi Anhoni are designated as
Hotspring 1 and Hotspring 2, respectively.

Isolation and Characterization of
Thermophilic Bacteria
The thermophilic bacteria from the water samples were isolated
according to methods described by Adiguzel et al. (2009),
through the serial dilution method. Thermophilic bacteria were
isolated and cultured on Nutrient agar plates, the pH of
the medium was adjusted to 7.0 before autoclaving and then
incubated at 45◦C for 24–48 h (Sikdar et al., 2015). Isolation of
pure cultures was done using the streak plate method and the
cultures were stored for enzyme screening analysis.

The selected bacterial isolates (positive for all the enzyme
activity, as tested) were subjected to identification based on
16S rDNA gene sequencing. DNA isolated from the bacterial
isolates was directly used for PCR amplification of 16S rRNA
gene using 1492R (5′CGGTTACCTTGTTACGACTT3′) and 27F
(5′AGAGTTTGATCMTGGCTCAG3′) universal primers. The
sequence obtains after sequencing were used for the in silico
study to obtain the highest similarity using online web server
nucleotide BLASTN based on the BLAST alignment.

Analysis of Extracellular Enzymes
The isolates were analyzed for different extracellular enzymes
of industrial importance like protease, lipase, amylase, xylanase,
cellulase, pectinase, lecithinase, and gelatinase. The screening
for protease activity was performed as described (Bragger et al.,
1989), on skim milk agar containing 8 g/L nutrient broth, 10 g/L
skim milk, and 17 g/L agar, then incubated for 36 h at 45◦C. The
presence of protease activity was confirmed by the appearance of
clear zones around the well indicating degradation of caseinmilk.

The lipase activity of the isolates was performed according
to the method described by Haba et al. (2000), on a medium
containing 8 g/L nutrient broth, 0.25 g/L CaCl2.2H2O, 9 g/L
agar dissolved in 500mL deionized water, and 5mL of Tween
20 dissolved in 500mL deionized water autoclaved separately
and add to the medium, then the medium with the cultures
incubated for 2 days at 45◦C. Clear zones that occur around the
colonies indicated the presence of lipase activity. The screening
of the amylase activity was performed as described (Bragger et al.,
1989), on a medium containing 1 g/L yeast extract, 5 g/L soluble
starch, and 17 g/L agar. Ingredients were dissolved in deionized
water and sterilized by autoclaved and incubated for 1–2 days
at 45◦C. The presence of amylase activity was confirmed by
the appearance of a clear halo around the well after the color
with iodine.

The xylanase activity was performed according to the method
described by Bragger et al. (1989), on a medium containing

1 g/L yeast extract, 5 g/L xylans, and 17 g/L agar, which was
incubated for 3–4 days at 45◦C. The activity of the xylanase
enzyme was confirmed by the appearance of a clear zone around
the tested strain following the staining with Congo Red. Similarly,
the activity of cellulase was performed according to the method
described by Bragger et al. (1989), on a medium containing 1 g/L
yeast extract, 5 g/L carboxymethyl cellulose (CMC) salt, and 17
g/L agar then incubated for 3–4 days at 45◦C. Cellulase activity
resulted in the appearance of a clear zone around the tested
strain after treatment with iodine. Identification of bacterial
isolates displaying pectinase activity was performed according to
Bragger et al. (1989), on a medium containing 1 g/L yeast extract,
2 g/L ammonium sulfate, 6 g/L Na2HPO4, 3 g/L KH2PO4,
5 g/L pectins, and 17 g/L agar. Ingredients were dissolved in
deionized water and sterilized by autoclaved at 121◦C for 15min
and incubated for 3–4 days at 45◦C. Colonies with clear zones
indicated pectinase activity.

Lecithinase production was tested on a modified medium
as described previously (Oladipo et al., 2008). Lecithinase was
detected according to the standard method (Sharaf et al., 2014),
in which 1ml of each bacterial culture, having cell density of 6
× 108 CFU/ml was inoculated into test tubes containing corn
millet broth and incubated for 24 h at 37◦C. After incubation, the
cultures were centrifuged at 2500 rpm for 15min to obtain a cell-
free filtrate, and 100 µl of the filtrate was transferred into 10-mm
wells made centrally in the egg-yolk agar plates and incubated
for 24 h at 37◦C. Opaque zones were measured as indicators of
lecithinase production. Gelatinase production was detected by
stab inoculating the test strain on nutrient agar supplemented
with 3% gelatin kept at 37◦C for 24 h followed by refrigeration at
4◦C for 30min. Liquefaction of gelatin was taken positive (Betty
et al., 2007).

Quantitative Estimation of Enzyme
Activities
The isolates positive for all the tested enzymatic production
were further analyzed for the quantitative estimation of enzyme
activities at ambient temperatures and pH (of respective site,
as described in Table 2) i.e., 55/65◦C and 8.5/9.5, respectively.
To determine the cellulase activity, colorimetric assay by DNS
(Dinitro salicylic acid) method was used (Miller, xbib1995).
Samples were subjected to incubation for 30min with CMC
(Carboxymethyl cellulose) as substrate followed by the addition
of DNS and boiled for 6–7min, and absorbance was taken at
540 nm. Similarly for amylase activity, 1ml of enzyme solution
was incubated with substrate solution, containing 1% (w/v) (1ml)
soluble starch at 55/65◦C for 30min followed by the addition of
DNS to stop the reaction and kept at boiling water bath for 10min
(Bernfeld, 1955). Lipase enzyme activity was performed by using
1% tributyrin in basal salt media. P-Nitrophenol dodecanote
was used as a substrate to determine lipase activity. The
reaction mixture containing enzyme solution and P-Nitrophenol
dodecanote was incubated for 30min at 55/65◦C. For the
protease activity, casein is used as a substrate, and the reaction
mixture was composed of 2.5ml of the substrate and 1ml
cell-free extract enzyme solution followed by the incubation
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TABLE 1 | Physicochemical analysis on water sample.

Sample Temperature

(area) ◦C

Temperature

(sample)
◦C

pH Humidity

%

Electrical

Conductivity

ms

Turbidity

NTU

DO

mg/L

BOD

mg/ml

COD

mg/L

TDS

(ppm)

NaCl

Conc

Hot Spring 1 25.4 50-55 8.5 34 791 7.12 9 187 389 412 0.02

Hot Spring 2 33.2 60-65 9.5 58 827 5.96 17.1 120 1144 376 0.02

at 55/65◦C for 30min. Trichloroacetic acid is used for the
termination of the reaction. Gelatinase activity was measured by
using gelatin as a substrate, where 0.2ml of 50% Trichloroacetic
acid was used to terminate the reaction. The Lecithinase activity
was performed on 10ml 50% egg yolk in basal salt media.
The activity was measured by using the method described
by McLaughlin and (McLaughlin and Weiss, 1996). All the
observations were recorded by taking absorbance at 540 nmusing
a spectrophotometer.

Microbiome Analysis of the Hot-Springs
The water samples from the hot springs were collected and
analyzed for the microbiomes through metagenome analysis of
the hypervariable V3–V4 region. The DNA was obtained from
the water samples using the Nucleospin DNA kit. The amplicon
libraries were prepared using the Nextera Index kit as per the
16S metagenomic sequencing library preparation protocol. For
this, 16S rDNA specific primers were used for bacterial V3–V4.
The libraries were sequenced onMiSeq using a 2×300 bp paired-
end manner. The amplicons with the Illumina adapters were
amplified by using i5 and i7 primers and purified by AMPureXP
beads and quantified using a Qubit fluorometer. After that, the
libraries were loaded ontoMiseq at the appropriate concentration
for cluster generation and sequencing (Kotoky and Pandey,
2020).

Quality Control was performed using the online FastQC tool
v 0.11.7. Read quality was good with an average of more than
200,000 (2 lakh) reads per sample and a read length of 300 bp.
High-quality reads were taken for further analysis. The fastq-
Join tool was used to convert the overlapping paired-end reads
into a consensus sequence of the V3–V4 region. It finds the
overlap for each pair and combines them into a single read. In the
Pre-processing step, Chimeric sequences were filtered out using
the parameter reference_chimera_detection default implemented
in the QIIME tool. OTU Picking and Taxonomic classification
were performed using the UCLUSTmethod in the QIIME. Reads
from all samples were pooled and clustered into Operational
Taxonomic Unit (OTU) based sequence similarity of >=97%
with help of UCLUST method with reference to green gene
database. Finally, 485 OTUs were identified at the species level.

After sequencing the paired-end sequences were analyzed
as described by Kotoky and Pandey (2020). The Quantitative
Insights into Microbial Ecology (QIIME2, version 2019.7) was
used for the analysis of the samples (Bolyen et al., 2019).
Sequences were clustered into operational taxonomic units
(OTUs) using the Uclust algorithm at 97% sequence similarity
(Edgar, 2010). The taxonomies were assigned to the OTUs by

aligning the reads against the Greengenes Database (version
13_8) (McDonald et al., 2012) based on a threshold of 97%
sequence similarity. The functional metagenomic profile and
metagenomic content of the samples were predicted from the 16S
rRNA profiles, and KEGG pathway functions were categorized
at level 3 using the phylogenetic investigation of communities
by reconstruction of unobserved states (PICRUSt) tool (Langille
et al., 2013) and visualized using STAMP (Software package for
analyzing taxonomic or metabolic profiles) tool.

Statistical Analysis
Weighted and unweighted UniFrac distances analysis of the
samples was done from the normalized OTU table. Alpha-
Diversity values of the samples were calculated by the function
using the Shannon method in QIIME2 and R to obtain the
observed faith-pd, Shannon entropy, observed features, and
pielou-evenness (Kotoky and Pandey, 2020).

RESULTS

Physicochemical Analysis of the Samples
The physicochemical parameters of water samples are mentioned
in Table 1. The temperature of the sample Hot-spring2 was
comparatively higher, but its turbidity was lesser than Hot-
spring1. The pH was recorded higher with temperature range,
variable conductivity, and salinity. Dissolved oxygen (DO),
Biological oxygen demand (BOD), and chemical oxygen demand
(COD) were measured to understand the level of oxygen
concentration. Both samples Hot-spring1 and Hot-spring2 had
shown BOD in the normal range but the COD of sample
Hot-spring2 was found to be much higher than Hot-spring1
demonstrating the presence of more organics in the water. The
Total Dissolved Solids (TDS) was also under the good range for
both the samples. The hot springs were chosen for the study due
to their different conditions of pH and temperature. Both the hot
springs were found to be alkaline but with different temperatures
(55 and 65◦C). The sample Hot-spring2 had a relatively high
concentration of salts than Hot-spring1.

Isolation of Thermophiles and Analysis of
the Activity of Enzymes
From the two hot spring samples, 28 thermophilic bacterial
isolates were isolated. The isolated bacterial strains were
analyzed for the production of different industrial enzymes
such as protease, lipase, amylase, cellulase, pectinase, xylanase,
gelatinase, and lecithinase. From the isolates, seven isolates,
including–CAP1, CAP3, CAP7, BAC18, BAC23, BAC26,
BAC28 showed excellent potential for enzyme production.
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FIGURE 1 | Evolutionary analysis by Maximum Likelihood method. The evolutionary history was inferred by using the Maximum Likelihood method and Tamura-Nei

model (Tamura and Nei, 1993). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. Evolutionary analyses were

conducted in MEGA X (Kumar et al., 2018).

TABLE 2 | Production of enzyme at ambient temperature (Topt) and pH (pHopt).

Isolates Topt
◦C pHopt Amylase

U ml−1

Lipase

U ml−1

Cellulase

U ml−1

Protease

U ml−1

Lecithinase

U ml−1

Gelatinase

U ml−1

Bacillus licheniformis CAP1 55 8.5 59.83 43.07 60.11 62.14 27.15 26.23

Bacillus licheniformis CAP3 55 8.5 61.26 36.10 39.26 36.28 31.19 28.21

Alkalihalobacillus clausii CAP7 55 8.5 61.19 44.23 43.28 53.12 28.54 33.23

Bacillus subtilis BAC18 65 9.5 58.17 47.36 51.18 31.15 33.33 35.71

Alkalihalobacillus clausii BAC23 65 9.5 55.23 51.25 38.20 42.18 37.39 41.26

Bacillus haynesii BAC26 65 9.5 51.85 33.09 48.51 51.67 28.19 51.23

Bacillus subtilis BAC28 65 9.5 49.87 38.67 51.19 45.83 29.24 24.18

Twenty-three isolates (82%) produced protease, 27 isolates
(96%) produced lipase, 27 isolates produced amylase, 26 isolates
(92%) produced cellulase, 19 isolates (67%) produced pectinase,
13 isolates (46%) produce gelatinase and 19 isolates (67%)
could produce lecithinase. The study showed, all isolated
thermophilic bacteria showed enzyme activities for at least
three enzymes.

The selected bacterial isolates were characterized and
identified as Bacillus licheniformis CAP1, Bacillus licheniformis
CAP3, Alkalihalobacillus clausii CAP7, Bacillus subtilis BAC18,
Alkalihalobacillus clausii BAC23, Bacillus haynesii BAC26, and
Bacillus subtilis BAC28. The phylogenetic analysis of the isolates
placed the organisms in at distinct branches of the dendogram
(Figure 1). The quantitative analysis of the enzymes revealed
that B. licheniformis CAP1 produces the highest amount of

protease (62.14 U/ml) at given ambient temperature and pH,
also showed good production of cellulase and amylase, 60.11
U/ml and 59.83 U/ml, respectively. Cellulase activity was also
found to be maximum for isolate CAP1. Bacillus licheniformis
CAP3 produced the highest amount of amylase (61.26 U/ml) and
Alkalihalobacillus clausii BAC23 produced the highest activity
of lipase (51.25 U/ml). The activity of lecithinase was found
to be less than other enzymes and was in the range of 27–
37 U/ml. Gelatinase activity was observed highest in Bacillus
haynesii BAC26 (51.23 U/ml) while other isolates showed less
production of the enzyme at given ambient temperature and
pH. Conclusively, all the seven isolates were observed in amylase
production ranges from 49 to 61 U/ml, lipase in the range 33–51
U/ml, cellulase in the range 38–60 U/ml, protease in 31–62 U/ml,
and gelatinase 24–51 U/ml (Table 2).
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FIGURE 2 | Distribution of different taxa in the hot-spring samples analyzed at

phylum level.

Composition of Microbial Community
The taxonomic analysis of the microbiome of the hot springs
showed a predominance of bacteria and relatively very less
proportion of archaea. In both the samples, the phylum
Proteobacteria was found to be more abundant as plotted
(Figure 2) however, the abundance of proteobacteria in hot-
spring 1 (∼88% of total abundance) wasmore than the hot-spring
2 (∼52%). The phylum Bacteroides was found to be the second
most abundant group (∼10–22%) in the hot-springs but very

TABLE 3 | Alpha-diversity indices of the samples.

Samples faith_pd shannon_entropy pielou_evenness

Hot-spring 1 72.33 4 0.44

Hot-spring 2 48.78 5.24 0.65

TABLE 4 | Alpha-diversity of the microbiome of the hot-springs of different part of

world.

Sample

origin

Temperature
◦C

pH Number of

distinct species

References

China 65 7 457.73 Menzel et al., 2015

Colombia 29 2.7 467.61 Jiménez et al., 2012

Iceland 85–90 5 196.14 MGRAST ID:

mgm4530143.3

Italy 76 3 86.12 MGRAST ID:

mgm4529716.3

Russia 61–64 5.8–6 615.97 MGRAST ID:

4544453.3

Spain 76 8.2 330.87 Lopez-Lopez et al.,

2015

India 55–65 8.5–9.5 410.5 This study

different from each other. The other phyla with more abundance
were Spirocheates, Firmicutes, Chloroflexi, etc.

The analysis at the genus level showed a very high abundance
of an unknown genus from family commamonadaceae in both
samples. The alpha-diversity analysis was done on the processed
data and the faith_pd, shannon_entropy, and pielou_evenness
of the samples have been calculated. The analysis showed
that the hot-spring 1 was more diverse and had diversity
richness (Table 3). The observed diversity in the microbiome was
then compared with the alpha-diversity of different hot-spring
samples of a different part of the world (Table 4). Which showed
that the pH and geographical location of the hot-springs play a
very crucial role in shaping their microbial diversity.

Functional Analysis of the Microbiome of
the Hot Springs
The functional analysis of the microbiome revealed different
features related to several functions categorized at different
KEGG (Kyoto Encyclopedia of Genes and Genomes) level
annotations. KEGG system analysis at level 1, significant
differences in the abundance of genes for the different
subsystems between the two samples. In hot-spring 1 the
attributes related to cellular processes and environmental
information processing were found to be significantly higher
than hot-spring 2. However, the hot-spring 2 sample had
greater attributes for genetic information, metabolism, and
human diseases. The most of predicted protein sequences were
associated with different functions related to metabolism (48–
52%), environmental information processing (13–18%), genetic
information processing (12–16%), and cellular processes (2–4%).

The functional prediction and annotation of the microbiomes
at KEGG level 2, revealed a predominance of genes belonging
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to carbohydrate metabolism, amino acid metabolism, and
membrane transport. The clustering of the attributes was done
using the UPGMA method with a threshold of 0.75, which
clustered the similar abundant attributes in both samples.

The functional prediction and annotation of the microbiomes
at KEGG level 3 annotated the sequences into 279 active features
that showed variation in abundance between the samples. From
the active features, 39 features were selected for analysis related to
carbohydrate, protein, and fat metabolism and attributes related
to the degradation of xenobiotic compounds. The functional
analysis showed hot-spring 1 as more diverse functionally and
have more abundance of attributes related to ABC transporters,
amino acid metabolism, and genes for degradation of xenobiotic
compound degradation. However, hot-spring 2 showed more
abundance genes of metabolism of carbohydrates, lipids, and
proteins, showing a greater abundance of functions related
to industrial enzymes (Figure 3). The abundance of pathways
related to ABC transporter (ko02010), bacterial motility proteins
(ko02030), benzoate degradation (ko00362), starch and sucrose
metabolism (ko00500), beta alanine metabolism (ko00410) were
found to be significantly different between the two samples. On
the other hand, the KEGG pathways related to calcium signaling
pathway (ko04020), lipid biosynthesis process (ko00061), glycan
biosynthesis (ko00510) etc. were found to be significantly low in
abundance and less diverse between the samples.

Data Availability
The metagenomic sequences of the samples were deposited in
NCBI, at Sequence Read Archive (SRA) under the accession
number SRP13358614 and SRP13358615; Bioproject ID
PRJNA688206 and BioSample ID- SAMN17170341 (Hot-spring
1) and SAMN17170342 (Hot-spring 2). The 16s rDNA sequences
of the selected bacterial isolates were submitted to NCBI
Genbank under the accession numbers MW527298 (Bacillus
licheniformis CAP1), MW527299 (Alkalihalobacillus clausii
CAP7), MW527300 (Bacillus subtilis BAC18), MW527301
(Bacillus licheniformis CAP3), MW527302 (Alkalihalobacillus
clausii BAC23), MW527303 (Bacillus haynesii BAC26), and
MW527304 (Bacillus subtilis BAC28).

DISCUSSION

The hot springs are considered to be the source of untapped
microbial diversity, that are a source of enzymes of industrial
importance. Therefore, the microbial diversity of two hot
springs has been characterized and the functional roles of the
microbiome were predicted using the metagenomics approach.
Further, seven potential isolates were cultured and found
efficient for industrially potential enzymes, active at high
temperatures. Several studies of hot spring environments have
focused on the relationship between microbial communities and
different environmental factors especially temperature, which
is believed to be the main factor that drives the community
structure (Skirnisdottir et al., 2000). However, different other
factors like available organic carbon, total dissolved solids, salt
concentration also play a crucial role in shaping the microbial
community structure as the microbial diversity do not have a

monotonic relationship with temperature, where different other
environmental or spatial factors may also be responsible for
determining the microbial community (Purcell et al., 2007).
It has been reported that the microbial community structures
were different in the low- and high-sulfide hot spring mats
with the same temperature (Skirnisdottir et al., 2000). Moreover,
the hyperthermophilic archaeal communities are different in
various hot springs. Therefore, the environmental and spatial
variables play an important role in shaping microbial community
compositions in natural ecosystems (Zhang et al., 2018). Power
et al. (2018) and Uribe-Lorio et al. (2019) have reported that pH
has a strong influence on the microbial community structure,
where the influence of temperature was significant only at values
above 70◦C. Purcell et al. (2007) also reported that the high
temperature (75–90◦C) and alkaline pH (7.5–9) were the most
influencing factors shaping the microbial community of the hot
springs of Thailand.

Hot springs are the main source of microbial diversity to
find industrially important enzymes (Sahay et al., 2017). The
thermostable enzymes are stable and active even at temperatures
higher than the optimal growth temperature showing potential
for numerous industrial applications. Moreover, these enzymes
have been reported to be more stable also against many solvents,
detergents, and acidic and alkaline pH (Bhalla et al., 2013).
Mohammad et al. (2017) also reported 10 thermophilic bacteria
isolated from Jordanian Hot-spring could produce a wide
range of thermostable enzymes leading to potential applications
of the bio catalyzed processes in harsh conditions. Different
thermostable bacterial enzymes like α-amylase, protease, and
lipase have been used extensively in industrial processes. These
thermophilic and hyperthermophilic enzymes are part of the
enzyme category called extremozymes, which involve functions
at extreme conditions like high salt levels, high alkaline
conditions, or under extreme conditions of pressure or acidity
(Vieille and Zeikus, 2001). The stability of the enzymes depends
on the thermodynamic and kinetic stabilities. In the present
study, the activity of the enzymes at ambient temperature was
found to be high and have very good potential to be used
for production.

The culture depended analysis of the bacterial population
of the hot springs led to the isolation of 28 bacterial isolates
that showed good enzyme activity of industrial importance.
From the isolates, seven isolates were identified as having all
the enzyme activity and were from phyla firmicutes. However,
a culture-independent analysis of the microbiome of the hot-
springs showed many unidentified classes and families, which are
still left to be investigated. The taxonomic identification of the
microbiome was done using Greengene classifier revealing many
known and unknown bacterial taxa, and proteobacteria as most
abundant. Different other studies also reported proteobacteria
as dominant taxa in the hot springs with moderately high
and very high temperatures (44–110◦C) at various geographical
locations, including India (Chan et al., 2015; Ghelani et al., 2015).
Different earlier studies have suggested a decrease in diversity
of the microbial community with increasing environmental
temperature (Mathur et al., 2010; Valverde et al., 2012).
Interestingly, the taxonomical analysis showed the hot springs
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FIGURE 3 | Variation in abundance of selected attributes between the hot-spring samples annotated at KEGG level 3.
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has a diverse and different pattern of abundance although
both have different temperature, pH, and the influx of organic
material. Thus, it can be assumed that the community structure
is largely determined by a combination of environmental
parameters, rather than geographical distance.

The taxonomic and functional study of the microbial ecology
in the hot-springs showed the influence of environmental
factors like temperature, pH on the microbiome that boost
the metabolism pattern and enhance the stress biology. The
microbiome contains the functional groups that perform various
metabolic functions. The metabolism of methane was found to
be higher in hot-spring 2 with higher pH and temperature.
The presence of a large number of phylogenetically diverse,
metabolically divergent groups indicates a balanced complex
community, where each group occupies its environmental niche.
The temperature of the hot-springs was found to be in the range
of 55–65◦C, different from each other. However, several studies
reported that the temperature is not a unique determinant of
microbial diversity and its function in the hot springs (Huang
et al., 2011; Wang et al., 2013). Importantly, the pH of the
springs was found in the range of moderate alkaline (8.5–
9.5). The higher pH ranges have been reported to significantly
impact the biodiversity of certain biological niches leading to the
association of different adapted microbial groups. As reported
by Tyson et al. (2004), the acidic pH of mine drainage site
in Iron Mountain, California, USA (pH 0.83, 42◦C) led to
the selection of a very simple community dominated by an
extremophilic Leptospirillum and Ferroplasma. At alkaline pH
range also, the effect is reported to be similar. Therefore, the
microbiome of hot-spring 2 (pH 9.5) in the present study was
found less diverse than hot-spring 1 (pH 8.5). It has been reported
that alkaline hot springs with a lower temperature below 73◦C
are typically dominated by cyanobacteria (Pedersen and Miller,
2016). However, in contrast to that, the hot-springs of the present
study the cyanobacteria phylumwas not on the higher abundance
side, instead, the phylum spirochaetes were found to be very high
in abundance in the sample Hot-spring 2 which was not that
abundant in sample Hot-spring 1. Therefore, the effect of pH also
playing a very crucial role inmicrobiome function and taxonomy,
where the effects are both direct and indirect.

Several previous studies have reported different type of
microbial structure in alkaline hot springs. Lopez-Lopez et al.
(2015) described the bacterial phyla Deinococcus-Thermus as
the most dominant in a alkaline Hot Spring in Galicia (Spain),
followed by Proteobacteria (13%), and Firmicutes (10%). The
archaea phylum Thaumarchaeota (6%) was found to be most
abundant. Similarly, other studies also reported high occurrence
of Thaumarchaeota in the archaeal fraction in alkaline springs
from Kamchatka and China (Huang et al., 2011; Wemheuer
et al., 2013). Menzel et al. (2015) reported that relative abundance
of Archaea in hot springs is higher in low pH and high
temperature environments. However, in the present study, at

higher pH and temperatures very low abundance of archaea
was observed. Interestingly, it has been reported that the most
common substrate in alkaline hot-spring is hydrogen and sulfur
(Horikoshi, 1999). These alkaliphilic microbes have adapted to
such conditions through different mechanisms including the
presence of cytoplasmic polyamines with charged amino acids.
In Bacillus spp., in addition to peptidoglycan, there are acidic
compounds such as galacturonic acid, gluconic acid, glutamic
acid, aspartic acid, and phosphoric acid that act as buffers to the
alkaline environment, allowing uptake of hydronium ions and
exclusion of hydroxide ions (Horikoshi, 1999).

CONCLUSION

The culture-dependent analysis of the water samples of the hot-
springs led to the isolation of several bacterial strains having
good enzymatic activities with significant industrial importance.
The culture-independent analysis showed that the taxonomical
and functional diversity of the hot springs were distinct and
is possibly shaped by temperature, pH, and organic materials.
The study showed the presence of different unassigned bacterial
taxa with great abundance which indicates the potential of
novel genera or phylotypes. Different taxa were found to be
more prominent in higher temperature than others and it was
observed that multiple factors like pH, salinity also play a great
role in shaping a microbiome. The functional analysis of the
microbiomes revealed that most of the genes are associated with
functions related to metabolism and environmental information
processing. The analysis showed the presence of metabolic and
biosynthesis pathways of different primary substrates including
carbohydrates, fats, proteins etc. which display its industrial
importance. The microbiome study showed that the hotspring 1
with low temperature and pH was more diverse taxonomically
and functionally.
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Humanity has seen numerous pandemics during its course of evolution. The list includes
several incidents from the past, such as measles, Ebola, severe acute respiratory
syndrome (SARS), and Middle East respiratory syndrome (MERS), etc. The latest edition
to this is coronavirus disease 2019 (COVID-19), caused by the novel coronavirus,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of August 18, 2020,
COVID-19 has affected over 21 million people from 180 + countries with 0.7 million
deaths across the globe. Genomic technologies have enabled us to understand the
genomic constitution of pathogens, their virulence, evolution, and rate of mutation, etc.
To date, more than 83,000 viral genomes have been deposited in public repositories,
such as GISAID and NCBI. While we are writing this, India is the third most affected
country by COVID-19, with 2.7 million cases and > 53,000 deaths. Gujarat is the
11th highest affected state with a 3.48% death rate compared to the national average
of 1.91%. In this study, a total of 502 SARS-CoV-2 genomes from Gujarat were
sequenced and analyzed to understand its phylogenetic distribution and variants against
global and national sequences. Further variants were analyzed from diseased and
recovered patients from Gujarat and the world to understand its role in pathogenesis.
Among the missense mutations present in the Gujarat SARS-CoV-2 genomes, C28854T
(Ser194Leu) had an allele frequency of 47.62 and 7.25% in deceased patients from
the Gujarat and global datasets, respectively. In contrast, the allele frequency of 35.16
and 3.20% was observed in recovered patients from the Gujarat and global datasets,
respectively. It is a deleterious mutation present in the nucleocapsid (N) gene and is
significantly associated with mortality in Gujarat patients with a p-value of 0.067 and in
the global dataset with a p-value of 0.000924. The other deleterious variant identified in
deceased patients from Gujarat (p-value of 0.355) and the world (p-value of 2.43E-06)
is G25563T, which is located in Orf3a and plays a potential role in viral pathogenesis.
SARS-CoV-2 genomes from Gujarat are forming distinct clusters under the GH clade of
GISAID. This study will shed light on the viral haplotype in SARS-CoV-2 samples from
Gujarat, India.

Keywords: genomic surveillance, mutation analysis, SARS-CoV-2 (2019-nCoV), COVID-19, viral epidemiology,
haplotyping
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INTRODUCTION

As per the recent situation report-209 released by the World
Health Organisation (WHO), as accessed on August 18, 2020,
the total confirmed positive cases of COVID-19 across the globe
are 21,294,845 resulting in 761,779 deaths. In many countries,
such as China, Spain, Australia, Japan, South Korea, and the
United States, the second wave of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infections has started
(Evenett and Winters, 2020; Leung et al., 2020; Strzelecki, 2020;
Xu and Li, 2020). India is the third most affected country by
coronavirus disease 2019 (COVID-19) after the United States
and Brazil, with 2,771,958 cases and 53,046 deaths, respectively.
Gujarat is located in the western part of India. It is the 11th
highest affected state in India, with 80,942 cases and 2,820 deaths
as per the https://www.covid19india.org/. However, the death
rate in the state of Gujarat is 3.48% with a recovery rate of 78.83%,
which is 5% higher than the existing recovery rate in India.
Therefore, understanding the pathogen evolution and virulence
through genome sequencing will be key to understanding its
diversity, variation, and its effect on pathogenesis and disease
severity. Global repositories, such as the GISAID and NCBI
databases, are flooded with SARS-CoV-2 genomes with an
average of 381 genomes per day being added from across the
globe. SARS-CoV-2 genome size is 29–30.6 kb. The genome
includes 10 genes that encode 4 structural and 16 non-structural
proteins (NSPs). Structural proteins are encoded by the four
structural genes, including spike (S), envelope (E), membrane
(M), and nucleocapsid (N) genes. The ORF1ab is the largest gene
in SARS-CoV-2, which encodes the pp1ab protein and 15 NSPs.
The ORF1a gene encodes for pp1a protein, which also contains
10 NSPs (Du et al., 2009; Shereen et al., 2020).

In the present study, the whole genome of 502 SARS-CoV-
2 from Gujarat has been sequenced and analyzed against 2,121
SARS-CoV-2 genomes across the globe with known patient
status. The overall dataset comprises 361 confirmed positive
COVID-19 patients, which included 122 female and 239 male
patients from Gujarat, India. Furthermore, a total of 502 viral
genomes were sequenced from 361 samples based on the
dominant and recessive allelic frequencies. These genomes were
studied against a total of 79,518 complete viral genome sequences
as accessed on August 18, 2020 to characterize their clades
and variant distribution. Further statistical tools were applied
to understand the differences in the variants with respect to
disease epidemiology. In the absence of clinically approved
drugs and other possible therapies in treating COVID-19,
tracking pathogen evolution through whole genome sequencing
is instrumental in understanding the progression of the pandemic
locally as well as globally. This will further help in devising better
strategies for vaccine development, identifying potential drug
targets, and understanding host–pathogen interactions.

MATERIALS AND METHODS

Sample Collection and Processing
Nasopharyngeal and oropharyngeal swabs from a total of
361 individuals who tested positive for COVID-19 from 46

locations representing 20 districts of Gujarat were collected after
obtaining informed consent and appropriate ethics approval.
The numbers of samples from these locations were selected
on the basis of disease spread and incidence rate in Gujarat.
The details of samples collected from each location are
shown in Supplementary Table 1. Samples were transported
as per standard operating procedures as prescribed by the
World Health Organisation (WHO) and Indian Council of
Medical Research (ICMR, New Delhi; SoP No. ICMR-NIV/2019-
nCoV/Specimens_01) to a research laboratory and further stored
at−20◦C till processed.

Whole Genome Sequencing of
SARS-CoV-2
Total genomic RNA from the samples was isolated using the
QIAamp Viral RNA Mini Kit (Cat. No. 52904; Qiagen, Germany)
following the prescribed biosafety procedure. cDNA from the
extracted RNA was made using the SuperScriptTM III Reverse
Transcriptase first strand kit (Cat. No. 18080093; Thermo Fisher
Scientific, United States) as per the procedures prescribed. SARS-
CoV-2 genome was amplified by using the Ion AmpliSeq SARS-
CoV-2 Research Panel (Thermo Fisher Scientific, United States)
that consists of two pools with amplicons ranging from 125 to
275 bp in length and covering >99% of the SARS-CoV-2 genome,
including all serotypes. Amplicon libraries were prepared using
the Ion AmpliSeqTM Library Kit Plus (Cat. No. A35907; Thermo
Fisher Scientific, United States). These libraries were quantified
using the Ion Library TaqManTM Quantitation Kit (Cat. No.
4468802; Thermo Fisher Scientific, United States). The quality
of the library was checked using the DNA high sensitivity assay
kit on Bio-analyser 2100 (Agilent Technologies, United States)
and was sequenced on the Ion S5 Plus sequencing platform
using a 530 chip.

Raw Data Quality Assessment and
Filtering
The quality of data was assessed using the FASTQC v. 0.11.5
(Andrews, 2010) toolkit. All raw data sequences were processed
using the PRINSEQ-lite v.0.20.4 (Schmieder and Edwards, 2011)
program for filtering the data. All sequences were trimmed from
the right to where the average quality of 5 bp window was lower
than QV25, 5 bp from the left end was trimmed, and sequences
with length lower than 50 bp and sequences with average quality
QV25 were removed.

Genome Assembly, Variant Calling, and
Global Dataset
Quality filtered data were assembled using reference-based
mapping with CLC Genomics Workbench 12. Mapping was done
using stringent parameters with a length fraction of 0.99 and
a similarity fraction of 0.9. Mapping tracks were used to call
and annotate variants. Variants were called using Ion Torrent
variant caller with a minimum allele frequency of 30% with
a minimum coverage of 10 reads considered. For comparative
analysis with the global dataset, 79,518 complete viral genomes
and 1,821 viral genome isolates from India were downloaded
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from the GISAID flu server1. Considering haplotypes (a, b) based
on allelic frequency, a total of 502 genomes were sequenced from
a total of 361 patients as mentioned in Supplementary Table 2.

Phylogenetic Analysis
A total of 502 SARS-CoV-2 whole genomes were sequenced
and analyzed for their phylogenetic distribution at different
locations from Gujarat. The reference genome, Wuhan/Hu-
1/2019 (EPI_ISL_402125), sampled on December 31, 2019, from
Wuhan, China was downloaded from the GISAID flu server.
Additionally, three viral genomes from the seafood market
from Wuhan, China were included in the phylogenetic analysis
(EPI_ISL_406798, EPI_ISL_402124, and EPI_ISL_406801). The
multiple sequence alignment was performed using MAFFT
(Katoh and Standley, 2013) implemented via a phylodynamic
analysis pipeline provided by Augur2. The subsequent alignment
output files were checked, visualized, and verified using
PhyloSuite (Zhang et al., 2020). Afterward, the maximum
likelihood phylogenetic tree was built using the Augur tree
implementation pipeline with the IQ-TREE 2 (Minh et al., 2020)
with default parameters. The selected metadata information
plotted in the time-resolved phylogenetic tree was constructed
using TreeTime (Sagulenko et al., 2018) and annotated and
visualized in the FigTree (Rambaut, 2018).

Statistical Analysis
The non-parametric chi-square test of significance was used to
check the difference of variables, such as the effect on age, gender,
and mutations on mortality for the Gujarat, India, and global
datasets for the deceased versus recovered patients.

RESULTS

Samples were collected based on COVID-19 incidence rate across
Gujarat from 16 different originating laboratories representing
46 different geographical locations from 20 districts of Gujarat,
India as mentioned in Supplementary Table 1. The geographical
distributions of the top three locations of viral isolates are
represented by Ahmedabad (n = 172), Vadodara (n = 92),
and Surat (n = 86), respectively. A total of 502 viral genomes
from 361 patients have been sequenced in the study from
which 122 were from females, whereas 239 were from males.
These patients were from 1 to 86 years old group with an
average age of 47.91 years. Most of the COVID-19 positive
patients had symptoms of fever, diarrhea, cough, and breathing
problems, whereas some of them had comorbid conditions,
such as hypertension, diabetes, etc. The final outcomes of these
patients were classified as deceased, recovered, hospitalized,
or unknown status for further data analysis based on the
available metadata. These details are presented in Supplementary
Table 2. Chi-square test was performed to test the effect of
gender and age group for the Gujarat and global datasets. The
female patients (at p-value of 2.7E-08) in the Gujarat dataset

1https://www.gisaid.org/
2https://github.com/nextstrain/augur

were observed to be at a significantly higher death rate than
those in the global dataset in deceased and recovered patients.
The genomic dataset was further divided into different age
groups of up to 40, 41–60, and over 60 years. The results
indicated a significantly higher mortality rate at the age groups
of 41–60 (at p-value of 0.03783) and over 60 years in the
Gujarat dataset (at p-value of 0.2084) than at the age groups
in the global dataset. Life expectancy in India is 68.7 years
as per the National Health Profile 2019 report released by
the Central Bureau of Health Intelligence (CBHI), Ministry of
Health and Family Welfare, Government of India. The mutation
frequency profile of the Gujarat genome with the mutation
spectrum is highlighted in Figure 1 including synonymous and
missense mutations.

Genome Sequencing and Haplotyping
Out of 361 patients, 141 had mixed infections. Mixed infections
were judged by the frequency of heterozygous mutations. The
heterozygous mutation was considered only if it was supported
by forward and reverse reads of an amplicon. Genomes were
observed for heterozygous allele frequencies and were manually
divided into two genomes. As a result, from 141 patients, a total
of 282 viral genomes were classified as two different haplotypes
and annotated with suffixes “a” and “b.” All major alleles having
read frequency ranging from 60 to 80% were included in the “a”
haplotype, whereas minor alleles having read frequency ranging
from 20 to 40% were included in the “b” haplotype as provided in
Supplementary Table 2.

Phylogenetic Analysis
Phylogenetic analysis of 502 genomes was done as per the
definitions of the PANGOLIN lineage and GISAID clades.
The overall lineages distribution highlighted the dominant
occurrence of B.1.36 (n = 214), B.1 (n = 182), A (n = 18), B.6
(n = 12), B.1.1 (n = 9), and B (n = 4), whereas clade distribution
highlighted the dominant prevalence of GH (n = 278), G
(n = 180), O (n = 18), S (n = 18), GR (n = 7), and L
(n = 1) as mentioned in Supplementary Table 3. While none
of the genomes from Gujarat belonged to clade V, in the
global perspective, the distribution of the GISAID clades as of
18th August 2020 from viral genome sequences indicates the
dominance of GR clade (32.14%), G clade (23.72%), GH clade
(22.66%), S clade (6.73%), L clade (5.13%), V clade (6.17%),
and O clade (3.45%). The maximum likelihood time-resolved
phylogeny tree in Figure 2 was constructed using the TreeTime
pipeline and Augur bioinformatics pipeline and annotated and
visualized in the FigTree (Hadfield et al., 2018; Rambaut, 2018;
Mercatelli and Giorgi, 2020). Similarly, genomes classified into
GISAID clades across the globe and Gujarat are highlighted in
Figure 3.

Comparative Analysis of Mutation Profile
in SARS-CoV-2 Genomes
To understand the significance of the mutations in the
SARS-CoV-2 genome isolates from the Gujarat, India, and
global dataset, we have analyzed and compared the mutation
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FIGURE 1 | Mutation spectrum profile of 502 SARS-CoV-2 genomes from 46 locations representing 20 districts of Gujarat, India including synonymous and
missense mutations. The top mutations included C241T, C3037T, C14408T/Pro314Leu, C18877T, A23403G/Asp614Gly, G25563T/Gln57His, and C26735T with
frequency >55%.

profile of the 502 viral isolates from Gujarat along with
the global dataset of 79,518 viral genomes and 1,821 viral
genomes from India obtained from the GISAID server.
A total of 27,455 mutations were observed in the global
viral genome sequences (n = 79,518) of SARS-CoV-2 from
GISAID wherein 3,478 mutations were observed from viral
genomes from the Indian isolates (n = 1,821), whereas 752
mutations were observed in genomes sequenced from the Gujarat
isolates (n = 502). Out of these mutations, 111 mutations
were novel to viral isolates from the Gujarat genomes, and
1,164 were novel to the Indian genomes. The bar chart
displaying the comparative mutation analysis is represented
as Figure 4, with a frequency of >5% from the global,
Indian, and Gujarat viral genomes including missense and
synonymous mutations.

A Venn diagram represents the overall mutations shared
between viral genome sequences analyzed from the global,
Indian, and Gujarat isolates as given in Figure 5. A comparison
of the mutation profile analysis with p-value significance, Sorting
Intolerant from Tolerant (SIFT) score functional effect, frequency
>5%, and absolute count of the number of genomes with
prevalence is represented in Table 1. Further, frequencies of all
the mutations were calculated by subtracting variants of the
Gujarat genomes from the Indian and global genomes with
statistical significance.

Mutations (C241T, C3037T, A23403G, and C14408T) were
dominant with frequency (>60%) in all the genomes (Gujarat,
India, and global), whereas mutations (G11083T, C13730T,
C28311T, C6312A, C313T, C5700A, G29868A, and C23929T)

dominated (>19%) in the Indian genomes compared with
the Gujarat and global genomes. The multi-nucleotide variant
(MNV) GGG28881AAC is dominant in Indian (35.25%) and
global genomes (32.72%), but in the context of Gujarat,
it is present with a frequency of 2.19%. The mutations
G25563T, C26735T, and C18877T (>55%), followed by C2836T,
C22444T, and C28854T (>40%), followed by G21724T, C29750T,
C18568T, G4300T, and A2292C (>13%) in viral genomes were
sequenced from Gujarat. The detailed mutation frequency profile
is provided as Supplementary Table 4. With reference to
viral isolates from India, GGG28881AAC, G11083T, C28311T,
C6312A, C23929T, and C13730T were found to be occurring
at greater than 19% frequencies (p-value <0.001). Mutations
G11083T and C6312A lie in the region of Orf1a encoding
Nsp6, whereas mutation GGG28881AAC is present in the N
gene. Further, deceased versus recovered patient mutation profile
analysis of the known patient’s status dataset from Gujarat and
global is represented in Figure 6 and Supplementary Tables 5, 6.
Similarly, comparison of missense mutation profile of deceased
versus recovered patients with genome count, frequency >5%,
and p-value for the global dataset is represented in Table 2 and
for the Gujarat dataset in Table 3; additionally, metadata for
deceased and recovered patients is provided as Supplementary
Tables 7, 8. The statistical significance association of gender and
age of the deceased and recovered patients from the Gujarat
and global dataset patients in both datasets was considered for
analysis. Similarly, for age group 41–60 years, it highlighted the
higher observation of death rate in patients with known status as
given in Table 4.
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FIGURE 2 | Phylogenetic distribution of lineage from 502 SARS-CoV-2 viral genomes from Gujarat, India with reference to the Wuhan/Hu-1/2019 (EPI_ISL_402125).
Maximum likelihood phylogenetic tree was built using the Augur tree implementation pipeline with the IQ-TREE 2 with default parameters. The selected metadata
information plotted in the time-resolved phylogenetic tree was constructed using TreeTime and visualized in the FigTree.

DISCUSSION

India is a densely populated country and needs to tackle the
challenges of the COVID-19 pandemic through management
strategies and the stringent implementation of policies. The
genome sequencing efforts have been enormously useful in
understanding the pathogenic and adaptive behavior of viruses

in the Indian population. The epidemiological approach-based
method in a resource-poor setting, such as Telangana and
Andhra Pradesh states, revealed that the case-fatality ratios
spanned 0.05% at ages 5–17 years to 16.6% at ages ≥85 years
(Laxminarayan et al., 2020). Similarly, immune response, food
habits, and gut–microbiome dynamics might also play key
roles in the SARS-CoV-2 viral outbreak that should further
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FIGURE 3 | Distribution of the GISAID clades of SARS-CoV-2 genomes from global and Gujarat datasets as of 18th August 2020. The majority of the viral genomes
from Gujarat are falling under GH (n = 278) and G (n = 180) clades.

FIGURE 4 | Synonymous and missense mutation profiles of the SARS-CoV-2 viral genomes, Gujarat (n = 502), India (n = 1,821), and global (n = 79,518). Only
mutations with frequency >5% are plotted.

help in identifying host-related responses and better control
strategies (Bajaj and Purohit, 2020; Shastri et al., 2020).
Furthermore, to understand virus pathogenesis dynamics in
the populations of Gujarat, genome sequencing of the SARS-
COV-2 clinical positive samples was carried out. SARS-CoV-
2 viral genome analysis from Gujarat highlights the distinct
genomic attributes, geographical distribution, age composition,
and gender classification. These features also highlight unique
genomic patterns in terms of synonymous and missense variants
associated with the prevalence of dominant clades and lineages
with distinct geographical locations in Gujarat. Our research
study highlights the most comprehensive genomic resources
available so far from Gujarat, India. Therefore, identifying

variants specific to the deceased and recovered patients would
certainly aid in better treatment and COVID-19 containment
strategy. The fatality rate compared with different geographical
locations may point toward the higher virulence profile of certain
viral strains with lethal genetic mutations, but this remains to
be clinically unestablished. Perhaps the onset of clinical features
in symptomatic patients helps in prioritizing the diagnosis and
testing strategy.

The first case report of complete genome sequence
information from India is from a patient in Kerala with
a direct travel history to Wuhan, China. Similarly, other
isolates from India cluster with Iran, Italy, Spain, England,
United States, and Belgium, and probably similar isolates
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FIGURE 5 | Venn diagram representing the mutually common and exclusive
synonymous and missense mutations among SARS-CoV-2 viral genomes,
Gujarat (n = 502), India (n = 1,821), and global (n = 79,518).

are transmitting in India and may have variable mutation
profile (Mondal et al., 2020; Potdar et al., 2020; Yadav et al.,
2020). The dominance of a particular lineage or clade at a
particular location merely does not establish the biological
function of the virus type isolate in terms of higher death rate
but the epidemiological factors, such as clinically diagnosed
co-morbidity, age, gender, or asymptomatic transmission, that
are the most likely influencing factor in transmission. Sampling
biases could certainly influence the prediction models, but it
would narrow down to particular types of isolates and unique
mutations that can further be experimentally validated to
establish their clinical significance.

The geographical distribution of the viral isolates is denoted in
the phylogeny with the maximum SARS-CoV-2 positive samples
sequenced from Ahmedabad (n = 172), followed by Vadodara
(n = 92), Surat (n = 86), and Gandhinagar (n = 30). The
distribution of dominant lineages in Ahmedabad is steered by
occurrences of B.1.36 (n = 75), B.1 (n = 55), and B.6 (n = 2).
The concept of lineages, clades, haplotypes, or genotypes is
slightly perplexing and overlapping in terms of definitions with
respect to different repositories and analytics. Therefore, it is
most important to define mutations in the isolates that determine
their unique position in phylogeny in terms of geographical
distribution, age, gender, and locations of the genotypes, etc.
Phylogenetic distribution of the viral genomes across different
geographical locations along with metadata information should
help in the evaluation of the posterior distribution, virulence,

divergence times, and evolutionary rates in viral populations
(Drummond and Rambaut, 2007). The recurrent mutations
occurring independently multiple times in the viral genomes
are hallmarks of convergent evolution in viral genomes with
significance in host adaptability, spread, and transmission,
even though contested in terms of mechanisms driving the
pathogenicity and virulence across different hosts and specifically
to human populations across different geographical locations
(Grifoni et al., 2020; van Dorp et al., 2020).

Incidence of Mutations in Deceased and
Recovered Patients
In the context of the globally prevalent mutations across different
geographical locations, we have analyzed viral genome isolates
with the most frequent mutations present in the patients from
those who have suffered casualties. The higher death rate,
especially in Ahmedabad, India, became a cause of serious
concern and remains elusive to be identified with enough
scientific evidence. We have identified differentially dominant
and statistically significant mutations prevalent in the viral
genome isolates in Gujarat, India.

The dominant mutations in the deceased patients represented
by the change in A23403G were observed at a frequency of
98.41% in the Gujarat genomes (p-value of 0.1640) and 74.28%
in the global genomes with known patient status (p-value of
0.5223). These missense mutations are found to be observed
in the spike protein of the SARS-CoV-2 genome. The well-
known function of the viral spike protein is in mediating the
infection by interacting with the angiotensin-converting enzyme
2 (ACE2) receptor (Li et al., 2005; Chu et al., 2020; Guan et al.,
2020; Guo et al., 2020) of the human host species. Another
mutation, C14408T with a frequency of 96.83%, is present in
the Orf1b gene encoding RNA-directed RNA polymerase (RDRP)
non-structural protein (nsp12) with a p-value of 0.1440 in
deceased versus recovered patients from Gujarat, while also being
observed to be statistically significant in the global dataset with a
p-value of 8.28E-05 with a frequency of 88.77%. The comparative
analysis of the deceased patients (n = 63) and recovered patients
(n = 256) in Gujarat as highlighted in Figure 6 is represented by
a Venn diagram. In contrast, the functional role of the RDRP
enzyme activity is necessary for the viral genome replication
and transcription of most RNA viruses (Imbert et al., 2006;
Velazquez-Salinas et al., 2020). The MNV GGG28881AAC that
is a missense mutation with a change in ArgGly203LysArg in the
N gene is a deleterious mutation and is dominant in global viral
genomes with a frequency in deceased (39.45%) and recovered
patients (31.38%).

The exclusive dominant mutations present in the population
of Gujarat were G25563T and C28854T in the Orf3a and N genes,
respectively. The Orf3a gene encodes a protein involved in the
regulation of inflammation, antiviral responses, and apoptosis.
Mutation in these regions alters the functional profile of the
nuclear factor-kβ (NF-kβ) activation and nucleotide-binding
domain leucine-rich repeat containing (NLRP3) inflammasome.
One of the main features of Orf3a protein is having the
presence of a cysteine-rich domain, which participates in the
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TABLE 1 | The overall comparison of missense 478 and synonymous mutation frequency profiles of Gujarat-502, India-1821, and Global-79518 datasets.

Genome count Frequency

Gene NT position AA position Gujarat (n = 502) India (n = 1,821) Global (n = 79,518) Gujarat India Global SIFT score Functional effect p-Value

5’ UTR C241T 470 1,133 60,265 93.63 62.22 75.79 #N/A #N/A 1.23505E-58

ORF1ab C313T 10 362 1,178 1.99 19.88 1.48 0.84 Benign/tolerated 0

C1059T Thr265Ile 2 7 14,114 0.40 0.38 17.75 0.03 Deleterious 3.3988E-104

A2292C Gln676Pro 75 0 0 14.94 0.00 0.00 0.05 Deleterious 0

C2836T 209 17 21 41.63 0.93 0.03 0.17 Benign/tolerated 0

C3037T 474 1,145 61,503 94.42 62.88 77.34 0.66 Benign/tolerated 3.45605E-65

C3634T 38 78 26 7.57 4.28 0.03 0.40 Benign/tolerated 0

C4084T 34 1 35 6.77 0.05 0.04 0.72 Benign/tolerated 0

G4300T 68 1 41 13.55 0.05 0.05 0.84 Benign/tolerated 0

G4354A 0 116 0 0.00 6.37 0.00 1.00 Benign/tolerated 0

C5700A Ala1812Asp 9 348 8 1.79 19.11 0.01 0.38 Benign/tolerated 0

C6312A Thr2016Lys 12 432 882 2.39 23.72 1.11 0.03 Deleterious 0

C6573T Ser2103Phe 3 114 206 0.60 6.26 0.26 0.36 Benign/tolerated 0

C8782T 22 65 5,526 4.38 3.57 6.95 0.67 Benign/tolerated 1.08234E-08

C8917T 1 107 90 0.20 5.88 0.11 1.00 Benign/tolerated 0

G11083T Leu3606Phe 16 362 8,060 3.19 19.88 10.14 0.01 Deleterious 1.98676E-46

C13730T Ala4489Val 11 471 1,034 2.19 25.86 1.30 0.00 Deleterious 0

C14408T Pro4715Leu 447 1,110 61,641 89.04 60.96 77.52 0.31 Benign/tolerated 9.93477E-70

C14805T 0 5 6,799 0.00 0.27 8.55 1.00 Benign/tolerated 2.09768E-45

C15324T 41 73 1,588 8.17 4.01 2.00 1.00 Benign/tolerated 2.2731E-28

A16512G 53 0 13 10.56 0.00 0.02 1.00 Benign/tolerated 0

C18568T Leu6102Phe 72 1 50 14.34 0.05 0.06 0.01 Deleterious 0

C18877T 286 147 2,075 56.97 8.07 2.61 1.00 Benign/tolerated 0

C19154T Thr6297Ile 47 0 5 9.36 0.00 0.01 0.21 Benign/tolerated 0

A20268G 0 3 4,650 0.00 0.16 5.85 1.00 Benign/tolerated 1.27368E-30

S G21724T Leu54Phe 95 4 304 18.92 0.22 0.38 0.69 Benign/tolerated 0

C22444T 218 96 201 43.43 5.27 0.25 1.00 Benign/tolerated 0

A23403G Asp614Gly 472 1,142 61,751 94.02 62.71 77.66 0.30 Benign/tolerated 2.08832E-67

C23929T 12 408 858 2.39 22.41 1.08 1.00 Benign/tolerated 0

ORF3a C25528T Leu46Phe 0 110 194 0.00 6.04 0.24 0.00 Deleterious 0

G25563T Gln57His 290 147 18,045 57.77 8.07 22.69 0.00 Deleterious 1.1597E-125

G26144T Gly251Val 0 4 5,385 0.00 0.22 6.77 0.00 Deleterious 1.93496E-35

M C26735T 277 154 797 55.18 8.46 1.00 1.00 Benign/tolerated 0

ORF8 T28144C Leu84Ser 20 75 5,636 3.98 4.12 7.09 0.37 Benign/tolerated 1.70788E-07

N C28311T Pro13Leu 13 413 1,151 2.59 22.68 1.45 0.00 Deleterious 0

C28854T Ser194Leu 201 106 1,948 40.04 5.82 2.45 0.05 Deleterious 0

GGG28881AAC ArgGly203LysArg 11 642 26,021 2.19 35.25 32.72 0.00 Deleterious 5.3828E-48

3’ UTR C29750T 75 0 42 14.94 0.00 0.05 #N/A #N/A 0

G29868A 0 353 42 0.00 19.38 0.05 #N/A #N/A 0
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TABLE 2 | Comparison of missense mutation frequency in deceased 481 vs recovered patients from global dataset.

NT mutation AA mutation Global mutation count (genomes) Global frequency (%) SIFT score Functional effect p-Value

Deceased (n = 276) Recovered (n = 1,845) Deceased Recovered

C14408T Pro4715Leu 245 1,450 88.77 78.59 0.31 Benign/tolerated 8.28E-05

A23403G Asp614Gly 205 1,403 74.28 76.04 0.3 Benign/tolerated 0.522342

G25563T Gln57His 112 495 40.58 26.83 0.00 Deleterious 2.43E-06

GGG28881AAC ArgGly203LysArg 101 579 39.45 31.38 0.00 Deleterious 0.083557

C1059T Thr265Ile 23 206 8.33 11.17 0.03 Deleterious 0.157376

C28854T Ser194Leu 20 59 7.25 3.20 0.05 Deleterious 0.000924

G25088T Val1176Phe 27 5 9.78 0.27 #N/A #N/A 1.19E-33

T28144C Leu84Ser 13 148 4.71 8.02 0.37 Benign/tolerated 0.052701

T12503C Tyr4080His 0 109 0.00 5.91 0.00 Deleterious 3.38E-05

G11083T Leu3606Phe 7 94 2.54 5.09 0.01 Deleterious 0.062656

G25770T Arg126Ser 0 79 0.00 4.28 0.00 Deleterious 0.000459

TABLE 3 | Comparison of missense mutation frequency in deceased 485 vs recovered patients from Gujarat dataset.

Gujarat mutation count (genomes) Gujarat frequency (%)

NT mutation AA mutation Deceased (n = 63) Recovered (n = 256) Deceased Recovered SIFT score Functional effect p-Value

A23403G Asp614Gly 62 241 98.41 94.14 0.30 Benign/tolerated 0.164016

C14408T Pro4715Leu 61 234 96.83 91.41 0.31 Benign/tolerated 0.144062

G25563T Gln57His 39 142 61.90 55.47 0.00 Deleterious 0.355651

C28854T Ser194Leu 30 90 47.62 35.16 0.00 Deleterious 0.067355

G16078A Val5272Ile 7 10 11.11 3.91 0.00 Deleterious 0.022562

G23311T Glu583Asp 5 10 7.94 3.91 0.33 Benign/tolerated 0.175819

C23277T Thr572Ile 4 5 6.35 1.95 0.57 Benign/tolerated 0.059057

G21724T Leu54Phe 3 39 4.76 15.23 0.69 Benign/tolerated 0.027646

C18568T Leu6102Phe 2 33 3.17 12.89 0.01 Deleterious 0.027074

A2292C Gln676Pro 2 31 3.17 12.11 0.05 Deleterious 0.036972

TABLE 4 | Chi-square test analysis of the deceased and recovered 490 patients for gender and age group.

Gujarat (n = 319) Global (n = 2,121)

Deceased Recovered Deceased Recovered p-Value

Total sample 63 256 276 1,845 0.00118

Gender Male 37 178 203 1,002 0.89596

Female 26 78 73 843 2.7E-08

Age (years) 0–40 2 94 18 865 0.97648

41–60 28 115 101 675 0.03783

> 60 33 47 157 305 0.20849

enzymatic nucleophilic substitution reactions. This protein is
expressed abundantly in infected and transfected cells, which
localizes to the intracellular and plasma membranes and induces
apoptosis in transfected and infected cells (Issa et al., 2020).
This enzyme mediates the extensive proteolytic processing of
two overlapping replicase polyproteins, pp1a and pp1ab, to yield
the corresponding functional polypeptides that are essential for
coronavirus replication and transcription processes (Kohlmeier
and Woodland, 2009; Benvenuto et al., 2020). While in the case
of mutation at position C28311T leading to change of amino acid
proline to leucine, the enzyme lies in the N gene that has a role
in virion assembly and release and plays a significant role in the

formation of replication–transcription complexes (Alsaadi and
Jones, 2019; Liu, 2019; Wu et al., 2020; Yin, 2020). Similarly, the
N protein is a highly basic protein that could modulate viral RNA
synthesis (Millet and Whittaker, 2015; Hassan et al., 2020; Sarif
Hassan et al., 2020).

The SIFT scores of these mutations were determined and
also signify the functional effect change in whether an amino
acid substitution affects protein function or not in terms of the
deleterious effect or benign tolerated (Vaser et al., 2016). The
predicted SIFT score of the mutation G25563T in the Orf3a
and C28854T in the N gene was classified to be deleterious in
nature. Similarly, a comparison analysis of the global (n = 79,518),
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FIGURE 6 | Frequency of missense mutations in SARS-CoV-2 viral genome from global dataset. (A) Bar chart for global deceased versus recovered patients.
(B) Venn diagram of the global deceased versus recovered patients. (C) Bar chart for the Gujarat deceased versus recovered patients. (D) Venn diagram of the
Gujarat deceased versus recovered patients.

India (n = 1,821), and Gujarat datasets (n = 502), where the
“n” is the number of genomes included in the analysis, indicates
the overall dominance of C241T, C3037T, A23403G, C14408T,
and G25563T. Furthermore, it is suggestive of the comparative
dominant mutation profile, including non-synonymous and
missense mutations. The analysis of the dataset from the global
deceased (n = 276) and recovered patients (n = 1,845) with
known status from the metadata information available on the
GISAID server with the complete genome sequences considered
in the analysis indicates the dominance of the missense mutations
at A23403G, C14408T, C1059T, and G25563T. The overall
comparison of the mutation profile of the patient dataset of
deceased and recovered samples is highlighted in Figure 7, from
global and Gujarat.

Mutation in the N gene at C28854T and mutation in the
Orf3a gene at G25563T were found to be dominant among
deceased patients from Gujarat. Moreover, C28854T is forming a
distinct sub-cluster under 20A (A2a as per the old classification
of the next strain) clade, highlighted in Figure 8. The same is
proposed as a new sub-clade 20D in the next strain and GHJ in
GISAID. This sub-clade is also present in genomes sequenced
from Bangladesh and Saudi Arabia. Both these proteins play
significant roles in viral replication and pathogenesis (Luan
et al., 2020; Pachetti et al., 2020; Peter and Schug, 2020). The
association of the mutations with the viral transmission and
mortality rate remains a mystifying puzzle for the global scientific
community. The identification and validation of these mutations
should pave the way forward for the development of treatment
and diagnostics of coronavirus disease. The evading host

FIGURE 7 | Overall comparison of the missense mutations in SARS-CoV-2
genome. Gujarat (R = 256, D = 63) and Global (R = 1,845, D = 276), where
“R” is the number of genomes from recovered patients, and “D” is the number
of genomes from deceased patients.

immune response and defense mechanism sufficiently improve
the adaptive behavior of the pathogenic species, thus making
them highly contagious. Further, laboratory and experimental
studies need to be carried out to validate the exact role of this
particular mutation with respect to the molecular pathways and
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FIGURE 8 | Distinct cluster of the viral isolate with mutation C28854T/Ser194Leu/N gene in Gujarat SARS-CoV-2 genomes. This cluster is visualized at
http://covid.gbrc.org.in/nextstrain.php using the Nextstrain virus genome analysis pipeline.

interactions in the biological systems despite being a strong
possible mutation candidate found in the Gujarat region.

The genomics-based approach has been a useful resource
to identify and characterize virulence, pathogenicity, and
host adaptability. Further, identification and characterization
of the frequently mutated positions in the SARS-CoV-2
genome will certainly help in the deeper understanding of the
infection biology of coronaviruses, development of vaccines
and therapeutics, and potential drug repurpose candidates
using predictive computational biology and experimental
validations. The present study highlights the genome sequencing,
haplotyping, and mutation profile of the 502 SARS-CoV-2 viral
genome isolates from 46 different locations representing 20
districts across Gujarat, India. Furthermore, we have reported
significant variants associated with mortality in the Gujarat
and global viral genomes. As the pandemic is progressing, the
virus is also diverging into different clades. This also provides
adaptive advantages to viruses in the progression of the disease
and its pandemic potential. In this study, we have reported a
distinct cluster of coronavirus under 20A clade of Nextstrain
and proposed it as 20D as per the next strain analysis or GHJ
as per the GISAID analysis, predominantly present in the
Gujarat genomes. Understanding the SARS-CoV-2 genome and
tracking its evolution will help in devising better strategies for
the development of diagnosis, treatment, and vaccine candidates
in response to the global pandemic.
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Deep learning methodologies have revolutionized prediction in many fields and show
the potential to do the same in microbial metagenomics. However, deep learning is still
unexplored in the field of microbiology, with only a few software designed to work with
microbiome data. Within the meta-community theory, we foresee new perspectives for
the development and application of deep learning algorithms in the field of the human
microbiome. In this context, we developed G2S, a bioinformatic tool for taxonomic
prediction of the human fecal microbiome directly from the oral microbiome data of the
same individual. The tool uses a deep convolutional neural network trained on paired
oral and fecal samples from populations across the globe, which allows inferring the
stool microbiome at the family level more accurately than other available approaches.
The tool can be used in retrospective studies, where fecal sampling was not performed,
and especially in the field of paleomicrobiology, as a unique opportunity to recover
data related to ancient gut microbiome configurations. G2S was validated on already
characterized oral and fecal sample pairs, and then applied to ancient microbiome data
from dental calculi, to derive putative intestinal components in medieval subjects.

Keywords: gut microbiome, oral microbiome, deep learning, microbiome, paleomicrobiology

INTRODUCTION

Deep learning is increasingly being used to make inference on large and complex data. Unlike
traditional algorithms, in which the expertise and rules are already coded, deep learning algorithms
are built to automatically detect patterns in data (Murphy, 2012; Bishop, 2016), also embedding
the computation of variables into the models themselves to yield end-to-end models (Goodfellow
et al., 2016). In particular, the construction and training of deep learning algorithms have been
enabled by the increasing availability of big data and the rapid growth in the number and size
of public available databases. So far, deep neural networks have been key to advances in modern
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artificial intelligence, with applications such as facial recognition,
speech recognition and self-driving vehicles. More recently, new
applications have been pioneered in the fields of molecular
biology and metagenomics. Indeed, the same deep learning
approaches are beginning to be applied to genetics, agriculture
and medicine (Alipanahi et al., 2015; Leung et al., 2016; Ching
et al., 2018; Demirci et al., 2018; Wainberg et al., 2018; Webb,
2018; Le, 2019; Le and Huynh, 2019; Le et al., 2019; Quang
and Xie, 2019). However, deep learning is still unexplored
in the field of microbial metagenomics, with only a few
approaches suitable for microbiome data (Geman et al., 2016;
Reiman et al., 2017; Galkin et al., 2020), and a huge untapped
potential yet unexplored.

The human microbiome, i.e., the sum of the different
microbial ecosystems that colonize the niches of the human
body, plays an important role in human physiology and its
dysbiotic variations can severely impact our health (Kau et al.,
2011). For example, shifts in the composition of microbial
communities inhabiting the oral cavity and gastrointestinal tract
have been associated with the onset and/or progression of
various conditions, such as periodontitis (Griffen et al., 2012)
and other modern chronic disorders, including inflammatory
bowel disease (Glassner et al., 2020), obesity (Rampelli et al.,
2018), cardiovascular disease (Pietiäinen et al., 2018) and some
forms of cancer (Helmink et al., 2019; Karpiński, 2019; Wong
and Yu, 2019). The importance of the human microbiome in
health and disease makes it imperative to understand the drivers
of its variation. In this context, a new frontier is represented
by the meta-community theory, according to which human
symbiont microbial ecosystems are in intimate connection,
showing reciprocal influences and exchanges (Koskella et al.,
2017; Miller et al., 2018). Supporting a meta-community view
of human microbial ecology, a close link between oral and
intestinal microbiomes has recently been hypothesized, with the
former reflecting changes in the latter, in both healthy and
diseased individuals (Bajaj et al., 2015; Iwauchi et al., 2019;
Prodan et al., 2019; Schmidt et al., 2019). Another scale of human
microbiome variation is represented by its change across the
evolutionary timeline. In particular, a large body of literature
indicates that the current human gut microbiome has evolved
toward at least two different configurations, rural and urban,
both associated with the corresponding subsistence strategy.
Compared to the first, generally considered as the pristine human
gut microbiome, the urban configuration is characterized by an
overall compression of microbial biodiversity, a wholescale loss
of commensal microbial groups, and an increased presence of
genes related to antibiotic resistance and xenobiotics metabolism
(Yatsunenko et al., 2012; Schnorr et al., 2014; Obregon-Tito
et al., 2015; Rampelli et al., 2015; Ayeni et al., 2018; Jha et al.,
2018). These changes, collectively referred to as “microbiota
insufficiency syndrome” (Sonnenburg and Sonnenburg, 2019),
have been identified as contributing factors to the rise in
chronic inflammatory non-communicable diseases. However,
mainly due to the paucity of ancient stool samples, the truly
ancestral human gut microbiome is still unknown and the
evolutionary trajectories and drivers leading to its contemporary
configurations have yet to be described, leaving important

gaps in knowledge of the gut microbiome-human host co-
evolutionary trajectories. Contrary to ancient fecal samples,
dental ones are more common and well preserved, allowing
for the extraction of the ancient oral microbiome from
ancient DNA preserved in dental tartar. Consistent with the
meta-community vision, the ancient configuration of the oral
microbiome can somehow mirror the structural features of
the intestinal one due to the intrinsic connections between
the two ecosystems. In this scenario, here we developed a
new deep learning-based tool, G2S, which infers the gut
microbiome configuration from the oral microbiome data of
a given individual. G2S is based on a model trained and
tested on a total of 305 and 79 paired samples of oral and
stool microbiome, respectively, retrieved from multiple studies
with individuals of various geographical origins, including
United States, Fiji, United Kingdom, and European countries
(The Human Microbiome Project Consortium, 2012; Zaura et al.,
2015; Brito et al., 2016; Russo et al., 2018). Our approach may
be relevant for predicting the gut microbiome configuration
when fecal data are not available, and particularly suitable
for human archeological records, where coprolites and fecal
sediments are indeed rare compared to dental calculi and
other human remains.

MATERIALS AND METHODS

G2S software is built in an R environment, using the R packages
“base,” “stats,” and “keras,” containing “tensorflow.” The G2S
source code is available on the website https://github.com/
simonerampelli/g2s and it can be run using a command line
interface on computer with Windows, Linux and OS X as the
operating system.

The G2S tool was trained and tested on a total of 768
paired samples (i.e., oral and stool samples from the same
384 individuals), including samples from 171 healthy adults
from United States, 7 from Italy, 29 from Sweden, 37 from
United Kingdom, and 140 from Fiji (The Human Microbiome
Project Consortium, 2012; Zaura et al., 2015; Brito et al., 2016;
Russo et al., 2018). Eighty% of the subjects were used for the
training dataset and 20% for the test dataset, without overlapping
to avoid overfitting. Both 16S rRNA gene reads and shotgun
metagenomics sequences were used, analyzed by the QIIME
2 pipeline (Bolyen et al., 2019) or the MetaPhlAn2 software
(Truong et al., 2015), respectively.

The performance of G2S in predicting fecal microbiome
configuration from the same individual’s oral microbiome sample
was compared with that of other available approaches, including
Random Forest (Breiman, 2001) and a stochastic algorithm, i.e.,
a customized method that generates mock profiles of the stool
microbiome by randomly imputing the abundances of bacterial
families in the range of the training dataset (see Supplementary
File 1 for script source).

Microbiome data from dental calculi of 4 adult human
skeletons (G12, B17, B61, and B78), characterized by sequencing
the V5 and V6 regions of the 16S rRNA gene (8 samples in total)
(Warinner et al., 2014), were used to illustrate the potential and
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results of G2S. No ethics committee approval was required to
perform the analysis included in this study.

RESULTS

Implementation of the G2S Software
G2S adapted a deep convolutional neural network (ConvNet)
to predict gut microbiome configurations from oral microbiome
data. Several model architectures were tested in order to find
the best performing algorithm, either by testing hidden layers
with different number of units, and/or by adding a weight
regularization step or a dropout procedure (data not shown).
The final ConvNet was structured with two hidden layers, each
with 50 units, and a final linear layer with 13 units and no
activation function. We selected mean square error as the loss
function, and mean absolute error as the metric to evaluate
the differences between predictions and targets during training.
In order to minimize overfitting problems due to the small
number of samples within the dataset, we also included a
weight regularization step, by adding to the loss function a cost
associated with having high weights. The cost was proportional
to the square of the weight coefficient value (L2 regularization or
weight decay). Finally, to further prevent overfitting, dropout was
applied to the first two layers, obtaining a better prediction and a
significant reduction in losses and minimum absolute errors with
a rate value of 0.5.

For ConvNet training and testing, we downloaded all
available paired samples (i.e., gingival and stool samples from
the same individual) from the HMP project (The Human
Microbiome Project Consortium, 2012). In order to increase the
generalization capability of our ConvNets, while minimizing
geography-related bias (He et al., 2018), we integrated our
dataset with all available paired samples (i.e., oral and fecal
samples) from healthy adults from other literature studies (Zaura
et al., 2015; Brito et al., 2016; Russo et al., 2018), selecting both
16S rRNA gene and shotgun metagenomic datasets (see also
Supplementary Table 1). Our final dataset included paired
samples of 171 individuals from United States, 7 from Italy,
29 from Sweden, 37 from United Kingdom, and 140 from Fiji,
for a total of 384 oral and 384 stool samples, divided into 528
16S rRNA gene and 240 shotgun fastq files. Specifically, 16S
rRNA gene sequences were analyzed using the QIIME 2 pipeline
(Bolyen et al., 2019) and the Greengenes database (DeSantis
et al., 2006) in order to obtain the microbiome classification
at different taxonomic levels. On the other hand, the shotgun
metagenomic samples were analyzed by MetaPhlAn2 (Truong
et al., 2015) using the default parameters. The genus-level
abundance table of 384 oral microbiome samples was normalized
feature-wise prior to its usage for deep learning. In particular, the
data were centered on the mean of each specific genus and scaled
according to their standard deviation. Only 50 genera present
in more than 4 samples with relative abundance greater than
0.1% were retained for the analysis. The 12 bacterial families of
the stool microbiome dataset with the highest contribution in
terms of median relative abundance, including Bacteroidaceae,
Porphyromonadaceae, Lachnospiraceae, Ruminococcaceae,

Veillonellaceae, Rikenellaceae, Alcaligenaceae, Streptococcaceae,
Bifidobacteriaceae, Clostridiaceae, Prevotellaceae, and
Erysipelotrichaceae, were selected as features to be predicted by
ConvNet analysis. An additional variable, called “Other” (i.e.,
the percentage remaining to reach 100%), was also considered
a feature to be inferred. The training and test datasets were
separated to contain 80 and 20% of all profiles, i.e., 305 and 79
paired oral and fecal samples, respectively. In order to better
evaluate the model, we used a k-fold cross-validation approach
with 4 partitions and 500 epochs. We got the best performance
after the 151st epoch, with a mean absolute error of 4.1%. To
increase the predictive performance of ConvNet, the results were
then transformed as follows: (i) negative predictions were set
to 0, and (ii) the sum of the value for each sample was rescaled
to 100%. Finally, based on the results of the training dataset,
we also built a confusion matrix to adjust the predictions of
those families with recurring over- or underestimation. G2S
includes all of these steps in a single R script, and requires only
a relative abundance table of the oral microbiome (between
0 and 1) at the genus level with samples in the columns and

FIGURE 1 | G2S workflow. The input file is a genus-level relative abundance
table (.tsv format), obtained from the characterization of human oral
microbiome samples. The stool microbiome is inferred using a deep
convolutional neural network (ConvNet) adjusted by a confusion matrix and
rescaled to 100%. The results are tabulated as relative abundance.
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FIGURE 2 | Comparison between G2S predictions and real data from the test dataset. The family level bar plots of the 79 stool samples of the test dataset are
visualized next to their inferred configurations obtained by G2S. Spearman correlation coefficients (r) are provided below each pair of bar plots. Samples are derived
from the following studies: The Human Microbiome Project Consortium (2012), Zaura et al. (2015); Brito et al. (2016), Russo et al. (2018).

FIGURE 3 | G2S predictions are more accurate when the configurations to be
inferred fall within the plane of variation of the training dataset. Box plots of the
mean absolute error scaled to one standard deviation (maes) between the real
stool microbiome configuration of the samples in the test dataset and the
median configuration of the training dataset. Samples were divided into four
groups based on the quality of the G2S predictions (i.e., the Spearman
correlation coefficients between the real values and the inferred
configurations).

the full taxonomy following the Greengenes_05_2013 style in
the rows as input file. For each sample analyzed, the predicted
microbiome is summarized in a table as the relative abundance of
the most abundant bacterial families. Additionally, histograms of
the same families are provided, using the “graphics” and “base”
R packages. The schematic overview of the G2S framework is
provided in Figure 1.

Ascertaining the Performance of G2S on
the Test Dataset
We first applied G2S to the test dataset to evaluate its cross-
validated predictions. In particular, mean absolute errors for each
family scaled to one standard deviation of real data (maes) < 1
were considered as reference parameters for a good quality of
the prediction. As expected, G2S predicts relative abundances
with an average maes of 0.59, ranging from the best score for
Bacteroidaceae and Erysipelotrichaceae (maes = 0.46) to the worst

FIGURE 4 | G2S predicts the stool microbiome configuration with better
performance than other methods. The mean absolute errors scaled to one
standard deviation (maes) between the real data of the samples from the test
dataset and the configurations inferred by G2S, Random Forest and a
stochastic permutational method (100 predictions), are reported in the dot
plot.

case for Ruminococcaceae (maes = 0.77). To gain more insights
into the predictive performance of G2S, we globally compared,
sample by sample, the inferred microbiome configurations with
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FIGURE 5 | Reconstructing the ancient stool microbiome of adult medieval individuals. (A) Bar plots of stool microbiome configurations inferred from 16S rRNA gene
(V5 and V6 regions) sequencing data of ancient microbiomes (i.e., dental calculi from the medieval monastic site of Dalheim, Germany [ca. 950–1,200 CE]) (Warinner
et al., 2014). (B) Comparison between the predicted ancient microbiome configurations and the modern stool microbiome of subjects from the dataset used to
implement G2S (The Human Microbiome Project Consortium, 2012; Zaura et al., 2015; Brito et al., 2016; Russo et al., 2018). P-values were determined by
Wilcoxon test.

real data by means of bar plots (Figure 2). Spearman correlations
between predicted and actual microbiome profiles were used to
evaluate predictions for each subject. In particular, we considered
as excellent those predictions with r > 0.8 (52% of predictions),
good those with r between 0.71 and 0.8 (29% of predictions),
discrete with r between 0.41 and 0.7 (18% of predictions), and
incorrect with r ≤ 0.4 (1% of predictions). When we analyzed
the single case in which G2S inferred an incorrect prediction, we
found that the stool microbiome configuration was very peculiar,
with the relative abundances of the two keystone bacterial
families Bacteroidaceae and Lachnospiraceae not reaching 5% of
relative abundance together (while generally dominant in the
ecosystem). It is important to note that G2S worked correctly
even when the stool microbiome configurations to be predicted
were not so close to the median configuration of the training
dataset (maes < 1 even when r < 0.7) (Figure 3). This was likely
due to the large variation captured by the pool of microbiome
configurations of the samples in the training dataset.

G2S showed a better mimicry of the relative abundance of
microbiomes in the test dataset than other methods, including
Random Forest and a stochastic method developed specifically
for this comparison, which generates mock profiles of the stool
microbiome in the range of the training dataset (Figure 4).
Random Forest under- or overestimated bacterial families with a
global maes of 0.99, ranging from 0.77 for Bacteroidaceae to 1.74
for Streptococcaceae. The performance of our custom predictor
was even more inaccurate, with a total of 100 permutational
predictions showing maes between 0.98 and 1.11 (mean = 1.05).
The best performance of G2S in predicting the stool microbiome

structure is probably due to the predictive power of deep learning
that automatically detects patterns in the data, by also embedding
the computation of variables into the models themselves to yield
end-to-end models.

Case Study: Using G2S in
Paleomicrobiology to Predict the Stool
Microbiome Profile From Ancient Dental
Calculi
In the second part of our analysis, we used G2S to infer the
stool microbiome from oral microbiome data of four adult
human skeletons with evidence of mild to severe periodontal
disease, from the medieval monastic site of Dalheim, Germany
(ca. 950–1,200 CE) (Warinner et al., 2014). G2S inferred the
stool microbiome structure at the family level, estimating the
abundance of the 13 features, i.e., the 12 bacterial families and
the category “Other” including all other families (Figure 5A).
Interestingly, Bacteroidaceae, Lachnospiraceae, Ruminococcaceae,
and Prevotellaceae were the predicted dominant components
in the feces of the four subjects, using both V5 and V6
regions as targets of the 16S rRNA gene (together their relative
abundance ranged from 52 to 80%). On the other hand, the family
Clostridiaceae showed the lowest relative abundance (<1%)
in all eight samples. Significant differences in taxon relative
abundance were found with respect to the stool microbiome
of modern subjects from the dataset used to implement
G2S, including higher relative abundance of Ruminococcaceae,
Lachnospiraceae, Streptococcaceae, Alcaligenaceae, Clostridiaceae,
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and Bifidobacteriaceae in the predicted ancient microbiome
configurations (p-value < 0.05, Wilcoxon test) (Figure 5B). This
is not unexpected given the profoundly different lifestyles of
ancient individuals of the Middle Ages and modern people, in
terms of diet, contact with the environment and sanitization
practices (The Human Microbiome Project Consortium, 2012;
Warinner et al., 2014; Zaura et al., 2015; Brito et al., 2016; Russo
et al., 2018). Future studies in larger worldwide cohorts, including
paired samples of oral and intestinal microbiome, are needed
to refine the accuracy of the G2S software and predict a higher
number of bacterial families as well as possibly taxa at different
phylogenetic levels, possibly including genera and species.

DISCUSSION

G2S is specifically designed to predict the structure of the human
stool microbiome from oral microbiome data. In particular, it
uses relative abundance tables of the oral microbiome generated
by next-generation sequencing, and a deep learning approach
that allows high-speed prediction of the stool microbiome
without any downstream process. It could be used with both
modern and ancient samples, providing a good prediction of the
fecal microbiome with a net saving of time and costs. This is
particularly relevant in the context of paleomicrobiology, where
human coprolites and fecal sediments are very rare compared
to dental calculi. However, as G2S appears to work best when
the input oral microbial composition is close to the average
used during training, caution must still be taken in interpreting
the prediction data. Furthermore, G2S was implemented using
both 16S rRNA gene and shotgun metagenomics data from
different populations across the globe (from United States, Italy,
Sweden, United Kingdom, and Fiji), with a good generalization
of the results as evidenced by the findings on the test dataset.
This provides an opportunity for users who can apply the
tool on data obtained through different sequencing techniques
simply by formatting their abundance tables with a taxonomy
congruent with the Greengenes database. It should also be noted
that G2S was built and validated using the 768 paired samples
currently available in the literature. This stresses the importance
of collecting paired samples (i.e., oral and fecal) in future
studies from cohorts from different geographic locations, in order
to further extend the range of the training dataset and thus
the applicability of G2S. Finally, other future implementations
could include predictions at different taxonomic levels, as well

as functional predictions thanks to the recent expansion of
shotgun metagenomics.

In summary, G2S opens up new possibilities in bioinformatics
approaches related to metagenomics, extending in silico
procedures to predict the human stool microbiome from oral
microbiome data. Starting from either modern or ancient oral
microbiome samples, the tool infers the stool microbiome with
family level resolution. Its main field of application is probably
paleomicrobiology, as a tool that can help understand how the gut
microbiome of the past was structured, and its implications for
human evolution. An update of the G2S tool will be periodically
performed to incorporate newly released microbiome studies.
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Noncoding RNAs (ncRNAs) play important regulatory and functional roles in
microorganisms, such as regulation of gene expression, signaling, protein synthesis,
and RNA processing. Hence, their classification and quantification are central tasks
toward the understanding of the function of the microbial community. However, the
majority of the current metagenomic sequencing technologies generate short reads,
which may contain only a partial secondary structure that complicates ncRNA homology
detection. Meanwhile, de novo assembly of the metagenomic sequencing data remains
challenging for complex communities. To tackle these challenges, we developed
a novel algorithm called DRAGoM (Detection of RNA using Assembly Graph from
Metagenomic data). DRAGoM first constructs a hybrid graph by merging an assembly
string graph and an assembly de Bruijn graph. Then, it classifies paths in the hybrid
graph and their constituent readsinto differentncRNA families based on both sequence
and structural homology. Our benchmark experiments show that DRAGoMcan improve
the performance and robustness over traditional approaches on the classification and
quantification of a wide class of ncRNA families.

Keywords: metagenomics, noncoding RNA, covariance model, homology search, genome assembly

INTRODUCTION

Noncoding RNAs (ncRNAs) can perform versatile functional roles and their importance in cellular
physiology is being increasingly recognized. For example, riboswitch is a class of cis-regulator
that locates in the 5′-UTR of its target gene and can alter the expression efficiency of the target
through alternating its fold structure upon the binding with molecules such as small metabolites
or ion ligands (Tucker and Breaker, 2005; Garst et al., 2011; Breaker, 2018). A different trans-
regulatory mechanism was found to be exerted by bacterial small RNAs (sRNAs), which attenuate
(in rare cases promote) their target mRNA expressions through sequence complementarity-based
binding (in a similar way as eukaryote microRNAs) (Gottesman and Storz, 2011; Storz et al., 2011;
Nitzan et al., 2017; Waters et al., 2017). ncRNAs can also catalyze biochemical reactions (ribozymes)
(Doherty and Doudna, 2001), as exemplified by the well-known ribosomal RNAs (which catalyze
protein synthesis) and group I and II introns (which catalyze the excision of themselves from
the transcript) (Adams et al., 2004a,b). With the prevalence of metagenomics (Virgin and
Todd, 2011; Huttenhower et al., 2012; Shokralla et al., 2012; Williamson and Yooseph, 2012;

Frontiers in Genetics | www.frontiersin.org 1 May 2021 | Volume 12 | Article 66949554

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.669495
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.669495
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.669495&domain=pdf&date_stamp=2021-05-05
https://www.frontiersin.org/articles/10.3389/fgene.2021.669495/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-669495 May 3, 2021 Time: 12:49 # 2

Liu et al. Microbial Noncoding RNA Detection

Davison et al., 2015; Quince et al., 2017), more microbial
genomic sequences, including the previously uncharacterized
ones, have been accumulated into public databases. The amazing
richness of microbial genomic data renders a great opportunity
to study ncRNA. Indeed, the diversity and richness of microbial
ncRNA function revealed from analyzing metagenomic data are
beyond our existing knowledge (Weinberg et al., 2010; Nawrocki
and Eddy, 2013a; Tobar-Tosse et al., 2013; Stav et al., 2019),
including many long ncRNA classes such as OLE, GOLLD, and
HEARO (Harris and Breaker, 2018). The discoveries underpin
the importance of ncRNA functions in bacterial physiology,
ecology, and interaction with the environment.

Despite the importance of functional ncRNA, reliable
classification and quantification of ncRNA elements from
metagenomic sequencing dataremain challenging. Because the
function of ncRNA is more determined by its structural fold
rather than its primary sequence (except few ncRNA classes
such as microRNA, Bartel, 2009; Davis and Hata, 2009; Winter
et al., 2009), the homology search of ncRNA often relies on both
primary sequence and secondary structure conservation (Klein
and Eddy, 2003; Zhang et al., 2006). Both types of information
of a given ncRNA family can be complied using stochastic
context-free grammar (SCFG) into a covariance model (CM)
to facilitate family-level homology detection (Eddy and Durbin,
1994), in a similar idea of using the profile hidden Markov
model (HMM) for protein family characterization (Sonnhammer
et al., 1997). In the context of metagenomic sequencing data,
the short reads (∼100–150 bp) may only contain partial
secondary structure information, leading to inferior ncRNA
homology search performance. The issue has been partially
addressed via the development of the truncated Cocke–Younger–
Kasami (trCYK) algorithm for parsing reads with an incomplete
secondary structure (Kolbe and Eddy, 2009), but its performance
remained lower compared to a homology search with a complete
secondary structure. On the other hand, while a natural way to
resolve this issue is to reconstruct complete secondary structure
information via de novo genome assembly, the assembly itself
remained fragmentary and incomplete for metagenomic data
generated from a complex microbial community (Ghurye et al.,
2016; Sczyrba et al., 2017; Breitwieser et al., 2019; Olson et al.,
2019). Many ncRNA reads, especially the low-abundance ones,
may not be assembled into contigs and cannot be detected in the
subsequent homology search stage.

To tackle the challenge of ncRNA homology search from
metagenomic sequencing data, we have developed DRAGoM
(Detection of RNA using Assembly Graph from Metagenomic
data). DRAGoM aligns CM against paths in an assembly graph
and classifies the paths and their constituent reads into different
ncRNA families based on the alignment. Note that a path in
an assembly graph corresponds to a set of overlapping reads,
which is more likely to contain complete secondary structure
information that facilitates homology detection. Hence, we can
expect DRAGoM to outperform the strategy of performing a
homology search directly on unassembled reads (subsequently
referred to as the “read-based” strategy). On the other hand,
using the complete set of paths in the assembly graph without
topological simplification (e.g., bubble removal and tip trimming,

Bankevich et al., 2012; Simpson and Durbin, 2012; Nurk et al.,
2017) and traversal (e.g., as Eulerian paths, Pevzner et al., 2001)
is more likely to retain the original metagenome information
(such as polymorphism and stain-level sequence variation). As a
result, DRAGoM is also expected to rescue many ncRNA reads
that cannot be assembled into contigs and to outperform the
strategy of performing a homology search on assembled contigs
(thereafter referred to as the “assembly-based” strategy).

We have benchmarked DRAGoM with a representative of the
read-based strategy (i.e., CMSearch, Nawrocki and Eddy, 2013b),
which includes the trCYK algorithm (Kolbe and Eddy, 2009) for
detecting incomplete secondary structures, and representatives
of the assembly-based strategy (i.e., assembling the metagenomic
reads using a string graph assembler SGA, Simpson and Durbin,
2012, or a de Bruijn graph assembler SPAdes, Bankevich et al.,
2012; Nurk et al., 2017, followed by searching the resulting
contigs using CMSearch). Our benchmark experiment has
considered both simulated and real datasets and includes16S
rRNA and a large collection of CMs for different ncRNA families
registered in Rfam (Nawrocki et al., 2015). We show that
DRAGoM has a higher performance compared to the read-
based or assembly-based method and demonstrates the most
robust performance on ncRNA families with different lengths
and conservation levels. Thus, DRAGoM will have potential
applications in future metagenomic data analyses, as well as in
the functional studies of microbial ncRNAs.

MATERIALS AND METHODS

DRAGoM Algorithm
The DRAGoM algorithm contains two main stages: (1) the
construction of a hybrid assembly graph and (2) the identification
of homologous ncRNA paths and reads from the resulting hybrid
assembly graph. By hybrid assembly graph, we mean the assembly
graph resulting from merging a string graph (Myers, 2005) and
a de Bruijn graph (Idury and Waterman, 1995), the two main
computational models used in sequence assembly. A string graph
is constructed based on a suffix–prefix overlap between the reads,
while a de Bruijn graph is constructed based on the shared
k-mers between reads. Either of the model has its own advantages
and limitations, with the string graph being more accurate
but fragmentary. Both models have been integrated to improve
sequence assembly (Huang and Liao, 2016). To illustrate the idea,
we present a toy example in Figure 1A. The top-left panel shows
an artificial genome sequence and the corresponding short reads.
The bottom-left panel shows the string graph constructed from
the reads with a minimum overlap length of 4 bp. Because of
the uneven (and lower) coverage at the middle of the artificial
genome, only four reads out of six can be overlapped. A missing
link (the blue dashed line) exists between the two subgraphs,
leading to a subsequent fragmentary assembly. For de Bruijn
graph construction shown in the top-right panel, all reads can be
connected using 3-mers as the vertices. While the de Bruijn graph
completely recovers all reads, its graph topology is complex, and
it can be traversed in more than one way (with or without going
into the loop). However, note that the sequence of one of the
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FIGURE 1 | Schematic illustration of the DRAGoM algorithm. (A) The construction of the hybrid assembly graph. The hybrid graph, resulting from the merging of a
de Bruijn graph and a string graph, can perfectly represent the original genome used in this toy example. (B) The search of ncRNA homologs against a hybrid graph.
The green and purple parentheses in the querying ncRNACM (covariant model) represent local secondary structural components. The thick green and purple lines in
the hybrid graph indicate anchors for path extension. Arrows indicate path extensions of the corresponding anchors.

traversals (i.e., with the loop) can be aligned to some terminal
sequences in the string graph (bottom-right panel, underlined
sequences), indicating that the corresponding subgraphs can be
reconnected using de Bruijn graph paths. The resulting hybrid
assembly graph perfectly represents the original genome.

The hybrid graph construction stage of DRAGoM implements
the above intuition. Specifically, SGA (version 0.10.15) (Simpson
and Durbin, 2012) was used to generate the string graph, and
SPAdes (version 3.13.0) (Nurk et al., 2017) was used to generate
the de Bruijn graph. When running SPAdes, the “–meta” tag
was enabled to indicate metagenomic input (also known as
“metaSPAdes”). Both programs were run in the paired-end
mode. Detailed command lines for running both assemblers are
available from the Supplementary Methods. The intermediate
output of SGA (i.e., the.asqg file) was further simplified (using in-
house scripts) to condense unbranched paths into single edges.
Terminal edges (i.e., edges with an in-degree or out-degree of
0) of the resulting string graph were then aligned to the set of
verified SPAdes contig sequences (no coverage hole, see more
in Supplementary Methods) using BWA. Only alignments with
a minimum score of 45 (per BWA manual, +1 for a match,
−4 for a mismatch, and −6 for a gap), a minimum alignment
length of 100, and no clipping at the open end (i.e., the end with
a degree of 0 in the string graph) were considered. Then, for
each SPAdes contig, if it had recruited more than one alignment,
the corresponding terminals in the string graph defined by any
pair of alignments were connected using the corresponding
interval sequence of the SPAdes contig. If a SPAdes contig
had recruited only one alignment, the corresponding string
graph terminal was extended using the corresponding prefix or
suffix sequence of the contig. SPAdes contigs with no recruited
alignment were also retained as isolated vertices in the hybrid
graph. In a CAMI (Sczyrba et al., 2017) dataset (DS5 as defined
in the Benchmark Datasets and Metrics section) that contained

∼15M vertices in its string graph, ∼0.7M connections were
made. DRAGoM allows the output of the hybrid graph as its
intermediate result, which can be traversed by other assemblers
for metagenomere construction.

The second main stage of the DRAGoM algorithm is
to identify homologous paths and reads with respect to a
given querying CM from the resulting hybrid assembly graph.
Intuitively, one can exhaustively enumerate all paths of the
hybrid graph and align them against the querying CM. However,
this naïve approach would be practically infeasible because the
number of paths grows exponentially with the number of reads
in the dataset. To address this issue, we designed a filter-
based heuristic for the speedup (Figure 1B). To begin with,
the querying CM was aligned to each edge of the hybrid graph
(note that an edge corresponds to a condensed path without
branching, or unitig). The edges bearing significant similarity to
the querying CM were recorded as anchors. This stage allowed
the detection of conserved short structural components (e.g.,
the green and purple stem-loops in the CM and the bolded
paths in the hybrid graph of Figure 1B). The anchors were then
extended toward both directions, aiming to reconstruct complete
sequences of the candidate ncRNA homologs (the broken arrows
in Figure 1B). The extension lengths for each anchor were
determined by length of the unaligned prefix and suffix of the
CM (with a further extension of 10% of the prefix or suffix
length to account for potential gaps). Because some edges of
the hybrid graph might represent similar sequences (e.g., the
heavy and light orange edges in Figure 1B), all paths resulting
from extending the anchors were subject to sequence redundancy
removal using CD-Hit (Li and Godzik, 2006). Finally, the set
of nonredundant paths were realigned to the querying CM, and
the paths passing the gathering score threshold were selected as
homologs of the corresponding ncRNA family. Note that the
homologous paths are only being used as templates for classifying
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individual reads but should not be taken as individual ncRNA
genes. This is because many of the homologous paths are derived
from the exhaustive traversal of all paths of the graph and could
be chimeric and redundant (see more in section Discussion).
Finally, individual reads were further mapped to the homologous
paths for their annotation and to quantify the corresponding
ncRNA family in the datasets. More details regarding this stage
can be found in Supplementary Methods.

The above algorithm was implemented as the DRAGoM
software package. DRAGoM accepts a set of querying CM and
a given metagenomic sequencing dataset and assigns a subset
of the reads to the corresponding ncRNA families. DRAGoM
was implemented using GNU C++ and Python and has been
tested under several major Linux distributions (RedHat, Fedora,
and Ubuntu). It is freely available under the Creative Commons
BY-NC-ND 4.0 License Agreement1.

Benchmark Datasets
We constructed five datasets to benchmark the performance
of DRAGoM, as summarized in Table 1. Two datasets were
simulated in-house, one was generated by an independent
research group for a similar benchmark purpose (Yuan et al.,
2015), one was from the open metagenomic data analysis
challenge CAMI (Sczyrba et al., 2017), and the last one was from a
real human gut microbiome (SRR341583). Detailed information
regarding the reference genomes included their respective
relative abundances, and the in silico simulation parametersare
available from Supplementary Table 1. All datasets are also
available for download from https://cbb.ittc.ku.edu/DRAGoM.
html. These five benchmark datasets include the following:

• DS1 (the REAGO dataset): This simulated dataset represented
a low-diversity metagenomic dataset that contains microbes
from different clades with staggered abundances. The dataset
was used in the benchmark experiment of REAGO (Yuan et al.,
2015). It was simulated in silico with an average read length of
100nt and an expected error rate of 1%, containing 4,653,918
paired-end reads.
• DS2 (the streptococci dataset): This simulated dataset

represented a community with highly related microbial
genomes from the same genus (e.g., streptococcus). The
dataset was simulated in silico using eight streptococcus
genomes, with an average read length of 100nt and an expected
error rate of 1%. This dataset contained 600,000 paired-
end reads.

1https://creativecommons.org/licenses/by-nc-nd/4.0/

TABLE 1 | Summary of experimental datasets.

Dataset Description No. of
genomes

Abundance No. of
reads

Read
length

Error
rate

DS1 REAGO 14 Staggered 4.6M 100 1%

DS2 Streptococcus 8 5x 0.6M 100 1%

DS3 Marine 28 5x 3.7M 100 1%

DS4 Human gut 3,499 Staggered 11.2M 74 –

DS5 CAMI 4,679 Staggered 31.3M 100 –

• DS3 (the marine dataset): This dataset represented a subset
of microbial metagenome that was often observed from
the marine environment. It was simulated from 28 marine
genomes with an average read length of 100nt and an expected
error rate of 1% and contained 3,700,000 paired-end reads.
• DS4 (the subsampled gut dataset): This dataset represented

a real human gut microbiome community (SRR341583). To
facilitate the generation of ground-truth homology for the
benchmark purpose, we subsampled the dataset via read
mapping to a collection of microbial genomes often found in
the human gut environment. Only reads that were mapped
to the selected reference genomes were retained, leaving
11,228,362 paired-end reads for this dataset.
• DS5 (the subsampled CAMI dataset): This dataset

was downloaded from CAMI (Sczyrba et al., 2017), a
comprehensive simulated dataset. To focus on the more
challenging cases of metagenomics analysis, only reads
representing low-coverage genomes (<10X) were selected
(via read mapping). This dataset contained 31,311,294
paired-end reads.

Benchmark Experiment Setup
Given a querying ncRNA family, we define its ground-truth
homologs as the reads that were generated or mapped (>60%
of their total lengths) to the genomic intervals that were
annotated as the ncRNA family by CMSearch (Nawrocki and
Eddy, 2013b) (under its default stringency cutoff). The command
lines used for ground-truth generation are available from the
Supplementary Methods.

Given the ground-truth definition, we defined true positives
(TPs) as the homologous reads that were identified by a given
method. We defined false positives (FPs) as the nonhomologous
reads that were identified and false negatives (FN) as the
homologous reads that were not identified. We further defined
recall and precision as

Recall =
TP

TP + FN
, Precision =

TP
TP + FP

and subsequently F-score as

F − score =
2× Recall× Precision

Recall+ Precision

All methods were tested under a series of different stringency
cutoffs to generate the receiver operating characteristic (ROC)
curve. The ROC curves were extrapolated to the points (recall:
0, precision: 1) and (recall: 1, precision: 0) to calculate the area
under the curve (AUC).

We benchmarked our graph-based ncRNA homology
search strategy DRAGoM (homology search against assembly
graph) with the read-based strategy (homology search against
unassembled reads) and the assembly-based strategy (homology
search against assembled contigs). For read-based strategy,
we chose CMSearch as the representative and refer to it as
“CMSearch” thereafter. For assembly-based strategy, we chose
SGA (as the representative of string graph assemblers) and
SPAdes (as the representative of de Bruijn graph assemblers) and
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refer to them as “SGA+CMSearch” and “SPAdes+CMSearch,”
respectively. Command lines for executing the programs are
available in the Supplementary Methods. Each method was
benchmarked using different sets of querying ncRNA families
(determined based on their presence in the selected reference
genomes, details available from Supplementary Table 2).
The reported performance corresponded to the unweighted
arithmetic mean performance among the sets of querying
ncRNA families. Note that the search performances for 16S
rRNA were reported individually, given its importance in
metagenome taxonomic profiling.

RESULTS

The performances of all tested methods on DS1 (the REAGO
dataset, 42 ncRNA families searched) are shown in Figure 2.
For non-16S rRNA queries (Figure 2A), DRAGoM was able to
achieve the highest recall, representing a gain of 7.3% recall rate
as compared to the second-best performer SPAdes+CMSearch
(Table 2). CMSearch alone performed significantly worse than
DRAGoM and SPAdes+CMSearch, potentially due to the lack
of complete secondary structure information in unassembled
reads. SGA+CMSearch seemed to be adversely impacted by the
low coverage of this dataset and showed the lowest recall but
also showed the highest precision rate. The observation was
in line with our current understanding of the characteristics
of the string graph and de Bruijn graph assembly approaches.
In terms of the peak F-score, DRAGoM achieved 93.6%,
followed by SPAdes+CMSearch with 92.2%. In terms of AUC,
DRAGoM was also the best performer with 96.8%, as compared
to 93.9% of the second-best method SPAdes+CMSearch. For
16S rRNA, all methods performed well (Figure 2B). DRAGoM
remained the best method with a marginal improvement

(99.5% F-score and 99.6% AUC, followed by 97.6% F-score
and 98.8% AUC of the second-best method CMSearch, see
Table 3). Surprisingly, SPAdes+CMSearch showed the lowest
sensitivity, potentially due to the polymorphism information
lost during the graph simplification and traversal stages of
SPAdes. Overall, DRAGoM showed a higher performance than
any tested method and was robust for both non-16S and
16S rRNA searches.

For DS2 (the streptococcus dataset, 27 ncRNA families
searched), the performance of the methods on non-16S rRNAs
was similar to that of DS1 (Figure 3A). DRAGoM again
performed the best on this dataset (91.4% F-score and 93.0%
AUC), followed by SPAdes+CMSearch (90.2% F-score and 90.7%
AUC, see Table 2). The lower performances of CMSearch and
SPAdes+CMSearch were also observed as in DS1 and may be
due to similar reasons as discussed previously. For 16S rRNA
(Figure 3B), SGA+CMSearch performed the best (99.2% F-score
and 99.8% AUC), with DRAGoM as the second-best method in
F-score (98.1%) and CMSearch in AUC (99.4%, see Table 3). The
performance of SGA seemed to benefit from its preservation of
polymorphism information in 16S rRNA via a more conservative
graph simplification strategy. On the other hand, DRAGoM
remained the most sensitive method (with the highest recall
rate of 99.9%), but its overall performance appeared to be
compromised by the lower precision rate due to exhaustive path
traversal (96.2%, see Table 3).

For DS3 (simulated marine, 93 ncRNA families searched; see
Figure 4) and DS4 (subsampled human gut, 60 ncRNA families
searched; see Figure 5), the performance of the methods also
followed the same trend as that observed in DS1 and DS2.
DRAGoM outperformed the other methods in non-16S rRNA
queries (for DS3 shown in Figure 4A, DRAGoM had 89.9%
F-score and 94.9% AUC; for DS4 shown in Figure 5A, it had
74.4% F-score and 77.4% AUC). Note that the lower performance

FIGURE 2 | The ROC curves for searching (A) 42 non-16S rRNAncRNA families and (B)16S rRNAs using the corresponding programs against DS1 (the REAGO
dataset).
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TABLE 2 | Performance summary of the tested methods on DS1–DS4 (for non-16S rRNA queries).

Dataset Matrices DRAGoM SGA+CMSearch SPAdes+CMSearch CMSearch

DS1 Precision 89.2% 95.1% 93.4% 87.6%

Recall 98.3% 34.7% 91.0% 63.9%

F1 93.6% 50.8% 92.2% 73.9%

AUC 96.8% 65.2% 93.9% 77.7%

DS2 Precision 88.7% 94.0% 92.0% 91.9%

Recall 94.3% 8.4% 88.4% 49.4%

F1 91.4% 15.5% 90.2% 64.2%

AUC 93.0% 51.3% 90.7% 70.0%

DS3 Precision 87.4% 93.6% 91.7% 87.5%

Recall 92.4% 4.6% 87.6% 55.7%

F1 89.9% 8.7% 89.6% 68.0%

AUC 94.9% 49.2% 92.9% 72.9%

DS4 Precision 86.4% 95.7% 85.8% 77.6%

Recall 65.2% 23.5% 58.4% 36.9%

F1 74.4% 37.8% 69.5% 50.0%

AUC 77.4% 60.1% 73.3% 58.2%

The highest performance of each category is bolded.

FIGURE 3 | The ROC curves for searching (A) 27 non-16S rRNAncRNA families and (B)16S rRNAs using the corresponding programs against DS2 (the simulated
streptococcus dataset).

on DS4 for all methods was due to the fact that DS4 was
generated by subsampling a real dataset, which contains more
experimental noises than the simulated ones. SPAdes+CMSearch
also remained as the second-best method on both DS3 and DS4.
For 16S rRNA, DRAGoM performed the best on DS3 (99.1%
F-score and 99.3% AUC; see Figure 4B and Table 3). On DS4,
SGA+CMSearch performed the best (96.1% F-score and 96.4%
AUC; see Figure 5B and Table 3), followed by DRAGoM (94.2%
F-score and 94.4% AUC). These observations were also consistent
with those made in DS1 and DS2.

DS5 (subsampled CAMI) was tested using the largest number
of querying ncRNA families (276); hence, we categorize the

performance of non-16S rRNA searches based on the ncRNA
families’ sequence identity and average length (Figure 6 and
Table 4). Although the performances differed in different
categories of ncRNA families, DRAGoM consistently showed the
best performance in all categories. The lowest performance gain
made by DRAGoM was for the category with<50% sequence
identity and 200–400 bp length, where the improvement was
0.6% in F-score and 2.4% in AUC compared to the second-best
method SPAdes+CMSearch (Figure 6B). The largest gain made
by DRAGoM was found in the category with 50–70% sequence
identity and 200–400 bp length. Interestingly, the improvement
was 11.4% in F-score (as compared to SPAdes+CMSearch) and
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FIGURE 4 | The ROC curves for searching (A) 93 non-16S rRNAncRNA families and (B)16S rRNAs using the corresponding programs against DS3 (the simulated
marine dataset).

FIGURE 5 | The ROC curves for searching (A) 60 non-16S rRNAncRNA families and (B)16S rRNAs using the corresponding programs against DS4 (the
subsampled human gut dataset).

10.1% in AUC (as compared to CMSearch). Our interpretations
for the difference in performance gain in different categories of
ncRNA families are present in the Discussion section. For 16S
rRNA, DRAGoM had the best performance in F-score (96.4%,
Table 3) but the second-best performance in AUC (96.8%,
compared to the best performance of 97.6% made by CMSearch).

Taken together, DRAGoM consistently delivered superior
search performance in nearly all datasets and all categories of
querying ncRNA families. Specifically, DRAGoM produced the
best ncRNA homology prediction for all non-16S rRNA in all
datasets and two out five datasets (DS1 and DS3) for 16S rRNA
searches (DRAGoM was the second-best method for the other
three cases). The assembly-based approach SPAdes+CMSearch
seemed to be the second-best choice overall. However, the read-
based approach CMSearch appeared to be the second-best choice

when analyzing ncRNA families with sequence identity between
70 and 90% and length between 200 and 400 bp (Figure 6F)
and in the searches of 16S rRNAs on DS1, DS3, and DS5.
Comparably, DRAGoM was the most robust method in addition
to its superior performance.

DISCUSSION

We have demonstrated using benchmark data that DRAGoM
can improve ncRNA homology search as compared to
the traditional read-based and assembly-based strategies.
In addition to the higher performance, another unique
advantage of DRAGoM is its robustness. We observed from
the benchmark results that the homology search performance
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FIGURE 6 | The ROC curves for searching (A) 29 ncRNA families with a sequence identity of less than 50% and sequence length from 100 to 200nt, (B) eightnc
RNA families with a sequence identity of less than 50% and sequence length from 200 to 400nt, (C) 78 ncRNA families with a sequence identity from 50 to 70% and
sequence length from 100 to 200nt, (D) 19 ncRNA families with a sequence identity from 50 to 70% and sequence length from 200 to 400nt, (E) 86 ncRNA families
with a sequence identity from 70 to 90% and sequence length from 100 to 200nt, (F) 19 ncRNA families with a sequence identity from 70 to 90% and sequence
length from 200 to 400nt, (G) 25 ncRNA families with a sequence identity of more than 90% and sequence length from 100 to 200nt, and (H) 12 ncRNA families
with a sequence identity of more than 90% and sequence length from 200 to 400nt using the corresponding programs against DS5 (the subsampled CAMI dataset).

is both querydependent and datasetdependent. For example,
in DS5 (CAMI), SPAdes+CMSearch performed better than
CMSearch when searching ncRNA families with an identity
of <50% and between 100 and 200 bp long (Figure 6A) but
performed worse than CMSearch for ncRNA families with an
identity of 70–90% with the same length range (Figure 6E).
We conjecture that some factors could contribute to such a
difference. If the ncRNA families are highly divergent, sequence
information alone may not be sufficient for its detection, and
therefore, the complete secondary structure information needs
to be reconstructed for its detection (shown by the higher
performance of assembly-based methods for low-identity
ncRNA families). On the other hand, for highly conserved
families, their corresponding reads could be treated as repeats,
with a significant amount of polymorphism information lost
(for the lower performance of assembly-based methods for
high-identity ncRNA families). Meanwhile, the performance
of the existing methods also differs in searching the same
ncRNA family against different datasets, as shown by the higher
performance of CMSearch (as compared to SGA+CMSearch)
in the 16S rRNA search against DS3 (Figure 4B) and its lower
performance in the 16S rRNA search against DS4 (Figure 5B).
The performance difference could be due to assembly quality.
Datasets from less diverse community and sequenced with
higher coverage are easier to assemble, leading to the higher
performance of assembly-based methods. Given the above

observation, the ideal case is that we choose an appropriate
analysis strategy based on the query and the dataset. However, it
is in many cases infeasible. The robustness of DRAGoM makes
it an ideal solution to this issue, allowing consistent biological
information to be extracted for diverse research objectives and
from heterogenousmetagenomic datasets.

Because DRAGoM directly operates on the assembly graph,
the quality of the assembly graph will likely affect the
performance of DRAGoM. Currently, the string graph and
de Bruijn graph dominate the modeling of sequence overlap
information in de novo assembly. DRAGoM, which is based
on the combination of the two graphical models, outperformed
the use of either of them alone (i.e., SGA+CMSearch and
SPAdes+CMSearch). The observation is consistent with our
current understanding of the two models, where each of
them has its unique advantages (where the string graph
accurately represents the intact information and the de
Bruijn graph generates more complete and longer assembly).
We further observed that in most cases, SPAdes+CMSearch
outperformed SGA+CMSearch in most cases, suggesting that
the reconstruction of a complete secondary structure (facilitated
by the longer assembly of SPAdes) is more important than
the preservation of polymorphism information (as retained
in the string graph). Of course, the conclusion is merely for
generic cases, as we did observe examples where SGA+CMSearch
outperformed SPAdes+CMSearch (e.g., Figure 5B).
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TABLE 3 | Performance summary of the tested methods on DS1–DS5 (for
16S rRNA queries).

Dataset Matrices DRAGoM SGA+

CMSearch
SPAdes+

CMSearch
CMSearch

DS1 Precision 99.9% 99.0% 100.0% 97.1%

Recall 99.2% 96.0% 92.4% 98.1%

F1 99.5% 97.5% 96.0% 97.6%

AUC 99.6% 98.4% 96.2% 98.8%

DS2 Precision 96.2% 98.7% 97.5% 96.5%

Recall 99.9% 99.7% 97.4% 99.5%

F1 98.1% 99.2% 97.5% 98.0%

AUC 98.1% 99.8% 97.5% 99.4%

DS3 Precision 99.7% 98.6% 100.0% 96.8%

Recall 98.6% 94.9% 87.0% 97.7%

F1 99.1% 96.7% 93.0% 97.2%

AUC 99.3% 97.4% 93.4% 98.6%

DS4 Precision 91.9% 97.2% 97.7% 97.0%

Recall 96.5% 95.0% 89.8% 79.8%

F1 94.2% 96.1% 93.6% 87.6%

AUC 94.4% 96.4% 94.1% 88.3%

DS5 Precision 95.1% 94.7% 94.6% 94.2%

Recall 97.7% 96.9% 92.2% 97.6%

F1 96.4% 95.8% 93.4% 95.9%

AUC 96.8% 96.6% 94.1% 97.6%

The highest performance of each category is bolded.

We expect to further improve the speed of DRAGoM in
the future. Specifically, the efficiency bottleneck of DRAGoM
comes from the fact that it needs to exhaustively align
the querying CM with all paths generated from anchors.
We envision two potential ways to improve the efficiency,
i.e., via more intelligent path filtering criteria and graph
simplification techniques. We plan to incorporate additional
information, such as the GC content, coverage, and covariant
mutation compatibility, to filter out paths that are unlikely
to be from the same genome before CM alignment. We
also expect to reduce the complexity of the assembly graph
through incorporating additional information, such as paired
end, long read, or Hi-C data, if applicable (Ghurye and
Pop, 2019). In general, we observed that DRAGoM was
slower when searching long ncRNA families, because the time
for CM alignment and the number of candidate paths to
align both grow with the length. As a result, for a long
querying ncRNA family, we plan to break it down into a
set of smaller components by temporarily removing long-
range interactions, aligning each small component individually,
and checking if the removed long-range interactions can be
recovered given the alignments. This heuristic has been proven
effective in speeding up the alignment of RNA structural
motifs with pseudo knots while retaining satisfying alignment
quality (Zhong et al., 2010). We believe the running time
of DRAGoM can be significantly reduced with the above
optimization techniques.

In addition to the ncRNA family abundance profile, DRAGoM
may also be used to improve taxonomic analysis of metagenomic

datasets in two ways. First, DRAGoM can improve the traditional
16S rRNA-based taxonomic analysis. The existing methods for
this purpose first identify a set of 16S rRNA-related reads
from the metagenomic datasets using read-based homology
search, perform local assembly on the identified reads, and
then infer the taxonomy (Yuan et al., 2015). DRAGoM can
improve this strategy in the 16S rRNA homology search step,
as it has demonstrated advantage over the traditional read-
based homology search approaches. A more accurate and
comprehensive set of 16S rRNA reads to start with before
assembly will likely lead to a more complete and finer-grained
view of the taxonomic profile, as well as potential insight into
the previously unidentified species. A second potential way that
DRAGoM can improve taxonomic analysis is through facilitating
the use of ncRNA families as taxonomic biomarkers, in a similar
way as the protein taxonomic biomarkers (Brocchieri, 2001; Wu
and Scott, 2012; Klingenberg et al., 2013). However, we note
that in the current implementation, DRAGoM only outputs
unassembled homologous reads rather than the assembled
ncRNA gene sequences. The reason is that many homologous
paths arisen from branchy regions of the assembly graph
appear to be artificial and redundant. We plan to incorporate
a more sophisticated algorithm into DRAGoM to untangle
the homologous paths and to output assembled ncRNA gene
sequences, via either finding the minimum set of paths that
covers the entire homolog-read assembly graph (as in REAGO,
Yuan et al., 2015; and Xander, Wang et al., 2015) or using
statistical inference methods that find the most probable subset
of paths that explain the observed abundances for each edge (as
isoform abundance inference for RNA-seq data, Pertea et al.,
2016). We believe that by integrating both protein and ncRNA
taxonomic biomarkers, we will be able to obtain unbiased and
comprehensive taxonomic profiles.

The current version of DRAGoM only included CMSearch as
its core homology search engine, requiring only family-level CMs
as queryrather than specific ncRNA sequences. The design is due
to the lack of complete reference genomes and concrete gene
sequences in many metagenomic studies (Kyrpides et al., 2014).
In the future, we plan to further extend DRAGoM to allow for
single-sequence ncRNAs as query through providing interfaces
for other ncRNA homology search tools. Specifically, we will
provide interfaces for RSEARCH (Klein and Eddy, 2003) and
FastR (Zhang et al., 2005) if both the ncRNA sequence and
secondary structure are available. We will provide interfaces for
Dynalign (Mathews and Turner, 2002), FoldAlign (Havgaard
et al., 2005), PMcomp (Hofacker et al., 2004), LocARNA (Will
et al., 2007), and SPARSE (Will et al., 2015) when only the
ncRNA sequence is available. These tools implement variants
of the simultaneous alignment and folding (SAF) algorithm
(Sankoff, 1985) and do not require an annotated secondary
structure for the query. We expect that the incorporation of
these software into DRAGoM’s framework will improve the
performances by themselves, as DRAGoM provides the hybrid
assembly graph and longer candidate paths to characterize the
features of different ncRNA genes.

In summary, in this article, we present DRAGoM, a novel
algorithm for family-based ncRNA homology search against
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TABLE 4 | Performance summary of the tested methods on DS5 (for non-16S rRNA queries).

Dataset Matrices DRAGoM SGA+CMSearch SPAdes+CMSearch CMSearch

Identity:<50%, length: 100–200 Precision 77.5% 89.2% 77.3% 80.7%

Recall 81.2% 32.6% 74.3% 50.3%

F1 79.3% 47.8% 75.8% 61.9%

AUC 82.4% 61.7% 78.9% 66.4%

Identity: < 50%, length: 200–400 Precision 71.3% 73.0% 72.1% 81.4%

Recall 90.7% 35.2% 87.9% 39.5%

F1 79.8% 47.5% 79.2% 53.2%

AUC 87.6% 52.0% 85.2% 62.2%

Identity: 50–70%, length: 100–200 Precision 85.4% 86.6% 83.4% 79.2%

Recall 81.8% 40.4% 76.1% 78.1%

F1 83.6% 55.1% 79.6% 78.6%

AUC 87.8% 65.4% 82.3% 80.7%

Identity: 50–70%, length: 200–400 Precision 81.5% 94.1% 78.0% 87.3%

Recall 87.2% 31.8% 68.4% 61.1%

F1 84.3% 47.5% 72.9% 71.9%

AUC 85.3% 63.4% 75.0% 75.2%

Identity: 70–90%, length: 100–200 Precision 82.8% 88.8% 85.7% 77.4%

Recall 85.7% 39.3% 75.7% 82.3%

F1 84.2% 54.5% 80.4% 79.8%

AUC 87.5% 65.5% 81.6% 81.6%

Identity: 70–90%, length: 200–400 Precision 83.0% 96.3% 88.5% 83.6%

Recall 89.1% 23.0% 65.5% 73.8%

F1 86.0% 37.1% 75.3% 78.4%

AUC 87.5% 59.6% 77.3% 81.7%

Identity:>90%, length: 100–200 Precision 74.2% 94.6% 81.8% 71.7%

Recall 92.8% 23.6% 81.5% 85.9%

F1 82.5% 37.8% 81.7% 78.2%

AUC 87.7% 59.4% 83.5% 82.3%

Identity:>90%, length: 200–400 Precision 90.1% 99.7% 94.2% 83.8%

Recall 95.7% 17.7% 84.9% 72.3%

F1 92.8% 30.0% 89.3% 77.6%

AUC 93.9% 58.7% 89.5% 81.6%

The highest performance of each category is bolded.

metagenomic sequencing data. We have demonstrated the
advantages of DRAGoM as compared to the traditional read-
based and assembly-based approaches.
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Microbes live in complex communities that are of major importance for environmental
ecology, public health, and animal physiology and pathology. Short-read metagenomic
shotgun sequencing is currently the state-of-the-art technique for exploring these
communities. With the aid of metagenomics, our understanding of the microbiome is
moving from composition toward functionality, even down to the genetic variant level.
While the exploration of single-nucleotide variation in a genome is a standard procedure
in genomics, and many sophisticated tools exist to perform this task, identification
of genetic variation in metagenomes remains challenging. Major factors that hamper
the widespread application of variant-calling analysis include low-depth sequencing of
individual genomes (which is especially significant for the microorganisms present in low
abundance), the existence of large genomic variation even within the same species,
the absence of comprehensive reference genomes, and the noise introduced by next-
generation sequencing errors. Some bioinformatics tools, such as metaSNV or InStrain,
have been created to identify genetic variants in metagenomes, but the performance of
these tools has not been systematically assessed or compared with the variant callers
commonly used on single or pooled genomes. In this study, we benchmark seven
bioinformatic tools for genetic variant calling in metagenomics data and assess their
performance. To do so, we simulated metagenomic reads to mimic human microbial
composition, sequencing errors, and genetic variability. We also simulated different
conditions, including low and high depth of coverage and unique or multiple strains
per species. Our analysis of the simulated data shows that probabilistic method-based
tools such as HaplotypeCaller and Mutect2 from the GATK toolset show the best
performance. By applying these tools to longitudinal gut microbiome data from the
Human Microbiome Project, we show that the genetic similarity between longitudinal
samples from the same individuals is significantly greater than the similarity between
samples from different individuals. Our benchmark shows that probabilistic tools can
be used to call metagenomes, and we recommend the use of GATK’s tools as reliable
variant callers for metagenomic samples.
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INTRODUCTION

Short-read metagenomic sequencing is the technique most
widely used to explore the natural habitat of millions of
bacteria. In comparison with 16S rRNA sequencing, shotgun
metagenomic sequencing (MGS) provides sequence information
of the whole genomes, which can be used to identify different
genes present in an individual bacterium and enables the
examination of other genomic features such as gene synteny
or genetic variation. In recent years, MGS datasets have been
generated to explore the composition of the gut microbiome
in a number of large human cohorts (Human Microbiome
Project Consortium, 2012; Zhernakova et al., 2016; Lloyd-Price
et al., 2017; Gacesa et al., 2020; Salosensaari et al., 2020).
Large inter-individual variation in gut microbial composition
has been widely observed, and variations in composition
have been linked to lifestyle, host genetics, health, and
disease. However, most of these associations reflect variations
in microbial diversity and bacterial abundance, and our
understanding of the genetic variations within gut bacteria
is still limited.

Enthusiasm is now rising for techniques that can assess the
genetic variation in the gut microbiome, which would allow us
to pinpoint the putative causal bacterial genes underlying the
observed associations and thereby generate testable hypotheses
for mechanistic research. Single-nucleotide variation (SNV)
refers to a one-nucleotide difference in a homologous region
of at least two organisms. SNVs are of major importance
for understanding the role of genetics in evolution, disease,
phenotypes, or population genetics dynamics. The first major
attempt to explore the bacterial genetic landscape revealed 10.3
million SNVs as well as many other types of genetic variants
in 252 fecal samples (Schloissnig et al., 2013). However, there
have been few efforts to assess the inter-individual differences in
bacterial genetic profiles.

Despite its potential, SNV calling in a metagenome
remains challenging. Many factors hamper the widespread
application of variant-calling analysis, including the low-
depth sequencing of individual genomes (which is especially
significant for microorganisms present in lower abundance),
large genomic variation (even within the same species), the
absence of comprehensive reference genomes, and the noise
introduced by next-generation sequencing errors. A plethora
of different software have been produced to separate SNVs
from sequencing errors after genomic mapping to a known

reference. However, most tools require deeply sequenced single
genomes with a known ploidy and, in all cases, mapping
to a homologous region for proper function. Metagenomes
also contain an unknown number of haploid organisms.
Additionally, the identification of homologous regions is
complicated by the presence of other bacteria that share
the same evolutionary history and by possible horizontal
gene-transfer events.

At present, there are several tools that have been developed
specifically for metagenomic variant calling, such as MetaSNV
(Costea et al., 2017) and InStrain (Olm et al., 2021). However,
other variant callers have also been designed to be ploidy
naïve or to address complications like an unknown number
of pooled samples, including VarScan2 (Koboldt et al., 2012),
freebayes (Garrison and Marth, 2012), and GATK’s Mutect2
(DePristo et al., 2011). Other widely used variant-calling tools
in the world of genomics include BCFtools and GATK’s
HaplotypeCaller (DePristo et al., 2011). All-in-all, these tools
fall into two categories: probabilistic tools that calculate
probabilities for a genotype given the read depth and quality
of the base pairs (e.g., BCFtools, Mutect2, HaplotypeCaller,
and freebayes) and non-probabilistic tools that call variants
that pass specific thresholds such as minimal read depth or
supporting reads (Table 1). While variant-calling benchmarks
have been carried out in the context of bacterial variation
(Yoshimura et al., 2019; Bush et al., 2020), currently, there
is no benchmark on the metagenomic realm, where more
complex issues exist.

We therefore aimed to benchmark different variant-
calling tools in the context of metagenomes. We simulated
complex metagenomic communities based on the 45
most abundant and prevalent gut microbial species across
populations and disease groups (Gupta et al., 2020),
which correspond, on average, to 74% of the human gut
metagenome composition. We then applied seven tools
to this simulated data and compared their performance
under different scenarios. We further applied the tools that
showed best performance on the simulated data, Mutect2 and
HaplotypeCaller, to longitudinal, metagenomic-sequenced data
from the Human Microbiome Project (HMP) (Schloissnig
et al., 2013). This revealed the high individual specificity
of microbial genetic variants, which allows them to be
used to distinguish samples from the same individual
taken at different times, with more power than bacterial
taxonomic abundance.

TABLE 1 | Summary of tools benchmarked and used for different analyses.

Tool name Probabilistic Pool population Joint calling Minimal coverage ROC curve Real data

BCFtools Yes No Yes No Yes No

freebayes Yes Yes Yes No Yes No

HaplotypeCaller Yes No Yes No Yes Yes

Mutect2 Yes Yes Yes No No Yes

VarScan2 No Yes No 8 No No

metaSNV No Yes Yes 4 No No

InStrain No Yes No 5 No No
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MATERIALS AND METHODS

Bacterial Species Selection and
Reference Genome Download
To determine which references would be used for variant
calling, we selected the 48 most abundant (mean relative
abundance > 0.5%) and prevalent (presence rate > 20%) bacterial
species from an integrated dataset of 4,347 publicly available
human stool metagenomes, which were pooled across multiple
studies encompassing various disease states (Gupta et al., 2020).
These 48 species accounted for a mean total abundance of
81% (Supplementary Table 1), indicating that they capture a
substantial proportion of human gut microbial composition.
From these, three unclassified species were removed because
no clear reference genome could be selected. The remaining
45 species accounted for 74% of mean abundance. To reach a
100% composition, we included one extra species (Streptococcus
australis) with a dummy high abundance of 26%. We then
used InSilicoSeq’s (Gourlé et al., 2019) Download_ncbi script
to query GenBank for the assemblies of the selected species
using Biopython’s entrez (Cock et al., 2009) Python package.
When multiple assemblies were found for a given bacterial taxon,
a reference genome was randomly selected from among the
available assemblies. The reference used and the quality statistics
are presented in Supplementary Table 2. Quality statistics
measured include number of contigs; total length of the genome;
minimum and maximum contig length; N50, N75, and N90
(shortest contig length needed to cover 50, 75, and 90% of the
genome, respectively); and auN (area under the curve of all
possible Nx metrics).

Synthetic Read Generation
We considered two different scenarios: a uni-strain scenario in
which only one dominant strain exists per species and a multi-
strain scenario where two dominant strains exist per species.
We generated two sets of synthetic variants, considered true
positives (TP), by randomly changing 1% of the total nucleotides
in each of the reference genomes (including the dummy taxa).
The choice of this SNV rate was based on a previous estimate
that found that the SNV diversity of most intestinal species
was around 1% (range 0.018–3.9%) (Truong et al., 2017). The
first dataset was used for the uni-strain scenario. The second
dataset was then combined with the first, and the combined
set used as the multi-strain scenario. Additionally, we repeated
the simulation with 4% variation to reflect highly divergent
strains and assess whether tools performance differed for highly
divergent species.

Using the mutated reference genomes, we ran InSilicoSeq
(iss generate) (Gourlé et al., 2019) on the known bacterial
taxonomy table (–abundance_file) to generate a simulated set
of ∼15 million Hiseq paired-end reads, a sequencing depth
similar to other metagenomic datasets (Zhernakova et al.,
2016; Byrd et al., 2021). InSilicoSeq simulates reads using an
error model based on Illumina’s Hiseq technology. We can
estimate the expected genome coverage by adjusting the Lander–
Waterman estimation method for computing coverage by the

abundance of the taxon (Lander and Waterman, 1988). Using
the reference genomic length, simulated abundance, read length
(126 bp), and number of reads, we estimated the expected
coverage for each of the microbial species using Equation (1).

Expected coveragei =
Reads × 126 × Abundancei

Genome lengthi

Equation 1. Expected coverage of a given species
i. Reads is a constant per simulation indicating the
number of simulated reads. Abundance indicates the
relative abundance of a species (0–1). Genome length
is the total number of base pairs in the reference
genome of a species i.

Read Trimming
The simulated dataset was trimmed following a typical
metagenomics pipeline. We removed low-quality reads from the
raw metagenomic sequencing data using KneadData (version
0.7.4). KneadData can also remove host genome-contaminated
reads, which should not exist in the simulated scenario, but
is necessary in real-life human-derived microbiome projects.
KneadData uses Bowtie2 (version 2.3.4.3) (Langmead and
Salzberg, 2012) and Trimmomatic (version 0.39) (Bolger
et al., 2014). In brief, the data-cleaning procedure includes
two main steps: (1) filtering out of the human genome-
contaminated reads by aligning raw reads to the human
reference genome (GRCh37/hg19) and (2) removal of
adaptor sequences using Trimmomatic (default trimming:
SLIDINGWINDOW:4:20 MINLEN:70).

Genome Mapping
We used the standard setting (–sensitive mode) of Bowtie2
(version 2.3.4.3) (Langmead and Salzberg, 2012) to map the
simulated metagenomic reads to the unmutated original
reference genomes (the reference genomes were mapped one at a
time), using default options. Reads were sorted using SAMtools
(version 1.9) (Li et al., 2009), and duplicates were marked
and removed by running the MarkDuplicates module (version
2.18.26-SNAPSHOT) (REMOVE_DUPLICATES = True)
of Picard. We cleaned the resulting BAM files using
the CleanSam module (version 2.18.26-SNAPSHOT)
of Picard.

Redundancy of Genome Assessment
To compute the similarity between the 46 chosen genomes,
we used Mash (Ondov et al., 2016) with a k-mer size of 17
and a sketch size of 10,000. In addition, we estimated the
proportion of multi-mapping reads in a combined reference
of all 46 species. With this, we aimed to characterize how
much genome homology would impact read assignment. We
therefore extracted the information regarding the number
of concordant reads (i.e., both pairs mapping meaningfully),
concordant reads with multiple equally good mapping positions,
pairs that mapped non-concordantly, unpaired reads mapped
uniquely, and unpaired reads mapping to multiple positions.
We estimated the number of multi-mappers by summing both
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paired mapped and unpaired mapped equally well mapping reads
(Equation 2).

Multi_mapping rate =

2 ×
(
Multi_mapped pairs

)
+Multi_mapped unpaired reads

2× Paired read number

Equation 2. Multi-mapping rate. The number of multi-mapped
reads include two times the number of multi-mapped pairs and
the unpaired reads that were mapped to multiple positions.

In addition, if we consider non-concordant pairs as reads
mapping to an incorrect position (since there are no structural
variations in the reference), we can get a second estimate of the
reads mapping to positions other than their origin (Equation 3).

Incorrect or multi mapping rate =

Non_concordant pairs+ Multi_mapping reads
2× Paired read number

Equation 3. Incorrect or multi-mapping rate. The number of
multi-mapped reads include two times the number of multi-
mapped pairs and the unpaired reads that were mapped to
multiple positions. Non-concordant pairs refer to pairs where
both reads mapped to a single position but do not follow the
expected read orientation.

Variant Calling
Using the cleaned BAM files and the reference (not-mutated)
genomes, we performed variant calling using the following tools
and specifications.

BCFtools
BCFtools variant calling is based on BCFtool’s mpileup output.
For each bacterial alignment, we used mpileup (default options)
and BCFtools call. Ploidy was set to 1, and we used the multi-
allelic calling algorithm (-m). The BCFtools algorithm does not
consider a population of pooled samples, and as we run it on a
sample-by-sample basis, it only assesses two possible genotypes:
reference or alternative. It is also worth noting that in order to
calculate likelihoods, BCFtools uses a prior based on the human
effective population size (theta) of 0.0011.

Freebayes
freebayes is a haplotype-based variant caller (Garrison and
Marth, 2012). This means that instead of calling variants
position-by-position based on an aligned read, it checks the
whole haplotype of the read independently of the precise
alignment positions. This solves the issue of multiple ambiguous
alignment possibilities between the read and the homologous
genomic region. We set ploidy to 1. As we have an unknown
number of pooled samples (bacteria) that might align with a
homologous region, we set the parameter –pooled-continuous.
The joint-calling options –min-alternate-count and –min-
alternate-fraction were set to 2 and 0, respectively.

1https://samtools.github.io/BCFtools/call-m.pdf

HaplotypeCaller
GATK’s assembly-based variant caller HaplotypeCaller (DePristo
et al., 2011) is able to handle non-diploid organisms as well as
pooled experiment data. We therefore applied HaplotypeCaller
with default settings, with the exception of setting ploidy to 1.
Haplotypes are called by HaplotypeCaller via local re-assembly
of regions of a potential variant site, from which a pair-HMM
alignment of reads to haplotypes is generated. In the final step,
the algorithm determines the likelihoods of the genotypes and
reports the most likely genotype at each site2.

Mutect2
GATK’s Mutect2 (DePristo et al., 2011) uses a similar approach
to HaplotypeCaller in calling variants, including active region-
based identification, assembly-based haplotype reconstruction,
and pair-HMM alignment of reads to haplotypes. However,
whereas HaplotypeCaller is designed to call germline variants,
Mutect2 is designed to call somatic variants. Mutect2 therefore
includes somatic-specific genotyping and filtering steps. It is
designed to have a high specificity but cannot calculate reference
confidence and define ploidy. We employed Mutect2 in tumor-
only mode with default settings but including “–af-of-alleles-not-
in-resource 0.33,” as recommended when using a non-human
organism as input3.

VarScan2
VarScan2 employs a heuristic approach to call variance that
relies on parameter thresholds to determine variants (Koboldt
et al., 2012). Given a SAMtools mpileup-formatted alignments
file, VarScan2 first performs a read-filtering step that discards
any reads that align to multiple locations or do not comply with
the quality criteria. VarScan2 then screens the alignments on a
per-read basis to detect sequence variance and merges variants
detected in multiple reads into unique SNPs and indels. Only
variants meeting user-defined parameter thresholds are reported.
Here, we applied the VarScan2 mpileup2snp algorithm using
default settings, including minimum read depth of 8, base quality
of 15, supporting reads of 2, allele frequency of 0.01, and a Fisher’s
exact test p-value below 0.99.

MetaSNV
MetaSNV was specifically designed for metagenomic datasets and
can handle large multi-species references (Costea et al., 2017).
We applied the default parameters of metaSNV for SNV calling.
metaSNV determines the existence of a candidate variant on
a per-nucleotide basis, building upon the mpileup tool in the
Samtools suite (Li et al., 2009). All reads from all samples that
align to a given position are considered together. If at least four
variant-containing reads cover a position (across all samples), it
is considered a potential SNV. Variants are split into two classes:
population and individual variants. Population variants are non-
reference nucleotides observed in > 1% of all reads combined
across all samples. Individual variants are those that fall below the
1% population frequency threshold but are confidently observed

2https://gatk.broadinstitute.org/hc/en-us/articles/360036712151-HaplotypeCaller
3https://gatk.broadinstitute.org/hc/en-us/articles/360037593851-Mutect2
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in at least one sample (at least four reads containing the variant).
If multiple different non-reference nucleotides are observed, all
are reported independently.

InStrain
InStrain (Olm et al., 2021) was devised to detect SNVs and
profile intra-population genetic diversity based on metagenomic
short-read alignment. InStrain first performs read filtering to
remove read pairs that do not meet the quality criteria. Then,
for each position with multiple aligned reads supported in
the reference genome, both biallelic and multiallelic SNVs
are identified by detecting bases that are different from the
reference genome at the same position. The frequencies of
SNVs are also counted. Additionally, if the gene annotation for
the reference genome is provided, InStrain also classifies the
identified SNVs as synonymous, non-synonymous, or intergenic
SNVs. In our benchmark testing pipeline, we ran InStrain with
default parameters: minimal coverage of a position of five reads,
minimal frequency of an SNP of 0.05 and an FDR (based on
a priori empirical tests) of 1× 10−06.

Joint Variant Calling
Most variant callers pull information from a population of
samples to make their calling more accurate. The same options we
described above were therefore used to perform variant calling on
two BAM files at the same time to test for improved performance.
Each of the BAM files represented a different scenario, namely,
uni-strain or multi-strain. For BCFtools, we performed a joint
mpileup call followed by a BCFtools call. For freebayes, we
included both BAM files in the input. In HaplotypeCaller and
Mutect2, we performed classic joint calling by calling variants
simultaneously across BAM. In metaSNV, we profiled both BAM
files together. To the best of our knowledge, variant calling in
InStrain and VarScan2 does not benefit from joint variant calling
and was not done.

Statistics Assessment
Variant calling outputs were reformatted to a homogenous
format. From the VCF outputs (BCFtools, freebayes,
HaplotypeCaller, Mutect2), we extracted information regarding
chromosome, position, reference allele, and alternative allele.
When variants of more than one nucleotide were reported,
they were decoded into as many independent variants as
polymorphisms found. If the Phred quality score was available,
this information was included in the standardized file. Multiple
alternative allele variants were encoded as independent
variations. MetaSNV was similarly reformatted, and multivariate
positions were decoded as independent variants. InStrain’s
positions were transformed to 1-based indexing, and each
nucleotide that did not match the reference was decoded as an
independent variation.

In joint variant calling, for VCF files, we used the predicted
genotype in each of the input files.

The set of sequence-covered variants was determined by
overlapping the list of simulated true variants with the coverage
profile generated by Samtools (v1.9) mpileup.

Next, the list of mutations covered was overlapped with each
of the tool’s variant calls. True positives (TP) were when the
variant was present in both the called profile and the covered
variants. False negatives (FN) were when the covered variants
were not present in the called profile. False positives (FP) were
when the called variants were not present in the covered profile.
True negatives (TN) were all the covered positions that remained
after subtracting TPs, TNs, and FPs. Sensitivity was calculated
using Equation (4) and precision using Equation (5).

Sensitivity =
TP

(TP + FN)

Equation 4. Sensitivity. TP, true positives; FN, false negatives.

Precision =
TP

(TP + FP)

Equation 5. Precision. TP, true positives; FP, false positives.

Receiver Operator Characteristic Curves
We generated sensitivity and precision statistics using the
different Phred score thresholds provided in the probabilistic
methods BCFtools, freebayes, and HaplotypeCaller. We
generated 50 quality thresholds ranging from the 2% quantile to
the 100% quantile of the Phred score distribution in each sample.

Variant Calling in Real Data
Metagenomic data from the HMP (Schloissnig et al., 2013)
belonging to 43 participants from samples taken at two
timepoints up to a year apart (86 samples total) were downloaded
from the HMP public repositories4. We then selected IDs
based on Supplementary Table 1 from Schloissnig et al.
(2013). Reads were pruned of human contamination, trimmed
using KneadData, and mapped to the reference genomes of
10 representative species that we previously benchmarked on
simulated data. These representative species were selected by
calculating the mean sensitivity and precision statistics measured
for each species in the simulation dataset across all tools.
The genomes were selected to represent both good and poor
SNV calling performance and the overall genetic diversity
(Supplementary Figure 2). A Manhattan distance matrix was
then calculated based on mean sensitivity and precision of each
species. Finally, based on the calculated Manhattan distance
matrix, we assigned all species into 10 clusters using the
partitioning clustering pam() function in R. A representative
species in each cluster was randomly selected. The representatives
were merged in a unique reference and mapped against the
86 paired-end samples using Bowtie2 (Langmead and Salzberg,
2012). Picard’s MarkDuplicates and CleanSam were used to clean
the mapped reads. Variant calling on BAM files was performed
with HaplotypeCaller and Mutect2, as described above.

Genetic Distance Calculation
We computed the genetic distance between pairs of HMP
samples. For this, we first defined a set of variants (reference

4https://hmpdacc.org/hmp/
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variants) by including all called variants in any taxon and
sample that were present in at least two HMP samples
(removing singletons). We further produced a site frequency
spectrum plot by counting the number of individuals in
which each variant was observed. We profiled each sample by
creating a presence–absence matrix for each of the reference
variants. We then computed the Manhattan distance [python
scipy, spatial.distance.pdist (metric = “cityblock”)] between
the different samples. We also reproduced the same analysis
using only the variants found in each of the species in the
reference genome.

Clustering of Intra-Individual and
Inter-Individual Samples
Genetic distances were clustered using hierarchical clustering
with the nearest point algorithm. The number of samples
clustering together at both baseline and follow-up were counted.
In addition, we did a second clustering based on Bray–Curtis
distances using the HMP abundance data generated with the
previously described settings (Chen et al., 2020). The distances
between the same individual at baseline and follow-up (intra-
individual) and among independent samples (inter-individual)
were compared using the Wilcoxon test.

Statistical Analysis
Rv3.5.1 and Pythonv3.7.0 were used for plotting and statistical
calculations. To address the effect of bacterial abundance
and genome coverage on the specificity and sensitivity of
the different tools, we associated the precision and sensitivity
of different tools with bacterial abundance and coverage
using Spearman’s correlation. The effect of genome quality
on precision and sensitivity was assessed by linear modeling
(ordinary least squares). We built a null model explaining
either precision or sensitivity while including an interaction
effect of tools and simulation design (uni-strain or multi-
strain), which was found to be significant. We then built
a second model including either the N50 or the number
of contigs as a proxy of genome quality on top of the
null model. We also built a third model that considered an
interaction effect of the genome quality and tool and design. We
assessed significance among the nested models using a likelihood
ratio test.

To address the effect of simulation benchmark metrics and
the number of variants called in a genome on real data
clustering performance, we built a linear model using the
percentage of samples where baseline and follow-up clustered
together as the dependent variable and the tool, benchmarked
sensitivity and accuracy, and number of called variants per
bacteria as regressors.

We used Wilcoxon tests to estimate whether there were
differences between the specificity and sensitivity statistics
of joint-called samples or individually called samples. In
addition, we compared sensitivity and accuracy metrics between
the simulations with 1 and 4% of mutated positions using
Pearson correlation.

We set a significant p-value threshold of 0.05.

Data Availability
The pipelines used for simulation and variant calling in simulated
data and for variant calling in real data were written in
Snakemake (v5.9.1) (Köster and Rahmann, 2012) and can be
found, together with the plotting and statistical analyses scripts,
in our Github repository5.

RESULTS

Experimental Design and Simulations
We first simulated metagenomic datasets. We did so by including
the 45 most common bacterial species, which accounted for an
average 74% of bacterial abundance in a recent large multi-
ethnic study (Gupta et al., 2020) and adding one genome with
the remaining abundance to reach 100%. The reference genomes
for the 46 species were randomly selected from the species
genomes available in the NCBI. We then introduced known
SNV variants in 1% of the genomic positions. On average, the
number of contigs found in each reference genome was 112.17
and ranged between 1 and 1,541 (Supplementary Figure 1), and
the average N50 was 1,297,250.67 base pairs (5,884–6,271,157)
(Supplementary Figure 1). The N50 distribution of all reference
genomes followed a bimodal distribution, showing the existence
of both high- and low-quality reference genomes.

To address the presence of homology among species, which
may bias read mapping, we measured the k-mer-based distance
of the reference genomes using Mash (Ondov et al., 2016).
We found a mean Mash distance of 0.35 (0.04–1, SD = 0.08)
(dendrogram shown in Supplementary Figure 2). In addition,
we counted the number of reads that mapped equally well in more
than one position to a concatenated multi-reference genome and
found 8% of reads to be multi-mappers. However, if we consider
discordant pairs as incorrectly assigned reads due to homology or
horizontal gene transfer events, this percentage grows to nearly
36% (if multi-mappers are also considered), which will influence
the false positives identified by SNV-calling tools.

We processed the simulated reads (using KneadData for
trimming and Bowtie2 for mapping) and ran the seven different
variant-calling tools (Figure 1). Of these, four are probabilistic
methods—BCFtools, Mutect2, HaplotypeCaller, and freebayes—
meaning that they use the coverage, base call quality, and error
rate expectations to infer genotype likelihoods and call non-
reference nucleotides. We used options for haploid variant calling
and, as a metagenome, can be considered as a pooled sample of an
unknown number of multiple organisms; if an option for running
an unknown number of pooled samples existed, we used it (e.g.,
in freebayes). The other three tools—VarScan2, metaSNV, and
InStrain—are non-probabilistic methods and are mainly based
on applying specific filters as the minimal coverage to consider
a variant, which we set to the default value for each tool (Table 1).

We ran two different simulations, one assuming that one
unique strain was present per bacterial taxa (uni-strain scenario)

5https://github.com/GRONINGEN-MICROBIOME-CENTRE/Groningen-
Microbiome/tree/master/Projects/Metagenomics_SNVcalling_Benchmark
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FIGURE 1 | Representation of the pipeline used. Mutations are introduced into each reference genome before simulation. Simulated reads are trimmed, and human
contamination removed. Reference genomes are indexed and mapped using simulated cleaned reads. Alignments are further cleaned before variant calling. All
variant outputs are converted to the same format. Introduced variants covered by simulated reads are used as a set of true positives. Variants are checked in the
formatted variant calls, and receiver operator characteristic (ROC) curves are calculated by repeating this process at different quality thresholds. All statistics are
combined in a single file.

and another assuming two different strains per bacterial taxa
(multi-strain scenario).

Probabilistic Methods Show Better
Sensitivity and Precision
We computed sensitivity and precision statistics from the
variant-calling results (Supplementary Table 3). In the uni-strain
scenario, all four probabilistic methods showed high sensitivity
for most of the organisms (Figure 2A). Mutect2 and freebayes
had the highest sensitivity, recalling nearly 100% of covered
variants, followed by HaplotypeCaller and InStrain (the only
non-probabilistic method with high sensitivity), which had low
sensitivity for some taxa. BCFtools ranked 5th, and there was a
large difference in performance between metaSNV, which showed
the largest variability among taxa, and VarScan2, which had
poor sensitivity in most samples. Both metaSNV and VarScan2

missed many covered variants (Figures 2C,D). Precision was
also higher in the probabilistic tools (Figure 2B), where both
BCFtools and HaplotypeCaller achieved a similar performance,
with a low number of FP (Figure 2E) and little variation in
precision among taxa compared with other tools. They were
followed by Mutect2 and InStrain. MetaSNV showed a better
average precision than freebayes, but also had a higher standard
deviation. Once again, despite its low number of FN, VarScan2
was penalized by its low number of TP and showed the highest
variation and average low precision.

Overall, probabilistic methods showed the best compromise
between sensitivity and precision (Figure 2F). They showed a
lower precision and sensitivity variability among taxa compared
with non-probabilistic methods, which were penalized by
unequal coverage in low-abundance species. This was especially
true when comparing sensitivity. However, the most sensitive
tools, freebayes and Mutect2, showed high variability in their
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FIGURE 2 | Single strain variant-calling statistics of seven different tools. Colors indicate different tools. (A) Sensitivity (TP/TP + FN) of each tool. Tukey box plot
presents the distribution of precision. Dots show precision per individual bacteria. (B) Precision (TP/TP + FP) of each tool. Tukey’s box plot presents the distribution
of precision. Dots show precision per individual bacteria. Distribution of (C) TP, (D) FN, and (E) FP per tool as Tukey box plots. Individual dots indicate bacteria over
1.5 times the interquartile distance. (F) Precision vs. sensitivity plot. Dots indicate mean values among all bacteria. Error bars represent the standard deviation from
the mean. (G,H) ROC curve of probabilistic methods. X-axis represents the quantile Phred filter. (G) Mean sensitivity changes with changes in Phred score. Line
shows the mean value among bacteria. Shading represents the standard deviation from the mean. (H) Mean precision changes with Phred score changes. Line
represents mean value among bacteria. Shading represents the standard deviation from the mean. TP, true positives; FP, false positives; FN, false negatives.

precision. HaplotypeCaller, with the highest precision, seems a
better option than BCFtools, which had a lower sensitivity despite
having a similar precision.

In addition, we tested tool performance by including more
divergent strains from the reference (4%) in a uni-strain scenario.
These results replicated our observations from the 1% divergence

scenario (Supplementary Figure 3) and showed an overall
high correlation coefficient both in sensitivity and precision
(Supplementary Table 4).

An additional advantage of probabilistic methods is the
availability of a quality metric that can be easily tuned to
recalculate sensitivity and precision values (Table 1). We
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generated an ROC curve for different values of this quality in
freebayes, HaplotypeCaller, and BCFtools (Figures 2G,H) and
observed an almost linear decrease in sensitivity with higher-
quality thresholds in all three tools. freebayes remained the
most sensitive method at almost any quality threshold. BCFtools
achieved a better sensitivity than the other two tools at higher-
quality thresholds, which seems to indicate that the highest
quality values of freebayes and HaplotypeCaller have, on average,
more FP. The precision curve showed large variability among
bacteria. Both BCFtools and freebayes, which showed the highest
precision without any tuning, did not improve their precision
with higher thresholds, on average. However, their precision
did decrease at the highest thresholds, probably showing the
existence of FP when using a high-quality threshold. On the
other hand, freebayes’ precision was improved substantially by
increasing the quality threshold, but needs up to a 75% quantile,
on average, to catch up to the other tools, which results in an
acute decrease in sensitivity. However, given the large number
of low-quality calls in freebayes (Supplementary Figure 4), a
minimal quality filter may be required to substantially improve
the performance of this tool.

We further explored the sensitivity and precision of tool
performances in the multi-strain scenario (Supplementary
Table 5). Since both strains only differed in the genomic locations
where the 1% of variants were generated, no structural or
copy number variations were included. The major difference
compared with the uni-strain scenario was that there were twice
as many variants. Therefore, there might be multiple variants in
the same locus, and the number of reads covering a single variant
from a specific strain were now reduced by half (both strains are
assumed to have equal abundance, so each has half the abundance
simulated in the uni-strain scenario).

Sensitivity showed an acute decrease (Supplementary
Figure 5). While some tools achieved a mean sensitivity of
∼90% in the uni-strain case, in the multi-strain scenario, this
value was only achieved for some species. Such species did not
have a significantly higher abundance than the ones with lower
sensitivity. Mutect2 and freebayes remained the two tools with
the highest recall, with median sensitivity around 50%, which
might be explained by the fact that the most-covered positions
might not include the variant from one of the strains but rather
the reference allele from the other strain. This could increase
the FNs, despite the mutation not being covered. The precision
results showed the same pattern and range as in the single-strain
scenario since FNs are not used, showing high estimates mainly
in HaplotypeCaller and BCFtools. ROC curves in BCFtools,
freebayes, and HaplotypeCaller also showed similar results to the
uni-strain scenario.

Joint Variant Calling Benefits Complex
Scenarios With Multiple Strains
Most of the tools analyzed also enable joint variant calling
of multiple samples, meaning that different samples (in our
case simulations) are pooled together during the variant-calling
process, in contrast to the independent variant calling in each
individual sample that we had performed previously. This could

improve overall performance, although it would make it more
difficult to detect singletons. We combined our two simulated
datasets in order to perform joint variant calling in the tools
where we expected this would be beneficial: BCFtools, freebayes,
Mutect2, HaplotypeCaller, and metaSNV (Figure 3). Our results
show that joint variant calling increased the sensitivity in the
multi-strain scenario (p = 3.68 × 10−18) (Figure 3C). Precision
was also significantly improved in freebayes, while Mutect2,
BCFtools, and HaplotypeCaller had a significant decrease in
precision (Figure 3D). In the uni-strain scenario, joint calling
only improved metaSNV’s sensitivity (Figure 3A) and freebayes’
precision (Figure 3B) and led to an overall decrease in both
precision and sensitivity.

Factors Affecting Variant-Calling
Performance: Species Abundance and
Coverage Have a Tool-Specific Effect,
Whereas the Effect of Genome Quality Is
Constant
The precision and sensitivity of SNV calling is affected by both
species’ abundance and coverage, with the non-probabilistic tools
VarScan2 and metaSNV especially affected (Figure 4). For species
with low or medium abundance, the precision and sensitivity
of metaSNV and VarScan2 were lower than for other tools,
and the performance of these two tools improved linearly as
species coverage increased. For species with a low abundance,
the sensitivities of InStrain and BCFtools were significantly
affected by the coverage. The performances of HaplotypeCaller
and Mutect2 were not significantly affected by species abundance
and coverage: their precision and sensitivity were high and stable
even in low abundance species and in both uni- and multi-
strain settings. The performance of freebayes was unstable and
not linearly associated with species abundance and coverage
(Supplementary Table 6).

In addition, we tested if the reference genome chosen has a
significant effect on tool performance using two different proxies
of genome quality. First, we tested the tools with the classic
N50 metric and found no significant effect on either sensitivity
or precision metrics. The number of contigs per reference
did have an overall significant negative effect on sensitivity
(p = 8.42 × 10−6) and precision (p = 3.76 × 10−9), but there
was no significant interaction effect with specific tools.

Genetic Distances Are More Individual
Specific Than Bacterial Abundance
Finally, we decided to apply the best performing tools to real
HMP data from 43 individuals taken at two timepoints up to 1
year apart (Schloissnig et al., 2013). For this, we chose Mutect2,
which showed the best sensitivity under all conditions tested,
and HaplotypeCaller, which showed the best precision and a
better sensitivity than BCFtools. The overall genetic distance
between samples was estimated from the combined SNV profile
from 10 selected bacteria. The number of variants identified
with both methods included a large number of singletons
(Figure 5A). We therefore considered only variants observed in
at least two samples. The genetic distance between individuals in
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FIGURE 3 | Comparison of variant-calling performance between joint calls and single calls. Y-axis presents tools, including a combination of all tools (All). Tukey box
plots are shown and colored according to the variant-calling mode. Single points represent samples >1.5 times the interquartile distance. Asterisks indicate
statistically significant differences (p < 0.05) in a paired Wilcoxon test comparing both groups. (A) Sensitivity metrics in the uni-strain scenario. (B) Precision metrics
in the uni-strain scenario. (C) Sensitivity metrics in the multi-strain scenario. (D) Precision metrics in the multi-strain scenario.

FIGURE 4 | Effect of average depth of genome coverage and species abundance on variant calling performance. Each dot represents a sample. (A) Effect of
reference genome coverage on precision and sensitivity of each tool. (B) Effect of species abundance on precision and sensitivity of each tool. Trend lines were fitted
with local polynomial regression (LOESS). Shading represents the 95% confidence interval of the trend line.
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FIGURE 5 | Variant calling on real data. (A) Site frequency spectrum of variants in the whole metagenome called by HaplotypeCaller and MetaSNV. Total site
frequency spectrum is the sum of the variants in the 10 chosen bacterial taxa. (B) Genetic distance between samples. Manhattan distances were calculated from the
SNV profile of each sample. Tukey boxplot shows the distribution of distances between samples belonging to the same individual at two timepoints (intra-individual)
and between samples from different people (inter-individual). These distances were used to cluster the data. (C) Tukey boxplot of the distribution of Bray-Curtis
dissimilarities computed from the estimation of taxonomic abundance between samples from the same individual and from different people.

both Mutect2 and HaplotypeCaller, as measured by Manhattan
distance, showed that samples from the same individual clustered
together in 93% of cases (40 of 43 samples) (Table 2). Using
individual bacteria instead of the combined genetic distance,

the clustering values ranged from 4.6% (Eubacterium hallii,
both tools) to 97% (Bacteroides uniformis, using Mutect2)
(Table 2). Bacteria with higher resolution potential showed
no correlation with simulation scores but had a positive
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TABLE 2 | Single nucleotide variation (SNV) profiles in the Human Microbiome Project (HMP) data.

Taxa_profiled Tool Number of variants % Clustered Sensitivity Precision

Akkermansia_muciniphila M 132,878 20.9 0.955 0.992

Akkermansia_muciniphila H 115,968 18.6 0.952 0.996

Alistipes_shahii M 180,781 74.4 0.984 0.852

Alistipes_shahii H 98,442 69.8 0.951 0.976

Bacteroides_dorei M 264,480 93 0.968 0.290

Bacteroides_dorei H 225,677 93 0.453 0.263

Bacteroides_uniformis M 272,535 97.7 0.994 0.705

Bacteroides_uniformis H 218,598 93 0.957 0.986

Dorea_formicigenerans M 120,086 16.3 0.974 0.682

Dorea_formicigenerans H 77,326 7 0.879 0.881

Eubacterium_hallii M 75,369 4.7 0.989 0.802

Eubacterium_hallii H 48,786 4.7 0.963 0.964

Eubacterium_rectale M 234,000 79.1 0.953 0.830

Eubacterium_rectale H 189,376 65.1 0.949 0.993

Faecalibacterium_prausnitzii M 324,595 46.5 0.972 0.931

Faecalibacterium_prausnitzii H 217,101 37.2 0.970 0.995

Ruminococcus_gnavus M 86,590 23.3 0.983 0.738

Ruminococcus_gnavus H 52,391 16.3 0.922 0.910

Ruminococcus_sp_5_1_39BFAA M 182,558 34.9 0.964 0.799

Ruminococcus_sp_5_1_39BFAA H 107,252 14 0.938 0.968

Total SNV profile M 1,873,872 93 NA NA

Total SNV profile H 1,350,917 93 NA NA

Taxa profiled indicates the name of each of the chosen bacteria profiled. Total SNV profile refers to the total profile, including all variants. Tool indicates the variant caller
used: M, Mutect2; H, HaplotypeCaller. Number of variants indicates the total number of variants uncovered with presence in at least two samples. % Clustered indicates
the percentage of samples that clustered together at both follow-up and baseline. Sensitivity and precision are the statistics estimated from the uni-ref simulation.

association with the number of called variants (lineal model,
F-test, p = 5 × 10−4). Using the complete variant dataset,
we found a highly significant difference in the distribution of
distances between intra-individual and inter-individual samples
(Wilcoxon test, HaplotypeCaller: p = 1.31 × 10−28, Mutect2:
p = 1.51 × 10−28) (Figure 5B). These results did not
improve when we only considered variants present in both
methods at the same time. In addition, we performed the
same analysis based on taxonomic abundance, where we could
cluster together 63.7% of the samples (27 of 43) (Figure 5C),
highlighting the stability of genetic variation in comparison with
taxonomic abundance.

DISCUSSION

Microbiome genomic analyses are currently complicated by
several factors, including low taxon-specific read depth, unequal
taxonomic abundance, the existence of orthologs and paralogs,
and horizontal transfer of genetic material. On top of these
issues, single nucleotide variant calling suffers from the lack of
high-quality reference genomes and the pooling of a population
consisting of an unknown number of genomes. This benchmark
study therefore assessed the performance of current variant
callers in this complex scenario.

We used a homogenous pipeline that does not consider the
complexity layer of read mapping since we used the default
bowtie2 options. We used 45 microbial species that are highly

abundant and prevalent in the human gut (Gupta et al., 2020)
to create two simulation datasets that mimic HiSeq MGS
experiments. Reference genomes for each of the species were
randomly selected from GenBank and contained both high- and
low-quality assemblies. Although the number of contigs present
in the assembly, which might indicate genome fragmentation
and poorer assemblies, did correlate with an overall decrease in
sensitivity and precision, this effect was not tool specific and
should not bias our comparison. This does, however, indicate
that genome quality is an important factor to consider in
the variant calling processing. In this line, it is important to
highlight that previous benchmarks of bacterial variant calling
have shown that reference selection is a crucial step (Bush et al.,
2020): greater genetic distance between the sequenced strain and
the reference leads to poorer variant-calling performance. One
possible approach to improve the accuracy of genetic analyses of
the microbiome is to use metagenomic assembled contigs from
the studied metagenome as the reference. For example, Lou et al.
(2021) recently used this approach coupled with InStrain variant
calling, and it can be applied with any of the variant-calling
methodologies we describe here. On the other hand, taxonomic
abundance, which is related to the mean coverage of the genome,
does influence variant-calling performance. This is especially true
in the non-probabilistic methods that rely on hard cutoffs for the
number of reads supporting a variant. In practice, this threshold
might be optimized according to the bacterial abundance and
number of reads, but we used default threshold parameters for
the purposes of this work.
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We chose to benchmark four commonly used probabilistic
variant callers: BCFtools, Mutect2, HaplotypeCaller, and
freebayes. We also included VarScan2 because it performs well
for pooled samples and in circumstances where probabilistic
methods do not work. We also chose to test InStrain and
metaSNV as representatives of variant callers developed
specifically for metagenomic datasets. Of these tools, freebayes,
Mutect2, metaSNV, and InStrain are also able to identify variants
from a population of samples, as is the case if several strains
coexist, or homologous regions from different taxa align. Variant
calling was performed independently in each simulation set and
bacteria, as was mapping. However, this might not be ideal for
some tools. InStrain, for instance, recommends mapping to a
database containing all reference genomes so that multi-mapping
reads will be penalized with lower mapping quality. VarScan2
also relies on mapping quality trimming, which penalizes
multi-mapping reads.

Our simulations consisted of two scenarios. In the first, only
one strain per species was simulated. This might correspond to
the real gut metagenomic data, since one major strain dominates
the environment in many cases (Truong et al., 2017). In the
second scenario, we assumed the existence of two strains with
equal abundance per species. Both strains were simulated as
only containing SNVs and with no other structural variations,
which is an important simplification to consider when looking
at our results. Our performance estimates only considered
positions covered by reads, and thus, if most variants were
missed due to a lack of coverage, we could not consider them.
This is a double-edged sword because, in the multi-strain
scenario, positions might be covered by one strain that does
not contain the variant, and we will thus overestimate the FN
fraction compared with the uni-strain scenario. Consistent with
this expectation, our sensitivity results here are about half of
those achieved in the uni-strain scenario. Nonetheless, the tool
comparisons in both scenarios are similar. Most tools achieved
high precision, particularly BCFtools and HaplotypeCaller. Both
these methods are probabilistic and do not consider population
variants, which means that the calls are more restrictive (no
multiple alleles are expected in a haploid genome) but have
more information to successfully call true variants. On the
other hand, freebayes and Mutect2 achieved higher sensitivity,
consistent with their ability to detect multiple variants per locus.
These results highlight that, while non-probabilistic methods
have been developed to deal with the issues associated with
MGS variant calling, probabilistic methods can still perform
better or similarly, at least when analyzing very abundant
bacteria. However, we also show that the performance of non-
probabilistic methods declined drastically for lower abundance
bacteria. This might highlight the necessity of fine tuning the
default threshold values according to the genome size and
the number of reads produced. This is especially true for
VarScan2, where default values are not tuned for metagenomic
calling and resulted in very restrictive cutoffs that reduced the
number of calls.

In addition, we also tested the differences in performance
of HaplotypeCaller, freebayes, and BCFtools, which all give
Phred-score quality values for their variant callers. Our results

highlighted that the highest-scoring variants tended not to be TP
and might indicate homologous regions with other bacteria. At
the same time, only freebayes benefited substantially from quality
filtering, which improved its precision as most of the variants
found were of very low quality.

Joint variant calling of the uni-strain and multi-strain
scenarios improved sensitivity in relation to non-joint variant
calling. However, joint variant calling negatively affected the uni-
strain results. As it is difficult to assess which situation is most
likely to occur in real data and, given the good performance
of non-joint variant calling in our simulation, we advocate
performing SNV calling per sample instead of joint calling.

Finally, we investigated real gut metagenomic data from the
HMP where we did not have certainty about which variants
are true or false. However, given the longitudinal sampling of
these HMP samples, we could use our variant set to compare
samples at baseline and follow-up, assuming that most genetic
variants would be stable within 1 year. Here we chose only 10
species for variant calling so that representatives of the different
performances in the simulated data were used. Variants were
profiled with two tools, HaplotypeCaller, which had the best
precision in our benchmark, and Mutect2, which had the best
sensitivity. Both tools showed good performance even for low-
abundance species. Our results show that both methods we used
to call HMP variants produced variant profiles that were closer
between samples taken from the same individual at different
times than among different individuals. In fact, we were able to
demonstrate that this individual specificity is even higher than
abundance-based estimations.

Variant-calling errors are expected to arise with lower read
depth [due to the relative abundance of a given taxon or
systematic bias during sequencing protocols (Browne et al.,
2020)], with lower sequencing quality in certain regions [due
to inherent sequencing biases that are platform dependent
(Ross et al., 2013)], and with wrongly mapped reads (possibly
in low-complexity or homologous regions), which have a
fundamental role in variant-calling performance. Of these
potential sources of bias, we assessed the effect of relative
abundance. However, all our simulations follow an Illumina
error model, which does not account for genomic features
prone to generate sequencing errors, except for errors related
to read position. With respect to incorrectly assigned reads,
we give an estimate of 36%, but further efforts are needed to
assess to what extent these incorrectly assigned reads impact
the variant calling results. Furthermore, our simulation assumed
that all introduced variants were neutral and occurred by chance
and did not take evolutionary forces into consideration. To
verify the SNV calling from short-read MGS data, variants
might be confirmed with whole-genome sequencing from single-
strain isolates.

Overall, this benchmark highlights the efficacy of using
probabilistic variant callers on metagenomic data. We
recommend using GATK’s HaplotypeCaller or Mutect2
depending on concerns about FP (use HaplotypeCaller) or
FN (use Mutect2). Both tools seem to perform equally well
in real data, where we found a similar power to cluster
follow-up samples.
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INTRODUCTION

Although rhizobacteria have been widely explored for their plant growth-promoting capabilities
and to manage various fungal and bacterial diseases in plants, viral diseases are an ongoing
challenge in the agricultural sector (Vinodkumar et al., 2017). As most plant viral diseases
are transmitted through vectors, researchers around the globe are utilizing biotechnological
approaches to generate resistant lines. Various antagonistic bio-agents contribute to host defense,
and various Bacillus species have been shown to produce these agents to protect against a wide
range of pathogens. Several reports have demonstrated the antiviral efficacy of various Bacillus
species against the cotton leaf curl virus (Ramzan et al., 2016), the cucumber mosaic virus in tomato
(Zehnder et al., 2000), the tomato mottle virus in tomato (Murphy et al., 2000), and the tobacco
mosaic virus in tobacco (Wang et al., 2009).

This bacterium is well known for the production of antibacterial, antiviral, and antifungal
substances like Bacillomycin D, Surfactin, and Bacillaene, which protect the plant from pathogenic
organisms (Chen et al., 2009). Additionally, the proteases and amylases produced by Bacillus
amyloliquefaciens are used in industrial applications (Prajapati et al., 2015, 2017). Bacillus species
belonging to this group are reported to have 24 diverse antimicrobial peptide (AMP) genes, which
lead to the production of numerous compounds such as iturin, bacilysin, bacillomycin, fengycin,
surfactin, mersacidin, ericin, subtilin, subtilosin, and mycosubtilin (Chung et al., 2008; Mora et al.,
2011). Moreover, Bacillus species synthesize various volatile and non-volatile compounds that
synergistically restrict plant diseases (Fernando et al., 2005; Mora et al., 2011). B. amyloliquefaciens
CB has been used to prevent stem rot of carnations, and it was observed that minimum percentage
disease incidence and maximum plant growth promotion occurred in plant treated with isolate
CB. Further detailed experimentation will be carried out to evaluate the in-depth potential of the
B. amyloliquefaciens CB.
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Here, we report a draft genome sequence of
B. amyloliquefaciens strain CB, which was isolated from
rhizospheric soil of the cotton plant, collected from a cotton farm
on the Tamil Nadu Agricultural University (TNAU) campus in
Coimbatore, Tamil Nadu, India. This bacterium is gram positive
with long rod-shaped, aerobic motile rods arranged singly or in
chains. B. amyloliquefaciens belongs to the group of free-living
soil bacteria, which aid to suppress plant pathogens and assist in
promoting plant growth.

VALUE OF THE DATA

The B. amyloliquefaciens CB draft genome can be used as
a base/reference sequence to explore and map specific genes
related to AMPs and other important enzymes. It could be
a valuable resource to conduct comparative analyses among
different species related to B. amyloliquefaciens, which may have
similar biocontrol properties.

METHODS AND DATA ANALYSIS

Bacterial DNA from the CB strain was extracted using phenol-
chloroform methodology, and purification was performed using
a Genomic DNA Clean and Concentrator (Zymo Research,
Irvine, CA, USA). One nanogram of highly purified and good-
quality DNA was used for the DNA fragment libraries prepared
using a Nextera XT DNA sample preparation kit. Sequencing
was performed on (2 × 150 paired-end reads with the Illumina
v2 reagent kit) (Illumina, San Diego, CA, USA) an Illumina
HiSeq system using the standard protocols described by the
manufacturer. In total, 4,623,289 reads were obtained, and
quality-based read trimming was done using the Trimmomatic
software (version 0.30) (Bolger et al., 2014) followed by quality
checking with FastQC (version 3.0) (Andrews, 2010). The
genome was assembled using GS De Novo Assembler v. 2.6,
ABySS v. 1.5.1, Celera Assembler v. 8.3rc2, Edena v. 3.131028,
Megahit v. 1.1.2, SOAPdenovo v. 2.04, Velvet v. 1.2.10, SPAdes v.
3.1.1, and SPAdes v. 3.11.0; and the final assembly was merged
using CISA v. 1.3 and submitted to the National Center for
Biotechnology Information (NCBI) GenBank having accession
no.WODE00000000. The total sequence length has been counted
up to be 4,113,229 bp consisting of 11 scaffolds/contigs, a contig
N50 of 675,513 with L50 of 3, with the largest contig size of
the submitted assembly being 1,050,139. The genome size was
estimated to be 4.11MBwith a guanine–cytosine (GC) content of
46.30%. Gene annotation was performed using NCBI Prokaryotic
Genome Annotation Pipeline (PGAP) (Tatusova et al., 2016),
which identified 3,847 protein-coding sequences (Table 1).

To infer the phylogenetic relationship, all the 119 assemblies
(Supplementary File 1) of B. amyloliquefaciens accessible in the
NCBI database were considered for the Bacsort analysis (https://
github.com/rrwick/Bacsort) including the B. amyloliquefaciens
CB. A total of 61 clusters of the considered assemblies were
generated (cluster accession provided in Supplementary File 2),
and FastANI was employed to generate the matrix of all
pairwise distance between the clusters. FastANI algorithm

TABLE 1 | Genomic features of Bacillus amyloliquefaciens strain CB annotated

using National Center for Biotechnology Information—Prokaryotic Genome

Annotation Pipeline (NCBI-PGAP) v. 4.10.

Items Counts

Total genes 4,012

Total CDS 3,911

Coding genes 3,847

Coding CDS 3,847

Genes (RNA) 101

rRNAs 8, 8, 7 (5S, 16S, 23S)

tRNAs 73

ncRNAs 5

Total pseudo genes 64

(https://github.com/ParBLiSS/FastANI) generates pairwise
Average Nucleotide Identity (ANI) measurements using the
only sequence shared by two assemblies (Supplementary File 3),
which makes it less swayed due to the accessory genome and
produce more accurate trees. The phylogeny tree was created
by BIONJ algorithm with bootstrap value of 1,000 to form
the generated data and was drawn precisely using Interactive
Tree Of Life (iTOL) v5, which is an online tool for the display,
annotation, and management of phylogenetic trees (Letunic and
Bork, 2021) (Figure 1). Out of 61 clusters, two distinct nodes
were generated, in which 51 leaves and 10 leaves form a separate
group. Fifty-one leaves split into another group having 17 leaves
and 34 leaves, which generate other groups consequently as
shown in Figure 1. The B. amyloliquefaciens strain CB forms
a separate cluster (44) having branch length 0.00582, while its
nearby cluster (40) includes two strains, B. amyloliquefaciens
X030 and B. amyloliquefaciens N11 (branch length 0.00456),
while the cluster (61) comprises the B. amyloliquefaciens
strain Jxnu-18 (branch length 0.00520). Clusters 44, 40 and
61 originated from a common node having branch length
0.00141 (Figure 1).

The genome of B. amyloliquefaciens CB was also mapped to
the seed subsystem to obtain the high-quality genome annotation
through Rapid Annotation using the Subsystem Technology
(RAST; version 2.0) (http://rast.nmpdr.org) (Overbeek et al.,
2014). The total 325 subsystem with 29% subsystem coverage
resulted for B. amyloliquefaciens strain CB through RAST
server (Figure 2). The present investigation revealed that highest
number of the genes was allocated to the subsystem category
of amino acids and derivatives (303 genes) followed by
carbohydrates (214 genes); protein metabolism (205 genes);
cofactors, vitamins, prosthetic groups, and pigments (146
genes); nucleosides and nucleotides (97 genes); dormancy and
sporulation (97 genes); cell wall and capsule (82 genes); RNA
metabolism (67 genes); DNA metabolism (64 genes); fatty acids,
lipids, and isoprenoids (54 genes); stress response (47 genes);
motility and chemotaxis (42 genes); membrane transport (42
genes); respiration (41 genes); and virulence, disease, and defense
(37 genes). A total of 24 genes were found to be associated
with iron acquisition and metabolism as well 24 genes for
some other miscellaneous applications. More precisely in the
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FIGURE 1 | Genome lineage tree of Bacillus amyloliquefaciens strain CB. BIONJ algorithm was used to construct the Newick format tree from the distance matrix of

all the clustered assemblies (119 different strains of B. amyloliquefaciens). The generated Newick tree file was analyzed using the Interactive Tree Of Life (iTOL) v. 5

(strain CB highlighted in red color text with light green color branch).

FIGURE 2 | Schematic overview of subsystem coverage, distribution of subsystem category, and subsystem feature counts anticipated in Bacillus amyloliquefaciens

strain CB using RAST server.

Frontiers in Genetics | www.frontiersin.org 3 August 2021 | Volume 12 | Article 70416583

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Sevugapperumal et al. Draft Genome Sequence of B. amyloliquefacines Strain CB

category of miscellaneous application, 10 genes were specifically
associated to iron–sulfur cluster assembly, five genes for niacin-
choline transport and metabolism, and one gene for single-
rhodanese-domain proteins. A total of 26 genes were found to
be associated with regulation and cell signaling, while 18 genes
were collectively specified for phages, prophages, transposable
elements, plasmids, and 12 genes for phosphorus metabolism.

Most of the Bacillus spp. belonging to this group of genera
have been reported to have antifungal potential and have been
utilized for the management of the various fungal diseases;
however, their efficacy against viral diseases is still not known
(Vinodkumar et al., 2018). The PGAP annotation confirms
that the B. amyloliquefaciens strain CB genome has gene locus
srfAA, srfAD, srfAB, and srfAC, which produce various peptides
like surfactin non-ribosomal peptide synthetase and surfactin
biosynthesis thioesterase. It has been well documented that
lipopeptides like surfactin have acquired more attention due to
their high surface activity and antibiotic potential. Moreover,
surfactin also possesses antiviral, antitumor, and hemolytic
activities (Wang et al., 2010), which required further intensive
experimentation for characterization to understand its exact
mechanism for such action.

The whole-genome shotgun sequence of B. amyloliquefaciens
strain CB and its annotation report presented here provide a
resource for comparative analysis with other genera of Bacillus
and can be used for engineering purposes where characteristics
of the strain CB are desired. The genome representation of
B. amyloliquefaciens strain CB showed antagonistic potential
due to various AMPs imparting various properties like
antifungal, antibacterial, and antiviral as well plant growth
promotion, leading to strong future prospects for uplifting the
sustainable agriculture.

DATA AVAILABILITY STATEMENT

Bacillus mayloliquefaciens strain CB, whole genome
shotgun sequencing project data have been deposited
at DDBJ/ENA/GenBank under the accession number
WODE00000000. The version described in this data report

is the first version having accession number WODE00000000.1.
The assembled contigs and its annotation files (CDS, gff,
and proteins) are available in https://www.ncbi.nlm.nih.
gov/assembly/GCA_011754125.1#/st repository with all the
annotations details in Readme file.

AUTHOR CONTRIBUTIONS

NS: funding and modeling the study. VP: genome assembly,
annotations, and analysis. VP and NS: manuscript preparation.
VM and RP: sampling and sequencing and other miscellaneous
stuff. All authors contributed to the article and approved the
submitted version.

ACKNOWLEDGMENTS

We all authors are acknowledging Dr. Anthony E. Zamora,
Assistant Professor [Medicine (Hematology and Oncology) and
Microbiology; Immunology], Medical College of Wisconsin,
USA for proof reading and correcting the manuscript for its
language competence.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.704165/full#supplementary-material

Supplementary File 1 | List of the all the genomes/assemblies of B.
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Bacillus amyloliquefaciens is a gram-positive, nonpathogenic, endospore-forming,
member of a group of free-living soil bacteria with a variety of traits including
plant growth promotion, production of antifungal and antibacterial metabolites, and
production of industrially important enzymes. We have attempted to reconstruct the
biogeographical structure according to functional traits and the evolutionary lineage of
B. amyloliquefaciens using comparative genomics analysis. All the available 96 genomes
of B. amyloliquefaciens strains were curated from the NCBI genome database, having
a variety of important functionalities in all sectors keeping a high focus on agricultural
aspects. In-depth analysis was carried out to deduce the orthologous gene groups
and whole-genome similarity. Pan genome analysis revealed that shell genes, soft
core genes, core genes, and cloud genes comprise 17.09, 5.48, 8.96, and 68.47%,
respectively, which demonstrates that genomes are very different in the gene content.
It also indicates that the strains may have flexible environmental adaptability or versatile
functions. Phylogenetic analysis showed that B. amyloliquefaciens is divided into two
clades, and clade 2 is further dived into two different clusters. This reflects the difference
in the sequence similarity and diversification that happened in the B. amyloliquefaciens
genome. The majority of plant-associated strains of B. amyloliquefaciens were grouped
in clade 2 (73 strains), while food-associated strains were in clade 1 (23 strains). Genome
mining has been adopted to deduce antimicrobial resistance and virulence genes and
their prevalence among all strains. The genes tmrB and yuaB codes for tunicamycin
resistance protein and hydrophobic coat forming protein only exist in clade 2, while clpP,
which codes for serine proteases, is only in clade 1. Genome plasticity of all strains of
B. amyloliquefaciens reflects their adaption to different niches.

Keywords: B. amyloliquefaciens, phylogenomics, genome evaluation, comparative genomics, functional traits,
antimicrobial resistance and virulence genes
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INTRODUCTION

Since the 19th century, Bacilli is one of the most well-documented
and preeminently characterized bacterial genera comprising
classical microbiology, biochemistry, and advanced genomic and
proteomic approaches (Alcaraz et al., 2010). Among the various
species of bacilli, Bacillus amyloliquefaciens gains lots of research
interest and has wide application in agriculture, pharmaceuticals,
food industry, environmental industry, etc. (Sharma and
Satyanarayana, 2013). Various strains of B. amyloliquefaciens
are common habitants and frequently screened from various
ecological niches, including soil, animal feces, human food,
aquatic environments, and many more, reflecting its versatile
metabolic capabilities (Earl et al., 2008). During evolution, the
bacterial population acclimatized to their respective ecological
niches, which lead to the differentiation as evidenced by various
genomic and physiological characteristics (De Wit et al., 2012).

Versatility of nature and metabolic competencies of
different strains of B. amyloliquefaciens provoke to expedite
the comparative genomic analysis to address more in detail
the life style of bacteria, their adaptation to various niches
and how they overcome contenders, as well as to catch clear
revelation on their biochemistry, physiology, and genetics
(Sharma and Satyanarayana, 2013; Owusu-Darko et al., 2020).
B. amyloliquefaciens have been known to promote plant
growth via a variety of mechanisms (Baghaee Ravari and
Heidarzadeh, 2014; Shao et al., 2015; Liu et al., 2016), act as
biocontrol against numerous plant diseases caused by soil-borne
microorganisms (Tan et al., 2016), be widely used as biofertilizers
and biopesticides (Wu et al., 2015), antagonize plant pathogens
by competing essential nutrient (Wu et al., 2016), produce
antibiotic compounds (Srivastava et al., 2016), as well induce
systemic acquired resistance (Ng et al., 2016). Moreover, it is
well documented that B. amyloliquefaciens can be tailored for
numerous environmental and industrial applications such as
degradation of crude oil from oil-contaminated sites (Zhang
J. et al., 2016) and feather degradation (Yang et al., 2016); can
produce various enzymes like proteases (Wang et al., 2016),
feruloyl esterase (Wang et al., 2017), phytase (Verma et al., 2016),
and amylases (Prajapati et al., 2015); and can be employed as
a biosorbent for the removal of pollutants (Sun et al., 2016)
and their degradation (Zühlke et al., 2016), production of
biosurfactant and AMPs, probiotics, etc. (Perez et al., 2017).

The number of bacterial genome sequences has almost
doubled over the decades due to the decreasing cost of the
sequencing with advancement in high-throughput sequencing
technology. The generated sequences data are available freely in
the public domain, which ultimately stimulate researchers to do
more on genomic analysis. Comparative genome analysis always
sharpens our understanding of the bacterial genome structure
and its diversity at a particular niche. Moreover, the pan-genome
of species includes analysis of all core genes, dispensable genes,
and strain-specific genes, which need to be comprehensively
investigated as they reveal the essential functions for the species
or laterally transferred functions in specific strains (Vernikos
et al., 2015). Bacillus is one of the most extensively studied species
with prevalent sets of genome sequences to date; however, very

few reports are available on core genes and strain-specific genes
in the Bacillus species (Alcaraz et al., 2010). Kim et al. (2017)
have reported the core gene data of multiple Bacillus species
through pan-genome analysis to explore the Bacillus species in
food microbiome.

In the present investigation, we have curated all the 96
genome sequences of B. amyloliquefaciens available in the
NCBI database to carry out comparative genomic analysis.
Based on contextual information, we were trying to understand
the distribution of all strains of B. amyloliquefaciens with
respect to their ecological niches and their source of isolation
and location to get better insights into their phylogenetic
position using the core genome. PAN genome analysis of all
strains of B. amyloliquefaciens was conducted to acquire better
impression on their functional difference, which affects their
dynamic evolutionary processes. We were also interested in
understanding the comparative account of various antimicrobial
and virulence genes presented among all B. amyloliquefaciens
strains. The consensus information and conclusion drawn from
this presented comparative genomic study can be used as a
benchmark for designing wet-lab experimentation and validation
as well as to formulate new hypothesis.

MATERIALS AND METHODS

In total, 96 genome sequences of B. amyloliquefaciens having
an N50 size greater than 50 k were downloaded from the
NCBI database (detailed in Supplementary Table 1). Pan-
genome analysis was conducted by Roary (Page et al., 2015)
embedded in the “Pan” module of PGCGAP v1.0.21 (Liu et al.,
2020). Single-copy core proteins calling, alignment of sequences,
sequences concatenating, best model chosen, and phylogenetic
tree constructing were performed with the “CoreTree” module
of PGCGAP v1.0.21. The pairwise similarity of genomes was
calculated by Mash (Ondov et al., 2016) embedded in the module
“MASH” of PGCGAP v1.0.21. COG annotation was performed
with the module “pCOG” of PGCGAP v1.0.21 (Liu et al., 2020).
The antimicrobial resistance and virulence genes were mined
against the databases of argannot (Gupta et al., 2014), card (Jia
et al., 2017), NCBI (Feldgarden et al., 2019), resfinder (Zankari
et al., 2012), vfdb (Chen et al., 2016), and EcOH (Ingle et al., 2016)
by the module “AntiRes” of PGCGAP v1.0.21 (Liu et al., 2020).

RESULTS

A total of 16,198 gene clusters were found by pan-genome
analysis, of which 1,448 (8.95%) are single-copy and code for
core proteins. Shell genes, soft-core genes, core genes, and cloud
genes comprise 17.09, 5.48, 8.96, and 68.47%, respectively, which
demonstrates that the genomes are very different in the gene
content (Supplementary Table 2). The pan-genome curve shows
that the number of total genes increased with the increase in the
genome number; this indicates that B. amyloliquefaciens has an
open pan-genome (Figure 1).

The evolutionary relationship between the 96
B. amyloliquefaciens strains was investigated by the construction
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FIGURE 1 | Pan-genome of 96 B. amyloliquefaciens. (A) A pie chart of the breakdown of genes (core: 99% ≤ strains ≤ 100%, soft-core: 95% ≤ strains < 99%,
shell: 15% ≤ strains < 95%, and cloud: 0% ≤ strains < 15%). (B) The pan-genome curve of the 96 genomes.

of a phylogenetic tree based on the alignment sequences of
1,154 concatenation core proteins (Figure 2). Bacillus pumilus
SAFR-032 (Gioia et al., 2007) was used as the outgroup. The
strains are divided into two clades, and clade 2 consists of two
clusters. The location where the strain was isolated was mapped
outside of the tree as the color strip. Strains from America are
mainly located in cluster 2 of clade 2, while strains from Asia
and Europe are scattered in all clades. The isolation source of
the strain was also marked on the tree. According to known
information, almost all the plant-associated strains are located
in clade 2, and strains isolated from food are mainly located
in clade 1. The above result implies that B. amyloliquefaciens
has differentiated mainly into plant-associated and food-
associated, as it clearly showed in the clades. However, some
species of B. amyloliquefaciens isolated from water, soil, etc. are
scattered in clade 2.

The similarity of genome pairs has been compared within
and between clades and clusters (Figure 3). Genomes in clade
1 are found to be more similar than those that are observed
in clade 2 (p < 0.001), while the similarity between genomes
of the two clades is found to be very low, which indicates
that strains in clade 2 undergone more differentiation, which
may be related to their adaption to specific plants and other
associated niches. When focusing on clade 2, genomes in cluster
1 are more similar than genomes in cluster 2 (p < 0.001), and
the genome similarity between the two clusters is seen to be
relatively low. Comparison of the genome size between both
clades and its associated cluster has been carried out and depicted
in Figure 3B. It has been observed that the genome size of
clade 2 is slightly greater than that of clade 1, while the GC%
content of clade 2 is significantly greater than that of clade 1
(p < 0.001; Figure 3C).

Compared with the genomes of clade 2, the genomes of clade
1 have a unique gene composition (Figure 4A). It was observed

that all the species in clade I have lost 335 genes (Supplementary
Table 2 lines 2,592–2,926), which exists in all the genomes
of clade 2 and have 490 unique core genes (Supplementary
Table 2 lines 3,969–4,458). To reveal the difference of gene
contents between the two clades, the gene family analysis has
been performed with module “OrthoF” of PGCGAP v1.0.21.
A total of 9,245 orthogroups are found, out of which 4,872
orthogroups are observed to be common between the two clades,
while 1,055 are unique to clade 1, and the remaining 3,363 are
unique to clade 2. The functions of these unique orthogroups
are revealed through COG annotation as shown in Figure 4B.
The relative abundance of functional classes I (lipid transport
and metabolism), G (carbohydrate transport and metabolism),
and Q (secondary metabolites biosynthesis, transport, and
catabolism) is found to be higher in clade 2 compared to
that in clade 1, while the relative abundance of classes D
(cell cycle control, cell division, chromosome partitioning), E
(amino acid transport and metabolism), H (coenzyme transport
and metabolism), L (replication, recombination, and repair), M
(cell wall/membrane/envelope biogenesis), and X (Mobilome:
prophages, transposons) is higher in clade 1 than that in clade
2 (Figure 4B).

It is well documented that antimicrobial resistance and
virulence genes are disseminated in the environment according
to the function of the respective ecological niche; therefore,
we have investigated the distribution of these genes in
B. amyloliquefaciens. The antimicrobial resistance and virulence
genes from different databases have been mined and mapped on
the phylogenetic tree (Figure 5). To demonstrate the topological
structure of the tree more clearly, the outgroup strain has been
removed and the tree presented on midpoint rooted. All strains
of B. amyloliquefaciens including those from foods contain more
than one virulence factor. It is observed that tmrB and yuaB
are only existing in clade 2, while clpP is prevailing only in
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FIGURE 2 | The phylogenetic tree of single-copy core proteins. The maximum-likelihood tree was constructed by the module “CoreTree” of PGCGAP v1.0.21 (Liu
et al., 2020) with the best fit model JTT+F+R4. The tree was rooted against Bacillus pumilus SAFR-032 as an appropriate outgroup. Red circles on the branch
represent bootstrap values larger than 80%. The background color of the labels (colored ranges) represents the clades, and the green and blue branches represent
cluster 1 and cluster 2 of clade 2, respectively. The color strip outside the tree describes where the strain was isolated; ISS means International Space Station. The
cartoons outside the tree indicate that the strain was isolated from soil, food, rhizosphere, water, or faces of herbivores, or is associated with the plant.

clade 1. The gene tmrB is intending an ATP-binding tunicamycin
resistance protein found in B. subtilis (Noda et al., 1995), while
yuaB can form a highly hydrophobic coat around B. subtilis
biofilms (Kobayashi and Iwano, 2012). The gene clpP codes
for a serine protease involved in proteolysis and is required
for growth under stress conditions (Gaillot et al., 2000, 2001).
Interestingly, the B. amyloliquefaciens strain MBGJa9 has more
virulence factors than other strains, and it is seen that isdA, isdB,
isdC, isdD, isdE, isdF, isdG, and srtB form a gene cluster, whose
productions participated in the uptake of iron and heme (Skaar
and Schneewind, 2004; Skaar et al., 2004).

DISCUSSION

Pan-Genome Assessment of Bacillus
amyloliquefaciens
Present investigation using the 96 strains of B. amyloliquefaciens
revealed that it has an extensive pan-genome, and it represents
an ample number of genes that were observed to be uniquely
associated with each of the divergent species. Population size

and respective ecological niche versatility of B. amyloliquefaciens
are considered to be the most influential factors in determining
the pan-genome size, and it can be seen that total genes
against the total number of genome sequences are edified
up so it is impossible to envisage the size of the full pan-
genome. The resulted open pan-genome of B. amyloliquefaciens
is unsurprising because of the source of isolation and its
geographical location, which always adds up new genes to
the entire gene pool of species. This species divergence could
be an attribute of different mechanisms such as horizontal
transfer, transposition, and transformation (Konstantinidis and
Tiedje, 2005; Tettelin et al., 2005). On the contrary, observed
few core genes in the investigation might be due to the
higher number of genomes, the incorporation of genomes from
other genera, as well as the inclusion of draft genomes in
the data set (Lefebure et al., 2010; Inglin et al., 2018). It
is well documented that incomplete, unfinished, or partially
assembled genomes have a large impact on the occurrence of
core genomes in the analysis as core genomes seem to be very
sensitive to the heterogenous data set and poor quality sequences
(Mendes-Soares et al., 2014).
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FIGURE 3 | Genome feature of B. amyloliquefaciens. (A) Genome similarity between all pairs of strains in clade 1, between all pairs of strains in clade 2, between
strains in clade 1 and those in clade 2, between strains in cluster 1, between strains in cluster 2, and between strains in cluster 1 and those in cluster 2. (B) Genome
size of clade 1 and cluster 1 and cluster 2 of clade 2. Wilcox test was performed and marked on top of the box plot. (C) GC percent of clade 1, cluster 1, and cluster
2 of clade 2. Wilcox test was performed and the p-value was marked on top of the box plot.
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The Alliance of B. amyloliquefaciens
Strains Through Phylogenomics Using
Single-Copy Core Proteins and Genomic
Comparison: An Evolutionary
Assessment
16s rRNA has been widely used for the taxonomy assessment
of prokaryotes and has served as the broad context, though
the better taxonomic resolution of the microbial species is

achieved through “polyphasic approach” and is highly effective
(Rosselló-Mora and Amann, 2001; Na et al., 2018). 16s rRNA has
limitations as it hampers the phylogenic resolution at the species
or subspecies level. The application of genome sequences is highly
recommended for the taxonomic understanding of microbial
species instead of routinely used DNA–DNA hybridization and
16s rRNA phylogeny (Chun et al., 2018). Therefore, instead of
a single gene, genome-based phylogeny called phylogenomics
has set up better taxonomic positioning as it uses sets of core

FIGURE 4A | (Continued)
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FIGURE 4B | Comparison of gene families between clade 1 and clade 2. The plot shows the tree compared to a matrix with the presence and absence of core and
accessory genes (A); the bars between the tree and the matrix show to which clade/cluster the strain belongs. The heat map shows the relative abundance of the
function classes corresponding to the unique orthogroups of clade 1 and clade 2 (B).

genes (Eisen and Fraser, 2003). The genome sequences of all
B. amyloliquefaciens strains are accessible in the Gene Bank
NCBI database, which allows us to determine the degree of
genome variability among all species as well as distinct out
the taxonomic validity of all the isolates and reconstruct their
phylogenetic relationship. Two distinct clades were observed
when phylogeny was inferred using single copy core protein.
Clade 1 comprises 23 strains of B. amyloliquefaciens, out of
which 56% were food-associated, 17.39% were from soil, and
8.69% were rhizospheric. Clade 2 comprises 73 strains, and it is
distinguished into two different clusters, where clusters 1 and 2
comprise 22 and 51 strains of B. amyloliquefaciens, respectively.
Clade 2 was more enriched with the species of plant origin/host
and comprised ∼35.61%, while the strains of soil, food, indoor
biome, and rhizosphere origin were 16.43, 10.95, 12.32, and
6.84%, respectively. Two distinct clades were demarcated, one
of which was food-associated (clade 1) and the other one plant-
associated (clade 2). The selection of core gene sets for accurate
phylogeny analysis may vary with the availability of the genome
sequences at the time of analysis.

Comparison of the genome similarity between the strains
of both clades indicates that the strains grouped together in
clade 1 are more similar than those of clade 2. The majority of

the plant-associated strains of B. amyloliquefaciens are grouped
under clade 2, while nonplant-associated strains are mainly
found in clade 1, though some scattering is seen with respect
to some other ecological niches. Plant-associated strains of
B. amyloliquefaciens have adopted more modification in their
genome, which is directly related to their adaption to the specific
plant. Hence, it is believed that the genome size of the plant-
associated strains of B. amyloliquefaciens is always greater than
that of the nonplant-associated B. amyloliquefaciens and so the
GC % content. Zhang N. et al. (2016) reported that the core
genomes of the plant-associated strains of B. amyloliquefaciens
have more gene contents related to the intermediary metabolism
and secondary metabolite biosynthesis as compared to those of
nonplant-associated strains. Plant-associated strains also possess
specific genes for the synthesis of antibiotics as well as for the
utilization of plant-derived substrates.

During the assessment of the core and accessory genes, it was
observed that the strains of B. amyloliquefaciens grouped in clade
1 have lost many genes that are present in the strains of clade
2 (Figure 4A). Exopolysaccharides (EPSs) play very important
role in bacteria, specifically those that are plant-associated
and have a variety of functions. It helps microorganisms in
adherence, pathogenesis, and symbiosis as well as protects from
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FIGURE 5 | The midpoint rooted phylogenetic tree of single-copy core proteins. The tree was constructed by the module “CoreTree” of PGCGAP v1.0.21 (Liu et al.,
2020) with the best fit model JTT+F+R4. Red circles on the branch represent bootstrap values larger than 80%. The background color of the labels represents the
clades, and the green and blue branches represent cluster 1 and cluster 2 of clade 2, respectively. The cartoons after the strain name indicate that the strain was
isolated from soil, food, rhizosphere, water, or faces of herbivores, or is associated with the plant. The color strip outside the tree describes where the strain was
isolated; ISS means International Space Station. The symbols on the right side of the tree represent antibiotic resistance genes or virulence genes from each
database [blue: argannot (Gupta et al., 2014), orange: card (Jia et al., 2017), green: NCBI (Michael Feldgarden et al., 2019), purple: resfinder (Zankari et al., 2012),
and gray: vfdb (Chen et al., 2016)].

desiccation in some adverse condition (Stingele et al., 1999).
The glycosyltransferase gene region comprises the EPS gene
cluster, i.e., epsF-2, epsD, epsI, epsM, epsL, and epsJ, which are
involved in the biosynthesis of EPS, and has a profound role
in plant-associated strains of B. amyloliquefaciens, while it was
missing in the strains belonging to clade 1. Plant-associated
B. amyloliquefaciens strains (clade 2) harbor a certain gene
cluster absent in clade 1, which is involved in the biosynthesis
of lipopeptides through nonribosomal peptide synthetases
(NRPS) including fengycin (fen). Gene clusters involved

in the synthesis of bacillaene (bae) are responsible for the
profound antimicrobial activity and are lost in all strains of
B. amyloliquefaciens in clade 1. The PKS gene cluster, which
includes pksI_2, pksG_2, pksN_2, and pksS, was also found to
be present in clade 2 but lost in clade 1 (Figure 4A). Some
of the genes such as cystathionine beta-lyase (patB), putative
multidrug resistance ABC transporter ATP-binding/permease
protein (yheI), cold shock protein (cspC), spermidine/spermine
N(1)-acetyltransferase (paiA), putative sugar phosphate
isomerase (ywlF), 3-dehydroshikimate dehydratase (asbF),
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putative ABC transporter substrate-binding lipoprotein (yhfQ),
sirohydrochlorin ferrochelatase (sirB), putative metallo-
hydrolase (yflN), dipeptidyl-peptidase 5 (ddp5), L-aspartate
oxidase (nadB), putative sporulation hydrolase (cotR), stress
response kinase A (srkA), sortase D (srtD), ATP-dependent
dethiobiotin synthetase (bioD 1), glycerophosphodiester
phosphodiesterase (glypQ), folylpolyglutamate synthase (fpgS),
and putative ABC transporter permease (ytrC) were found
to be uniquely associated to the strain of B. amyloliquefaciens
that belongs to clade 1. Hence, the presence of certain gene
clusters in clade 2 and their absence in clade 1 conclude that
plant-associated strains of B. amyloliquefaciens have more
abundant gene clusters for intermediary metabolism as well as
for antibiotic production compared to the nonplant-associated
strains. Niazi et al. (2014) have reported that B. amyloliquefaciens
subsp. plantarum, a rhizobacterium that mends plant growth
and stress management, also possesses the more abundant gene
cluster that is actively involved in the production of certain
hydrolytic enzymes as well as secondary metabolites. It is well
documented that the rhizosphere environment has a very
dynamic microbial community because of the effect of root
exudates and the constant interaction and competition among
microbes, as they need to contend with each other for various
resources such as nutrient supply, which ultimately leads them to
produce various metabolites such as antibiotic and extracellular
hydrolases (Bais et al., 2006).

Surveillance of Resistance and Virulence
Genes Among all Strains of
B. amyloliquefaciens
It is documented that bacteria have produced antibiotics for
millions of years, which results in the evolution and induction
of resistance genes. More precisely, the intensive nonmedical
use of antibiotics such as in agricultural and in some industrial
applications is not certain and has led to significant dissemination
of resistance genes in the environment (Pawlowski et al., 2018).
The genomes of all the strains of B. amyloliquefaciens were
mapped to different databases to evaluate the distribution of
antibiotic resistance genes and virulence genes. Many different
genes were perceived and were scattered among all the strains
of B. amyloliquefaciens; also, the observed genes belonged to a
variety of resistance classes. The gene (AGlu) satA codes for
the enzyme aminoglycoside acetyltransferase, and it belongs to
the class aminoglycosidese, which is present in almost all the
strains independent of its host environment. Aminoglycoside
is considered to be part of the broad spectrum of antibiotics,
and it acts by inhibiting the protein synthesis, though it works
best in synergy with other antimicrobials (Krause et al., 2016).
Two genes, lmrB and cfrB, belonging to the class Macrolide-
Lincosamide-Streptogramin B (MLS) were present in most of
the strains considered in the investigation. The gene product of
lmrB and cfrB confers specific resistance to lincosamides, such as
lincomycin and clindamycin, and synthetic antibiotic linezolid,
respectively, (Kim et al., 2001; Toh et al., 2007). The advent of
new and more stable macrolide and its vague use could be the key
reasons for the induction of such resistance imparting genes, and

it provides an opportunity for microbial populations to acquire
MLS resistance (Roberts et al., 1999). (Rif) rphD, rphB, and rphC
genes code for trifamycin kinase (phosphotransferase), which
confers resistance against rifampin, the most commonly used
rifamycin. The enzyme rifampin phosphotransferase present in
many environmental bacteria, which used to be induced by
selective pressure and nonclinical use of antibiotics, has led
to the inactivation of rifampin and ATP to phosphor-rifampin
and AMP+Pi (Stogios et al., 2016). More than 40 different
tetracycline resistance genes have been reported in numerous
bacterial genera of agricultural and industrial use. The dispersion
of the tetL gene among the bacterial genera was much higher
than any other tet resistant genes (Roberts, 2005). In the present
investigation, the genome sequences of all the strains were
mapped against six different databases, i.e., argannot, NCBI,
plasmidfinder, card, resfinder, and yfdb, and they reveal the
presence of tetL genes among all the strains. Colibactin is a
genotoxic molecule coded by the clb gene cluster in many enteric
bacteria, and it is widely distributed in nature (Kawanishi et al.,
2020). clbA is a plasmid-encoded cfr gene under the control of an
inducible promoter reported in B. velezensis (B. amyloliquefaciens
subsp. plantarum), while clbB and clbC are found in Brevibacillus
brevis and B. clausii, respectively, (Hansen et al., 2012). The gene
sspC codes for cytoplasmic protein known as staphostatin and
is present in all the strains of B. amyloliquefaciens. It is a very
specific and tightly binding inhibitor of staphopain B (SspB).
The main function of sspC is to protect the cytosolic protein
from the degradation executed by misfolded or activated SspB.
Shaw et al. (2005) reported that in the absence of sspC protein,
major alteration in cellular physiology occurred, and the growth
and viability of the microbial cells were impaired. The gene clpP
is prevailing only in the strains that belong to clade 1, and it
codes for the caseinolytic protease proteolytic subunit (ClpP)
serine proteases. The ClpP protein confers certain advantages
to the microorganisms to sustain in varying environmental
conditions as well as stress conditions. ClpC and ClpP are heat
shock proteins and are subunits of ATP-dependent proteases
reported in B. subtilis. The transcription of genes clpC and
clpP is always negatively regulated under nonstressed condition
(Krüger et al., 2001). The virulence and infectivity of a number
of microorganisms/pathogens are affected due to the alteration of
the ClpP protein function. Clp proteins are highly conserved and
have played a very important role in the proteolysis of prokaryotic
cell and eukaryotic organelles, though only few reports are
available describing the importance of Clp-mediated proteolysis
in organisms (Krüger et al., 2001; Moreno-Cinos et al., 2019).
Tunicamycin, a nucleoside antibiotic, kills most of the gram-
positive bacteria, and it acts by inhibiting the important cell
wall component called teichoic acid, which drives the physiology
and pathogenesis of microorganisms. The exposure of bacteria
toward the sub-inhibitory concentration of tunicamycin leads
to the reduction in biofilm production, virulence protein, as
well bacterial adhesion and invasion (Zhu et al., 2018). The
presence of the tmrB gene leads to the production of the TmrB
protein, which imparts tunicamycin resistance to B. subtilis. The
TmrB protein is present in both cytoplasmic and membrane
fractions, though it is completely hydrophilic, and it attaches to
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the membrane by its C-terminal amphiphilic alpha-helix (Noda
et al., 1995). Many plant growth promoting bacteria reported to
produce biofilm, which is their key strategy to survive successfully
in some harsh conditions as well as in plant rhizosphere.
Biofilm formation capability of microorganisms makes them a
good biocontrol agent as it leads to the reduction in infection
caused by fungal and bacterial pathogens (Hobley et al., 2013).
The bslA/yuaB gene present in many of the plant-associated
strains of B. amyloliquefaciens codes for unique surface active
protein BslA, which forms a hydrophobic surface layer called
hydrophobins. The surface layer regulates the diffusion of
various molecules, perception of signaling molecules from other
microbial community, as well as nutrient uptake, in addition
to imparting the protection to the bacterial cell. The contextual
information of ecological and evolutionary facts as well as the
application of comparative genomics and the dropping cost
of genome sequencing collectively aid to understanding more
precisely the structure of microbial diversity and its ecological
distribution. Phylogenomics reveals the segregation of all 96
strains of B. amyloliquefaciens into two clades. Majority of
the plant-associated B. amyloliquefaciens strains are grouped
in clade 2, while clade 1 accomplishes mostly food-associated
strains. The distribution of resistance and virulence genes among
all the strains of B. amyloliquefaciens has been reported, and
it will serve as a benchmark and resourceful information to
deduce the hypothesis or conclusion as well as to exploit the
potential of any strains through wet-lab experimentation. In
future prospectus, we will try to dig out some temporal genes and
their occurrence pattern in order to comprehend the significant
role of microorganisms as well as the structure of the entire
microbial community with its respective environmental niches.
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Humankind has suffered many pandemics in history including measles, SARS, MERS,
Ebola, and recently the novel Coronavirus disease caused by SARS-CoV-2. As of
September 2021, it has affected over 200 million people and caused over 4 million
deaths. India is the second most affected country in the world. Up to this date, more than
38 Lakh viral genomes have been submitted to public repositories like GISAID and NCBI to
analyze the virus phylogeny andmutations. Here, we analyzed 2349 genome sequences of
SARS-CoV-2 submitted in GISAID by a single institute pertaining to infections from the
Gujarat state to know their variants and phylogenetic distributions with amajor focus on the
spike protein. More than 93% of the genomes had one or more mutations in the spike
glycoprotein. The D614G variant in spike protein is reported to have a very high frequency
of >95% globally followed by the L452R and P681R, thus getting significant attention. The
antigenic propensity of a small peptide of 29 residues from 597 to 625 of the spike protein
variants having D614 and G614 showed that G614 has a little higher antigenic propensity.
Thus, the D614G is the cause for higher viral antigenicity, however, it has not been reported
to be effective to be causing more deaths.

Keywords: antigenic propensity, clades, D614G, SARS-CoV-2, spike glycoprotein

INTRODUCTION

In the last 2 decades, this is the third instance of a zoonotic coronavirus pandemic. Acute respiratory
disease has previously been caused by SARS-CoV, 2002 (Drosten et al., 2003) and MERS-CoV, 2012
(Azhar et al., 2014a; Azhar et al., 2014b) in humans. The novel SARS-CoV-2 virus has recently
triggered the coronavirus disease Covid-19. The viral infection began inWuhan, China in December
2019 and soon became a global outbreak. In a very short span, it has caused significant effects on
social and economic activities. Compared to other coronaviruses, this newly emerged SARS-CoV-2 is
spreading rapidly, giving challenges to administrative and scientific communities. Influenza, severe
respiratory, enteric and neurological complications, elevated white blood cells, and kidney failure are
significant indicators of this viral infection. Mammals such as bats are the primary beta coronavirus
reservoirs. Due to zoonotic contacts and viral genomic mutations, it is expected to have crossed the
species barrier and infected humans. Previous studies indicate that zoonotic infections such as SARS-
CoV was transmitted from bats and civets that first infected humans in 2002 (Ksiazek et al., 2003;
Marra et al., 2003; Rota et al., 2003; Xu et al., 2004). SARS-CoV-2 is enveloped, contains positive

Edited by:
Dhaval K. Acharya,

B N Patel Institute of Paramedical,
India

Reviewed by:
Arif Ansori,

Airlangga University, Indonesia
Alejandro Flores-Alanis,

National Autonomous University of
Mexico, Mexico

*Correspondence:
Vaibhav D. Bhatt

bhatt_vbhv@yahoo.co.in

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 26 August 2021
Accepted: 18 October 2021

Published: 11 November 2021

Citation:
Nimavat J, Mootapally C, Nathani NM,

Dave D, Kher MN, Mahajan MS,
Joshi CG and Bhatt VD (2021)

Evolutionary and Antigenic Profiling of
the Tendentious D614G Mutation of

SARS-CoV-2 in Gujarat, India.
Front. Genet. 12:764927.

doi: 10.3389/fgene.2021.764927

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7649271

ORIGINAL RESEARCH
published: 11 November 2021

doi: 10.3389/fgene.2021.764927

98

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.764927&domain=pdf&date_stamp=2021-11-11
https://www.frontiersin.org/articles/10.3389/fgene.2021.764927/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.764927/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.764927/full
http://creativecommons.org/licenses/by/4.0/
mailto:bhatt_vbhv@yahoo.co.in
https://doi.org/10.3389/fgene.2021.764927
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.764927


sense ssRNA, and a genome size of 29–30 kb. It belongs to the
coronaviridae family and subfamily beta-coronavirus. The family
also comprises of MERS CoV which was originated from camel
and later led to human transmission in Saudi Arabia (2012)
(Azhar et al., 2014a; Chan et al., 2015; Sabir et al., 2016). These
infections from bats are predicted to infect humans due to their
change in genomic RNA sequence, especially in the spike
glycoprotein region (Song et al., 2005; Menachery et al., 2016).
Complete genomic sequences of SARS-CoV-2 isolated from
infected patients belonging to different geographical locations
allows the understanding of these variations and the
corresponding influence on viral infecting potency.

SARS CoV-2 similar to SARS-CoV uses angiotensin-
converting enzyme II (ACE2) as a receptor for host cell
entry. It has spike glycoproteins on the surface, which has
two functional domains, S1 and S2. It helps in host cell
receptor binding and fusion of viral membrane with the
cellular membrane (Harvey et al., 2021). SARS-CoV-2 spike
protein has an ACE2 affinity 10 to 20 times greater than that of
SARS-CoV spike protein (Walls et al., 2020; Wrapp et al.,
2020). Both SARS-CoV and SARS-CoV-2 use CTD (C-
terminal domain) of the S1 domain for receptor binding but
SARS-CoV-2 binds more strongly than SARS-CoV.
Coronaviruses use two different pathways for host cell
entry, First, protease mediated cell surface pathway and
second, the endosomal pathway. S protein is cleaved into an
S1 subunit for receptor binding and an S2 subunit for
membrane fusion by the host proteases. Several cellular
proteases including furin, transmembrane protease serine 2
(TMPRSS2) and cathepsin (cat) B/L are important for priming
SARS-CoV-2 spike protein to enhance ACE2 mediated viral
entry (Hoffmann et al., 2020). Spike protein plays a vital role in
the evolution of coronaviruses to escape the host immune
system. Spike protein shows a higher amount of antigenicity,
which is evident from the fact that convalescent plasma from
SARS patients shows a high percentage of anti-S neutralizing
antibodies (Liu et al., 2006; Wan et al., 2020). There are a lot of
variations observed in spike protein sequence, a major
variation in spike protein is a non-synonymous D614G
mutation (D-Aspartate, G-Glycine) which has received
special attention by several groups due to its dominance
(Harvey et al., 2021).

Several studies have reported the phylogenomics of the
variant and shown that it is leading to higher transmission,
though no less influence on the death rate. Few studies have
also shown that the variant has increased cellular entry efficacy
to human cells compared to the wild type (Wan et al., 2020). In
context to the same, here we assessed the antigenic propensity
of the epitope encompassing the D614G mutation considering
its high frequency and the segment being earlier reported as
immune-dominant peptide in SARS-CoV (Wang et al., 2016;
Kim et al., 2020). The region-wise analysis of the variant will
provide information of this rapidly spreading variant for
possible considerations in protective strategy development.
Further, we also compiled the current major spike
mutations in the Gujarat state in comparison with their
global frequencies.

MATERIALS AND METHOD

SARS-CoV-2 Sequence Retrieval
A total of 2439 sequences of SARS-CoV-2 genome sequences
corresponding to the Gujarat state were retrieved from GISAID
(https://www.gisaid.org/) hCov-19 database and these sequences
represented different districts of Gujarat state. The genomes were
sequenced and submitted by Gujarat Biotechnology Research. The
complete genome sequences of SARS-CoV-2 reference genome of
the Wuhan isolate (GenBank code: MN908947.3) and Bat CoV-
RaTG13 (MN996532.1) were retrieved in FASTA format from
NCBI. All the retrieved sequences were subjected to BLAST.

Mutation and Phylogenetic Analysis
Spike protein sequences retrieved from GISAID were aligned with
reference spike protein sequences using Jalview version 2.11.1.0
(Waterhouse et al., 2009). Mutations were identified and listed
using GISAID EpiCoV™ database (Elbe and Buckland-Merrett,
2017). Occurrence of D614G mutation over time was visualized
using NextStrain platform (Hadfield et al., 2018) where data is
enabled from the GISAID. NextStrain visualization analysis can
process up to 3000 genomic sequences at a time. Therefore, for the
primary global analysis, they subsample 120 genomes per admin
division per month giving results in a more equitable way.

Antigenic Propensity Analysis
A small part of sequence of spike glycoprotein S597-625 from
sequences was analyzed using the method described earlier
(Kolaskar and Tongaonkar, 1990) provided on an online
server by UNIVERSIDAD COMPLUTENSE, MADRID. The
interpretation was done as suggested: the average score for the
whole protein was used as a cut-off for the then all residues to be
considered as potentially antigenic.

RESULTS

Sequence Similarity Studies of SARS-CoV-2
Genomes
A total of 2439 sequences of SARS-CoV-2 were retrieved from
GISAID platform. Upon performing nucleotide BLAST of
reference SARS-CoV-2 with SARS CoV, at the genomic level
SARS-CoV-2 and SARS-CoV were observed to have 79.6%
sequence similarity. Sequences retrieved from infected patients
by SARS-Cov-2 from GISAID had sequence similarity of about
80% with SARS-CoV, 99.9% with SARS-CoV-2 reference
sequence, and 96% with the Bat CoV RaTG13.

Mutation Analysis of SARS-CoV-2 Genomes
Out of 2439 sequences studied, 2400 genomes had a common
mutation and there were 9 mutations observed in spike protein
that were present in at least 15% of the studied genomes
(Figure 1). A total of 34 nonsynonymous mutations were
observed, with the spike D614G having the highest occurrence
in 2400 genomes followed by the nsp12 P4715L mutation
observed in 2254 genomes (Figure 1A). Nine of the spike
mutations had a percentage occurrence in the range of 25–99
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in the studied genomes (Figure 1B). After D614G, P681R
occurred in 1455 of the analyzed sequences.

All, except D614G, from the 9 non-synonymous mutations
observed, had relatively more frequency in the Gujarat region
compared to their global frequencies. While D614G had almost
similar frequency with its global value. In the genomic sequence for
spike glycoprotein, a single mutation, i.e., from A to G nucleotide
was prevalent in the majority of genomes at the nucleotide position

number 23403 (Figure 2). This change in the nucleotide causes
change in amino acid while translating the gene, because of this
aspartate is replaced by glycine in the protein sequence (Figure 2). Its
frequency of occurrence has overall increased with the time.
Phylogenomics of genomes based on the D and G variants is
depicted at the time of initial data collection and the scenario
down to the recent timeline (Supplementary Figure S1). Also,
there is a clear difference in frequency as observed for D614G

FIGURE 1 |Non synonymousmutations as observed (A) in the analysed SARS-CoV-2 genomes (n � 2,439) fromGujarat region (submissions by GBRC) compared
to the Wuhan SARS-CoV-2 reference, scale represents the number of genomes, those highlighted in red are specific to the spike glycoprotein, (B) in the spike
glycoprotein of the sequences from Gujarat (n � 2,439) and globally (n � 3,897,179) in terms of their percent occurrence as on September, 2021.

FIGURE 2 | (A) Change in the nucleotide at position 23403. NC_045512.2/1-29903 and MN996532.1/1-29855 are SARS-CoV-2 reference sequence and Bat
CoV RaTG13 reference sequence, respectively. (B) Amino acid sequence alignment of spike protein encompassing the D614G position.
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which was comparatively much higher compared to global during
early phase up to July 2020 (Supplementary Figure S2) and now the
frequencies are almost the same. Such difference currently is
observed in the P681R mutation, which is the hallmark mutation
of the Delta variant wherein the percentage occurrence is 20% higher
in the Gujarat region compared to the global. The P681R has
outraced other major mutations in spike proteins and is the
second major mutation.

We also report here the top 20 nonsynonymous mutations as
per global scenario with their frequencies (Figure 3). These also
reflect that D613G is the most spread, and further there are
around 12 mutations that have >25% occurrence globally.

Antigenicity of Peptides
In the present study, we assessed the antigenic propensity of the
peptides of the region S597-625 and the results showed that the
variant having G at position number 614 is having a little higher
antigenic propensity than the one having D at the same position.
Isolate from Wuhan (i.e., reference having D614), a Pangolin
CoV and a variant having G614 had antigenic propensity of
1.0822, 1.0822, and 1.0824, respectively. In each sequence of 29

residues, a peptide starting from position 10 to the 25th position
comprised a single antigenic determinant (Figure 4).

DISCUSSION

A novel corona virus that emerged in December 2019 from
Wuhan, China has resulted into a pandemic. In the structure
of SARS-CoV-2 virus, spike protein is 1273 amino acid residue in
length and forms a trimeric spike on the virion surface. There are
many mutations observed in the amino acid composition of the
spike protein but primary data shows that strains with S-D614G
are more infectious and exhibit high transmission efficiency
(Zhang et al., 2020). Regions between amino acid 614 and 621
of SARS-CoV-2 spike proteins were also identified as a B cell
epitope by different methods and D614G may affect the
antigenicity of this region (Kim et al., 2020). However, there is
still much scope to understand how D614G affects antigenic
properties of S protein; whether elastase-2 inhibitors and
convalescent serum samples of patients can block infection of
D614G variant remains unclear.

FIGURE 3 |Global frequencies of top 20 non synonymous mutations in the spike protein of the SARS-CoV-2 genomes (n � 3,897,179) as available in GISAID as on
date September 30, 2021. Each gauge has a frequency scale (0–100) divided quarterly and represents single mutation (top) along with its respective frequency (bottom).
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In the current study, we observed that D614G is highly prevalent
mutation in the spike protein of genomes from COVID-19 patients
of the Gujarat region. D614 is conserved in the reference sequence
from Wuhan and a sequence from Guangzhou, while SARS-CoV-2
genome sequences fromGujarat, India showed a very high frequency
of this mutation. In addition, it is concurrently seen with other
mutations like P681R, L452R, T19R, E156G, T478K. These had
>50% of occurrence in Gujarat whereas at the global level only
D614G showed very high occurrence (98.53%) of all sequences and
the rest of these formerly mentioned mutations had a frequency of
35–40% globally, lower than that inGujarat. The observation that the
P681R was the second most prevalent mutation reveals the recent
high dominance of the Delta variant in the region. Additionally,
spike D614G was accompanied by high occurrence of the nsp12
P4715L mutation, and this duo variant which is linked to

pathogenicity was observed to be not linked positively to fatality
rates in Africa (Lamptey et al., 2021). Such duo variants need further
attention to assess host-based region-specific response.

Considering the high occurrence of D614G in spike protein of
SARS-CoV-2, several groups have assessed the antigenic peptides and
it is reported that the peptide S597-625 is one of the major immuno-
dominant in humans (Wang et al., 2016; Kim et al., 2020). Antigenic
propensity analysis showed that variant spike protein- G614 is having a
little higher antigenic propensity to the D614. This observation may be
one of the reasons for no change in the death rate despite the high
spread of the variant. Further studies on spike protein epitopes may
provide insights on the potential efficacy of many of the vaccines
which may be designed based on the D614 sequence.

Earlier reports have also showed that D614G increases the
efficiency of cellular entry for the virus across a broad range of

FIGURE 4 | Antigenic propensity of two different SARS-2COV-2 sequences and Pangolin-CoV. (A) Pangolin-CoV, (B) SARS-CoV-2 (D614G) Variant, (C)
Reference sequence at 614 position in spike glycoprotein sequence.
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human cell types, including cells from lung, liver, and colon
(Daniloski et al., 2021). They also observed that spike-G614 is
more resistant to proteolytic cleavage during the production of
the protein in the host cell.

Seeing the rise in the cases with D614G mutation and its
enhanced transmission, the D614G attracts significant
consideration by researchers and healthcare field fellows. In
the present work, we attempt to report the mutation analysis
of spike protein and the antigenic propensity of D614G mutation
in the spike protein of the viral isolates from the Gujarat region.
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Molecular Diagnosis of Muscular
Dystrophy Patients in Western Indian
Population: A Comprehensive
Mutation Analysis Using Amplicon
Sequencing
Komal M. Patel1, Arpan D. Bhatt 1, Krati Shah2, Bhargav N. Waghela1, Ramesh J. Pandit 1,
Harsh Sheth3, Chaitanya G. Joshi 1 and Madhvi N. Joshi1*

1Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, India,
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Muscular Dystrophies (MDs) are a group of inherited diseases and heterogeneous in
nature. To date, 40 different genes have been reported for the occurrence and/or
progression of MDs. This study was conducted to demonstrate the application of next-
generation sequencing (NGS) in developing a time-saving and cost-effective diagnostic
method to detect single nucleotide variants (SNVs) and copy number variants (CNVs) in
a single test. A total of 123 cases clinically suspected of MD were enrolled in this study.
Amplicon panel-based diagnosis was carried out for 102 (DMD/BMD) cases and the
results were further screened using multiplex ligation-dependent probe amplification
(MLPA). Whilst in the case of LGMD (N � 19) and UMD (N � 2), only NGS panel-based
analysis was carried out. We identified the large deletions in 74.50% (76/102) of the
cases screened with query DMD or BMD. Further, the large deletion in CAPN3 gene
(N � 3) and known SNV mutations (N � 4) were identified in LGMD patients. Together,
the total diagnosis rate for this amplicon panel was 70.73% (87/123) which
demonstrated the utility of panel-based diagnosis for high throughput, affordable, and
time-saving diagnostic strategy. Collectively, present study demonstrates that the panel
based NGS sequencing could be superior over to MLPA.

Keywords: next generation sequencing (NGS), multiplex ligation-dependent probe amplification (MLPA), duchenne
muscular dystrophy (DMD), becker muscular dystrophy (BMD), limb-girdle muscular dystrophies, congenital
muscular dystrophies (CMDs)

HIGHLIGHTS

• Muscular Dystrophies (MDs) are genetically heterogeneous diseases.
• Loss of function mutations in the DMD gene causes non-functional dystrophin protein that
progresses various MDs.

• The customized amplicon panel consisting of genes targeting 29 MDs was used to detect large
deletions in the DMD gene and novel deletion in the CAPN3 gene.

• NGS-based study provides eligibility of patients for currently available treatment such as exon
skipping.
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INTRODUCTION

Muscular dystrophy is a genetically heterogeneous group of
neuromuscular diseases that result in degradation of skeletal
muscles, progressive muscle weakness, loss of ambulation,
cardiac attack, and respiratory failure (Wang et al., 2019). To
date, more than 30 different types of MDs are known and can be
classified based on the onset of disease, clinical manifestations,
mode of inheritance, and severity of the disease (Gaina et al.,
2019). Duchenne Muscular Dystrophy (OMIM # 310200) is the
most common, rapidly progressive, and severe neuromuscular
disease. It inherits in an X-linked recessive manner affecting 1 in
3,500 male children with onset before 5 years’ age (Wu et al.,
2017; Mohammed et al., 2018; Zhang Y. et al., 2019). Becker
Muscular Dystrophy (BMD) is a less severe form of the disease
caused by the mutation in the DMD gene and slow progressive
with an incidence rate of 1 in 20,000 male children (Aartsma-Rus
et al., 2016; Wu et al., 2017; Mohammed et al., 2018; Kong et al.,
2019; Wang et al., 2019). The DMD (dystrophin) is a large gene
encompassing 79 exons and spanning approximately 2.5 Mb of
the genomic DNA. Loss of function mutations in the DMD gene
causes an impaired dystrophin protein which disturbs the
membrane complex and myofiber loss. In contrast, patients
with BMD have a shorter or less functioning form of the
dystrophin protein, which makes the disease less severe and
slow progressive (Wicklund, 2013; Wu et al., 2017; Wang
et al., 2019). DMD and BMD are caused due to various
mutations like large deletions (60%), SNVs and INDELs
(30%), and duplications in the DMD gene (5–7%)
(Mohammed et al., 2018; Wang et al., 2019).

Limb-Girdle Muscular Dystrophies (LGMDs) are another
heterogeneous group of MDs consisting of around 30
subtypes, vary with genetic and clinical characteristics
(Iyadurai and Kissel, 2016). LGMDs are progressive and
characterized by weakness of the shoulder and pelvic girdle
muscles. The incidence rate of LGMDs is approximately 1 in
14,500 to 123,000 (Pegoraro and Hoffman, 2012; Murphy and
Straub, 2015; Nallamilli et al., 2018) [https://rarediseases.org/rare-
diseases/limb-girdle-muscular-dystrophies, last accessed July 29,
2020.] The inheritance pattern of LGMDs is both autosomal
dominant (AD-LGMD) and autosomal recessive (AR-LGMD).
AR-LGMDs are more frequent than AD-LGMDs. LGMD
associated proteins includes dystrophin-glycoprotein complex
(DGC) and play a pivotal role in membrane stability. The
mutations in MD genes causes disturbance in DGC proteins
that destabilizes the membrane and eventually muscle
degradation (Murphy and Straub, 2015).

Congenital Muscular Dystrophies (CMDs) are another group
of muscular dystrophies that are also heterogeneous and affect
newborns with an incidence of 1:10,000 to 1:50,000. Common
symptoms of CMDs include hypotonia, scoliosis, motor delay,
and muscle weakness from birth or infancy. Moreover, mutation
in multiple genes causes CMDs (Valencia et al., 2013).

Routinely, Multiplex Ligation Dependent Probe Amplification
(MLPA) or array-CGH (aCGH) diagnostics tests are being used
to detect large CNVs (Deletions/Duplications) in MDs (Zhang K.
et al., 2019). The results of these diagnostic tests further requires

targeted sequencing to detect SNVs in the DMD/BMD cases. In
several cases in which large deletions can be a cause of LGMDs, an
aCGH is an exclusive option (Zhang K. et al., 2019). Performing
aCGH in all referred cases would be time consuming and
expensive. In a developing country like India, cost-effective
and a single screening approach to detect CNVs, and SNVs,
can be a boon. Furthermore, variety of therapies for DMD
patients are available and few are under development, which
requires an utmost knowledge of breakpoints for deletions and
targeted mutations. Hence, timely and precise diagnosis of MDs
helps clinicians to enroll eligible patients for therapy. The
diagnosis of specific subtype of MDs using Next-generation
sequencing (NGS) can be a timely and affordable approach
which improves clinical prognosis (Bello and Pegoraro, 2016;
Okubo et al., 2016; Zhang K. et al., 2019). Further, the NGS
platforms also identified the novel variants as well as
confirmation of hard-to-detect variants (Sheikh and Yokota,
2020). Recent studies suggest that the utilization of a high-
throughput method using NGS platform is more suitable for
clinical diagnosis (Okubo et al., 2016; Aravind et al., 2019).
Moreover, the detection of large duplications is a major
challenge for single-point diagnostic strategy (Okubo et al.,
2016). In the present study, a total of 123 subjects (including
both patients and female carriers) with suspected MDs were
evaluated using an amplicon-based panel for its diagnostic
specificity to detect CNVs and SNVs. Results of CNV analysis
for theDMD gene were compared withMLPA. Further, we aimed
to identify CNVs and SNVs type of mutation with our
customized amplicon panel for different types of muscular
dystrophies.

MATERIALS AND METHODS

Sample Collection and Genomic DNA
Isolation
A total of 123 unrelated patients suspected of MD [DMD/BMD
(N � 82), LGMD (N � 19), and UMD (N � 2)] and possible
carriers (N � 20) were enrolled in this study. These cases were
recruited in the study through screening camps across the state of
Gujarat by collaborative efforts of the IndianMuscular Dystrophy
Society (IMDS), Rashtriya Bal Swasthya Karyakram, and Gujarat
Biotechnology Research Centre (GBRC). Informed and written
consent was derived from the patients and their relatives after
Genetic counseling. We have included patients clinically
suspected with DMD/BMD with the following indications 1)
significantly high serum creatine phosphokinase (CPK- >200 U/L
(Aujla and Patel, 2020); 2) difficulty in walking, waddling gait, toe
walk, Gower’s sign or loss of ambulation; 3) and progressive
muscle weakness. Patients with evident proximal muscle
weakness mainly the shoulder girdle and pelvic were included
in the study with query LGMD. Uncertain Muscular Dystrophies
(UMDs) were included in the study for amplicon sequencing.
Blood samples were collected in EDTA vacutainer in a standard
blood collection setup. Genomic DNA was extracted from blood
samples using the QIAamp DNA Blood Mini Kit (QIAGEN,
Germany) as per the manufacturer’s instructions. DNA
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quantitation was done on Qubit 4 Fluorometer (Thermo Fisher
Scientific, IN) using dsDNA BR (broad range) assay kit (Thermo
Fisher Scientific, IN). For the data analysis, the baseline was
generated using amplicon sequencing of 10 healthy male controls.

Customized Multi-Gene Panel
In the present study, a custom Ion AmpliSeq™ Panel which
covers DMD, SGCA, SGCB, SGCG, SGCD, CAPN3, ISPD, TCAP,
TMEM43, TRIM32, FKRP, MYOT, POMT1, FKTN, POMT2,
POMGNT1, DAG1, LMNA, ANO5, LAMA2, COL6A1,
COL6A2, COL6A3, FHL1, DYSF, LARGE, TRAPPC11, and
EMD genes which are reported earlier and significantly
associated with different pathologies of muscular dystrophies
was designed. The association of these genes with different
phenotypic abnormalities of MDs has been indicated in
Supplementary Table S1. The panel comprises a total of 1,312
amplicon primer pools targeting the coding and untranslated
regions (UTRs) with 10bp flanking regions of the
mentioned genes.

Targeted Sequencing
A total of 123 cases (includes 102 DMD/BMD/Carrier, 2 UMD,
and 19 LGMD) were screened by targeted sequencing using a
custom amplicon panel. For each sample, 50 ng of DNA was
amplified with custom primer pools using Ion Ampliseq™ HiFi
Mix (Thermo Fisher Scientific, IN). This was followed by partial
digestion, adaptor + barcode ligation, and library amplification.
Libraries were purified using AgencourtAMPure XP (Beckman
Coulter, United States). Purified libraries were quantified by
Qubit dsDNA HS assay kit (Thermo Fisher Scientific, IN) and
then pooled in equimolar concentrations. Emulsion PCR of
pooled and diluted libraries was carried out using the Ion
OneTouch™ 2 System (Thermo Fisher Scientific, IN) followed
by enrichment of template-positive Ion Sphere™ Particles on an
Ion OneTouch™ ES system (Thermo Fisher Scientific, IN).
Sequencing was carried out on the Ion Proton™ and Ion S5™
systems using Ion PI and Ion 530 chips respectively, with an
average depth of 80x.

MLPA
A total of 102 DMD/BMD/Carrier subjects were screened
through MLPA for all exon deletions and duplications in the
human DMD gene. MLPA was performed using SALSA MLPA
kit P034/P035 (MRC-Holland, Netherlands) as per the
manufacturer’s instructions. Fragment analysis was performed
on the 3500xL Genetic Analyzer (Applied Biosystems,
United States) and MLPA data were analysed using Coffalyser
Software (MRC-Holland, Netherlands).

Analysis of Single Nucleotide Variants
Analysis of the raw sequences was performed using Ion Torrent
Suite software v5.12 on the Ion torrent server with the
incorporated standard pipeline. Variant analysis pipeline
includes, signal processing, base calling, quality score
assignment, adaptor trimming, PCR duplicate removal, and
read alignment to the human reference genome (hg19 genome
build). Variants were identified with Torrent Variant Caller

plugin software and the Coverage Analysis plugin software
obtained coverage analysis. The poor quality and intronic
mutations were discarded from the datasets. Annotation of the
high-quality variants was performed using the Ion Reporter
server system. Clinically known and reported variants like
pathogenic or likely pathogenic were identified from the
ClinVar database (Landrum et al., 2014). To check strand
biases and sequencing errors in the variant calling, alignments
were visualized and the presence of mutations in the datasets
against the reference genome was confirmed using Integrative
Genomics Viewer (IGV) (Robinson et al., 2011). Classification of
variants was carried out as per the American College of Medical
Genetics and Genomics recommendations (ACMG) for standard
interpretation and reporting of sequence variations (Richards
et al., 2015).

Identification of Large Homozygous and
Heterozygous Deletions
For identification of large deletion/s, we used a CNV detection
workflow available on the Ion Reporter Server system. For the
CNV detection workflow, the base line was created using 10
healthy normal individual male samples. This baseline control
was used as a reference to analyse CNV in patient samples and
female carriers.

Analysis of Reading Frame
In the DMD gene, in-frame and out-of-frame mutation patterns
were analyzed with a reading frame checker of online available
DMD database [Leiden Muscular Dystrophy Pages. https://www.
dmd.nl/, last accessed July 29, 2020.].

RESULTS

A total of 123 suspected MD patients and suspected female
carriers were enrolled in the study. The mean age of onset for
DMD and BMD cases was 13 and 22 years, respectively. Average
CPK levels in clinically confirmed DMD and BMD cases were
6,551.08 U/L and 1,459.8 U/L, respectively. The normal range of
CPK is 20–200 U/L (Aujla and Patel, 2020). The graph of CPK vs
age is shown in Figure 1.

The Large Deletion in DMD/BMD
CNV analysis of the NGS data of suspected DMD and BMD cases
revealed large deletions in 76/102 (74.5%) cases, which included
69 patients and 7 female carriers. As per the reading frame rule,
considering only exon deletion, 63/102 (61.76%) and 13/102
(12.75%) cases were categorized into DMD and BMD,
respectively. The majority of deletions (78.94%) were in the
distal hotspot region (Exon 42–55) and proximal hotspot
deletions were between exon 2–19 (10.52%). Two patients
showed very large deletion including both proximal and distal
hotspot regions. No deletion was observed in exon 61–79. The
results of CNV analysis (DMD gene) using the NGS panel were
concordant with the results obtained using MLPA
(Supplementary Table S2). The deletion pattern of all positive
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cases is depicted in Figure 2. The largest deletion was seen in
(exons 1 to 60 (P30) followed by exons 3 to 44 (P41), exons 3 to 42
(P46), and exons 3 to 41 (P55). In the proximal region, the most
frequently deleted exon is 10 (10/76, 13.15%) followed by exon 3,
and exon 4 (9/76, 11.84%), while in the distal region, the most
common deleted exon is 49 (41/76, 53.94%), followed by exon 48
and exon 47 (37/76, 48.68%). Single exon deletion was observed
in 9/76 (11.84%) patients, where the most common deletion was
observed in exon 45 followed by exon 51. More than one exon

deletion was identified in 67/76 patients (88.15%). The
distribution of the mutation pattern is shown in Figure 3. In
this study, exon 45 to 52 was identified as a major deletion
hotspot region. Representative IGV tool image of large deletion is
shown in Supplementary Figure S1.

The Large Deletion in LGMD
Amplicon sequencing analysis of 19 LGMD suspected cases
revealed a homozygous deletion of exon 17 to 24 of the

FIGURE 1 | The distribution of patient’s Age vs CPK value in which X-axis shows CPK value (U/L) of patients and Y-axis shows the age of DMD/BMD patients in our
study.

FIGURE2 |Homozygous and heterozygous deletion (female carrier) pattern in DMD/BMDpatients. The X-axis shows exon number ofDMD gene and Y-axis shows
the number of patients showing deletion in the study. The highest deletions frequency was found in exons 45–52.
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CAPN3 gene in 3 patients (15.78%, 3/19). It was further
confirmed by visualizing in IGV (Supplementary Figure S2),
which supports the results of CNV workflow. CAPN3 deletion
results are consistent with the clinical presentation of LGMD type
2A disease.

Single Nucleotide Variation
MLPA and NGS (CNV) negative cases (N � 44) were further
considered for SNV analysis where in patient P109, a pathogenic
hemizygous mutation was found in theDMD gene. This mutation
causes a premature translational stop signal at codon 4,729 (p.
Arg1577*) of the DMD gene, which results in a disrupted protein
product. Truncating variants in the DMD gene are known to be

pathogenic as per the Clinvar database (Landrum et al., 2014).
This variant previously has been reported in individuals affected
with DMD (Mah et al., 2011; Yang et al., 2013). In the case of
suspected LGMD, mutations in 3 different genes were identified
in 4 patients (P99 and P100 are sisters). Two pathogenic
mutations were observed in POMT1 (P83) and DYSF (P92)
genes and other 3 VUS mutations were observed in LAMA2
(P60), and SGCB (P99 and P100) genes. SNV analysis also
revealed a missense Variant of Uncertain Significance (VUS)
in 1 UMD and 1 suspected LGMD case in COL6A2 (P52) and
COL6A1 (P97) gene, respectively (Table 1) which causes Bethlem
myopathy 1 (LGMD R22 Collagen6-related) disease as per the
Clinvar database (Landrum et al., 2014).

FIGURE 3 | Figure showing the distribution of mutation patterns with designed custom amplicon panel in our study.

TABLE 1 | Summary of point mutations in LGMD and UMD cases identified using panel-based NGS sequencing.

Patient
ID

CPK
total

Age Locus Location Function Exon Gene-cDNA ClinVar’s
clinical

significance

dbSNP ID Clinical
phenotypesof

disease

P52 95 40 chr21:
47537326

Exonic missense 11 COL6A2-
c.1012C>T

Uncertain
significance

rs775751831 LGMD R22 Collagen6-related/
Ullrich CMD type 1

P60 NA 9 chr6:
129704300

Exonic missense 35 LAMA2-
c.4993G>A

Uncertain
significance

rs373997222 CMD due to partial LAMA2
deficiency

P83 3,675 18 chr9:
134397500

Exonic missense 19 POMT1-
c.1958C>T

Pathogenic rs149682171 LGMD R5 γ-sarcoglycan-
related

P92 1,631 28 chr2:
71788881

Splice site unknown 23 DYSF-
c.2217-1G>T

Pathogenic rs886044379 LGMD R2 dysferlin-related

P97 653 21 chr21:
47419593

Exonic missense 27 COL6A1-
c.1763C>T

Uncertain
significance

rs759442615 LGMD R22 Collagen6-related/
Ullrich CMD type 1

P99 995 32 chr4:
52895918

Exonic missense 3 SGCB-
c.355A>T

Uncertain
significance

rs762412447 LGMD R4 β-sarcoglycan-
related

P100 679 34 chr4:
52895918

Exonic missense 3 SGCB-
c.355A>T

Uncertain
significance

rs762412447 LGMD R4 β-sarcoglycan-
related

P109 3,673 12 chrX:
32398743

Exonic missense 34 DMD-
c.4729C>T

Pathogenic rs863224999 DMD

DMD, duchenne muscular dystrophy; LGMD, Limb-girdle muscular dystrophies; CMD, congenital muscular dystrophy; CPK, creatine phosphokinase; NA, not available.
Note, 2018 Note: LGMDs, were described according to new nomenclature proposed by ENMC, Consortium (Straub et al., 2018) and Bethlem myopathy was described as a type of
LGMD (Angelini et al., 2018).
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DISCUSSION

In this study, we showed the utility of an amplicon panel to detect
CNVs and SNVs to diagnose a heterogeneous group of MDs in
patients and carriers. The accurate diagnosis of different types of
muscular dystrophies using a single method such as Sanger
sequencing or MLPA is a big challenge due to the complex
mutational spectrum. MLPA being a first-line test for the
diagnosis of the most common type of MD (DMD/BMD), to
detect SNVs sequencing is mandatory. However, Sanger
sequencing of the large coding region becomes laborious as
well as costly (Wang et al., 2014; Wei et al., 2014). Hence,
NGS could be the better alternative in terms of cost, since per
base sequencing cost has decreased drastically (Pareek et al.,
2011). Also, in cases with LGMDs and CMDs, neuromuscular
disease-specific panels at a lower cost can be beneficial in
developing countries like India. Previously, many studies have
been published for NGS-based approaches for MD (Lim et al.,
2011; Wang et al., 2014; Wei et al., 2014; Alame et al., 2016).
However, there are very few such studies reported for the Indian
population (Aravind et al., 2019; Ganapathy et al., 2019;
Polavarapu et al., 2019).

We customized an amplicon panel consisting of genes
targeting 29 different types of muscular dystrophies. One of
the major objectives of the present study was to detect point
mutation and CNVs in suspected, DMD/BMD patients/carriers,
LGMD, and CMD using an NGS-based amplicon panel. Our
CNV results of the DMD gene are consistent with the MLPA
results. Our findings support the idea that NGS-based diagnosis
methods could be routinly employed as a single diagnostic
screening method for the most frequent type of MDs. Further,
different MDs can be characterized by genotype and phenotype
correlation. Earlier reports highlighted the importance of
respective mutations in DMD patients and their mutation-
specific therapies (Kohli et al., 2020). Identification of
mutation patterns in the Indian cohort could improve the
therapeutic management. In the mutation analysis, deletion
was observed almost in each exon of DMD gene except 61–79
exons, where some deletions are reported in very low frequency in
Leiden Open Variation database (LOVD) (Aartsma-Rus et al.,
2006). Such as deletions are exon 19–45 (P15), 10–19 (P27 and
P108), 1–60 (P30), and in 3–41 (P55). Furthermore, two novel
out-of-frame deletions (exon 8–30 in P38 and 46–55 in P61)
observed in our study are not reported in the LOVD database.
The majority of deletions were observed in the hotspot region of
exon 45–52. Interestingly, during sample collection, three
patients were enrolled phenotypically as a DMD patients
however, our results concluded them as BMD patients with
the in-frame mutation. The variants were confirmed in
reading frame checker of LOVD database (Takeshima et al.,
1994). In SNV analysis, a nonsense variant (c.4729C>T in
exon 34) was observed in the DMD gene in patient P109. This
point mutation has been recorded in the LOVD database as a
pathogenic variant, which leads to a premature termination
codon (p. Arg1577*) and hence forms a truncated protein.
Earlier report suggests that the patients with such mutation
are affected with DMD (Esterhuizen et al., 2014). Further, we

have found four SNVs, COL6A2-c.1012C>T, LAMA2-
c.4993G>A,COL6A1-c.1763C>T, SGCB-c.355A>T, reported as
VUS in Clinvar database due to their conflicting reports and
prediction from various computational tools and require further
characterizations. NGS analysis of LGMD patients for CNV
analysis revealed a homozygous deletion in the CAPN3 gene
in exon 17 to 24 which is already reported in our previous study
(Bhatt et al., 2019). Identification of the same mutation in 3
patients in the current study accelerates the proof of novel
variants in our population. Mutation in the CAPN3 gene leads
to the most common form of autosomal recessive LGMD-2A type
of Muscular Dystrophy. Deletion in 17–24 exons results in short
truncated non-functional CAPN3 protein (Bhatt et al., 2019).
CAPN3 gene regulates the instruction for Calpain-3 enzyme
production that enzyme found in sarcomeres structure of
muscle cells which are the basic unit for muscle contraction
(Kramerova et al., 2007).

Characterization of the mutational landscape in the
population may increase the success of current therapeutics
and may provide direction to develop novel drug candidates.
Antisense oligonucleotide (AON)-mediated exon skipping
approach is currently developed to restore reading frame rule
which produces partially function protein in DMD patients.
FDA approved drugs such as EXONDYS 51 and VYONDYS 53
are commercially available to treat the patient who has a
confirmed mutation to skip exon 51 and 53 respectively
[http://www.aetna.com/cpb/medical/data/900_999/0911.html,
last accessed 29 July 2020.]. The limitation of the present study
is the very low frequency of point mutations and therefore
further sampling is required to validate such mutation with our
panel. Moreover, from a total of 123 cases, no mutation is
detected in 36 cases suggesting further testing is required for
other neuromuscular diseases which may rule out in our panel.

CONCLUSION

In conclusion, our finding showed the NGS platform could be a
future diagnostic tool for identifying disease-causing mutation/s in
different Muscular dystrophies, which are currently diagnosed using
multiple methods. The analysis of CNV in the DMD gene concludes
that our custom panel is superior to the MLPA method. NGS-based
diagnosis is not only time-saving but also cost-effective method when
compared with traditional testing strategies.
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GLOSSARY

ANO5 anoctamin 5

CAPN3 calpain 3

COL6A1 collagen type VI alpha 1 chain

COL6A2 collagen type VI alpha 2 chain

COL6A3 collagen type VI alpha 3 chain

DAG1 dystroglycan 1

DMD Duchenne Muscular Dystrophy

DYSF dystrophy-associated fer-1-like protein

EMD Emerin

FHL1 Four-and-a-Half Lim Domains 1

FKRP fukutin related protein

FKTN fukutin

ISPD isoprenoid synthase domain-containing protein

LMNA lamin A/C

LAMA2 laminin subunit alpha 2

LARGE LARGE xylosyl- and glucuronyltransferase 1

MYOT myotilin

NGS Next Generation Sequencing

POMT1 protein O-mannosyltransferase 1

POMT2 protein O-mannosyltransferase 2

POMGNT1 protein O-linked mannose N-acetylglucosaminyltransferase 1
(beta 1,2-)

SGCA Sarcoglycan Alpha

SGCB Sarcoglycan Beta (43 kDa Dystrophin-Associated Glycoprotein)

SGCG Sarcoglycan Gamma

SGCD Sarcoglycan Delta

TCAP Titin-Cap associated protein

TMEM43 Transmembrane Protein 43

TRAPPC11 trafficking protein particle complex 11

TRIM32 tripartite motif containing 32

VUS Variants of Uncertain Significance
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Methyltransferase as Antibiotics
Against Foodborne Pathogens: An In
Silico Approach for Exploring Enzyme
as Enzymobiotics
Varish Ahmad1*, Aftab Ahmad1, Mohammed F. Abuzinadah2, Salwa Al-Thawdi3 and
Ghazala Yunus4

1Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia,
2Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi
Arabia, 3Department of Biology, College of Science, University of Bahrain, Sakhir, Bahrain, 4Department of Basic Science,
University of Hail, Hail, Saudi Arabia

The development of resistance in microbes against antibiotics and limited choice for the
use of chemical preservatives in food lead the urgent need to search for an alternative to
antibiotics. The enzymes are catalytic proteins that catalyze digestion of bacterial cell walls
and protein requirements for the survival of the cell. To study methyltransferase as
antibiotics against foodborne pathogen, the methyltransferase enzyme sequence was
modeled and its interactions were analyzed against a membrane protein of the gram-
positive and gram-negative bacteria through in silico protein–protein interactions. The
methyltransferase interaction with cellular protein was found to be maximum, due to the
maximumPatchDock Score (15808), which was followed by colicin (12864) and amoxicillin
(4122). The modeled protein has found to be interact more significantly to inhibit the
indicator bacteria than the tested antibiotics and antimicrobial colicin protein. Thus, model
enzymemethyltransferase could be used as enzymobiotics. Moreover, peptide sequences
similar to this enzyme sequence need to be designed and evaluated against the microbial
pathogen.

Keywords: methyltransferase, antimicrobial, drug resistant, protein–protein interaction, enzymobiotics

INTRODUCTION

In fact, chemotherapy has renovated the treatments not only against bacterial disease but also fungal
diseases. However, many pathogens become protective against available antibiotics and pose a threat
to the health of humans and animals. Various alternatives to antibiotics such as probiotics,
nanobiotics, antimicrobial peptides or bacteriocin, CRISPR-Cas, quorum-sensing inhibitors,
phage therapy, and immunotherapy exist (Kumar et al., 2021).

The enzymes are proteinaceous molecules and known as biocatalysts or endopeptidases. Recent
research has reported that enzymes could be used as a special class of antimicrobial enzymobiotics,
against microbial infections and to control the drug-resistant microbes.

Enzymes play a significant role in the expression of cellular proteins, cell wall polysaccharides,
nucleic acids, and other cellular metabolites that are required for the survival of the cell. The use of
enzymes as bacteriophage holins and their membrane-disrupting activity, anti-staphylococcal lytic
enzymes, and membrane-targeted antibiotics have been recently highlighted by much research.
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Enzymes like glucose oxidase, hydrogen peroxidase, and protease
have inhibitory effects on microbial pathogens. The bacteriostatic
and inhibitory effect on biofilm formation against many pathogenic
bacteria like P. aeruginosa, S. aureus, and methicillin-resistant S.
aureus, with a patented formulation of glucose oxidase, was recently
explored by Cooper (2013). The glucose oxidase reported inhibiting
Staphylococcus cells more potent than the P. aeruginosa cells
(Cooper, 2013). Bacterial lipopolysaccharides (LPS) are involved
in maintaining intestinal homeostasis and mediate potent pro-
inflammatory toxins/mediators. Thus, apical brush borders rich
in alkaline phosphatase are analyzed as a significant de-
phosphorylation molecule for the neutralization of LPS in
addition to un-methylated cytosine-guanosine dinucleotides and
flagellin, resulting in reduced toxicity and inflammatory
responses (Drago-Serrano et al., 2012).

A recent study was conducted to investigate the effect of
dietary proteases on nutrient digestibility, growth performance,
crude protein digestibility, enzyme (pepsin, pancreatic amylase,
and trypsin) activities, plasma total proteins, intestinal villus
heights, intestinal morphology, and the expression levels of
specific genes. Significant increases in growth performance
have been observed which were attributed to better intestinal
development, enhanced protein digestibility, and improved
nutrient transport efficiencies. The supplementation of
proteases (200 and 300 mg/kg) within the diet increased the
ratio of villus heights to crypt depth significantly, especially in
the duodenum, jejunum, and ileum, and induced higher
expression levels of the peptide transporter 1 (PepT1) within
the duodenum region (Zuo et al., 2015).

The microorganisms are very sensitive to utilizing the
nutrients from crops through microbial enzymatic actions.
The main enzymes that help to initiate the deterioration are
the first attacker on the cell wall, and they are popularly
known as cell wall degrading enzymes. The cell wall
degrading enzymes could be employed as antibiotics. Many
proteinaceous molecules like bacteriocin produced from
plants, animals, and microbes have been tested as potential

therapeutic molecules. Initially, a homogeneous microbial
population has grown and started the deterioration that is
further exposed to the new environment to favor the growth of
other pathogens. This resulted in the growth of heterogeneous
microbial populations on the same habitats to initiate spoilage
or pathogenesis by damaging the cellular components, thus
helping tissue attack and microbial dissemination (Kikot
et al., 2009). To inhibit the growth of these foodborne
pathogens, chemical preservatives are not the preferred
choice for food (Chukwuka et al., 2010).

Moreover, the microbial resistance against currently used
antibiotics has raised serious human and animal health issues
globally. This antimicrobial-resistant is well reported in many
microbes including bacteria and fungi against last-line antibiotics,
signifying a future loss of the therapeutic option to treat the
infections. Many scientific strategies have also been tested to
combat the drug-resistant microbes (Sartelli et al., 2017). The
developed countries and developing countries have many
challenges that can spread and stimulate the emergence of
multidrug-resistant pathogen among microbial populations.
The drug-resistant bacteria like Pseudomonas aeruginosa (P.
aeruginosa), K. pneumonia, Streptococcus pneumoniae, and
Staphylococcus aureus have been well reported and recognized
as a global threat (Ventola, 2015). Managing these challenges
need many scientific efforts that explore microbial resistance and
the designing of effective controlling strategies such as active
surveillance that stop the development and spread of drug-
resistant microbes in the country. Moreover, improper use of
antibiotics, infection inhibition, and control safeguards should
also be improved to limit further spread. Therefore, it is highly
important to explore the alternatives to antibiotics, such as the
use of antimicrobial peptides, bacitracin, or lactic acid bacteria
must be promoted for the primary control of microbes.
Therefore, this in silico based study explores the use of the
enzyme methyltransferase sequence as antibiotics against
gram-negative and gram-positive bacteria.

MATERIALS AND METHODS

Preparation of Ligand Molecules
The structural information of amoxicillin (AMX) was retrieved
from the DrugBank database (https://go.drugbank.com/drugs/

FIGURE 1 | Selected molecules as ligand (A) methyltransferase (purple
color), (B) colicin protein (light pink color), and (C) amoxicillin (green color).

FIGURE 2 | Selected biomolecules as receptor (A) E. coli membrane
protein (light turquoise color) and (B) Staphylococcus aureus membrane
protein (golden color).
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DB01060) (Wishart et al., 2008) (Figure 1C). The 3D structure
of 23S rRNA [uracil (1939)-C (5)]-methyltransferase RlmD
(Pediococcus acidilactici) (Sequence ID: WP_004165491.1)
sequence was obtained from the National Centre for
Biotechnology Information (NCBI) and modeled using the
SWISS MODEL server (Waterhouse et al., 2018)
(Figure 1A). The colicin structure was downloaded from the
Protein Data Bank (RCSB PDB - 1COL: refined structure of the
pore-forming domain of colicin a at 2.4 angstroms resolution)
(Figure 1B).

Preparation of Receptor Molecules
(SWISS-MODEL Workspace/GMQE)
We have accessed the PDB database for the receptor molecules
but did not find them. Therefore, the 3D structures of
membrane protein (Escherichia coli) (accession no.:
APJ97041.1) (Figure 2A) and membrane protein
(Staphylococcus aureus) (accession no.: KII21430.1)
(Figure 2B) were modeled after retrieving their sequences
in the FASTA format from the NCBI and provided as an input

TABLE 1 | Showing quality assessment results of modeled 3D structures.

Model MolProbity
score

Clash
score

Ramachandran
favored

Ramachandran
outliers

Rotamer
outliers

C-Beta
deviations

Ideal case As low as possible 0 >98% <0.2% <1% 0
Methyltransferase 1.04 0.70 95.55% 1.11% 0.51% 1
Membrane protein (Escherichia coli) 1.77 4.56 95.16% 0.81% 1.83% 2
Membrane protein (Staphylococcus
aureus)

0.50 0.00 98.11% 0.00% 0.00% 0

FIGURE 3 | Plot showing local quality estimation of (A) methyltransferase, (B) E. coli membrane protein, and (C) Staphylococcus membrane protein.
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for the SWISS MODEL server on the basis of homology
approaches (detailed information available in
Supplementary Materials).

Model Evaluation
All modeled 3D structures were evaluated using the
MolProbity version 4.4 assessment tool integrated in the
SWISS-MODEL server (Chen et al., 2010). All-atom
structure validation for macromolecular crystallography
was carried out.

Molecular Docking
The molecular interaction analysis were executed using the
PatchDock online server (https://bioinfo3d.cs.tau.ac.il/PatchDock/)
(Duhovny et al., 2002; Schneidman-Duhovny et al., 2005).
PatchDock uses a geometry-based molecular docking algorithm
as a scoring function. All figures were generated using Discovery
Studio Visualizer 2020 (Ventola, 2015; Dassault Systèmes, 2020).

MDS Experimentation
The docking results E. coli_mem, E. coli_mem + COL
complexes, and E. coli_mem + MT of complexes were
further analyzed by MDS studies using advanced
computational techniques. Thus, the MDS environment

was created, and simulation study was conducted for 50
nanoseconds (ns) using the GROningen MAchine for
Chemical Simulations (GROMACS) tool (2018 version)
(Van Der Spoel et al., 2005) developed by the University of
Groningen, Netherlands. The simulation in water for
complexes E. coli_mem, E. coli_mem + MT, and
E. coli_mem + COL was performed by using GROMACS
standard protocol.

The simulation for selected complexes, initially, the pdb2gmx
module, was utilized and required E. coli_mem, E. coli_mem +
MT, and E. coli_mem + COL topology files to be generated,
followed by OPLS-AA/L all-atom force field selection.

The solvation step was performed by creating a unit water
willed cell cubic box. The energy was minimized by addition
of Na+ and Cl- ions for stabilization of the system.
Equilibrium setup for the (all complexes) system was
essential and created, followed by two-step ensembles NVT
and NPT (constant N, number of particles; V, volume; P,
pressure; T, temperature) providing constancy and
stabilization of the system through complete simulation
(Gupta et al., 2020).

GORMACS have many packages, for E. coli_mem,
E. coli_mem + MT, and E. coli_mem + COL complexes.
MDS analysis, root mean square deviation (RMSD) was

FIGURE 4 | Plot showing local quality estimation of (A) methyltransferase, (B) E. coli membrane protein, and (C) Staphylococcus membrane protein.
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analyzed by gmx rms (Kufareva and Abagyan, 2012), root
mean square fluctuation (RMSF) was analyzed by gmx rmsf
for, gmx gyrate for the calculation of radius of gyration (Rg)
(Kuzmanic and Zagrovic, 2010), and gmx. Finally, after a
successful 50-ns simulation run, trajectory files and graphical
plots were generated by using the xmgrace program (Turner,
2005).

RESULTS

To study the binding interaction of methyltransferase with
the cellular protein of gram-positive and gram-negative
bacterial pathogens, the ligand and receptor structure was
created using SWISS-MODEL (Figures 1A–C, 2A–C).
Similarly, the ligand 3D structure of membrane protein
(Escherichia coli) and (accession no.: APJ97041.1) and

membrane protein (Staphylococcus aureus) (accession no.:
KII21430.1) was modeled after retrieving their sequences in
the FASTA format from the NCBI and provided as an input
for the SWISS-MODEL server on the basis of homology
approaches. All modeled 3D structures were evaluated using
the MolProbity version 4.4 assessment tool integrated into the
SWISS-MODEL server. The model structure information is
represented in Table 1, and the local quality of models is
represented in Figures 3, 4.

The quality comparison with a non-redundant set of PDB
structures is also performed, which is shown in Figure 5. The
stability of modeled ligand molecules and receptors was
confirmed by the Ramachandran plot (Figure 6), which
shows that the modeled 3D structure of membrane protein
(Staphylococcus aureus) was the best-predicted structure that
had 98.11% amino acid residues in the favored region with no
C-Beta deviation (Table 1 and Figure 7A–C).

FIGURE 5 | Plot showing local quality comparison with non-redundant set of PDB structure (A) methyltransferase, (B) E. coli membrane protein, and (C)
Staphylococcus membrane protein.
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Furthermore, the molecular interaction analysis was executed
using the PatchDock online server (https://bioinfo3d.cs.tau.ac.il/
PatchDock/) (Duhovny et al., 2002; Schneidman-Duhovny et al.,
2005; Ansari et al., 2020) (Tables 2 and 3).

E. coli membrane protein interaction with methyl transferase
with colicin protein and amoxicillin were analyzed and 3D
graphics generated using Discovery Studio Visualizer 2020
(Figure 8).

The methyltransferase interaction with cellular protein was
found to be maximum, due to the maximum PatchDock Score
(15808), which was followed by colicin (12864) and
amoxicillin (4122) (Table 2; Figures 7A–C). Moreover, the
interaction bond was stabilized through the hydrogen bond
between methyltransferase, colicin, amoxicillin, and cellular
protein; EC: LYS163:N—MT:GLY153:O, EC:ARG150:
NH1—COL:ASP24:OD2, and AMX:O—EC:TYR207.
Similarly, interaction study with methytransferase, colicin,

and amoxicillin with cellular protein of bacterial pathogen S.
aureus were found to the maximum with methyltransferase
(PatchDock Score: 14024), followed by colicin (PatchDock
Score 12790) and amoxicillin (Table 3; Figures 8A–C).

MDS Analysis
Furthermore, after the MDS total experimentation 50 ns run,
the analysis was done on the basis of obtained data from
RMSD, RMSF, and Rg plot analysis, revealing deviation,
fluctuation, and stability of E. coli_mem, E. coli_mem + MT,
and E. coli_mem + COL complexes during the whole simulation
period. The RMSD values for selected simulated molecules
ranged between 0.15 and 0.4 nm (Figure 7A). The observed
RMSD values for E. coli _mem, E. coli_ mem + MT, and
E. coli_mem + COL complexes were between 0.2 and 0.25 nm,
0.3–0.4 nm, and 0.2–0.25 nm, respectively. In comparison
with E. coli_mem, the E. coli_mem + MT, and E. coli_mem +

FIGURE 6 | Showing Ramachandran plot for modeled 3D structures of structures (A) methyltransferase, (B) E. coli membrane protein, and (C) Staphylococcus
membrane protein.
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COL complexes showed stability after 20 ns until 50 ns
(Figure 7A). The E. coli_mem + MT complex average RMSD
value was higher than those of the E. coli_mem and E. coli_mem+
COL complexes.

RMSF calculation per atom showed a value that ranged
between 0.1 and 0.7 nm for protease, E. coli_mem,
E. coli_mem + MT, and E coli_mem + COL complexes, and
it was observed that for most of the residues, the RMSF value
remains near 0.1 nm for all complexes (Figure 9A–C).
Furthermore, few fluctuations were observed at the 2000-
and 3000-atom regions. (Figure 9B).

Radius of gyration (Rg) analysis is very important for the
assessment of the compactness and stability of the protein
structure during the whole simulation period. The
E. coli_mem Rg plot shows an average value of

approximately 1.5 nm. E. coli_mem + MT and E. coli_mem
+ COL remain stable and show average values near 2.0 and
2.25 nm, respectively. No major fluctuation was observed in
Rg plot analysis (Figure 9C).

DISCUSSION

Currently, a formulation of glucose oxidase with other
active ingredients was patented. The formulation has been
described to has the inhibitory potential against foodborne
bacteria Staphylococcus cells and biofilm formation of P.
aeruginosa, S. aureus, and methicillin-resistant S. aureus.
Honey is rich in nutrient value, glucose oxidase which inhibits
P. aeruginosa.

FIGURE 7 | Showing 3D visualization of E. coli membrane protein (shown in light turquoise color with solid ribbon pattern) interaction with (A) methyltransferase
(purple color in ribbon pattern), (B) colicin protein (light pink color in ribbon pattern), and (C) amoxicillin (green color in stick pattern).
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Moreover, breeding of novel honeybee species that
have produced more glucose oxidases in order to increase the
antibacterial efficacy of the product (Bucekova et al., 2014).

The enzymes like endopeptidases themselves are required
for the normal growth of bacteria. Moreover, it also destroyed
the bacterial cell well in presence of beta-lactam antibiotics like
penicillin (Shin et al., 2016). The antimicrobial potential of
many ribosomally synthesized proteins named bacteriocin has
been reported to kill or inhibit the growth of gram-positive and
gram-negative bacteria (Ahmad et al., 2014; Ahmad et al.,
2019). In this study, the protein–protein interaction study was
conducted between the methyltransferase and cellular

membrane protein of gram-positive bacteria and gram-
negative bacteria. The antibiotics amoxicillin and peptide
antibiotic colicin, a well-known antimicrobial peptide were
studied as a positive control. Colicin is the first potential
antimicrobial peptide produced from E. coli bacteria that
has a bactericidal effect by forming pores in the inner
membrane of nonhost E. coli and damaging the DNA and
RNA (Cascales et al., 2007; Jin et al., 2018). The enterococin A,
the protein–protein interactions of methyltransferase with cell
protein of E. coli was observed to be more significant than that
of the colicin and amoxicillin as it has been observed to be the
maximum PatchDock score (15808), which is followed by

TABLE 3 | Staphylococcus membrane protein interaction with methyltransferase, colicin protein, and amoxicillin. In the hydrogen bond column, STP, Staphylococcus
membrane protein; MT, methyltransferase; COL, colicin protein; AMX, amoxicillin.

Serial number Ligand molecule PatchDock score Hydrogen bonds Hydrogen bonds length
(Angstrom)

1 Methyltransferase 14024 STP:LYS36:NZ—MT:GLN286:OE1 3.12548
STP:GLN42:NE2—MT:SER154:O 3.36677
STP:LYS45:NZ—MT:LYS151:O 3.28368
STP:LYS45:NZ—MT:ARG152:O 2.83486
MT:GLN135:NE2—STP:MET34:SD 3.7311
MT:SER154:N—STP:GLN42:OE1 2.89249
MT:ASN252:ND2—STP:LYS45:O 2.9043
STP:HIS37:CE1—MT:GLN166:OE1 3.75744
MT:HIS445:CE1—STP:VAL35:O 2.55974

2 Colicin protein 12790 COL:PRO132:CD—STP:ASP26:OD1 2.24668

3 Amoxicillin 3544 STP:ARG58:NH1—AMX:O 1.67897
AMX:O—STP:LEU51:O 3.26094
AMX:N—STP:PHE55 3.93687

TABLE 2 | E. coli membrane protein interaction with methyltransferase, colicin protein, and amoxicillin. In the hydrogen bond column, EC, E. coli membrane protein; MT,
methyltransferase; COL, colicin protein; AMX, amoxicillin.

Serial number Ligand molecule PatchDock score Hydrogen bonds Hydrogen bonds length
(Angstrom)

1 Methyltransferase 15808 EC:LYS163:N—MT:GLY153:O 2.91143
EC:LYS240:NZ—MT:THR251:OG1 3.15602
MT:SER111:OG—EC:GLU217:OE1 2.58874
MT:ASN252:N—EC:ARG201:O 2.39953
MT:ARG387:NH2—EC:ASP206:O 1.93498
MT:ARG387:NH2—EC:THR210:OG1 2.16363
EC:LYS163:CA—MT:ARG152:O 3.48398
MT:ARG418:CD—EC:SER235:O 2.69943
MT:HIS445:CE1—EC:THR210:OG1 3.19989

2 Colicin protein 12864 EC:ARG150:NH1—COL:ASP24:OD2 2.88023
EC:THR152:OG1—COL:GLU17:OE2 3.36734
EC:LYS245:NZ—COL:LYS6:O 2.9338
EC:LYS246:NZ—COL:ASN47:OD1 3.30611
COL:LYS6:NZ—EC:SER255:O 3.01983
EC:ARG150:CD—COL:GLU17:O 2.74897
COL:LYS97:CE—EC:HIS179:O 2.22174
COL:GLY166:CA—EC:GLY274:OXT 3.08932

3 Amoxicillin 4122 AMX:O—EC:TYR207 3.93411
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colicin (12864) and amoxicillin (4122). The interaction of
cellular protein was also significant for colicin as compared
to the amoxicillin (Figure 6).

The endogenous alkaline phosphatase (IAP) enzyme usually
localizes to the apical brush border and participates in the de-
phosphorylation of bacterial LPS in addition to the un-
methylated cytosine-guanosine dinucleotides and flagellin,
leading to reduced bacterial toxicity and inflammation
responses (Vaishnava and Hooper, 2007).

In animals, the endogenous levels of IAP are reported to
decrease at the weaning stage; hence pathogenic gram-negative
bacteria (through an LPS-mediated mechanism) can upregulate
inflammatory responses, leading to a symptomatic diarrhea.
To address this issue, the use of exogenous IAP over-
expression systems to modulate the animal’s overall IAP levels,
promote gut health, and reduce the associated diarrhea has been
suggested.

In a recent study, the effect of intestinal alkaline phosphatase
(IAP) and sodium butyrate on LPS-induced intestinal

inflammation was evaluated in pigs. The exogenous IAP was
able to complement endogenous IAP levels and downregulate
LPS-induced inflammatory responses via the RelA/p65 (NF-
κB) route, demonstrating that such a treatment may indeed
be beneficial in attenuating LPS-induced intestinal
inflammation.

Colicin is a well-reported antimicrobial peptide that showed
strong inhibition as compared to the repurposing antibiotics
(Cascales et al., 2007; Jin et al., 2018). The study sequence of
methyltransferase has shown a greater inhibitory potential.
Recently, Ahmad et al. reported an antimicrobial peptide of
51 kDa from Lysinibacillus, with close sequence similarity to
the methyltransferase (Ahmad et al., 2019). The interactions of
methyltransferase, colicin, and amoxicillin were also studied
with membrane protein of a gram-positive bacterial indicator,
Staphylococcus aureus (Table 3 and Figure 7). The
methyltransferase has also been observed to interact more
significantly than colicin and amoxicillin. The interaction of
colicin with S. aureus membrane protein was also observed to

FIGURE 8 | Showing 3D visualization of Staphylococcus aureus membrane protein (shown in golden color with solid ribbon pattern) interaction with (A)
methyltransferase (purple color in ribbon pattern), (B) colicin protein (light pink color in ribbon pattern), and (C) amoxicillin (green color in stick pattern).
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be significant, but it was less than methyltransferase. The
antibiotic amoxicillin has also been observed significantly, but
it was less than the interaction of methyltransferase. ent A-col E1,
an antimicrobial peptide, was recently reported against S. aureus
(Simons et al., 2020; Fathizadeh et al., 2020).

CONCLUSION

Enzymes play a significant role for the expression of cellular
proteins, cell wall polysaccharides, nucleic acids, and other
cellular metabolites that are required for the survival of the

cell. The use of enzymes as bacteriophage holins and their
membrane-disrupting activity, anti-staphylococcal lytic
enzymes, and membrane-targeted enzybiotics has recently
been highlighted by much research. This in silico based study
also explores the use of methyltransferase against gram-negative
and gram-positive bacteria. The active sequences of this enzyme
need to be explored. In this regard, we recommended the
designing of short peptides using the methyltransferase
sequence and evaluation of antimicrobial potential of these
peptides that could be beneficial to develop a peptide-based
enzymobiotic against gram-positive and gram-negative bacteria
and pathogenic bacteria.

FIGURE 9 |Graphical representation (A) RMSD plot of E. coli_mem (black color), E. coli_mem +MT (red color), and E. coli_mem + COL (green color) and showing
deviation and stability during 100-ns period. (B) RMSF plot with fluctuation per residues. (C) Radius of gyration (Rg) plot showing compactness of E. coli_mem,
E. coli_mem + MT, and E. coli_mem + COL molecule during 50000ps simulation. Where nm, nanometer; ns, nanosecond; ps, picosecond.
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