
EDITED BY : Alexantrou Serb, Melika Payvand, Irem Boybat and

Oliver Rhodes

PUBLISHED IN : Frontiers in Neuroscience, Frontiers in Artificial Intelligence

and Frontiers in Computational Neuroscience

HARDWARE FOR ARTIFICIAL
INTELLIGENCE

https://www.frontiersin.org/research-topics/15184/hardware-for-artificial-intelligence
https://www.frontiersin.org/research-topics/15184/hardware-for-artificial-intelligence
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/research-topics/15184/hardware-for-artificial-intelligence

Frontiers in Neuroscience 1 September 2022 | Hardware for Artificial Intelligence

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a

pioneering approach to the world of academia, radically improving the way scholarly

research is managed. The grand vision of Frontiers is a world where all people have

an equal opportunity to seek, share and generate knowledge. Frontiers provides

immediate and permanent online open access to all its publications, but this alone

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access,

online journals, promising a paradigm shift from the current review, selection and

dissemination processes in academic publishing. All Frontiers journals are driven

by researchers for researchers; therefore, they constitute a service to the scholarly

community. At the same time, the Frontiers Journal Series operates on a revolutionary

invention, the tiered publishing system, initially addressing specific communities of

scholars, and gradually climbing up to broader public understanding, thus serving

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include some

of the world’s best academicians. Research must be certified by peers before entering

a stream of knowledge that may eventually reach the public - and shape society;

therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals

Series: they are collections of at least ten articles, all centered on a particular subject.

With their unique mix of varied contributions from Original Research to Review

Articles, Frontiers Research Topics unify the most influential researchers, the latest

key findings and historical advances in a hot research area! Find out more on how

to host your own Frontiers Research Topic or contribute to one as an author by

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of
individual articles in this eBook is the

property of their respective authors
or their respective institutions or

funders. The copyright in graphics
and images within each article may

be subject to copyright of other
parties. In both cases this is subject

to a license granted to Frontiers.

The compilation of articles
constituting this eBook is the

property of Frontiers.

Each article within this eBook, and
the eBook itself, are published under

the most recent version of the
Creative Commons CC-BY licence.

The version current at the date of
publication of this eBook is

CC-BY 4.0. If the CC-BY licence is
updated, the licence granted by

Frontiers is automatically updated to
the new version.

When exercising any right under the
CC-BY licence, Frontiers must be

attributed as the original publisher
of the article or eBook, as

applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of

others may be included in the
CC-BY licence, but this should be

checked before relying on the
CC-BY licence to reproduce those

materials. Any copyright notices
relating to those materials must be

complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed

in any copy, derivative work or
partial copy which includes the

elements in question.

All copyright, and all rights therein,
are protected by national and

international copyright laws. The
above represents a summary only.

For further information please read
Frontiers’ Conditions for Website

Use and Copyright Statement, and
the applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-88976-398-6

DOI 10.3389/978-2-88976-398-6

http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact
https://www.frontiersin.org/research-topics/15184/hardware-for-artificial-intelligence
https://www.frontiersin.org/journals/neuroscience

Frontiers in Neuroscience 2 September 2022 | Hardware for Artificial Intelligence

HARDWARE FOR ARTIFICIAL
INTELLIGENCE

Topic Editors:
Alexantrou Serb, University of Southampton, United Kingdom
Melika Payvand, University of Zurich, Switzerland
Irem Boybat, IBM Research - Zurich, Switzerland
Oliver Rhodes, The University of Manchester, United Kingdom

Citation: Serb, A., Payvand, M., Boybat, I., Rhodes, O., eds. (2022).
Hardware for Artificial Intelligence. Lausanne: Frontiers Media SA.
doi: 10.3389/978-2-88976-398-6

http://doi.org/10.3389/978-2-88976-398-6
https://www.frontiersin.org/research-topics/15184/hardware-for-artificial-intelligence
https://www.frontiersin.org/journals/neuroscience

Frontiers in Neuroscience 3 September 2022 | Hardware for Artificial Intelligence

05 Editorial: Hardware for Artificial Intelligence

Irem Boybat, Melika Payvand, Oliver Rhodes and Alexander Serb

08 Scaling Equilibrium Propagation to Deep ConvNets by Drastically
Reducing Its Gradient Estimator Bias

Axel Laborieux, Maxence Ernoult, Benjamin Scellier, Yoshua Bengio,
Julie Grollier and Damien Querlioz

19 μBrain: An Event-Driven and Fully Synthesizable Architecture for Spiking
Neural Networks

Jan Stuijt, Manolis Sifalakis, Amirreza Yousefzadeh and Federico Corradi

34 NeuroSim Simulator for Compute-in-Memory Hardware
Accelerator: Validation and Benchmark

Anni Lu, Xiaochen Peng, Wantong Li, Hongwu Jiang and Shimeng Yu

44 Benchmarking Highly Parallel Hardware for Spiking Neural Networks in
Robotics

Lea Steffen, Robin Koch, Stefan Ulbrich, Sven Nitzsche, Arne Roennau and
Rüdiger Dillmann

61 Toward Software-Equivalent Accuracy on Transformer-Based Deep
Neural Networks With Analog Memory Devices

Katie Spoon, Hsinyu Tsai, An Chen, Malte J. Rasch, Stefano Ambrogio,
Charles Mackin, Andrea Fasoli, Alexander M. Friz, Pritish Narayanan,
Milos Stanisavljevic and Geoffrey W. Burr

70 Always-On Sub-Microwatt Spiking Neural Network Based on Spike-Driven
Clock- and Power-Gating for an Ultra-Low-Power Intelligent Device

Pavan Kumar Chundi, Dewei Wang, Sung Justin Kim, Minhao Yang,
Joao Pedro Cerqueira, Joonsung Kang, Seungchul Jung, Sangjoon Kim and
Mingoo Seok

85 Accelerating Inference of Convolutional Neural Networks Using
In-memory Computing

Martino Dazzi, Abu Sebastian, Luca Benini and Evangelos Eleftheriou

104 Considerations for Neuromorphic Supercomputing in Semiconducting
and Superconducting Optoelectronic Hardware

Bryce A. Primavera and Jeffrey M. Shainline

123 Enabling Training of Neural Networks on Noisy Hardware

Tayfun Gokmen

137 Gradient Decomposition Methods for Training Neural Networks With
Non-ideal Synaptic Devices

Junyun Zhao, Siyuan Huang, Osama Yousuf, Yutong Gao, Brian D. Hoskins
and Gina C. Adam

152 Brain-Inspired Hardware Solutions for Inference in Bayesian Networks

Leila Bagheriye and Johan Kwisthout

184 Mapping the BCPNN Learning Rule to a Memristor Model

Deyu Wang, Jiawei Xu, Dimitrios Stathis, Lianhao Zhang, Feng Li,
Anders Lansner, Ahmed Hemani, Yu Yang, Pawel Herman and Zhuo Zou

Table of Contents

https://www.frontiersin.org/research-topics/15184/hardware-for-artificial-intelligence
https://www.frontiersin.org/journals/neuroscience

Frontiers in Neuroscience 4 September 2022 | Hardware for Artificial Intelligence

200 MONETA: A Processing-In-Memory-Based Hardware Platform for the
Hybrid Convolutional Spiking Neural Network With Online Learning

Daehyun Kim, Biswadeep Chakraborty, Xueyuan She, Edward Lee,
Beomseok Kang and Saibal Mukhopadhyay

217 Neural Network Training With Asymmetric Crosspoint Elements

Murat Onen, Tayfun Gokmen, Teodor K. Todorov, Tomasz Nowicki,
Jesús A. del Alamo, John Rozen, Wilfried Haensch and Seyoung Kim

https://www.frontiersin.org/research-topics/15184/hardware-for-artificial-intelligence
https://www.frontiersin.org/journals/neuroscience

TYPE Editorial

PUBLISHED 09 August 2022

DOI 10.3389/fnins.2022.979495

OPEN ACCESS

EDITED AND REVIEWED BY

André van Schaik,

Western Sydney University, Australia

*CORRESPONDENCE

Oliver Rhodes

oliver.rhodes@manchester.ac.uk

SPECIALTY SECTION

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

RECEIVED 27 June 2022

ACCEPTED 15 July 2022

PUBLISHED 09 August 2022

CITATION

Boybat I, Payvand M, Rhodes O and

Serb A (2022) Editorial: Hardware for

artificial intelligence.

Front. Neurosci. 16:979495.

doi: 10.3389/fnins.2022.979495

COPYRIGHT

© 2022 Boybat, Payvand, Rhodes and

Serb. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Editorial: Hardware for artificial
intelligence

Irem Boybat1, Melika Payvand2, Oliver Rhodes3* and

Alexander Serb4

1IBM Research Europe, Rüschlikon, Switzerland, 2Institute for Neuroinformatics, University of Zurich,

Zurich, Switzerland, 3Advanced Processor Technologies Group, Department of Computer Science,

The University of Manchester, Manchester, United Kingdom, 4Institute for Integrated Micro and

Nano Systems, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom

KEYWORDS

artificial intelligence, in memory computing (IMC), noisy hardware, low energy

computing, neural networks, neuromorphic computing

Editorial on the Research Topic

Hardware for artificial intelligence

The remarkable progress in Artificial Intelligence (AI) has been made possible by

a “perfect storm” emerging over the past two decades, bringing together tremendous

progress in neuroscience, availability of massive amounts of data, and advents in scalable

computer and software systems such as Central Processing Units (CPUs) and Graphical

Processing Units (GPUs). However, as AI is increasingly integrated into our daily lives

and models grow in scale for solving more complex tasks, its required energy and

memory footprint is growing unsustainably. Significant research and development effort

is centered around custom hardware solutions targeting low latency, high throughput

and better energy savings. Complementary to this, are endeavors toward designing

algorithms that are best suited for the underlying hardware. This issue aims to bring

together novel research on hardware and algorithms for AI, spanning across a range of

applications.

Hardware accelerators for AI

Memory is the centerpiece of AI hardware research and development, since it

occupies the largest area, and is the dominant source of energy consumption in AI

systems. The largest energy contribution is related to the data movement between the

memory and processing units, known as the von Neumann bottleneck. To minimize

this data movement, there is substantial interest in bringing these two units together,

known as In-Memory Computing (IMC). Certain computational operations, such as the

matrix-vector multiplication that lie at the heart of all neural network operations, can be

performed by leveraging Ohm’s and Kirchoff’s current laws on custom-designedmemory

arrays, e.g., using Static Random Access Memory (SRAM) and resistive memory. IMC is

thus one of the main themes within this issue, featuring also benchmarking efforts for

the hardware, including comparative studies across conventional hardware (e.g., CPUs

and GPUs) (Steffen et al.) and IMC solutions from a range of hardware/application

Frontiers inNeuroscience frontiersin.org

5

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.979495
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.979495&domain=pdf&date_stamp=2022-08-09
mailto:oliver.rhodes@manchester.ac.uk
https://doi.org/10.3389/fnins.2022.979495
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.979495/full
https://www.frontiersin.org/research-topics/15184/hardware-for-artificial-intelligence
https://doi.org/10.3389/fnins.2021.667011
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Boybat et al. 10.3389/fnins.2022.979495

perspectives (Bagheriye and Kwisthout, Dazzi et al., Kim et al.,

Lu et al.). Specifically, NeuroSim, a simulator for compute-in-

memory hardware accelerators, is presented in Lu et al. The

simulator provides design tools for a range of IMC architectures,

and linking device, circuit and algorithmic level performance.

The simulator is validated against post-layout simulation of an

actual 40 nm RRAM-based IMC macro design.

Additional techniques for improving performance of AI

algorithms are also presented within the Research Topic.

For example, low-power systems exploiting event-driven

architectures for in-sensor compute (Stuijt et al.), and always-

on systems for edge implementations of AI algorithms

(Chundi et al.). Insights on optoelectronic platforms are also

provided, leveraging the complementary properties of optics and

electronics (Primavera and Shainline).

Advances in algorithms for AI
hardware

While the novel AI hardware solutions proposed

above promise significant gains in energy efficiency, it

remains a relatively big challenge to map conventional

AI algorithms and workflows onto systems with novel

substrates and hybrid bit-precision support. Conventional

CPU/GPU-based hardware typically makes use of shared

memory and message passing to allow implementation

of algorithms such as stochastic gradient descent (SGD)

for training, and the underlying floating point number

representations enable precise and repeatable computation.

Systems based on on-chip low-precision memory omit these

features by design, thus requiring different hardware-aware

algorithms for training and mapping, to realize their full

potential.

The TTv2 algorithm is proposed by Gokmen, which

builds on previous work to improve the noise tolerance by

100×, and reduce the number of device conductance states

from 1,000s to 10s (100×). The noise tolerance of matrix-

vector multiplication is also improved (10×), resulting in

an algorithm capable of optimizing DNNs close to their

ideal accuracy even at extremely noisy hardware settings.

Meanwhile neural network training with asymmetric cross-

point elements is investigated by Onen et al.. This work

demonstrates how device asymmetry can be exploited, rather

than updating model parameters in the direction of negative

gradients, the total energy of the system incorporating

the effects of device asymmetry is minimized, enabling

realization of analog deep learning accelerators. Laborieux

et al. adapt equilibrium propagation applied to deep conv

nets by reducing gradient estimator bias. This allows local

learning in systems such as recurrent neural networks, and

the ability to unlock the potential of the IMC devices

explored in the remainder of the Research Topic. Zhao

et al. employ minibatch-SGD to train memristive devices. The

research harnesses gradient averaging across the minibatch

and stochastic rounding to overcome device non-idealities

and vanishing gradients. Memory overheads are kept low

through the use of decomposition methods, and the task of

reconstructing gradient matrices internally and externally to

memristor arrays is explored. The use of a streaming co-

processor for training the memristor hardware is investigated,

demonstrating the potential to scale up from small proof-

of-concept demonstrators to the large-scale AI workflows.

The approach to compress gradient information provides an

important step toward biologically-plausible batch averaging

during long-term learning, and avoids the poor performance

experienced when training non-ideal hysteric devices with small

batch sizes.

Mapping to hardware Wang et al. explore the mapping

of Bayesian Confidence Propagation Neural Networks

(BCPNNs) to memristor-based architecture, overcoming the

von Neumann bottleneck which limits access to synaptic storage

in conventional digital implementations. The implementation

harnesses characteristics of the underlying hardware, e.g.,

using the dopant drift phenomenon of the memristor to

simulate the exponential decay of the synaptic state in the

BCPNN learning rule. Consistency between the memristor-

based solution and software simulations in Matlab is verified,

demonstrating the potential of in-circuit analog computation

as a route toward real-time brain emulation. Spoon et al.

explore the use of Phase Change Memory (PCM) as a substrate

for transformer-based deep neural networks (BERT). The

work combines noise-aware training to overcome the drift

and noise inherent to PCM devices, together with reduced

precision (INT6) digital computation in the attention block.

By combining these techniques, software-equivalent accuracy

is demonstrated, along with a prospective 11.3× reduction

in energy. Overall these works demonstrate that through

application of noise-aware training, non-ideal low-precision

devices can be trained to produce software-equivalent

performance, highlighting the potential of these emerging

technologies.

Outlook

Overall, we observe that regardless of its growth in recent

years, the field of AI hardware is still developing at breakneck

pace and seems to have a long technological runway yet

ahead of it. We note the substantial interest toward building

widespread accelerators and general-purpose platforms, while

automating the design process of hardware. This is a constantly

evolving strand of research targeting mitigation and then ideally

exploitation of hardware non-idealities in the pursuit of efficient

AI computation. It is with great pleasure that we present a

fleeting, yet highly interesting snapshot of the field in this issue

Frontiers inNeuroscience frontiersin.org

6

https://doi.org/10.3389/fnins.2022.979495
https://doi.org/10.3389/fnins.2021.728086
https://doi.org/10.3389/fncom.2021.674154
https://doi.org/10.3389/fnins.2022.775457
https://doi.org/10.3389/frai.2021.659060
https://doi.org/10.3389/frai.2021.659060
https://doi.org/10.3389/fnins.2021.664208
https://doi.org/10.3389/fnins.2021.684113
https://doi.org/10.3389/fnins.2021.732368
https://doi.org/10.3389/frai.2021.699148
https://doi.org/10.3389/frai.2022.891624
https://doi.org/10.3389/fnins.2021.633674
https://doi.org/10.3389/fnins.2021.749811
https://doi.org/10.3389/fnins.2021.750458
https://doi.org/10.3389/fncom.2021.675741
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Boybat et al. 10.3389/fnins.2022.979495

and we sincerely hope that you, the reader, finds it instructive,

exciting and inspiring for your own future efforts.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it for

publication.

Conflict of interest

Author IB was employed by IBM Research Europe,

Rüschlikon, Switzerland.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those

of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made

by its manufacturer, is not guaranteed or endorsed by

the publisher.

Frontiers inNeuroscience frontiersin.org

7

https://doi.org/10.3389/fnins.2022.979495
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

ORIGINAL RESEARCH
published: 18 February 2021

doi: 10.3389/fnins.2021.633674

Frontiers in Neuroscience | www.frontiersin.org 1 February 2021 | Volume 15 | Article 633674

Edited by:

Melika Payvand,

ETH Zurich, Switzerland

Reviewed by:

Christian Pehle,

Heidelberg University, Germany

Bruno Umbria Pedroni,

University of California, San Diego,

United States

*Correspondence:

Axel Laborieux

axel.laborieux@c2n.upsaclay.fr

Maxence Ernoult

ernoultm@mila.quebec

†Present address:

Benjamin Scellier,

Google, Zurich, Switzerland

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 25 November 2020

Accepted: 26 January 2021

Published: 18 February 2021

Citation:

Laborieux A, Ernoult M, Scellier B,

Bengio Y, Grollier J and Querlioz D

(2021) Scaling Equilibrium

Propagation to Deep ConvNets by

Drastically Reducing Its Gradient

Estimator Bias.

Front. Neurosci. 15:633674.

doi: 10.3389/fnins.2021.633674

Scaling Equilibrium Propagation to
Deep ConvNets by Drastically
Reducing Its Gradient Estimator Bias

Axel Laborieux 1*, Maxence Ernoult 1,2,3*, Benjamin Scellier 3†, Yoshua Bengio 3,4,

Julie Grollier 2 and Damien Querlioz 1

1Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France, 2Unité Mixte de

Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France, 3Mila, Université de Montréal, Montreal, QC, Canada,
4Canadian Institute for Advanced Research, Toronto, ON, Canada

Equilibrium Propagation is a biologically-inspired algorithm that trains convergent

recurrent neural networks with a local learning rule. This approach constitutes a major

lead to allow learning-capable neuromophic systems and comes with strong theoretical

guarantees. Equilibrium propagation operates in two phases, during which the network

is let to evolve freely and then “nudged” toward a target; the weights of the network are

then updated based solely on the states of the neurons that they connect. The weight

updates of Equilibrium Propagation have been shown mathematically to approach those

provided by Backpropagation Through Time (BPTT), the mainstream approach to train

recurrent neural networks, when nudging is performed with infinitely small strength. In

practice, however, the standard implementation of Equilibrium Propagation does not

scale to visual tasks harder than MNIST. In this work, we show that a bias in the gradient

estimate of equilibrium propagation, inherent in the use of finite nudging, is responsible

for this phenomenon and that canceling it allows training deep convolutional neural

networks. We show that this bias can be greatly reduced by using symmetric nudging

(a positive nudging and a negative one). We also generalize Equilibrium Propagation

to the case of cross-entropy loss (by opposition to squared error). As a result of

these advances, we are able to achieve a test error of 11.7% on CIFAR-10, which

approaches the one achieved by BPTT and provides a major improvement with respect

to the standard Equilibrium Propagation that gives 86% test error. We also apply

these techniques to train an architecture with unidirectional forward and backward

connections, yielding a 13.2% test error. These results highlight equilibrium propagation

as a compelling biologically-plausible approach to compute error gradients in deep

neuromorphic systems.

Keywords: equilibrium propagation, energy based models, biologically plausible deep learning, neuromorphic

computing, on-chip learning, deep convolutional neural network, learning algorithms

1. INTRODUCTION

How synapses in hierarchical neural circuits are adjusted throughout learning a task remains a
challenging question called the credit assignment problem (Richards et al., 2019). Equilibrium
Propagation (EP) (Scellier and Bengio, 2017) provides a biologically plausible solution to this
problem in artificial neural networks. EP is an algorithm for convergent recurrent neural networks

8

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.633674
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.633674&domain=pdf&date_stamp=2021-02-18
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:axel.laborieux@c2n.upsaclay.fr
mailto:ernoultm@mila.quebec
https://doi.org/10.3389/fnins.2021.633674
https://www.frontiersin.org/articles/10.3389/fnins.2021.633674/full

Laborieux et al. Scaling EqProp to Deep ConvNets

(RNNs) which, by definition, are given a static input and whose
recurrent dynamics converge to a steady state corresponding
to the prediction of the network. EP proceeds in two phases,
bringing the network to a first steady state, then nudging
the output layer of the network toward a ground-truth target
until reaching a second steady state. During the second phase
of EP, the perturbation originating from the output layer
propagates forward in time to upstream layers, creating local
error signals that match exactly those that are computed
by Backpropagation Through Time (BPTT), the canonical
approach for training RNNs (Ernoult et al., 2019). We refer
to Scellier and Bengio (2019) for a comparison between EP
and recurrent backpropagation (Almeida, 1987; Pineda, 1987).
Owing to this strong theoretical guarantee, EP can provide leads
for understanding biological learning (Lillicrap et al., 2020).
Moreover, the spatial locality of the learning rule prescribed
by EP and the possibility to make it also local in time
(Ernoult et al., 2020) is highly attractive for designing energy-
efficient neuromorphic hardware implementations of gradient-
based learning algorithms (Ernoult et al., 2020; Foroushani et al.,
2020; Ji and Gross, 2020; Kendall et al., 2020; Martin et al., 2020;
Zoppo et al., 2020).

To meet these expectations, however, EP should be able to
scale to complex tasks. Until now, works on EP (Scellier and
Bengio, 2017; O’Connor et al., 2018, 2019; Ernoult et al., 2019,
2020) limited their experiments to the MNIST classification
task and shallow network architectures. Despite the theoretical
guarantees of EP, the literature suggests that no implementation
of EP has thus far succeeded to match the performance of
standard deep learning approaches to train deep networks
on hard visual tasks. This problem is even more challenging
when using a more bio-plausible topology where the synaptic
connections of the network are unidirectional: existing proposals
of EP in this situation (Scellier et al., 2018; Ernoult et al.,
2020) lead to a degradation of accuracy on MNIST compared
to standard EP. In this work, we show that performing the
second phase of EP with nudging strength of constant sign
induces a systematic first order bias in the EP gradient estimate
which, once canceled, unlocks the training of deep convolutional
neural networks (ConvNets), with bidirectional or unidirectional
connections and with performance closely matching that of
BPTT on CIFAR-10. We also propose to implement the
neural network predictor as an external softmax readout. This
modification preserves the local nature of EP and allows us to
use the cross-entropy loss, contrary to previous approaches using
the squared error loss, and where the predictor takes part in the
free dynamics of the system.

Other biologically plausible alternatives to backpropagation
(BP) have attempted to scale to hard vision tasks. Bartunov et al.
(2018) investigated the use of feedback alignment (Lillicrap et al.,
2016) and variants of target propagation (Lecun, 1987; Bengio,
2014) on CIFAR-10 and ImageNet, showing that they perform
significantly worse than backpropagation. When the alignment
between forward and backward weights is enhanced with extra
mechanisms (Akrout et al., 2019), feedback alignment performs
better on ImageNet than sign-symmetry (Xiao et al., 2018), where
feedback weights are taken to be the sign of the forward weights,

and almost as well as backpropagation. However, in feedback
alignment and target propagation, the error feedback does not
affect the forward neural activity and is instead routed through
a distinct backward pathway, an issue that EP avoids. Payeur
et al. (2020) proposed a burst-dependent learning rule that also
addresses this problem and whose rate-based equivalent, relying
on the use of specialized synapses and complex network topology,
has been benchmarked against CIFAR-10 and ImageNet. Related
works on implicit models (Bai et al., 2019) have shown that
training deep networks can be framed as solving a fixed point
(steady state) equation, leading to an analytical backward pass.
This framework was shown to solve challenging vision tasks (Bai
et al., 2020). While the use of a steady state is common with EP,
the process to reach the steady state as well as the learning rule
are different. In comparison with these approaches, EP offers a
minimalistic circuit requirement to handle both inference and
gradient computation, which makes it an outstanding candidate
for energy-efficient neuromorphic learning hardware design.

More specifically, the contributions of this work are the
following:

• We introduce a newmethod to estimate the gradient of the loss
based on three steady states instead of two (section 3.1). This
approach enables us to achieve 11.68% test error on CIFAR-
10, with 0.6% performance degradation only with respect to
BPTT. Conversely, we show that using a nudging strength of
constant sign yields 86.64% test error.

• We propose to implement the output layer of the neural
network as a softmax readout, which subsequently allows us to
optimize the cross-entropy loss function with EP. This method
improves the classification performance on CIFAR-10 with
respect to the use of the squared error loss and is also closer
to the one achieved with BPTT (section 3.2).

• Finally, based on ideas of Scellier et al. (2018) and Kolen
and Pollack (1994), we adapt the learning rule of EP for
architectures with distinct (unidirectional) forward and
backward connections, yielding only 1.5% performance
degradation on CIFAR-10 compared to bidirectional
connections (section 2.4).

2. BACKGROUND

2.1. Convergent RNNs With Static Input

We consider the setting of supervised learning where we are given
an input x (e.g., an image) and want to predict a target y (e.g., the
class label of that image). To solve this type of task, Equilibrium
Propagation (EP) relies on convergent RNNs, where the input of
the RNN at each time step is static and equal to x, and the state s
of the neural network converges to a steady-state s∗. EP applies to
a wide class of convergent RNNs, where the transition function
derives from a scalar primitive1 8 (Ernoult et al., 2019). In this
situation, the dynamics of a network with parameters θ , usually

1In the original version of EP for real-time dynamical systems (Scellier and Bengio,

2017), the dynamics derive from an energy function E, which plays a similar role

to the primitive function 8 in the discrete-time setting studied here.

Frontiers in Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 6336749

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Laborieux et al. Scaling EqProp to Deep ConvNets

synaptic weights, is given by

st+1 =
∂8

∂s
(x, st , θ), (1)

where st is the state of the RNN at time step t. After the dynamics
have converged at some time step T, the network reaches the
steady state sT = s∗, which, by definition, satisfies:

s∗ =

∂8

∂s
(x, s∗, θ). (2)

Formally, the goal of learning is to optimize θ to minimize
the loss at the steady state L

∗
= ℓ(s∗, y), where ℓ is a

differentiable cost function. While we did not investigate
theoretical guarantees ensuring the convergence of the
dynamics, we refer the reader to Scarselli et al. (2008) for
sufficient conditions on the transition function to ensure
convergence. In practice, we always observe the convergence to
a steady-state.

2.2. Training Procedures for Convergent
RNNs
2.2.1. Equilibrium Propagation (EP)
Scellier and Bengio (2017) introduced Equilibrium Propagation
in the case of real time dynamics. Subsequent work adapted
it to discrete-time dynamics, bringing it closer to conventional
deep learning (Ernoult et al., 2019). EP consists of two
distinct phases. During the first (“free”) phase, the RNN
evolves according to Equation (1) for T time steps to
ensure convergence to a first steady state s∗. During the
second (“nudged”) phase of EP, a nudging term −β ∂ℓ

∂s is
added to the dynamics, with β a small scaling factor.

Denoting s
β
0 , s

β
1 , s

β
2 ... the states during the second phase, the

dynamics reads

s
β
0 = s∗, and ∀t > 0, s

β
t+1 =

∂8

∂s
(x, s

β
t , θ)− β

∂ℓ

∂s
(s

β
t , y).

(3)
The RNN then reaches a new steady state denoted s

β
∗ . Scellier

and Bengio (2017) proposed the EP learning rule, denoting η the
learning rate applied:

1θ = η∇̂EP(β), where

∇̂
EP(β)

1
=

1

β

(
∂8

∂θ
(x, s

β
∗ , θ)−

∂8

∂θ
(x, s∗, θ)

)
. (4)

They proved that this learning rule performs stochastic gradient
descent in the limit β → 0:

lim
β→0

∇̂
EP(β) = −

∂L∗

∂θ
. (5)

2.2.2. Equivalence of Equilibrium Propagation and

Backpropagation Through Time (BPTT)
The convergent RNNs considered by EP can also be trained by
Backpropagation Through Time (BPTT). At each BPTT training
iteration, the first phase is performed for T time steps until

the network reaches the steady state sT = s∗. The loss at the
final time step is computed and the gradients are subsequently
backpropagated through the computational graph of the first
phase, backward in time.

Let us denote ∇
BPTT(t) the gradient computed by BPTT

truncated to the last t time steps (T − t, . . . ,T), which we define
formally in Supplementary Material (section 1).

A theorem derived by Ernoult et al. (2019), inspired from
Scellier and Bengio (2019), shows that, provided convergence
in the first phase has been reached after T − K time steps (i.e.,
sT−K = sT−K+1 = . . . = sT = s∗), the gradients of EP match
those computed by BPTT in the limit β → 0, in the first K time
steps of the second phase for fully connected and convolutional
architectures including pooling operations:

∀t = 1, 2, . . . ,K,

∇̂
EP(β , t)

1
=

1

β

(
∂8

∂θ
(x, s

β
t , θ)−

∂8

∂θ
(x, s∗, θ)

)
−−−→

β→0
∇

BPTT(t).

(6)

2.3. Convolutional Architectures for
Convergent RNNs
A convolutional architecture for convergent RNNs with static
input was introduced by Ernoult et al. (2019) and successfully
trained with EP on the MNIST dataset. In this architecture,
presented in Figure 1, we define Nconv and Nfc the number of

convolutional and fully connected layers respectively, andNtot 1
=

Nconv
+ Nfc. wn+1 denotes the weights connecting sn to sn+1,

with s0 = x. To simplify notations, we use distinct operators
to differentiate whether wn is a convolutional layer or a fully
connected layer: respectively ⋆ for convolutions and · for linear
layers. The primitive function can therefore be defined as:

8(x, {sn}) =

Nconv
−1∑

n=0

sn+1
• P

(
wn+1 ⋆ sn

)

+

Ntot
−1∑

n=Nconv

sn+1⊤
· wn+1 · s

n, (7)

where • is the Euclidean scalar product generalized to pairs
of tensors with same arbitrary dimension, and P is a pooling
operation. Combining Equations (1) and (7), and restricting the
space of the state variables to [0, 1], yield the dynamics:

{
snt+1 = σ

(
P
(
wn ⋆ sn−1

t

)
+ w̃n+1 ⋆ P

−1
(
sn+1
t

))
, 1 ≤ n ≤ Nconv

snt+1 = σ
(
wn · s

n−1
t + w⊤

n+1 · s
n+1
t

)
,Nconv < n < Ntot (8)

where σ is an activation function bounded between 0 and
1. Transpose convolution and inverse pooling are respectively
defined through the convolution by the flipped kernel w̃ andP−1.
Plugging Equation (7) into Equation (4) yields the local learning

rule 1θij = η(s
β
i,∗s

β
j,∗ − si,∗sj,∗)/β for a parameter θij linking

neurons i and j. Supplementary Material (section 4) provides the
implementation details of this model.

Frontiers in Neuroscience | www.frontiersin.org 3 February 2021 | Volume 15 | Article 63367410

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Laborieux et al. Scaling EqProp to Deep ConvNets

FIGURE 1 | Schematic of the architecture used. We use Equilibrium Propagation (EP) to train a recurrent ConvNet receiving a static input. Red (resp. green) arrows

depict forward (resp. backward) operations, with convolutions and transpose convolutions happening through time. At the final time step, the class prediction is carried

out. The use of RNNs is inherent in the credit assignment of EP which uses of the temporal variations of the system as error signals for the gradient computation.

2.4. Equilibrium Propagation With
Unidirectional Synaptic Connections
We have seen that in the standard formulation of EP, the
dynamics of the neural network derive from a function 8

(Equation 1) called the primitive function. This formulation
implies the existence of bidirectional synaptic connections
between neurons. For better biological plausibility, a more
general formulation of EP circumvents this requirement and
allows training networks with distinct (unidirectional) forward
and backward connections (Scellier et al., 2018; Ernoult
et al., 2020). This feature is also desirable for hardware
implementations of EP. Although some analog implementations
of EP naturally lead to symmetric weights (Kendall et al., 2020),
neural networks with unidirectional weights are in general easier
to implement in neuromorphic hardware.

In this setting, the dynamics of Equation (1) is changed into
the more general form:

st+1 = F(x, st , θ), (9)

and the conventionally proposed learning rule reads:

1θ = η∇̂VF(β), where

∇̂
VF(β)

1
=

1

β

∂F

∂θ
(x, s∗, θ)

⊤
·

(
s
β
∗ − s∗

)
, (10)

where VF stands for Vector Field (Scellier et al., 2018). If the
transition function F derives from a primitive function 8 (i.e.,

if F =
∂8
∂s), then ∇̂

VF(β) is equal to ∇̂
EP(β) in the limit β → 0

(i.e., limβ→0 ∇̂
VF(β) = limβ→0 ∇̂

EP(β)).

3. IMPROVING EP TRAINING

We have seen in Equation (6) that the temporal variations of
the network over the second phase of EP exactly compute BPTT
gradients in the limit β → 0. This result appears to underpin
the use of two phases as a fundamental element of EP, but is
it really the case? In this section, we revisit EP as a gradient
estimation procedure and propose an implementation in three
phases instead of two. Moreover, we show how to optimize the
cross-entropy loss function with EP. Combining these two new
techniques enabled us to achieve the best performance on CIFAR-
10 by EP, on architectures with bidirectional and unidirectional
forward and backward connections (section 4).

3.1. Reducing Bias and Variance in the
Gradient Estimate of the Loss Function
In the foundational work on EP, Scellier and Bengio (2017)
demonstrate that:

d

dβ

∣∣∣∣
β=0

∂8

∂θ
(x, s

β
∗ , θ) = −

∂L∗

∂θ
. (11)

The traditional implementation of EP evaluates the left-hand
side of Equation (11) using the estimate ∇̂EP(β) with two points
β = 0 and β > 0, thereby calling for the need of two

Frontiers in Neuroscience | www.frontiersin.org 4 February 2021 | Volume 15 | Article 63367411

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Laborieux et al. Scaling EqProp to Deep ConvNets

FIGURE 2 | One-sided EP gradient estimate for opposite values of β = 0.1 (black dashed curves), symmetric EP gradient estimate (green curve), and reference

gradients computed by BPTT (red curve) computed over the second phase, for a single weight chosen at random. The time step t is defined for BPTT and EP

according to Equation (6). More instances can be found in Supplementary Material (section 6).

phases—the free phase and the nudged phase. However, the use
of β > 0 in practice induces a systematic first order bias in the
gradient estimation provided by EP. In order to eliminate this
bias, we propose to perform a third phase with−β as the nudging
factor, keeping the first and second phases unchanged. We then
estimate the gradient of the loss using the following symmetric
difference estimate:

∇̂
EP
sym(β)

1
=

1

2β

(
∂8

∂θ
(x, s

β
∗ , θ)−

∂8

∂θ
(x, s

−β
∗ , θ)

)
. (12)

Indeed, under mild assumptions on the function β 7→

∂8
∂θ

(x, s
β
∗ , θ), we can show that, as β → 0:

∇̂
EP(β)+ ∇̂

EP(−β)

2
= −

∂L∗

∂θ
+ O(β2), (13)

∇̂
EP
sym(β) = −

∂L∗

∂θ
+ O(β2). (14)

This result is proved in Lemma 2 of the Supplementary Material

(section 2). Equation (13) shows that the estimate ∇̂
EP(β)

possesses a first-order error term in β which the symmetric
estimate ∇̂

EP
sym(β) eliminates (Equation 14). Note that the first-

order term of ∇̂EP(β) could also be canceled out on average
by choosing the sign of β at random with even probability (so
that E(β) = 0, see Algorithm 1 of the Supplementary Material,
section 3.1). Although not explicitly stated in this purpose, the
use of such randomization has been reported in some earlier
publications on the MNIST task (Scellier and Bengio, 2017;
Ernoult et al., 2020). However, in this work, we show that this
method exhibits high variance in the training procedure.

We call ∇̂EP(β) and ∇̂
EP
sym(β) the one-sided and symmetric

EP gradient estimates, respectively. The qualitative difference

between these estimates is depicted in Figure 2, and the
full training procedure is depicted in Algorithm 2 of the
Supplementary Material (section 3.2).

Finally, this technique can also be applied to the Vector Field
setting introduced in section 2.4 and we denote ∇̂

VF
sym(β) the

resulting symmetric estimate—see the Supplementary Material

(section 4.3) for details.

3.2. Changing the Loss Function
We also introduce a novel architecture to optimize the cross-
entropy loss with EP, narrowing the gap with conventional
deep learning architectures for classification tasks. In the next
paragraph, we denote ŷ the set of neurons that carries out the
prediction of the neural network.

3.2.1. Squared Error Loss Function
Previous implementations of EP used the squared error loss.
Using this loss function for EP is natural, as in this setting,
the output ŷ is viewed as a part of s (the state variable of the
network), which can influence the state of the network through
bidirectional synaptic connections (see Figure 3). Moreover, the
nudging term in this case can be physically interpreted since it
reads as an elastic force. The state of the network is of the form
s = (s1, . . . , sN , ŷ) where h = (s1, . . . , sN) represent the “hidden
layers,” and the corresponding cost function is

ℓ(̂y, y) =
1

2

∥∥̂y− y
∥∥2 . (15)

Frontiers in Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 63367412

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Laborieux et al. Scaling EqProp to Deep ConvNets

FIGURE 3 | Free dynamics of the architectures used for the two loss functions where the blue frame delimits the system. (A) Squared Error loss function. The usual

setting where the predictor ŷ (in red) takes part in the free dynamics of the neural network through bidirectional synaptic connections. (B) Cross-entropy loss function.

The new approach proposed in this work where the predictor ŷ (also in red) is no longer involved in the system free dynamics and is implemented as a softmax readout.

The second phase dynamics of the hidden state and output layer
given by Equation (3) read, in this context:

h
β
t+1 =

∂8

∂h
(x, h

β
t , ŷ

β
t , θ),

ŷ
β
t+1 =

∂8

∂ ŷ
(x, h

β
t , ŷ

β
t , θ)+ β (y− ŷ

β
t). (16)

3.2.2. Softmax Readout, Cross-Entropy Loss

Function
In this paper, we propose an alternative approach, where the
output ŷ is not a part of the state variable s but is instead
implemented as a read-out (see Figure 3), which is a function of
s and of a weight matrix wout of size dim(y)× dim(s). In practice,
wout reads out the last convolutional layer. At each time step t
we define:

ŷt = softmax(wout · st). (17)

The cross-entropy cost function associated with the softmax
readout is then:

ℓ(s, y,wout) = −

C∑

c=1

yc log(softmaxc(wout · s)). (18)

Using ∂ℓ
∂s (s, y,wout) = w⊤

out ·
(
softmax(wout · s)− y

)
, the second

phase dynamics given by Equation (3) read in this context:

s
β
t+1 =

∂8

∂s
(x, s

β
t , θ)+ β w⊤

out ·

(
y− ŷ

β
t

)
. (19)

Note here that the loss L
∗

= ℓ(s∗, y,wout) also depends on
the parameter wout. The Supplementary Material (section 4.2.2)
provides the learning rule applied to wout.

3.3. Changing the Learning Rule of EP With
Unidirectional Synaptic Connections
In the case of architectures with unidirectional connections,
applying the traditional EP learning rule directly, as given
by Equation (10), prescribes different forward and backward

weights updates, resulting in significantly different forward and
backward weights throughout learning. However, the theoretical
equivalence between EP and BPTT only holds for bidirectional
connections. Until now, training experiments of unidirectional
weights EP have performed worse than bidirectional weights
EP (Ernoult et al., 2020). In this work, therefore, we tailor
a new learning rule for unidirectional weights, described in
detail the Supplementary Material (section 4.3), where the
forward and backward weights undergo the same weight updates,
incorporating an equal leakage term. This way, forward and
backward weights, although they are independently initialized,
naturally converge to identical values throughout the learning
process. A similar methodology, adapted from Kolen and
Pollack (1994), has been shown to improve the performance
of Feedback Alignment in Deep ConvNets (Akrout et al.,
2019).

Assuming general dynamics of the form of Equation (9), we
distinguish forward connections θf from backward connections
θb so that θ = {θf, θb}, with θf and θb having same dimension.
Assuming a first phase, a second phase with β > 0 and a third
phase with−β , we define:

∀i ∈ {f, b},

∇
VF
θi

(β) =
1

2β

(
∂F

∂θi

⊤

(x, s
β
∗ , θ) · s

β
∗ −

∂F

∂θi

⊤

(x, s
−β
∗ , θ) · s

−β
∗

)

(20)

and we propose the following update rules:

1θf = η

(
∇̂

KP−VF
sym (β)− λθf

)

1θb = η

(
∇̂

KP−VF
sym (β)− λθb

) ,

with ∇̂
KP−VF
sym (β) =

1

2
(∇VF

θf
(β)+ ∇

VF
θb

(β)) (21)

where η is the learning rate and λ a leakage parameter. The
estimate ∇̂

KP−VF
sym (β) can be thought of a generalization of

Equation (12), as highlighted in the Supplementary Material

(section 4.3) with an explicit application of Equation (21) to a
ConvNet. In the case of a fully connected layer, both terms in

Frontiers in Neuroscience | www.frontiersin.org 6 February 2021 | Volume 15 | Article 63367413

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Laborieux et al. Scaling EqProp to Deep ConvNets

TABLE 1 | Hyper-parameters used for the CIFAR-10 experiments.

Hyper-parameter Squared error Cross-entropy

T 250 250

K 30 25

β 0.5 1.0

Batch size 128 128

Initial learning rates

(Layer-wise)
0.25 - 0.15 - 0.1 - 0.08 - 0.05 0.25 - 0.15 - 0.1 - 0.08 - 0.05

Final learning rates 10−5 10−5

Weight decay

(All layers)
3 · 10−4 3 · 10−4

Momentum 0.9 0.9

Epoch 120 120

Cosine annealing

Decay time (epochs)
100 100

TABLE 2 | Performance comparison on CIFAR-10 between BPTT and EP with

several gradient estimation schemes.

Loss function EP gradient EP error (%) BPTT error (%)

estimate Test Train Test Train

Squared error

2-Phase/∇̂EP 86.64 (5.82) 84.90

11.10 (0.21) 3.69Random Sign 21.55 (20.00) 20.01

3-Phase/∇̂EP
sym 12.45 (0.18) 7.83

Cross-Ent. 3-Phase/∇̂EP
sym 11.68 (0.17) 4.98 11.12 (0.21) 2.19

Cross-Ent. (Dropout) 3-Phase/∇̂EP
sym 11.87 (0.29) 6.46 10.72 (0.06) 2.99

Cross-Ent.
3-Phase/∇̂VF

sym 75.47 (4.72) 78.04
9.46 (0.17) 0.80

3-Phase/∇̂KP−VF
sym 13.15 (0.49) 8.87

Note that the different gradient estimates only apply to EP. We indicate over five trials the

mean and standard deviation in parenthesis for the test error, and the mean train error.

the sum in the right hand side of Equation (21) are equal: ∂F/∂θi
only depends on the neuron activations and not on θi, in the same
way, as seen at the end of section 2.3, that Equation (8) yields a
fully local learning rule. The case of convolutional layers is a little
more subtle, due to presence of themaximumpooling operations.
The forward weights are involved in a pooling operation while
the backward weights are involved in an unpooling operation.
However, for the parameter update to be the same, the pooling
and unpooling operations need to share information regarding
the indices of maxima. Therefore, there is indeed a need for
information transfer between backward and forward parameters,
but this exchange is limited to the index of the maximum
identified in the maximum pooling operation (this can be seen
from Equation 24).

4. RESULTS

In this section, we implement EP with the modifications
described in section 3 and successfully train deep ConvNets
on the CIFAR-10 vision task (Krizhevsky et al., 2009).

The convolutional architecture used consists of four 3 × 3
convolutional layers of respective feature maps 128–256–512–
512.We use a stride of one for each convolutional layer, and zero-
padding of one for each layer except for the last layer. Each layer
is followed by a 2× 2 Max Pooling operation with a stride of two.
The resulting flattened feature vector is of size 512. The weights
are initialized using the default initialization of PyTorch, which
is the uniform Kaiming initialization of He et al. (2015). The data
is normalized and augmented with random horizontal flips and
random crops. The training is performed with stochastic gradient
descent with momentum and weight decay. We use the learning
rate scheduler introduced by Loshchilov and Hutter (2016) to
speed up convergence.

The hyper-parameters are reported in Table 1. All
experiments are performed using PyTorch 1.4.0. (Paszke
et al., 2017). The simulations were carried across several servers
consisting of 14 Nvidia GeForce RTX 2080 TI GPUs in total.
Each run was performed on a single GPU for an average run time
of 2 days.

4.1. ConvNets With Bidirectional
Connections
Wefirst consider the bidirectional weight setting of section 2.3. In
Table 2, we compare the performance achieved by the ConvNet
for each EP gradient estimate introduced in section 3.1 with the
performance achieved by BPTT.

The one-sided gradient estimate leads to unstable training
behavior where the network is unable to fit the data, as shown
by the purple curve of Figure 4A, with 86.64% test error on
CIFAR-10. When the bias in the gradient estimate is averaged out
by choosing at random the sign of β during the second phase,
the average test error over five runs goes down to 21.55% (see
Table 2). However, one run among the five yielded instability
similar to the one-sided estimate, whereas the four remaining
runs lead to 12.61% test error and 8.64% train error. This method
for estimating the loss gradient thus presents high variance—
further experiments shown in the Supplementary Material

(section 4.4) confirm this trend.
Conversely, the three-phase symmetric estimate enables EP to

consistently reach 12.45% test error, with only 1.35% degradation
with respect to BPTT (see Figure 4A). Therefore, removing
the first-order error term in the gradient estimate is critical
for scaling to deeper architectures. Proceeding to this end
deterministically (with three phases) rather than stochastically
(with a randomized nudging sign) appears more reliable.

The results of Table 2 also show that the readout scheme
introduced in section 3.2 to optimize the cross-entropy loss
function enables EP to narrow the performance gap with BPTT
down to 0.56% while outperforming the Squared Error setting
by 0.77%. However, we observe that the test errors reached by
BPTT are similar for the squared error and the cross-entropy
loss. The fact that only EP benefits from the cross-entropy
loss is due to the output not being part of the dynamics,
which reduces the number of layers following the dynamics
by one.

Frontiers in Neuroscience | www.frontiersin.org 7 February 2021 | Volume 15 | Article 63367414

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Laborieux et al. Scaling EqProp to Deep ConvNets

FIGURE 4 | (A) Train (dashed) and test (solid) errors on CIFAR-10 with the Squared Error loss function. (B) Train (dashed) and test (solid) errors on CIFAR-10 with the

Cross-Entropy loss function. The curves are averaged over 5 runs and shadows stand for ±1 × standard deviation. The change in error rate around epochs 85–90 is

due to the end of the learning rate scheduler decay phase (Cosine annealing).

We also adapted dropout (Srivastava et al., 2014)
to convergent RNNs (see the Supplementary Material,
section 4.5 for implementation details) to see if the
performance could be improved further. However, we
can observe from Table 2 and Figure 4B that contrary
to BPTT, the EP test error is not improved by adding
a 0.1 dropout probability in the neuron layer after
the convolutions.

4.2. ConvNets With Unidirectional
Connections
We now present the accuracy achieved by EP when the
architecture uses distinct forward and backward weights, using a
softmax readout. For this architecture, the backward weights are
defined for all convolutional layers, except the first convolutional
layer connected to the static input. The forward and backward
weights are initialized randomly and independently at the
beginning of training. The backward weights have no bias
contrary to their forward counterparts. The hyper-parameters
such as learning rate, weight decay and momentum are shared
between forward and backward weights.

As seen in Table 2, we find that the estimate ∇̂VF
sym(β) leads to

a poor performance with 75.47% test-error. We concomitantly
observed that forward and backward weight did not align well,
as shown by the dashed curves in Figure 5. Conversely, when
using our new estimate ∇̂

KP−VF
sym (β) defined in section 3.3, a

good performance is recovered with only 1.5% performance
degradation with respect to the architecture with bidirectional
connections, and a 3% degradation with respect to BPTT
(see Table 2). The discrepancy between the BPTT test error
achieved by the architecture with bidirectional (11.12%) and
unidirectional (9.46%) connections comes from the increase
in parameters provided by backward weights. As observed
in the weight alignment curves in Figure 5, forward and
backward weights are well-aligned by epoch 50 when using
the new estimate. These results suggest that enhancing forward

and backward weights alignment can help EP training in
deep ConvNets.

5. DISCUSSION

Our results unveil the necessity, in order to scale EP to deep
convolutional neural networks on hard visual tasks, to compute
better gradient estimates than the conventional implementation
of EP. This traditional implementation incorporates a first order
gradient estimate bias, which severely impedes the training
of deep architectures. Conversely, we saw that the three-
phase EP proposed here removes this bias and brings EP
performance on CIFAR-10 close to the one achieved by BPTT.
Additionally, our new technique to train EP with softmax
readout reduces the gap between EP and BPTT further down
to 0.56%, while maintaining the locality of the learning rule of
all parameters.

While the test accuracy of BPTT and our adapted EP are
very close, we can notice in Table 2 that BPTT fits the training
data better than EP by at least 2.8%. Also, the introduction
of dropout improves BPTT performance, while it has no
significant effect on the test accuracy of EP. These two insights
combined suggest that EP training may have a self-regularizing
effect applied throughout the network, similar to the effects of
dropout. We hypothesize this effect to be not only due to the
residual estimation bias of the BPTT gradients by EP, but also
to an additional inherent error term due to the fact that in
practice, the fixed point is approached with a precision that
depends on the number of time steps at inference. While the
exactness of the fixed point is crucial for EP, BPTT computes
exact gradients regardless of whether the fixed point is not
exactly reached.

We also saw that employing a new training technique that
still preserves the spatial locality of EP computations—and
therefore its suitability for neuromorphic implementations—
our results extend to the case of an architecture with
distinct forward and backward synaptic connections.

Frontiers in Neuroscience | www.frontiersin.org 8 February 2021 | Volume 15 | Article 63367415

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Laborieux et al. Scaling EqProp to Deep ConvNets

FIGURE 5 | Angle between forward and backward weights for the new estimate ∇̂
KP−VF
sym introduced (solid) and ∇̂

VF
sym (dashed). The angle is not defined for the first

layer because the input layer is clamped.

We only observe a 1.5% performance degradation
with respect to the bidirectional architecture. This
result demonstrates the scalability of EP without the
biologically implausible requirement of a bidirectional
connectivity pattern.

Our three steady states-based gradient estimate comes
at a computational cost with regards to the conventional
EP implementation, as an additional phase is needed. Even
though the steady state of the free phase s∗ is not used
to compute the gradient estimate in Equation (12), we
experimentally found that s∗ is needed as a starting point
for the second and third phases. In terms of simulation
time, EP is 20% slower than BPTT due to the dynamics
performed in second and third phases. However, the memory
requirement to store the computational graph unfolded in
time in the case of BPTT far outweighs the memory needed
by EP, which consists only of the steady states reached by
the neurons.

The full potential of EP will be best envisioned on
neuromorphic hardware. Multiple works have investigated
the implementation of EP on such systems (Ernoult et al.,
2019, 2020; Foroushani et al., 2020; Ji and Gross, 2020;
Zoppo et al., 2020), in both rate based (Kendall et al., 2020)
and spiking approaches (Martin et al., 2020). Most of these
approaches employ analog circuits that exploit device physics
to implement the dynamics of EP intrinsically. The spatially
local nature of EP computations, on top of its connection

with physical equations, make this mapping between EP and
neuromorphic hardware natural. Our prescription to run two
nudging phases with opposite nudging strengths could be
implemented naturally in neuromorphic systems. In fact, the
use of differential operation to cancel inherent biases is a
technique widely used in electronics, and in neuromorphic
computing in particular (Hirtzlin et al., 2019). Overall, our work
provides evidence that EP is a compelling approach to scale
neuromorphic on-chip training to real-world tasks in a fully
local fashion.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are publicly
available. This data can be found here: https://github.com/
Laborieux-Axel/Equilibrium-Propagation.

AUTHOR CONTRIBUTIONS

AL developed the PyTorch code for the project and performed
the simulations. ME supervised the work, helped debug the code,
guided hyperparameter search, and designed the experiments
with unidirectional connections. BS proposed the ideas of
unbiasing the gradient estimate and of using a softmax readout.
DQ, JG, and YB provided additional guidance and support. All

Frontiers in Neuroscience | www.frontiersin.org 9 February 2021 | Volume 15 | Article 63367416

https://github.com/Laborieux-Axel/Equilibrium-Propagation
https://github.com/Laborieux-Axel/Equilibrium-Propagation
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Laborieux et al. Scaling EqProp to Deep ConvNets

authors participated in data analysis, discussed the results, and
co-edited the manuscript.

FUNDING

This work was supported by European Research Council
Starting Grant NANOINFER (reference: 715872), European
Research Council Grant bioSPINspired (reference: 682955),
CIFAR, NSERC, and Samsung.

ACKNOWLEDGMENTS

The authors would like to thank Thomas Fischbacher for useful
feedback and discussions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.633674/full#supplementary-material

REFERENCES

Akrout, M., Wilson, C., Humphreys, P., Lillicrap, T., and Tweed, D. B. (2019).

“Deep learning without weight transport,” in Advances in Neural Information

Processing Systems (Vancouver, BC), 974–982.

Almeida, L. B. (1987). “A learning rule for asynchronous perceptrons with

feedback in a combinatorial environment,” in Proceedings of the IEEE First

International Conference on Neural Networks (San Diego, CA), Vol. II

(Piscataway, NJ: IEEE), 609–618.

Bai, S., Kolter, J. Z., and Koltun, V. (2019). “Deep equilibriummodels,” inAdvances

in Neural Information Processing Systems (Vancouver, BC), 690–701.

Bai, S., Koltun, V., and Kolter, J. Z. (2020). Multiscale deep equilibrium models.

arXiv preprint arXiv:2006.08656.

Bartunov, S., Santoro, A., Richards, B., Marris, L., Hinton, G. E., and Lillicrap,

T. (2018). “Assessing the scalability of biologically-motivated deep learning

algorithms and architectures,” in Advances in Neural Information Processing

Systems (Vancouver, BC), 9368–9378.

Bengio, Y. (2014). How auto-encoders could provide credit assignment in deep

networks via target propagation. arXiv preprint arXiv:1407.7906.

Ernoult, M., Grollier, J., Querlioz, D., Bengio, Y., and Scellier, B. (2019). “Updates

of equilibrium prop match gradients of backprop through time in an RNNwith

static input,” in Advances in Neural Information Processing Systems (Vancouver,

BC), 7081–7091.

Ernoult, M., Grollier, J., Querlioz, D., Bengio, Y., and Scellier, B. (2020).

Equilibrium propagation with continual weight updates. arXiv preprint

arXiv:2005.04168.

Foroushani, A. N., Assaf, H., Noshahr, F. H., Savaria, Y., and Sawan,

M. (2020). “Analog circuits to accelerate the relaxation process in the

equilibrium propagation algorithm,” in 2020 IEEE International Symposium on

Circuits and Systems (ISCAS) (Séville), 1–5. doi: 10.1109/ISCAS45731.2020.91

81250

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving deep into rectifiers:

surpassing human-level performance on imagenet classification,” in Proceedings

of the IEEE International Conference on Computer Vision (Santiago),

1026–1034. doi: 10.1109/ICCV.2015.123

Hirtzlin, T., Bocquet, M., Penkovsky, B., Klein, J.-O., Nowak, E., Vianello, E.,

et al. (2019). Digital biologically plausible implementation of binarized neural

networks with differential hafnium oxide resistive memory arrays. Front.

Neurosci. 13:1383. doi: 10.3389/fnins.2019.01383

Ji, Z., and Gross, W. (2020). “Towards efficient on-chip learning using equilibrium

propagation,” in 2020 IEEE International Symposium on Circuits and Systems

(ISCAS) (Séville), 1–5. doi: 10.1109/ISCAS45731.2020.9180548

Kendall, J., Pantone, R., Manickavasagam, K., Bengio, Y., and Scellier, B. (2020).

Training end-to-end analog neural networks with equilibrium propagation.

arXiv preprint arXiv:2006.01981.

Kolen, J. F., and Pollack, J. B. (1994). “Backpropagation without weight transport,”

in Proceedings of 1994 IEEE International Conference on Neural Networks

(ICNN’94), Vol. 3 (Orlando, FL), 1375–1380. doi: 10.1109/ICNN.1994.3

74486

Krizhevsky, A., Hinton, G., et al. (2009). Learning Multiple Layers of Features

From Tiny Images. Available online at: https://www.semanticscholar.

org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/

5d90f06bb70a0a3dced62413346235c02b1aa086

Lecun, Y. (1987).Modeles connexionnistes de l’apprentissage (connectionist learning

models) (Ph.D. thesis). IAAI Laboratory, Paris, France.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016).

Random synaptic feedback weights support error backpropagation

for deep learning. Nat. Commun. 7, 1–10. doi: 10.1038/ncomm

s13276

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J.,

and Hinton, G. (2020). Backpropagation and the brain.

Nat. Rev. Neurosci. 21, 335–346. doi: 10.1038/s41583-020-0

277-3

Loshchilov, I., and Hutter, F. (2016). Sgdr: Stochastic gradient descent with warm

restarts. arXiv preprint arXiv:1608.03983.

Martin, E., Ernoult, M., Laydevant, J., Li, S., Querlioz, D., Petrisor, T.,

and Grollier, J. (2020). Eqspike: spike-driven equilibrium propagation

for neuromorphic implementations. arXiv preprint arXiv:2010.0

7859.

O’Connor, P., Gavves, E., and Welling, M. (2018). “Initialized equilibrium

propagation for backprop-free training” in International Conference on

Learning Representations 2019.

O’Connor, P., Gavves, E., and Welling, M. (2019). “Training a spiking neural

network with equilibrium propagation,” in The 22nd International Conference

on Artificial Intelligence and Statistics (Montreal, QC), 1516–1523.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).

“Automatic differentiation in pytorch,” in NeurIPS 2017 Workshop Autodiff

Decision Program.

Payeur, A., Guerguiev, J., Zenke, F., Richards, B., and Naud, R. (2020).

Burst-dependent synaptic plasticity can coordinate learning in

hierarchical circuits. bioRxiv [Preprint]. doi: 10.1101/2020.03.30.01

5511

Pineda, F. J. (1987). Generalization of back-propagation to recurrent neural

networks. Phys. Rev. Lett. 59, 2229–2232. doi: 10.1103/PhysRevLett.59.

2229

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen,

A., et al. (2019). A deep learning framework for neuroscience. Nat. Neurosci.

22, 1761–1770. doi: 10.1038/s41593-019-0520-2

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2008).

The graph neural network model. IEEE Trans. Neural Netw. 20, 61–80.

doi: 10.1109/TNN.2008.2005605

Scellier, B., and Bengio, Y. (2017). Equilibrium propagation: bridging the gap

between energy-based models and backpropagation. Front. Comput. Neurosci.

11:24. doi: 10.3389/fncom.2017.00024

Scellier, B., and Bengio, Y. (2019). Equivalence of equilibrium propagation

and recurrent backpropagation. Neural Comput. 31, 312–329.

doi: 10.1162/neco_a_01160

Scellier, B., Goyal, A., Binas, J., Mesnard, T., and Bengio, Y. (2018).

Generalization of equilibrium propagation to vector field dynamics. arXiv

preprint arXiv:1808.04873.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting. J.

Mach. Learn. Res. 15, 1929–1958.

Xiao, W., Chen, H., Liao, Q., and Poggio, T. (2018). Biologically-plausible

learning algorithms can scale to large datasets. arXiv preprint arXiv:1811.

03567.

Frontiers in Neuroscience | www.frontiersin.org 10 February 2021 | Volume 15 | Article 63367417

https://www.frontiersin.org/articles/10.3389/fnins.2021.633674/full#supplementary-material
https://doi.org/10.1109/ISCAS45731.2020.9181250
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.3389/fnins.2019.01383
https://doi.org/10.1109/ISCAS45731.2020.9180548
https://doi.org/10.1109/ICNN.1994.374486
https://www.semanticscholar.org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/5d90f06bb70a0a3dced62413346235c02b1aa086
https://www.semanticscholar.org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/5d90f06bb70a0a3dced62413346235c02b1aa086
https://www.semanticscholar.org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/5d90f06bb70a0a3dced62413346235c02b1aa086
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.1101/2020.03.30.015511
https://doi.org/10.1103/PhysRevLett.59.2229
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.3389/fncom.2017.00024
https://doi.org/10.1162/neco_a_01160
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Laborieux et al. Scaling EqProp to Deep ConvNets

Zoppo, G., Marrone, F., and Corinto, F. (2020). Equilibrium propagation

for memristor-based recurrent neural networks. Front. Neurosci. 14:240.

doi: 10.3389/fnins.2020.00240

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Laborieux, Ernoult, Scellier, Bengio, Grollier and Querlioz. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 February 2021 | Volume 15 | Article 63367418

https://doi.org/10.3389/fnins.2020.00240
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 19 May 2021

doi: 10.3389/fnins.2021.664208

Frontiers in Neuroscience | www.frontiersin.org 1 May 2021 | Volume 15 | Article 664208

Edited by:

Oliver Rhodes,

The University of Manchester,

United Kingdom

Reviewed by:

Alice Mizrahi,

Thales Group, France

Can Li,

The University of Hong Kong,

Hong Kong

*Correspondence:

Jan Stuijt

jan.stuijt@imec.nl

Federico Corradi

federico.corradi@imec.nl

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 04 February 2021

Accepted: 15 April 2021

Published: 19 May 2021

Citation:

Stuijt J, Sifalakis M, Yousefzadeh A

and Corradi F (2021) µBrain: An

Event-Driven and Fully Synthesizable

Architecture for Spiking Neural

Networks.

Front. Neurosci. 15:664208.

doi: 10.3389/fnins.2021.664208

µBrain: An Event-Driven and Fully
Synthesizable Architecture for
Spiking Neural Networks
Jan Stuijt*, Manolis Sifalakis, Amirreza Yousefzadeh and Federico Corradi*

Ultra-Low-Power Systems for Internet of Things (IoT), Stichting Interuniversitair Micro-Elektronica Centrum (IMEC) Nederland,

Eindhoven, Netherlands

The development of brain-inspired neuromorphic computing architectures as a paradigm

for Artificial Intelligence (AI) at the edge is a candidate solution that can meet strict energy

and cost reduction constraints in the Internet of Things (IoT) application areas. Toward this

goal, we present µBrain: the first digital yet fully event-driven without clock architecture,

with co-located memory and processing capability that exploits event-based processing

to reduce an always-on system’s overall energy consumption (µW dynamic operation).

The chip area in a 40 nm Complementary Metal Oxide Semiconductor (CMOS) digital

technology is 2.82mm2 including pads (without pads 1.42mm2). This small area footprint

enables µBrain integration in re-trainable sensor ICs to perform various signal processing

tasks, such as data preprocessing, dimensionality reduction, feature selection, and

application-specific inference. We present an instantiation of the µBrain architecture in

a 40 nm CMOS digital chip and demonstrate its efficiency in a radar-based gesture

classification with a power consumption of 70 µW and energy consumption of 340 nJ

per classification. As a digital architecture, µBrain is fully synthesizable and lends to a fast

development-to-deployment cycle in Application-Specific Integrated Circuits (ASIC). To

the best of our knowledge, µBrain is the first tiny-scale digital, spike-based, fully parallel,

non-Von-Neumann architecture (without schedules, clocks, nor state machines). For

these reasons, µBrain is ultra-low-power and offers software-to-hardware fidelity. µBrain

enables always-on neuromorphic computing in IoT sensor nodes that require running on

battery power for years.

Keywords: spiking neural network, neuromorphic computing, radar signal processing, IoT, edge-AI

1. INTRODUCTION

Information processing in the brain has been a topic of active research for decades (Cappy,
2020). As a computing substrate, the brain structure is exciting from an engineering perspective.
It is massively parallel, impressively low power, enables scalable operation, and memory and
computation are multiplexed together in the same substrate. As a result of the study of the
brain, research in neuromorphic computing has been trying to build brain-inspired models of
information processing and respective hardware implementations thereof.

Unlike conventional computer architectures designed to perform exact calculations, a biological
brain seems optimized for signal processing in the presence of noisy or incomplete inputs. It
is very robust to damages and partial failures. As a result, neuromorphic computing offers an
alternative for algorithms and compute architectures that perform (statistical) signal processing

19

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.664208
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.664208&domain=pdf&date_stamp=2021-05-19
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jan.stuijt@imec.nl
mailto:federico.corradi@imec.nl
https://doi.org/10.3389/fnins.2021.664208
https://www.frontiersin.org/articles/10.3389/fnins.2021.664208/full

Stuijt et al. µBrain

and neural processing tasks. Even though we are far from
having understood the brain’s functioning altogether, the study
of its operation leads us to several important architectural
features, which we can successfully and effectively adopt in silicon
technology of computing machines.

Many of the brain’s energy and compute efficiency features
come from its asynchronous and event-driven operation (Yu
and Yu, 2017), which promotes and simultaneously exploits
sparse computations. In conventional processor/accelerator
architectures where high-energy consumption is unavoidable,
the focus is on maximizing efficiency (and speed) by
increasing the number of operations possible per unit of
energy consumed. By contrast, in neuromorphic architectures,
sparsity exploitation results in skipping redundant operations,
and efficiency is achieved by directly reducing both latency
and energy consumption. Reducing operations translates
to fewer computations and less power density (i.e., power
per silicon area) in the neuromorphic processors. Besides,
asynchronous event-driven processing allows for theoretically
infinite scalability as every neuron can process its inputs
independent of other neurons. It also lets the information
flow as fast as possible, which results in a low latency
response. It is not required to route a dynamic clock pulse
to every neuron in a silicon implementation, as each neuron
immediately evaluates its membrane potential against the
threshold without the need for a global synchronization signal
(a clock).

This paper introduces µBrain, a neuromorphic IC for ultra-
low power (<100 µW) neural network processing for edge AI
IoT applications. µBrain exploits low-cost digital technology,
but unlike most other digital neuromorphic Integrated Circuits
(ICs) (as shown in Table 2), it relies on local on-demand
oscillators and a novel delay-cell to avoid the use of a global
clock and it supports event-driven processing. µBrain, in the
absence of input stimuli, only consumes leakage power while
maintaining its internal state stored in the neuron’s membrane
potential, synaptic weights, and network dynamics. Furthermore,
µBrain does not exploit separate memory blocks (either on
-chip or off-chip memory), but memory and computation
are co-localized in the IC area, avoiding the data access and
energy overheads of distal memories of conventional Von-
Neumann architectures.

The use of digital technology leverages synthesizability, and it
provides reliability for use in various IoT applications. Besides,
the high area efficiency of digital gates offered in advanced
process nodes makes analog neurons less attractive.

The µBrain architecture is based on digital event-based
spiking neurons organized in layers (recurrent topologies
are also supported). Inputs and outputs are digital pulses
(rate- or time-coded), whereas the synaptic weights are
programmable and are stored on-chip with a customizable
bit-width. Depending on the application requirements, the
µBrain architecture can be customized during synthesis
for bit precision, network topology (number of neurons
in each layer, and number of layers), and connectivity.
In contrast, neuron parameters and synaptic weights are
runtime programmable.

The niche of µBrain in the landscape of neuromorphic
processors and accelerators is ultra-low-power (e.g., hundreds
of µW) lightweight machine-learning data processing near-
or in-sensor (and by “in-sensor” we mean integration at
the IC level). Example target deployments include radar
signal classification, biomedical signal analysis on wearable
devices, low-dimensional image classification deployed on
luminaires, audio analysis and tactile sensing analysis in thin-film
electronics, data processing on ingestible sensors, andmany other
IoT applications.

1.1. Background and Related Literature
Neuromorphic compute accelerator ICs leverage Spiking Neural
Network (SNN) processing, using stateful neuron models that
exchange information in the form of sparse asynchronous
events (spikes). State-of-the-art implementations are based on
analog, digital, or hybrid mixed-signal silicon technology (such
as Schemmel et al., 2010; Qiao et al., 2015; Furber, 2016; Neckar
et al., 2018), often in combination with “exotic” non-volatile
memories (NVM) (Zhang et al., 2018), or photonic technology
(Prucnal and Shastri, 2017), or spintronic devices (Grollier
et al., 2020). This broad range of options accounts for varying
degrees of emulation of the real brain structures, integration,
and features.

Analog neuromorphic ICs resemble the biological neural
cells more than digital ICs (Indiveri et al., 2011). They model
potassium and sodium channels and N-methyl-D-aspartate
(NMDA) receptors with their intricate dynamics. Yet, they suffer
from variability, high design cost, low flexibility, and low neuron
density. When implemented in conventional silicon technology,
neurons store their membrane potentials (neuron states) in a
leaky capacitor, which costs a large area, and analog synaptic
circuits mimic adaptation and learning with programmable
synaptic weights with low digital resolution (Bartolozzi and
Indiveri, 2007). Alternatively, a dense Resistive Random Access
Memory (ReRAM) crossbar may be used to build the synaptic
connections between neurons (Liu et al., 2015). In ReRAM
crossbars, the bit cell’s resistance is the programmable synaptic
weight that connects a presynaptic with a post-synaptic neuron.
Due to process variations, the analog chips are not exactly
reproducible and are vulnerable to temperature changes. In
theory, it is possible to overcome the variations by using
an adaptive self-learning neuron model and efficient on-chip
adaptivity/learning mechanism to compensate for the variations
and noise (Kuzum et al., 2012). However, such mechanisms
make the neuron more complex. Their performance is not yet
sufficiently reliable to enable the use of such technology in critical
applications (e.g., health care, automotive, safety). The analog
approach is not suitable for our work as µBrain targets inference
only, IoT use cases, and easy and affordable reproducibility
and integrations with other ICs (e.g., sensors) leveraging in-
sensor processing.

By contrast to analog circuits, digital ICs rely on logic gates
to emulate neurons and synapses and dense memory to store
neuron state and synaptic weights (Frenkel et al., 2018). This
approach’s motivation is to make a synthesizable architecture
integrated quickly in a System On a Chip (SoC) and results in a

Frontiers in Neuroscience | www.frontiersin.org 2 May 2021 | Volume 15 | Article 66420820

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Stuijt et al. µBrain

low-cost implementation. In theory, due to using logic gates, the
required area in this approach can be higher than in analog chips.
However, it is easier to use state-of-the-art technology nodes (like
7 nm and below) for digital, which offers much better density
at reasonable power consumption. One disadvantage of digitally
designed chips is the implementation of membrane potential
leakage as an additional periodic operation. This disadvantage is
not so relevant if the frequency is low enough, i.e., in the same
order as the input spike rates. Besides this, since commercial
electronic design automation (EDA) tools are optimized for
synchronous deployments, it is not straightforward to implement
fully event-driven implementations.

Likewise, in µBrain, we followed a fully digital approach.
However, our leakage mechanism is event-based and, therefore,
does not necessarily need to be periodic. Additionally, we have
designed a lightweight local oscillator (a delay cell) that can
drive self-timed digital blocks (similar to Davies et al., 2018) to
overcome the lack of support in Electronic Design Automation
(EDA) tools.

At the intersection of these two approaches, mixed analog
and digital neuromorphic ICs may combine analog circuit
networks with a digital readout layer (Corradi et al., 2019) or an
analog ReRAM crossbar for synaptic connections with digitally
implemented neurons (Ni et al., 2017). In this case, at the
interfacing between the analog and digital circuit, analog signals
are discretized using an analog to digital converter. As activations
in SNNs are binary (no multiplication is required), this method’s
main advantage is the possibility to store multiple bits in
one memory cell. Additionally, bio-inspired learning algorithms
can be implemented using resistive memory cells’ physical
characteristics and can facilitate on-chip learning. Even though
µBrain is compatible with non-volatile memory technologies as
a replacement of the distributed memory (digital flip-flops) for
synaptic weights, we ruled out the analog option for the reasons
mentioned before.

As electrons’ speed is much faster than ions, a silicon neuron
can process spikes some orders of magnitude faster than its
real-time biological equivalent (nanoseconds switching on/off
time for transistors, vs. milliseconds neuronal and synaptic time
constant). This fact has motivated neuromorphic digital IC
engineers to implement time-multiplexed digital neuromorphic
chips (Davies et al., 2018, Merolla et al., 2011). In digital
implementations, it is possible to separate the processing part
and the memory. For example, one physical neuron core
can emulate many (virtual) neurons and one physical link to
emulate many (virtual) synaptic connections. Time-multiplexing
methods employ fast computations and constantly shuffle
neuron’s membrane potential from/to neuron memory and their
synaptic weights from/to synaptic memory. Furthermore, such
an architecture may host multi-neuron cores, each assigned the
emulation of a group of neurons, e.g., a layer, which can exchange
spikes asynchronously in a packet-switched form through
a network-on-chip (NoC); and based on the Address-Event
Representation (AER) of spikes in packets. The advantage of
the time-multiplexing approach is a higher neuron and synapse
density compared to the previous approaches and leveraging
of more complex neuron models [or even programmable

(Painkras et al., 2013)] at the cost of increased memory access
and complex data-shuffling primitives. Time-multiplexing may
be disadvantageous for ultra-low-power designs as it requires
additional control circuitry, increasing power consumption
to manage the core’s coherence. Also, contra to biological
neurons, the distance between memory and compute cores
increases the power consumption. As events inside each core
are processed serially, at peak activity times, processing latency
also increases or is not guaranteed and may result in event
drop out (depending on the depth and occupancy of event
queues). Finally, packetization and explicit addressing of events
(as in AER protocols) increase communication overhead (power
consumption) due to the additional address processing and
routing and memory requirements for queueing events in transit
(events are not a binary pulse or a direct signal anymore). In
the µBrain architecture, we do not time-multiplex the processing
of multiple neurons in a core (rather, each core is assigned
exclusively to one neuron) because for the size of networks we
are considering, the total silicon area of neurons is negligible
compared to the total area of synapse memory. In addition, a
packet-based event addressing is not required internally among
neurons, but we have opted for AER communication at the chip
interface with the outside world for ease of integration with
existing neuromorphic sensory systems.

The µBrain area is memory dominated, which is not a good
characteristic. However, µBrain requires distributed memories
and motivates the search of alternative memory technologies
to Static Random Access Memory technologies. Many novel
memory technologies are currently being investigated as
candidate solutions for neuromorphic technologies, such as
Phase Change Memories (PCM) (Nandakumar et al., 2018),
Resistance switching memory (RRAM) (Indiveri et al., 2013),
Electrochemical Metalization Memories (ECM) (Hao et al.,
2021). For this reason, our architecture is not focusing on the
memory aspect, as it could soon be replaced with some of the
novel technologies.

2. MATERIALS AND METHODS

2.1. Event-Based Architecture
An overview of the main building blocks of the µBrain
architecture and their interactions is provided in Figure 1A.
Event-based integrate-and-fire (IF) neurons are arranged in a
fully parallel topology of layered populations, which means
that each neuron is physically implemented in silicon (not
time-multiplexed). Within each layer, there may exist lateral
synaptic connections (that can leverage recurrent connectivity).
Every neuron independently (no global clock) accumulates
weighted incoming synaptic spikes and emits a spike itself
when the neuron’s accumulator overflows. Input spikes trigger
the membrane voltage integration, with immediate threshold
evaluation, resulting in distributed granular activations. As
input pulses arrive asynchronously before a neuron layer,
an event arbiter resolves any ordering conflicts if spikes
arrive simultaneously. Synaptic weights have a fixed bit-width
(determined at synthesis) representing 2’s complement integer
quantized values, in the range [−2W−1

− 1,+2W−1
− 1], where

Frontiers in Neuroscience | www.frontiersin.org 3 May 2021 | Volume 15 | Article 66420821

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Stuijt et al. µBrain

W represents the number of bits. For a given bit-width, the range
of quantized weight values can be linearly or logarithmically
arranged (the latter case has been taken into account since
precision is often more critical for smaller weight values).

Note that while the neuron implements an Integrate-and-Fire
(IF) neuron model (see Figure 1C), a Leaky Integrate and Fire
(LIF) model can also be facilitated by using one of the neuron
inputs to provide a periodic leakage signal. This will necessitate
an external clocked input (see Figure 1C).

2.2. Input/Output Interface
Input and output spikes are transmitted to/from µBrain using
a simple communication protocol based on the Address Event
Representation (AER). Unlike other common neuromorphic
AER systems (Boahen, 2000), which rely on a handshake
mechanism, µBrain uses only a strobe signal whose rising
edge informs when the address data are ready to be parsed
(Figure 1B). The strobe is then kept high for a few ns to indicate
a time duration that the address data remain valid and a spike is
propagated throughout the network.

The AER representation allows seamless interfacing with
event-based sensors like the silicon retina (Lichtsteiner et al.,
2008) and silicon cochlea (Liu et al., 2010), and microcontrollers
to perform further downstream spike-based signal analysis
(classification, regression, etc.).

2.3. Spike Arbiter
The spike arbiter before each layer of neurons (shown in
Figure 2A) detects the presence of at least one input spike and
dispatches it to the recipient layer neurons. When more than
one spikes arrive simultaneously, the spike arbiter takes care of
ordering and spacing them in time1. The arbitrations delays are
in the order of ns, while the incoming spikes arrive with a spacing
in the order of µs, or even ms (input frequencies range from Hz
to hundreds of kHz).

This functionality is implemented as follows (see Figure 2A).
Incoming spikes trigger an Input Edge Detector (implemented as
shown in Figure 2C) and are immediately propagated to a spike
register before the Priority-Encoder. A round-robin or linear
polling algorithm generates a 1-hot encoded mask, which gets
applied to the spike register contents to select a single spike
for propagation. Suppose there has been registered more than
one simultaneous spike in the spike register. In that case, the
difference between the spike register contents and the masked
output (i.e., remaining spikes) are fed back to the Input Edge
Detector for subsequent recursive processing (until all spikes are
consumed one-by-one by the Priority-Encoder). The spikes that
come out of the arbiter (see Figure 1C) activate (index) parts of
the post-synaptic weight memory to select weight values from
the fan-out synapses into the respective neurons’ accumulators;
to incrementally implement a weighted spike integration at each
downstream IF neuron.

1In this respect, input spike arbitration does not preserve the timing of inter-

arrivals.

Upon the arrival of incoming spikes and throughout their
consumption, the arbiter circuit becomes on-demand self-
clocked by means of a multi-phase single-cycle oscillator and a
special delay-cell circuit (explained next).

2.4. The Multi-Phase-Oscillator and Delay
Cell
In the absence of a global system-clock, the Multi-Phase-
Oscillator (Figure 2B) is an on-demand activated local clocking
circuit at the heart of the arbiter that warrants correct
pacing of its phases for ordered propagation of spikes among
neurons and across layers; and in this sense, it is the key
component for the event-driven operation of µBrain. The
primary sophistication that enables this functionality is a delay-
cell (within the multi-phase-oscillator).

Whenever (at least) one spike is latched in the arbiter and
propagated to the priority encoder, it sets off one oscillation cycle
in the multi-phase-oscillator, which by means of the delay cell
gets delivered in sequence at different places of the arbiter to
activate, temporarily only, first the loading of the spike register
in the priority encoder, then trigger the 1-hot masking/selection
of a spike, and finally activate the synaptic memory selector. Its
operation is depicted in Figure 2C.

The delay cell’s generated delays are fixed and take
into account the maximum input spike frequency, various
integration technology variation parameters, and the overall
timing constraints of the circuit during synthesis/place-and-
route of the IP. The current prototype operates in a few ns (we
used 100ns to have a safe margin). This is a substantially large
delay given that in standard CMOS technology timing circuits
are generally energy-consuming. It is, however, possible to make
considerable delays (hundreds of ns to hundreds of µs) without
sacrificing power dissipation using CMOS thyristors (Zhang
et al., 2004). Our design uses two thyristors in a cross-coupled
configuration (see the schematic of Figure 3B), in which the
current in the delay cell is limited with a near-threshold bias
voltage. The final layout of this cell is compact and, in our design,
requires 3.0 µm2. The delay must be within safe margins while
its actual value does not need to be precisely tuned. In the face of
these challenges, the delay cell’s custom design plays a crucial role
in µBrain’s low power consumption.

The delay generation is explained as follows: assume that
Vn = 0 and Vp = Vdd such that both transistors are off (see
Figure 3A). Then, because of the current source Ic, Vn goes up
linearly until Vn = Vtn during a time td1 when the NMOS
transistor starts to conduct:

td1 =
CnVtn

Ic
(1)

Voltage Vn keeps going up linearly:

Vn(t)− Vn =

Ic

Cn
t (2)

Frontiers in Neuroscience | www.frontiersin.org 4 May 2021 | Volume 15 | Article 66420822

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Stuijt et al. µBrain

FIGURE 1 | µBrain event-driven architecture. (A) The digital architecture is organized in layers. Each layer consists of an arbiter, a weight memory matrix for forward

and recurrent connections, and a set of IF neurons. The architecture can be synthesized for an arbitrary number of neurons, weight bit width resolution, and synaptic

memory size M, Nx – where M, is the number of inputs and Nx is the number of neurons in layer indexed by x. (B) Input/Output address event representation signals

and timing. (C) Simplified schematic of a digital spiking neuron. Input spikes arriving at random times select corresponding weights, which in turn are added (or

subtracted) by an accumulator. Each time the accumulator overflows, the neuron’s circuit emits an output spike on the axon output. The graph below shows the time

progress of the accumulator value representing the neuron’s membrane potential. Output spikes are shown below the neuron’s membrane potential.

Vp goes down until Vdd−Vtp during a time td2 when the PMOS
transistor starts to conduct:

Idn =

βn

2
(Vn − Vtn)

2
=

βn

2

(
Ic

Cn

)2

(3)

The charge on capacitor Cp is simply the integral in the td2 time
interval, as:

∫ td2

0
Indt = CpVtp (4)

Frontiers in Neuroscience | www.frontiersin.org 5 May 2021 | Volume 15 | Article 66420823

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Stuijt et al. µBrain

FIGURE 2 | (A) Logic block diagram of spike arbiter (thick lines represent many parallel signals). (B) Logic block diagram of the local oscillator and the timing of the

self-generated clock pulses. (C) Logic block diagram of the input edge detector (edge-triggered) implemented through an S/R circuit. It is parameterizable with a

parameter H representing the number of states (so it can remember H-1 spikes). Here we show the case in which (H = 2), i.e., the most straightforward configuration.

Which means that td2 is:

td2 =
3

√
6C2

nCp

βnI2c
(5)

After, the voltages quickly move to Vn = Vdd and Vp = 0 Finally
the total delay time td results in:

td = td1 + td2 =

(
Vtn

Ic
+

3

√
6Vtp

βnI2c

)
CL (6)

Where CL = Cp = Cn.
The current in the CMOS delay cell (Figure 3B) is limited

with a near-threshold bias voltage on node VN . The delay
between nodeA andX tracks with process variations, voltage, and
temperature (PVT).

3. RESULTS

This section presents an evaluation of an instantiation of
µBrain’s IP in a 40 nm technology node. For reference
comparison of µBrain with other tiny spiking neural network
processors, we perform the standard benchmark of handwritten
digits recognition (MNIST). We also showcase the capabilities
of µBrain while performing a radar-based hand gesture
classification task.

3.1. µBrain’s ASIC Prototype
We have produced a prototype implementation (see Figure 4)
consisting of 336 neurons organized in a Recurrent Fully
Connect (RFC) layer of 256 neurons, followed by two Fully

Connected (FC) layers of 64 and 16 neurons, respectively. The
synaptic weights’ resolution in all layers has been fixed to 4 bits,
representing discrete values from −7 to +7. The weights are
runtime re-programmable in local flip-flops, organized via a shift

register circuit. The RFC layer has a random connectivity pattern
of about 30%, allowing savings in weightmemory and using it as a
reservoir. After the RFC layer, two FC-connected layers can serve

as a second shallow network or can act as a readout classification
network. The RFC has 19,878 weight registers (synapses), and
the FC has 17,488, which is a total of 37,366. This adds up
to 149,464 distributed memory bits (18.2 kB). Both RFC and
FC have a global-scale input. When active, the synaptic weights
get scaled by a factor of 8 before being accumulated in the

neurons. The scaling option sets the threshold to 8 instead of
64. The neuron accumulators’ size is 7 bits and can effectively
store only positive values from 0 to 63. A neuron will generate

an output spike when its accumulator value (i.e., “membrane
voltage”) overflows. In that case, the accumulator content will not
be reset but rather wrapped around. The accumulator’s wrapping

implies that the neurons reset to the overflow amount after
emitting a spike. If a spike causes an underflow, the neuron
accumulator is kept to zero. Each FC neuron has a bias input
with a corresponding synaptic weight value. The global bias input
emulates linear membrane leakage. The reset of the membrane
potential at the overflow amount enables to map the behavior
of the µBrain neurons to the Rectified Linear Units (ReLU)
activations in a mean-rate approximation (to ease ANN to
SNN conversion).

µBrain layout area is 2.82 mm2, we used the 40 nm TSMC
technology with I/O voltage of 2.5 V, and a core voltage 1.1 V. A
micro-graph picture of the prototype device is shown in Figure 5.

Frontiers in Neuroscience | www.frontiersin.org 6 May 2021 | Volume 15 | Article 66420824

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Stuijt et al. µBrain

FIGURE 3 | Schematic design of the delay cell. (A) A CMOS thyristor is a combination of a PMOS and an NMOS transistor, in which the drain of the PMOS is

connected to the gate of the NMOS. (B) Two cross-coupled CMOS thyristors implementing a delay-cell.

FIGURE 4 | µBrain’s ASIC instantiation for the experiments in this paper consists of three layers: a recurrent layer of 256 neurons with circa 30% lateral connectivity

and two fully connected layers counting 64 and 16 neurons, respectively. VN is the global near-threshold bias voltage used to tune the delay cells. The global scale

inputs are digital inputs used to set to scale within a layer the synaptic weights.

3.2. Handwritten Digits Classification With
µBrain
µBrain is designed for inference only, and training spiking
neural networks can be done off-line with various techniques
(Rueckauer et al., 2017; Neftci et al., 2019; Sengupta et al., 2019).

µBrain is compatible with both spike-time and mean-rate coding

schemes. As a proof of concept, we tested the µBrain prototype

with a mean rate approach in which we converted a pre-

trained Artificial Neural Network (ANN) into a spiking neural

network (as first introduced by Pérez-Carrasco et al., 2013). This

Frontiers in Neuroscience | www.frontiersin.org 7 May 2021 | Volume 15 | Article 66420825

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Stuijt et al. µBrain

FIGURE 5 | µBrain’s micro-graph, the IC is implemented in 40 nm TSMC technology with an I/O voltage of 2.5 V and a core voltage of 1.1 V. (A) Micro-graph picture

compared with a Euro cent coin. IC area is 2.82 mm2 (including pads). (B) Area breakdown: 59.6% flip-flops for synaptic weights and tri-state weight selectors

(synapses), 35.7% spike arbiters, 4.1% neuron accumulators, and 0.6% remaining routing logic. Memory is completely distributed over the area (no Von-Neumann

bottleneck).

choice has been dictated by the static nature of the MNIST
images and the simplicity of training and testing offered by
the standard deep-learning frameworks [e.g., Tensorflow (Shukla
and Fricklas, 2018)]. For these reasons, we have also exploited a
feed-forward ANN network without relying on recurrent lateral
connections. We trained a fully connected network of Rectified
Linear Units (ReLU) with 256 inputs, 64 hidden, and 10 output
units, respectively, and no biases. Since our instantiation of
µBrain has only 256 inputs, we reduced the MNIST input images
to 16 × 16 pixels. Pixel grayscale values are mapped into firing
rates for the first layer of 256 neurons. The grayscale values
[0, 255] are linearly mapped in the arbitrary selected frequency
range [100, 655 kHz].

After training, the ANN activation values are encoded in the
spiking neurons through their mean rate activations2. The weight
values transferred from the trained ANN model to the SNN
remain the same but are quantized and scaled to fit the limited
4-bit precision in the µBrain instance (i.e., the range [−1, 1]
maps to the integer range [−7,+7]). The network’s output is
read out using a single measure of Inter Spike Interval (ISI).
The output neuron that has the shortest ISI is considered the
correct output class, and the network can proceed to compute
the following input.

Figures 6A,B show the impact of weight quantization. The
software simulation of the spiking neural network closely
matches the hardware measurements. With <4 bit weights, the
accuracy decreases significantly. The accuracy in the classification
of the 10,000 digits in the MNIST test set (16 × 16 pixels) is
consistently 91.7% (92% in the software trained model), with
an average energy per prediction of 308 nJ. This performance is

2Note that the actual mean rate frequencies are not significant: it is their frequency

ratios that matter.

consistent with the literature (for the quantization scheme and
size of the network used, as reported in Table 2).

3.3. Radar-Based Hand Gesture
Classification With µBrain
Unlike vision-based imaging sensors, radar imaging systems
directly capture motion profiles and temporal variations in the
environment through active probing and intercepting the back-
scattered power. Here, we applied machine learning to classify
thesemotion patterns as previously proposed in Lien et al. (2016).
To use our µBrain prototype in a radar signal classification
use case, we converted the traditional micro-Doppler maps into
tiny binary images that have been interpreted as spiking inputs
for the µBrain device. These binary images indicate which of
the 256 input neurons receive spiking inputs, just as in the
case of MNIST. Binary images achieve comparable accuracy
as grayscale input images, with no statistical difference. This
motivates the use of micro-Doppler features as good features
for gesture recognition. In contrast to camera-based vision,
radar micro-Doppler can provide compressed outputs (sparse
FFT coefficients) for faster inference while being robust in low-
visibility conditions (e.g., in dark environments).

3.3.1. Event-Based Frequency-Modulated

Continuous-Wave (FMCW) Radar Sensor
For proof of concept experimentation, we used a low-power, low-
resolution, 8 GHzUltrawide-Band (UWB) FrequencyModulated
Continuous Wave (FMCW) radar from Liu et al. (2019). The low
range-resolution (<20 cm) and use of UWB technology in this
radar make it a very low-power consumption sensor (20 mW),
yet still very effective for various IoT applications, such as vital
sign detection (Liu et al., 2019; Mercuri et al., 2019).

Frontiers in Neuroscience | www.frontiersin.org 8 May 2021 | Volume 15 | Article 66420826

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Stuijt et al. µBrain

FIGURE 6 | (A) Accuracy achieved in simulation and on the µBrain device, with a two-layer fully connected neural network. The red mark shows the accuracy

achieved with the µBrain device. (B) Quantized weight distribution for the two layers of the shallow network. (C) The blue line shows the current measurement on the

chip during handwritten digits classification (MNIST). The network is reset after two consecutive spikes are emitted by any output neurons (peak current reflects the

reset). Vertical dashed lines indicate a single-digit classification. The mean current consumption for this digit is < I ≥ 88µA, and it varies among test samples. To

classify this digit, it takes 2,769 µs.

FMCW radars transmit a continuous wave with linearly
ramping up and/or down frequencies (chirp), starting from a
frequency f0 up to frequency fn. Figure 7 shows a measurement
of the back-scattered power. Here, we only state that the 8 GHz
radar has a range resolution of about 30 cm,making it challenging
to detect single finger movements, but enough to detect whole
hand gestures’ temporal trajectory. The bandwidth of a radar is
defined as the frequency interval Bw = fn − f0. This frequency
interval defines the range resolution according to res = c/2Bw,
in which c is the speed of light.

A photo of the lab prototype platform on which the radar
sensor IC is mounted is provided in Figure 8. This serves
as a test platform for the pre-fabrication of a miniaturized
IoT sensor for vital-sign monitoring, activity classification, and
other indoor applications. In this prototype, the bulkiest part
is an SoC platform, where backend logic (time-and-frequency
domain) and communication is implemented and tested on a
Field Programmable-Gate Array (FPGA) and embedded Linux

processor. A Unix socket interface is used to communicate the
spike event data to µBrain. The overarching objective is that the
whole FPGA SoC will be obsolete and µBrain will be ultimately
packaged in the same IC with the radar sensor. We refer the
reader to Liu et al. (2019) for detailed circuits and operational
range descriptions.

3.3.2. Radar-Based Hand Gesture Classification in

µBrain
With the aforementioned radar setup, we collected a hand-
gesture dataset containing four dynamic gestures from five
subjects. Data recordings include the subject standing at a
distance of 2 m from the antennas (RX and TX). The gestures
consist of swinging the right or left arm in the horizontal
direction (horizontal), waving with the right or left hand by
keeping the palm facing out (hello), moving the hand with the
palm facing out radially toward and away from the radar (toward)
and finally we recorded background activity in which none of

Frontiers in Neuroscience | www.frontiersin.org 9 May 2021 | Volume 15 | Article 66420827

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Stuijt et al. µBrain

FIGURE 7 | FMCW SISO radar signal illustration. (A) A transmitter antenna transmits a signal of linearly increasing frequency starting at f0 until fn. A receiving antenna

captures back-scattered signal from the environment. Td represent chirp duration, while Ti is the PRI (time interval) between chirps. (B) A radar frame is a collection of

192 consecutive chirp receptions.

FIGURE 8 | The lab prototype test platform on which the 8 GHz UWB FMCW

radar IoT sensor IC is mounted for collecting data and carrying out

measurements for vital-sign monitoring, activity classification, and other indoor

applications.

the above gestures appeared in a static background (background).
The radar system streams out chirp frames (collections of a fixed
number of received chirp signal returns; as a 2d-matrix of time-
domain data). In our setup, we collect 192 chirps in a single
frame, while the number of ADC samples per chirp is 512. The
ADC resolution is 10 bits. The time interval between emitted
chirps has been set to Ti = 1.2 ms while the chirp duration is
Td = 41µs; therefore, a frame consists of 238 ms of recordings.
Figure 9 (top left) shows three successive frames divided by
a vertical dashed line. The second figure from the top left in
Figure 9 shows a micro-Doppler map obtained by processing
three frames of radar signal (Chen et al., 2014) (computed
as described in Supplementary Material). The micro-Doppler
maps show the distribution of reflected energy over velocity,
at a fixed distance, as a slow-time function. These maps thus
provide rich information of the gesture dynamics over time. We
converted the micro-Doppler maps into binary images, which

serve as spike inputs, to directly interface the radar system with
spiking neural networks in µBrain. In this conversion we apply a
dynamic threshold on the micro-Doppler map, the threshold on
the micro-Doppler map has been set to Thr = µ+ s · σ , in which
µ is the mean of the micro-Doppler map as µ =

1
n

∑n
i=1 Pi,

σ is the standard deviation, and s a scaling factor (s = 0.15).
The scaling factor is a hyper-parameter, serving as a crude noise
filter by means of quantizing, and its optimal value is determined
through grid search. After thresholding, the pixel values above
the threshold value have been set to one while all the others to
zero. The image has been scaled to 16× 16 pixels as µBrain only
supports up to 256 input channels. We show samples from the
dataset in the right panel of Figure 9.

As per theMNIST use case, we have trained a traditional ANN,
and then we have converted it into a spiking neural network. The
binary images [0,1] have been mapped with input frequencies
equal to 0 Hz and 655 kHz. As previously, we have evaluated
the output of the network using a single measure of ISI. The
output neuron index with the lowest ISI predicts the input class.
Using this dataset, we have achieved an accuracy of 93.4% and
energy consumption of 340 nJ per classification. Table 1 show
the confusion matrix for the radar-gesture classification on the
test set.

For comparison, in Scherer et al. (2020), the authors
developed a very low power embedded processing system for
real-time gesture recognition based on radar sensing, which

achieves 86.6–92.4% accuracy with energy consumption per
classification of 4.52 mJ on inputs from a constellation of high-

resolution 60 GHz FMCW radars. One of the two datasets they

consider (11-gesture) includes fine gestures with fingers, while
the other one (5-gesture) containedmore coarse-grained gestures

analogous to ours. The radar sensor we used is a much lower
resolution (operating at only 8 GHz, with a range resolution
in the order of ten of cm instead of sub-cm), and the antenna
we used does not provide angular information therefore, the
samples are much less informative. The networks they trained
were one 2D-CNN (seven layers deep) in tandem with a 1D
TCN (10 layers deep) with 16 bit fixed-precision weights, which
is to be contrasted with our 2–3 layer SNN of only 4-bit weight
precision. Nevertheless, the accuracy we achieve is competitive
while our energy consumption per classification is 3-plus orders

Frontiers in Neuroscience | www.frontiersin.org 10 May 2021 | Volume 15 | Article 66420828

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Stuijt et al. µBrain

FIGURE 9 | (A) Shows the preprocessing of the radar signal for 3 frames of raw ADC data (A top), to a micro-Doppler map (A middle), to a thresholded, scaled (16 ×

16), and binarized version of the micro-Doppler map (A bottom). The binary image gets converted into a spike stream for the µBrain chip. (B) Shows examples from

the preprocessed radar gesture dataset in which the label at the top associates to its respective gesture as 0: hello, 1: toward, 2: horizontal, 3: background.

of magnitude lower, making our solution truly an ultra-low-
power one.

While not directly comparable (but rather as an indicative
reference), this performance is on par with results in the literature
based on the DvsGesture dataset (Amir et al., 2017) for gesture
recognition from a dynamic vision sensor (Delbrück et al., 2010).
Using various spiking networks and other machine learning
models, the reported accuracy (Amir et al., 2017; Shrestha and
Orchard, 2018; Ghosh et al., 2019; Wang et al., 2019; Kaiser et al.,
2020;Maro et al., 2020) lies in the range between∼91 and 96% for
10-gesture classification. In a more closely related to our setup,
the authors in Maro et al. (2020) report∼82 and ∼93% accuracy
with and without, respectively dynamic background suppression

filtering, using a two layer network and based on a new dynamic
vision sensor dataset (NavGesture) that contains five gestures
very similar to ours. Last but not least, it is worth pointing that
in Amir et al. (2017) from the above list, a 3,951-neuron spiking
CNN was deployed in a single True North IC, measuring 44.5
mW power consumption (without the leak) for this task.

4. DISCUSSION

This paper introduced µBrain, a lightweight neuromorphic
inference engine for ultra-low power applications in the IoT
domain. It offers an alternative to neural network accelerators

Frontiers in Neuroscience | www.frontiersin.org 11 May 2021 | Volume 15 | Article 66420829

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Stuijt et al. µBrain

TABLE 1 | The confusion matrix for on-chip classification of the radar gesture

dataset (test-set).

Hello Toward Horizontal Background

Hello 70 0 0 5

Toward 0 66 5 4

Horizontal 0 6 120 0

Background 2 0 0 55

when there is a high degree of sparsity (temporal, low-rate)
in the input signal that can be exploited to reduce power
consumption. Off-the-shelf deep-learning accelerators for edge
inference, such as Google EdgeTPU (Cass, 2019), Intel Movidius
(Ionica and Gregg, 2015), and Nvidia Jetson (Mittal, 2019)
perform a competitive number of operations per watt. However,
they cannot efficiently exploit sparsity in the signals to scale
their energy use. This means that when the input signal is
highly sparse (e.g., natural signals like audio/video/EEG/etc.),
they end up performing a large number of redundant operations,
which can be skipped. For example, when the sparsity is higher
than 95%, <5% of operations are required, and the remaining
are just overhead. In deep learning algorithms achieving over
70% activation sparsity while maintaining accuracy within 2% is
challenging (Wen et al., 2016; Kurtz et al., 2020). By contrast, in
Yin et al. (2020) SNN architectures achieve a very high degree
of spatio-temporal sparsity (more than 95%) with negligible
accuracy loss.

Compared to many typical ANN accelerators for edge AI,
µBrain inherently exploits all types of sparsity (spatial, structural,
and temporal) in achieving its ultra-low-power signal processing
tasks. Spatial and temporal sparsity relate to neuron activations,
while structural sparsity relates to synaptic weights. µBrain takes
advantage of spatial sparsity by operating in a truly event-
driven fashion: computations take place only for the parts of the
input that are non-zero and only when a non-zero activation is
propagated through the network, all other lateral parts of the
network remain silent conserving energy. It also takes advantage
of temporal sparsity since it uses stateful neurons: the memory
potential in each neuron is integrating the changes of its inputs,
state is thus updated only when there are changes between
subsequent inputs and a neuron fires and activates other down-
stream neurons only when there is sufficient amount of change
in the inputs (level crossing). In the absence of any input spikes
nothing is active downstream (conserving energy) until there
is a change (spike) in space or time. Finally, structural sparsity
is programmable in µBrain at synthesis time. Suppose a model
has a pruned network topology. In that case, µBrain can be
synthesized with reduced synaptic connectivity, which saves area
and static power for maintaining weight memory which would
otherwise be set to zero as at runtime (an overhead in fully
connected crossbar architectures). To give an impression of the
related energy costs and savings from reducing spike activity
(dynamic power) and synaptic connectivity (static power), in the
topology of the MNIST use-case (section 3.2), we measure on
average 11,500 spikes per classification (for 6,400 input stimuli

per image), where µBrain consumes around 26pJ per spike
(including communication, neuron accumulation, and synaptic
read) and out of which 30% is static power3. Reducing the
network connectivity (structural sparsity) or increasing the speed
of the network reduces linearly the static power expended due
to leakage. Increasing the thresholds in the neuron parameters
(spatio-temporal sparsity) also reduces the dynamic power.

One big challenge in digital neuromorphic chips and µBrain’s
design is static power consumption (leakage power). While the
architecture is designed to have event-driven dynamic power
consumption (consume dynamic power only when there is an
event), there is no control on static power. Since the architecture
area is dominated by memory, most of the static power is
consumed to keep the flip-flop-based memories alive. However,
this challenge can be tackled at various levels, such as using
Fully-Depleted Silicon-On-Insulator (FDSOI) (Carter et al.,
2016) manufacturing technology, advanced non-volatile memory
technologies (Burr et al., 2017), digital design tricks (e.g., power
gating when no inputs are present), and by pruning at synthesis
time unneeded synaptic connectivity (as discussed above).

µBrain has been designed to offer flexibility and
customizability for different applications in the IoT domain.
This means that it is possible to change the number of neurons
in each layer, the number of layers, connectivity structure, and
the parameters’ resolution. The design incentive is to empower
in this way IoT applications where power consumption is the
number one priority and make integration with various sensors
effortless (more often than not by packaging µBrain and the
sensor in the same IC); to perform tiny machine learning tasks
that were not possible or affordable (energy-wise) before. It
is less efficient for implementing very deep neural networks
as silicon area efficiency plays an essential role. The lack of
time-multiplexed neuron cores in µBrain limits the scalability.
However, avoiding time-multiplexing of neuron processing has
been a conscious trade-off given the target application domain
(i.e., small networks, energy efficiency), since it has enabled the
co-location of memory and processing.

Another aspect that, at first sight, might appear as a limitation
ofµBrain is the use of Integrate-and-Fire (IF) neurons. However,
there is recurrent synaptic connectivity among neurons the
absence of leakage in the neurons may see as unnecessarily
restrictive to the effectiveness of recurrent network architectures.
In practice, however, quite the opposite holds. It is easy to
introduce leakage at a fine-grained neuron level (different
leak functions and with varying parameters per neuron); by
sacrificing for this purpose, one neuron’s inputs. This choice
has been motivated by the intended use of µBrain primarily for
experimental purposes.

Finally, one current inconvenience in the µBrain
architecture is that the delay cell, which is one of the critical
components, requires re-customization when ported to different
manufacturing technologies. Moreover, while there is an
advantage in going to small node technologies in terms of power
consumption and area, the delay cell’s speed will remain the

3These numbers are for Vdd 1.1 V in 40 nm technology, with 53 µA leak current

and 74 µA total current in 42 s of classifying 10,000 samples.

Frontiers in Neuroscience | www.frontiersin.org 12 May 2021 | Volume 15 | Article 66420830

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Stuijt et al. µBrain

TABLE 2 | Reference comparison of µBrain with other neuromorphic processors for the MNIST handwrittend digit classification.

µBrain Frenkel et al.

(2018)

Park et al.

(2019)

Cho et al.

(2019)

Chen et al.

(2018)

Moradi et al.

(2017)

Davies et al.

(2018)

MNIST accuracy (%) 91.7 (16 × 16) 91.4 (16 × 16) 97.83 91.6 (16 × 16) 97.9 – 96.4

Neuron/Synapses used for MNIST 74/17k 10/2.5k 410/199k 2048/149k 1546/666k – 10/7840

VDD (V) 1.1 0.55–1.1 0.8 0.7 0.525–0.9 1.3–1.8 0.5–1.25

Energy/Prediction (nJ) 308 15 @ 75 MHz,

54 @ 1.3 MHz

236.5 – 1700 – 85,52*

Technology (nm) 40 28 FDSOI 65 40 10 FinFET 180 14 FinFET

Physical neurons cores/total neurons 336/336 1/256 410/410 2048/2048 4096/4096 1024/1024 128/131072

Power 73 µW 35–447 µW 23.6 mW 46.6 mW (2.3

uW * 4096

neurons)

94 mW 400 µW @ 10

Hz average

firing rate

110 mW

Area (mm2) 2.68 (1.42 core only) 0.086** 10.08 2.56 1.7 43.79 60

Synaptic resolution # bits 4 4 >10 2/3 7 2 (analog) 1–9

Clock frequency Event-driven 75 MHz 20 MHz Global Async.

Locally sync

110 MHz

(neurons)

105 MHz Event-driven Event-driven

Fully synthesizable Yes Yes Yes Yes Yes No (Analog

Mixed Signal

design)

Yes

Supported algorithm SNN feed-forward, recurrent SNN online

learning,

feed-forward

SNN on-line

learning

SNN

feed-forward,

recurrent

SNN/BNN

online-

learning, feed

forward,

recurrent

SNN

feed-forward,

recurrent

SNN, online-

learning,

feed-forward,

recurrent

The µBrain’s power is measured with the input frequencies of [100, 655 kHz], this result in an average time per classification of 4.2ms. *Blouw et al. (2019). **Only IP core area without

peripheral and pads.

same in practice. While this is a minor nuisance, it is slightly at
odds with the otherwise general design portability provided by
the synthesizability in a complete digital design.

4.1. µBrain and Low-Power Neuromorphic
Devices
Several other ultra-low-power neuromorphic processors have
recently been developed. Table 2 compares our proposed
architecture with the other state-of-the-art neuromorphic
architectures for which the power consumption reported is
<120 mW. Among them, µBrain achieves competitive energy
consumption per prediction (308 nJ/MNIST classification)
without compromising accuracy. It is an entirely event-driven
design (i.e., consumes only leakage power in the absence of input)
and is fully synthesizable.

µBrain should be categorized as a small-scale neuromorphic
processor. Unlike large-scale processors (like Davies et al.,
2018), where the power consumption is several mW, small-
scale processing units like µBrain only consume a few µW
and therefore can be integrated with battery-powered always-
on devices (for example, in wearable or implantable devices).
Additionally, these processors can be integrated with the sensors
to build a highly efficient sensor-processor system-on-chip (SoC).

Frenkel et al. (2018) designed and implemented a 256-neuron
processor with online learning capability and time-multiplexing
of an entire topology in a single physical neuron core. The

neurons in this design are fully connected (256 × 256 synapse),
which allows for arbitrary topologies. However, this high
amount of synaptic connections is an overhead not required
for many applications. In µBrain, our approach is to sacrify
runtime flexibility for efficiency. Therefore, we decided to
perform mapping-synthesis co-optimization. After synthesis and
fabrication of the chip, in µBrain, it is only possible to modify
the synaptic weights of the SNN but not the main configuration
(synaptic connectivity). This saves substantial area and allows for
highly efficient implementation of the processing unit for a target
application (for example, when integrating with a radar sensor).

Also, by contrast to Frenkel et al. (2018) as well as Davies et al.
(2018),µBrain does not time-multiplex neurons in neuron cores,
which leverages the co-localization of memory and compute (to
improve latency and energy consumption).

Park et al. (2019) also presented a clocked SNN architecture
processor, but the proposed processor consumes over 20 mW
and cannot be used for always-on, battery-powered applications.
In contrast to this work and Frenkel et al. (2018), µBrain does
not use a fixed clock frequency, making it more efficient for
event-based applications. Compared to other event-driven ASICs
like Davies et al. (2018), the shallow processing pipeline ofµBrain
allows for a lightweight oscillator to generate just a few pulses
upon each event’s arrival.

Moradi et al. (2017) presented an analog neuromorphic
processor. Even though the analog design has clear advantages

Frontiers in Neuroscience | www.frontiersin.org 13 May 2021 | Volume 15 | Article 66420831

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Stuijt et al. µBrain

over the digital one, it is not easily integratable and synthesizable
with other digital units (e.g., sensors) and therefore different
from our proposed solution. As we discussed before, analog
design is also vulnerable to manufacturing variations, making
its simulation and training in software difficult. It is challenging
to use for critical applications like healthcare. Nevertheless,
µBrain gets as close as possible to an analog design by featuring
a clock-less architecture (truly event-driven) and co-localizing
computation and memory in the same die.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found at: https://github.com/
federicohyo/8GhzGestureDataset.

AUTHOR CONTRIBUTIONS

JS and FC designed the µBrain architecture and performed the
experiment. JS implemented the µBrain’s architecture in digital
logic. FC and MS collected the dataset and performed the pre-
processing. FC designed the experiment. All authors contributed
with discussions and assisted in editing the manuscript.

FUNDING

This project has received funding from the ECSEL Joint
Undertaking (JU) under grant agreement No. 826610. The
JU receives support from the European Union’s Horizon
2020 research and innovation programme and Spain, Austria,
Belgium, Czech Republic, France, Italy, Latvia, and Netherlands.
This work has also been partially supported by the EUREKA
cluster PENTA and funded by Dutch authorities under grant
agreement PENTA2018e-17004-SunRISE.

ACKNOWLEDGMENTS

The results presented in this work were also obtained thanks
to the collaboration of many colleagues, whom we like here
to acknowledge Yao-Hong Liu, Ali Safa, André Bourdoux, Ilja
Ocket, and Francky Catthoor.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.664208/full#supplementary-material

REFERENCES

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., et al. (2017).

“A low power, fully event-based gesture recognition system,” in 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (Honolulu,

HI), 7388–7397. doi: 10.1109/CVPR.2017.781

Bartolozzi, C., and Indiveri, G. (2007). Synaptic dynamics in analog VLSI. Neural

Comput. 19, 2581–2603. doi: 10.1162/neco.2007.19.10.2581

Blouw, P., Choo, X., Hunsberger, E., and Eliasmith, C. (2019). “Benchmarking

keyword spotting efficiency on neuromorphic hardware,” in Proceedings of the

7th Annual Neuro-inspired Computational Elements Workshop (Albany, NY),

1–8. doi: 10.1145/3320288.3320304

Boahen, K. A. (2000). Point-to-point connectivity between neuromorphic chips

using address events. IEEE Trans. Circuits Syst. II Analog Digital Signal Process.

47, 416–434. doi: 10.1109/82.842110

Burr, G. W., Shelby, R. M., Sebastian, A., Kim, S., Kim, S., Sidler, S., et al. (2017).

Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124.

doi: 10.1080/23746149.2016.1259585

Cappy, A. (2020). Neuro-inspired Information Processing. John Wiley & Sons.

doi: 10.1002/9781119721802

Carter, R., Mazurier, J., Pirro, L., Sachse, J., Baars, P., Faul, J., et al. (2016).

“22 nm FDSOI technology for emerging mobile, internet-of-things, and RF

applications,” in 2016 IEEE International Electron Devices Meeting (IEDM)

(IEEE), 2. doi: 10.1109/IEDM.2016.7838029

Cass, S. (2019). Taking AI to the edge: Google’s TPU now comes in amaker-friendly

package. IEEE Spectrum 56, 16–17. doi: 10.1109/MSPEC.2019.8701189

Chen, G. K., Kumar, R., Sumbul, H. E., Knag, P. C., and Krishnamurthy, R. K.

(2018). A 4096-neuron 1m-synapse 3.8-pJ/SOP spiking neural network with

on-chip stdp learning and sparse weights in 10-nm FinFETCMOS. IEEE J. Solid

State Circuits 54, 992–1002. doi: 10.1109/JSSC.2018.2884901

Chen, V. C., Tahmoush, D., and Miceli, W. J. (2014). Radar Micro-Doppler

Signatures. Institution of Engineering and Technology. doi: 10.1049/PBRA034E

Cho, S. G., Beigné, E., and Zhang, Z. (2019). “A 2048-neuron spiking

neural network accelerator with neuro-inspired pruning and asynchronous

network on chip in 40 nm CMOS,” in 2019 IEEE Custom Integrated

Circuits Conference (CICC) (Austin, TX: IEEE), 1–4. doi: 10.1109/CICC.2019.

8780116

Corradi, F., Pande, S., Stuijt, J., Qiao, N., Schaafsma, S., Indiveri, G., et al.

(2019). “ECG-based heartbeat classification in neuromorphic hardware,” in

2019 International Joint Conference on Neural Networks (IJCNN) (Budapest:

IEEE), 1–8. doi: 10.1109/IJCNN.2019.8852279

Davies,M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

Delbrück, T., Linares-Barranco, B., Culurciello, E., and Posch, C. (2010).

“Activity-driven, event-based vision sensors,” in Proceedings of 2010 IEEE

International Symposium on Circuits and Systems (Paris: IEEE), 2426–2429.

doi: 10.1109/ISCAS.2010.5537149

Frenkel, C., Lefebvre, M., Legat, J. D., and Bol, D. (2018). A 0.086-mm 212.7-

pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic

processor in 28-nm CMOS. IEEE Trans. Biomed. Circuits Syst. 13, 145–158.

doi: 10.1109/TBCAS.2018.2880425

Furber, S. (2016). Large-scale neuromorphic computing systems. J. Neural Eng.

13:051001. doi: 10.1088/1741-2560/13/5/051001

Ghosh, R., Gupta, A., Nakagawa, A., Soares, A., and Thakor, N. (2019).

Spatiotemporal Filtering for Event-Based Action Recognition. IEEE Transactions

in Pattern Analysis and Machine Intelligence.

Grollier, J., Querlioz, D., Camsari, K., Everschor-Sitte, K., Fukami, S., and

Stiles, M. D. (2020). Neuromorphic spintronics. Nat. Electron. 3, 360–370.

doi: 10.1038/s41928-019-0360-9

Hao, Y., Wu, H., Yang, Y., Liu, Q., Gong, X., Han, G., et al. (2021). Preface

to the special issue on beyond moore: Resistive switching devices for

emerging memory and neuromorphic computing. J. Semisond. 42:010101.

doi: 10.1088/1674-4926/42/1/010101

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A., Etienne-

Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron

circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., and

Prodromakis, T. (2013). Integration of nanoscale memristor synapses

in neuromorphic computing architectures. Nanotechnology 24:384010.

doi: 10.1088/0957-4484/24/38/384010

Ionica, M. H., and Gregg, D. (2015). The movidius myriad architecture’s

potential for scientific computing. IEEE Micro 35, 6–14. doi: 10.1109/MM.

2015.4

Frontiers in Neuroscience | www.frontiersin.org 14 May 2021 | Volume 15 | Article 66420832

https://github.com/federicohyo/8GhzGestureDataset
https://github.com/federicohyo/8GhzGestureDataset
https://www.frontiersin.org/articles/10.3389/fnins.2021.664208/full#supplementary-material
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1162/neco.2007.19.10.2581
https://doi.org/10.1145/3320288.3320304
https://doi.org/10.1109/82.842110
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1002/9781119721802
https://doi.org/10.1109/IEDM.2016.7838029
https://doi.org/10.1109/MSPEC.2019.8701189
https://doi.org/10.1109/JSSC.2018.2884901
https://doi.org/10.1049/PBRA034E
https://doi.org/10.1109/CICC.2019.8780116
https://doi.org/10.1109/IJCNN.2019.8852279
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/ISCAS.2010.5537149
https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1088/1674-4926/42/1/010101
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1088/0957-4484/24/38/384010
https://doi.org/10.1109/MM.2015.4
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Stuijt et al. µBrain

Kaiser, J., Mostafa, H., and Neftci, E. (2020). Synaptic plasticity dynamics

for deep continuous local learning (DECOLLE). Front. Neurosci. 14:424.

doi: 10.3389/fnins.2020.00424

Kurtz, M., Kopinsky, J., Gelashvili, R., Matveev, A., Carr, J., Goin, M., et al. (2020).

“Inducing and exploiting activation sparsity for fast inference on deep neural

networks,” in International Conference on Machine Learning (Vienna: PMLR),

5533–5543.

Kuzum, D., Jeyasingh, R. G. D., Yu, S., and Wong, H. S. P. (2012).

Low-energy robust neuromorphic computation using synaptic devices.

IEEE Trans. Electron Devices 59, 3489–3494. doi: 10.1109/TED.2012.

2217146

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128 × 128 120 dB 15

µs latency asynchronous temporal contrast vision sensor. IEEE J. Solid State

Circuits 43, 566–576. doi: 10.1109/JSSC.2007.914337

Lien, J., Gillian, N., Karagozler, M. E., Amihood, P., Schwesig, C., Olson, E., et al.

(2016). Soli: Ubiquitous gesture sensing with millimeter wave radar. ACM

Trans. Graphics 35, 1–19. doi: 10.1145/2897824.2925953

Liu, C., Yan, B., Yang, C., Song, L., Li, Z., Liu, B., et al. (2015). “A spiking

neuromorphic design with resistive crossbar,” in 2015 52nd ACM/EDAC/IEEE

Design Automation Conference (DAC) (San Francisco, CA: IEEE), 1–6.

doi: 10.1145/2744769.2744783

Liu, S. C., Van Schaik, A., Minch, B. A., and Delbruck, T. (2010). “Event-based

64-channel binaural silicon cochlea with Q enhancement mechanisms,” in 2010

IEEE International Symposium on Circuits and Systems (ISCAS) (Paris: IEEE),

2027–2030. doi: 10.1109/ISCAS.2010.5537164

Liu, Y. H., Sheelavant, S., Mercuri, M., Mateman, P., Dijkhuis, J., Zomagboguelou,

W., et al. (2019). “A 680 µw burst-chirp UWB radar transceiver for vital

signs and occupancy sensing up to 15 m distance,” in 2019 IEEE International

Solid-State Circuits Conference-(ISSCC) (San Francisco, CA: IEEE), 166–168.

doi: 10.1109/ISSCC.2019.8662536

Maro, J. M., Ieng, S. H., and Benosman, R. (2020). Event-based gesture recognition

with dynamic background suppression using smartphone computational

capabilities. Front. Neurosci. 14:275. doi: 10.3389/fnins.2020.00275

Mercuri, M., Lorato, I. R., Liu, Y. H., Wieringa, F., Van Hoof, C., and

Torfs, T. (2019). Vital-sign monitoring and spatial tracking of multiple

people using a contactless radar-based sensor. Nat. Electron. 2, 252–262.

doi: 10.1038/s41928-019-0258-6

Merolla, P., Arthur, J., Akopyan, F., Imam, N., Manohar, R., and Modha, D.

S. (2011). “A digital neurosynaptic core using embedded crossbar memory

with 45 pJ per spike in 45 nm,” in 2011 IEEE Custom Integrated Circuits

Conference (CICC) (San Jose, CA: IEEE), 1–4. doi: 10.1109/CICC.2011.

6055294

Mittal, S. (2019). A survey on optimized implementation of deep learning

models on the Nvidia Jetson platform. J. Syst. Archit. 97, 428–442.

doi: 10.1016/j.sysarc.2019.01.011

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2017). A scalable

multicore architecture with heterogeneous memory structures for dynamic

neuromorphic asynchronous processors (DYNAPs). IEEE Trans. Biomed.

Circuits Syst. 12, 106–122. doi: 10.1109/TBCAS.2017.2759700

Nandakumar, S., Le Gallo, M., Boybat, I., Rajendran, B., Sebastian, A., and

Eleftheriou, E. (2018). A phase-change memory model for neuromorphic

computing. J. Appl. Phys. 124:152135. doi: 10.1063/1.5042408

Neckar, A., Fok, S., Benjamin, B. V., Stewart, T. C., Oza, N. N., Voelker, A.

R., et al. (2018). Braindrop: a mixed-signal neuromorphic architecture with

a dynamical systems-based programming model. Proc. IEEE 107, 144–164.

doi: 10.1109/JPROC.2018.2881432

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning

in spiking neural networks: bringing the power of gradient-based

optimization to spiking neural networks. IEEE Signal Process. Mag. 36,

51–63. doi: 10.1109/MSP.2019.2931595

Ni, L., Liu, Z., Yu, H., and Joshi, R. V. (2017). An energy-efficient digital reram-

crossbar-based cnn with bitwise parallelism. IEEE J. Explor. Solid State Comput.

Devices Circuits 3, 37–46. doi: 10.1109/JXCDC.2017.2697910

Painkras, E., Plana, L. A., Garside, J., Temple, S., Galluppi, F., Patterson,

C., et al. (2013). Spinnaker: a 1-W 18-core system-on-chip for massively-

parallel neural network simulation. IEEE J. Solid State Circuits 48, 1943–1953.

doi: 10.1109/JSSC.2013.2259038

Park, J., Lee, J., and Jeon, D. (2019). “7.6 A 65 nm 236.5 nJ/classification

neuromorphic processor with 7.5% energy overhead on-chip learning

using direct spike-only feedback,” in 2019 IEEE International Solid-

State Circuits Conference-(ISSCC) (San Francisco, CA: IEEE), 140–142.

doi: 10.1109/ISSCC.2019.8662398

Pérez-Carrasco, J. A., Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona, T.,

Chen, S., et al. (2013). Mapping from frame-driven to frame-free event-driven

vision systems by low-rate rate coding and coincidence processing-application

to feedforward convnets. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2706–2719.

doi: 10.1109/TPAMI.2013.71

Prucnal, P. R., and Shastri, B. J. (2017). Neuromorphic Photonics. CRC Press.

doi: 10.1201/9781315370590

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska,

D., et al. (2015). A reconfigurable on-line learning spiking neuromorphic

processor comprising 256 neurons and 128k synapses. Front. Neurosci. 9:141.

doi: 10.3389/fnins.2015.00141

Rueckauer, B., Lungu, I. A., Hu, Y., Pfeiffer, M., and Liu, S. C. (2017). Conversion of

continuous-valued deep networks to efficient event-driven networks for image

classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., and Millner, S.

(2010). “A wafer-scale neuromorphic hardware system for large-scale neural

modeling,” in Proceedings of 2010 IEEE International Symposium on Circuits

and Systems (Paris: IEEE), 1947–1950. doi: 10.1109/ISCAS.2010.5536970

Scherer, M., Magno, M., Erb, J., Mayer, P., Eggimann, M., and Benini, L. (2020).

TinyRadarNN: combining spatial and temporal convolutional neural networks

for embedded gesture recognition with short range radars. arXiv 2006.16281.

doi: 10.1109/JIOT.2021.3067382

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: VGG and residual architectures. Front. Neurosci.

13:95. doi: 10.3389/fnins.2019.00095

Shrestha, S. B., and Orchard, G. (2018). Slayer: spike layer error reassignment in

time. arXiv 1810.08646.

Shukla, N., and Fricklas, K. (2018). Machine Learning With TensorFlow. Manning

Greenwich.

Wang, Z., Hou, Y., Jiang, K., Dou, W., Zhang, C., Huang, Z., et al. (2019). Hand

gesture recognition based on active ultrasonic sensing of smartphone: a survey.

IEEE Access 7, 111897–111922. doi: 10.1109/ACCESS.2019.2933987

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. (2016). “Learning structured

sparsity in deep neural networks,” in In Proceedings of 2016 conference in

Advancesin Neural Information Processing Systems (NIPS) (Barcelona), Vol. 29,

2074–2082.

Yin, B., Corradi, F., and Bohté, S. M. (2020). Effective and efficient computation

with multiple-timescale spiking recurrent neural networks. arXiv 2005.11633.

doi: 10.1145/3407197.3407225

Yu, L., and Yu, Y. (2017). Energy-efficient neural information processing in

individual neurons and neuronal networks. J. Neurosci. Res. 95, 2253–2266.

doi: 10.1002/jnr.24131

Zhang, J., Cooper, S. R., LaPietra, A. R., Mattern, M. W., Guidash, R. M., and

Friedman, E. G. (2004). “A low power thyristor-based CMOS programmable

delay element,” in 2004 IEEE International Symposium on Circuits and

Systems (IEEE Cat. No. 04ch37512), Vol. 1 (Vancouver, BC: IEEE), I-769.

doi: 10.1109/ISCAS.2004.1328308

Zhang, X., Huang, A., Hu, Q., Xiao, Z., and Chu, P. K. (2018). Neuromorphic

computing with memristor crossbar. Phys. Status Solidi A 215:1700875.

doi: 10.1002/pssa.201700875

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Stuijt, Sifalakis, Yousefzadeh and Corradi. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 15 May 2021 | Volume 15 | Article 66420833

https://doi.org/10.3389/fnins.2020.00424
https://doi.org/10.1109/TED.2012.2217146
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1145/2897824.2925953
https://doi.org/10.1145/2744769.2744783
https://doi.org/10.1109/ISCAS.2010.5537164
https://doi.org/10.1109/ISSCC.2019.8662536
https://doi.org/10.3389/fnins.2020.00275
https://doi.org/10.1038/s41928-019-0258-6
https://doi.org/10.1109/CICC.2011.6055294
https://doi.org/10.1016/j.sysarc.2019.01.011
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1063/1.5042408
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/JXCDC.2017.2697910
https://doi.org/10.1109/JSSC.2013.2259038
https://doi.org/10.1109/ISSCC.2019.8662398
https://doi.org/10.1109/TPAMI.2013.71
https://doi.org/10.1201/9781315370590
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1109/JIOT.2021.3067382
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1109/ACCESS.2019.2933987
https://doi.org/10.1145/3407197.3407225
https://doi.org/10.1002/jnr.24131
https://doi.org/10.1109/ISCAS.2004.1328308
https://doi.org/10.1002/pssa.201700875
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

NeuroSim Simulator for
Compute-in-Memory Hardware
Accelerator: Validation and
Benchmark
Anni Lu, Xiaochen Peng, Wantong Li, Hongwu Jiang and Shimeng Yu*

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States

Compute-in-memory (CIM) is an attractive solution to process the extensive workloads of
multiply-and-accumulate (MAC) operations in deep neural network (DNN) hardware
accelerators. A simulator with options of various mainstream and emerging memory
technologies, architectures, and networks can be a great convenience for fast early-stage
design space exploration of CIM hardware accelerators. DNN+NeuroSim is an integrated
benchmark framework supporting flexible and hierarchical CIM array design options from a
device level, to a circuit level and up to an algorithm level. In this study, we validate and
calibrate the prediction of NeuroSim against a 40-nm RRAM-based CIM macro post-
layout simulations. First, the parameters of a memory device and CMOS transistor are
extracted from the foundry’s process design kit (PDK) and employed in the NeuroSim
settings; the peripheral modules and operating dataflow are also configured to be the
same as the actual chip implementation. Next, the area, critical path, and energy
consumption values from the SPICE simulations at the module level are compared
with those from NeuroSim. Some adjustment factors are introduced to account for
transistor sizing and wiring area in the layout, gate switching activity, post-layout
performance drop, etc. We show that the prediction from NeuroSim is precise with
chip-level error under 1% after the calibration. Finally, the system-level performance
benchmark is conducted with various device technologies and compared with the
results before the validation. The general conclusions stay the same after the
validation, but the performance degrades slightly due to the post-layout calibration.

Keywords: compute-in-memory, hardware accelerator, deep neural network, design automation, benchmarking
and validation

INTRODUCTION

State-of-the-art deep neural network (DNN)–based machine learning algorithms have demonstrated
remarkable effectiveness for various artificial intelligence applications such as image processing,
speech recognition, and language translation (Deng et al., 2020). However, due to the requirement of
high parallelism and power consumption for data movement, computing platforms with traditional
von Neumann architecture are inadequate for efficient processing of DNNs. Compute-in-memory
(CIM) is a promising solution to alleviate the memory access bottleneck and has achieved attractive
energy efficiency when implemented with mature SRAM technology at 7 nm (Dong et al., 2020).
With recent progress in emerging nonvolatile memory (eNVM) devices such as resistive random

Edited by:
Irem Boybat,

IBM Research - Zurich, Switzerland

Reviewed by:
Manan Suri,

Indian Institute of Technology Delhi,
India

Matthew Marinella,
Sandia National Laboratories (SNL),

United States

*Correspondence:
Shimeng Yu

shimeng.yu@ece.gatech.edu

Specialty section:
This article was submitted to

Machine Learning and Artificial
Intelligence,

a section of the journal
Frontiers in Artificial Intelligence

Received: 26 January 2021
Accepted: 14 May 2021
Published: 09 June 2021

Citation:
Lu A, Peng X, Li W, Jiang H and Yu S

(2021) NeuroSim Simulator for
Compute-in-Memory Hardware

Accelerator: Validation
and Benchmark.

Front. Artif. Intell. 4:659060.
doi: 10.3389/frai.2021.659060

Frontiers in Artificial Intelligence | www.frontiersin.org June 2021 | Volume 4 | Article 6590601

ORIGINAL RESEARCH
published: 09 June 2021

doi: 10.3389/frai.2021.659060

34

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.659060&domain=pdf&date_stamp=2021-06-09
https://www.frontiersin.org/articles/10.3389/frai.2021.659060/full
https://www.frontiersin.org/articles/10.3389/frai.2021.659060/full
https://www.frontiersin.org/articles/10.3389/frai.2021.659060/full
https://www.frontiersin.org/articles/10.3389/frai.2021.659060/full
http://creativecommons.org/licenses/by/4.0/
mailto:shimeng.yu@ece.gatech.edu
https://doi.org/10.3389/frai.2021.659060
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.659060

access memory (RRAM) (Xue et al., 2020), phase change memory
(PCM) (Burr et al., 2015), and ferroelectric field-effect transistor
(FeFET) (Dutta et al., 2020), the application of a CIM-based DNN
accelerator is even more intriguing since eNVMs offer low
leakage power and nonvolatility which are necessary for
dynamic power gating and instant on and off operations in
smart edge devices.

However, the performance of CIM can be highly dependent on
design factors such as sub-array size, analog-to-digital converter
(ADC) precision, and device conductance. Though accurate, the
circuit-level SPICE simulation requires dramatically increasing
time with the scale of the DNN model. Therefore, a design
automation simulator that supports fast modeling of CIM
accelerators with various memory technologies and flexible
architecture topologies is required to realize an early-stage
design space exploration. Among all the reported CIM
simulators, NeuroSim (Chen et al., 2018) stands out as a
comprehensive platform as it covers a wide variety of design
options from a device level to a circuit level and up to an
algorithm level. The inputs to the simulator include memory
types, nonideal device parameters, transistor technology nodes,
network topology and sub-array size, and training dataset and
traces. The outputs of the simulator include the hardware
performance metrics, such as area, latency, dynamic energy
and leakage power consumption, and algorithm-level training/
inference accuracy in the run-time. NeuroSim is interfaced with
PyTorch, forming an end-to-end benchmark framework, namely,
DNN+NeuroSim (Peng et al., 2019), which is publicly available at
GitHub with hundreds of users including industry researchers
from Intel, Samsung, TSMC, and SK Hynix.

To our best knowledge, none of other CIM simulators have
been validated with the actual silicon data, although the
peripheral circuit modules (e.g., decoder, switch matrix, mux,
and adder) of NeuroSim have been validated with SPICE
simulations using the PTM model (PTM, 2011) and FreePDK
(FreePDK, 2014). It is known that the PTM model and FreePDK
are for educational purposes, rather than for foundry fabrication
purposes. Therefore, it is imperative to validate the simulator’s
prediction with the silicon implementation. In this study, we will
validate NeuroSim against a 40-nm 16-kb CIM macro using the
TSMC 40-nm RRAM process (Chou et al., 2018), which has been
taped out recently (Li et al., 2021). First, the parameters of the
memory device and CMOS transistor are exacted from the
TSMC’s PDK and employed in the NeuroSim settings. Next,
the comparison is made on the analog and digital modules,
respectively. New modules such as a level shifter, which uses
I/O transistors (to support RRAM’s high write voltage), is added
to NeuroSim libraries. The area, critical path delay, and energy
consumption are evaluated between the analytical modeling and
the SPICE simulations from Cadence Spectre. Finally, adjustment
factors are introduced to tune the transistor size, add the wiring
area in layout, consider the gate switching rate and the post-
layout performance drop, etc. Using the validated NeuroSim
settings, we will further benchmark CIM accelerators with a
variety of device technologies and compare the performance
prediction before and after the validation. It is noted that we
only focus on the hardware performance validation in this work

and do not focus on the software accuracy estimation, though the
inference accuracy is reportable from the framework.

BACKGROUND

The convolution neural network (CNN) is one of the most
popular DNN models, consisting of multiple convolutional
layers to learn the salient features and a few fully connected
layers for classification. In this study, we focus on the acceleration
of the inference engine where the weights have been pretrained
offline. In a convolutional layer, an output feature map (OFM) is
the result of multiply-and-accumulate (MAC) operations on a
collection of weights (or filters) operating in a sliding window
fashion over the input feature map (IFM). Consider the case
where the IFM of size W×W×D is processed by N filters, each of
size K×K×D. Then the OFM of size W×W×N is computed as
follows:

O[x][y][n] � ∑
K−1

i�0
∑
K−1

j�0
∑
D−1

k�0
I[x + i][y + j][k] ×W[i][j][k][n],

where I, W, and O are the IFM, weights, and OFM,
respectively. CIM is an attractive solution for the extensive
MAC operations in DNN inference as it combines memory
access and computation. The conceptual crossbar structure for
CIM is shown in Figure 1A, where the memory device is located
at each cross point. If the weights are programmed as the
conductance of the memory devices, when the input vectors
encoded by read voltage signal, the weighted sum (MAC)
operation can be performed in a parallel fashion and obtained
as currents at the end of each column. Resistive random access
memory (RRAM) is a two-terminal nonvolatile memory based on
the metal/oxide/metal structure that stores the multi-bit weight
by changing cell’s multilevel conductance states. RRAM has been
successfully demonstrated in industrial 40 nm (Chou et al., 2018)

FIGURE 1 | (A)Weighted sum (MAC) operation in a conceptual crossbar
array structure. (B) RRAM-based sub-array with peripheral circuits (e.g., CIM
macro).

Frontiers in Artificial Intelligence | www.frontiersin.org June 2021 | Volume 4 | Article 6590602

Lu et al. NeuroSim Simulator Validation and Benchmark

35

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

and 22 nm platform (Xue et al., 2020). The one-transistor-one-
resistor (1T1R) structure is widely used in RRAM-based CIM
macro where the word-line (WL) to switch rows of cells and
the MAC results are read out through bit-line (BL) voltage
converted from weighted sum currents. As shown in
Figure 1B, a complete RRAM-based CIM macro also
contains peripheral circuits such as a WL switch matrix and
BL/SL decoder (to select specific rows or columns), level shifter
(to convert the logic VDD to high write voltage for RRAM),
MUX and its decoder, analog-to-digital converter (ADC),
shift-add, and accumulator to support multi-bit input and
multi-bit weight operations.

NEUROSIM SETTINGS

NeuroSim is designed for the CIM-based hardware
accelerators. The hierarchy of the simulator consists of
different levels of abstraction and analytical modeling from
the memory cell and transistor technology to the gate-level
standard cell and peripheral circuit modules and then to the
one sub-array (or a macro as defined in this article). Then
multiple sub-arrays will form one processing element (PE),
and multiple PEs will form one tile with H-tree–based
interconnect routing. An arbitrary neural network model
could be mapped with a number of tiles.

New Features of NeuroSim
Compared with the last version of NeuroSim (Chen et al., 2018),
many new modules and features are added in this version.

• Level-shifter is normally required for RRAM (or PCM/
FeFET) array to support the need of higher write voltage
(than logic VDD). Now, a level-shifter is added as a
peripheral module and will be validated later.

• Different types of ADCs are supported such as Flash ADCs
using voltage-mode sense amplifiers or current-mode sense
amplifiers and successive approximation register (SAR)
ADC, as shown in Figure 2. They have trade-offs in the
area/power and latency. For each technology node, latency
and energy data from Cadence simulation are collected with
sweeping of a reasonable dynamic voltage (or current) range
and then are fitted with polynomial functions for fast

FIGURE 2 | Schematics of (A) level shifter; (B) voltage sense amplifier (VSA); (C) current sense amplifier (CSA); (D) successive approximation register (SAR) ADC.

FIGURE 3 | Layout of inverter cells for (A) bulk and (B) FinFET.

TABLE 1 | Updated transistor model of bulk (130–22 nm) and FinFET (14–7 nm) technologies.

Technology
(nm)

Bulk FinFET

130 90 65 45 32 22 14 10 7

Fin pitch (nm) 48 36 30
Fin height (nm) 37 42 52
Fin width (nm) 8 6 6
NMOS width of bulk (nm) / #Fin of FinFET 907 689 507 352 267 198 3 3 2
PMOS width of bulk (nm) / #Fin of FinFET 1,809 1,191 850 587 401 262 3 3 2
Gate length (nm) 75 55 35 30 28 26 22 20 18
Standard cell layout width (nm) 988 684 494 342 243 167 143 104 78
Standard cell layout height (nm) 3,640 2,520 1,820 1,260 896 616 462 336 250

Frontiers in Artificial Intelligence | www.frontiersin.org June 2021 | Volume 4 | Article 6590603

Lu et al. NeuroSim Simulator Validation and Benchmark

36

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

estimation of NeuroSim, given real traces from the
workloads.

• Inverter, NAND, and NOR gates based on FinFET
technologies (down to 7 nm) are optimized considering
the layout rule. Figure 3 shows the FinFET-based
inverter gate layout. It should be pointed out that
FinFET decouples the physical width (determined by the
Fin pitch) and the electrical width (determined by the Fin
height).

• The technology file is updated for FinFET. The default
transistor models in NeuroSim were calibrated with the
PTM model (PTM, 2011), which is available to the public
and has a wide range of technology nodes from 130 to 7 nm.
However, as the PTM model (of 14, 10 and 7 nm) was
proposed far earlier than the industry adoption of FinFET,
their prediction of Fin geometry actually deviated from the
actual values today. We corrected the Fin height, width, and
pitch following the recent trends in leading foundries and

made some corresponding changes in the standard cell
height/width and interconnect wire pitch, and switched
to the assumption of using a maximum electrical width/
or fin number in the standard cell for digital circuit design.
The detailed values are shown in Table 1.

• A Scaling trend of the SRAM cell area with technology
nodes is calibrated and shown in Figure 4. Since the
technology node name F deviates from the transistor
physical dimensions in the recent generations, the SRAM
cell area that is normalized to F2 significantly increases in
14 nm and beyond.

• The H-tree–based routing between memory arrays is
optimized with a low-swing interconnect to improve
energy efficiency.

• The extra-large SRAM buffers are split into smaller block
buffers for a more realistic and efficient performance
estimation.

• The peripheral mux used to be sized up significantly to
avoid large voltage drop for a memory device with small on-
state resistance (Ron). Considering the DNN model
sparsity, the sizing of mux is decided by the average
column resistance, instead of the worst-case all “on”
resistance to alleviate the area overhead.

• Latency is measured by clock cycles, instead of directly
accumulating the critical path of each module. The clock
period is decided by the sensing cycle, which is the critical
path from giving input to the memory array till the ADC
generating the digital partial sum as this is an analog process
and no digital buffer could be added in between. The latency
of other digital modules is measured cycles needed for the
processing because their timing could be adjusted by adding
digital buffer.

Transistor and Peripheral Circuit Modules
The default transistor models in NeuroSim are calibrated with a
predictive technology model (PTM) (PTM, 2011), which is
available to the public and has a wide range of technology

FIGURE 4 | Scaling trend of SRAM cell area with technology nodes
(assuming F is the same as the technology node).

FIGURE 5 | Id-Vg comparison of PTM model and TSMC PDK in (A) linear-scale and (B) semilogarithmic scale.

Frontiers in Artificial Intelligence | www.frontiersin.org June 2021 | Volume 4 | Article 6590604

Lu et al. NeuroSim Simulator Validation and Benchmark

37

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

nodes from 130 to 7 nm. However, it is known that the
commercial foundry process may differ noticeably from the
PTM model. Figure 5 shows the comparison of the Id-Vg

curve between the PTM model and TSMC PDK. In this
validation, the transistor parameters are directly extracted
from TSMC 40-nm RRAM PDK and specifically set in the
NeuroSim transistor library, including device W/L, the supply
voltage (VDD), threshold voltage (VTH), gate and parasitic
capacitance, and NMOS/PMOS on/off current density. Based
on these parameters, the area and intrinsic RC/power model of
standard logic gates can be calculated analytically using the
formula, as discussed in Ref. Chen et al. (2018); thus, the
performance metrics of each sub-circuit can be estimated. The
transistor W/L in ADC, mux, switch matrix, and drivers are
predefined according to the required drivability, while transistor
W/L in the other logic gates used fixed size (to be corrected later
with validation). The capacitances at the logic gate level are also
fixed with their transistors’ sizing known, τ � RC and CVDD

2 are
calculated to estimate the module delay and dynamic energy
consumption. Leakage power is also considered for sub-circuit
modules and SRAM cells.

CIM Macro Configurations
In this particular design (Li et al., 2021) with TSMC 40-nm
RRAM, the CIMmacro could support MAC operation with zero-
skip and reconfigurable precision for DNN inference. The input
sparsity-aware controller counts the number of 1’s in the input
vector, and the scanned rows are asserted in parallel once the
counter reaches the threshold (7 in this design, considering the
ADC sensing range and the practical RRAM on/off ratio). By
skipping the 0’s in the input, only meaningful ADC conversions
take place to improve throughput and energy efficiency. Flexible
weight precision (1/2/4/8 bits) is supported to suit the optimized
quantization levels for a variety of DNN models. On-chip shift-
add and accumulator adaptively justify the different significances
of weight bits and accumulate the partials sums in the digital
domain. Each 3-bit ADC consists of seven voltage-mode sense
amplifiers (VSAs) and is shared among eight columns as the
RRAM cell pitch is much smaller than the size of the ADC. One
reference voltage (Vref) is required for each VSA. For the ease of
routing, the data column and the reference column are
interleaved in a 256 × 256 physical array, but the actual
computation array size is 128 × 128. Overall, the simulator
settings are kept consistent with the actual macro and are
summarized in Table 2. Figures 6, 7 separately show the
macro organization and physical layout.

NEUROSIM VALIDATION

AnalogModules: RRAMArray, Level Shifter,
Mux, and ADC
In the validation of analog sub-circuits, we mainly care about the
RRAM array, level shifter, mux, and ADC. We will compare the
area, latency, and energy consumption between NeuroSim
simulation and the actual macro, as shown in Table 3.

TABLE 2 | Table of simulator settings.

Technology TSMC 40 nm w/RRAM

Array size 256 × 256 (only 128 × 128 in computation)
ADC precision 3-bit
Weight precision 1/2/4/8 bit
Operating voltage 0.9 V
Rows turned on simultaneously 7

FIGURE 6 | RRAM CIM macro organization that supports input zero-
skip and reconfigurable weight precision. ©2021 IEEE. Reprinted, with
permission, from Li et al., 2021.

FIGURE 7 | CIM macro layout implemented with TSMC 40 nm RRAM
process.

Frontiers in Artificial Intelligence | www.frontiersin.org June 2021 | Volume 4 | Article 6590605

Lu et al. NeuroSim Simulator Validation and Benchmark

38

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Area: First, the RRAM cell size is a user-defined parameter in
terms of F2 (75 F2 in this design) to estimate the array area
according to the array size. In the simulator, the gate area is
estimated according to transistor W/L and pitch requirements in
the layout rules. In general, logic transistors with minimal length
are utilized to constitute the sub-circuit modules. To simulate the
I/O transistors in the level shifter, the gate layout width is
multiplied by 2.5 times considering the poly width and the
gap between gate polys in the PDK; the gate layout height is
also multiplied 2.5 times to simulate the practical gate area
measured in the macro design. After these corrections, the
simulator shows 2.8 um × 10 um per level shifter unit, which
is quite close to the measurement on the actual layout (Figure 8).
There are totally 256 × 3 level shifters for WL, BL, and SL for the
entire array size of 256 × 256. By comparison with the actual area
measured in the layout, a wiring area factor α � 1.44 will be
imposed on the level shifter for calibration. ADCs and their mux
are located together on the layout occupying about 5,400 um2 (the
ADC block labeled in Figure 7), and the simulator estimates a
result of 4,730 um2 with acceptable error by its default settings.
The other visible mux block labeled in Figure 7 is for selecting the
signal to BL and SL for programming the memory cells.

Latency: The chip could operate around 200 MHz with the
digital blocks only, but the clock frequency drops to 100 MHz
(post–layout simulation, 110 MHz for pre-layout) when the
analog modules are included. It means the critical path is
within the analog modules and it is the sensing delay from
activating the level shifters to the currents summing along the
columns till the ADCs converting the digital outputs. The sensing
delay in the actual macro is ∼10 ns. The latency of each module
estimated by NeuroSim is listed in Table 3. A latency factor β �
1.4 will be utilized in the simulator based on the comparison.

Energy: The energy consumption of analog modules is
measured by SPICE simulation. In NeuroSim, the energy

estimation of ADCs is also based on a lookup table–like fitting
function with various weight patterns and Vref swept that are
predefined by SPICE simulations. Other digital-like modules
utilize CV2 as the dynamic energy estimation. Leakage power
is also considered in NeuroSim, but the values are typically small.
With precise settings demonstrated in NeuroSim Settings section,
the estimation of NeuroSim is sufficiently accurate, as shown in
Table 3.

Digital Modules: Shift-Add, Accumulator,
and Controller
The breakdown performance of digital sub-circuits in the macro
design is not easy to extract because they are together
automatically synthesized through register transfer-level (RTL)
codes. For simplicity, we consider digital modules as only three
classes to be validated: shift-add, accumulator, and control
circuits. The sparsity-aware controller, encoder, and decoders
are all categorized as control circuits. It is noted that although
zero-skipped input is supported in this macro to improve
throughput and energy efficiency, our pre-layout SPICE
simulation and NeuroSim estimation are both based on 0%
input sparsity (no zero-skip).

Area: From the actual macro’s digital design, the number
of different types of gates and their corresponding areas can
be extracted to validate the prediction. In order to support
reconfigurable weight precision, the D-type flip-flops (DFFs)
in the shift-add and accumulator are required to
accommodate the largest precision (8-bit), and the adders
have to be prepared for each precision (1/2/4/8-bit). We
confirmed that the settings in NeuroSim could support the
function and are similar as those in the actual chip, as shown
in Table 4. In NeuroSim, the DFF contains four transmission
gates, four inverters, and another four inverters for clock; the
adder consists of nine NAND gates per bit. Although the
exact number and types of gates cannot be guaranteed to be
the same as the actual chip, the area comparison shown in
Table 5 is already close to the default models in NeuroSim.
Unlike shift-add and accumulator, control circuits might
consist of all types of gates and the composition can be
quite diverse in different designs. Therefore, all the gates
in the controller are normalized to the inverter gate count
according to their area for simulation simplicity. The inverter
layout height in NeuroSim is multiplied by 1.84 to mimic the

TABLE 3 | Analog module validation.

Module Area (um2) Latency (ns) Energy (pJ)

NeuroSim Real chip NeuroSim Real chip NeuroSim Real chip

Level shifter 256 × 28xαx3 � 30,966 12,084 (WL)+19,505 (BL+SL) � 31,589 1.12 1.02 0.99
Mux 459 5,400 0.06 0.07
ADC 4,271 5 74.50
Array 256 × 256 × 0.12 � 7,864 7,864 0.19 4.99
(Mux decoder) Counted in control part of digital modules 0.37 Counted in control part of

digital modules(ADC encoder) 0.02
Total 43,560 44,853 6.76xβ ∼10 80.58 86.79

FIGURE 8 | Layout of level shifter.

Frontiers in Artificial Intelligence | www.frontiersin.org June 2021 | Volume 4 | Article 6590606

Lu et al. NeuroSim Simulator Validation and Benchmark

39

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

actual inverter area on this PDK. After the calibration,
Table 5 shows that the overall area estimation of digital
modules is quite accurate.

Latency: As we pointed out earlier, the sensing cycle of the
RRAM array is typically the critical path of the entire chip as the
digital blocks can always be partitioned into multiple stages to be
hidden within this analog critical path delay. Therefore, we
propose counting the number of operations for digital
modules. Each operation of shift-add or accumulator is one
cycle according to the timing. For the entire DNN processing,
we estimated the chip-level latency as the total number of clock
cycles to complete the computation in a layer-by-layer manner.

Energy: Table 5 shows the comparison of dynamic energy
consumption of digital modules. The energy of actual chip is
extracted from SPICE simulations. As most gates actually do not
switch during run-time, switching activity factors should be
considered in real workloads. As the DFFs are able to
accommodate the largest precision, most DFFs are on
operation when the real chip is tested under 8 bits. While the
adders are prepared for each precision, most of gates are inactive
in practice. Therefore, we set activity factors γ � 50% and δ � 15%
separately for DFF and adder of shift-add and accumulator. The

normalized inverters and DFFs to simulate the control circuits are
employed with factor ϵ � 5% and ζ � 11%.

Post-Layout Calibration
The above performance comparison (except sensing delay) is
based on pre-layout SPICE simulation. For chip-level energy
efficiency, the actual macro could run at 10 TOPS/W with 0%
input and 50% weight sparsity, where we can derive that it costs
3,151 pJ to compute the entire array (128 × 128 × 2 operations).
As a comparison, NeuroSim predicts 3,178 pJ after the
calibration. In order to reflect the silicon data, the post-layout
performance drop is also considered in our validation, as shown
in Table 6. In post-layout SPICE simulation, the macro has an
energy efficiency of 8.48 TOPS/Wwith the same input and weight
patterns, which derives that 3,864 pJ is required to compute the
entire array. Therefore, a factor η � 1.22 is imposed to estimate
the chip-level post-layout dynamic energy consumption.

BENCHMARK

In this section, we evaluate the impact of the aforementioned
calibration factors on the DNN+NeuroSim framework by
implementing the VGG-8 model on CIFAR-10 dataset, testing
on various technologies and memory devices with a general
architecture and operation mode, following the methodologies
reported in Ref. Peng et al. (2019). The simulation is set up across
versatile device technologies (HfOx RRAM (He et al., 2020),
TaOx/HfOx RRAM (Wu et al., 2018), PCM (Kim et al., 2019),
and FeFET (Ni et al., 2018), as shown in Table 7. SRAM-based

TABLE 4 | Shift-add and accumulator settings for reconfigurable precision.

Module 1-bit weight 2-bit weight 4-bit weight 8-bit weight NeuroSim Real chip

Shift-
add

#DFF 64 registers × 5 bit/
register

32 registers × 7 bit/
register

16 registers × 11
bit/register

16 registers × 11 bit/register
� 176

176 DFFs

#Adder
bit

16 adders × 3 bit/
adder

16 adders × 3 bit/
adder

16 adders × 3 bit/
adder

16 adders × 3 bit/adder × 3
� 144

144 full adders +16
half adders

Accum #DFF 128 registers × 8
bit/register

64 registers × 10
bit/register

32 registers × 12
bit/register

16 registers × 16
bit/register

128 registers × 8 bit/register �
1,024

1,216 DFFs

#Adder
bit

16 adders × 7 bit/
adder

16 adders × 9 bit/
adder

16 adders × 11 bit/
adder

16 adders × 15 bit/
adder

16 adders × (7 + 9+11 + 15)
bit/adder � 672

704 full adders +112
half adders

TABLE 5 | Digital modules validation.

Module Area (um2) Latency Energy (pJ)

NeuroSim Real chip NeuroSim Real chip

Shift-add DFF 719 681 1 cycle � 10 ns 2.504 x γ � 1.25 1.25
Adder 662 663 0.81 x δ � 0.12 0.15
Inverter 2,133 INV � 1,336 1,334 3.31 x ϵ � 0.17 0.33

Accumulator DFF 4,968 4,706 1 cycle � 10 ns 17.3 x γ � 8.65 8.37
Adder 3,089 3,291 3.99 x δ � 0.60 0.60
Inverter 10,869 INV � 6,808 6,797 16.88 x ϵ � 0.84 0.80

Control DFF 7,334 26.96 x ζ � 2.97 3.01
Inverter 10,485 INV � 6,569 6,558 16.28 x ϵ � 0.81 0.75

Total 31,893 31,386 15.41 15.26

TABLE 6 | Chip-level pre- and post-layout energy comparison.

Energy
for whole array

NeuroSim Real chip

Pre-layout 3,177.75 pJ 10.4TOPS/W → 3,150.8 pJ
Post-layout 3,177.75 pJ×η 8.48TOPS/W → 3,864.2 pJ

Frontiers in Artificial Intelligence | www.frontiersin.org June 2021 | Volume 4 | Article 6590607

Lu et al. NeuroSim Simulator Validation and Benchmark

40

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

CIM accelerators are evaluated at both 22 and 7 nm, and eNVM-
based ones are evaluated at 22 nm as 22 nm is the state-of-the-art
node where the eNVMs are integrated. Considering the read-

noise and on/off ratio, the 4-bit/cell is assumed for eNVMs,
except the 2-bit RRAM from Winbond (He et al., 2020). The
subarray size is 128 × 128. A 4-bit precision ADC is utilized for 1-
bit SRAM cells, with an inference accuracy of 92%; while a 5-bit
precision ADC is utilized for multi-bit eNVMs to maintain an
inference accuracy of 91% (Peng et al., 2019). Relatively high
precision with 8-bit weight and 8- bit activation is also used to
ensure no accuracy loss. A full 128-row parallel operation is
assumed for the most efficient calculation. The number of
operations is normalized to 8-bit, regardless of the memory
cell precision.

The general conclusions stay the same as Ref. Peng et al.
(2019). First, at the same technology node, eNVM-based designs
outperformed the SRAM-based designs in both energy efficiency
(in the unit of TOPS/W) and compute efficiency (in the unit of
TOPS/mm2). Second, devices with higher on-state resistance
(Ron) such as FeFET show substantial improvements in
energy efficiency. Third, SRAM at the leading-edge node (e.g.,
7 nm or beyond) still show competitive energy efficiency and
outstanding compute efficiency. Compared to the previous results
before the validation, the new benchmark results show that the
areas of eNVM-based designs are increased substantially owing to
the calibration for the level-shifter area. The compute efficiency in
all the design significantly decreases mainly because of the
adopted clock cycle–based method to measure the latency. The

TABLE 7 | Benchmark results of CIM accelerators on VGG-8 for CIFAR-10 and ResNet-18 for ImageNet, based on SRAM (at 7 and 22 nm), and reported eNVM devices
(assumed at 22 nm).

Technology node
(LP)

7 nm 22 nm

Device 8T-SRAM 8T-SRAM RRAM [12] RRAM [13] PCM [14] FeFET [15]

MLSA-ADC precision 4-bit 4-bit 5-bit 5-bit 5-bit 5-bit
Memory cell precision 1-bit 1-bit 2-bit 4-bit 4-bit 4-bit
Ron (Ω) / 6 k 100 k 40 k 240 k
On/off ratio / 150 10 12.5 100
VGG-8 (8-bit activation; 8-bit weight) on CIFAR10, with novel weight mapping and dataflow
Area (mm2) 13.34 61.92 45.55 25.57 25.57 25.52
Memory utilization (%) 98.73% 98.73% 96.86% 93.47% 93.47% 93.47%
Clock period (ns) 2.98 4.87 2.05 2.02 2.22 2.30
L-by-L latency (ms) 2.09 3.60 1.46 1.30 1.43 1.48
L-by-L dynamic energy (uJ) 31.27 58.69 37.75 16.73 17.32 16.07
L-by-L leakage power (mW) 2.71 1.73 0.63 0.33 0.33 0.33
Compute efficiency (TOPS/mm2) 0.044 0.006 0.019 0.037 0.034 0.033
Pre-layout energy efficiency (TOPS/W) 31.87 18.48 31.63 71.25 68.69 73.72
Post-layout energy efficiency (TOPS/W) 26.12 15.14 25.93 58.40 56.11 60.43

Before calibration
Area (mm2) 13.34 60.25 31.18 17.88 17.88 17.64
Compute efficiency (TOPS/mm2) 0.147 0.027 0.057 0.118 0.118 0.120
Energy efficiency (TOPS/W) 47.66 21.78 40.89 85.44 82.12 89.14

ResNet-18 (8-bit activation; 8-bit weight) on ImageNet, with novel weight mapping and dataflow
Area (mm2) 16.77 80.37 62.04 39.68 39.68 39.61
Memory utilization (%) 94.59% 94.59% 91.42% 86.64% 86.64% 86.64%
Clock period (ns) 2.98 4.87 2.05 2.02 2.22 2.30
L-by-L latency (ms) 22.75 39.14 13.39 11.53 12.67 13.12
L-by-L dynamic energy (uJ) 148.50 275.81 197.03 92.62 96.00 89.18
L-by-L leakage power (mW) 3.29 2.11 0.80 0.50 0.50 0.50
Compute efficiency (TOPS/mm2) 0.014 0.002 0.007 0.012 0.011 0.011
Pre-layout energy efficiency (TOPS/W) 25.87 15.93 26.68 56.41 54.27 58.07
Post-layout energy efficiency (TOPS/W) 21.20 13.06 21.87 46.24 44.48 47.60

FIGURE 9 | Energy breakdown of CIM accelerators on VGG-8 for
CIFAR-10, based on SRAM (at 7 and 22 nm), and reported eNVM devices
(assumed at 22 nm).

Frontiers in Artificial Intelligence | www.frontiersin.org June 2021 | Volume 4 | Article 6590608

Lu et al. NeuroSim Simulator Validation and Benchmark

41

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

pre-layout energy efficiency is reduced mainly as a result of larger
transistor size utilized after update, while the calibration on
energy consumption of DFFs and adders somehow offset the
more leakage caused by longer latency and the longer
interconnect distance caused by the larger area. The post-
layout energy efficiency is further dropped as a direct result of
the calibration. The energy breakdown of simulated accelerators
on VGG-8 for CIFAR-10 is shown in Figure 9. The devices with
high Ron cost much less energy on the memory array charging
and ADCs; devices with high cell precision could effectively
reduce the operation of bit shift-and-add, thus reducing the
energy consumption on accumulation; a smaller chip area
contributes to less interconnection energy.

In this work, we also explore the scalability of the framework
toward larger networks for more complex problem. The
benchmark results of the ResNet-18 model on ImageNet
dataset are also shown in Table 7, where the trend is similar
as VGG-8 on CIFAR-10. The inference under 8-bit weight and 8-
bit activation could reach 69% top-1 accuracy of ImageNet. The
overall chip area increases by 25–50%, compute efficiency
decreases by ∼70%, and energy efficiency decreases by ∼20%
for ImageNet compared to CIFAR-10 workloads. In this version
of the released framework, we assume a custom chip design for
specific DNNmodels where all the weights are stored on chip. For
the designs with chip area constraints where the weight reloading
from off-chip DRAM is unavoidable, the readers could refer to
the relevant discussions in Lu et al. (2020). For the reconfigurable
chip design where one chip instance is able to support various
DNN models, the readers could refer to the relevant discussions
in Lu et al. (2021).

DISCUSSION

The related works in this field include the following reported
simulators. NVSim (Dong et al., 2012) is a memory-oriented
simulator, and its peripheral circuit modules do not support CIM
functions. Other reported CIM-oriented simulator platforms such as
MNSIM (Xia et al., 2018) and TxSim (Roy et al., 2021) have
demonstrated powerfulness in the design space exploration or the
device nonideality analysis, but theymay have limited considerations
either on the algorithm accuracy or on the hardware performance
metrics. RxNN (Jain et al., 2020) is capable of various device and
circuit nonideality analyses and rough energy estimation. Compared
with RxNN, our work makes more comprehensive considerations
on the hardware performance estimation. An IBM Analog AI HW
Kit (IBM, in press) and CrossSim (CrossSim, 2018) only focus on the
neural network accuracy estimation without the hardware
performance estimation. PIMSim (Xu et al., 2018) is an
architectural simulator for process in memory (most for near
DRAM processing) with compatibility for traditional computer
architecture simulator GEM5.

The prediction of NeuroSim is validated against the post-
layout simulation of an actual 40 nm RRAM-based CIM macro
design. Some adjustment factors are introduced: α � 1.44 for the
wire areas in the level shifter; β � 1.4 for the sensing cycle as the
critical path; γ � 50% and δ � 15% separately for dynamic energy

of DFFs and adders in shift-add or accumulators; ϵ � 5% and ζ �
11% for dynamic energy of inverters and DFFs in control circuits;
and η � 1.22 for a post-layout energy increase. After these
calibrations, the chip-level simulation from NeuroSim is quite
accurate with error under 1%.

However, we admit some inevitable limitations of this
validation. First, the factors might be overfitted for this
specific design. Limited by the available resources, it is
unrealistic for us to have more chips fabricated with different
technologies or design options. Although there are some other
reported CIM macros developed by other groups, the lack of
detailed design information and performance breakdown prevent
using them for such validation. Second, even with our own CIM
macro, the performance breakdown is not precise enough. For
example, in NeuroSim, the latency is considered as the
accumulation of the critical path delay of each module, while
for the real chip, we could only get an overall estimation
according to the clock cycle. Third, the calibration mainly
focuses on the sub-array level as there is no large-scale multi-
macro system with eNVM-based CIM accelerators as of today.
Some additional factors may be required to capture the system-
level activity rate of accumulators and buffer access frequency.
Nevertheless, we believe this calibration with actual silicon
implementation could offer an important reference and make
the estimation of NeuroSim more convincing and reliable for the
growing community of this simulator.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
neurosim. Open-source code availability: NeuroSim source code
used in this work is publicly available at https://github.com/
neurosim/DNN_NeuroSim_V1.3.

AUTHOR CONTRIBUTIONS

AL performed the validation, XP developed the simulation
framework, WL and HJ designed the prototype chip, SY
supervised the project, and AL and SY wrote the manuscript.
All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

This work is supported by NSF-CCF-1903951 and ASCENT, one
of the SRC/DARPA JUMP centers.

ACKNOWLEDGMENTS

The authors thank TSMC for providing the 40-nm RRAM
tape-out shuttle.

Frontiers in Artificial Intelligence | www.frontiersin.org June 2021 | Volume 4 | Article 6590609

Lu et al. NeuroSim Simulator Validation and Benchmark

42

https://github.com/neurosim
https://github.com/neurosim
https://github.com/neurosim/DNN_NeuroSim_V1.3
https://github.com/neurosim/DNN_NeuroSim_V1.3
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

REFERENCES

Burr, G. W., Shelby, R. M., Sidler, S., di Nolfo, C., Jang, J., Boybat, I., et al. (2015).
Experimental Demonstration and Tolerancing of a Large-Scale Neural Network
(165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight
Element. IEEE Trans. Electron. Devices 62 (11), 3498–3507. doi:10.1109/ted.
2015.2439635

Chen, P.-Y., Peng, X., and Yu, S. (2018). NeuroSim: A Circuit-Level Macro Model
for Benchmarking Neuro-Inspired Architectures in Online Learning. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 37 (12), 3067–3080. doi:10.
1109/tcad.2018.2789723

Chou, C.-C., Lin, Z.-J., Tseng, P.-L., Li, C.-F., Chang, C.-Y., Chen, W.-C., et al.
(2018). “An N40 256K×44 Embedded RRAMMacro with SL-Precharge SA and
Low-Voltage Current Limiter to Improve Read and Write Performance,” in
IEEE International Solid-State Circuits Conference (ISSCC). doi:10.1109/isscc.
2018.8310392

CrossSim (2018). CrossSim. Available at https://cross-sim.sandia.gov/.
Deng, B. L., Li, G., Han, S., Shi, L., and Xie, Y. (2020). Model Compression and

Hardware Acceleration for Neural Networks: A Comprehensive Survey. Proc.
IEEE 108 (4), 485–532. doi:10.1109/jproc.2020.2976475

Dong, Q., Sinangil, M. E., Erbagci, B., Sun, D., Khwa,W.-S., Liao, H.-J., et al. (2020).
“A 351TOPS/W and 372.4 GOPS Compute-In-Memory SRAM Macro in 7nm
FinFET CMOS for Machine-Learning Applications,” in IEEE International
Solid-State Circuits Conference (ISSCC). doi:10.1109/isscc19947.2020.9062985

Dong, X., Xu, C., Xie, Y., and Jouppi, N. P. (2012). NVSim: A Circuit-Level
Performance, Energy, and Area Model for Emerging Nonvolatile Memory.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31 (7), 994–1007. doi:10.
1109/TCAD.2012.2185930

Dutta, S., Ye, H., Chakraborty, W., Luo, Y.-C., San Jose, M., Grisafe, B., et al. (2020).
“Monolithic 3D Integration of High Endurance Multi-Bit Ferroelectric FET for
Accelerating Compute-In-Memory,” in IEEE International Electron Devices
Meeting (IEDM). doi:10.1109/iedm13553.2020.9371974

FreePDK (2014). FreePDK. Available at https://www.eda.ncsu.edu/wiki/FreePDK.
He, W., Yin, S., Kim, Y., Sun, X., Kim, J. J., Yu, S., et al. (2020). 2-Bit-per-Cell RRAM

Based In-Memory Computing for Area-/Energy-Efficient Deep Learning. IEEE
Solid-State Circuits Lett. 3, 194–197. doi:10.1109/LSSC.2020.3010795

IBM (in press). IBM Analog Hardware Acceleration Kit. Available at https://
github.com/IBM/aihwkit.

Jain, S., Sengupta, A., Roy, K., and Raghunathan, A. (2020). RxNN: A Framework
for Evaluating Deep Neural Networks on Resistive Crossbars. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 40 (2), 326–338. doi:10.1109/TCAD.
2020.3000185

Kim, W., Bruce, R. L., Masuda, T., Fraczak, G. W., Gong, N., Adusumilli, P., et al.
(2019). Confined PCM-Based Analog Synaptic Devices Offering Low Resistance-
Drift and 1000 Programmable States for Deep Learning. IEEE Symposium on
VLSI Technology. doi:10.23919/vlsit.2019.8776551

Li, W., Huang, S., Sun, X., Jiang, H., and Yu, S. (2021). “Secure-RRAM: A 40nm
16kb Compute-In-Memory Macro with Reconfigurability, Sparsity Control,

and Embedded Security,” in IEEE Custom Integrated Circuits Conference
(CICC).

Lu, A., Peng, X., Luo, Y., Huang, S., and Yu, S. (2021). A Runtime Reconfigurable
Design of Comput-In-Memory Based Hardware Accelerator. IEEE/ACMDesign,
Automation & Test in Europe (DATE).

Lu, A., Peng, X., Luo, Y., and Yu, S. (2020). Benchmark of the Compute-In-
Memory-Based DNN Accelerator with Area Constraint. IEEE Trans. VLSI Syst.
28 (9), 1945–1952. doi:10.1109/tvlsi.2020.3001526

Ni, K., Grisafe, B., Chakraborty, W., Saha, A. K., Dutta, S., Jerry, M., et al. (2018).
“In-memory Computing Primitive for Sensor Data Fusion in 28 Nm HKMG
FeFET Technology,” in IEEE International Electron Devices Meeting (IEDM).
doi:10.1109/iedm.2018.8614527

Peng, X., Huang, S., Luo, Y., Sun, X., and Yu, S. (2019). “DNN+NeuroSim: An End-
To-End Benchmarking Framework for Compute-In-Memory Accelerators with
Versatile Device Technologies,” in IEEE International Electron Devices
Meeting (IEDM). Open-source code. doi:10.1109/iedm19573.2019.
8993491Available at https://github.com/neurosim.

PTM (2011). Predictive TechnologyModel (PTM). Available at http://ptm.asu.edu.
Roy, S., Sridharan, S., Jain, S., and Raghunathan, A. (2021). TxSim: Modeling

Training of Deep Neural Networks on Resistive Crossbar Systems. IEEE Trans.
VLSI Syst. 29, 730–738. doi:10.1109/tvlsi.2021.3063543

Wu, W., Wu, H., Gao, B., Yao, P., Zhang, X., Peng, X., et al. (2018). A
Methodology to Improve Linearity of Analog RRAM for Neuromorphic
Computing. IEEE Symposium on VLSI Technology (VLSI). doi:10.1109/
vlsit.2018.8510690

Xia, L., Li, B., Tang, T., Gu, P., Chen, P.-Y., Yu, S., et al. (2018). MNSIM: Simulation
Platform for Memristor-Based Neuromorphic Computing System. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 37 (5), 1009–1022. doi:10.1109/
TCAD.2017.2729466

Xu, S., Chen, X., Wang, Y., Han, Y., Qian, X., and Li, X. (2018). PIMSim: a Flexible
and Detailed Processing-In-Memory Simulator. IEEE Comp. Architecture Lett.
18 (1), 6–9. doi:10.1109/LCA.2018.2885752

Xue, C.-X., Huang, T.-Y., Liu, J.-S., Chang, T.-W., Kao, H.-Y., Wang, J.-H., et al.
(2020). “A 22nm 2Mb ReRAM Compute-In-Memory Macro with 121-
28TOPS/W for Multibit MAC Computing for Tiny AI Edge Devices,” in
IEEE International Solid-State Circuits Conference (ISSCC). doi:10.1109/
isscc19947.2020.9063078

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Lu, Peng, Li, Jiang and Yu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org June 2021 | Volume 4 | Article 65906010

Lu et al. NeuroSim Simulator Validation and Benchmark

43

https://doi.org/10.1109/ted.2015.2439635
https://doi.org/10.1109/ted.2015.2439635
https://doi.org/10.1109/tcad.2018.2789723
https://doi.org/10.1109/tcad.2018.2789723
https://doi.org/10.1109/isscc.2018.8310392
https://doi.org/10.1109/isscc.2018.8310392
https://cross-sim.sandia.gov/
https://doi.org/10.1109/jproc.2020.2976475
https://doi.org/10.1109/isscc19947.2020.9062985
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1109/iedm13553.2020.9371974
https://www.eda.ncsu.edu/wiki/FreePDK
https://doi.org/10.1109/LSSC.2020.3010795
https://github.com/IBM/aihwkit
https://github.com/IBM/aihwkit
https://doi.org/10.1109/TCAD.2020.3000185
https://doi.org/10.1109/TCAD.2020.3000185
https://doi.org/10.23919/vlsit.2019.8776551
https://doi.org/10.1109/tvlsi.2020.3001526
https://doi.org/10.1109/iedm.2018.8614527
https://doi.org/10.1109/iedm19573.2019.8993491
https://doi.org/10.1109/iedm19573.2019.8993491
https://github.com/neurosim
http://ptm.asu.edu
https://doi.org/10.1109/tvlsi.2021.3063543
https://doi.org/10.1109/vlsit.2018.8510690
https://doi.org/10.1109/vlsit.2018.8510690
https://doi.org/10.1109/TCAD.2017.2729466
https://doi.org/10.1109/TCAD.2017.2729466
https://doi.org/10.1109/LCA.2018.2885752
https://doi.org/10.1109/isscc19947.2020.9063078
https://doi.org/10.1109/isscc19947.2020.9063078
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

ORIGINAL RESEARCH
published: 29 June 2021

doi: 10.3389/fnins.2021.667011

Frontiers in Neuroscience | www.frontiersin.org 1 June 2021 | Volume 15 | Article 667011

Edited by:

Alexantrou Serb,

University of Southampton,

United Kingdom

Reviewed by:

Shuangming Yang,

Tianjin University, China

Chenchen Liu,

University of Maryland, Baltimore

County, United States

*Correspondence:

Lea Steffen

steffen@fzi.de

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 11 February 2021

Accepted: 04 June 2021

Published: 29 June 2021

Citation:

Steffen L, Koch R, Ulbrich S,

Nitzsche S, Roennau A and

Dillmann R (2021) Benchmarking

Highly Parallel Hardware for Spiking

Neural Networks in Robotics.

Front. Neurosci. 15:667011.

doi: 10.3389/fnins.2021.667011

Benchmarking Highly Parallel
Hardware for Spiking Neural
Networks in Robotics
Lea Steffen*, Robin Koch, Stefan Ulbrich, Sven Nitzsche, Arne Roennau and

Rüdiger Dillmann

Interactive Diagnosis and Service Systems (IDS), Intelligent Systems and Production Engineering (ISPE), FZI Research Center

for Information Technology, Karlsruhe, Germany

Animal brains still outperform even the most performant machines with significantly

lower speed. Nonetheless, impressive progress has been made in robotics in the

areas of vision, motion- and path planning in the last decades. Brain-inspired Spiking

Neural Networks (SNN) and the parallel hardware necessary to exploit their full potential

have promising features for robotic application. Besides the most obvious platform

for deploying SNN, brain-inspired neuromorphic hardware, Graphical Processing

Units (GPU) are well capable of parallel computing as well. Libraries for generating

CUDA-optimized code, like GeNN and affordable embedded systems make them an

attractive alternative due to their low price and availability. While a few performance tests

exist, there has been a lack of benchmarks targeting robotic applications. We compare

the performance of a neural Wavefront algorithm as a representative of use cases in

robotics on different hardware suitable for running SNN simulations. The SNN used for

this benchmark is modeled in the simulator-independent declarative language PyNN,

which allows using the same model for different simulator backends. Our emphasis is

the comparison between Nest, running on serial CPU, SpiNNaker, as a representative

of neuromorphic hardware, and an implementation in GeNN. Beyond that, we also

investigate the differences of GeNN deployed to different hardware. A comparison

between the different simulators and hardware is performedwith regard to total simulation

time, average energy consumption per run, and the length of the resulting path. We

hope that the insights gained about performance details of parallel hardware solutions

contribute to developing more efficient SNN implementations for robotics.

Keywords: spiking neural networks, parallel hardware architectures, benchmark, robotic motion control,

neurorobotic

1. INTRODUCTION

Although impressive progress has been made in robotics, in the areas of perception and motor
control, animal brains with significantly less performant components still outperform even the
most sophisticated machines. While brain inspired research with Spiking Neural Networks (SNNs)
and neuromorphic sensors shows great potential, their slow execution on common simulation
frameworks running on serial CPUs prevent their broad application in robotic areas as vision,
motion-, and path planning up to date.

44

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.667011
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.667011&domain=pdf&date_stamp=2021-06-29
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:steffen@fzi.de
https://doi.org/10.3389/fnins.2021.667011
https://www.frontiersin.org/articles/10.3389/fnins.2021.667011/full

Steffen et al. Benchmarking Parallel Hardware in Robotics

As performing the updates for every neuron in parallel
significantly reduces simulation time, hardware enabling massive
parallelism enables the full exploitation of SNNs’ capabilities. In
order to allow researchers and developers to make a good choice
regarding the software and hardware solutions when working
with spiking neurons, comprehensive benchmarks are required.

Inspired by the nervous system, highly parallel platforms
have been developed targeting low-power, large-scale SNN
simulations in real time. The basis for biomimetic or
neuromorphic hardware is the observation that the operation
principles of information processing in nature differ greatly
from artificial methods. In most cases, artificial methods are
significantly less effective than their biological counterpart,
for which reason scientists for instance, started to investigate
retinal computation (Mead, 1990), inspired by processing in
the brain. Well known representatives of this technology are
IBMs TrueNorth chip (Merolla et al., 2014), Intel’s Loihi (Davies
et al., 2018), the SpiNNaker system of the University of
Manchester (Furber et al., 2014), and BrainScaleS developed in
Heidelberg (Friedmann et al., 2016).

TrueNorth is a digital neuromorphic chip that supports
the simulation of up to 1 million neurons and 256 million
synapses per chip. While the chip has a high density of neurons
and synapses, one is limited to use the LIF neuron model
and the synapses are static (Merolla et al., 2014). Loihi chips
consist of 128 neuromorphic cores capable of simulating up
to 1,024 LIF neurons each. The Loihi chip is fully digital and
supports dynamic synapses (Davies et al., 2018). SpiNNaker is
a fully digital neuromorphic system developed for large-scale
simulations of SNNs. As it is composed of general-purpose
ARM microprocessors, neuron and synapse models can be
specified and adapted by software, making it very flexible (Furber
et al., 2014). In Mayr et al. (2019), the second generation
SpiNNaker-2, featuring 10 Million instead of 1 Million cores,
is introduced. BrainScaleS, which is derived from the single-
chip implementation Spikey (Schemmel et al., 2006), is a
neuromorphic mixed-signal chip. In contrast to many others,
BrainScaleS and its successor, BrainScaleS 2 are analog (Müller
et al., 2020a,b).

Besides these popular candidates of non-von Neumann
computing a multiplicity of neuromorphic hardware has been
developed in the last decade. In Yan et al. (2021), a differentiation
in 3 classes is made; (1) systems with static synapses like
TrueNorth, NeuroGrid, Braindrop, HiAER-IFAT, DYNAPs,
Tianjic, NeuroSoC, and DeepSouth, (2) systems supporting a
configurable plasticity like ROLLS, ODIN, and TITAN and
lastly, (3) systems supporting a programmable plasticity like
both BrainScaleS, both SpiNNaker and Loihi. Another digital
representative is focused on memory centric computing is
Neurocube (Kim et al., 2016). However, since the development
is progressing rapidly, a comprehensive list is difficult and
quickly outdated. Comparatively new developments are the
large-scale neuromorphic architectures CerebelluMorphic (Yang
et al., 2021b) and BiCoSS (Yang et al., 2021a). CerebelluMorphic
is a cerebellum-inspired neuromorphic architecture. Since the
cerebellum is crucial for motor control, this technology is very
interesting for robotics.

Another type of hardware well-suited for parallel computing
is the Graphical Processing Unit (GPU), which was originally
developed for computer game graphics. The introduction of high
level programming languages such as CUDA orOpenCL, allowed
GPUs to be used for general purpose parallel programming. This
trend is supported by the development of accessible, inexpensive
embedded systems like Nvidia’s Jetson boards. Already in 2010
a parallel implementation of a SNN on NVidia CUDA showed
a significant speed up (Nowotny, 2010). This idea was further
investigated and in Yavuz et al. (2016) GPU enhanced neuronal
networks (GeNN) a tool for code generation for specifying
ANNs, especially focusing on SNNs, is introduced. It provides
a simple C++ API generating optimized C++ and CUDA code.
GeNN includes as well a C++ backend and CUDA backend and
additional pythonmodule (PyGeNN) to support TensorFlow and
PyNN. Further methods to execute ANNs on GPU are presented
in Minkovich et al. (2014) and Mutch (2010). As stated in
Vineyard et al. (2019), techniques for comparing neuromorphic
architectures and similar systems are vital, as many event-driven
methods may be well-suited for some, but inapplicable for others.

In Blundell et al. (2018), methods for code generation
in computational neuroscience are reviewed and respective
simulators, modeling languages, and frameworks are introduced
and assessed. The authors cover, amongst others, code
generations for a variety of hardware and software solutions
like the neural simulators Brian (Stimberg et al., 2020), NEST
(Gewaltig and Diesmann, 2007), NEURON (Carnevale and
Hines, 2006), and GENESIS (Bower et al., 1998) running on
serial CPU as well as techniques focusing on the execution
on NVIDIA GPUs as GeNN (Yavuz et al., 2016) and Myriad
(Rittner and Cleland, 2014). Furthermore, code generation for
the neuromorphic hardware SpiNNaker (Furber et al., 2014) and
the high-performance computing platform The Virtual Brain
(TVB-HPC) (Sanzleon et al., 2013) are included.

In 2018, two benchmarks focusing on a neuroscientific use
case, a cortical microcircuit model, have been presented. In van
Albada et al. (2018), the models are implemented in PyNN and
the performance of the SpiNNaker system running 6 SpiNN-
5 boards and NEST running on a HPC cluster is compared.
While the focus of the benchmark is on the accuracy of the
simulation results, the total simulation time and energy per
synaptic event are evaluated as well. Configurations of the HPC
tuned for low energy consumption and simulation speed perform
better than the SpiNNaker system. The simulations in both
NEST- and SpiNNaker implementations are similar with regard
to accuracy, hence showing the capabilities of the SpiNNaker
system to perform large scale simulations. In contrast to van
Albada et al. (2018), Knight and Nowotny (2018) uses C++
for simulating the cortical microcircuit model with GeNN on
different pieces of hardware and comparing the performance to
the SpiNNaker and NEST implementations. The authors state
that—at least for their use case—certain GPUs outperform HPC
systems as well as neuromorphic hardware regarding energy
consumption and speed. As the accuracy of the simulation in
GeNN is also comparable to the NEST implementation, GPUs
are shown to be suitable architectures for SNN simulations
that are able to compete with neuromorphic hardware. The

Frontiers in Neuroscience | www.frontiersin.org 2 June 2021 | Volume 15 | Article 66701145

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

authors also outline the possibility of using GPU-based SNN
controllers in robots. Benchmark scenarios more focused on
a task applicable outside of the neuroscientific community are
carried out inDiamond et al. (2016) andOstrau et al. (2020). Both
apply image classification and evaluate their models by using the
MNIST data set. The former is executed on the neuromorphic
systems Spikey and SpiNNaker, as well as GeNN. The latter uses
Cypress and therefore the PyNN interface for NEST, Spikey and
SpiNNaker and for GeNN and BrainScaleS the respective C++
interfaces are applied. In Diamond et al. (2016), the SNN used
for image detection is a model of the olfactory system described
in Schmuker and Schneider (2007).

As the work of Ostrau et al. (2020) shows some similarities
to our work, it is noteworthy that they pre-learn several
conventional ANNs which are transformed into SNNs. It is
shown that the SpiNNaker system can be efficient if it is used
to its full extend, whereas the GeNN implementations are most
suitable if one focuses primarily on short simulation times.

Very recently, a comparison between Loihi and a prototype
of SpiNNaker 2 has been done in Yan et al. (2021). Two kind of
benchmark tasks are used, keyword spotting and adaptive robotic
control to compare the hardware regarding power consumption
and computation time. The authors conclude that a general
statement is not possible as the energy efficiency is highly
influenced by the number of input dimensions. As SpiNNaker
2 handles high-dimensional vector-matrices better, it is faster
and more energy-efficient for keyword spotting. Loihi is superior
in regard to less complicated vector-matrix multiplication.
Furthermore, in DeWolf et al. (2020) a development workflow,
targeting neurorobotics applications, running on standard as
well as neuromorphic hardware, is presented. The authors
illustrate how Nengo helps users to develop robotic sensor and
actor applications, using two examples. The work creates a
basis for benchmarking neuromorphic architecture, specifically
Loihi, against standard hardware regarding robotic applications
implemented in Nengo.

Even though applying SNNs to robotic use cases is very
promising and despite the necessity of dedicated hardware for
fast and resource-friendly execution, the performance of parallel
hardware for SNNs has not been analyzed in the context of
robotics sufficiently. One particular area of robotics, path finding,
has not been investigated yet. In Davies (2019), an article
giving guidance for benchmarking neuromorphic hardware, the
temporal wavefront propagation was rated as an interesting
candidate by name, as it is seen as a viable contribution to the
greater field of neuromorphic benchmarks. While the authors of
Yan et al. (2021) include a robotics scenario, their benchmark is
limited to neuromorphic hardware. However, to develop efficient
robotics solutions with SNNs, it is crucial to know specification-
and performance-related details of all accessible systems to make
an informed decision regarding hardware. Hence, we focus on
an application-oriented robotic scenario. Using PyNN enables
us to include representatives of GPU-based and neuromorphic
computing as well as conventional simulators. Furthermore, this
performance comparison covers several different GPU-based
hardware realizations as the GeNN implementation is run on
three candidates of the Jetson series by Nvidia.

In this work, we carry out a benchmark of hardware well
suited for SNN simulation with an application-oriented test
scenario intended to be used in robotics.

2. METHODS

To correctly derive how the different systems perform in
comparison, it is crucial to run the experiments with a realistic
workload. As this work compares parallel benchmarks for robotic
applications, we chose the 3D neural path planning (Steffen et al.,
2020), described in section 2.1, as the test scenario. It was chosen
because path finding and motion control are corner stones for
robotics. Due to their strong synergies, hardware and software
in brain-inspired systems need to be considered together when
selecting suitable candidates for benchmarking. In section 2.2,
the decision-making process and its outcome are set out. As
the architecture of parallel hardware, especially neuromorphic,
is very different from the von Neumann architecture (VA),
traditional benchmarks are hardly transferable to event-driven
spiking use cases. Hence, meaningful metrics as introduced in
section 2.3 are necessary.

2.1. A Robotic Scenario—The Wavefront
Algorithm
A popular method for pathfinding is the so-called Wavefront
algorithm. It represents the environment as a matrix Map(i, j).
Each free cell has a value assigned to it which represents its
distance from the target cell and is also referred to as the weight.
Its value corresponds to the minimal value of its neighboring
cells +1. If a cell is occupied it is not assigned value. This can be
formalized by:

Map(i, j) =

{
min(neighborhood(i, j))+ 1 if empty

nothing if full
(1)

In order to find the shortest path the mobile agent then simply
follows the cells with the smallest weights until it reaches its target
(Nooraliei and Nooraliei, 2009; Pal et al., 2011).

In Steffen et al. (2020), the neural path planning algorithm
for robotic motion control is introduced. This implementation
is the test scenario of our benchmark. The method generates a
synaptic vector field (SVF), revealing a path, by propagating a
wavefront on a 3D environment. The environment is represented
as a cognitive map, a grid of excitatory place cells realized as
an SNN. The method, based on the 2D variation proposed in
Ponulak and Hopfield (2013), applies bio-inspired techniques
and is especially interesting for reactive flexible motion control
as needed for Human-robot interaction. The implementation of
Steffen et al. (2020) is carried out in NEST and tested on maps
with varying degrees of complexity. The NEST implementation
already allows fast simulation and query times but shows strong
weaknesses regarding the creation time. The purposeful use of
dedicated hardware, allowingmassive parallelism, shall overcome
these issues. A detailed visualization of the implemented
algorithm is given as a sequence diagram in Figure 1A. As
the evaluation in section 3 embodies a specific analysis of the

Frontiers in Neuroscience | www.frontiersin.org 3 June 2021 | Volume 15 | Article 66701146

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 1 | (A) Sequence diagram of the neural Wavefront algorithm for robot motion control, as presented in Steffen et al. (2020). (B) A vector field’s flow on a map

including three obstacles. The start neuron is marked in cyan and the target neuron in light green. (C) Impact of an up scaled map on the number of neurons and

synapses is shown. The x-axis represents the map size and the y-axis shows the number of neurons and synapses, respectively.

Frontiers in Neuroscience | www.frontiersin.org 4 June 2021 | Volume 15 | Article 66701147

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

algorithm’s sub-tasks, a brief explanation of the significant sub-
processes is provided.

2.1.1. A Cognitive Map
The neural environment representation is realized as an SNN
using place cells. The network’s topology corresponds to a
discretization of the environment. Each voxel is translated as a
place cell implemented as a single neuron. The network’s neurons
are connected via the Manhattan method, solely supporting
lateral connections. As we use bi-directional connections the
synapses are not symmetrical. The neurons representing free
and occupied space are identical. However, neurons embodying
free space are connected by excitatory synapses and neurons
embodying obstacles by inhibitory ones.

2.1.2. Synaptic Vector Field
The SVF is an interpretation of the synapses’ weights, of the
trained network. For learning spike-timing-dependent plasticity
(STDP), a biologically plausible learning rule updating the
weights depending on the precise pre-synaptic and post-synaptic
spike times (Gütig et al., 2003) is used. To generate a SVF
with neural waves, three steps are required. (1) Initialization,
the place cell representing the target position triggers the neural
wave. Applying an electrical current to the respective neuron,
increases its membrane potential. Thereby a spike is emitted,
exciting the neuron’s neighbors and so starting the wave of
activation which evolves through the neural grid. (2) Learning,
through the learning rule STDP the synaptic weights are altered
in the direction of the wave. (3) Interpretation, by retrieving the
synapses’ weights as vectors, a vector field is generated. This
vector field is used for visualization purposes and for finding a
path. In Figure 1B, a 3D visualization of the SVF is provided.
The Vector’s length and color provide information about the
strength of their weights. Shorter, darker vectors stand for weaker
synaptic weights and longer, brighter vectors, indicate strong
synaptic weights. For clarification, only 5% of the vectors are
visualized in Figure 1B and the length of all vectors has been
doubled to increase their visibility. However, this does not affect
their expressiveness as their relative length is still meaningful
with respect to their strength. It can be seen that the vectors are
pointing in the direction of the start.

2.1.3. Path Search
The synaptic weights, building up the vector field, are interpreted
as forces used to move the agent and thus generate a path. The
resulting path naturally leads away from obstacles as synapses
connecting two neurons of the free space are stronger than
synapses between free and occupied neurons. By averaging over
the local vectors at each step local minimas can be avoided.
The resulting force vector is subsequently added to the previous
movement direction.

2.2. Tools and Techniques
Three different simulators, or rather hardware solutions, have
been selected for the benchmark, representing three strongly
deviating approaches for simulating spiking neurons. NEST is
chosen as an actual simulator and the SpiNNaker system as a

representative for neuromorphic architectures. GeNN constitutes
a recently developed alternative running on conventional parallel
hardware. GeNN can be used on a GPU but also in a CPU-only
mode, which allows it to run on a broad range of hardware from
desktop PCs to embedded systems.We evaluate GeNNwith both,
its CPU-only and GPU version. The CPU-only mode allows to
compare the performance to the results obtained with the NEST
simulator which were presented in Steffen et al. (2020). Both,
GeNN on CPU and NEST, are run on a single processor core.
A visualization of all applied hardware and software solutions
is provided in Figure 2. As this paper aims to evaluate the
performance of systems in context of robotics, the Jetson series
by Nvidia is chosen as a hardware backend for GeNN on GPU.
The Jetson series consists of several different embedded GPU
systems, which were designed with the goal of supporting AI
solutions in hardware with a small form factor. This enables the
Jetson chipset to be integrated into mobile units (Franklin, 2018).
The boards are general purpose hardware and are both more
widely available and cheaper than the specialized neuromorphic
hardware. Three different Jetson boards are evaluated in this
benchmark, the Jetson Tx2, AGX Xavier, and Xavier Nx. In order
to make the results of the embedded systems more comparable,
a regular desktop PC is included in the analysis. The desktop
PC is also used to run the NEST simulations. The PC has 32
GB of RAM and contains an Nvidia RTX2070 GPU and an
AMD Ryzen 7 3700x CPU. A SpiNN-5 Board is used to run the
SpiNNaker implementation.

2.2.1. Hardware Specific Adaptations
In order to allow a fair comparison between the simulators, the
benchmarking scenario needs to be implemented in a similar
way on all platforms. PyNN offers the possibility to use the
same model for all simulators. However, as noted in Diamond
et al. (2016) this implies the risk that individual strengths of
the simulators are not accounted for. Despite this issue, in
this paper, all SNNs are modeled with PyNN, whereas Ostrau
et al. (2020) opted to use the Cypress library and Diamond
et al. (2016) decided to model their networks in the native
modeling languages of the simulators instead of using their PyNN
interface. However, using PyNN to model all networks allows
to simulate exactly the same model on all backends. Figure 2
provides an overview of the hardware and software applied for
this benchmark.

The benchmark is based on the NEST implementation
of Steffen et al. (2020). Since all three models are implemented
in PyNN, in theory it would be sufficient to specify a different
PyNN backend. However, the different backends implement
divergent subsets of PyNN’s functions and models. Therefore,
changes to the code are required to run the simulation on
the different backends. However, it is also note-worthy that
there are some possibilities to tailor the simulation more to the
individual system. This allows to better account for individual
strengths and weaknesses of each architecture. A big difference
in the implementation of the simulators is the step size. While
SpiNNaker uses a time step of 1ms, GeNN andNEST simulations
are usually run at time steps of 0.1 ms. This is due to the fact
that 0.1 ms is the time step most often used for neuroscientific

Frontiers in Neuroscience | www.frontiersin.org 5 June 2021 | Volume 15 | Article 66701148

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 2 | Overview of the hardware and software applied for this benchmark. On the top level the Wavefront algorithm representing the test scenario is featured. In

the model layer below it is visualized how the algorithm is implemented via PyNN running in python. On the interface level the model is translated to the respective

back ends and subsequently transferred onto the final hardware layer for execution.

simulations (van Albada et al., 2018). The default time step is
chosen for each simulator. The Wavefront algorithm is intended
to solve a path planning problem in a time efficient manner,
therefore, artificially slowing down the simulations in GeNN and
NEST would not be realistic and distort the results. The time
step of the simulation running on SpiNNaker is not lowered
to match that of the other two simulators, as this would result
in a slowdown of the simulation by a factor of 20. To account
for the different time steps chosen, different total simulation
times are required to allow the simulations to finish on the
different platforms.

The original implementation of the neural wavefront
algorithm presented in Steffen et al. (2020) uses the
IF_cond_alpha model, which is a standard model in
PyNN. It implements a LIF neuron with an alpha function
to describe its post synaptic potential. This neuron model is
currently not supported in sPyNNaker. The neuron model
was thus changed to IF_cond_exp, an LIF neuron with an
exponentially decaying post-synaptic potential. The SpiNNaker
system has an additional constraint, the representation of
synaptic weights as 16 bit integers. To convert the weights, a bit
shift operation needs to be performed (van Albada et al., 2018).
The algorithm used to determine the bit shift, does not allow
the original maximum synaptic weight of wmax = 4000.0 µS.
The highest maximum weight that can be implemented is

wmax = 63.0 µS. The Wavefront Algorithm uses STDP with
additive weight dependence. The value of wmax = 63.0 µS is
too low, for the additive weight dependence to induce enough
weight change to create the correct SVF. Therefore, for the
implementation in sPyNNaker, the maximum weight is scaled
down to wmax = 63.0 µS. After the simulation, the weight is
scaled back up by a factor of fscale = 4000.0/63.0. The re-scaling
is not entirely correct, as the STDP rule introduces an additional
term that cannot be properly re-scaled by this method. It would
be possible to re-scale the weights correctly by sampling the
weights before and after simulation, calculating 1w and scaling
it independently. However, this would introduce additional
overhead in the pathfinding phase of the algorithm. In practice,
the re-scaling, even though not entirely correct, still produces
acceptable results. In the original implementation, the target
neuron which starts the neural wavefront receives a DC current
as an input. The current increases the neuron’s potential inducing
a spike. DC current sources are currently not implemented in
sPyNNaker. Hence, the spike in the target neuron is induced
using a neuron population of type SpikeSourceArray. The
SpikeSourceArray population can then be connected to
specific neurons via a projection. In this implementation the
SpikeSourceArray population consists of one neuron that
is connected to the target neuron with a static synapse. Instead of
building up the membrane potential in the target neuron, a spike

Frontiers in Neuroscience | www.frontiersin.org 6 June 2021 | Volume 15 | Article 66701149

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

TABLE 1 | Overview of all system specific adaptations for each NEST, SpiNNaker, and GeNN, in respect to the original implementation of Steffen et al. (2020).

Features Original implementation NEST SpiNNaker GeNN

Neuron model IF_cond_alpha IF_cond_exp IF_cond_exp IF_cond_exp

Step size 0.1 ms 0.1 ms 1 ms 0.1 ms

Weights Unscaled Unscaled Scaled Unscaled

Spike source DC source DC source SpikeSourceArray DC source

is induced right away. This is advantageous as the wavefront can
be initiated right after the first time step. The spike source array
introduces a small overhead for the simulation time for small
maps on pynn_genn. To induce almost instantaneous spiking,
the current in the DC source is set to 1,000 mV. A complete
overview about all system specific adaptations is given in Table 1.

2.2.2. Measurements
In order to gather data about performance, several measurements
take place inside the simulation code. The individual functions
Create neurons, Create synapses, Simulation,
Build SVF, Compilation/Load Simulation, and
Finding path are timed with the help of a python wrapper
function. It saves the time stamp before the function is started
and again when the function terminates. The delta is the
execution time of the function and labeled with the function’s
name. In NEST the initialization of neurons and synapses
in the code causes them to be initialized as soon as their
respective definitions are executed. With sPyNNaker and
pynn_genn the values are instantiated as well, however, when
the run() function is executed, the synapses are instantiated
again. This is due to the fact that they need to be placed onto
the vertices of the MachineGraph in case of sPyNNaker, and
executed in C++ or CUDA C in case of pynn_genn. The
run() function combines the loading and running of the
simulation in sPyNNaker and the compilation and running of
the simulation for pynn_genn into one step. This makes it
impossible to determine the exact time needed for the individual
steps with the help of the wrapper. To determine the time
required for loading and compilation, the sPyNNaker and
GeNN simulation are initially run for 0 s. This triggers the
loading and compilation respectively, but does not start the
wavefront. When running the simulation on SpiNNaker again,
the entire loading process is restarted. To avoid that the loading
time is measured twice, the created logs of the SpiNNaker
machine are read out. The logs contain timestamps that allow
to determine correct start time. This timestamp is then used
with the end timestamp of the python wrapper to determine
the simulation time. The path length is determined during
simulation time by obtaining the length of the list containing
the path.

2.2.3. Map Scaling
To compare how the different hardware solutions handle an
increasing number of neurons and synapses, the networks are
scaled up. As the network is a direct neural representation of
the environment, enlarging the maps implies a likewise grow

of the neural embodiment. The original maps, used in Steffen
et al. (2020) of size 20 × 20 × 20, served as the reference
value for the smallest maps. How an enlarged map influences
the number of neurons and synapses within the network is
visualized in Figure 1C. The number of synapses increases
exponentially while the number of neurons is increased in a
cubic manner, when the size of the map is scaled up. A prior
examination regarding the maximum map size supported on
each hardware specific implementation is required. The map size
is limited by the available memory of the respective hardware
architecture, for GeNN und NEST. For SpiNNaker, the long
simulation times associated with larger maps limited the size of
the network.

2.3. Metrics
To measure the performance of the applied hardware solutions,
several metrics are introduced. As stated in Vineyard et al. (2019)
it is practically meaningless to compare parallel architectures
using the same metrics as applied to conventional VAs. Due to
the architectural approaches being designed and optimized for
different use cases, it is challenging—but absolutely necessary—
to choose appropriate metrics enabling a solid understanding of
their advantages and trade-offs.

2.3.1. Simulation Time
It is not insightful to compare only internal metrics of the systems
such as the speed of the processor clock. Instead, a comparison
indicating how the systems perform when given an actual task is
required. TheWavefront algorithm aims to solve the pathfinding
problem as fast as possible and ultimately in real-time. Hence, the
most interesting metric to consider is the execution time. When
considering the time, not only the actual execution time is of
interest, but also the amount of time needed to load or compile
the simulation.

2.3.2. Energy Consumption
The second meaningful metric is the energy consumption,
more precisely, the average energy needed per run. For
robots in general—but particularly for mobile robots—it is
important that the individual components do not consumemuch
energy. The measurement of the energy consumption is carried
out externally. In literature, two methods for obtaining data
regarding energy consumption are common. Firstly, a consumer
grade power meter that allows to store time stamped data
which can be extracted via an SD card. In Ostrau et al. (2020),
the Ruideng UM25C power meter and PeakTech9035 power
meter are used. Secondly, image recordings of the power meter
with subsequential digital post-processing. In Diamond et al.

Frontiers in Neuroscience | www.frontiersin.org 7 June 2021 | Volume 15 | Article 66701150

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

(2016), van Albada et al. (2018), and Knight and Nowotny
(2018) cameras are used to record the display of the power
meter. A digital post-processing is required to obtain meaningful
energy data.

For this benchmark, the energy consumption is measured
using a household energy meter of type Voltcraft 4000 Energy
logger that allows to store and extract time stamped data. The
power meter has a minimal resolution of 0.1 W and an accuracy
of ±1% and one count for the expected power draw. The power
meter samples the power draw only once per minute and saves
the data internally with a time stamp. The internal storage is
extracted with the help of an SD card and then subsequently
converted into csv format by the Voltsoft software that comes
with the Voltcraft 4000 Energy Logger. In order to obtain the total
energy consumption, the values are integrated using the numpy
trapz function. The time step is set to 60s.

2.3.3. Path Length
The path length is measured during simulation, after a path has
been successfully determined. As the path is saved as a list, its
longitude is simply the length of the list. To compare the length
of the paths found on the different implementations, the median
of the path lengths is taken over all runs on a particular map for
each hardware solution. This allows to quickly determine if the
path length differs throughout runs on the same simulator.

Comparing the path length determined on the different
hardware solutions poses an issue. On SpiNNaker the weights
differ because they are converted via bit shifting, causing some
small errors, which are then amplified by the scaleup later in the
process. Ultimately, we would use the path length to compare the
accuracy of the different STDP implementations. In other words,
we investigate if in case all simulators get the same initial weights,
do they have the same final weights after learning via STDP.

2.3.4. Hardware Resources
In addition to the main metrics, the consumption of different
hardware resources, namely the memory usage and CPU/GPU
of the Desktop PC and the Jetson boards are measured. This
is done with the help of logging software. For the Desktop PC,
glances1 is used for CPU andMemory as well as NVIDIA System
Management Interface (nvidia-smi2) for the GPU data. On the
jetson boards a logging script based on jetson-stats3 is run to log
the memory usage.

3. EXPERIMENTS AND RESULTS

3.1. Comparing Different Hardware
Solutions
The total time of the simulation includes the time measurements
of all functions that are needed to execute the Wavefront
algorithm. Table 2 gives an overview of the median total time,
path length, and average energy consumption per run. However,
as the comprehensive version is very long and detailed, Table 2

1https://nicolargo.github.io/glances/.
2https://developer.nvidia.com/nvidia-system-management-interface.
3https://github.com/topics/jetson-stats.

TABLE 2 | An overview of the results of the simulations on the map IV.

Map size Total time [s] Path length Average energy

per run [J]

GeNN 20 54.13 36.0 2254.65

25 85.38 40.0 4358.44

28 116.33 46.0 5521.26

30 143.63 49.0 7169.49

33 201.29 50.0 2347.63

SpiNNaker 20 64.62 32.0 13132.09

25 128.50 49.0 23881.05

28 171.26 44.0 14484.20

30 162.46 50.0 13593.85

33 259.03 53.0 21046.42

35 324.96 55.0 24599.44

40 368.47 72.0 30573.19

NEST 20 8.39 38.0 1861.54

25 18.34 42.0 1908.04

28 26.76 41.0 2453.65

30 35.20 48.0 3089.95

33 50.28 48.0 4294.51

35 72.84 58.0 6126.01

40 114.15 65.0 7641.54

45 180.23 66.0 12266.63

55 421.65 81.0 50946.67

The median total time, path length, and average energy consumption per simulation

run is listed for each implementations. The GeNN version was carried out on an

AGX Xavier. Data regarding GeNN executed on other hardware solutions is given as

Supplementary Material.

is only an excerpt. It comprises SpiNNaker, NEST, and GeNN.
The GeNN implementation was carried out on an AGX Xavier.
The complete table including data for GeNN on RTX2070, in
CPU-only mode, on a Tx2 and a Xavier Nx is provided as
Supplementary Material. The detailed analysis in this paper is
focused on map IV from Steffen et al. (2020), since this is the
most complex. Tests on other maps presented in Steffen et al.
(2020) show similar results, indicating that the statements can
be generalized. As not to go beyond the scope of the work these
additional results are not presented in this paper.

The times for the individual functions Create neurons,
Create synapses, Simulation, Build SVF,
Compilation/Load Simulation, and Finding path
are at first evaluated separately for every map. The median,
which is more robust against outliers than the mean, and the
standard deviation of the time are determined for every function
separately. In order to obtain a total time, as provided in the
second column of Table 2, the duration for the individual
functions are summed for every run and subsequently.

The implementations running on the desktop PC are generally
faster than implementations on other hardware. With total
simulation times between 7.20 and 409.27 s, the implementation
of GeNN on the CPU has the shortest total time of all
implementations, followed by the implementation in NEST
(8.39–421.65 s). Both implementations run on a single thread
on the CPU of the desktop PC. The GeNN implementation

Frontiers in Neuroscience | www.frontiersin.org 8 June 2021 | Volume 15 | Article 66701151

https://nicolargo.github.io/glances/
https://developer.nvidia.com/nvidia-system-management-interface
https://github.com/topics/jetson-stats
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

running on the RTX2070 GPU has slightly longer total
simulation times than the two implementations on the CPU.
The implementations running GeNN on the Jetson Boards take
significantly longer than the implementations on the desktop PC.
The total simulation time of map size 30 on the RTX2070 is still
considerably shorter than the total simulation time for map size
20 on any of the Jetson boards. The AGX Xavier has the best total
simulation times out of the three boards, followed by the Xavier
NX. The implementation running on the SpiNNaker board has
worse total simulation times than the AGX Xavier, beating the
Xavier NX and the Tx2, with the Tx2 being the slowest out of all
hardware systems tested. The GeNN implementation running on
the CPU scales better than the NEST implementation. Both are
showing an exponential increase in total simulation time with
increasing map sizes. For the AGX Xavier and Tx2 a similar
trend can be observed, however, the trend is less noticeable due
to the limited map sizes. For simulations with GeNN on the
Xavier NX and the RTX2070, the total time appears to increase
linearly. Some linear segments can be observed when looking at
the scaling of total time on the SpiNNaker implementation. There
is, however, a very striking deviation from the scaling, the total
time decreases when the map size is increased from 28 to 30.

3.2. Performance Analysis of Isolated
Functionalities
Additionally to the total time measurements in Table 2,
Figure 3B shows how the individual functions scale with
increasing map size for the implementation of GeNN running
on the CPU. One can see that the exponential component in
the scaling of total time is caused by the creation of synapses.
In Figure 4A, the proportion for synapse creation is shown
to increase considerably with increasing map sizes, eventually
outweighing compilation time. For a map size of 55, synapse
creation makes up 75.01% of the total time. On smaller maps,
the compilation time dominates the total time. The proportion
of the function Simulation increases only slightly with an
increase in map size. Except for the creation of synapses, all
other sub functions increase linearly with increasing map sizes.
Compared to the implementation of GeNN on the RTX2070, the
compilation times for GeNN on CPU are shorter. As shown in
Figure 4B, on the RTX2070, compilation and loading timesmake
up by far the largest fraction of the total time with 77.63% for a
map size of 20. The proportion of compilation and loading time
decreases with increasing map sizes, however, it still makes up
almost 50% of the total time. Creating synapses takes more than
twice as long as the simulation of the SNN itself for maps of all
sizes. The development of the individual functions is illustrated
in Supplementary Material. All sub functions scale linearly with
increasing map sizes, except for the synapse creation, where the
beginning of an exponential increase can be observed.

The proportions of individual functions on the Jetson
boards show a pattern similar to the RTX2070. Figures 3B,D,
6B,D show how the time of individual functions scale
with respect to increasing map sizes4. The function

4Plots regarding the scaling properties of GeNN on Tx2, Xavier NX, and RTX2070

(desktop GPU) are provided in Supplementary Material.

Compilation and loading and Simulation show
a linear increase for the Tx2 and the AGX Xavier, whereas
Create synapses shows the beginning of an exponential
increase when the map is scaled up. On the Jetson Xavier Nx,
the function Create synapses scales linearly. The time
required for compilation/loading reaches a plateau at maps of
size 30. The time required to build the SVF remains almost
constant on the AGX Xavier for all map sizes. For the Tx2 and
Xavier NX, however, a strong increase is measured for the largest
map size. The proportions of the different sub-functions are
visualized in Figure 5. With 76.6, 73.8, and 69.3% compilation
and loading time represents the largest part of the total time
on all three Jetson boards for map size 20. The proportion of
the compilation and loading time decreases when maps get
larger, however, they still make up around 45% of the total time
and are almost two times higher than the actual simulation
of the SNN. The function to create synapses also takes longer
than the simulation time itself. With exception to the Xavier
Nx on map size 20, synapse creation takes more than twice
as long as the actual simulation for all Jetson boards on all
map sizes. The time required to build the SVF increases with
larger maps in proportion to the total time. On the Xavier Nx,
in particular, a strong increase can be observed for maps of
size 30.

The latest update of pynn_genn introduced the
reuse_model flag. I allows for the CUDA backend to
reuse the model of a previous run of a simulation, if the same
network is used. Most of the generated code can therefore be
reused and does not need to be compiled again, thus significantly
saving compilation time. For the simulation running on the RTX
2070 the compilation and loading time could be reduced by
8.01 s for the smallest map and 7.84 s for the largest map which
accounts for 72.1 and 44.4% of the simulation and loading time.
For the Jetson AGX Xavier a reduction by 24.51 s for the smallest
map and 27.76 s for the largest map were observed which
amounts to a reduction by 61.9 and 22.1% of the simulation and
loading time.

Figure 4C shows that for the NEST implementation. The total
time is dominated by the creation of synapses which makes up
between 84.3 and 89% of the total simulation time for all map
sizes. This reflects the results in Steffen et al. (2020), where the
creation of synapses also contributes the most to simulation
time. For the SpiNNaker implementation (see Figure 4D), the
simulation and loading times far outweigh the time it takes
to create the synapses, which is very similar to the observed
behavior of GeNN on the CPU (Figure 4A). Similar times for
Create synapses are expected, as the function is executed
on the CPU of the desktop PC in both cases. However, on the
SpiNNaker board, Create synapsesmakes up amuch lower
proportion of the total time, ranging from 3.3% to 15.6% for
the smallest and largest map, respectively. The time it takes to
load the simulation and to build the SVF makes up the highest
proportions of the total time. As illustrated in Figure 6B, the
sudden decrease of total simulation time, that can be observed
in Figure 6A, appears to be mainly due to a decrease in the
time it takes to build the SVF. It contributes up to 59% to the
total time, which is a much larger proportion than the NEST

Frontiers in Neuroscience | www.frontiersin.org 9 June 2021 | Volume 15 | Article 66701152

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 3 | Scaling properties of functions for GeNN on the CPU in (A,B) and for Jetson AGX Xavier in (C,D). (A,B) Show how the total time and energy consumption

scale with increasing map sizes. In (C,D), the development of the different functions of the Wavefront algorithm is displayed with regard to an increasing map size. The

x-axes show the map size and thereby, the number of neurons.

implementation or the GeNN implementations running on the
desktop PC.

On all systems, the time it takes to create neurons is negligible
compared to all other functions which is not surprising as the
number of neurons is only a fraction of the number of synapses
and weights. The function Path finding also makes up only
a small proportion of the total time.

3.3. Path Length
The path length, stated in the third column of Table 2, is
measured during the simulation, after the pathfinding process is
finished. The path is saved as a list, which means the path’s length
equals the list’s length. To compare the length of the paths found
on the different implementations, the median of the path lengths

is taken over all runs on a particular map. To check if the path
length differs between individual runs, the standard deviation
of the path lengths is considered as well. Since the Wavefront
algorithm does not guarantee to find an optimal path (Steffen
et al., 2020), the path for map size 20 has more detours than
the path in the larger map. This is visualized for GeNN on PC
in Figure 7.

The wavefront Algorithm relies on the weights of the synapses
to create the SVF and find a path. In order to make the path
length comparable, it needs to be ensured that the simulators
start out with the same initial weight. Unfortunately this can
only be ensured for the simulations in NEST and GeNN, as the
bit shifting in the SpiNNaker system causes rounding errors,
which are amplified by the scaling of the weights. As expected the

Frontiers in Neuroscience | www.frontiersin.org 10 June 2021 | Volume 15 | Article 66701153

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 4 | Distribution of total time simulated with GeNN on a desktop PC in (A,B) and NEST in (C) and SpiNNaker in (D). The different proportions of the

sub-functions in percent are shown as bars for every map size. For (A,B), the compilation time, shown as a green bar, make up the highest proportion of the total

time. With increasing map sizes, the proportion of synapse creation increases. In (B) (RTX2070), the proportion of the actual simulation also increases steadily,

whereas it remains more constant in the CPU implementation in (A). In (C), the NEST implementation, the synapse creation has by far the highest proportion of the

total time. For the SpiNNaker implementation in (D), the functions to load the simulation and build the SVF form the highest proportion of the total time.

path lengths differ between the SpiNNaker implementation and
the other implementations. However, there is also a difference
between the NEST and GeNN implementations. The most
striking observation is that the path lengths differ on different
GeNN implementations. Path lengths on the Jetson boards even

differ between individual runs on the same map and same Jetson
board. To rule out that the different GeNN implementations
start out with different parameters, the initial synaptic weights
are compared. The initial weights are measured after the code
is compiled and loaded onto the GPUs. This ensures that

Frontiers in Neuroscience | www.frontiersin.org 11 June 2021 | Volume 15 | Article 66701154

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 5 | Distribution of total time on Jetson boards. The different proportions of the sub-functions in percent are shown as bars for every map size. Compilation

and loading time, shown as a green bar, make up the highest proportion of the total time. With increasing map sizes, the proportion of synapse creation (blue bar) and

simulation (orange) increases. On the Xavier Nx a sharp increase in the proportion of the time to build the SVF (gray) can be observed for map size 30. (A) Xavier Nx,

(B) AGX Xavier, (C) Tx2.

values are not altered during compilation or initialization on
the GPU. All GeNN implementations share the same initial
weights. To further narrow down the cause of the different path
lengths, the final weights are analyzed as well. As expected, the
final weights differ between the Jetson boards and the GeNN
implementations on the PC. The final weights also differ between
runs on the maps on all three Jetson boards. The differences
in the path length, hence arise during the simulation of the
Wavefront algorithm.

3.4. Energy Measurement
The data about power consumption, as provided in the fourth
column of Table 2, is stored with a timestamp associated with
every data point. To get the relevant data for eachmap, the power
measurement data is matched with the timing data, by comparing
their timestamps. All power draw data with timestamps between
timestamp_start of the first run and timestamp_end of
the last run are considered. As the power meter only logs power
draw once a minute, very few data points are available for every
map. The data is linearly interpolated and integrated to obtain
the total energy. The total energy obtained is then divided by the
number of simulation runs to get an average value for the energy
consumption of a single run.

The energy consumption depends on the total time and the
energy efficiency of the applied hardware. Figures 3A,C, 6A,C
show how the total time and energy consumption per run
increase with an up scaledmap size for GeNN on the CPU, GeNN
on an AGX Xavier, the SpiNN-5 board and in NEST. It can be
observed that the average energy consumption is increasing very
similarly to the total time. The AGX Xavier and Xavier NX both
require less energy per run than the GeNN implementations on
the desktop PC. This is despite the fact that both Jetson boards
have a much longer total time. The GeNN implementation on
CPU consumes less energy than the implementation on the RTX
2070 which correlates with the shorter total simulation times.

3.5. Hardware Resources
The usage of hardware resources shows similar development for
the different simulators on the different map sizes, therefore
resource use is discussed by using exemplary data. Additional
data is provided as Supplementary Material. The development
of memory usage is similar for all GeNN simulations. Figure 8
shows memory utilization in percent for the Jetson AGX Xavier
which is similar to the other GeNN simulations and SpiNNaker
for map size 33. For the Jetson AGX Xavier there is a very slow
steady increase inmemory usage, until the simulation is compiled
and loaded which causes a sharp rise in memory utilization and is
followed by a slower steady increase during the simulation itself.
For SpiNNaker the memory usage rises much earlier, during
the creation of the synapses and then rises again sharply when
the simulation is loaded. The development of the CPU usage
on the Desktop PC differs between the different simulators.
Figure 9, shows the CPU utilization in percent for GeNN on
CPU, GeNN on the RTX2070 and for SpiNNaker. For GeNN
on the RTX270 a large single spike can be observed that takes
place during compilation and loading of the simulation. For
the SingleThreaded CPU backend of GeNN a large spike and
a second smaller spike can be observed which coincide with
compilation ad loading of the simulation and the simulation
itself, respectively. Curiously, a larger proportion of the CPU is
used during the compilation and loading process of the CUDA
backend. For SpiNNaker one can observe a large spike in CPU
usage during the creation of synapses and during the function
Build SVF.

4. DISCUSSION

The fact that there is no significant difference in path
lengths between the different implementations shows that the
mechanisms to simulate STDP produce similar and consistent
results. The Jetson boards form an exception in this regard as
they have different path lengths in different runs of the simulation

Frontiers in Neuroscience | www.frontiersin.org 12 June 2021 | Volume 15 | Article 66701155

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 6 | Scaling properties of functions for SpiNNaker in (A,B) and NEST in (C,D). (A,C) Show how the total time and energy consumption scale with increasing

map sizes. In (B,D), the development of the different functions of the Wavefront algorithm is shown with regard to an increasing map size. The x-axes show the map

size and the number of neurons.

with the same map size. This difference is most likely caused
by the non-associative nature of floating point numbers, which
can lead to different results when additions are parallelized in
GPUs. This makes it difficult to compare results obtained from
calculations on a GPU to results obtained from calculations on
CPUs (Whitehead, 2011). The possibility of simulation results
differing between runs of a simulation, especially when STDP is
used, is described in Yavuz et al. (2016). In Knight and Nowotny
(2018), no noticeable divergence between simulations of the
microcircuit mode were reported. In our benchmark only a single

spike wave is simulated, making the model more susceptible
to small differences in the simulation. However, it is surprising
that the result deviations only appear on the embedded systems
and not on the discrete GPU. Particularly as both are used with
the single precision floating point operations, which makes the
deviations in the simulation results more likely than double
precision operations.

The Jetson boards, representing edge computing, stand out
with regard to energy efficiency. As they are designed with a
use for mobile applications in mind, they are optimized for low

Frontiers in Neuroscience | www.frontiersin.org 13 June 2021 | Volume 15 | Article 66701156

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 7 | Path found for size 20 and 25 with GeNN on CPU. The start neuron is highlighted in green, the target neuron cyan, and the path orange. For map size 25

a more direct path is found, which causes the path length to be slightly shorter, despite the larger map size. (A) Path for map size 20. (B) Path for map size 25.

power draw. A desktop PC on the other hand is not optimized
in this regard. This explains the high energy consumption per
run on the implementations on the desktop PC, despite the
much shorter total simulation times. The NEST and GeNN
implementation running only on the CPU of the desktop PC need
less power than the GeNN implementation on the RTX2070 as
their simulation times are shorter and the GPU is an additional
device requiring energy. The high energy consumption of the
SpiNNaker implementation shows that hardware with a higher
power draw, that at the same time is able to run the simulation
faster can still be more efficient than systems that have a low
power draw but longer simulation times.

4.1. Contextual Analysis
For all implementations of GeNN, compiling/loading of the
simulation and the creation of synapses are both tasks which are
performed by the CPU. Therefore, for the majority of the time,
only the CPU performs operations. Only the actual simulation
of the SNN is carried out by the GPU. As the Jetson boards are
designed for GPU heavy tasks, their CPUs are rather lightweight.
The CPU complexes of all Jetson boards is made up of ARM
based CPUs. For the Xavier Nx the CPUs can reach a maximum
frequency of 1.9 GHz. A maximum frequency of 2.26 GHz
can be reached by the CPUs of the AGX Xavier, while the
CPUs of the Tx2 reach a maximum frequency of 2.0 GHz.

Frontiers in Neuroscience | www.frontiersin.org 14 June 2021 | Volume 15 | Article 66701157

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 8 | Memory utilization in percent for GENN (exemplary AGX Xavier) and neuromorphic hardware for the map size 33. (A) AGX Xavier. (B) SpiNNaker.

FIGURE 9 | CPU utilization in percent for different simulation options of GeNN on a Desktop PC and additionally on neuromorphic hardware for the map size 30. (A)

GENN (GPU), (B) SpiNNaker, (C) GENN (CPU).

These maximum frequencies are low, however, consumer CPUs
are generally more powerful than embedded processors. This
explains the large difference in compilation times between the
implementations on the Jetson boards and the simulations of
GeNN on PC. The difference in compilation time between
pure CPU implementation and the one using the GPU can be
explained by the fact that no transfer between host RAM and
GPUmemory needs to take place when only a CPU is used. Also,
no additional CUDA code needs to be generated and compiled in
the CPU only version of GeNN.

The implementation in NEST does not need to be compiled
or loaded to an external device. However, it takes longer to create
neurons and synapses than on the GeNN CPU implementation.
As shown in Figure 1C, the amount of synapses drastically
increases with increasing map sizes which also leads to an
increase in the time needed to create them. The creation
of synapses is performed on the CPU using python for all
implementations. For GeNN implementations, this entails the
instantiation of PyNN projections. However, the synapses need
to be instantiated again later when the C++/CUDA code is
run. The compilation and simulation portions of GeNN do not
display any exponential increase when maps are scaled. This

suggests that GeNN, when used with its native frontend, can
cope significantly better with large numbers of synapses than
when it is used with its pynn_genn frontend. This comes as
no surprise as C++ is a compiler language while python is an
interpreter language which tends to be slower than compiler
languages. When comparing the time required to create neurons
and synapses in the GeNN and NEST implementations one
also needs to account the compilation time in GeNN, but even
when doing so, neurons and synapses are instantiated faster on
the GeNN implementation. This advantage becomes especially
apparent for large map sizes where it takes more than 20 s longer
for the NEST implementation to create the synapses then for
the GeNN CPU implementation. This difference in the time it
takes to construct the network causes the overall shorter total
time of the GeNN implementation on CPU, as NEST has shorter
times for all map sizes when comparing only the simulation of
the network.

For the implementation on the SpiNN-5 board, a similar
amount of time is spent on synapse creation as in the GeNN
CPU implementation. However, as the functions Simulation,
Load Simulation, and Build SVF take much longer, it
is less noticeable. As described in Rowley et al. (2020), both

Frontiers in Neuroscience | www.frontiersin.org 15 June 2021 | Volume 15 | Article 66701158

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

simulation and loading require communication with the host
system. This additional overhead explains the large difference
in time required for simulation between the SpiNNaker system
and the GeNN implementations. Especially the time it takes to
build the SVF for the SpiNNaker stands out, as the SVF is built
by the CPU of the desktop PC just like the implementations of
GeNN on the desktop PC and NEST, which are all considerably
faster. This can be explained by the fact that to build the SVF,
the weights of all inhibitory- and excitatory connections are
required, which need to be extracted from the simulation. For
the implementation of GeNN on CPU and NEST, the weights
are already present on the system RAM, hence requiring short
loading times. These loading times get a bit bigger for GeNN
on the RTX2070, where they need to be loaded from the device
memory of the GPU. In the SpiNNaker implementation, the
weights need to be transferred between the SpiNNaker device
memory and the system RAM via a 100 Mbit Ethernet cable
which is about 10 times slower than on the internal data busses
used in the GeNN and NEST implementations.

4.2. Limitations and Outlook
The hardware performance comparison between high-
performance GPU (RTX2070) and embedded GPU (Nvidia
Jetson) can be seen as inappropriate. As one can foresee that the
implementation running for desktop GPU are much faster while
consuming more energy. However, it is still very interesting to
see the exact delta of embedded GPU and discrete GPU/CPU. It
provides a good insight about how far the state of development
with embedded systems really is.

Memory is a limiting factor in this benchmark, as it limits
the size of the SNN that can be simulated. Especially for the
GeNN implementations that use the CUDA backend this poses
a problem. Memory on GPUs tends to be less than the RAM on a
PC. Regarding the Jetson boards, memory is shared between CPU
and GPU which further limits their capabilities to simulate large
SNNs, as there is an increasing performance penalty once the
memory reaches its limits. The scripts that log the hardware data
only allow for a sampling rate of 1 Hz as logging data more often
than once per second results in uneven sampling intervals. Due to
the low sampling rates of the energy logger, an in-depth analysis
of the energy consumption and power draw is not possible. The
data, however still shows trends and gives an order of magnitude
of the energy consumption of the different hardware platforms.
The implementation of models in pynn_genn introduces a
large overhead on the GeNN implementations, as the synapses
and neurons first need to be instantiated as pynn projections
and populations before they can be simulated in GeNN which
is implemented in C++.

As neuromorphic platforms with static synapses, such as
True North or NeuroGrid, do not support neural plasticity,
this benchmark using STDP is not well applicable for them.
Platforms with configurable plasticity are generally capable of on-
line learning. However, ROLLS does not support the required
learning rule and the ODIN and TITAN chip have a quite limited
number of neurons, only allowing the investigation of tiny maps.
Platforms with programmable plasticity like BrainScaleS 1 & 2,
SpiNNaker-2, and Loihi not only support online learning but
also the required learning rule STDP. Therefore, our benchmark
implementation is easily transferable to them. Hence, we want
to transfer the implementation to either Loihi, SpiNNaker-2, or
BrainScaleS 2.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

LS, AR, and RD are responsible for the idea, the core concept, and
the architecture of this paper. LS, RK, SU, and SN did the research
and wrote the paper. All authors contributed to the article and
approved the submitted version.

FUNDING

This research has received funding from the European
Union’s Horizon 2020 Framework Programme for Research
and Innovation under the Specific Grant Agreement
No. 945539 (Human Brain Project SGA3) as well as
the Baden-Württemberg Stiftung under the research
program Neurorobotik.

ACKNOWLEDGMENTS

We would like to acknowledge the effort of our partners
within the HBP who took the time to give helpful advice and
feedback. Particularly Thomas Nowotny, James Knight, and
Sacha van Albada.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.667011/full#supplementary-material

REFERENCES

Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P., et al.

(2018). Code generation in computational neuroscience: a review of tools and

techniques. Front. Neuroinformatics 12:68. doi: 10.3389/fninf.2018.00068

Bower, J. M., Beeman, D., Bower, J. M., and Beeman, D. (1998).

“Introduction,” in The Book of GENESIS (New York, NY: Springer), 3–5.

doi: 10.1007/978-1-4612-1634-6_1

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book |

NEURON. Cambridge University Press. doi: 10.1017/CBO97805115

41612

Davies, M. (2019). Benchmarks for progress in neuromorphic computing. Nat.

Mach. Intell. 1, 386–388. doi: 10.1038/s42256-019-0097-1

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

Frontiers in Neuroscience | www.frontiersin.org 16 June 2021 | Volume 15 | Article 66701159

https://www.frontiersin.org/articles/10.3389/fnins.2021.667011/full#supplementary-material
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.1007/978-1-4612-1634-6_1
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.1038/s42256-019-0097-1
https://doi.org/10.1109/MM.2018.112130359
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

DeWolf, T., Jaworski, P., and Eliasmith, C. (2020). Nengo and low-power AI

hardware for robust, embedded neurorobotics. Front. Neurorobot. 14:568359.

doi: 10.3389/fnbot.2020.568359

Diamond, A., Nowotny, T., and Schmuker, M. (2016). Comparing neuromorphic

solutions in action: implementing a bio-inspired solution to a benchmark

classification task on three parallel-computing platforms. Front. Neurosci.

9:491. doi: 10.3389/fnins.2015.00491

Franklin, D. (2018). NVIDIA Jetson AGX Xavier Delivers 32 TeraOps for New Era

of AI in Robotics. NVIDIA Developer Blog, NVIDIA Corporation.

Friedmann, S., Schemmel, J., Gruebl, A., Hartel, A., Hock, M., and Meier,

K. (2016). Demonstrating hybrid learning in a flexible neuromorphic

hardware system. IEEE Trans. Biomed. Circuits Syst. 11, 128–142.

doi: 10.1109/TBCAS.2016.2579164

Furber, S., Galluppi, F., Temple, S., and Plana, L. (2014). The SpiNNaker project.

Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Gütig, R., Aharonov, R., Rotter, S., and Sompolinsky, H. (2003). Learning input

correlations through nonlinear temporally asymmetric Hebbian plasticity. J.

Neurosci. 23, 3697–3714. doi: 10.1523/JNEUROSCI.23-09-03697.2003

Kim, D., Kung, J., Chai, S., Yalamanchili, S., and Mukhopadhyay, S.

(2016). Neurocube. ACM SIGARCH Comput. Archit. News 44, 380–392.

doi: 10.1145/3007787.3001178

Knight, J. C., and Nowotny, T. (2018). GPUs outperform current HPC

and neuromorphic solutions in terms of speed and energy when

simulating a highly-connected cortical model. Front. Neurosci. 12:941.

doi: 10.3389/fnins.2018.00941

Mayr, C., Hoeppner, S., and Furber, S. (2019). SpiNNaker 2: a 10 million

core processor system for brain simulation and machine learning. Concurr.

Syst. Eng. Ser. 70, 277–280. Available online at: https://niceworkshop.org/wp-

content/uploads/2018/05/2-27-SHoppner-SpiNNaker2.pdf

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.

doi: 10.1109/5.58356

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Minkovich, K., Thibeault, C. M., O’Brien, M. J., Nogin, A., Cho, Y., and Srinivasa,

N. (2014). HRLSim: A high performance spiking neural network simulator

for GPGPU clusters. IEEE Trans. Neural Netw. Learn. Syst. 25, 316–331.

doi: 10.1109/TNNLS.2013.2276056

Müller, E., Mauch, C., Spilger, P., Breitwieser, O. J., Klähn, J., Stöckel, D.,

et al. (2020a). Extending brainScaleS OS for brainScaleS-2. arXiv [Preprint]

arXiv:2003.13750.

Müller, E., Schmitt, S., Mauch, C., Billaudelle, S., Grübl, A., Güttler, M., et al.

(2020b). The operating system of the neuromorphic brainscales-1 system. arXiv

arXiv:2003.13749.

Mutch (2010). CNS: Cortical Network Simulator Programming Guide - Overview |

The Center for Brains. Minds and Machines.

Nooraliei, A., and Nooraliei, H. (2009). “Path planning using wave front’s

improvement methods,” in ICCTD 2009 - 2009 International Conference

on Computer Technology and Development (Kota Kinabalu), 259–264.

doi: 10.1109/ICCTD.2009.202

Nowotny, T. (2010). “Parallel implementation of a spiking neuronal network

model of unsupervised olfactory learning on NVidia R©CUDA,” in Proceedings

of the International Joint Conference on Neural Networks (Barcelona).

doi: 10.1109/IJCNN.2010.5596358

Ostrau, C., Homburg, J., Klarhorst, C., Thies, M., and Rückert,

U. (2020). Benchmarking Deep Spiking Neural Networks on

Neuromorphic Hardware. arXiv:2004.01656. doi: 10.1007/978-3-030-6161

6-8_49

Pal, A., Tiwari, R., and Shukla, A. (2011). A focused wave front algorithm for

mobile robot path planning. Lecture Notes Comput. Sci. 6678(Pt 1), 190–197.

doi: 10.1007/978-3-642-21219-2_25

Ponulak, F., and Hopfield, J. J. (2013). Rapid, parallel path planning by

propagating wavefronts of spiking neural activity. Front. Comput. Neurosci.

7:98. doi: 10.3389/fncom.2013.00098

Rittner, P., and Cleland, T. A. (2014). Myriad: a transparently parallel GPU-based

simulator for densely integrated biophysical models. Society for Neuroscience

(Abstract),Washington, DC.

Rowley, A., Rhodes, O., Bogdan, P., Brenninkmeijer, C., Davidson, S., Fellows,

D., et al. (2020). “Stacks of software stacks,” in SpiNNaker–A Spiking Neural

Network Architecture, eds S. Furber and P. Bogdan (Norwell, MA: Now

Publishers), 79–128. doi: 10.1561/9781680836530.ch4

Sanzleon, P., Knock, S. A.,Woodman,M.M., Domide, L., Mersmann, J., McIntosh,

A. R., et al. (2013). The virtual brain: a simulator of primate brain network

dynamics. Front. Neuroinformatics 7:10. doi: 10.3389/fninf.2013.00010

Schemmel, J., Grübl, A., Meier, K., and Mueller, E. (2006). “Implementing

synaptic plasticity in a VLSI spiking neural network model,” in

International Joint Conference on Neural Networks (IJCNN) (IEEE), 1–6.

doi: 10.1109/IJCNN.2006.246651

Schmuker, M., and Schneider, G. (2007). Processing and classification of chemical

data inspired by insect olfaction. Proc. Natl. Acad. Sci. U.S.A. 104, 20285–20289.

doi: 10.1073/pnas.0705683104

Steffen, L., Kübler da Silva, R., Ulbrich, S., Vasquez Tieck, J.

C., Roennau, A., and Dillmann, R. (2020). Networks of place

cells for representing 3D environments and path planning.

BioRob. 8, pp. 1158–1165. doi: 10.1109/BioRob49111.2020.92

24441

Stimberg, M., Goodman, D. F., and Brette, R. (2020). Brian 2, an intuitive and

efficient neural simulator. eLife 8:e47314. doi: 10.7554/eLife.47314

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M.,

Stokes, A. B., et al. (2018). Performance comparison of the digital

neuromorphic hardware SpiNNaker and the neural network simulation

software NEST for a full-scale cortical microcircuit model. Front. Neurosci.

12:291. doi: 10.3389/fnins.2018.00291

Vineyard, C. M., Green, S., Severa, W. M., and Koç, Ç. K. (2019). “Benchmarking

event-driven neuromorphic architectures,” in ACM International Conference

Proceeding (Knoxville, TN). doi: 10.1145/3354265.3354278

Whitehead, N. (2011). Precision & Performance: Floating Point and IEEE 754

Compliance for NVIDIA GPUs. Technical report, NVIDIA Corporation.

Yan, Y., Stewart, T. C., Choo, X., Vogginger, B., Partzsch, J., Höppner, S., et al.

(2021). “Comparing Loihi with a SpiNNaker 2 prototype on low-latency

keyword spotting and adaptive robotic control,” in Neuromorphic Computing

and Engineering. Available online at: http://iopscience.iop.org/article/10.1088/

2634-4386/abf150

Yang, S., Wang, J., Hao, X., Li, H., Wei, X., Deng, B., et al. (2021a). BiCoSS: toward

large-scale cognition brain with multigranular neuromorphic architecture.

IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3045492.

[Epub ahead of print].

Yang, S., Wang, J., Zhang, N., Deng, B., Pang, Y., and Azghadi, M. R.

(2021b). CerebelluMorphic: large-scale neuromorphic model and architecture

for supervised motor learning. IEEE Trans. Neural Netw. Learn. Syst.

doi: 10.1109/TNNLS.2021.3057070. [Epub ahead of print].

Yavuz, E., Turner, J., andNowotny, T. (2016). GeNN: A code generation framework

for accelerated brain simulations. Sci. Rep. 6, 1–14. doi: 10.1038/srep18854

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Steffen, Koch, Ulbrich, Nitzsche, Roennau and Dillmann. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 June 2021 | Volume 15 | Article 66701160

https://doi.org/10.3389/fnbot.2020.568359
https://doi.org/10.3389/fnins.2015.00491
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1523/JNEUROSCI.23-09-03697.2003
https://doi.org/10.1145/3007787.3001178
https://doi.org/10.3389/fnins.2018.00941
https://niceworkshop.org/wp-content/uploads/2018/05/2-27-SHoppner-SpiNNaker2.pdf
https://niceworkshop.org/wp-content/uploads/2018/05/2-27-SHoppner-SpiNNaker2.pdf
https://doi.org/10.1109/5.58356
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/TNNLS.2013.2276056
https://doi.org/10.1109/ICCTD.2009.202
https://doi.org/10.1109/IJCNN.2010.5596358
https://doi.org/10.1007/978-3-030-61616-8_49
https://doi.org/10.1007/978-3-642-21219-2_25
https://doi.org/10.3389/fncom.2013.00098
https://doi.org/10.1561/9781680836530.ch4
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.1109/IJCNN.2006.246651
https://doi.org/10.1073/pnas.0705683104
https://doi.org/10.1109/BioRob49111.2020.9224441
https://doi.org/10.7554/eLife.47314
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1145/3354265.3354278
http://iopscience.iop.org/article/10.1088/2634-4386/abf150
http://iopscience.iop.org/article/10.1088/2634-4386/abf150
https://doi.org/10.1109/TNNLS.2020.3045492
https://doi.org/10.1109/TNNLS.2021.3057070
https://doi.org/10.1038/srep18854
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 05 July 2021

doi: 10.3389/fncom.2021.675741

Frontiers in Computational Neuroscience | www.frontiersin.org 1 July 2021 | Volume 15 | Article 675741

Edited by:

Alexantrou Serb,

University of Southampton,

United Kingdom

Reviewed by:

Damien Querlioz,

Centre National de la Recherche

Scientifique (CNRS), France

Matthew Marinella,

Sandia National Laboratories (SNL),

United States

Daniele Ielmini,

Politecnico di Milano, Italy

*Correspondence:

Katie Spoon

katherine.spoon@colorado.edu

Hsinyu Tsai

htsai@us.ibm.com

Received: 03 March 2021

Accepted: 14 May 2021

Published: 05 July 2021

Citation:

Spoon K, Tsai H, Chen A, Rasch MJ,

Ambrogio S, Mackin C, Fasoli A,

Friz AM, Narayanan P, Stanisavljevic M

and Burr GW (2021) Toward

Software-Equivalent Accuracy on

Transformer-Based Deep Neural

Networks With Analog Memory

Devices.

Front. Comput. Neurosci. 15:675741.

doi: 10.3389/fncom.2021.675741

Toward Software-Equivalent
Accuracy on Transformer-Based
Deep Neural Networks With Analog
Memory Devices
Katie Spoon 1*, Hsinyu Tsai 1*, An Chen 1, Malte J. Rasch 2, Stefano Ambrogio 1,

Charles Mackin 1, Andrea Fasoli 1, Alexander M. Friz 1, Pritish Narayanan 1,

Milos Stanisavljevic 3 and Geoffrey W. Burr 1

1 IBM Research–Almaden, San Jose, CA, United States, 2 IBM T. J. Watson Research Center, Yorktown Heights, NY,

United States, 3 IBM Zurich Research Center, Zurich, Switzerland

Recent advances in deep learning have been driven by ever-increasing model sizes, with

networks growing to millions or even billions of parameters. Such enormous models call

for fast and energy-efficient hardware accelerators. We study the potential of Analog AI

accelerators based on Non-Volatile Memory, in particular Phase Change Memory (PCM),

for software-equivalent accurate inference of natural language processing applications.

We demonstrate a path to software-equivalent accuracy for the GLUE benchmark

on BERT (Bidirectional Encoder Representations from Transformers), by combining

noise-aware training to combat inherent PCM drift and noise sources, together with

reduced-precision digital attention-block computation down to INT6.

Keywords: analog accelerators, BERT, PCM, RRAM, in-memory computing, DNN, Transformer

1. INTRODUCTION

State-of-the-art Deep Neural Networks (DNNs) have now demonstrated unparalleled accuracy
performance across a wide variety of fields, including image classification, speech recognition,
machine translation, and text generation (LeCun et al., 2015). While current models are generally
trained and run on general-purpose digital processors such as CPUs and GPUs, the rapid growth in
both size and scope of these networks has fostered novel hardware architectures aiming to optimize
speed and energy-efficiency, specifically targeting either neural network training or inference (Sze
et al., 2017).

Among these, architectures based on Non-Volatile Memory (NVM) are increasingly gaining
interest. Such technologies encode weight information in the conductance states of two-terminal
devices — including Resistive RAM (RRAM) (Wong et al., 2012), using modulation of conductive
filaments between electrodes, or Magnetic RAM (MRAM) (Matsukura et al., 2015), using
ferromagnetic switching between parallel or antiparallel spin polarization. In particular, Phase-
Change Memory (PCM) (Burr et al., 2016) is based on thermally-driven reversible transitions
between amorphous and crystalline states of a chalcogenide layer, leading to low and high
conductances, respectively (Figure 1A).

Analog accelerators leverage the massive parallelism of NVM-based crossbar arrays to perform
computation at the location of data (Burr et al., 2017; Ambrogio et al., 2018; Figure 1B). This
architecture can significantly mitigate the Von-Neumann bottleneck caused by communication
between the processor and memory, and is particularly efficient for fully-connected neural network
layers (Burr et al., 2015).

61

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2021.675741
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2021.675741&domain=pdf&date_stamp=2021-07-05
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:katherine.spoon@colorado.edu
mailto:htsai@us.ibm.com
https://doi.org/10.3389/fncom.2021.675741
https://www.frontiersin.org/articles/10.3389/fncom.2021.675741/full

Spoon et al. Analog AI for Transformer Networks

A recent development in DNN-based natural language
processing (NLP) is the migration away from recurrence
toward Transformer-based models such as BERT (Bidirectional
Encoder Representations from Transformers) (Devlin et al.,
2018). BERT offers state-of-the-art performance over a wide
range of Natural Language Processing (NLP) tasks. While the
large fully-connected layers in these models are computationally
expensive for both conventional hardware and custom digital
accelerators, they are ideally suited for analog NVM-based
hardware acceleration. However, NVM devices exhibit many
conductance instabilities [conductance drift (Ambrogio et al.,
2019), programming and read noise (Tsai et al., 2019), etc.],
which can degrade accuracy, particularly as the time between
programming and inference increases.

In this paper, after a brief overview of Transformer-based
models including BERT, we use a device-aware simulation
framework to develop and assess techniques that can increase the
inference accuracy of BERT implemented using PCM devices.
We show that these techniques allow these inherently fast and
energy-efficient systems to also approach software-equivalent
accuracy [as compared to the original BERT implementation
(Devlin et al., 2018)], despite the significant noise and
imperfections of current PCM devices. Since the high energy-
efficiency of analog crossbar-arrays on the fully-connected layers
will then expose the energy-inefficiency in digital computation
of the attention blocks, we explore the impact of quantized
attention-block computation. We show that the use of reduced
precision down to INT6 can provide further energy optimization
for Transformer-based models, applicable both to analog NVM-
based as well as to other accelerator systems.

1.1. Transformer Architecture
The Transformer architecture (Vaswani et al., 2017) was a pivotal
change-point in deep learning and is expected to remain a critical
core as newmodels [BERT (Devlin et al., 2018), DistilBERT (Sanh
et al., 2019), Albert (Lan et al., 2020), etc.] continue to build upon

FIGURE 1 | RRAM, MRAM or PCM devices (A) can be organized in crossbar

arrays, or NVM tiles, where weights are encoded using pairs of devices (B).

Analog accelerators composed of multiple NVM tiles and special function units

(SFU) for digital computation enable end-to-end network inference (C).

the underlying Transformer architecture. Here we describe how
the Transformer architecture differs from recurrent DNNs, and
how the basic building blocks of Transformers map to analog
accelerators.

1.1.1. Why Transformer?
Recurrent neural networks (RNNs) have commonly been used
for NLP tasks to account for the sequential nature of words and
sentences (Figure 2A). The bottleneck of RNNs is their limited
“memory” over very long sequences. Transformers (Vaswani
et al., 2017) provide one solution by replacing recurrence with a
self-attention mechanism. For any given word w in the sequence,
an attention probability between 0 and 1 is computed between w
and every other word in the sequence (Figure 2B), allowing the
model to quantify the relative importance that each word has in
predicting w.

1.1.2. BERT-Base Model Architecture
Building on the initial success of Transformers, BERT was
developed to generate meaningful encodings of input sequences
useful across a broad range of downstream tasks, such as
classification, text generation, and machine translation, requiring
only a few epochs of subsequent fine-tuning to prepare for the
specific task. BERT consists of 12 layers of a large Transformer
encoder (Figure 3A). In Figure 3B, detailing the main building
blocks of each encoder layer, dark grey boxes represent trained
weight-matrices (fully-connected layers) that can readily be
mapped to analog crossbar arrays. The attention computations
(Figure 3C) along with all activation functions (representing a
small fraction of the total operations) are computed in digital
processing units.

2. MATERIALS AND METHODS

2.1. Optimizing Analog Accuracy for BERT
In this section, we first describe the comprehensive analog tile
model used in this paper to capture realistic PCM crossbar
array behavior. We then describe our simulation procedure
and datasets for evaluation before discussing inference accuracy
results. The simulator is implemented using a modified pytorch
framework (Paszke et al., 2019) (including Caffe2).

FIGURE 2 | (A) Recurrent Neural Networks (RNNs) use recurrence to maintain

“memory” of the sequence. Hidden states of previous words contribute to the

next state. (B) In contrast, Transformers compute an attention matrix, where

higher (darker) probabilities indicate which words are interrelated.

Frontiers in Computational Neuroscience | www.frontiersin.org 2 July 2021 | Volume 15 | Article 67574162

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Spoon et al. Analog AI for Transformer Networks

FIGURE 3 | (A) Bidirectional Encoder Representations from Transformers (BERT) with 12 encoder layers. The input to BERT is a sequence of tokens, where each

token is either a word or a word-piece. This sequence is processed through each layer, followed by a pooler to reduce output size and a fully-connected classifier layer.

For example, to classify “I want a cat <eos>" (where <eos> is the end-of-sentence token) as either grammatical (0) or not (1), the classifier needs only two outputs.

Each encoder layer (B) is comprised of two main building blocks: (1) the self-attention block, where the model computes an attention matrix between the input and

itself, and (2) a feed-forward network with two large fully-connected layers. Dark grey represents trained weight layers in analog, while (C) shows the attention

processing in digital. The input sequence to the self-attention block passes through a trained weight layer split into three parts to compute Q (query), K (key), and V

(value) matrices. To compute attention (C), Q, K, and V are each split into multiple attention heads (for BERT, 12), both to reduce matrix sizes and to allow each to

learn slightly different representations of the sequence. [c(i)] A similarity matrix is computed between Q and K, followed by a softmax operation along rows to produce

values between 0 and 1. [c(ii)] These probabilities are then multiplied by V and move to the next analog tile followed by the feed-forward network. [c(iii)] A higher

probability (darker shade) in one of the 12 probability (P) matrices might indicate, for example, that the word “cat” is important for prediction of the word “want”.

2.1.1. Analog Tile Model
Weights, in this study, are encoded using a differential
conductance pair G+ and G− without any redundancy scheme.
Zero weights are encoded with G+

= G−
= 0, therefore

considering both devices at the RESET (lowest) conductance of
the analog device. While, in practice, the minimum conductance
cannot be zero, therefore the accuracy of the zero conductance
could be limited, the large (100x–1,000x) PCMdevice on-off ratio
ensures a fairly good approximation of a zero weight with very
low RESET conductance and RESET noise.

Multiplication in the analog tile is performed by tuning
the input voltage pulse-width, to prevent distortions due to
conductance non-linearities as a function of read voltage
(Chang et al., 2019). In order to accurately simulate the analog
components in the analog accelerator system, we include various
sources of non-ideality in the analog multiply-accumulate
(MAC) operation, including quantization errors within the
digital peripheral circuitry and conductance noise within the
analog NVM devices. In this section, we describe the PCM-
based device noise model and optimized design parameters
we used to achieve near software-equivalent accuracy inference
on BERT.

2.1.2. Programming Noise, Conductance Drift and 1/f

Read Noise
The inference accuracy attainable in an analog accelerator
system depends strongly on the analog device conductance
properties, since these can be noisy and change over time. In
order to estimate the accuracy characteristics of future analog

accelerators, we model these effects by adding programming
noise, read noise, and conductance drift to the DNN weights
(Figure 4A). We aggregate model error over many simulation
instances to arrive at the expected inference accuracy for a
given time point. The noise model used here is based on the
experimental characterization from Joshi et al. (2020), with PCM
devices fabricated in a 90 nm technology. The associated open-
source simulator (Rasch et al., 2021) includes the following PCM
statistical model for inference:

• Programming noise represents the error incurred when
encoding the weight in the PCM device. Instead of
programming the correct target, the final achieved
conductance generally shows some error, which is modeled
based on the standard deviation of the iteratively programmed
conductance values measured from hardware (Joshi et al.,
2020):

gprog = gT + N(0, σprog) (µS)

σprog = γmax(1 : 1731g2T + 1.965gT + 0.2635, 0) (µS)

where gprog and gT are the programmed and target
conductances of a PCM device and N(0, σ) is a normal
distribution with standard deviation σ . The parameter γ is
generally equal to 1, except when we explore the performances
of devices with reduced noise, where γ = 0.5.

• PCM devices show a common trend for increasing time:
after programming, due to the relaxation of the amorphous

Frontiers in Computational Neuroscience | www.frontiersin.org 3 July 2021 | Volume 15 | Article 67574163

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Spoon et al. Analog AI for Transformer Networks

FIGURE 4 | (A) Conductance values (G) exhibit variability due to programming

and read noise and decay toward zero over time due to drift noise. (B) To

mediate these noise sources, we train the floating-point model with noise in

order to prepare the model for noisy inference. (C) During inference, the

weights are programmed, then some time passes before inference is

performed.

state, conductance decays, following an empirical power-law
function expressed as in Ielmini et al. (2007):

gdrift(t) = gprog

(
t

tc

)
−ν

(µS)

where gprog is the programmed conductance measured at time
tc and gdrift(t) is the conductance at time t, while ν represents
the drift exponent, or slope on a log-G vs. log-t plot. In
our simulations, ν is sampled from a normal distribution
N(µν , σν). Both µν and σν , dimensionless, depend on the
target conductance gT and are modeled by fitting experimental
data from Joshi et al. (2020), with the following expressions:

µν = min(max(−0.0155log(gT)+ 0.0244, 0.049), 0.1)

σν = min(max(−0.0125log(gT)− 0.0059, 0.008), 0.045)

• PCM non-idealities also include instabilities after the
programming stage, such as read noise. Even in the absence
of programming error or conductance drift, consecutive
PCM reads lead to slightly different conductance evaluations
(Ambrogio et al., 2019). Among themultiple causes generating
read noise, 1/f noise and random telegraph noise show the
strongest contributions, with increased noise on lower-
frequency components. Such behavior leads to analog levels’
intrinsic precision degradation for longer times. The overall

contribution can be modeled using a normal distribution with
time-dependent sigma (Joshi et al., 2020):

g(t) = gdrift(t)+ N(0, σnG(t)) (µS)

The standard deviation of the read noise σnG at time t is
obtained by integrating the power spectral density over the
measurement bandwidth:

σnG(t) = γ gdrift(t)Qs

√
log

(
t + tread

2tread

)
(µS)

where tread = 250 ns is the duration of the read pulse. The
parameterQs, dimensionless, measured from the PCM devices
as a function of gT is given by:

Qs = min

(
0.0088

g0.65T

, 0.2

)

The noise model used in this work was calibrated using
a large number of PCM devices to characterize the statistics
of (1) the weight programming error (due to deviations
between programmed and desired conductance values), (2) the
accumulated 1/f read noise of their PCM devices, and the
(3) conductance drift and (4) drift variability as a function
of the programmed conductance value. Details of the device
measurement and modeling methodologies are described in the
supplementary information of reference (Joshi et al., 2020).

2.1.3. Analog MAC Design and Additional

Non-Idealities
While weights are encoded using full precision, we include all
noise sources, therefore reflecting the true analog nature of
devices, we assume that each analog tile receives digital inputs at
full precision, scales and quantizes to an integer representation,
then converts to analog duration using digital to analog
converters (DACs). The output of the analog tile is discretized
using analog to digital converters (ADCs). Both DAC and ADC
discretize the values in a fixed range symmetrically around zero.
We assume 8 bit precision for DAC and 10 bit for ADC. The
input scaling factor for the DAC is initialized using example data,
learned during training to optimally match the input ranges, and
kept static during inference. Target weight ranges are clipped to
−1.0, . . . , 1.0, where 1.0 corresponds to maximum target device
conductance, gmax, although programming noise can induce
overshoot. The output ADC range is related to the ADC gain and
a parameter that depends on the ADC design. Here we set it to
−10, . . . , 10, which means that 10 “fully on” input lines (each at
1.0) in conjunction with 10 weights at maximum (also 1.0) would
saturate the ADC output. Even though the tiles have 512 rows,
not all weights are at their maximum. In typical DNN models,
most weights and activations have low values or are near zero.
In addition, the random-walk nature of aggregation along the
bitlines causes the signal to grow as the square-root of the number
of rows, not linearly. The dynamic range of 10 for the ADC is a
design parameter.

Each digital output from the ADC is individually scaled and
offset, to map the conductances back to the high-precision digital

Frontiers in Computational Neuroscience | www.frontiersin.org 4 July 2021 | Volume 15 | Article 67574164

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Spoon et al. Analog AI for Transformer Networks

FIGURE 5 | (A) Without any noise-aware techniques, inference on the Microsoft Research Paraphrase Corpus (MRPC) task decays very quickly over time. (B) Drift

compensation improves the decay over time significantly, but the inference results are still lower than the BERT-base ideal model with no NVM noise. (C)

Hardware-aware (HWA) training with noise added during training helps close the gap, reaching software-equivalent accuracy for this task even at 1 month of drift.

domain (bfloat16 precision). These digital scaling factors are also
learned during training and are critical to achieving software-
equivalent accuracy during inference.

The analogMAC output is subject to short-term conductance-
dependent noise that scales with the input current using the
PCM read noise statistical model. We assume that the analog
MAC output is subject to further additive Gaussian noise
corresponding to 0.5 LSB (least significant bit) of the ADC, and
use an approximated IR drop model. The analog tile size is set
to 512×512 which, together with reduced read voltage (e.g., 0.2
V) ensures negligible IR drop impact; if layers are larger, they
are distributed across multiple tiles and outputs are summed
(in digital). Activation functions are computed in floating point
32-bit (FP32) format using standard functions.

2.2. Simulation Procedure–Training and
Inference
Training for inference (i.e., hardware-aware training, or HWA)
is done in software to make the subsequent hardware inference
more robust, even in the presence of PCM non-idealities
(Figure 4B). We apply noise during hardware-aware training,
specifically during the forward propagation. While this helps
the subsequent inference even in the presence of drift, this
noise during training does not itself incorporate any explicit
drift models. The subsequent backward propagation and weight
update components or various scaling factors (described in
previous sections) of software training are based on stochastic
gradient descent (SGD) and are both carried out at full precision
without additional noise.

Then, during inference, all hardware non-idealities—MAC
cycle-to-cycle non-idealities, PCM programming noise, read
noise, 1/f noise, drift, and drift variability—are considered, and
drift compensation is applied as described below.

We train 5 models with different random seeds and select
the best one for inference evaluation. Accuracy can sometimes
exceed state of the art results for smaller datasets where run-to-
run variation can be wider, while larger datasets show smaller
accuracy variation. We re-evaluate each model 25 times for

each inference time point1 to reduce sampling error during
inference. We also report the standard error in the tables of
results (Figures 6, 8). We evaluate accuracy at 5 time points
after weight programming (Figure 4C): 1 second, 1 hour, 1 day,
1 week, and 1 month. Without any correction techniques, the
inference accuracy drops markedly over time (Figure 5A).

2.2.1. Drift Compensation
As described in Ambrogio et al. (2019) and Joshi et al. (2020)
and illustrated in Figure 5B, signal loss by PCM conductance
drift can be effectively compensated using a global correction-
factor calculated from the mean drift over time. To calculate
the drift compensation factor in the simulator, we first read
out the weight matrix of each analog tile by performing the
non-ideal MAC operations of the forward pass using one-hot
input vectors, summing the values in an absolute manner to
obtain an initial reference value. Then after applying conductance
drift and accumulated 1/f noise to the weights up to a certain
inference time-point, the weights are again read out through the
same (non-ideal) MAC operations to produce a delayed reference
value. Drift compensation is applied by adjusting the digital
output scale-factor (applied after ADC) by the ratio of the delayed
and initial reference values, and applied across the entire test set
for all simulations of themodel at that inference time-point. Once
the average drift is compensated, the remaining noise effects act
as a random walk process, as programmed conductances evolve
away from their intended states. RRAM, FERAM, or any other
device will also exhibit time-dependent conductance change, and
these devices can also benefit from the methodology proposed in
this work by substituting the corresponding device noise models.

2.2.2. Hardware-Aware (HWA) Training
Drift compensation helps with the accuracy decrease over time
by boosting the signal, but cannot remove the underlying noise
sources. In addition to training the static scale factors for DAC
input and ADC output, we apply a variety of techniques to
prepare our trained model for noise during inference (Gokmen

1For one particular task, Quora Question Pairs (QQP), we use only 5 repeats due

to large test dataset size.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 July 2021 | Volume 15 | Article 67574165

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Spoon et al. Analog AI for Transformer Networks

FIGURE 6 | Inference results for all 8 GLUE tasks and the average score. Dataset training size shown in parentheses below each task name, and tasks appear in

order of their size, with smallest on the left. Since each task has a different standard accuracy range, shown is the 1accuracy between the results from the BERT-base

model and our noise-aware trained model for two conditions: (i) full noise model applied, and (ii) 50% programming and read noise and full drift noise applied (noise

reduced). For the full noise model, we consider several different time points, ranging from 1 month down to 1 day (with 1 hour and 1 second shown for context). The

required time span would depend on the application. The table reports mean values across trials and standard errors of the mean.

et al., 2019; Joshi et al., 2020). A noise model that includes
digital periphery noise and additional noise on DNNweights that
mimics a scaled version of our programming noise is applied
during training, to prepare the network for inference with noisy
weights. The standard deviation scale of this additional weight
noise is a hyper-parameter of the HWA training. The effects can
be seen in Figure 5C, reaching software-equivalent accuracy for
a single language task only once these HWA training techniques
are applied.

2.3. Datasets and Training
We evaluate our HWA-trained BERT on the General Language
Understanding Evaluation (GLUE) Benchmark (Wang et al.,
2019), consisting of 9 primary language tasks (see leaderboard
at Wang et al., 2020). This benchmark is more robust than
examining a single task, as it shows the network’s ability to
generalize. For example, one task tests the network’s ability to
identify a given sentence as grammatical or not. Another task
assesses, given two sentences A and B, whether A is a paraphrase
of B.We exclude one task,Winograd Natural Language Inference
(WNLI), just as BERT (Devlin et al., 2018) did, due to the unusual
construction of the data set and small test set of only 146 samples.
This leaves 8 tasks:

• Microsoft Research Paraphrase Corpus (MRPC) (Dolan and
Brockett, 2005)

• Recognizing Textual Entailment (RTE) (Bar-Haim et al., 2006;
Dagan et al., 2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009)

• Semantic Textual Similarity Benchmark (STS-B) (Agirre et al.,
2007)

• The Corpus of Linguistic Acceptability (CoLA) (Warstadt
et al., 2018)

• The Stanford Sentiment Treebank (SST-2) (Socher et al., 2013)
• Question Natural Language Inference (QNLI) (Rajpurkar

et al., 2016)
• Quora Question Pairs (QQP)
• Multi-Genre Natural Language Inference (MNLI) (Williams

et al., 2018)

We evaluate each task separately by fine-tuning a pretrained
BERT-base model (Wolf et al., 2020) using our HWA training
techniques. We do not train BERT models from scratch
using HWA training, but instead perform fine-tuning from
the pretrained BERT model checkpoint with these techniques.
Fine-tuning is a technique used in natural language processing,
similar to transfer learning, where the main model is trained
with a large amount of generic language data and later
fine-tuned for a specific task (e.g., sentiment classification)
using a much smaller set of data with limited epochs of
training. This greatly reduces the runtime for the HWA
training when compared to training from scratch. We use a
maximum sequence length of 128 for efficiency, since the vast
majority of data samples are much shorter that the maximum
BERT sequence length of 512. We report the aggregated
score of all 8 tasks, since this is a common metric reported
for GLUE (Wang et al., 2019).

Frontiers in Computational Neuroscience | www.frontiersin.org 6 July 2021 | Volume 15 | Article 67574166

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Spoon et al. Analog AI for Transformer Networks

FIGURE 7 | (A) While the energy-inefficiency in high-precision digital

computation of the attention blocks may currently be a minor issue, the high

energy-efficiency of analog crossbar-arrays on fully-connected layers will

eventually expose this as a problem. (B) Particularly in Transformer-based

models, quantizing the attention block to lower precision greatly reduces the

area and energy usage of the multipliers, optimizing the new bottleneck:

activation processing in attention. For example, decreasing from bfloat16

(“BFL16FMA”) to INT6 (“IMA6”) results in an estimated energy reduction

of 91%.

Each task needs to be fine-tuned differently, so we scanned a
variety of learning parameters for each task: batch size, learning
rate, weight clipping, and dropout. Here we report the accuracy
on the validation data set because the test set is only available
online, which might result in a slight overestimation in the
accuracy scores for the datasets with small validation set. We
observe accuracy variation that correlates with the size of the
datasets—models trained with smaller datasets exhibit larger
variation in test accuracy. Therefore, we train 5 models per task
per condition and choose the bestmodel for inference simulation.

3. RESULTS

3.1. Results on BERT
Figure 5C shows an example of an HWA-trained BERT-base
model reaching software-equivalent accuracy and the inference
accuracy evolution over time for theMRPC task. Accuracy results
on all 8 GLUE tasks, reported at times ranging from 1 second to
1 month after weight programming, are summarized in Figure 6.
We show that several tasks reach software-equivalent accuracy at
1 month and the biggest accuracy drop is ∼4% for MNLI. The
aggregate score over all 8 tasks is only 1.29% below the baseline
at 1 month. Since there is hope for additional improvement with
progress in PCM device technology (Giannopoulos et al., 2018),
we show results for the full drift model but with only 50% of the
programming and read noise applied during inference, achieved
by setting the γ factor in the σprog and σnG(t) equal to 0.5. In
this way, we reduce the impacts of both programming and read
noise contributions. Noise-reduced PCMdevices can be expected
to improve many of the tasks by >1% even for inference after
1 month, and increase the aggregate GLUE score to just 0.6%
below baseline.

3.2. Attention Quantization
Attention-based models such as BERT pose unique challenges
beyond previously studied models, because of the extensive
activation computation in the self-attention block. Amdahl’s
law implies that when a system bottleneck is greatly improved,

performance is invariably limited by something else, no matter
how insignificant it was to begin with (Figure 7A). Self-attention
computations in a Transformer model scale quadratically with
sequence length S, and constitute <1% of the number of
operations for small S, but ∼5% at S = 128. If this computation
is done in digital processing units at full precision, the cost
in both energy and area for such processing units can become
the system bottleneck for Transformers, particularly as sequence
length grows, despite constituting a relatively low fraction of
the workload.

Reduction of the precision in the digital computation of this
self-attention block can also help reduce overall computation
costs, beyond consideration of the analog performance and
precision of just the fully-connected layers. The attention matrix
in this case is not mapped into analog crossbar arrays, but
processed in digital multiply-and-add units.

3.2.1. Attention Computation
In the self-attention block, there are two batch matrix-multiplies,
one forQ∗K and one for softmax(Q∗K)∗V (Figure 3C(i,ii)). In
this paper, we propose to compute batch matrix-multiplication
with various integer precisions in order to reduce energy and
area costs for these attention computation units, while keeping
softmax operations at full precision. When compared to bfloat16
multiply-and-add (BFLFMA), integer multiply-and-add (IMA)
units are much more energy and area efficient. Figure 7B,
simulated in a 14 nm FinFET technology, shows a 11.3× energy
benefit and a 4.7× area benefit from BFLFMA to INT6 (including
a wide-enough adder for multiply-accumulate operations across
the 64 terms in an attention-head). Next, we explore the impact
of these attention quantization options on inference accuracy
in BERT.

3.3. Results on BERT With Quantized
Attention
Figure 8 summarizes GLUE task inference results with our
analog tile models for the fully-connected layers with four
different precision settings—FP32, integer 10 bit (INT10), integer
8 bit (INT8), and integer 6 bit (INT6)—for the batch matrix-
multiplications in self-attention. The scaling factor used for
quantization is initialized from a small set of training data
and then learned during the training process. BERT inference
performance is comparable among all four quantization schemes.
For smaller datasets, INT10, INT8 and INT6 quantized attention
models sometimes outperform the FP32 versions because of the
additional regularization and noise in the attention layers during
training. For the four larger datasets (SST-2, QNLI, QQP, and
MNLI), no significant differences in inference accuracy at 1
month were observed down to INT6 quantized attention.

4. DISCUSSION

While we have clearly demonstrated the potential for iso-
accuracy with Transformer-based neural networks on fast and
energy-efficient analog hardware, there are numerous areas for
future work.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 July 2021 | Volume 15 | Article 67574167

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Spoon et al. Analog AI for Transformer Networks

FIGURE 8 | Quantization inference results for all 8 GLUE tasks and the average score. Shown is a comparison to our FP32 noise-aware model from Figure 6 at 1

month of drift for various levels of precision: INT10, INT8, and INT6, all of which perform at least as well as our full precision model for most tasks. On some tasks,

including the aggregate score, the reduced precision seems to serve as additional regularization and performs better than our FP32 model. The table reports mean

values across trials and standard errors of the mean.

4.1. Software-Equivalent accuracy
We have shown that full software-equivalent accuracy will
require continued improvement in both PCM devices and in
hardware-aware training techniques. However, we have been
reasonably conservative in our accuracy report, presenting
results at 1 month of inference. We note that some workloads
may only require results at 1 day or 1 week of drift,
for example when models are weekly updated. We project
that current PCM devices can comfortably support software-
equivalent accuracy on many GLUE tasks on such timescales.
For tasks where models are less frequently updated, another
approach would be to incur slightly more frequent in-
place reprogramming of the same model – this would be a
tradeoff between model availability, the time needed for model
programming, device endurance, temperature variation and
other factors.

4.2. Model Size
While we have focused on BERT, which has 110 M parameters,
new Transformer-based networks are emerging that attempt to
reduce model size while maintaining accuracy. DistilBERT (Sanh
et al., 2019) uses knowledge distillation to reduce the number of
parameters in half, and ALBERT (Lan et al., 2020) uses cross-
layer parameter reuse, reducing the number of unique parameters
to a fraction of the original. However, we note that these smaller
models may present a challenge to analog hardware, since fewer
unique weights can make models less robust to noise. Hardware-
software co-optimization that can strike a good balance between
model size and robustness to PCM-based noise could lead to
future Transformer-based networks that are highly optimized for
accuracy, energy-efficiency, and speed on Analog-AI hardware.

5. CONCLUSION

We show that despite their various noise sources, PCM-based
analog accelerators are a sensible choice for deep learning
workloads, even for large natural language processing models
like BERT. Our simulation results using a comprehensive noise
model demonstrate that BERT can be expected to be close to
software-equivalent accuracy even with existing PCM devices.
Other Transformer-based models with the same building blocks
can be similarly evaluated with our approach. We have shown
that expected improvements in programming noise variability
provide a consistent trend toward software-equivalent accuracy.
Finally, in preparation for high energy efficiency on the fully-
connected layers, we provide a potential solution to the next
biggest energy cost: the activation processing from the attention
block. We show that 11.3× energy improvements should be
feasible by quantization to INT6, with no significant loss
in accuracy.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

KS, HT, MS, and GB conceived the original ideas. KS, HT,
AC, and MS implemented and ran the simulations. All authors
contributed during data analysis. KS, HT, AC, MR, SA, and GB
drafted the manuscript.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 July 2021 | Volume 15 | Article 67574168

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Spoon et al. Analog AI for Transformer Networks

REFERENCES

Agirre, E., Marquez, L., and Wicentowski, R., (2007). Proceedings Fourth

International Workshop on Semantic Evaluations (SemEval). (Prague).

Ambrogio, S., Gallot, M., Spoon, K., Tsai, H., Mackin, C., Wesson, M., et al. (2019).

“Reducing the impact of phase-change memory conductance drift on the

inference of large-scale hardware neural networks,” in 2019 IEEE International

Electron Devices Meeting (IEDM), 6.1.1–6.1.4.

Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., di Nolfo,

C., et al. (2018). Equivalent-accuracy accelerated neural-network training

using analogue memory. Nature 558:60. doi: 10.1038/s41586-018-

0180-5

Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B.,

et al. (2006). “The second PASCAL recognising textual entailment challenge,”

in Proceedings Second PASCAL Challenges Workshop on Recognising Textual

Entailment (Venice).

Bentivogli, L., Dagan, I., Dang, H. T., Giampiccolo, D., and Magnini, B. (2009).

“The fifth PASCAL recognizing textual entailment challenge,” in Proceedings

Text Analysis Conference (TAC) (Gaithersburg, MD).

Burr, G. W., Brightsky, M. J., Sebastian, A., Cheng, H.-Y., Wu, J.-Y., Kim, S., et al.

(2016). Recent progress in PCM technology. IEEE J. Emerg. Sel. Top. Circ. Sys.

6, 146–162. doi: 10.1109/JETCAS.2016.2547718

Burr, G. W., Shelby, R. M., Sebastian, A., Kim, S., Kim, S., Sidler, S., et al. (2017).

Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124.

doi: 10.1080/23746149.2016.1259585

Burr, G. W., Shelby, R. M., Sidler, S., di Nolfo, C., Jang, J., Boybat, I.,

et al. (2015). Experimental demonstration and tolerancing of a large–

scale neural network (165,000 synapses), using phase–change memory as

the synaptic weight element. IEEE Trans. Electron Dev. 62, 3498–3507.

doi: 10.1109/TED.2015.2439635

Chang, H. ., Narayanan, P., Lewis, S. C., Farinha, N. C. P., Hosokawa, K.,

Mackin, C., et al. (2019). Ai hardware acceleration with analog memory:

microarchitectures for low energy at high speed. IBM J. Res. Dev. 63, 8:1–8:14.

doi: 10.1147/JRD.2019.2934050

Dagan, I., Glickman, O., andMagnini, B. (2006). “The PASCAL recognising textual

entailment challenge,” in ML Challenges: Evaluating Predictive Uncertainty,

visual Object Classification, and Recognising Textual Entailment, (Milan), 177–

190.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: pre-training

of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

Dolan, W. B., and Brockett, C. (2005). “Automatically constructing a corpus

of sentential paraphrases,” in Proceedings International Workshop on

Paraphrasing, (Jeju Island).

Giampiccolo, D., Magnini, B., Dagan, I., and Dolan, B. (2007). “The third

PASCAL recognizing textual entailment challenge,” in Proceedings ACL-

PASCAL Workshop on Textual Entailment and Paraphrasing, Prague, 1–9.

Giannopoulos, I., Sebastian, A., Le Gallo, M., Jonnalagadda, V., Sousa, M., Boon,

M., et al. (2018). “8-bit precision in-memory multiplication with projected

phase-change memory,” in 2018 IEEE International Electron Devices Meeting

(IEDM), 27.7.1–27.7.4.

Gokmen, T., Rasch, M. J., and Haensch, W. (2019). “The marriage of training and

inference for scaled deep learning analog hardware,” in 2019 IEEE International

Electron Devices Meeting (IEDM) , 22–3.

Ielmini, D., Lacaita, A. L., andMantegazza, D. (2007). Recovery and drift dynamics

of resistance and threshold voltages in phase-change memories. IEEE Trans.

Electron Dev. 54, 308–315. doi: 10.1109/TED.2006.888752

Joshi, V., Le Gallo, M., Haefeli, S., Boybat, I., Nandakumar, S. R., Piveteau, C.,

et al. (2020). Accurate deep neural network inference using computational

phase-change memory. Nat. Comm. 11:2473. doi: 10.1038/s41467-020-1

6108-9

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2020).

ALBERT: a lite BERT for self-supervised learning of language representations.

arXiv preprint arXiv:1909.11942.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

Matsukura, F., Tokura, Y., and Ohno, H. (2015). Control of magnetism by electric

fields. Nat. Nanotechnol. 10, 209–220. doi: 10.1038/nnano.2015.22

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).

Pytorch: an imperative style, high-performance deep learning library. NIPS 32,

8026–8037.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). “SQuAD: 100,000+

questions for machine comprehension of text,” in Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing, Austin, TX,

2383–2392.

Rasch, M. J., Moreda, D., Gokmen, T., Gallo, M. L., Carta, F., Goldberg, C., et al.

(2021). A flexible and fast pytorch toolkit for simulating training and inference

on analog crossbar arrays. arXiv.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). “DistilBERT, a distilled

version of bert: smaller, faster, cheaper and lighter,” inNeurIPS EMC2 Workshop

(Vancouver, BC).

Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., et al.

(2013). “Recursive deep models for semantic compositionality over a sentiment

treebank,” in Proceedings of the 2013 Conference on Empirical Methods in

Natural Language Processing, Seattle, WA, 1631–1642.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2017). Efficient processing

of deep neural networks: a tutorial and survey. Proc. IEEE 105, 2295–2329.

doi: 10.1109/JPROC.2017.2761740

Tsai, H., Ambrogio, S., Mackin, C., Narayanan, P., Shelby, R. M., Rocki, K., et al.

(2019). “Inference of long-short term memory networks at software-equivalent

accuracy using 2.5M analog phase changememory devices,” in 2019 Symposium

on VLSI Technology, T82–T83.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.

(2017). “Attention is all you need,” in Neurips (Long Beach, CA).

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2019).

“GLUE:a multi-task benchmark and analysis platform for natural language

understanding,” in Proceedings of ICLR (New Orleans, LA).

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2020).GLUE

Benchmark. Available online at: gluebenchmark.com/leaderboard

Warstadt, A., Singh, A., and Bowman, S. R. (2018). Neural network acceptability

judgments. arXiv preprint 1805.12471.

Williams, A., Nangia, N., and Bowman, S. (2018). “A broad-coverage challenge

corpus for sentence understanding through inference,” in Proceedings of

the 2018 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers), New Orleans, LO.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., et al. (2020).

“Transformers: State-of-the-art natural language processing,” in Proceedings

Conference Empirical Methods in NLP: System Demonstrations, 38–45.

Wong, H.-S. P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-

S., et al. (2012). Metal-Oxide RRAM. Proc. IEEE 100, 1951–1970.

doi: 10.1109/JPROC.2012.2190369

Conflict of Interest: The authors were employed by IBM Research.

Copyright © 2021 Spoon, Tsai, Chen, Rasch, Ambrogio, Mackin, Fasoli, Friz,

Narayanan, Stanisavljevic and Burr. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 July 2021 | Volume 15 | Article 67574169

https://doi.org/10.1038/s41586-018-0180-5
https://doi.org/10.1109/JETCAS.2016.2547718
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1109/TED.2015.2439635
https://doi.org/10.1147/JRD.2019.2934050
https://doi.org/10.1109/TED.2006.888752
https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nnano.2015.22
https://doi.org/10.1109/JPROC.2017.2761740
https://gluebenchmark.com/leaderboard
https://doi.org/10.1109/JPROC.2012.2190369
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

fnins-15-684113 July 16, 2021 Time: 16:45 # 1

ORIGINAL RESEARCH
published: 20 July 2021

doi: 10.3389/fnins.2021.684113

Edited by:
Alexantrou Serb,

University of Southampton,
United Kingdom

Reviewed by:
Shuangming Yang,

Tianjin University, China
Dan Hammerstrom,

Portland State University,
United States
Vivek Mangal,

Apple, United States

*Correspondence:
Mingoo Seok

ms4415@columbia.edu

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 22 March 2021
Accepted: 21 June 2021
Published: 20 July 2021

Citation:
Chundi PK, Wang D, Kim SJ,

Yang M, Cerqueira JP, Kang J,
Jung S, Kim S and Seok M (2021)
Always-On Sub-Microwatt Spiking

Neural Network Based on
Spike-Driven Clock-

and Power-Gating for an
Ultra-Low-Power Intelligent Device.

Front. Neurosci. 15:684113.
doi: 10.3389/fnins.2021.684113

Always-On Sub-Microwatt Spiking
Neural Network Based on
Spike-Driven Clock- and
Power-Gating for an
Ultra-Low-Power Intelligent Device
Pavan Kumar Chundi1, Dewei Wang1, Sung Justin Kim1, Minhao Yang1,
Joao Pedro Cerqueira1, Joonsung Kang2, Seungchul Jung2, Sangjoon Kim2 and
Mingoo Seok1*

1 Department of Electrical Engineering, Columbia University, New York City, NY, United States, 2 Samsung Electronics, Seoul,
South Korea

This paper presents a novel spiking neural network (SNN) classifier architecture for
enabling always-on artificial intelligent (AI) functions, such as keyword spotting (KWS)
and visual wake-up, in ultra-low-power internet-of-things (IoT) devices. Such always-on
hardware tends to dominate the power efficiency of an IoT device and therefore it is
paramount to minimize its power dissipation. A key observation is that the input signal
to always-on hardware is typically sparse in time. This is a great opportunity that a
SNN classifier can leverage because the switching activity and the power consumption
of SNN hardware can scale with spike rate. To leverage this scalability, the proposed
SNN classifier architecture employs event-driven architecture, especially fine-grained
clock generation and gating and fine-grained power gating, to obtain very low static
power dissipation. The prototype is fabricated in 65 nm CMOS and occupies an
area of 1.99 mm2. At 0.52 V supply voltage, it consumes 75 nW at no input activity
and less than 300 nW at 100% input activity. It still maintains competitive inference
accuracy for KWS and other always-on classification workloads. The prototype achieved
a power consumption reduction of over three orders of magnitude compared to the
state-of-the-art for SNN hardware and of about 2.3X compared to the state-of-the-art
KWS hardware.

Keywords: always-on device, spiking neural network, event-driven architecture, neuromorphic hardware, clock
and power gating

INTRODUCTION

An spiking neural network (SNN) classifier is an attractive option for ultra-low-power intelligent
internet-of-things (IoT) devices. It is promising especially for always-on functions due to their
spike-based operation for computation and communication, allowing their switching activity
and power to scale smoothly with the input activity rate. An SNN, therefore, is suitable for

Frontiers in Neuroscience | www.frontiersin.org 1 July 2021 | Volume 15 | Article 68411370

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.684113
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.684113
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.684113&domain=pdf&date_stamp=2021-07-20
https://www.frontiersin.org/articles/10.3389/fnins.2021.684113/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-684113 July 16, 2021 Time: 16:45 # 2

Chundi et al. Always-On Event-Driven SNN Hardware

applications like keyword spotting (KWS) or face recognition in
surveillance, thanks to its event-driven operation.

Spiking neural network based hardware work so far, however,
focused on either the acceleration of neural simulations or
the improvement of both performance and energy efficiency.
In other words, they are not designed for always-on function.
For example, Neurogrid (Benjamin et al., 2014) targets large-
scale neural simulations. It employs analog neurons and address
event representation (AER) for communication, the latter using
a multi-bit bus. SpiNNaker (Painkras et al., 2013) also targets
neural simulation and employs an array of embedded digital
processors communicating asynchronously. Yang et al. presented
multiple works that targeted large scale neural simulations. In
CerebelluMorphic (Yang et al., 2021b) they simulated portions
of the cerebellum related to motor learning using 6 field
programmable gate array (FPGA) chips that communicate
using a multicast router. In BiCoSS (Yang et al., 2021c) they
presented a platform with 35 FPGA chips connected to realize
real-time computation of biological activities in multiple brain
areas. In another work (Yang et al., 2021d), they presented
an event-based processing algorithm that used piecewise linear
approximation and binarization for efficient implementation of
credit assignment to neurons in neuromorphic hardware. On the
other hand, TrueNorth (Akopyan et al., 2015) was designed to be
a scalable low power neurosynaptic inference engine for SNNs.
The architecture was event-driven and employed synchronous
circuits for computation blocks and asynchronous circuits for
communication. Also, Tianjic chip was designed to support
inference only with both neuromorphic and deep-learning
models (Pei et al., 2019). Some works proposed architectures
for both the training and inference of SNNs. Koo et al. (2020)
introduced the implementation of a stochastic bit and used it
in the realization of a neuron and synapse. They support on-
chip training and inference with the synapse being stochastic
in training and neuron being stochastic in both training and
inference. Chen et al. (2018) presented an SNN accelerator
with on-chip spike-timing-dependent plasticity (STDP) based
learning. This chip has 64 cores that communicate using a
network-on-chip (NoC) with each core supporting 64 leaky
integrate and fire (LIF) neurons. Also, Loihi (Davies et al., 2018)
was designed to support a variation of the current based dynamics
LIF neuron model and a wide range of synaptic learning rules
for both supervised and unsupervised learning. It is built for
performance. It has 128 cores, three x86 cores, off-chip interfaces
and an asynchronous NoC for communication between cores.
Also, Seo et al. (2011), implemented a scalable architecture with
a set of 256 neurons and transposable memory for synapses
in near-threshold voltage (NTV) circuits. It mapped an auto-
associative memory model. Some other works implemented
different learning rules for on-chip training. Knag et al. (2015),
implemented a feature extractor based on a sparse coding
algorithm using LIF neurons. Park et al. (2019), developed
a new neuromorphic training algorithm and hardware which
supports low overhead on-chip learning. Some of these chips e.g.,
(Akopyan et al., 2015; Davies et al., 2018) employ asynchronous
logic such as quasi-delay-insensitive (QDI) dual-rail dynamic
logic or bundled data communication. Asynchronous logic

circuits are, however, generally bulkier and power-hungrier than
the single-rail static counterpart and also not very voltage-
scalable (Chen et al., 2013; Liu et al., 2013) and bundled
data communication incurs significant overhead because of the
handshake. Some other chips employ power-efficient static logic
(Chen et al., 2018; Davies et al., 2018; Park et al., 2019; Pei et al.,
2019), but they target high throughput, not always-on function.
As a result, they exhibit a power consumption of more than
tens of mW, which makes it difficult to use them for always-
on functions.

In this work, we focus on ultra-low-power always-on inference
hardware and propose an SNN classifier consuming less than
300 nW. Our architecture uses fully spike-based event-driven
operation and only static logic operating at a NTV to achieve
such low power. Specifically, our design is centered around the
neurosynaptic core. It is implemented using static gates and
spike-driven (i) spatiotemporally fine-grained clock generation,
(ii) clock-gating, and (iii) power-gating. Also, the communication
between neurosynaptic cores is free from information loss due
to the collision of spikes, despite using only wires to connect the
cores. The architecture exhibits active power consumption that is
proportional to the input rate due to its event-driven nature.

We also employ the technique in Cao et al. (2014) to train a
neural network with binary weights and use the weights for the
SNN we intend to deploy. The use of binary weights is a recent
development in deep learning for making inference efficient
(Courbariaux et al., 2015). They are of special interest because of
their reduced memory footprint and simple computations. They
are well suited for low power hardware and attain close to state of
the art accuracy on datasets like MNIST. On the other hand, we
keep the activations as spike-rate-coded multi-bit values, which
improves the model’s inference accuracy.

We prototyped an SNN classifier in 65-nm LP CMOS
technology. It has 5-layers and a total of 650 neurons and
67,000 synapses. It consumes 2.3–6.8X lower power at state-of-
the-art accuracies on two well-known KWS benchmarks, i.e.,
Google Speech Command Dataset (GSCD) for multi-keyword
recognition (Warden, 2018) and HeySnips for single-keyword
spotting (Coucke et al., 2019).

In the remaining portion of this manuscript, we will present
our SNN hardware architecture and the experimental results. In
section “Materials and Methods,” we discuss the high-level SNN
classifier architecture, elaborate on each of the components of
the neurosynaptic core and introduce the experiment setup. In
section “Results,” we present the results and finally conclude in
section “Discussion.”

MATERIALS AND METHODS

The SNN classifier in our proposed design is depicted in Figure 1.
It can support a fully connected network as large as 256-128-
128-128-10 with binary weights onto five neurosynaptic cores
which is sufficient to support the KWS task. We map each layer of
the network to a different neurosynaptic core. The neuron block
in the neurosynaptic core for the input layer has 256 neurons
while the ones for the hidden layers, each contains 128 neurons.

Frontiers in Neuroscience | www.frontiersin.org 2 July 2021 | Volume 15 | Article 68411371

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-684113 July 16, 2021 Time: 16:45 # 3

Chundi et al. Always-On Event-Driven SNN Hardware

FIGURE 1 | The proposed SNN classifier architecture (bottom) with the maximum supported network size (top) for always-on functions like keyword spotting.

Each neuron has its own hardware and thus they can process in
parallel. The size of each layer can be altered to make it smaller
by configuring the neurosynaptic core using the scan chain. The
architecture needs to change if a much larger network needs to
be supported while not increasing the area for tasks like object
identification in a security video, necessitating time-sharing of
neuron hardware.

The input and hidden neurosynaptic cores have a neuron
block and a synapse block while the output neurosynaptic core
has only a neuron block. A neuron block contains all the IF
neurons in that layer, a synapse block has (i) an arbiter, (ii) an
SRAM storing up to 256-by-128 binary weights for the input
neurosynaptic core and up to 128-by-128 binary weights for
the hidden neurosynaptic cores, and (iii) a spike generator that
simultaneously generates 128 spikes.

Neuron Block
We propose a spike-event-driven architecture. Figure 2 shows
the neuron block based on that architecture. Each neuron
has (i) asynchronous wake-up circuits and (ii) a synchronous
finite state machine (FSM). Also, all the neurons in a neuron
block share a clock generator based on a ring oscillator.
The architecture contains fine-grained clock-generation and
clock-gating circuits based on spike input as an event. In
the absence of input spikes, each neuron gates its clock
and also power-gates the non-retentive parts of the neuron
using zigzag power-gating switches (PGSs) (Cerqueira and
Seok, 2017), to reduce static power dissipation. In zigzag
power-gating, if the circuit in the power down state, the
gates are left in alternate states by default, reducing the
capacitance that needs to be charged while transitioning into
power on state.

The wake-up circuit of each neuron (Figure 2A, left) has the
static flip-flops, FF+1 and FF−1, which detect the rising edge of
the incoming spikes from two inputs, Spk+1 and Spk−1. Positive
spikes which increase the potential of the neuron are directed to
Spk+1 and negative spikes which decrease the potential to Spk−1.
As shown in Figure 3A, the detection of a spike makes the output
of the clock-enable flip-flop (FFclk−en) high. It also un-gates the
PGS of the neuron. Thanks to the zigzag PGS, the ungating (i.e.,
wake-up) is done in a single clock cycle.

This process starts up the shared clock generator in the neuron
block if it was not already started by another neuron. The shared
clock generator contains a configurable ring oscillator and a clock
divider. The length of the ring oscillator and the divisor for the
clock divider are determined during testing to obtain the desired
clock frequency. The first falling edge of the clock generator’s
output after an active FFclk−en sets the un-gate flip-flop (FFclk−ug)
to high, ungating the clock signal that goes into the FSM. The use
of FFclk−ug ensures that there is a complete low phase of the clock
signal before the rising edge at the clock input of the FSM, giving
sufficient setup time to the flip-flops in the FSM.

Once awoken, the neuron FSM gets executed. The FSMs are
slightly different for the input core, hidden cores, and output
core (Figures 2B–D). In the case of hidden neurons, the FSM, as
shown in Figure 2B, enters the Potential Update state on receiving
the positive edge of the clock. The neuron’s potential is increased
or decreased by one based on the input spike’s type. Then, the
neuron’s potential is compared with the preset threshold (TH) in
Check Pot. State. The neuron contains a 9-bit adder/subtractor
to increment/decrement potential and to compare the potential
with the threshold. If the potential is less than the threshold,
the FSM goes back to the Start/Standby state while resetting all
the flip flops in the wake-up circuit (FF+1, FF−1, FFclk−en, and

Frontiers in Neuroscience | www.frontiersin.org 3 July 2021 | Volume 15 | Article 68411372

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-684113 July 16, 2021 Time: 16:45 # 4

Chundi et al. Always-On Event-Driven SNN Hardware

FIGURE 2 | (A) Neuron Block Architecture with wake-up circuits on the left, FSM with zigzag power gating on the right and Shared Clock generator on the bottom.
(B) Hidden Neuron FSM. (C) Input Neuron FSM. (D) Output Neuron FSM.

FFclk−ug; find them in Figures 3A,B). Otherwise, it resets the
neuron’s potential to zero and also FF+1 and FF−1 in the Potential
Reset state, allowing for receiving the next spike (Figure 3C).
The FSM then enters the Spk Req state, asserts the firing request
(Reqi) and waits for the acknowledgment (Acki) from the arbiter
in the synapse block. While waiting for Acki, if the FSM receives
a new spike it enters another state, Potential update 2, where the
neuron’s potential is calculated. Once Acki from the arbiter is
received, the neuron’s FSM goes back to the Start/Standby state
after resetting the flip-flops (FF+1, FF−1, FFclk−en, and FFclk−ug)
in the asynchronous wake-up circuits. This cuts off the clock and
power to the neuron.

The operation of input and output neurons are slightly
different. The input neuron’s FSM is depicted in Figure 2C. On
receiving a spike, the FSM directly enters the Spk Req state, asserts
a firing request (Reqi) and waits for an acknowledgment (Acki)
from the arbiter in the synapse block. On receiving Acki from
the arbiter, the FSM resets FF+1, FF−1, FFclk−en, FFclk−ug and
goes back to the Start/Standby state. Again, in this state, the clock
and power to the neuron are gated. The output neuron’s FSM is
depicted in Figure 2D. Upon receiving a spike, the FSM enters
the Potential Update state, then in the next state, it resets FF+1,
FF−1, FFclk−en, FFclk−ug and then goes back to the Start/Standby
state. The output neuron does not generate any spikes and only
keeps track of the potential. The neuron with the highest potential
determines the classification result.

This spike-based event-driven operation enables large power
reduction and energy savings. First, if the input has no activity,
which is common for always-on applications, the proposed

neuron architecture can enjoy a very long sleep time. The
hidden neuron without spike-event-driven power management
would consume 1.16 nW as shown in Figure 4A. The proposed
clock-generation/-gating enables 74.6% power savings and the
zigzag power gating provides an additional 17.68%, resulting
in an overall power reduction of 4.8X when the circuit is not
processing any spikes.

If the input has non-zero activity, the proposed neuron will
experience shorter sleep time but it still saves a considerable
amount of energy. For the targeted benchmarks, the shortest idle
time between two spikes per neuron is estimated to be around
4 ms at the maximum input rate. Figure 4B shows the energy
consumption of the hidden neuron as a function of sleep time
obtained using SPICE simulation. The energy consumed includes
the overhead of transitioning in to and out of the power down
state and the energy consumed during sleep. We consider the
hidden neurons with no low power technique used, with only
clock gating used, and with both clock and power gating used.
We can observe that the neuron with clock and power gating can
save energy consumption by 4.35X for 4 ms sleep time. Also, if
the sleep time of the neuron is greater than 1.3 ms, we stand to
gain due to the proposed fine-grained clock and power gating.
The shortest idle time between two spikes would be much smaller
for SNN accelerators that target high throughput, making it
challenging to obtain any benefit from fine-grained power gating.

Synapse Block
The synapse block was also designed based on the event-driven
architecture. Figure 5A shows its microarchitecture. The synapse

Frontiers in Neuroscience | www.frontiersin.org 4 July 2021 | Volume 15 | Article 68411373

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-684113 July 16, 2021 Time: 16:45 # 5

Chundi et al. Always-On Event-Driven SNN Hardware

FIGURE 3 | Waveforms for a hidden neuron FSM when (A) potential is less than the threshold and shared clock was disabled, (B) potential is less than the threshold
and shared clock is running (assume other neurons in the same neuron block are active), (C) potential is greater than the threshold and shared clock is running.

block has an arbiter FSM, an SRAM array, spike generators,
and its own clock generator. A request signal (Reqi) from the
neurons within the same neurosynaptic core starts the local
clock generator of the synapse block, which makes the arbiter
FSM get executed. In case multiple neurons assert Reqi, the
arbiter handles the requests, i.e., grants access to the single-
port weight SRAM based on a fixed priority. To serve n-th
neuron’s request, the arbiter asserts the n-th wordline (WLn)
and loads the binary weights on the read-bitlines (RBLs) whose
values are captured by the flip flops. Each row of the SRAM
contains 128 binary weights which are equal to the number of
neurons in the neurosynaptic core. This means all the weights
needed to serve a neuron’s request are obtained in a single
access. The spike generator uses these weight values to generate
128 positive or negative spikes to the neuron in the next layer.
It is to be noted that the spike generator is connected to the
neurons in the next neurosynaptic by wires only. The arbitration

among the neurons also has the effect of managing access
to these wires by allowing only one spike per wire at once.
Therefore, we avoid the loss of information due to the collision
between two (post-synaptic) spikes traveling to a single neuron
at the same time.

When the local clock generator is enabled, the arbiter FSM gets
executed (Figure 5B). The FSM starts in the Start/Standby state
and when the positive edge of the clock arrives the FSM moves to
one of the Ack[i] states. The exact Ack[i] state is determined based
on the indices of the neurons making the request. The neurons
with a smaller index have a higher priority.

The waveforms in Figure 5C show an exemplary operation of
the circuit when neuron 1 and neuron 2 generate a request at the
same time. We can see from the figure that once the requests are
generated, the FFclk−en flip-flop is set. This turns on the local
clock generator and disables power gating. Acknowledgment
(Ack1) is provided to neuron 1 because it has a higher priority

Frontiers in Neuroscience | www.frontiersin.org 5 July 2021 | Volume 15 | Article 68411374

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-684113 July 16, 2021 Time: 16:45 # 6

Chundi et al. Always-On Event-Driven SNN Hardware

FIGURE 4 | (A) Impact of spike-driven clock gating and a combination of clock and power-gating on the standby power consumption of a hidden neuron obtained
using SPICE simulation. (B) Energy consumption of the hidden neuron obtained using SPICE simulation as a function of sleep time between two spikes, when the
clock is free running and when clock gating and power gating are used.

determined in design time. The same acknowledgment signal acts
as the read WLn for the SRAM.

The arbiter then starts executing the spike generation sub-
FSM (Spkgen). The Spkgen waveform in Figure 5C shows the
state of the sub-FSM. When Spkgen is in the state St1, weight
values are captured in flip-flops and when Spkgen enters state
St2, 128 positive or negative spikes (spk+/−1) are generated for
all the neurons in the next layer based on the weight values. The
arbiter acknowledges back to neuron 1 by asserting Ack1 while
the spike generator goes through the states St0, St1, and St2.
Ack1 stays high until the request from the neuron is high or the
spike generation completes, whichever is later. If there are any
outstanding Reqi, the arbiter FSM continues to serve, otherwise,
the clock and power are disabled.

We chose the fixed priority arbiter instead of a round-robin
one as the area saving is about 17X for 128 inputs. Figure 5D
shows the area of the round-robin arbiter and fixed priority
relative to a fixed priority arbiter with 32 inputs. We can see
from Figure 5D that the area required for a round-robin arbiter
is superlinear as a function of the input size while the area for
a fixed priority arbiter increases approximately linearly with the
number of inputs.

The fixed priority scheme, however, could cause the neuron
with the lowest priority to starve, i.e., its requests may not be
served if the arbiter is busy serving the requests of the neurons
with higher priority. We can address the problem of starvation by
increasing the bandwidth of the SRAM or reducing the requests
that neurons make. In our design process, we ensure the fixed
priority arbiter starves no neuron. We improved the bandwidth
of SRAM using supply boosting which is discussed in section
“On-Chip SRAM.” We chose the thresholds of the neurons
and the clock frequencies of the neuron and synapse blocks so
that spikes are not missed while the neurons are waiting for
acknowledgment from the arbiter.

The process to determine those key design parameters is as
follows. As shown at the bottom of Figure 6, we have considered

a case where a neuron receives spikes from Nnrn,i neurons and
produce spikes, where we can formulate the number of requests
in the i-th layer (Nreq, i), which is:

Nreq,i =
Nspk,i × Nnrn,i

THi
, (1)

where THi is the threshold of the neurons, Nspk, i is the number
of incoming spikes in a particular time period (called a frame)
and per neuron, Nnrn, i is the number of neurons, all in the i-th
neurosynaptic core. On the other hand, the number of requests
that the arbiter in the i-th layer can serve (Nserve, i) can be
formulated as:

Nserve,i =
fclk,a × Tframe

Ncyc,a
(2)

where Ncyc, a is the number of cycles that the arbiter consumes
to serve one request, Tframe is the frame size, fclk, a is the arbiter’s
clock frequency.

If Nreq, i (Eq. 1) exceeds Nserve, i (Eq. 2), starvation occurs.
When starvation occurs, incoming spikes can get dropped as the
arbiter is not fast enough to serve all the requests. We ensure
by design no spike is dropped, i.e., by making Nreq,i not exceed
Nserve,i. This is done by increasing THi or increasing fclk, a.
The former, however, can incur a degradation in the accuracy.
This is because the increase of THi would reduce the number of
output spikes generated in the i-th layer. It has the same effect
as reducing the precision of the activations in a binary-weight
neural network that has a similar network structure. On the other
hand, increasing fclk,a increases the power consumption of the
synapse block. Therefore, we swept THi and fclk, a values to find
optimal operating points for the chip. Figure 7A shows a curve
obtained using RTL simulation with 1000 MNIST test samples
(LeCun et al., 1998) and 8-bit activations. The curve separates
the regions where the neurons starve and where they do not. We
choose design points so that the average number of spikes per
neuron is roughly the same for each of the hidden layers and

Frontiers in Neuroscience | www.frontiersin.org 6 July 2021 | Volume 15 | Article 68411375

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-684113 July 16, 2021 Time: 16:45 # 7

Chundi et al. Always-On Event-Driven SNN Hardware

FIGURE 5 | (A) Proposed synapse block architecture. (B) Arbiter FSM showing the fixed priority and Spkgen sub-FSM. (C) Waveforms showing the operation of the
synapse block when neuron 1 and 2 generate a request. Acknowledgment is given to neuron 1 because of higher priority. Spkgen sub-FSM executes while the
acknowledgment is high. (D) Normalized area comparison between round-robin arbiter and fixed priority arbiter for a different number of inputs. The normalized area
is obtained by dividing the cell area with the area of the fixed priority arbiter with 32 inputs.

hence the curve that separates the starvation and non-starvation
region is the same for all of them. The design point, i.e., the
neuron threshold and the synapse block clock frequency for each
of the hidden layers is indicated as a red star in Figure 7A. The
threshold values we chose for the hidden layers for the MNIST
dataset are (32, 16, and 14) and the threshold values we chose
for the KWS datasets with 6-bit activations are (28, 18, and 10).
The threshold values are not very different for the two kinds of
datasets despite the difference in the desired spiking rate because
of the dependency on weight and input data.

Indeed, the threshold value affects the number of spikes
generated in a layer and this affects the inference accuracy. Recall

that the activations are spike-rate-coded multi-bit values and
the reduction of the number of spikes leads to fewer bits. We
can observe the impact of the choice of threshold values for
different hidden layers on the accuracy of the SNN classifier
in Figures 7B–D. It shows through a Python simulation the
accuracy obtained on 300 test samples of the MNIST dataset.
The Python simulation models the neuron and arbiter and uses
a set of time series vectors as input spike train whose entries
are either 1,−1, or 0 indicating the presence and the sign of the
spike. We chose the time resolution so that the results mimic
the RTL simulation. For Figure 7B, we varied the threshold for
the first hidden layer while the thresholds of the second and

Frontiers in Neuroscience | www.frontiersin.org 7 July 2021 | Volume 15 | Article 68411376

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-684113 July 16, 2021 Time: 16:45 # 8

Chundi et al. Always-On Event-Driven SNN Hardware

FIGURE 6 | Binary coding in a BNN and spike-rate coding in an SNN.

third hidden layers are chosen to be 16 and 8. For Figure 7C
we varied the threshold of the second hidden layer and kept the
threshold of the first hidden layer to be 24 and that of the third
hidden layer to be 8. For Figure 7D we varied the threshold of
the third hidden layer and kept the threshold of the first hidden
layer to be 24 and that of the second hidden layer to be 16. From
Figure 7B we can observe that the accuracy of the classifier is
worse for the small (roughly < 5) and the large threshold values

(roughly > 40). Figure 7B also shows the total number of neuron
requests dropped across layers as a function of the threshold of
the first hidden layer. It indicates that if the threshold is too
small, too many spikes are produced, causing starvation, which
leads to too many neuron requests being dropped, resulting in a
deterioration in the accuracy. Figures 7C,D show a similar trend
when the threshold for the second hidden layer and the third
hidden layer is varied. But we can also observe that the impact of
the threshold of the second and third hidden layer on accuracy
is relatively small if a proper threshold is chosen for the first
hidden layer. This is because the number of spikes and hence
the number of neuron requests are large in the first hidden layer.
The threshold of the first hidden layer determines the number of
requests dropped in the first hidden layer which is also a large
portion of the total number of requests dropped.

On-Chip SRAM
The chip has 65.25 kb of SRAM and so it was important to
minimize SRAM leakage power dissipation. We designed the
SRAM based on the circuit described by Cerqueira et al. (2019)
for ultra-low-power operation. High threshold voltage (HVT)
transistors with three times minimum length were used for the
bitcell to reduce leakage. The buffer in the peripheral circuits
employed zig-zag power gating with cut-off transistors separate
for each row, ensuring fast wake-up.

FIGURE 7 | (A) Threshold and clock frequency optimization for no starvation during operation. Neurons are not starved when the arbiter clock frequency and the
threshold for the layer are high enough. (B) SNN accuracy on 300 samples of the MNIST dataset and the total number of neuron requests dropped (request drop
count) per sample when the threshold value for the 1st hidden layer is varied. (C) SNN accuracy and Request drop count when the threshold value for the 2nd
hidden layer is varied. (D) SNN accuracy and Request drop count when the threshold for the 3rd hidden layer is varied.

Frontiers in Neuroscience | www.frontiersin.org 8 July 2021 | Volume 15 | Article 68411377

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-684113 July 16, 2021 Time: 16:45 # 9

Chundi et al. Always-On Event-Driven SNN Hardware

FIGURE 8 | (A) The ratio of the leakage of the peripheral circuits to that of the bitcells (leakage ratio) for different SRAM sizes where the number of rows is the same
as the number of columns obtained using SPICE simulation. (B) Read delay of the SRAM for different boosted supply voltages (VDDH) obtained using SPICE
simulation.

We chose to have all the weights for a layer in a single SRAM
macro size instead of smaller banks. Figure 8A shows the ratio
of the leakage of the peripheral circuits to the leakage of the bit
cells as a function of the number of rows obtained using SPICE
simulation. From Figure 8A we can see that because of this the
leakage of peripheral circuits would get amortized among more
bitcells, helping us in the overall objective of reducing the leakage.

We use supply voltage boosting during a read operation to
speed up the charge or discharge of the read bitline. The delay
in the read operation arises mostly from charging the read WLn
and charging or discharging the read bit line. Supply voltage
boosting was needed to improve the speed of read operation
which took a hit due to the use of a single SRAM macro for
storing all the weights in a layer. We performed a transistor-level
SPICE simulation to observe the read delay of SRAM for different
values of the boosted supply voltage and the results are shown
in Figure 8B. In Figure 8B we can observe that on increasing
the boosted supply voltage (VDDH) we will eventually be limited
by the time taken to charge the WLn. We operate our circuit so
that read delay is not the critical path in the design by choosing a
high enough VDDH, which is roughly 0.8 V if the regular VDD
is set to 0.52 V.

Experiment Setup
Chip Prototype
We prototyped the test chip in a 65 nm LP CMOS process.
Figure 9A shows the die photo with the boundaries of different
cores marked. The input and the hidden cores have the
dimensions 0.7 mm × 0.7 mm. The output neurons take an area
of 0.0276 mm2. Each of the hidden cores is logically equivalent
but have a different layout to simplify the routing. The total core
area is around 1.99 mm2. The area breakdown of the chip can be
seen from the pie chart in Figure 9B. The chip also contains the
input decoder and the output encoder for reducing the number of
I/O the chip would require. Those decoder and encoder convert
the spike I/Os to the binary address in AER, reducing the spike

I/O pin count from 512 to 9. Also, the chip contains a scan
chain to configure the thresholds of the neurons in different
neurosynaptic cores, set the clock frequency of the neuron and
synapse blocks and write the weights into the SRAMs.

Input Preparation
We envisioned the SNN to interface directly with a spike-
generating feature-extraction front end such as the ones discussed
in Yang et al. (2015, 2019, 2021a). For our experiments, we
used the software model (Yang et al., 2019) to generate features
for the KWS task. The software model makes use of post-
layout Spectre simulations for tuning its parameters and has
been validated using chip measurements. In the analog front
end, the spikes are generated when the voltage on a capacitor
exceeds a certain threshold (Thanalog). The finite bandwidth of
the comparator and Thanalog together control the spike frequency.
We do not alter the value used for Thanalog across the HeySnips
and the GSCD datasets.

The software model generates features of size 16. Each
dimension of the feature captures the energy at a central
frequency in the form of the number of spikes that are generated
by the analog front end in a certain time period. We call this
time period as frame size in case of audio input. The central
frequencies of the 16 channels are geometrically scaled from
about 100–5 kHz. We configure the front end so that the number
of spikes can be represented by 6-bits, i.e., each element in the
feature has 6-bit precision. We set a frame size Tframe of 80 ms
with no overlap between successive frames, based on the length of
the audio clip of the datasets and the dimension of the input layer
that the chip supports. In GSCD and HeySnips datasets, each
keyword audio sample is roughly 1s. We put together the feature
vector of the current frame along with the feature vectors of the
past 15 frames to obtain a vector of size 256 that contains the
number of spikes associated with each input neuron. We evenly
spread out the spikes for each input neuron within a time period
equal to the frame size. The FPGA then sends these spikes to the
input decoder inside the SNN chip in the form of AER.

Frontiers in Neuroscience | www.frontiersin.org 9 July 2021 | Volume 15 | Article 68411378

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-684113 July 16, 2021 Time: 16:45 # 10

Chundi et al. Always-On Event-Driven SNN Hardware

FIGURE 9 | (A) Die photo of the SNN Classifier with the Neurosynaptic Cores along with the Test Circuits. (B) Area break-down of the SNN Classifier. (C) Test chip
with its connection to the FPGA board and LabVIEW. FPGA interface is used for sending the inputs to the chip and reading out the potential of the output neurons.
LabVIEW is used for configuring the thresholds and write to the SRAMs.

FIGURE 10 | (A) Clock frequency measurement and min frame length for 8-bit activations as a function of the supply voltage. Frame size is constrained by the
latency of the SNN classifier (i.e., longer latency increases the minimum frame size). (B) Power consumption of the chip as a function of the input rate at two supply
voltages. Power consumption increases linearly with the input rate.

In the case of the MNIST grayscale dataset, we downsample
the image size to 16 × 16 by utilizing 2 × 2 max-pooling so
that we can match the image with the size of the input layer of
the chip. For each input sample, we generate a set of time series
vectors (spike trains) for the input layer of the chip in a time
duration equal to the frame size, which is chosen based on the
latency of the chip.

Training
We train a binary neural network (BNN) model that uses
binary weights (+1, −1), has no bias and 6-bit ReLU
activation (Cao et al., 2014) for the KWS task. The network

structure is equivalent to the SNN model we deploy. The
BNN provides the weights for the SNN model. The 6-bit
activations in the BNN are encoded for the SNN using spike-
rate, e.g., 010000(2) is mapped to 16 spikes/frame. We set the
threshold of the neurons in each layer such that each neuron
generates at most 63 spikes/frame (i.e., Nspk,i in Figure 6
is less than 63), which matches the 6-bit activation of the
BNN model. This is possible because in the SNN model, as
spikes pass through the neurons in a layer, the number of
spikes scales roughly by the ratio of the threshold. We can
easily change the activation precision after deployment for
different models by configuring the thresholds. For example,

Frontiers in Neuroscience | www.frontiersin.org 10 July 2021 | Volume 15 | Article 68411379

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-684113 July 16, 2021 Time: 16:45 # 11

Chundi et al. Always-On Event-Driven SNN Hardware

FIGURE 11 | (A) Accuracies of the SNN chip measured across multiple benchmarks. (B) ROC curves from KWS benchmarks obtained using RTL simulation.
(C) Accuracy of the SNN chip on KWS datasets across 0–40 dB SNR levels obtained using RTL simulation. (D) Measured power consumption of chip and error for
the HeySnips dataset as a function of activation precision. Stars denote the operating point used for comparison with other works.

FIGURE 12 | (A) Leakage power of the chip measured as a function of temperature at different supply voltages. (B) Variation of neuron clock frequency measured as
temperature and supply voltage vary.

we use 8-bit activation with the Tframe of 0.5 s for the
MNIST grayscale.

Inference Testing
Altera DE1 board containing a Cyclone II FPGA chip is used
to interface with the input decoder and the output encoder in

the SNN chip as shown in Figure 9C. The SNN chip along with
the FPGA is globally synchronous but locally asynchronous. The
global clock comes from the FPGA and is used to send new inputs
and read out the potential of output neurons at regular intervals.
The input decoder and the output encoder are synchronized to
the global clock but are asynchronous to the clock of the input

Frontiers in Neuroscience | www.frontiersin.org 11 July 2021 | Volume 15 | Article 68411380

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-684113 July 16, 2021 Time: 16:45 # 12

Chundi et al. Always-On Event-Driven SNN Hardware

FIGURE 13 | Measurement of the neuron clock frequency of around 50
neurosynaptic cores across 10 chips at a supply of 0.52 V.

core and the output core. All the neuron and synapse blocks
within the SNN chip are asynchronous to each other. LabView
is used to configure the scan-chain and write weights into the
SRAMs in the neurosynaptic cores.

The FPGA board reads out the input data from its memory.
It sends an 8-bit AER code to the input decoder identifying
the neuron which is supposed to receive a spike and another
signal identifying whether the spike is an incrementing spike or
decrementing spike. The input decoder then sends a pulse to
the appropriate neuron. Spikes that arrive at the input of the
hidden layer arrive at all the neurons simultaneously. There is
separate hardware for each neuron and hence they can process
spikes simultaneously and compete for access to the SRAM. After
an interval greater than or equal to the latency of the chip, the
FPGA deactivates the output core’s clock so that no more spikes
are processed. It then enables the output encoder to read out the
potential of the output neurons in a serial fashion. The SNN chip
is not pipelined, so at the end of the readout, the FPGA resets the
potential in all the neurons and sends in the next set of spikes to
the input decoder.

For our experiments, we define the latency of the SNN chip as
the time needed to process enough spikes to achieve the desired
accuracy. If the latency of the chip is less than or equal to the
frame size, we can achieve real-time operation. We can stream
a new input to the classifier at the end of each frame, which is
typically done in audio processing systems. The time period we
allow the chip to process is equal to the frame size. The frame
sizes are large enough to process most of the spikes and not hurt
the accuracy of the task.

RESULTS

Most of the results are based on a supply voltage of 0.52
V and the clock frequency of the neuron block of 70 kHz
and that of the synapse block of 17 kHz, while the chip

can operate at other supply voltages and achieve different
frequencies. Figure 10A shows the measurement results of the
neuron block frequency, synapse block frequency and latency
of the chip (minimum frame size) at different supply voltages
when 8-bit activations are used. An off-chip instrument (NI
LabView) was used to measure the clock frequency. The latency
of the chip was measured by comparing the potential of the
output neurons with the results from RTL simulation for 50
samples of the MNIST test set with 8-bit activations. The
minimum frame size we can use to operate the chip with 8-
bit activations reduces with a supply voltage as the speed of the
circuit increases.

We measured the power consumption of the chip during
standby and when continuously running (100% input rate) KWS
datasets like GSCD or HeySnips. The power consumption of
the chip would scale based on the amount of activity at the
input. Figure 10B shows what the SNN chip power consumption
would be at different input rates. We obtain the maximum
switching power by subtracting the standby power from the
power consumption at a 100% input rate. We obtain the
power consumption at an intermediate input rate by scaling the
switching power and summing it up with the standby power.
The SNN chip dissipates a power of 75 nW when there is no
input and power of 220 nW when running a KWS dataset at a
supply of 0.52 V.

We physically measured the accuracy of the chip and we can
see the accuracy of the chip across the different classification
tasks in Figure 11A. We read out the output neurons’ potential
to the FPGA and pick the index of the neuron with the highest
potential as the predicted class. In GSCD, the SNN can recognize
four keywords (“yes,” “stop,” “right,” and “off,” arbitrarily chosen)
and fillers with an accuracy of 91.8%. The SNN architecture we
use is 256-128-128-128-5 and configure the thresholds to be (1,
28, 18, 10) where 1 is the threshold for the input layer (fixed) and
the rest are for the hidden layers. For the HeySnips dataset, the
chip can recognize one keyword (“Hey Snips”) and fillers with an
accuracy of 95.8%. For the MNIST grayscale dataset, the trained
SNN structure is 256-128-128-128-10 with the thresholds of (1,
32, 16, 14) and it gives an accuracy of 97.6%.

Figure 11B shows the receiver operating characteristic (ROC)
curve for GSCD and HeySnips. It shows the false reject rate
(FRR) as a function of the false alarm rate (FAR) for 1-h-long
audio obtained by concatenating the test set samples and running
an RTL simulation. FAR indicates the number of false positives
while FRR indicates the number of false negatives. We obtained
the ROC by calculating the softmax of the output neurons’
potential and varying the discriminating threshold. If the softmax
value of the keyword class is greater than the discriminating
threshold then the prediction is a keyword otherwise it is a
non-keyword. If the discriminating threshold is large (close to
1) most of the audio frames will be classified as non-keyword
which will increase the number of false negatives (FRR). If the
discriminating threshold is small (close to 0) then most of the
audio frames will be classified as keyword thereby increasing
the number of false positives (FAR). In the case of GSCD, we
take the average of the pairs (FAR and FRR) we obtain for each
keyword at a certain discriminating threshold. In addition, we

Frontiers in Neuroscience | www.frontiersin.org 12 July 2021 | Volume 15 | Article 68411381

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-684113 July 16, 2021 Time: 16:45 # 13

Chundi et al. Always-On Event-Driven SNN Hardware

ran an RTL simulation to obtain the accuracy of the chip in
the presence of noise by mixing the speech audio with white
noise at various SNRs. We adopted noise-dependent training
for this experiment (Yang et al., 2019), i.e., we use the same
SNR for both train data and test data. The SNN classifier chip
achieves reasonably high accuracy across 0 to 40 dB SNR levels
for both GSCD and HeySnips datasets as shown in Figure 11C.
The configurability of the thresholds of different layers in the
SNN classifier architecture allows us to change the data precision
after deployment. Recall that changing the threshold in the
hidden layers of the SNN has the same effect as changing the
precision of the activations in a deep neural network with the
same network structure and that activation is spike rate coded
in our SNN. This can be used to trade-off accuracy for power
savings. Figure 11D shows the measured accuracy and the
power consumed by the SNN chip when the precision of the
activations is varied for the HeySnips dataset. At higher activation
precision the error is lower, but the power consumption is higher
and at lower activation precision the error is higher, but the
power consumption is lower. We chose a precision of 6-bit
which is a good compromise between the power consumption
and the accuracy.

We also measured the impact of temperature on the leakage
power dissipation and the speed of our circuits. We placed our
SNN chip and other testing hardware in a temperature chamber
for our measurements. Figure 12A shows the leakage power of
the circuit while Figure 12B shows the clock frequency of the
circuit at different supplies as the temperature is varied. The
margin we provide to the length of the ring oscillator helps
us avoid timing failure due to temperature, supply and process
variation to a certain extent. While our design does not have a
mechanism to dynamically tune the supply voltage or frequency,
it is beneficial to operate the circuit at a lower supply when the
temperature is high and at a higher supply when the temperature
is low, to obtain the needed performance while keeping the power
consumption low.

On the other hand, Figure 13 shows the variation in
the neuron clock frequency among approximately 50 cores
across 10 chips at a supply of 0.52 V. From the figure
we can see that the mean is 63.2 KHz and the standard
deviation is 7.45 KHz. The variation in the clock frequency
is due to both the difference in the layout of the ring
oscillators across cores and chip-to-chip variation. The chip-to-
chip variation among the cores is not uniform. The standard

TABLE 1 | Comparisons with recent KWS hardware.

This work Shan et al. (2020) Guo et al. (2019) Giraldo and Marian (2018)

Technology (nm) 65 28 65 65

Algorithm SNN DSCNN RNN LSTM

Area (mm2) 1.99 0.23 6.2 1.035

VDD (V) 0.52–1 0.41 0.9–1.1 0.575

Clock frequency 70 kHz @ 0.52 V 40 kHz 75 MHz 250 kHz

Benchmark 1 GSCD (4 Keywords) GSCD (2 Keywords) GSCD (10 Keywords) TIMIT (4 Keywords)

Accuracy (%) 91.8 94.6 90.2 92.0

Benchmark 2 HeySnips (1 Keyword) GSCD (1 Keyword) HeySnips (1 Keyword) N/A

Accuracy (%) 95.8 98.0 91.9 N/A

Power 75–220 nW* 510 nW** 134 µW 5 µW

*Power consumption scales with input rate; **feature extraction circuits included.

TABLE 2 | Comparisons with recent SNN hardware.

This work Koo et al. (2020) Park et al. (2019) Chen et al. (2018) TrueNorth

Technology (nm) 65 90 65 10 28

Neuron count 650 1 410* 4096 1M

Synapse count 67k 1 N/A 1M 256M

Area (mm2) 1.99 0.15 10.08 1.72 430

Clock frequency 70 kHz @ 0.52 V 37.5 MHz 20 MHz 105 MHz @ 0.5 V N/A

MNIST classification

Power 305 nW 282.8 mW† 23.6 mW 9.42 mW** 63 mW

Accuracy (%) 97.6 92.3 97.8 97.9 97.6***

Throughput (inf/s) 2 N/A 100K N/A N/A

Energy per inference (nJ) 195 N/A 236 1700 N/A

Energy per SOP (pJ) 1.5 8.4 pJ/1.84 pJ†† N/A 3.8 26

*Input layer not included; **estimated from neuron’s power dissipation; ***estimated from Hsin-Pai Cheng et al., IEEE DATE 2017; †power reported in Koo et al. (2020)
based on network size and power for one neuron and synapse; ††energy with sequencing circuits / Energy without sequencing circuits.

Frontiers in Neuroscience | www.frontiersin.org 13 July 2021 | Volume 15 | Article 68411382

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-684113 July 16, 2021 Time: 16:45 # 14

Chundi et al. Always-On Event-Driven SNN Hardware

deviation of the clock frequency varies from 5.6 to 9.5 KHz based
on the specific core. If we use the average of the clock frequency of
cores within a chip as being indicative of the chip’s performance,
the chip used for comparison and reporting other measurements
has a performance that is about average.

DISCUSSION

Prior works on SNN hardware have focused on non-always-on
application (Akopyan et al., 2015; Chen et al., 2018; Davies et al.,
2018), support for on-chip training (Chen et al., 2018; Davies
et al., 2018; Park et al., 2019) and support for both deep learning
and neuromorphic workloads (Pei et al., 2019). The absence
of any prior work on SNNs for targeting always-on hardware
motivated us to explore a new architecture for SNNs.

We presented a fully spike-event-driven SNN classifier for
an always-on intelligent function. We employed a fine-grained
clock and power-gating to take advantage of the input signal
sparsity, low leakage SRAM and a fixed priority arbiter to achieve
a very low standby power of 75 nW. We trained the SNN
for multiple always-on functions, notably multi- and single-
keyword spotting benchmarks, achieving competitive accuracies.
The average power consumption of the SNN chip scales with
the input activity rate. It ranges from 75 nW with no input
activity and 220 nW with the maximum input activity for
the KWS benchmarks.

Table 1 summarizes the comparison of our work with other
recent KWS accelerators. Our design achieves 2.3–6.8X power
savings compared to Shan et al. (2020) among KWS accelerators.
If we scale the area of our design to 28 nm it would be 0.37
mm2 which is still slightly higher than Shan et al. (2020). The
higher area usage of our work is possibly because it does not adopt
time-sharing in neuron hardware.

Our work does not have feature extraction circuits. They
would increase the area and power when included. We can
consider two feature extraction circuits (Yang et al., 2019, 2021a),
as candidates for the analog front end for our chip. Yang et al.
(2021a) is the improved version of Yang et al. (2019). We used
the software model of the analog front end presented in Yang
et al. (2019). The power consumed by the analog front end and
the feature extraction circuits is 50 nW in the improved version
and 380 nW in the older version.

The use of multiple supplies (VDD = 0.52 V and VDDH = 0.8
V) in our work can add some hardware and power overhead.
There would be a significant increase in power consumption
if we use only 0.8 V as the power supply for our chip.
For example, if we assume that power consumption increases
quadratically with VDD, then the power increases by 2.4X.
We can consider two scenarios that can provide two different
supplies and avoid a large increase in power. In one scenario,
we assume an external DC-DC converter provides VDD while
we can generate VDDH using a capacitor-based charge pump

circuits (Kim et al., 2021). The current load of the VDDH is not
high since it is used in only a small part of SRAM. Therefore,
even if the charge pump efficiency is not high, the overall
impact is small. In the other scenario, we assume an external
DC-DC converter provides VDDH and then we can generate
VDD using an on-chip digital LDO. This LDO would have a
power efficiency of 65% (VDD/VDDH), which increases total
chip power dissipation by 53.8%.

Table 2 summarizes the comparison of our design with other
SNN hardware work (TrueNorth’s power is estimated from
Cheng et al., 2017). Our design achieves over 30,000X power
savings compared to Chen et al. (2018) in Table 2. Our design is
optimized for ultra-low power always-on functions while others
are optimized for a balance between higher throughput and
energy efficiency. High-performance SNN accelerators generally
assume that input will be presented at a much higher rate,
therefore, the time interval between spike events would be
much smaller, limiting the benefit of fine-grained clock gating.
Our design achieves competitive accuracies among both KWS
and SNN hardware works and contributes to a growing body
of literature that supports SNNs as an attractive low-power
alternative to deep learning based hardware architectures.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

PC and DW designed the chip with PC focussing on the
synapse block. DW focussing on the neuron. SK contributed
to improving the tape-out flow. JC designed the bitcell for use
in the SRAM block while MY contributed to the software that
simulates the analog front end. MS supervised the project and is
the principal investigator. JK and SJ contributed to the technical
discussions. All authors contributed to the article and approved
the submitted version.

FUNDING

This research is in part supported by the Samsung Electronics,
DARPA (the µBrain program), and SRC TxACE (Task 2810.034).

ACKNOWLEDGMENTS

This article was an extension of the conference manuscript
(Wang et al., 2020).

Frontiers in Neuroscience | www.frontiersin.org 14 July 2021 | Volume 15 | Article 68411383

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-684113 July 16, 2021 Time: 16:45 # 15

Chundi et al. Always-On Event-Driven SNN Hardware

REFERENCES
Akopyan, F., Jun, S., Andrew, C., Rodrigo, A. I., John, A., Paul, M., et al. (2015).

TrueNorth: design and tool flow of a 65 mW 1 Million neuron programmable
neurosynaptic chip. IEEE Trans. Comput. Aided Design Integr. Circ. Syst. 34,
1537–1557. doi: 10.1109/tcad.2015.2474396

Benjamin, B. V., Peiran, G., Emmett, M., Swadesh, C., Anand, R. C., Jean-Marie,
B., et al. (2014). “Neurogrid: a mixed-analog-digital multichip system for large-
scale neural simulations. IEEE 102, 699–716. doi: 10.1109/jproc.2014.2313565

Cao, Y., Yang, C., and Deepak, K. (2014). Spiking deep convolutional neural
networks for energy-efficient object recognition. Int. J. Comput. Vision 113,
54–66. doi: 10.1007/s11263-014-0788-3

Cerqueira, J. P., and Seok, M. (2017). Temporarily fine-grained sleep technique
for near- and subthreshold parallel architectures. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 25, 189–197. doi: 10.1109/tvlsi.2016.2576280

Cerqueira, J. P., Thomas, J. R., Yu, P., Shivam, P., Martha, A. K., and Mingoo,
S. (2019). “Catena: A 0.5-V Sub-0.4-mW 16-core spatial array accelerator for
mobile and embedded computing,” in Proceedings of the 2019 Symposium on
VLSI Circuits, C54–C55. doi: 10.23919/vlsic.2019.8777987

Chen, G. K., Raghavan, K., Ekin Sumbul, H., Phil, C. K., and Ram, K. K. (2018).
A 4096-Neuron 1M-Synapse 3.8PJ/SOP spiking neural network with on-chip
STDP learning and sparse weights in 10NM FinFET CMOS. IEEE Symp. VLSI
Circ. Honolulu HI 2018, 255–256. doi: 10.1109/VLSIC.2018.8502423

Chen, Y., Mingoo, S., and Steven, M. N. (2013). “Robust and energy-efficient
asynchronous dynamic pipelines for ultra-low-voltage operation using adaptive
keeper control,” in Proceedings of the International Symposium on Low Power
Electronics and Design (ISLPED), (Beijing), 267–272. doi: 10.1109/islped.2013.
6629307

Cheng, H. P., Wei, W., Chunpeng, W., Sicheng, L., Hai, H. L., and Yiran, C. (2017).
“Understanding the Design of IBM neurosynaptic system and its tradeoffs: a
user perspective,” in Proceedings of the Design, Automation & Test in Europe
Conference & Exhibition (DATE), Vol. 2017, (Lausanne), 139–144. doi: 10.
23919/date.2017.7926972

Coucke, A., Mohammed, C., Thibault, G., David, L., Mathieu, P., and Thibaut,
L. (2019). “Efficient keyword spotting using dilated convolutions and gating,”
in Proceedings of the ICASSP 2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), (Brighton), doi: 10.1109/
icassp.2019.8683474

Courbariaux, M., Yoshua, B., and Jean-Pierre, D. (2015). Binaryconnect: Training
deep neural networks with binary weights during propagations. arXiv
[Preprint].

Davies, M., Narayan, S., Tsung-Han, L., Gautham, C., Yongqiang, C., Sri Harsha, C.,
et al. (2018). Loihi: a neuromorphic manycore processor with on-chip learning.
IEEE Micro 38, 82–99. doi: 10.1109/mm.2018.112130359

Giraldo, J. S. P., and Marian, V. (2018). “Laika: A 5uW Programmable LSTM
accelerator for always-on keyword spotting in 65nm CMOS,” in Proceedings
of the ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference
(ESSCIRC), (Dresden), doi: 10.1109/esscirc.2018.8494342

Guo, R., Yonggang, L., Shixuan, Z., Ssu-Yen, W., Peng, O., Win-San, K., et al.
(2019). “A 5.1pJ/Neuron 127.3us/Inference RNN-based speech recognition
processor using 16 computing-in-memory SRAM Macros in 65nm CMOS,”
in Proceedings of the 2019 Symposium on VLSI Circuits, (Kyoto), C120–C121.
doi: 10.23919/vlsic.2019.8778028

Kim, S. J., Soo, B. C., and Mingoo, S. (2021). A High PSRR, low ripple, temperature-
compensated, 10-µA-Class Digital LDO Based on current-source power-FETs
for a Sub-mW SoC. IEEE Solid-State Circuits Letters 4, 88–91. doi: 10.1109/
LSSC.2021.3070556

Knag, P., Jung, K. K., Thomas, C., and Zhengya, Z. (2015). A sparse coding neural
network ASIC with on-chip learning for feature extraction and encoding. IEEE
J. Solid State Circ. 50, 1070–1079. doi: 10.1109/jssc.2014.2386892

Koo, M., Srinivasan, G., Shim, Y., and Roy, K. (2020). “sBSNN: stochastic-bits
enabled binary spiking neural network with on-chip learning for energy efficient
neuromorphic computing at the edge. IEEE Trans. Circ. Syst. I Regular Papers
67, 2546–2555. doi: 10.1109/TCSI.2020.2979826

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceed. IEEE 86, 2278–2324. doi: 10.1109/5.
726791

Liu, J., Steven, M. N., and Mingoo, S. (2013). “Soft MOUSETRAP: a bundled-
data asynchronous pipeline scheme tolerant to random variations at ultra-low

supply voltages,” in Proceedings of the 2013 IEEE 19th International Symposium
on Asynchronous Circuits and Systems, (Santa Monica, CA), doi: 10.1109/async.
2013.29

Painkras, E., Luis, A. P., Jim, G., Steve, T., Francesco, G., Cameron, P., et al.
(2013). SpiNNaker: A 1-W 18-Core System-on-chip for massively-parallel
neural network simulation. IEEE J. Solid State Circ. 48, 1943–1953. doi: 10.1109/
jssc.2013.2259038

Park, J., Juyun, L., and Dongsuk, J. (2019). “7.6 A 65nm 236.5nJ/classification
neuromorphic processor with 7.5% energy overhead on-chip learning using
direct spike-only feedback,” in Proceedings of the 2019 IEEE International Solid-
State Circuits Conference - (ISSCC), (San Francisco, CA), 140–142. doi: 10.1109/
isscc.2019.8662398

Pei, J., Lei, D., Sen, S., Mingguo, Z., Youhui, Z., Shuang, W., et al. (2019). Towards
artificial general intelligence with hybrid tianjic chip architecture. Nature 572,
106–111. doi: 10.1038/s41586-019-1424-8

Seo, J. S., Bernard, B., Yong, L., Benjamin, D. P., Steven, K. E., Robert, K. M.,
et al. (2011). “A 45nm CMOS neuromorphic chip with a scalable architecture
for learning in networks of spiking neurons,” in Proceedings of the 2011 IEEE
Custom Integrated Circuits Conference (CICC), (San Jose, CA), doi: 10.1109/cicc.
2011.6055293

Shan, W., Minhao, Y., Jiaming, X., Yicheng, L., Shuai, Z., Tao, W., et al. (2020).
“14.1 A 510nW 0.41V low-memory low-computation keyword-spotting chip
using serial FFT-Based MFCC and binarized depthwise separable convolutional
neural network in 28nm CMOS,” in Proceedings of the 2020 IEEE International
Solid- State Circuits Conference - (ISSCC), (San Francisco, CA), 230–232. doi:
10.1109/isscc19947.2020.9063000

Wang, D., Pavan, K. C., Sung, J. K., Minhao, Y., Joao, P. C., Joonsung, K., et al.
(2020). “Always-On, Sub-300-nW, event-driven spiking neural network based
on spike-driven clock-generation and clock- and power-gating for an ultra-low-
power intelligent device,” in Proceedings of the IEEE Asian Solid-State Circuits
Conference (A-SSCC), (Hiroshima), doi: 10.1109/a-sscc48613.2020.9336139

Warden, P. (2018). Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv [Preprint].

Yang, M., Chung-Heng, Y., Yiyin, Z., Joao, P. C., Aurel, A. L., and Mingoo, S.
(2019). Design of an always-on deep neural network-based 1-µW voice activity
detector aided with a customized software model for analog feature extraction.
IEEE J. Solid State Circ. 54, 1764–1777. doi: 10.1109/jssc.2019.2894360

Yang, M., Hongjie, L., Weiwei, S., Jun, Z., Ilya, K., Sang, J. K., et al. (2021a).
Nanowatt acoustic inference sensing exploiting nonlinear analog feature
extraction. IEEE J. Solid State Circ. 1–11. doi: 10.1109/JSSC.2021.3076344

Yang, M., Shih-Chii, L., and Tobi, D. (2015). A Dynamic Vision Sensor With 1%
temporal contrast sensitivity and in-pixel asynchronous delta modulator for
event encoding. IEEE J. Solid State Circ. 50, 2149–2160. doi: 10.1109/jssc.2015.
2425886

Yang, S., Jiang, W., Nan, Z., Bin, D., Yanwei, P., and Mostafa, R. A. (2021b).
CerebelluMorphic: large-scale neuromorphic model and architecture for
supervised motor learning. IEEE Trans. Neural Netw. 1–15. doi: 10.1109/
TNNLS.2021.3057070 [Epub ahead of print].

Yang, S., Jiang, W., Xinyu, H., Huiyan, L., Xile, W., Bin, D., et al. (2021c).
BiCoSS: toward large-scale cognition brain with multigranular neuromorphic
architecture. IEEE Trans. Neural Netw. 1–15. doi: 10.1109/TNNLS.2020.
3045492 [Epub ahead of print].

Yang, S., Tian, G., Jiang, W., Bin, D., Benjamin, L., and Bernabe, L. B. (2021d).
Efficient spike-driven learning with dendritic event-based processing. Front.
Neurosci. 15:97. doi: 10.3389/fnins.2021.601109

Conflict of Interest: JK, SJ, and SK are employed by Samsung Electronics.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Chundi, Wang, Kim, Yang, Cerqueira, Kang, Jung, Kim and Seok.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 July 2021 | Volume 15 | Article 68411384

https://doi.org/10.1109/tcad.2015.2474396
https://doi.org/10.1109/jproc.2014.2313565
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/tvlsi.2016.2576280
https://doi.org/10.23919/vlsic.2019.8777987
https://doi.org/10.1109/VLSIC.2018.8502423
https://doi.org/10.1109/islped.2013.6629307
https://doi.org/10.1109/islped.2013.6629307
https://doi.org/10.23919/date.2017.7926972
https://doi.org/10.23919/date.2017.7926972
https://doi.org/10.1109/icassp.2019.8683474
https://doi.org/10.1109/icassp.2019.8683474
https://doi.org/10.1109/mm.2018.112130359
https://doi.org/10.1109/esscirc.2018.8494342
https://doi.org/10.23919/vlsic.2019.8778028
https://doi.org/10.1109/LSSC.2021.3070556
https://doi.org/10.1109/LSSC.2021.3070556
https://doi.org/10.1109/jssc.2014.2386892
https://doi.org/10.1109/TCSI.2020.2979826
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/async.2013.29
https://doi.org/10.1109/async.2013.29
https://doi.org/10.1109/jssc.2013.2259038
https://doi.org/10.1109/jssc.2013.2259038
https://doi.org/10.1109/isscc.2019.8662398
https://doi.org/10.1109/isscc.2019.8662398
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1109/cicc.2011.6055293
https://doi.org/10.1109/cicc.2011.6055293
https://doi.org/10.1109/isscc19947.2020.9063000
https://doi.org/10.1109/isscc19947.2020.9063000
https://doi.org/10.1109/a-sscc48613.2020.9336139
https://doi.org/10.1109/jssc.2019.2894360
https://doi.org/10.1109/JSSC.2021.3076344
https://doi.org/10.1109/jssc.2015.2425886
https://doi.org/10.1109/jssc.2015.2425886
https://doi.org/10.1109/TNNLS.2021.3057070
https://doi.org/10.1109/TNNLS.2021.3057070
https://doi.org/10.1109/TNNLS.2020.3045492
https://doi.org/10.1109/TNNLS.2020.3045492
https://doi.org/10.3389/fnins.2021.601109
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 03 August 2021

doi: 10.3389/fncom.2021.674154

Frontiers in Computational Neuroscience | www.frontiersin.org 1 August 2021 | Volume 15 | Article 674154

Edited by:

Oliver Rhodes,

The University of Manchester,

United Kingdom

Reviewed by:

Shimeng Yu,

Georgia Institute of Technology,

United States

Rishad Shafik,

Newcastle University, United Kingdom

*Correspondence:

Martino Dazzi

daz@zurich.ibm.com

Received: 28 February 2021

Accepted: 23 June 2021

Published: 03 August 2021

Citation:

Dazzi M, Sebastian A, Benini L and

Eleftheriou E (2021) Accelerating

Inference of Convolutional Neural

Networks Using In-memory

Computing.

Front. Comput. Neurosci. 15:674154.

doi: 10.3389/fncom.2021.674154

Accelerating Inference of
Convolutional Neural Networks
Using In-memory Computing

Martino Dazzi 1,2*, Abu Sebastian 1, Luca Benini 2 and Evangelos Eleftheriou 1

1 IBM Research Europe, Rüschlikon, Zurich, Switzerland, 2 Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland

In-memory computing (IMC) is a non-von Neumann paradigm that has recently

established itself as a promising approach for energy-efficient, high throughput hardware

for deep learning applications. One prominent application of IMC is that of performing

matrix-vector multiplication in O(1) time complexity by mapping the synaptic weights

of a neural-network layer to the devices of an IMC core. However, because of

the significantly different pattern of execution compared to previous computational

paradigms, IMC requires a rethinking of the architectural design choices made when

designing deep-learning hardware. In this work, we focus on application-specific,

IMC hardware for inference of Convolution Neural Networks (CNNs), and provide

methodologies for implementing the various architectural components of the IMC core.

Specifically, we present methods for mapping synaptic weights and activations on the

memory structures and give evidence of the various trade-offs therein, such as the one

between on-chip memory requirements and execution latency. Lastly, we show how to

employ these methods to implement a pipelined dataflow that offers throughput and

latency beyond state-of-the-art for image classification tasks.

Keywords: convolutional neural network, in-memory computing, computational memory, AI hardware, neural

network acceleration

1. INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have revolutionized the field of Machine Learning
by reaching unprecedented accuracy in a large number of cognitive data analysis tasks. DNNs are
currently being used in a wide variety of applications, ranging from image classification (He et al.,
2016) to autonomous driving (Bojarski et al., 2016) and natural language interpretation (Vaswani
et al., 2017). As the applications increase in number and complexity, so do DNN architectures, and
along with them the hardware architectures for their execution and training.

Historically, DNNs run on general purpose processors, such as CPUs and GPUs. While this
solution is still widely employed and GPUs are constantly improving their metrics of energy
consumption and execution time for training and inferencing, they are inadequate for application
areas with power envelopes of sub Watt or of very few Watts, which are generally referred to as
the IoT or edge computing realm. To this end, custom hardware platforms such as application-
specific integrated circuits (ASICs) are being designed (Chen et al., 2016) for low power and efficient
execution of DNNs. ASICs are quite energy efficient in terms of TOPS/W and can reach state-of-the
art accuracy and throughput in a variety of tasks (Jouppi et al., 2017), albeit at the expense

85

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2021.674154
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2021.674154&domain=pdf&date_stamp=2021-08-03
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:daz@zurich.ibm.com
https://doi.org/10.3389/fncom.2021.674154
https://www.frontiersin.org/articles/10.3389/fncom.2021.674154/full

Dazzi et al. Accelerating CNN Inference Using IMC

of time consuming circuit design and, to a certain extent, limited
scope of execution. Moreover, a hardware-aware training of the
DNNs (Han et al., 2015; He et al., 2017; Jacob et al., 2018) is
often needed.

Independently from the hardware platform, be it general
purpose processors or ASICs, different performance can be
obtained on the basis of the computational paradigm being used.
In general, von Neumann architectures are inherently limited
in performance by the need to move data from the memory
to the computational units: in modern DNN models, with a
parameter count that can reach hundreds of millions (Huang
et al., 2017; Vaswani et al., 2017) retrieving them from a memory
can severely hinder performance. This phenomenon, also known
as the von Neumann bottleneck, has led to many research efforts
aiming at alternative, non-von Neumann paradigms. Among
these, we look in depth into IMC (Prezioso et al., 2015; Burr
et al., 2017; Hu et al., 2018; Ielmini and Wong, 2018; Le Gallo
et al., 2018; Xia and Yang, 2019; Sebastian et al., 2020), a
computational paradigm showing promise for unprecedented
performance and energy efficiency, targeting specifically themain
computational load of DNNs: matrix-vector multiplications.
With IMC, we take advantage of a set of resistance-based or
charge-based memory devices, such as memristive (Sebastian
et al., 2019; Joshi et al., 2020) or CMOS-based devices (Valavi
et al., 2019). By organizing these devices in a crossbar array
configuration, based on their physical properties, a matrix-vector
multiplication can be carried out with O(1) time complexity,
contrary to the O(N2) time complexity of this operation on
traditional architectures. However, in order to fully exploit
this new computing paradigm, in the design of IMC-based
hardware we must rethink well-established architectural choices
and provide novel methodologies for optimizing the dataflow.
Specifically, while the number and size of synaptic weights can
vary greatly within the layers of a DNN, the IMC crossbar arrays
on which they are mapped have pre-determined, fixed shapes.
Consequently, the mapping of synaptic weights is a pivotal
problem to optimize in order to fully exploit the potential of IMC
in DNN applications.

Moreover, while IMC obviates the need to communicate
synaptic weights, the intermediate results must be cached on
the local memories of the IMC cores. Also in this case, new
approaches must be developed for handling the data efficiently
and according to the dataflow.

In this work, we focus on the problem of executing
image classification tasks on IMC-based hardware architectures.
Specifically, we focus on Convolutional Neural Networks
(CNNs), which represent the state-of-the-art for a variety of
image processing applications. In section 2, we propose a
novel IMC core architecture for inference of CNNs. Moreover,
we present novel methods for mapping weights on the IMC
crossbar array and activations on the local memory of the
IMC core. These methods enable high-throughput, efficient
execution of CNNs on the IMC hardware. Note that while these
contributions are presented as different parts that organically
belong to a IMC-based accelerator for inference of CNNs, the
methodologies and approaches developed here, have universal

applicability regardless of the overall architectural configuration.
In section 3, we introduce the dataflow of the IMC-based
accelerator and present as a case study the execution of
ResNet-32 on the CIFAR-10 dataset. This section gives evidence
of how our proposed methodologies applied to IMC yield
beyond state-of-the-art performance compared to non-IMC
ASICs targeting the same dataset. Lastly, section 4, compares
our approach with previous works in the field and concludes
the paper.

2. METHODS

2.1. Hardware Architecture Overview
We identify the In-Memory Computing core (IMC core) as the
unit building block of the IMC hardware architecture. The IMC
core is built around a crossbar array executing the matrix-vector
multiplication and features peripheral circuitry for the additional
functionality required by CNNs.

Figure 1 shows the mapping of the CNN layers on the
IMC cores and the tasks carried out during execution by each
component. We start by describing the operation required by
CNNs in order to understand how these are employed on the
hardware architecture and how the hardware itself is designed in
order to facilitate their execution.

A CNN architecture is typically comprised of a series of
interconnected layers, each layer defined by learnable parameters
and typically one activation function. The result of the activation
function is referred to as activation. As the name suggests, every
layer of a CNN performs a convolution on the activations. A
convolutional layer transforms an input volume of feature maps
of size Hin · Win · Cin into an output volume of feature maps
of size Hout · Wout · Cout . Unless specified, we will consider in
our study input and output volumes with Hin = Hout = H and
Win = Wout = W. Note that these assumptions do not affect
generality, since for the layers in which pooling, striding, and
padding are involved, the approach we follow in designing the
various architectural choices would remain the same. Also, we
will refer to the activations along the plane marked by H and W
as lying on the (H,W) plane.

Each convolutional layer consists of many dot products.
Specifically, every element of the output volume in the (H,W)
plane is calculated as the dot product between a patch of
the input volume of size F1 · F2 · Cin with an equally sized
matrix of parameters of that layer, also called kernel weights.
The dot product is executed Cout times by applying Cout

different kernel weights in order to obtain all Cout output
channels of the output volume. The results of the matrix-
vector multiplication are called pre-activations. In matrix form,
the matrix-vector multiplication for one pre-activation at layer
L + 1 across all channels at a generic position (u, v) is
expressed by Equation (1), where α

n,L
i,j indicates an activation

at layer L and position (i, j) at channel n, γ
n,L
i,j denotes a

pre-activation layer L, position (i, j) and channel n, and K

represents the kernel matrix. One element of the kernel matrix
for a position (a,b), input channel v, and output channel w

Frontiers in Computational Neuroscience | www.frontiersin.org 2 August 2021 | Volume 15 | Article 67415486

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

FIGURE 1 | Mapping of ResNet-32 on an array of IMC cores. (A) Mapping of the network on the array: each layer is mapped onto one IMC core. The synaptic

weights are mapped on the computational memory elements, while operations on pre-activations or activations are carried out by the Digital Processor. (B) One

matrix-vector multiplication for a convolutional layer. (C) Dataflow between two IMC cores; the dataflow is scheduled by the Dataflow Controller. The system level

representation (left) and, color-coded, the corresponding functionality of each component (right).

is indicated as kv,w
a,b

. We consider Cin = N, Cout = M,
and F1 = F2 = F.

γ
L+1
u,v = α

L
i : i+F−1,j : j+F−1 ·

K =

α
0,L
i,j

. . .

α
N/2−1,L
i+F−1,j+F−1

α
N/2,L
i,j

. . .

α
N−1,L
i+F−1,j+F−1

T

k0,00,0 . . . k0,M0,0
.

k
N/2−1,0
F−1,F−1 . . . k

N/2−1,M
F−1,F−1

k
N/2,0
0,0 . . . k

N/2,M
0,0

.

kN,0
F−1,F−1 . . . kN,M

F−1,F−1

(1)

Subsequently to the operation on the kernel weights, the
resulting pre-activations undergo a post processing that typically
involves additive and multiplicative scalings, known as batch
normalization (Ioffe and Szegedy, 2015) and a non-linear
activation function. Given the operations described above, the
matrix-vector multiplication that transforms activations from
one layer into pre-activations of another is particularly suited
for IMC, while the subsequent operations on pre-activations are
better suited for standard digital processing units.

Figure 1A shows the mapping of a CNN, ResNet-32, on an
array on IMC cores. The network is mapped on the physical
array so that at most one layer is mapped on each IMC core.
In the cases in which the size of the layer is greater than that
of the IMC core, the synaptic weights of the layer are split
between multiple IMC cores. The topology of the network is
mapped on the IMC cores, implemented as crossbar arrays,
so that edges of the dataflow graph of the CNN correspond
to communication channels in the physical array. While the
design of the communication fabric for such an architecture
is not the subject of this work, we will assume that any IMC
core can communicate in one timestep to any other IMC
core with which communication is required, as presented in
Dazzi et al. (2019). Figure 1B shows figuratively the matrix-
vector multiplication of Equation 1 for a convolutional layer
where F1 = F2 = F. A subset of the input volume (in
green) is multiplied by the kernel weights (in blue); after batch
normalization and execution of the activation functions, the
results are the output activations across all output channels Cout

and one position on theH,W dimensions (in orange). Figure 1C
shows the hardware architecture of two successive IMC cores
and, color coded, the role of every component in the execution
of the CNN. The IMC core consists of the Crossbar Array, an

Frontiers in Computational Neuroscience | www.frontiersin.org 3 August 2021 | Volume 15 | Article 67415487

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

Input Memory, a Digital Processor, an Output Memory and a
Dataflow Controller.

The Input Memory stores the input activations of one layer,
which during execution are either received from an input
scratchpad or from another IMC core executing another layer.
When needed for computational purposes, the activations are
read from the Input Memory and provided to the interface of
crossbar array 1 . The crossbar array maps the kernel weights
of one layer to its IMC devices and executes the matrix-vector
multiplication between a patch of the input volume and the
kernel weights themselves expressed in Equation (1) 2 . The
result of this computation are Cout pre-activations, i.e., the results
of one matrix-vector multiplication before any post-processing
and application of the non-linear activation function. The Digital
Processor executes the remainder of the computation that
transforms pre-activations into activations 3 . Namely, it takes
care of all computations in CNNs not adequate for IMC. In our
example, these include batch normalization and the application
of activation functions. Lastly, the output memory collects the
output activations that are the result of the computation 4 ;
These results are then delivered, via communication links, to the
next layers (cores) for further processing 5 .

Figure 2 shows the detailed dataflow of two IMC cores
executing two subsequent layers L and L+1 and the dataflow chart
for the IMC core executing layer L. In the example, we assume a
3x3 kernel and no padding. Firstly, rows of input pixels to layer
L are fetched from the Input Memory and loaded to the Crossbar
Array 1 . In this phase, the pixels are fetched from the local
SRAM and loaded on the local buffers of the Crossbar Array,
which temporarily store pixels for the subsequent computation to
be executed. The operation is repeated for timesteps t0 − 2 (red
row of pixels), t0 − 1 (yellow row of pixels), and t0 (green row
of pixels), after which enough data for one dot product has been
loaded to the buffers of the Crossbar Array. Consequently, the
computation in the crossbar array 2 can take place at timestep
t0. Finally, timestep t0 concludes with the delivery of the pixel
that was computed to the local memory of the subsequent core
3 . In can be seen how, aside from the initial loading of pixels
at timesteps t0 − 2 and t0 − 1, the IMC core assigned to layer
L requires a new row of pixels to be fetched for computation.
Indeed, at timestep t0 + 1, one new row of pixels (in blue) is
loaded, followed by computation of one dot product and delivery
of the pixel to the IMC core assigned to layer L+1.

2.2. Mapping of Weights
In CNNs, the synaptic weights, also referred to as kernel weights
and responsible for the matrix-vector multiplications, comprise
a convolutional layer. In this section, we will refer to the overall
matrix of kernel weights of size F1 · F2 · Cin × Cout as the kernel
matrix. Also, for the sake of brevity, we will refer to the activations
for one position in the (H,W) plane across all channels as one
pixel. Figure 3 shows the mapping of one kernel matrix on a
crossbar array. Without loss of generality, it is assumed that
one kernel weight is mappable on one computational memory
device. Note that this is a reasonable assumption given the
common precision requirements of weights in DNNs (Joshi
et al., 2020) and the effective precision offered by the memory

FIGURE 2 | Data movement in two IMC cores at two consecutive timesteps t0
and t0 + 1. Execution steps are represented as (1) fetching and loading of the

data, (2) computation, and (3) communication of the pixel to other IMC cores.

The timechart shows the execution steps for the IMC core executing layer L.

At timesteps t0 − 2 and t0 − 1 input pixels are loaded on the crossbar array. As

data is not yet sufficient for the computation of any pixel, no computation or

communication takes place. At timestep t0, sufficient pixels are available to

compute on the crossbar array and one input pixel is computed and

communicated to other IMC cores. Likewise at timestep t0 + 1, a new row of

pixels is loaded and the IMC core executed the computation and

communication of another output pixel.

devices used for IMC. Our approach can however be easily
extended to cases where a single weight is mapped on multiple
devices. According to this mapping approach, the kernel matrix
is unrolled so that the kernel weights associated to one output
channel are placed along one column of the crossbar. In this
way, the Cout columns of the kernel matrix are mapped on the
same amount of adjacent columns of the crossbar array. Based
on this physical placement, one matrix-vector multiplication is
performed as follows: first, the input data-patch, retrieved from
the Input Memory, is unrolled and provided at the input rows
of the crossbar, matching the corresponding rows of the kernel
matrix. Then, from each column, the pre-activation for a single
channel is read back and converted to a digital value. The pre-
activations will subsequently undergo digital processing, which
in principle implements the non-linear function and any other
digital processing that is required.

Frontiers in Computational Neuroscience | www.frontiersin.org 4 August 2021 | Volume 15 | Article 67415488

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

FIGURE 3 | Mapping of one kernel matrix of size F · F ·Cin ·Cout on a crossbar

array. The kernel weights (top) are color coded to reflect their placement on

the devices (bottom). The F · F · Cin kernel weights responsible for one of the

Cout output channels are mapped on one column of the array.

Fundamentally, the problem of mapping a kernel matrix
to a crossbar array constitutes the mapping of a shape of

(F1 · F2 · Cin) × Cout elements onto a grid of fixed size
composed of computational memory elements. Although the
F1, F2, Cin, Cout parameters change from layer to layer and
from network to network, state-of-the-art CNNs for image
classification (He et al., 2016; Huang et al., 2017) typically
feature kernels of size F1 = F2 = 3, and channel sizes in
powers of two, commonly ranging from 16 to 1024. Furthermore,
usually Cin = Cout for the majority of the internal layer of the
CNNs (Krizhevsky et al., 2012; He et al., 2016). In light of this
assessment, we will focus on the case where F1 = F2 = 3
and Cin = Cout , as this is the set of hyperparameters which
is the most common within the architectures of the CNNs we
take into consideration. Regarding the dimensionality of the
crossbar arrays, it appears that practical implementations adopt
square sizes, primarily for generality and for the possibility of
performing the reverse read operation in the case the array was
designed also for training DNNs (Nandakumar et al., 2018).
Based on these considerations, the kernel matrices typically
appear to have an aspect ratio equal to F1 · F2 = 9 (i.e., they
require 9 times more rows than columns), and are mapped on a
crossbar array grid with aspect ratio equal to one. This implies
that a large number of the crossbar array devices will end up
being unmapped, and therefore unutilized, during the execution
of CNNs. We try to avoid this issue by proposing two methods
of parallelization of the computation of the convolutional layers
by replication of the kernel matrix. In these methods, we map
multiple replicas of the kernel matrix on the crossbar array

for one convolutional layer in order to execute in parallel
multiple matrix-vector multiplications of the same layer. Note
that the number of kernel replicas mapped on the crossbar array
effectively represent the number of dot products that can be
executed in parallel on the array. Consequently, the number of
kernel replicas is equivalent to the degree of parallelism of the
dot products.

2.2.1. Parallelizing Computation Across One Direction
In thismethod, we parallelize the computation so that the outputs
are pre-activations along one direction of the (H,W) plane of
the output volume. Figure 4 shows the parallelization of three
matrix-vector multiplications for a single convolutional layer
with a kernel of size F1 = F2 = 3.

Figure 4A shows the input and output feature map volumes.
In the input volume, we highlight the input patches required for
each of thematrix-vectormultiplications we parallelize and in the
output volume we highlight the positions of the resulting pre-
activations. All the activations from the various input patches
will be provided in parallel to the rows of a crossbar array, and
consequently all the pre-activations of the output volume will
be calculated in parallel on the columns of the crossbar array.
Figure 4B shows the single input patches of the input volume,
colored and patterned, and the corresponding pre-activations
on the output volume with the same kernel matrix. It can be
noted in Figure 4A that, while each of the three input patches
comprise 27 · Cin activations, they overlap and overall comprise

(5× 3) · Cin unique activations. Figure 4C shows the mapping
of the kernel replicas on the crossbar array. Three replicas of the
kernel matrix are mapped on the crossbar, each kernel matrix by
itself occupying an area of F1 · F2 · Cin rows and Cout columns.
Different color patterns represent input activations and output
pre-activations for different matrix-vector multiplications on the
same input volume in Figure 4A. Note that, because of the
overlapping in the input patches, some input activations belong
to more than one input patch. Specifically, in Figure 4C, input
activations with overlapping color patterns represent activations
of the input volume that belong to various input patches.
Consequently, as the input pixels for different matrix-vector
multiplications are shared, some rows of the crossbar are shared
between different kernels. Specifically, assuming F1 = F2 = F,
while one kernel matrix occupies a (F · F · Cin) × Cout area on
the crossbar, any additional kernel matrix adds F · Cin rows and
Cout columns.

2.2.2. Parallelizing Computation Across Two

Directions
In this method, we parallelize the computation so that the
output are pre-activations along on both directions of the (H,W)
plane of the output volume. In Figure 5A, we color-code and
pattern the input patches for the parallelized matrix-vector
multiplications on the feature maps. We parallelize overall six
matrix-vector multiplications, with the input patches covering
collectively a 5-by-4 area on the (H,W) plane of the input
volume. Figure 5B shows the physical mapping of the kernel
replicas on the crossbar and the position of the activations
provided as inputs. It can be noted that, contrary to the previous

Frontiers in Computational Neuroscience | www.frontiersin.org 5 August 2021 | Volume 15 | Article 67415489

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

FIGURE 4 | Parallelization of the computation along one direction through mapping of kernel matrix replicas on the crossbar array. In this example, we display the

parallelization of three matrix-vector multiplications of the convolutional layer. Devices outside the colored patches are unmapped. (A) Input volume (left) and output

volume (right) of feature maps for a given layer, where three matrix-vector multiplications are executed in parallel. The patches required for every matrix-vector

multiplications are highlighted in the input volume and color-patterned. The resulting output activations in the output volume are color-patterned in a matching color.

(B) Correspondence between the input patches in (A) and the resulting output activation. (C) Mapping of the kernel matrix replicas for the three matrix-vector

multiplications on the crossbar array. The color of the devices corresponds to the similarly colored input and output activations in (B). Input activations are provided to

the crossbar array in one timestep in an order that is highlighted by the same color pattern as in (A,B).

FIGURE 5 | Parallelization of the computation along two directions by mapping of kernel matrix replicas on the crossbar array. (A) Color-patterned position of the six

input patches for the six matrix-vector multiplications executed in parallel on the crossbar. (B) Mapping of the kernel matrix replicas on the crossbar array. Input

activations are provided to the crossbar array in an order that is highlighted by the same color pattern as in (A).

method, the sharing of rows among different kernels is more
scattered, and generates a less regular pattern of mapping of both
activations to the rows of the crossbar and kernel weights to
the devices. With this method, for every replica of the kernel
matrix mapped onto the crossbar, Cout columns are assigned to
the new output to be computed, while the number of additional
rows depends on the position of the patch on which the kernel
is supposed to perform the computation. In particular, based on
the position, the activations required by one kernel replica may
or may not have been already in use by rows in the crossbar.
For example, the kernel associated with the yellow patch, i.e., the

one with a vertical stripe pattern in Figure 5A, requires F · Cin

rows to be assigned. However, the kernels associated with the
red diagonal stripe patterned and light green horizontal stripe
patterned patches only require Cin new rows to be assigned
for each.

2.2.3. Comparison of Parallelization Methods
Given the many variables in the mapping of kernel matrices to
crossbar arrays (e.g., crossbar size, kernel size, and number of
input and output channels that might change even within the
same CNN), a reasonable figure of merit of a mapping scheme

Frontiers in Computational Neuroscience | www.frontiersin.org 6 August 2021 | Volume 15 | Article 67415490

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

should be based on the aspect ratio of the kernel matrices that are
mapped on the crossbar. Indeed, assuming crossbars of aspect
ratio equal to 1 and given a number of kernel matrices to be
mapped on that crossbar, then the greatest number of kernel
matrices that can fit on the crossbar is achieved by a method
that makes the aspect ratio of the shape of the overall replicas
of the kernel matrix closer to 1. In this section, we will refer to the
method proposed in section 2.2.1 as Method 1, and the method
proposed in section 2.2.2 as Method 2. Also, we will refer to the
overall matrix comprising a number of kernel matrix replicas to
be mapped onto one crossbar as the collective kernel matrix. In
Method 1, the aspect ratio of n kernel replicas (collective kernel
matrix) mapped on the crossbar can be expressed in closed form
and, for F1 = F2 = F, is equal to

A (n) = F2 ·
Cin

Cout
·

1+ (n− 1) · 1
F

1+ (n− 1)
(2)

It can readily be seen that for Cin = Cout , then A (1) =

F2, and A (∞) = F. Thus, as the number of kernel matrix
replicas increases, the aspect ratio of the collective kernel matrix
decreases. Specifically, from a quadratical dependency when n =

1, we reach asymptotically a linear dependency.
For Method 2, given that the way in which the number of

new rows to be assigned for every replica strongly varies from
the position of the input volume patch that the kernel takes as
input, we did not derive a closed formula expression. We note
however that as Method 2 parallelizes computations across both
directions of the (H,W) plane of the input volume, the theoretical
minimum aspect ratio is:

A (n = Hout ·Wout) =
Cin ·Hin ·Win

Cout · Hout ·Wout
(3)

which, for layers with Cin = Cout , Hin = Hout , Win = Wout and
stride equal to 1, is equal to 1.

Figure 6 shows at comparison of the twomethods for different
parameters. In this comparison we consider Cin = Cout = 16
and F1 = F2 = F = 3, which are realistic parameters for
CNNs targeting IoT-like datasets. We perform the comparison in
the following way: given an output volume, we fix a maximum
number of pixels on the width direction Wout in its (H,W)
plane (In Figure 6 it is called 1W). We then parallelize the
computations in order to obtain adjacent pixels with maximum
width equal to 1W. By comparing the two methods in this
way, we observe that the case with 1W = 1 corresponds
to Method 1, while any other value of 1W corresponds to
Method 2. Figure 6A shows a comparison of the aspect ratios
of the collective kernel matrix as a function of the number
of kernel replicas n. As foreseen by Equation 2, the minimum
aspect ratio reachable with 1W = 1 is 3. Method 2, with

(1W ≥ 2) is able to further reduce the aspect ratio, and while
the theoretical minimum is equal to 1, it tends to decrease very
little at around A = 2. Also, it is apparent that for 1W ≥ 3
the parallelization seems to perform similarly. Figure 6B shows
the number of rows required for a given 1W, as function of
the number n of kernel replicas. For a given number of replicas,

FIGURE 6 | Comparison between different mappings of kernel replicas at the

increase of the number of kernels n. Different methods are marked by different

1W. (A) Aspect ratio of the collective kernel matrix (# crossbar rows/#

crossbar columns) for a given number of kernel replicas. (B) Number of Rows

at the increase of the number of kernel replicas.

Method 2, with 1W ≥ 2 clearly requires less rows compared
to Method 1. For example, note that a collective kernel matrix
of 20 kernels requires 1,056 rows with Method 1, and only 672
with Method 2 and 1W = 5. Lastly, we discuss the benefits of
our methodologies on device utilization. Mathematically, device
utilization u can be formulated as:

u =

∑N−1
i=0 DK

DA
, (4)

where DK denotes the number of devices required for one kernel
matrix, N represents the number of kernels, and DA indicates
the number of devices of the crossbar array. As our proposed
mapping methods maximize N, they also enable higher device
utilization, which increases linearly with N. However, note that
u is not a function of 1W. Consequently, for a given number
N of kernel matrices that are mapped on the array, the device
utilization is the same, regardless of the1W used in themapping.

2.3. Mapping of Activations
As presented in section 2.1, the activations for one layer are stored
on the Input Memory of the IMC core. The purpose of the Input
Memory is to cache the pixels, which will serve as the input
vectors for thematrix-vector multiplications that will be executed
on the crossbar array.We start by describing the pattern by which
pixels need to be stored and fetched from the input memory. At
every timestep, if the conditions for computation are met, each
IMC core must fetch a given number of pixels and provide them
to the crossbar array interface for computation of the matrix-
vector multiplications. Further, the IMC core may have to store
the pixels that it receives from other IMC cores. We assume that
the Input Memory is a static random-access memory (SRAM),

Frontiers in Computational Neuroscience | www.frontiersin.org 7 August 2021 | Volume 15 | Article 67415491

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

FIGURE 7 | Mapping of pixels on the Input Memory. In the memory mapping, colored-in boxes represent data, while diagonal patterned boxes represent empty

bitlines. (A) Portion of a feature map volume, in which we highlight the pixels to be mapped on the Input Memory. (B) Inter-word adjacent placing of pixels. In the

figure, we display the numbering of words and bit lines in the Input Memory. (C) Kernel-level interleaved placing. Pixels belonging to one kernel row are placed

contiguously to each other [e.g., pixels (0, 0) to (0, 2))]; the remaining bit lines for the word containing the (0, 2) pixel as left empty. (D) Activation-level interleaved

placing. No data from different pixels in stored in the same word. Note that 1pix[i] indicates the index of word with the beginning of the i − th pixel. 1kernel denotes

the overall number of words that store one row of pixels.

which is commonly used to the end of caching operands in ASICs
(Shafiee et al., 2016).

In general, for the pipelined operation of layers with stride
equal to 1, at every timestep a IMC core must fetch a number of
pixels equal to the kernel size and store one pixel received from
a previous layer (IMC core). We note the difference between the
logical placement of pixels, which are part of the input volume
of pixels as shown in Figure 2, and their physical instantiation in
the local memory. Given that the fetching pattern is tied to the
logical placement of the pixels in the input volume, in principle
we would prefer to store pixels in the Input Memory in a way
that mimics their logical position. Unfortunately, this task poses
several problems. First, for a single network, different layers can
typically have different channel depth, i.e., pixels for different
layers are represented by a different number of bits. Moreover,
the channel depth can vary from network to network. On the
other hand, memory arrays such as on-chip SRAM, have fixed
physical structures organized in words, each word comprising a
given number of bits. The overall number of words is defined as
the word depth. Below, we present three methods for mapping
the varying and flexible data structure of pixels onto the fixed
and predetermined memory array. We also present appropriate
metrics for evaluating these methods.

2.3.1. Memory Mapping Evaluation Metrics
In standard on-chip memories, the granularity for fetching the
data is the memory word. This means that in one clock cycle,
the memory can be accessed one word at a time. The number
of cycles required to store (i.e., write) and fetch (i.e., read)
one pixel depends on the size of the memory word and of the
pixel itself. Furthermore, in the case where different pixels are
stored in a single word, the writing operation is possible through
write-masks, which are a common feature in SRAMs. On the
other hand, the reading operation will require bit-slicing logic to
dissect the word and extract the logical units required. Although
possible, both the reading and the writing of different data in the
same word require the accounting of the bit-line index where one
data ends and another begins.

In the following subsections, we use as a metric the number
of cycles required to write one pixel and to read one kernel-row
of pixels. Moreover, we consider the requirement of storing bit-
line indexes for reading and writing data. Lastly, we assess the

amount of memory needed to store the same number of data by
the various methods.

2.3.2. Intra-Word Adjacent Placing (IWAP)
Using this method, we store pixels adjacent to each other in the
memory so that different pixels could be stored on the sameword.
The placing mimics the logical organization of the data, so that
adjacent pixels on the same row in the input volume are stored
adjacent to each other on the Input Memory. Figure 7B shows
inter-word adjacent mapping for a number of pixels highlighted
in Figure 7A. Each pixel is mapped so that different channels
are stored sequentially and according to their logical order in
the feature map volume. If space is available within one word,
different pixels can be stored in the same word; this is for
example the case of pixel (0, 0) and pixel (0, 1) in word 1. For a
given number of pixels to be cached, this method requires the
minimum possible amount of memory. However, it requires bit-
line indexes for both storing and fetching the pixels, and can
require different number of cycles for writing and reading the
pixels depending on the timestep.

2.3.3. Kernel-Level Interleaved Placing (KLIP)
Using this method, we store different pixels within the same
word, only if they belong to a single row of an input patch for
which matrix-vector multiplications must be computed. Assume
that, in Figure 7A, the feature map volume is to be convolved
with a 3x3 kernel. Among those highlighted in the figure, the
rows of pixels belonging to input patches for the convolution are
[(0, 0), (0, 1), (0, 2)]; [(1, 0), (1, 1), (1, 2)]; and [(2, 0), (2, 1), (2, 2)].
Figure 7C shows the mapping on the Input Memory. The pixels
of each row are stored contiguously to each other in the memory.
However, the remaining bit lines within the word containing
the last pixel of the feature map volume are left empty. This
practice of leaving part of thememory empty in order to allow the
mapping of data in a way that is closer to its logical positioning is
somewhat similar to the concept of memory interleaving typically
employed in memory management for CPUs.

As this method leaves part of the memory empty to
accommodate the positioning of pixels in memory, it clearly
does not use the minimum amount of memory possible for one
volume of pixels. As with the previous method, it may require
different number of cycles for writing the pixels depending on the

Frontiers in Computational Neuroscience | www.frontiersin.org 8 August 2021 | Volume 15 | Article 67415492

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

timestep. Moreover, given that different pixels can still be stored
within one word, bit line indexes are required for writing. As
described in Figure 2, at every timestep where computations are
executed, a new row of an input patch is loaded in the memory.
Since we place contiguously the pixels of the rows of the input
patches, the number of read cycles is constant at every timestep,
and no bit line index is required for reading one row.

2.3.4. Pixel-Level Interleaved Placing (PLIP)
Using this method, we do not allow storing different pixels within
the same word. Figure 7D shows one such memory mapping. In
the example in Figure 7A, each pixel is stored in two memory
words. The unoccupied part of the last word storing each pixel
is left empty. This is very similar to the concept of kernel-level
interleaved placing, this time applied to single pixels across the
channel depth.

This method has the finest granularity of logical units to
be stored, and thus makes the most inefficient use of the local
memory. Since every pixel is individually interleaved, there is no
need for bit line index for either writing or storing words. Also
contrary to previous methods, both the number of read and write
cycles are constant regardless of the pixels being read or stored.

2.3.5. Comparison of the Methodologies
In this subsection, we compare the various memory-mapping
methodologies, discussed above, using the metrics introduced in
section 2.3.1. Consider the storing of a portion of the feature
map volume of size H · F · N, where H denotes the height of
the volume, F the kernel size of that layer and N the channel
depth. For the cases considered in this comparison, we use a fixed
kernel size F = 3, whereas H and N are varying parameters.
Furthermore, for this comparison we consider 8-bit precision
for the pixels. As explained in section 2.3.1, at each cycle one
pixel across all channels must be written on the Input Memory,
while a number of pixels equal to one row of input patch must be
fetched to execute the matrix-vector multiplication. Thus, in our
comparison, write cycles refers to the number of cycles to write
one pixel, while read cycles refers to the number of cycles to read
F = 3 pixels.

Table 1 shows the results for various memory mappings.
Firstly, we investigate the case of writing and reading the input
image of a CNN, which typically comprises N = 3 channels.
The size of the image is based on input images for the CIFAR-
10 dataset, i.e., H = 32. Word length (WL) is set to 128 bits. It
can be noted how inter-word adjacent placing (IWAP)requires
the minimum amount of memory, but has a varying number of
read and write cycles based on the pixels to be read. In this case,
owing to the small size of the pixels in comparison to the word
length, kernel-level interleaved placing (KLIP) and Activation-
level interleaved placing (PLIP) cause a severe overhead of empty
memory because of interleaving, i.e., 43 and 82.1%, respectively.

Secondly, we look at the mapping of a volume with N = 56
and H = 8. This corresponds, for example, to the parameters
of the last set of layers of the ResNet-32 architecture with some
channels being pruned, as in Joshi et al. (2020). For WL = 160,
IWAP has varying read and write cycle counts. KLIP guarantees
constant read cycle count, but the write cycles can still vary

between 3 and 4 based on the pixel to be written, with a small
overhead of empty memory, which is about 6%. PLIP guarantees
a constant read and write cycle time, with an almost identical
empty memory overhead in the case of KLIP. Note that PLIP
also guarantees the minimum number of read and write cycles
compared to both IWAP and KLIP.

Lastly, we look at the mapping with of a volume with N =

56 and H = 8, but with WL = 128. While IWAP does not
guarantee constant read and write cycle count, in this scenario
it outperforms all other methods by providing constant and
minimum read and write count, other than of course minimum
memory requirements. This can be accounted for by the fact
that the number of bits of one pixel is exactly 3.5 times the
word length. KLIP performs identically to IWAP on the metrics
considered, while adding a 4% empty memory overhead. Lastly,
PLIP performs the worst by requiring one additional read more
compared to the other two methods, and 12%memory overhead.
The comparison gives evidence of how different methodologies
perform differently for different pixel sizes and word length of
the memory, and no methodology outperforms the others a
priori. In general terms, IWAP and KLIP perform better for
pixels that have a small size compared to the word length, but
require the use of write masks to store pixels and, once read, post
processing for separating the bits in the word that are required
from those that are unwanted. Also, the fact that neither method
guarantees a constant number of reading and writing cycles,
may be problematic to the design of the dataflow. Conversely,
PLIP typically provides better performance for pixel sizes that are
greater than the word length, and gives constant read and write
cycles count regardless of word length and pixel size. It also does
not require the use of write masks, and it may only require the use
of post processing for selecting non-zero bits inside the words.
These advantages come at the expense of a greater memory
requirement. No method, in principle, guarantees a lower read
and write cycle count. Lastly, we note that for pixel sizes that are
exact multiples of the word size, the three methods map pixels
and perform in the exactly the same way.

2.4. Dataflow and Memory Control
Contrary to von-Neumann computing paradigms, IMC
considers one operand of the matrix-vector multiplication to
be physically instantiated and ready for execution. In the case
of inference of CNNs, the two operands of the matrix-vector
multiplication are, as presented above, activations and kernel
weights. Inherently to the functionality of hardware based on
IMC, the kernel weights for every layer are physically instantiated
on the devices of the computational memory in the IMC cores,
and stationary on their assigned core during execution. This
contrasts with von-Neumann hardware models, where the kernel
weights for each layer have to be fetched from a memory, and
would not be ready for use at the same time. Because of this,
in order to increase the utilization of the IMC cores, we would
like in principle to parallelize the operation across layers. CNNs
are a class of neural networks particularly suited for this specific
parallelization because, as detailed in the previous sections and
contrary to other classes of neural networks, the matrix-vector
operation per layer depends only on a subset of the overall

Frontiers in Computational Neuroscience | www.frontiersin.org 9 August 2021 | Volume 15 | Article 67415493

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

TABLE 1 | Memory mapping metrics for different channel depth of the pixels (in table, N) and word length (WL).

Memory [KB] % Empty # Read # Write

N = 3 IWAP 0.288 0 [1, 2] [1, 2]

H = 32 KLIP 0.505 43 1 1

WL = 128 PLIP 1.523 82.1 3 1

N = 56 IWAP 1.344 0 [9, 10] [3, 4]

H = 8 KLIP 1.427 5.9 9 [3, 4]

WL = 160 PLIP 1.436 6.4 9 3

N = 56 IWAP 1.344 0 11 4

H = 8 KLIP 1.4 4 11 4

WL = 128 PLIP 1.528 12 12 4

For all cases, we consider 8-bit precision. Numbers in brackets indicate that different numbers can be obtained for reading or writing different pixels. N and H are the channel depth

and the height of the volume of feature maps, respectively. WL is the word length of the local memory.

volume of pixels produced by the previous layer or layers. In
this section, we present a method to execute inference of such
networks by pipelining across matrix-vector multiplications of
different layers.

Assume an array of IMC cores interconnected by a
communication fabric. Fundamentally, the dataflow implies that
each IMC core operates independently, receiving pixels from
cores interconnected to it and triggering its own computations
once enough pixels have been received, according to the
parameters of the layer it is executing. Upon completion of
computation, it will deliver the data to the cores that require it.
It is evident from this first summary of the dataflow that the
execution will depend highly from the communication fabric that
interconnects the IMC cores array. In this work, we assume the
presence of a communication fabric that allows any IMC core to
communicate with a point-to-point connection to any other IMC
core that would require its data for a given application. One such
communication fabric and the principles by which to organize
communication between an array of IMC cores for the execution
of CNNs are described in depth in Dazzi et al. (2019). In our
IMC core architecture, the dataflow is enforced by the Dataflow
Controller, which also generates the addresses for writing and
reading pixels as described in section2.3. We discuss the dataflow
control in section 2.4.1, and memory control in section 2.4.2.

2.4.1. Dataflow Control
Algorithm 1 provides a pseudocode that describes the activity of
the Dataflow Controller. At every timestep (line 2) the Dataflow
Controller first checks the presence of new incoming pixels and
stores them in the InputMemory according to one pixel mapping
method (lines 3 to 7). Subsequently, it also updates the pointer
(pointer_in) that keeps track of the current position of the pixels
in the input volume. Secondly (lines 10 to 17), it checks whether
the conditions to execute the computation are satisfied. When
the computation is parallelized, the operations of storing the
pixel and updating the input pointers are repeated a number
of times (line 4) equal to the number of pixels that are being
received (nr_parallel). The conditions to start the computation
will depend on the pixels present in the Input Memory (and

Algorithm 1 Dataflow Control

1: def dataflow_ ctrl():
2: at every timestep do

3: if pixel_in then

4: for i from 0 to (nr_parallel− 1) do
5: store_data(pointer_in, pixel_in)
6: pointer_in.x.update()
7: pointer_in.y.update()
8: end for

9: end if

10: if conditions_to_compute(pointer_in): then
11: for i from (nr_parallel− 1) downto 0 do
12: data_pixels=read_data(pointer_in-i)
13: data_to_crossbar(data_pixels)
14: pointer_out.x.update()
15: pointer_out.y.update()
16: end for

17: if pointer_out == end then
18: computation_complete=True
19: end if

20: end if

21: if conditions_to_residual(pointer_in) then
22: read_res()
23: end if

24: end

thus from pointer_in), and on the parameters of the layer, for
example on whether the layer uses padding or the stride of
the convolution. In case these conditions are met, the Dataflow
Controller reads the pixels from the Input Memory and makes
them available to the crossbar array interface (lines 12, 13).
Further, it updates a pointer of the output volume that is being
computed (pointer_out), which will rise a flag indicating the
completion of the computation (lines 17, 18) once all the data
of the output volume had been computed. Also for the case
of fetching the pixels from the Input Memory, in the case of
parallelization, the operations of reading the pixels and updating

Frontiers in Computational Neuroscience | www.frontiersin.org 10 August 2021 | Volume 15 | Article 67415494

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

the output pointers is repeated a number of times equal to the
number of pixels that are being produced (line 11). Lastly, the
Dataflow Controller checks whether the conditions to send the
residual pixel to other IMC cores are met (lines 21, 22), and in
case they are verified reads the data from the Input Memory and
makes it available to the inter-core communication fabric.

2.4.2. Memory Control
For the control of the Input Memory, the duty of the Dataflow
Controller is to generate the read and write addresses for writing
and reading the appropriate data. As discussed in section 2.3, the
read and write addresses comprise the word address and may
or may not include bitline addresses for write masks and bit
slicing. In this section, we will consider the case of PLIP memory
mapping, in which write masks are not required and the address
represents only the address of the memory words. Algorithm 2

shows two functions, store_data and read_data. The store_data
function is called by the Dataflow Controller each time there is
new incoming pixels. In principle, one may want to store the
entire volume of pixels in the Input Memory. Nevertheless, by
pipelining across matrix-vector multiplications, the computation
is executed on the data as soon as this is available in the Input
Memory, and the input volume is never needed in its entirety
for executing the computation. Namely, for a kernel of size
F1 = F2 = F with padding P and an image of size H by H,
given the dataflow presented above, the minimum number of
pixels that need to be stored in order to start the computation
is H · (F − P − 1) + (F − P), regardless of the stride of the layer.
For the sake of simplicity of the memory mapping, at the cost of
a small memory overhead, we decide to store in memory H · F
pixels. Note that the choice of the number of pixels to store is
simply made on grounds of an easier memory mapping, and it is
independent from the memory mapping strategies described in
section 2.3.

In the store_data pseudocode, at line 2, the incoming data
pixel_in is written to the Input Memory starting from the
cached memory address addr_w_0. For any incoming pixels
within one column (lines 5 to 7), the new address is computed
by incrementing the current address by a quantity 1kernel,
representing the number of words required to store F pixels. This
can be seen clearly in the example in Figure 7D, where1kernel is
6 words, so that two consecutive pixels on the same column [e.g.,
(0, 0) and (1, 0) in Figure 7A] are stored 1kernel words apart.
When changing column of pixels (line 3), the address must be
first reset to the first position of that column in the memory. This
is done by resetting addr_w_0 to one position 1pix, which stores
the position of the first pixel in one column. With reference to
Figure 7D, 1pix[0] = 0, 1pix[1] = 2, 1pix[2] = 4. When
storing the first pixel of column y = 1 in Figure 7A, i.e., pixel
(0, 1), addr_w_0 must be reset to 1pix[1]. Since, as described
above, we want to store an H · F portion of the input volume
of pixels, we must take into consideration how to write pixels
in the memory once we reach a column greater than the F − th
column. Again with reference to Figure 7D, when storing pixels
from column y = 3, we would reset the initial address to1pix[0],
effectively storing column y = 3 in place of column y = 0,
which by that timestep would have become obsolete in terms of

Algorithm 2Memory Control

1: def store_data(pointer_in, pixel_in):
2: write_to_SRAM(addr_w_0, pixel_in)
3: if pointer_in.x == 0 then
4: addr_w_0=1pix[mod(pointer_in.y;kernel_size)]
5: else

6: addr_w_0+=1kernel
7: end if

8: def read_data(pointer_in):
9: for i = 1, . . . , kernel_size do
10: addr_r=addr_r_0+1pix·mod(pointer_in.y +

i;kernel_size)
11: data_out.append(read_from_SRAM(addr_r))
12: end for

13: if pointer_in.x == 0 then
14: addr_r_0=1pix[0]
15: else

16: addr_r_0=1kernel
17: end if

18: return data_out

computation. Thus, we would effectively permute the position of
the column inside the Input Memory between F columns. This is
expressed by the mod function in line 4 of Algorithm 2.

As relates to reading back the pixels from the Input Memory,
the functionality is expressed by the read_data function. With
reference to Figure 2, we take now in consideration the case in
which one row of pixels is read from the Input Memory (e.g., the
blue row of pixels in the timestep t0+ 1 portion of Figure 1). The
read_data function loops through kernel_size pixels (line 9) and
generates the addresses from which every pixel starts to be read
by the read_from_SRAM function (line 11). The various pixels
are appended to one another (line 11) and ultimately returned
by the function (line 14). The reordering of the pixels because
of the permutation of their positions in the Input Memory that
was dealt with in the description of the store_data function is
performed during the generation of the addresses. Starting from
one address indicating the beginning of a row of contiguous
pixels addr_r_0, this is incremented in the reading loop in the
order defined by the current permutation of the positions of the
pixels. Taking again as an example the storing of the pixels in
Figure 7A as shown in Figure 7D, in the case in which column
y = 3 was the last column to be stored in the Input Memory, the
ordering of adjacent pixels in memory would be column y = 3,
column y = 1, and column y = 2. Thus, for the first row of
pixels, the order would be (0, 3) in words 0 and 1; (0, 1) in words
2 and 3; (0, 2) in words 4 and 5. As expressed by the mod function
in line 10, starting in this case from addr_r_0 = 0, addr_r is
incremented during the loop so that the pixels are read in the
order (0, 1), (0, 2), (0, 3). addr_r_0 is then incremented to the
initial position of the next row, or reset (lines 13 to 17). Note
that, in the case of a convolution with padding, it is equivalent
to having additional pixels equal to zero at the borders of the

Frontiers in Computational Neuroscience | www.frontiersin.org 11 August 2021 | Volume 15 | Article 67415495

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

input volume. This can be addressed in two ways, either by pre-
emptively storing zero pixels in the Input Memory (thus having
the store_data function handle the padding) or by adding the
zeros once the pixels are read from the Input Memory (thus
having the read_data function handle the padding). In the next
sections, we will consider the former option.

2.4.3. Example of the Overall Dataflow
Figure 8 shows an example of the evolution of the state variables
in Algorithm 1 at different timesteps. Consider a convolution
as in Figure 8A, representing a generic layer L of a CNN. It
transforms an input volume (left-hand side) to an output volume
(right hand-side) with a kernel size of 3 × 3, stride =1 and
without padding. Figure 8B shows the input memory and state
variables of the dataflow control at 4 different timesteps. Before
timestep N, the Input Memory is empty, the memory addresses
addr_w_0 and addr_r_0 are at zero and the pointer pointer_in
and pointer_out are at an invalid value (−1). At a Timestep
N, the first pixel is received. This corresponds to the pixel at
position (0, 0) on the (x, y) plane, and the pointer to the input
volume are consequently updated to values pointer_in.x = 0,
pointer_in.y = 0. According to the PLIP memory mapping, the
initial address to store the next pixel is updated to addr_w_0 =

1kernel. Lastly, since a single pixel is not sufficient to perform
any computation, the conditions to compute return False, and
addr_r_0 and pointer_out are not updated. At the subsequent
timestep N+1, another pixel along the column y = 0 is received.
Similarly to the previous timestep, pointer_in is updated to (1, 0),
addr_w_0 is incremented of 1kernel, while the other pointers
remain as they were. At some timestep N+H, the entire column
y = 0 has been received and store in the Input Memory. Again,
the update of pointer_in reflects the position reached in the input
volume, which is still not enough to perform any matrix-vector
multiplication with a 3x3 kernel without padding. As one column
has been received in entirety, addr_w_0 will have to be reset to the
initial position of the second column with y = 1, which is equal
to 1pix[1]. Finally, 2H + 3 timesteps after the initial timestep
N, two entire columns and three pixels of the third column
have been received, and the input pointer pointer_in is updated
to position (2, 2). As the layer executes a 3 × 3 convolution
without padding, there is sufficient data to execute the first
matrix-vector multiplication. The condition_to_compute at line
7 of Algorithm 1 returns True and the input data, highlighted in
red in Figure 8, is read from the Input Memory and provided to
the interface of the crossbar. This matrix-vector multiplication
results in the upper leftmost pixel of the output volume, and
thus the output pointer pointer_out is updated to the newly
computed position (0, 0). Lastly, the initial address for data to be
read is updated to the position of the latest pixel to be read, equal
to 31kernel.

2.4.4. Splitting of Layers Onto Multiple IMC Cores
So far, we assumed the kernel matrix can fit in its entirety on
the crossbar array of the IMC core. Nevertheless, because of the
variability of kernel matrices even within a single CNN on the
one hand and the fixed size of crossbar arrays on the other, we
must take into consideration the case in which one crossbar array

does not have enough rows or columns to fit one kernel matrix.
Without loss of generality, we consider the two cases separately,
one where the number of rows in one crossbar is not sufficient
to fit one kernel matrix and one where the number of columns is
not sufficient. As expressed in section 2.2, because of the typical
shape of kernel matrices on computational memory, the former
case will be, in principle, the most common.

Assume the case of a crossbar array with R rows and C
column, and layer whose kernel matrix requires RKM rows and
CKM columns. If 2R ≥ RKM > R and CKM ≤ C, we can
split the kernel matrix between two crossbar arrays so that they
calculate partial accumulations of the same convolution. This is
equivalent to splitting the original matrix-vector multiplication
between a patch of the input volume αi : i+F−1,j : j+F−1 and a
kernel matrixK as in Equation (5), with each IMC core executing
one matrix-vector multiplication.

αi : i+F−1,j : j+F−1 · K =

α0
i,j

. . .

α
N/2−1
i+F−1,j+F−1

α
N/2
i,j

. . .

αN−1
i+F−1,j+F−1

T

k0,00,0 . . . k0,M0,0
.

k
N/2−1,0
F−1,F−1 . . . k

N/2−1,M
F−1,F−1

k
N/2,0
0,0 . . . k

N/2,M
0,0

.

kN,0
F−1,F−1 . . . kN,M

F−1,F−1

=

=

α0
i,j

. . .

α
N/2−1
i+F−1,j+F−1

T

k0,00,0 . . . k0,M0,0
.

k
N/2−1,0
F−1,F−1 . . . k

N/2−1,M
F−1,F−1

+

+

α
N/2
i,j

. . .

αN−1
i+F−1,j+F−1

T

k
N/2,0
0,0 . . . k

N/2,M
0,0

.

kN,0
F−1,F−1 . . . kN,M

F−1,F−1

(5)

This is effectively equivalent to splitting the layer into two
different layers, where the IMC core executing the first half of
the computation forwards it to the other IMC core, which sums
the two partial results and execute the required digital processing
(batch normalization, activation function and possibly residual
additions). In terms of dataflow, this is not different from having
two separate layers.

Assume now the case in which RKM ≤ R and 2C ≥ CKM >

C. In this case, we can split the kernel matrix between two
crossbar arrays so that they calculate different channels of the
same convolution. This is equivalent to performing the splitting
shown in Equation (6), where ⊕ indicates the concatenation
operation. This is also equivalent to splitting the layer into
two different layers, and the same considerations made for the
previous case hold.

αi : i+F−1,j : j+F−1 · K =

α0
i,j

. . .

αN−1
i+F−1,j+F−1

T

k0,00,0 . . . k
0,M/2−1
0,0

.

kN−1,0
F−1,F−1 . . . k

N−1,M/2−1
F−1,F−1

⊕

α0
i,j

. . .

αN−1
i+F−1,j+F−1

T

k
0,M/2
0,0 . . . k0,M0,0
.

k
N−1,M/2
F−1,F−1 . . . kN−1,M−1

F−1,F−1

(6)

Frontiers in Computational Neuroscience | www.frontiersin.org 12 August 2021 | Volume 15 | Article 67415496

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

FIGURE 8 | Example of dataflow for one IMC core at subsequent timesteps. (A) Example of a convolution. The input volume of depth Cin (left) is convolved with the

kernel (in blue) to obtain an output volume of depth Cout. (B) Input memory and state variables of an IMC core at different timesteps.

This concept can be of course generalized to a splitting into
an arbitrary number of IMC cores, combining both types of
splitting, provided connectivity between these IMC cores exists.

3. RESULTS

3.1. Execution of ResNet-32 on an a IMC
Accelerator
In this section, we will present the employment of our proposed
methodologies in the mapping of a CNN on an array of IMC
cores and discuss the behavior of the overall inter- and intra-core
dataflow. Specifically, we will consider the inference of ResNet-
32 for the CIFAR-10 dataset, which represents a state-of-the art
accuracy network for such dataset. While our methodologies are
generic with respect to the IMC technology that is employed
and are orthogonal to the implementation of the crossbar
array and/or the precision of the matrix-vector multiplication
operations, in this section we make some assumptions on the
hardware. Firstly, we assume the crossbar arrays of each IMC
core to have size of 256 × 256. The crossbar arrays operate
in a fully parallel mode, and utilizes Phase-Change Memory
(PCM) as the IMC devices. Specifically, in this implementation,
each weight is mapped onto a differential pair of PCM devices.
Input and output data is provided in 8-bit int fixed precision
format. Regarding the Digital Processor, this implementation
assumes a light digital processing element that can perform
batch normalization, residual addition and ReLU. This choice

is justified by the fact that the great majority of state-of-the-art
CNNs, among which ResNet-32, feature these three operations
on activations. Regarding the reduced precision implementation
of ResNet-32, it is based on the one presented in Joshi et al.
(2020). Such implementation presents a training strategy for the
same hardware and numerical precision presented in this work,
and reaches 93.7% accuracy on CIFAR-10. Also in this case, note
that our proposed methodologies and dataflow are orthogonal to
the training process and optimization of the DNNs executed on
the IMC hardware.

In this section, we first present the mapping of the network on
the IMC core array in section 3.1.1. In section 3.1.2, we present
the mapping strategy employed for the activations, and in section
3.1.3, we give display of the dataflow and the overall performance.
In section 3.1.4, we discuss the possibility of speedup of the
dataflow. Lastly, in section 3.2, we present an implementation of
the dataflow controller and input memory implemented in 14 nm
CMOS technology.

3.1.1. Mapping of the Kernel Weights on the Array
Figure 1A shows a representation of ResNet-32 and its mapping
on an array of IMC cores. ResNet-32 comprises 34 layers.
Specifically, 31 convolutional layers with kernel size F1 = F2 =

F = 3, one fully connected layer at the end of the network
for classification, and two layers for resampling of the residual
connection with kernel size F1 = F2 = F = 1. Firstly, we
must store the kernel matrices on the computational memory of
the IMC core array. We proceed in the following way: we map

Frontiers in Computational Neuroscience | www.frontiersin.org 13 August 2021 | Volume 15 | Article 67415497

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

TABLE 2 | Layer specifications for ResNet-32 network.

#Layers Hin × Win Hout × Wout Stride Cin Cout Kernel Size #Rows #Columns Pixel Size

[bits]

1 32 × 32 32 × 32 1 3 16 3 × 3 27 16 24

2/11 32 × 32 32 × 32 1 16 16 3 × 3 144 16 128

RS1 32 × 32 16 × 16 2 16 28 1 × 1 16 28 128

12 32 × 32 16 × 16 2 28 28 3 × 3 252 28 224

13/21 16 × 16 16 × 16 1 28 28 3 × 3 252 28 224

RS2 16 × 16 8 × 8 2 28 56 1 × 1 28 56 224

22 16 × 16 8 × 8 2 56 56 3 × 3 504 56 448

23/31 8 × 8 8 × 8 2 56 56 3 × 3 504 56 448

FC 1 × 1 1 × 1 2 56 10 / 56 10 448

FIGURE 9 | Mapping of ResNet-32 on an array of IMC cores. Different colored arrows represent different functionality of the communication. Specifically, green arrows

represents feedforward communication and the blue ones denote residual connections. Moreover, the red arrows indicate communication to resampling layers,

whereas the orange ones represent residual connections from a resampling layer. Finally, the purple arrows signify partial summation for layers split on multiple

IMC cores.

one layer per IMC core; in case the crossbar array did not have
enough rows or columns to fit the kernel matrix for one layer,
we split the kernel matrix and map it on multiple IMC cores.
For the sake of simplicity, in this first discussion of the dataflow,
we will assume the mapping of a single kernel matrix per layer,
that is, no kernel replication as in section 2.2. Table 2 reports the
required number of rows and columns for the kernel matrices
of each layer. In order to better match the size of the crossbar
array, we have trained a version of ResNet-32 with a slightly lower
number of channels for the layers RS1, RS2, 12, 32 and FC. In
general, all channel depth of 32 have been reduced to 28, and
all channel depths of 64 to 56. Such modification is consistent
with the implementation in Joshi et al. (2020). Given the number
of required rows and columns, all layers except 22/31 can be
mapped onto a single crossbar array. Layers 22/31 require more
rows i.e., 504, than the 256 rows available in a single crossbar
array. Thus, for each of these layers we split the kernel matrix into
two smallermatrices of size 256× 56. In this way, we perform two
partial accumulations of the overall matrix-vector multiplication.
Note that, for these layers, activations α0,L to α27,L are input to
one crossbar array, and α28,L to α56,L are input to another one.
We will discuss in more detail, in section 3.1.3, how these two
partial accumulations are combined. As a result of this overall
mapping strategy, the ResNet-32 network requires 43 IMC cores.

3.1.2. Mapping of Activations on the Input Memory
Table 2 shows the parameters of the layers of ResNet-32 as well
as the size in bits of every pixel that needs to be stored in

the Input Memory of the corresponding IMC core. We have
assumed a word length of 128 bits and a word depth of 512,
amounting to a total to 8KB SRAM for the Input Memory of
each IMC core. We have used IWAP to store the pixels for layer
1 and ALIP for storing pixels for the remaining layers. In fact,
as noted in section 2.3.5, IWAP works best for layers where the
size of the pixels is small compared to the word length, as is
the case with layer 1, while for the other layers KLIP or PLIP
are preferable. From the consideration on the minimummemory
requirements in section 2.4.2, the memory requirements for the
different convolutional layers are 0.28 KB for layer 1 and 1.5 KB
for all the others. Both requirements are lower than the size of the
Input Memory.

3.1.3. Dataflow and Performance
Figure 9 shows the mapping of ResNet-32 on an 8-by-6 array
of IMC cores. Arrows between cores represent communication
channels. We assume a communication fabric as in Dazzi et al.
(2019), such that every connection can be satisfied as required
by the network. This topology assures that all data delivery
occurs within one timestep, guaranteeing that the pipeline
never stalls. In Figure 9 different colored arrows represent
different functionality of the communication. Specifically, green
arrows represents feedforward communication and the blue ones
denote residual connections. Moreover, the red arrows indicate
communication to resampling layers, whereas the orange ones
represent residual connections from a resampling layer. Finally,
the purple arrows signify partial summation for layers split

Frontiers in Computational Neuroscience | www.frontiersin.org 14 August 2021 | Volume 15 | Article 67415498

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

FIGURE 10 | Pixels per layer as a function of the timesteps. Layers with different feature map size are color-coded in different colors. (A) Pixels being computed by

mapping at most 1 kernel matrix per layer. (B) Pixels being computed by mapping multiple kernel matrices per layer.

on multiple IMC cores. Figure 10A shows the evolution of
the computation per convolutional layer as a function of the
timestep. In an ideal pipelining scenario, one would expect that
one pixel is computed at every timestep, such that the number
of pixels to be computed per layer is equal to the number of
timesteps the IMC core is active. This implies that the slope of the
curves in Figure 10A should be equal to one. The slope is indeed
equal to one for all layers that do not need strided convolutions
(see red curves in Figure 10A). However, the computation of
layer 12, with stride equal to two, can only be executed every
two rows and every two columns. As the size of the feature
map for that layer is 16x16, the IMC core assigned to layer 12
will perform computations every 2 timesteps, while receiving the
pixels from layer 11, and stall for 16 timesteps when receiving
columns on which no computation is required. Overall, on
average, this implies that there will be a computation every
4 cycles, meaning the average slope is 1/4. As all the layers
subsequent to layer 12 are connected in a feedforward way, the
reduced slope of the computation vs. timesteps curve propagates
to all the subsequent layers until the point at which layer 12
is completed. This is evident in Figure 10A, where the layers
from 13 to 21 progress also at slope 1/4 up to point at which
layer 12 is completed, after which the slope progresses at slope
1. Moreover, this is propagated to the layers from 22 to 31
where the slope, which is supposed to be equal to 1/4 (the stride
equal to two in layer 22), is reduced of an additional factor 4,
i.e., 1/16.

As a result, the overall latency for a single classification is
1,628 cycles. Assuming a timestep of 100 ns, this results in
161.8 us latency for the classification of a single image and
9,650 Images/s throughput.

FIGURE 11 | Physical layout of the Dataflow Controller and Input Memory.

3.1.4. Dataflow Speedup
In an architecture as shown in Figure 9, the bandwidth of the
communication links is tailored on the most expensive data
communication. The bandwidth requirements are calculated as

B = (nbits · C
max
out)/Ttimestep (7)

where nbits denotes the number of bits per single activation,
Cmax
out indicates the maximum number of output channels of

the convolutional layers throughout the network, and Ttimestep

represents the duration in seconds of one timestep. Assuming
that we want to deliver all the data from one IMC core at

Frontiers in Computational Neuroscience | www.frontiersin.org 15 August 2021 | Volume 15 | Article 67415499

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

most within one timestep of 100 ns, the maximum bandwidth
required is 4.5 Gbps, from layers 22 to 31. This corresponds
to the layers colored in green in Figure 10. In ResNet-32 and
generally in the design of CNNs, the number of channels per
layer doubles for every group of layers. In Figure 10, the group
of layers marked in blue have twice the number of channels
compared to the layers in red, and the layers marked in green
have four time the number of channels compared to the layers
in red. From Equation 7, it follows that the same bandwidth
that allows to send 1 activation in 1 timestep for the last group
of layers, allows to deliver in 1 timestep 4 activations for the
first group of layers and 2 for the second, respectively. Based on
this observation, we present a pipeline speedup method that uses
the same hardware communication requirements as the regular
dataflow. Figure 10B shows the number of activations computed
per layer as the timesteps increase, assuming a sped up dataflow.
According to this dataflow, we assume that the IMC cores
parallelize the computation of matrix-vector operations based
on one of the methods presented in section 2.2. Specifically, the
first group of layers (red) computes four activations per timestep,
the second group of layers (blue) computes two activations per
timestep, and the third computes one activation per timestep.
As argued before, as long as the kernel matrices can fit on
the crossbar arrays of the IMC cores, this does not modify
the bandwidth requirements of the hardware implementation.
In accordance with the activations per timesteps that are
computed per layer, Figure 10B shows that the slope of the
activation/timestep curve is equal to four for the first group of
layers. This seed-up is reflected on the post-stride layers (in blue),
where the slope of the layers is increased by 4x compared to
Figure 10A, as long as its computation depends on the data that
is received from the first set of layers, after which it proceeds at
the speed set by the IMC core (2 activations/timestep). Similarly
for the third group of layers, the speed-up of the preceding layers
reflects on its own execution that is sped up as long as it depends
on the data that are received by the previous layers, with the slope
gradually increasing from 1/4 to 1/2 and ultimately to 1 when the
second group of layers have finished the computations. As the
number of activations that are produced per layer depend on both
the rate of the preceding layers and its own rate, the speed-up is
clearly non-linear. For the case of ResNet-32, it results in a latency
for a single classification of 526 cycles, resulting to a speed-up of a
factor 3.1. The throughput, which depends primarily on the rate
of the first layers, is equal to 38,600 Images/s for a batch of 100
images to be classified.

3.2. Hardware Implementation
We demonstrated the dataflow presented in this work via
experiments and simulation. Specifically, the Input Memory,
Dataflow Controller and communication fabric have been
implemented in CMOS 14nm technology. The communication
fabric implements the topology presented in Dazzi et al. (2019).
These elements represent the digital framework around an array
of 8-by-8 IMC cores, constituting an IMC based inference
engine. This architecture allows the execution of inference for
CNNs through the dataflow described in section 2.4. Note that,
in this implementation, we are agnostic of the computational

TABLE 3 | Power consumption and area occupation for Input Memory, Dataflow

Controller, and communication links implemented in 14 nm CMOS technology.

Area DFC [mm2] Area SRAM [mm2]

0.0132 0.0091

Power DFC+SRAM [mW] Power links [mW]

10.544 0.775

elements, i.e., Crossbar Array and Digital Processor. Based on
the application and the desired accuracy, different computational
elements can be utilized in such an architecture to build the
overall accelerator.

The design assumes supply voltage equal to 0.8V and clock
frequency of 500MHz. Table 3 shows the power consumption
and area occupation of the blocks. The Input Memory has been
implemented as an SRAMmemory with word length equal to 128
bits, comprising 8 KB of memory. Figure 11 displays the layout
of the Input Memory and Dataflow Controller. Overall, the Input
Memory occupies 0.0091mm2, while the Dataflow Controller
occupies 0.0132mm2. In order to have a realistic estimation of
the power consumption, we evaluate the joint operation of both
blocks. Specifically, storing and reading from the Input Memory
is only executed based on the dataflow set by the Dataflow
Controller. The joint power consumption of Dataflow Controller
and Input Memory is equal to 10.54mW. A breakdown of the
power consumption is reported in Table 4. Most power is spent
in the Sequential elements, which is justified considering the
significant amount of buffering of data and pointers inside the
Dataflow Controller.

As relates to the communication fabric, the design implements
synchronous communication with latch-to-latch links. The
average power consumption is 0.775mW. The energy efficiency
of the links depends on their lengths, and ranges between 39.4
and 346.5 fJ/bit.

We now discuss the usage of the computational elements
within the architecture described above. In accordance with
the case study presented in section 3.1, we assume crossbar
arrays of size 256 × 256. We assume the use of phase-change
memory (PCM) (Burr et al., 2017) as the computational memory.
In order to estimate the performance of such an array, we
take into consideration the analog and digital contributions
to the energy consumption of the crossbar array. Specifically,
as regards the analog contributions, we consider the energy
for the voltage regulators for the columns of the array, the
energy for the analog-domain computation and the energy of
the ADCs for the analog-to-digital conversion. For the analog
computation we assume the average conductance of the PCM
devices to be 2.5µS and the read voltage to be 0.2V. Also,
the energy for the ADCs is taken from Kull et al. (2017).
As regards the digital contributions, for the crossbar array
we also take into consideration the pulse-width modulator
(PWM). The PWM applies the input to the array as voltage
pulses, performing a digital-to-analog conversion from an 8-
bit signed integer to a read voltage pulse. Lastly, we assume
a Digital Processor performing batch normalization, ReLU and
addition for the residual connection. The power consumption

Frontiers in Computational Neuroscience | www.frontiersin.org 16 August 2021 | Volume 15 | Article 674154100

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

TABLE 4 | Power breakdown for the internal components of the Dataflow Controller.

Internal power Switching Power Leakage power Total Power Percentage (%)

Sequential 4.052 0.3429 0.06095 4.455 42.25

SRAM macro 2.548 0.03460 0.02155 2.604 24.7

Combinational 0.5563 1.625 0.04357 2.225 21.1

Clock 0.1884 1.071 0.001539 1.261 11.96

Total 7.344 3.073 0.1276 10.54 100

of the digital blocks was obtained from RTL simulations of
the HDL code of one implementation. Overall, the resulting
energy efficiency is 10.5 TOPS/W. Note that, although our chip
design is based on 256 × 256 crossbar arrays, it can be readily
estimated that by increasing the crossbar array size to 512
× 512 the efficiency becomes 16.3 TOPS/W. Comparing the
resulting energy efficiency with digital accelerators targeting
similar datasets (Sim et al., 2016) and IMC-based accelerators
(Ando et al., 2017), our architecture outperforms them up to a
factor 7.4x and 5.2x, respectively. Moreover, our implementation
yields very high operations per second, providing 1.008 TOPS.
Such performance is, respectively, 7.36x and 409x higher
compared to SRAM-based (Jia et al., 2020) and ReRAM-
based (Xue et al., 2020) IMC array implementations. In
terms of performance density, our proposed PCM-based array
provides 1.59 TOPS/mm2, outperforming the aforementioned
implementations by 41.76x and 1322x, respectively. Lastly,
comparing our results in terms of thoughput with the ones
reported by systolic array-based ASICs on a ResNet of similar
depth (Andri et al., 2018), we achieve a throughput that is 206x
higher with the dataflow described in section 3.1.3 and 826x
higher with the dataflow speedup method described in section
3.1.4. Furthermore, our presented throughputs are, respectively,
7x and 31x higher compared to that of ASICs targeting the same
dataset (Esser et al., 2016).

4. DISCUSSION

Various optimized dataflows for efficient hardware deployment
of CNNs have been explored in literature. Specifically, pipelined
dataflows that exploit parallelization of the computation
between layers, have demonstrated mitigation of bandwidth
limitations (Goetschalckx and Verhelst, 2019). Similarly,
dataflows exploiting the local computation of feature maps
between CNN layers have already been employed in a
variety of hardware accelerators. For example, dataflows
that fuse the computation between subsets of subsequent
layers within a CNN (Alwani et al., 2016) have been used
in implementations of CNNs on FPGA-based accelerators
(Reggiani et al., 2019). Moreover, such advanced dataflows
have been proposed for heterogeneous architectures in order
to improve throughput and avoid use of off-chip memory (Wei
et al., 2018). Dataflows that pipeline the computation across
layers in an end-to-end fashion have recently been employed in

accelerators based on IMC for inference (Shafiee et al., 2016),
and similar concepts have also been used for training dataflows
(Song et al., 2017).

All these contributions consider simple feed-forward
networks. Furthermore, in all the prior works, the optimization
and possible parallelization of the computation performed
on the crossbar array has not been considered. In this work
we present a fully pipelined, end-to-end inference dataflow
based on the proposed optimized mapping of synaptic weights
on the crossbars and of activations on the on-chip memory.
The dataflow is agnostic of the connectivity of the CNN
layers and is not limited to simple feedforward networks.
Among the contributions to the mapping of kernel weights
on computational memory, it is worth mentioning the results
on different ordering strategies presented in Yue et al. (2020).
While this work targets easier data handling in the case the
kernel matrices were split onto multiple crossbars, we take an
orthogonal approach by trying to optimize device utilization
when mapping multiple replicas of the kernel weights on the
same crossbar array. Clearly, different ordering techniques
can in principle be used alongside the optimization strategies
presented in this paper. Optimization of the kernel mapping
has also been explored in Peng et al. (2019). This work
reorders and partitions kernel matrices in order to facilitate
their mapping on the crossbar arrays, and proposes a novel
dataflow in order to allow DNN inference with such a kernel
partition. In our work, we propose kernel mapping methods
that do not require ad-hoc dataflows for their execution,
so that they can be applied to well-established dataflows
and compatible with widely used environments for neural
network definitions.

To summarize, in this paper we have introduced various
methodologies for accelerating convolutional neural networks
(CNNs) on hardware based on IMC. We introduced an
architecture of a computational memory (IMC) core for
execution of CNNs. We presented an exhaustive set of methods
for mapping kernel matrices on the crossbar arrays of the
IMC cores. For a given number of matrix-vector multiplications
to be executed in parallel, these methods allow the size of
the crossbar array required to map the kernel matrices to
be minimized. Secondly, we presented three novel methods
for storing activations on the local memory of the IMC
cores. Based on the overall size of the activations and on
the parameters of the local memory used for storing them,
these different methods for storing activations can minimize

Frontiers in Computational Neuroscience | www.frontiersin.org 17 August 2021 | Volume 15 | Article 674154101

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

the number of read and write cycles required. Using these
mapping schemes for both kernel matrices and activations, we
then proposed an end-to-end dataflow for execution of CNNs
on an array of IMC cores. We studied the performance of
this dataflow on ResNet-32 for CIFAR-10 and presented the
implementation of the dataflow control logic in 14nm CMOS
technology, demonstrating a throughput that is at least 7x higher
than achieved by ASICs targeting the same neural network
and dataset.

DATA AVAILABILITY STATEMENT

Some of the datasets presented in this article are not
readily available because simulators used for some results are
proprietary. Other datasets presented in this study can be
found in online repositories. CIFAR-10 dataset is available
for download at https://www.cs.toronto.edu/~kriz/cifar.html.
ResNet models are typically available in machine learning
frameworks such as PyTorch (https://pytorch.org/hub/pytorch_
vision_resnet/).

AUTHOR CONTRIBUTIONS

MD conceived the IMC core architecture with support from
AS and EE. MD conceived the weight and activation mapping
methodologies and developed the python simulator for the
experiments. MD developed the dataflow concept for CNNs
on IMC with support from AS, LB, and EE. MD designed the
hardware implementation of the dataflow controller. MD and EE
wrote the manuscript with inputs from LB and AS. AS, LB, and
EE supervised the project. All authors contributed to the article
and approved the submitted version.

ACKNOWLEDGMENTS

We would like to thank Christophe Piveteau for the fruitful
discussions and the help with the simulation of the dataflow. We
would also like to thank Matthias Braendli from IBM Research
Europe for his technical support in the 14 nm CMOS design.
Lastly, we thank our colleagues at IBM Research, in particular
those affiliated to the IBM AI Hardware Center.

REFERENCES

Alwani, M., Chen, H., Ferdman, M., and Milder, P. (2016). “Fused-

layerCNN accelerators,” in 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO) (Taipei: IEEE), 1–12.

doi: 10.1109/MICRO.2016.7783725

Ando, K., Ueyoshi, K., Orimo, K., Yonekawa, H., Sato, S., Nakahara, H., et al.

(2017). BRein memory: a single-chip binary/ternary reconfigurable in-memory

deep neural network accelerator achieving 1.4 TOPS at 0.6 W. IEEE J. Solid

State Circ. 53, 983–994. doi: 10.1109/JSSC.2017.2778702

Andri, R., Cavigelli, L., Rossi, D., and Benini, L. (2018). “Hyperdrive: a systolically

scalable binary-weight CNN inference engine for mW IoT end-nodes,” in 2018

IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (Hong Kong:

IEEE), 509–515. doi: 10.1109/ISVLSI.2018.00099

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal,

P., et al. (2016). End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316.

Burr, G. W., Shelby, R. M., Sebastian, A., Kim, S., Kim, S., Sidler, S., et al. (2017).

Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124.

doi: 10.1080/23746149.2016.1259585

Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. (2016). Eyeriss: an energy-efficient

reconfigurable accelerator for deep convolutional neural networks. IEEE J. Solid

State Circ. 52, 127–138. doi: 10.1109/JSSC.2016.2616357

Dazzi, M., Sebastian, A., Francese, P. A., Parnell, T., Benini, L., and Eleftheriou,

E. (2019). 5 parallel prism: a topology for pipelined implementations of

convolutional neural networks using computational memory. arXiv preprint

arXiv:1906.03474.

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,

Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-

efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113, 11441–

11446. doi: 10.1073/pnas.1604850113

Goetschalckx, K., and Verhelst, M. (2019). Breaking high-resolution CNN

bandwidth barriers with enhanced depth-first execution. IEEE J. Emerg. Select.

Top. Circ. Syst. 9, 323–331. doi: 10.1109/JETCAS.2019.2905361

Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for

image recognition,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Las Vegas, NV, 770–778. doi: 10.1109/CVPR.

2016.90

He, Y., Zhang, X., and Sun, J. (2017). “Channel pruning for accelerating

very deep neural networks,” in Proceedings of the IEEE International

Conference on Computer Vision, Venice, 1389–1397. doi: 10.1109/ICCV.

2017.155

Hu, M., Graves, C. E., Li, C., Li, Y., Ge, N., Montgomery, E., et al. (2018).

Memristor-based analog computation and neural network classification with

a dot product engine. Adv. Mater. 30:1705914. doi: 10.1002/adma.201705914

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). “Densely

connected convolutional networks,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Honolulu, HI, 4700–4708.

doi: 10.1109/CVPR.2017.243

Ielmini, D., and Wong, H.-S. P. (2018). In-memory computing with resistive

switching devices. Nat. Electron. 1:333. doi: 10.1038/s41928-018-0092-2

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., et al.

(2018). “Quantization and training of neural networks for efficient integer-

arithmetic-only inference,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, 2704–2713.

doi: 10.1109/CVPR.2018.00286

Jia, H., Valavi, H., Tang, Y., Zhang, J., and Verma, N. (2020). A programmable

heterogeneous microprocessor based on bit-scalable in-memory computing.

IEEE J. Solid State Circ. 55, 2609–2621. doi: 10.1109/JSSC.2020.2987714

Joshi, V., Le Gallo, M., Haefeli, S., Boybat, I., Nandakumar, S., Piveteau, C., et al.

(2020). Accurate deep neural network inference using computational phase-

change memory. Nat. Commun. 11, 1–13. doi: 10.1038/s41467-020-16108-9

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al.

(2017). “In-datacenter performance analysis of a tensor processing unit,”

in Proceedings of the 44th Annual International Symposium on Computer

Architecture (Toronto, ON: ACM), 1–12. doi: 10.1145/3079856.3080246

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems, 1097–1105.

Kull, L., Luu, D., Menolfi, C., Braendli, M., Francese, P. A., Morf, T., et al.

(2017). “28.5 a 10b 1.5 GS/s pipelined-SARADCwith background second-stage

common-mode regulation and offset calibration in 14nm CMOS FinFET,” in

2017 IEEE International Solid-State Circuits Conference (ISSCC) (San Francisco,

CA: IEEE), 474–475. doi: 10.1109/ISSCC.2017.7870467

Le Gallo, M., Sebastian, A., Mathis, R., Manica, M., Giefers, H., Tuma, T., et

al. (2018). Mixed-precision in-memory computing. Nat. Electron. 1, 246–253.

doi: 10.1038/s41928-018-0054-8

Frontiers in Computational Neuroscience | www.frontiersin.org 18 August 2021 | Volume 15 | Article 674154102

https://www.cs.toronto.edu/~kriz/cifar.html
https://pytorch.org/hub/pytorch_vision_resnet/
https://pytorch.org/hub/pytorch_vision_resnet/
https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1109/JSSC.2017.2778702
https://doi.org/10.1109/ISVLSI.2018.00099
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1109/JETCAS.2019.2905361
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1002/adma.201705914
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1038/s41928-018-0092-2
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/JSSC.2020.2987714
https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/ISSCC.2017.7870467
https://doi.org/10.1038/s41928-018-0054-8
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

Nandakumar, S., Le Gallo, M., Boybat, I., Rajendran, B., Sebastian, A.,

and Eleftheriou, E. (2018). “Mixed-precision architecture based on

computational memory for training deep neural networks,” in International

Symposium on Circuits and Systems (ISCAS) (Florence: IEEE), 1–5.

doi: 10.1109/ISCAS.2018.8351656

Peng, X., Liu, R., and Yu, S. (2019). “Optimizing weight mapping and data flow

for convolutional neural networks on RRAM based processing-in-memory

architecture,” in 2019 IEEE International Symposium on Circuits and Systems

(ISCAS) (Sapporo: IEEE), 1–5. doi: 10.1109/ISCAS.2019.8702715

Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G. C., Likharev, K.

K., and Strukov, D. B. (2015). Training and operation of an integrated

neuromorphic network based on metal-oxide memristors. Nature 521:61.

doi: 10.1038/nature14441

Reggiani, E., Rabozzi, M., Nestorov, A. M., Scolari, A., Stornaiuolo, L., and

Santambrogio, M. (2019). “Pareto optimal design space exploration for

accelerated CNN on FPGA,” in 2019 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW) (Rio de Janeiro: IEEE), 107–114.

doi: 10.1109/IPDPSW.2019.00028

Sebastian, A., Boybat, I., Dazzi, M., Giannopoulos, I., Jonnalagadda, V., Joshi,

V., et al. (2019). “Computational memory-based inference and training of

deep neural networks,” in Proceedings of the IEEE Symposium on VLSI Circuits

(Kyoto). doi: 10.23919/VLSIC.2019.8778178

Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., and Eleftheriou, E. (2020).

Memory devices and applications for in-memory computing.Nat. Nanotechnol.

15, 529–544. doi: 10.1038/s41565-020-0655-z

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu,

M., et al. (2016). ISAAC: a convolutional neural network accelerator with in-

situ analog arithmetic in crossbars. ACM SIGARCH Comput. Arch. News 44,

14–26. doi: 10.1145/3007787.3001139

Sim, J., Park, J.-S., Kim, M., Bae, D., Choi, Y., and Kim, L.-S. (2016).

“14.6 a 1.42 TOPS/W deep convolutional neural network recognition

processor for intelligent IOE systems,” in 2016 IEEE International Solid-

State Circuits Conference (ISSCC) (San Francisco, CA: IEEE), 264–265.

doi: 10.1109/ISSCC.2016.7418008

Song, L., Qian, X., Li, H., and Chen, Y. (2017). “Pipelayer: a pipelined ReRAM-

based accelerator for deep learning,” in 2017 IEEE International Symposium

on High Performance Computer Architecture (HPCA) (Austin, TX: IEEE),

541–552. doi: 10.1109/HPCA.2017.55

Valavi, H., Ramadge, P. J., Nestler, E., and Verma, N. (2019). A 64-tile 2.4-Mb

in-memory-computing CNN accelerator employing charge-domain compute.

IEEE J. Solid State Circ. 54, 1789–1799. doi: 10.1109/JSSC.2019.2899730

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.

(2017). Attention is all you need. arXiv preprint arXiv:1706.03762.

Wei, X., Liang, Y., Li, X., Yu, C. H., Zhang, P., and Cong, J. (2018). “TGPA: tile-

grained pipeline architecture for low latency CNN inference,” in Proceedings of

the International Conference on Computer-Aided Design, San Diego, CA, 1–8.

doi: 10.1145/3240765.3240856

Xia, Q., and Yang, J. J. (2019). Memristive crossbar arrays for brain-inspired

computing. Nat. Mater. 18:309. doi: 10.1038/s41563-019-0291-x

Xue, C.-X., Huang, T.-Y., Liu, J.-S., Chang, T.-W., Kao, H.-Y., Wang, J.-H., et al.

(2020). “15.4 A 22 nm 2Mb ReRAM compute-in-memory macro with 121-

28TOPS/W for multibit MAC computing for tiny AI edge devices,” in 2020

IEEE International Solid-State Circuits Conference-(ISSCC) (San Diego, CA:

IEEE), 244–246. doi: 10.1109/ISSCC19947.2020.9063078

Yue, J., Yuan, Z., Feng, X., He, Y., Zhang, Z., Si, X., et al. (2020).

“14.3 a 65nm computing-in-memory-based CNN processor with 2.9-to-35.8

TOPS/W system energy efficiency using dynamic-sparsity performance-scaling

architecture and energy-efficient inter/intra-macro data reuse,” in 2020 IEEE

International Solid-State Circuits Conference-(ISSCC) (San Diego, CA: IEEE),

234–236. doi: 10.1109/ISSCC19947.2020.9062958

Conflict of Interest: MD, AS, and EE were employed by the company IBM

Research Zurich.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Dazzi, Sebastian, Benini and Eleftheriou. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 19 August 2021 | Volume 15 | Article 674154103

https://doi.org/10.1109/ISCAS.2018.8351656
https://doi.org/10.1109/ISCAS.2019.8702715
https://doi.org/10.1038/nature14441
https://doi.org/10.1109/IPDPSW.2019.00028
https://doi.org/10.23919/VLSIC.2019.8778178
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1145/3007787.3001139
https://doi.org/10.1109/ISSCC.2016.7418008
https://doi.org/10.1109/HPCA.2017.55
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1145/3240765.3240856
https://doi.org/10.1038/s41563-019-0291-x
https://doi.org/10.1109/ISSCC19947.2020.9063078
https://doi.org/10.1109/ISSCC19947.2020.9062958
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

HYPOTHESIS AND THEORY
published: 06 September 2021

doi: 10.3389/fnins.2021.732368

Frontiers in Neuroscience | www.frontiersin.org 1 September 2021 | Volume 15 | Article 732368

Edited by:

Alexantrou Serb,

University of Southampton,

United Kingdom

Reviewed by:

Dimitra G. Georgiadou,

University of Southampton,

United Kingdom

Hermann Kohlstedt,

University of Kiel, Germany

*Correspondence:

Bryce A. Primavera

bryce.primavera@nist.gov

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 29 June 2021

Accepted: 09 August 2021

Published: 06 September 2021

Citation:

Primavera BA and Shainline JM (2021)

Considerations for Neuromorphic

Supercomputing in Semiconducting

and Superconducting Optoelectronic

Hardware.

Front. Neurosci. 15:732368.

doi: 10.3389/fnins.2021.732368

Considerations for Neuromorphic
Supercomputing in Semiconducting
and Superconducting Optoelectronic
Hardware
Bryce A. Primavera 1,2* and Jeffrey M. Shainline 1

1National Institute of Standards and Technology, Boulder, CO, United States, 2Department of Physics, University of Colorado

Boulder, Boulder, CO, United States

Any large-scale spiking neuromorphic system striving for complexity at the level of

the human brain and beyond will need to be co-optimized for communication and

computation. Such reasoning leads to the proposal for optoelectronic neuromorphic

platforms that leverage the complementary properties of optics and electronics. Starting

from the conjecture that future large-scale neuromorphic systems will utilize integrated

photonics and fiber optics for communication in conjunction with analog electronics for

computation, we consider two possible paths toward achieving this vision. The first is

a semiconductor platform based on analog CMOS circuits and waveguide-integrated

photodiodes. The second is a superconducting approach that utilizes Josephson

junctions and waveguide-integrated superconducting single-photon detectors. We

discuss available devices, assess scaling potential, and provide a list of key metrics and

demonstrations for each platform. Both platforms hold potential, but their development

will diverge in important respects. Semiconductor systems benefit from a robust

fabrication ecosystem and can build on extensive progress made in purely electronic

neuromorphic computing but will require III-V light source integration with electronics at

an unprecedented scale, further advances in ultra-low capacitance photodiodes, and

success from emerging memory technologies. Superconducting systems place near

theoretically minimum burdens on light sources (a tremendous boon to one of the most

speculative aspects of either platform) and provide new opportunities for integrated,

high-endurance synaptic memory. However, superconducting optoelectronic systems

will also contend with interfacing low-voltage electronic circuits to semiconductor light

sources, the serial biasing of superconducting devices on an unprecedented scale, a

less mature fabrication ecosystem, and cryogenic infrastructure.

Keywords: neuromorphic, superconducting electronics, optoelectronic, large-scale computing systems,

spiking network, photonics

1. INTRODUCTION

The foundations of cognition remain a great frontier of science, with potentially enormous
ramifications for technology and society. A hardware capable of simulating spiking neural networks
with the scale and complexity of the brain or even beyond could be a powerful tool in deciphering
this enigma. Achieving such large-scale systems has proven to be non-trivial with established

104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.732368
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.732368&domain=pdf&date_stamp=2021-09-06
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bryce.primavera@nist.gov
https://doi.org/10.3389/fnins.2021.732368
https://www.frontiersin.org/articles/10.3389/fnins.2021.732368/full

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

CMOS hardware (Furber, 2016). A significant challenge will
be to enable efficient communication with low-latency amongst
billions or trillions of neurons. Optics appears well-matched
to the task, as the lack of resistive, capacitive, and inductive
parasitics makes optical links more amenable to high fan-
out than electrical interconnects (Shainline et al., 2019). While
digital systems partially circumvent this issue by leveraging time-
multiplexing to artificially increase fan-out (Young et al., 2019),
multiplexing introduces latency that scales exponentially above
a certain data load (Hennessy and Patterson, 2011). Optical
interconnects may enable direct connections between neurons
which would eliminate all traffic-induced delays and support
larger, faster, and more interconnected networks. However,
while the lack of interaction between photons is beneficial for
reducing parasitics during communication, it is a detriment to
computation. Electronic circuits are better suited to implement
complex, nonlinear neuronal functions. It is reasonable to
anticipate performance gains from optoelectronic neural systems
leveraging optics for communication and electronics for
computation, provided the hardware can be realized.

Our proposal to fabricate a direct, physical connection
between every pair of connected neurons is known as the
fully dedicated axon approach to communication (Segal et al.,
2016). While this strategy requires largely fixing network
topology in hardware—a chief disadvantage when compared with
highly reconfigurable digital systems—the reduced overhead and
elimination of communication bottlenecks will greatly benefit
performance. We further specify that all synapses, dendrites,
and neurons utilize fully dedicated electronic circuits, so that
each element of hardware has a one-to-one correspondence with
its information-processing role in the neural system. This fully
dedicated approach is advantageous if one aspires to create a
diverse array of synaptic and dendritic behaviors at each neuron,
as observed in biological neural systems (Marder, 1987; Euler
and Denk, 2001). For instance, a different time constant or
plasticity mechanism could be implemented at every synapse
on a single neuron. Perhaps more importantly, fully dedicated
components eliminate the auxiliary hardware required to
perform multiplexing operations. Further, performing synaptic
weighting and temporal dynamics in the electronic domain
allows for binary optical communication, which minimizes the
amount of optical energy per spike and reduces noise incurred by
communication. The scope of this paper is therefore limited to
networks meeting these three conditions:

1. Direct, optical connections are utilized for communication
between neurons (fully dedicated axons).

2. Optical communication is binary. The amplitude of the optical
signal carries no information.

3. All synaptic, dendritic, and somatic computations are
performed by fully dedicated electronic circuits.

With these conjectures established, a picture of the hardware
under consideration begins to emerge. There is a single optical
transmitter at each neuron. This light emitter produces a short
pulse of light each time the neuron spikes. The optical pulse is
coupled into a waveguide, and optical power is tapped from the
waveguide for each downstream synapse. Each synapse contains

a photodetector which registers an all-or-nothing synapse
event. From there, all synaptic weighting, spike-train filtering,
dendritic processing, signal summation, neuronal thresholding,
and plasticity mechanisms are implemented in the electronic
domain with tailored integrated circuits. A schematic of this
general framework is shown in Figure 1.

There are potentially multiple ways to physically implement
this model. The remainder of this paper will discuss two possible
implementations—a superconducting platform and a room-
temperature all-semiconductor system. The superconducting
platform, known as SOENs (Superconducting OptoElectronic
Networks) is discussed in prior work (Shainline et al., 2017b,
2019; Shainline, 2019, 2021). In short, optical links are
formed from semiconductor light sources and superconducting
nanowire single photon detectors (SNSPDs). Computation
is performed with analog Josephson junction (JJ) circuits
and memory is implemented with persistent current in
superconducting loops. The semiconductor implementation is
imagined as an exact analog of the SOENs platform, except
without the benefits (or limitations) of cryogenic elements.
Traditional photodiodes enable optical communication, analog
CMOS circuits provide computation, and emerging memory
devices provide synaptic memory.

This paper seeks to analyze the suitability of both platforms
for implementing large-scale optoelectronic neuromorphic
networks. Despite limiting our discussion only to architectures
meeting our three conjectures, there remains a vast space
of design choices, making it difficult to draw hard-and-fast
conclusions. Nevertheless, interesting guidelines can be obtained
by analyzing limits of technologies most likely to be used in each
platform. Important benchmarks for device performance are also
identified, which may be of use in monitoring the development
of this field.

2. COMMUNICATION

2.1. Optical Receivers
We begin analysis of optical interconnects with receivers. There
are two ways the receiver influences the power budget of an
optical link: (1) The receiver (and the electrical components
it must drive) sets the minimum optical signal that must be
produced by the light source, and (2) the receiver may require
electrical power of its own to run. It is found that the energy
per spike may be quite similar in both platforms once cooling is
accounted for in the superconducting case. However, the optical
power required from light sources is reduced by a factor of
1,000 in the superconducting case, at least when compared to
the semiconductor receivers of comparable total efficiency, which
omit transimpedance amplifiers (Miller, 2017).

2.1.1. Superconductor Receivers
As stated previously, the SOENs platform utilizes SNSPDs to
detect optical signals as faint as a single photon. Physically, an
SNSPD is a superconducting nanowire biased with a current
source (Ispd ≈ 10 µA). The simple structure makes fabrication
and waveguide integration straightforward (Sprengers et al.,
2011; Pernice et al., 2012; Akhlaghi et al., 2015; Ferrari et al., 2015,

Frontiers in Neuroscience | www.frontiersin.org 2 September 2021 | Volume 15 | Article 732368105

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

FIGURE 1 | An abstract schematic of the class of optoelectronic neurons meeting our three criteria. Each synapse (Se and Si for expiatory and inhibitory synapses,

respectively) is implemented with a physical circuit block containing a detector and a temporal filter. The detector produces an all-or-nothing electrical pulse upon

receipt of an optical spike which is then processed by the filter. The parameters of the filter (time constant, weight, etc.) can be set individually for each synapse. A

local weight update circuit (W) implements plasticity mechanisms at each synapse. Synaptic outputs are integrated in the soma (N) which drives an optical transmitter

to downstream connections upon reaching threshold.

FIGURE 2 | Receivers for the (A) superconducting and (B) semiconducting platforms. Note that synaptic weighting for the semiconductor case is included in the

filtering circuitry, shown in Figure 4B.

2018; Sahin et al., 2015; Shainline et al., 2017a; Buckley et al.,
2020a). Photons traveling through a waveguide evanescently
couple to a nanowire on the surface of the waveguide. A
single photon has enough energy to drive the nanowire from
the superconducting phase to a resistive state. In SOENs
receivers, this momentarily redirects the bias current along an
alternate conduction pathway that activates a JJ circuit to register
the synapse event and conduct further synaptic processing
(Figure 2A).

While an SNSPD itself dissipates zero static power, electrical
power is still required for superconducting receivers. Current
biases will require some power, but should be shared by many
devices (section 3), ameliorating the cost. More important is
dynamic electrical power consumption associated with detection
events. The nanowire has an inductance, Lspd, that stores energy
from the current bias. During a detection event, this energy is
dissipated in the resistor rspd. The electrical energy necessary

to detect each photon is then 1
2LspdI

2
spd

. Lspd can be as low as

Frontiers in Neuroscience | www.frontiersin.org 3 September 2021 | Volume 15 | Article 732368106

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

100 nH, resulting in an electrical energy consumption (Espd) of
around 5 aJ/spike.

Since an SNSPD is capable of detecting single photons, it
will operate near the quantum limit of optical communication
(Razavi, 2012). We assume that the detection of a single photon
will be treated as the registering of a synaptic event. The
probability of a light source producing a spike with a certain
number of photons within a fixed time window is given by
a Poisson distribution. We will also conservatively assume a
detection efficiency ηD of 70% (higher detection efficiency is
certainly possible Marsili et al., 2013; Reddy et al., 2020). The
probability of measuring zero photons during a spiking event is
then given by:

P(0) =

∞∑

k=0

Nk
ph
e−Nph

k!
(1− ηD)

k
= e−NphηD , (1)

where Nph is the average number of photons per spiking event.
Neural systems are known for remarkable robustness to and even
utilization of noise (Stein et al., 2005; McDonnell and Ward,
2011). Detecting only 99% of spikes may be tolerable and would
still represent a significant improvement over biology, wherein
synapse reliability is typically in the range of 5–80% (Allen and
Stevens, 1994; Lisman, 1997). From Equation (1), this would
correspond to roughly 7 photons (0.9 aJ for λ = 1.5 µm) needed
to reach the receiver. The total number of photons produced by
the source will need to be higher to account for energy losses in
the link. The total optical energy per spike, Eopt, will be:

Eopt =
Nphhν

η
. (2)

hν is the energy of a single photon and η is the total energy
efficiency of the optical link. η includes all optical losses and the
inefficiency of the transmitter. This efficiency factor will be highly
dependent on the specifics of the platform, but for now we will
leave it as a free variable. The total power consumed by the optical
link is the sum of Eopt and Espd. Accepting a 1% error rate, these
two contributions to the total energy will be roughly equal when
η = 20%. Such a high efficiency is likely near the limits of physical
possibility. For more realistic values of η, Eopt will dominate.

Importantly, superconducting electronics come with a cooling
overhead (section 5). We conservatively assume that every watt
of power produced at low temperature will require 1 kW of
refrigeration power. System-level effective optical energy per
spike for superconducting links will be no less than 1 fJ.

Fabrication of waveguide-integrated SNSPDs has become
commonplace in recent years (Sprengers et al., 2011; Pernice
et al., 2012; Akhlaghi et al., 2015; Ferrari et al., 2015, 2018; Sahin
et al., 2015; Shainline et al., 2017a; Buckley et al., 2020a). SNSPD
materials include NbN, NbTiN,WSi, andMoSi. Superconducting
films (3–10 nm) can be sputtered at room temperature atop
many substrates and patterned into wires from 50 to 5 µm wide
using conventional lithography and etching. Multiple planes of
SNSPDs have also been demonstrated (Verma et al., 2012)—a
promising development for future large-scale neuromorphic

systems (section 5). Waveguide-integrated NbN SNSPDs can
reach photon count rates exceeding 1GHz (Rosenberg et al.,
2013; Vetter et al., 2016). However, slower detectors, such asMoSi
and WSi SNSPDs with 20 MHz count rates, have demonstrated
the best yields to date (99.7% Wollman et al., 2019). Previous
statements that SOENs were limited to 20 MHz were motivated
by these pragmatic concerns about the current state of fabrication
(Shainline et al., 2019).

2.1.2. Semiconductor Receivers
While semiconductor receivers are the predominant technology
for long-distance optical communication, intra-chip optical
receivers deviate significantly from their long-distance
counterparts, as traditional transimpedance amplifiers likely
consume too much electrical power, despite impressive optical
sensitivities. This has led to the proposal of “receiverless” designs
that omit amplifiers altogether (Miller, 2017). Receiverless
communication uses a photodetector to directly drive the input
of CMOS gates. Photons produce electron-hole pairs in the
photodetector, which in turn charge the CMOS gate capcitance
up to the switching voltage. A circuit diagram of the scheme
is shown in Figure 2B in which a photodiode directly drives a
CMOS digital buffer. A resistor is also placed in parallel to allow
the receiver to reset. In principle the resistor is unnecessary if
an optical reset is used as described in Debaes et al. (2003). The
resistor would increase the minimum optical power necessary to
register a spike and limit the bandwidth of the receiver.

With optical link efficiency η, the necessary optical energy
required to drive the receiver to a voltage V is Miller (2017):

Eopt =
CtotV

ηR
. (3)

R is the responsivity of the detector, typically of order 1A/W.Ctot

includes the photodiode capacitance, the CMOS gate capacitance,
and any wiring capacitance. It is reasonable to consider values
for Ctot at the femtofarad level. For 1.5µm photons and a
required voltage swing of 0.8 V, Eopt ≈ 0.7 fJ (5000 photons)
for unit efficiency. This is similar to the superconducting case,
once cooling is considered. If two optical communications
links were identical in all measures (source efficiency, optical
losses, etc.) except one was cooled to 4K with SNSPDs and
the other operated at room-temperature with photodiodes, then
communicating a spike would cost nearly the same energy at
the system level in each link. The power required for cryogenic
cooling pays for itself with reduced light levels in the optical
link. Cooling semiconductor receivers to 4K does not appreciably
improve the situation, as the number of photons required in the
receiverless case is related to charge, capacitance, and voltage,
not thermal noise. For capacitances below 1 fF (a difficult task),
semiconductor receivers could potentially consume even less
energy than their superconducting counterparts. Waveguide-
integrated femtofarad photodiodes have been demonstrated
in both SiGe and Ge (DeRose et al., 2011). Polysilicon
photodiodes are also attractive for increased manufacturability
Mehta et al. (2014). Most photodiodes have far better speed than
required for neuromorphic applications, reaching up to 45GHz
(DeRose et al., 2011).

Frontiers in Neuroscience | www.frontiersin.org 4 September 2021 | Volume 15 | Article 732368107

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

Just as with SNSPDs, semiconductor receivers will also require
electrical power, even if it is minimized by the receiverless
approach. In this case, there will be static power dissipation
through the leakage current of the photodiode. Assuming a
1V bias, a leakage current on the order of 1 nA (Zhang et al.,
2020a), and an optical link efficiency of 1%, this static dissipation
would dominate power consumption for average spiking rates
below 10 kHz. The development of low capacitance, zero-bias
photodiodes (Nozaki et al., 2018) would be a major advantage
toward making efficient, low frequency networks. Static power
consumption is also a major question for many avalanche
photodiode (APD) receivers. Avalanche gain could provide a
significant (at least one order of magnitude) reduction in the
necessary optical power per spike (Miller, 2017). While often
associated with higher bias voltages, germanium waveguide-
integrated avalanche detectors have been demonstrated to
provide 10 dB of gain even at 1.5 V bias (Assefa et al., 2010).
However, dark current is still typically in the microamp range for
such detectors (Assefa et al., 2010; Virot et al., 2014), meaning
that brain-scale networks are likely out of reach due to power
constraints (section 5). APDs may be of interest in smaller, faster
spiking networks, however. Another intriguing possibility is to
reduce static power consumption through cooling, as the dark
current could potentially be reduced by orders of magnitude
(Pizzone et al., 2020). However, in that case one forfeits a major
advantage of the semiconductor approach.

While the receiverless scheme is promising for achieving low
energies per spike, it places significant burden on the transmitter
side of the link. Neuromorphic applications magnify this burden,
as neurons are expected to drive thousands of downstream
connections in parallel. Additionally, the receiver capacitance
must be charged quickly to maintain high spiking frequencies.
The result is that relatively large optical power is required from
transmitters. The best case (η = 1) scenario is shown in Figure 3.
Semiconductor receivers can be expected to require around one
thousand times the optical power of superconducting receivers
and the highest spiking frequency of a neuron could very well be
limited by the power output of the light source. The ramifications
of this result on prospective light sources are discussed in the
next section.

2.2. Optical Transmitters
The transmitter is expected to dominate the power budget of
optical links for both platforms. Room-temperature, CMOS-
integrated light sources have been a holy grail for decades, but
materials integration issues have kept this prized objective out
of reach. For superconducting systems, SNSPDs drastically
lower the power requirements of light sources, while cryogenic
temperatures improve light source efficiency. Light sources are
likely significantly simpler in the superconducting case. However,
interfacing low-voltage superconducting electronics with
semiconductor light sources (McCaughan et al., 2019) presents
an obstacle that is absent from the all-semiconductor platform.

2.2.1. Integrated Light Sources
Optical coherence is not a requirement for the envisioned system.
NanoLEDs are thus an attractive option due to their ease of

FIGURE 3 | The required optical power to drive 103 downstream synapses

within one inter-spike interval for a given spiking frequency assuming

receiverless photodiodes with optical link efficiency η = 1.

fabrication, lack of threshold current, and improving efficiency
with shrinking scale (Romeira and Fiore, 2019). However,
nanoLEDs struggle to produce optical power significantly greater
than 1µW Romeira and Fiore (2019). While semiconductor
systems targeting spiking frequencies in excess of 1MHz may be
forced to turn to lasing, nanoLEDs should be more than sufficient
for superconducting platforms. Either way, integrating millions
of light sources on a 300mm wafer remains highly challenging.
The indirect band gap of silicon drastically reduces light
emission. Off-chip light sources are used in some applications,
but are likely untenable for massive systems, as their high static
power consumption is incommensurate with the sparsity of
neural activity. Integrated light sources would be a tremendous
boon, if not a requirement for the success of large-scale
optoelectronic neuromorphic computing. There are two courses
of action: (1) force silicon to emit light through either material
and/or environmental modifications or (2) integrate direct
bandgap materials on silicon.

Many strategies toward silicon light sources have been
pursued (Iyer and Xie, 1993; Shainline and Xu, 2007) including
quantum confinement in Si-based superlattices (Warga et al.,
2008) and nanocrystals (Walters et al., 2005), emission from
embedded erbium (Ennen et al., 1985; Palm et al., 1996), point-
defect emitters (Brown and Hall, 1986; Bradfield et al., 1989; Bao
et al., 2007; Rotem et al., 2007), extended defects (Ng et al., 2001),
strain dislocations (Kveder et al., 2004), and engineering of the
local density of optical states (Green et al., 2001). Total efficiency
from 0.1% (Kveder et al., 2004) to 1% (Green et al., 2001) has
been demonstrated at room temperature, but not at powers and
areas suitable for the semiconductor receivers introduced in the
previous section.

Abandoning silicon as an active optical element, many
researchers turned toward epitaxial germanium grown on Si
(Sun et al., 2009c). Like silicon, germanium is an indirect-
gap semiconductor. However, the direct gap is only 136 meV
higher than the indirect gap, and clever implementation of strain
(Ishikawa et al., 2003; Ghrib et al., 2012; Tani et al., 2021) and
heavy n-type doping (Liu et al., 2007; El Kurdi et al., 2009; Sun

Frontiers in Neuroscience | www.frontiersin.org 5 September 2021 | Volume 15 | Article 732368108

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

et al., 2009a; Camacho-Aguilera et al., 2013; Virgilio et al., 2013)
can lead to appreciable direct, radiative recombination. These
efforts have led to Ge-on-Si lasers (Sun et al., 2009b; Liu et al.,
2010), but it has proven difficult to reduce the threshold current
and increase device efficiency. Another approach is to grow SiGe
with a hexagonal lattice on GaAs, leading to a direct gap (Fadaly
et al., 2020), but this does little to solve integration problems.

At present, neither Si nor Ge emission has proved satisfactory
for the needs of digital communication, so integrating III-V
materials on silicon substrates has received significant attention.
Pending a watershedmoment in silicon sources, III-V integration
will be required for the semiconductor platform (although not
necessarily in the superconductor case, where low-temperature
changes the physical context). Epitaxial growth would be
an attractive solution for III-V integration due to the high
throughput (Norman et al., 2018), but defects due to lattice
mismatch have so far prevented this method from large-scale
adoption. III-V quantum dots are more robust to such defects
and have demonstrated high optical powers with small footprints
(Chen et al., 2016; Jung et al., 2017; Norman et al., 2018),
albeit typically grown on offcut Si substrates that are not CMOS
compatible or with thick buffer layers that make optoelectronic
contact difficult. More work is required to realize scalable, cost-
effective integration of III-V quantum dot light sources with
CMOS electronics, passive photonic waveguides, and efficient
photodetectors. Without epitaxial growth, the semiconductor
platform would be less scalable due to the limited size of III-
V wafers and the expense of performing wafer bonding. A
variety of schemes have been proposed (Norman et al., 2018;
Tang et al., 2019), including die-level bonding (Song et al., 2016;
Crosnier et al., 2017), wafer-level bonding (Hu et al., 2019; Szelag
et al., 2019; Jiao et al., 2020), transfer printing (Justice et al.,
2012; Zhang et al., 2018a, 2019), and selective-area epitaxy (Han
et al., 2021), but these approaches still appear cumbersome when
seeking the scale of integration considered here.

The situation is significantly more favorable for cryogenic
systems. Low temperature often reduces non-radiative
recombination (Sandiford, 1958; Gurioli et al., 1991; Dolores-
Calzadilla et al., 2017), improving efficiency for both silicon and
III-V light sources. The case of Ge at low temperature is more
subtle due to the pecularities of the pseudo-direct gap and inter-
valley scattering that is more prevalent at higher temperatures
(Sun et al., 2009c). The benefits are further compounded by the
low optical power requirements of SNSPDs. When integrating
III-V light sources with CMOS, the light sources must be
integrated on top of the electronics after the high-temperature
dopant activation steps have been performed. Superconductor
electronics have no such high-temperature processing steps,
so the light sources can be produced on a Si wafer before the
electronics are realized. Problems related to offcut Si wafers
and thick buffer layers are eliminated. Additionally, silicon
light sources, with their superior potential for integration,
demand exploration with the superconducting platform. Several
silicon point defects typically quenched at room-temperature
emerge as narrow-linewidth candidates for light sources in
the telecommunications band (Davies, 1989; Sumikura et al.,
2014; Buckley et al., 2017; Beaufils et al., 2018; Chartrand et al.,

2018). While single-photon emission (Bergeron et al., 2020;
Hollenback et al., 2020; Redjem et al., 2020) is not the objective
in the present context, the narrow linewidth is also attractive for
further efficiency gains via the Purcell Effect (Romeira and Fiore,
2018). LEDs have already been demonstrated with the W-center
defect (Bao et al., 2007; Buckley et al., 2017), albeit with poor
(10−6) efficiencies, limited by electrical injection efficiency rather
than emitter lifetime. Photoluminescence studies are promising
for orders of magnitude improvement (Buckley et al., 2020b),
but more work is required to improve emission efficiency in
an integrated-circuit context. If cryogenic silicon light sources
become viable, the superconducting platformmight hold a major
scalability advantage over the semiconducting analog.

2.2.2. Driving Circuitry
Both platforms require neurons to drive semiconductor light
sources. The transmitter circuitry is thereby required to produce
voltages on the scale of the bandgap of the optical source
(≈ 1V). CMOS circuitry, itself a semiconducting technology,
naturally operates on this voltage, rendering the driving circuitry
a non-issue. Standard MOSFET LED or modulator driving
circuits (Halbritter et al., 2014; Bowers et al., 2016) can
be straightforwardly adapted for neuromorphic applications.
Superconductors, however, operate in an entirely different
regime, with signals usually on the order of the superconducting
energy gap (≈ 1mV). The optimal method for interfacing
superconducting electronics with semiconductor devices is still
an area of active research. Recent progress has been made with
devices utilizing the massive change in impedance during a
phase transition between superconducting and resistive states.
In McCaughan et al. (2019), a resistive element was heated
using 50mV pulses to thermally trigger a transition in a
superconducting meander. The meander transitioned to a state
with resistance in excess of 10M� and was used to drive a
cryogenic silicon light source waveguide-coupled to an SNSPD.
While these results are promising, the light source was only
pulsed at 10 kHz (due to poor source efficiency) and was
fabricated on a separate chip.More work is needed to improve the
speed, efficiency, and to monolithically integrate driving circuitry
with LEDs.

3. ELECTRONIC NEURONAL
COMPUTATION

Electronic circuitry capable of performing neuronal dynamical
operations will also be necessary. Biological neurons are
increasingly recognized as sophisticated computational units
(Koch and Segev, 2000; Stuart and Spruston, 2015; Hawkins and
Ahmad, 2016; Sardi et al., 2017). Emulating such complicated
behavior has been the subject of extensive investigation in both
semiconducting (Vogelstein et al., 2007; Indiveri et al., 2011;
Brink et al., 2013; Pfeil et al., 2013; Benjamin et al., 2014; Abu-
Hassan et al., 2019) and superconducting platforms (Crotty et al.,
2010; Shainline, 2019; Toomey et al., 2019). We do not attempt
a comprehensive review of circuitry, but rather draw attention to
issues specific to optoelectronic networks in both cases.

Frontiers in Neuroscience | www.frontiersin.org 6 September 2021 | Volume 15 | Article 732368109

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

FIGURE 4 | Synaptic filtering circuits for the superconductor (A) and semiconductor (B) cases. Weighting in the superconducting case was shown in Figure 2. The

memristor-integrated DPI circuit pictured here is introduced in Ref. (Dalgaty et al., 2019).

3.1. Semiconductor Electronics
The maturity of CMOS processing has allowed great strides
in neuromorphic computing. While optical communication
would likely also be advantageous in digital approaches, we
focus on analog CMOS neurons for their perceived efficiency
advantages (Mead, 1990; Rajendran et al., 2012). At a basic
level, a neuron must perform three mathematical functions:
summation of synaptic inputs, temporal filtering, and threshold
detection leading to action potential generation. Summation
can be achieved by exploiting Kirchoff’s current law. Filtering
can be implemented with elementary resistor-capacitor circuits.
Thresholding is a natural function of transistors. Building upon
this basic mapping, analog neurons have demonstrated a litany
of biologically-inspired models (Indiveri et al., 2011; Liu et al.,
2015).

It was found in the previous section that optical
communication requires a minimum of about 1 fJ of energy to
deliver a spike signal to each synapse. For realistic optical link
efficiencies, this value will be at least an order of magnitude
larger. Synaptic processing circuits would therefore ideally
operate with an energy budget of 10–100 fJ to process a single
spike. Somatic computation could comfortably consume power
larger than that of synaptic processing by a factor of the average
fan-out (perhaps 1,000). Many low-energy neuromorphic
demonstrations are promising for reaching these targets. By
reducing themembrane capacitance and supply voltage, a neuron
capable of 25 kHz spike rates was demonstrated to consume
only 4 fJ/spike (Sourikopoulos et al., 2017). Many other analog
neurons, with energies ranging from femtoJoules to picoJoules
per spike, fall comfortably below the power consumption of

optical communication (Indiveri and Sandamirskaya, 2019).
However, it remains to be seen if more complicated neurons and
synapses, implementing a critical subset of behavior necessary
for cognition, will be able to maintain such low power operation.
In terms of speed, CMOS neurons have demonstrated spike
rates in excess of 100 MHz (Schemmel et al., 2017). Optical
communication should face few issues achieving such speeds, if
sufficiently bright light sources can be efficiently integrated with
CMOS circuits.

One challenge for the CMOS approach has been to design
compact circuits with long time constants. Long time constants
are important for systems targeting biological time scales
(upwards of 500ms) (Indiveri and Sandamirskaya, 2019) or
power-law distributions of timescales to implement critical
behavior (Beggs, 2007). Subthreshold transistor circuits operating
with currents in the femtoamp to picoamp range minimize the
size of capacitor needed to implement a specific time constant
(Indiveri et al., 2011). The area constraints of this scheme are
discussed in Supplementary Information A and compared to
the superconducting approach.

For a concrete example, a circuit diagram for a memristor
implementation of the popular differential-pair integrator (DPI)
synapse is shown in Figure 4B (Dalgaty et al., 2019). The DPI
produces a decaying exponential post synaptic signal in response
to an input voltage pulse—potentially from an optical receiver.
This leaky integrator behavior is characterized by a time constant
set by the value of the filtering capacitance and the rate of leakage
off the capacitor (Chicca et al., 2014). The time constant could
potentially be programmed using memristors—an advantage
over superconducting circuits that have been proposed to date.

Frontiers in Neuroscience | www.frontiersin.org 7 September 2021 | Volume 15 | Article 732368110

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

3.2. Superconducting Electronics
Superconducting neurons have been studied nearly as long as
CMOS implementations, with a mapping between neuronal
functions and superconducting electronics identified in the early
1990s (Harada and Goto, 1991; Hidaka and Akers, 1991). In
this case, Faraday’s Law, governing the addition of magnetic flux
through mutual inductors to superconducting loops provides
the necessary synaptic summation function. Filtering is achieved
through resistor-inductor blocks (or RC circuits in some cases
Crotty et al., 2010). Josephson junctions (JJs) provide the
requisite nonlinear thresholding element.

Like their CMOS counterparts, many superconducting
circuits have now been designed to implement sophisticated
neuronal dynamics. Superconducting neuromorphic circuits
have been designed to implement a variety of bio-inspired neuron
models (Crotty et al., 2010; Schneider et al., 2018a; Toomey
et al., 2019), dendritic processing (Shainline, 2019), and have
performed image classification in simulation (Schneider et al.,
2017). The natural spiking behavior of JJs may even require a
lower device count than analogous CMOS circuits for various
leaky-integrate-and-fire models (Crotty et al., 2010). In short,
it does not appear that superconducting circuits are any less
capable of complex neuronal computation than CMOS, although
experimental demonstrations lag far behind.

Superconducting electronics has long been pursued for
gains in energy efficiency and speed. Indeed, superconducting
elements dissipate zero static power and spike energies are
frequently reported in the sub-femtojoule range, including
refrigeration. Optical communication is likely to dominate
power consumption for superconducting optoelectronic systems
(Supplementary Information B). In terms of speed, fully
electronic superconducting neurons may be capable of spike
rates up to 100GHz (Schneider et al., 2017, 2018a). However,
this is orders of magnitude faster than any SNSPD can
respond. This speed disparity is a notable difference between
the superconducting and semiconducting architectures. While
optical communication could be integrated with CMOS neurons
with no degradation in speed, optoelectronic superconducting
systems will likely be significantly slower than their fully
electronic counterparts. This may be the cost of highly connected
systems. That said, the extraordinary switching speed of JJs is
still leveraged in optoelectronic networks to perform analog
computations within synapses, dendrites, and neurons.

The ability of superconducting electronics to go slow might
be just as compelling as their ability to go fast. While it can
be challenging to implement long, biologically realistic time
constants in CMOS neurons, superconducting loops can create
time constants orders of magnitude higher than biology by
adjusting the L/R ratio in synaptic and neuronal loops (See
Figure 4A and Supplementary Information A). The ability to
generate dynamics across many orders of magnitude in time
also dovetails nicely with suggestions that critical behavior is
important for cognition (Cocchi et al., 2017).

Fan-in has traditionally been considered a liability of
superconducting electronics. If this were the case, it would clearly
be an impediment to mature superconducting neuromorphic
systems. For superconducting neurons designed to use single
fluxons as synaptic signals, fan-in has recently been analyzed

(Schneider and Segall, 2020), and it has been found that if a single
synapse must be able to drive a neuron above threshold, fan-in
may be limited to around 100. However, it is often not necessary
for each synapse to be able to trigger a neuronal spike event.
It has been analyzed elsewhere that if analog signals containing
multitudes of fluxons are communicated from synapses to the
neuron cell body, fan-in can likely scale to biological levels
through the use ofmutual inductors (Shainline et al., 2019). Using
more fluxons comes with larger power consumption, but for
optoelectronic systems, light production will likely still dominate.

While most diagrams of superconducting circuits (including
those here) show many separate biases delivering current to
various elements, the ability to construct circuits that can be
biased in series will be critical to the scalability of this hardware. A
separate bias for every synapse would be untenable in large-scale
systems (Tolpygo, 2016). Thismimics the evolution that occurred
in superconducting digital electronics, in which the field has
turned away from parallel biasing schemes and embraced serially
biased platforms (Tolpygo, 2016) and current recycling schemes
(Kirichenko et al., 2011). SOENs are potenially amenable to serial
biasing, but this important point demands further analysis.

A superconducting synaptic filtering circuit is shown in
Figure 4A. Synaptic weighting is implemented in the receiver
circuit (Figure 2A), so this circuit block is only responsible for
converting a train of fluxons into a decaying exponential post-
synaptic potential reminiscent of biological and CMOS synapses.
A resistor, rsi, converts a superconducting persistent current loop
into a leaky-integrator in a similar manner to the DPI synapse.
The time constant is set by Lsi/rsi, and the synaptic current can
be added to a neuronal circuit through mutual inductors. Unlike
the DPI synapse, this circuit does not have a programmable
time constant, but does hold the potential to implement a wide
range of different time constants by fabricating different values
of Lsi and rsi.

4. SYNAPTIC MEMORY

It has been apparent to the neuromorphic community for some
time that large-scale neural systems will require innovative
approaches to synaptic memory. A local, analog memory
element unique to every synapse will provide the most efficient
performance by eliminating memory retrieval and digital
conversion. Important metrics for analog synaptic memory
technologies include weight precision, volatility, area, write
energy, write speed, and endurance (the effective number of
cycles in a device’s lifetime). We attempt to provide desired
benchmarks for a few of these metrics in the specific case of
optoelectronic networks. For this section, we assume a speedup
of about 104 over biology, for an average spike rate of 10 kHz
and a maximum of 10MHz. This is commensurate with both
the maximum count rates of high-yield SNSPDs and some of the
fastest CMOS electronic neuromorphic systems built to-date.

4.1. Memory Benchmarks
4.1.1. Endurance
Large-scale neural systems require significant investments in
money and time. Operational lifetimes on the scale of decades
(109 s), if not longer, are therefore essential. Such systems

Frontiers in Neuroscience | www.frontiersin.org 8 September 2021 | Volume 15 | Article 732368111

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

will be expected to learn continually during that lifespan,
placing significant requirements on the durability of memory
technologies. The number of times a synapse is updated in its
lifetime is a function of neuron spiking frequency (f) and the
number of synapses that are typically updated after each post-
synaptic spike. Neuroscientific evidence has been presented that
the number of active presynaptic inputs required to trigger a
postsynaptic spike goes as

√

N, where N is the fan-in of the
neuron—exceeding 1,000 for brain-like systems (van Vreeswijk
and Sompolinsky, 1996; Vogels et al., 2005). We assume all
synapses that contributed to the spiking of the post-synaptic
neuron are updated with each spike. We then estimate the
number of weight updates (Nupdate) in the synapses’s lifetime (L)
will be:

Nupdate =
Lf
√

N
(4)

For a decades-long lifetime, and a mean spiking frequency
of 10 kHz, the total number of weight updates will be 1011.
This is a challenging demand for many emerging non-volatile
memory technologies.

4.1.2. Update Energy
One would like the power dedicated to weight updates not to
exceed the power used for optical communication. Once again
invoking the assumption that

√

N synapses are updated with each
postsynaptic spike, we arrive at the following relation between the
energy to produce a single spike (Eopt) and that to update a single
weight (Eupdate):

Eupdate <
√

NEopt (5)

Using the analysis in section 2, 1 fJ of energy needs to be delivered
to the receiver in either platform. Assuming a transmitter
efficiency of 1%, this would mean Eopt is 100 fJ. Therefore, for
a fan-in of 1,000 synapses, Eupdate would ideally be no more
than about 3 pJ. This value includes any energy consumption
of peripheral circuitry, both static and that associated with
programming. This efficiency appears to have already been met
by several emerging memory technologies (Schneider et al.,
2018b; Zahoor et al., 2020).

4.1.3. Update Speed
An ideal system would be capable of implementing synaptic
updates within the minimum inter-spike interval. While
semiconductor optoelectronic systems could potentially produce
spike rates in excess of 10GHz (assuming sufficiently bright,
integrated light sources can be achieved), synapses might need
to be taken offline during WRITE operations, as it is unlikely
that sophisticated plasticity mechanisms can be implemented in
under 100 ps. Lowermaximum frequencies would allow plasticity
to be implemented without ever neglecting a spiking event. For
our 10 MHz target, we desire memory updates in under 100
ns. Slower updates may not be completely intolerable, if network
dynamics are robust to missed spikes during synaptic updates or
to synaptic weights that are in the process of being altered.

TABLE 1 | List of desired performance metrics for synaptic memory in a system

with average fan-out of 1,000, maximum spike rate of 10 MHz, average spike rate

of 10 kHz, and spike energy of 100 fJ.

Metric Goal

Endurance > 1011 updates

Update Energy < 3 pJ

Update Speed < 100 ns

Weight Precision 4-8 bits

4.1.4. Weight Precision
The necessary weight precision will be determined by the
specifics of a chosen learning model and the desired application.
Weight precision has been the subject of much discussion. It
has been suggested that 4-bit precision is sufficient for state-of-
the-art mixed signal neuromorphic systems (Pfeil et al., 2012).
Deep learning systems have also demonstrated success with 8-
bit precision—a significant reduction from 32-bit floating point
numbers (Wang et al., 2018). Hippocampal synapses in rats have
been inferred to allow at least 26 different states (≈ 5 bit), which
squares nicely with computer science findings (Bartol et al.,
2015). It has also been argued that metaplasticity mechanisms
are more important for lifelong learning than the bit-depth of the
synapse (Fusi et al., 2005; Fusi and Abbott, 2007).

Target values for these key synaptic memory metrics are
summarized in Table 1.

4.1.5. Programming Signals
One important criterion that eludes quantitative benchmarking
is the complexity of programming circuitry for synaptic memory.
Significant infrastructure for producing programming signals
could limit scalability. For example, floating-gate synapses often
require programming signals at significantly higher voltages than
are likely to be used in other parts of the network. For large-
scale systems, memories with simple programming requirements
will be at an advantage. Superconducting loop memory (section
4.2.4) is intriguing from this standpoint, as the plasticity circuits
operate with nearly identical signals and circuit blocks as those
found in the rest of the network.

4.2. Proposed Technologies
4.2.1. Room-Temperature Analog Memories
Many technologies have been proposed to implement synaptic
weighting for room-temperature neuromorphic hardware, each
with strengths and weaknesses (Upadhyay et al., 2019). The
quest to find a suitable device for local synaptic memory dates
back to the origins of the field, when Mead and colleagues
investigated floating gate transistors (Diorio et al., 1998). Since
then, floating gate synapses have been used to implement
STDP (Ramakrishnan et al., 2011), are attractive as a mature
alternative to emerging devices, and have been proposed for
use in large-scale systems (Hasler and Marr, 2013). However,
there are concerns about high programming voltages, speed, and
endurance that may limit floating-gate memories to situations
with less-frequent updates. More recently, momentum has

Frontiers in Neuroscience | www.frontiersin.org 9 September 2021 | Volume 15 | Article 732368112

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

shifted to other technologies (Zahoor et al., 2020). Memristive
devices (Strukov et al., 2008; Yang et al., 2012; Abraham,
2018), commonly used in resistive random-access memory have
emerged as a popular alternative, with recent demonstrations
including monolithic integration with CMOS (Yin et al., 2019)
and unsupervised pattern recognition with a simple network of
synapses (Ielmini, 2018). Questions remain about high variability
(both cycle-to-cycle and device-to-device) (Dalgaty et al., 2019),
linearity, and endurance (Zahoor et al., 2020). Phase-change
memory is another option, with its own demonstration of STDP
(Ambrogio et al., 2016). Thermal management and endurance
have been raised as issues (Upadhyay et al., 2019; Zahoor et al.,
2020). Ferroelectric transistors present another alternative, as
they have low variability, good potential for CMOS integration,
and linearity (Kim and Lee, 2019). Spin-torque memory, 2D
materials, and organic electronics have also been proposed as
solutions. Interested readers should consult one of the many
review articles on this topic (Kim et al., 2018; Upadhyay
et al., 2019; Zhang et al., 2020b). The field is burgeoning with
new devices for synaptic memory, but to-date none has been
dominant enough to monopolize research. To our knowledge, no
technology has been able to simultaneously meet the targets in
Table 1, but progress in this area is encouraging.

4.2.2. Superconducting Technologies
Many of the aforementioned technologies may also apply to
superconducting optoelectronic systems, but their cryogenic
operation has been scarcely explored. Two other types of
memory, only accessible at low temperatures, have received the
most attention for superconducting systems: magnetic Josephson
junctions (MJJs) and superconducting loop memories. An
important distinction from room-temperature technologies is
that for superconductingmemory to be truly non-volatile, it must
retain its state both in the absence of a power supply and upon
warming to room-temperature.

4.2.3. Magnetic Josepson Junctions
MJJs have been proposed as a (nearly) non-volatile memory
technology for superconducting neuromorphic computing. A
two-terminal device, the critical current of an MJJ can be
programmed by changing the magnetic order of a ferromagnetic
material placed in the tunneling barrier of a JJ (Schneider et al.,
2018b). MJJs are non-volatile with respect to electrical power,
and there is optimism they can be made to retain their memory
through a warm-up to room-temperature. Additionally, they
provide remarkable performance with respect to the metrics
given in Table 1. The energy per update is on the order of
femtojoules (including cooling overhead), switching speeds are
commensurate with firing rates exceeding 100GHz, and devices
can be scaled to tens of nanometers. All of these metrics
surpass the requirements for optoelectronic networks, and can
be exploited in all-electronic superconducting networks as well
(Schneider et al., 2018a). More work is needed to analyze the
scaling potential of MJJs with respect to yield. The magnetic
fields used during programming can be produced with magnetic
control lines, but spin-torque mechanisms may provide a more
scalable solution. Finding an efficient, scalable solution to

programming MJJs in large-scale systems thus remains an area
of research that will be critical to their potential for adoption.

4.2.4. Loop Memory
Superconducting loop memories have been in use for decades
by the superconducting electronics community (Duzer and
Turner, 1998; Kadin, 1999), but are not ideal for dense memory
arrays commonly utilized as RAM in digital computing due
to area concerns. In the case of optoelectronic spiking neural
systems considered here, the objective is not to produce large
RAM arrays, and size as well as addressing challenges do not
emerge as significant impediments. Therefore, straightforward
extensions of binary loop memories are the synaptic memory
technology that appears most promising for the SOENs platform
(Shainline et al., 2018, 2019). In these memory cells, circulating
current persists indefinitely in a loop of superconducting wire.
The current in the loop can be controlled by adding/removing
magnetic-flux quanta with standard JJ circuitry. This memory
loop is then inductively coupled to a wire supplying a bias
current to a Josephson junction at the synapse (Jsf in Figure 2A).
When the synaptic SNSPD detects a photon, the biased junction
will add an integer number of fluxons to another integrating
superconductive loop (analogous to the membrane capacitance
of a neuron). The number of fluxons added to the integration
loop is a function of the bias supplied to the JJ, which is
determined by the magnitude of current circulating in the
memory loop. The number of analog memory levels in the
memory loop is determined by the inductance of the loop, which
is easily set with the length of a wire. High-kinetic-inductance
materials (Tolpygo et al., 2018) enable memory storage loops
with over a thousand levels (10 bits) to be fabricated in an
area of 5µm× 5µm.

The loop-memory approach has several strengths. The
memory is nearly analog and updates are nearly linear. Memory
is updated by the switching of a JJ, which involves only a change
of the phase of the superconducting wave function. This phase
can switch 1011 times in a second, so the endurance metric
defined in the previous section is not an issue. This stands
in contrast to room-temperature memories requiring material
changes (filament formation, phase changes, etc.) which are
often associated with degradation over time. Loop memory is
also attractive from a fabrication perspective as it requires no
additional materials or devices. The simplicity of the memory
lends itself favorably to 3D integration, provided cross-talk
from nearby loops can be mitigated. Plasticity circuits based on
loop memories will also operate at the energy scale of single
photons and flux quanta (10−19 J), which is commensurate with
the rest of the circuitry in the network. This allows weight
updates to be performed with the spikes the network produces
in standard operation, reducing peripheral circuitry. There is
no need to engineer differently shaped pulses for READ and
WRITE operations, and the synapse does not need to be taken
offline during programming. Simulations have demonstrated
STDP learning with circuits containing four additional Josephson
junctions (Shainline et al., 2019).

Two aspects of loop memory are concerning. First, loop
memory is not strictly non-volatile. While circulating current

Frontiers in Neuroscience | www.frontiersin.org 10 September 2021 | Volume 15 | Article 732368113

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

can persist in a superconducting loop without any power supply,
superconductivity must be maintained. If the temperature of
the system is raised above the critical temperature of the
superconducting material, the memory will be lost. Mechanisms
for transferring weights stored in current loops to non-
volatile solutions will need to be developed if the system’s
state is to be persevered upon reaching room-temperature
(i.e., for maintenance or during a power interruption). The
second weakness of loop memory is the size. The employed
superconducting loops, as well as the transformers that couple
them, will be large compared to all of the other solutions
discussed. The consequences of these large-area components
must be considered in the context of the entire system, which we
discuss next.

5. SYSTEM LEVEL CONSIDERATIONS

Here we consider aspects concerning the integration of the
components previously discussed and how systems may reach
the scale of the brain. Basic graph theory metrics and the
assumption of 300-mm fabrication processes allow us to assess
area constraints and the benefits of 3D integration. It is found
that at least five planes of photonic routing will be required
in either platform to achieve brain-scale systems. Prospects for
3D integration of active elements are addressed. It also must be
stressed that an optoelectronic system of the complexity of the
human brain will be abjectly impossible on a single 300-mm
wafer in either case. A possible vision for connectingmany wafers
is discussed. Finally, we analyze cooling and power concerns,
finding that neither should preclude the development of brain-
scale systems in either platform.

5.1. Considerations From Graph Theory
Neurons in brain regions active in cognition, such as the cerebral
cortex and hippocampus, are characterized by a high degree
of connectivity—often in excess of ten thousand connections
per neuron (Braitenberg and Schuz, 1998; Buzsáki, 2006). These
connections often extend across appreciable spatial distances.
Creating and maintaining these connections comes with high
metabolic and spatial costs. The severely constrained biological
brain would not support such expenditures if they were not
advantageous to cognition (Bullmore and Sporns, 2012).

One reason why such high connectivity is necessary
relates to efficient communication across the network. Rapid
communication can only be achieved if the average path length
across the network is small. In the language of graph theory,
a network is a collection of nodes connected by edges. To
calculate the shortest average path length across the network,
one calculates the number of edges that must be traversed to
travel from one node to another node in the network. One takes
the mean of this quantity over all pairs of nodes. The shortest
average path length (L̄) is a global metric that offers a glimpse
at the efficiency with which information can be communicated
across space.

Equation 6 provides the relationship between L̄ and the
number of edges connected to a node, or in our case, the number
of synapses per neuron (¯k) for a random network. In a random

network, nearby and distant connections are equally probable.
Specifically, the equation holds for Erdös-Rényi random graphs
of networks with Ntot neurons (Fronczak et al., 2004):

¯k = exp

[
ln(Ntot)− γ

L̄− 1/2

]
, (6)

where γ ≈ 0.5772 is Euler’s constant. For a network with 106

neurons, each neuron must make nearly 10,000 connections to
support an average path length of two, and 200 synapses must
be formed to support a path length of three. For a network
with 108 neurons, more than 100,000 synapses are required
for a path length of two, and more than 1,000 for a path
length of three. The human hippocampus is a module with
roughly 108 neurons, each with 10,000–50,000 nearly spatially
random connections. The objective of achieving an average
path length between two and three may be an important
reason why the hippocampus prioritizes this exceptional degree
of connectivity (Buzsáki, 2006). The cerebral cortex in the
human brain contains more than 1010 neurons, each with
roughly 10,000 connections. This analysis indicates that a path
length between two and three cannot be achieved across the
entire cortex, and accordingly the cortex is constructed with a
hierarchical, modular architecture (Simon, 1962; Meunier et al.,
2010) with high connectivity and efficient communication within
smaller modules, and more sparse connectivity between modules
separated by larger distances (Mountcastle, 1997; Meunier et al.,
2010; Bota et al., 2015; Betzel and Bassett, 2017).

While more sophisticated graph metrics can further elucidate
the network concepts underlying cognition (Bullmore and
Sporns, 2009), the simple, global metric of average shortest path
length can help inform scaling analysis of artificial cognitive
hardware at this early stage of development. We next consider
the constraints L̄ puts on the size of synaptic circuits.

5.2. Generic Spatial Constraints
Based on the significance of the interplay between the
hippocampus and cerebral cortex in cognition (Friston and
Buzsáki, 2016), we assume hardware for artificial neural
systems will make use of similar architectural principles. Here
we assume optoelectronic circuits will be fabricated using
the conventional sequential, planar processing techniques of
the silicon microelectronics industry. Photonic planes will
implement the passive optical interconnects and electronic planes
will accommodate all active electronics for neuronal function.
We further specify to consideration of 300-mm wafers and seek
a relationship between the network path length and the size of
components on the wafer.

The area of a neuron occupied by its photonic waveguides can
be approximated in a similar manner to the wires for electronic
circuits (Keyes, 1982). This gives the following expression for the
area of passive photonic circuitry:

Ap =

(
kwwg

pp

)2

. (7)

pp is the number of photonic waveguide planes, k is the degree
of each neuron (assumed identical), and wwg is the pitch of

Frontiers in Neuroscience | www.frontiersin.org 11 September 2021 | Volume 15 | Article 732368114

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

FIGURE 5 | Number of planes of active synaptic circuits (pe) and passive

photonic waveguides (pe) required to maintain a path length of 2.5 as a

function of the number of neurons on a 300-mm wafer (N300).

waveguides. The area of a neuron due to electronic synaptic
circuits is given by

Ae =
kw2

sy

pe
. (8)

wsy is the width of a synapse and pe is the number of planes
of electronic circuits. Both NtotAp and NtotAe are subject to the
area constraint of a 300-mm wafer. We use these relations to
calculate the number of planes (electronic and photonic) that will
be required to maintain a path length of 2.5 across a network
of a given size (Figure 5). See Appendix C for analysis of path
length dependence on wsy and wwg. A specific routing scheme
is analyzed in reference (Shainline et al., 2019). More than 10
million neurons (less than a mouse brain) on a single 300-mm
wafer appears out of reach for any platform.

5.3. Fabrication Processes
We assume 300-mm silicon wafer processing. Wafer-scale
integration has already been demonstrated for electronic
neuromorphic systems (Schemmel et al., 2010). Still, even at
this scale, reaching 106 optoelectronic neurons per wafer is
a tall order for either platform (Figure 5). We choose this
integration metric somewhat arbitrarily; 106 neurons per wafer
corresponds to 104 wafers for a human-cortex-scale system.
This is roughly the same order as the number of processing
units in modern supercomputers. If this target is to be reached,
3D integration at some level will be necessary. From Figure 5,
it is clear that either platform will require a minimum of
five photonic planes. Fortunately, photonic planes are quite
amenable to 3D integration. Common waveguide materials
include amorphous silicon (aSi), silicon nitride (SiNx) and
silicon oxynitride (SiOxNy). These dielectric materials can be
deposited at low temperature, enabling several multi-planar
demonstrations (Sacher et al., 2015; Shang et al., 2015; Chiles
et al., 2017; Zhang et al., 2018b). Additionally, low-temperature
deposition makes such processes compatible with back-end
CMOS fabrication. It should be noted that five photonic
planes represents a best-case scenario, as wider waveguides

have lower loss and only minimal reduction in average path
length (Supplementary Information C).

3D integration of active electronics is less straightforward,
particularly for the semiconductor approach. 3D CMOS
integration has been the subject of decades of research
(Rosenberg, 1983; Knickerbocker et al., 2008; Sakuma et al.,
2008; Vinet et al., 2011; Lim, 2013; Zhao et al., 2015; Elfadel
and Gerhard Fettweis, 2016; Li et al., 2017) and still faces
uncertainty. Required high-temperature processing steps for
dopant activation and contact anneals typically have a degrading
effect on previous layers. Much of 3D integration of silicon
microelectronics takes place at the die scale (Elfadel and
Gerhard Fettweis, 2016), which is incommensurate with the
scale of systems under consideration. For the semiconductor
scenario, the best course of action may be to abandon 3D
active electronics altogether in favor of simply reducing the
footprint (wsy) of synapses. We see again from Figure 5 that
nearly 106 neurons can be integrated on a single plane if each
synapse is on the order of 10µm × 10µm. This may be a
challenging benchmark to reach with high-functionality synapses
implementing complex plasticity and dynamics. Subthreshold
circuits that have embraced larger CMOS nodes for decreased
variability may need to adjust to more modern nodes, of which
there is some precedent (Rubino et al., 2019). Additionally,
photodetectors will be on the micron scale and long time-
constant capacitors can require significant area (Appendix A)
(Indiveri and Sandamirskaya, 2019). Both of these elements
would however be fabricated on separate planes from MOSFETs.

Superconducting platforms would likely take the opposite
approach, embracing 3D integration in the face of necessarily
large device areas. Superconducting electronics, including active
JJs, are routinely deposited at low temperatures (< 180 °C).
Integrated circuits with two stacked planes of JJs have been
demonstrated by two research laboratories (Ando et al., 2017;
Tolpygo et al., 2019), along with multiple of planes of
SNSPDs (Verma et al., 2012). This is particularly important,
as superconducting systems will not be able to reach 106

neurons per wafer without 3D integration. A reasonable estimate
for a superconducting synapse may be 30µm on a side
(Supplementary Information B). Such a size would require
eight electronic planes.

We note that even if pp = pe = 1, it is still possible to

fabricate wafers with 106 neurons, provided ¯k = 100, giving
L̄ = 3.5 (Figures 9, 10 in Supplementary Information C).
While this does not match the short path lengths of cognitive
circuits in the brain, such a network is likely to have significant
technological and scientific utility while offering an intermediate-
term practical objective.

5.4. Constructing Multi-Wafer Systems
Given that neither system will scale to billions of neurons on a
single wafer, many wafers (∼10,000) will need to be connected
together to support human-brain-scale computing. A vision for a
multi-wafer system is discussed in reference (Shainline, 2021) for
the SOENs platform. Briefly, wafers are stacked and free-space
optical communication is used to form highly inter-connected
columns mimicking the modular structure of biological circuits

Frontiers in Neuroscience | www.frontiersin.org 12 September 2021 | Volume 15 | Article 732368115

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

FIGURE 6 | Tradeoff between size and average spiking frequency for a

population of optoelectronic neurons with a power budget of 10 MW

(f = η* 10MW
(N*

neuronsN
*Eopt)

. Fan-out (N) is 103 and the optical energy needed at each

synapse is assumed to be 1 fJ (accounting for cooling in superconductor

case). This likely would correspond to the limits of either superconductor or

semiconductor neurons.

(Mountcastle, 1978, 1997; Meunier et al., 2010; Bota et al., 2015;
Betzel and Bassett, 2017). Columns are coupled to each other with
lateral inter-wafer connections, but such connectivity is more
sparse than that within a column. Optical fibers provide low-loss
communication over long distances.

Achieving systems of this scale requires advances, particularly
in wafer-scale circuit integration and system-level construction.
A phenomenon akin to Moore’s law, with ever-decreasing feature
sizes enabling ever-higher integration density is unlikely to carry
this concept forward, as many device sizes are limited by other
physical considerations. Metrics related to number of planes of
integrated circuits and number of wafers in a systemmay bemore
relevant to chart progress in neuromorphic supercomputing.
Gradual progress may be possible by consistently scaling up, but
it is difficult to envision this sustained trend without a powerful
economic drive.

5.5. Power Consumption and Cooling
5.5.1. Cooling Systems
Cooling systems will be a key component to either platform.
For superconducting electronics, the system will fail completely
if the temperature rises above the critical temperature (Tc).
Superconducting neuromorphic systems will rely on niobium
(Tc = 9.3 K) or a material with a similarly low Tc. Liquid
helium (4.2 K) is the cryogen of choice for such temperatures.
Cooling systems will add significantly to the power consumption
of superconducting electronics. The power efficiency of a
refrigeration system is measured by its specific power (Alekseev,
2015). The specific power gives the number of watts consumed
by the refrigeration system for every watt of heat removed. The
theoretical limit for specific power, given by the Carnot limit,

is TH−TC
TC

. For liquid helium temperature (4.2 K), the Carnot
limit demands that at least 74watts of refrigeration power are
required to remove every watt of heat produced on-chip if the
system is operated in a 300K ambient. State-of-the-art systems
have reached specific powers below 400W/W. Auspiciously, the

FIGURE 7 | Summary of necessary hardware demonstrations for each

platform if human-brain-scale artificial cognition is to be achieved.

most efficient refrigeration systems also tend to have the highest
heat loads. The ability to cool heat loads as high as 10 kW at
4.2 K have already been demonstrated by commercially available
systems (Holmes et al., 2013). Throughout this paper we assume
a more conservative specific power of 1, 000W/W, representative
of the smaller scale cryogenic systems used in most laboratories
today. It does not appear that cryogenic capability will be
an insurmountable obstacle toward large-scale superconducting
neural systems.

5.5.2. Power Limitations
Modern supercomputers typically consume megawatts of power.
Tianhe 2, for instance, requires 17.8MW for operation (and
another 6.4MW for cooling) (Tolpygo, 2016). If we thus assume
a total power budget of 10MW, we can analyze the trade-off
between average firing rate and number of neurons. We assume
1 fJ of optical energy is required to initiate a firing event at
each synapse and plot the maximum average frequency spiking
frequency for several different optical link efficiencies in Figure 6.

Power does not appear to be a limiting factor in achieving
brain-scale and brain-speed optoelectronic networks. If the
power resources of modern supercomputers were dedicated to a

Frontiers in Neuroscience | www.frontiersin.org 13 September 2021 | Volume 15 | Article 732368116

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

brain-scale optoelectronic neuromorphic system, average spiking
rates on the order of 10 kHz (104 speedup over biology) appear
feasible even with relatively inefficient optical links. Such a system
may enable brain-scale computation with time accelerated by
four orders of magnitude.

Another factor to consider is power density. There is a
maximum power density that can be handled by heat removal
systems for both the semiconducting and superconducting
case. In the semiconductor case, high-performance computing
routinely generates power densities of hundreds of watts per
square centimeter (Tolpygo, 2016). A theoretical limit of
around 1 kW/cm2 is postulated in Zhirnov et al. (2003). In
contrast, superconducting systems will be required to operate
at significantly lower power densities. Roughly 1 W/cm2 is a
conservative limit for on-chip power density that can be cooled
with liquid helium (Tolpygo, 2016). Superconducting optical
links appear to be capable of dissipating about three orders of
magnitude less energy per bit, approximately canceling out the
limited power density requirements of superconducting systems
in comparison with semiconductors. In practice, it might well
be the case that mature, sophisticated synapses and neurons will
occupy so much area that these power density limitations will
be of no consequence. For instance, even with link efficiency of
η = 10−4, a synapse would require a lateral dimension of less
than 30µm for power density considerations to limit spiking to
less than 1GHz. Section 5 argued that superconducting synapses
are not likely to be smaller than this. 10µm semiconducting
synapses could reach 1GHz with 1 × 10−3 efficiency. However,
optoelectronic systems will have nonuniform power dissipation
across the chip/wafer, with most of the power being dissipated at
the light sources. A more in-depth analysis is required to see if
heat removal will be an issue near the light sources in particular,
but for the superconducting case it is convenient that the light
sources themselves are not superconducting, and can afford
to be raised to higher temperatures without failure. Concerns
about local heating may be assuaged with layouts that sufficiently
shield and/or separate thermally sensitive devices from the
light sources.

6. CONCLUSION

The prospects of neuromorphic systems at the scale of the
brain and beyond are tantalizing. The fan-out capability of
optical communication coupled with the computational power
of electronic circuitry makes optoelectronic systems a promising
framework for realizing these high ambitions. However, there is
no technology platform that is ready to support optoelectronic
spiking networks of the scale and sophistication of the human
brain. Making this vision a reality will require breakthroughs
at the device level, no matter which path is chosen, particularly
with regard to integrated light sources. Beyond that, several
different classes of devices must be integrated alongside each
other, which further reduces the likelihood for success. Efficient,
densely integrated light sources, waveguide-coupled detectors,
local memory devices, and capable neuronal circuitry all must
be consolidated onto a single platform. Candidates for all

requisite devices can be proposed for either semiconducting or
superconducting platforms, and the two systems may be capable
of similar performance. However, the technological paths toward
achieving brain-scale systems with the two platforms diverge in
important respects (Figure 7).

Semiconductor platforms hold advantages in technological
maturity, room-temperature operation, and perhaps speed. Spike
rates in excess of 10GHz may be feasible, but only for systems
significantly smaller than the human brain due to power
constraints. Semiconductor receivers can potentially operate with
extremely low energies per spiking event (sub femto-joule),
making them a worthy competitor of superconducting single
photon detectors. However, these low energy receivers require
significant optical power from integrated light sources. To
achieve biological-scale fan-out, either very bright light sources,
repeatering schemes (costing area and yield), or additional gain
stages (costing power) will need to be included. In terms of
neuronal computation, semiconductor neurons have already
demonstrated impressive functionality and low-power operation
that should be capable of integration with optical communication
infrastructure, provided the long-standing challenges with
CMOS-integrated III-V light sources can be overcome. Synaptic
memory is a major open question, but a variety of non-volatile
memory solutions have seen extensive investigation, and time
will tell if one technology can meet the requirements we have
laid out for brain-scale optoelectronic systems. 3D integration
of transistors, photodetectors, and memory may not be a
feasible solution, meaning aggressive scaling of synaptic circuits
while maintaining complex functionality is perhaps a better
strategy. The fabrication processes for mature semiconductor
neural systems may prove to be prohibitively complicated and
heterogeneous, perhaps requiring different processing strategies
for sources, detectors, and memories. If wafer-scale monolithic
integration of these components cannot be achieved, and chip-
scale die-stacking techniques are required, the outlook for
achieving brain-scale systems is limited.

Superconducting optoelectronic neural systems suffer from
a comparatively primitive fabrication ecosystem, but the
incorporation of superconducting devices provides several
intriguing properties. SNSPD receivers place nearly the
theoretical minimum burden on integrated light sources. This
attribute compounds positively with the improvements in
efficiency for light sources operating at cryogenic temperatures.
Integration of light sources with superconducting electronics
does not appear to have the same material integration challenges
as integration with CMOS, but this state of affairs may be due
to the lack of attention the effort has received. These factors
make the large-scale integration of light sources appear more
tractable than in the semiconductor case—perhaps even opening
the door to silicon as an active optical material. Driving these
light sources with superconducting electronics, however, has yet
to demonstrate the performance required for this application.
The implementation of a high-impedance pulse-and-reset circuit
remains an open challenge. For computation, superconducting
neuronal circuits appear just as capable of implementing complex
neuronal and synaptic behaviors as their CMOS counterparts,
but will need to be designed with serial biasing in order to scale.

Frontiers in Neuroscience | www.frontiersin.org 14 September 2021 | Volume 15 | Article 732368117

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

Additionally, some speed advantages present in superconducting
electronics will be negated by the response time of SNSPDs
(<1GHz). Of course, even if maximum spike rates are limited
to 20 MHz, this would still represent a speed-up of four orders
of magnitude over biological systems. Memory seems to be a
strength for the superconducting platform, as superconductivity
provides new avenues of storing synaptic weights. Loop
memory in particular may be capable of implementing plasticity
mechanisms that operate with only the signals produced through
normal network activity. Caution is in order here, however, as
superconducting synaptic plasticity mechanisms have scarcely
been explored. 3D integration may yield more readily in the
superconductor platform. The inconvenience of cryogenic
cooling is a serious consideration, but power and heat removal
estimations indicate this is unlikely to be a limiting factor
for brain-scale systems. If all these issues can be resolved,
superconducting optoelectronic systems may require simpler
manufacturing processes than the semiconductor approach,
as the material ecosystem could potentially be parsimonious.
Of course, superconducting foundries are far less developed
than their semiconductor counterparts, which may negate these
advantages in the near-term.

We would be remiss to paint the quest for neuromorphic
supercomputing as only a question of hardware. The inner
workings of the brain are the subject of intense investigation,
and the emergent phenomena of cognition and consciousness
remain taunting, increasingly lonely enigmas entrenched in
the netherworld between philosophy and science. Watershed
breakthroughs in neuroscience and algorithmic development
will be required for the discussed hardware platforms to
have practical applications, although the hardware platforms
themselves may be of use in helping to unravel some of
these mysteries. The question of whether it is prudent to
develop hardware before algorithms has pestered the field

of neuromorphic computing since its inception. In this case,
we believe that the length of development, rich opportunities
for spin-off technologies, and inestimable potential make
such hardware development well-worth pursuing even at this
incipient stage.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work was supported by the National Institute of Standards
and Technology. BP was supported under the financial assistance
award 70NANB18H006 from the U.S. Department of Commerce,
National Institute of Standards and Technology.

ACKNOWLEDGMENTS

We thank Drs. Brian Hoskins, Advait Madhavan, and Alexander
Tait for helpful insights and conversation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.732368/full#supplementary-material

REFERENCES

Abraham, I. (2018). The case for rejecting the memristor as a fundamental circuit

element. Nature 8:10972. doi: 10.1038/s41598-018-29394-7

Abu-Hassan, K., Taylor, J., Morris, P., Donati, E., Bortolotto, Z., Indiveri,

G., et al. (2019). Optimal solid state neurons. Nat. Comm. 10:5309.

doi: 10.1038/s41467-019-13177-3

Akhlaghi, M. K., Schelew, E., and Young, J. F. (2015). Waveguide

integrated superconducting single-photon detectors implemented as

near-perfect absorbers of coherent radiation. Nat. Commun. 6, 1–8.

doi: 10.1038/ncomms9233

Alekseev, A. (2015). Basics of low-temperature refrigeration. arXiv [Preprint]

arXiv:1501.07392. doi: 10.5170/CERN-2014-005.111

Allen, C., and Stevens, C. F. (1994). An evaluation of causes for unreliability

of synaptic transmission. Proc. Natl. Acad. Sci. U.S.A. 91, 10380–10383.

doi: 10.1073/pnas.91.22.10380

Ambrogio, S., Ciocchini, N., Laudato, M., Milo, V., Pirovano, A., Fantini,

P., et al. (2016). Unsupervised learning by spike timing dependent

plasticity in phase change memory (pcm) synapses. Front. Neurosci. 10:56.

doi: 10.3389/fnins.2016.00056

Ando, T., Nagasawa, S., Takeuchi, N., Tsuji, N., China, F., Hidaka, M., et al. (2017).

Three-dimensional adiabatic quantum-flux-parametron fabricated using a

double-active-layered niobium process. Supercond. Sci. Technol. 30:075003.

doi: 10.1088/1361-6668/aa6ef4

Assefa, S., Xia, F., and Vlasov, Y. A. (2010). Reinventing germanium avalanche

photodetector for nanophotonic on-chip optical interconnects. Nature 464,

80–84. doi: 10.1038/nature08813

Bao, J., Tabbal, M., Kim, T., Charnvanichborikarn, S., Williams, J. S., Aziz, M. J.,

et al. (2007b). Point defect engineered si sub-bandgap light-emitting diode.Opt.

Express 15, 6727–6733. doi: 10.1364/OE.15.006727

Bartol T. M. Jr, Bromer, C., Kinney, J., Chirillo, M. A., Bourne, J. N., Harris, K.

M., et al. (2015). Nanoconnectomic upper bound on the variability of synaptic

plasticity. Elife 4:e10778. doi: 10.7554/eLife.10778

Beaufils, C., Redjem, W., Rousseau, E., Jacques, V., Kuznetsov, A., Raynaud, C.,

et al. (2018). Optical properties of an ensembe of G-centers in silicon. Phys.

Rev. B 97:035303. doi: 10.1103/PhysRevB.97.035303

Beggs, J. (2007). The criticality hypothesis: how local cortical networks

might optimize information processing. Philos. Trans. R. Soc. A 366:329.

doi: 10.1098/rsta.2007.2092

Benjamin, B., Gao, P., McQuinn, E., Choudhary, S., Chandresekaran,

A., Bussat, J.-M., et al. (2014). Neurogrid: A mixed-analog-digital

multichip system for large-scale neural simulations. Proc. IEEE 102:699.

doi: 10.1109/JPROC.2014.2313565

Bergeron, L., Chartrand, C., Kurkjian, A., Morse, K., Riemann, H., Abrosimov, N.,

et al. (2020). Silicon-Integrated Telecommunications Photon-Spin Interface.

PRX Quantum 1:020301. doi: 10.1103/PRXQuantum.1.020301

Betzel, R., and Bassett, D. (2017). Multi-scale brain networks. Neuroimage 160:73.

doi: 10.1016/j.neuroimage.2016.11.006

Frontiers in Neuroscience | www.frontiersin.org 15 September 2021 | Volume 15 | Article 732368118

https://www.frontiersin.org/articles/10.3389/fnins.2021.732368/full#supplementary-material
https://doi.org/10.1038/s41598-018-29394-7
https://doi.org/10.1038/s41467-019-13177-3
https://doi.org/10.1038/ncomms9233
https://doi.org/10.5170/CERN-2014-005.111
https://doi.org/10.1073/pnas.91.22.10380
https://doi.org/10.3389/fnins.2016.00056
https://doi.org/10.1088/1361-6668/aa6ef4
https://doi.org/10.1038/nature08813
https://doi.org/10.1364/OE.15.006727
https://doi.org/10.7554/eLife.10778
https://doi.org/10.1103/PhysRevB.97.035303
https://doi.org/10.1098/rsta.2007.2092
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1103/PRXQuantum.1.020301
https://doi.org/10.1016/j.neuroimage.2016.11.006
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

Bota, M., Sporns, O., and Swanson, L. (2015). Architecture of the cerebral cortical

association connectome underlying cognition. Proc. Natl. Acad. Sci. U.S.A. 112,

E2093–E2101. doi: 10.1073/pnas.1504394112

Bowers, J. E., Komljenovic, T., Davenport, M., Hulme, J., Liu, A. Y., Santis, C. T.,

et al. (2016). “Recent advances in silicon photonic integrated circuits,” in Next-

Generation Optical Communication: Components, Sub-Systems, and Systems V,

Vol. 9774 (San Francisco, CA: International Society for Optics and Photonics),

977402.

Bradfield, P., Brown, T., and Hall, D. (1989). Electroluminescence from sulfur

impurities in an p-n junction formed in epitaxial silicon. Appl. Phys. Lett.

55:100. doi: 10.1063/1.102115

Braitenberg, V., and Schuz, A. (1998). Cortex: Statistics and Geometry of Neuronal

Connectivity. Berlin: Springer.

Brink, S., Nease, S., and Hasler, P. (2013). Computing with networks of spiking

neurons on a biophysically motivated floating-gate based neuromorphic

integrated circuit. Neural Netw. 45:39. doi: 10.1016/j.neunet.2013.02.011

Brown, T., and Hall, D. (1986). Observation of electroluminescence from excitons

bound to isoelectronic impurities in crystalline silicon. J. Appl. Phys. 59:1399.

doi: 10.1063/1.336489

Buckley, S., Chiles, J., McCaughan, A. N., Moody, G., Silverman, K. L., Stevens,

M. J., et al. (2017). All-silicon light-emitting diodes waveguide-integrated

with superconducting single-photon detectors. Appl. Phys. Lett. 111, 141101.

doi: 10.1063/1.4994692

Buckley, S., Tait, A., Chiles, J., McCaughan, A., Khan, S., Mirin, R.,

et al. (2020a). Integrated-photonic characterization of single-photon

detectors for use in neuromorphic synapses. Phys. Rev. Appl. 14:054008.

doi: 10.1103/PhysRevApplied.14.054008

Buckley, S. M., Tait, A. N., Moody, G., Primavera, B., Olson, S., Herman, J., et al.

(2020b). Optimization of photoluminescence from w centers in a silicon-on-

insulator. Opt Express 28, 16057–16072. doi: 10.1364/OE.386450

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10:186.

doi: 10.1038/nrn2575

Bullmore, E., and Sporns, O. (2012). The economy of brain network organization.

Nat. Rev. Neurosci. 13:336. doi: 10.1038/nrn3214

Buzsáki, G. (2006). Rhythms of the Brain. New York, NY: Oxford University Press.

Camacho-Aguilera, R., Han, Z., Cai, Y., Kimerling, L. C., and Michel, J. (2013).

Direct band gap narrowing in highly doped ge. Appl. Phys. Lett. New York, NY:

102, 152106. doi: 10.1063/1.4802199

Chartrand, C., Bergeron, L., Morse, K., Riemann, H., Abrosimov, N., Becker,

P., et al. (2018). Highly enriched 28Si reveals remarkable optical linewidths

and fine structure for well-known damage centers. Phys. Rev. B 98:195201.

doi: 10.1103/PhysRevB.98.195201

Chen, S., Li, W., Wu, J., Jiang, Q., Tang, M., Shutts, S., et al. (2016). Electrically

pumped continuous-wave III-V quantum dot lasers on silicon. Nat. Photonics

10:307. doi: 10.1038/nphoton.2016.21

Chicca, E., Stefanini, F., Bartolozzi, C., and Indiveri, G. (2014). Neuromorphic

electronic circuits for building autonomous cognitive systems. Proc. IEEE 102,

1367–1388. doi: 10.1109/JPROC.2014.2313954

Chiles, J., Buckley, S., Nader, N., Nam, S., Mirin, R., and Shainline, J. (2017).

Multi-planar amorphous silicon photonics with compact interplanar couplers,

cross talk mitigation, and low crossing loss. APL Photonics 2:116101.

doi: 10.1063/1.5000384

Cocchi, L., Gollo, L. L., Zalesky, A., and Breakspear, M. (2017). Criticality in the

brain: A synthesis of neurobiology, models and cognition. Progr. Neurobiol.

158, 132–152. doi: 10.1016/j.pneurobio.2017.07.002

Crosnier, G., Sanchez, D., Bouchoule, S., Monnier, P., Beaudoin, G., Sagnes, I., et al.

(2017). Hybrid indium phosphide-on-silicon nanolaser diode. Nat. Photon.

11:297. doi: 10.1038/nphoton.2017.56

Crotty, P., Schult, D., and Segall, K. (2010). Josephson junction simulation of

neurons. Phys. Rev. E 82, 011914. doi: 10.1103/PhysRevE.82.011914

Dalgaty, T., Payvand, M., Moro, F., Ly, D. R., Pebay-Peyroula, F., Casas, J., et al.

(2019). Hybrid neuromorphic circuits exploiting non-conventional properties

of rram for massively parallel local plasticity mechanisms. APL Mater. 7,

081125. doi: 10.1063/1.5108663

Davies, G. (1989). The optical properties of luminescence centres in silicon. Phys.

Rep. 176, 83–188. doi: 10.1016/0370-1573(89)90064-1

Debaes, C., Bhatnagar, A., Agarwal, D., Chen, R., Keeler, G. A., Helman,

N. C., et al. (2003). Receiver-less optical clock injection for clock

distribution networks. IEEE J. Select. Top. Quantum Electron. 9, 400–409.

doi: 10.1109/JSTQE.2003.813319

DeRose, C. T., Trotter, D. C., Zortman, W. A., Starbuck, A. L., Fisher, M.,

Watts, M. R., et al. (2011). Ultra compact 45 ghz cmos compatible germanium

waveguide photodiode with low dark current. Opt Express 19, 24897–24904.

doi: 10.1364/OE.19.024897

Diorio, C., Hasler, P., Minch, B. A., and Mead, C. (1998). “Floating-gate mos

synapse transistors,” inNeuromorphic Systems Engineering (Springer), 315–337.

doi: 10.1007/978-0-585-28001-1_14

Dolores-Calzadilla, V., Romeira, B., Pagliano, F., Birindelli, S., Higuera-

Rodriguez, A., Van Veldhoven, P., et al. (2017). Waveguide-coupled

nanopillar metal-cavity light-emitting diodes on silicon. Nat. Commun. 8, 1–8.

doi: 10.1038/ncomms14323

Duzer, T. V., and Turner, C. (1998). Principles of Superconductive Devices and

Circuits, 2nd Edn. Hoboken, NJ: Prentice Hall.

El Kurdi, M., Kociniewski, T., Ngo, T.-P., Boulmer, J., Debarre, D., Boucaud, P.,

et al. (2009). Enhanced photoluminescence of heavily n-doped germanium.

Appl. Phys. Lett. 94, 191107. doi: 10.1063/1.3138155

Elfadel, A., andGerhard Fettweis (2016). 3D stacked chips. NewYork, NY: Springer.

Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W., and Schneider,

J. (1985). 1.54 µ m electroluminescence of erbium-doped silicon grown by

molecular beam epitaxy. Appl. Phys. Lett. 46:381.

Euler, T., and Denk, W. (2001). Dendritic processing. Curr. Opin. Neurobiol. 11,

415–422. doi: 10.1016/S0959-4388(00)00228-2

Fadaly, E. M., Dijkstra, A., Suckert, J. R., Ziss, D., van Tilburg, M. A., Mao, C., et al.

(2020). Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature

580, 205–209. doi: 10.1038/s41586-020-2150-y

Ferrari, S., Kahl, O., Kovalyuk, V., Goltsman, G., Korneev, A., and Pernice, W.

(2015). Waveguide-integrated single- and multi-photon detecton at telecom

wavelengths using superconducting nanowires. Appl. Phys. Lett. 106:151101.

doi: 10.1063/1.4917166

Ferrari, S., Schuck, C., and Pernice, W. (2018). Waveguide-integrated

superconducting nanowire single-photon detectors. Nanophotonics 7,

1725–1758. doi: 10.1515/nanoph-2018-0059

Friston, K., and Buzsáki, G. (2016). The functional anatomy of time: what and

when in the brain. Trends Cogn. Sci. 20, 500. doi: 10.1016/j.tics.2016.05.001

Fronczak, A., Fronczak, P., and Holyst, J. (2004). Average path length in random

networks. Phys. Rev. E 70:056110. doi: 10.1103/PhysRevE.70.056110

Furber, S. (2016). Large-scale neuromorphic computing systems. J. Neural Eng. 13,

051001. doi: 10.1088/1741-2560/13/5/051001

Fusi, S., and Abbott, L. (2007). Limits on the memory storage capacity of bounded

synapses. Nat. Neurosci. 10:485. doi: 10.1038/nn1859

Fusi, S., Drew, P., and Abbott, L. (2005). Casdcade models of synaptically stored

memories. Neuron 45:599. doi: 10.1016/j.neuron.2005.02.001

Ghrib, A., De Kersauson, M., El Kurdi, M., Jakomin, R., Beaudoin, G., Sauvage, S.,

et al. (2012). Control of tensile strain in germaniumwaveguides through silicon

nitride layers. Appl. Phys. Lett. 100, 201104. doi: 10.1063/1.4718525

Green, M. A., Zaho, J., Wang, A., Reese, P. J., and Gal, M. (2001). Efficient silicon

light-emitting diodes. Nature 412:805. doi: 10.1038/35090539

Gurioli, M., Vinattieri, A., Colocci, M., Deparis, C., Massies, J., Neu, G.,

et al. (1991). Temperature dependence of the radiative and nonradiative

recombination time in gaas/al x ga 1- x as quantum-well structures. Phys. Rev.

B 44, 3115.

Halbritter, H., Jäger, C., Weber, R., Schwind, M., and Möllmer, F. (2014). High-

speed led driver for ns-pulse switching of high-current leds. IEEE Photonics

Technol. Lett. 26, 1871–1873. doi: 10.1109/LPT.2014.2336732

Han, Y., Xue, Y., Yan, Z., and Lau, K. (2021). Selectively Grown III-

V Lasers for Integrated Si-Photonics. J. Lightwave Technol. 39:940.

doi: 10.1109/JLT.2020.3041348

Harada, Y., and Goto, E. (1991). Artificial neural network circuits with

josephson devices. IEEE Trans. Magnetics 27:2863. doi: 10.1109/20.1

33806

Hasler, J., and Marr, H. B. (2013). Finding a roadmap to achieve

large neuromorphic hardware systems. Front. Neurosci. 7:118.

doi: 10.3389/fnins.2013.00118

Frontiers in Neuroscience | www.frontiersin.org 16 September 2021 | Volume 15 | Article 732368119

https://doi.org/10.1073/pnas.1504394112
https://doi.org/10.1063/1.102115
https://doi.org/10.1016/j.neunet.2013.02.011
https://doi.org/10.1063/1.336489
https://doi.org/10.1063/1.4994692
https://doi.org/10.1103/PhysRevApplied.14.054008
https://doi.org/10.1364/OE.386450
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn3214
https://doi.org/10.1063/1.4802199
https://doi.org/10.1103/PhysRevB.98.195201
https://doi.org/10.1038/nphoton.2016.21
https://doi.org/10.1109/JPROC.2014.2313954
https://doi.org/10.1063/1.5000384
https://doi.org/10.1016/j.pneurobio.2017.07.002
https://doi.org/10.1038/nphoton.2017.56
https://doi.org/10.1103/PhysRevE.82.011914
https://doi.org/10.1063/1.5108663
https://doi.org/10.1016/0370-1573(89)90064-1
https://doi.org/10.1109/JSTQE.2003.813319
https://doi.org/10.1364/OE.19.024897
https://doi.org/10.1007/978-0-585-28001-1_14
https://doi.org/10.1038/ncomms14323
https://doi.org/10.1063/1.3138155
https://doi.org/10.1016/S0959-4388(00)00228-2
https://doi.org/10.1038/s41586-020-2150-y
https://doi.org/10.1063/1.4917166
https://doi.org/10.1515/nanoph-2018-0059
https://doi.org/10.1016/j.tics.2016.05.001
https://doi.org/10.1103/PhysRevE.70.056110
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1038/nn1859
https://doi.org/10.1016/j.neuron.2005.02.001
https://doi.org/10.1063/1.4718525
https://doi.org/10.1038/35090539
https://doi.org/10.1109/LPT.2014.2336732
https://doi.org/10.1109/JLT.2020.3041348
https://doi.org/10.1109/20.133806
https://doi.org/10.3389/fnins.2013.00118
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

Hawkins, J., and Ahmad, S. (2016). Why neurons have thousands of synapses,

a theory of sequence memory in neocortex. Front. Neural Circ. 10:23.

doi: 10.3389/fncir.2016.00023

Hennessy, J. L., and Patterson, D. A. (2011).Computer Architecture: A Quantitative

Approach. Cambridge: MA, Elsevier.

Hidaka, M., and Akers, L. (1991). An artificial neural cell implemented

with superconducting circuits. Supercond. Sci. Technol. 4:654.

doi: 10.1088/0953-2048/4/11/027

Hollenback, M., Berencén, Y., Kentsch, U., Helm, M., and Astakhov, G. (2020).

Engineering telecom single-photon emitters in silicon for scalable quantum

photonics. Opt. Express 28:26111. doi: 10.1364/OE.397377

Holmes, D. S., Ripple, A. L., and Manheimer, M. A. (2013). Energy-efficient

superconducting computing–power budgets and requirements. IEEE Trans.

Appl. Supercond. 23, 1701610–1701610. doi: 10.1109/TASC.2013.2244634

Hu, Y., Liang, D., Mikherjee, K., Li, Y., Zhang, C., Kurcveil, G., et al. (2019). III/V-

on-Si MQW lasers by using a novel photonic integration method of regrowth

on a bonding template. Light Sci. Appl. 8:93. doi: 10.1038/s41377-019-0202-6

Ielmini, D. (2018). Brain-inspired computing with resistive switching memory

(rram): devices, synapses and neural networks. Microelectron. Eng. 190:44–53.

doi: 10.1016/j.mee.2018.01.009

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A., Etienne-

Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron

circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Indiveri, G., and Sandamirskaya, Y. (2019). The importance of space and time for

signal processing in neuromorphic agents: the challenge of developing low-

power, autonomous agents that interact with the environment. IEEE Signal

Process Mag. 36, 16–28. doi: 10.1109/MSP.2019.2928376

Ishikawa, Y., Wada, K., Cannon, D. D., Liu, J., Luan, H.-C., and Kimerling, L. C.

(2003). Strain-induced band gap shrinkage in ge grown on si substrate. Appl.

Phy.s Lett. 82, 2044–2046. doi: 10.1063/1.1564868

Iyer, S. S., and Xie, Y.-H. (1993). Light emission from silicon. Science 260:40.

doi: 10.1126/science.260.5104.40

Jiao, Y., van der Tol, J., Pogoretskii, V., van Engelen, J., Kashi, A., Reniers, S.,

et al. (2020). Indium phosphide membrane nanophotonic integrated circuits

on silicon. Physica Status Solidi 217:1900606. doi: 10.1002/pssa.201900606

Jung, D., Norman, J., Kennedy, M., Shang, C., Shin, B., Wan, Y., et al. (2017). High

efficiency low threshold current 1.3 µ m inas quantum dot lasers on on-axis

(001) gap/si. Appl. Phys. Lett. 111, 122107. doi: 10.1063/1.4993226

Justice, J., Bower, C., Meitl, M., Mooney, M., Gubbins, M., and Corbett, B. (2012).

Wafer-scale integration of group III-V lasers on silicon using transfer printing

of epitaxial layers. Nat. Photonics 6:610. doi: 10.1038/nphoton.2012.204

Kadin, A. M. (1999). Introduction to Superconducting Circuits, 1st Edn. New York,

NY: John Wiley and Sons. first edition.

Keyes, R. (1982). The wire-limited logic chip. IEEE J. Sol. State Circ. 17:1232.

doi: 10.1109/JSSC.1982.1051887

Kim, M.-K., and Lee, J.-S. (2019). Ferroelectric analog synaptic transistors. Nano

Lett. 19, 2044–2050. doi: 10.1021/acs.nanolett.9b00180

Kim, S. G., Han, J. S., Kim, H., Kim, S. Y., and Jang, H. W. (2018). Recent advances

in memristive materials for artificial synapses. Adv. Mater. Technol. 3, 1800457.

doi: 10.1002/admt.201800457

Kirichenko, D., Sarwana, S., and Kirichenko, A. (2011). Zero static power

dissipation biasing of rsfq circuits. IEEE Trans. Appl. Supercond. 21:776.

doi: 10.1109/TASC.2010.2098432

Knickerbocker, J. U., Andry, P. S., Dang, B., Horton, R. R., Interrante, M. J., Patel,

C. S., et al. (2008). Three- dimensional silicon integration. IBM J. Res. Dev. 52,

553–569. doi: 10.1147/JRD.2008.5388564

Koch, C., and Segev, I. (2000). The role of single neurons in information processing.

Nat. Neurosci. 3:1171. doi: 10.1038/81444

Kveder, V., Badylevich, M., Steinman, E., Izotov, A., Seibt, M., and Schröter, W.

(2004). Room-temperature silicon light-emitting diodes based on dislocation

luminescence. Appl. Phys. Lett. 84:2106. doi: 10.1063/1.1689402

Li, M., Shi, J., Rahman, M., Khasanvis, S., Bhat, S., and Moritz, C. (2017).

Skybridge-3D-CMOS: a fine-grained 3D CMOS integrated circuit technology.

IEEE Trans. Nanotech. 16, 639. doi: 10.1109/TNANO.2017.2700626

Lim, S. (2013).Design for High Performance, Low Power, and Reliable 3D Integrated

Circuits. New York, NY: Springer. doi: 10.1007/978-1-4419-9542-1

Lisman, J. (1997). Bursts as a unit of neural information: making unreliable

synapses reliable. Trends Neurosci. 20:38. doi: 10.1016/S0166-2236(96)10070-9

Liu, J., Sun, X., Camacho-Aguilera, R., Kimerling, L. C., and Michel, J. (2010).

Ge-on-si laser operating at room temperature. Opt. Lett. 35, 679–681.

doi: 10.1364/OL.35.000679

Liu, J., Sun, X., Pan, D., Wang, X., Kimerling, L. C., Koch, T. L., et al. (2007).

Tensile-strained, n-type ge as a gain medium for monolithic laser integration

on si. Opt Express 15, 11272–11277. doi: 10.1364/OE.15.011272

Liu, S.-C., Delbruck, T., Indiveri, G., Whatley, A., and Douglas, R., (eds.) (2015).

Event-Based Neuromorphic Systems. Chichester: John Wiley and Sons.

Marder, E. (1987). “Neurotransmitters and neuromodulators,” in The

Crustacean Stomatogastric System (Berlin: Springer), 263–306.

doi: 10.1007/978-3-642-71516-7_10

Marsili, F., Verma, V., Stern, J., Harrington, S., Lita, A., Gerrits, T., et al. (2013).

Detecting single infrared photons with 93% system efficiency. Nat. Photon.

7:210. doi: 10.1038/nphoton.2013.13

McCaughan, A. N., Verma, V. B., Buckley, S. M., Allmaras, J., Kozorezov, A., Tait,

A., et al. (2019). A superconducting thermal switch with ultrahigh impedance

for interfacing superconductors to semiconductors. Nat. Electron. 2, 451–456.

doi: 10.1038/s41928-019-0300-8

McDonnell, M. D., and Ward, L. M. (2011). The benefits of noise in neural

systems: bridging theory and experiment. Nat. Rev. Neurosci. 12, 415–425.

doi: 10.1038/nrn3061

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.

doi: 10.1109/5.58356

Mehta, K., Orcutt, J., Shainline, J., Tehar-Zahav, O., Sternberg, Z., Meade,

R., et al. (2014). Polycrystalline silicon ring resonator photodiodes in a

bulk complementary metal-oxide-semiconductor process. Opt. Lett. 39:1061.

doi: 10.1364/OL.39.001061

Meunier, D., Lambiotte, R., and Bullmore, E. (2010). Modular and

hierarchically modular organization of brain networks. Front. Neurosci.

4, 1. doi: 10.3389/fnins.2010.00200

Miller, D. A. (2017). Attojoule optoelectronics for low-energy information

processing and communications. J. Lightwave Technol. 35, 346–396.

doi: 10.1109/JLT.2017.2647779

Mountcastle, V. (1978). An Organizing Principle for Cerebral Function: The Unit

Module and the Distributed System. Cambridge, MA: The MIT Press.

Mountcastle, V. (1997). The columnar organization of the neocortex. Brain

120:701. doi: 10.1093/brain/120.4.701

Ng, W. L., Lourenco, M., Gwilliam, R., Ledain, S., Shao, G., and Homewood,

K. (2001). An efficient room-temperature silicon-based light-emitting diode.

Nature 410, 192–194. doi: 10.1038/35065571

Norman, J. C., Jung, D., Wan, Y., and Bowers, J. E. (2018). Perspective: The

future of quantum dot photonic integrated circuits. APL Photonics 3, 030901.

doi: 10.1063/1.5021345

Nozaki, K., Matsuo, S., Fujii, T., Takeda, K., Shinya, A., Kuramochi, E., et al.

(2018). Forward-biased nanophotonic detector for ultralow-energy dissipation

receiver. APL Photonics 3, 046101. doi: 10.1063/1.5022074

Palm, J., Gan, F., Zheng, B., Michel, J., and Kimerling, L. (1996).

Electroluminescence of erbium-doped silicon. Phys. Rev. B 54:17603.

doi: 10.1103/PhysRevB.54.17603

Pernice, W., Schuck, C., Minaeva, O., Li, M., Goltsman, G., Sergienko,

A., et al. (2012). High speed travelling wave single-photon detectors

with near-unity quantum efficiency. Nat. Comm. 3:1325. doi: 10.1038/

ncomms2307

Pfeil, T., Grubl, A., Jeltsch, S., Müller, E., Metrovici, M., Schmuker, M., et al.

(2013). Six networks on a universal neuromorphic computing substrate. Front.

Neurosci. 7:1. doi: 10.3389/fnins.2013.00011

Pfeil, T., Potjans, T. C., Schrader, S., Potjans, W., Schemmel, J., Diesmann, M., et al.

(2012). Is a 4-bit synaptic weight resolution enough–constraints on enabling

spike-timing dependent plasticity in neuromorphic hardware. Front. Neurosci.

6:90. doi: 10.3389/fnins.2012.00090

Pizzone, A., Srinivasan, S. A., Verheyen, P., Lepage, G., Balakrishnan, S., and Van

Campenhout, J. (2020). “Analysis of dark current in ge-on-si photodiodes at

cryogenic temperatures,” in 2020 IEEE Photonics Conference (IPC) (Vancouver,

BC: IEEE), 1-2. doi: 10.1109/IPC47351.2020.9252362

Rajendran, B., Liu, Y., Seo, J.-,s., Gopalakrishnan, K., Chang, L., Friedman,

D. J., et al. (2012). Specifications of nanoscale devices and circuits for

neuromorphic computational systems. IEEE Trans. Electron. Devices 60,

246–253. doi: 10.1109/TED.2012.2227969

Frontiers in Neuroscience | www.frontiersin.org 17 September 2021 | Volume 15 | Article 732368120

https://doi.org/10.3389/fncir.2016.00023
https://doi.org/10.1088/0953-2048/4/11/027
https://doi.org/10.1364/OE.397377
https://doi.org/10.1109/TASC.2013.2244634
https://doi.org/10.1038/s41377-019-0202-6
https://doi.org/10.1016/j.mee.2018.01.009
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1109/MSP.2019.2928376
https://doi.org/10.1063/1.1564868
https://doi.org/10.1126/science.260.5104.40
https://doi.org/10.1002/pssa.201900606
https://doi.org/10.1063/1.4993226
https://doi.org/10.1038/nphoton.2012.204
https://doi.org/10.1109/JSSC.1982.1051887
https://doi.org/10.1021/acs.nanolett.9b00180
https://doi.org/10.1002/admt.201800457
https://doi.org/10.1109/TASC.2010.2098432
https://doi.org/10.1147/JRD.2008.5388564
https://doi.org/10.1038/81444
https://doi.org/10.1063/1.1689402
https://doi.org/10.1109/TNANO.2017.2700626
https://doi.org/10.1007/978-1-4419-9542-1
https://doi.org/10.1016/S0166-2236(96)10070-9
https://doi.org/10.1364/OL.35.000679
https://doi.org/10.1364/OE.15.011272
https://doi.org/10.1007/978-3-642-71516-7_10
https://doi.org/10.1038/nphoton.2013.13
https://doi.org/10.1038/s41928-019-0300-8
https://doi.org/10.1038/nrn3061
https://doi.org/10.1109/5.58356
https://doi.org/10.1364/OL.39.001061
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.1109/JLT.2017.2647779
https://doi.org/10.1093/brain/120.4.701
https://doi.org/10.1038/35065571
https://doi.org/10.1063/1.5021345
https://doi.org/10.1063/1.5022074
https://doi.org/10.1103/PhysRevB.54.17603
https://doi.org/10.1038/ncomms2307
https://doi.org/10.3389/fnins.2013.00011
https://doi.org/10.3389/fnins.2012.00090
https://doi.org/10.1109/IPC47351.2020.9252362
https://doi.org/10.1109/TED.2012.2227969
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

Ramakrishnan, S., Hasler, P. E., and Gordon, C. (2011). Floating

gate synapses with spike-time-dependent plasticity. IEEE Trans.

Biomed. Circ. Syst. 5, 244–252. doi: 10.1109/TBCAS.2011.21

09000

Razavi, B. (2012). Design of Integrated Circuits for Optical Communications.

Hoboken, NJ: John Wiley Sons.

Reddy, D., Nerem, R., Nam, S., Mirin, R., and Verma, V. (2020). Superconducting

nanowire single-photon detectors with 98% system detection efficiency at

1550 nm. Optica 7:1649.

Redjem,W., Durand, A., Herzig, T., Benali, A., Pezzagna, S., Meijer, J., et al. (2020).

Single artificial atoms in silicon emitting at telecom wavelengths. Nat. Electron.

3:738. doi: 10.1038/s41928-020-00499-0

Romeira, B., and Fiore, A. (2018). Purcell effect in the stimulated and spontaneous

emission rates of nanoscale semiconductor lasers. IEEE J. Quantum. Electron.

54, 1–12. doi: 10.1109/JQE.2018.2802464

Romeira, B., and Fiore, A. (2019). Physical limits of nanoleds and

nanolasers for optical communications. Proc. IEEE 108, 735–748.

doi: 10.1109/JPROC.2019.2912293

Rosenberg, A. (1983). Three-dimensional VLSI: a case study. J. Assoc. Computing

Machinery 30, 397. doi: 10.1145/2402.322384

Rosenberg, D., Kerman, A., Molnar, R., and Dauler, E. (2013). High-speed and

high-efficiency superconducting nanowire single photon detector array. Opt.

Express 21, 1440–1447. doi: 10.1364/OE.21.001440

Rotem, E., Shainline, J., and Xu, J. (2007). Electroluminescence of nanopatterned

silicon with carbon implantation and solid phase epitaxial regrowth. Opt.

Express 15:14099. doi: 10.1364/OE.15.014099

Rubino, A., Payvand, M., and Indiveri, G. (2019). “2019 26th IEEE International

Conference on Electronics, Circuits and Systems, ICECS 2019,” in 2019 26th

IEEE International Conference on Electronics, Circuits and Systems, ICECS 2019

(Genova: IEEE), 458–461.

Sacher, W., Huang, Y., Lo, G.-Q., and Poon, J. (2015). Multilayer silicon nitride-

on-silicon integrated photonic platforms and devices. J. Lightwave Tech. 33:901.

doi: 10.1109/JLT.2015.2392784

Sahin, D., Gaggero, A., Weber, J.-W., Agafonov, I., Verheijen, M., Mattioli, F.,

et al. (2015). Waveguide nanowire superconducting single-photon detectors

fabricated on gaas and the study of their optical properties. IEEE J. Sel. Top.

Quant. Electron. 21:3800210. doi: 10.1109/JSTQE.2014.2359539

Sakuma, K., Andry, P., Tsang, C., Wright, S., Dang, B., Patel, C., et al. (2008). 3D

chip-stacking technology with through-silicon vias and low-volume lead-free

interconnections. IBM J. Res. Dev. 52, 611. doi: 10.1147/JRD.2008.5388567

Sandiford, D. (1958). Temperature dependence of carrier lifetime in silicon. Proc.

Phys. Soc. 71:1002. doi: 10.1088/0370-1328/71/6/313

Sardi, S., Vardi, R., Sheinin, A., Goldental, A., and Kanter, I. (2017). New types of

experiments reveal that a neuron functions as multiple independent threshold

units. Sci. Rep. 7:18036. doi: 10.1038/s41598-017-18363-1

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S.

(2010). “A wafer-scale neuromorphic hardware system for large-scale neural

modeling,” in 2010 IEEE International Symposium on Circuits and Systems

(ISCAS) (Paris: IEEE), 1947–1950. doi: 10.1109/ISCAS.2010.5536970

Schemmel, J., Kriener, L., Müller, P., and Meier, K. (2017). “An accelerated analog

neuromorphic hardware system emulating nmda-and calcium-based non-

linear dendrites,” in 2017 International Joint Conference on Neural Networks

(IJCNN) (Anchorage, AK: IEEE), 2217–2226.

Schneider, M., and Segall, K. (2020). Fan-out and fan-in properties of

superconducting neuromorphic circuits. J. Appl. Phys. 128, 214903.

doi: 10.1063/5.0025168

Schneider, M. L., Donnelly, C. A., and Russek, S. E. (2018a). Tutorial: high-speed

low-power neuromorphic systems based on magnetic josephson junctions. J.

Appl. Phys. 124, 161102. doi: 10.1063/1.5042425

Schneider, M. L., Donnelly, C. A., Russek, S. E., Baek, B., Pufall, M. R., Hopkins,

P. F., et al. (2017). “Energy-efficient single-flux-quantum based neuromorphic

computing,” in 2017 IEEE International Conference on Rebooting Computing

(ICRC) (Washington, DC, IEEE), 1–4. doi: 10.1109/ICRC.2017.8123634

Schneider, M. L., Donnelly, C. A., Russek, S. E., Baek, B., Pufall, M. R., Hopkins,

P. F., et al. (2018b). Ultralow power artificial synapses using nanotextured

magnetic josephson junctions. Sci. Adv. 4:e1701329.

Segal, C., Dalakoti, A., Miller, M., and Brewer, F. (2016). “Connectivity effects

on energy and area for neuromorphic system with high speed asynchronous

pulse mode links,” in 2016 ACM/IEEE International Workshop on System Level

Interconnect Prediction (SLIP) (Austin, TX: IEEE), 16.

Shainline, J., Buckley, S., McCaughan, A., Chiles, J., Jafari-Salim, A., Mirin, R.,

et al. (2018). Circuit designs for superconducting optoelectronic loop neurons.

J. Appl. Phys. 124:152130. doi: 10.1063/1.5038031

Shainline, J., Buckley, S., Nader, N., Gentry, C., Cossel, K., Cleary, J., et al. (2017a).

Room-temperature-deposited dielectrics and superconductors for integrated

photonics. Opt. Express 25:10322.

Shainline, J., and Xu, J. (2007). Silicon as an emissive optical medium. Laser

Photonics Rev. 1:334. doi: 10.1002/lpor.200710021

Shainline, J. M. (2019). Fluxonic processing of photonic synapse events. IEEE J.

Select. Top. Quantum Electron. 26, 1–15. doi: 10.1109/JSTQE.2019.2927473

Shainline, J. M. (2021). Optoelectronic intelligence. arXiv [Preprint]

arXiv:2010.08690. doi: 10.1063/5.0040567

Shainline, J. M., Buckley, S. M., McCaughan, A. N., Chiles, J. T., Jafari Salim,

A., Castellanos-Beltran, M., et al. (2019). Superconducting optoelectronic loop

neurons. J. Appl. Phys. 126, 044902. doi: 10.1063/1.5096403

Shainline, J. M., Buckley, S. M., Mirin, R. P., and Nam, S. W. (2017b).

Superconducting optoelectronic circuits for neuromorphic computing. Phys.

Rev. Appl. 7, 034013. doi: 10.1103/PhysRevApplied.7.034013

Shang, K., Pathak, S., Guan, B., Liu, G., and Yoo, S. (2015). Low-loss compact

multilayer silicon nitride platform for 3D photonic integrated circuits. Opt.

Express 23:21334. doi: 10.1364/OE.23.021334

Simon, H. (1962). The architecture of complexity. Proc. Amer. Phil. Soc. 106:467.

Song, B., Stagarescu, C., Ristic, S., Behfar, A., and Klamkin, J. (2016). 3D integrated

hybrid silicon laser. Opt. Express 24:10435. doi: 10.1364/OE.24.010435

Sourikopoulos, I., Hedayat, S., Loyez, C., Danneville, F., Hoel, V., Mercier, E.,

et al. (2017). A 4-fj/spike artificial neuron in 65 nm cmos technology. Front.

Neurosci. 11:123. doi: 10.3389/fnins.2017.00123

Sprengers, J., Gaggero, A., Sahin, D., Jahanmirinejad, S., Frucci, G., Mattioli,

F., et al. (2011). Waveguide superconducting single-photon detectors

for integrated quantum photonic circuits. Appl. Phys. Lett. 99:181110.

doi: 10.1063/1.3657518

Stein, R. B., Gossen, E. R., and Jones, K. E. (2005). Neuronal variability: noise or

part of the signal? Nat. Rev. Neurosci. 6, 389–397. doi: 10.1038/nrn1668

Strukov, D., Snider, G., Stewart, D., and Williams, R. (2008). The missing

memristor found. Nature. 453:80. doi: 10.1038/nature06932

Stuart, G., and Spruston, N. (2015). Dendritic integration: 60 years of progress.

Nat. Neurosci. 18:1713. doi: 10.1038/nn.4157

Sumikura, H., Kuramochi, E., Taniyama, H., and Notomi, M. (2014). Ultrafast

spontaneous emission of copper-doped silicon enhanced by an optical

nanocavity. Sci. Rep. 4:5040. doi: 10.1038/srep05040

Sun, X., Liu, J., Kimerling, L. C., and Michel, J. (2009a). Direct gap

photoluminescence of n-type tensile-strained ge-on-si. Appl. Phys. Lett. 95,

011911. doi: 10.1063/1.3170870

Sun, X., Liu, J., Kimerling, L. C., and Michel, J. (2009b). Room-temperature direct

bandgap electroluminesence from ge-on-si light-emitting diodes. Opt. Lett. 34,

1198–1200. doi: 10.1364/OL.34.001198

Sun, X., Liu, J., Kimerling, L. C., and Michel, J. (2009c). Toward a germanium

laser for integrated silicon photonics. IEEE. Select. Top. Quantum Electron. 16,

124–131. doi: 10.1109/JSTQE.2009.2027445

Szelag, B., Hassan, K., Adelmini, L., Ghegin, E., Rodriguez, P., Nemouchi, F., et al.

(2019). Hybrid iii-V/Silicon Technology for Laser Integration on a 200-mm

Fully CMOS-Compatible Silicon Photonics Platform. IEEE J. Sel. Top. Quant.

Electron. 25:8201210. doi: 10.1109/JSTQE.2019.2904445

Tang, M., Park, J.-S., Wang, Z., Chen, S., Jurczak, P., Seeds, A., et al. (2019).

Integration of iii-v lasers on si for si photonics. Progr. Quantum Electron.

66:1–18. doi: 10.1016/j.pquantelec.2019.05.002

Tani, K., Oda, K., Deura, M., and Ido, T. (2021). Enhanced room-temperature

electroluminescence from a germanium waveguide on a silicon-on-

insulator diode with a silicon nitride stressor. Opt. Express 29, 3584–3595.

doi: 10.1364/OE.415230

Tolpygo, S., Bolkhovsky, V., Oates, D., Rastogi, R., Zarr, S., Day, A., et al.

(2018). Superconductor Electronics Fabrication Process with MoNx Kinetic

Inductors and Self-Shunted Josephson Junctions. IEEE Trans. Appl. Supercond.

28, 1100212. doi: 10.1109/TASC.2018.2809442

Tolpygo, S., Bolkhovsky, V., Rastogi, R., Zarr, S., Day, A., Golden, E., et al. (2019).

Planarized Fabrication Process With Two Layers of SIS Josephson Junctions

Frontiers in Neuroscience | www.frontiersin.org 18 September 2021 | Volume 15 | Article 732368121

https://doi.org/10.1109/TBCAS.2011.2109000
https://doi.org/10.1038/s41928-020-00499-0
https://doi.org/10.1109/JQE.2018.2802464
https://doi.org/10.1109/JPROC.2019.2912293
https://doi.org/10.1145/2402.322384
https://doi.org/10.1364/OE.21.001440
https://doi.org/10.1364/OE.15.014099
https://doi.org/10.1109/JLT.2015.2392784
https://doi.org/10.1109/JSTQE.2014.2359539
https://doi.org/10.1147/JRD.2008.5388567
https://doi.org/10.1088/0370-1328/71/6/313
https://doi.org/10.1038/s41598-017-18363-1
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1063/5.0025168
https://doi.org/10.1063/1.5042425
https://doi.org/10.1109/ICRC.2017.8123634
https://doi.org/10.1063/1.5038031
https://doi.org/10.1002/lpor.200710021
https://doi.org/10.1109/JSTQE.2019.2927473
https://doi.org/10.1063/5.0040567
https://doi.org/10.1063/1.5096403
https://doi.org/10.1103/PhysRevApplied.7.034013
https://doi.org/10.1364/OE.23.021334
https://doi.org/10.1364/OE.24.010435
https://doi.org/10.3389/fnins.2017.00123
https://doi.org/10.1063/1.3657518
https://doi.org/10.1038/nrn1668
https://doi.org/10.1038/nature06932
https://doi.org/10.1038/nn.4157
https://doi.org/10.1038/srep05040
https://doi.org/10.1063/1.3170870
https://doi.org/10.1364/OL.34.001198
https://doi.org/10.1109/JSTQE.2009.2027445
https://doi.org/10.1109/JSTQE.2019.2904445
https://doi.org/10.1016/j.pquantelec.2019.05.002
https://doi.org/10.1364/OE.415230
https://doi.org/10.1109/TASC.2018.2809442
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

and Integration of SIS and SFS π-Junctions. IEEE Trans. Appl. Supercond. 29,

1101208. doi: 10.1109/TASC.2019.2901709

Tolpygo, S. K. (2016). Superconductor digital electronics: Scalability and energy

efficiency issues. Low Temperature Phys. 42, 361–379. doi: 10.1063/1.4948618

Toomey, E., Segall, K., and Berggren, K. K. (2019). Design of a power efficient

artificial neuron using superconducting nanowires. Front. Neurosci. 13:933.

doi: 10.3389/fnins.2019.00933

Upadhyay, N. K., Jiang, H.,Wang, Z., Asapu, S., Xia, Q., and Joshua Yang, J. (2019).

Emerging memory devices for neuromorphic computing. Adv. Mater. Technol.

4, 1800589. doi: 10.1002/admt.201800589

van Vreeswijk, C., and Sompolinsky, H. (1996). Chaos in neuronal networks

with balanced excitatory and inhibitory activity. Science 274:1724.

doi: 10.1126/science.274.5293.1724

Verma, V., Marsili, F., Harrington, S., Lita, A., Mirin, R., and Nam, S. (2012).

A three-dimensional, polarization-insensitive superconducting nanowire

avalanche photodetector. Appl. Phys. Lett. 101:251114. doi: 10.1063/1.4768788

Vetter, A., Ferrari, S., Rath, P., Alaee, R., Kahl, O., Kovalyuk, V., et al. (2016).

Cavity-enhanced and ultrafast superconducting single-photon detectors. Nano

Lett. 16, 7085–7092. doi: 10.1021/acs.nanolett.6b03344

Vinet, M., Batude, P., Tabone, C., Previtali, B., LeRoyer, C., Pouydebasque, A.,

et al. (2011). 3Dmonolithic integration: Technological challenges and electrical

results.Microelectron. Eng. 88:331. doi: 10.1016/j.mee.2010.10.022

Virgilio, M., Manganelli, C., Grosso, G., Pizzi, G., and Capellini, G. (2013).

Radiative recombination and optical gain spectra in biaxially strained n-

type germanium. Phys. Rev. B 87, 235313. doi: 10.1103/PhysRevB.87.2

35313

Virot, L., Crozat, P., Fédéli, J.-M., Hartmann, J.-M., Marris-Morini, D., Cassan, E.,

et al. (2014). Germanium avalanche receiver for low power interconnects. Nat.

Commun. 5, 1–6. doi: 10.1038/ncomms5957

Vogels, T., Rajan, K., and Abbott, L. (2005). Neural network dynamics. Annu. Rev.

Neurosci. 28:357. doi: 10.1146/annurev.neuro.28.061604.135637

Vogelstein, R., Mallik, U., Vogelstein, J., and Cauwenberghs, G. (2007).

Dynamically reconfigurable silicon array of spiking neurons with

conductance-based synapses. IEEE Trans. Neural Netw. 18:253.

doi: 10.1109/TNN.2006.883007

Walters, R. J., Bourianoff, G. I., and Atwater, H. A. (2005). Field-effect

electroluminescence in silicon nanocrystals. Nat. Mater. 4:143–146.

doi: 10.1038/nmat1307

Wang, N., Choi, J., Brand, D., Chen, C.-Y., and Gopalakrishnan, K. (2018).

Training deep neural networks with 8-bit floating point numbers. arXiv

[Preprint] arXiv:1812.08011.

Warga, J., Li, R., Basu, S., and Dal Negro, L. (2008). Electroluminescence from

silicon-rich nitride/silicon superlattice structures. Appl. Phys. Lett. 93, 151116.

doi: 10.1063/1.3003867

Wollman, E., Verma, V., Lita, A., Farr, W., Shaw, M., Mirin, R., et al. (2019).

Kilopixel array of superconducting nanowire single-photon detectors. Opt.

Express 27:35279. doi: 10.1364/OE.27.035279

Yang, J., Strukov, D., and Stewart, D. (2012). Memristive devices for computing.

Nat. Nanotech. 8:13. doi: 10.1038/nnano.2012.240

Yin, S., Kim, Y., Han, X., Barnaby, H., Yu, S., Luo, Y., et al. (2019). Monolithically

integrated rram-and cmos-based in-memory computing optimizations for

efficient deep learning. IEEE Micro 39, 54–63. doi: 10.1109/MM.2019.

2943047

Young, A. R., Dean, M. E., Plank, J. S., and Rose, G. S. (2019). A review

of spiking neuromorphic hardware communication systems. IEEE Access 7,

135606–135620. doi: 10.1109/ACCESS.2019.2941772

Zahoor, F., Azni Zulkifli, T. Z., and Khanday, F. A. (2020). Resistive random access

memory (rram): an overview of materials, switching mechanism, performance,

multilevel cell (mlc) storage, modeling, and applications. Nanoscale Res. Lett.

15, 1–26. doi: 10.1186/s11671-020-03299-9

Zhang, J., Haq, B., O’Callaghan, J., Gocalinska, A., Pelucchi, E., Trindade,

A., et al. (2018a). Transfer-printing-based integration of a III-V-on-

silicon distributed feedback laser. Opt. Express 26:8821. doi: 10.1364/OE.26.

008821

Zhang, J., Muliuk, G., Juvert, J., Kumari, S., Goyvaerts, J., Haq, B., et al. (2019).

Iii-v-on-si photonic integrated circuits realized using micro-transfer-printing.

APL Photonics 4, 110803. doi: 10.1063/1.5120004

Zhang, Y., Ling, Y., Zhang, Y., Shang, K., and Yoo, S. (2018b). High-

density wafer-scale 3-d silicon-photonic integrated circuits. IEEE J.

Select. Top. Quantum Electron. 24:8200510. doi: 10.1109/JSTQE.2018.28

27784

Zhang, Y., Samanta, A., Shang, K., and Yoo, S. B. (2020a). Scalable 3d

silicon photonic electronic integrated circuits and their applications. IEEE

J. Select. Top. Quantum Electron. 26, 1–10. doi: 10.1109/JSTQE.2020.29

75656

Zhang, Y., Wang, Z., Zhu, J., Yang, Y., Rao, M., Song, W., et al. (2020b). Brain-

inspired computing with memristors: Challenges in devices, circuits, and

systems. Appl. Phys. Rev. 7, 011308. doi: 10.1063/1.5124027

Zhao, J., Xie, Y., and Zou, Q. (2015). Overview of 3-D architecture

design opportunities and techniques. IEEE Design Test 34, 60.

doi: 10.1109/MDAT.2015.2463282

Zhirnov, V. V., Cavin, R. K., Hutchby, J. A., and Bourianoff, G. I. (2003). Limits

to binary logic switch scaling-a gedanken model. Proc. IEEE 91, 1934–1939.

doi: 10.1109/JPROC.2003.818324

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Primavera and Shainline. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 19 September 2021 | Volume 15 | Article 732368122

https://doi.org/10.1109/TASC.2019.2901709
https://doi.org/10.1063/1.4948618
https://doi.org/10.3389/fnins.2019.00933
https://doi.org/10.1002/admt.201800589
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1063/1.4768788
https://doi.org/10.1021/acs.nanolett.6b03344
https://doi.org/10.1016/j.mee.2010.10.022
https://doi.org/10.1103/PhysRevB.87.235313
https://doi.org/10.1038/ncomms5957
https://doi.org/10.1146/annurev.neuro.28.061604.135637
https://doi.org/10.1109/TNN.2006.883007
https://doi.org/10.1038/nmat1307
https://doi.org/10.1063/1.3003867
https://doi.org/10.1364/OE.27.035279
https://doi.org/10.1038/nnano.2012.240
https://doi.org/10.1109/MM.2019.2943047
https://doi.org/10.1109/ACCESS.2019.2941772
https://doi.org/10.1186/s11671-020-03299-9
https://doi.org/10.1364/OE.26.008821
https://doi.org/10.1063/1.5120004
https://doi.org/10.1109/JSTQE.2018.2827784
https://doi.org/10.1109/JSTQE.2020.2975656
https://doi.org/10.1063/1.5124027
https://doi.org/10.1109/MDAT.2015.2463282
https://doi.org/10.1109/JPROC.2003.818324
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Enabling Training of Neural Networks
on Noisy Hardware
Tayfun Gokmen*

IBM Research AI, Yorktown Heights, NY, United States

Deep neural networks (DNNs) are typically trained using the conventional stochastic
gradient descent (SGD) algorithm. However, SGD performs poorly when applied to
train networks on non-ideal analog hardware composed of resistive device arrays with
non-symmetric conductance modulation characteristics. Recently we proposed a new
algorithm, the Tiki-Taka algorithm, that overcomes this stringent symmetry requirement.
Here we build on top of Tiki-Taka and describe a more robust algorithm that further relaxes
other stringent hardware requirements. This more robust second version of the Tiki-Taka
algorithm (referred to as TTv2) 1. decreases the number of device conductance states
requirement from 1000s of states to only 10s of states, 2. increases the noise tolerance to
the device conductance modulations by about 100x, and 3. increases the noise tolerance
to the matrix-vector multiplication performed by the analog arrays by about 10x. Empirical
simulation results show that TTv2 can train various neural networks close to their ideal
accuracy even at extremely noisy hardware settings. TTv2 achieves these capabilities by
complementing the original Tiki-Taka algorithm with lightweight and low computational
complexity digital filtering operations performed outside the analog arrays. Therefore, the
implementation cost of TTv2 compared to SGD and Tiki-Taka is minimal, and it maintains
the usual power and speed benefits of using analog hardware for training workloads. Here
we also show how to extract the neural network from the analog hardware once the
training is complete for further model deployment. Similar to Bayesian model averaging, we
form analog hardware compatible averages over the neural network weights derived from
TTv2 iterates. This model average then can be transferred to another analog or digital
hardware with notable improvements in test accuracy, transcending the trained model
itself. In short, we describe an end-to-end training and model extraction technique for
extremely noisy crossbar-based analog hardware that can be used to accelerate DNN
training workloads and match the performance of full-precision SGD.

Keywords: learning algorithms, training algorithms, neural network acceleration, Bayesian neural network, in-
memory computing, on-chip learning, crossbar arrays, memristor

INTRODUCTION

Deep neural networks (DNNs) (LeCun et al., 2015) have achieved tremendous success in multiple
domains outperforming other approaches and even humans (He et al., 2015) at many problems:
object recognition, video analysis, and natural language processing are only a few to mention.
However, this success was enabled mainly by scaling the DNNs and datasets to extreme sizes, and
therefore, it came at the expense of needing immense computation power and time. For instance, the
amount of compute required to train a single GPT-3 model composed of 175B parameters is

Edited by:
Oliver Rhodes,

The University of Manchester,
United Kingdom

Reviewed by:
Shimeng Yu,

Georgia Institute of Technology,
United States

Emre O. Neftci,
University of California, Irvine,

United States

*Correspondence:
Tayfun Gokmen

tgokmen@us.ibm.com

Specialty section:
This article was submitted to

Machine Learning and Artificial
Intelligence,

a section of the journal
Frontiers in Artificial Intelligence

Received: 22 April 2021
Accepted: 16 August 2021

Published: 09 September 2021

Citation:
Gokmen T (2021) Enabling Training of
Neural Networks on Noisy Hardware.

Front. Artif. Intell. 4:699148.
doi: 10.3389/frai.2021.699148

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991481

ORIGINAL RESEARCH
published: 09 September 2021
doi: 10.3389/frai.2021.699148

123

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.699148&domain=pdf&date_stamp=2021-09-09
https://www.frontiersin.org/articles/10.3389/frai.2021.699148/full
https://www.frontiersin.org/articles/10.3389/frai.2021.699148/full
http://creativecommons.org/licenses/by/4.0/
mailto:tgokmen@us.ibm.com
https://doi.org/10.3389/frai.2021.699148
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.699148

tremendous: 3,600 Petaflops/s-days (Brown et al., 2020),
equivalent to running 1,000 state-of-the-art NVIDIA A100
GPUs, each delivering 150 Teraflops/s performance for about
24 days. Hence, today’s and tomorrow’s large models are costly to
train both financially and environmentally on currently available
hardware (Strubell et al., 2019), begging for faster and more
energy-efficient solutions.

DNNs are typically trained using the conventional stochastic
gradient descent (SGD) and backpropagation (BP) algorithm
(Rumelhart et al., 1986). During DNN training, matrix-matrix
multiplications; hence repeated multiply and add operations
dominate the total workload. Therefore, regardless of the
underlying technology, realizing highly optimized multiply and
add units and sustaining many of these units with appropriate
data paths is practically the only game everybody plays while
proposing new hardware for DNN training workloads (Sze et al.,
2017).

One approach that has been quite successful in the past few
years is to design highly optimized digital circuits using the
conventional CMOS technology that leverages reduced-
precision arithmetic for the multiply and add operations.
These techniques are already employed to some extent by
current GPUs (Nvidia, 2021) and other application-specific-
integrated-circuits (ASIC) designs, such as TPUs (Cloud TPU,
2007) and IPUs (Graphcore, 2021). There are also many research
efforts extending the boundaries of the reduced precision
training, using hybrid 8-bit (Sun et al., 2019) and 4-bit (Sun
et al., 2020) floating-point and 5-bit logarithmically scaled
(Miyashita et al., 2016) number formats.

Alternative to digital CMOS, hardware architectures
composed of novel resistive cross-point device arrays have
been proposed that can deliver significant power and speed
benefits for DNN training (Gokmen and Vlasov, 2016;
Haensch et al., 2019; Burr et al., 2017; Burr et al., 2015; Yu,
2018).We refer to these cross-point devices as resistive processing
unit [RPU (Gokmen and Vlasov, 2016)] devices as they can
perform all the multiply and add operations needed for training
by relying on physics. Out of all multiply and add operations
during training, 1/3 are performed during forward propagation,
1/3 are performed during error backpropagation, and finally, 1/3
are performed during gradient computation. RPU devices use
Ohm’s law and Kirchhoff’s law (Steinbuch, 1961) to perform the
multiply and add needed for the forward propagation and error
backpropagation. However, more importantly, RPUs use the
device conductance modulation and memory characteristics to
perform the multiply and add needed during the gradient
computation (Gokmen and Vlasov, 2016).

Unfortunately, RPU based crossbar architectures have had
only minimal success so far. That is mainly because the training
accuracy on this imminent analog hardware strongly depends on
the cross-point elements’ conductance modulation characteristics
when the conventional SGD algorithm is used. One of the key
requirements is that these devices must symmetrically change
conductance when subjected to positive or negative pulse stimuli
(Gokmen and Vlasov, 2016; Agarwal et al., 2016). Theoretically, it
is shown that only symmetric devices provide an unbiased
gradient calculation and accumulation needed for the SGD

algorithm. Whereas any non-symmetric device characteristic
modifies the optimization objective and hampers the
convergence of SGD based training (Gokmen and Haensch,
2020; Onen et al., 2021).

Many different solutions are proposed to tackle the SGD’s
converge problem on crossbar arrays. First, widespread efforts to
engineer resistive devices with symmetric modulation
characteristics have been made (Fuller et al., 2019; Woo and
Yu, 2018; Grollier et al., 2020), but a mature device technology
with the desired behavior remains to be seen. Second, many high-
level mitigation techniques have been proposed to overcome the
device asymmetry problem. One critical issue with these
techniques is the serial access to cross-point elements either
one-by-one or row-by-row (Ambrogio et al., 2018; Agarwal
et al., 2017; Yu et al., 2015). Serial operations such as reading
conductance values individually, engineering update pulses to
force symmetric modulation artificially, and carrying or resetting
weights periodically come with a tremendous overhead for large
networks. Alternatively, there are approaches that perform the
gradient computation outside the arrays using digital processing
(Nandakumar et al., 2020). Note that irrespective of the DNN
architecture, 1/3 of the whole training workload is in the gradient
computation. For instance, for the GPT-3 network, 1,200
Petaflops/s-days are required solely for gradient computation
throughout the training. Consequently, these approaches
cannot deliver much more performance than the fully digital
reduced-precision alternatives mentioned above. In short, there
exist solutions possibly addressing the convergence issue of SGD
on non-symmetric device arrays. However, they all defeat the
purpose of performing the multiply and add operations on the
RPU device and lose the performance benefits.

In contrast to all previous approaches, we recently proposed a
new training algorithm, the so-called Tiki-Taka algorithm
(Gokmen and Haensch, 2020), that performs all three cycles
(forward propagation, error backpropagation, and gradient
computation) on the RPU arrays using the physics and
converges with non-symmetric device arrays. Tiki-Taka works
very differently from SGD, and we showed in another study that
non-symmetric device behavior plays a useful role in the
convergence of Tiki-Taka (Onen et al., 2021).

Here, we build on top of Tiki-Taka and present a more robust
second version that relaxes other stringent hardware issues by
orders of magnitude, namely the limited number of states of RPU
devices and noise. We refer to this more robust second version of
the Tiki-Taka algorithm as TTv2 for the rest of the paper. In the
first part of the paper, we focus on training and present TTv2
algorithm details and provide simulation results at various
hardware settings. We tested TTv2 on various network
architectures, including fully connected, convolutional, and
LSTMs, although the presented results focus on the more
challenging LSTM network. TTv2 shows significant
improvements in the training accuracy compared to Tiki-Taka,
even at much more challenging hardware settings. In the second
part of the paper, we show an analog-hardware-friendly
technique to extract the trained model from the noisy
hardware. We also generalize this technique and apply it over
TTv2 iterates and extract each weight’s time average from a

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991482

Gokmen Training Neural Networks on Noisy Hardware

124

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

particular training period. These weight averages provide a model
that approximates the Bayesian model average, and it
outperforms the trained model itself. With this new training
algorithm and accurate model extraction technique, we show
that the noisy analog hardware composed of RPU device arrays
can provide scalable training solutions that match the performance
of full-precision SGD.

PART I: Training
In this section, we first give an overview of the device arrays and
device update characteristics used for training. Then we present a
brief background on Tiki-Taka. Finally, we detail TTv2 and
provide comprehensive simulation results on an LSTM
network at various hardware settings.

Device Arrays and Conductance
Modulation Characteristics
Resistive crossbar array of devices performs efficient matrix-
vector multiply (y � Wx) using Ohm’s law and Kirchhoff’s
law. The device array’s stored conductance values form a
matrix (W), whereas the input vector (x) is transmitted as
voltage pulses through the columns, and the resulting vector
(y) is read as current signals from the rows. However, only
positive conductance values are allowed physically.
Therefore, to encode both positive and negative matrix
elements, a pair of devices is operated in differential mode.
With the help of the peripheral circuits supplying the voltage
inputs and reading out the differential current signals, logical
matrix elements (wij) are mapped to physical conductance
pairs as

wij � Κ(gij − gij,ref) (1)

where Κ is a global gain factor controlled by the periphery, and gij
and gij,ref are the conductance values stored at each pair
corresponding to the ith row and jth column. Moreover,
crossbar arrays can be easily operated in the transpose mode
by changing the periphery’s input and output directions. As a
result, a pair of arrays with the supporting peripheral circuits
provide a logical matrix (also referred to as a single tile) that any
algorithm can utilize to perform a series of matrix-vector
multiplications (mat-vec) using W and WT .

For training algorithms, the efficient update of the stored
matrix elements is also an essential component. Therefore, device
conductance modulation and memory characteristics are utilized
to implement a local and parallel update on RPU arrays. During
the update cycle, input signals are encoded as a series of voltage
pulses and simultaneously supplied to the array’s rows and
columns. Note that the voltage pulses are applied only to the
first set of RPU devices, and the reference devices are kept
constant. As a result of voltage pulse coincidence, the
corresponding RPU device changes its conductance by a small
amount bi-directionally, depending on the voltage polarity. This
incremental change in device conductance results in an
incremental change in the stored weight value, and the RPU
response is governed by Eq. 2.

wij ←wij ∓ Δwmin,ijFij(wij) −
∣∣∣∣Δwmin,ij

∣∣∣∣Gij(wij) (2)

In Eq. 2, ∓ sign is decided by the external voltage pulse
polarity, whereas Δwmin,ij is the incremental weight change due to
single pulse coincidence, and Fij(wij) and Gij(wij) are the
symmetric (additive) and antisymmetric (subtractive)
combinations of the positive and negative conductance
modulation characteristics (Gokmen and Haensch, 2020), all
of which are the properties of the updated device
corresponding to the ith row and jth column. Eq. 2 is very
general and governs the computation (hardware-induced update)
performed by the tile for all sorts of RPU device behaviors,
assuming the device conductance modulation characteristics
are some function of the device conductance state. If the
conductance modulations are much smaller than the whole
conductance range of operation, Eq. 3 can be derived from
Eq. 2.

wij ←wij + η[δi × xj]Fij(wij) − η
∣∣∣∣[δi × xj]

∣∣∣∣Gij(wij) (3)

In Eq. 3, xj and δi represent the input values used for updates
for each column and row, respectively corresponding to
activations and errors calculated in the forward and
backward cycles, and η is a scalar controlling the strength of
the update, all of which are inputs to pulse generation circuitry
at the periphery. Here, we use the stochastic pulsing scheme
proposed in Ref Gokmen and Vlasov (2016), and during the
parallel update, the number of pulses generated by the periphery
is bounded by npulse � ⌈ηmax(|δi|)max(

∣∣∣∣xj
∣∣∣∣)/μΔw⌉, where μΔw is

the mean of Δwmin,ij for the whole tile. Using npulse stochastic
translators generate pulses with the correct probability;
therefore, Eq. 3 is valid in expectation. Whereas in the limit
of a single pulse coincidence, the RPU response is governed
by Eq. 2.

Figure 1A illustrates a pulse response of a linear and
symmetric device, where F(w) � 1 and G(w) � 0, and the
hardware-induced update rule simplifies to the SGD update
rule of wij ←wij + η[δi × xj]. In the literature, this kind of
device behavior is usually referred to as the “ideal” device
required for SGD. For a non-linear but symmetric device,
F(w) deviates from unity and becomes a function of w, but
G(w) remains zero. For non-symmetric devices, G(w) also
deviates from zero and becomes a function of w, hence
differing from the form required by SGD. Figure 1B illustrates
an exponentially saturating non-symmetric device where
wij ←wij + η[δi × xj] − η

∣∣∣∣[δi × xj]
∣∣∣∣w provides the computation

performed by this device. Although this form of update
behavior causes convergence issues for SGD, Tiki-Taka trains
DNNs successfully with all sorts of non-symmetric devices
(Gokmen and Haensch, 2020). Therefore, in contrast to SGD,
all sorts of non-symmetric device behaviors can be considered
“ideal” for Tiki-Taka.

Tiki-Taka’s training performance depends on the successful
application of the symmetry point shifting technique (Kim et al.,
2019), which guarantees G(w � 0) � 0 for all elements in the tile.
This behavior is illustrated for the device in Figure 1B, where the
strengths of the positive and negative weight increments are equal

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991483

Gokmen Training Neural Networks on Noisy Hardware

125

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

in size at w � 0. The symmetry point shifting is achieved by
programming the reference device conductance to a value
corresponding to the updated device’s symmetry point. For
the rest of the paper, we assume the symmetry point shifting
is also applied in the context of TTv2. Although we developed
techniques to eliminate this requirement, it is beyond the scope of
this paper and will be published elsewhere.

Algorithms
SGD, Tiki-Taka, and TTv2 all use the error backpropagation, but
they process the gradient information differently and hence are
fundamentally distinct algorithms. Figures 2A,B show
schematics of SGD and Tiki-Taka dynamics (iterations),
respectively. Tiki-Taka replaces each weight matrix W of SGD
with two matrices (referred to as matrix A and C) and creates a
coupled dynamical system by exchanging information between

the two. As shown in Ref Onen et al. (2021), the non-symmetric
behavior is a valuable and required property of the device in the
Tiki-Taka dynamics. During the information exchange between
the two systems, device asymmetry creates a dissipation
mechanism, resulting in minimization of the system’s total
energy (Hamiltonian); hence Tiki-Taka is also called Stochastic
Hamiltonian Descent (Onen et al., 2021). However, the noise
introduced during the transfer of the information (processed
gradients) from A to C caused additional test error for Tiki-Taka
and needed to be addressed (Gokmen and Haensch, 2020).

The schematic in Figure 2C illustrates the TTv2 dynamics,
highlighting our main contribution. TTv2 introduces an
additional stage (H), between the transfer from A to C, which
performs integration in the digital domain, providing a low
pass filtering function. Furthermore, the model’s parameters
are stored solely on C and only updated if H reaches a
threshold value. Because of these modifications in TTv2, the
model’s parameters are updated more slowly but with higher
confidence, bringing significant benefits against various
hardware noise issues. Details of the algorithm are
provided below.

Tiki-Taka Algorithm
Algorithm 1 outlines the details of the Tiki-Taka algorithm. Tiki-
Taka uses two matrices, A and C, and the neural network
parameters are defined by W � cA + C, where c is a scalar
hyperparameter set between [0,1]. Using W, Tiki-Taka
computes the activations (x) and the error signals (δ) by
utilizing the conventional backpropagation algorithm. The
activation and error computations are identical to SGD and
therefore omitted from the algorithm description. Also, there
are multiple layers, but Algorithm 1 only illustrates the
operations performed on a single layer for simplicity. After
performing the forward propagation and the error
backpropagation on A and C (lines 8 and 9), Tiki-Taka
updates only A by employing the hardware-induced parallel
update (line 10) using x and δ. ηa is the learning rate used for
updating A. These operations are repeated for ns times, a
hyperparameter of Tiki-Taka. After every ns update on A, an
analog mat-vec is performed on A with an input vector u,
resulting in a vector v (line 14). The vector u is generated
each time locally, and it is either a one-hot encoded vector or
a column vector of a Hadamard matrix used in a cyclic fashion.

FIGURE 2 | Schematics of SGD, Tiki-Taka, and TTv2 dynamics.

FIGURE 1 | Pulse responses and weight modulation characteristics are
illustrated for two different devices. (A) Symmetric and linear device: Weight
increments (red) and decrements (blue) are equal in size and do not depend on
the weight. (B) Exponentially saturating device: Weight increments and
decrements both have linear dependencies on the weight. However, there
exists a single weight value at which the strengths of the weight increment and
decrement are equal. This point is called the symmetry point, and it is at w � 0
for the illustrated example.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991484

Gokmen Training Neural Networks on Noisy Hardware

126

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Using the generated u vector and the result of f (v), C is updated
by employing the hardware-induced parallel update (line 15).

f (v) is a pointwise function: f (vi) � { vi, if |vi|≥T
0, otherwise

where T is

set to the mat-vec noise. ηc is the learning rate used for updating
C. These operations are repeated for the data examples in the
training dataset for multiple epochs until a converge criteria is
met. Following the same practices described in Ref Gokmen and
Haensch (2020), here we also use the one-hot encoded u vectors
and the thresholding f (v) for the LSTM simulations.

TTv2 Algorithm
Algorithm 2 outlines the details of the TTv2 algorithm. In
addition to A and C matrices allocated on analog arrays, TTv2
also allocates another matrix H in the digital domain. This matrix
H is used to implement a low pass filter while transferring the
gradient information processed by A to C. In contrast to Tiki-
Taka, TTv2 uses only the Cmatrix to encode the neural network’s
parameters, corresponding to c � 0. Therefore, the activation (x)
and error (δ) computations are performed using C (lines 10 and
11). TTv2 does not change the updates performed on A. After ns
updates, a mat-vec is performed on A. Unlike Tiki-Taka, TTv2
only uses a one-hot encoded u vector while performing a mat-vec
on A. This provides a noisy estimate of a single row of A, and the
results are stored in v. After this step, the significant distinction
between Tiki-Taka and TTv2 appears. Instead of using u and v to
update C, TTv2 first accumulates v (after scaling with ηc) on H’s
corresponding row, referred to as H(row � t). During this digital
vector-vector addition, themagnitude of any element inH(row � t)
may exceed unity. In that case, the corresponding elements are
reset back to zero, and a single pulse parallel update on C is
performed. The C update of TTv2 uses the sign information of the
elements that grew in amplitude beyond one and the row
information t. After these steps, TTv2 loops back and repeats
these operations for other data examples until it reaches
convergence.

Array Model
Weuse a device model like the one presented in Figure 1B but with
significant array level variability and noise for the training
simulations. We simulate stochastic translators at the periphery
during the update, and each coincidence event triggers an
incremental weight change on the corresponding RPU as
described below. We also introduce noise and signal bounds
during the matrix-vector multiplications performed on the arrays.

During the update, the weight increments (Δw+
ij) and

decrements (Δw−
ij) are assumed to be functions of the current

weight value. For the positive branchΔw+
ij � Δwmin,ij(1 − slope+ij × wij)

and for the negative branch Δw−
ij � Δwmin,ij(1 + slope−ij × wij), where

slope+ij and slope−ij are the slopes that control the dependence of the
weight changes on the current weight values, and Δwmin,ij is the
weight change due to a single coincidence event at the symmetry
point. This model results in three unique parameters for each
RPU element. All these parameters are sampled independently
using a unit Gaussian random variable and then used throughout
the training, providing device-to-device variability. The slopes are
obtained using slope+ij � μs(1 + σsξ

+
ij) and slope−ij � μs(1 + σsξ

−
ij),

where μs � 1.66, σs is set to 0.1, 0.2, or 0.3 for different
experiments, and ξ are the independent random samples. The
simulation results were insensitive to σs; therefore, we only show
results corresponding to σs � 0.2. The weight increments at the
symmetry point are obtained using Δwmin,ij � μΔw(1 + σΔwξij),
where σΔw � 0.3 and μΔw is the array average varied from 0.6
× 10−4 up to 0.15 for different experiments to study the effects
number of states on training accuracy. We define the number of
states as the ratio of the nominal weight range to the nominal
weight increment at the symmetry point; therefore, 2/(μsμΔw)
provides the average number of states. Note that this definition of
the number of states is very different from the definition used for
devices developed for memory applications, and it should not be
compared against multi-bit storage elements. Besides, additional
Gaussian noise is introduced to each weight increment and
decrement to capture the cycle-to-cycle noise: For the

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991485

Gokmen Training Neural Networks on Noisy Hardware

127

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

multiplicative noise model Δw∓
ij →Δw∓

ij (1 + σcycleξ), whereas for
the additive noise model Δw∓

ij →Δw∓
ij + Δwmin,ijσcycleξ, where

σcycle is set to 0.3 or 1 for different experiments, and ξ is
sampled from a unit Gaussian for each coincidence event.

During the matrix-vector multiplications, we inject additive
Gaussian noise into each output line to account for analog noise.
Therefore, the model becomes y � Wx + σMVξ, where
σMV � 0.06, corresponding to 10% of the nominal weight
maximum (1/μs). Moreover, the matrix-vector multiplications
are bounded to 20 times the nominal weight maximum to
account for signal saturation at the output lines. The input
signals are assumed to be between [−1, 1] with a 7-bit input
resolution, whereas the outputs are quantized assuming a 9-bit
ADC. To mitigate the shortcomings of the signal bounds, we use
the noise, bound, and update management techniques described
in Ref Gokmen et al. (2017).

Training Simulations
We performed training simulations for fully connected,
convolutional, and LSTM networks: the same three networks
and datasets studied in Ref Gokmen and Haensch (2020).
However, the presented results focus on the most challenging
LSTM network referred to as LSTM2-64-WP in Ref Gokmen
et al. (2018). This network is composed of two stacked LSTM
blocks, each with a hidden state number of 64. Leo Tolstoy’s
War and Peace (WP) novel is used as a dataset, and it is split into
training and test sets as 2,933,246 and 325,000 characters with a
total vocabulary of 87 characters. This task performs a
character-based language model where the input to the
network is a sequence of characters from the WP novel, and
the network is trained with the cross-entropy loss function to
predict the next character in the sequence. LSTM2-64-WP has
three different weight matrices for SGD, and including the

FIGURE 3 | LSTM training simulations for SGD, Tiki-Taka, and TTv2
algorithms. Different color curves use an array model with non-symmetric
devices, μΔw � 0.001 (corresponding to 1,200 states), and the multiplicative
cycle-to-cycle update noise at σcycle � 0.3. The square symbols show
the SGD training using linear and symmetric devices where all devices’ slope
parameters are set to zero while all other array parameters remain unchanged.
The open circles are the floating-point baseline.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991486

Gokmen Training Neural Networks on Noisy Hardware

128

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

biases, they have sizes 256 × (64 + 87 + 1) and 256 × (64 + 64 + 1)
for the two LSTM blocks and 87 × (64 + 1) for the fully
connected layer before the softmax activation. Each matrix of
SGD maps to two seperate A and C matrices for Tiki-Taka and
TTv2.

Figure 3 shows simulation results for SGD, Tiki-Taka, and
TTv2 for non-symmetric device arrays with μΔw � 0.001
(corresponding to 1,200 average number of states) and the
multiplicative cycle-to-cycle noise σcycle � 0.3. Additionally, we
simulate the SGD training using symmetric device arrays where
all devices’ slope parameters are set to zero while all other array
parameters remain unchanged. We also note that without
changing the analog hardware settings, we virtually remap the
nominal weight range from [−0.6, 0.6] to [−2, 2] using the digital
scaling trick shown in Ref Rasch et al. (2020) for all LSTM
simulations. This remapping slightly increases SGD and Tiki-
Taka’s training performance compared to the results published in
Ref Gokmen and Haensch (2020). We also optimized Tiki-Taka’s
hyper-parameters to achieve the best possible training
performance at this modified weight range.

In Figure 3, Tiki-Taka performs significantly better than SGD
for non-symmetric devices, but a clear gap exists between the
symmetric device SGD and the Tiki-Taka results. This gap is due
to the noise during the analog mat-vec performed on A (line 14 of
Tiki-Taka). Ref Gokmen and Haensch (2020) showed that the
remaining gap closes if the noise during the mat-vec on A is
reduced by 10x to σMV � 0.006; however, this low noise setting is
unrealistic for analog hardware. In contrast, TTv2 shows
indistinguishable results compared to the symmetric device

SGD, even when the mat-vec noise on A is at σMV � 0.06.
Therefore, these simulation results prove the benefits of
introducing the filtering stage while transferring information
from A to C, and TTv2 increases the algorithm’s noise
tolerance to the mat-vec performed by the analog arrays at
least by 10x compared to Tiki-Taka.

To further examine the resilience of TTv2 to other analog
hardware issues, namely the number of states and the cycle-to-
cycle update noise, we performed training simulations by varying
μΔw many decades from 0.6 × 10−4 to 0.15. This 2,500x increase in
μΔw causes a 2,500x reduction in states’ number on RPU devices
from 20,000 down to 8. Furthermore, as μΔw increases, the
amount of noise existing during the pulsed updates increases
by 2,500x since cycle-to-cycle noise is defined relative to the state
definition on each device as described above. Figure 4
summarizes these simulation results, where the test error at
the end of the 50th epoch is reported. For each data point in
Figure 4, we finetuned each algorithm’s hyper-parameters
independently and reported the best training results. Both
SGD and Tiki-Taka are very sensitive to the number of states
and the update noise as the test error increases quickly with an
increase in μΔw. Whereas the error for TTv2 remains unchanged
for many decades and highlights the orders of magnitude
increased tolerance of TTv2 to the limited number of states
and the update noise. Compared to SGD and Tiki-Taka, TTv2
is at least 100x more resilient to these two common hardware
issues that appear during the update cycle on analog arrays.

Finally, in Figure 5, we additionally tested the success of TTv2
at an extremely noisy hardware setting. These simulations assume
μΔw � 0.08 corresponding to an average of 15 states, but with an
even higher cycle-to-cycle update noise setting with the additive
noise model at σcycle � 1. Figures 5A–C illustrate (for three
different devices) the amount of update noise and the array
level variability used for TTv2. The blue curves show the
evolution of the weights after each pulse during training. The
red curves show the sign of the updates and the expected average
saturation value for the corresponding device for positive and
negative pulses. The saturation values are very different due to
array level variability, and the response to each pulse is very noisy
due to the additive cycle-to-cycle update noise. As a comparison,
we also show the response of a linear and symmetric device with
σcycle � 0.3 and more than 1,000 states in Figure 5D. The noise is
not even visible for this device used only for the SGD simulations,
further emphasizing the burden imposed on the TTv2 algorithm.

The training simulations in Figure 5E show that TTv2
achieves acceptable training results even at these extremely
noisy hardware settings. Figure 5E also shows a slightly
modified TTv2 implementation with a hysteretic threshold
that achieves a better result than TTv2. In this modified TTv2
implementation, we only changed line 20 of TTv2 from hit � 0 to
hit � sign(hit)0.6. This change makes the thresholding event
asymmetric and hysteretic: Back to back same sign updates on
C happens with a 0.4 threshold, whereas back to back different
sign updates must overcome a threshold of 1.6. These hysteretic
updates allow the system to correct itself quickly if the previous
update caused an undesired modulation on the weight. Note that
the update noise is so large that it may even cause a change in the

FIGURE 4 | LSTM training simulations for SGD, Tiki-Taka, and TTv2
algorithms as a function of μΔw. 10x increase in μΔw results in a simultaneous
10x reduction in the number of states and a 10x increase in the cycle-to-cycle
update noise. Circles correspond to an array model with non-symmetric
devices, whereas squares are for symmetric and linear devices. All symbols
report the test error at the end of the 50th epoch, and the error bars capture
the test error fluctuations for the last five epochs. Lines are guides to the eye.
The floating-point baseline is shown with the black horizontal line at 1.32 test
error. After random weight initialization, an untrained network gives ∼4.46 test
error corresponding to a random guess.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991487

Gokmen Training Neural Networks on Noisy Hardware

129

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

weight opposite to the intended direction, as illustrated in Figures
5A–C. Furthermore, same sign updates are encouraged to
accelerate the learning along the dimensions that have higher
confidence.

Finally, we emphasize that, in contrast to SGD and Tiki-Taka,
TTv2 only fails gracefully at these extremely challenging
hardware settings. We note that the continued training
further improves the performance of TTv2 until 200 epochs,
and a test error of 1.57 is achieved for the modified TTv2. This
test error is almost identical to one achieved by the symmetric
device SGD baseline with 1,200 states and many orders of
magnitude less noise. All these results show that TTv2 is
superior to Tiki-Taka and SGD, especially when the analog
hardware becomes noisy and provides a very limited number of
states on RPU devices.

Implementation Cost of TTv2
The true benefit of using device arrays for training workloads
emerges when the required gradient computation (and
processing) step is performed in the array using the RPU
device properties. As mentioned in the introduction, the
gradient computation is 1/3 of the training operations
performed on the weights that the hardware must handle
efficiently. Irrespective of the layer type, such as convolution,
fully connected, or LSTM, for an n × n weight matrix in a neural
network, each gradient processing step per weight reuse has a
computational complexity of O(n2). RPU arrays perform the
required gradient processing step efficiently at O(1) constant
time using array parallelism. Specifically, analog arrays deliver
O(1) time complexity simply because the array has O(n2)
compute resources (RPU devices). In this scheme, each
computation is mapped to a resource, and consequently, RPU

arrays trade space complexity for time complexity, whereas
computational complexity remains unchanged. As a result of
this spatial mapping, crossbar-based analog accelerators require a
multi-tile architecture design irrespective of the training
algorithm so that each neural network layer and the
corresponding weights can be allocated on separate tiles.
Nevertheless, RPU arrays provide a scalable solution for a
spatially mapped weight stationary architecture for training
workloads thanks to the nano-scale device concepts.

As highlighted in Algorithm 2, TTv2 uses the same tile
operations and therefore running TTv2 on array architectures
requires no change in the tile design compared to SGD or Tiki-
Taka. Assuming the tile design remains unchanged, a pair of
device arrays operated differentially with the supporting
peripheral circuits, TTv2 (like Tiki-Taka) requires twice more
tiles to allocate A and C separately. However, alternatively, the
logical A and C values can be realized using only three devices by
sharing a common reference, as described in Ref Onen et al.
(2021). In that case, logical A and Cmatrices can be absorbed into
a single tile design composed of three device arrays and operated
in a time multiplex fashion. This tile design minimizes or even
possibly eliminates the area cost of TTv2 and Tiki-Taka
compared to SGD.

In contrast to A and C matrices allocated on analog arrays, H
does not require any spatial mapping as it is allocated digitally,
and it can reside on an off-chip memory. Furthermore, we
emphasize that the digital H processing of TTv2 must not be
confused with the gradient computation step. For an n × n weight
matrix in a neural network, the computational complexity of the
operations performed on H is only O(n), even for the most
aggressive setting of ns � 1. As detailed in Algorithm 2, only
a single row of H is accessed and processed digitally for ns parallel

FIGURE 5 | (A, B, C) Blue curves: The evolution of three different weights (corresponding to three different devices with non-symmetric behavior, σcycle � 1 and
about 15 states) during TTv2 training. Red curves show the sign of the updates and the expected average saturation value for the corresponding device. (D) The
evaluation of a linear and symmetric device with σcycle � 0.3 and more than 1,000 states. (E) LSTM training simulations for SGD, Tiki-Taka, and TTv2 algorithms. Different
color curves use an extremely noisy array model with non-symmetric devices, μΔw � 0.08 (corresponding to 15 states), and the additive cycle-to-cycle update noise
with σcycle � 1. The square symbols show the SGD training baseline from Figure 3with symmetric device arrays with 1,200 states and cycle-to-cycle noise at σcycle � 0.3.
The open circles are the floating-point baseline.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991488

Gokmen Training Neural Networks on Noisy Hardware

130

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

array update operations on A. Therefore, H processing has
reduced computational complexity compared to gradient
computation: O(n) vs. O(n2). This property differentiates TTv2
from other approaches performing the gradient computation in
the digital domain with O(n2) complexity (Nandakumar et al.,
2020). Regardless, the digital H processing in TTv2 brings
additional digital computation and memory bandwidth
requirements compared to SGD or Tiki-Taka. To understand
the extra burden introduced by H in TTv2, we must compare it to
the burden already handled by the digital components for the
SGD algorithm. We argue that the extra burden introduced in
TTv2 is usually only on the order of 1/ns, and the digital
components required by the SGD algorithm can also handle
the H processing of TTv2.

A weight reuse factor (ws) for each layer in a neural network is
determined by various factors, such as time unrolling steps in an
LSTM, reuse of filters for different image portions in a
convolution, or simply using mini-batches during training. For
an n × n weight matrix with a weight reuse factor of ws, the
compute performed on the analog array is O(n2.ws). In contrast,
the storage and processing performed digitally for the activations
and error backpropagation are usually O(n.ws). We emphasize
that these O(n.ws) compute and storage requirements are
common to TTv2, Tiki-Taka, and SGD and are already
addressed by digital components.

The digital filter of TTv2 computes straightforward vector-
vector additions and thresholds, which require O(n) operations
performed only after ns weight reuses. As mentioned above, SGD
(likewise Tiki-Taka and TTv2) uses digital units to compute the
activations and the error signals, both of which are usually
O(n.ws). Therefore, the digital compute needed for the H
processing of TTv2 increases the total digital compute by
O(n.ws/ns).

Additionally, the filter requires the H matrix to be stored
digitally. H is as large as the neural network model and requires
off-chip memory storage and access. One may argue that this
defeats the purpose of using analog crossbar arrays. However,
note that even though the storage requirements for H are
O(n2), the access to H happens one row at a time, which is
O(n). Therefore, as long as the memory bandwidth can sustain
access to H, the storage requirement is a secondary concern
that can easily be addressed by allocating space on external off-
chip memory. This increases the required storage capacity
from O(n.ws) (only for activations) to O(n.ws) + O(n2)
(activations + H).

Finally, assuming H resides on an off-chip memory, the
hardware architecture must provide enough memory
bandwidth to access H. As noted in Algorithm 2, access to H
is very regular, and only a single row of H is needed after ns
weight reuses. For SGD (and hence for Tiki-Taka and TTv2), the
activations computed in the forward pass are first stored in off-
chip memory and then fetched from it to compute the error
signals during the backpropagation. The activation store and
loads are also usually O(n.ws), and therefore the additional access
to H in TTv2 similarly increases required memory bandwidth by
about O(n.ws/ns).

In summary, compared to SGD, TTv2 introduces extra digital
costs that are only on the order of 1/ns, whereas it brings orders of
magnitude relaxation to many stringent analog hardware specs.
For instance, ns � 5 provided the best training results for the
LSTM network, and for that network, the additional burden
introduced to digital compute and memory bandwidth
remains less than 20%. For the first convolutional layer of the
MNIST problem, ns � 576 is used, making the additional cost
negligible (Gokmen and Haensch, 2020). However, we note that
the neural networks come in many different flavors, beyond those
studied in this manuscript, with different stress points on various
hardware architectures. Our complexity arguments should only
be used to compare the relative overhead of TTv2 compared to
SGD, assuming a fixed analog crossbar-based architecture and
particular neural network layers. Detailed power/performance
analysis of TTv2 with optimized architecture for a broad class of
neural network models requires additional studies.

PART II: Model Extraction
Machine learning experts try various neural network
architectures and hyper-parameter settings to obtain the
best performing model during model development.
Therefore, accelerating the DNN training process is
extremely important. However, once the desired model is
obtained, it is equally important to deploy the model in the
field successfully. Even though training may use one set of
hardware, numerous users likely run the deployed model on
several hardware architectures, separate from the one the
machine learning experts trained the model with. Therefore,
to close the development and deployment lifecycle, the desired
model must be extracted from the analog hardware for its
deployment on another hardware.

In contrast to digital solutions, the weights of the model are
not directly accessible on analog hardware. Analog arrays encode
the model’s weights, and the tile’s noisy mat-vec limits access to
these weight matrices. Therefore, the extraction of the model
from analog hardware is a non-trivial task. Furthermore, the
model extraction must produce a good representation of the
trained model to be deployed without loss of accuracy on another
analog or a completely different digital hardware for inference
workloads.

In Part II, we first provide how an accurate weight extraction
can be performed from noisy analog hardware. Then we further
generalize this method to obtain an accurate model average over
the TTv2 iterates. Ref Izmailov et al. (2019a) showed that the
Stochastic Weight Averaging (SWA) procedure that performs a
simple averaging of multiple points along the trajectory of SGD
leads to better generalization than conventional training. Our
analog-hardware-friendly SWA on TTv2 iterates shows that these
techniques inspired by the Bayesian treatment of neural networks
can also be applied to analog training hardware successfully. We
show that the model averaging further boosts the extracted
model’s generalization performance and provides a model that
is even better than the trained model itself, enabling the
deployment of the extracted model virtually on any other
hardware.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991489

Gokmen Training Neural Networks on Noisy Hardware

131

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Accurate Weight Extraction
Analog tiles perform mat-vec on the stored matrices. Therefore,
naively one can perform a series of mat-vecs using one-hot
encoded inputs to extract the stored values one column (or
one row) at a time. However, this scheme results in a very
crude estimation of the weights due to the mat-vec noise and
limited ADC resolution. Instead, we perform a series of mat-vecs
using random inputs and then use the conventional linear
regression formula, Eq. 4, to estimate the weights.

Ĉ � ((XXT)−1XYT)
T

(4)

In Eq. 4, Ĉ is an estimate of the ground truth matrix C stored
on the tile, X has the inputs used during weight extraction, and Y
has the resulting outputs read from the tile. Both X and Y are
written in matrix form, capturing all the mat-vecs performed on
the tile.

Figure 6 shows the quality of different weight estimations for a
simulated tile of size 512 × 512 with the same analog array
assumptions described in Part I. When one-hot encoded input
vectors are used only once, corresponding to 512 mat-vecs, the
correlation of the extracted values to the ground truth is very poor
due to analog mat-vec noise (σMV) and ADC quantization, as
seen in Figure 6A. Repeating the same measurements 20 times,
corresponding to a total of 10,240 mat-vecs, improves the quality
of the estimate (Figure 6B). However, the best estimate is
obtained when completely random inputs with uniform
distribution are used, as illustrated in Figure 6C. We note that
the total number of mat-vecs is the same for Figures 6B,C, and
yet Figure 6C provides a much better estimate. This is because the
completely random inputs have the highest entropy (information
content), and therefore they provide the best estimate of the
ground truth for the same number of mat-vecs.

Note, in this linear regression formalism, the tile noise and
quantization error correspond to aleatoric uncertainty and
cannot be improved. However, the weight estimates are not
limited by the aleatoric uncertainty; and instead, the epistemic
uncertainty limits these estimates. For the data shown in
Figure 6C, the standard deviation in weight estimation
(corresponding to the epistemic uncertainty) is 0.002, only
0.1% of the nominal weight range of [−1, 1] used for these
experiments. The uncertainty in weight estimates scales with
1/

number of mat vecs

√
, and if needed, this uncertainty can

be further reduced by performing more measurements.

Accurate Model Average
As shown in Ref Izmailov et al. (2019a), SWA performs a simple
averaging of multiple points along the trajectory of SGD and
leads to better generalization than conventional training. This
SWA procedure approximates the Fast Geometric Ensemble
(FGE) approach with a single model. Furthermore, Ref Yang
et al. (2019) showed that SWA brings benefits to low precision
training. Here, we propose that weight averaging over TTv2
iterates would also bring similar gains and possibly overcome
noisy updates unique to the RPU devices. However, obtaining
the weight averages from analog hardware may become
prohibitively expensive. Naïvely, the weights can be first
extracted from analog hardware after each iteration and then
accumulated in the digital domain to compute averages.
However, this requires thousands of mat-vecs per iteration
and therefore is not feasible.

Instead, to estimate the weight averages, we perform a series of
mat-vecs that are very sparse in time but performed while the
training progresses and then use the same linear regression
formula to extract the weights. Since the mat-vecs are
performed while weights are still evolving, the extracted values

FIGURE 6 | (A–C) Correlation between the ground truth weights and the extracted values using different input forms and number of mat-vecs for a simulated 512 ×
512 tile. Red lines are guides to the eye showing perfect correlation.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 69914810

Gokmen Training Neural Networks on Noisy Hardware

132

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

closely approximate the weight averages for that training period.
For instance, during the last 10 epochs of the TTv2 iterates, we
performed 100 K mat-vecs with uniform-random inputs and
showed that it is sufficient to estimate the actual weight
averages with less than 0.1% uncertainty.

We note that about 60 M mat-vecs on C and 30 M updates
on A are performed during 10 epochs of training. Therefore,
the additional 100 K mat-vecs on C needed for weight
averaging increases the compute on the analog tiles by
only 0.1%. Furthermore, the input and output vectors (x, y)
for each mat-vec can be processed on the fly by accumulating
the results of xxT and xyT on two separate matrices in the
digital domain: Mxx ←Mxx + xxT and Mxy ←Mxy + xyT . Then
at the end of the training, one matrix inversion and a final
matrix-matrix multiply need to be performed to complete all
the steps needed to estimate the weight averages: Ĉavg �
((Mxx)

−1Mxy)
T .

In practical applications, a separate conventional digital
processor (like CPU) can perform the computations needed
for weight averages by only receiving the results of the mat-
vecs from the analog accelerator. Note that the CPU can generate
the same input vectors by using the same random seed. Therefore,
Mxx and its inverse can be computed and stored well ahead of
time, even before training starts. Furthermore, the same input
vectors and a common (Mxx)

−1 can extract the weight averages
from multiple analog tiles. After all these optimizations, even a
conventional digital processor can sustain the computation
needed for Mxy from multiple tiles and provide the weight
averages at the end of training.

Inference Results
To test the validity of the proposed weight extraction and
averaging techniques, we study the same model trained on
extremely noisy analog hardware using TTv2 with the
hysteretic threshold. We refer to this model as Model-I. As
shown in Figure 5E, the test error of Model-I at the end of
the 50th and 200th epochs are 1.633 and 1.570, respectively.

These test errors assume Model-I runs inferences on the same
analog hardware it trained on and form our baseline.

We apply our model extraction technique in the first
experiment and obtain the weights using only 10 K mat-vecs
with random inputs. We refer to this extracted model as Model-
Ix, and it is an estimate of Model-I. We evaluate the test error of
Model-Ix when it runs either on another analog hardware (with
the same analog array properties) or digital hardware. As
summarized in Table 1, Model-Ix’s test error remains
unchanged on the new analog hardware compared to Model-I,
showing our model extraction technique’s success. Interestingly,
the inference results of Model-Ix are better on the digital
hardware, and the test errors drop to 1.583 and 1.524
respective for the 50th and 200th epochs. These improvements
are due to the absence of the mat-vec noise introduced by the
forward propagation on analog hardware. However, these results
also highlight that the analog training yields a better model than
the test error on the same analog hardware indicates. Therefore,
such benefits ease analog hardware’s adoption for training only
purposes, and the improved test results on digital hardware are
the relevant metrics for such a use case.

We implement our model averaging technique using 100 K
mat-vecs with random inputs applied between 40–50 or 180–200
epochs in the following experiment. We refer to the extracted
model average as Model-Iavg, and the test error for Model-Iavg is
also evaluated on analog or digital hardware. In all cases, as
illustrated in Table 1, Model-Iavg gives non-trivial improvements
compared to Model-Ix (and Model-I). These improvements on
the averaged models’ generalization performance show the
success of our model averaging technique. We emphasize that
the model training is performed on extremely noisy analog
hardware using TTv2. Nevertheless, the test error achieved by
Model-Iavg on digital hardware is 1.454, just shy of the FP model’s
performance at about 1.325.

Finally, to further illustrate the success of the proposed model
extraction and averaging techniques, we performed simulations
for another two models, Model II and III, which are also

TABLE 1 | Inference results of various models on different hardware.

Model–I, Ix, Iavg
#States = 15,

σcycle = 1

Model–II, IIx, IIavg
#States = 60,
σcycle = 0.3

Model–III,IIIx, IIIavg
#States = 120,

σcycle = 0.3

Inference on Analog Hardware
50th Epoch-Trained Model 1.633 1.454 1.430
50th Epoch-Extracted Model 1.633 1.455 1.430
40th–50th Epochs-Extracted Model Avg 1.560 1.425 1.407
200th Epoch-Trained Model 1.570 1.410 1.403
200th Epoch-Extracted Model 1.571 1.410 1.403
180th–200th Epochs-Extracted Model Avg 1.487 1.377 1.372

Inference on Digital Hardware
50th Epoch-Extracted Model 1.583 1.403 1.378
40th–50th Epochs-Extracted Model Avg 1.520 1.379 1.359
200th Epoch-Extracted Model 1.524 1.360 1.350
180th–200th Epochs-Extracted Model Avg 1.454 1.334 1.326

FP Baseline Model: 1.315–1.332.
Repeating the same FP training results in about 0.01 variability in the test error due to the randomness in weight initialization. Bold values provide the baseline training results without model
extraction. Italic values correspond to models that are indistinguishable from the FP model.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 69914811

Gokmen Training Neural Networks on Noisy Hardware

133

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

summarized in Table 1. Like Model-I, these models are also
trained on noisy analog hardware but with slightly relaxed array
assumptions. The only two differences compared to Model-I are
1) Model-II and III both used analog arrays with the additive
cycle-to-cycle update noise at σcycle � 0.3, 2) Model-II and III
respectively had 60 and 120 states on RPU devices. For these
slightly relaxed but still significantly noisy analog hardware
settings, both Model-II and III provide test results on the
digital hardware that are virtually indistinguishable from the
FP model when the model averages between 180–200 epochs
are used.

We note that the inference simulations performed on analog
hardware did not include any weight programming errors that
may otherwise exist in real hardware. Depending on its strength,
these weight programming errors cause an accuracy drop on the
analog hardware used solely for inference purposes.
Additionally, after the initial programming, the accuracy may
further decline over time due to device instability, such as the
conductance drift (Mackin et al., 2020; Joshi et al., 2020).
Therefore, any analog hardware targeting inference
workloads must address these non-idealities. However, we
emphasize that these problems are unique to inference
workloads. Instead, if analog hardware is targeting training
workloads only, these problems become obsolete.
Furthermore, the unique challenges of the analog training
hardware, namely the limited number of states on RPU
devices and the update noise, are successfully handled by our
proposed TTv2 training algorithm and the model averaging
technique. As illustrated above, even very noisy analog
hardware can deliver models on par in their accuracy
compared to FP models. In addition, after the training
process is performed on analog hardware using TTv2, the
extracted model average can be deployed on various digital
hardware and perform inference without any accuracy loss.
Therefore, these results provide a clear path for analog hardware
to be employed to accelerate DNN training workloads.

DISCUSSION AND FUTURE DIRECTIONS

DNN training using SGD is simply an optimization algorithm
that provides a point estimate of the DNN parameters at the end
of the training. In this frequentist view, a hypothesis is tested
without assigning any probability distribution to the DNN
parameters and lacks the representation of uncertainty. More
recently, however, the Bayesian treatment of DNNs has gained
more traction with new approximate Bayesian approaches
(Wilson, 2020). Bayesian approaches treat the DNN
parameters as random variables with probabilities. We believe
many exciting directions for future research may connect these
approximate Bayesian approaches and neural networks running
on noisy analog hardware.

For instance, Ref Maddox et al. (2019) showed that a simple
baseline for Bayesian uncertainty could be formed by determining
the weight uncertainties from the SGD iterates, referred to as SWA-
Gaussian. It is empirically shown that SWA-Gaussian
approximates the shape of the true posterior distribution of the
weights, described by the stationary distribution of SGD iterates.
We can intuitively generalize these results to the TTv2 algorithm
running on analog hardware. For instance, the proposed TTv2
algorithm updates a tiny fraction of the neural network weights
when enough evidence is accumulated by A and H’s gradient
processing steps. Nevertheless, the updates onweights are still noisy
due to stochasticity in analog hardware. Therefore, TTv2 iterates
resemble the Gibbs sampling algorithm used to approximate a
posterior multivariate probability distribution governed by the loss
surface of the DNN. Assuming this intuition is correct, analyzing
the uncertainty in weights over TTv2 iterates may provide a simple
Bayesian treatment of a DNN, similar to SWA-Gaussian.

To test the feasibility of the above arguments, we performed
the following experiments that are motivated by the results of
SWA-Gaussian (Maddox et al., 2019) and Bayes-by-Backprop
(Blundell et al., 2015): First, we extract the mean (μi) and the
standard deviation (σ i) of each weight from the TTv2 iterates

TABLE 2 | Inference results of pruned networks for Model-III on digital hardware.

Signal-to-noise used for
pruning

Weight
proportion removed (%)

Carefully pruned network Randomly pruned network

(No pruning) 0 1.326 1.326∣∣∣∣μi
∣∣∣∣/σ i < 1 16.7 1.331 3.42 ± (0.26)∣∣∣∣μi
∣∣∣∣/σ i < 2 30.2 1.371 4.09 ± (0.32)∣∣∣∣μi
∣∣∣∣/σ i < 3 40.8 1.466 4.40 ± (0.29)

Random pruning experiments are performed 10 times. The table reports the mean and standard deviation of these 10 experiments for the randomly pruned networks. An untrained
network gives ∼4.46 test error corresponding to a random guess.

TABLE 3 | Inference results of disturbed networks for Model-III on analog hardware.

Signal-to-noise used for
disturbance

Carefully disturbed network Randomly disturbed network

(No disturbance) 1.370 1.370
μi ± σ i 1.493 3.54 ± (0.15)

Random disturb experiments are performed 10 times. The table reports the mean and standard deviation of these 10 experiments.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 69914812

Gokmen Training Neural Networks on Noisy Hardware

134

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

and define a signal-to-noise ratio as
∣∣∣∣μi

∣∣∣∣/σ i. Then we remove the
weights with the lowest signal-to-noise ratio below a certain value
and compare the inference performance of this carefully pruned
network to the unpruned one. We also look at the performance
degradation of a randomly pruned network with the same amount
of weight pruning. Table 2 summarizes the results of these
experiments performed for Model-III from 180 to 200 epochs.

As illustrated in Table 2, the carefully pruned network’s
performance (1.331) is almost identical to the unpruned one
(1.326) when

∣∣∣∣μi
∣∣∣∣/σ i < 1, corresponding to 16.7% pruning.

However, the same amount of pruning causes significant
performance degradation for a randomly pruned network
(∼3.42). When the signal-to-noise threshold is raised to 3,
corresponding to 40.8% pruning, the carefully pruned network
still performs reasonably well (1.466). Whereas at this level of
pruning, a randomly pruned network is not any better than an
untrained network producing random predictions.

In the second set of experiments, as summarized inTable 3, we
use the extracted means (μi) and standard deviations (σ i) and
disturb each weight randomly proportional to its standard
deviation: wi � μi + ξσ i, where ξ is sampled from a unit
Gaussian for each weight. Then, we compare the inference
performance of this carefully disturbed network to a randomly
disturbed network with the same amount of total weight
disturbance. Although the carefully disturbed network
performs reasonably well at 1.493, the randomly disturbed
networks’ performance significantly degrades to about 3.54.

These experiments empirically suggest that the weight
uncertainty of TTv2 iterates on analog hardware provides
additional valuable information about the posterior probability
distribution of the weights governed by the loss surface of the
DNN. The results illustrated in Tables 2, 3 do not address how
the weight uncertainty can be extracted from analog hardware in
practical settings; however, suppose this information can be
extracted. In that case, the weight uncertainty can be used to
sparsify the DNN during the model deployment on digital
hardware (Blundell et al., 2015). Alternatively, the weight
uncertainties can be leveraged to devise better programming
routines while transferring the model to another noisy analog
hardware. In addition, a low dimensional subspace can be
constructed over TTv2 iterates so that the model can be
deployed as a Bayesian neural network, similar to the results
presented in Ref Izmailov et al. (2019b). The Bayesian model
averaging performed even in low dimensional subspaces
produces accurate predictions and well-calibrated predictive
uncertainty (Izmailov et al., 2019b). We believe that noisy
analog hardware with modified learning algorithms can also
accelerate Bayesian approaches while simultaneously providing
many known benefits, such as improved generalization and

uncertainty calibration. However, these ideas require further
investigation, and new techniques that can also extract the
weight uncertainty from analog hardware are needed.
Furthermore, extending this work to larger and more extensive
networks is a general task for the feasibility of analog crossbar
arrays, not only restricted to the work presented here.

SUMMARY

In summary, we presented a new DNN training algorithm,
TTv2, that provides successful training on extremely noise
analog hardware composed of resistive crossbar arrays.
Compared to previous solutions, TTv2 addresses all sorts of
hardware non-idealities coming from resistive devices and
peripheral circuits and provides orders of magnitude
relaxation to many hardware specs. Device arrays with non-
symmetric and noisy conductance modulation characteristics
and a limited number of states are enough for TTv2 to train
neural networks close to their ideal accuracy. In addition, the
model averaging technique applied over TTv2 iterates provides
further enhancements during the model extraction. In short,
we describe an end-to-end training algorithm and model
extraction technique from extremely noisy crossbar-based
analog hardware that matches the performance of full-
precision SGD training. Our techniques can be immediately
realized and applied to many readily available device
technologies that can be utilized for analog deep learning
accelerators.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

TG conceived the original idea, developed the methodology,
wrote the simulation code, analyzed and interpreted the
results, and drafted the manuscript.

ACKNOWLEDGMENTS

Author thanks to Wilfried Haensch for illuminating discussions
and Paul Solomon for careful reading of the manuscript.

REFERENCES

Agarwal, S., Gedrim, R. B. J., Hsia, A. H., Hughart, D. R., Fuller, E. J., Talin, A. A.,
James, C. D., Plimpton, S. J., and Marinella, M. J. (2017). “Achieving Ideal
Accuracies in Analog Neuromorphic Computing Using Periodic Carry,” in
Symposium on VLSI Technology, Kyoto, Japan. doi:10.23919/vlsit.2017.7998164

Agarwal, S., Plimpton, S. J., Hughart, D. R., Hsia, A. H., Richter, I., Cox, J. A., et al.
(2016). Resistive Memory Device Requirements for a Neural Network Accelerator.
Vancouver, BC, Canada: IJCNN. doi:10.1109/IJCNN.2016.7727298

Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., di Nolfo, C.,
et al. (2018). Equivalent-accuracy Accelerated Neural-Network Training
Using Analogue Memory. Nature 558, 60–67. doi:10.1038/s41586-018-
0180-5

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 69914813

Gokmen Training Neural Networks on Noisy Hardware

135

https://doi.org/10.23919/vlsit.2017.7998164
https://doi.org/10.1109/IJCNN.2016.7727298
https://doi.org/10.1038/s41586-018-0180-5
https://doi.org/10.1038/s41586-018-0180-5
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). “Weight
Uncertainty in Neural Networks,” in Proceedings of the 32nd International
Conference on International Conference on Machine Learning, PMLR 37,
1613–1622.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., et al.
(2020). “Language Models Are Few-Shot Learners,” arXiv:2005.14165 [cs.CL].

Burr, G. W., Narayanan, P., Shelby, R. M., Sidler, S., Boybat, I., di Nolfo, C., and
Leblebici, Y. (2015). “Large-scale Neural Networks Implemented with Non-
volatile Memory as the Synaptic Weight Element: Comparative Performance
Analysis (Accuracy, Speed, and Power),” in IEDM (International Electron
Devices Meeting). doi:10.1109/iedm.2015.7409625

Burr, G. W., Shelby, R. M., Sebastian, A., Kim, S., Kim, S., Sidler, S., et al. (2017).
Neuromorphic Computing Using Non-volatile Memory. Adv. Phys. X 2,
89–124. doi:10.1080/23746149.2016.1259585

Cloud Tpu. (2007). Available: https://cloud.google.com/tpu/docs/bfloat16.
Fuller, E. J., Keene, S. T.,Melianas, A.,Wang, Z., Agarwal, S., Li, Y., et al. (2019). Parallel

Programming of an Ionic Floating-GateMemoryArray for ScalableNeuromorphic
Computing. Science 364 (6440), 570–574. doi:10.1126/science.aaw5581

Gokmen, T., and Haensch, W. (2020). Algorithm for Training Neural Networks on
Resistive Device Arrays. Front. Neurosci. 14, 103. doi:10.3389/fnins.2020.00103

Gokmen, T., Onen, M., and Haensch, W. (2017). Training Deep Convolutional
Neural Networks with Resistive Cross-Point Devices. Front. Neurosci. 11, 538.
doi:10.3389/fnins.2017.00538

Gokmen, T., Rasch, M. J., and Haensch, W. (2018). Training LSTM Networks with
Resistive Cross-PointDevices. Front. Neurosci. 12, 745. doi:10.3389/fnins.2018.00745

Gokmen, T., and Vlasov, Y. (2016). Acceleration of Deep Neural Network Training
with Resistive Cross-Point Devices: Design Considerations. Front. Neurosci. 10,
333. doi:10.3389/fnins.2016.00333

Graphcore. (2021). Available: https://www.graphcore.ai/.
Grollier, J., Querlioz, D., Camsari, K. Y., Everschor-Sitte, K., Fukami, S., and Stiles,

M. D. (2020). Neuromorphic Spintronics. Nat. Electron. 3, 360–370.
doi:10.1038/s41928-019-0360-9

Yang, G., Zhang, T., Kirichenko, P., Bai, J.,Wilson, A.G., and Sa, C.D. (2019). “SWALP:
StochasticWeight Averaging in Low-Precision Training,” arXiv:1904.11943 [cs.LG].

Haensch, W., Gokmen, T., and Puri, R. (2019). The Next Generation of Deep
Learning Hardware: Analog Computing. Proc. IEEE, 107, 108–122. doi:10.1109/
jproc.2018.2871057

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,” in IEEE
International Conference onComputer Vision (ICCV). doi:10.1109/iccv.2015.123

Kim, H., Rasch, M., Gokmen, T., Ando, T., Miyazoe, H., Kim, J.-J., et al. (2019).
“Zero-shifting Technique for Deep Neural Network Training on Resistive
Cross-point Arrays,” arXiv:1907.10228 [cs.ET].

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and Wilson, A. G. (2019).
“Averaging Weights Leads to Wider Optima and Better Generalization,” arXiv:
1803.05407 [cs.LG].

Izmailov, P., Maddox, W., Kirichenko, P., Garipov, T., Vetrov, D., and Wilson, A.
G. (2019b). “Subspace Inference for Bayesian Deep Learning,” inUncertainty in
Artificial Intelligence (UAI) 115, 1169–1179.

Joshi, V., Le Gallo, M., Haefeli, S., Boybat, I., Nandakumar, S. R., Piveteau, C.,
et al. (2020). Accurate Deep Neural Network Inference Using Computational
Phase-Change Memory. Nat. Commun. 11, 2473. doi:10.1038/s41467-020-
16108-9

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep Learning.Nature 521, 436–444.
doi:10.1038/nature14539

Mackin, C., Narayanan, P., Ambrogio, S., Tsai, H., Spoon, K., Fasoli, A., Chen, A.,
Friz, A., Shelby, R. M., and Burr, G. W. (2020). “Neuromorphic Computing
with Phase Change, Device Reliability, and Variability Challenges,” in IEEE
International Reliability Physics Symposium, Dallas, TX, USA (IRPS).
doi:10.1109/irps45951.2020.9128315

Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P., and Wilson, A. G. (2019).
“A Simple Baseline for Bayesian Uncertainty in Deep Learning,” in Advances in
Neural Information Processing Systems (Vancouver, BC, Canada: NeurIPS),
32, 13153–13164.

Miyashita, D., Lee, E. H., and Murmann, B. (2016). “Convolutional Neural
Networks Using Logarithmic Data Representation,” arXiv:1603.01025 [cs.NE].

Nandakumar, S. R., Le Gallo, M., Piveteau, C., Joshi, V., Mariani, G., Boybat, I.,
et al. (2020). Mixed-Precision Deep Learning Based on Computational
Memory. Front. Neurosci. 14, 406. doi:10.3389/fnins.2020.00406

Nvidia. (2021). Available: https://www.nvidia.com/en-us/data-center/a100/.
Onen, M., Gokmen, T., Todorov, T. K., Nowicki, T., Alamo, J. A. D., Rozen, J., et al.

(2021). Neural Network Training with Asymmetric Crosspoint Elements.
submitted for publication.

Rasch, M. J., Gokmen, T., and Haensch, W. (2020). Training Large-Scale Artificial
Neural Networks on Simulated Resistive Crossbar Arrays. IEEE Des. Test. 37
(2), 19–29. doi:10.1109/mdat.2019.2952341

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
Representations by Back-Propagating Errors. Nature 323, 533–536.
doi:10.1038/323533a0

Steinbuch, K. (1961). Die Lernmatrix. Kybernetik 1, 36–45.
Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and Policy

Considerations for Deep Learning in NLP," ACL 2019 - 57th. Annu. Meet.
Assoc. Comput. Linguist. Proc. Conf., 3645–3650.

Sun, X., Choi, J., Chen, C.-Y., Wang, N., Venkataramani, S., Srinivasan, V., et al.
(2019). Hybrid 8-bit Floating point (HFP8) Training and Inference for Deep
Neural Networks. Adv. Neural Inf. Process. Syst. 32, 4901–4910.

Sun, X., Wang, N., Chen, C.-Y., Ni, J.-M., Agrawal, A., Cui, X., et al. (2020). Ultra-
Low Precision 4-bit Training of Deep Neural Networks. Adv. Neural Inf.
Process. Syst. 33, 1796–1807.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2017). Efficient Processing of Deep
Neural Networks: A Tutorial and Survey. Proc. IEEE, 105, 2295–2329.
doi:10.1109/jproc.2017.2761740

Wilson, A. G. (2020). Bayesian Deep Learning and a Probabilistic Perspective of
Model Construction. International Conference on Machine Learning Tutorial.

Woo, J., and Yu, S. (2018). Resistive Memory-Based Analog Synapse: The Pursuit
for Linear and Symmetric Weight Update. IEEE Nanotechnology Mag. 12,
36–44. doi:10.1109/mnano.2018.2844902

Yu, S., Chen, P., Cao, Y., Xia, L., Wang, Y., andWu, H. (2015). “Scaling-up Resistive
Synaptic Arrays for Neuro-Inspired Architecture: Challenges and prospect,” in
International Electron Devices Meeting (IEDM), Washington, DC, USA
(IEEE). doi:10.1109/iedm.2015.7409718

Yu, S. (2018). Neuro-inspired Computing with Emerging Nonvolatile Memorys.
Proc. IEEE, 106, 260–285. doi:10.1109/jproc.2018.2790840

Conflict of Interest: TG was employed by the company IBM. The author declares
that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Gokmen. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 69914814

Gokmen Training Neural Networks on Noisy Hardware

136

https://doi.org/10.1109/iedm.2015.7409625
https://doi.org/10.1080/23746149.2016.1259585
https://cloud.google.com/tpu/docs/bfloat16
https://doi.org/10.1126/science.aaw5581
https://doi.org/10.3389/fnins.2020.00103
https://doi.org/10.3389/fnins.2017.00538
https://doi.org/10.3389/fnins.2018.00745
https://doi.org/10.3389/fnins.2016.00333
https://www.graphcore.ai/
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1109/jproc.2018.2871057
https://doi.org/10.1109/jproc.2018.2871057
https://doi.org/10.1109/iccv.2015.123
https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/irps45951.2020.9128315
https://doi.org/10.3389/fnins.2020.00406
https://www.nvidia.com/en-us/data-center/a100/
https://doi.org/10.1109/mdat.2019.2952341
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/jproc.2017.2761740
https://doi.org/10.1109/mnano.2018.2844902
https://doi.org/10.1109/iedm.2015.7409718
https://doi.org/10.1109/jproc.2018.2790840
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

fnins-15-749811 November 16, 2021 Time: 15:21 # 1

ORIGINAL RESEARCH
published: 22 November 2021

doi: 10.3389/fnins.2021.749811

Edited by:
Alexantrou Serb,

University of Southampton,
United Kingdom

Reviewed by:
Wei Wang,

Technion – Israel Institute
of Technology, Israel

Seyoung Kim,
Pohang University of Science
and Technology, South Korea

*Correspondence:
Gina C. Adam

ginaadam@gwu.edu

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 30 July 2021
Accepted: 20 October 2021

Published: 22 November 2021

Citation:
Zhao J, Huang S, Yousuf O,

Gao Y, Hoskins BD and Adam GC
(2021) Gradient Decomposition

Methods for Training Neural Networks
With Non-ideal Synaptic Devices.

Front. Neurosci. 15:749811.
doi: 10.3389/fnins.2021.749811

Gradient Decomposition Methods for
Training Neural Networks With
Non-ideal Synaptic Devices
Junyun Zhao1†, Siyuan Huang1†, Osama Yousuf2, Yutong Gao1, Brian D. Hoskins3 and
Gina C. Adam2*

1 Department of Computer Science, George Washington University, Washington, DC, United States, 2 Department
of Electrical and Computer Engineering, George Washington University, Washington, DC, United States, 3 Physical
Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, United States

While promising for high-capacity machine learning accelerators, memristor devices
have non-idealities that prevent software-equivalent accuracies when used for online
training. This work uses a combination of Mini-Batch Gradient Descent (MBGD)
to average gradients, stochastic rounding to avoid vanishing weight updates, and
decomposition methods to keep the memory overhead low during mini-batch training.
Since the weight update has to be transferred to the memristor matrices efficiently,
we also investigate the impact of reconstructing the gradient matrixes both internally
(rank-seq) and externally (rank-sum) to the memristor array. Our results show that
streaming batch principal component analysis (streaming batch PCA) and non-negative
matrix factorization (NMF) decomposition algorithms can achieve near MBGD accuracy
in a memristor-based multi-layer perceptron trained on the MNIST (Modified National
Institute of Standards and Technology) database with only 3 to 10 ranks at significant
memory savings. Moreover, NMF rank-seq outperforms streaming batch PCA rank-
seq at low-ranks making it more suitable for hardware implementation in future
memristor-based accelerators.

Keywords: non-negative matrix factorization, gradient data decomposition, principal component analysis,
memristor, non-idealities, ReRAM

INTRODUCTION

As artificial intelligence (AI) applications become ubiquitous in medical care, autonomous driving,
robotics, and other fields, accuracy requirements and neural network complexity increase in
tandem, requiring extensive hardware support for training. For example, GPT-3 is made up of
≈175 billion parameters and requires 285,000 central processing unit (CPU) cores and 10,000
graphics processing units (GPUs) to be trained on tens of billions of web pages and book texts
(Langston, 2020). Moreover, the use of such significant computing resources has major financial
and environmental impacts (Nugent and Molter, 2014; Strubell et al., 2020). New neuroinspired
hardware alternatives are necessary for keeping up with increasing demands on complexity and
energy efficiency.

Emerging non-volatile memory (NVM) technologies, such as oxygen vacancy-driven resistive
switches, also known as ReRAM or memristors (Chang et al., 2011; Wong et al., 2012; Chen,
2020), can combine data processing and storage. Memristor matrices (crossbar arrays) use physical

Frontiers in Neuroscience | www.frontiersin.org 1 November 2021 | Volume 15 | Article 749811137

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.749811
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.749811
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.749811&domain=pdf&date_stamp=2021-11-22
https://www.frontiersin.org/articles/10.3389/fnins.2021.749811/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-749811 November 16, 2021 Time: 15:21 # 2

Zhao et al. Decompositions for Training Non-ideal Networks

principles to enable efficient parallel multiply-accumulate (MAC)
operations (Hu et al., 2018). This in-memory computing
paradigm can achieve a substantial increase in speed and energy
efficiency (Ceze et al., 2016) without the bottleneck caused by
traditional complementary metal-oxide-semiconductor (CMOS)
transistor-based von Neumann architectures. However, due
to the inherent operational stochasticity of memristors in
addition to manufacturing yield and reproducibility challenges,
this emerging technology suffers from non-idealities. Thus,
the accuracy of a neural network implemented with non-
ideal memristor synaptic weights is not software-equivalent.
To alleviate the undesirable effects of these devices, it is
necessary to engineer better devices and improve the existing
training algorithms.

This work investigates the use of Mini-Batch Gradient Descent
(MBGD) for high accuracy training of neural networks with non-
ideal memristor-based weights together with the use of gradient
decomposition methods to alleviate the memory overhead due to
the storage of gradient information between batch updates. An
initial investigation (Gao et al., 2020) showed that the MBGD of
moderate batch sizes (e.g., 128) can overcome the low accuracy
of SGD for a one-hidden-layer perceptron network implemented
with non-ideal synaptic weights trained on MNIST dataset.
Accuracies of up to 86.5% were obtained for the batch sizes of
128 compared with only 50.9% for SGD. Although these results
are promising, they are still far from the software equivalency of
96.5% at our studied network size.

Moreover, MBGD is memory intensive—particularly at higher
batch sizes—since the gradient information needs to be stored
before the batch update. We propose using a hardware co-
processor to compress MBGD gradient data and work in tandem
with the resistive array to support efficient array-level updates
(Figure 1A). The first step toward this goal and the key question
addressed by this paper is what decomposition algorithm should
be mapped to a hardware co-processor to best support the
training, particularly in neural networks implemented with
non-ideal devices. Different common low-rank decomposition
methods are available and have been extensively used in
computer science literature to pre-process the dataset, remove
noise and reduce the number of the network parameters (Garipov
et al., 2016; Schein et al., 2016). Our prior work (Huang
et al., 2020a,b) proposed streaming batch Principal Component
Analysis (PCA) and showed that an accurate gradient matrix
can be recomposed with as few as 3 to 10 ranks depending
on the dataset complexity. Tests on CIFAR-10, CIFAR-100,
and ImageNet showed near equivalent accuracy to MBGD at
significant memory savings. However, in that work, non-ideal
neural networks were not investigated.

In this study, we investigate the device-algorithm interaction
which highlights the importance of hyperparameter optimization
and stochastic rounding for overcoming the low-bit precision
coding of the memristor weights. We propose an expansion
of MBGD for larger batch sizes in conjunction with two
gradient decomposition methods - Streaming Batch PCA and
non-negative matrix factorization (NMF) - and recomposition
methods based on rank summation (rank-sum) vs. rank-by-rank
update (rank-seq) applied to a network with realistic memristor

hardware models. For a m × n gradient matrix with batch size
B, the MBGD cost is approximated at 2Bmn. By comparison,
Streaming Batch PCA and NMF have asymptotic complexities of
k(m+n) and k2(m+n)2, respectively (see Figure 1B). The issue
of gradient recomposition in order to support weight updating
is also investigated, considering that rank-sum would require
additional overhead on the training co-processor, while for rank-
seq it is possible to envision a series of rank-1 array level updates
that support recomposition on the array itself. However, it is
important to point out that these decomposition algorithms
have high complexity requiring QR decompositions or iterative
calculations when implemented at the algorithmic level and
executed on a CPU. Dedicated hardware decomposers can be
envisioned that support streaming operation on data flows.

The remainder of the paper is organized as follows.
Section 2 has background information related to memristors
and their applicability to neural networks, as well as an
overview of decomposition algorithms. Section 3 describes the
methodological details, the simulation environment, and the
algorithms used. Section 4 introduces the evaluation of the
proposed methodology on MNIST and its comparison with SGD
and MBGD. Section 5 concludes with a discussion of the results.

RELATED WORK

Resistive Switching Phenomena and
Memristor Technology
The resistive switching phenomena was discovered in aluminum
oxide in the early 1960s (Hickmott, 1962) and in other materials
in the following decades (Argall, 1968; Dearnaley et al., 1970;
Oxley, 1977; Pagnia and Sotnik, 1988). Due to the focus on silicon
integrated circuits of the time, the technological potential of this
phenomenon was not explored until the early 2000s, sparked
by industry’s interest in the one transistor and one memristor
(1T1R) cell for digital memories (Baek et al., 2004; Seo et al., 2004;
Rohde et al., 2005).

These devices have a simple structure: the upper and lower
layers are metal electrodes, and the middle layer is a dielectric
layer, typically a transition metal oxide. The device behavior
is driven by complex multi-physics phenomena, and it is not
yet fully understood. However, the main model is based on
the formation and reshaping of conductive filaments. When a
voltage pulse is applied, the electronic and ionic conduction
driven by local Joule heating causes the filament to reshape, thus
changing the device resistance and programming the weight.
When the voltage is removed, and the local Joule heating
stops, the ions in the structure “freeze” in place, thus retaining
the filament shape and its associated resistance/weight state
providing memory to the system.

Due to the inherent stochastic nature of the ionic movement
under Joule heating, the devices exhibit non-ideal characteristics,
such as programming variability from cycle to cycle and from
device to device, the asymmetry between the resistance increase
(turn OFF – long term depression) and resistance decrease
(turn ON – long term potentiation), read noise, and limited
ON/OFF ratio or accessible resistance states. Other device

Frontiers in Neuroscience | www.frontiersin.org 2 November 2021 | Volume 15 | Article 749811138

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-749811 November 16, 2021 Time: 15:21 # 3

Zhao et al. Decompositions for Training Non-ideal Networks

A

B

FIGURE 1 | Training co-processor for decomposition. (A) Sketch showing an integrated system – a digital training co-processor will implement the best identified
algorithm in an efficient way to support neural network training on non-ideal analog arrays. (B) Computational complexity for Mini-Batch Gradient Descent (MBGD),
streaming batch principal component analysis (PCA), and non-negative matrix factorization (NMF), as well recomposition methods – rank summation (rank-sum) vs.
rank-by-rank update (rank-seq). The respective eigenvectors are color coded.

indicators, such as device yield, read noise, and retention also
impact their practical applicability (Gokmen and Vlasov, 2016;
Lin et al., 2019).

Memristor-Based Neural Network
Training
A memristor crossbar can efficiently implement vector matrix
multiplication using Ohm’s law for the input voltage to synaptic
weight conductance multiplication and Kirchhoff’s law for the
addition of the resulting currents. Together, these principles
give rise to a vector dot product, which is the fundamental
operation needed for fully-connected neural network layers
(Prezioso et al., 2015). However, memristor non-idealities make
the training process difficult (Adam et al., 2018). Therefore, the
classification accuracies of in-situ training using non-volatile-
memory hardware have generally been less than those of
software-based training.

Several approaches have been used to mitigate these
memristor device non-idealities. At the software level, binary
neural networks (Chen et al., 2018) can use the devices as
ON/OFF switches to reduce the impact of variability and
conductance quantization. Alternatively, stochastic networks can
exploit inherent cycle-to-cycle variability (Payvand et al., 2019;
She et al., 2019). At the hardware level, more complex multi-
memristor cells can be used (Boybat et al., 2018) to overcome

asymmetry, limited bit precision and device variability at the
expense of increased hardware overhead. Feedback circuitry
can also be used to set the device to a well-defined value and
mitigate the cycle-to-cycle variability of the devices (Serb et al.,
2015). These solutions can be similarly applied to other types
of emerging non-volatile memory technologies such as phase-
change memory (Kim et al., 2019), magnetoresistive memory
(Hirtzlin et al., 2019), ferroelectric-based memories (Berdan et al.,
2020), among others.

A recent solution proposed by Ambrogio et al. (2018)
has shown that batch analog systems can achieve equivalent
training performance to that of the software but only at
the costs of doubling the memory and exerting additional
efforts in closed-loop training. Their proposed accelerator
uses an analog short-term memory based on capacitors and
transistors for fast and highly linear programming during
training with only infrequent transfer to an analog long-term
memory based on phase changes. The capacitive short-term
memory is used to correct problems due to the imperfections
in programming long-term phase change memories (Haensch
et al., 2018). This approach, which combines the advantages
of two device technologies, is feasible. However, it relies on
duplicate short-term and long-term memories. Additionally,
any imperfections of the short-term memory also need to
be managed in hardware. A working prototype has not yet
been demonstrated. Nevertheless, understanding how to leverage

Frontiers in Neuroscience | www.frontiersin.org 3 November 2021 | Volume 15 | Article 749811139

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-749811 November 16, 2021 Time: 15:21 # 4

Zhao et al. Decompositions for Training Non-ideal Networks

alternative algorithms and architectures is critical since evidence
suggests that certain algorithms, like batch update, are more
resilient to the non-idealities of various devices (Kataeva et al.,
2015; Gao et al., 2020; Gokmen and Haensch, 2020).

Matrix Decomposition Algorithms
Rather than using a duplicative short-term memory, linear
algebra techniques can be used to compress gradient
data and support efficient array-level updates. Principal
component analysis (PCA), a commonly used decomposition
method, projects high-dimensional data into low-dimensional
subspaces. Through computing and analyzing the underlying
eigenspectrum, the variance in the data is maximized. Streaming
PCA (Oja, 1982), streaming history PCA (Burrello et al., 2019;
Hoskins et al., 2019), and streaming batch PCA (Huang et al.,
2020b) were all developed based on the core PCA algorithm.
Streaming batch PCA can extract an approximation of a full
matrix from samples of its contributed parts by combining
bi-iterative stochastic power iterations (Vogels et al., 2019)
with QR factorization to produce low rank approximations of
stochastic rectangular matrices. This method reduces gradient
storage and processing requirements brought by MBGD and is
composed of a batch of randomly generated rank-1 matrices of
forward propagated activations and backpropagated errors.

However, streaming batch PCA has no restriction on the sign
of the data element, so negative values can appear in the matrix
factorization. Even if all the values are strictly positive, such as in
an image, the decomposition may include negative terms. This
oscillatory behavior, while usually harmless, causes challenges
when computation is done at the physical level: for instance,
summation on memristor devices which are not inherently
reversible in their programming behavior. By contrast, the Non-
Negative Matrix Factorization (NMF) algorithm (Paatero and
Tapper, 1994; Wang et al., 2015) calculates the decomposition
by adding the non-negative constraints which results in
additive features.

The NMF decomposition is particularly meaningful when
the gradient information is mapped on a memristor matrix for
physical recomposition. NMF can decrease the overlap between
ranks, eliminating the oscillatory behavior during summation
that exists in a standard PCA decomposition. This is crucial for
devices that do not have a linear and symmetric weight update.

The streaming batch PCA algorithm and NMF decomposition
algorithms will be used in the following sections to approximate
the MBGD gradient and train a fully connected network to
classify MNIST handwritten digits with high accuracy, despite
device non-idealities.

METHOD DETAILS

Streaming Batch Principal Component
Analysis
Streaming batch PCA or SBPCA (Huang et al., 2020b) is used to
decompose the gradient information from MBGD. It compresses
batch data in the neural network training period through rank-k
outer product updates. The streaming batch PCA can expedite

gradient descent training and decrease the memory cost by
generating a stochastic low-rank approximation of the gradient.
Gradient descent reduces the error between the predicted value
of the neural network and the actual value by updating the
parameters to minimize the result of the loss function,

2p = 2p−α ∗ ∇2l,

where 2p is the weight matrix of layer p, α is learning rate, l(2)

is the loss function, and ∇2l =
∂ l(2p)

∂2p
is the gradient.

To extract significant batch gradient data, average out the
noise due to non-ideal memristor weights, and improve the
network accuracy, a streaming low-rank approximation of ∇̂(k,B)2 l
is obtained by the Streaming Batch PCA. The gradient is
approximated for a batch of size B and the top-k most important
k ranks as follows:

∇̂
(k,B)
2 l = X̂ · 6̂ · 4̂T ,

where X̂ ∈ Rn×kand 4̂ ∈ Rn×k denote the left singular matrix
and right singular matrix, respectively. 6̂ = diag(−→σ) ∈ Rk×k is
a diagonal matrix, which has on its diagonal the corresponding
singular values −→σ for the top k ranks. In the Streaming Batch
PCA algorithm, the input−→x ∈ R1×m and the error

−→
δ ∈ R1×n

help to update X̂ and 4̂. Based on Oja’s rule and stochastic
power iterations (Oja, 1992; Huang et al., 2020a), X̂ and 4̂ are
updated separately and bi-iteratively in a streaming fashion with
an averaged block size b< B, followed by re-orthogonalization via
QR factorization. Our QR factorization is defined to have non-
increasing values on the diagonal of the R matrix. For updating
X̂, we use

X̂← QR

[
i

i+ 1
· X̂ +

1
i+ 1

·
x̂T δ̂4̂6̂

−1

b

]
,

where i
i+1 represents the convergence coefficient and X̂ decays

with each QR factorization, running from i = 1 until reaching
i = B/b. The update of 6̂ is similar,

6̂←
i

i+ 1
· 6̂ +

1
(i+ 1)

∑
rows

(̂xX̂)
⊙(

δ̂4̂
)

b
,

where
⊙

is the Hadamard (elementwise) matrix product.
From the standpoint of computational complexity, Streaming

Batch PCA with k-ranks requires 4Bk(m+n)+B
b ·4k(m+n)

floating point operations (FLOPs) where B
b ·4k(m+n) is for the

batch size (B) / block size (b) times QR factorizations. Overall,
the complexity tends to scale as k(m+n), leading to an overall
reduced computational load as compared to MBGD. However,
the recomposition complexity scales as kmn, What this means
is that recreating the approximation of the gradient is more
computationally expensive than getting the most important
eigenvectors making the recomposition calculation the most
expensive part the algorithm.

Non-negative Matrix Factorization
The Non-Negative Matrix Factorization (NMF) (Lee and
Seung, 1999) algorithm decomposes a non-negative matrix into

Frontiers in Neuroscience | www.frontiersin.org 4 November 2021 | Volume 15 | Article 749811140

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-749811 November 16, 2021 Time: 15:21 # 5

Zhao et al. Decompositions for Training Non-ideal Networks

two non-negative left and right matrices X̂ ∈ Rm×k
+ and 4̂ ∈

Rk×n
+ , respectively.

However, the gradient ∇2l is not non-negative. This is why
in our NMF algorithm, we first start with a batch size B
approximation of ∇2l, and then use the rectified linear unit
(ReLU) activation function to restrict the sign of gradient ∇2l
by its unilateral inhibition feature, whereby ReLU(v) = max(v,
0). The goal is to approximate the positive and negative parts
separately with two sets of k-rank matrices such that ∇̂lP =
X̂P · 4̂P and ∇̂lN = X̂N · 4̂N . Four random matrices X̂P, X̂N ∈

Rm×k
+ and 4̂P, 4̂N ∈ Rn×k

+ are randomly initialized from a
Gaussian distribution at the beginning of training with a standard
deviation calculated from the root of the mean values of the
gradient over the rank k,

√
∇2lP

k and
√
∇2lN

k . Then, we use a
modified version of the Fast HALS (Hierarchical Alternating
Least Squares) (Cichocki and Phan, 2009) algorithm to alternately
update the left and right matrices. To do the minimization, we

assume a pair of loss functions of the form 1
2 ||∇2l(k)P −X̂Pk4̂

T
Pk||

2
F,

where k is the rank and F is the Frobenius norm, with one
loss function for the positive matrix and a similar one for
the negative matrix. This product of the left (X̂Pk) and right
(4̂T

Pk) matrices best approximates the non-negative gradient
when these loss functions are minimized. During the non-
negative part iteration update, the quantities X̂T

P X̂P and 4̂P4̂
T
P

are calculated. The diagonal matrices DX ← Diag(X̂T
P X̂P)

−1

and D4 ← Diag(4̂P4̂
T
P)
−1 are calculated to scale the updates

(Cichocki et al., 2009). Similar quantities are calculated for X̂N
and 4̂N . With this basic framework in mind, we can iteratively,
for as many as P cycles, update the positive (or negative)
decomposition by

X̂P ← ReLU(X̂P + (−X̂P4̂P4̂
T
P +∇2lP4̂T

Pk)D4), and

4̂P ← ReLU+ (4̂P + (−4̂PX̂T
P X̂P +∇2lPX̂Pk)DX)).

The number of iterations, P, will depend on the desired level of
convergence as well as the initialization. The number of iterations
can be reduced by streaming the current best estimates for
X̂P, 4̂P and X̂N, 4̂N from batch to batch after the first random
initialization, as we do in our case. In this work, we explored
using a fixed, 200 iterations to understand the impact of NMF
factorization on training. We also studied doing these operations
with one iteration to see how streaming would impact training,
see Section 3 and Supplementary Figure 2.

After convergence, the new left gradient matrix ∇̂lP = X̂P ·

4̂P and right matrix ∇̂lN = X̂N ·4̂N would be generated. At the
end, the low-rank matrix approximation is ∇̂(k,B)2 l = ∇̂lP−∇̂lN .
It is important to understand that, while this method produces
a potentially optimal and non-oscillating decomposition, it
still relies on summing and reconstructing the batch gradient.
This makes it much more computationally complex than the
Streaming Batch PCA algorithm. However, its memory overhead
could be improved and its hardware mapping will be explored
in the future. For this work, we are primarily interested in the
impact of the decomposition on training.

Assuming the sequential least squares minimization
(e.g., HALS) is done in p iterations, the FLOPs required
for NMF scales with 3mn+ 2mk+ 2nk+ 2mnk (n−1)+
2p
(
k2((m+ n)2−m−n

)
+mnk (m+ n−4)+ 4k (m + n + 1

2).
The

(
k2((m+ n)2−m−n

)
+mnk (m+ n−4)+ 4k(m+ n+

1
2)) calculations are for the X̂P and 4̂P or X̂N and 4̂N updates
in one iteration. As noted previously, the overall computational
complexity scales as k2(m+n)2 making it at this time more
computationally complex than MBGD. However, should this
performance be improved, it would be very advantageous since
the NMF algorithm has a better performance when training
networks rank-by-rank, or using the rank-seq operation as
discussed below.

Rank Gradient Recomposition Methods
The contrast between the oscillatory behavior of the streaming
batch PCA and the additivity of the NMF decomposition
methods becomes significant when considering the memristor
weight updates in hardware. How these updates are performed
is important for understanding the choice of algorithm on
performance. One option is to do gradient summation across
the ranks of interest outside the analog memory crossbar array
before transfer. During training, individual samples are used to
update the compressed k-rank representation of the gradient
∇̂
(k,B)
2 l based on the calculated X̂, 6̂, and 4̂. At the end of a

training batch, the gradient is recomposed and then added to
the matrix in total ∇̂(k,B)2 l = X̂ · 6̂ · 4̂T by sequentially updating
each weight one by one. We call this approach the rank-sum
update and summarize it in Figure 2.

However, rank-sum is inefficient since (a) the data must be
multiplied out and summed on the array and (b) the data
must be transferred one by one into each of the individual
memristor devices. The estimated computational complexity of
this operation, as noted in Figure 1, is 2kmn. A more efficient
implementation for pipelining requires the gradient summation
inside the array using the update properties of the memristor
devices. After producing an approximation of the gradient, the
weight matrix is updated rank by rank, and the gradient is
summed on the memory devices using outer product update
operations. Outer product operations can be done in multiple
ways, either using pulses on the rows and columns (Kataeva
et al., 2015; Gokmen and Vlasov, 2016) or by relying on an
exponential dependence on the applied bias on the rows and
columns to multiply out the gradient (Kataeva et al., 2015). Outer
product operations restrict the updates, because of the limited
row/column access, to rank-1 updates. Consequently, ∇̂(j,B)2 l is
a rank-1 matrix for the jth rank from the matrix product for
the column j in X̂, 6̂, and 1̂ : ∇̂(j,B)2 l = X̂m,j6̂j1̂

T
n,j. The column

number is less than or equal to rank k. Unlike the rank-sum
method, the rank-seq method does not pre-sum ∇̂(k,B)2 l for all
the ranks k. The matrix ∇̂(j,B)2 l is used to calculate the necessary
updates for rank j to be transferred to the memristor matrix
where the gradient is recomposed at the physical level. We
call this method the rank-seq update and show its principles
in Figure 3.

Frontiers in Neuroscience | www.frontiersin.org 5 November 2021 | Volume 15 | Article 749811141

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-749811 November 16, 2021 Time: 15:21 # 6

Zhao et al. Decompositions for Training Non-ideal Networks

2. recompose by
all k ranks

3. weight update
rank-sum

*

1. approx of gradient
decompostion

Initialization

left
vectors

right
vectors

rank-k
gradient
approx

…

applied voltages

1-by-1 weight update

updated
device

4. next batch

electrode

electrode
oxide

Metal-oxide
memristors

Training co-processor Resistive array

di
sc

ar
de

d

top k
ranks

discarded

FIGURE 2 | Transfer principle of the gradient approximation information to the memristor array for the rank summation outside the array (rank-sum). The training
co-processor would have to support rank-k gradient recomposition, thus increasing the hardware overhead.

2. weight update
rank-seq

3. next batch

…

*

1. approx of gradient
decompostion

Initialization

Le
ft

ei
ge

nv
ec

to
r
updated

array

rank – 1
update

applied voltages

right
eigenvector

left
vectors

right
vectors

*

Training co-processor Resistive array

… for all ranks

FIGURE 3 | Transfer principle of the gradient approximation information to the memristor array via rank-by-rank (rank-seq) transfer. The gradient recomposition can
be done by physical summation of rank-1 updates at the array level, thus reducing the hardware overhead for the training co-processor.

It is worth pointing out that in a traditional floating-point
software implementation, the two algorithms are equivalent
within rounding error. However, when the gradient information
needs to be transferred to a non-ideal memristor circuit, the
two methods differ. Rank-sum updates the gradient information
to the memristor crossbar only once, while the rank-seq needs
k updates for k ranks. Updates to non-ideal memristors are
accompanied by a loss in gradient precision, which is the
reason that rank-seq to be expected to have lower accuracy

than rank-sum for non-overlapping ranks. However, rank-seq
is more efficient since it requires less digital computation and
hardware overhead.

Stochastic Rounding
As part of the gradient transfer, the accuracy of the quantization
of the weight update is also investigated in relation to the
device properties. Although in theory the memristor has analog
programmability to any desired state between the ON and the

Frontiers in Neuroscience | www.frontiersin.org 6 November 2021 | Volume 15 | Article 749811142

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-749811 November 16, 2021 Time: 15:21 # 7

Zhao et al. Decompositions for Training Non-ideal Networks

OFF, the device in practice has low bit precision. The reason
for low bit precision is that each state can naturally decay
and can be impacted by reading disturbs or be impacted by
the programming of neighboring devices (Lin et al., 2019).
Therefore, the number of conductance levels reliably accessible
and distinguished from each other is limited. This quantization of
the weight update introduces errors due to the lower bit precision.
Since the memristor conductance change is related to the number
of applied pulses (an integer), the respective weight modification
needs to be rounded appropriately to a lower bit precision.
Rounding-to-nearest is the method commonly used (Chen et al.,
2017). However, it seems to cause a premature conversion to sub-
optimal accuracies at higher batch sizes due to small gradients
and low bit precision causing delta weight approximation to zero.

In this work, stochastic rounding is investigated instead to
overcome this quantization error vanishing gradient issue in
limited precision weights. Stochastic rounding, proposed in the
1950s and 1960s (Forsythe, 1950; Barnes et al., 1951; Hull and
Swenson, 1966), can be particularly useful in deep network
training with low bit precision arithmetic (Gupta et al., 2015).
A real value r which lies between floor value (r1) and ceiling
value (r2) is stochastically rounded up to r2 with probability
(r-r1)/(r2-r1) and down to r1 with probability (r2-r)/(r2-r1).
The average error of this rounding method is zero, since the
expected value of the result of stochastically rounding r is r
itself. Using this stochastic rounding method, some of the sub-bit
information that is discarded by a deterministic rounding scheme
can be maintained.

RESULTS

Network Structure and Simulation
Environment
A multi-layer perceptron to be trained on the MNIST dataset
is chosen. It has high software accuracies and weight matrices
map directly to memristor crossbars, making it suitable for
exploring device-algorithm interactions. The impact of the
proposed methods can be quantified without any interfering
effects from a training optimizer, potentially unoptimized deep
network or an overly challenging dataset. The network structure
is 400 (input layer) - 100 (hidden layer) - 10 (output layer). The
hardware mapping and training on the MNIST dataset is available
in NeuroSim V3.0. NeuroSim V3.0 is an open-source integrated
simulation framework based on C++ for benchmarking synaptic
devices and array architectures via system-level learning accuracy
and hardware performance indicators (Chen et al., 2017). As part
of this work, modules for MBGD, streaming batch PCA and NMF
as well as two weight transfer methods: rank-sum and rank-seq
were implemented and integrated with the existing NeuroSim
V3.0 capabilities.

The algorithmic flow between the modules and the device
models used are shown in Figure 4.

The gradient information obtained during backpropagation
is decomposed according to the desired method. The desired
weight update is calculated in the form of pulses to update
the conductance in hardware. This paper uses the ideal

device model and the non-ideal (real) device model with
the 1T1R configuration of NeuroSim V3.0 to avoid leakage
effects. The ideal device model assumes a reproducible linear
relationship between the applied number of pulses and the
obtained conductance (Figure 4B). In the non-ideal device
model, there is non-linearity between the applied pulses and
the conductance, which leads to imperfect weight programming
and variability in the operation. The nonlinearity values for long
term potentiation (LTP) and long term depression (LTD) are
2.40 and−4.88, respectively. The cycle-to-cycle variation is 3.5%.
This stochasticity is sufficiently large that sending an “increase
weight” pulse can even randomly lead to a “decreased weight”
and vice versa (Figure 4C). Other hardware parameters are the
default values of NeuroSim, for example, the read noise is 0,
and the minimum and maximum conductance are ∼3nS and 38
nS, respectively. These default values are extracted from fitting
experimental weight update data derived from Ag:a-Si devices
(Jo et al., 2010; Chen et al., 2017). For this work, a device
with 500 levels is assumed (approximately 9-bit precision). Each
change in level is assumed to correspond to one update pulse,
with 500 pulses ultimately putting the device in the fully OFF
or fully ON state.

Rounding Effects of the Weight Update
Figure 5 shows the training on the MLP network with software
(64-bit floating-point precision), ideal memristor device (500
levels, 9-bit) and real device model (500 levels, 9-bit with
cycle-to-cycle variability and non-linearity). The MNIST testing
accuracies in the regular round-to-nearest truncation vs. the
stochastic truncation is determined across various batch sizes
in a logarithmic search of the learning rate domain. It can be
observed that a network implemented with limited precision
memristor devices, but no other non-idealities, achieves SGD
accuracy 96.5% similar to a traditional software floating-
point implementation. However, the quantization of the weight
update shrinks the learning rate window dramatically. Whereas
the floating-point implementation can achieve an accuracy >
95% for any learning rate between 0.001 and 1, the low
precision memristor-based network can only train with a
learning rate between 0.1 and 1 (Figure 5A). When stochastic
rounding is used, the learning rate window for the quantized
memristor model widens significantly, resembling the floating-
point implementation (Figure 5B). This result highlights the
importance of hyperparameter optimization and hardware-
sensitive rounding in these low-precision networks.

Learning rate optimization was used to obtain these best
accuracy results. The convergence curves for different device
models, different batch sizes, and the two rounding methods
were run for learning rates spanning eight orders of magnitude
from 10−6 (0.000001) to 101.6 (≈ 40). To optimize the search,
this range was explored in logarithmic steps. The learning rates
corresponding to the best accuracy for each test set are plotted
in Figure 5E. As the batch size increased, the value of the
optimal learning rate also increased. The learning rates for the
round-to-nearest method are higher than the stochastic rounding
method, despite their accuracies being similar. This might be due
to the fact that stochastic rounding applied to these limited-bit

Frontiers in Neuroscience | www.frontiersin.org 7 November 2021 | Volume 15 | Article 749811143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-749811 November 16, 2021 Time: 15:21 # 8

Zhao et al. Decompositions for Training Non-ideal Networks

W

lBk

w

G

W

lBk

w

mini-batch

memristor
conductance update

Forward pass

Backward passBackward pass

Test

G

Low-rank
Training

Error

eigenvectors

A

B C

FIGURE 4 | The code structure and device models (A) expanded NeuroSim v3.0 with added modules and functions highlighted with a double border. (B) Ideal
memristor with linear symmetric and reproducible weight update and a large ON / OFF ratio vs. (C) Non-ideal memristor model with smaller ON / OFF ratio, weight
update nonlinearity, and variability (5 cycles shown).

precision systems can still, over many operations in the time
series, on average, keep track of some sub-bit information. The
stochastic rounding applied across the weights in the array can
preserve statistically more gradient information and carry it over
to the next back propagation iterations (Gupta et al., 2015).
By comparison, the round-to-nearest truncation discards such
gradient information.

Overall, it can be observed that the accuracy increases almost
linearly with the log of the batch size for medium batch sizes
(up to 128) for both round-to-nearest and stochastic rounding
(Figure 5F). It plateaus at higher batch sizes converging to the
MBGD floating-point software accuracy for higher batch sizes
(Table 1). For our implementation, the MBGD at large batch
sizes are similarly needed to overcome the gradient noise due
to the non-ideal memristor synaptic weights. These results show

that ideal memristor behavior, while desirable, is not needed on
a single layer perceptron. The effects are likely to be even more
apparent in larger fixed precision networks due to compounding
effects as seen by related work (Gupta et al., 2015). Existing
memristors can be used successfully despite their non-idealities
and neural networks implemented with real memristor models
can achieve software equivalency using appropriate algorithmic
methods for training

Streaming Batch PCA With Ideal vs.
Non-ideal Weights
An in-depth investigation was done to explore how the accuracy
changes with the rank, batch size and transfer method, and the
difference between streaming batch PCA algorithm and full rank

Frontiers in Neuroscience | www.frontiersin.org 8 November 2021 | Volume 15 | Article 749811144

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-749811 November 16, 2021 Time: 15:21 # 9

Zhao et al. Decompositions for Training Non-ideal Networks

A

D

EC

FB

A
cc

ur
ac

y
(%

)

0

20

100

80

60

40

Learning rate

A
cc

ur
ac

y
(%

)

0

20

100

80

60

40

10-6 101.610-4 10-2 100

A
cc

ur
ac

y
(%

)

0

20

100

80

60

40

Epoch

A
cc

ur
ac

y
(%

)

0

20

100

80

60

40

0 100 200 300

B
es

t l
ea

rn
in

g
ra

te

10-4

10-3

100

10-1

10-2

Batch size

A
cc

ur
ac

y
(%

)

0

20

100

80

60

40

100 101 102 103

64-bit FP

1 (SGD)

non-ideal device

1 (SGD)

4096
2048
1024
512
256
128
64
32
16
8
4
2

Batch
size

stochastic rounding
round to nearest

benchmark

non-
convergence

128
4096

ideal device

Batch
size

FIGURE 5 | The MBGD results for rounding to nearest and stochastic rounding. Learning rate windows for ideal and non-ideal device models and batch sizes using
(A) rounding-to-nearest vs. (B) stochastic rounding of the delta weight. Best convergence curves for the optimal learning rate for each batch size using (C)
rounding-to-nearest vs. (D) stochastic rounding. (E) Optimal learning rate corresponding to the highest accuracy vs. the batch size for non-ideal devices. It is
observed that the learning rate increases supra-linearly with the batch size. (F) Best accuracy at the optimal learning rate vs. the batch size. In (E) and (F), the
colorful plot markers represent results at convergence. The faded gray markers for the rounding-to-nearest case represent the inability of the network to train
properly due to vanishing gradients in this low precision model. The values for the batch sizes 1 to 4096 are obtained using the realistic memristor model.
Representative results for software and ideal device model are also included for comparison.

TABLE 1 | Best accuracy observed between the rounding methods at different batch sizes.

MBGD Rounding-to-nearest MBGD Stochastic Rounding

Synaptic weight B Best LR Best Accuracy (%) Best LR Best Accuracy (%)

64-FP (benchmark) 1 10−0.8 = 0.1585 96.81 Same

Ideal device 1 10−0.2 = 0.6310 96.53 10−0.4 = 0.3981 96.5

Real device 1 10−1.4 = 0.0398 48.17 10−4 = 0.0001 48.45

2 10−1.2 = 0.0631 51.71 10−3.8 = 0.0002 53.34

4 10−0.1 = 0.1000 56.68 10−3.4 = 0.0004 60.28

8 10−0.8 = 0.1585 65.88 10−3.4 = 0.0004 61.13

16 10−0.6 = 0.2512 74.02 10−2.6 = 0.0025 69.34

32 10−0.2 = 0.6310 80.58 10−2.2 = 0.0063 78.24

64 101 = 1.0000 85.50 10−1.6 = 0.0251 83.35

128 100.2 = 1.5849 88.24 10−1.2 = 0.0631 86.49

256 100.2 = 1.5849 87.48 100.2 = 0.2512 88.53

512 100.2 = 1.5849 85.43 10−0.2 = 0.6310 90.06

1024 100 = 1.0000 28.38 100 = 1.0000 91.28

2048 10−0.6 = 0.2512 31.20 100.4 = 2.5119 91.99

4096 10−0.2 = 0.6310 29.99 100.6 = 3.9811 91.93

64-FP 4096 100.2 = 1.5849 93.42 Same

8192 100.2 = 1.5849 90.73 Same

MBGD. Two batch sizes were investigated: 128 and 4096. The
learning rates used for this streaming batch PCA investigation
correspond to the best accuracies obtained by these batch sizes for
MBGD. The decomposition method was applied to both layers at
the same rank. The ranks investigated were 1, 3, and 10.

Figure 6 summarizes the rank-sum results and as expected,
the accuracy of the rank 1 results was lower than that of rank 3
and rank 10 for both batch size 128 and 4096 for both the device
models. The performance for the ideal device model shows that
the performance slightly decrease for MBGD at high batch size.

Frontiers in Neuroscience | www.frontiersin.org 9 November 2021 | Volume 15 | Article 749811145

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-749811 November 16, 2021 Time: 15:21 # 10

Zhao et al. Decompositions for Training Non-ideal Networks

However, the performance for non-ideal devices increases with
the batch size. The rank-3 decomposition does seem to perform
well by comparison with MBGD, particularly at the larger batch
size. The convergence performance of rank 10 is at the same level
as that of MBGD for the rank-sum transfer method. Additionally,
with the increase in the rank, the convergence curve tends to
smoothen and converge somewhat faster, achieving the desired
accuracy in≈ 25 epochs. The investigation of the impact of block
size b is included as Supplementary Figure 1.

While the rank-sum weight transfer method works very
well for streaming batch PCA and achieves close to MBGD
performance, its full hardware implementation would be difficult
since the gradient approximation needs to be recomposed
externally prior to being transferred to the memristor matrix. By
contrast, gradient recomposition of rank-seq requires minimal
hardware overhead. The results for rank-seq are summarized in
Figure 7.

For ideal device, the accuracies are similar for both rank-
sum and rank-seq. By comparison, for the non-ideal devices,
accuracies around ≈ 70% are obtained for ranks 3 and 10 at
both batch sizes 128 and 4096. This is 15 to 20 percentage
points lower than the rank-sum and full rank MBGD results.
These results show that the streaming batch PCA using rank-seq
transfer method cannot approximate the MBGD results, even at
high ranks. This is likely because the principal components of
streaming batch PCA can have positive and negative elements,
creating an oscillatory effect due to the programming of the
non-ideal memristive weights (Scholz et al., 2008). This effect is
observed indirectly in the noisy convergence curves.

Streaming Batch PCA With Ideal vs.
Non-ideal Weights
Figure 8 summarizes the rank-sum NMF results for the different
ranks at the two different batch sizes and compares them
with full rank MBGD. For ideal device, the rank 1 has lower
performance, but rank 3 and rank 10 can approximate MBGD
well, particularly at batch size 128. For non-ideal devices, the
NMF can approximate the gradient information fairly well,
particularly at rank 10. Rank 1 has extremely poor performance,
similar to SGD. Rank 3 performs well and can converge, but its
accuracy is still ≈ 5% to 10% lower than the equivalent MBGD
result at the respective batch size. It is also worth noting that a
decline in the accuracies of these lower ranks can be observed
as the training progresses. Higher rank is needed to observe
satisfactory accuracy and training stability. The result of rank
10 was only 1% to 2% lower than that of the MBGD algorithm.
One reason for the high accuracy in the case of rank 10 is that
because the second layer has only 10 neurons, rank 10 is actually
equivalent to full rank training in the last layer, though not in
the first layer.

The results for the rank-seq transfer method applied to NMF
are shown in Figure 9. For the ideal device, the accuracies are
similar to rank-sum as expected. By comparison, for the non-
ideal devices, rank 3 achieves ≈ 70% accuracy at batch size
128 and ≈ 80% accuracy at batch size 4096. For rank 10, the
NMF algorithm performs within 2% to 3% degradation of the

MBGD results for the respective batch size. Overall, the rank-
seq results are similar with the rank-sum ones at the equivalent
rank. This is likely due to the fact that there is minimal overlap
between the ranks for this additive decomposition method
(Lee and Seung, 2000).

Comparison Between the Algorithms
The streaming batch PCA shows the most efficient compression
of the batch gradient information. It obtains better accuracies
than NMF for all ranks and batch sizes when the rank-sum
transfer method is used. Streaming batch PCA rank-sum for rank
10 has an accuracy equivalent to MBGD ≈ 91.5% for batch
size 4096. This result is around 5 percentage points lower than
the traditional 64-bit floating-point algorithmic implementation
for MNIST training at batch size 1 (SGD) which is the target
/ benchmark result for this work. This result, summarized in
Figure 10 and Table 2, shows that decomposition methods in
conjunction with large batch size MBGD training can overcome
memristive synaptic device non-idealities and achieve close to
software-equivalent accuracies.

However, streaming batch PCA has its challenges. The main
problem is that it operates on the eigenspace of the entire synaptic
weight matrix, statistically representing the direction of largest
variance, but there is no clear spatial explanation for negative
numbers. Therefore the transfer of the gradient information into
the memristor matrix by mapping the gradient data to number
of pulses for the update (open loop transfer) is challenging
as principal components can have positive and negative
signs leading to inefficient oscillatory programming. For this
reason, rank-by-rank weight transfer rank-seq underperforms
by comparison with rank-sum for streaming batch PCA. It is
important to point out that oscillatory behavior per se can be
supported by resistive crossbar arrays via successive increase and
decrease in conductance. The devices can be tuned with desired
precision, but it might take very long trains of pulses and it is not
desirable from a speed perspective when using devices with non-
linearity and variability. If positive and negative updates to the
weight are needed in rapid succession, the device programming
becomes very inefficient. Therefore the transfer of the gradient
information into the physical device matrices by mapping the
gradient data to number of pulses for the update is challenging. In
comparison, NMF calculates an approximate matrix factorization
with separate positive and negative gradient information which
causes the updates to avoid overlapping with one another.

By avoiding overlapping ranks, NMF has superior
performance at high ranks by comparison with streaming
batch PCA. For example, at rank 3, NMF rank-seq outperforms
streaming batch PCA rank-seq by ≈ 5%. At rank 10, the gap is
17%. The best rank-seq accuracy is obtained by NMF rank 10
(88.87%) and it is less than 2% lower than the best rank-sum
accuracy obtained via streaming batch PCA at rank 10 (90.65%).
This means in practice that the NMF factorization produces the
set of optimally efficient rank 1 update operations to training
memristor neural networks.

The main drawback of applying the proposed methodology
is related to accuracy. MBGD, particularly at large batch sizes,
has lower accuracy than lower batch sizes (Goyal et al., 2017;

Frontiers in Neuroscience | www.frontiersin.org 10 November 2021 | Volume 15 | Article 749811146

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-749811 November 16, 2021 Time: 15:21 # 11

Zhao et al. Decompositions for Training Non-ideal Networks

0 50 100 150 200 250 3000

20

40

60

80

100

Epoch

Ac
cu

ra
cy

0 50 100 150 200 250 3000

20

40

60

80

100

Epoch
0 50 100 150 200 250 3000

20

40

60

80

100

Epoch
0 50 100 150 200 250 3000

20

40

60

80

100

Epoch

DCBA

B = 128

Non-ideal
device

rank = 1

MBGD

rank = 3
rank = 10

Ideal
device

rank = 1

MBGD

rank = 3
rank = 10

6904=B6904=B821=B

FIGURE 6 | The rank-sum streaming batch PCA results for a multi-layer perceptron with ideal vs. non-ideal memristive weights at different ranks and batch sizes.
(A,B) Convergence curves using the rank-sum weight transfer method at batch size = 128; and similarly (C,D) at batch size = 4096. The results show that a
low-rank gradient decomposition can approximate the MBGD results fairly well, particularly for ranks 3 and 10. For all these experiments, the rounding method is
stochastic and block size = 32.

0 50 100 150 200 250 3000

20

40

60

80

100

Epoch
0 50 100 150 200 250 3000

20

40

60

80

100

Epoch
0 50 100 150 200 250 3000

20

40

60

80

100

Epoch
0 50 100 150 200 250 3000

20

40

60

80

100

Epoch

DC

6904=B6904=B821=B821=B

Non-ideal
device

rank = 1

MBGD

rank = 3
rank = 10

Ideal
device

rank = 1

MBGD

rank = 3
rank = 10

A B

FIGURE 7 | The rank-seq streaming batch PCA results for a multi-layer perceptron with ideal vs. non-ideal memristive weights at different ranks and batch sizes.
(A,B) Convergence curves using the rank-seq weight transfer method at batch size = 128; and similarly (C,D) at batch size = 4096. The results show that the
streaming batch PCA using rank-seq transfer method cannot approximate the MBGD results, even at high ranks. For all these experiments, the rounding method is
stochastic and block size = 32.

0 50 100 150 200 250 3000

20

40

60

80

100

Epoch
0 50 100 150 200 250 3000

20

40

60

80

100

Epoch
0 50 100 150 200 250 3000

20

40

60

80

100

Epoch
0 50 100 150 200 250 3000

20

40

60

80

100

Epoch

A

6904=B6904=B821=B821=B

Non-ideal
device

rank = 1

MBGD

rank = 3
rank = 10

Ideal
device

rank = 1

MBGD

rank = 3
rank = 10

B C D

FIGURE 8 | The rank-sum Non-Negative Matrix Factorization (NMF) results for a multi-layer perceptron with ideal vs. non-ideal memristive weights at different ranks
and batch sizes. (A,B) Convergence curves using the rank-sum weight transfer method at batch size = 128; and similarly (C,D) at batch size = 4096. The results
show that the NMF can approximate fairly well the MBGD results, particularly for ranks 3 and 10. For all these experiments, the rounding method is stochastic.

Golmant et al., 2018). Furthermore, low rank decompositions of
the MBGD gradient information can negatively affect accuracy
when large networks and complex datasets are used for training.
The results of this work show that it is possible to obtain
low rank decomposition accuracies as close as 2% to 3% from
the MBGD accuracies when large batch sizes are used. This
slight penalty in accuracy comes at the potential advantage

of large storage capacity for the network parameters. This
tradeoff needs to be investigated further by taking accuracy
targets, hardware overhead, network layer sizes, and other
hyperparameters into consideration.

However, their full potential can only be explored on
dedicated hardware co-processors. For example, the Streaming
Batch PCA algorithm requires computationally intensive QR

Frontiers in Neuroscience | www.frontiersin.org 11 November 2021 | Volume 15 | Article 749811147

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-749811 November 16, 2021 Time: 15:21 # 12

Zhao et al. Decompositions for Training Non-ideal Networks

0 50 100 150 200 250 3000

20

40

60

80

100

Epoch
0 50 100 150 200 250 3000

20

40

60

80

100

Epoch
0 50 100 150 200 250 3000

20

40

60

80

100

Epoch
0 50 100 150 200 250 3000

20

40

60

80

100

Epoch

DCBA

6904=B6904=B821=B821=B

Non-ideal
device

rank = 1

MBGD

rank = 3
rank = 10

Ideal
device

rank = 1

MBGD

rank = 3
rank = 10

FIGURE 9 | The rank-seq NMF results for a multi-layer perceptron with ideal vs. non-ideal memristive weights at different ranks and batch sizes. (A,B) Convergence
curves using the rank-seq weight transfer method at batch size = 128; and similarly (C,D) at batch size = 4096. The results show that the NMF using rank-seq
transfer method can approximate the MBGD results well at high ranks. For all these experiments, the rounding method is stochastic.

A B

FIGURE 10 | Comparison of streaming batch PCA and NMF results for rank-sum and rank-seq for a multi-layer perceptron with non-ideal memristive weights at
different ranks and batch sizes. The results show that the streaming batch PCA using rank-sum slightly outperforms NMF rank-sum and can approximate very well
the MBGD results at high ranks. By comparison, NMF rank-seq significantly outperforms streaming batch PCA rank-seq for higher ranks (e.g., 3 and 10) and can
approximate well the MBGD results. For all these experiments, the rounding method is stochastic, batch size = 4096 and block size = 32.

factorization (Huang et al., 2020a). The NMF algorithm
requires explicit calculation of the full batch matrix to
get the separate non-negative components. Optimized NMF
algorithms mappable to hardware co-processors need to
be developed, e.g., streaming variants (see Section 2 and
Supplementary Figure 2). These limitations can be overcome
in dedicated hardware accelerators, e.g., based on systolic arrays.
A discussion of the hardware considerations is included in the
Supplementary Material. Issues related to energy efficiency and
speed need hardware models for the decomposition modules
to be integrated with the existing circuit and device models
as part of a comprehensive design verification framework
(Hoskins et al., 2021).

Applicability and Scale-Up Potential
In general, the proposed algorithms should be broadly applicable
to any family of weights arrays in a matrix where the weights

are trained by gradient descent. These simulation results
highlight the potential of low-rank gradient decompositions
in neural networks using memristor weights and are the first
steps toward training co-processors to support the scale-up
of machine learning models in such hardware. Several recent
works demonstrate the applicability of memristor crossbars to
recurrent and convolutional neural networks (Li et al., 2019;
Wang et al., 2019; Lin et al., 2020). The same decomposition and
implementation principles could be applied to fully connected
recurrent layers. For a convolutional network, the fully connected
layers performing the classification in a deep network can benefit
from these decomposition methods. It is therefore possible to
consider the application of the proposed methods to deeper, more
complex networks.

For spiking neural networks, this property can prove
important since gradient based methods have recently taken on
renewed popularity in the training of such networks, especially

Frontiers in Neuroscience | www.frontiersin.org 12 November 2021 | Volume 15 | Article 749811148

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-749811 November 16, 2021 Time: 15:21 # 13

Zhao et al. Decompositions for Training Non-ideal Networks

TABLE 2 | Summary of the best results for different ranks, batch sizes and truncation methods for streaming batch PCA vs. NMF.

Streaming Batch PCA NMF

Data type Rank-sum accuracy (%) Rank-seq accuracy (%) Rank-sum accuracy (%) Rank-seq accuracy (%)

SGD 51.04

MBGD 128 86.49

MBGD 4096 91.94

Batchsize 128Block 32 Rank1 58.60 58.08 24.15 31.02

Rank3 80.04 61.97 71.87 70.06

Rank10 87.30 64.76 83.26 82.03

Batchsize 4096Block 32 Rank1 46.37 43.71 37.38 29.09

Rank3 82.33 64.71 82.15 71.27

Rank10 90.65 71.78 89.93 88.87

Batchsize 4096Block 128 Rank1 37.49 51.84 25.26 26.02

Rank3 81.28 63.80 81.44 76.1

Rank10 90.78 69.52 90.12 89.39

Batchsize 4096Block 512 Rank1 40.30 52.37 18.63 27.37

Rank3 85.31 63.19 76.83 76.10

Rank10 91.03 71.41 90.33 88.17

Rank1 45.29 48.37 27.48 25.69

Batchsize 4096Block 1024 Rank3 84.40 65.81 75.77 77.79

Rank10 91.48 72.10 90.28 89.08

Realistic device model used for all these results.

through the use of surrogate gradient methods (Neftci et al.,
2019). An increasingly common practice, despite the lack of
biological plausibility, is to use mini-batch GPU acceleration
of spiking networks to train them more rapidly (Neftci et al.,
2017; Payvand et al., 2020). While researchers cite that future
hardware will be able to more efficiently train using batch
sizes of 1 (Stewart et al., 2020), this has also frequently been
proposed as the ideal batch size for using memristor-based
artificial neural networks due to the memory overhead associated
with gradient data. However, as shown in this work, low batch
size training leads to catastrophically poor performance and
larger batch sizes are needed to improve training of non-ideal
hysteretic devices.

Our approach to compress gradient based information as
presented here could be an important step toward developing
biologically plausible batch averaging during long term
learning. The methods can be adapted to require only local
neuronal information, thus leading to methods resilient to local
nanodevice non-idealities. Compression algorithms similar to
the ones studied here, e.g., Oja’s learning rule (Oja, 1982), were
initially introduced as biologically plausible means to learn
incoming data. Therefore, they could be used in a realistic way
to efficiently learn surrogate gradients during the training of
spiking neural networks.

CONCLUSION

This paper investigated mini-batch training and gradient
decomposition algorithmic methods to overcome the hardware
non-idealities of memristor-based neural networks. By testing

two different decomposition methods (streaming batch PCA and
NMF) and two different weight transfer methods (rank-sum and
rank-seq) for different memristor device models and ranks, we
showed that the combination of the above methods is a feasible
method for training the fully connected networks implemented
with non-ideal devices via rank 1 updates. Our results indicate
that stochastic rounding can overcome the loss of precision
due to the quantization error from the vanishing gradient issue,
which is of particular importance when it comes to the synaptic
devices of low-bit precision, such as memristors. While the low-
rank decomposition methods both produced accuracies close to
those of full-rank MBGD, the choice of the update method was
particularly significant for the gradient information transfer to
the memristor matrix hardware. Overall, NMF produced a less
efficient compression of the batch gradient than that of streaming
batch PCA. However, we speculate that it was better for the rank-
by-rank transfer to the memristor crossbar since all the gradient
components were additive, thus eliminating the effect of device
update hysteresis, though this needs further investigation. The
rank-seq NMF is more in line with the physical constraints of
memristor synaptic weights and may represent the optimal set
of rank-1 updates that can be used to train a memristor array in
an open loop fashion.

Future work will focus on expanding these results to
deeper networks, including other types of layers, such as
recurrent layers and applicability to spiking neural networks.
In addition, other hardware-aware decomposition methods will
be investigated. This methodology can be applied to neural
networks implemented with other types of non-volatile memory
devices such as phase change memory and flash technology.
Ultimately, the goal is to test these proposed algorithms in full

Frontiers in Neuroscience | www.frontiersin.org 13 November 2021 | Volume 15 | Article 749811149

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-749811 November 16, 2021 Time: 15:21 # 14

Zhao et al. Decompositions for Training Non-ideal Networks

hardware implementations in memristor-based accelerators that
demonstrate software equivalency despite device non-idealities.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

JZ and SH developed the decomposition code modules and
performed the simulations. OY helped with the execution time
analysis. YG helped with the mini-batch gradient descent code.
BH provided guidance and support. GA supervised the work. All

authors participated in data analysis, discussed the results, and
co-edited the manuscript.

FUNDING

The authors acknowledge funding support from the
ONR/DARPA grant N00014-20-1-2031, the GW University
Facilitating Fund and NIST.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.749811/full#supplementary-material

REFERENCES
Adam, G. C., Khiat, A., and Prodromakis, T. (2018). Challenges hindering

memristive neuromorphic hardware from going mainstream. Nat. Commun.
9, 1–4. doi: 10.1038/s41467-018-07565-4

Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., Di Nolfo, C.,
et al. (2018). Equivalent-accuracy accelerated neural-network training using
analogue memory. Nature 558, 60–67. doi: 10.1038/s41586-018-0180-5

Argall, F. (1968). Switching phenomena in titanium oxide thin films. Solid State
Electron. 11, 535–541. t doi: 10.1016/0038-1101(68)90092-0

Baek, I., Lee, M., Seo, S., Lee, M., Seo, D., Suh, D.-S., et al. (2004). “Highly
scalable nonvolatile resistive memory using simple binary oxide driven by
asymmetric unipolar voltage pulses,” in Proceedings of the IEDM Technical
Digest. IEEE International Electron Devices Meeting, 2004, (San Francisco, CA:
IEEE), 587–590. doi: 10.1109/IEDM.2004.1419228

Barnes, R., Cooke-Yarborough, E., and Thomas, D. (1951). An electronic digital
computor using cold cathode counting tubes for storage. Electron. Eng. 23,
286–291.

Berdan, R., Marukame, T., Ota, K., Yamaguchi, M., Saitoh, M., Fujii, S., et al. (2020).
Low-power linear computation using nonlinear ferroelectric tunnel junction
memristors. Nat. Electron. 3, 1–8. doi: 10.1038/s41928-020-0405-0

Boybat, I., Le Gallo, M., Nandakumar, S., Moraitis, T., Parnell, T., Tuma, T.,
et al. (2018). Neuromorphic computing with multi-memristive synapses. Nat.
Commun. 9, 1–12. doi: 10.1038/s41467-018-04933-y

Burrello, A., Marchioni, A., Brunelli, D., and Benini, L. (2019). “Embedding
principal component analysis for data reduction in structural health
monitoring on low-cost iot gateways,” in Proceedings of the 16th ACM
International Conference on Computing Frontiers, (Alghero: ACM), 235–239.
doi: 10.1145/3310273.3322822

Ceze, L., Hasler, J., Likharev, K., Seo, J.-S., Sherwood, T., Strukov, D., et al. (2016).
“Nanoelectronic neurocomputing: status and prospects,” in Proceedings of the
2016 74th Annual Device Research Conference (DRC), (Newark, DE: IEEE), 1–2.
doi: 10.1109/DRC.2016.7548506

Chang, M.-F., Chiu, P.-F., Wu, W.-C., Chuang, C.-H., and Sheu, S.-S. (2011).
“Challenges and trends in low-power 3D die-stacked IC designs using RAM,
memristor logic, and resistive memory (ReRAM),” in Proceedings of the 2011
9th IEEE International Conference on ASIC, (Xiamen: IEEE), 299–302.

Chen, P.-Y., Peng, X., and Yu, S. (2017). “NeuroSim+: an integrated device-
to-algorithm framework for benchmarking synaptic devices and array
architectures,” in Proceedings of the 2017 IEEE International Electron Devices
Meeting (IEDM), (San Francisco, CA: IEEE), 6.1.1–6.1.4.

Chen, W.-H., Li, K.-X., Lin, W.-Y., Hsu, K.-H., Li, P.-Y., Yang, C.-H., et al.
(2018). “A 65nm 1Mb nonvolatile computing-in-memory ReRAM macro with
sub-16ns multiply-and-accumulate for binary DNN AI edge processors,” in
Proceedings of the 2018 IEEE International Solid-State Circuits Conference-
(ISSCC), (San Francisco, CA: IEEE), 494–496.

Chen, Y. (2020). ReRAM: history, status, and future. IEEE Trans. Electron Devices
67, 1420–1433. doi: 10.1109/TED.2019.2961505

Cichocki, A., and Phan, A.-H. (2009). Fast local algorithms for large scale
nonnegative matrix and tensor factorizations. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. 92, 708–721. doi: 10.1587/transfun.E92.A.708

Cichocki, A., Zdunek, R., Phan, A. H., and Amari, S.-I. (2009). Nonnegative Matrix
and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis
and Blind Source Separation. Hoboken, NJ: John Wiley & Sons. doi: 10.1002/
9780470747278

Dearnaley, G., Stoneham, A., and Morgan, D. (1970). Electrical phenomena in
amorphous oxide films. Rep. Prog. Phys. 33:1129. doi: 10.1088/0034-4885/33/
3/306

Forsythe, G. E. (1950). “Round-off errors in numerical integration on automatic
machinery-preliminary report”, in: bulletin of the American mathematical
society: AMER MATHEMATICAL SOC 201 CHARLES ST. Providence 0294,
61–61.

Gao, Y., Wu, S., and Adam, G. C. (2020). “Batch training for neuromorphic systems
with device non-idealities,” in International Conference on Neuromorphic
Systems 2020, (New York, NY: ACM), 1–4. doi: 10.1145/3407197.3407208

Garipov, T., Podoprikhin, D., Novikov, A., and Vetrov, D. (2016). Ultimate
tensorization: compressing convolutional and fc layers alike. arXiv [Preprint]
arXiv:1611.03214,

Gokmen, T., and Haensch, W. (2020). Algorithm for training neural networks on
resistive device arrays. Front. Neurosci. 14:103. doi: 10.3389/fnins.2020.00103

Gokmen, T., and Vlasov, Y. (2016). Acceleration of deep neural network training
with resistive cross-point devices: design considerations. Front. Neurosci.
10:333. doi: 10.3389/fnins.2016.00333

Golmant, N., Vemuri, N., Yao, Z., Feinberg, V., Gholami, A., Rothauge, K., et al.
(2018). On the computational inefficiency of large batch sizes for stochastic
gradient descent. arXiv [Preprint] arXiv:1811.12941,

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., et al.
(2017). Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv
[Preprint] arXiv:1706.02677,

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. (2015). “Deep
learning with limited numerical precision,” in Proceedings of the 32nd
International Conference on Machine Learning: PMLR, (Lille : JMLR.org),
1737–1746.

Haensch, W., Gokmen, T., and Puri, R. (2018). The next generation of deep
learning hardware: analog computing. Proc. IEEE 107, 108–122. doi: 10.1109/
JPROC.2018.2871057

Hickmott, T. (1962). Low-frequency negative resistance in thin anodic oxide films.
J. Appl. Phys. 33, 2669–2682. doi: 10.1063/1.1702530

Hirtzlin, T., Penkovsky, B., Klein, J.-O., Locatelli, N., Vincent, A. F., Bocquet, M.,
et al. (2019). “Implementing binarized neural networks with magnetoresistive
ram without error correction,” in Proceedings of the 2019 IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH), (Qingdao:
IEEE), 1–5. doi: 10.1109/NANOARCH47378.2019.181300

Hoskins, B. D., Daniels, M. W., Huang, S., Madhavan, A., Adam, G. C., Zhitenev,
N., et al. (2019). Streaming batch eigenupdates for hardware neural networks.
Front. Neurosci. 13:793. doi: 10.3389/fnins.2019.00793

Frontiers in Neuroscience | www.frontiersin.org 14 November 2021 | Volume 15 | Article 749811150

https://www.frontiersin.org/articles/10.3389/fnins.2021.749811/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2021.749811/full#supplementary-material
https://doi.org/10.1038/s41467-018-07565-4
https://doi.org/10.1038/s41586-018-0180-5
https://doi.org/10.1016/0038-1101(68)90092-0
https://doi.org/10.1109/IEDM.2004.1419228
https://doi.org/10.1038/s41928-020-0405-0
https://doi.org/10.1038/s41467-018-04933-y
https://doi.org/10.1145/3310273.3322822
https://doi.org/10.1109/DRC.2016.7548506
https://doi.org/10.1109/TED.2019.2961505
https://doi.org/10.1587/transfun.E92.A.708
https://doi.org/10.1002/9780470747278
https://doi.org/10.1002/9780470747278
https://doi.org/10.1088/0034-4885/33/3/306
https://doi.org/10.1088/0034-4885/33/3/306
https://doi.org/10.1145/3407197.3407208
https://doi.org/10.3389/fnins.2020.00103
https://doi.org/10.3389/fnins.2016.00333
https://doi.org/10.1109/JPROC.2018.2871057
https://doi.org/10.1109/JPROC.2018.2871057
https://doi.org/10.1063/1.1702530
https://doi.org/10.1109/NANOARCH47378.2019.181300
https://doi.org/10.3389/fnins.2019.00793
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-749811 November 16, 2021 Time: 15:21 # 15

Zhao et al. Decompositions for Training Non-ideal Networks

Hoskins, B. D., Ma, W., Fream, M., Liu, M., Daniels, M. W., Madsen, R., et al.
(2021). “Design for verification in a resistive neural network prototype,” in
Proceedings of the International Conference on Neuromorphic Systems (ICONS)
July 27–29, 2021, Knoxville, TN. doi: 10.1145/3477145.3477260

Hu, M., Graves, C. E., Li, C., Li, Y., Ge, N., Montgomery, E., et al. (2018).
Memristor-based analog computation and neural network classification with
a dot product engine. Adv. Mater. 30:1705914. doi: 10.1002/adma.201705914

Huang, S., Hoskins, B. D., Daniels, M. W., Stiles, M. D., and Adam, G. C.
(2020a). Memory-efficient training with streaming dimensionality reduction.
arXiv [Preprint] arXiv:2004.12041,

Huang, S., Hoskins, B. D., Daniels, M. W., Stiles, M. D., and Adam, G. C.
(2020b). Streaming batch gradient tracking for neural network training (student
abstract). Proc. AAAI Conf. Artif. Intell. 34, 13813–13814.

Hull, T. E., and Swenson, J. R. (1966). Tests of probabilistic models for propagation
of roundoff errors. Commun. ACM 9, 108–113. doi: 10.1145/365170.365212

Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., and Lu, W. (2010).
Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett.
10, 1297–1301. doi: 10.1021/nl904092h

Kataeva, I., Merrikh-Bayat, F., Zamanidoost, E., and Strukov, D. (2015). “Efficient
training algorithms for neural networks based on memristive crossbar circuits,”
in Proceedings of the 2015 International Joint Conference on Neural Networks
(IJCNN), (Killarney: IEEE), 1–8. doi: 10.1109/IJCNN.2015.7280785

Kim, W., Bruce, R., Masuda, T., Fraczak, G., Gong, N., Adusumilli, P., et al.
(2019). “Confined PCM-based analog synaptic devices offering low resistance-
drift and 1000 programmable states for deep learning,” in Proceedings of the
2019 Symposium on VLSI Technology, (Kyoto: IEEE), T66–T67. doi: 10.23919/
VLSIT.2019.8776551

Langston, J. (2020). Microsoft Announces New Supercomputer, Lays Out Vision
for Future AI Work. Microsoft. Available online at: https://blogs. microsoft.
com/ai/openai-azure-supercomputer/ (accessed August 27, 2020).

Lee, D. D., and Seung, H. S. (2000). “Algorithms for non-negative matrix
factorization,” in Proceedings of the 13th International Conference on Neural
Information Processing Systems, (Cambridge, MA: MIT Press), 535–541.

Lee, D. D., and Seung, H. S. (1999). Learning the parts of objects by non-negative
matrix factorization. Nature 401, 788–791. doi: 10.1038/44565

Li, C., Wang, Z., Rao, M., Belkin, D., Song, W., Jiang, H., et al. (2019). Long
short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell.
1, 49–57. doi: 10.1038/s42256-018-0001-4

Lin, P., Li, C., Wang, Z., Li, Y., Jiang, H., Song, W., et al. (2020). Three-dimensional
memristor circuits as complex neural networks. Nat. Electron. 3, 225–232. doi:
10.1038/s41928-020-0397-9

Lin, Y.-H., Wang, C.-H., Lee, M.-H., Lee, D.-Y., Lin, Y.-Y., Lee, F.-M., et al.
(2019). Performance impacts of analog ReRAM non-ideality on neuromorphic
computing. IEEE Trans. Electron Devices 66, 1289–1295. doi: 10.1109/TED.
2019.2894273

Neftci, E. O., Augustine, C., Paul, S., and Detorakis, G. (2017). Event-driven
random back-propagation: enabling neuromorphic deep learning machines.
Front. Neurosci. 11:324. doi: 10.3389/fnins.2017.00324

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization to
spiking neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/
MSP.2019.2931595

Nugent, M. A., and Molter, T. W. (2014). AHaH computing–from metastable
switches to attractors to machine learning. PLoS One 9:e85175. doi: 10.1371/
journal.pone.0085175

Oja, E. (1982). Simplified neuron model as a principal component analyzer. J. Math.
Biol. 15, 267–273. doi: 10.1007/BF00275687

Oja, E. (1992). Principal components, minor components, and linear neural
networks. Neural Netw. 5, 927–935. doi: 10.1016/S0893-6080(05)80089-9

Oxley, D. P. (1977). Electroforming, switching and memory effects in oxide thin
films. Electrocomp. Sci. Technol. 3, 217–224. doi: 10.1155/APEC.3.217

Paatero, P., and Tapper, U. (1994). Positive matrix factorization: a non-negative
factor model with optimal utilization of error estimates of data values.
Environmetrics 5, 111–126. doi: 10.1002/env.3170050203

Pagnia, H., and Sotnik, N. (1988). Bistable switching in electroformed metal–
insulator–metal devices. Phys. Status Solidi 108, 11–65.

Payvand, M., Fouda, M. E., Kurdahi, F., Eltawil, A. M., and Neftci, E. O. (2020).
On-chip error-triggered learning of multi-layer memristive spiking neural
networks. IEEE J. Emerg. Sel. Top. Circ. Syst. 10, 522–535. doi: 10.1109/JETCAS.
2020.3040248

Payvand, M., Nair, M. V., Müller, L. K., and Indiveri, G. (2019). A neuromorphic
systems approach to in-memory computing with non-ideal memristive devices:
from mitigation to exploitation. Faraday Discuss. 213, 487–510. doi: 10.1039/
C8FD00114F

Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G. C., Likharev, K. K., and
Strukov, D. B. (2015). Training and operation of an integrated neuromorphic
network based on metal-oxide memristors. Nature 521, 61–64. doi: 10.1038/
nature14441

Rohde, C., Choi, B. J., Jeong, D. S., Choi, S., Zhao, J.-S., and Hwang, C. S. (2005).
Identification of a determining parameter for resistive switching of Ti O 2 thin
films. Appl. Phys. Lett. 86, 262907. doi: 10.1063/1.1968416

Schein, A., Zhou, M., Blei, D., and Wallach, H. (2016). “Bayesian poisson
tucker decomposition for learning the structure of international relations,” in
Proceedings of the 33rd International Conference on Machine Learning: PMLR
June 19–24, 2016, New York, NY. 2810–2819.

Scholz, M., Fraunholz, M., and Selbig, J. (2008). “Nonlinear principal component
analysis: neural network models and applications,” in Principal manifolds for
data visualization and dimension reduction, eds A. N. Gorban, B. Kégl, D. C.
Wunsch, and A. Y. Zinovyev (Berlin: Springer), 44–67. doi: 10.1007/978-3-540-
73750-6_2

Seo, S., Lee, M., Seo, D., Jeoung, E., Suh, D.-S., Joung, Y., et al. (2004). Reproducible
resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655–
5657. doi: 10.1063/1.1831560

Serb, A., Redman-White, W., Papavassiliou, C., and Prodromakis, T. (2015).
Practical determination of individual element resistive states in selectorless
RRAM arrays. IEEE Trans. Circ. Syst. I Regul. Papers 63, 827–835. doi: 10.1109/
TCSI.2015.2476296

She, X., Long, Y., and Mukhopadhyay, S. (2019). “Improving robustness of
reram-based spiking neural network accelerator with stochastic spike-timing-
dependent-plasticity,” in Proceedings of the 2019 International Joint Conference
on Neural Networks (IJCNN), (Budapest: IEEE), 1–8. doi: 10.1109/IJCNN.2019.
8851825

Stewart, K., Orchard, G., Shrestha, S. B., and Neftci, E. (2020). “On-chip few-
shot learning with surrogate gradient descent on a neuromorphic processor,”
in Proceedings of the 2020 2nd IEEE International Conference on Artificial
Intelligence Circuits and Systems (AICAS), (Genova: IEEE), 223–227. doi: 10.
1109/AICAS48895.2020.9073961

Strubell, E., Ganesh, A., and McCallum, A. (2020). Energy and policy
considerations for modern deep learning research. Proc. AAAI Conf. Artif.
Intell. 34, 13693–13696. doi: 10.1609/aaai.v34i09.7123

Vogels, T., Karinireddy, S. P., and Jaggi, M. (2019). PowerSGD: practical low-rank
gradient compression for distributed optimization. Adv. Neural Inform. Process.
Syst. 32, 14236–14245.

Wang, D., Gao, X., and Wang, X. (2015). Semi-supervised nonnegative matrix
factorization via constraint propagation. IEEE Trans. Cybern. 46, 233–244.
doi: 10.1109/TCYB.2015.2399533

Wang, Z., Li, C., Lin, P., Rao, M., Nie, Y., Song, W., et al. (2019). In situ training
of feed-forward and recurrent convolutional memristor networks. Nat. Mach.
Intell. 1, 434–442. doi: 10.1038/s42256-019-0089-1

Wong, H.-S. P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-S., et al. (2012).
Metal–oxide RRAM. Proc. IEEE 100, 1951–1970. doi: 10.1109/JPROC.2012.
2190369

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Zhao, Huang, Yousuf, Gao, Hoskins and Adam. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 November 2021 | Volume 15 | Article 749811151

https://doi.org/10.1145/3477145.3477260
https://doi.org/10.1002/adma.201705914
https://doi.org/10.1145/365170.365212
https://doi.org/10.1021/nl904092h
https://doi.org/10.1109/IJCNN.2015.7280785
https://doi.org/10.23919/VLSIT.2019.8776551
https://doi.org/10.23919/VLSIT.2019.8776551
https://blogs
https://doi.org/10.1038/44565
https://doi.org/10.1038/s42256-018-0001-4
https://doi.org/10.1038/s41928-020-0397-9
https://doi.org/10.1038/s41928-020-0397-9
https://doi.org/10.1109/TED.2019.2894273
https://doi.org/10.1109/TED.2019.2894273
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1371/journal.pone.0085175
https://doi.org/10.1371/journal.pone.0085175
https://doi.org/10.1007/BF00275687
https://doi.org/10.1016/S0893-6080(05)80089-9
https://doi.org/10.1155/APEC.3.217
https://doi.org/10.1002/env.3170050203
https://doi.org/10.1109/JETCAS.2020.3040248
https://doi.org/10.1109/JETCAS.2020.3040248
https://doi.org/10.1039/C8FD00114F
https://doi.org/10.1039/C8FD00114F
https://doi.org/10.1038/nature14441
https://doi.org/10.1038/nature14441
https://doi.org/10.1063/1.1968416
https://doi.org/10.1007/978-3-540-73750-6_2
https://doi.org/10.1007/978-3-540-73750-6_2
https://doi.org/10.1063/1.1831560
https://doi.org/10.1109/TCSI.2015.2476296
https://doi.org/10.1109/TCSI.2015.2476296
https://doi.org/10.1109/IJCNN.2019.8851825
https://doi.org/10.1109/IJCNN.2019.8851825
https://doi.org/10.1109/AICAS48895.2020.9073961
https://doi.org/10.1109/AICAS48895.2020.9073961
https://doi.org/10.1609/aaai.v34i09.7123
https://doi.org/10.1109/TCYB.2015.2399533
https://doi.org/10.1038/s42256-019-0089-1
https://doi.org/10.1109/JPROC.2012.2190369
https://doi.org/10.1109/JPROC.2012.2190369
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 1

REVIEW
published: 02 December 2021

doi: 10.3389/fnins.2021.728086

Edited by:
Melika Payvand,

ETH Zürich, Switzerland

Reviewed by:
Mohammed Fouda,

University of California, Irvine,
United States

Alex James,
Indian Institute of Information

Technology and Management Kerala
(IITMK), India

*Correspondence:
Leila Bagheriye

Leila.Bagheriye@donders.ru.nl

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 20 June 2021
Accepted: 11 October 2021

Published: 02 December 2021

Citation:
Bagheriye L and Kwisthout J

(2021) Brain-Inspired Hardware
Solutions for Inference in Bayesian

Networks.
Front. Neurosci. 15:728086.

doi: 10.3389/fnins.2021.728086

Brain-Inspired Hardware Solutions
for Inference in Bayesian Networks
Leila Bagheriye* and Johan Kwisthout

Foundations of Natural and Stochastic Computing, Donders Institute for Brain, Cognition and Behaviour, Radboud
University, Nijmegen, Netherlands

The implementation of inference (i.e., computing posterior probabilities) in Bayesian
networks using a conventional computing paradigm turns out to be inefficient in
terms of energy, time, and space, due to the substantial resources required by
floating-point operations. A departure from conventional computing systems to make
use of the high parallelism of Bayesian inference has attracted recent attention,
particularly in the hardware implementation of Bayesian networks. These efforts
lead to several implementations ranging from digital circuits, mixed-signal circuits, to
analog circuits by leveraging new emerging nonvolatile devices. Several stochastic
computing architectures using Bayesian stochastic variables have been proposed, from
FPGA-like architectures to brain-inspired architectures such as crossbar arrays. This
comprehensive review paper discusses different hardware implementations of Bayesian
networks considering different devices, circuits, and architectures, as well as a more
futuristic overview to solve existing hardware implementation problems.

Keywords: brain inspired computing, Bayesian inference, spiking neural networks (SNN), nonvolatile, stochastic
computing

INTRODUCTION

Bayesian inference (i.e., the computation of a posterior probability given a prior probability and
new evidence; Jaynes, 2003) is one of the most crucial problems in artificial intelligence (AI), in
areas as varied as statistical machine learning (Tipping, 2003; Theodoridis, 2015), causal discovery
(Heckerman et al., 1999), automatic speech recognition (Zweig and Russell, 1998), spam filtering
(Gómez Hidalgo et al., 2006), and clinical decision support systems (Sesen et al., 2013). It is
a powerful method for fusing independent (possibly conflicting) data for decision-making in
robotic, biological, and multi-sensorimotor systems (Bessière et al., 2008). Bayesian networks
(Pearl, 1988) allow for a concise representation of stochastic variables and their independence and
the computation of any posterior probability of interest in the domain spanned by the variables.
The structure and strength of the relationships can be elicited from domain experts (Druzdzel and
van der Gaag, 1995) or, more commonly, learned from data using algorithms such as expectation-
maximization or maximum likelihood estimation (Heckerman et al., 1995; Ji et al., 2015). However,
both the inference problem (Cooper, 1990) and the learning problem (Chickering, 1996) are
NP-hard problems in general.

Frontiers in Neuroscience | www.frontiersin.org 1 December 2021 | Volume 15 | Article 728086152

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.728086
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.728086
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.728086&domain=pdf&date_stamp=2021-12-02
https://www.frontiersin.org/articles/10.3389/fnins.2021.728086/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 2

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

As a result, an efficient implementation of Bayesian networks
is highly desirable. Although the implementation of inference
on a large Bayesian network on conventional general-purpose
computers provides high precision, it is inefficient in terms
of time and energy consumption. Several complex floating-
point calculations are required to estimate the probability
of occurrence of a variable since the network is composed
of various interacting causal variables (Shim et al., 2017).
Moreover, the high parallelism feature of Bayesian inference
is not used efficiently in conventional computing systems (F.
Kungl et al., 2019). Conventional systems need exact values
throughout the computation, preventing the use of the stochastic
computing paradigm that consumes less power (Khasanvis
et al., 2015a). To realize stochastic computing-based Bayesian
inference especially using emerging nanodevices, it is highly
needed to develop a robust hardware structure to overcome the
characteristic imperfection of these new technologies. On the
other hand, the practical realization and usage of large Bayesian
networks has been problematic due to the abovementioned
intractability of inference (Faria et al., 2021). Therefore, any
hardware implementation of Bayesian inference needs to pay
attention to a hierarchy of device, circuit, architecture, and
algorithmic improvements.

Various approaches and architectures for Bayesian network
hardware implementations have been developed; in the literature,
approaches such as probabilistic computing platforms based on
Field Programmable Gate Arrays (FPGAs), fully digital systems
with stochastic digital circuits, analog-based probabilistic circuits,
mixed-signal approaches, stochastic computing platforms with
scaled nanomagnets, and Intel’s Loihi chip have been proposed.

In this overview paper, we describe these different approaches
as well as the pros and cons of each of them. To this end, in
Section “Bayesian Networks and the Inference Problem,” some
basic preliminaries on Bayesian networks will be explained.
Section “Probabilistic Hardware-Based Implementation of
Bayesian Networks” describes several probabilistic neuronal
circuits for Bayesian network variables using different
nonvolatile devices. We explain neural sampling machines
(NSMs) for approximate Bayesian inference. In Section “New
Computing Architecture With Nonvolatile Memory Elements
for Bayesian Network Implementation,” different systems for
the implementation of Bayesian networks will be discussed
that make use of new nonvolatile magnets and CMOS circuit
elements. Section “Bayesian Inference Hardware Implementation
With Digital Logic Gates” explains digital implementations of
Bayesian inference algorithms as well as the definition of a
standard cell-based implementation. At the end of this section,
probabilistic nodes based on CMOS technology will be discussed.
Section “Crossbar Arrays for Bayesian Networks Implementation”
represents two brain-inspired hardware implementations of
naïve Bayesian classifiers in the crossbar array architecture, in
which memristors are employed as nonvolatile elements for
algorithm implementation. Also, Bayesian reasoning machines
with magneto-tunneling junction-based Bayesian networks are
described. In Section “Bayesian Neural Networks,” employing
Bayesian features in neural networks is represented. First
Bayesian neural networks are explained. Then, Gaussian

synapses for probabilistic neural networks (PNNs) will be
introduced. Afterward, PNN with memristive crossbar circuits
is described. Approximate computing to provide hardware-
friendly PNNs and an application of probabilistic artificial neural
networks (ANNs) for analyzing transistor process variation are
explained. In Section “Hardware Implementation of Probabilistic
Spiking Neural Networks,” employing Bayesian features in
Spiking Neural Network (SNN) is represented. The feasibility
of nonvolatile devices as synapses in SNNs architectures will be
discussed for Bayesian-based inference algorithms. A scalable
sampling-based probabilistic inference platform with spiking
networks is explained. Then, a probabilistic spiking neural
computing platform with MTJs is explained. Afterward, high
learning capability of a probabilistic spiking neural network
implementation and hardware implementation of SNNs utilizing
probabilistic spike propagation mechanism are described. At
the end of this section, memristor-based stochastic neurons for
probabilistic SNN computing and Loihi based Bayesian inference
implementation are represented. In Section “Discussion,” we
provide an overall discussion of the different approaches. Finally,
Section “Conclusion” concludes the paper.

BAYESIAN NETWORKS AND THE
INFERENCE PROBLEM

A discrete joint probability distribution defined over a set of
random (or stochastic) variables assigns a probability to each
joint value assignment to the set of variables; this representation,
as well as any inference over it, is exponential in the number
of variables. For most practical applications, however, there are
many independences in the joint probability distribution that
allows for a more concise representation. There are several
possible ways to represent such independences in probabilistic
graphical models, representing a probabilistic model with a
graph structure (Korb and Nicholson, 2010). The commonly
described graphical models are Hidden Markov Models (HMMs),
Markov Random Fields (MRFs), and Bayesian networks. MRFs
use undirected graphs to represent conditional independences
and capture stochastic relations in potentials. Bayesian networks
use directed a-cyclic graphs, capturing stochastic relations
in conditional probability tables (CPTs). Both structures can
represent different subsets of conditional independence relations.
HMMs are dynamic Bayesian networks that efficiently model
endogenous changes over time, under the assumption of the
Markov property.

A simple Bayesian network with four variables (Pearl, 1988)
has been shown as a running example in Figure 1 in which
Bayesian networks are represented by a directed acyclic graph
composed of nodes and edges and a set of CPTs. The nodes in the
graph model random variables, whereas the edges model direct
dependencies among the variables.

The four binary variables (denoted True or False, or equally
“1” or “0”) “C,” “R,” “S,” and “W” represent whether it is cloudy,
it is rainy, the sprinkler is on, and the grass is wet, respectively.
The conditional probabilities (given in the CPTs) describe the
conditional dependencies between parent and child nodes. Based

Frontiers in Neuroscience | www.frontiersin.org 2 December 2021 | Volume 15 | Article 728086153

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 3

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 1 | (A) A Bayesian network with four variables where independence between variables has been reported via conditional probability tables (CPTs). All
posterior probabilities of interest in this network can be computed using the laws of probability theory, notably Bayes’ rule (1) that allows inferring the causes of
effects observed in the network. (B) Structure learning flow in Bayesian networks through which Learning algorithm provides graphs from data, and are scored by
the scoring mechanism. Finally, an optimum structure is selected after iteratively improvements of the score over the graph structure (Kulkarni et al., 2017b).
(C) Several learning case in Bayesian networks (Murphy, 1998).

on the network structure, the inference operation estimates
the probability of the hidden variables, based on the observed
variables (Pearl, 1988). For example, suppose one observes that
the grass is wet, then the inference operation seeks to compute
the probability distribution over the possible causes. There are
possibly two hidden causes for the grass being wet: if it is raining
or the sprinkler is on. Bayes’ rule defined in Equation (1), is used
to calculate the posterior probability of each cause when wet grass
has been observed; it allows us to compute this distribution from
the parameters available in the CPTs:

P(S|W) =
P(W|S)P(S)

P(W)
(1)

For data analysis, the graphical model provides several benefits.
Different methods are utilized for data analysis, which are rule
bases, decision trees, and ANNs. Different techniques for data
analysis are density estimation, classification, regression, and
clustering. Then, what do Bayesian methods provide? One, it
readily handles the missing of some data entries since the model
encodes dependencies among all variables. Two, a Bayesian
network paves the way to understanding about a problem domain
and predicting the consequences of intervention via learning
the causal relationships. Three, the model provides a causal and
probabilistic semantics, though which an ideal representation
for combining prior knowledge and data is possible. Four, with
Bayesian statistics as well as Bayesian networks, the overfitting of
data can be solved (Heckerman, 2020).

Learning a Bayesian network has two major aspects, i.e.,
discovering the optimal structure of the graph and learning the
parameters in the CPTs. Learning a Bayesian network from data
requires two steps of structure learning and parameter learning.
There are a few works focusing on hardware implementation
for structure learning. In order to find an optimal structure,
exploring all possible graph structures for a given dataset is

necessary. As shown in Figure 1B, for structure learning, based
on the data, an algorithm starts with a random graph, then
a scoring mechanism determines how well the structure can
explain the data, where this quality is typically a mix of simplicity
and likelihood. The graph structure is updated based on the
score, and as a graph provides a better score, it is accepted.
Several algorithms have been proposed in the literature for
structure learning, with the two major scoring mechanisms being
Bayesian scoring and information-theoretic scoring (Kulkarni
et al., 2017b). Most of the information-theoretic scoring methods
are analytical, and then complex mathematical computations are
required. These methods are currently performed by software and
the required time for structure learning is impacted significantly.
Equation (2) represents the Bayesian scoring that uses the Bayes’
rule to compute the quality of a given Bayesian network structure.
Using the Bayes rule, for a given data, and for a structure, the
Bayes score is defined by:

P(structure|Data) ∝ P(Data|structure) × P(Data) (2)

The score of a structure as shown by Equation (2) is proportional
to how closely it can describe observed data and on the prior
probability of the structure (which could be uniform or provided
by a domain expert). The Bayesian score is calculated via
stochastic sampling through which a model of the graph is
generated with the CPT values set, and sampling over each
node for several iterations is performed. For example, for a
probability value of 0.5 for a node, with 10 sampling iterations,
it is expected to show “True” in 5 iterations. To calculate the
Bayesian score of the graph (i.e., defining the correlation degree
between the sampled data and learning data), the inference data
taken from the stochastic sampling process are utilized. Once
the structure of the network has been learned from the data,
parameter learning (i.e., using data to learn the distributions of
a Bayesian network) can be performed efficiently by estimating

Frontiers in Neuroscience | www.frontiersin.org 3 December 2021 | Volume 15 | Article 728086154

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 4

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

the parameters of the local distributions implied by the structure
obtained in the previous step. There are two main approaches
to the estimation of those parameters in literature: one based on
maximum likelihood estimation and the other based on Bayesian
estimation (Heckerman, 2020). Parameter estimation still could
be challenging when the sample sizes are much smaller than the
number of variables in the model. This situation is called “small
n, large p,” which brings a high variability unless particular care
is taken in both structure and parameter learning. As mentioned
above, the graph topology (structure) and the parameters of each
CPT can be inferred from data. However, learning structure is
in general much harder than learning parameters. Also, learning
when some of the nodes are hidden, or in case data are missing, is
harder than when everything is observed. This gives rise to four
distinct cases with increasing difficulty shown in Figure 1C.

Bayesian network learning involves the development of both
the structure and the parameters of Bayesian networks from
observational and interventional datasets; Bayesian inference on
the other hand is often a follow-up to Bayesian network learning
and deals with inferring the state of a set of variables given the
state of others as evidence. The computation of the posterior
probabilities shown above (Figure 1A) is a fundamental problem
in the evaluation of queries. This allows for diagnosis (computing
P(cause| symptoms)), prediction (computing P(symptoms|
cause)), classification (computing P(class| data)), and decision-
making when a cost function is involved. In summary, Bayesian
networks allow for a very rich and structured representation
of dependencies and independencies within a joint probability
distribution. This comes at the price of the intractability of
both inference (i.e., the computation of posterior probabilities
conditioned on some observations in the network) and learning
(i.e., the establishment of the structure of the model and/or the
conditional probabilities based on data and a learning algorithm).
One can deal with this intractability either by reducing the
complexity of the model or by accepting approximate results.
Examples of the former are reducing the tree width of the
network model (Kwisthout et al., 2010), reducing the structure
of the model to a polytree describing a hidden state model
and observable sensors (Hidden Markov model) (Baum and
Petrie, 1966), or assuming mutual independence between
features (Naïve Bayesian classifiers) (Maron and Kuhns, 1960).
Examples of the latter are approximation algorithms such as
Metropolis-Hastings (Hastings, 1970) and Likelihood weighting
(Shachter and Peot, 1990).

PROBABILISTIC HARDWARE-BASED
IMPLEMENTATION OF BAYESIAN
NETWORKS

This section represents several probabilistic neuron circuits for
Bayesian network variables by using different nonvolatile devices
connected to CMOS circuit elements. To this end, the first
two abstraction layer-based implementations and then a direct
implementation of probabilistic circuits will be discussed. Then,
a NSM for approximate Bayesian inference is explained.

Probabilistic Spin Logic-Based
Implementation of Bayesian Networks
The first approach we will discuss is the mapping of CPTs to
probabilistic circuits constructed by probabilistic bits (p-bits)
(Faria et al., 2018; Debashis et al., 2020). In this approach, each
variable in a Bayesian network is modeled by a stochastic circuit,
representing a specific conditional probability. This probability is
represented by the input that comes from its parent nodes, via the
weights of the links between nodes. For the p-bit implementation,
the Bayesian network is translated into probabilistic spin logic
(PSL). PSL is a behavioral model, represented by biasing (h) and
interconnection (J) coefficients (shown in Figure 2A). Then, PSL
is translated into electronic devices.

The reported p-bit implementation in Faria et al. (2018)
as shown in Figure 2B uses a stochastic spintronic device,
i.e., magnetic tunnel junction (MTJ), connected to the drain
of a transistor.

Table 1 reports the required equations for the PSL translation
into a circuit whose output m1 is related to its input I2 (the
synapse generates the input I2 from a weighted state of m2,
Figure 2A), Equation (3). Based on Equation (4A), a random
number generator (RNG) (rand) and a tunable element (tanh)
construct m2. The RNG is the MTJ and the tunable component
is the NMOS transistor; rMTJ is a correlated RNG and the NMOS
transistor resistance rT is approximated as a tanh function found
by fitting based on I–V characteristics. The PSL model is then
translated into electronic components (shown in Figure 2B)
where each node (represented by m) is connected to other nodes
and biased through voltages Vbias and conductances G; V0 is a
fitting parameter. Biasing (h) and interconnection (J) coefficients
of PSL model have been reported in Table 1 by Equations (5A)–
(7A), due to its corresponding P-bit circuit in Figure 2B.

Note that individual p-bits require sequencers in software
implementations to be programmed in a directed order. The p-bit
in Faria et al. (2018) and Faria et al. (2021) is an autonomous,
asynchronous circuit that can operate correctly without any
clocks or sequencers, in which the individual p-bits need to be
carefully designed and the interconnect delays, from one node
to another node, must be much shorter than the nanomagnet
fluctuations of the stochastic device. This condition is met as
magnetic fluctuations occur at approximately the 1-ns time scale.
However, in asynchronous operations, updating the network
as well as dealing with variations in the thermal barriers or
interconnect delays necessitates further study.

Debashis et al. (2020) present another alternate p-bit
implemented with inherently stochastic spintronic devices based
on a nanomagnet with perpendicular magnetic anisotropy. This
device utilizes the spin orbit torque from a heavy metal (HM)
under-layer to be initialized to its hard axes. Equations (4B)–(7B)
in Table 1 show the relation between the stochastic variables m1
and m2 based on the corresponding p-bit circuit in Figure 2C.
Here, σ defines the sigmoidal activation function for the device
in m2. Equation (4B) explains the conditional dependencies. The
probability of m2 being 1 given m1 being 1 is calculated through
Equation (4B) while setting m1 = 1. The parameters B0 and
h2 represented in Equations (5B)–(7B) can be tuned to change

Frontiers in Neuroscience | www.frontiersin.org 4 December 2021 | Volume 15 | Article 728086155

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 5

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 2 | Circuit implementation of a p-bit block. (A) PSL-based representation of two-node Bayesian network. (B) The p-bit design based on MTJ p-circuit with
connection weight and bias to be connected to another node (Faria et al., 2018). (C) The p-bit design, based on nanomagnet p-circuit with connection weight and
bias to be connected to another node (Debashis et al., 2020). (D) The required auxiliary node, X, for representing the four-node Bayesian network.

TABLE 1 | PSL to circuit translation requirements.

PSL elements P-bit design-1 (Faria et al., 2018) P-bit design-2 (Debashis et al., 2020)

PSL I2 = J21m1 + h2 (3)

Given CPT:
m1 = 0, p(m2 = 1) = a
m1 = 1, p(m2 = 1) = b

m2 (t+1t) = sgn (−rMTJ (t+1t)
+ rT (t+1t)) (4A)

m2 = σ (I2) = σ(J21m1 + h2) (4B)

J21 J21 =
G21
Gb

(5A) J21 = ± µ0
VDD

2 B0Rweight (5B)

h2 h2 =
Vbias,2

VDD
2

, (6A) h2 = ± µ0
Vbias

2 B0Rbias (6B)

I2 I2 =
Vin,2
V0

(7A) I2 = ±
(
µ0

VDD
2 B0Rweight

)
m1 +

(µ0
Vbias

2 B0Rbias) (7B)

the shape and offset of the sigmoidal activation function (while
presenting the CPTs via the connection weights).

To implement the four-node Bayesian network by p-bits,
Figure 2D, using PSL behavioral models in Faria et al. (2018)
and Debashis et al. (2020), requires an auxiliary p-bit defined by
node “X.” The CPT of node “W” has four conditional probability
distributions (based on nodes “R” and “S,” see Figure 1); based on
the principles of linear algebra, this CPT needs four independent
parameters. The interconnection weights JWR and JWS and the
bias parameter to the node “W” (hW) are three parameters
of four. The fourth parameter has been implemented with the
interconnection to node “X.” Nodes with N parents need a

total of (N+ 1) parameters and 2N equations to meet the PSL
model requirement. Based on the number of linearly independent
equations, it is needed to represent the appropriate number of
auxiliary variables (Faria et al., 2018). Utilizing the auxiliary
nodes in p-bit-based implementation of Bayesian networks adds
extra area/energy overhead and requires further studies.

Spintronic Devices for Direct Hardware
Implementation of Bayesian Networks
In Shim et al. (2017), a direct implementation of Bayesian
networks has been proposed with a stochastic device that is based

Frontiers in Neuroscience | www.frontiersin.org 5 December 2021 | Volume 15 | Article 728086156

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 6

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 3 | Detailed implementation view of a Bayesian network variable and the interconnection between the two nodes C and S in the four-node Bayesian
network of Figure 1.

on a three-terminal device structure, shown in Figure 3. The
proposed stochastic device can be developed by fabricating an
MTJ stacked on top of the ferromagnet-HM layers. The stochastic
switching of the device in the presence of thermal noise has
been employed to implement a Bayesian network. This MTJ
with two permanent states (represent two different resistance
levels) models stored values by the resistance levels (Shim
et al., 2017). The MTJ is composed of a tunneling barrier (TB)
sandwiched between two ferromagnetic layers, namely, the free
layer (FL) and the pinned layer (PL). The relative magnetization
direction of two ferromagnetic layers defines the MTJ state; MTJ
shows low (or high) resistance when the relative magnetization
direction is parallel (or anti-parallel) (Bagheriye et al., 2018).
Based on the write current through terminals T1 and T2,
which probabilistically switches the magnet (with a probability
controlled by the current magnitude), the read path through the
terminals T3 and T2 controls the final state of the magnet.

In order to represent a variable of the Bayesian network, a
Poisson pulse train generator translates the probability data into
the frequency of the output pulses. Thanks to the controllable
stochastic switching of the nanomagnet, along with current
sources and some circuit elements [reference resistor (Rref)
and separate write and read paths], the Poisson spikes can be
generated as shown in Figure 3. A reference resistor is used
to generate a Poisson spike train, where the number of spikes
encodes information about the probability. For instance, if 30
spikes are observed at the output of the “S” node in 100 write
cycles, this determines that the probability of “S is True” is
30%. Moreover, for more complex inference, extra arithmetic
building blocks using CMOS circuits between two Poisson
pulses are needed.

Neural Sampling Machine for
Approximate Bayesian Inference
In biological neural networks, synaptic stochasticity occurs at
the molecular level, and due to the presynaptic neuronal spike,

the neurotransmitters at the synaptic release site release with a
probability of approximately 0.1. Dutta et al. (2021) presented
a neuromorphic hardware framework to support a recently
proposed class of stochastic neural networks called the neural
sampling machine (NSM), which mimics the dynamics of noisy
biological synapses. NSM incorporates a Bernoulli or “blank-
out” noise in the synapse to being multiplicative, which has an
important role in learning and probabilistic inference dynamics.
This performs as a continuous DropConnect mask on the
synaptic weights, where a subset of the weights is continuously
forced to be zero. Stochasticity is switched off during inferencing
in DropConnect, whereas it is always on in an NSM providing
probabilistic inference capabilities to the network. Figure 4
shows the hardware implementation of NSM using hybrid
stochastic synapses. These synapses consist of an embedded non-
volatile memory, eNVM [a doped HfO2 ferroelectric field-effect
transistor (FeFET)-based analog weight cell] in series with a two-
terminal Ag/HfO2 stochastic selector element. By changing the
inherent stochastic switching of the selector element between the
insulator and the metallic state, the Bernoulli sampling of the
conductance states of the FeFET can be performed. Moreover,
the multiplicative noise dynamics has a key side effect of self-
normalizing, which performs automatic weight normalization
and prevention of internal covariate shift in an online fashion.
The conductance states of the eNVM in the crossbar array (which
performs row-wise weight update and column-wise summation
operations in a parallel fashion) are adapted by weights in
the Deep Neural Network (DNN). In order to implement an
NSM with the same existing hardware architecture, selectively
sampling or reading the synaptic weights Gij with some degree
of uncertainty is required. A selector device as a switch has
been employed, stochastically switching between an ON state
(representing ξij = 1, ξijgenerated for each of the synapse and is a
random binary variable) and an OFF state (ξij = 0). Figure 4B
depicts an input voltage V in3 applied to a row of the synaptic
array with conductance states G = {G1, G2, G3, G4,. . ., GN},
and based on the state of the selectors in the cross-points, an

Frontiers in Neuroscience | www.frontiersin.org 6 December 2021 | Volume 15 | Article 728086157

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 7

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 4 | An NSM implemented in hardware using crossbar array architecture. (A) The utilized NSM with an input layer, three hidden layers, and an output layer.
(B) The stochastic selector device used for injecting Bernoulli multiplicative noise is placed at each cross-point connected to an analog weight cell implemented
using eNVMs. The stochastic selector element provides the selectively sampling or reading the synaptic weights Gij with some degree of uncertainty controlled by
random binary variables ξij.

output weighted sum current Iout = {0, G2.V in3, 0, G4.V in3, 0}
is obtained, which is exactly the same as multiplying the weight
sum of WijZj (Zj, is the activation function of the neuron j) with
a multiplicative noise ξij.

For Bayesian inference, the hardware NSM captures
uncertainty in data and produces classification confidence.
To this end, in Dutta et al. (2021), the hardware NSM has
been trained on the full MNIST dataset. During the inference
mode, the performance of the trained NSM on continuously
rotated images has been evaluated where, for each of the rotated
images, 100 stochastic forward passes are performed and the
softmax input (output of the last fully connected hidden layer
in Figure 4A) as well the softmax output were recorded. The
NSM will correctly predict the class corresponding to an input
neuron if the softmax input of a particular neuron is larger than
all the other neurons. However, as the images are rotated more,
even though the softmax output can be arbitrarily high for, e.g.,
neuron 2 or 4 predicting that the image are 2 or 4, respectively,
the uncertainty in the softmax output is high, showing that the
NSM can account for the uncertainty in the prediction. The
uncertainty of the NSM has been quantified by looking at the
entropy of the prediction, defined as H = −

∑
P∗log(P), where p

is the probability distribution of the prediction. When the NSM
makes a correct prediction, the uncertainty measured in terms of
the entropy remains 0. However, in the case of wrong predictions,
the uncertainty associated with the prediction becomes large.
This is in contrast to the results obtained from a conventional
MLP network (deterministic neural network) where the network
cannot account for any uncertainty in the data.

NEW COMPUTING ARCHITECTURE
WITH NONVOLATILE MEMORY
ELEMENTS FOR BAYESIAN NETWORK
IMPLEMENTATION

In this section, several Bayesian network implementation systems
will be discussed that make use of new nonvolatile magnets

and CMOS circuit elements. We will first explain FPGA-
like architectures and then discuss developed spintronic-based
inference systems.

Direct Physical Equivalence
Implementation of Bayesian Networks
In Khasanvis et al. (2015a), in addition to transistors, strain-
switched magneto tunneling junctions (S-MTJs) are used for a
Bayesian hardware implementation. S-MTJs as nonvolatile
devices provide low switching energy (Atulasimha and
Bandyopadhyay, 2013). As shown in Figure 5A, it has four
terminals and the resistance between reference and output
terminals can be changed by the two input digital voltage
terminals change. It shows hysteresis in resistance vs. voltage
characteristics that provides non-volatility. Khasanvis et al.
(2015a) represents a mindset of physical equivalence, which
means each digit in the probability representation is mapped
directly (without any abstraction layer) to S-MTJ resistance
with equivalent digital voltage representation (Figure 5B),
while the proposed work in Faria et al. (2018) and Debashis
et al. (2020) need the PSL abstraction level to map Bayesian
networks in hardware.

For encoding, n spatially distributed digits p1, p2,. . ., pn have
been defined (Figure 5B), each digit pi can be any one of k values,
the number of states of the physical device (e.g., for devices with
two states, k = 2 and pi ∈ {0, 1}). The encoded probability P is
defined by: P =

∑n
i = 1 pi

n(k−1) , which is called a flat linear representation
(resolution is determined by the number of digits n). These
digits have been physically represented in resistance domains
using two-state S-MTJs, where Rlow represents digit 1 and Rhigh
represents digit 0. For Bayesian computations in hardware, it is
necessary to have analog arithmetic functions such as probability
addition and multiplication. Figures 5C–E depict arithmetic
composers, which are operating intrinsically on probabilities as
elementary building blocks. Figures 5C–E show the addition
composer, multiplication composer, and add–multiply operation
composer, respectively, as well as support circuits such as
amplifiers, implemented with CMOS operational amplifiers.

Frontiers in Neuroscience | www.frontiersin.org 7 December 2021 | Volume 15 | Article 728086158

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 8

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 5 | Probability encoding via Strain-switched Magneto-Tunneling Junction (S-MTJ) device. (A) A S-MTJ Device. (B) Probability data encoding by spatially
distributed digits, and two-state S-MTJs for physically equivalent representations. Probability value P = 0.4 has been encoded with 10 digits (resolution of 0.1).
Probability composer framework. (C) Addition composer. (D) Multiplication composer. (E) Add–Multiply composer. Physically Equivalent Architecture for Reasoning
(PEAR). (F) Tree Bayesian Network. (G) Mapping every node in a Bayesian network graph to a Bayesian cell (BC) on PEAR. (H) Flat-Radix information representation
pattern. Probability is encoded in segments where each segment has a radix arrangement and contains flat elements. (I) Probability data encoding by the proposed
information representation scheme, and S-MTJs for physically equivalent representations.

In Khasanvis et al. (2015a), thanks to the analog arithmetic
composers, a paradigm departure from the Von Neumann
paradigm has been developed that uses a distributed Bayesian
cell (BC) architecture. In this architecture, each BC maps a
Bayesian variable in hardware as physical equivalence, shown
in Figures 5F,G, named Physically Equivalent Architecture
for Reasoning (PEAR). BCs are constructed from probability
arithmetic composers and are used to include CPTs, likelihood
vectors, belief vectors, and prior vectors; BCs locally store these

values continuously and perform inference operation, removing
the need for external memory (Khasanvis et al., 2015a). Metal
routing layers are used for BC interconnection. This connectivity
is programmable through reconfigurable switch boxes (SBs)
(similar to FPGAs) to map arbitrary graph structures.

Bayesian networks using binary trees, as shown in
Figures 5F,G, have been mapped directly in hardware on
PEAR. This computing architecture scales the number of
variables to a million. Although for a resolution of 0.1, it gains

Frontiers in Neuroscience | www.frontiersin.org 8 December 2021 | Volume 15 | Article 728086159

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 9

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

three orders of magnitude efficiency improvement in terms of
runtime, power, and area over implementation on 100-core
microprocessors, it does not support efficient scaling for higher
resolutions. To increase the resolution, it is needed to change
the abovementioned flat linear representation that increases
area linearly (where a single probability value requires multiple
physical signals). To this end, as shown in Figures 5H,I, another
S-MTJ-based circuit paradigm leveraging physical equivalence
with a new approximate circuit-style has been reported (Kulkarni
et al., 2017a), where the computation resolution is 1/(nM)
where M is the number of Radix segments where each segment
is composed of flat elements. This is a new direction on
scaling computational resolution, which is a hybrid method
for representing probabilities, aiming to provide networks with
millions of random variables. Here, precision scaling provides
much lower power and performance cost than in Khasanvis et al.
(2015b) for PEAR implementation via offering area overhead at
a logarithmic vs. linear scale. Results show a 30× area reduction
for a 0.001 precision vs. prior direction (Khasanvis et al., 2015a)
while obtaining three orders of magnitude benefits over 100-core
processor implementations.

Stochastic Hardware Frameworks for
Learning Bayesian Network Structure
A Bayesian network has two major aspects: the structure of
the graph and the parameters in the CPT and determining the
structure of a Bayesian network is known as structure learning.
In Kulkarni et al. (2017b), the stochastic behavior of emerging
magneto-electric devices is used to accelerate the structure
learning process of Bayesian learning, which results in reducing
the runtime by five orders of magnitude for Bayesian inference.
For structure learning, based on the data, an algorithm starts
with a random graph, then a scoring mechanism determines
how well the structure can explain the data, where this quality
is typically a mix of simplicity and likelihood. The graph
structure is updated based on the score; as a graph provides a
better score, it is accepted. To perform scoring, the framework
should support mapping of arbitrary Bayesian networks; hence,
configurability is necessary. The proposed design employs an
FPGA-like reconfigurable architecture constructed from a set
of programmable SBs and Stochastic Bayesian Nodes (SBNs).
For scoring a Bayesian structure, nodes are mapped into SBN
and the connectivity between nodes is implemented by SBs
(Figures 6A,B).

Stochastic Bayesian Nodes represents a node in a Bayesian
network. The node consists of multiplexers, a digital pulse width
modulator (DPWM), and perpendicular magnetic anisotropy
spin transfer torque magnetic tunnel junctions (PMA-STT
MTJs). The switching operation of PMA-STT MTJ is probabilistic
and directly controlled via modulating the duration of the
applied current; this unique property has been employed to
design circuits to perform probabilistic operations. As shown
in Figure 6A, the CPT values are preconfigured in the SRAM
cell. An appropriate CPT value to be sent to the DPWM is
selected by multiplexers based on the output of the parent SBN.
A DPWM generates voltage pulses with precise duration. Once

the pulse corresponding to the CPT value is fed to the MTJ,
the output is stored in a flip-flop. The output of the flip-flop
is available for read-out and is also sent to the next node. The
configured Bayesian structure is stochastically sampled to reach
sufficient statistics. The sampled data are employed to calculate
the Bayesian score of that structure, through Equation (2).

Through this hardware acceleration of the structure discovery
(via scoring mechanism) process of Bayesian learning, the
runtime for Bayesian network inference has been highly reduced
(Kulkarni et al., 2017b). This property attracts more attention to
structure learning acceleration and turns out to be a promising
field to be studied.

Stochastic Bitstream Generator Blocks
for Bayesian Network Implementation
In Jia et al. (2018), the inherent stochastic behavior of
spintronic device, MTJs, has been used to build a stochastic
bitstream generator (SBG), which is critical for the Bayesian
inference system (BIS).

Figures 7A,B describe the diagram of the proposed BIS
in Jia et al. (2018). A SBG block consists of a RNG and
a comparator, which together generate the corresponding bit
stream (Figure 7A). The input of BIS is shown in Figure 7B,
which is a series of bias voltages proportional to evidence
or likelihood. These evidences or likelihoods may come from
sensors of different platforms. The SBG matrix and the SC
architecture are two key components of a BIS. The SBG matrix is
employed to translate the input voltages to stochastic bitstreams.
The stochastic computing architecture is constructed by simple
logic gates such as AND gate and scaled addition implemented
by a multiplexer (MUX) and takes SBs as inputs. Stochastic
computing block implements Bayesian inference by a novel
arrangement of logic gates.

For an SBG, the small margin input voltages (Jia et al., 2018)
is highly problematic when it generates the output probability.
Digital-to-analog converters (DACs) with high precision are
needed for precise mapping from digital probabilities to
voltages. In addition, tackling the nonlinear relationship between
probabilities and voltages is difficult and a slight noise or
process variation may translate a probability to a wrong voltage
value. In order to address these limitations, for the specified
applications a prebuild SBG array utilizing SBG sharing strategy is
employed. It is implemented by hybrid CMOS/MTJ technologies
named spintronic-based Bayesian inference system (SPINBIS)
(Figure 7C). The aim of proposing the SPINBIS is to enhance the
stability of SBG and to use a smaller number of SBGs (Jia et al.,
2020). The outcome probability of each SBG is predetermined
and is then multiplexed through the switch matrix, which is a
crossbar array. This crossbar array is constructed from transistors
implemented at cross points, which are controlled by the switch
controller. Since the SBG array is prebuilt, it should provide
enough kinds of bitstreams to have an accurate stochastic
computing block. In order to improve the energy efficiency and
speed of SBG circuit, a state-aware self-control mechanism is
utilized. Thanks to the SBG sharing property, the inputs with
the same evidence can be modeled by the bitstream of the same

Frontiers in Neuroscience | www.frontiersin.org 9 December 2021 | Volume 15 | Article 728086160

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 10

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 6 | Design flow for structure learning in Bayesian networks. (A) Building blocks of Stochastic Bayesian Nodes (SBN). (B) Every node in a Bayesian network
is mapped to an SBN reconfigurable framework. The links of the Bayesian network are implemented with metal routing layers and the connectivity programmed
through switch boxes. Stochastic bitstream generator blocks for Bayesian network implementation.

FIGURE 7 | (A) Stochastic bitstream generator (SBG) block design. (B) Stochastic Bayesian inference system. (C) Spintronic-based Bayesian Inference System
(SPINBIS) diagram work in this figure (switch matrix).

SBG. However, for the inputs that are related together by one
or more logic gates, which are called conflicting inputs, sharing
the same SBG is problematic and is not allowed. The SBG
sharing mechanism provides a much smaller number of SBGs
compared with the input terminals of stochastic computing logic
since the non-conflicting terminals are allowed to share the same
bitstream. For data fusion applications, SPINBIS provides 12×
less energy consumption compared to the MTJ-based approach
(Jia et al., 2018) with 45% area overhead and about 26× compared
to the FPGA-based implementation. On the other hand, the
relation between probability and voltage is not very smooth; as
a result, the stability of the proposed SBG needs improvement.
Although the scale can be reduced, the switch matrix can show a
congestion problem; hence, the reduction of the scale of SPINBIS
is also worth exploring.

BAYESIAN INFERENCE HARDWARE
IMPLEMENTATION WITH DIGITAL LOGIC
GATES

In this section, digital implementation of Bayesian inference
will be discussed. First, we describe an implementation of

Bayesian inference on HMM structures in digital logic gates.
Next, an approximate inference algorithm based on a novel
abstraction defined by stochastic logic circuits and some other
hardware implementations of MRFs will be explained. Then, we
describe C-Muller circuits as implemented with standard cells for
Bayesian inference. Finally, we discuss probabilistic nodes based
on CMOS technology. Hardware implementation of Bayesian
inference employs the HMM network.

Hardware Implementation of Bayesian
Inference Employing Hidden Markov
Model Network
In Thakur et al. (2016), a hardware implementation of an
HMM network has been proposed that utilizes sequential Monte
Carlo (SMC) in SNNs. An HMM shown in Figure 8A models
a system defined by a process that generates an observable
sequence depending on the underlying process (Yu et al., 2018).
In an HMM, Xt and Y t represent the signal process and the
observation, respectively. In a first order HMM, Y t , is considered
as a noisy function of Xt and the development of a hidden
state depends only on its current state. Xt is computed by its
posterior distribution based on the noisy measurements or Y t.

Frontiers in Neuroscience | www.frontiersin.org 10 December 2021 | Volume 15 | Article 728086161

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 11

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 8 | FPGA implementation of different Bayesian networks (A) An HMM architecture, in which the random variables X t and Y t are the hidden state at time t
and the observation at time t, respectively (conditional dependencies are shown by arrows). (B) Digital Hardware implementation of HMM algorithm for Bayesian
inference in Thakur et al. (2016). Implement the Gibbs sampling algorithms for Markov random fields in Mansinghka et al. (2008). (C) The schematic and CPT for a O
gate, which flips a coin by specifying the weight on IN as a binary number [e.g., for IN = 0111, P(OUT = 1| IN) = 7/16]. A comparator that outputs 1 if RAND ≤ IN has
been employed for implementing the O gate. (D) The proposed circuit for sampling, for a binomial distribution, utilizes nh bits of entropy to perform sampling while
considering n flips of a coin of weight. (E) Gibbs pipeline, for Gibbs sampler depicting the required operations to numerically sample an arbitrary-size variable.

For a discrete-time problem, Equation (8) defines the first-order
HMM, in which dt and vt denote random noise sequences.

Xt = f (Xt–1, dt),Yt = g(Xt, vt) (8)

The posterior density function P (Xt| Y1:t) is computed
recursively in two steps (i) prediction, and (ii) update. In the
prediction step, the next state is estimated based on the current
state utilizing the state transition model, without making use of
new observations [see Equation (9)]. In contrast, the predicted
state is updated utilizing the new observations at time t as shown
in Equation (10).

P(Xt|Y1:t-1) =
∑
Xt-1

P(Xt|Xt-1)P(Xt-1|Y1:t-1) (9)

P(Xt|Y1:t) =
P(Yt|Xt)P(Xt|Y1:t-1)∑
Xt
P(Yt|Xt)P(Xt|Y1:t−1)

(10)

In Thakur et al. (2016), to estimate a fly’s position at time t, a
digital framework working based on the HMM rule shown in

Figure 8B is utilized, through which a dragonfly tracks a fruit
fly in a randomly flickering background. The sensory afferent
neurons of the dragonfly fire probabilistically, when there is a
fruit fiy or a false target (noise).

Dividing the state space (Xt) into M discrete states reflects
the fly’s (discretized) position at time t. A sensory neuron and
an inference neuronal circuit demonstrate each discrete state.
The fruit fly’s position at time t is predicted by the dragonfly’s
central nervous system through utilizing the statistics of the
output spikes of the sensory afferent neurons until time (t-1), and
updates the prediction when it receives a new observation (Y t), at
time t. Utilizing prediction and update Equations (9) and (10), it
can be written as:

P (Xt | Y1:t) ∝ P (Yt | Xt)
∑
Xt−1

P (Xt | Xt−1)P (Xt−1 | Y1:t−1)

(11)
where P(Y t | Xt) is the likelihood, P(Xt | Xt−1) is the transition
probability, and P(Xt−1| Y1:t−1) is the posterior at the previous
time step. Here, Y ∈ RM, and M denotes the total number of
states. At each time step, for each state, the probability of the

Frontiers in Neuroscience | www.frontiersin.org 11 December 2021 | Volume 15 | Article 728086162

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 12

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

fly is computed. To this end, a WTA circuit is used to predict
the fruit fly position by finding the maximum a posteriori of the
probability distribution over states.

To predict the position of the fruit fly, the posterior
probabilities of the state space is employed. To this end, an
algorithm is utilized, which is similar to the SMC technique as
a Monte Carlo method, useful for sequential Bayesian inference
(Gordon, 1993). In the proposed framework, spikes denote a
probability distribution over a set of states (i.e., the probability
of a state is proportional to the sum of its spikes) and the RS
(resampling) neuron block encodes the transition model, P(Xt |
Xt−1) through spatial connections (Figure 8B).

The likelihood generator block has a Poisson neuron (PN),
generating spike trains based on its intrinsic firing rate, α and αβ

(α: the probability of firing of the kth sensory neuron, either due
to a fruit fly or a distractor; αβ is a spike when there is no fly, but a
distractor instead). To implement the posterior generator block,
the two subblocks of the Coincidence Detector (CD) neurons
along with the normalization (norm) neural circuits have been
utilized. Since the likelihood spike train does not depend on the
prior spike train, a simple AND logic gate for the CD neuron can
be utilized for the posterior implementation. The output spike
trains of the CD neurons as the posterior probabilities of not
having a fly and having a fly, respectively, are sent to the norm
block to normalize spike trains.

Recurrent connection weights in the framework (shown
by red, orange, and purple arrows in Figure 8B) are based
on the transition probabilities. Spikes from the posterior
distributions of adjacent norm neural circuits by considering
their transition probabilities are sampled for a pathway by the
RS block utilizing an inverse transform sampling approach in a
discrete distribution.

Through collecting statistics of the spikes over many HMM
time steps, the observation model parameters, α and αβ, are
computed. At the start of the learning process, through stochastic
exponential moving average filters (SEMAs), the parameters α

and αβ are initialized and updated at each HMM time step
for each location. An RNG circuit is implemented by the
commonly used linear feedback shift register (LFSR) circuit.
Neuronal building blocks used for implementing the HMM in
Figure 8B are the PN, CD neuron, division, and normalization
neural circuit, LFSR, and SEMA, which all are implemented on
FPGA while all pathways are implemented in parallel on the
FPGA hardware too. The implementation of these frameworks
using simple logic gates will pave the way for stochastic
computing to have digital hardware implementation of Bayesian
inference using other approximation inference algorithms in
spiking networks.

Hardware Implementation of
Approximate Inference Algorithm Using
MCMC With Stochastic Logic Gates
By employing a novel abstraction, called combinational stochastic
logic, probabilities are directly mapped to digital hardware in
a massively parallel fashion (Mansinghka et al., 2008). On each
work cycle, the output of a Boolean logic gate is a Boolean

function of its inputs. Each gate represents a truth table whereas
stochastic gates represent CPTs. Figure 8C shows the CPT and
schematic for a gate called O, which generates flips of a weighted
coin by specifying the weight on its input lines (IN) with h
random bits on RAND. A comparator is utilized to implement
the O gates where the output will be 1 if RAND ≤ IN.

Figure 8D shows a serial circuit composed of a stochastic logic
gate, an accumulator, and a D flip-flop to implement the Gibbs
sampling algorithms for MRFs. For a binomial distribution, this
circuit utilizes nh bits of entropy to perform sampling while
considering n flips of a coin of weight. It provides O(log(n))
space and O(n) time complexity. For a given variable, in order
to implement a Gibbs MCMC kernel, a pipeline platform
depicted in Figure 8E has been proposed (Mansinghka et al.,
2008). Each possible setting while considering its neighbors
under the joint density of the MRF has been scored by the
pipeline and those scores have been tempered. Then, it computes
the (log) normalizing constant and normalizes the energies.
The normalized energies are translated to probabilities, and
finally the pipeline outputs a sample. This pipeline can provide
linear time complexity in the size of the variable by utilizing
standard techniques and with a stochastic accumulator for
sampling (using the circuit in Figure 8D). To this end, a fixed-
point format is utilized to represent the state values, energies
(i.e., unnormalized log probabilities), and probabilities. The
logsumexp(e1,e2) function used for adding and normalizing the
energies and the exp(e1) function used for converting the energies
to probabilities are approximated. Then, the pipeline samples
by exact accumulation. Moreover, numerically tempering a
distribution, i.e., exponentiating it to some, can be utilized as
energy bit shifting.

The proposed stochastic circuits have been implemented on
Xilinx Spartan 3 family FPGAs. Typically large quantities of truly
random bits are needed for stochastic circuit implementation. In
almost all Monte Carlo simulations high quality pseudorandom
numbers are used. For the FPGA implementation in Mansinghka
et al. (2008), the XOR-SHIFT pRNG (Marsaglia, 2003) is used.

In order to develop more sophisticated circuits, such as circuits
for approximate inference in hierarchical Bayesian models, which
is a challenging research field, it is needed to combine the
stochastic samplers with stack-structured memories and content-
addressable memories (Shamsi et al., 2018; Guo et al., 2019).
Moreover, directly using sub-parts from the proposed Gibbs
pipeline to implement more sophisticated algorithms, including
SMC methods and cluster techniques like Swendsen-Wang, is a
promising research effort for the future.

There are a couple of works that provide MRF implementation
for different applications via utilizing FPGA, application-specific
integrated circuit (ASIC), graphics processor unit (GPU), and
hybrid implementation via CPU+FPGA. Gibbs sampling as a
probabilistic algorithm is utilized to solve problems represented
by an MRF. In Gibbs sampling method, all random variables
in MRF are iteratively explored and updated until converging
to the final result (Bashizade et al., 2021). Ko and Rutenbar
(2017) explores sound source separation while considering real-
time execution and power constraints to isolate human voice
from background noise on mobile phones. The implementation

Frontiers in Neuroscience | www.frontiersin.org 12 December 2021 | Volume 15 | Article 728086163

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 13

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

uses MRFs and Gibbs sampling inference, which demonstrates
a real-time streaming FPGA implementation that achieves a
speedup of 20× over a conventional software implementation. In
addition, the approach also has a preliminary ASIC design-based
implementation, which requires fewer than 10 million gates, with
a power consumption of 52× better than an ARM Cortex-A9
software reference design. For more ASIC optimization, it is
necessary to use a lower-power technology library and design
optimization for lower memory usage.

In Seiler et al. (2009), an optimization framework utilizing a
hierarchical Markov-random field (HMRF) implemented on a
GPU is presented to deal with prediction/simulation of soft tissue
deformations on medical image data. A method that combines
mechanical concepts into a Bayesian optimization framework
has been proposed (Seiler et al., 2009). This method has been
implemented on a GPU and has been defined and solved under
an HMRF approach. Providing an HMRF feature is an appealing
technique that is able to solve the proposed stochastic problem
since it was found that local minima are avoided. Where using
a hierarchical approach and in addition, the nature of the
hierarchical approach leads to a straightforward implementation
in the GPU. It is assumed that the number of hierarchical levels
on the number of iterations for the model to converge has a
strong influence, which can be further explored in the future.

In Choi and Rutenbar (2013, 2016) to demand fast and high-
quality stereo vision, a custom hardware-accelerated MRF system
has been proposed for 3D gesture recognition and automotive
navigation. The stereo task has been modeled as statistical
inference on an MRF model and shows how to implement
streaming tree-reweighted message-passing style inference at
video rates. To provide the required speed, the stereo matching
procedure has been partitioned between the CPU and the FPGAs.
This partitioning provides using both function-level pipelining
and frame-level parallelism. Experimental results show that this
system is faster than several recent GPU implementations of
similar stereo inference methods based on belief propagation.

As can be seen, there are still open windows to utilize new
emerging nonvolatile devices and crossbar arrays to implement
MRFs rather than just utilizing FPGA, ASIC, GPU, and
hybrid implementations (CPU + FPGA). Moreover, refining
the algorithms to make them more amenable to hardware
implementations is needed while keeping the accuracy high.

Muller C-Element Based Bayesian
Inference
In order to calculate the probability of an event V, Bayesian
inference incorporates the probability of V given the prior
P(V) and evidence input E1 as in Equation (12), where, with
parameter as defined by Equation (13), Equation (14) gets
rewritten as Equation (15).

The Muller C-element reported in Friedman et al. (2016),
a two-input memory element, characterized by the truth table
of Figure 9A, and shown in Figure 9B, performs the complete
inference of Bayes’ rule. The output Z keeps its state, Zprev
while both inputs X and Y are opposite the current output
state; afterward, it switches to the shared input value. A Muller

C-element is able to compute Equation (14), thereby enabling
efficient inference circuits. Note that input signals i with
switching probabilities ai and bi for 0- > 1 and 1- > 0 switching,
respectively, show no autocorrelation if ai + bi = 1. Then,
considering no autocorrelation for input signals, the output
probability is defined by Equation (15) for C-element, where
P∗(E1), P(V), and P(V | E1) are substituted by for P(X), P(Y), and
P(Z). The reported Equation (15) is equivalent to Equation (14),
representing the Bayesian inference provided by C-elements.

P(V|E1) =
P(E1|V)P(V)

P (E1 | V)P (V)+ P(E1|V)P(V)
(12)

P∗(E1) ≡
P(E1|V)

P(E1|V)+ P(E1|V)
(13)

P(V|E1) =
P∗(E1)P(V)

P∗(E1)P (V)+ (1−P∗ (E1))(1−P (V))
(14)

P (Z) =
P(X)P(Y)

P(X)P(Y)+ (1−P(X))(1−P(Y))
(15)

Clocked bitstreams in stochastic computing are utilized to encode
probabilistic signals permitting complex computations with
minimal hardware and significantly improve the computation
power consumption and inference speed when compared with
conventional methods. Stochastic computing is not an exact
computing technique and the slight loss of accuracy arises from
several reasons. Compared to fixed or floating-point methods,
in stochastic computing, the probability values P are usually
translated to a stochastic bitstream with a lower quantization
accuracy and the correlations between bitstreams usually lead to
the loss of accuracy, since these bitstreams are usually generated
by pseudo RNGs. Addressing this inherent imprecision and
correlations need novel design techniques.

In Friedman et al. (2016), the number of “1”s in a bitstream
encodes its probability and has nothing to do with the position of
the 1 bits. In a stochastic bitstream, to represent a state switching
probability a (b), i.e., the dynamics of a 0-> 1(1-> 0) switching,
the probability R defined as R = a/(a+b). For an uncorrelated
bitstream (i.e., a+b = 1), the probability is equivalent to R = a,
where being “1” has a probability of R and being “0” has a
probability of 1-R. Then, the switching rate for an uncorrelated
bitstream is defined by Equation (16):

S = 2R(1-R) = 2a(1- a) (16)

The C-element outputs a stochastic bitstream, which is
probabilistic and converging more slowly toward the exact
Bayesian inference. If the switching rate of the output was low,
the longer “domains” of consecutive “0”s and “1”s are needed and
it leads to a more imprecise bitstream. Hence, more computation
time is required to provide a precise output.

For multi-input Bayesian inference calculation, utilizing
multi-stage C-element circuits is necessary, which would need
one additional cycle per stage to compute a bitstream. On the
other hand, the floating-point circuit provides a highly precise

Frontiers in Neuroscience | www.frontiersin.org 13 December 2021 | Volume 15 | Article 728086164

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 14

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 9 | Digital implementation of Bayesian inference. (A) Muller C-element truth table in Friedman et al. (2016). (B) Standard cell C-element design of Muller
C-element. PCMOS-based Bayesian network in Weijia et al. (2007). (C) p-switch circuit implementation block. (D) Probabilistic generating cells (PGCs) block.
(E) The inference system utilizes a probabilistic generating block and a logic network.

output while needing multiple pipelined computations and a
long characteristic delay time. Hence, the C-element structure’s
performance benefit is dependent on the required precision for
the specific application.

For embedded decision circuits, where different independent
sources of evidence are considered, for computing the
probability of an event, C-element trees can provide direct
stochastic hardware implementation. However, exploring
the autocorrelation and inertia mitigation through signal
randomization is required for further studies. For extreme inputs
with low switching rates, the loss of accuracy is significantly
increased. By increasing the length of the bitstream, the output
signals converge in a polynomial manner to Bayesian precise
inference. In addition, C-element trees have larger errors for
opposing extreme input combinations. It is mentioned that
this type of input and the error can be considered as strong
conflicting evidence and the inference uncertainty, respectively.

The standard cells from Synopsys (Synopsys, 2012)
SAED-EDK90-CORE library are used (Tziantzioulis et al.,
2015) for C-Muller module implementation. For a two-
input Bayesian inference implementation the standard cells

have been employed and the simulation results showed
that the floating-point circuit utilizes 16,000× area more
than a C-element. This is due to the fact that for a two-
input inference problem, just one C-element is required
while the conventional floating-point circuit needs addition,
multiplication, and division units. Also, for multi-input
Bayesian inference, the C-element still outperforms the
floating-point circuit.

Probabilistic CMOS Based Bayesian
Inference
In Weijia et al. (2007), probabilistic CMOS (PCMOS) technology
has been used to implement RNGs to create a highly randomized
bit sequence suitable for inference in a Bayesian network.
A PCMOS-based RNG is composed of the PCMOS switch or
p-switch, which is a CMOS switch with a noise source coupled
at its input node. Figure 9C shows a p-switch block. The resistor
is employed as a source of thermal noise, which follows the
Gaussian distribution. An amplifier is used to amplify the noise
signal to have a comparable signal with supply voltage.

Frontiers in Neuroscience | www.frontiersin.org 14 December 2021 | Volume 15 | Article 728086165

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 15

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

The inference system is shown in Figure 9E, composed
of probabilistic generating block and logic network. The
probabilistic generating block generates random bits with
different probabilities, and the logic network defines the edges
between the nodes in a Bayesian network. The probabilistic
generating block is composed of a number of probabilistic
generating cells (PGCs), each of which generates a “1” bit with
a probability. A PGC shown in Figure 9D is made up of a
p-switch, a buffer, and a flip-flop. The buffer constructed from
two inverters strengthens the output signal of the switch. The flip-
flop, formed by two D latches, synchronizes the PGCs. Arithmetic
operations (addition and multiplication in Bayesian network)
computed in computers require a lot of time and energy. Here,
two simple logic gates (an AND gate and an OR gate), together
with some inverters, are employed to construct the logic network.
To determine the approximate probability of the output at each
node, a simulation has been performed to generate a 10,000-bits
sequence at each node and then measure the “1”-bits in each
sequence. The PCMOS-based hardware implementation of the
Bayesian network outperforms the software counterpart in terms
of energy consumption, performance, and quality of randomness.
However, making use of mixed-signal implementations needs
paying attention to noise and variation sources as well as
examining the multiple independent sources of evidence for
embedded decision circuits that require circuit design remedies.

CROSSBAR ARRAYS FOR BAYESIAN
NETWORKS IMPLEMENTATION

In this section, two brain-inspired hardware implementations
of inference in naïve Bayesian (NB) classifiers will be discussed.
These implementations use memristors as nonvolatile elements
for the inference algorithm implementation. Bayesian reasoning
machine with magneto-tunneling junction-based Bayesian
graph is explained.

Crossbar Arrays for Naïve Bayesian
Classifiers
A crossbar array of memristors is a promising hardware platform
for Bayesian processing implementation in a massively parallel
and energy-efficient way (Yang et al., 2020). Figure 10A depicts
a schematic view of a memristor cell, in which a storage layer
is sandwiched between the top and bottom electrodes, and the
conductance of the device is dependent on the applied voltage.
Figure 10B shows a crossbar array; it represents a maximum
area efficiency of 4F2 per cell (Wu et al., 2019). Memristor
crossbar arrays provide a natural implementation of matrix-
vector multiplication (MVM). The current flowing through a
memristor cell at the wordline x and bitline y is equal to Vxg(x,y).
Here, V i is the voltage applied to the wordline x and g(x, y) is
the conduction of the cell. The total current through the bitline y
is
∑

x Vx g(x, y), which implements a dot product of Vx. g(x, y).
The algorithmic complexity of MVM is reduced from O(n2) to
O(1), which makes them a promising computing paradigm for
different machine learning applications (Wu et al., 2019).

To perform Bayesian inference, Figure 10C shows a
memristive crossbar array where a discrete distribution
represented by a voltage is injected to the wordlines, the
conditional probability P(B| A) translate to the memristor
conductance, and all bit-lines are virtually earthed. Utilizing
the current summing action of the crossbar bitlines, the current
of each memristor is proportional to P(B| A)·P(A) = P(A, B),
which is marginalized to P(B). Finally, inputs are multiplied by
memristor conductances (gk) and exit as currents.

In analog systems, due to the noise, mismatch, and other
variation sources, the input vectors do not necessarily meet the
fact that the probability distributions of random variables must
sum up to 1. To this end, the “normalizer” circuit is employed
as a supporting module. Moreover, utilizing a linear method to
convert the probability into voltage levels or memristor resistive
states limits the dynamic range of the probability. That is, very
small probability values may be translated into voltages below
the noise levels in the system (Serb et al., 2017). However, the
normalizers could scale these values when they are very low,
but similar. It turns out to be problematic if there are very
large probability values as well as very low ones in the same
distribution. To solve this issue, it has been suggested that the
resistive state/voltage needs to be mapped to the log probability
domain (Wu et al., 2019).

Naïve Bayesian classifiers assume that the feature variables
are all independent of each other (Serb et al., 2017) and the
classification is based on the Bayesian theorem. For a test instance
x, represented by an attribute value vector (A, B), the NB finds a
class label c that provides the maximum conditional probability
of c given A, B.

In Serb et al. (2017), a small graphical model for the prediction
of potential health issues (Figure 10D) has been supposed to
be implemented in memristor crossbar arrays, where A shows
the air quality as A ∈ {bad, medium, good}, and B shows the
corresponding heartbeat of the patient for two different activities
B ∈ {resting, exercising}. Then, by considering random variables
A, B, in order to predict the probability of a health crisis, and
thus to clarify whether to warn the patient, i.e., C ∈ {safe, crisis}
with a classic NB classifier, the goal of NB is to find a class label c
that has the maximum conditional probability of c given A, B (as
attributes):

C∗ = maxC{P (C|A,B)}

where P (C|A,B) α P (A|C)P (B|C)P (C) (17)

C∗ is defines as the maximum a posteriori estimate.
Figure 10E depicts the hardware implementation process of

the proposed NB framework. With air quality level A as input
and the crisis level prediction C as an output, first, a crossbar
stores P(A, C) = P(A| C)P(C), before factoring heart rate B in.
Then, the output is sent in parallel to two arrays of memristors
that maintain P(B = resting | C) and P(B = exercising | C),
respectively. Based on the heartbeat B, one of the two outputs
would be selected to put into the normalizer to calculate P(C|
A, B). Finally, the max-finder module finds the estimate C∗. This
inference platform depicts that with the crossbar arrays as well

Frontiers in Neuroscience | www.frontiersin.org 15 December 2021 | Volume 15 | Article 728086166

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 16

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 10 | (A) Schematic of the memristor device in which the device’s active material is surrounded by two electrodes [top (wordline) and bottom (bitline)].
(B) Ohm’s law: i = g. V is utilized to perform multiplier operation. (C) The crossbar array is used as a Bayesian inference system. (D) Graphical model for Bayesian
network. (E) Implementation of the Bayesian classifier. (F) Implementation of the naïve Bayesian classifier for a network of two attributes. (G) Implementation of a
different way to calculate Ic. In this method, the weight of the ith attribute (wi) is stored in the cell resistance.

as utilizing a cascade of small modules, it is able to scale to more
complicated graphical models.

As discussed above, by directly employing the multiply
accumulate capabilities of the crossbar array, the inference can be
performed. During learning, as new data arrives, the conditional
probability matrix needs to be updated; thus, the devices in the
crossbar need to be programmed. The conductance stability and
the energy efficiency of memristor switching, i.e., how many
attempts are needed to reach the memristors desired state,
determine the energy, speed, and circuit complexity cost of the
probability updates (Serb et al., 2017). In Equation (17), it has
been assumed, given the class, that all attributes (A, B) are fully
independent of each other. The classification accuracy would be
harmed when this assumption is violated in reality.

Wu et al. (2019) propose another analog crossbar computing
architecture to implement the NB algorithm while considering
the abovementioned concerns. It assigns every attribute a

different weight to indicate different importance between each
other. This assignment relaxes the conditional independence
assumption. The prediction formula is formally defined as:

C∗(x) = max{P(c)P(A|c)wAP(B|c)wB}, c ∈ C (18)

where wA and wB are the weight of attributes A and B,
respectively. The NB classifier in Equation (17) is a special
case of the Weighted NB (WNB) classifier when wA and
wB are equal to 1.

Naïve Bayesian formula [Equation (18)] transformation to the
crossbar array Equation (18) cannot be directly applied to the
Memristor crossbar array (concern 1). So, a log(•) operation is
applied because P(•) ∈ (0, 1). log P(•) is a negative value that
cannot be represented by the conductance of memristor cells as
the conductance is always positive; then, ρ(•) denotes -log P(•)

Frontiers in Neuroscience | www.frontiersin.org 16 December 2021 | Volume 15 | Article 728086167

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 17

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

and then Equation (18) is rewritten as:

C∗(x) = min{ρ(c)+wA · ρ(A|c)+ wB.ρ(B|c)} c ∈ C

q(c) = ρ(c)+wA.ρ(A|c)+wB.ρ(B|c) (19)

The q(c) rewritten in the form of a dot product v→ . g→ , where
v→ = [1 wA, wB] and g→ = [ρ (c) , ρ (A | c) , ρ (B | c)]. Hence,
it is feasible to compute q of every class by the MVM.

After training, every prior probability ρ (c) is stored, as well as
every conditional probability ρ(A| c) in the crossbar array in the
form of memristor conductance, where c ∈ C.

For attribute A, voltage wA is applied to the wordline
(Figure 10F) and the current gathered on this sub-bitline (IA

c).
With the addition of ρ(c), the final result is obtained as current on
one bitline. Multiple bitlines together give answers of Equation
(19) to all classes. Optimization has also been proposed to the
input voltage. Due to the I–V nonlinearity of the ReRAM cell,
the analog input voltage (i.e., wi) might result in inaccuracy.
The weight wi is included in the cell conductance shown in
Figure 10G.

The simulations show that the design offers a high runtime
speedup up with negligible accuracy loss over the software-
implemented NB classifier. This brain-inspired hardware
implementation of NB algorithm as well as providing insights
from techniques like mean-field approximation (Yu et al., 2020)
will help to find an optimal balance between structure and
independence, using hardware feasibility considerations and
independence assumptions as mutually constraining objectives,
which can be a promising research field.

Bayesian Reasoning Machine With
Magneto-Tunneling Junction-Based
Bayesian Network
Predictions from Bayesian networks can be accelerated by a
computing substrate that allows high-speed sampling from the
network. Nasrin et al. (2020) provide the development of such
a platform to map an arbitrary Bayesian network through an
architecture of the MTJ network along with circuits to writing,
switching, and interactions among MTJs. By these means,
electrically programmable sub-nanosecond probability sample
generation, voltage-controlled magnetic anisotropy (VCMA),
and spin-transfer torque (STT) have been co-optimized.
As Figure 11A shows for programmable random number
generation, VCMA, STT (applied via the voltage VCMA), and
magnetostriction, i.e., strain (injected with the voltage VSt), in
an MTJ are co-optimized. To stochastically couple the switching
probability of one MTJ depending on the state of the other,
as Figure 11B depicts, MTJ integration is required, in which
dipole coupling, controlled with local stress, is applied to one
MTJ. This results in electrically tunable correlation between
the bits “A” and “B” (encoded in the resistance states of the
two MTJs), without requiring energy-inefficient hardware like
OP-AMPS, gates, and shift-registers for correlation generation.
To compute posterior and marginal probabilities in Bayesian
networks via stochastic simulation methods, samples of random
variables are drawn to determine the posterior probabilities.

For the platform, mere stochasticity in devices is not enough,
and for a scalable Bayesian network, “electrically programmable”
stochasticity to encode arbitrary probability functions, P(x); x = 0
or 1, is required; moreover, this “electrically programmable”
stochasticity is necessary for stochastic interaction among devices
for conditional probability, P(x| y). In the presence of thermal
noise at room temperature, the “flipping” is stochastic, i.e.,
the magnetization will precess when VVCMA is turned on and
can either return back to the original orientation or flip to
the other orientation. By adjusting the magnitude of VVCMA,
the probability of flipping can be tuned. Therefore, the voltage
VVCMA as a knob controls the probability of getting either “0”
or “1.” The MTJ grid in Figure 11C only enables the nearest-
neighbor correlation, and each node can only have binary states.
For nodes with more than two states, splitting by binary coding
is required. In order to run a general Bayesian network on
the 2D grid, new mapping and graph partitioning/restructuring
algorithms must be developed.

In Figure 11C, an example mapping strategy is shown to
run general edges in a graph. Graph nodes are duplicated by
setting the coupling voltages for perfect anti-correlation. To
perform independent sampling on the MTJ grid, it is required
to map the parent variables on the parent MTJ column and the
children on the successive columns. In the stochastic simulation,
different sampling algorithms on the grid are tested to speed
up the process of sample generation of random variables in a
Bayesian network to compute the posterior probabilities. These
algorithms speed up the inference in Bayesian networks but
can still fall short of the escalating pace and scale of Bayesian
network-based decision engines in many Internet of Things
(IoT) and cyber-physical systems (CPS). With a higher degree
of process variability, prediction error for P(F) increases. By
increasing the size of the components (resistive memory, current
biasing transistor, etc.) as well as post-fabrication calibration,
tolerance to process variability in the proposed design can
be increased. The discussed platform would pave the way for
a transformational advance in a novel powerful generation
of ultra-energy-efficient computing paradigms, like stochastic
programming and Bayesian deep learning.

BAYESIAN FEATURES IN NEURAL
NETWORKS

In this section, employing Bayesian features in neural networks
is represented. To this end, first Bayesian neural networks are
explained. Then, Gaussian synapses for PNNs will be introduced.
Afterward, a PNN with memristive crossbar circuits is described.
At the end of this section, approximate computing to provide
hardware-friendly PNNs and an application of probabilistic ANN
for analyzing transistor process variation are explained.

Bayesian Neural Networks
Bayesian deep networks define the synaptic weights with a sample
drawn from a probability distribution (in most cases, Gaussian
distributions) with learnt mean and variance and inference
based on the sampled weights. In Malhotra et al. (2020), the

Frontiers in Neuroscience | www.frontiersin.org 17 December 2021 | Volume 15 | Article 728086168

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 18

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 11 | Stochastic random number generation utilizing MTJs with programmable probability. (A) MTJ with VCMA and STT (applied via the voltage VVCMA). For
programmable random number generation, the magnetostriction, i.e., strain (controlled with the voltage VSt) can be co-optimized. (B) MTJ integration utilizing the
effect of dipole coupling (controlled with local stress applied to one MTJ) can be used to couple the switching probability of one MTJ depending on the state of the
other. Thereby, the correlation between the bits “A” and “B” can be controlled via the resistance states of the two MTJs. (C) MTJ network-based Bayesian reasoning
machine to show an example mapping of Bayesian graph on 2D nanomagnet grid.

gradual reset process and cycle-to-cycle resistance variation of
oxide-based resistive random access memories (RRAMs) and
memristors have been utilized to perform such a probabilistic
sampling function.

Unlike standard deep networks, defining the network
parameters as probability distributions in Bayesian deep
networks allows characterizing the network outputs by an
uncertainty measure (variance of the distribution), instead of just
point estimates. These uncertainty considerations are necessary
in autonomous agents for decision-making and self-assessment
in the presence of continuous streaming data. In Bayesian
formulation, defined by Equation (20), P(W) represents the
prior probability of the latent variables before any data input
to the network and P(D| W) is the likelihood, corresponding
to the feedforward pass of the network. P(W| D) is the
posterior probability density where two popular approaches,

variational Bayes inference methods and Markov chain Monte
Carlo methods, are used to make its estimation tractable.

P (W | D) =
P (D |W)P(W)

P(D)
(20)

In Malhotra et al. (2020) and Yang et al. (2020), the variational
inference approach has been used since it is scalable to large-scale
problems. In the variational inference approach, to approximate
the posterior distribution, a Gaussian distribution, q(W, θ), is
used. q(W, θ) is characterized by parameters, θ = (µ, σ) in
which µ and σ, respectively, are the mean and standard deviation
vectors for the probability distributions representing P (W|
D) [see Equation (21)]. The main hardware design concerns
for implementation of Bayesian neural networks are Gaussian
random number generation block and dot-product operation
between inputs and sampled synaptic weights.

Frontiers in Neuroscience | www.frontiersin.org 18 December 2021 | Volume 15 | Article 728086169

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 19

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

A Normal distribution with a particular mean and variance is
equivalent to a scaled and shifted version of a Normal distribution
with zero mean and unit variance. This consideration would
allow partitioning the inference equation as shown in Equation
(22). The jk, and σjk are the mean and variance of the probability
distribution of the corresponding synaptic weight. As shown in
Figure 12A, to construct the resultant system, the domain-wall
MTJ memory devices based on two crossbar arrays are used for
the jk and σjk implementation, respectively. While the inputs
of a particular layer are directly applied to the crossbar array
storing the mean values, they are scaled by the random numbers
generated from the RNG unit.

The output of the network, y, corresponding to input, x,
is defined by Equation (21). As all the posterior distributions
are learnt, the network output averages the outputs provided
by sampling from the posterior distribution of the weights, W,
where, f (x,W) is the network mapping for input x and weights,
W.

y = EP(W|D)
[
f(x,w)

]
~Eq(w,θ)

[
f(x,w)

]
~

1
S

s∑
i = 1

f (x,wi) (21)

The approximation is done over S independent Monte Carlo
samples from the Gaussian distribution, q(W,θ). f (x,Wi) for the
jth neuron can be decomposed into Equation (22), by considering
just a single layer and neglecting the neural transfer function.

f (x,wij) =
∑

k

xkN(µjk, σjk)

=

∑
k

xk · (µjk + σjk.N(0, 1))

=

∑
k

xk · µjk
∑

k

xk.N (0,1)σjk (22)

The proposed “all-spin” Bayesian neural processor has the
potential of providing orders of magnitude area, power, and
energy consumption efficiency over the state-of-the-art CMOS
implementations. A significant rethinking of the co-design space
of device circuits and algorithms is necessary for Bayesian
deep learning since it provides a unique computing framework
that combines both deterministic (dot-product evaluations of
sampled weights and inputs) and stochastic computations
(sampling weights from probability distributions).

Gaussian Synapse-Based Hardware
Implementation for Probabilistic Neural
Networks
In the computing revolution era, scaling in the semiconductor
industry is inevitable and has three characteristic aspects: energy
scaling, size scaling, and complexity scaling. Energy scaling
satisfies the situation of the practically constant computational
power budget. Through size scaling, more transistors can
be fabricated in the same chip area, which consequently
provides a faster and cheaper computing system. Complexity
scaling ensures incessant growth in the computational power
of a single on-chip processor. Considering these requirements,

Sebastian et al. (2019) enable the hardware implementations of
PNNs (shown in Figure 12B) via introducing a new class of
analog devices, namely, the reconfigurable Gaussian synapses
based on the heterostructure of atomically thin 2D layered
semiconductors (shown in Figure 12C). The 2D materials satisfy
aggressive size scaling while energy scaling is ensured via analog
Gaussian synapses, and complexity scaling is met by PNNs. Via
threshold engineering of the proposed device, it shows complete
compatibility of amplitude, mean, and standard deviation of
the Gaussian synapse. As shown in Figure 12B, unlike ANN,
which employs multiple hidden layers with a large number
of nodes in each layer, PNN proposed by Specht (1990) is a
supervised learning neural network based on Bayesian decision
rule and is composed of a pattern layer and a summation
layer. PNNs are able to map any input pattern to any number
of output classifications. Furthermore, in ANNs, activation
functions such as sigmoid and rectified linear unit (ReLU) are
used, where various derivatives of these functions have been
utilized to determine the pattern statistics (which are extremely
difficult for non-linear decision boundaries to perform with
reasonable accuracy). In PNNs, parent probability distribution
functions (PDFs) are used for the class probability. PDFs
are approximated by a Parzen window and a non-parametric
function, which is a Gaussian distribution for a Gaussian
kernel (Specht, 1990). In PNNs, arbitrarily shaped decision
boundaries are used, which facilitate the accurate classification
of complex patterns. Moreover, since multivariate Gaussian
kernels are simply generated from the product of univariate
kernels, PNNs can be extended to map higher-dimensional
functions. A reconfigurable Gaussian synapse, with dual-gated
(DG) MoS2 and BP FETs, is shown in Figure 12C. Hydrogen
silsesquioxane (HSQ) was used for the fabrication of the top-
gate dielectric. Nickel/gold was used (Ni/Au) for the top-
gate electrode fabrication for different top-gate voltages (VN).
The back-gate threshold voltage (VTN of the MoS2 FET) is
tuned by VN. The top-gate voltage is tuned to control the
height of the potential barrier for electron injection inside the
MoS2 channel. Moreover, a back-gate voltage conducts current
from the source to the drain terminal. The PNN architecture
has been implemented on brainwave recording data, for each
type of brainwaves. The frequency pattern of the normalized
power spectral density (PSD) is extracted from the fast Fourier
transform (FFT) of the time domain electroencephalography
(EEG) data with increasing sampling times. As the training set
becomes large, the discrete frequency responses of each type
of brainwave evolve into continuous spectrums representing
complex patterns. The functional dependence of the PSDs on
the frequency makes the system highly nonlinear. Hence, using
conventional ANNs can be challenging for the classification of
brainwave patterns. To provide reasonable accuracy in ANNs,
optimum training algorithms and extensive feature extraction
and preprocessing of the training sample are required, while
PNNs provide single-pass learning. This learning mechanism
happens via defining the class PDF for each of the brainwave
patterns in the frequency domain through employing the
Gaussian mixture model (GMM). As described by Equation (23),
GMM is represented as the weighted sum of a finite number of

Frontiers in Neuroscience | www.frontiersin.org 19 December 2021 | Volume 15 | Article 728086170

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 20

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 12 | (A) All-spin Bayesian neural network implementation. The RNG unit performs sampling operation from Gaussian random number generators and the
two crossbar arrays provide the “In-Memory” computing kernels (Malhotra et al., 2020). (B) The structure of the Probabilistic Neural Network (PNN) model (Gaussian
Synapse based PNN) translates any input pattern to any number of output classifications through using a pattern layer and a summation layer. (C) Schematic of a
reconfigurable Gaussian synapse composed of dual-gated n-type MoS2 and p-type black phosphorus (BP) back-gated field-effect transistors (FETs). Hydrogen
silsesquioxane (HSQ) was used as the top-gate dielectric and nickel/gold (Ni/Au) was used as the top-gate electrode. (D) PNN Architecture for Brainwave
recognition. The amplitude of the FFT data is passed from the input layer to the pattern layer as drain voltage (VD) of the Gaussian synapses, and the frequency
range is mapped to the back-gate voltage (VG) range. The summation layer integrates the current over the full swing of VG from the individual pattern blocks and
communicates with the winner-takes-it-all (WTA) circuit and then the output layer recognizes the brainwave patterns. (E) The architecture of the PNN (Akhmetov and
Pappachen, 2019) is implemented with crossbar arrays where each class has been implemented with a crossbar array where NTR denotes the total size of the
training set (classes). (F) Block diagram of the hidden layer block.

Frontiers in Neuroscience | www.frontiersin.org 20 December 2021 | Volume 15 | Article 728086171

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 21

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

scaled (different variance) and shifted (different mean) normal
distributions. ψI as component weights, µi as component means,
and σi

2 as variances are for parameterizing a GMM with K
components through which the total probability distribution
must normalize to unity.

P(x) =
k∑

j = 1

ψiN
[
x
µ i
, σi

]
;N

[
x
µi
, σi

]

=
1√
2ψ2

i

· exp
−
(x−µi)

2

2σ2
i ;

k∑
j = 1

ψi = 1 (23)

For each type of brainwave pattern, the GMM parameters for
the K components are estimated based on the training data and
utilizing the non-linear least square method. Root mean square
errors (RMSEs) are calculated as a function of K. K denotes the
number of Gaussian curves used in the corresponding GMMs.
For each of the brainwaves, to define the non-linear decision
boundary, a limited number of Gaussian functions are required.
Hence, the energy and size constraints for the PNNs based on
Gaussian synapses are enormously reduced. Finally, the PNN
architecture shown in Figure 12D is evaluated for the detection
of new brainwave patterns. The amplitude of the new FFT data in
PNN (which consists of input, pattern, summation, and output
layers) is passed as the drain voltage (VD) of the Gaussian
synapses from the input layer to the pattern layer. The frequency
range is translated to the back-gate voltage (VG) range. The
summation layer collects the current over the full swing of VG
from the individual pattern blocks. After current integration
in the summation layer, the currents communicate with the
WTA circuit. The WTA detects the brainwave patterns in the
output layer. It is shown that utilizing Gaussian synapses in
PNN architecture can recognize complex neural oscillations and
brainwave patterns from a large number of EEG data providing
extreme energy efficiency, which will foster the feasibility of
efficient hardware implementation of PNNs and subsequently
high-performance and low-power computing paradigm.

Probabilistic Neural Network With
Memristive Crossbar Circuits
Probabilistic neural network architecture (Specht, 1990) provides
a fast training mechanism in which weights are derived from
training samples directly and set in the first initialization stage.
Then, the density functions of the categories are estimated based
on the training dataset. The input samples are classified based on
these density functions. PNNs provide the ability to converge to
Bayes optimal decision surface without trapping to local minima.
Moreover, a new training pattern can be added to the network
that does not require any global retraining process. On the other
hand, for hardware implementation of the near-edge computing
devices, the processing speed, the size of the network, and the
power consumption are critical. PNN’s parallel computational
nature and fast learning PNNs make them attractive for hardware
implementation and utilization in near-edge computing devices.
In Akhmetov and Pappachen (2019), a hardware implementation
of the PNNs based on the memristive (ReRAM based) crossbar

architecture has been proposed (shown in Figure 12E); to this
end, a crossbar with NTR dimensions is utilized to perform
dot product between weights of the pattern neurons and
input vector, where NTR denotes the total size of the training
set. The proposed circuit provides the density estimation and
classification performed by the PNN. As shown in Figure 12B,
the input layer of the PNN distributes an input to pattern
neurons. The pattern layer performs a dot-product operation
and exponential activation. The summation neurons integrate
the outputs of pattern neurons belonging to one class and then
in the output layer the decision is made. In the output layer,
the density functions are scaled by their prior probability and
loss function; after that, the category with the highest posterior
probability is chosen as the output of the PNN. The hidden layer
block shown in Figure 12E computes the approximate density
functions of categories based on the training set and is composed
of summing circuits, a subtraction circuit, and the exponential
function generator (Figure 12F). The sub-blocks of the hidden
layer block are implemented with CMOS circuits. The system-
level simulation showed that the proposed implementation of
the PNN is insusceptible to process variation of the ReRAM
and provides a high accuracy on the MNIST dataset. Future
studies should implement a memristor programming circuit (to
provide on-chip learning), employ alternative kernel functions
and ReRAM devices, and utilize a larger dataset.

Approximate Computing to Provide
Hardware Friendly Probabilistic Neural
Networks
Approximate computing greatly improves computing in
computer systems via accomplishing more tasks under the
same resource consumption. On the other hand, a large number
of floating-point operations and multipliers are required
in DSP hardware architectures needing a large number of
hardware resources. Although by using fixed-point arithmetic
implemented in hardware the DSP algorithm can process
the constant multiplication simultaneously, this can reduce
the accuracy of the calculation. To solve these hardware
circuit design problems, the PNN hardware architecture of
approximate calculation using a genetic algorithm (GA) has
been proposed in Chen et al. (2019). GA realizes approximate
calculation of the hardware circuit of PNN, to achieve the
best balance between maintaining good classification ability
and the least hardware resource consumption to reduce the
hardware complexity. The key concept of GAs is to imitate
the natural evolution law of natural selection in nature
and to solve the optimization problem utilizing three main
operators: reproduction, crossover, and mutation. Firstly, one
encodes all the parameters into chromosomes, and defines a
fitness function. The evolution starts from the population of
completely random individuals, evaluates the adaptability of
each chromosome to the environment in each iteration process,
and then generates the new population through natural selection
and mutation. This is to be repeated until the final break
conditions are met. The hidden layer neurons of PNNs (shown
in Figure 12B) are responsible for the computer rate density

Frontiers in Neuroscience | www.frontiersin.org 21 December 2021 | Volume 15 | Article 728086172

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 22

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

function, which performs the nonlinear transformation from
the input space to the hidden layer. The weight vector of hidden
layer neurons represents a training pattern, and the probability
density function is a Gaussian function in multidimensional
feature space, which is a nonlinear function. Such nonlinear
functions are often implemented on hardware. In addition, the
Gaussian function is decided by a smoothing coefficient of its
distribution scope σ. The larger σ, the wider the breadth, and
the smaller σ, the narrower the breadth. If the input vector
is located close to the center of the Gaussian function, the
hidden layer node will generate a larger output. In practical
engineering, the look-up table is often used to approximate
these nonlinear functions. In Chen et al. (2019), the number
of bits encoded by the smoothing parameters and probability
values of a PNN is used as the gene encodes each individual
in GA, and the recognition rate of the PNN classifier is used
as the fitness function, using GA to optimize the parameters
to obtain the circuit structure with both the correct rate and
the low memory resource consumption. While ensuring that
the correct rate is not affected, GA is used to search for the
optimal parameters of the PNN and establish a look-up table
method for nonlinear functions to simplify the complexity
of the hardware architecture, reduce the use of logic gates
(the Altera MAX 10 device was used for simulation), and
increase the operation speed. This work provides new insights
to utilize evolutionary algorithms in a Bayesian computing
platform to optimize the rules and consequently improve the
hardware efficiency.

Probabilistic Artificial Neural Network for
Analyzing Transistor Process Variation
Line-edge-roughness (LER) is a process-induced random
variation source that causes undesirable random variation in the
performance of transistors such as metal oxide semiconductor
field effect transistor (MOSFET), fin-shaped field effect transistor
(FinFET), and gate-all-around field effect transistor (GAAFET).
LER can be analyzed with technology computer-aided design
(TCAD), which is fundamentally very time-consuming.
A machine learning-based method to solve this issue is proposed
in Lim et al. (2021), which predicts the LER variations in
FinFETs, through which LER parameters (i.e., amplitude and
correlation length X, Y) are provided as inputs for an ANN.
ANN predicts seven parameters: off-state leakage current (Ioff),
saturation drain current (Idsat), linear drain current (Idlin),
low drain current (Idlo), high drain current (Idhi), saturation
threshold voltage (Vtsat), and linear threshold voltage (Vtlin).
To this end, a 3-D quasi atomistic model for LER was used.
FinFET was simulated with MATLAB and TCAD by applying the
mentioned parameters and the two-dimensional autocovariance
function. Considering that the performance metrics of transistors
approximately follow Gaussian distribution is not applicable
due to non-ideal effects (short-channel effects in transistors)
and the different distribution shapes for each LER parameter.
Hence, the mixture of multivariate normal distributions (MVN)
is used during the training process. Negative log-likelihood
(Negloglik) was used as a loss function [see Equation (24)]

instead of mean-squared error since, during the training, the
weight matrices and bias vectors of ANN are updated for the
given layer attached to output neurons returning the PDF of
variables. The training process is run to minimize this loss
function; hence, training ANN becomes the process of maximum
likelihood estimation.

Negloglik(P,Q) = −
∑

k

P(x)logQ(x) (24)

In Equation (24), P(x) and Q(x) stand for the PDF of
observation and hypothesis, respectively. The proposed ANN
models have reduced the simulation time by ∼6 times
and can pave a new road to analyzing the impact of
LER to overcome the timely design process via simulating
the electrical behavior of the transistor as well as DC
behavior of critical digital circuit blocks in processors such
as SRAM bit cells.

HARDWARE IMPLEMENTATION OF
PROBABILISTIC SPIKING NEURAL
NETWORKS

In this section, employing Bayesian features in SNN is
represented, in which the feasibility of nonvolatile devices
as synapses in SNN architectures will be first discussed for
Bayesian-based inference algorithms. Then, a scalable sampling-
based probabilistic inference platform with spiking networks is
explained. Afterward, a probabilistic spiking neural computing
platform with MTJs is explained. The high learning capability
of a probabilistic spiking neural network implementation and
utilization of the probabilistic spike propagation mechanism are
described. At the end of this section, memristor-based stochastic
neurons for probabilistic computing and Loihi-based Bayesian
inference implementation are discussed.

Bayesian Inference Implementation in
Spiking Neural Networks With Memristor
Synapses
Memristors are another type of nonvolatile (i.e., the device could
save its state when there is no voltage source) memory devices.
They are promising circuit elements that mimic the functionality
of biological synapses in a neuromorphic computing system (W.
Burr et al., 2017). Their resistance can be tuned based on the
spike-timing dependent plasticity (STDP) rule, which is based on
the spike timing differences of the pre- and postsynaptic neurons.
There are practical challenges in the fabrication of reliable
nanoscale memristors. In order to address these challenges,
an alternative approach is proposed to use the compound
memristive synapse model, where M bistable memristors in
parallel model a synapse (Bill and Legenstein, 2014) with a total
weight of:

Wki = ω.mki (25)

A compound synapse provides M+ 1 discrete weight levels
from 0 to the maximum level Wmax = ω·M, where mki ∈

Frontiers in Neuroscience | www.frontiersin.org 22 December 2021 | Volume 15 | Article 728086173

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 23

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 13 | (A) STDP pulsing scheme along with pre- and postsynaptic spikes behavior for LTP and LTD phenomena. (B) Stochastic memristors construct the
compound memristive synapse. (C) The winner-take-all mechanism in SNN with compound memristive synapses.

{0, 1,..., M} in Equation (26) represents the number of active
memristors. The weight change of the compound memristive
synapse is controlled by pre- and postsynaptic activity. An input
pulse (Figure 13A) of the ith input is defined by yi(t) = 1
[and no presynaptic pulse by yi(t) = 0] and tfk denotes the
spike time of the f th spike of postsynaptic neuron Zk. A neuron
Zk generates a spike train Sk(t) represented as the sum of
Dirac delta pulses δ(·) at the spike times: Sk(t) =

∑
f δ(t −tfk).

When a synaptic Wki is subject to a stochastic long-term
potentiation (LTP), where the presynaptic neuron spikes before
the postsynaptic neuron, there are (M - mki) inactive memristors
(Figure 13B). Each memristor independently turns into its
active state with probability πup, hence contributing ω to the
Wki. Thereby, the weight change for the LTP condition is
equal to (M - mki).ω.πup. A similar argumentation applies to
the long-term depression (LTD) case, where the post neuron
spikes first (before the presynaptic neuron). Note that LTP
(LTD) occurs when the presynaptic pulse equals yi(t) = 1
[yi(t) = 0], respectively. Then, the weight change of the compound
memristive synapse is:

<
d
dt

Wki >

= Sk(t) · [(M −mki)ωπupyi(t)︸ ︷︷ ︸
LTP

−mkiωπdown(1−yi(t))]︸ ︷︷ ︸
LTD

(26)

Compound memristive synapses with the STDP property
have been employed in winner-take-all (WTA) (Wang et al.,
2019) networks to provide stochastic learning capability from
a Bayesian perspective as an unsupervised model optimization
with the expectation-maximization method (Bill and Legenstein,
2014). As shown in Figure 13C, N spiking input neurons,
y1,..., yN, and K spiking network, Z1,..., ZK, construct the WTA
network. In the WTA network, the forward synapses provide
all-to-all connectivity and the network neurons perform lateral
inhibition in which the network neurons are competing with
each other to fire.

Network neuron Zk, with the membrane potential uk,
integrates the inputs yi(t) and the linear membrane potential can
be implemented with leaky integrators (a common neuron model
in neuromorphic computing paradigm). The neurons Zk have a
stochastic firing rate ρk(t) and spike in a Poissonian manner. ρk(t)
defined by Equation (27), is a function of the membrane potential
uk(t) and lateral inhibition uinh(t).

ρk(t) = rnet · euk(t)−uinh(t) (27)

The rnet constant scales the overall firing rate of the network. The
lateral inhibition contribution uinh(t) : = log

∫ k
j = 1 exp (Uj (t))

depicts WTA competition among the network neurons to fire
over a given stimulus y1 (t),..., yN (t).

When one of the network neurons, Zk, fires, the probability
distribution Pnet(Z | Y) represents the network response that is
proportional to the firing rate ρk(t) of neuron Zk:

Pnet(Zk = 1|Y = y(t)) =
ρk(t)

rnet

= euk(t) − uinh(t) =
k∑

j = 1

ebj(t)+
∑N

i = 1 Wij·yi(t) (28)

Claiming that the response distribution Pnet(Z | Y) provides
a Bayesian performance is valid, by considering input y(t) as
the observation variable and the spike response of a neuron
Zk as the hidden cause. The network is viewed as a generative
model with a prior distribution P(Z) over hidden causes Zk and
a set of likelihood distributions P(Y | Zk = 1), one for each
hidden cause Zk.

Maximum likelihood learning finds parameters that bring the
implicit distribution P(Y) of the generated model as close as
possible to the actually observed input distribution. Likelihood
distributions P(Y | Zk = 1) optimized by a WTA circuit with
compound-synapse STDP are computed through the product of

Frontiers in Neuroscience | www.frontiersin.org 23 December 2021 | Volume 15 | Article 728086174

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 24

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

the likelihoods of individual inputs:

P(Y i = y(t)|Zk = 1) =
N∏

i = 1

P(Y i = yi(t)|Zk = 1) (29)

where the likelihood for each individual input yi is represented by
a Gaussian distribution:

P(Y i = yi(t)|Zk = 1) =
1

√
2πσ

2 · e
−

(yi(t)−µki)
2

2σ (30)

For the likelihood distributions, µki and σ are the mean values
and the standard deviation, respectively, and are identified as:

µki =
Wki

Wmax
=

mki

M
and σ = 1/

√
Wmax (31)

During online learning, a Mixture of Gaussians (MoG) generative
model has been depicted by this probabilistic model of the
WTA network, where compound memristive synapses show
synaptic weight changes. This property on average causes the
lower bound of the log-likelihood function to increase and leads
to finding a local optimum. After training, Bayesian inference
for the hidden causes based on the given input observation is
employed; simulations have shown that even only four bistable
memristors per synapse are sufficient for applications such as
reliable image classification.

In hardware implementations of the WTA network, capacitors
and other circuit elements have been used to implement the
stochastic neurons, while synaptic weights are represented by
conductance of compound memristors.

There are several challenges in this approach, mentioned
below, which need further study:

- More complex inputs and plasticity mechanisms are
needed to support a versatile STDP pulsing scheme; to
this end, utilizing memristors with more than two stable
states are required.

- Other arbitrary patterns of the input signal (y(t)) for
compound memristor synapses are required to depict a
clear picture of the Gaussian likelihood distributions P(Y |
Z), which has the capability of performing inference over
arbitrary real-valued input states.

- In compound memristor synapses, the switching
probability (πup·Wmax) could be considered as the
learning rate during online learning. This learning rate
controls the number of samples of the input history of
the implicit generative model. The number of samples is
dependent on the size of the dataset. When the dataset
is complex, it relies on small learning rates, i.e., on
small switching probabilities, To achieve sufficiently
small switching probabilities, it needs some remedies in
hardware integration by using control peripherals.

Scalable Sampling-Based Probabilistic
Inference With Spiking Networks
The BrainScaleS platform (Schemmel et al., 2010), a physical-
model neuromorphic device, emulates networks of spiking

neurons. This platform is a mixed-signal neuromorphic
system, using 180-nm CMOS technology for fabrication,
on which Kungl et al. (2019) proposed the first scalable
implementation of sampling-based probabilistic inference with
spiking networks. In order to sample from target distributions
and hierarchical spiking networks with higher-dimensional
input data, fully connected spiking networks have been
trained. Similar to systems that operate in biological real
time, it provides a higher acceleration factor that shows
the advantages of brain-inspired physical computation and
maintain main building blocks for large-scale neuromorphic
applications. Moreover, by co-embedding the stochasticity
within the same substrate, the feasibility of a fully embedded
neural sampling model with highly reduced demands on
off-substrate I/O bandwidth has been shown, where having
a fully embedded implementation allows the runtime
of the experiments to scale as O(1) with the size of the
emulated network.

The most notable limitation of the BrainScaleS system
for this application was the size of the emulated spiking
sampling network (SSNs). The maximum connectivity is
limited (synapse loss) between different locations within the
area, due to limited software flexibility, system assembly,
and substrate yield; hence the applicable hardware real-
estate was limited to a patchy and non-contiguous area.
In order to write analog parameters, significant trial-to-
trial variability for any given trail is needed, which leads
to a heterogeneous substrate and a low sampling accuracy.
The ability of the SSN to approximate target distributions
has been hindered since the symmetry in the effective
weight matrix is imperfect (due to analog variability of
the synaptic circuits) and the resolution of the synaptic
weights is low. Hence the “jumping” behavior between
approximate and target distribution in the final stages of
learning has been seen. Moreover, as the underlying neuron
and synapse are deterministic, for a more biologically plausible
implementation, one needs to consider stochastic neurons
such that the framework can be extended to sampling from
arbitrary probability distributions rather than only binary
random variables.

Probabilistic Spiking Neural Computing
Platform With Magnetic Tunnel Junctions
In Sengupta et al. (2016), by enabling the neural computing
unit with the stochastic switching behavior of an MTJ, the
implementation of a deep SNN has been explored for high-
accuracy and low-latency classification tasks and provided an
energy improvement of 20× over a baseline CMOS design
in 45-nm technology. Despite the huge success at complex
recognition problems due to the high computational costs
needed for training and testing of deep ANNs, researchers are
motivated to develop alternative computing models; therefore,
more biologically realistic SNNs have been introduced. In
SNNs, information is transferred between the neural nodes
as spikes rather than real-valued analog signals. Spiking
networks exploit the prospects of event-based computing

Frontiers in Neuroscience | www.frontiersin.org 24 December 2021 | Volume 15 | Article 728086175

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 25

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

which lead to the development of specialized custom hardware
implementations. Sengupta et al. (2016) discusses that the
technologically mature spintronic devices, such as the MTJ
(being binary switching devices), with variation in the magnitude
of the input current showing switching probability variation
similar to the sigmoid function. An ANN-to-SNN conversion
scheme has been proposed utilizing the sigmoid function like
switching probability of MTJs, and assuming that the neural
units generate spikes depending on a probability density function
(similar to the original ANN transfer function). It has been
proved that such a conversion mechanism approximates
the original ANN functionality to a reasonable degree
of precision, potentially paving the way for probabilistic
neuromorphic platforms that employ the variability and inherent
stochasticity of emerging neuromagnetic devices. Nonvolatile
emerging devices based on a probabilistic neural computing
platform that models complex neural transfer functions
in the time domain provide high-accuracy energy-efficient
cognitive recognition platforms over conventional CMOS
designs.

High Learning Capability Probabilistic
Spiking Neural Network Implementation
Using sequential processors to run algorithms, there is a struggle
to simultaneously fulfill learning speed, learning performance,
power consumption, and area requirements in portable and
biomedical applications. Hence, hardware-implemented neural
networks are used extensively and even though the circuit is
implemented using analog very-large-scale integration (VLSI),
variations in sensor fabrication, background noise, and human-
dependent parameters complicate the restrictions on power
consumption and area. One type of neural network that
comprises spiking neurons with probabilistic parameters is called
the probabilistic spiking neural network (PSNN). These PSNNs
are hardware-friendly and compare with deterministic neural
networks in hardware compatibility. PSNNs have relaxed weight
resolution requirements and are insensitive to noise and analog
process variation. A PSNN does not suffer from multiplicative
linearity. In the spiking neuron model, the presynaptic spike
of a neuron can be considered as a control signal, and the
weight controls the postsynaptic current. As a result, when
a presynaptic spike stimulates a neuron, the post synapse
generates a current. In Hsieh et al. (2018, 2017), an analog
implementation of PSNNs has been proposed for biomedical
applications through which online learning adjusts weights by
spike-based computation. The weight is saved in the long-
term synaptic memory. Switched capacitor circuit structures
have been utilized for the implementation of most of the
circuits to provide low-power consumption and a small area
and consequently provide high learning performance. This
learning chip was fabricated in 0.18-µm CMOS technology
and can process the e-nose and electrocardiography (ECG)
data, yielding comparable accuracy to the simulated accuracy
that indicates that the learning chip can be employed into
portable and implantable devices, to facilitate convenient use
and intelligence. This hardware implementation opens up new

windows to achieve efficient portable and biomedical devices via
utilizing PSNNs.

Hardware Implementation of Spiking
Neural Networks Utilizing Probabilistic
Spike Propagation
As mentioned in Section “Bayesian Inference Implementation
in Spiking Neural Networks With Memristor Synapses,” SNNs
provide intrinsic desirable attributes where information is
represented as discrete spike events that provide an event-
driven paradigm of computation. SNNs are implemented on
low-power event-driven hardware, and the time and energy
consumption are proportional to the number of spike events.
When processing a spike, SNNs do not require multiplication to
be performed and hence provide a reduced hardware complexity
compared to conventional ANNs; as a result, SNNs are not well-
suited to be implemented on hardware platforms like GPUs.
Spiking networks still need a large number of memory accesses
although they are event-driven. It is necessary to know the
fanout neurons of a spiking neuron, which determines the
connectivity information that needs to be fetched along with
the weights of the corresponding synapses. Then, the membrane
potentials of the fanout neurons are fetched and updated.
Defining techniques for reducing the number of memory accesses
in SNNs is necessary for improving their energy efficiency since
data fetching from memory is more expensive than arithmetic
computations. The spiking activity that is measured as spike
propagation along a synapse from a single source neuron to a
single target neuron has a strong role in the complexity of an
SNN. Nallathambi et al. (2021) introduce an approach that is
named probabilistic spike propagation to optimize rate-coded
SNNs. In this approach, synaptic weights are represented as
probabilities, and these probabilities are utilized to regulate spike
propagation. The approach reduces the propagated spikes, which
cause a reduction in time and energy consumption. To this
end, an SNN accelerator named probabilistic spiking neural
network application processor (P-SNNAP), which supports
probabilistic spike propagation, has been represented, where
a probabilistic method for spike propagation to reduce the
number of memory accesses in rate-coded SNNs has been
proposed. This method would save both runtime and energy. The
proposed probabilistic spike propagation mechanism has been
realized through probabilistic synapses shown in Figures 14A,B.
Conventionally, the weight of a synapse determines the amount
by which the potential of postsynaptic neuron membranes
increases whenever presynaptic neuron spikes. This weight
defines how likely it is that a spike will propagate across
the synapse (Figures 14A,B). A probabilistic synapse does not
propagate all spikes to the postsynaptic neuron. Instead, only a
subset of its outgoing synapses propagate the spike (which has
weights above a certain threshold) as neuron spikes. P-SNNAP
is shown in Figure 14C. The P-SNNAP architecture consists of
three different modules, the Spike Neural Processing Element
(SNPE), the Eval unit, postsynaptic spikes, the weight memory
that stores the weights, and the state memory that stores
the neuronal state variables. The Eval unit performs neuron

Frontiers in Neuroscience | www.frontiersin.org 25 December 2021 | Volume 15 | Article 728086176

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 26

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 14 | (A) A generic structure of spiking neural networks. (B) Neuron 3 receives spikes from Neuron 1 and Neuron 2. (C) P-SNNAP accelerator architecture in
Nallathambi et al. (2021). (D) Stochastic neuron based probabilistic spiking neural network implantation for the uncertainty quantification problem in medical
diagnosis (Wang et al., 2021). The probabilistic SNN consists of the input encoding layer, the output layer, and the inhibitory layer. Neurons mimic the biological
neurons behavior. Each feature of breast cancer data is encoded by the firing rate of a small population of Poisson neurons. The inset depicts the STDP learning
curve of synapses connecting input neurons to the output ones; if the post-spike falls within the time window after the pre-spike, then the synaptic potentiation will
occur. (E) Overall structure of the implemented SNN architecture on the Loihi processor (Tang et al., 2019).

evaluation. Eval unit brings membrane potentials from state
memory, increases it with bias value, and compares it to the
threshold. If the membrane potential goes above the threshold,
a spike is generated and communicated to the controller. The
controller in its first phase of operation controls the SNPEs
and that in the second phase controls the Eval unit. When a
layer is evaluated by Eval, the controller brings spikes from
the previous layer and sends them to SNPEs. As a spike is
received, an SNPE uses the index of the spiking neuron to
iterate through its outgoing synapses. The SNPE calculates the
index of the postsynaptic neuron for each synapse. Next, the
membrane potential and the weight of the corresponding synapse
are fetched for each postsynaptic neuron. Then, membrane
potential is updated and written back. All the information

that is required to perform probabilistic spike propagation is
stored in weight memory in each SNPE lane. The register
transfer level was used for the P-SNNAP engine design and
the Nangate 15-nm technology was used for synthesizing in
Synopsys Design Compiler platform. It has been observed
that the proposed probabilistic approach causes a logic area
and logic power overhead of 12 and 23.5%, respectively, over
a version of SNNAP without support for probabilistic spike
propagation. In this work, it has been shown that the temporal
nature of SNNs allows the network to regain any accuracy
loss caused by this approach. Evaluating alternative synaptic
propagation mechanisms and employing larger networks to
test the scalability of the proposed accelerator turn out to be
further explored.

Frontiers in Neuroscience | www.frontiersin.org 26 December 2021 | Volume 15 | Article 728086177

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 27

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

Memristor-Based Stochastic Neurons for
Probabilistic Computing
Stochastic firing mechanism in biological neurons (rather than
giving out spikes once reaching a fixed threshold voltage)
provides dynamic excitation behavior and allows the brain
to perform probabilistic inference in the face of uncertainty.
However, due to the complexity of the stochastic firing process,
fabrication of stochastic neurons with bio-realistic dynamics to
probabilistic scenarios is challenging and needs further study.
In Wang et al. (2021), a stochastic neuron has been fabricated
based on CuS/GeSe threshold switching memristor (TSM) and
applied to implement Bayesian computing in a PSNN that
can quantify uncertainty with incomplete or inaccurate data.
The experimental results have indicated that compared to
VO2 and GeTe6, which are typical metal-insulator transition
(MIT) and ovonic threshold switching (OTS), CuS/GeSe as a
conductive-bridge TSM shows the most appropriate randomness
of threshold switching as desired by the stochastic firing of
neurons. The proposed physical modeling and simulation have
revealed that this can be attributed to the similarity between
the ion motion tuning in conductive-bridge threshold switching
and in biological neurons. In particular, the positive feedback
process of Cu electromigration enhanced Joule heating and
temperature and thereby accelerated thermal diffusion of Cu,
substantially facilitating the formation of the conductive bridge
and the stochasticity of ion motion, which leads to the desired
variation of threshold voltages. The intrinsic random formation
of the Cu conductive bridge in the device is utilized to emulate
the stochasticity of the opening of ion channels in the biological
membrane. Moreover, the random switching parameters of the
device fulfill the requirement to achieve the stochastic neurons in
a PSNN. Utilizing the stochastic firing properties of the fabricated
CuS/GeSe neuron to a probabilistic SNN is shown in Figure 14D.
This probabilistic SNN is capable of giving superior prediction on
a typical probabilistic inference problem, namely, breast cancer
diagnosis with high diagnostic accuracy, and improves the fidelity
of the judgment compared to deterministic neuron-based SNN.
Moreover, the stochastic neurons enable the SNN to estimate the
uncertainty of predictions, a feature that will be of great help
for achieving a good balance between diagnostic accuracy and
medical cost and avoiding the fatal diagnostic misclassification
error often encountered by conventional ANNs. The software
synapses used in this demonstration can be achieved by non-
volatile memristors, indicating the possibility of implementing a
fully memristive probabilistic SNN in the near future. Utilizing
developed and optimized stochastic neurons and their powerful
application in uncertainty quantification problems open up
a new horizon of probabilistic computing in neuromorphic
computing systems.

Loihi-Based Bayesian Inference
Implementation
Through asynchronous computations and event-based
communications in a network of neurons, the brain solves
simultaneous localization and mapping (SLAM) while it
consumes very low energy; as Tang et al. (2019) show,

SNNs (which are famous for mimicking this computational
paradigm of the brain) can be used to solve SLAM problems
on energy-efficient neuromorphic hardware for mobile
robots exploring unknown environments. The proposed
SNN shown in Figure 14E is integrated into Intel’s Loihi
neuromorphic processor fabricated on 14-nm FinFET
technology (Davies et al., 2018). Loihi is a non-Von Neumann
hardware mimicking the brain’s computing paradigm and is
optimized for SNN computations and online learning algorithms
(Thakur et al., 2018).

Via multisensory cues (called visual and odometry
information) to implement spike-based recursive Bayesian
inference, Tang et al. (2019) proposed a model to determine
the robot’s heading. To perform head direction localization
and mapping, the recursive SNN suggests a cue-integration
connectome on Loihi. The head direction and border cells in
the network provide biologically realistic performance; thus, to
implement them, the proposed model utilizes spiking neurons,
multi-compartmental dendritic trees, and plastic synapses,
each of which is implementable by Loihi. The model has two
sensory spike rate encoders and five Bayesian networks. The
odometry sensor drives the neural activity of speed cells, which
encodes the angular speed and the RGB Depth camera drives
the neural activity of sensory neurons, which encodes the
distance to the nearest object. The head direction (HD) network
defines the heading of the robot via receiving the input from
the speed cells. The reference frame transformation (RFT)
network generates allocentric distance representation via the
HD network by getting its input from sensory neurons. The
RFT network sends the allocentric observations to the distance
mapping (DM) network and the DM network develops the map
of the robot’s surrounding environment. The DM network sends
its information to the observation likelihood (OL) network,
which calculates the observation likelihood distribution of the
robot’s heading. The Bayesian inference network through the
utilization of the observation likelihood from the OL network
and the odometry likelihood from the HD network provides an
optimal posterior of the robot’s heading and corrects the heading
representation within the HD network.

Note that each one of the networks is implemented on Loihi;
here, the Bayesian inference network block is explained based
on Equation (32).

P(s|d,o)αP(d|s)P(o|s)P(s) (32)

where s, d, and o denote the heading of the robot, the observed
distance, and the odometry sensing, respectively. With a flat
prior P(s), the posterior distribution over the robot’s heading
is proportional to the product of P(d| s) and P(o| s), the two
likelihood functions.

Having known that multiplying two Gaussian distributions
generates another Gaussian distribution, Tang et al. (2019) have
employed likelihood distributions represented by the OL network
and the HD network to predict the posterior distribution.
Dendritic trees have been used for implementation; specifically,
each Bayesian neuron has two dendritic compartments
connected with its corresponding OL neuron and HD cell.

Frontiers in Neuroscience | www.frontiersin.org 27 December 2021 | Volume 15 | Article 728086178

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 28

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

Results of Loihi-based SNN architecture implementation
show that it consumes 100 times less energy than conventional
GMapping (a common algorithm for SLAM solving) running
on a CPU. This provides a motivation to use Loihi as
a hardware implementation platform for Bayesian inference.
The FinFET technology used in the Loihi architecture is a
promising technology in terms of energy and speed over
conventional CMOS technology (Bagheriye et al., 2016), while
the use of emerging nonvolatile technologies attracts a lot of
attention to developing ultra-low energy computing platforms
for SNN-based Bayesian inference systems (like crossbar arrays
discussed in Section “Crossbar Arrays for Bayesian Networks
Implementation”). However, the fabrication of robust nonvolatile
devices and large-scale crossbar arrays probably require a
lot more insights before they can outperform already highly
developed technology and this approach is worth exploring.

DISCUSSION

In this paper, we have attempted to review and summarize
the recent hardware developments for Bayesian inference.
The review is centered on different possible hardware
implementations considering algorithmic aspects. Different
approaches and their principles have been discussed with
extensive references quoted. We review the pros and cons of
the approaches reported in the literature. Specifically, there are
a number of challenges to be further studied before valid and
robust models can be applied to practical systems. We summarize
them as follows.

- In asynchronous implementation of Bayesian networks
with spintronic devices, updating the network as well
as dealing with variations in the thermal barriers or
interconnect delays necessitates further study.

- In abstraction layer-based implementations based on the
number of linearly independent equations, the appropriate
number of auxiliary variables is needed; it would be
challenging for a large Bayesian network and would
add extra area and energy overhead, which requires
further investigation.

- More complex inputs and plasticity mechanisms are
needed to support a versatile STDP pulsing scheme via
using memristors with more than two stable states as
synapses to have biologically plausible Bayesian inference
in SNNs. Other arbitrary patterns of the input signal for
memristor synapses in SNNs is required to depict the
clear picture of the Gaussian likelihood distributions that
have a capability of performing inference over arbitrary
real-valued input states. In memristor synapses, in SNN,
the switching probability considered as the learning rate
during online learning must be controllable since, for
complex datasets, small learning rates, i.e., small switching
probabilities, are required. Small switching probabilities
need careful remedies in hardware integration by using
control peripherals.

- In analog neuromorphic substrates like the BrainScaleS
platform, due to limited software flexibility, system
assembly, and substrate yield, the maximum connectivity
between different locations is strongly limited; hence,
post-production, assembly, and the mapping and routing
software needed careful consideration to enhance on-wafer
connectivity and thereby automatically increase the size
of emulable networks, as the architecture of the SSNs.
Moreover, approximation of the target distributions is
hindered due to the limited synaptic weight resolution
and the imperfect symmetry in the weight matrix (due to
analog variability of the synaptic circuits). As a result of the
successor system, a new generation of scalable platforms is
needed to be designed with a higher weight resolution.

- Providing accurate digital encoding where Bayesian
network representation is mapped directly (without any
abstraction layer) to S-MTJ resistance with equivalent
digital voltage representation using arithmetic composers
is promising, whereas PSL needs an abstraction level
to map Bayesian networks in hardware. To this end,
using accurate encoding is required to achieve the
required resolution.

- For the structure learning process of Bayesian
learning, hardware acceleration via FPGA like system
implementation is promising, since the runtime for
Bayesian network inference has been highly reduced. This
property attracts more attention to structure learning
acceleration and could be a promising field to be studied
utilizing emerging nonvolatile devices.

- In digital encoding of probabilities, the small margin
input voltage is highly problematic when it generates the
output probability. DACs with high precision are needed
for precise mapping from digital probabilities to voltages.
In addition, tackling the nonlinear relationship between
probabilities and voltages is difficult and a slight noise or
process variation may translate a probability to a wrong
voltage value. The relation between probability and voltage
is not very smooth as a result of the stability of the
SBG, which needs improvement. Although the scale of
hardware can be reduced, the reduction of the scale of
the Bayesian inference system is also worth exploring.
In addition, the resolution is limited since every storage
method adds a resolution limitation; to this end, utilizing
nonvolatile nanomagnets is promising to overcome the
power consumption as well as increasing weight resolution
by multi-state memristors as synapses.

- The C-element (a standard cell-based implementation)
outputs a stochastic bitstream, which is probabilistic
and converging more slowly toward the exact Bayesian
inference. In this case, if the switching rate of the output
was low, the longer “domains” of consecutive “0”s and “1”s
are needed and it leads to a more imprecise bitstream and
adds time, energy, and area overhead. On the other hand,
mixed-signal implementations needs to pay attention to
noise and variation sources as well as examining the
multiple independent sources of evidence for embedded
decision circuits that require circuit design remedies.

Frontiers in Neuroscience | www.frontiersin.org 28 December 2021 | Volume 15 | Article 728086179

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 29

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

- Constructing circuits for approximate inference
in hierarchical Bayesian models is a challenging
research field that can be via merging stochastic
samplers with stack-structured memories and
content-addressable memories.

- The brain-inspired hardware implementation of
algorithms like NB algorithm provides insights for
techniques like mean-field approximation, which will
help to find an optimal balance between structure and
independence, using hardware feasibility considerations
and independence assumptions as mutually constraining
objectives, which can be a promising research field.

- To provide high-speed stochastic simulations (in which
samples of random variables in a Bayesian network
are drawn to determine the posterior probabilities), a
variety of algorithms with higher sampling efficiency in
Bayesian graphs are required since they still fall short of
the escalating pace and scale of Bayesian network-based
decision engines in many IoT and CPS.

- While providing conditional probability between two
variables via utilizing two MTJs (or other nonvolatile
devices) in a common substrate, the spacing between the
MTJs needs to be carefully defined to have significant
dipole coupling between the two soft layers. Moreover, in
the presence of thermal noise at room temperature, the
“flipping” is stochastic, which needs to be controlled with
peripheral circuit elements and accurate timing.

- With a higher degree of process variability, prediction
error for the probability of a variable is high. Tolerance
to process variability needs to be increased by circuit
innovations as well as post-fabrication calibration.
Adapting ultra-energy-efficient nanomagnetic devices
to stochastic/probabilistic computing, neuromorphic,
belief networks (non-Boolean computing and information
processing) has resulted in rapid strides in new computing
paradigms, especially Bayesian networks that may
experience revolutionary advances.

- In autonomous systems like self-driving cars, decision-
making is based on uncertainty; hence, employing
AI platforms is crucial. The standard supervised
backpropagation-based learning techniques do not
represent uncertainty in the modeling process to solve
this issue; Bayesian deep learning plethora is required
where a probabilistic framework following the classic
rules of probability, i.e., Bayes’ theorem, has been utilized
to train the DNNs.

- In a standard deep learning architecture during the
inference, the dot-product operation between the synaptic
weights and inputs involves the compute energy along with
memory access and memory leakage components. In a
Bayesian deep network, each synaptic weight uses double
memory storage since it is represented by two parameters
(mean and variance of the probability distribution).
Moreover, the dot-product operation does not occur
directly between the inputs and these parameters since
for each inference operation the synaptic weights are
repeatedly updated depending on sampled values from the

Gaussian probability distribution. Hence, direct utilization
of crossbar-based “In-Memory” computing platforms
utilizing non-volatile memory technologies for mitigating
the memory access, leakage, and memory fetch bottlenecks
is not feasible; thus, a significant rethinking is necessary.

- Despite the specialized custom hardware and brain-
inspired possibility of SNNs due to their event-based
computing feature, their training for recognition problems
has been mostly limited to single-layered networks.
On the other hand, Bayesian techniques are more
computationally expensive, thereby limiting their training
and deployment in resource-constrained environments.
Also, the standard von-Neumann bottleneck in current
deep learning networks (where memory access and
memory leakage can account for a significant portion of
the total energy consumption profile) motivates further
research in hardware implementation of multi-layer
probabilistic SNN and is a promising research field.

- In Bayesian neural networks, Gaussian random number
generation operation is a hardware expensive task for
CMOS-based designs since a large number of registers,
linear feedback circuits, etc. are required. To overcome this
issue, non-idealities and stochasticity prevalent in RRAM,
spintronic, and other nonvolatile technologies could be
extensively exploited to this end.

- Stochasticity provides computational features like
regularization and Monte Carlo sampling in a DNN where
such normalization features reduce internal covariate shift
obtaining an alternative process for divisive normalization
in bio-inspired neural networks. Hence, employing the
inherent weight normalization feature exhibited by a
stochastic neural network using nonvolatile devices is a
promising field where it is an online alternative for used
batch normalization and dropout techniques. Saturation
at the boundaries of fixed range weight formats as well
as spurious fluctuations affecting the rows of the weight
matrix have been mitigated.

- Despite the widespread applications and simplicity
of PNNs, their hardware implementation is relatively
underrepresented. This is due to the fact that
multicomponent digital CMOS circuits that cause severe
area and energy inefficiency are required for hardware
implementation of probability functions associated with
the PNNs, such as the Gaussian. Hence, utilizing emerging
nonvolatile technologies to make use of their biological
plasticity features of conductance level changes as well as
their energy efficiency would be a promising solution that
needs to be extensively explored.

- Uncertainty serves as an intrinsic part of neural
computation through which probabilistic computing
empowers the brain to analyze sensory stimuli, produce
adequate motor control, and make reasonable inferences.
On the other hand, quantifying uncertainty is especially
crucial for error-critical applications like medical
diagnostics, which require probabilistic SNN-based
neuromorphic computing systems. The recent literature
of electronic neurons for SNN implantation is mostly

Frontiers in Neuroscience | www.frontiersin.org 29 December 2021 | Volume 15 | Article 728086180

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 30

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

focused on deterministic neural units or emulating the
complex biological neuronal functions, ignoring the
demand of building intrinsically stochastic neurons.
Hence, developing probabilistic spiking neurons with low
area and power consumption is highly required.

- To foster the neuromorphic computing systems, not only
is the mature device fabrication process required but also
hardware friendly algorithms are inevitable, To this end,
one promising approach that needs further exploration is
utilizing evolutionary algorithms in a Bayesian computing
platform to optimize the rules.

To conclude these observations, we can state that the pace
of the development of efficient hardware implementation of
Bayesian networks has been very quick in recent years, but there
is still a long way to go to overcome the challenges outlined above.
To summarize, comparing the discussed implementations shows
that probabilistic hardware-based implementation of Bayesian
networks, with nonvolatile devices, needs more attention to
solving the scaling issues in Bayesian network hardware; also,
sequential signaling from parent to child nodes, controlling
the stochastic switching variation due to thermal noise and
process variation, defining an abstraction layer, utilizing axillary
nodes, employing complex input pattern for memristor synapse,
and multi-state memristors for WTA mechanism are required.
For NSMs for approximate Bayesian inference, providing
technologically mature nonvolatile devices to solve the scaling
issue in crossbar arrays on one hand and adding noise to
provide uncertainty on the other hand are challenging tasks.
Utilizing nonvolatile memory elements for Bayesian network
implementation via digital encoding needs a high-resolution
encoding mechanism to provide readily highly scaled FPGA-like
architectures not only for inference but also for learning Bayesian
network structure. To this end, utilizing multi-state memristors
rather than two-state spintronic-based devices would provide
higher resolution with a lower area overhead.

Bayesian inference hardware implementation employing
digital logic gates in state-of-the-art FPGA platforms, defining
novel stochastic logic gates, and utilizing standard cells needs
to solve the accuracy and resolution issue of digital bitstreams,
which needs to compromise speed, power, and area overhead.
Crossbar arrays for Bayesian network implementation require
some innovation where providing a hierarchy of crossbar arrays
for approximate Bayesian inference mechanisms like mean-
field approximation, taking inspiration from naïve Bayesian
classifiers, is promising. Crossbar arrays require solving scaling
issues while they act as Bayesian reasoning machines. Utilizing
crossbar arrays in PNNs for dot-product operation needs
serious rethinking while utilizing approximate inference rules.
Moreover, utilizing platforms like BrainScaleS or Loihi is
another option for Bayesian inference while the resolution and
scaling, as well as energy consumption, need to be considered
since these platforms are utilizing mixed-signal CMOS and
FinFET technologies, respectively, rather than energy-efficient
nonvolatile technologies.

CONCLUSION

A Bayesian network provides a simple way of applying Bayes
theorem to complex problems and Bayesian inference is crucial
for statistical machine learning, causal discovery, automatic
speech recognition, email spam filtering, and clinical decision
support systems, to name just a few applications in AI. However,
Bayesian inference is an NP-hard problem even when only an
approximate solution is sought, implying that this computational
problem scales badly, which hinders further progress in AI.
Interestingly, many neuroscientists are convinced that our
brains employ similar processes to combine prior knowledge
with newly arriving information in an approximately optimal
Bayesian fashion. For example, in visual perception, the brain
establishes this integration literally in the blink of an eye.
However, the brain’s energy consumption is orders of magnitudes
less than what is required for state-of-the-art AI applications.
Bayesian network implementations in conventional processor
architectures are problematic due to several issues: (i) software
solutions involve multiple layers of abstraction to support a
non-deterministic framework such as Bayesian networks; (ii)
the inherently separated memory and computation in the
von Neumann processor architecture introduces bottlenecks
in accessing data; and (iii) the non-volatility requirements in
cognitive applications are challenging to meet the efficiency.
Moreover, as mentioned, the computational complexity of belief
updating is an important issue in Bayesian inference. To enhance
the computation speed of Bayesian updating, several techniques
such as conjugate priors, variational Bayes, or approximate
Bayesian computations have been employed, whereas these are
software-based, and their efficacy is less than hardware-based
accelerators. Hence, the practical use of Bayesian inference has
been hindered in many real-world applications (such as large-
scale networks or embedded systems) where computational
cost is an important performance factor. This review paper
has discussed several implementations of Bayesian inference
as well as the implantation of several approximate inference
algorithms and different architectures, from FPGA-like to brain-
inspired ones (crossbar arrays). FPGA-like architectures are not
efficient enough in terms of area and energy overhead when
compared to brain-inspired architectures. Crossbar arrays, a
typical brain-inspired computing paradigm, lead to efficient
computation when the network structure is limited to, e.g.,
naive Bayes classifiers or tree-like structures. Using insights
into Bayesian approximation techniques to find an optimal
balance between structure and independence and using hardware
feasibility considerations and independence assumptions as
mutually constraining objectives are open windows for future
efforts to achieve an efficient computing paradigm.

AUTHOR CONTRIBUTIONS

LB and JK conceived the study and the discussions around
material of the manuscript. LB wrote the first version of the
manuscript then it has been edited by LB and JK. Both authors
contributed to the article and approved the submitted version.

Frontiers in Neuroscience | www.frontiersin.org 30 December 2021 | Volume 15 | Article 728086181

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 31

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

REFERENCES
Akhmetov, Y., and Pappachen, J. A. (2019). “Probabilistic neural network with

memristive crossbar circuits,” in Proceedings of the 2019 IEEE International
Symposium on Circuits and Systems (ISCAS) (Sapporo) (Piscataway, NJ: IEEE),
49–52. doi: 10.1109/ISCAS.2019.8702153

Atulasimha, J., and Bandyopadhyay, S. (2013). “Hybrid spintronics and
straintronics: a super energy-efficient computing paradigm based on interacting
multiferroic nanomagnets,” in Spintronics in Nanoscale Devices, ed. E. R. Hedin
(Boca Raton, FL: CRC), 121–154.

Bagheriye, L., Saeidi, R., and Toofan, S. (2016). “Low power and roboust FinFET
SRAM cell using independent gate control,” in Proceedings of the 2016 IEEE
International Symposium on Circuits and Systems (ISCAS) (Montreal: IEEE),
49–52. doi: 10.1109/ISCAS.2016.7527167

Bagheriye, L., Toofan, S., Saeidi, R., and Moradi, F. (2018). “A novel sensing
circuit with large sensing margin for embedded spin-transfer torque MRAMs,”
in Proceedings of the 2018 IEEE International Symposium on Circuits and
Systems (ISCAS) (Florence, Italy) (Piscataway, NJ: IEEE). doi: 10.1109/ISCAS.
2018.8351577

Bashizade, R., Zhang, X., Mukherjee, S., and Lebeck, A. R. (2021). Accelerating
Markov random field inference with uncertainty quantification. arXiv
[preprint] arXiv:2108.00570

Baum, L. E., and Petrie, T. (1966). Statistical inference for probabilistic
functions of finite state Markov chains. Ann. Math. Stat. 37,
1554–1563.

Bessière, P., Laugier, C., and Siegwart, R. (2008). Probabilistic Reasoning and
Decision Making in Sensory-Motor Systems. Berlin: Springer-Verlag.

Bill, J., and Legenstein, R. (2014). A compound memristive synapse model for
statistical learning through STDP in spiking neural networks. Front. Neurosci.
8:412. doi: 10.3389/fnins.2014.00412

Burr, G. W., Shelby, R. M., Sebastian, A., Kim, S., Kim, S., Sidler, S., et al. (2017).
Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124.
doi: 10.1080/23746149.2016.1259585

Chen, C.-Y., Chang, C.-W., and Chen, Z.-C. (2019). “An evolutionary computation
approach for approximate computing of PNN hardware circuits,” in Proceedings
of the 2019 International Symposium on Intelligent Signal Processing and
Communication Systems (ISPACS). (Taipei, Taiwan) (Piscataway, NJ: IEEE).
doi: 10.1109/ISPACS48206.2019.8986351

Chickering, D. M. (1996). “Learning Bayesian networks is NP-complete,” in
Learning from data. Lecture Notes in Statistics, eds D. Fisher and H. J. Lenz
(New York, NY: Springer), 121–130.

Choi, J., and Rutenbar, R. A. (2013). “Video-rate stereo matching using Markov
random field TRW-S inference on a Hybrid CPU+FPGA computing platform,”
in Proceedings of the 2013 ACM/SIGDA International Symposium on Field
Programmable Gate Arrays: ACM 978-1-4503-1887-7/13/02, Monterey, CA,
63–71.

Choi, J., and Rutenbar, R. A. (2016). Video-rate stereo matching using Markov
random field TRW-S inference on a hybrid CPU+FPGA computing platform.
IEEE Trans. Circuits Syst. Video Technol. 26, 385–398. doi: 10.1109/TCSVT.
2015.2397198

Cooper, G. F. (1990). The computational complexity of probabilistic inference
using Bayesian belief networks. Artif. Intell. 42, 393–405.

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic many core processor with on-chip learning. IEEE Micro
38, 82–99. doi: 10.1109/MM.2018.112130359

Debashis, P., Ostwal, V., Faria, R., and Datta, S. (2020). Hardware implementation
of Bayesian network building blocks with stochastic spintronic devices. Nature
10:16002. doi: 10.1038/s41598-020-72842-6

Druzdzel, M. J., and van der Gaag, L. C. (1995). “Elicitation of probabilities
for belief networks: combining qualitative and quantitative information,”
in Proceedings of the 11th conference on Uncertainty in AI (UAI 1995),
eds B. Philippe, and S. Hanks (Burlington, MA: Morgan Kaufmann),
141–148.

Dutta, S., Detorakis, G., Khanna, A., Grisafe, B., Neftci, E., and Datta, S. (2021).
Neural sampling machine with stochastic synapse allows brain-like learning and
inference. arxiv [preprint] arxiv:2102.10477

Faria, R., Camsari, K. Y., and Datta, S. (2018). Implementing Bayesian networks
with embedded stochastic MRAM. AIP Adv. 8:045101. doi: 10.1063/1.5021332

Faria, R., Kaiser, J., Camsari, K. Y., and Datta, S. (2021). Hardware design for
autonomous bayesian networks. Front. Comput. Neurosci. 15:584797. doi: 10.
3389/fncom.2021.584797

Friedman, S., Calvet, J. E., Bessière, L., Droulez, P., and Querlioz, D. (2016).
Bayesian inference with muller C-elements. IEEE Trans. Circuits Syst. I Regul.
Pap. 63, 895–904. doi: 10.1109/TCSI.2016.2546064

Gómez Hidalgo, J. M., Bringas, G. C., Sánz, E. P., and García, F. C. (2006). “Content
based SMS spam filtering,” in Proceedings of the 2006 ACM symposium on
Document Engineering, Amsterdam, 107–114.

Gordon, N. J. (1993). Noval approach to nonlinear/non-Gaussian Bayesian state
estimation. IEE Proc. Radar Signal Process. 140, 107–113.

Guo, S., Yu, Z., Deng, F., Hu, X., and Chen, F. (2019). Hierarchical Bayesian
inference and learning in spiking neural networks. IEEE Trans. Cybern. 49,
133–145. doi: 10.1109/TCYB.2017.2768554

Hastings, W. K. (1970). Monte carlo sampling methods using Markov chains and
their applications. Biometrika 57, 97–109.

Heckerman, D. (2020). A tutorial on learning with Bayesian networks. arXiv
[preprint] arXiv:2002.00269v2

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning Bayesian
networks: the combination of knowledge and statistical data. Mach. Learn. 20,
197–243.

Heckerman, D., Meek, C., and Cooper, G. (1999). A Bayesian approach to causal
discovery. Comput. Causation Discov. 19, 141–166.

Hsieh, H.-Y., Li, P.-Y., and Tang, K.-T. (2017). “An Analog Probabilistic Spiking
Neural Network with On-Chip Learning,” in Proceedings of the International
Conference on Neural Information Processing (ICONIP), eds D. Liu, S. Xie, Y. Li,
D. Zhao, and E. S. El-Alfy (Cham: Springer). doi: 10.1007/978-3-319-70136-3_
82

Hsieh, H.-Y., Li, P.-Y., Yang, C.-H., and Tang, K.-T. (2018). “A high learning
capability probabilistic spiking neural network chip,” in Proceedings of the 2018
International Symposium on VLSI Design, Automation and Test (VLSI-DAT),
Hsinchu. doi: 10.1109/VLSI-DAT.2018.8373241

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge:
Cambridge University Press.

Ji, Z., Xia, Q., and Meng, G. (2015). “A review of parameter learning methods in
Bayesian network,” in Proceedings of the International Conference on Intelligent
Computing (Cham: Springer), 3–12.

Jia, X., Yang, J., Dai, P., Liu, R., Chen, Y., and Zhao, W. (2020). SPINBIS:
spintronics-based Bayesian inference system with stochastic computing. IEEE
Trans. Comput. Aided Design Integr. Circuits Syst. 39, 789–802. doi: 10.1109/
TCAD.2019.2897631

Jia, X., Yang, J., Wang, Z., Chen, Y., Li, H., and Zhao, W. (2018). “Spintronics
based stochastic computing for effcient Bayesian inference system,” in
Proceedings of the 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC), Jeju, 580–585. doi: 10.1109/ASPDAC.2018.829
7385

Khasanvis, S., Li, M., Rahman, M., Biswas, A. K., Salehi-Fashami, M., Atulasimha,
J., et al. (2015a). Architecting for causal intelligence at nanoscale. Computer 48,
54–64. doi: 10.1109/MC.2015.367

Khasanvis, S., Li, M., Rahman, M., Salehi-Fashami, M., Biswas, A. K., Atulasimha,
J., et al. (2015b). “Physically equivalent magneto-electric nanoarchitecture for
probabilistic reasoning,” in Proceedings of the 2015 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH’15), Boston, MA. doi:
10.1109/NANOARCH.2015.7180581

Ko, G. G., and Rutenbar, R. A. (2017). “A case study of machine learning hardware:
real-time source separation using Markov Random Fields via sampling-
based inference,” in Proceedings of the 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA. doi: 10.
1109/ICASSP.2017.7952602

Korb, K. B., and Nicholson, A. E. (2010). Bayesian Artificial Intelligence. Boca
Raton, FL: CRC Press.

Kulkarni, S., Bhat, S., and Moritz, C. S. (2017b). “Structure Discovery
for Gene Expression Networks with Emerging Stochastic Hardware,” in
Proceedings of the 2016 IEEE International Conference on Rebooting
Computing (ICRC), Washington, DC, 147–155. doi: 10.1109/ICRC.2016.77
38680

Kulkarni, S., Bhat, S., Khasanvis, S., and Moritz, C. A. (2017a). “Magneto-electric
approximate computational circuits for Bayesian inference,” in Proceedings

Frontiers in Neuroscience | www.frontiersin.org 31 December 2021 | Volume 15 | Article 728086182

https://doi.org/10.1109/ISCAS.2019.8702153
https://doi.org/10.1109/ISCAS.2016.7527167
https://doi.org/10.1109/ISCAS.2018.8351577
https://doi.org/10.1109/ISCAS.2018.8351577
https://doi.org/10.3389/fnins.2014.00412
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1109/ISPACS48206.2019.8986351
https://doi.org/10.1109/TCSVT.2015.2397198
https://doi.org/10.1109/TCSVT.2015.2397198
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1038/s41598-020-72842-6
https://doi.org/10.1063/1.5021332
https://doi.org/10.3389/fncom.2021.584797
https://doi.org/10.3389/fncom.2021.584797
https://doi.org/10.1109/TCSI.2016.2546064
https://doi.org/10.1109/TCYB.2017.2768554
https://doi.org/10.1007/978-3-319-70136-3_82
https://doi.org/10.1007/978-3-319-70136-3_82
https://doi.org/10.1109/VLSI-DAT.2018.8373241
https://doi.org/10.1109/TCAD.2019.2897631
https://doi.org/10.1109/TCAD.2019.2897631
https://doi.org/10.1109/ASPDAC.2018.8297385
https://doi.org/10.1109/ASPDAC.2018.8297385
https://doi.org/10.1109/MC.2015.367
https://doi.org/10.1109/NANOARCH.2015.7180581
https://doi.org/10.1109/NANOARCH.2015.7180581
https://doi.org/10.1109/ICASSP.2017.7952602
https://doi.org/10.1109/ICASSP.2017.7952602
https://doi.org/10.1109/ICRC.2016.7738680
https://doi.org/10.1109/ICRC.2016.7738680
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-728086 November 27, 2021 Time: 10:35 # 32

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

of the 2017 IEEE International Conference on Rebooting Computing (ICRC),
Washington, DC. doi: 10.1109/ICRC.2017.8123678

Kungl, F., Schmitt, S., Klähn, J., Müller, P., Baumbach, A., Dold, D., et al.
(2019). Accelerated physical emulation of Bayesian inference in spiking neural
networks. Front. Neurosci. 13:1201. doi: 10.3389/fnins.2019.01201

Kwisthout, J., Bodlaender, H. L., and van der Gaag, L. C. (2010). “The necessity of
bounded treewidth for efficient inference in Bayesian networks,” in Proceedings
of the 19th European Conference on Artificial Intelligence (ECAI’10), eds H.
Coelho, R. Studer, and M. Wooldridge (Amsterdam: IOS Press), 237–242.

Lim, J., Lee, J., and Shin, C. (2021). Probabilistic artificial neural network for
line-edge-roughness-induced random variation in FinFET. IEEE Access 9,
86581–86589. doi: 10.1109/ACCESS.2021.3088461

Malhotra, A., Lu, S., Yang, K., and Sengupta, A. (2020). Exploiting oxide based
resistive RAM variability for bayesian neural network hardware design. IEEE
Trans. Nanotechnol. 19, 328–331. doi: 10.1109/TNANO.2020.2982819

Mansinghka, V. K., Jonas, E. M., and Tenenbaum, J. B. (2008). Stochastic Digital
Circuits for Probabilistic Inference: Technical Report MITCSAIL-TR 2069.
Cambridge, MA: Massachusetts Institute of Technology.

Maron, M. E., and Kuhns, J. L. (1960). On relevance, probabilistic indexing, and
information retrieval. J. Assoc. Comput. Mach. 7, 216–244.

Marsaglia, G. (2003). Xor shift RNGs. J. Stat. Softw. 8, 1–6.
Murphy, K., (1998). A Brief Introduction to Graphical Models and Bayesian

Networks. Available online at: https://www.cs.ubc.ca/~murphyk/Bayes/bnintro.
html (accessed May 10, 2001).

Nallathambi, A., Sen, S., Raghunathan, A., and Chandrachoodan, N. (2021).
Probabilistic spike propagation for efficient hardware implementation of
spiking neural networks. Front. Neurosci. 15:694402. doi: 10.3389/fnins.2021.
694402

Nasrin, S., Drobitch, J., Shukla, P., Tulabandhula, T., Bandyopadhyay, S., and
Trivedi, A. R. (2020). Bayesian reasoning machine on a magneto-tunneling
junction network. Nanotechnology 31:484001. doi: 10.1088/1361-6528/abae97

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Palo Alto, CA: Morgan Kaufmann. doi: 10.1016/C2009-0-27609-4

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S. (2010).
“A wafer-scale neuromorphic hardware system for large-scale neural modeling,”
in Proceedings of the 2010 IEEE International Symposium on Circuits and
Systems (ISCAS) (Paris: IEEE), 1947–1950. doi: 10.1109/ISCAS.2010.5536970

Sebastian, A., Pannone, A., Radhakrishnan, S. S., and Das, S. (2019). Gaussian
synapses for probabilistic neural networks. Nat. Commun. 10:4199. doi: 10.
1038/s41467-019-12035-6

Seiler, C., Bchler, P., Nolte, L., Paulsen, R., and Reyes, M. (2009). “Hierarchical
Markov random fields applied to model soft tissue deformations on graphics
hardware,” in Recent Advances in the 3D Physiological Human, eds J. J. Zhang,
N. Magnenat-Thalmann, and D. D. Feng (London: Springer), 133–148. doi:
10.1007/978-1-84882-565-9_9

Sengupta, A., Parsa, M., Han, B., and Kaushik Roy, K. (2016). Probabilistic deep
spiking neural systems enabled by magnetic tunnel junction. IEEE Trans.
Electron Devices 63, 2963–2970. doi: 10.1109/TED.2016.2568762

Serb, A., Manino, E., Messaris, I., Thanh, L. T., and Prodromakis, T. (2017).
“Hardware-Level Bayesian Inference,” in Proceedings of the 31st Conference on
Neural Information Processing Systems (NIPS), Long Beach, CA.

Sesen, M. B., Nicholson, A. E., Banares-Alcantara, R., Kadir, T., and Brady, M.
(2013). Bayesian networks for clinical decision support in lung cancer care.
PLoS One 8:e82349. doi: 10.1371/journal.pone.0082349

Shachter, R., and Peot, M. (1990). “Simulation approaches to general probabilistic
inference on belief networks,” in Proceedings of the sixth conference on
Uncertainty in Artificial Intelligence, eds M. Henrion, R. D. Shachter,
J. F. Lemmer, and L. N. Kanal (Amsterdam: North-Holland), Vol. 5,
221–231.

Shamsi, J., Mohammadi, K., and Shokouhi, S. B. (2018). A hardware architecture
for columnar-organized memory based on CMOS neuron and memristor
crossbar arrays. IEEE Trans. Very Large Scale Integr. Syst. 26, 2795–2805. doi:
10.1109/TVLSI.2018.2815025

Shim, Y., Chen, S., Sengupta, A., and Roy, K. (2017). Stochastic spin-orbit torque
devices as elements for Bayesian inference. Nature 7:14101. doi: 10.1038/
s41598-017-14240-z

Specht, D. F. (1990). Probabilistic neural networks. Neural Netw. 3, 109–118.

Synopsys (2012). Digital Standard Cell Library:SAED_EDK90_CORE Databook.
Yerevan: Synopsys Armenia Educational Department

Tang, G., Shah, A., and Michmizos, K. P. (2019). “Spiking neural network
on neuromorphic hardware for energy-efficient unidimensional SLAM,” in
Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Macau. doi: 10.1109/IROS40897.2019.8967864

Thakur, C. S., Afshar, S., Wang, R. M., Hamilton, T. J., Tapson, J., and Schaik, A. V.
(2016). Bayesian estimation and inference using stochastic electronics. Front.
Neurosci. 10:104. doi: 10.3389/fnins.2016.00104

Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N.,
et al. (2018). Large-Scale neuromorphic spiking array processors: a quest to
mimic the brain the brain. Front. Neurosci. 12:891. doi: 10.3389/fnins.2018.
00891

Theodoridis, S. (2015). Machine Learning: A Bayesian and Optimization
Perspective. Cambridge, MA: Academic press.

Tipping, M. E. (2003). “Bayesian inference: an introduction to principles and
practice in machine learning,” in Summer School on Machine Learning, eds O.
Bousquet, U. von Luxburg, and G. Rätsch (Berlin: Springer), 41–62.

Tziantzioulis, G., Gok, A. M., Faisal, S. M., Hardavellas, N., Memik, S., and
Parthasarathy, S. (2015). “b-HiVE: a bit-level history-based error model with
value correlation for voltage- scaled integer and floating point units,” in
Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), San Francisco, CA. doi: 10.1145/2744769.2744805

Wang, J. J., Yu, Q., Hu, S. G., Liu, Y., Guo, R., Chen, T. P., et al. (2019). Winner-
takes-all mechanism realized by memristive neural network. Appl. Phys. Lett.
115:243701. doi: 10.1063/1.5120973

Wang, K., Hu, Q., Gao, B., Lin, Q., Zhuge, F.-W., Zhang, D.-Y., et al. (2021).
Threshold switching memristor-based stochastic neurons for probabilistic
computing. Mater. Horizons 8, 619–629. doi: 10.1039/d0mh01759k

Weijia, Z., Ling, G. W., and Seng, Y. K. (2007). “PCMOS-based Hardware
Implementation of Bayesian Network,” in Proceedings of the 2007 IEEE
International Solid-State Circuits Conference Digest of Technical Papers, Tainan,
337–340. doi: 10.1109/EDSSC.2007.4450131

Wu, B., Feng, D., Tong, W., Liu, J., Wang, C., Zhao, W., et al. (2019). “ReRAM
crossbar-based analog computing architecture for naive bayesian engine,” in
Proceedings of the 2019 IEEE 37th International Conference on Computer Design
(ICCD), Abu Dhabi, 147–155. doi: 10.1109/ICCD46524.2019.00026

Yang, K., Malhotra, A., Lu, S., and Sengupta, A. (2020). All-Spin Bayesian neural
networks. IEEE Trans. Electron Devices 67, 1340–1347. doi: 10.1109/TED.2020.
2968223

Yu, Z., Chen, F., and Liu, J. K. (2020). Sampling-Tree model: efficient
implementation of distributed bayesian inference in neural networks. IEEE
Trans. Cogn. Dev. Syst. 12, 497–510. doi: 10.1109/TCDS.2019.2927808

Yu, Z., Guo, S., Deng, F., Yan, Q., Huang, K., Liu, J. K., et al. (2018). Emergent
inference of hidden markov models in spiking neural networks through winner-
take-all. IEEE Trans. Cybern. 50, 1347–1354. doi: 10.1109/TCYB.2018.2871144

Zweig, G., and Russell, S. (1998). “Speech recognition with dynamic Bayesian
networks,” in Proceedings of the Fifteenth National/Tenth Conference on
Artificial Intelligence/Innovative Applications of Artificial Intelligence (Menlo
Park, CA: American Association for Artificial Intelligence), 173–180.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Bagheriye and Kwisthout. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 32 December 2021 | Volume 15 | Article 728086183

https://doi.org/10.1109/ICRC.2017.8123678
https://doi.org/10.3389/fnins.2019.01201
https://doi.org/10.1109/ACCESS.2021.3088461
https://doi.org/10.1109/TNANO.2020.2982819
https://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html
https://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html
https://doi.org/10.3389/fnins.2021.694402
https://doi.org/10.3389/fnins.2021.694402
https://doi.org/10.1088/1361-6528/abae97
https://doi.org/10.1016/C2009-0-27609-4
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1038/s41467-019-12035-6
https://doi.org/10.1038/s41467-019-12035-6
https://doi.org/10.1007/978-1-84882-565-9_9
https://doi.org/10.1007/978-1-84882-565-9_9
https://doi.org/10.1109/TED.2016.2568762
https://doi.org/10.1371/journal.pone.0082349
https://doi.org/10.1109/TVLSI.2018.2815025
https://doi.org/10.1109/TVLSI.2018.2815025
https://doi.org/10.1038/s41598-017-14240-z
https://doi.org/10.1038/s41598-017-14240-z
https://doi.org/10.1109/IROS40897.2019.8967864
https://doi.org/10.3389/fnins.2016.00104
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.1145/2744769.2744805
https://doi.org/10.1063/1.5120973
https://doi.org/10.1039/d0mh01759k
https://doi.org/10.1109/EDSSC.2007.4450131
https://doi.org/10.1109/ICCD46524.2019.00026
https://doi.org/10.1109/TED.2020.2968223
https://doi.org/10.1109/TED.2020.2968223
https://doi.org/10.1109/TCDS.2019.2927808
https://doi.org/10.1109/TCYB.2018.2871144
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 09 December 2021

doi: 10.3389/fnins.2021.750458

Frontiers in Neuroscience | www.frontiersin.org 1 December 2021 | Volume 15 | Article 750458

Edited by:

Irem Boybat,

IBM Research-Zurich, Switzerland

Reviewed by:

Christopher Bennett,

Sandia National Laboratories,

United States

Wei Wang,

Technion Israel Institute of Technology,

Israel

*Correspondence:

Anders Lansner

ala@kth.se

Ahmed Hemani

hemani@kth.se

Zhuo Zou

zhuo@fudan.edu.cn

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 30 July 2021

Accepted: 11 November 2021

Published: 09 December 2021

Citation:

Wang D, Xu J, Stathis D, Zhang L,

Li F, Lansner A, Hemani A, Yang Y,

Herman P and Zou Z (2021) Mapping

the BCPNN Learning Rule to a

Memristor Model.

Front. Neurosci. 15:750458.

doi: 10.3389/fnins.2021.750458

Mapping the BCPNN Learning Rule
to a Memristor Model
Deyu Wang 1†, Jiawei Xu 1†, Dimitrios Stathis 2, Lianhao Zhang 3, Feng Li 1,

Anders Lansner 2,4*, Ahmed Hemani 2*, Yu Yang 2, Pawel Herman 2 and Zhuo Zou 1*

1 State Key Laboratory of ASIC and System, School of Information Science and Technology, Fudan University, Shanghai,

China, 2 School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden,
3Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark, 4Department of

Mathematics, Stockholm University, Stockholm, Sweden

The Bayesian Confidence Propagation Neural Network (BCPNN) has been implemented

in a way that allows mapping to neural and synaptic processes in the human

cortex0and0has been used extensively in detailed spiking models of cortical associative

memory function and recently also for machine learning applications. In conventional

digital implementations of BCPNN, the von Neumann bottleneck is a major challenge

with synaptic storage and access to it as the dominant cost. The memristor is a

non-volatile device ideal for artificial synapses that fuses computation and storage and

thus fundamentally overcomes the von Neumann bottleneck.0While the implementation

of other neural networks like Spiking Neural Network (SNN) and even Convolutional

Neural Network (CNN) on memristor has been studied, the implementation of BCPNN

has not. In this paper, the BCPNN learning rule is mapped to a memristor model and

implemented with a memristor-based architecture. The implementation of the BCPNN

learning rule is a mixed-signal design with the main computation and storage happening

in the analog domain.0In particular, the nonlinear dopant drift phenomenon of the

memristor is exploited to simulate the exponential decay of the synaptic state variables

in the BCPNN learning rule.0The consistency between the memristor-based solution

and the BCPNN learning rule is simulated and verified in Matlab, with a correlation

coefficient as high as 0.99. The analog circuit is designed and implemented in the SPICE

simulation environment, demonstrating a good emulation effect for the BCPNN learning

rule with a correlation coefficient as high as 0.98. This work focuses on demonstrating

the feasibility of mapping the BCPNN learning rule to in-circuit computation in memristor.

The feasibility of the memristor-based implementation is evaluated and validated in the

paper, to pave the way for a more efficient BCPNN implementation, toward a real-time

brain emulation engine.

Keywords: Bayesian Confidence Propagation Neural Network (BCPNN), learning rule, memristor, nonlinear dopant

drift phenomenon, synaptic state update, spiking neural networks, analog neuromorphic hardware

1. INTRODUCTION

In the last decade, Artificial Neural Networks (ANNs) have made rapid and significant progress
in real-world applications, demonstrating outstanding performance in a wide range of pattern
recognition problems such as speech recognition (Hinton et al., 2012), image classification
(Ciregan et al., 2012), and natural language processing (Yin et al., 2017). Despite the great success

184

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.750458
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.750458&domain=pdf&date_stamp=2021-12-09
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ala@kth.se
mailto:hemani@kth.se
mailto:zhuo@fudan.edu.cn
https://doi.org/10.3389/fnins.2021.750458
https://www.frontiersin.org/articles/10.3389/fnins.2021.750458/full

Wang et al. Mapping BCPNN Learning to Memristors

and popularity of ANNs in data-driven computational
paradigms, they have some limitations. First of all, most of
the existing ANNs adopt supervised learning, requiring a large
amount of labeled training data, which is different from the
unsupervised and reward modulated learning mechanisms
attributed to biological brains. Secondly, the most prominent
learning algorithm used by ANNs is error back-propagation,
which requires a high level of accuracy and is neither robust
nor biologically plausible. Thirdly, the current mainstream
ANN models do not account for the functionality underlying
human cognition and inspiring artificial intelligence, like e.g.,
associative memory, temporal association, and reward-based
trial-and-error learning. Unlike classical ANNs with non-spiking
units, Spiking Neural Networks (SNNs) use the same event-based
communication mechanism as the human brain where neurons
communicate with spikes.

The Bayesian Confidence Propagation Neural Network
(BCPNN) was originally derived from principles of Bayesian
inference (Lansner and Ekeberg, 1989; Lansner and Holst, 1996)
and was further developed into an architecture inspired by the
modularity of the mammalian cortex with hypercolumn units
(HCUs) and minicolumn units (MCUs). Later implementation
within the framework of SNNs allowed mapping to neural
and synaptic processes in the human cortex (Tully et al.,
2014). Compared with other SNN models, BCPNN provides
a compact and practical solution for the implementation of
large-scale neural networks due to its modular, coarse-grained,
and hierarchical architecture. Importantly, both reduced non-
spiking and biologically detailed spiking realizations of BCPNN
perform similar functions. They have been extensively used
to model brain-like cognitive capabilities such as associative
memory (Johansson and Lansner, 2007; Lundqvist et al., 2011),
episodic memory (Chrysanthidis et al., 2021), and working
memory (Fiebig and Lansner, 2017; Fiebig et al., 2020), which
play a key role in human intelligence. In a broader perspective, we
suggest that these advancements in simulating different aspects of
human cognitive function within a system framework of brain-
like BCPNN constitute a promising direction in the development
of artificial general intelligence (AGI).

Furthermore, the local associative nature of the Bayesian-
Hebbian BCPNN learning rule has also been leveraged in
cortex-inspired neural networks built for pattern recognition
problems in the machine learning domain. In particular, these
recent developments were facilitated by the addition of a novel
brain-like structural plasticity algorithm to build a hidden
layer using the original synaptic trace variables of BCPNN in
an unsupervised manner (Ravichandran et al., 2020, 2021a).
Classification performance on the MNIST and Fashion-MNIST
benchmark problems—98.6% and 88.9% on test sets, respectively
(Ravichandran et al., 2021a)—is competitive with e.g., single-
layer multi-layer perceptron (MLP) with backprop, restricted
Boltzmann machine (RBM), and overcomplete autoencoder. The
aforementioned unsupervised nature of the structural plasticity
lends itself to the efficient use of unlabeled training examples,
which has been exploited to perform semi-supervised learning
with competitive results on MNIST for only 10–1,000 labeled
training samples (Ravichandran et al., 2021b).

At present, BCPNN is usually implemented in high-
performance computers, such as clusters (Johansson and
Lansner, 2007), GPUs (Yang et al., 2020; Podobas et al., 2021),
and ASICs (Stathis et al., 2020). However, these systems do not
fully leverage the scalability of the modular BCPNN with its
local learning since they are all based on the von Neumann
architecture that separates computation and storage, which
puts a high demand on computing and memory access. We
observe that the ASIC implementation with its full customized
architecture with the 3D-RAM, achieved three orders better
efficiency compared to GPUs, but it is still many orders less
efficient compared to a biological brain.

Besides overcoming the von Neumann bottleneck, the non-
linearity of the memristor naturally mimics the behavior of
synapses. This paper shows how these properties of memristors
can be leveraged to implement the BCPNN learning rule.
The long-term goal of this research is to realize a large-scale
memristor-based BCPNN network that is 10–100x more efficient
than ASICs. However, the research presented in this paper
focuses on demonstrating the feasibility of mapping the BCPNN
learning rule to an in-circuit memristor-based computation.
Follow-up work to this paper will focus on addressing the non-
idealities of memristors and the energy efficiency analysis.

The contributions of this work are as follows:

• The non-linearity of the memristor is exploited to emulate
the synaptic traces in the BCPNN learning rule. On this
basis, a memristor-based architecture for the BCPNN learning
rule is proposed.

• The memristor-based design for the BCPNN learning rule is
simulated and verified in Matlab. The consistency between
the memristor-based solution and the reference model is
validated, and the correlation coefficient is as high as 0.99.

• The analog circuit for the BCPNN learning rule is designed
and implemented in the SPICE simulation environment. The
SPICE simulation results demonstrate a good emulation effect
for the BCPNN learning rule, and the correlation coefficient is
as high as 0.98.

The rest of this paper is organized as follows: Section 2 introduces
the background knowledge and details about BCPNN and the
memristor. Section 3 shows the similarity between the BCPNN
traces and the memristor non-linearity and demonstrates how
to map the BCPNN learning rule to in-circuit memristor-
based computation. Section 4 proposes the memristor-based
architecture for the BCPNN learning rule and explains the
corresponding analog circuit design. Section 5 presents the
results of Matlab and SPICE-level simulations. Section 6
summarizes the paper and further discusses several aspects of this
work. Finally, section 7 presents the prospects for future work.

2. PRELIMINARIES

2.1. BCPNN
2.1.1. BCPNN Overview
The BCPNN features a modular structure in terms of HCUs
and MCUs, based on a generalization of the structure of
the mammalian cortex, first described by Hubel and Wiesel

Frontiers in Neuroscience | www.frontiersin.org 2 December 2021 | Volume 15 | Article 750458185

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

(Hubel and Wiesel, 1977). In models of the mammalian cortex,
an HCU module has a diameter on the order of 500 µm
and comprises about 100 MCUs with 50 µm diameter. Each
MCU is composed of about 100 neurons, mainly excitatory
pyramidal cells and one or two local inhibitory double bouquet
cells (DeFelipe et al., 2006). Activity within an HCU is regulated
by lateral inhibition mediated via inhibitory basket cells. In the
abstract models, it takes the form of softmax that normalizes the
total HCU activity (sum of the corresponding MCU activities) to
1. The number of HCUs in the human cortex has been estimated
at around two million.

The BCPNN network can be represented with a H × M
configuration, which means it is composed of H HCUs, and each
HCU contains M MCUs. Generally, H is much larger than M.
The number of HCUs H can be increased without an upper
limit, while the number of MCUs M has an upper limit of about
100 based on biological data. Therefore, when it comes to the
configuration of large networks, the number of H tends to be
quite high. In a small network, each MCU can be fully connected
to its local HCU and other HCUs, as shown in Figure 1A. Such
full connectivity can not be employed in large networks due to
the extreme cost of computation and storage. Instead, a cortex-
inspired sparse patchy connection is adopted (Meli and Lansner,
2013), which greatly reduces the number of connections and yet
maintains proper function.

Figure 1B presents the structure of the HCU, which is
composed of 4 parts: 1) the presynaptic vector, used to store
presynaptic traces Zi, Ei and Pi; 2) the postsynaptic vector, used to
store postsynaptic traces Zj, Ej, Pj and the bias βj; 3) the synaptic
matrix, used to store synaptic traces Eij, Pij and the weight wij. 4)
a certain number of MCUs, which integrate the incoming spiking
activities and fire in a soft winner-take-all manner.

At a higher level, HCUs function like independent network
modules between which spikes are transmitted. The HCU
size depends on the number of incoming connections and
MCUs. The biologically constrained maximum number of
incoming connections and MCUs is 10,000 and 100, respectively.
Consequently, in amax-size HCU, a synaptic matrix with a size of
10, 000×100 is used, thus representing a million plastic synapses.

2.1.2. BCPNN Learning Rule
The BCPNN learning rule was derived from Bayes’ rule while
making some independent assumptions between neural activities
and by transformation to log-space to achieve a proper neural
activation function (Lansner and Ekeberg, 1989; Lansner and
Holst, 1996; Sandberg et al., 2002). Thus, rather than being
purely phenomenological as the commonly used Spike Timing
Dependent Plasticity (STDP) learning rule, it was derived from
the probabilistic inference. The BCPNN learning rule is in
essence another kind of Hebbian learning rule in which synaptic
updates are driven by co-activation between the pre- and post-
synaptic neural units. It generates positive weights if the activity
between neurons is positively correlated, zero weights if they are
uncorrelated, and negative weights if they are anti-correlated.
Besides, it has an intrinsic bias for each neural unit which reflects
the prior activation and also is observed experimentally (Tully
et al., 2014). The BCPNN learning rule equations estimate the

activation and co-activation of network units utilizing a cascade
of three exponential running averages, as shown in Figure 2A.

First, the incoming spikes drive pre- and
post-synaptic Z-traces:

dZi
dt

=
Si−Zi

τzi

dZj
dt

=

Sj−Zj
τzj

(1)

Here, i denotes pre- and j denotes post-synaptic variables and
S represents incoming and generated spiking activity. These Z-
traces in turn drive the E-traces and P-traces following the same
kind of dynamics with different time constants:

dEi
dt

=
Zi−Ei

τe

dEj
dt

=

Zj−Ej
τe

dEij
dt

=

ZiZj−Eij
τe

(2)

dPi
dt

=
(Ei−Pi)

τp
κ

dPj
dt

=

(Ej−Pj)

τp
κ

dPij
dt

=

(Eij−Pij)

τp
κ (3)

The learning rate κ in the dynamics of P traces modulates
the learning. The E-traces form a synaptic tag important for
delayed reinforcement learning. In many cases, the E-traces can
be omitted and the P-traces can be updated according to equation
(4) with an added parameter κ . The simplified BCPNN learning
rule without E trace is shown in Figure 2B.

dPi
dt

=
(Zi−Pi)

τp
κ

dPj
dt

=

(Zj−Pj)

τp
κ

dPij
dt

=

(ZiZj−Pij)

τp
κ (4)

Finally, as shown in equation (5), the P-traces are used to update
network unit biases, and weights with an additional parameter ε,
which originates from a minimum spiking activity assumed for
the pre- and postsynaptic units:

βj = log(Pj + ε) Wij = log(
Pij+ε2

(Pi+ε)·(Pj+ε)
) (5)

2.1.3. BCPNN Application and Implementation
The BCPNN model has been used for neural computation
and machine learning applications as well as to model the
synaptic plasticity like long-term potentiation (LTP) and long-
term depression (LTD) in SNN models of cortical associative
memory. In the case of neural computation, BCPNN has
been used to model scalable self-organizing associative memory
(Johansson and Lansner, 2007). As for the classification of
the MNIST machine learning benchmarking, an accuracy of
98.6% can be achieved while maintaining a high neurobiological
plausibility (Ravichandran et al., 2020, 2021a). In the latter
case, the hidden layer had 200 HCUs, each with 100 MCUs.
Recent cortical associative memory models have focused on
synaptic working memory using BCPNN as a model for rapid
cortical synaptic plasticity (Fiebig and Lansner, 2017; Fiebig
et al., 2020). The positive BCPNN weights are used as excitatory
connections between pyramidal cells, while the negative ones
are disynaptically inhibiting pyramidal cells in distant HCUs via
e.g., double bouquet cells. These SNN models are tiny compared
to their biological counterparts, typically comprising up to a
thousand MCUs partitioned into some 30 HCUs.

The BCPNN model has been implemented in software
packages, GPU, and supercomputer clusters. It has also been

Frontiers in Neuroscience | www.frontiersin.org 3 December 2021 | Volume 15 | Article 750458186

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

FIGURE 1 | (A) The fully connected HCUs. The number of HCUs is H, each HCU contains M MCUs. For each HCU, the number of input connections is H×M, and

the number of output connections is M. (B) The structure of HCU. The upper limit of input connections and MCUs is 10,000 and 100, respectively.

FIGURE 2 | (A) The original BCPNN learning rule (adapted after Tully et al., 2014). (B) The simplified BCPNN learning rule without E trace.

implemented as custom hardware with 3D integration of DRAM
for the synaptic weights (Farahini et al., 2014; Lansner et al.,
2014; Stathis et al., 2020; Yang et al., 2020). The BCPNN learning

rule is amenable to low-precision implementation (Vogginger
et al., 2015), and the cortical memory models have proven quite
robust and tolerant to external as well as to intrinsic noise

Frontiers in Neuroscience | www.frontiersin.org 4 December 2021 | Volume 15 | Article 750458187

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

and imprecision in weights and unit biases. Therefore, it is a
highly scalable, modular, and hardware-friendly neuromorphic
architecture with the potential for compact and low-power digital
or mixed-signal design.

2.2. The Memristor
The memristor was predicted as a fourth fundamental circuit
element following the resistor, capacitor, and inductor by
Chua (1971). In 2008, HP Labs demonstrated and fabricated
a memristor for the first time (Strukov et al., 2008). The HP
Memristor was based on a nanoscale TiO2 thin film, with a
doped region and an undoped region, as shown in Figure 3A.
The total resistance of the device is determined by the variable
resistances of these two regions. When an external bias voltage is
applied across the device, the charged dopants will drift, moving
the boundary between the two regions. The HP memristor
produces rich hysteretic current-voltage behavior, which can
be observed in many nanoscale electronic devices. However,
in nanoscale devices, a small voltage can yield enormous
electric fields, secondarily producing significant non-linearities
in ionic transport, which is called the non-linear dopant drift
phenomenon. This phenomenon can be represented with a
window function model, as shown in Figure 3B.

The memristor has many characteristics that can be utilized
in a variety of applications. To begin with, as suggested by its
name, a memristive device remembers the charge that passes
through it rather than storing the charge so that the memristor is
nonvolatile. What is more, the memristor device can store multi-
valued rather than binary values. The ability to represent multi-
bit values stems from the memristor’s ability to have multiple
intermediate points in its transfer curve. The transfer curve, with
its hysteretic behavior and ability to represent multiple values,
resembles biological synapses. This is the reason for memristors
attracting attention as ideal building blocks for neuromorphic
structures. The ability to remember multi-valued quantities in
response to voltages applied to its terminals mimics analog
computation. This in-situ computation has also been exploited
to build general-purpose computers (Zidan et al., 2018), content
addressable memory (Li et al., 2020a), and to implement neural
networks, both spiking and non-spiking, as discussed next.

For both non-spiking artificial neural networks and spiking
neural networks, the core operation is to reinforce or weaken
the synaptic weights. The algorithms used for deciding the time,
magnitude, and sign of reinforcement vary from one algorithm to
another. The commonality is in applying appropriate voltages for
an appropriate duration to the two terminals of the memristors.

In the ANN space, several memristor-based ANNs have been
studied and implemented. A single-layer perceptron (Prezioso
et al., 2015) was constructed based on transistor-free metal-
oxide memristor crossbars, performing the perfect classification
of images. The feasibility of a three-layer fully connected
neural network on MNIST and a 13-layer Convolutional Neural
Network (CNN) on CIFAR-10 using the flexible memristor are
studied and evaluated (Xu et al., 2018). A five-layer memristor-
based CNN (Yao et al., 2020) was demonstrated to perform
image recognition on MNIST, achieving an accuracy of over
96%. It is worth noting that it is challenging to take in-situ

training on memristor-based ANNs due to non-ideal device
characteristics. Prezioso’s work takes in-situ learning with a
simple learning rule called the Manhattan update rule. In Yao’s
work, a hybrid-training method is taken to compensate for
existing device imperfections.

In-situ computation in memristors has also been widely
studied for spiking neural networks. A supervised learning
model (Nishitani et al., 2015) that enables error backpropagation
for spiking neural network hardware was proposed, and the
memristor was employed as an electric synapse to store the
analog synaptic weight in the circuit. An all-memristor stochastic
SNN architecture (Wijesinghe et al., 2018) was proposed in
which the inherent stochasticity of nanoscale devices is utilized
to emulate the functionality of a spiking neuron. An area-efficient
memristor SNN for hardware implementation (Zhou et al., 2019)
was presented based on the modified SpikeProp-like supervised
learning algorithm. An STDP-based SNN (Zhao et al., 2020) was
proposed to achieve the mechanism of lateral inhibition and
homeostasis by memristor-based inhibitory synapses. A novel
memristive synapse model based on the HP memristor was
proposed, and a spiking neural network hardware fragment was
constructed (Huang et al., 2021).

However, the majority of the state-of-the-art memristor-based
SNNs are limited in scale and employ simple learning rules such
as STDP. Compared with small-scale SNNs using STDP, the
BCPNN learning rule is more complex, and its computational
structure is modular and cascaded. This paper exploits the non-
linearity of the memristor and elaborates how in-situ analog
computation in thememristor has been utilized to implement the
BCPNN learning rule.

3. A MEMRISTOR-BASED BCPNN
LEARNING RULE

3.1. BCPNN Model
The BCPNN learning rule has been depicted with ordinary
differential equations, representing the update process of Z, E, P
traces. To facilitate the hardware implementation, the ordinary
differential equations (1,2,3) are further transformed to equations
(6,7,8), respectively, with Euler’s method, as shown below:

Zi(t) = Zi(t − 1)× (1− kzi)+ Si(t − 1)× kzi

Zj(t) = Zj(t − 1)× (1− kzj)+ Sj(t − 1)× kzj
(6)

Ei(t) = Ei(t − 1)× (1− ke)+ Zi(t − 1)× ke

Ej(t) = Ej(t − 1)× (1− ke)+ Zj(t − 1)× ke

Eij(t) = Eij(t − 1)× (1− ke)+ Zi(t − 1)× Zj(t − 1)× ke
(7)

Pi(t) = Pi(t − 1)× (1− kp)+ Ei(t − 1)× kp

Pj(t) = Pj(t − 1)× (1− kp)+ Ej(t − 1)× kp

Pij(t) = Pij(t − 1)× (1− kp)+ Eij(t − 1)× kp

(8)

where,

kzi =
dt
τzi

kzj =
dt
τzj

ke = dt
τe

kp =
dt
τp

· κ (9)

Frontiers in Neuroscience | www.frontiersin.org 5 December 2021 | Volume 15 | Article 750458188

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

FIGURE 3 | (A) The HP model. (B) The window function.

The current values of Z, E, and P traces are all calculated from
their previous values. The kzi, kzj, ke and kp are all constants.
The simplified equation (4) can be transformed to equation (10)
in the same manner, as follows:

Pi(t) = Pi(t − 1)× (1− kp)+ Zi(t − 1)× kp

Pj(t) = Pj(t − 1)× (1− kp)+ Zj(t − 1)× kp

Pij(t) = Pij(t − 1)× (1− kp)+ Zi(t − 1)× Zj(t − 1)× kp
(10)

It should be noted that we do not consider the E trace in this
work to facilitate hardware implementation. Therefore, we adopt
simplified equation (10), whose update process and curve of
traces can be seen in Figure 2B.

3.2. The Memristor Model
In 2008, HP Labs proposed the linear model of a memristor
(Strukov et al., 2008). Following the HP model, a variety of
memristor models have been devised, such as the non-linear
ion drift model (Yang et al., 2008), Simmons Tunnel Barrier
Model (Pickett et al., 2009), the TEAM model (Kvatinsky et al.,
2013) and the VTEAM model (Kvatinsky et al., 2015). To
emulate the non-linear dopant drift phenomenon, the window
function is introduced as an essential part of a memristor model,
and dozens of window functions have been proposed so far.
However, most window functions are facing one or more of the
following problems: the boundary effect, the boundary lock, and
inflexibility (Xu et al., 2021). Joglekar’s window function (Joglekar
and Wolf, 2009) considers the boundary effect but suffers from
the boundary lock problem. Biolek’s window function (Biolek
et al., 2009) takes the current direction into account to solve
the boundary lock issue, but its parameter setting is not flexible
enough. Recently, Li’s window function (Li et al., 2020b) is
proposed to consider all three issues. However, Li’s window
function is complex, and its expression is associated with six
controlling parameters, which may increase the effort required
for simulation. The window function that we proposed in Xu
et al. (2021) is introduced to address this problem, which is both
flexible and concise.

The VTEAM model is adopted for this work because of
the following advantages: 1) the VTEAM model has a good
fitting effect for the nonlinear bipolar physical memristor

devices that we are concerned with (Johnson et al., 2010;
Chanthbouala et al., 2012; Li et al., 2018); 2) thismemristormodel
is voltage-controlled, and the threshold voltage phenomenon
has been observed in many physical devices; 3) the VTEAM
model is compatible with many window functions, which
demonstrates great flexibility to simulate the non-linear dopant
drift phenomenon. Besides, the window function that we
proposed in Xu et al. (2021) is used in this work due to its
flexibility and simplicity.

The VTEAMmodel is shown as follows:

dw(t)

dt
=

koff · (
v(t)
voff

− 1)
αoff

· f (x(t)), 0 < voff < v

0, von < v < voff

kon · (
v(t)
von

− 1)
αon

· f (x(t)), v < von < 0

(11)

x(t) =
w(t)

W
(12)

R(t) = Ron + (Roff − Ron) · x(t) (13)

v(t) = R(t) · i(t) (14)

where w(t) is an internal state variable in [0, W], W is the
maximum value of w(t), x(t) is an internal state variable in [0, 1],
f (x) is the proposed window function, v(t) is the voltage across
the memristor, i(t) is the current passing through the memristor,
R(t) is the resistance of the memristor, and t is the time. The
parameters von and voff are threshold voltages, Ron and Roff are
the corresponding resistances of the memristor when w(t) is
0 and W, respectively. The parameters kon, koff, αon and αoff

are constants.
The proposed window function is provided as below:

f (x) = j[sgn(−i) · (x− 1)+ stp(−i)]p

sgn(i) =

{
1, i ≥ 0
−1, i < 0

stp(i) =

{
1, i ≥ 0
0, i < 0

(15)

where i is the memristor current, and j and p are two tuning
parameters. The memristor current i is positive when the internal

Frontiers in Neuroscience | www.frontiersin.org 6 December 2021 | Volume 15 | Article 750458189

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

FIGURE 4 | Similarity between the BCPNN trace and the memristor nonlinearity: (A) The curve of Z trace. (B) The curve of resistance of the Ferroelectrc memristor.

(C) The curve of resistance of the NiO-based memristor.

FIGURE 5 | The basic memristor-based architecture for the BCPNN learning rule.

FIGURE 6 | The memristor-based architecture for an HCU with a configuration of 6× 6.

state x is moving toward 1. The parameter j determines the

magnitude, and the parameter p controls the decrease rate of

the window function when approaching the boundaries. When

p approaches 0, the non-linearity is weakened.

3.3. Similarity Between BCPNN Synaptic
Traces and the Memristor Non-linearity
To explore the similarity of the BCPNN traces and the
memristor non-linearity, the curve of the BCPNN trace (take

Frontiers in Neuroscience | www.frontiersin.org 7 December 2021 | Volume 15 | Article 750458190

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

FIGURE 7 | (A) The diagram of the sample-and-hold circuit. (B) The switch between the sampling state and the holding state, controlled by switches S1, S2, and S3.

FIGURE 8 | (A) The diagram of the multiplication circuit. (B) The diagram of the logarithmic circuit.

Z trace as an example) and the curves of the resistances of
two physical memristor devices are depicted in Figure 4.
As shown in Figure 4A, the Z trace of BCPNN increases
when there is a spike and decreases when there is no
spike. While Figures 4B,C show that the resistances of
the ferroelectric memristor (Chanthbouala et al., 2012) and

the NiO-based memristor (Li et al., 2018) both increase
when a positive voltage is applied and decrease when a
negative voltage is applied. Therefore, a similarity can
be found from Figure 4 that both the BCPNN trace
and the resistance of memristor change in a similar
non-linear manner.

Frontiers in Neuroscience | www.frontiersin.org 8 December 2021 | Volume 15 | Article 750458191

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

To further analyze the similarity between the BCPNN traces
and the memristor non-linearity, their respective formulas are
listed and compared. Take the Z trace of BCPNN as an example,
when there is a spike or not, the formula of the Z trace is
as follows:

S = 1 : Z(t) = A · Z(t − 1)+ B

S = 0 : Z(t) = A · Z(t − 1)
(16)

Correspondingly, when the voltage is positive or negative, the
formula for the internal state variable of the memristor is
as follows:

vpositive : w(t) = C · w(t − 1)+ D

vnegative : w(t) = E · w(t − 1)
(17)

where A, B, C, D and E are all constants expressed as:

{
A = 1− kz

B = kz

C = 1− dt · koff
W · (v(t)voff

− 1)
αoff

D = dt · koff · (
v(t)
voff

− 1)
αoff

E = 1+ dt · kon
W · (v(t)von

− 1)
αon

(18)

Comparing formulas (16) and (17), a significant similarity can
be observed, which also demonstrates the similarity between
BCPNN traces and memristor non-linearity. Consequently, it is
inspired that the non-linearity dopant drift phenomenon found
in the memristor can be utilized to simulate the traces in the
BCPNN learning rule.

4. MEMRISTOR-BASED ARCHITECTURE
AND IMPLEMENTATION

4.1. Memristor-Based Architecture
The BCPNN learning rule involves the update of synaptic traces,
the bias, and the weight. Figure 5 presents the basic memristor-
based architecture for the BCPNN learning rule. In the basic
structure, five memristors are used to mimic the traces Zi, Zj,
Pi, Pj, and Pij respectively, and a multiplication circuit is used to
calculate the product of Zi and Zj. Besides, five sample-and-hold
circuits are used to provide the converted voltage input for the
memristors, and three logarithmic circuits are used to calculate
the weight wij and the bias βj. The circuit design of the sample-
and-hold circuit, logarithmic circuit, and the multiplication
circuit will be explained in section 4.2.

As illustrated in Figure 5, the incoming presynaptic spike Si
is filtered into the Zi trace through a sample-and-hold circuit.
Then the Zi trace is further filtered into the Pi trace with the
same sample-and-hold circuit. Similarly, the postsynaptic spike
Sj is first filtered into the Zj trace, and then the Zj trace is filtered
into the Pj trace, both via a sample-and-hold circuit. Besides, the
Zi, Zj traces are multiplied with each other, and then the obtained
Zi × Zj is filtered into the Pij through a sample-and-hold circuit.
Last but not least, the Pij, together with the Pi and Pj is used
to calculate the weight Wij through a logarithmic circuit. The
Pj trace is calculated through a logarithmic circuit to obtain the
value of bias βj. It should be noted that although the E trace is

TABLE 1 | Parameters for the Simulations.

Parameters Value Parameters Value

BCPNN Model

kzi 1/11 kzj 1/11

kp 1/500 ε 0.01

Memristor Model

p 1 j 1

αoff 1 αon 1

voff 0.02 V von –0.02 V

Roff 200 k� Ron 2 k�

koff 21 nm/s kon –28 nm/s

W 1 nm winit 0 nm

dt 1 ms

removed in this work, it could be added without any issue by
adding another level in the cascade if the E trace is needed.

What’s more, the basic memristor-based architecture
described above can be reused and scaled to build a memristor-
based HCU that includes more synaptic traces. As a typical
case for demonstration, Figure 6 presents the memristor-based
architecture for an HCU with a 6 × 6 configuration. The HCU
contains a presynaptic vector of length 6, a postsynaptic vector
of length 6, and a synaptic matrix of size 6× 6.

It should be noted that the intention of Figure 6 is to illustrate
the scalability of the basic architecture in Figure 5. In this work,
we focus on simulating and implementing the basic memristor-
based architecture for the BCPNN learning rule in Figure 5.

4.2. Analog Circuit Implementation
4.2.1. Pre- and Post-synaptic Trace
The spike-based BCPNN is implemented with local synaptic state
variables Zi, Zj, Pi, Pj and Pij, which keep track of presynaptic,
postsynaptic and synaptic activities. The implementation of pre-
and post-synaptic trace Zi, Zj, Pi, Pj can be divided into two
cascaded processing stages. In the first stage, the incoming pre-
and post-synaptic spike trains Si, Sj are low pass filtered into the
Zi, Zj traces, with time constants τzi and τzj. In the second stage,
the Zi, Zj traces are low pass filtered into the Pi, Pj traces with time
constant τp. To implement the above two cascaded processing
stages, two sample-and-hold circuits are cascaded in the analog
circuit implementation. Figure 7A presents the diagram of the
sample-and-hold circuit. The voltage input is used to represent
the incoming spike trains Si, Sj. The input spike is either 0 or 1,
while the voltage input is either excitatory 193.2 mV or inhibitory
–149.9 mV. The input of the current source is constant, which is
used to transform the resistance of the memristor into a voltage
value. Switches S1, S2, S3 are used to control the switch between
the sampling state and the holding state. Three capacitors C1, C2,
C3, are used to store voltage. Besides, an operational amplifier is
utilized to amplify the voltage value.

Figure 7B illustrates the switch between the sampling state
and the holding state. When switches S1, S3 are on and switch
S2 is off, the circuit is in the sampling state. The constant current

Frontiers in Neuroscience | www.frontiersin.org 9 December 2021 | Volume 15 | Article 750458192

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

FIGURE 9 | Matlab simulation results with dense or sparse incoming spikes. (A) Dense Spikes: 5-s simulation. (B) Dense Spikes: 1-s simulation. (C) Sparse Spikes:

presynaptic spike train Si overlaps with postsynaptic spike train Sj . (D) Sparse Spikes: presynaptic spike train Si is seperated with postsynaptic spike train Sj .

of the current source passes through the memristor to obtain the
voltage, which is stored in capacitor C1. Since switch S3 is on,
the voltage stored in capacitor C2 is equal to the voltage stored
in capacitor C1. Therefore, the resistance of the memristor is
converted into the corresponding voltage value, and the voltage
value is stored in the capacitor C2, thus completing a sampling

process. When switch S2 is on and switches S1, S3 are off, the left
part of the circuit is responsible for the update of synaptic traces,
and the right part of the circuit is in the holding state. The voltage
source is the input excitation of the memristor, thereby changing
the resistance of the memristor. At the same time, the sampled
voltage stored in the capacitor C2 is amplified by the operational

Frontiers in Neuroscience | www.frontiersin.org 10 December 2021 | Volume 15 | Article 750458193

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

amplifier, and the obtained voltage is stored in the capacitor C3
as the input voltage of the next-stage circuit. Similarly, the second
stage adopts the same circuit, and the only difference is that the
voltage input of the second circuit is the output of the first circuit
rather than a voltage source.

4.2.2. Synaptic Trace Pij
The pre- and postsynaptic traces Zi, Zj, Pi, Pj can be obtained
with the mentioned sample-and-hold circuit. However, to get
the value of synaptic trace Pij, an extra multiplier is required to
calculate the product of Zi and Zj, as illustrated in formula (10).

As shown in Figure 8A, the multiplication circuit is based
on the classic Gilbert cell. The resistance of the two resistors
are both 10k�. The aspect ratios W/L for M1, M2, M3, M4
are 1µm/0.18µm, while the aspect ratios W/L for M5, M6 are
2µm/0.18µm. Besides, the bias voltage Vdc for Zi and Zj are 1.5
v and 1.3 v respectively.

4.2.3. Weight and Bias Computation
The three P traces Pi, Pj, Pij represent the exponentially weighted
moving averages of firing probability for presynaptic spikes,
postsynaptic spikes, and spike co-activation respectively, which
are used to compute the weight wij and the bias βj. The
calculation formula (5) for wij and βj can be further rewritten as:

Wij = log(Pij + ε2)− log(Pi + ε)− log(Pj + ε)

βj = log(Pj + ε)
(19)

The key to the calculation of wij and βj lies in the logarithmic
calculation of the sum of P trace and the constant ε, as shown
in formula (19). Therefore, a logarithmic calculation circuit is
required. As shown in Figure 8B, the sampling voltage of P trace
(Pi, Pj, Pij) is added with the constant parameter ε, then the sum
is logarithmically calculated through a triode and an operational
amplifier. Using such a circuit, the bias βj can be obtained with
an input pair of Pi and ε. Similarly, using three such circuits,
whose input pairs are Pij and ε2, Pi and ε, Pj and ε respectively,
the results of the three circuits can be used to get the value of
weight wij.

5. EXPERIMENTAL RESULTS

In this section, we conduct simulations to verify the feasibility
of the memristor-based implementation for the BCPNN learning
rule at both the algorithm level and the circuit level. From the
algorithmic perspective, we conducted simulations in Matlab.
From the circuit-level perspective, we conducted SPICE-level
simulations. The typical values of the parameters used in the
simulations are shown inTable 1, including the parameters of the
BCPNN model and the memristor model.

5.1. Matlab Simulation Results
To verify the effectiveness of the memristor-based solution for
the BCPNN learning rule from an algorithmic perspective, a
simulation of the Z traces, P traces, the weight wij, and the bias
βj is conducted using a model of the memristor device in Matlab.
In the simulation, the results of the memristor-based solution

TABLE 2 | Five-second simulation results with dense spikes in matlab.

Trace Mean error Max error RMSE Correlation coefficient

Zi 0.0000 0.0000 0.0000 1.0000

Zj 0.0000 0.0000 0.0000 1.0000

Pi 0.0015 0.0064 0.0019 0.9961

Pj 0.0013 0.0045 0.0015 0.9973

Pij 0.0001 0.0008 0.0002 0.9984

wij 0.0418 1.4643 0.0862 0.9972

βj 0.0408 0.2795 0.0489 0.9979

are compared with those of the BCPNN reference model. The
simulation lasts for 5 s with a simulation step of 1 ms, which is
the simulation step in BCPNN.

In Figure 9 and Table 2, the simulation results are visualized
and analyzed. Figure 9A presents the memristor-based 5-s
Matlab simulation results with dense incoming spikes. To take a
closer look at the difference between the memristor-based results
and the reference model of BCPNN, the period from 0 to 1 s in
Figure 9A has been enlarged, as shown in Figure 9B. With the
same incoming pre- and post-synaptic spikes, the Z traces (Zi,
Zj) of the memristor-based solution are the same as those of the
BCPNN model. Therefore, in the Z traces part, the Zi, Zj curves
of the two models completely coincide. As for the P traces (Pi, Pj,
Pij), the weight wij and the bias βj, the curves of the two models
are not the same but very close. In particular, simulations with
sparse spikes are carried out to observe the change of the weight
in the long-lasting silent state. When the presynaptic spike train
Si overlaps with the postsynaptic spike train Sj, the weight rises
and finally decays to 0 in the long-lasting silent state, as shown
in Figure 9C. Similarly, when the presynaptic spike train Si is
separated from the postsynaptic spike train Sj, the weight drops
and gradually returns to 0 in a long-lasting silent state, as shown
in Figure 9D. In the analysis of the simulation results, the average
error, maximum error, Root Mean Square Error (RMSE), and
correlation coefficient are used as the main evaluation metrics,
as shown in Table 2. Due to the nonlinearity of the memristor,
the memristor-based emulation of the BCPNN learning rule is
accurate with a correlation coefficient of over 0.99.

5.2. SPICE Simulation Results
To further validate the feasibility of the memristor-based design
from a circuit-level perspective, a SPICE-level simulation is
conducted for the analog circuit implementation. In the SPICE
simulation, the cascade circuit in Figure 5 is implemented,
where 5 sample-and-hold circuit modules, 3 logarithmic circuit
modules, and 1multiplication circuit module described in section
4.2 are used. The parameters for the BCPNN model and the
memristor model used in the SPICE simulation are the same
as those used in the Matlab simulation, as shown in Table 1.
It is worth noting that the timestep in the Matlab simulation
is 1 ms, while the timestep in the SPICE simulation is 100 ns
because of the limitation of the timestep for transistors in the
simulation environment.

Frontiers in Neuroscience | www.frontiersin.org 11 December 2021 | Volume 15 | Article 750458194

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

FIGURE 10 | Analog circuit implementation results with dense or sparse incoming spikes. (A) Dense Spikes: 5-s simulation. (B) Dense Spikes: 1-s simulation. (C)

Sparse Spikes: presynaptic spike train Si overlaps with postsynaptic spike train Sj . (D) Sparse Spikes: presynaptic spike train Si is seperated with postsynaptic spike

train Sj .

With the same input of pre- and post-synaptic spikes, the
results of the SPICE-level simulation are compared with those
of the reference model and the error is analyzed. Figure 10A
presents the SPICE simulation results with the same dense
incoming spikes as in theMatlab simulation. Similarly, the period

from 0 to 1 s of the simulation results is magnified to show
more details of the curves, as shown in Figure 10B. Besides,
Figures 10C,D also demonstrates that the weight increases
with a pair of correlated Si and Sj and decreases with a pair
of uncorrelated Si and Sj. In a long-lasting silent state, the

Frontiers in Neuroscience | www.frontiersin.org 12 December 2021 | Volume 15 | Article 750458195

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

weight returns to 0 eventually. As shown in Table 3, the SPICE
simulation results of memristor-based solution demonstrate a
fairly high degree of fit with the reference model of BCPNN,
and a correlation coefficient of over 0.98 is achieved. All in all,
it is validated that the memristor-based solution for BCPNN can
achieve a high degree of fit with the reference BCPNN model in
the analog circuit implementation.

6. DISCUSSION

In this paper, the BCPNN learning rule is mapped to a
memristor model and implemented with a memristor-based
architecture. The similarity between the nonlinearity of the
memristor and the trace update rule of BCPNN is explored
and analyzed. The strong correlation between the simulated
memristor-based BCPNN traces and the reference BCPNN traces
has been validated in the Matlab simulation with a correlation
coefficient over 0.99. Moreover, the analog circuit design of the
memristor-based architecture is implemented, and the SPICE-
level implementation for the BCPNN learning rule can achieve a
decent emulation effect with a correlation coefficient of over 0.98.

6.1. Cumulative Error Analysis
The cumulative error of the memristor-based implementation
can be analyzed from three aspects: the BCPNN algorithm, the
memristor-based solution for BCPNN, and the analog circuit
implementation. Firstly, as described before, BCPNN employs a
correlation-based learning rule, which is robust and tolerant to
the intrinsic noise and imprecision. BCPNN has proven to be
able to function using lower precision (Vogginger et al., 2015).
Secondly, as shown in Table 2, the memristor-based solution for
the BCPNN learning rule presents a good simulation effect with
the reference model. Moreover, it can be seen from Figure 9 that
the simulation effect does not deteriorate with the increasing
simulation time, which means that there is no significant increase
of cumulative error. Thirdly, the same is true for the analog
circuit implementation, as can be seen in Figure 10 and Table 3.
Therefore, the cumulative error will not affect the stability of the
memristor-based implementation for the BCPNN learning rule.

6.2. Setting of the Parameter ε

In the BCPNN model, the setting of the parameter ε has an
impact on the performance of BCPNN-based tasks, as shown
in Figure 11. With ε less than 0.001, good performance was
achieved in an associative memory task and a standard machine
learning classification benchmark (MNIST, LeCun et al., 1998).
With ε equal to 0.01, the associative memory task still maintained
good performance, but the performance in the MNIST task
dropped a lot. For the experiments in section 5, the parameter
ε was set to be 0.01, due to the limitation of the resolution of the
logarithmic circuit. Later work will seek a higher-precision analog
logarithmic circuit design or adopt digital methods to implement
the logarithmic calculation of weight. In this way, the value of
ε can be set to be less than 0.001, which can likely meet the
requirement of most BCPNN-based tasks.

It should be noted that the intention of Figure 11 is to
analyze the impact of the value of ε (a parameter in the BCPNN

TABLE 3 | Analog circuit implementation results of 5-s simulation with dense

spikes.

Trace Mean error Max error RMSE Correlation coefficient

Zi 0.0046 0.0909 0.0147 0.9830

Zj 0.0041 0.0909 0.0138 0.9830

Pi 0.0014 0.0067 0.0018 0.9965

Pj 0.0012 0.0056 0.0015 0.9974

Pij 0.0001 0.0011 0.0002 0.9981

wij 0.0432 1.5765 0.1003 0.9957

βj 0.0483 0.3733 0.0631 0.9971

FIGURE 11 | Software simulation of the impact of ε on BCPNN performance

in associative memory (AM) storage capacity and handwritten digit recognition

(MNIST). For AM, a network configuration of H×M = 20× 20 was tested for

storage of 400 patterns. For MNIST, all 10,000 test patterns were used.

learning rule) on the BCPNN performance from the perspective
of software simulation. For the details about the working
mechanism of the whole BCPNNnetwork and how it implements
associative memory tasks and practical recognition functions like
MNIST classification, these works can be referred to (Johansson
and Lansner, 2007; Meli and Lansner, 2013; Ravichandran
et al., 2020, 2021a). The realization of the whole memristor-
based BCPNN network and the algorithmic benchmarking is
outside the scope of this paper and is what we plan to do in
follow-up work.

6.3. Consideration of Device Variation
In this paper, we focus on mapping the BCPNN learning rule
to a memristor model and validating the feasibility of the
memristor-based implementation at the algorithm and circuit
level. However, in reality, memristor-based structures suffer from
device variations due to process variation and age degradation.
These two factors lead to two different types of variations in
the memristors devices (Park et al., 2013; Le et al., 2018). The
first is spatial variations, where different devices in the crossbar
react differently to the applied voltage, i.e., identical voltage pulse

Frontiers in Neuroscience | www.frontiersin.org 13 December 2021 | Volume 15 | Article 750458196

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

can drive different devices to different resistances. The second is
temporal variations, where the behavior of the same device will
change over time. Neural networks can adapt to such variations
by taking them into account during the training of the network.
This method has been used in deep neural networks (Long
et al., 2019) and spiking neural networks (Querlioz et al., 2013).
The authors in Querlioz et al. (2013) identify non-supervised
learning as one of the fundamental benefits of the STDP learning
rule that helps when dealing with device variations. Previous
work indicates that the BCPNN learning rule is amenable to
low-precision implementation (Vogginger et al., 2015), and the
cortical memory models have proven quite robust and tolerant
to external as well as to intrinsic noise and imprecision in
weights and unit biases. In the follow-up work, we will focus
on the non-idealities of memristors and study to what extent
BCPNN’s robustness can absorb the non-idealities and what
other measures could be needed to cope with the non-idealities.

7. FUTURE WORK

As a follow-up to this paper, we plan to rigorously address the
issue of nonidealities in memristors. Specifically, its variance in
both space and time. We plan to quantify the extent to which
BCPNN’s robustness can cope with the variances and if that is not
sufficient, we will study how the behavior diverges and use these
experiments to devise techniques to counter the nonidealities.

Next to addressing nonidealities, the aspect on our priority
list is to make the implementation more complete. This
would involve implementing the control logic in CMOS, data
converters, drive circuits, etc. It is also obvious, a large stack
of memristor devices cannot be driven by single drivers. For
this reason, we plan to experiment with and find out fragments
of memristor fabrics that can be stacked with scalable drive
circuits. Besides the above, we might also need to implement
compensation logic to deal with nonidealities in the spirit
of pre-distortion.

Having a good grip on nonidealities and more complete
implementation, we will then be in a position to have a fair
comparison of performance and energy efficiency between a
memristor-based implementation of BCPNN and pure digital

implementations that we have been experimenting with (Stathis
et al., 2020; Yang et al., 2020). Besides providing realistic
comparison, such an experiment will also provide us with inputs
to create a more optimized implementation.

Designing memristor-based systems, at present, is a circuit-
level effort. This is cumbersome and not accessible to everyone.
We plan to develop, a Lego-inspired design flow called SiLago
(Hemani et al., 2017), to enable automation of memristor-based
designs from higher abstractions. Some work toward building
such infrastructure has happened for CMOS-based conventional
digital designs (Gonzalez et al., 2021; Hemani et al., 2021). We
plan to enhance this for the memristors.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

The initial idea proposed in the manuscript came from DS,
AL, and AH. DW performed experiments and was responsible
for the manuscript writing. JX proposed the methodology and
guided the overall experimental design. LZ and FL contributed
in the SPICE and Matlab simulations. ZZ provided supervision
on DW, JX, and FL’s work. AL, AH, DS, YY, PH, and ZZ
helped with the refinement of this work and the revision of the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This work was supported in part by the National Natural Science
Foundation of China under Grant 61876039 and 62011530132
(NSFC-STINT project), and Shanghai Municipal Science and
Technology Major Project No. 2021SHZDZX0103 and No.
2018SHZDZX01, and in part by the Shanghai Platform for
Neuromorphic and AI Chip under Grant 17DZ2260900. In part,
this work was financed by themobility grant from STINT Sweden
Dnr: CH2019-8357.

REFERENCES

Biolek, Z., Biolek, D., and Biolkova, V. (2009). SPICE model of

memristor with nonlinear dopant drift. Radioengineering 18, 201–214.

doi: 10.1049/el.2010.0358

Chanthbouala, A., Garcia, V., Cherifi, R. O., Bouzehouane, K., Fusil, S.,

Moya, X., et al. (2012). A ferroelectric memristor. Nat. Mater. 11, 860–864.

doi: 10.1038/nmat3415

Chrysanthidis, N., Fiebig, F., Lansner, A., and Herman, P. (2021). Traces of

semantization-from episodic to semantic memory in a spiking cortical network

model. bioRxiv. doi: 10.1101/2021.07.18.452769

Chua, L. (1971). Memristor-The missing circuit element. IEEE Trans. Circ. Theory

18, 507–519. doi: 10.1109/TCT.1971.1083337

Ciregan, D., Meier, U., and Schmidhuber, J. (2012). “Multi-column deep neural

networks for image classification,” in 2012 IEEE Conference on Computer Vision

and Pattern Recognition (Providence, RI: IEEE), 3642–3649.

DeFelipe, J., Ballesteros-Yá nez, I., Inda, M. C., and Mu noz, A. (2006).

Double-bouquet cells in the monkey and human cerebral cortex with

special reference to areas 17 and 18. Prog. Brain Res. 154, 15–32.

doi: 10.1016/S0079-6123(06)54002-6

Farahini, N., Hemani, A., Lansner, A., Clermidy, F., and Svensson, C. (2014). “A

scalable custom simulation machine for the Bayesian confidence propagation

neural network model of the brain,” in 2014 19th Asia and South Pacific Design

Automation Conference (ASP-DAC) (Singapore: IEEE), 578–585.

Fiebig, F., Herman, P., and Lansner, A. (2020). An indexing theory for

working memory based on fast hebbian plasticity. eNeuro 7, 1–22.

doi: 10.1523/ENEURO.0374-19.2020

Fiebig, F., and Lansner, A. (2017). A spiking working memory model

based on Hebbian short-term potentiation. J. Neurosci. 37, 83–96.

doi: 10.1523/JNEUROSCI.1989-16.2016

Gonzalez, J. A., Hemani, A., and Stathis, D. (2021). “Synthesis of predictable

global NoC by abutment in synchoros VLSI design,” in Proceedings 15th

Frontiers in Neuroscience | www.frontiersin.org 14 December 2021 | Volume 15 | Article 750458197

https://doi.org/10.1049/el.2010.0358
https://doi.org/10.1038/nmat3415
https://doi.org/10.1101/2021.07.18.452769
https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.1016/S0079-6123(06)54002-6
https://doi.org/10.1523/ENEURO.0374-19.2020
https://doi.org/10.1523/JNEUROSCI.1989-16.2016
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

IEEE/ACM International Symposium on Networks-on-Chip – NOCS 2021

(Virtual Conference).

Hemani, A., Jafri, S. M. A. H., and Masoumian, S. (2017). “Synchoricity and

NOCs could make billion gate custom hardware centric SOCs affordable,” in

Proceedings2017 Eleventh IEEE/ACM International Symposium on Networks-

on-Chip (NOCS) (Seoul), 1–10.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-,r., Jaitly, N., et al.

(2012). Deep neural networks for acoustic modeling in speech recognition:

the shared views of four research groups. IEEE Signal Process Mag. 29, 82–97.

doi: 10.1109/MSP.2012.2205597

Huang, Y., Liu, J., Harkin, J., McDaid, L., and Luo, Y. (2021). An memristor-

based synapse implementation using BCM learning rule. Neurocomputing 423,

336–342. doi: 10.1016/j.neucom.2020.10.106

Hubel, D. H., andWiesel, T. N. (1977). The functional architecture of the macaque

visual cortex. Ferrier Lect. 198, 1–59. doi: 10.1098/rspb.1977.0085

Joglekar, Y. N., and Wolf, S. J. (2009). The elusive memristor: properties of basic

electrical circuits. Eur. J. Phys. 30, 661–675. doi: 10.1088/0143-0807/30/4/001

Johansson, C., and Lansner, A. (2007). Towards cortex sized artificial neural

systems. Neural Netw. 20, 48–61. doi: 10.1016/j.neunet.2006.05.029

Johnson, S., Sundararajan, A., Hunley, D., and Strachan, D. (2010). Memristive

switching of single-component metallic nanowires.Nanotechnology 21, 125204.

doi: 10.1088/0957-4484/21/12/125204

Kvatinsky, S., Friedman, E. G., Kolodny, A., and Weiser, U. C. (2013). TEAM:

ThrEshold adaptive memristor model. IEEE Trans. Circ. Syst. I Regul. Pap. 60,

211–221. doi: 10.1109/TCSI.2012.2215714

Kvatinsky, S., Ramadan, M., Friedman, E. G., and Kolodny, A. (2015). VTEAM:

a general model for voltage-controlled memristors. IEEE Trans. Circ. Syst. II

Express Briefs 62, 786–790. doi: 10.1109/TCSII.2015.2433536

Lansner, A., and Ekeberg, Ö. (1989). A one-layer feedback artificial neural

network with a Bayesian learning rule. Int. J. Neural Syst. 1, 77–87.

doi: 10.1142/S0129065789000499

Lansner, A., Hemani, A., and Farahini, N. (2014). “Spiking brain models:

computation, memory and communication constraints for custom hardware

implementation,” in 2014 19th Asia and South Pacific Design Automation

Conference (ASP-DAC) (Singapore), 556–562.

Lansner, A., and Holst, A. (1996). A higher order Bayesian neural network with

spiking units. Int. J. Neural Syst. 7, 115–128. doi: 10.1142/S0129065796000816

Le, B. Q., Grossi, A., Vianello, E., Wu, T., Lama, G., Beigne, E.,

et al. (2018). Resistive RAM with multiple bits per cell: array-level

demonstration of 3 bits per cell. IEEE Trans. Electron. Devices 66, 641–646.

doi: 10.1109/TED.2018.2879788

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Li, C., Graves, C. E., Sheng, X., Miller, D., Foltin, M., Pedretti, G., et al. (2020a).

Analog content-addressable memories with memristors. Nat. Commun. 11,

1–8. doi: 10.1038/s41467-020-15254-4

Li, J., Dong, Z., Luo, L., Duan, S., and Wang, L. (2020b). A novel versatile window

function for memristor model with application in spiking neural network.

Neurocomputing 405, 239–246. doi: 10.1016/j.neucom.2020.04.111

Li, Y., Chu, J., Duan, W., Cai, G., Fan, X., Wang, X., et al. (2018). Analog

and digital bipolar resistive switching in solution-combustion-processed nio

memristor. ACS Appl. Mater. Interfaces 10, 24598–24606. doi: 10.1021/acsami.

8b05749

Long, Y., She, X., and Mukhopadhyay, S. (2019). “Design of reliable DNN

accelerator with un-reliable ReRAM,” in 2019 Design, Automation Test in

Europe Conference Exhibition (DATE) (Florence: IEEE), 1769–1774.

Lundqvist, M., Herman, P., and Lansner, A. (2011). Theta and gamma power

increases and alpha/beta power decreases with memory load in an attractor

network model. J. Cogn. Neurosci. 23, 3008–3020. doi: 10.1162/jocn_a_00029

Meli, C., and Lansner, A. (2013). A modular attractor associative memory

with patchy connectivity and weight pruning. Network 24, 129–150.

doi: 10.3109/0954898X.2013.859323

Nishitani, Y., Kaneko, Y., and Ueda, M. (2015). Supervised learning using spike-

timing-dependent plasticity of memristive synapses. IEEE Trans. Neural Netw.

Learn. Syst. 26, 2999–3008. doi: 10.1109/TNNLS.2015.2399491

Park, J.-K., Kim, S.-Y., Baek, J.-M., Seo, D.-J., Chun, J.-H., and Kwon, K.-

W. (2013). “Analysis of resistance variations and variance-aware read circuit

for cross-point ReRAM,” in 2013 5th IEEE International Memory Workshop

(Monterey, CA: IEEE), 112–115.

Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J., Snider, G. S., Stewart, D.

R., et al. (2009). Switching dynamics in titanium dioxide memristive devices. J.

Appl. Phys. 106, 074508. doi: 10.1063/1.3236506

Podobas, A., Svedin, M., Chien, S. W., Peng, I. B., Ravichandran, N. B., Herman,

P., et al. (2021). “Streambrain: an hpc framework for brain-like neural networks

on cpus, gpus and fpgas,” in Proceedings of the 11th International Symposium on

Highly Efficient Accelerators and Reconfigurable Technologies, 1–6.

Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G. C., Likharev, K.

K., and Strukov, D. B. (2015). Training and operation of an integrated

neuromorphic network based on metal-oxide memristors. Nature 521, 61–64.

doi: 10.1038/nature14441

Querlioz, D., Bichler, O., Dollfus, P., and Gamrat, C. (2013). Immunity to

device variations in a spiking neural network with memristive nanodevices.

IEEE Trans. Nanotechnol. 12, 288–295. doi: 10.1109/TNANO.2013.22

50995

Ravichandran, N. B., Lansner, A., and Herman, P. (2020). “Learning

representations in bayesian confidence propagation neural networks,” in

2020 International Joint Conference on Neural Networks (IJCNN) (Glasgow:

IEEE), 1–7.

Ravichandran, N. B., Lansner, A., and Herman, P. (2021a). “Brain-like approaches

to unsupervised learning of hidden representations-a comparative study,” in

International Conference on Artificial Neural Networks (Bratislava: Springer),

162–173.

Ravichandran, N. B., Lansner, A., and Herman, P. (2021b). Semi-supervised

learning with bayesian confidence propagation neural network. arXiv

[Preprint] arXiv:2106.15546. doi: 10.14428/esann/2021.ES2021-156

Sandberg, A., Lansner, A., Petersson, K., and Ekeberg. (2002). A Bayesian

attractor network with incremental learning. Network 13, 179–194.

doi: 10.1080/net.13.2.179.194

Stathis, D., Chaourani, P., Jafri, S. M. A. H, and Hemani, A. (2021). “Clock tree

generation by abutment in synchoros VLSI design,” in Proceedings 2021 Nordic

Circuits and Systems Conference (NorCAS) (Oslo).

Stathis, D., Sudarshan, C., Yang, Y., Jung, M., Weis, C., Hemani, A., et al. (2020).

eBrainII: a 3 kW realtime custom 3D DRAM integrated ASIC implementation

of a biologically plausible model of a human scale cortex. J. Signal Process Syst.

92, 1323–1343. doi: 10.1007/s11265-020-01562-x

Strukov, D. B., Snider, G. S., Stewart, D. R., andWilliams, R. S. (2008). The missing

memristor found. Nature 453, 80–83. doi: 10.1038/nature06932

Tully, P. J., Hennig, M. H., and Lansner, A. (2014). Synaptic and nonsynaptic

plasticity approximating probabilistic inference. Front. Synaptic. Neurosci. 6:8.

doi: 10.3389/fnsyn.2014.00008

Vogginger, B., Schüffny, R., Lansner, A., Cederström, L., Partzsch, J., and Höppner,

S. (2015). Reducing the computational footprint for real-time BCPNN learning.

Front. Neurosci. 9:2. doi: 10.3389/fnins.2015.00002

Wijesinghe, P., Ankit, A., Sengupta, A., and Roy, K. (2018). An all-memristor

deep spiking neural computing system: a step toward realizing the low-

power stochastic brain. IEEE Trans. Emerg. Top. Comput. Intell. 2, 345–358.

doi: 10.1109/TETCI.2018.2829924

Xu, J., Huan, Y., Yang, K., Zhan, Y., Zou, Z., and Zheng, L.-R. (2018). Optimized

near-zero quantization method for flexible memristor based neural network.

IEEE Access 6:29320–29331. doi: 10.1109/ACCESS.2018.2839106

Xu, J., Wang, D., Li, F., Zhang, L., Stathis, D., Yang, Y., et al. (2021). “A memristor

model with concise window function for spiking brain-inspired computation,”

in 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and

Systems (AICAS) (Washington DC: IEEE), 1–4.

Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A., Stewart, D. R., and Williams, R. S.

(2008). Memristive switching mechanism for metal/oxide/metal nanodevices.

Nat. Nanotechnol. 3, 429–433. doi: 10.1038/nnano.2008.160

Yang, Y., Stathis, D., Jord ao, R., Hemani, A., and Lansner, A. (2020).

Optimizing BCPNN learning rule for memory access. Front. Neurosci. 14:878.

doi: 10.3389/fnins.2020.00878

Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., et al. (2020). Fully

hardware-implemented memristor convolutional neural network. Nature 577,

641–646. doi: 10.1038/s41586-020-1942-4

Yin, W., Kann, K., Yu, M., and Schütze, H. (2017). Comparative study of CNN and

RNN for natural language processing. arXiv [Preprint] arXiv:1702.01923.

Frontiers in Neuroscience | www.frontiersin.org 15 December 2021 | Volume 15 | Article 750458198

https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1016/j.neucom.2020.10.106
https://doi.org/10.1098/rspb.1977.0085
https://doi.org/10.1088/0143-0807/30/4/001
https://doi.org/10.1016/j.neunet.2006.05.029
https://doi.org/10.1088/0957-4484/21/12/125204
https://doi.org/10.1109/TCSI.2012.2215714
https://doi.org/10.1109/TCSII.2015.2433536
https://doi.org/10.1142/S0129065789000499
https://doi.org/10.1142/S0129065796000816
https://doi.org/10.1109/TED.2018.2879788
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/s41467-020-15254-4
https://doi.org/10.1016/j.neucom.2020.04.111
https://doi.org/10.1021/acsami.8b05749
https://doi.org/10.1162/jocn_a_00029
https://doi.org/10.3109/0954898X.2013.859323
https://doi.org/10.1109/TNNLS.2015.2399491
https://doi.org/10.1063/1.3236506
https://doi.org/10.1038/nature14441
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.14428/esann/2021.ES2021-156
https://doi.org/10.1080/net.13.2.179.194
https://doi.org/10.1007/s11265-020-01562-x
https://doi.org/10.1038/nature06932
https://doi.org/10.3389/fnsyn.2014.00008
https://doi.org/10.3389/fnins.2015.00002
https://doi.org/10.1109/TETCI.2018.2829924
https://doi.org/10.1109/ACCESS.2018.2839106
https://doi.org/10.1038/nnano.2008.160
https://doi.org/10.3389/fnins.2020.00878
https://doi.org/10.1038/s41586-020-1942-4
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

Zhao, Z., Qu, L., Wang, L., Deng, Q., Li, N., Kang, Z., et al. (2020).

A memristor-based spiking neural network with high scalability and

learning efficiency. IEEE Trans. Circ. Syst. II Express Briefs 67, 931–935.

doi: 10.1109/TCSII.2020.2980054

Zhou, E., Fang, L., Liu, R., and Tang, Z. (2019). Area-efficient memristor spiking

neural networks and supervised learning method. Sci. China Inf. Sci. 62, 1–3.

doi: 10.1007/s11432-018-9607-8

Zidan, M. A., Jeong, Y., Lee, J., Chen, B., Huang, S., Kushner, M. J., et al. (2018).

A general memristor-based partial differential equation solver. Nat. Electron. 1,

411–420. doi: 10.1038/s41928-018-0100-6

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Wang, Xu, Stathis, Zhang, Li, Lansner, Hemani, Yang, Herman

and Zou. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 December 2021 | Volume 15 | Article 750458199

https://doi.org/10.1109/TCSII.2020.2980054
https://doi.org/10.1007/s11432-018-9607-8
https://doi.org/10.1038/s41928-018-0100-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 11 April 2022

doi: 10.3389/fnins.2022.775457

Frontiers in Neuroscience | www.frontiersin.org 1 April 2022 | Volume 16 | Article 775457

Edited by:

Irem Boybat,

IBM Research, Switzerland

Reviewed by:

Abhronil Sengupta,

The Pennsylvania State University

(PSU), United States

Deliang Fan,

Arizona State University, United States

*Correspondence:

Daehyun Kim

daehyun.kim@gatech.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 14 September 2021

Accepted: 07 March 2022

Published: 11 April 2022

Citation:

Kim D, Chakraborty B, She X, Lee E,

Kang B and Mukhopadhyay S (2022)

MONETA: A

Processing-In-Memory-Based

Hardware Platform for the Hybrid

Convolutional Spiking Neural Network

With Online Learning.

Front. Neurosci. 16:775457.

doi: 10.3389/fnins.2022.775457

MONETA: A
Processing-In-Memory-Based
Hardware Platform for the Hybrid
Convolutional Spiking Neural
Network With Online Learning
Daehyun Kim*, Biswadeep Chakraborty, Xueyuan She, Edward Lee, Beomseok Kang and

Saibal Mukhopadhyay

Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States

We present a processing-in-memory (PIM)-based hardware platform, referred to as

MONETA, for on-chip acceleration of inference and learning in hybrid convolutional

spiking neural network. MONETA uses 8T static random-access memory (SRAM)-based

PIM cores for vector matrix multiplication (VMM) augmented with spike-time-dependent-

plasticity (STDP) based weight update. The spiking neural network (SNN)-focused data

flow is presented to minimize data movement in MONETA while ensuring learning

accuracy. MONETA supports on-line and on-chip training on PIM architecture. The

STDP-trained convolutional neural network within SNN (ConvSNN) with the proposed

data flow, 4-bit input precision, and 8-bit weight precision shows only 1.63% lower

accuracy in CIFAR-10 compared to the STDP accuracy implemented by the software.

Further, the proposed architecture is used to accelerate a hybrid SNN architecture that

couples off-chip supervised (back propagation through time) and on-chip unsupervised

(STDP) training. We also evaluate the hybrid network architecture with the proposed data

flow. The accuracy of this hybrid network is 10.84% higher than STDP trained accuracy

result and 1.4% higher compared to the backpropagated training-based ConvSNN result

with the CIFAR-10 dataset. Physical design of MONETA in 65 nm complementary metal-

oxide-semiconductor (CMOS) shows 18.69 tera operation per second (TOPS)/W, 7.25

TOPS/W and 10.41 TOPS/W power efficiencies for the inference mode, learning mode,

and hybrid learning mode, respectively.

Keywords: spiking neural network (SNN), processing-in-memory (PIM), convolutional spiking neural network,

on-line learning, on-chip learning, spike-time-dependent plasticity (STDP), AI accelerator, hybrid network

1. INTRODUCTION

Spiking neural network (SNN) (Maass, 1997; Gerstner and Kistler, 2002) with
spike-time-dependent-plasticity (STDP) based unsupervised learning provides a bio-inspired
and energy-efficient alternative to deep learning (Kim et al., 2020; Panda et al., 2020). There is a
growing interest in developing specialized hardware accelerators for SNN (Akopyan et al., 2015;
Buhler et al., 2017; Davies et al., 2018; Chen et al., 2019; Park et al., 2019; Chuang et al., 2020).
However, majority of the prior accelerators focused on fully connected SNN and shallow networks.

200

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.775457
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.775457&domain=pdf&date_stamp=2022-04-11
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:daehyun.kim@gatech.edu
https://doi.org/10.3389/fnins.2022.775457
https://www.frontiersin.org/articles/10.3389/fnins.2022.775457/full

Kim et al. MONETA

Deep Convolutional Neural Network (CNN) architectures
incorporated within SNN, hereafter referred to as ConvSNN,
can improve the accuracy of SNNs for complex problems (Cao
et al., 2015; Tavanaei et al., 2016; Kheradpisheh et al., 2018;
Lee et al., 2019). As the complexity of ConvSNN increases,
deep ConvSNN requires more synaptic weights and generates
larger input/output feature maps, all of which can increase data
movement. Processing-in-memory (PIM) has emerged as a key
approach to reduce data movement and enhance the energy
efficiency of CNNs (Chi et al., 2016; Shafiee et al., 2016; Imani
et al., 2019; Long et al., 2020; Sze et al., 2020). However, to the best
of our knowledge, there has been no prior work on PIM based
accelerator for ConvSNN with on-chip learning.

This article for the first time presents a PIM, hereafter referred
to as MONETA, to accelerate ConvSNN with on-chip STDP
learning. The overall architecture of MONETA includes SRAM-
based PIM cores for computing synapse responses, all-digital
modules for computing membrane potentials of neurons, and
centrally manage but locally apply STDP-based weight update.
The SRAM-based PIM cores augment the sequential access PIM
used in DNN acceleration, such as the ones presented by Long
et al. (2020), with STDP-based weight update modules for parallel
updates of synaptic weights (Kim et al., 2020). The novelty of
MONETA lies in the optimized data flow for improving resource
efficiency while implementing inference and learning in PIM-
based ConvSNN.

In traditional CNN, the output feature map (OFM) tensor of a
layer is obtained from the total input feature map (TIFM) tensor
and filter weights (Figure 1A). In ConvSNN, we first generate

FIGURE 1 | The computational model in (A) convolutional neural network (CNN) and the (B) convolutional neural network within spiking neural network (ConvSNN).

a tensor for the membrane potential of all neurons (TVmem),
followed by output spikes (OFMs) (Figure 1B). However, as
input pixels are encoded as spike trains, multiple time steps (spike
cycles) are necessary to process one image using ConvSNN.
Hence, the TIFM for each layer must be processed multiple times
to generate the TVmem in each spike cycle, leading to a large
on-chip buffer for TVmem tensor, and significant off-chip (from
DRAM) and on-chip (from TVmem buffer) data movement.
Although, Narayanan et al. have analyzed the temporal aspects
of SNN for logic-based engines (Narayanan et al., 2020), they
did not optimize data flow simultaneously considering data
movement and learning accuracy in ConvSNN.

We propose a novel data flow for the PIM-based processing
of the TIFM. We read an input feature map (IFM) from the
TIFM tensor, process the IFM using PIM, and generate the
Vmem for output neurons. The sequential processing of an IFM
overall spike cycles eliminates repeated reading of TIFM from
DRAM and on-chip storage of TVmem. However, the sequential
processing of IFMs introduces a bias in the STDP learning as
IFMs processed earlier more strongly influence filter weights than
the ones processed later.We propose a central STDP controller to
ensure each filter is updated based on the IFM that results in the
maximum Vmem of the firing neuron, rather than the IFMs that
were processed earlier in sequence. In summary, our approach
minimizes the data movement during inference, while ensuring
the accuracy of the STDP learning process.

The accuracy of the accelerator is estimated considering
MNIST, CIFAR-10, and CIFAR-100 datasets. With CIFAR-10
dataset, the accuracy with the weights trained by the standard

Frontiers in Neuroscience | www.frontiersin.org 2 April 2022 | Volume 16 | Article 775457201

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al. MONETA

FIGURE 2 | The architecture of the CNN.

STDP model is 67.88%. When we apply our modified STDP
model, the accuracy is 66.25%, which is 1.63% lower than
standard STDP model-based result. The experiment result
demonstrates that on-chip and on-line STDP learning can be
achieved with insignificant accuracy loss. The average power
efficiencies of 18.69 TOPS/W and 7.25 TOPS/W are observed for
inference and learning, respectively.

Along with a fully-STDP trained ConvSNN, the proposed
architecture is also used to accelerate inference and on-
line learning of a hybrid ConvSNN architecture that couples
supervised (off-chip) trained and STDP (on-chip) learned layers.
Previously, the concept of hybridization combining supervised
training and STDP has been first introduced for aDNN (She et al.,
2021). After that, Chakraborty et al. has shown the same concept
of hybridization on SNN (Chakraborty et al., 2021). In this article,
we show the hardware platform to accelerate the ConvSNN using
the same concept of hybridization.

In addition to homogeneous networks, MONETA also
supports hybrid ConvSNN. Half of the layers can be on-line
trained using the STDP algorithm and the other half of the
layers are based on the externally programmed fixed weights.
These fixed weights are off-chip trained by supervised learning.
STDP uses unsupervised local learning to extract low-level
features under spatial correlation. On the other hand, surrogate-
gradient based backpropagation (BP) in ConvSNN enables global
learning between low-level pixel-to-pixel interactions (Wu et al.,
2018). It thus aids in high-level detection and classification
similar to a SGD trained CNN model. By integrating global
features using supervised training and local features using STDP
learning, the hybrid network is also much more robust to local
uncorrelated perturbations in pixels while extracting the correct
feature representation from the overall image. Consequently,
hybridization of surrogate-gradient and STDP enables robust
image classification improving the accuracy of the baseline
backpropagated ConvSNN model.

Based on the hybrid network simulation, we achieve 1.40%
higher accuracy (77.83%) in MONETA than the accuracy based
on the supervised learning (76.43%) with the CIFAR-10 dataset.
In addition, the average power efficiency for the hybrid on-line

learning mode is 10.41 TOPS/W. This power efficiency is larger
than on-line learning mode, but smaller than inference mode
because half of the layer use inference mode and the other half
of the layers use learning mode.

2. BACKGROUND

2.1. ConvSNN and Unsupervised Learning
Using STDP
The spiking CNN uses the same structure as a traditional CNN
(Figure 2). However, the input is a binary spike where the
magnitude of the input. For example, the value of an image pixel
is encoded in the frequency of the spikes. A spiking neuron
computes the membrane potential Vmem using the spike levels
multiplied by synaptic weights following the leaky integrate and
fire (LIF) dynamics (Figure 3). An output spike is generated
(neuron firing) when Vmem is higher than a threshold Vth and
resets Vmem to Vreset.

When the neuron fires (i.e., generates an output spike), the
synaptic weights connected to the spiked neuron are updated
following a stochastic STDP model (Figure 3B) (She et al.,
2019). The firing of the neuron inhibits the firing of other
neurons. There are two types of inhibitions, which are cross-
depth inhibition and lateral inhibition. Figure 4A shows the
cross-depth inhibition. In the case of the cross-depth inhibition,
the firing of a neuron inhibits the firing of all other neurons
located at the same (x, y) coordinates of all depths (across
“z”-axis) in TVmem. The cross-depth inhibition can be easily
implemented within the single PIM array and the neuron set
(Figure 4B). In the case of lateral inhibition, the firing of the
neuron inhibits all the neurons located at the same z coordinates
(Figure 4C).

2.2. CNN Mapping for PIM Architecture
Figure 1A shows the basic terminologies for the CNN
hardware (Chen et al., 2017). In the layer <n>, the size of
TIFM is IR× IC× ID, the size of the filter is FR×FC× ID, and the
size of total output feature maps (TOFM) is OR × OC × OD. The
number of filters (depth of filters) are the same as the TOFM’s

Frontiers in Neuroscience | www.frontiersin.org 3 April 2022 | Volume 16 | Article 775457202

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al. MONETA

FIGURE 3 | (A) Leaky integrate and fire (LIF) neuron computational model. (B) Stochastic spike-time-dependent-plasticity (STDP) model.

FIGURE 4 | (A) Cross-depth inhibition (B) cross-depth inhibition on the memory array (C) lateral inhibition.

FIGURE 5 | CNN mapping on the memory for processing-in-memory (PIM) architecture.

depth (OD). The IFM, whose size is FR × FC × ID, is multiplied
by each filter and generates the OFM, which size is 1× 1× 1. The
stride is called as S. Figure 5 shows the CNN mapping method

on the memory for the PIM architecture (Peng et al., 2021). Filter
weights are divided by the x and y-axis, whose size is 1 × 1 × ID
and distributed on the different memory arrays. Also, each filter

Frontiers in Neuroscience | www.frontiersin.org 4 April 2022 | Volume 16 | Article 775457203

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al. MONETA

is placed on the different columns. To calculate the OFM, IFM is
divided and sent to the memory sub-arrays. The multiplication
between the synapse matrix and input vector is computed in
each array, and outputs are summed to compute the OFM.

2.3. Prior SNN Accelerator Hardware
Various types of SNN based accelerators have been introduced
in recent years. Buhler et al. (2017) made the analog neuron-
based accelerator for the compact and energy-efficient design.
However, they use the spiking locally competitive algorithm
for an accelerator. Chen et al. (2019) showed the large-scale
neuromorphic processor with 4,096-neuron and 1M-synapse.
Their design uses binary activation, but the hardware is not
optimized for the ConvSNN (Chen et al., 2019). Park et al. (2019)
showed the ConvSNN based accelerator. However, they only
used the stochastic gradient descent algorithm for the learning
to improve the accuracy. In addition, the ConvSNN accelerator
is introduced by Chuang et al. using a 2D systolic array with
efficient data re-use, but their design does not include the on-chip
training (Chuang et al., 2020).

Our design accelerates the ConvSNN using PIM architecture
with on-chip STDP learning. The ConvSNN requires more
complicated hardware design than multilayer perceptron-based
SNN, but it has higher accuracy and lower memory usage for the
weights on the complex image datasets such as CIFAR-10. The
PIM architecture does not require the VMM calculation module,
as we calculate the VMM in the SRAM array. In this sense, the
PIM architecture can reduce the data transmission, as it does not
require transmitting the weights to another module. In addition,
the STDP learning rule benefits efficient learning for large-
scale models or on-line learning as it enables unsupervised local
learning. We propose a modified STDP algorithm to efficiently
accelerate the PIM architecture.

2.4. Hybrid Spiking Neural Network
The SNN training methodologies can be broadly classified into
three types: (1) conversion from artificial-to-spiking models
(Diehl et al., 2015; Sengupta et al., 2019), (2) surrogate gradient
descent based backpropagation with spikes (Lee et al., 2018; Wu
et al., 2018; Neftci et al., 2019), and (3) unsupervised STDP based
learning (Diehl and Cook, 2015; Srinivasan et al., 2018). Each
technique has its own set of advantages and disadvantages. ANN-
to-SNN conversion yields state-of-the-art accuracies, even for
complex datasets like ImageNet (Deng et al., 2009) and can be
used to convert complex architectures, like VGGNet (Simonyan
and Zisserman, 2014), ResNet (He et al., 2016), RetinaNet
(Miquel et al., 2021), the latency incurred to process the rate-
coded image is very high (Pfeiffer and Pfeil, 2018; Lee et al., 2020).
Surrogate gradient-based methods address the latency concerns
but lag behind conversion in terms of accuracy for larger and
complex tasks. The unsupervised STDP training also suffers from
accuracy deficiencies. As pointed out by Panda et al. (2020),
the accuracy loss due to vanishing spike propagation and input
pixel-to-spike coding are innate properties of SNN design that
can be addressed to a certain extent, but, cannot be completely
eliminated. In order to achieve competitive accuracy as that of
an ANN, previous works have taken a hybrid approach with

a partly-artificial-and-partly-spiking neural architecture (Panda
et al., 2020; She et al., 2020). As discussed by Ledinauskas
et al. (2020), SNNs obtained by conversion must use only
rate encoding, due to which the expressive capacity might be
reduced. Another drawback of such conversion using rate-based
encoding is that one needs to use forward propagation time
steps in the order of thousands during the inference procedure
for SNN. This drawback severely limits the computation speed
and energy efficiency benefit of SNNs. Large spikes are necessary
to reduce the uncertainty of spiking frequency values. Also,
several ANN architectures are limited before conversion (e.g.,
batch normalization cannot be used) (Diehl et al., 2015; Sengupta
et al., 2019). This limits ANN performance and the upper
bound of SNN performance. Due to these limitations, we use a
surrogate gradient-based method to train SNNs directly instead
of converting ANN parameters to SNN.

Hence, following the work done by Chakraborty et al.
(2021), we use a hybrid network consisting of surrogate-
gradient based backpropagated ConvSNN modules along with
the unsupervised STDP trained ConvSNN module. Figure 6

shows the architectural block diagrams of the different types
of neural networks. Figures 6A,B show the homogeneous
network architecture that uses STDP and the backpropagation,
respectively. Figure 6C shows the hybrid network architecture
whose weights are from the different training algorithms. The
hybrid network consists of spiking layers placed in parallel to
form different spiking convolution modules. The first spiking
convolution module and half of the third spiking convolutional
module (shown in blue in Figures 6A,C) are the backpropagated
spiking modules. The second spiking convolutional module and
the other half of the third spiking convolutional module (shown
in orange in Figures 6B,C) are trained with the unsupervised
STDP algorithm. The STDP-spiking convolution module is
placed in parallel to the backpropagated module to enable
robust extraction of local and low-level features. Further, to
ensure that the low-level feature extraction also considers global
learning, which is the hallmark of gradient back-propagation,
several backpropagated ConvSNN layers of a similar size in
parallel with the STDP ConvSNN module are used. The output
feature map of the two parallel modules is maintained to
have the same height and width and concatenated along the
depth to be used as input tensor to the final ConvSNN layers.
This ConvSNN module is responsible for higher level feature
detection as well as the final classification. The main CNN
module can be designed based on existing deep learning models.
The concatenation of features from backpropagation-based
ConvSNN and STDP-based ConvSNN modules help integrate
global and local learning.

In addition, there exist other types of hybridization in the
prior works. Lee et al. (2018) show the STDP-based unsupervised
pre-training followed by supervised fine-tuning to improve the
accuracy. Other works also show ANN-SNN hybridization that
uses both ANN and SNN (Deng et al., 2020; Singh et al., 2020;
Wang et al., 2021). On the other hand, hybridization in this article
means, using only SNNwith the different types of weight training
algorithms (pre-trained backpropagation and STDP-based on-
line leaning).

Frontiers in Neuroscience | www.frontiersin.org 5 April 2022 | Volume 16 | Article 775457204

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al. MONETA

FIGURE 6 | Architectural block diagram of the (A) STDP only network (B) backpropagation only network (C) hybrid Network.

FIGURE 7 | The MONETA system architecture overview.

3. HARDWARE ARCHITECTURE

The overall MONETA architecture consists of synaptic cores,
neuron modules, and a central STDP controller (Figure 7). The
synaptic core calculates the Vmem for each filter based on the
IFMs and the weights. The synaptic array inside the synaptic
core functions as a digital PIM core and calculates the vector
matrix multiplication (VMM) of IFMs and synaptic weights.
The results generated by the synaptic array are accumulated in
the neuron module. The neuron module generates the output
spikes based on the accumulated Vmem using the LIF model. The
central STDP controller has a filter-update table and the training

control module to control the synaptic core and the STDP-based
weight update.

The STDP learning is performed using distributed weight
update modules embedded in each synaptic core and a central
STDP controller (Figure 7). The weight update module reads,
computes the update, and writes back the synaptic weights using
stochastic STDP (Kim et al., 2020). The central STDP controller
manages the filter-update table and the learning process.

There are two phases in our design, the inference phase and
weight update phase. In the inference mode, only the inference
phase exists. In the learning mode, both the inference phase
and the weight update phase exist. More precisely, during the

Frontiers in Neuroscience | www.frontiersin.org 6 April 2022 | Volume 16 | Article 775457205

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al. MONETA

FIGURE 8 | Inference approaches: (A) sequential processing of spike cycles: serially process all input feature maps (IFMs) in a total IFM (TIFM) for a given spike cycle

and generate the entire TVmem. (B) sequential processing of IFMs: an IFM is serially processed for Nspike-cycle (=
Ttotal
Tspike

) spike cycles followed by processing the next IFM.

inference phase in the learningmode, the central STDP controller
collects the data in the filter update table while other modules
do the same function with inference mode. After finishing the
inference function for the scheduled cycles, MONETA starts the
weight update phase and updates the weights.

3.1. Proposed SNN Inference Methodology
An SNN receives the input as spikes. Based on each pixel’s
brightness, the range of the spike frequency is fspike-min ∼

fspike-max. Assume, Tspike(=
1

fspike-max
) is a unit time-step, and Ttotal

is a total exposure time for an input image. Therefore, ConvSNN
(Figure 1B) receives all the IFMs, including the input image, for

Nspike-cycle(=
Ttotal
Tspike

) of spike cycles, computes the Vmem for all

neurons, i.e., entire TVmem tensor in each cycle based on the LIF
neuron policy (Figure 3A). All the Vmem values in the TVmem

tensor that are higher than the threshold generate an output spike
in the OFM.

3.1.1. Sequential Processing of Spike Cycles
Ideally, at spike cycle i, we need to generate aTVmem tensor which
is used along with the TIFM tensor to compute TVmem for cycle
i+1. Hence, in each spike cycle, wemust compute allVmem values
in the TVmem tensor by processing the all the IFMs in the TIFM
tensor (Figure 8A). As all the IFMs aremultiplied by same weight
matrix, parallel processing of all the IFMs will require duplication
of weight memory by IR

S ×
IC
S (where S is the stride), which is

infeasible to store on-chip. Hence, we must process each IFMs
serially in each accelerator clock cycle (fCLK = 1 GHz in our
design), as shown in Figure 8A). Hence, for each spike cycle, we
can serially read all IFMs, multiply each IFM to all the filters in
one accelerator clock fCLK, and serially compute all the elements
of the TVmem tensor. This is similar to operating a normal
CNN. However, in ConvSNN, we must process the same TIFM

tensor repeatedly for Nspike-cycle spike cycles in ConvSNN, such
an approach requires either reading the same data (IFMs) from
the off-chip memory repeatedly in every spike cycle resulting in a

significant (TtotalTunit
×) increase in data movement or store the TIFM

tensor on-chip requiring large buffer. Moreover, we also need a
global buffer to store the TVmem tensor generated over the entire
spike cycle. While processing spike cycle i+ 1, the global TVmem

buffer generated in the spike cycle i must be read by individual
PIM blocks to generate the TVmem tensor for the i+1 spike cycle.
We will also need a global on-chip buffer of size OR × OC × OD

to store the TVmem tensor increasing on-chip data movement
between the PIM cores.

3.1.2. Sequential Processing of IFMs
We propose to re-order the IFM processing as shown in
Figure 8B. We first read one IFM and serially compute all
Vmem values generated by that IFM over all Nspike-cycle spike
cycles. Note, all these Vmem values can now be computed in
Nspike-cycle of accelerator clock cycle. Moreover, as the IFM
remains constant, the Vmem values for successive spike cycles
can be locally accumulated within the PIM block eliminating the
need for global TVmem buffer and associated data movement.
Moreover, serial processing of all spike cycles for a given IFM
eliminates the need for repeated reading of the entire TIFM
tensor thereby reducing off-chip data movement.

3.2. Hardware Support for Inference
3.2.1. Synaptic Core
The synaptic core is used for distributed computation of Vmem

and generates the output spike. The synaptic core uses synaptic
arrays (weight storage), routers, and neuron modules for the
inference. Since the weight matrix is distributed across multiple
synaptic cores, each synaptic core has a subarray of dimension

Frontiers in Neuroscience | www.frontiersin.org 7 April 2022 | Volume 16 | Article 775457206

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al. MONETA

FIGURE 9 | The synaptic array architecture.

ID ×
OD×weight’s bit-width

of synaptic core
, and calculates the matrix multiplication

results for OD
synaptic core # filters.

3.2.2. Synaptic Array
The synaptic array multiplies the IFMs and synaptic weights to
generate the partial sum of the VMM result. A sequential (row-
by-row) read access-based PIM design is considered for synaptic
arrays to multiply IFMs and weights. Then, the hierarchical
network-on-chip (H-NoC) router adds partial sums and sends
the VMM result to the neuron module. The synaptic array is
implemented by SRAMarray, peripherals, and drivers (Figure 9).
Synaptic weights are 8 bits and consist of 8 consecutive SRAM
cells in a row. The most left SRAM cell represents the sign bit.

The synaptic array receives the input spikes of the IFM on
the row-wise word-line (RWL) port. The input spikes are sent in
row-by-row order, so the RWL peripheral uses a counter-based
decoder to send input spikes to an 8T-SRAM array sequentially.
When the result of sense amplifier for CBL is 1, the CBL
peripheral sends the partial sum, 1, to the H-NoC router and pre-
discharges the CBL. The H-NoC connects the synaptic arrays,
accumulates the partial sums, and sends the VMM result to the
neuron module (Long et al., 2019).

3.2.3. Neuron Module
The neuron module receives the VMM result from the synaptic
arrays, calculates the Vmem, and generates the output spike.
Figure 10 shows the neuron module architecture. The neuron

module consists of OD
synapse core # neuron cells, Vmem comparator,

and synapse update selector. The neuron cell updates the Vmem

based on the LIF neuron dynamics and generates the output spike
when the Vmem over the Vth. Vmem comparator and Synapse
update selector are disabled during inference. These modules are
discussed in section 3.3

To generate the output spike, the neuron cell receives the
VMM result and updates the Vmem based on the LIF neuron
dynamics. Inside the Vmem calculation module (Figure 10),
VMM result and the current Vmem are added when the compute
enable signal is enabled. This Vmem accumulation takes ID cycles,
as the whole VMM computation requires ID cycles with row-
by-row access on synaptic array. Then, the leakage calculator
calculates the leakage based on the current Vmem and subtracts
the leakage to the result of the Vmem accumulator to generate the
updated Vmem. In the end, if the updated Vmem is larger than Vth,
the neuron cell will generate the output spike and reset Vmem as
0. Updated Vmem is stored in the Vmem register inside the neuron
cell to be used in the next time step.

3.3. Proposed PIM-Friendly STDP Learning
Methodology
We argue that the proposed approach of sequential processing
of IFMs can lead to bias in STDP learning. In ConvSNN
with cross-depth inhibition, each depth controls the weight
update for a filter tensor. Consider a neuron at location
xk, yk, zk fires, then it will inhibit the firing of all other neurons

Frontiers in Neuroscience | www.frontiersin.org 8 April 2022 | Volume 16 | Article 775457207

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al. MONETA

FIGURE 10 | The LIF Neuron Module architecture.

across the depth, i.e., all neurons at xk, yk but all locations
across the z-axis. In an ideal case, Vmem values of all the
neurons in the same depth of the TVmem tensor are calculated
simultaneously. Hence, for a given depth, the neuron with the
maximum Vmem considering the entire TIFM will fire and
control the weight update process for the associated filter.
However, when IFMs are processed sequentially, the STDP
based updates of filter weights are controlled by the order in
which IFMs are processed. For example, considering the order
shown in Figure 8B, the IFM in the earliest position (top-
left segment in the TIFM tensor) can cause firing at a given
depth change with the associated filter weights. The Vmem

computation for the later IFMs will be performed with the
already changed filter weights and hence will have less impact
on overall learning. This leads to undesired sequential bias in the
STDP learning.

We address this problem by ensuring that at a particular
depth the neuron which has the maximum Vmem considering
all IFMs control STDP-based update of the corresponding filter
weight (shown in Figure 1B). This is achieved by maintaining
a central filter-update table where for each filter we store
a running value of the maximum Vmem and corresponding
IFM number (Figure 11A). While processing the “ith” IFM
over all spike cycles, we compute Vmem, fire a neuron (as
required), reset Vmem for all other cross-depth neurons but
do not initiate weight update. Instead, we estimate the Vmem

values for all the neurons at all depths due to the “ith” IFM.
If at a given depth, the Vmem generated by “ith” IFM is higher
than the maximum Vmem value stored in the table for the
corresponding filter, we update the central table to indicate
“ith” IFM results in the maximum Vmem for this filter. The
table generation is finished after processing all the IFMs. Once
completed, we show all the IFMs one more time and update
the filter weights based on the filter-update table (Figure 11B).
The overhead is cost of processing TIFMs two times, one for
generating the filter-update table and the second for updating the
weights (Figure 3B). Therefore, our PIM-friendly STDP learning
can train the weights based on the STDP algorithm without
considerable IFM movements and the bias occurring from the
sequential IFM processing.

3.4. Hardware Support for Learning
3.4.1. Synaptic Core
In the learning mode, the synaptic core uses synaptic arrays
(weights storage), routers, neuron modules, and weight update
modules. The weight update module is power gated in the
inference mode but is used in the learning mode. Synaptic core
and neuron modules calculate the Vmem and generate the output
spike. When the output spike is generated, weights are updated
with the control from the central STDP controller.

3.4.2. Synaptic Array
The SRAM array in the synaptic arrays is implemented by an
8T-SRAM array. 8T-SRAM allows transposable read and write
thereby allowing parallelism in weight update (Seo et al., 2011;
Kim et al., 2020). Figure 9 shows the synaptic array and its
connections with other modules. The 8T-SRAM includes the
6T-SRAM, the PMOS M1, and the PMOS M2. The 6T-SRAM
stores the synapse weight, and the PMOS M1 and the PMOS M2
connect RWL, synapse weight, and column-wise bitline (CBL) for
thematrixmultiplication.When the RWL sends the spike and the
synapse weight bit is 1, CBL is charged.

During the weight update phase, the syna does the same
inference function until the neuron module generates the output
spike. When the output spike is generated, the synaptic array
receives the synapse number from the neuron module and
decodes it to generate the column-wise wordline (CWLs) to read
the SRAM data stored in the 6T-SRAM cell, included in the
8T-SRAM. Total 8 CWLs are generated sequentially for each
clock to read the 8-bit synapse weight information. The CWL is
connected to the 6T-SRAM cells’ CWL vertically and reads the
data by RBL and RBLB horizontally. The RBL peripheral reads
the synapse weight data for each clock and sends it to the weight
update module. After the weight update module calculates the
synaptic weights, RBL peripheral receives the updated synapse
weights and writes them back to the 6T-SRAM cells.

3.4.3. Neuron Module
In the learning mode, Vmem comparator and the synapse update
selector are additionally used. During the inference phase in the
learning mode, the neuron module compares the Vmem at the

Frontiers in Neuroscience | www.frontiersin.org 9 April 2022 | Volume 16 | Article 775457208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al. MONETA

FIGURE 11 | (A) Filter-update table (B) relation between IFM number and target filter based on the filter-update table.

FIGURE 12 | (A) The weight update module architecture. (B) The spike history queue function graph. (C) The weight calculator architecture. (D) The update decision

module’s state machine for stochastic STDP.

Vmem comparator and sends the maximum Vmem and the filter
number to the central STDP controller for each IFM. In the
weight update phase, the neuron module receives the active filter
number from the central STDP controller, and only the selected
filter calculates the Vmem. The selected filter calculates the Vmem

in the neuron cell and generates the output spike when the Vmem

is over the threshold voltage. When the neuron cell generates the
output spike, the neuron cell resets the Vmem to 0 and holds the
Vmem calculation while the synapse array updates the weight. The
synapse update selector receives the output spike, generates the
synapse number, and sends this number to the synapse array.

3.4.4. Weight Update Module
Figure 12A shows the architecture of the weight update module.
The weight update module calculates the updated weights based
on the current weights and the timing information using the
stochastic STDP rule. The timing information is used to check the
probability of potentiation or depotentiation (Figure 3B). The
configuration register (configs register) stores the programmable
configurations for the timing queue control and the stochastic
STDP rule. The pseudo-random number generator (PRNG)
generates the random number (RND), which decides whether to
update or not to update weights and is implemented by linear-
feedback shift registers (LFSRs). The counter is used to push the
spike history queue.

The spike history queue receives the RWL, delivered from
the synaptic array, and stores the input spike history in the
spike history queue (Figure 12B). The T[3] is connected to the
RWL and is set to 1 when the RWL is 1. When the counter
reaches the threshold time (Tthreshold), reset the T[3] to 0 and
push the queue from T[3:1] to T[2:0]. As a result, the spike
history queue stores the input spike history, and by changing
the Tthreshold in the configs register, we can control the spike
history period.

The weight queue receives the current weight from the
synaptic array one bit per clock until it receives all 8-bit
of the synapse weight. After the weight queue receives the
current weight, the weight calculator calculates the updated
weight based on the spike history and the current weight
(Figure 12C). The weight update calculator includes the update
decision module and the weight computation module. The
update decisionmodule determines whether to update the weight
or not according to the stochastic STDP rule. When the update
(UP) signal is 1 and the T[3:0] is all 0, the weight computation
module decreases the weight. When the UP signal is 1 and the
T[3:0] has at least 1, the weight computation module increases
the weight. At the end, when the UP signal is 0, the weight
computation module does not change the weight. After the
updated weight calculation, the weight update module sends the
updated weight one bit per clock to the synaptic array.

Frontiers in Neuroscience | www.frontiersin.org 10 April 2022 | Volume 16 | Article 775457209

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al. MONETA

As shown in Figure 12D, the update decision module’s
state-machine describes the stochastic STDP. The update
decision module receives the input spike history, the RND,
and the configurations (configs). The configurations include
the potentiation thresholds (P1, P2, P3, and P4) and the
depotentiation threshold (PD). The spike history determines
which potentiation/depotentiation threshold will be used. The
UP is set to 1 when the RND is smaller than the selected
threshold.When the RND is equal to or larger than the threshold,
UP is set to 0.

3.4.5. Central STDP Controller
The central STDP controller includes SRAM which stores the
filter update table, the Vmem comparator to find the maximum
Vmem of MONETA, and the control logic to control MONETA.
The central STDP controller controls the design and determines
the weights to update during the learning mode. Figure 13 shows
the architecture of the central STDP controller.

During the inference phase in the learning mode,
MONETA fills the filter update table. To generate the data

FIGURE 13 | The central STDP controller architecture.

for the filter update table, the synaptic core receives the IFM
and calculates the membrane potential. During this process, the
neuron modules calculate the Vmem and send the maximum
Vmem and the corresponding filter number to the central STDP
controller. The central STDP controller compares the current
IFM’s maximum Vmem and the previous IFM’s Vmem which is
stored in the filter update table. If the current IFM’s maximum
Vmem is larger, the filter update table will store the current IFM
and the new maximum Vmem in the filter update table. When
the weight update phase starts, the central STDP controller
reads the IFM for the maximum Vmem from off-chip memory
for each filter. The IFM is applied to the target synaptic core
to re-compute the corresponding Vmem, generate the output
spikes, and update the weights using the weight update modules.
Once all the filters are updated for a TIFM, the filter update table
is reset.

Figure 14 indicates the data flow timing diagram of the central
STDP controller. The central STDP controller receives the mode
signal from the user to determine the mode of the synaptic core.
The central STDP controller controls the function of synaptic
cores by sending the phase andmode signals to the synaptic cores.
During the inference phase in the learning mode, the central
STDP controller receives the maximum Vmem of the synaptic
cores, filter number from the synaptic cores, and the current IFM
number from the off-chip memory to generate the filter update
table. In the weight update phase, the control logic request the
IFM number to the filter update table in the SRAM with the
request (Req) signal. The filter update table sends the updating
target IFM number to the off-chip memory and the updating
target filter number to the updating target synaptic core. The
received IFM signal transmitted from the off-chip memory is
used to determine whether the IFM is delivered from off-chip
memory during the weight update phase. This is because the
central STDP controller sends non-sequential IFM requests to
the off-chip memory, so the MONETA needs to be in the idle
state until the IFM is transmitted. The control logic also receives

FIGURE 14 | The data flow graph of the central STDP controller.

Frontiers in Neuroscience | www.frontiersin.org 11 April 2022 | Volume 16 | Article 775457210

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al. MONETA

the filter number. After that, the control logic generates the
mode signal to the target synaptic core. Only the updating target
synaptic core is enabled to update weights by mode signal and
other synaptic cores are in the idle state as they do not need to
update the synapse weights. This process is continued for all the
filters in the filter update table.

3.5. Hybrid Network With Coupled
Supervised and Unsupervised Learning
As we discussed in section 2.4, hybrid networks can help us
improve the accuracy of the STDP network. Thus, in this
article, we used a hybrid supervised-unsupervised learning
methodology similar to the works done by Chakraborty et al.
(2021). Supervised learning is the surrogate gradient-based
training of the SNNs (Wu et al., 2018; Neftci et al., 2019). The
supervised learning-based weights are trained at the off-chip,
then are loaded on the synaptic array. These supervised learning-
based layers are set as the inference mode (marked blue in
Figure 6C). The unsupervised learning algorithm is our modified
STDP-based learning. These layers are set as the learning mode
and the weights are trained on-chip. Therefore, because our
design supports on-line learning, half convolutional layers have
supervised learning-based fixed weights and the other half of
convolutional layers have unsupervised on-line learning-based
flexible weights (marked orange in Figure 6C).

4. SIMULATION RESULTS

4.1. Configurations of Simulated ConvSNN
As discussed before, we use both homogeneous and hybrid
networks. Hybrid networks with supervised training can help us
improve the accuracy of the STDP network. Thus, we simulate
the hybrid supervised-unsupervised learning methodology
similar to the works done by Chakraborty et al. (2021).

Configurations: We define the type of networks to compare
our hybrid spiking neural network for image classification on the
MNIST and CIFAR-10 dataset as follows:

• Standard STDPmodel (Type 1):we use the 4-layer ConvSNN
model trained using the standard STDP model (Bi and Poo,
1998)

• PIM-friendly STDP model (Type 2): we use the 4-layer
ConvSNN model and train it using the modified STDP rule
explained in section 3.3

• Fully Backpropagated ConvSNN model (Type 3): for this
model, we use another backpropagated ConvSNN block
instead of the STDP ConvSNN block (orange block in
Figure 6). This makes the entire model to be trained with a
surrogate gradient without any unsupervised STDP block.

• Hybrid model with standard STDP model (Type 4): for this
model, we use the hybrid network as shown in Figure 6C.
However, we use the standard STDP learning rule for the
STDP ConvSNN block (orange block).

• Hybrid model with PIM-friendly STDP model (Type 5):

this is the proposed model using hybridization of STDP-
based ConvSNN and backpropagated-based ConvSNN blocks.

The STDP learning rule used to train the STDP block is the
modified STDP rule as discussed in section 3.3

Types 1–3 are based on the homogeneous network architecture.
The weights of architectures in Types 1–3 are trained by single
training algorithm. Types 4-5 are based on the hybrid network
architecture we discussed in section 2.4. Half of the weights in
Types 4-5 are trained by backpropagation algorithm and the
other half of the weights are trained by different STDP algorithms
for each network type.

4.2. Hardware Architectures for Simulation
Table 1 shows the simulated ConvSNN network architecture
with four convolutional (CONV) and one fully-connected (FC)
layer. We use 8-bit precision for the weights and 4-bit precision
for the input spikes. The total on-chip memory used for synaptic
cores is determined by the filter size of the CONV4 layer in
the homogeneous network architecture. Therefore, we need two
MONETA chips for the CONV4 layer in the hybrid network. We
divide the total capacity into 8 synaptic cores where each core has
nine 128 × 128 synaptic arrays. We consider on-chip STDP is
performed using a layer-by-layer fashion because OFMs for one
layer are used to train the next layer. Note the memory capacity is
sufficient to simultaneously map CONV1, CONV2, and CONV3

on the chip during inference.We consider that the FC layer exists
off-chip and connected with MONETA.

The hardware architecture of MONETA with 8 synaptic cores
and one central STDP controller is implemented in 65 nmCMOS
(Figure 15). We used the Virtuoso for the full-custom layout
of 128 × 128 SRAM sub-arrays and Innovus for the auto place
and route (PNR) of other logic blocks. Each synapse core and
the central STDP controller have 1.394 and 0.025 mm2 areas.
The throughput and power of the design are estimated from the
layout and after parasitic extraction.

4.3. Accuracy Analysis
The ConvSNN shown in Table 1 is simulated using
ParallelSpikeSim, an open source GPU accelerated SNN
simulator (She et al., 2019). The MNIST and CIFAR-10 datasets
are used for accuracy evaluation. All synapses are designed with
8-bit weights. The unsupervised-learning based CONV layers
are trained with STDP for unsupervised clustering of inputs. The
supervised-learning based CONV layers are trained with the
BPTT algorithm. The final FC layer is trained using Stochastic
Gradient Descent (SGD) to label the clusters with appropriate
classes. Input spike frequency is converted from image pixels

intensity to the range of 10–50 Hz. We assumed Ttotal
Tunit

= 100,
i.e., each image is shown to the network for 100 time steps. Each
layer learns the entire training set for 5 epochs.

Table 2 shows the accuracies of each ConvSNN configuration.
Type 2 is based on the data flow of MONETA (Figures 8B,
11). When we compare the accuracies with CIFAR-10, the
accuracy of Type 2 shows only 1.63 (%) lower accuracy
than a fully parallel (as shown in Figure 8A) software
implementation of the network using 8-bit precision (Type 1).
As mentioned before, the fully parallel implementation incurs
Ttotal
Tunit

× (=100×) higher data movement than our design. The

Frontiers in Neuroscience | www.frontiersin.org 12 April 2022 | Volume 16 | Article 775457211

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al. MONETA

TABLE 1 | Architecture and parameters of the tested convolutional neural network within spiking neural network (ConvSNN) networks.

Layers
Homogeneous network architecture

Hybrid network architecture

BP ConvSNN block STDP ConvSNN block

FR FC FD FR FC FD FR FC FD

CONV1 3 3 64 3 3 64 3 3 64

CONV2 3 3 64 3 3 64 3 3 64

CONV3 3 3 128 3 3 128 3 3 128

CONV4 3 3 128 3 3 128 3 3 128

FC
FR FC FD FR FC FD

1 1 512 1 1 1,024

FIGURE 15 | The overview of the physical design of MONETA.

TABLE 2 | Simulated network types and the results.

Type Learning algorithm Required

parameters

(Kb)

Inference

throughput

(TOPS)

Inference

Energy

efficiency

(TOPS/W)

On-line

learning

throughput

(TOPS)

Learning

energy

efficiency

(TOPS/W)

Accuracy

(CIFAR-

100)

Accuracy

(CIFAR-10)

Accuracy

(MNIST)

1 Standard STDP

1,152 2.304

18.69

N/A N/A 54.25 67.88 90.89

2 PIM-friendly STDP 2.2 7.25 52.19 66.25 90.13

3 Backpropagation (BP) N/A N/A 62.12 76.43 92.55

4 BP + Standard STDP
2,304 4.608

N/A N/A 63.86 78.94 93.16

5 BP + PIM-friendly STDP 4.4 10.41 62.31 77.83 92.07

accuracy of the ConvSNN accelerated using MONETA (Type
2) is 10.18% lower than a spiking neural network of the
same layer configurations trained using backpropagation (Type
3). In the end, the accuracy of the hybrid network shows
improved accuracy than supervised learning. The result of
the hybrid network using backpropagated-based ConvSNN
and the PIM-friendly STDP learning (Type 5) shows 1.4%
higher accuracy than the fully backpropagated ConvSNN
model (Type 3). This accuracy from Type 5 is only 1.11%

lower than the hybrid network applying the standard STDP

model (Type 4).
We note that the accuracy of backpropagation-based trained

SNN demonstrated in this article is lower than the state-of-

the-art, for example, 99.59% accuracy was observed on MNIST

dataset (Lee et al., 2020). This is primarily because, we have
reduced the simulation time necessary for training the network
with back propagation. For example, instead of 100 epochs of

training as performed in the Lee et al. (2020) we only trained
the network for 20 epochs. Further, we did not apply pre-
processing and the fine- tuning methodologies that are normally
applied in BP SOTA, as these techniques are applied off-chip
and are not related to the PIM-based hardware implementation
of ConvSNN.

4.4. Throughput Analysis
Table 2 shows the peak throughput of MONETA estimated
as Tera Operation per Second (TOPS). The throughput for
each synaptic array is determined by the number of parallel
multiplies (# of weights stored in a row) and accumulate.
The total throughput of all synaptic arrays is given by
of weights × # of synaptic arrays × frequency. H-NoC
sums partial outputs from synaptic arrays resulting in a
throughput of # of weights × # of synaptic array × frequency.
The neuron modules compute membrane potential

Frontiers in Neuroscience | www.frontiersin.org 13 April 2022 | Volume 16 | Article 775457212

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al. MONETA

neurons at a throughput of # of weights × frequency.
The total throughput is obtained considering the
parallel operation of all synaptic cores. Our design has
of weights per word line = 16, # of synaptic arrays =

9, # of synaptic cores = 8, and frequency = 1GHz. Hence,
the total throughput of one MONETA chip is 2.304 TOPS
in the inference mode. On the other hand, in the case
of the on-line learning mode, the throughput is reduced
based on the time used for the training. Because the
weight update takes 17 cycles, the throughput becomes
2.304× 1

1+17×(output spike rate)
. For example, learning mode

throughput in CONV4 layer is 2.2 TOPS with an output spike
rate of 0.0028.

In MONETA, each time-step is represented as 1 clock cycle
(1 GHz), and 100 time-steps are used for each image. The total
clock cycles required to operate on one image in each layer is
100× IR

S ×
IC
S × ID (S is a stride), where ID represents a number of

rows in the synaptic array.We compute the image processing rate
(fps) of CONV1-4 is 13.02, 2.44, 9.77, and 19.53 K, respectively,
at 1 GHz.

4.5. Area and Power Analysis
The power of the MONETA design is 123.28 mW, 303.52 mW
for the inference mode and the learning mode, respectively, at 1
GHz with 1 V supply on the one chip. This power is calculated
based on CONV4 which is the maximum power of MONETA. In
addition, the power is computed consideringCONV4’s input and
output spike activity ratio (0.0092 and 0.0028). Note, CONV4

of the hybrid network requires two MONETA chips because of
its parameters, so the total power is two times the homogeneous
networks (246.56 mW and 607.04 mW for the inference mode
and the learning mode, respectively).

Figure 16A shows the power breakdown of the synaptic core’s
inference mode. The weight update module is idle during the
inference mode by clock gating. The 8T-SRAM array consumes
the 21.86 pJ for matrix multiplication calculation, 4.48 pJ for
transposable weight read, and 12.34 pJ for transposable weight
write. The SRAM-based computation naturally transforms
sparsity in neuron firing (i.e., zero values in IFM) to power saving
during inference. If an input spike is absent in a cycle, the SRAM
power for that cycle is zero as word lines are not activated.

FIGURE 16 | Power breakdown of MONETA. (A) inference mode and (B) training mode.

TABLE 3 | Comparison with other works.

Reference

This work

DAC‘20 ISSCC‘19 JSSC‘19 VLSI‘17Homogeneous Hybrid

Inference Learning Inference Learning

Technology (nm) 65 90 65 10 40

Algorithm ConvSNN ConvSNN SNN SNN SNN

On-chip

Training
Yes No Yes Yes Yes

Voltage (V) 1.0 1.0 0.8 0.9 0.9

Frequency (MHz) 1,000 100 20 506 250

Synapse Bits 8 1 7 7 4

Area (mm2) 11.155 22.23 2.07 10.08 1.72 1.31

TOPS/mm2 0.207 0.197 0.207 0.197 0.312 0.008 0.015 0.227

Power (mW) 123.28 303.52 246.56 423.83 45.71 23.6 208.3 87

TOPS/W 18.69 7.25 18.69 10.41 14.1 3.42 0.12 3.43

Frontiers in Neuroscience | www.frontiersin.org 14 April 2022 | Volume 16 | Article 775457213

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al. MONETA

Moreover, as we use single ended sensing in 8T-SRAM, there is
no bit-line discharge when the values of the corresponding bit are
“0.” Hence, the SRAM contributes very little power to the overall
operation. The power is dominated by the Vmem calculation in
the neuron module. This is because there exists an inherent
leakage component in the membrane potential computation (a+
bVmem in LIF dynamics in Figure 3) that causes the membrane
potential to reduce when there are no input spikes. Hence, the
neuron module needs to perform the leakage computation in
each clock. However, the power in the synaptic array and the H-
NoC reduces significantly due to low spiking activity (=0.0092).
Figure 16B shows the power distribution of the synaptic cores in
the training mode. It shows the much higher power consumption
compared to the inference mode, mainly because of the complex
weight update module (Kim et al., 2020).

The central STDP controller consists of 32 × 128 SRAM,
the control logic, and the Vmem Comparator. The read energy
is 1.14 pJ, and the write energy is 3.09 pJ. The bus-width is 32
bits. It also operates at 1 GHz by following the Synapse Core’s
clock frequency. Overall, the central STDP controller has a much
smaller area (0.025mm2) and power (0.141mWduring inference
and 0.154 mW during learning).

4.6. Comparison With Prior Works
Table 3 shows the comparison of MONETA with a set of recent
SNN accelerators (Buhler et al., 2017; Chen et al., 2019; Park et al.,
2019; Chuang et al., 2020). Note that all designs use different
SNN architectures for evaluation, and most of the prior designs
considered MNIST as the dataset while our work is evaluated on
MNIST CIFAR-10 and CIFAR-100. Our design supports STDP
learning (fully for the homogeneous network and partially for the
hybrid network) and inference.

Our throughput is higher than prior works mainly due
to highly parallel in-memory computation, as well as higher
frequency (1 GHz) of operation. The PIM architecture eliminates
the arithmetic computation units used in prior designs leading
to a much higher operating speed at similar voltage. Thanks to
the PIM architecture, MONETA shows higher compute density
(TOPS/mm2) compared to the prior works using similar bit-
precision. We observe similar area efficiency compared to 4-bit
precision-based SNN in 40 nm CMOS, even though our design
is realized in 65 nm CMOS. However, compared to the binary
SNN design we observe 33% lower area efficiency (note, the

binary SNN was implemented in 90 nm CMOS). Further, we
observe a higher power efficiency compared to other designs
during inference and learning. This is mainly because the PIM-
based operation naturally translates the sparsity in neuron firing
to power reduction as discussed before.

5. CONCLUSION

This article presents a PIM-based hybrid ConvSNN acceleration
platform with an on-chip STDP based weight update. We
present an optimized data flow for sequential processing of
input feature maps to reduce off-chip data movement while
ensuring learning accuracy of the STDP process. The algorithmic
simulations show comparable accuracy for MNIST and CIFAR-
10 dataset to a pure software implementation. We also show
the hybrid architecture and the opportunity of the supervised-
unsupervised flexible weight architecture with on-line learning.
The power and throughput analysis using 65 nm CMOS
physical design show high throughput and energy efficiency.
The programming model and compiler infrastructure necessary
to map an arbitrary ConvSNN in MONETA is important
future work.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: MNIST: http://yann.lecun.com/exdb/mnist/;
https://www.cs.toronto.edu/~kriz/cifar.html.

AUTHOR CONTRIBUTIONS

DK developed the main concepts and algorithm, generated the
RTL design and layout, and performed all hardware analysis.
BC and XS developed the algorithm for a hybrid network
and performed the software simulation for accuracy analysis.
All authors assisted in developing the concept and writing
this article. All authors contributed to the article and approved
the submitted version.

FUNDING

This research was supported by the DARPA ERI 3DSoC Program
under Award HR001118C0096.

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: Design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput.-Aided Des. Integr.

Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Bi, G.-Q., and Poo, M.-M. (1998). Synaptic modifications in cultured hippocampal

neurons: dependence on spike timing, synaptic strength, and postsynaptic cell

type. J. Neurosci. 18, 10464–10472.

Buhler, F. N., Brown, P., Li, J., Chen, T., Zhang, Z., and Flynn, M. P. (2017). “A

3.43tops/w 48.9pj/pixel 50.1nj/classification 512 analog neuron sparse coding

neural network with on-chip learning and classification in 40nm cmos,” in 2017

Symposium on VLSI Circuits (Kyoto), C30–C31.

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Chakraborty, B., She, X., and Mukhopadhyay, S. (2021). A fully spiking hybrid

neural network for energy-efficient object detection. IEEE Trans. Image Process.

30, 9014–9029. doi: 10.1109/TIP.2021.3122092

Chen, G. K., Kumar, R., Sumbul, H. E., Knag, P. C., and Krishnamurthy, R. K.

(2019). A 4096-neuron 1m-synapse 3.8-pj/sop spiking neural network with on-

chip stdp learning and sparse weights in 10-nm finfet cmos. IEEE J. Solid-State

Circ. 54, 992–1002. doi: 10.1109/JSSC.2018.2884901

Chen, Y., Krishna, T., Emer, J., and Sze, V. (2017). Eyeriss: an energy-efficient

reconfigurable accelerator for deep convolutional neural networks. IEEE J.

Solid-State Circ. 52, 127–138. doi: 10.1109/JSSC.2016.2616357

Frontiers in Neuroscience | www.frontiersin.org 15 April 2022 | Volume 16 | Article 775457214

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/TIP.2021.3122092
https://doi.org/10.1109/JSSC.2018.2884901
https://doi.org/10.1109/JSSC.2016.2616357
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al. MONETA

Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., et al. (2016). “Prime: a novel

processing-in-memory architecture for neural network computation in reram-

based main memory,” in Proceedings of the 43rd International Symposium on

Computer Architecture ISCA ’16 (Seoul: IEEE Press), 27–39.

Chuang, P. Y., Tan, P.-Y., Wu, C.-W., and Lu, J.-M. (2020). “A 90nm 103.14

tops/w binary-weight spiking neural network cmos asic for real-time object

classification,” in 2020 57th ACM/IEEE Design Automation Conference (DAC)

(San Francisco, CA), 1–6.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “Imagenet: a

large-scale hierarchical image database,” in 2009 IEEE Conference on Computer

Vision and Pattern Recognition (Miami, FL: IEEE), 248–255.

Deng, L., Wang, G., Li, G., Li, S., Liang, L., Zhu, M., et al. (2020). Tianjic: aunified

and scalable chip bridging spike-based and continuous neural computation.

IEEE J. Solid-State Circ. 55, 2228–2246. doi: 10.1109/JSSC.2020.2970709

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney: IEEE), 1–8.

Gerstner, W., and Kistler, W. (2002). Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Camebridge: Cambridge University Press.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV), 770–778.

Imani, M., Gupta, S., Kim, Y., and Rosing, T. (2019). “Floatpim: in-memory

acceleration of deep neural network training with high precision,” in 2019

ACM/IEEE 46th Annual International Symposium on Computer Architecture

(ISCA) (Phoenix, AZ), 802–815.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).

STDP-based spiking deep convolutional neural networks for object recognition.

Neural Netw. 99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Kim, D., She, X., Rahman, N. M., Chekuri, V. C. K., and Mukhopadhyay,

S. (2020). Processing-in-memory-based on-chip learning with spike-time-

dependent plasticity in 65-nm cmos. IEEE Solid-State Circ. Lett. 3, 278–281.

doi: 10.1109/LSSC.2020.3013448

Kim, S. Park, S., Na, B., and Yoon, S. (2020). “Spiking-yolo: spiking neural network

for energy-efficient object detection,” in Proceedings of the AAAI Conference on

Artificial Intelligence (New York, NY), vol. 34, 11270–11277.

Ledinauskas, E., Ruseckas, J., Juršėnas, A., and Buračas, G. (2020).

Training deep spiking neural networks. arXiv preprint arXiv:2006.04436.

doi: 10.48550/ARXIV.2006.04436

Lee, C., Panda, P., Srinivasan, G., and Roy, K. (2018). Training deep

spiking convolutional neural networks with stdp-based unsupervised pre-

training followed by supervised fine-tuning. Front. Neurosci. 12, 435.

doi: 10.3389/fnins.2018.00435

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-

based backpropagation for training deep neural network architectures. Front

Neurosci. 14, 119. doi: 10.3389/fnins.2020.00119

Lee, C., Srinivasan, G., Panda, P., and Roy, K. (2019). Deep spiking convolutional

neural network trained with unsupervised spike-timing-dependent plasticity.

IEEE Trans. Cogn. Develop. Syst. 11, 384–394. doi: 10.1109/TCDS.2018.2

833071

Long, Y. et al. (2019). A ferroelectric fet-based processing-in-memory architecture

for dnn acceleration. IEEE J. Exp. Solid-State Comput. Dev. Circ. 5, 113–122.

doi: 10.1109/JXCDC.2019.2923745

Long, Y., Lee, E., Kim, D., and Mukhopadhyay, S. (2020). “Q-pim: a genetic

algorithm based flexible dnn quantization method and application to

processing-in-memory platform,” in 2020 57th ACM/IEEE Design Automation

Conference (DAC) (San Francisco, CA), 1–6.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural

network models. Neural Netw. 10, 1659–1671.

Miquel, J. R., Tolu, S., Schöller, F. E., and Galeazzi, R. (2021). Retinanet object

detector based on analog-to-spiking neural network conversion. arXiv preprint

arXiv:2106.05624. doi: 10.48550/ARXIV.2106.05624

Narayanan, S., Taht, K., Balasubramonian, R., Giacomin, E., and Gaillardon,

PE. (2020). “Spinalflow: an architecture and dataflow tailored for spiking

neural networks,” in 2020 ACM/IEEE 47th Annual International Symposium on

Computer Architecture (ISCA) (Valencia), 349–362.

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning

in spiking neural networks: bringing the power of gradient-based

optimization to spiking neural networks. IEEE Signal Process. Mag. 36,

51–63. doi: 10.1109/MSP.2019.2931595

Panda, P., Aketi, S. A., and Roy, K. (2020). Toward scalable, efficient,

and accurate deep spiking neural networks with backward residual

connections, stochastic softmax, and hybridization. Front. Neurosci. 14,

653. doi: 10.3389/fnins.2020.00653

Park, J., Lee, J., and Jeon, D. (2019). “7.6 a 65nm 236.5nj/classification

neuromorphic processor with 7.5energy overhead on-chip learning using direct

spike-only feedback,” in 2019 IEEE International Solid- State Circuits Conference

- (ISSCC) (San Francisco, CA), 140-142.

Peng, X., Huang, S., Jiang, H., Lu, A., and Yu, S. (2021). DNN+NeuroSim V2.0:

An end-to-end benchmarking framework for compute-in-memory accelerators

for on-chip training. IEEE Trans. Comput. Aid. D. Integ. Circui.t Syst. 40,

2306–2319. doi: 10.1109/TCAD.2020.3043731

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities

and challenges. Front. Neurosci. 12, 774. doi: 10.3389/fnins.2018.00774

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: vgg and residual architectures. Front. Neurosci. 13, 95.

doi: 10.3389/fnins.2019.00095

Seo, J., Brezzo, B., Liu, Y., Parker, B. D., Esser, S. K., Montoye, R. K., et al. (2011).

“A 45nm cmos neuromorphic chip with a scalable architecture for learning

in networks of spiking neurons,” in 2011 IEEE Custom Integrated Circuits

Conference (CICC) (San Jose, CA), 1–4.

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Paul Strachan, J.,

Hu, M., et al. (2016). “Isaac: a convolutional neural network accelerator with

in-situ analog arithmetic in crossbars,” in Proceedings of the 43rd International

Symposium on Computer Architecture ISCA ’16 (Seoul: IEEE Press), 14–26.

She, X., Long, Y., Kim, D., and Mukhopadhyay, S. (2021). Scienet: deep learning

with spike-assisted contextual information extraction. Pattern Recogn. 118,

108002. doi: 10.1016/j.patcog.2021.108002

She, X., Long, Y., and Mukhopadhyay, S. (2019). “Fast and low-precision learning

in gpu-accelerated spiking neural network,” in 2019 Design, Automation

& Test in Europe Conference & Exhibition (DATE) (Florence: IEEE),

450–455.

She, X., Saha, P., Kim, D., Long, Y., and Mukhopadhyay, S. (2020). “Safe-dnn:

a deep neural network with spike assisted feature extraction for noise robust

inference,” in 2020 International Joint Conference on Neural Networks (IJCNN)

(Glasgow: IEEE), 1–8.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556.

doi: 10.48550/ARXIV.1409.1556

Singh, S., Sarma, A., Jao, N., Pattnaik, A., Lu, S., Yang, K., et al. (2020).

“Nebula: a neuromorphic spin-based ultra-low power architecture for snns and

anns,” in 2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture (ISCA) (Valencia), 363–376.

Srinivasan, G., Panda, P., and Roy, K. (2018). Stdp-based unsupervised feature

learning using convolution-over-time in spiking neural networks for energy-

efficient neuromorphic computing. ACM J. Emerg. Technol. Comput. Syst.

(JETC) 14, 1–12. doi: 10.1145/3266229

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2020). “Efficient processing of deep

neural networks,” in Synthesis Lectures on Computer Architecture San Rafael,

CA: Morgan and Claypool, vol. 15. 1–341.

Tavanaei, A. and Maida, A. S. (2016). Bio-inspired spiking convolutional neural

network using layer-wise sparse coding and stdp learning. arXiv [Preprint].

arXiv: 1611.03000. Available online at: https://arxiv.org/pdf/1611.03000.pdf

Wang, G., Ma, S., Wu, Y., Pei, J., Zhao, R., and Shi, L. (2021). End-to-end

implementation of various hybrid neural networks on a cross-paradigm

Frontiers in Neuroscience | www.frontiersin.org 16 April 2022 | Volume 16 | Article 775457215

https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JSSC.2020.2970709
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1109/LSSC.2020.3013448
https://doi.org/10.48550/ARXIV.2006.04436
https://doi.org/10.3389/fnins.2018.00435
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.1109/TCDS.2018.2833071
https://doi.org/10.1109/JXCDC.2019.2923745
https://doi.org/10.48550/ARXIV.2106.05624
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2020.00653
https://doi.org/10.1109/TCAD.2020.3043731
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1016/j.patcog.2021.108002
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.1145/3266229
https://arxiv.org/pdf/1611.03000.pdf
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al. MONETA

neuromorphic chip. Front. Neurosci. 15, 45. doi: 10.3389/fnins.202

1.615279

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal

backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 12, 331. doi: 10.3389/fnins.2018.00331

Author Disclaimer: The views and conclusions included in this article

are those of the authors and should not be interpreted as representing

the official policies, either expressed or implied, of DARPA or the

U.S. Government.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Kim, Chakraborty, She, Lee, Kang and Mukhopadhyay.

This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction

in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 17 April 2022 | Volume 16 | Article 775457216

https://doi.org/10.3389/fnins.2021.615279
https://doi.org/10.3389/fnins.2018.00331
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 09 May 2022

doi: 10.3389/frai.2022.891624

Frontiers in Artificial Intelligence | www.frontiersin.org 1 May 2022 | Volume 5 | Article 891624

Edited by:

Saban Öztürk,

Amasya University, Turkey

Reviewed by:

Mucahid Barstugan,

Konya Technical University, Turkey

Umut Özkaya,

Konya Technical University, Turkey

Bing Li,

Capital Normal University, China

*Correspondence:

Murat Onen

monen@mit.edu

Tayfun Gokmen

tgokmen@us.ibm.com

Seyoung Kim

kimseyoung@postech.ac.kr

†Present address:

Seyoung Kim,

Department of Materials Science and

Engineering, POSTECH, Pohang,

South Korea

‡These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Machine Learning and Artificial

Intelligence,

a section of the journal

Frontiers in Artificial Intelligence

Received: 08 March 2022

Accepted: 01 April 2022

Published: 09 May 2022

Citation:

Onen M, Gokmen T, Todorov TK,

Nowicki T, del Alamo JA, Rozen J,

Haensch W and Kim S (2022) Neural

Network Training With Asymmetric

Crosspoint Elements.

Front. Artif. Intell. 5:891624.

doi: 10.3389/frai.2022.891624

Neural Network Training With
Asymmetric Crosspoint Elements
Murat Onen 1,2*‡, Tayfun Gokmen 1*‡, Teodor K. Todorov 1, Tomasz Nowicki 1,

Jesús A. del Alamo 2, John Rozen 1, Wilfried Haensch 1 and Seyoung Kim 1*†

1 IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States, 2Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States

Analog crossbar arrays comprising programmable non-volatile resistors are under

intense investigation for acceleration of deep neural network training. However,

the ubiquitous asymmetric conductance modulation of practical resistive devices

critically degrades the classification performance of networks trained with conventional

algorithms. Here we first describe the fundamental reasons behind this incompatibility.

Then, we explain the theoretical underpinnings of a novel fully-parallel training algorithm

that is compatible with asymmetric crosspoint elements. By establishing a powerful

analogy with classical mechanics, we explain how device asymmetry can be exploited

as a useful feature for analog deep learning processors. Instead of conventionally

tuning weights in the direction of the error function gradient, network parameters

can be programmed to successfully minimize the total energy (Hamiltonian) of the

system that incorporates the effects of device asymmetry. Our technique enables

immediate realization of analog deep learning accelerators based on readily available

device technologies.

Keywords: analog computing, DNN training, hardware accelerator architecture, neuromorphic accelerator,

learning algorithm

INTRODUCTION

Deep learning has caused a paradigm shift in domains such as object recognition, natural language
processing, and bioinformatics which benefit from classifying and clustering representations of data
at multiple levels of abstraction (Lecun et al., 2015). However, the computational workloads to train
state-of-the-art deep neural networks (DNNs) demand enormous computation time and energy
costs for data centers (Strubell et al., 2020). Since larger neural networks trained with bigger data
sets generally provide better performance, this trend is expected to accelerate in the future. As a
result, the necessity to provide fast and energy-efficient solutions for deep learning has invoked a
massive collective research effort by industry and academia (Chen et al., 2016; Jouppi et al., 2017;
Rajbhandari et al., 2020).

Highly optimized digital application-specific integrated circuit (ASIC) implementations
have attempted to accelerate DNN workloads using reduced-precision arithmetic for the
computationally intensivematrix operations. Although acceleration of inference tasks was achieved
by using 2-bit resolution (Choi et al., 2019), learning tasks were found to require at least hybrid 8-
bit floating-point formats (Sun et al., 2019) which still imposes considerable energy consumption
and processing time for large networks. Therefore, beyond-digital approaches that can efficiently
handle training workloads are actively sought for.

217

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2022.891624
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2022.891624&domain=pdf&date_stamp=2022-05-09
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:monen@mit.edu
mailto:tgokmen@us.ibm.com
mailto:kimseyoung@postech.ac.kr
https://doi.org/10.3389/frai.2022.891624
https://www.frontiersin.org/articles/10.3389/frai.2022.891624/full

Onen et al. DNN Training With Asymmetric Devices

The concept of in-memory computation with analog
resistive crossbar arrays is under intense study as a promising
alternative. These frameworks were first designed to make use
of Ohm’s and Kirchhoff’s Laws to perform parallel vector–
matrix multiplications (see Supplementary Sections 2.1, 2.2 for
details), which constitute ≈ 2/3 of the overall computational
load (Steinbuch, 1961). However, unless the remaining ≈ 1/3
of computations during the update cycle is parallelized as well,
the acceleration factors provided by analog arrays will be a mere
3× at best with respect to conventional digital processors. It was
much later discovered that rank-one outer products can also be
achieved in parallel, using pulse-coincidence and incremental
changes in device conductance (Burr et al., 2015; Gokmen and
Vlasov, 2016). Using this method, an entire crossbar array can
be updated in parallel, without explicitly computing the outer
product1 or having to read the value of any individual crosspoint
element (Gokmen et al., 2017). As a result, all basic primitives
for DNN training using the Stochastic Gradient Descent
(SGD) algorithm can be performed in a fully-parallel fashion
using analog crossbar architectures. However, this parallel
update method imposes stringent device requirements since its
performance is critically affected by the conductance modulation
characteristics of the crosspoint elements. In particular,
asymmetric conductance modulation characteristics (i.e.,
having mismatch between positive and negative conductance
adjustments) are found to deteriorate classification accuracy
by causing inaccurate gradient accumulation (Yu et al., 2015;
Agarwal et al., 2016, 2017; Gokmen and Vlasov, 2016; Gokmen
et al., 2017, 2018; Ambrogio et al., 2018). Unfortunately, all
analog resistive devices to date have asymmetric characteristics,
which poses a major technical barrier before the realization of
analog deep learning processors.

In addition to widespread efforts to engineer ideal resistive
devices (Woo and Yu, 2018; Fuller et al., 2019; Grollier
et al., 2020; Yao et al., 2020), many high-level mitigation
techniques have been proposed to remedy device asymmetry.
Despite numerous published simulated and experimental
demonstrations, none of these studies so far provides a solution
for which the analog processor still achieves its original purpose:
energy-efficient acceleration of deep learning. The critical
issue with the existing techniques is the requirement of serial
accessing to crosspoint elements one-by-one or row-by-row
(Prezioso et al., 2015; Yu et al., 2015; Agarwal et al., 2017; Burr
et al., 2017; Ambrogio et al., 2018; Li et al., 2018, 2019; Cai
et al., 2019; Sebastian et al., 2020). Methods involving serial
operations include reading conductance values individually,
engineering update pulses to artificially force symmetric
modulation, and carrying or resetting weights periodically.
Furthermore, some approaches offload the gradient computation
to digital processors, which not only requires consequent
serial programming of the analog matrix, but also bears the
cost of outer product calculation (Prezioso et al., 2015; Yu
et al., 2015; Li et al., 2018, 2019; Cai et al., 2019; Sebastian
et al., 2020). Updating an N × N crossbar array with these

1The result of the outer product is not returned to the user, but implicitly applied

to the network.

serial routines would require at least N or even N2 operations.
For practical array sizes, the update cycle would simply take
too much computational time and energy. In conclusion, for
implementations that compromise parallelism, whether or not
the asymmetry issue is resolved becomes beside the point since
computational throughput and energy efficiency benefits over
conventional digital processors are lost for practical applications.
It is therefore urgent to devise a method that deals with device
asymmetry while employing only fully-parallel operations.

Recently, our group proposed a novel fully-parallel training
method, Tiki-Taka, that can successfully train DNNs based
on asymmetric resistive devices with asymmetric modulation
characteristics (Gokmen and Haensch, 2020). This algorithm
was empirically shown in simulation to deliver ideal-device-
equivalent classification accuracy for a variety of network types
and sizes emulated with asymmetric device models (Gokmen and
Haensch, 2020). However, the missing theoretical underpinnings
of the proposed algorithmic solution as well as the cost
of doubling analog hardware previously limited the method
described in Gokmen and Haensch (2020).

In this paper, we first theoretically explain why device
asymmetry has been a fundamental problem for SGD-based
training. By establishing a powerful analogy with classical
mechanics., we further establish that the Tiki-Taka algorithm
minimizes the total energy (Hamiltonian) of the system,
incorporating the effects of device asymmetry. The present work
formalizes this new method as Stochastic Hamiltonian Descent
(SHD) and describes how device asymmetry can be exploited as
a useful feature in a fully-parallel training. The advanced physical
intuition allows us to enhance the original algorithm and achieve
a reduction in hardware cost of 50%, improving its practical
relevance. Using simulated training results for different device
families, we conclude that SHD provides better classification
accuracy and faster convergence with respect to SGD-based
training in all applicable scenarios. The contents of this paper
provide a guideline for the next generation of crosspoint elements
as well as specialized algorithms for analog computing.

THEORY

Neural networks can be construed as many layers of matrices
(i.e., weights, W) performing affine transformations followed by
non-linear activation functions. Training (i.e., learning) process
refers to the adjustment of W such that the network response to
a given input produces the target output for a labeled dataset.
The discrepancy between the network and target outputs is
represented with a scalar error function, E, which the training
algorithm seeks to minimize. In the case of the conventional
SGD algorithm (Cauchy, 1847), values of W are incrementally
modified by taking small steps (scaled by the learning rate, η)
in the direction of the gradient of the error function sampled
for each input. Computation of the gradients is performed
by the backpropagation algorithm consisting of forward pass,
backward pass, and update subroutines (Rumelhart et al., 1986)
(Figure 1A). When the discrete nature of DNN training is
analyzed in the continuum limit, the time evolution of W can

Frontiers in Artificial Intelligence | www.frontiersin.org 2 May 2022 | Volume 5 | Article 891624218

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

FIGURE 1 | Effect of asymmetric conductance modulation for SGD-based training. (A) Schematic and pseudocode of processes for conventional SGD algorithm

(Cauchy, 1847). Vectors x, y, represent the input and output vectors in the forward pass whereas δ, z contain the backpropagated error information. The analog

architecture schematic is only shown for a single layer, where all vectors are propagated between upper and lower network layers in general. The pseudocode only

describes operations computed in the analog domain, whereas digital computations such as activation functions are not shown for simplicity. (B) Sketch of

conductance modulation behavior of a symmetric crosspoint device. (C) Simulated single-parameter optimization result for the symmetric device shown in (B).

conductance successfully converges to the optimal value for the problem at hand, G0. (D) Simulated residual distance between the final converged value, Gfinal , and

G0 for training the device with characteristics shown in (B) for datasets with different optimal values. (E) Sketch of conductance modulation behavior of an asymmetric

crosspoint device. The point at which 1G+ = 1G− is defined as the symmetry point of the device (Gsymmetry) (F) Simulated training result for the same

single-parameter optimization with the asymmetric device shown in (E). Device conductance fails to converge to G0, but instead settles at a level between G0 and

Gsymmetry . (G) Simulated residual distance (in semilog scale) between the final value, Gfinal , and G0 for training the device with characteristics shown in (E) for datasets

with different optimal values.

be written as a Langevin equation:

Ẇ = −η
[

∂E
∂W + ǫ (t)

]
(1)

where η is the learning rate and ǫ(t) is a fluctuating term
with zero-mean, accounting for the inherent stochasticity of the
training procedure (Feng and Tu, 2023). As a result of this
training process, W converges to the vicinity of an optimum
W0, at which

∂E
∂W = 0 but Ẇ is only on average 0 due to the

presence of ǫ(t). For visualization, if the training dataset is a
cluster of points in space, W0 is the center of that cluster, where
each individual point still exerts a force (ǫ(t)) that averages out to
0 over the whole dataset.

In the case of analog crossbar-based architectures, the linear
matrix operations are performed on arrays of physical devices,
whereas all non-linear computations (e.g., activation and error
functions) are handled at peripheral circuitry. The strictly
positive nature of device conductance requires representation

of each weight by means of the differential conductance of
a pair of crosspoint elements (i.e., W ∝ Gmain − Gref).
Consequently, vector-matrix multiplications for the forward
and backward passes are computed by using both the main
and the reference arrays (Figure 1A). On the other hand, the
gradient accumulation and updates are only performed on the
main array using bidirectional conductance changes while the
values of the reference array are kept constant2. In this section,
to illustrate the basic dynamics of DNN training with analog
architectures, we study a single-parameter optimization problem
(linear regression) which can be considered as the simplest
“neural network”.

2For implementations using devices showing unidirectional conductance

modulation characteristics, both the main and the reference array are updated.

When SGD is used as the training algorithm, values of Gref are not critical as long

as they fall in the midrange of Gmain’s conductance span (Gokmen and Vlasov,

2016).

Frontiers in Artificial Intelligence | www.frontiersin.org 3 May 2022 | Volume 5 | Article 891624219

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

The weight updates in analog implementations are carried
out through modulation of the conductance values of the
crosspoint elements, which are often applied by means of pulses.
These pulses cause incremental changes in device conductance
(1G+,−). In an ideal device, these modulation increments are
of equal magnitude in both directions and independent of
the device conductance, as shown in Figure 1B. It should be
noted that the series of modulations in the training process
is inherently non-monotonic as different input samples in the
training set create gradients with different magnitudes and signs
in general. Furthermore, as stated above, even when an optimum
conductance, G0, is reached (W0 ∝ G0 − Gref), continuing the
training operation would continue modifying the conductance in
the vicinity of G0, as shown in Figure 1C. Consequently, G0 can
be considered as a dynamic equilibrium point of the device
conductance from the training algorithm point of view.

Despite considerable technological efforts in the last decade,
analog resistive devices with the ideal characteristics illustrated
in Figure 1B have yet to be realized. Instead, practical analog
resistive devices display asymmetric conductance modulation
characteristics such that unitary (i.e., single-pulse) modulations
in opposite directions do not cancel each other in general, i.e.,
1G+ (G) 6= −1G−(G). However, with the exception of some
device technologies such as Phase ChangeMemory (PCM) which
reset abruptly (Burr et al., 2017; Sebastian et al., 2017; Ambrogio
et al., 2018), many crosspoint elements can be modeled by a
smooth, monotonic, non-linear function that shows saturating
behavior at its extrema as shown in Figure 1E (Kim et al., 2019b,
2020; Yao et al., 2020). For such devices, there exists a unique
conductance point, Gsymmetry, at which the magnitude of an
incremental conductance change is equal to that of a decremental
one. As a result, the time evolution of G during training can be
rewritten as:

Ġ = −η
[

∂E
∂G + ǫ (t)

]
− ηκ

∣∣ ∂E
∂G + ǫ (t)

∣∣ .f hardware (2)

where κ is the asymmetry factor and fhardware is the functional
form of the device asymmetry (see Supplementary Section 1.1

for derivation). In this expression, the term −η
∣∣ ∂E
∂G + ǫ(t)

∣∣
signifies that the direction of the change related to asymmetric
behavior is solely determined by fhardware, irrespective of the
direction of the intended modulation. For the exponentially
saturating device model shown in Figure 1E, fhardware = G −
Gsymmetry, which indicates that each and every update event
has a component that drifts the device conductance toward its
symmetry point. A simple observation of this effect is when
enough equal number of incremental and decremental changes
are applied to these devices in a random order, the conductance
value converges to the vicinity of Gsymmetry (Kim et al., 2020).
Therefore, this point can be viewed as the physical equilibrium
point for the device, as it is the only conductance value that is
dynamically stable.

It is essential to realize that there is in general no relation
between Gsymmetry and G0, as the former is entirely device-
dependent while the latter is problem-dependent. As a result,
for an asymmetric device, two equilibria of hardware and
software create a competing system, such that the conductance

value converges to a particular conductance somewhere between
Gsymmetry and G0, for which the driving forces of the training
algorithm and device asymmetry are balanced out (Figure 1F).
In examples shown in Figures 1C,F, G0 of the problem is
purposefully designed to be far away from Gsymmetry, so as to
depict a case for which the effect of asymmetry is pronounced.
Indeed, it can be seen that the discrepancy between the final
converged value, Gfinal, and G0 strongly depends on the relative
position of G0 with respect to the Gsymmetry (Figure 1G), unlike
that of ideal devices (Figure 1D). Detailed derivation of these
dynamics can be found in Supplementary Section 1.2.

In contrast to SGD, our new training algorithm, illustrated
in Figure 2A, separates both the forward path and error
backpropagation from the update function. For this
purpose, two array pairs (instead of a single pair), namely
Amain, Aref , Cmain, Cref are utilized to represent each
layer (Gokmen and Haensch, 2020). In this representation,
A = Amain − Aref stands for the auxiliary array and
C = Cmain − Cref stands for the core array.

The new training algorithm operates as follows. At the
beginning of the training process, Aref and Cref are initialized
to Amain,symmetry and Cmain,symmetry, respectively [reasons will be
clarified later, see SectionM1. Array Initialization (Zero-Shifting)
for details] following the method described in Kim et al. (2020).
As illustrated in Figure 2A, first, forward and backward pass
cycles are performed on the array-pair C (Steps I and II), and
corresponding updates are performed on Amain (scaled by the
learning rate ηA) using the parallel update scheme discussed in
Gokmen andVlasov (2016) (Step III). In other words, the updates
that would have been applied to C in a conventional SGD scheme
are directed to A instead.

Then, every τ cycles, another forward pass is performed on
A, with a vector u, which produces v = Au (Step IV). In its
simplest form, u can be a vector of all “0”s but one “1”, which
then makes v equal to the row of A corresponding to the location
of “1” in u. Finally, the vectors u and v are used to update Cmain

with the same parallel update scheme (scaled by the learning
rate ηc) (Step V). These steps (IV and V shown in Figure 2A)
essentially partially add the information stored in A to Cmain. The
complete pseudocode for the algorithm can be found in Section
M2. Pseudocode for SHD Algorithm.

At the end of the training procedure C alone contains the
optimized network, to be later used in inference operations
(hence the name core). Since A receives updates computed
over ∂E

∂C , which have zero-mean once C is optimized, its
active component, Amain, will be driven toward Amain,symmetry.
The choice to initialize the stationary reference array, Aref , at
Amain,symmetry ensures that A = 0 at this point (i.e., when C is
optimized), thus generating no updates to C in return.

With the choice of u vectors made above, every time steps IV
and V are performed, the location of the “1” for the u vector
would change in a cyclic fashion, whereas in general any set of
orthogonal u vectors can be used for this purpose (Gokmen and
Haensch, 2020). We emphasize that these steps should not be
confused with weight carrying (Agarwal et al., 2017; Ambrogio
et al., 2018), as C is updated by only a fractional amount in the
direction of A as ηC << 1 and at no point information stored

Frontiers in Artificial Intelligence | www.frontiersin.org 4 May 2022 | Volume 5 | Article 891624220

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

FIGURE 2 | DNN training with Stochastic Hamiltonian Descent (SHD) algorithm and dynamics of a dissipative harmonic oscillator. (A) Schematic and pseudocode of

training process using the SHD algorithm. The pseudocode only describes operations computed in the analog domain, whereas digital computations such as

non-linear error functions are not shown for simplicity. (B) Illustration of a damped harmonic oscillator system. (C) Differential equations describing the evolution of the

parameters with the SHD training algorithm in the continuum limit. (D) Equations of motion describing the dynamics of a harmonic oscillator. (E) Simulated results for a

single-parameter optimization task using the SHD algorithm with symmetric devices described in Figure 1B. (F) Simulated results for a single-parameter optimization

task using the SHD algorithm with asymmetric devices described in Figure 1E.

in A is externally erased (i.e., A is never reset). Instead, A and C
create a coupled-dynamical-system, as the changes performed on
both are determined by the values of one another.

Furthermore, it is critical to realize that the algorithm shown
in Figure 2 consists of only fully-parallel operations. Similar to
steps I and II (forward and backward pass on C), steps IV
is yet another matrix-vector multiplication that is performed
by means of Ohm’s and Kirchhoff’s Laws. On the other hand,
the update steps III and V are performed by the stochastic
update scheme (Gokmen and Vlasov, 2016). This update method
does not explicitly compute the outer products (x × δ and
u × v), but instead uses a statistical method to modify all
weights in parallel proportional to those outer products. As a

result, no serial operations are required at any point throughout
the training operation, enabling high throughput and energy
efficiency benefits in deep learning computations.

For the same linear regression problem studied above, the
discrete-time update rules given in Figure 2A can be rewritten
as a pair of differential equations in the continuum limit
that describe the time evolution of subsystems A and C
(Figure 2C) as:

Ȧ = −ηA
[

∂E
∂C + ǫ (t)

]
− ηAκA

∣∣ ∂E
∂C + ǫ (t)

∣∣
×

(Amain − Amain, symmetry)
(3)

Ċ = ηCA + ηCκC|A|×
(Cmain − Cmain,symmetry)

(4)

Frontiers in Artificial Intelligence | www.frontiersin.org 5 May 2022 | Volume 5 | Article 891624221

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

It can be noticed that this description of the coupled system
has the same arrangement as the equations governing the
motion of a damped harmonic oscillator (Figures 2B,D). In this
analogy, subsystemA corresponds to velocity, ν, while subsystem
C maps to position, x, allowing the scalar error function of
the optimization problem3, (C − C0)

2, to map onto the scalar
potential energy of the physical framework, 1

2kspring (x− x0)
2.

Moreover, for implementations with asymmetric devices, an
additional force term, Fhardware, needs to be included in the
differential equations to reflect the hardware-induced effects
on the conductance modulation. As discussed earlier, for the
device model shown in Figure 1E this term is proportional to
Amain − Amain,symmetry. If we assume Aref = Amain,symmetry (this
assumption will be explained later), we can rewrite Fhardware as a
function ofAmain−Aref , which then resembles a drag force, Fdrag ,
that is linearly proportional to velocity (ν ∝ A = Amain − Aref)
with a variable (but strictly non-negative) drag coefficient kdrag .
In general, the Fhardware term can have various functional forms
for devices with different conductancemodulation characteristics
but is completely absent for ideal devices. Note that, only to
simplify the physical analogy, we ignore the effect of asymmetry
in subsystem C, which yields the equation shown in Figure 2C

(instead of Equation 4). This decision will be justified in the
Section Discussions.

Analogous to the motion of a lossless harmonic oscillator, the
steady-state solution for thismodified optimization problemwith
ideal devices (i.e., Fhardware = 0) has an oscillatory behavior
(Figure 2E). This result is expected, as in the absence of any
dissipation mechanism, the total energy of the system cannot
be minimized (it is constant) but can only be continuously
transformed between its potential and kinetic components. On
the other hand, for asymmetric devices, the dissipative force
term Fhardware gradually annihilates all energy in the system,
allowing A ∝ ν to converge to 0 (Ekinetic → 0) while C ∝
x converges to C0 ∝ x0 (Epotential → 0). Based on these
observations, we rename the new training algorithm as Stochastic
Hamiltonian Descent (SHD) to highlight the evolution of the
system parameters in the direction of reducing the system’s
total energy (Hamiltonian). These dynamics can be visualized
by plotting the time evolution of A vs. that of C, which
yields a spiraling path representing decaying oscillations for
the optimization process with asymmetric devices (Figure 2F),
in contrast to elliptical trajectories observed for ideal lossless
systems (Figure 2E).

Following the establishment of the necessity to have
dissipative characteristics, here we analyze conditions at which
device asymmetry provides this behavior. It is well-understood
in mechanics that for a force to be considered dissipative,
its product with velocity (i.e., power) should be negative
(otherwise it would imply energy injection into the system).
In other words, the hardware-induced force term Fhardware =
−κAηA

∣∣ ∂E
∂C + ǫ(t)

∣∣ (Amain −Amain,symmetry) and the velocity, ν =

3Conventionally error functions are written in terms of the difference between the

network response and the target output and gradients are computed accordingly.

However, in the absence of any stochasticity, ǫ, it can instead be written in terms

of the network weights and their optimal values as well for notational purposes.

Amain − Aref , should always have opposite signs. Furthermore,
from the steady-state analysis, for the system to be stationary
(ν = 0) at the point with minimum potential energy (x = x0),
there should be no net force (F = 0). Both of these arguments
indicate that, for the SHD algorithm to function properly, Aref

must be set to Amain, symmetry. Note that as long as the crosspoint
elements are realized with asymmetric devices (opposite to SGD
requirement) and a symmetry point exists for each device,
the shape of their modulation characteristics is not critical for
successful DNN training with the SHD algorithm. Importantly,
while a technologically viable solution for symmetric devices has
not yet been found over decades of investigation, asymmetric
devices that satisfy the aforementioned properties are abundant.

A critical aspect to note is that the SGD and the SHD
algorithms are fundamentally disjunct methods governed by
completely different dynamics. The SGD algorithm attempts to
optimize the system parameters while disregarding the effect
of device asymmetry and thus converges to the minimum of a
wrong energy function. On the other, the system variables in an
SHD-based training do not conventionally evolve in directions
of the error function gradient, but instead, are tuned to minimize
the total energy incorporating the hardware-induced terms. The
most obvious manifestation of these properties can be observed
when the training is initialized from the optimal point (i.e.,
the very lucky guess scenario) since any “training” algorithm
should at least be able to maintain this optimal state. For the
conventional SGD, when W = W0, the zero-mean updates
applied to the network were shown above to drift W away from
W0 toward Wsymmetry. On the other hand, for the SHD method,
when A = 0 and C = C0, the zero-mean updates applied
on A do not have any adverse effect since Amain is already
at Amain, symmetry for A = 0. Consequently, no updates are
applied to C either as Ċ = A = 0. Therefore, it is clear that
SGD is fundamentally incompatible with asymmetric devices,
even when the solution is guessed correctly from the beginning,
whereas the SHD does not suffer from this problem. Note that
the propositions made for SGD can be further generalized to
other crossbar-compatible training methods such as equilibrium
propagation (Scellier and Bengio, 2017) and deep Boltzmann
machines (Salakhutdinov and Hinton, 2009), which can also
be adapted to be used with asymmetric devices following the
approach discussed in this paper.

Finally, we appreciate that large-scale neural networks are
much more complicated systems with respect to the problem
analyzed here. Similarly, different analog devices show a
wide range of conductance modulation behaviors, as well as
bearing other non-idealities such as analog noise, imperfect
retention, and limited endurance. However, the theory we
provide here finally provides an intuitive explanation for:
(1) why device asymmetry is fundamentally incompatible
with SGD-based training and (2) how to ensure accurate
optimization while only using fully-parallel operations. We
conclude that asymmetry-related issues within SGD should be
analyzed in the context of competing equilibria, where the
optimum for the classification problem is not even a stable
solution at steady-state. In addition to this simple stability
analysis, the insight to modify the optimization landscape

Frontiers in Artificial Intelligence | www.frontiersin.org 6 May 2022 | Volume 5 | Article 891624222

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

to include non-ideal hardware effects allows other fully-
parallel solutions to be designed in the future using advanced
concepts from optimal control theory. As a result, these parallel
methods enable analog processors to provide high computational
throughput and energy efficiency benefits over their conventional
digital counterparts.

EXPERIMENTAL DEMONSTRATION

In order to validate the SHD dynamics theorized above,
we carried out an experimental demonstration of the SHD
algorithm using metal-oxide based electrochemical devices
reported in Sebastian et al. (2017) (Figure 3A). These
devices are three-terminal4, voltage-controlled crosspoint
elements, absent of any compliance circuits or serial-
access devices. The modulation characteristics obtained
for one of the devices is shown in Figure 3B, where
“crossed-swords” behavior is observed with a well-defined
symmetry point.

To capture the essence of SHD-based training, we have
chosen a 2-parameter optimization problem with a synthetic
dataset x1,2 and y generated of form y = G01x1 + G02x2 +
γ , where G01,2 are the unknowns searched for and γ is
the Gaussian noise. During the forward and backward pass
cycles, input values (from the training set) were represented
with different voltage levels and output results were obtained
via measuring the line currents. We note that in an actual
implementation representing input values with different pulse
widths rather than amplitudes might be beneficial, avoiding
the impact of the non-linear conductance of the crosspoint
elements for accurate vector-matrix multiplication. Following
the generation of the update vectors, x and δ, the array is
programmed in parallel using stochastic updating with half-
bias voltage scheme, as explained in Gokmen and Vlasov
(2016). Therefore, we neither computed the outer product
explicitly nor accessed the devices serially at any point
(Figure 3C).

The array training results using the SHD algorithm are
shown in Figure 3D. It can be seen that both A1 and A2

converges to 0, while C1 and C2 successfully converge to the
optimal values. Moreover, the distinctive spiraling behavior
(i.e., decaying oscillations) was observed for both variables,
displaying analogous dynamics to dissipative mechanical
systems. We found that the success of the training operation
strongly depends on the stability of the devices’ symmetry
points. As discussed earlier, any discrepancy between the
symmetry point and the reference point (initialized to the
symmetry point at the beginning of training) of a device
indicates a non-zero steady-state velocity. Therefore, future
crosspoint device technologies should exhibit a well-defined
symmetry point that is at least quasi-static throughout the
training operation.

4SHD algorithm is compatible with various configurations of resistive device, such

as 2-terminal devices, as well as 3-terminal devices we show here.

DISCUSSION AND SIMULATED TRAINING
RESULTS

In this section, we first discuss how to implement the SHD
algorithmwith 3 arrays (instead of 4) using the intuition obtained
from the theoretical analysis of the coupled-system. Then we
provide simulated results for a large-scale neural network for
different asymmetry characteristics to benchmark our method
against SGD-based training.

Considering a sequence of m + n incremental and n
decremental changes at random order, the net modulation
obtained for a symmetric device is on average m. On the
other hand, we have shown above that for asymmetric devices
the conductance value eventually converges to the symmetry
point for increasing n (irrespective of m or the initial
conductance). It can be seen by inspection that for increasing
statistical variation present in the training data (causing more
directional changes for updates), the effect of device asymmetry
gets further pronounced, leading to heavier degradation of
classification accuracy for networks trained with conventional
SGD (see Supplementary Figure S1). However, this behavior can
alternatively be viewed as non-linear filtering, where only signals
with persistent sign information, m

m+2n , are passed. Indeed,
the SHD algorithm exploits this property within the auxiliary
array, A, which filters the gradient information that is used
to train the core array, C. As a result, C is updated with
less frequency and only in directions with a high confidence
level of minimizing the error function of the problem at hand.
A direct implication of this statement is that the asymmetric
modulation behavior of C is much less critical than that of A
(see Supplementary Figure S2) for successful optimization as
its update signal contains less amount of statistical variation.
Therefore, symmetry point information of Cmain is not relevant
either. Using these results and intuition, we modified the original
algorithm by discardingCref and usingAref (set toAmain, symmetry)
as a common reference array for differential readout. This
modification reduces the hardware cost of SHD implementations
by 50% to significantly improve their practicality.

Our description of asymmetry as the mechanism of
dissipation indicates that it is a necessary and useful device
property for convergence within the SHD framework
(Figure 2E). However, this argument does not imply that
the convergence speed would be determined by the magnitude
of device asymmetry for practical-sized applications. Unlike
the single-parameter regression problem considered above, the
exploration space for DNN training is immensely large, causing
optimization to take place over many iterations of the dataset. In
return, the level of asymmetry required to balance (i.e., damp)
the system evolution is very small and can be readily achieved by
any practical level of asymmetry.

To prove these assertations, we show simulated results in
Figure 4 for a Long Short-Term Memory (LSTM) network,
using device models with increasing levels of asymmetry, trained
with both the SGD and SHD algorithms. The network was
trained on Leo Tolstoy’s War and Peace novel, to predict the
next character for a given text string (Karpathy et al., 2015).

Frontiers in Artificial Intelligence | www.frontiersin.org 7 May 2022 | Volume 5 | Article 891624223

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

FIGURE 3 | Experimental demonstration of SHD training algorithm. (A) Optical micrograph of metal-oxide based electrochemical devices (Sebastian et al., 2017).

Note that the image shows an integrated array whereas experiments were conducted with individual devices connected externally. (B) Conductance modulation

characteristics obtained for one of the devices, showing “crossed-swords” behavior with a well-defined symmetry point. (C) Schematic for array configuration used in

2-parameter optimization with SHD algorithm. All steps are shown using the same notation used in Figure 2 except for the backward pass (Step II) which is not

required for a single layer network. For training, sum of squared errors is used to calculate the scalar error and vector δ, Cmain is updated once every 10 samples (i.e.,

τ = 10) whereas [1, 0] and [0, 1] were used in Step IV (as u vectors). The reference arrays containing symmetry point information are stored in digital (as they remain

unchanged throughout the training) for simplicity. (D) Evolution of device conductances for the first (A1, C1) and the second (A2, C2) parameters. Plotting the values of

A vs. C produces the distinctive spiraling image, as expected from the theoretical analysis.

FIGURE 4 | Simulated training results for different resistive device technologies. (A) Simulated learning curves of a Long Short-Term Memory (LSTM) network trained

on Leo Tolstoy’s War and Peace novel, using different crosspoint device models under the SGD algorithm. Details of the network can be found in Karpathy et al. (2015).

(B) Simulated learning curves for the same network using the SHD algorithm. All simulation details can be found in Section M3. Training Simulator and LSTM Network.

See Supplementary Figure S4 for device-to-device variation included in the simulations and Supplementary Figure S6 for floating-point baseline comparison.

Frontiers in Artificial Intelligence | www.frontiersin.org 8 May 2022 | Volume 5 | Article 891624224

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

For reference, training the same network with a 32-bit digital
floating-point architecture yields a cross-entropy level of 1.33
(complete learning curve shown in Supplementary Figure S6).
We have particularly chosen this network as LSTM’s are known
for being particularly vulnerable to device asymmetry (Gokmen
et al., 2018).

The insets in Figure 4 show the average conductance
modulation characteristics representative for each asymmetry
level. The simulations further included device-to-device
variation, cycle-to-cycle variation, analog read noise, and
stochastic updating similar to the work conducted in Gokmen
and Vlasov (2016). The learning curves show the evolution of
the cross-entropy error, which measures the performance of a
classification model, with respect to the epochs of training. First,
Figure 4A shows that even for minimally asymmetric devices
(blue trace) trained with SGD, the penalty in classification
performance is already severe. This result also demonstrates once
more the difficulty of engineering a device that is symmetric-
enough to be trained accurately with SGD. On the other hand, for
SHD (Figure 4B), all depicted devices are trained successfully,
with the sole exception being the perfectly symmetric devices
(black trace), as expected (see Supplementary Figure S3 for
devices with abrupt modulation characteristics). Furthermore,
Figure 4B demonstrates that SHD can even provide training
results with higher accuracy and faster convergence than those
for perfectly symmetric devices trained with SGD. As a result,
we conclude that SHD is generically superior to SGD for analog
deep learning architectures.

Finally, although we present SHD in the context of analog
computing specifically, it can also be potentially useful on
conventional processors (with simulated asymmetry). The
filtering dynamics described above allows SHD to guide its
core component selectively in directions with high statistical
persistence. Therefore, at the expense of increasing the
overall memory and number of operations, SHD might
outperform conventional training algorithms by providing faster
convergence, better classification accuracy, and/or superior
generalization performance.

CONCLUSION

In this paper, we described a fully-parallel neural network
training algorithm for analog crossbar-based architectures,
Stochastic Hamiltonian Descent (SHD), based on resistive
devices with asymmetric conductance modulation
characteristics, as is the case for all practical technologies.
In contrast to previous work that resorted to serial operations
to mitigate asymmetry, SHD is a fully-parallel and scalable
method that can enable high throughput and energy-efficiency
deep learning computations with analog hardware. Our new
method uses an auxiliary array to successfully tune the system
variables in order to minimize the total energy (Hamiltonian)
of the system that includes the effect of device asymmetry.
Standard techniques, such as Stochastic Gradient Descent,
perform optimization without accounting for the effect of device
asymmetry and thus converge to the minimum of a wrong

energy function. Therefore, our theoretical framework describes
the inherent fundamental incompatibility of asymmetric devices
with conventional training algorithms. The SHD framework
further enables the exploitation of device asymmetry as a
useful feature to selectively filter and apply the updates only
in directions with high confidence. The new insights shown
here have allowed a 50% reduction in the hardware cost of
the algorithm. This method is immediately applicable to a
variety of existing device technologies, and complex neural
network architectures, enabling the realization of analog training
accelerators to tackle the ever-growing computational demand
of deep learning applications.

METHODS

M1. Array Initialization (Zero-Shifting)
Initialization of the reference array requires identification of
the conductance values of each and every element in Amain,
and programming the reference array conductances (Aref) to
those values. Given that under those conditions A = Amain −

Aref becomes 0, the method is also referred to as zero-shifting
(Kim et al., 2019a). To identify Amain, symmetry, a sufficiently long
sequence of increment-decrement pulses is applied to Amain.
Given the asymmetric nature of the devices, each pair results
in a residual conductance modulation toward each device’s
respective symmetry point. Following this step, the resultant
Amain = Amain, symmetry is then copied to the reference array.
Since these steps only occur once per training, the time and
energy costs are negligible with respect to the rest of the operation
(even for serial copying).

M2. Pseudocode for SHD Algorithm
Initialize

k : iteration step← 1, l : layer index
Set τ , η
For each layer
Al
main

[
k
]
= Al

main,symmetry

(
m× n matrix, dynamic

)

Al
ref
= Al

main,symmetry (m× n matrix, static)

Cl
main

[
k
]
= Cl

main,symmetry

(
m× n matrix, dynamic

)

For each labeled data pair [xi, ti]
Convert input xi to time encoded voltage pulse for the first

layer (x1i)
MAC O1[k] = x1i

[
k
]
.[C1

main

[
k
]
− A1

ref
]

Convert analog output to digital to store and apply non-
linear functions (activations, pooling etc.)

Forward propagateO1[k] as the input for next layer (always
using Cl

main arrays) for all layers

Compute error (cost) using network output Ofinal[k] and
target output t[k]

Backward propagate using the same dynamics (again using
Cl
main arrays) to compute all error matrices δl[k]

Update Al
main

[
k+ 1

]
← Al

main

[
k
]
− η.xl[k]

⊗
δl[k] using

stochastic update scheme
If mod (k,τ)= 0
ul[k] = [0, 0, 0 . . . 1, . . . 0, 0], where “1” is at kth location
MAC vl[k] = ul

[
k
]
.[Al

[
k
]
− Al

ref
]

Frontiers in Artificial Intelligence | www.frontiersin.org 9 May 2022 | Volume 5 | Article 891624225

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

Update Cl
main

[
k+ 1

]
← Cl

main

[
k
]
− η.ul[k]

⊗
vl[k]

M3. Training Simulator and LSTM Network
The simulation framework used here is the same that was used
in Gokmen and Vlasov (2016), Gokmen et al. (2017, 2018),
and Gokmen and Haensch (2020). The simulations start with
instantiating 3 devices per weight. Each device parameter (e.g.,
number of states, asymmetry factor, and symmetry point) is
generated with a given mean and standard variation, such
that no two devices are the same. Moreover, these device
parameters also bear cycle-to-cycle variation, defined by another
parameter, to make the operation more realistic. An open access
version of the simulator we used in this work can be found in
github.com/ibm/aihwkit for reproduction of the results.

The incremental changes are set such that devices have on
average 1,200 programmable states within their dynamic range.
Through setting the gain factors at the integrator terminals
appropriately, the average full conductance range of devices are
adjusted to be equivalent± 2 arbitrary units. Consistent with this
notation, the integrators are set to saturate at± 40 arbitrary units.
We have used 9-bit resolution for the ADCs and 7-bit resolution
for the DACs where the output-referred noise level was set at
0.02 arbitrary units. This selection was made in order not to
be limited by noise-related performance degradation, as studied
by Gokmen et al. (2017). In the update cycle, the maximum
allowed number of pulses (i.e., bit length, BL) was set to be
100. However, as update management determines this number
on-the-go depending on certain characteristics of the update
vectors and device parameters, real BL was <10 for the most of
the training.

The War and Peace dataset consists of 3, 258, 246 characters,
which we split into training and test sets as 2, 933, 246 and
325, 000 characters, respectively. The network is trained to have
a vocabulary of 87 distinct characters. We have selected to
use hidden vectors of 64-cell size, which corresponds to ∼77K

weights for the complete network. Full details of the network
architecture can be found in Karpathy et al. (2015).

The selection of the LSTM problem studied here in detail
is found to be optimal, which is complex enough to validate
the training algorithm, while it still is trainable with limited
number of conductance states, analog noise, variations, and
limited resolution. Given that SHD only resolves asymmetry
related issues, whereas other imperfections related with analog
processors such as device-to-device variability, cycle-to-cycle
variability, noise, and resolution can still deteriorate the training
performance significantly, we recommend future studies to
explore larger problems, once there are additional solutions for
these other non-idealities related to analog crossbar architectures.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

MO and TG conceived the original idea and performed
software experiments. TT fabricated devices. MO and SK
performed hardware experiments. All authors contributed to the
theory development and contributed to the preparation of the
manuscript. All authors contributed to the article and approved
the submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frai.2022.
891624/full#supplementary-material

REFERENCES

Agarwal, S., Gedrim, R. B. J., Hsia, A. H., Hughart, D. R., Fuller, E.

J., Talin, A. A., et al. (2017). Achieving ideal accuracies in analog

neuromorphic computing using periodic carry. Symp. VLSI Technol. 174–175.

doi: 10.23919/VLSIT.2017.7998164

Agarwal, S., Plimpton, S. J., Hughart, D. R., Hsia, A. H., Richter, I.,

Cox, J. A., et al. (2016). Resistive memory device requirements for a

neural algorithm accelerator. Proc. Int. Jt. Conf. Neural Networks. 929–938.

doi: 10.1109/IJCNN.2016.7727298

Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., Nolfo, C.,

et al. (2018). Equivalent-accuracy accelerated neural-network training using

analogue memory. Nature. 558, 60–67. doi: 10.1038/s41586-018-0180-5

Burr, G.W., Shelby, R.M., Sebastian, A., Kim, S., Sidler, S., Virwani, K., et al. (2017).

Neuromorphic computing using non-volatile memory. Adv. Phys. 2, 89–124.

doi: 10.1080/23746149.2016.1259585

Burr, G. W., Shelby, R. M., Sidler, S., Di Nolfo, C., Jang, J., Boybat, I., et al. (2015).

Experimental demonstration and tolerancing of a large-scale neural network

(165 000 Synapses) using phase-changememory as the synaptic weight element.

IEEE Trans. Electron Devices. 62, 3498–3507. doi: 10.1109/TED.2015.2439635

Cai, F., Correll, J. M., Lee, S. H., Lim, Y., Bothra, V., Zhang, Z., et al. (2019). A fully

integrated reprogrammable memristor– CMOS system for efficient multiply–

accumulate operations. Nat. Electron. 2, 1. doi: 10.1038/s41928-019-0270-x

Cauchy, A. (1847). Méthode générale pour la résolution des

systemes d’équations simultanées. Comp. Rend. Sci. Paris.

25, 536–538.

Chen, Y., Member, S., Krishna, T., Emer, J. S., and Sze, V. (2016).

Eyeriss: an energy-efficient reconfigurable accelerator for deep

convolutional neural networks. IEEE J. Solid-State Circuits. 52, 127–138.

doi: 10.1109/JSSC.2016.2616357

Choi, J., Venkataramani, S., Srinivasan, V., Gopalakrishnan, K., Wang, Z., and

Chuang, P. (2019). Accurate and efficient 2-bit quantized neural networks. Proc.

2nd SysML Conf. 348–359.

Feng, Y., and Tu, Y. (2023). How Neural Networks Find Generalizable Solutions:

Self-Tuned Annealing in Deep Learning. Available online at: https://arxiv.org/

abs/2001.01678 (accessed March 01, 2022).

Fuller, E. J., Keene, S. T., Melianas, A., Wang, Z., Agarwal, S., Li, Y., et al.

(2019). Parallel programming of an ionic floating-gate memory array for

scalable neuromorphic computing. Science 364, 570–574. doi: 10.1126/science.

aaw5581

Gokmen, T., and Haensch, W. (2020). Algorithm for training neural

networks on resistive device arrays. Front. Neurosci. 14, e00103.

doi: 10.3389/fnins.2020.00103

Gokmen, T., Onen, M., and Haensch, W. (2017). Training deep convolutional

neural networks with resistive cross-point devices. Front. Neurosci. 11, 538.

doi: 10.3389/fnins.2017.00538

Frontiers in Artificial Intelligence | www.frontiersin.org 10 May 2022 | Volume 5 | Article 891624226

https://www.frontiersin.org/articles/10.3389/frai.2022.891624/full#supplementary-material
https://doi.org/10.23919/VLSIT.2017.7998164
https://doi.org/10.1109/IJCNN.2016.7727298
https://doi.org/10.1038/s41586-018-0180-5
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1109/TED.2015.2439635
https://doi.org/10.1038/s41928-019-0270-x
https://doi.org/10.1109/JSSC.2016.2616357
https://arxiv.org/abs/2001.01678
https://arxiv.org/abs/2001.01678
https://doi.org/10.1126/science.aaw5581
https://doi.org/10.3389/fnins.2020.00103
https://doi.org/10.3389/fnins.2017.00538
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

Gokmen, T., Rasch, M. J., and Haensch, W. (2018). Training LSTM networks with

resistive cross-point devices. Front. Neurosci. 12, 745. doi: 10.3389/fnins.2018.

00745

Gokmen, T., and Vlasov, Y. (2016). Acceleration of deep neural network training

with resistive cross-point devices: design considerations. Front. Neurosci. 10,

333. doi: 10.3389/fnins.2016.00333

Grollier, J., Querlioz, D., Camsari, K. Y., Everschor-Sitte, K., Fukami, S., and

Stiles, M. D. (2020). Neuromorphic spintronics. Nat. Electron. 3, 360–370.

doi: 10.1038/s41928-019-0360-9

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al.

(2017). In - datacenter performance analysis of a tensor processing unit. Proc.

44th Annu. Int. Symp. Comput. Archit. 1–12. doi: 10.1145/3079856.3080246

Karpathy, A., Johnson, J., and Fei-Fei, L. (2015). “Visualizing and understanding

recurrent networks”, in ICLR 2016 (San Juan), 1–12.

Kim, H., Rasch, M., Gokmen, T., Ando, T., Miyazoe, H., Kim, J.-J., et al. (2020).

Zero-Shifting Technique for Deep Neural Network Training on Resistive Cross-

point Arrays. Available online at: https://arxiv.org/abs/1907.10228 (accessed

March 01, 2022).

Kim, H., Rasch, M., Gokmen, T., Ando, T., Miyazoe, H., Kim, J. J., et al. (2019a).

Zero-shifting Technique for deep neural network training on resistive cross-

point arrays. arXiv 2019–2022.

Kim, S., Todorov, T., Onen,M., Gokmen, T., Bishop, D., Solomon, P., et al. (2019b).

Oxide based, CMOS-compatible ECRAM for deep learning accelerator. IEEE

Int. Electron Devices Meet. 847–850. doi: 10.1109/IEDM19573.2019.8993463

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature. 521, 436–444.

doi: 10.1038/nature14539

Li, C., Hu, M., Li, Y., Jiang, H., Ge, N., Montgomery, E., et al. (2018). Analogue

signal and image processing with large memristor crossbars. Nat. Electron. 1,

52–59. doi: 10.1038/s41928-017-0002-z

Li, C., Wang, Z., Rao, M., Belkin, D., Song, W., Jiang, H., et al. (2019). Long

short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell.

1, 49–57. doi: 10.1038/s42256-018-0001-4

Prezioso, M., Merrikh-Bayat, F., Hoskins, B. D., Adam, G. C., Likharev, K.

K., and Strukov, D. B. (2015). Training and operation of an integrated

neuromorphic network based on metal-oxide memristors. Nature. 521, 61–64.

doi: 10.1038/nature14441

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. (2020). Zero: Memory

Optimizations Toward Training Trillion Parameter Models. Atlanta, GA: IEEE

Press.

Rumelhart, D. E., Hinton, G. E., and Willams, R. J. (1986). Learning

representations by back-propagating errors. Nature. 323, 533–536.

doi: 10.1038/323533a0

Salakhutdinov, R., and Hinton, G. (2009). Deep Boltzmann machines. J. Mach.

Learn. Res. 5, 448–455.

Scellier, B., and Bengio, Y. (2017). Equilibrium propagation: bridging the gap

between energy-based models and backpropagation. Front. Comput. Neurosci.

11, e00024. doi: 10.3389/fncom.2017.00024

Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., and Eleftheriou, E. (2020).

Memory devices and applications for in-memory computing.Nat. Nanotechnol.

15, 246–253. doi: 10.1038/s41565-020-0655-z

Sebastian, A., Tuma, T., Papandreou, N., Le Gallo, M., Kull, L., Parnell,

T., et al. (2017). Temporal correlation detection using computational

phase-change memory. Nat. Commun. 8. 1–10. doi: 10.1038/s41467-017-

01481-9

Steinbuch, K. (1961). Die lernmatrix. Kybernetik. 1, 36–45.

doi: 10.1007/BF00293853

Strubell, E., Ganesh, A., and McCallum, A. (2020). Energy and policy

considerations for deep learning in NLP. ACL 2019 - 57th Annu. Meet. Assoc.

Comput. Linguist. Proc. Conf. 3645–3650. doi: 10.18653/v1/P19-1355

Sun, X., Choi, J., Chen, C.-Y., Wang, N., Venkataramani, S., Srinivasan, V., et al.

(2019). Hybrid 8-bit floating point (HFP8) training and inference for deep

neural networks. Adv. Neural Inf. Process. Syst.

Woo, J., and Yu, S. (2018). Resistive memory-based analog synapse: the pursuit

for linear and symmetric weight update. IEEE Nanotechnol. Mag. 12, 36–44.

doi: 10.1109/MNANO.2018.2844902

Yao, X., Klyukin, K., Lu, W., Onen, M., Ryu, S., Kim, D., et al. (2020).

Protonic solid-state electrochemical synapse for physical neural networks. Nat.

Commun. 11, 1–10. doi: 10.1038/s41467-020-16866-6

Yu, S., Chen, P. Y., Cao, Y., Xia, L., Wang, Y., and Wu, H. (2015).

Scaling-up resistive synaptic arrays for neuro-inspired architecture: challenges

and prospect. Tech. Dig. - Int. Electron Devices Meet. IEDM. 17–3.

doi: 10.1109/IEDM.2015.7409718

Conflict of Interest: MO, TG, TT, TN, JR, WH, and SK were employed by IBM

Thomas J. Watson Research Center.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Onen, Gokmen, Todorov, Nowicki, del Alamo, Rozen, Haensch

and Kim. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 11 May 2022 | Volume 5 | Article 891624227

https://doi.org/10.3389/fnins.2018.00745
https://doi.org/10.3389/fnins.2016.00333
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1145/3079856.3080246
https://arxiv.org/abs/1907.10228
https://doi.org/10.1109/IEDM19573.2019.8993463
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/s41928-017-0002-z
https://doi.org/10.1038/s42256-018-0001-4
https://doi.org/10.1038/nature14441
https://doi.org/10.1038/323533a0
https://doi.org/10.3389/fncom.2017.00024
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1038/s41467-017-01481-9
https://doi.org/10.1007/BF00293853
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.1109/MNANO.2018.2844902
https://doi.org/10.1038/s41467-020-16866-6
https://doi.org/10.1109/IEDM.2015.7409718
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Advantages
of publishing
in Frontiers

OPEN ACCESS

Articles are free to read
for greatest visibility

and readership

EXTENSIVE PROMOTION

Marketing
and promotion

of impactful research

DIGITAL PUBLISHING

Articles designed
for optimal readership

across devices

LOOP RESEARCH NETWORK

Our network
increases your

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34
1005 Lausanne | Switzerland

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days
from submission

to decision

90

IMPACT METRICS

Advanced article metrics
track visibility across

digital media

FOLLOW US

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers
acknowledged by name

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,
and constructive

peer-review

REPRODUCIBILITY OF
RESEARCH

Support open data
and methods to enhance
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Hardware for Artificial Intelligence
	Table of Contents
	Editorial: Hardware for artificial intelligence
	Hardware accelerators for AI
	Advances in algorithms for AI hardware
	Outlook
	Author contributions
	Conflict of interest
	Publisher's note

	Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing Its Gradient Estimator Bias
	1. Introduction
	2. Background
	2.1. Convergent RNNs With Static Input
	2.2. Training Procedures for Convergent RNNs
	2.2.1. Equilibrium Propagation (EP)
	2.2.2. Equivalence of Equilibrium Propagation and Backpropagation Through Time (BPTT)

	2.3. Convolutional Architectures for Convergent RNNs
	2.4. Equilibrium Propagation With Unidirectional Synaptic Connections

	3. Improving EP Training
	3.1. Reducing Bias and Variance in the Gradient Estimate of the Loss Function
	3.2. Changing the Loss Function
	3.2.1. Squared Error Loss Function
	3.2.2. Softmax Readout, Cross-Entropy Loss Function

	3.3. Changing the Learning Rule of EP With Unidirectional Synaptic Connections

	4. Results
	4.1. ConvNets With Bidirectional Connections
	4.2. ConvNets With Unidirectional Connections

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	μBrain: An Event-Driven and Fully Synthesizable Architecture for Spiking Neural Networks
	1. Introduction
	1.1. Background and Related Literature

	2. Materials and Methods
	2.1. Event-Based Architecture
	2.2. Input/Output Interface
	2.3. Spike Arbiter
	2.4. The Multi-Phase-Oscillator and Delay Cell

	3. Results
	3.1. μBrain's ASIC Prototype
	3.2. Handwritten Digits Classification With μBrain
	3.3. Radar-Based Hand Gesture Classification With μBrain
	3.3.1. Event-Based Frequency-Modulated Continuous-Wave (FMCW) Radar Sensor
	3.3.2. Radar-Based Hand Gesture Classification in μBrain

	4. Discussion
	4.1. μBrain and Low-Power Neuromorphic Devices

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	NeuroSim Simulator for Compute-in-Memory Hardware Accelerator: Validation and Benchmark
	Introduction
	Background
	NeuroSim Settings
	New Features of NeuroSim
	Transistor and Peripheral Circuit Modules
	CIM Macro Configurations

	NeuroSim Validation
	Analog Modules: RRAM Array, Level Shifter, Mux, and ADC
	Digital Modules: Shift-Add, Accumulator, and Controller
	Post-Layout Calibration

	Benchmark
	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics
	1. Introduction
	2. Methods
	2.1. A Robotic Scenario—The Wavefront Algorithm
	2.1.1. A Cognitive Map
	2.1.2. Synaptic Vector Field
	2.1.3. Path Search

	2.2. Tools and Techniques
	2.2.1. Hardware Specific Adaptations
	2.2.2. Measurements
	2.2.3. Map Scaling

	2.3. Metrics
	2.3.1. Simulation Time
	2.3.2. Energy Consumption
	2.3.3. Path Length
	2.3.4. Hardware Resources

	3. Experiments and Results
	3.1. Comparing Different Hardware Solutions
	3.2. Performance Analysis of Isolated Functionalities
	3.3. Path Length
	3.4. Energy Measurement
	3.5. Hardware Resources

	4. Discussion
	4.1. Contextual Analysis
	4.2. Limitations and Outlook

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Toward Software-Equivalent Accuracy on Transformer-Based Deep Neural Networks With Analog Memory Devices
	1. Introduction
	1.1. Transformer Architecture
	1.1.1. Why Transformer?
	1.1.2. BERT-Base Model Architecture

	2. Materials and Methods
	2.1. Optimizing Analog Accuracy for BERT
	2.1.1. Analog Tile Model
	2.1.2. Programming Noise, Conductance Drift and 1/f Read Noise
	2.1.3. Analog MAC Design and Additional Non-Idealities

	2.2. Simulation Procedure–Training and Inference
	2.2.1. Drift Compensation
	2.2.2. Hardware-Aware (HWA) Training

	2.3. Datasets and Training

	3. Results
	3.1. Results on BERT
	3.2. Attention Quantization
	3.2.1. Attention Computation

	3.3. Results on BERT With Quantized Attention

	4. Discussion
	4.1. Software-Equivalent accuracy
	4.2. Model Size

	5. Conclusion
	Data Availability Statement
	Author Contributions
	References

	Always-On Sub-Microwatt Spiking Neural Network Based on Spike-Driven Clock- and Power-Gating for an Ultra-Low-Power Intelligent Device
	Introduction
	Materials and Methods
	Neuron Block
	Synapse Block
	On-Chip SRAM

	Experiment Setup
	Chip Prototype
	Input Preparation
	Training
	Inference Testing

	Results
	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Accelerating Inference of Convolutional Neural Networks Using In-memory Computing
	1. Introduction
	2. Methods
	2.1. Hardware Architecture Overview
	2.2. Mapping of Weights
	2.2.1. Parallelizing Computation Across One Direction
	2.2.2. Parallelizing Computation Across Two Directions
	2.2.3. Comparison of Parallelization Methods

	2.3. Mapping of Activations
	2.3.1. Memory Mapping Evaluation Metrics
	2.3.2. Intra-Word Adjacent Placing (IWAP)
	2.3.3. Kernel-Level Interleaved Placing (KLIP)
	2.3.4. Pixel-Level Interleaved Placing (PLIP)
	2.3.5. Comparison of the Methodologies

	2.4. Dataflow and Memory Control
	2.4.1. Dataflow Control
	2.4.2. Memory Control
	2.4.3. Example of the Overall Dataflow
	2.4.4. Splitting of Layers Onto Multiple IMC Cores

	3. Results
	3.1. Execution of ResNet-32 on an a IMC Accelerator
	3.1.1. Mapping of the Kernel Weights on the Array
	3.1.2. Mapping of Activations on the Input Memory
	3.1.3. Dataflow and Performance
	3.1.4. Dataflow Speedup

	3.2. Hardware Implementation

	4. Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

	Considerations for Neuromorphic Supercomputing in Semiconducting and Superconducting Optoelectronic Hardware
	1. Introduction
	2. Communication
	2.1. Optical Receivers
	2.1.1. Superconductor Receivers
	2.1.2. Semiconductor Receivers

	2.2. Optical Transmitters
	2.2.1. Integrated Light Sources
	2.2.2. Driving Circuitry

	3. Electronic Neuronal Computation
	3.1. Semiconductor Electronics
	3.2. Superconducting Electronics

	4. Synaptic Memory
	4.1. Memory Benchmarks
	4.1.1. Endurance
	4.1.2. Update Energy
	4.1.3. Update Speed
	4.1.4. Weight Precision
	4.1.5. Programming Signals

	4.2. Proposed Technologies
	4.2.1. Room-Temperature Analog Memories
	4.2.2. Superconducting Technologies
	4.2.3. Magnetic Josepson Junctions
	4.2.4. Loop Memory

	5. System Level Considerations
	5.1. Considerations From Graph Theory
	5.2. Generic Spatial Constraints
	5.3. Fabrication Processes
	5.4. Constructing Multi-Wafer Systems
	5.5. Power Consumption and Cooling
	5.5.1. Cooling Systems
	5.5.2. Power Limitations

	6. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Enabling Training of Neural Networks on Noisy Hardware
	Introduction
	PART I: Training
	Device Arrays and Conductance Modulation Characteristics
	Algorithms
	Tiki-Taka Algorithm
	TTv2 Algorithm
	Array Model
	Training Simulations
	Implementation Cost of TTv2
	PART II: Model Extraction
	Accurate Weight Extraction
	Accurate Model Average
	Inference Results

	Discussion and Future Directions
	Summary
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

	Gradient Decomposition Methods for Training Neural Networks With Non-ideal Synaptic Devices
	Introduction
	Related Work
	Resistive Switching Phenomena and Memristor Technology
	Memristor-Based Neural Network Training
	Matrix Decomposition Algorithms

	Method Details
	Streaming Batch Principal Component Analysis
	Non-negative Matrix Factorization
	Rank Gradient Recomposition Methods
	Stochastic Rounding

	Results
	Network Structure and Simulation Environment
	Rounding Effects of the Weight Update
	Streaming Batch PCA With Ideal vs. Non-ideal Weights
	Streaming Batch PCA With Ideal vs. Non-ideal Weights
	Comparison Between the Algorithms
	Applicability and Scale-Up Potential

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Brain-Inspired Hardware Solutions for Inference in Bayesian Networks
	Introduction
	Bayesian Networks and the Inference Problem
	Probabilistic Hardware-Based Implementation of Bayesian Networks
	Probabilistic Spin Logic-Based Implementation of Bayesian Networks
	Spintronic Devices for Direct Hardware Implementation of Bayesian Networks
	Neural Sampling Machine for Approximate Bayesian Inference

	New Computing Architecture With Nonvolatile Memory Elements for Bayesian Network Implementation
	Direct Physical Equivalence Implementation of Bayesian Networks
	Stochastic Hardware Frameworks for Learning Bayesian Network Structure
	Stochastic Bitstream Generator Blocks for Bayesian Network Implementation

	Bayesian Inference Hardware Implementation With Digital Logic Gates
	Hardware Implementation of Bayesian Inference Employing Hidden Markov Model Network
	Hardware Implementation of Approximate Inference Algorithm Using MCMC With Stochastic Logic Gates
	Muller C-Element Based Bayesian Inference
	Probabilistic CMOS Based Bayesian Inference

	Crossbar Arrays for Bayesian Networks Implementation
	Crossbar Arrays for Naïve Bayesian Classifiers
	Bayesian Reasoning Machine With Magneto-Tunneling Junction-Based Bayesian Network

	Bayesian Features in Neural Networks
	Bayesian Neural Networks
	Gaussian Synapse-Based Hardware Implementation for Probabilistic Neural Networks
	Probabilistic Neural Network With Memristive Crossbar Circuits
	Approximate Computing to Provide Hardware Friendly Probabilistic Neural Networks
	Probabilistic Artificial Neural Network for Analyzing Transistor Process Variation

	Hardware Implementation of Probabilistic Spiking Neural Networks
	Bayesian Inference Implementation in Spiking Neural Networks With Memristor Synapses
	Scalable Sampling-Based Probabilistic Inference With Spiking Networks
	Probabilistic Spiking Neural Computing Platform With Magnetic Tunnel Junctions
	High Learning Capability Probabilistic Spiking Neural Network Implementation
	Hardware Implementation of Spiking Neural Networks Utilizing Probabilistic Spike Propagation
	Memristor-Based Stochastic Neurons for Probabilistic Computing
	Loihi-Based Bayesian Inference Implementation

	Discussion
	Conclusion
	Author Contributions
	References

	Mapping the BCPNN Learning Rule to a Memristor Model
	1. Introduction
	2. Preliminaries
	2.1. BCPNN
	2.1.1. BCPNN Overview
	2.1.2. BCPNN Learning Rule
	2.1.3. BCPNN Application and Implementation

	2.2. The Memristor

	3. A Memristor-Based BCPNN Learning Rule
	3.1. BCPNN Model
	3.2. The Memristor Model
	3.3. Similarity Between BCPNN Synaptic Traces and the Memristor Non-linearity

	4. Memristor-Based Architecture and Implementation
	4.1. Memristor-Based Architecture
	4.2. Analog Circuit Implementation
	4.2.1. Pre- and Post-synaptic Trace
	4.2.2. Synaptic Trace Pij
	4.2.3. Weight and Bias Computation

	5. Experimental Results
	5.1. Matlab Simulation Results
	5.2. SPICE Simulation Results

	6. Discussion
	6.1. Cumulative Error Analysis
	6.2. Setting of the Parameter
	6.3. Consideration of Device Variation

	7. Future Work
	Data Availability Statement
	Author Contributions
	Funding
	References

	MONETA: A Processing-In-Memory-Based Hardware Platform for the Hybrid Convolutional Spiking Neural Network With Online Learning
	1. Introduction
	2. Background
	2.1. ConvSNN and Unsupervised Learning Using STDP
	2.2. CNN Mapping for PIM Architecture
	2.3. Prior SNN Accelerator Hardware
	2.4. Hybrid Spiking Neural Network

	3. Hardware Architecture
	3.1. Proposed SNN Inference Methodology
	3.1.1. Sequential Processing of Spike Cycles
	3.1.2. Sequential Processing of IFMs

	3.2. Hardware Support for Inference
	3.2.1. Synaptic Core
	3.2.2. Synaptic Array
	3.2.3. Neuron Module

	3.3. Proposed PIM-Friendly STDP Learning Methodology
	3.4. Hardware Support for Learning
	3.4.1. Synaptic Core
	3.4.2. Synaptic Array
	3.4.3. Neuron Module
	3.4.4. Weight Update Module
	3.4.5. Central STDP Controller

	3.5. Hybrid Network With Coupled Supervised and Unsupervised Learning

	4. Simulation Results
	4.1. Configurations of Simulated ConvSNN
	4.2. Hardware Architectures for Simulation
	4.3. Accuracy Analysis
	4.4. Throughput Analysis
	4.5. Area and Power Analysis
	4.6. Comparison With Prior Works

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Neural Network Training With Asymmetric Crosspoint Elements
	Introduction
	Theory
	Experimental Demonstration
	Discussion and Simulated Training Results
	Conclusion
	Methods
	M1. Array Initialization (Zero-Shifting)
	M2. Pseudocode for SHD Algorithm
	M3. Training Simulator and LSTM Network

	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

	Back cover

