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Integrating Tumor Stroma
Biomarkers With Clinical Indicators
for Colon Cancer Survival
Stratification
Yong Chen, Wenlong Wang, Bo Jiang, Lei Yao, Fada Xia and Xinying Li*

Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China

The tumor stroma plays an important role in tumor progression and chemotherapeutic

resistance; however, its role in colon cancer (CC) survival prognosis remains to be

investigated. Here, we identified tumor stroma biomarkers and evaluated their role in CC

prognosis stratification. Four independent datasets containing a total of 1,313 patients

were included in this study and were divided into training and testing sets. Stromal

scores calculated using the estimation of stromal and immune cells in malignant tumors

using expression data (ESTIMATE) algorithm were used to assess the tumor stroma

level. Kaplan-Meier curves and the log-rank test were used to identify relationships

between stromal score and prognosis. Tumor stroma biomarkers were identified by

cross-validation of multiple datasets and bioinformatics methods. Cox proportional

hazards regression models were constructed using four prognosis factors (age, tumor

stage, the ESTIMATE stromal score, and the biomarker stromal score) in different

combinations for prognosis prediction and compared. Patients with high stromal scores

had a lower overall survival rate (p = 0.00016), higher risk of recurrence (p < 0.0001),

and higher probability of chemotherapeutic resistance (p < 0.0001) than those with

low scores. We identified 16 tumor stroma biomarkers and generated a new prognosis

indicator termed the biomarker stromal score (ranging from 0 to 16) based on their

expression levels. Its addition to an age/tumor stage-based model significantly improved

prognosis prediction accuracy. In conclusion, the tumor stromal score is significantly

negatively associated with CC survival prognosis, and the new tumor stroma indicator

can improve CC prognosis stratification.

Keywords: colon cancer, microenvironment, tumor stroma, immune cells, prognosis stratification

INTRODUCTION

Colorectal cancer is the world’s fourth most deadly cancer, accounting for ∼10% of global
cancer-related deaths each year (1, 2). Risk stratification and prognosis prediction of patients with
colorectal cancer mainly rely on the tumor, lymph node, metastasis (TNM) classification system of
the American Joint Committee on Cancer (3). However, this system provides useful but incomplete
prognostic information, and additional clinicopathological and molecular characteristics should be
considered to improve its prediction accuracy, such as mutation status, immune score, stromal
components, and the presence of microsatellite instability (4–8).

Malignant solid tumors like colon cancer (CC) consist of not only tumor cells but also the tumor
microenvironment (TME), which includes infiltrating immune cells, tumor stroma components,
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and other normal epithelial cells (9). The tumor stroma and
immune cells are increasingly thought to play important roles
in CC progression and drug resistance (10, 11); however,
the specific molecules involved and their mechanisms remain
unclear, particularly for the tumor stroma. Pagès et al. (12)
developed a new indicator, termed an “immunoscore,” which
could effectively predict CC prognosis. It measures the density
of CD3+ and CD8+ T-cell effectors within the tumor and its
invasive margins to assess the levels of infiltrating immune cells.
We hypothesized that adding an additional indicator based on
the tumor stroma into the current classification system would
further improve CC prognosis stratification.

Estimation of stromal and immune cells in malignant tumors
using expression data (ESTIMATE) is a newly developed
algorithm that assesses the levels of the tumor stroma and
infiltrating immune cells using the transcriptional profiles
of cancer tissues, by detecting the specific gene expression
signatures of stromal and immune cells (13). This method has
been applied to several cancers and has proved helpful for
prognosis stratification (14, 15); however, it has not been applied
to CC. Based on this method, the purpose of this study was to
develop a new specific tumor stroma indicator to improve the
risk stratification and prognosis prediction of patients with CC.

MATERIALS AND METHODS

Data Preparation
Normalized gene expression matrices and matched clinical
information for GSE39582 and GSE17538, which contain 556
and 232 patients with CC, respectively, were downloaded from
the Gene Expression Omnibus database. These microarray
datasets, both acquired on Affymetrix Human Genome
U133 Plus 2.0 Arrays, were combined for further analysis by
correcting batch effects using the ComBat method implemented
in the “SVA” package. Normalized mRNA expression and
protein/phosphorylation expression matrices and matched
clinical information from a dataset containing 106 patients
with CC were obtained from the cBioPortal database (http://
www.cbioportal.org/). TCGA project-COAD level 3 gene
expression and micro (mi)RNA expression matrices, normalized
by fragments per kilobase of exon per million reads mapped
fragments (FPKM) and reads per million mapped reads (RPM),
respectively, and a corresponding DNA methylation beta
matrix were downloaded using the R package “TCGAbiolinks.”
Inclusion criteria for patients were: (1) complete information
regarding survival status and time; and (2) a follow-up
time ≥1 month. Human reference genome annotation data
(version: GRCh38.p13) and human binding motif data (version:
GRCh38.p13) were downloaded from the Ensembl BioMart
database (https://useast.ensembl.org/index.html) to predict
transcription factors (TFs) regulating target genes.

Correlations Between the ESTIMATE
Stromal Score and Clinical Prognosis
The ESTIMATE algorithm was applied to calculate the stromal
score of each CC patient using gene expression profiles.
To identify the most significant stromal score threshold for

patient grouping, we used the method “maximally selected
rank statistics” in the R package “maxstat” (16). Patients were
divided into high and low stromal score groups according to
the threshold value. Then, Kaplan-Meier (KM) analysis and a
log-rank test were used to identify survival differences between
the high and low stromal score groups in the training set, and
validation was performed using the testing sets. Moreover, we
performed Wilcoxon rank-sum and/or Kruskal-Wallis tests to
identify relationships between the ESTIMATE stromal score and
clinical features, including T, N, and M pathological results and
the tumor stage.

Correlations Between the ESTIMATE
Stromal Score and Chemotherapy
Resistance
A subset of 540 patients from GSE39582 with information
regarding adjuvant chemotherapy was divided into three groups
based on their treatment regimens and stromal scores: patients
who were not treated with chemotherapy, patients with low
stromal scores who were treated with chemotherapy, and patients
with high stromal scores who were treated with chemotherapy.
Then, we performed Wilcoxon rank-sum and Kruskal-Wallis
tests to identify differences in the stromal score distribution
between the three groups. KM analyses and log-rank tests were
used to identify survival differences.

Identification of Specific Differentially
Expressed Genes (SDEGs)
To identify SDEGs in the high stromal score group vs. the low
stromal score group, we analyzed differences between the groups
in three independent datasets (the training set and the testing
sets). The R package “limma” was used to identify differentially
expressed genes (DEGs), based on thresholds of log fold change
>1 and adjusted p (adjP) < 0.05. Then, we performed overlap
analysis of the top 30 DEGs from each dataset to identify SDEGs
that were significantly increased in the high stromal score group
compared to the low stromal score group.

Identification of Clinically Significant
Modules
We conducted weighted co-expression network analysis
(WGCNA) to identify modules most relevant to the tumor
stroma and characterize the correlation patterns among module
genes using the R package “WGCNA.” The mRNA weighted co-
expression network was constructed using the mRNA expression
profile in the training set and the top 10,000 variable genes
measured by median absolute deviation. The “WGCNA” package
function pickSoftThreshold was used to select an appropriate
soft-thresholding power value, which was applied to construct
a scale-free topology matrix. Parameters used to construct the
co-expression gene modules were as follows: a deepSplit of 2, a
minModuleSize of 30, a maxBlockSize of 20,000, and merging of
highly similar modules when the module eigengene height in the
clustering was <0.25. Finally, we related the modules to clinical
features to identify the module whose genes were most relevant
to the stromal score.
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Module Preservation Analysis and
Functional Annotation
To examine the stability of the identified stroma-related module,
we performed module preservation analysis using the function
modulePreservation (17) in the “WGCNA” package and the
two mRNA expression profiles in the testing sets, with the
parameter nPermutation set to 200. The preservation Zsummary
(Z) was used to estimate module preservation between different
datasets, with Z > 10, 5 < Z ≤ 10, and Z ≤ 5 indicating high,
median, and low preservation, respectively. Then, to explore the
biological functions of the genes in the stroma-related module,
we performed gene ontology (GO) and Kyoto Encyclopedia of
Genes andGenomes (KEGG) pathway enrichment analyses using
the R package “clusterProfiler.” AdjP < 0.01 was considered
statistically significant.

Hub Gene Identification
Hub genes within modules are genes that have a high degree
of connectivity in the associated interaction network and play
important roles in related clinical features. To identify hub genes
in the stroma-related module, we first constructed a protein-
protein interaction (PPI) network containing all genes in the
module using the online database STRING (https://string-db.
org/). Then, we imported the PPI network into Cytoscape
(version 3.71) to calculate the degree of each node. Candidate
hub genes had degrees >90. We also performed overlap analysis
between candidate hub genes and the three DEG sets to further
filter the hub genes.

Biomarker Identification
In this study, tumor stroma biomarkers were defined as closely
related to the stromal score and significantly negatively correlated
with survival prognosis. All identified SDEGs and hub genes were
initially selected as candidate biomarkers. We first conducted
t-tests to further validate the expression differences of these
genes between the high and low stromal score groups at
the protein level using the protein/phosphorylation expression
matrix. Protein features containing >30% missing values were
excluded prior to the t-test. The criterion for filtering was p
< 0.05. Next, we conducted Pearson correlation analyses using
the mRNA expression profile from the training set to determine
the relationships between candidate biomarkers and the stromal
score. The criteria for screening were p < 0.01 and r > 0.5. The
results were verified by the same method using the testing sets.

Correlations Between Biomarkers and
Prognosis
We divided patients in the training set into high and low
expression groups according to the optimal cutoff of each
biomarker’s mRNA expression, as determined by the R package
“maxstat.” Then, we performed KM analysis and log-rank tests to
determine survival differences between the two groups based on
each biomarker. Statistical significance was defined as p < 0.05.
We validated the results in the same manner using the testing
sets. Biomarkers that produced statistically significant differences
in both the training set and the testing sets were retained for
further analysis.

Construction of the Prognosis Model
In addition to the stromal score calculated by ESTIMATE, we
created another new indicator for risk stratification, termed the
biomarker stromal score, a cumulative measure of the number
of biomarkers that were significantly higher in each patient. We
divided the patients into low-, median-, and high-risk groups
based on their biomarker stromal scores using the R package
“maxstat,” then performed KM analysis and log-rank tests to
determine survival differences between the three groups using
survival information from all patients in the training set and the
testing sets. Moreover, to estimate and compare the stratification
ability of each prognosis feature, we performed time-dependent
receiver operating characteristic (ROC; 3-year and 5-year)
analysis with 1,000× bootstrap resampling for each feature (age,
pathology T, pathology N, pathologyM, tumor stage, ESTIMATE
stromal score, and biomarker stromal score) separately. Finally,
we performed multivariate regression analyses to construct
three multivariable Cox proportional hazards models using the
prognosis features age, tumor stage, ESTIMATE stromal score,
and biomarker stromal score in different combinations. Two
evaluation methods [time-dependent ROC curves (area under
the curve (AUC) and the concordance index (C-index)] were
used to measure the prediction accuracy of each prognosis model
with 1,000× bootstrap resampling, and their performance was
compared using the p-value of the likelihood ratio. In addition, to
use the prediction model clinically, a nomogram was developed
to predict the 1–5-year survival rates of patients with CC, and
calibration curves were used to test its performance.

Construction of the Direct Regulatory
Network
To explore potential regulatory mechanisms of the biomarkers,
we examined their methylation status, TFs, and competing
endogenous RNA (ceRNA) networks. We analyzed methylation
differences between the high and low stromal score groups
using the R packages “ChAMP” and a methylation beta matrix
containing 281 patients to detect CpG sites with significant
changes in methylation. The thresholds for statistical significance
were adjP < 0.05 and deltaBeta <-0.05.

We used the human reference genome annotation dataset and
human binding motif dataset, which uses the position weight
matrix method to predict potential TF binding sites, to predict
TFs that interact with target gene promoters. Binding sites with
scores <0 were filtered out of the binding motif dataset, and the
promoter region of a gene was defined as the region between
1,000 bp upstream and 200 bp downstream of the transcriptional
start site in the genome annotation dataset. We further filtered
the TFs according to their differential expression in the high
and low stromal score groups using the protein/phosphorylation
expression matrix. Moreover, to improve the confidence of the
TF assignments, we performed Pearson correlation analysis to
identify associations between TFs and target genes using a
subset from dataset100 containing 96 patients with both mRNA
expression and protein/phosphorylation expression profiles, with
thresholds of p < 0.05 and r > 0.3.
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Finally, given the positive regulatory associations between
long non-coding (lnc)RNAs and mRNAs in ceRNA networks,
we first performed Pearson correlation analysis to examine
associations between the expression of lncRNAs and the

biomarkers using a dataset containing 453 patients with
both lncRNA and mRNA expression profiles. The criteria
for filtering lncRNAs were r > 0.65 and p < 0.01. We
predicted direct miRNA-mRNA interactions using the online

FIGURE 1 | Flow chart of the study. DEG, differentially expressed gene; TF, transcription factor; ceRNA, competing endogenous RNA.
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database StarBase (http://starbase.sysu.edu.cn/). For inclusion,
interactions needed to be validated at least once by cross-
linking immunoprecipitation(CLIP), and predicted by at least
three of the PITA, RNA22, miRmap, miroT, miRanda, PicTar,
and TargetScan databases. Direct lncRNA-miRNA interactions
were predicted using the starBase miRanda tool. For inclusion,
interactions needed to be validated at least once by CLIP. Then,
we merged the lncRNA-miRNA and miRNA-mRNA networks to
generate the direct lncRNA-miRNA-mRNA regulatory network.
Finally, we performed KM analysis and log-rank tests to
identify survival differences based on the expression levels of
lncRNAs and miRNAs in the ceRNA network, using lncRNA
andmiRNA expressionmatrices containing 428 and 413 patients,
respectively. Statistically significant (p < 0.05) lncRNAs and
miRNAs were retained. The network was constructed and
visualized using Cytoscape.

Statistical Analyses
All statistical analyses in this study were completed in R version
3.6.3 (https://www.r-project.org/). Appropriate R packages were
used for different analyses. For these, specific parameters used

are listed in their respective sections, while default parameters are
not listed. The threshold of statistical significance varied among
different statistical analyses but was at least p < 0.05.

RESULTS

Data Collection
We included four datasets containing nine expression matrices
and a total of 1,313 patients with primary CC. Different
expression matrices in the same dataset shared the same patients;
however, the number of patients in the matrices were not
necessarily the same. The GSE39582 and GSE17538 datasets
were combined into a training set with an mRNA expression
matrix containing 785 patients, termed dataset785. This set was
mainly used to mine data in our study. A dataset containing 100
patients was obtained from the cBioPortal database was termed
dataset100. It consisted of mRNA and protein/phosphorylation
expression matrices. Another dataset, obtained from The Cancer
Genome Atlas (TCGA), containing 428 patients and mRNA,
lncRNA, miRNA, and methylation expression matrices, was
termed dataset428. Dataset100 and dataset428 were defined

FIGURE 2 | Association between the ESTIMATE stromal score and CC survival prognosis and clinical features. (A) Overall survival curves and (B) disease free survival

curves of the high and low stromal score groups. (C–F) Boxplots of the ESTIMATE stromal scores of different groups with regards to T, N, and M pathology results

and tumor stage.
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FIGURE 3 | Association between the ESTIMATE stromal score and chemotherapeutic resistance. (A) Boxplots of the stromal scores and (B) survival curves of

patients with high and low stromal scores who were treated with chemotherapy and patients who were not treated with chemotherapy.

as testing datasets mainly used for verification and molecular
mechanism analysis. Details regarding the datasets are provided
in Supplementary Table 1, and the complete workflow of the
study is displayed in Figure 1.

Correlations Between the ESTIMATE
Stromal Score and Clinical Prognosis
Patients in dataset785 were divided into high and low stromal
score groups based on the determined optimal cutoff. KM
analysis and a log-rank test revealed that patients with low
scores had significantly better overall survival (OS; p =

0.00016; Figure 2A) and disease-free survival (DFS; p <

0.0001; Figure 2B) than patients with high scores. These
results were validated using dataset100 and/or dataset428
(Supplementary Figures 1A–C). Wilcoxon rank-sum
and Kruskal-Wallis tests identified statistically significant
relationships between the stromal score and clinical features,
including the T, N, M pathology results and tumor stage
(Figures 2C–F). The results were verified using dataset100
(Supplementary Figures 2A–D). Therefore, these results
indicate that tumor stroma is closely associated with tumor
progression and survival prognosis.

Correlations Between the ESTIMATE
Stromal Score and Chemotherapy
Resistance
A total of 540 patients with information regarding adjuvant
chemotherapy were included and divided into four groups based
on the ESTIMATE stromal score and adjuvant chemotherapy
information. Wilcoxon rank-sum and Kruskal-Wallis tests

showed the distribution of the ESTIMATE stromal score between
groups were significantly different and the details were shown
in Figure 3A. Patients treated with chemotherapy who had high
stromal scores had a lower OS rate than those with low stromal
scores and patients who were not treated with chemotherapy (p
< 0.01); however, there was no significant difference in survival
between chemotherapy patients who had low stromal scores and
patients not treated with chemotherapy (Figure 3B). Therefore,
our findings indicate that patients treated with chemotherapy
who have high stromal scores are more vulnerable to the
development of chemotherapeutic tolerance and have a poor
survival prognosis.

SDEG Identification
We conducted differential analyses between the high and low
stromal score groups using the mRNA expression profiles in
dataset785, dataset100, and dataset428, and identified 246, 501,
and 2,313 DEGs, respectively (Supplementary Figures 3A–C).
Overlap analysis of the top 30 DEGs from each DEG set (based
on the log fold change) produced nine SDEGs (Figure 4 and
Table 1). Notably, among these nine SDEGs, gene SFRP2 had the
biggest logFC. These SDEGsmay play an important role in tumor
stroma-induced promotion of tumor progression.

Identification of Stroma-Related Modules
Through WGCNA
To construct the mRNA co-expression network, we selected 6 as
the appropriate sort-thresholding power value, which generated
21 mRNAmodules (Supplementary Figures 4A–C). Association
analysis between the modules and clinical features revealed that
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FIGURE 4 | Identification of SDEGs. The Venn diagram shows the overlap between the top 30 DEGs from the three datasets.

the yellow module (containing 1,173 genes) was most related to
the stromal score (r= 0.929; p= 0; Figures 5A,B). This indicates
that genes in the yellow module, particularly its hub genes, may
play important roles in the tumor stroma-induced promotion of
tumor progression and drug resistance.

Module Preservation Analysis and
Functional Annotation
To examine the stability of the stroma-related module (yellow)
in the training set identified above, we performed module
preservation analyses using the two testing sets (dataset428 and

dataset100). As shown in Figures 5C,D, the horizontal dashed
lines indicate the Zsummary (Z) thresholds for strong evidence
of conservation (>10) and for low to moderate evidence of
conservation (>2), so we can see the yellow module had good
performance with Z > 10 in both dataset428 and dataset100,
which means that genes in the yellow module have high
consistency in the training set and testing sets. Moreover, to
determine the functional involvement of the tumor stroma, the
1,173 genes in the yellow module were subjected to GO and
KEGG pathway enrichment analyses. As shown in Figures 6A,B,
enriched biological processes (BPs), molecular functions (MFs),
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TABLE 1 | Differential analysis statistics of the nine SDEGs.

Gene Dataset785 Dataset428 Dataset100

logFC adj. P.Val logFC adj. P.Val logFC adj. P.Val

SFRP2 3.33 5.2E-114 4.14 7.2E-34 3.25 2.2E-06

COL10A1 2.50 2.3E-85 3.47 6.0E-28 2.40 4.6E-06

SFRP4 2.37 1.3E-93 3.32 1.2E-31 2.06 9.9E-05

THBS2 2.11 1.6E-82 2.88 4.0E-38 1.91 1.1E-06

SPOCK1 2.11 1.6E-104 2.98 2.3E-36 1.96 7.2E-07

MFAP5 1.98 5.4E-96 2.96 4.4E-37 1.89 5.5E-07

COMP 1.96 1.7E-79 3.66 1.4E-31 2.76 3.6E-05

EPYC 1.74 1.3E-49 3.65 5.0E-27 2.92 2.6E-05

GAS1 1.70 9.6E-115 3.13 7.1E-40 2.42 4.9E-07

SDEGs, specific differentially expressed genes; logFC, log fold change; adj.P.Val,

adjusted p-value.

and cellular components were all significantly focused on the
extracellular matrix (ECM). Most of genes in the six most
statistically significant signaling pathways were overexpressed in
the high stromal score group, and the three pathways “ECM-
receptor interactions,” “focal adhesions,” and “PI3K-Akt signaling
pathway” shared a significant number of genes (Figures 6C,D).
This indicates that these biological processes and signaling
pathways are closely related to tumor stroma function.

Identification of Hub Genes
Hub genes were defined as genes with high degrees of
connectivity in a PPI network of the yellow module. The
interaction network contained 1,105 nodes and 8,927 edges, and
node degrees ranged from 1 to 220 (Supplementary Figure 5).
We selected 20 candidate hub genes based on a degree threshold
of ≥90. Overlap analysis of candidate hub genes from the three
DEG sets identified 11 hub genes (Figure 7 and Table 2). This
means that these 11 hub genes may have important impacts on
the function of tumor stroma.

Identification of Tumor Stroma Biomarkers
The nine SDEGs and 11 hub genes were considered candidate
tumor stroma biomarkers and were all significantly related to
the stromal score based on thresholds of r > 0.5 and p <

0.01 (Figure 8). The results were verified using the two testing
sets (Supplementary Figures 6A,B). t-tests using the protein
expression matrix revealed that 16/20 genes were significantly
overexpressed in the high stromal score group compared
to the low stromal score group (Supplementary Table 2).
Four genes [epiphycan (EPYC), growth arrest specific 1
(GAS1), SPARC (osteonectin), cwcv- and kazal-like domains
proteoglycan 1 (SPOCK1), and secreted phosphoprotein 1
(SPP1)] were not included in the protein expression matrix;
therefore, we are unable to determine whether they display
differential protein expression. Given their significant differential
mRNA expression, these four genes were retained, resulting
in 20 candidate biomarkers for further analysis. Among
these candidate biomarkers, four collagen family members

(COL1A1, COL1A2, COL3A1, COL10A1) which are well-
known to be closely related to the function of the stroma
were contained, which also strongly supports the reliability of
our results. However, due to the heterogeneity of the tumor
microenvironment, even the same markers may play different
roles in different cancers. Therefore, although some markers
found in our study were closely related to the prognosis in CC,
they may play different roles in other cancers.

Correlations Between Tumor Stroma
Biomarkers and Survival Prognosis
Survival analyses using the training set showed that when applied
separately, each candidate biomarker generated a significant
survival difference between the high and low score groups
(Figure 9). However, only 14/20 were validated in the testing
set based on a threshold of p < 0.05 (Supplementary Figure 7).
Two more were marginally significant [microfibril associated
protein 5 (p = 0.056) and thrombospondin 2 (p = 0.051)]
were retained. Therefore, we finally identified 16 tumor stroma
biomarkers in this study, this suggests that these genes are closely
related to the tumor stromal function and survival prognosis of
CC patients.

Identification of a New Prognosis Indicator
for Risk Stratification
We next generated a new prognosis indicator based on the
16 tumor stroma biomarkers, termed the biomarker stromal
score, which ranged from 0 to 16. We divided 1,313 patients
(all with complete OS information; 787 also had complete
DFS information) into three risk groups based on thresholds
of 0, 1–9, and 10–16. OS and DFS analyses both revealed
significant survival differences between the three risk groups
(Figures 10A,B). Time-dependent ROC analyses showed that
the ability of the biomarker stromal score to predict 3- and
5-year OS was superior to the features of patient age and
ESTIMATE stromal score and had similar AUC values to the
T, N, and M pathology results. The tumor stage had the best
prediction accuracy (Figure 11A). Therefore, the biomarker
stromal score is a comparably effective prognosis indicator to
known clinical features.

Construction of the Prognosis Model
We used four prognosis factors (age, tumor stage, the ESTIMATE
stromal score, and the biomarker stromal score) in different
combinations to construct prognosis models, and data on
1,295 patients with complete age, tumor stage, ESTIMATE
stromal score, and biomarker stromal score information were
used in multivariable regression analyses. Three prognosis
models were constructed: model 1 included age and tumor
stage; model 2 included age, tumor stage, and the ESTIMATE
stromal score; and model 3 included age, tumor stage, and
the biomarker stromal score. Time-dependent ROC (3- and
5-year) and C-index results revealed that model 3 had the
best prediction accuracy (Figure 11B). The hazard ratios of
each feature in model 3 are shown in Figure 12A. Model 3
risk scores ranged from 0.104 to 12.539, and patients were
divided into five risk groups based on thresholds of ≤0.556,
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FIGURE 5 | Identification of stroma-relevant mRNA modules and module preservation analysis. (A) Heatmap of module-trait relationships. (B) Scatter plot of

correlations between gene module membership and gene significance in the yellow module. (C,D) Preservation medianRank and Zsummary graphs of the testing sets

dataset100 and dataset428. Dashed blue and green lines show the thresholds Z = 2 and Z = 10, respectively.
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FIGURE 6 | GO and KEGG enrichment analysis of genes in the yellow module. (A) Barplot of the top three most statistically significant GO terms in the BP, CC, and

MF categories. (B) Circle diagram of the three most statistically significant BPs. (C,D) Circle diagram of the six most significant KEGG pathways.

0.557–0.896, 0.897–1.27, 1.28–3.99, and >3.99. Significant
survival differences were observed between the five groups
(Figure 12B). In the nomogram plot, weighted scores calculated
based on the age, tumor stage, and biomarker stromal score
were used to predict the 1–5-year OS rate of patients with
CC (Figure 12C). The calibration curve demonstrated good
performance for the nomogram plot compared to an ideal model
(Supplementary Figure 8). Therefore, our findings suggest that

the biomarker stromal score can improve CC survival prognosis
prediction accuracy.

Construction of Biomarker Regulatory
Networks
Differential analysis of the methylation beta matrix between the
high and low stromal score groups revealed that 9/16 biomarkers
contained at least one significantly demethylated CpG site (a total
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FIGURE 7 | Identification of hub genes. The Venn diagram shows the overlap between the 20 candidate hub genes with degrees of connectivity >90 and the three

DEG sets.

of 66 CpG probes based on thresholds of deltaBeta <-0.05 and
adjP < 0.05; Figure 13A and Supplementary Table 3). Among
them, secreted frizzled related protein 2 (SFRP2) had the most
demethylated sites (29; with a mean deltaBeta of −0.098). This
suggests that increased demethylation contributes to the high
expression of the biomarkers in the high stromal score group.
Besides, survival analyses showed that 15/66 probes could make
significant survival differences based on the optimal cutoff of each
probes (p < 0.05; Supplementary Table 3). We next constructed
a TF-mRNA regulatory network consisting of 4 TFs, 12 mRNAs,

and a total of 19 edges; the interaction details are shown in
Figure 13B and Supplementary Table 4. Interestingly, RUNX
family transcription factor 2 (RUNX2) could regulate 11/12
mRNAs in the network. We also constructed a ceRNA network
consisting of 7 lncRNAs, 26 miRNAs, and 10 mRNAs, with
a total of 53 edges (Figure 13B and Supplementary Table 5).
Survival analyses based on the lncRNAs and miRNAs included
in the networks are shown in Supplementary Figures 9A,B. In
summary, these regulatory networks provide new insights into
the mechanism of tumor stroma biomarkers of CC.
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TABLE 2 | Statistics of the 11 hub genes in the yellow module.

Genes Degrees of connectivity Dataset785 Dataset428 Dataset100

logFC adj. P.Val logFC adj. P.Val logFC adj. P.Val

FN1 220 1.24 4.1E-61 2.53 2.9E-31 1.74 1.2E-04

COL1A1 137 1.04 3.9E-64 2.29 1.2E-36 1.60 9.1E-04

COL3A1 119 1.29 2.4E-69 2.22 9.3E-41 1.33 1.6E-06

COL1A2 116 1.37 3.6E-62 2.19 1.4E-38 1.36 4.0E-05

DCN 105 1.07 2.1E-99 2.17 6.1E-36 1.22 5.8E-07

BGN 100 1.42 1.1E-87 2.16 2.5E-41 1.78 4.6E-06

FBN1 98 1.69 3.5E-113 2.21 1.4E-42 1.30 1.8E-07

POSTN 98 1.29 1.2E-76 2.56 1.2E-33 1.70 1.5E-07

SPP1 98 1.39 2.1E-42 3.03 2.8E-25 2.06 7.1E-05

SPARC 94 1.40 4.5E-91 1.83 2.2E-42 1.26 4.1E-08

CXCL12 91 1.43 2.7E-87 1.85 8.9E-40 1.54 4.7E-08

Degrees of connectivity, edge counts of genes in the PPI network calculated by Cytoscape; logFC, log fold change; adj.P.Val, adjusted p-value.

DISCUSSION

Presently, risk stratification and prognosis prediction for
patients with CC is mainly based on clinical and pathological
characteristics (3, 4). In a recent study, Pagès et al. (12)
demonstrated that a new indicator, the immunoscore, can
effectively improve the accuracy of prognosis prediction for
patients with CC. In this study, we have identified 16 tumor
stroma biomarkers for primary CC and created a new indicator
for risk stratification and prognosis prediction based on them.
Our findings indicate that the tumor stroma is significantly
negatively associated with survival prognosis, and that our new
tumor stroma indicator could significantly improve the OS
prediction accuracy of the currently used classification system.

It is well-known that interactions between cancer cells and the
TME play important roles in tumor progression and therapeutic
resistance (18, 19). While tumor cells have historically been
the main therapeutic target of cancer treatment, different
components of the TME, such as immune cells and angiogenic
factors, have been recently targeted as well (20–23). However,
these studies took limited notice of stromal components, and
acquiring further insight into the interactions between cancer
cells and the tumor stroma may provide novel biomarkers for
stroma-targeted therapies as well as an increased understanding
of drug resistance. Furthermore, there remains a lack of uniform
criteria to assess tumor stroma condition. In this study, we
assessed the CC tumor stroma by assigning scores based on
stromal signatures generated using the ESTIMATE algorithm
(13), and found that patients with high stromal scores had
worse survival prognosis than patients with low stromal scores.
Our findings in CC are consistent with results for several other
cancers, such as gastric cancer, prostate cancer, and early-stage
non-small cell lung cancer (14, 24–26). This indicates that the

scores generated by this method may be a good tool to assess the

CC tumor stroma condition and could be used as a prognosis
factor for CC. In addition, we also found that the stroma
score was significantly negatively correlated with the survival

prognosis of chemotherapy patients, which may be caused by the
resistance of tumor stroma to chemotherapy. Previous studies
(27, 28) showed tumor-stromal architecture has been associated
with modulation of the response to anti-angiogenic therapy, and
combined therapy of chemotherapy and anti-angiogenesis was
more effective than monotherapy. Therefore, the role of tumor
stroma on anti-angiogenic therapy deserves further study.

While the notion that therapies targeting cancer cells and
the TME are equally important is widely accepted (29), specific
biomarkers of the tumor stroma are still lacking, and the
molecular mechanisms by which the stroma affects the tumor
remain unclear, because of its heterogeneity and complexity
(30, 31). In this study, to clarify the biological processes
and signaling pathways affected by the tumor stroma in the
promotion of CC progression and chemotherapy resistance,
we conducted enrichment analysis on the tumor stroma-
related genes. Interestingly, in GO and KEGG analyses, the
most statistically significant terms and pathways were related
to the ECM: the BP “ECM organization” (adjP = 5.22E-
59) and the KEGG pathway “ECM-receptor interaction” (adjP
= 6.47E-11), respectively. Tumor progression results in ECM
component changes and remodeling. This makes the ECM more
conducive to promoting the growth, survival, and migration of
cancer cells (32), and can increase drug resistance in various
ways. For instance, the buildup of a rigid ECM surrounding
tumor cells creates a physical barrier that reduces the diffusion
of therapeutic agents (33, 34). Cancer cells can also evade
chemotherapy by strongly adhering to ECM proteins through a
process known as cell adhesion-mediated drug resistance (35–
37). Our findings suggest that the ECM plays an important
role in the progression and therapeutic resistance of CC. Two
proven key signaling pathways related to tumor progression
and chemotherapy resistance, the phosphatidylinositol 3-kinase
(PI3K)-AKT serine/threonine kinase 1 (AKT1) and transforming
growth factor β1 pathways (38–40), were also significantly
enriched in our study. Most of the genes enriched in these two
pathways were highly expressed in the high stromal score group.
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FIGURE 8 | Associations between biomarkers and the ESTIMATE stromal score. The correlation plot was generated by Pearson correlation analysis.

Our results therefore identify major biological processes and key
signaling pathways related to the effects of the tumor stroma on
CC, providing valuable clues for its treatment.

We identified 16 tumor stroma biomarkers that were
closely related to the survival prognosis of patients with
CC, and some have previously reported associations with CC
tumor progression. For instance, fibronectin 1 (FN1) had the
highest degree of connectivity in the PPI network. Xie et al.
(41) showed that inhibiting FN1-SRC proto-oncogene, non-
receptor tyrosine kinase/protein tyrosine kinase 2-guanosine
triphosphatase (GTPase) signaling could inhibit CC metastasis,
and Cai et al. (42) reported that FN1 depletion could inhibit
colorectal carcinogenesis by suppressing proliferation, migration,

and invasion. The significant DEGs SFRP2 and SFRP4, and
especially SFRP2, had the most demethylated sites and the
biggest logFC values in our study, and are involved in
the biological processes of “extracellular matrix organization”
and “extracellular structure organization.” Vincent et al. (43)
reported that SFRP2 and SFRP4 are typically associated with
poor prognosis concomitant with epithelial-to-mesenchymal
transition (EMT). Nfonsam et al. (44) found that patients
with CC that overexpress SFRP4 have poor OS. In these
patients, SFRP4 levels were negatively correlated with the
levels of the EMT suppressors claudin 4 (CLDN4), claudin 7
(CLDN7), tight junction protein 3 (TJP3), mucin 1, cell surface
associated (MUC1), and cadherin 1 (CDH1). Klement et al. (45)
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FIGURE 9 | Correlation between the 20 biomarkers and survival prognosis. Patient survival curves based on the levels of each biomarker are shown.
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FIGURE 10 | Correlation between the new prognosis indicator and survival prognosis. (A) Overall survival and (B) disease-free survival curves for three risk groups

based on biomarker stromal score.

demonstrated that high SPP1 expression was associated with
decreased OS by acting as an immune checkpoint to suppress
T cell activation. C-X-C motif chemokine ligand 12 (CXCL12),
secreted by fibroblasts, can promote the proliferation and
invasion of CC via the PTEN/PI3K/Akt and MAPK/PI3K/AP-1
signaling pathways (46–48). In addition, its receptor C-X-Cmotif
chemokine receptor 4 (CXCR4) has been used as an effective
therapeutic target in prostate cancer (49–51). Thus, the findings
of these studies further support our results.

Regarding the regulatory mechanisms of the biomarkers,
we were surprised to find that RUNX2 could regulate 11/12
mRNAs in the TF-mRNA network. Increasing evidence has
highlighted the importance of RUNX2 in a variety of cancers.
For instance, it is highly expressed in metastatic prostate cancer
cells and may play an important role in prostate cancer-derived
metastatic bone disease (52, 53). RUNX2 plays an oncogenic
role in esophageal carcinoma by activating the PI3K/AKT1 and
extracellular-regulated kinase signaling pathways (54). Targeting
RUNX2 represses cell growth and metastasis in lung cancer
cells (55) and inhibits the progression of breast cancer to
metastatic bone disease (56). Besides, regarding the regulatory
function of RUNX2 in the network, Francisco et al. (57)
reported elevated RUNX2 may transcriptionally activate genes
mediating osteosarcoma progression and metastasis by targeting
SPP1. Toshihisa el al. (58) reported that Runx2 could induce
the expression of major bone matrix protein genes, including
COL1A1, SPP1, and FN1, in vitro. Besides, Toshihisa el al.
(59) also reported Runx2 plays an important role in the bone
metastasis of breast and prostate cancers by up-regulating SPP1.
Although some regulatory relationships in the network have been
verified by previous studies, there are still many waiting for
further verification. However, despite increasing evidence of the

importance of RUNX2 in various cancers, there are no reports
about its relevance in CC. Our results suggest that the role of
RUNX2 in CC is worthy of further study.

The current risk classification for cancers is mainly based
on the TNM staging system (3); however, for a deeper
understanding of tumor progression, more prognosis factors
should be considered. For instance, Weiser et al. showed that
an extended prognosis model including TNM staging, the tumor
grade, the number of collected metastatic lymph nodes, age, and
sex had higher sensitivity and specificity for CC (the C-index rose
from 0.60 to 0.68) than a model using the TNM system alone
(4). Pagès et al. (12) showed that adding an immunoscore to
a model combining clinical variables can significantly improve
OS prediction accuracy of AUC from 0.6 to 0.62. In this study,
we created a new prognosis indicator based on tumor stroma
biomarkers. Adding this indicator to a prognosis model based on
age and tumor stage also significantly improved the prediction
accuracy, with a similar degree of improvement to Pagès’s
immunoscore (3-year AUC raised from 0.75 to 0.773; 5-year AUC
raised from 0.732 to 0.758). In addition, as the new indicator is
based on only 16 biomarkers, testing will be easier, more effective,
and more economically feasible for patients with CC vs. the
ESTIMATE stromal score, which is based on 141 signatures.

Our study demonstrates the important role of the tumor
stroma in CC tumor progression and chemotherapy resistance
and provides novel candidates for targeted CC therapies.
However, the data available for this study is limited, and our
findings are mainly obtained through bioinformatics analysis of
high-throughput data which have inevitable batch differences
between different datasets due to sequencing technologies, so
these findings will require further validation with more clinical
data and molecular experiments. In our future work, we will
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FIGURE 11 | Performance of the biomarker stromal score in prognosis prediction compared with clinicopathological features. (A) Boxplots show the prediction

accuracy for 3- and 5-year overall survival, based on the AUC with 1,000× bootstrap resampling for each parameter. (B) The top and middle boxplots show the

prediction accuracy for 3- and 5- year overall survival based on the AUC with 1,000× bootstrap resampling, while the bottom boxplot shows the prediction accuracy

for overall survival based on the C-index with 1,000× bootstrap resampling for each prognosis model.
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FIGURE 12 | Clinical application of the best multivariable hazards model. (A) Forest plot of hazard ratios for the three prognosis features in model 3. (B) Survival

curves and scatter plots of patients in five different risk groups, based on the risk score. (C) A nomogram plot was constructed with the three prognosis features to

predict the 1–5-year overall survival rates of patients with CC.
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FIGURE 13 | Mechanistic insight into the tumor stroma biomarkers. (A) Heatmap of demethylation site distribution in nine biomarkers. The x-axis indicates the region

relative to the genome and CpG islands, and the numbers indicate the demethylation probe counts in the region. (B) A network of TF-mRNA and

lncRNA-miRNA-mRNA interactions. The node size indicates the node edge count, and arrows represent direct regulatory effects.
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test additional clinical datasets and perform additional molecular
experimental verification on the identified biomarkers. Notable,
this is the first study to consider the tumor stroma in CC risk
stratification, and the new prognosis indicator and prognosis
model created in this study will increase the accuracy of risk
stratification and survival prediction, improving the outcomes of
patients with CC.
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Pancreatic cancer is known as “the king of cancer,” and ubiquitination/
deubiquitination-related genes are key contributors to its development. Our study aimed
to identify ubiquitination/deubiquitination-related genes associated with the prognosis
of pancreatic cancer patients by the bioinformatics method and then construct a risk
model. In this study, the gene expression profiles and clinical data of pancreatic cancer
patients were downloaded from The Cancer Genome Atlas (TCGA) database and the
Genotype-tissue Expression (GTEx) database. Ubiquitination/deubiquitination-related
genes were obtained from the gene set enrichment analysis (GSEA). Univariate Cox
regression analysis was used to identify differentially expressed ubiquitination-related
genes selected from GSEA which were associated with the prognosis of pancreatic
cancer patients. Using multivariate Cox regression analysis, we detected eight optimal
ubiquitination-related genes (RNF7, NPEPPS, NCCRP1, BRCA1, TRIM37, RNF25,
CDC27, and UBE2H) and then used them to construct a risk model to predict the
prognosis of pancreatic cancer patients. Finally, the eight risk genes were validated by
the Human Protein Atlas (HPA) database, the results showed that the protein expression
level of the eight genes was generally consistent with those at the transcriptional level.
Our findings suggest the risk model constructed from these eight ubiquitination-related
genes can accurately and reliably predict the prognosis of pancreatic cancer patients.
These eight genes have the potential to be further studied as new biomarkers or
therapeutic targets for pancreatic cancer.

Keywords: pancreatic cancer, bioinformatics, prognosis, ubiquitination-related genes, risk model

INTRODUCTION

Pancreatic cancer is a highly fatal disease, with 43,090 deaths every 5 years (Siegel et al., 2017), the
5-year overall survival rate is only 6% (Miller et al., 2019). Many factors contribute to low survival
rates for pancreatic cancer. The most important factor may be that more than half of patients are
diagnosed with advanced pancreatic cancer, and the 5-year survival rate of advanced pancreatic
cancer is only 3% (Ilic and Ilic, 2016). Pancreatic cancer is characterized not only by early recurrence
and invasion but also by chemical and radiation resistance (Adamska et al., 2018). In recent years,
targeted therapy and emerging immunotherapy have opened up new prospects for the treatment of
pancreatic cancer. However, the exploration of new therapeutic targets and prognostic biomarkers
for pancreatic cancer still needs to be further carried out. Over the past decade, numerous studies
have identified some sensitive and effective biomarkers for pancreatic cancer.
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Ubiquitination/deubiquitination is an ATP-dependent
reversible reaction that binds small ubiquitin molecules to the
target protein through multi-step reactions involving ubiquitin-
activating enzyme E1, ubiquitin-binding enzyme E2, and
ubiquitin-ligase E3 (Hershko et al., 1979). ATP provides energy,
E1 is activated, and the Glycine residue at the Carboxy terminal
of ubiquitin and the active Cystine of E1 forms a thioester bond.
Next, E1 transfers the ubiquitin to the cysteine residue of the
ubiquitin carrier protein E2. E3 is specific in that it coordinates
ubiquitin covalently to specific target proteins. The way ubiquitin
molecules bind plays an important role in the function of the
modified protein (Dikic et al., 2009). Ubiquitination produces a
protein that is either monoubiquitinated or polyubiquitinated
when one of the seven Lysine residues of ubiquitin binds to the
C-terminal Glycine of another ubiquitin. The reverse process of
ubiquitination is called deubiquitination. Ubiquitination is best
known for its role in mediating protein degradation. Besides,
ubiquitination is also involved in the processes of meiosis,
autophagy, DNA repair, immune response, and apoptosis.
Ubiquitinated proteasome pathway is involved in almost all
intracellular molecular biological processes, affecting gene
expression and signal transduction in the regulation of DNA
damage repair, participating in the differentiation of senescent
cells, regulating tumor progression of malignant transformation,
and mediating therapeutic resistance (Welchman et al., 2005).

Previous studies have shown that
ubiquitination/deubiquitination play important roles in
pancreatic cancer. Lian et al. (2020) found that ubiquitin specific
peptidase 5 (USP5) enhances STAT3 signaling and promotes
migration and invasion in pancreatic cancer. Chen et al. (2020)
found that E3 ubiquitin ligase UBR5 promotes pancreatic
cancer growth and aerobic glycolysis by downregulating
FBP1 via destabilization of C/EBPα. Yang et al. (2019) found
that USP44 suppresses pancreatic cancer progression and
overcomes gemcitabine resistance by deubiquitinating FBP1.
There is no doubt that ubiquitination/deubiquitination is closely
related to the progression of pancreatic cancer. Exploration
of ubiquitination/deubiquitination related genes in pancreatic
cancer is also necessary.

In this study, by analyzing the dataset from TCGA and
GTEx database, we aim to study and verify the expression
characteristics of ubiquitination-related genes. We then selected
several ubiquitination-related genes that were significantly
associated with the prognosis of pancreatic cancer patients
through a series of statistical methods. Finally, we established a
new and reliable risk model to predict the prognosis of pancreatic
cancer patients based on the screened risk genes.

MATERIALS AND METHODS

Databases
To download the transcriptome data of 178 patients (The Cancer
Genome Atlas database, TCGA database) with pancreatic cancer
and the transcriptome data of 36 cases of normal pancreatic tissue
(Genotype-Tissue Expression database, GTEx database) from the

UCSC XENA website1. Clinical information of pancreatic cancer
patients was obtained from the TCGA database. All data are
processed using R software2. The clinical features of pancreatic
cancer patients, include age, gender, pathological grade, T-stage,
N-stage, M-stage, and TNM-stage.

Gene Set Enrichment Analysis
GSEA3 was used to explore whether the transcriptome data
showed statistically significant difference between the two groups
(normal and tumor). The expression data of mRNAs, including
36 normal pancreatic tissue and 178 pancreatic cancer samples
were analyzed. Normalized P value (P < 0.05) and normalized
enrichment score (NES) were used to determine what functions
had to be selected for further analysis.

Screening for Differentially Expressed
Genes (DEGs)
We screened DEGs from these ubiquitination/deubiquitination
related genes obtained from GSEA analysis. The “limma” package
was used to screen out the DEGs (Log2 fold change 6= 0, P< 0.05).

GO Analysis and KEGG Analysis
Gene Ontology (GO) database is a kind of free and open
database, the database includes three aspects of information:
biological process, cellular component, and molecular function.
The biological functions of genes can be classified and these
genes included in the functions that we selected can be further
understood through the GO analysis. DAVID online tool4 was
used for GO analysis (Xia et al., 2015). Kyoto Encyclopedia
of Genes and Genomes (KEGG) database is a database that
systematically analyzes the metabolic pathways of gene products
in cells and the functions of these gene products. The database
is useful for studying gene and expression information as a
whole network. KEGG integrates the data of genomic chemical
molecules and biochemical systems, including the sequence and
genome of metabolic pathways, drugs, and diseases. We used the
“clusterProfiler” package (Yu et al., 2012) from Bioconductor to
do KEGG analysis of these DEGs. P-value < 0.05 was used as the
inclusion standard in the analysis.

Identification and Inclusion of Prognostic
Ubiquitination-Related Genes for the
Construction of a Risk Model
As in previous studies (Li et al., 2020), univariate Cox regression
(p < 0.05) was used to screen out the ubiquitination-related
genes that were significantly associated with the prognosis
of pancreatic cancer patients from the DRGs. Multivariate
Cox proportional hazards regression analysis (with forwarding
selection and backward selection) was then used to analyze
these ubiquitination-related genes selected by univariate Cox
regression. Finally, optimal ubiquitination-related genes (risk

1https://xenabrowser.net/
2https://www.r-project.org/
3http://www.broadinstitute.org/gsea/index.jsp
4http://david.ncifcrf.gov/
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genes) were obtained to be incorporated into the risk model. The
alteration of these risk genes is shown online5.

Construction of the Prognostic Risk
Model in Pancreatic Cancer Cohort
Multivariate Cox proportional hazards regression analysis was
used to select the optimal risk genes and construct the Cox
regression model. In this process, we can obtain the estimated
regression coefficients of each gene. The expression levels of
mRNA and estimated regression coefficients of the risk genes
were used to calculate a risk score for each pancreatic cancer
patients. The risk score model was established with the following
formula: Risk score = expression level of Gene1 ∗ β1 + expression
level of Gene2 ∗ β2+. . .+ expression level of Genen

∗ βn; where β is
the estimated regression coefficient calculated by the multivariate
Cox regression model.

The risk model was used to measure the prognostic risk for
each pancreatic cancer patient. The median risk score was used
as the cut-off value to divide all the pancreatic cancer patients
into two groups: the high-risk group and the low-risk group. The
low-risk group has a better prognosis.

Independent Prognostic Value of the Risk
Model in the Pancreatic Cancer Cohort
Next, univariate and multivariate Cox regression analysis were
performed to assess whether the risk model was independent of
other clinical features (age, gender, pathological grade, T-stage,
and N-stage) as a prognostic factor for pancreatic cancer patients
(p < 0.05). The X-tile software was used to identify the optimal
cut-off value of the age significantly correlated to the prognosis of
pancreatic cancer patients. Because there are too many patients
in M0-stage and too few patients in stage III/IV, we excluded
these two clinical features (M-stage and TNM-stage) from this
analysis. Besides, cases with incomplete clinical information were
also excluded. Then, we constructed receiver operating curves
(ROC) and calculated the area under the curve (AUC) to assess
whether our model accurately predicted the overall survival (OS)
of pancreatic cancer patients. C-index value of 0.75 or greater
were considered to have excellent predictive value, and value of
0.6 or greater were considered acceptable for survival predictions
(Cho et al., 2019).

Validation of the Eight-mRNA Model in
Predicting Survival Using Kaplan–Meier
Curves
Kaplan–Meier curves and the log-rank test were used to validate
the prognostic significance of the risk model (p < 0.05).

Validation of the Risk Genes in Protein
Level
Furthermore, the Human Protein Atlas database6 was used to
validate the protein expression level of these risk genes compared
to the level of gene transcription.

5http://www.cbioportal.org/
6https://www.proteinatlas.org/

RESULTS

Gene Set Enrichment Analysis
Expression data set for 55242 mRNAs from the TCGA
database and GTEx database were analyzed. Five
ubiquitination/deubiquitination-related gene sets we validated
by GSEA analysis and there were two gene sets, including
REACTOME_ANTIGEN_PROCESSING_UBIQUITINATION_
PROTEASOME_DEGRADATION, and REACTOME_
PROTEIN_UBIQUITINATION were significantly enriched
(Table 1 and Figure 1). These 441 ubiquitination-related genes
in the two functions were selected for the subsequent analysis.

GO Analysis and KEGG Analysis
Of these 441 ubiquitination-related genes in the two functions,
134 DEGs were screened. These 134 ubiquitination-related
DEGs were used to do the GO analysis and KEGG analysis.
The results of the GO analysis showed that the functions
of the ubiquitination-related genes were concentrated in the
functions of the protein polyubiquitination, post-translational
protein modification, and proteasome-mediated ubiquitin-
dependent protein catabolic process, as shown in Table 2.
The results of KEGG analysis showed that the functions
of the ubiquitination-related genes were concentrated in
ubiquitin-mediated proteolysis, proteasome, and cell cycle, as
shown in Table 2.

Identification and Inclusion of Prognostic
Ubiquitination-Related Genes for the
Construction of a Risk Model
Sixty-three ubiquitination-related genes significantly correlated
with the prognosis of pancreatic cancer patients were screened
through the univariate Cox regression analysis from the
134 DEGs. Next, eight optimal ubiquitination-related genes
(risk gene) obtained by multivariate Cox analysis were used to
construct a risk model (Table 3): RNF7, NPEPPS, NCCRP1,
BRCA1, TRIM37, RNF25, CDC27, and UBE2H. The effect
of the expression value of these genes on the prognosis of
pancreatic cancer is shown in Figures 2A–H. Then, the alteration
of the seven genes in 175 clinical pancreatic cancer samples was
analyzed in the cBioPortal database. Results showed that there
were 33(19%) sequenced cases among the 175 pancreatic cancer
samples with the eight genes altering. The alterations of the

TABLE 1 | Gene sets enriched in pancreatic cancer.

Gene sets enriched in pancreatic cancer

GS follow link to MSigDB NES NOM
p-value

GO_UBIQUITIN_DEPENDENT_ERAD_PATHWAY −1.46 0.075

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS −1.45 0.067

REACTOME_ANTIGEN_PROCESSING_UBIQUITINATION_
PROTEASOME_DEGRADATION

−1.72 0.002

REACTOME_DEUBIQUITINATION 1.38 0.085

REACTOME_PROTEIN_UBIQUITINATION 1.75 0.008
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FIGURE 1 | GSEA results for the enrichment plots of two gene sets (REACTOME_ANTIGEN_PROCESSING_UBIQUITINATION_PROTEASOME_DEGRADATION,
and REACTOME_PROTEIN_UBIQUITINATION) that were significantly differentiated in normal and pancreatic cancer tissues based on TCGA database.
(A) Enrichment plot of the REACTOME_ANTIGEN_PROCESSING_UBIQUITINATION_PROTEASOME_DEGRADATION gene set. (B) Enrichment plot of the
REACTOME_PROTEIN_UBIQUITINATION gene set.

TABLE 2 | Result of GO and KEGG analysis for these ubiquitination-related DEGs.

ID Description P-adjust Q-value

GO analysis

GO:0000209 Protein polyubiquitination <0.001 <0.001

GO:0043687 Post-translational protein modification <0.001 <0.001

GO:0043161 Proteasome-mediated
ubiquitin-dependent protein catabolic
process

<0.001 <0.001

GO:0010498 Proteasomal protein catabolic process <0.001 <0.001

GO:0031145 Anaphase-promoting
complex-dependent catabolic process

<0.001 <0.001

GO:0006513 Protein monoubiquitination <0.001 <0.001

GO:0031146 SCF-dependent proteasomal
ubiquitin-dependent protein catabolic
process

<0.001 <0.001

KEGG analysis

hsa04120 Ubiquitin mediated proteolysis <0.001 <0.001

hsa03050 Proteasome <0.001 <0.002

hsa04110 Cell cycle <0.001 <0.003

hsa04141 Protein processing in endoplasmic
reticulum

<0.001 <0.004

hsa04114 Oocyte meiosis 0.017 0.016

hsa05017 Spinocerebellar ataxia 0.018 0.016

hsa04144 Endocytosis 0.020 0.018

hsa05169 Epstein-Barr virus infection 0.023 0.020

hsa04115 p53 signaling pathway 0.043 0.038

eight genes are shown in Figure 3A. We also investigated the
different expressions of the eight genes between pancreatic cancer
tissues and normal pancreatic tissues. Among the eight genes,

five genes (BRCA1, TRIM37, RNF25, CDC27, and UBE2H)
were significantly upregulated and three genes (RNF7, NPEPPS,
and NCCRP1) were significantly down regulated in the tumor
tissues (Figure 3B).

Construction of the Prognostic Risk
Model in Pancreatic Cancer Cohort
Finally, 171 pancreatic cancer patients were included in the
risk model. The computational formula was as follows: Risk
score = (2.3538× expression of RNF7) + (−1.0029 × expression
of NPEPPS) + (0.2271 × expression of NCCRP1) + (1.1898 ×
expression of BRCA1) + (−1.6370 × expression of TRIM37) +
(−1.5668 × expression of RNF25) + (1.9902 × expression of
CDC27) + (1.0606× expression of UBE2H).

Patients were divided into two groups, the high-risk group
(n = 85) and the low-risk group (n = 86). The high-risk group
had a worse outcome than the low-risk group (p < 0.001). The
1- and 3-year OS of pancreatic cancer patients in the high-risk
group were 87.7 and 64.7%, respectively, while the corresponding
OS in the low-risk group was 57.5 and 17.9%, respectively.
The AUC (ROC) value of the risk model in 1-year, and 3-year
were 0.756, and 0.810, respectively (Figures 4A,B). Then, risk
scores of these pancreatic cancer patients were ranked and their
distribution was analyzed. We divided pancreatic cancer patients
into low-risk and high-risk groups by the median risk score
for all patients enrolled in the study (Figure 4C). The survival
status of each patient in the pancreatic cancer patients was
shown in Figure 4D. As can be intuitively seen from Figure 4D,
the higher the risk score, the shorter the OS of pancreatic
cancer patients.
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TABLE 3 | The detailed information of eight prognostic mRNAs significantly associated with the prognosis of pancreatic cancer patients.

The detailed information of eight prognostic mRNAs significantly associated with the prognosis of pancreatic cancer patients

mRNA Official name Ensemble ID Location β (Cox) HR (95% CI) p-value

RNF7 Ring finger protein 7 ENSG00000114125 Chr3: 141, 738, 209-141, 747, 560 2.3538 10.526 (3.759, 29.475) <0.001

NPEPPS Aminopeptidase puromycin sensitive ENSG00000141279 Chr17: 47, 522, 933-47, 623, 276 −1.0029 0.367 (0.154, 0.875) 0.024

NCCRP1 NCCRP1, F-box associated domain
containing

ENSG00000188505 Chr19: 39, 196, 964-39, 201, 884 0.2271 1.255 (1.061, 1.484) 0.008

BRCA1 BRCA1 DNA repair associated ENSG00000012048 Chr17: 43, 044, 295-43, 125, 364 1.1898 3.286 (1.543, 7.001) 0.002

TRIM37 Tripartite motif containing 37 ENSG00000108395 Chr17: 58, 968, 010-59, 106, 880 −1.6370 0.195 (0.081, 0.469) <0.001

RNF25 Ring finger protein 25 ENSG00000163481 Chr2: 218, 663, 874-218, 672, 002 −1.5668 0.209(0.087, 0.502) <0.001

CDC27 Cell division cycle 27 ENSG00000004897 Chr17: 47, 117, 703-47, 189, 295 1.9902 7.317 (2.672, 20.037) <0.001

UBE2H Ubiquitin conjugating enzyme E2 H ENSG00000186591 Chr7: 129, 830, 732-129, 952, 960 1.0606 2.888 (1.392, 5.991) 0.004

FIGURE 2 | Kaplan-Meier curves of the effect of the gene expression level of the risk genes (RNF7, NPEPPS, NCCRP1, BRCA1, TRIM37, RNF25, CDC27, and
UBE2H) on the prognosis of pancreatic cancer patients. (A) Kaplan-Meier curve of the effect of RNF7 gene expression level. (B) Kaplan-Meier curve of the effect of
RNF25 gene expression level. (C) Kaplan-Meier curve of the effect of NPEPPS gene expression level. (D) Kaplan-Meier curve of the effect of NCCRP1 gene
expression level. (E) Kaplan-Meier curve of the effect of CDC27 gene expression level. (F) Kaplan-Meier curve of the effect of BRCA1 gene expression level.
(G) Kaplan-Meier curve of the effect of TRIM37 gene expression level. (H) Kaplan-Meier curve of the effect of UBE2H gene expression level.
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FIGURE 3 | Identification of mRNAs associated with patient survival. (A) The alteration proportion for the eight selected genes in 175 clinical samples of pancreatic
cancer in the cBioPortal database. (B) Different expression of eight genes in the normal pancreatic tissues and tumor tissues based on TCGA database. (*P < 0.05,
**P < 0.01, ***P < 0.001).

Independent Prognostic Value of the
Risk Model in the Entire Pancreatic
Cancer Cohort
A total of 163 pancreatic cancer patients were included in
this analysis. Results of the univariate analysis showed that
age, pathological grade, T-stage, N-stage, and risk score were
significantly correlated with the prognosis of pancreatic cancer
patients. The result of multivariate analysis showed that the risk
score was independently correlated with the OS for patients with
pancreatic cancer (Table 4).

Validation of the Eight-mRNA Signature
in Predicting Survival Using
Kaplan–Meier Curves
The results of the univariate analysis showed that age was
an independent prognostic factor for pancreatic cancer, and
the X-tile software found that 62 and 76 were the optimal
cut-off values for the prognosis of pancreatic cancer patients
(Supplementary Figure 1). The result of Kaplan–Meier curves

showed the effects of age, gender, histological grade, T-stage,
N-stage, and risk score on the prognosis of pancreatic cancer
patients (Figures 5A–F). The result of Kaplan–Meier curves
showed that our risk model was a stable predictive tool for the
prognosis of pancreatic cancer patients stratified by age (<62, 62–
76, and >76), gender (male and female), pathological grade
(G1/2, or G3/4), T-stage (T1/2, or T3/4), and N-stage (N0 or
N1) (Figures 6A–K). Patients with pancreatic cancer in the high-
risk group had significantly shorter OS than those in the low-risk
group when the patients were stratified into different subgroups
based on age, gender, pathological grade, T-stage, and N-stage.

Validation of the Risk Genes
The protein levels of immunohistochemistry (IHC) staining
obtained from the HPA database showed that the expression of
the protein in four risk genes (BRCA1, TRIM37, RNF25, and
UBE2H) was significantly higher in pancreatic cancer tissues than
in normal pancreatic tissues, three genes (RNF7, NPEPPS, and
NCCRP1) do the opposite, which was consistent with that at the
transcriptional level. Only CDC27 protein expression levels was
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FIGURE 4 | Prognostic analysis of the pancreatic cancer cohort. (A) 1-year ROC curve analysis of the prognostic model. (B) 3-year ROC curve analysis of the
prognostic model. (C) Risk score distribution of patients in the prognostic model. (D) Survival status scatter plots for patients in the prognostic model.

TABLE 4 | Effects of various clinical features on pancreatic cancer patients.

Univariate analysis Multivariate analysis

Clinical feature Number HR 95% CI p-value HR 95% CI p-value

Age (<62/62–76/>76) 58/83/22 1.028 1.005–1.052 0.016 1.550 0.919–2.614 0.100

Gender (female/male) 75/88 0.768 0.499–1.183 0.232 0.825 0.530–1.285 0.394

Grade (G1/2/G34) 114/49 1.387 1.001–1.924 0.049 1.243 0.777–1.990 0.364

N-stage (N0/N1) 45/118 2.004 0.999–4.021 0.050 1.229 0.589–2.563 0.583

T-stage (T1/2/T3/4) 25/138 2.222 1.286–3.838 0.004 1.598 0.890–2.869 0.116

Risk score (low/high) 86/85 1.284 1.207–1.367 <0.001 1.250 1.172–1.333 <0.001
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FIGURE 5 | Kaplan-Meier curves of the effect of clinical features (risk score, age, gender, pathological grade, T-stage, and N-stage) on the prognosis of pancreatic
cancer. (A) Kaplan-Meier curve of the effect of age. (B) Kaplan-Meier curve of the effect of gender. (C) Kaplan-Meier curve of the effect of pathological grade.
(D) Kaplan-Meier curve of the effect of T-stage. (E) Kaplan-Meier curve of the effect of N-stage. (F) Kaplan-Meier curve of the effect of risk score.

high in both the normal and tumor group in the HPA database
(Figures 7A–H).

DISCUSSION

One or more pathway data sets are used to assess the
ranking list of statistically significant genes/proteins using GSEA.
GSEA can not only detect statistically significant genes and
proteins group-wise but also enrich the previous research
characteristics of gene sets in functional genomes in a large
database of pathway gene sets (Subramanian et al., 2005;
Wu et al., 2014). In our study, mRNA expression data from
178 patients with pancreatic cancer and 36 normal pancreatic
tissues were used for GSEA analysis, and significant differences
were found in two functions. These two functions are all
related to ubiquitination, indicating that ubiquitination changes
significantly in the development of pancreatic cancer. And then,
these ubiquitination-related genes in the two functions were
selected for subsequent analysis.

Combined with GO enrichment analysis and KEGG
enrichment analysis, the results suggest that these genes are
closely related to the ubiquitination process of pancreatic

cancer. Next, eight optimal ubiquitination-related genes were
identified via multivariate Cox proportional hazards regression
analysis, and they were used to construct a risk model. The
reliability and stability of the model were further validated.
The results showed that the model could accurately distinguish
pancreatic cancer patients with different survival outcomes.
The results of univariate and multivariate analysis showed
that our model could independently predict the outcome of
pancreatic cancer patients. The result of Kaplan–Meier curves
shows that our risk model has excellent stability and reliability
in predicting the prognosis of pancreatic cancer at all age,
gender, pathological grade, T-stage, and N-stage. Therefore,
our risk model can screen high-risk patients for personalized
treatment. Finally, the eight risk genes were validated by the HPA
database, and the results showed that the protein expression
level of the eight genes was generally consistent with those at
the transcriptional level. These results suggest that the genes we
identified deserve further study.

Of the eight genes identified, seven genes (RNF7, NCCRP1,
BRCA1, TRIM37, RNF25, CDC27, and UBE2H) have been
reported to play roles in ubiquitination (Asamitsu et al., 2003;
Kallio et al., 2011; Link et al., 2016; Cho et al., 2018; Lim
and Joo, 2020; Meitinger et al., 2020; Zhang et al., 2020). It
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FIGURE 6 | Kaplan–Meier curves for the prognostic value of risk model for the patients grouped according to each clinical feature. (A–C) Kaplan–Meier survival
curves of the age patient group (<62, 62–76, and >76). (D,E) Kaplan–Meier survival curves of the gender patient group (male and female). (F,G) Kaplan–Meier
survival curves of the pathological grade patient group (G1/2 and G3/4). (H,I) Kaplan–Meier survival curves of the T-stage patient group (T1/2 and T3/4).
(J,K) Kaplan–Meier survival curves of the N-stage patient group (N0 and N1).

has not been reported that NPEPPS directly participates in
the process of ubiquitination, but NPEPPS is also known to
degrade the tau protein, which accumulates and polymerizes
in some neurodegenerative diseases (Kudo et al., 2011). In
our study, the expression of these ubiquitination-related genes
was significantly associated with the prognosis of patients with
pancreatic cancer, providing us with a new key to the study of
pancreatic cancer. Among these genes, some have been studied
as biomarkers for cancer. For example, BRCA has been proved
to be a biomarker in many cancers, and its mutation or not
has a guiding role in the application of targeted drugs, such
as pancreatic cancer (Wu and Shi, 2020). RNF7, an apoptosis-
sensitive gene, has been shown in several previous studies to
play an important role in the development and progression

of tumors such as prostate cancer and lung cancer (Li et al.,
2014; Tan et al., 2016). There are also relevant studies showing
that RNF7 regulates ionizing radiation-induced apoptosis in
pancreatic cancer (Kim et al., 2011). TRIM37 has also been shown
to promote the proliferation, invasion and migration in breast
cancer, lung cancer, gastric cancer, glioma, and pancreatic cancer
(Jiang et al., 2016; Li et al., 2018; Tang et al., 2018; Hu et al.,
2019; Fu et al., 2020). CDC27 promotes the progression and
affects PD-L1 expression in T-cell lymphoblastic lymphoma, and
also promotes epithelial-to-mesenchymal transition in colorectal
cancer (Qiu et al., 2017; Song et al., 2020). There are few
studies on the role of NCCRP1, RNF25, and UBE2H in cancer,
but the existing research results suggest that these three genes
also have the potential to become new tumor biomarkers
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FIGURE 7 | Validation of risk genes at the translational level. (A) Validation of BRCA1 by The Human Protein Atlas database (IHC). (B) Validation of CDC27 by The
Human Protein Atlas database (IHC). (C) Validation of NCCRP1 by The Human Protein Atlas database (IHC). (D) Validation of NPEPPS by The Human Protein Atlas
database (IHC). (E) Validation of ZNF7 by The Human Protein Atlas database (IHC). (F) Validation of ZNF25 by The Human Protein Atlas database (IHC).
(G) Validation of TRIM37 by The Human Protein Atlas database (IHC). (H) Validation of UBE2H by The Human Protein Atlas database (IHC).

or targets for cancer (Miwa et al., 2017; Cho et al., 2018;
Zhu et al., 2018).

Of the eight genes we identified, three genes (RNF7,
NPEPPS, and NCCRP1) were down-regulated and the
remaining five (BRCA1, TRIM37, RNF25, CDC27, and
UBE2H) were up-regulated in tumor tissue compared to normal

pancreatic tissue. But we found that even though some genes
(RNF7, NPEPPS, and NCCRP1) were down-regulated in tumor
group, patients with pancreatic cancer with high expression of
these genes had a worse prognosis. Some genes are up-regulated
(TRIM37 and RNF25), but high expression of these genes has a
better prognosis. So we suspect that these genes play an opposite
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role in the development and progression of pancreatic cancer.
For example, NPEPPS may inhibit tumor formation in normal
tissue but may promote tumor progression once the tumor
has formed. This phenomenon has been reported in previous
literature. In retrospect, the study has shown that TGF-β is a
key negative regulator of cell proliferation, but the abnormal
function of retinoblastoma protein can lead to the inhibition of
the function of TGF-β and promote the progression of pancreatic
cancer (Gore et al., 2014). Another study showed that Daple is
also a tumor-suppressor gene, although it appears only in the
early stages of cancer to function as a tumor-suppressor gene.
In the later stages of cancer, when cancer cells escape from their
primary sites and circulate in the blood, the expression of Daple
makes cancer cells more aggressive and more likely to spread
(Aznar et al., 2015).

Many previous studies have explored new potential
biomarkers and therapeutic targets for pancreatic cancer through
bioinformatic methods. Wu et al. (2019) screened nine DEGs
(MET, KLK10, COL17A1, CEP55, ANKRD22, ITGB6, ARNTL2,
MCOLN3, and SLC25A45) through the joint analysis of GEO
and TCGA databases and construct a risk score model. They
also analyzed the relationship between the nine gene models
and tumor immune infiltration. Wei et al. (2019) constructed a
risk model to predict the prognosis of pancreatic cancer patients
by screening nine immune-related lnRNAs from the TCGA
database. Compared with the previous studies, we use GSEA
enrichment analysis to explore the function of ubiquitination in
pancreatic cancer, and on this basis, identify eight ubiquitination-
related genes to construct a risk model. There has been no
previous study on the bioinformatics related to the ubiquitination
of pancreatic cancer, and our study provides a new idea for
relevant studies on the progression of pancreatic cancer.

Of course, our study also has some shortcomings. First, our
study was a retrospective study based on a public database. The
data we used has not been validated by prospective clinical trials.
Besides, the identified mechanism of ubiquitination-related genes
affecting the development of pancreatic cancer needs further
support from basic experimental studies. Next, we need to collect
clinical specimens and data for subsequent studies.

CONCLUSION

Using GSEA enrichment analysis, we found that the
ubiquitination-related functions of pancreatic cancer were

significantly different from those of normal pancreatic tissues.
Subsequently, we extracted and screened the genes in these
functions, and finally selected eight genes significantly related
to the prognosis of pancreatic cancer patients as risk genes to
construct a risk model. This model has a good predictive effect on
the prognosis of pancreatic cancer patients. Moreover, these eight
genes have the potential to be further studied as new biomarkers
or therapeutic targets for pancreatic cancer.
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Background: Based on the “seed and soil” theory proposed by previous studies, we
aimed to develop and validate a combined model of machine learning for predicting lymph
node metastasis (LNM) in patients with peripheral lung adenocarcinoma (PLADC).

Methods: Radiomics models were developed in a primary cohort of 390 patients (training
cohort) with pathologically confirmed PLADC from January 2016 to August 2018. The
patients were divided into the LNM (−) and LNM (+) groups. Thereafter, the patients were
subdivided according to TNM stages N0, N1, N2, and N3. Radiomic features from
unenhanced computed tomography (CT) were extracted. Radiomic signatures of the
primary tumor (R1) and adjacent pleura (R2) were built as predictors of LNM. CT
morphological features and clinical characteristics were compared between both
groups. A combined model incorporating R1, R2, and CT morphological features, and
clinical risk factors was developed by multivariate analysis. The combined model’s
performance was assessed by receiver operating characteristic (ROC) curve. An
internal validation cohort containing 166 consecutive patients from September 2018 to
November 2019 was also assessed.

Results: Thirty-one radiomic features of R1 and R2 were significant predictors of LNM
(all P < 0.05). Sex, smoking history, tumor size, density, air bronchogram, spiculation,
lobulation, necrosis, pleural effusion, and pleural involvement also differed significantly
between the groups (all P < 0.05). R1, R2, tumor size, and spiculation in the combined
model were independent risk factors for predicting LNM in patients with PLADC, with area
under the ROC curves (AUCs) of 0.897 and 0.883 in the training and validation cohorts,
respectively. The combined model identified N0, N1, N2, and N3, with AUCs ranging from
0.691–0.927 in the training cohort and 0.700–0.951 in the validation cohort, respectively,
thereby indicating good performance.
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Conclusion: CT phenotypes of the primary tumor and adjacent pleura were significantly
associated with LNM. A combined model incorporating radiomic signatures, CT
morphological features, and clinical risk factors can assess LNM of patients with
PLADC accurately and non-invasively.
Keywords: radiomics, lymph node metastasis, computed tomography, lung adenocarcinoma, machine learning
INTRODUCTION

Despite advances in early detection, diagnosis, staging, and
treatment, lung cancer still remains the leading cause of death
worldwide (1). Additionally, peripheral lung adenocarcinoma
(PLADC), defined as adenocarcinoma occurring below
segmental bronchus, is the most common histological subtype
of lung cancer (2). Evaluating the status of lymph node
metastasis (LNM) accurately is of great benefit to the
treatment strategy decision and prognosis of patients
with PLADC.

Previous studies (3, 4) have reported a significant association
between LNM and computed tomography (CT) features and
clinicopathological variables, including tumor centrality,
consolidation-to-tumor ratio, age, papillary/micropapillary
predominant subtype, and more advanced T stage in non-
small cell lung cancer. Some researchers have reported that
pleural involvement on preoperative CT images had a
moderate correlation with visceral pleural invasion (5, 6).
Chang et al. (7) concluded that lymphatic and visceral pleural
surface invasion could be used to predict LNM. In other words,
previous studies have concluded that pleural involvement was
closely related to LNM (5–7). Therefore, we hypothesized that
the primary tumor is a “seed,” adjacent pleura is the “soil,” and
tumor cells could inseminate systematically through subpleural
lymphatics owing to abundant lymphatic and vascular networks
within the sub-pleura. Although previous studies have shown
that several histological parameters can be predictors of LNM,
these evaluation parameters are only available postoperatively.
Preoperative knowledge of LNM can provide valuable
information for determining the scope of surgical resection
and the need of adjuvant therapy (8–10).

Radiomics, the high-throughput extraction of advanced
quantitative imaging features from radiographic images, has
attracted increased attention of physicians in recent years and
has shown promise in characterizing tumor phenotypes,
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including imaging diagnosis, treatment, and prediction of
prognosis and treatment efficacy of tumors (11–13). Recent
studies have recognized the contribution of radiomics in the
preoperative assessment of lymph node status in lung cancer
(14–17). However, these studies predicted LNM of lung cancer
mainly by extracting the quantitative information of the tumor
itself. To the best of our knowledge, whether the combination of
the radiomic signatures of the primary tumor (R1) and those of
adjacent pleura (R2) can produce a superior prediction of LNM
for patients with PLADC have not yet been established.

Therefore, the study aim was to develop and validate a
combined model that incorporates R1, R2, and CT
morphological features and identify clinical risk factors for
predicting LNM in patients with PLADC.
METHODS

Patient Selection
This study obtained ethical approval from the institutional
review board in our hospital, and the need for informed
consent was waived due to the retrospective nature of the
study. A total of 390 patients with pathologically confirmed
PLADC during January 2014 to August 2018 were included as a
training cohort. Data Supplement A1 presents the patient
recruitment flowchart as well as the inclusion and exclusion
criteria of this study.

Patients in the training cohort were divided into the LNM (+)
group (n = 228) and LNM (−) group (n = 162), with an average
age of 60.36 ± 9.86 years (range: 24–83 years). Additionally, all
patients were subdivided into N0 (n = 162, no regional node
metastasis), N1 (n = 56, metastasis in ipsilateral pulmonary or
hilar nodes), N2 (n = 156, metastasis in ipsilateral mediastinal/
subcarinal nodes), and N3 (n = 13, metastasis in contralateral
mediastinal/hilar, or supraclavicular nodes) according to the 8th
edition of the Tumor–Node–Metastasis (TNM) classification.
Clinical characteristics, including age, sex, and smoking history,
were collected. In addition, data from 166 consecutive patients
with PLADC (N0 = 75, N1 = 19, N2 = 61, N3 = 11) with a mean
age of 60.51 ± 9.19 years (range: 42–81 years) in our institution
during September 2018 to November 2019 were collected and
included as an internal validation cohort.

CT Image Acquisition and Morphological
Features Analysis
Chest CT scan was performed with Discovery 750 HD CT (GE
Health care, Milwaukee, WI, USA), and the original images were
reconstructed using a medium sharp reconstruction algorithm
May 2021 | Volume 11 | Article 675877
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with a thickness of 0.625–1.25 mm and transmitted to the Picture
Archiving and Communication System (PACS). CT features
were reviewed in both lung window images (window width:
1600 Hounsfield units [HU]; window level: −600 HU) and
mediastinal window images (window width: 400 HU; window
level: 40 HU).

A senior radiologist (with 18 years of work experience in
thoracic imaging diagnosis) and a junior radiologist (with 13
years of work experience in thoracic imaging diagnosis) reviewed
the CT images to reach a consensus. Tumor size (the longest
diameter of the tumor on cross-sectional images), tumor density
(solid or sub-solid), air space, air bronchogram, lobulation,
spiculation, pleural effusion, necrosis, and pleural involvement
were measured and evaluated. Referring to the standards
established in previous research (3), pleural involvement was
classified into three types (Figures 1–4): Type I, which
manifested as one or more linear shadows between tumor and
pleura on lung window images but was not observed on
mediastinal window images; Type II, which manifested as
linear or cord-like shadows between the tumor and pleura
observed in both lung windows and mediastinal window
images; and Type III, which were tumors attached to the
pleura with a broad base. For tumors with concurrent Type I,
Frontiers in Oncology | www.frontiersin.org 338
Type II, or Type III presentation, the pleural involvement was
recorded as the latter type.

Radiomic Feature Selection and
Signature Building
Unenhanced CT images of PLADC were extracted from PACS
and then exported to the ITK-SNAP software (version 2.2.0,
www.itk-snap.org) for manual segmentation. Considering that
LNM depends on the synergies of the primary tumor and nearby
pleura, both of them are investigated. For the primary tumor, the
largest slice of tumor was selected from axial CT images, and
regions of interest (ROIs) were carefully drawn on it and adjacent
two slices, covering the whole contour of tumor. For all nearby
pleura delineation, we tried to avoid the soft tissue and ribs of the
chest wall; additionally, all pleural ROI delineation was defined
as two lines tangent to the edges of the tumor, intersecting the
visceral pleura at 90°. If there was no pleural involvement, ROI
was drawn on the region between the primary tumor and pleura
on the largest slice of tumor and adjacent two slices; if there was
pleural involvement of Type I, Type II, and Type III, three
adjacent slices showing the sign of pleural involvement most
clearly were selected and delineated (Figures 1–4). To ensure
consistency, these delineations were performed three times, and
FIGURE 1 | Representative image showing no pleural involvement. (A, B) No pleural involvement is seen in either the lung window or mediastinal window images.
(C, D) ROI delineation of the primary tumor and nearby pleura.
FIGURE 2 | Pleural involvement of Type I. (A, B) One or more linear shadows are observed between the tumor and pleura in the lung window images but are not
observed in the mediastinal window images. (C, D) ROI delineation of the primary tumor and nearby pleura.
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reproducibility assessment on intra-reader agreement were
assessed by intraclass correlation coefficients (ICCs) for
radiomics feature extraction after ROI delineation, ICC > 0.75
were retained as they showed good agreement between
different segmentations.

Radiomic feature extraction was performed on PyRadiomic
platform implemented in Python (https://pyradiomics.
readthedocs.io/en/latest/), which can extract radiomic features
from CT images via an algorithm with a large panel of
engineered hard-coded features, such as morphological features
(ROI size, volume, surface area, etc.), first-order features
(geometric morphology and histogram features), second-order
texture features (gray level co-occurrence matrix, gray level long
matrix, gray level generation matrix, and neighborhood gray
difference matrix), and other features based on filtering and
transformation (wavelet transform).

As shown in Supplementary Figure A2, radiomic feature
selection and signature building of R1 and R2, including these
steps, were performed. First, we normalized the resolution
feature matrix. For each vector, we calculated the L2 norm and
divided it. The feature vector was then mapped to a unit vector.
Second, we compared the similarity of each feature pair due to
the high dimensionality of the radiomic features space. If the
Pearson correlation coefficient of a feature pair was greater than
0.90, we randomly removed one feature pair. Third, we
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combined the optimal subset method with a minimum
Akaike’s Information Criterion (AIC) to select the best
combination of features. The optimal subset method can
provide the corresponding c2 value in the case where all
feature number combinations are different, but it cannot
identify the best combination. Therefore, the corresponding
AIC values under various combinations could be calculated to
find the smallest corresponding AIC value. We built a final
logistic regression model using a combination of features under
the minimum AIC correspondence. Using this method, we
selected features to build the R1 and R2 models. Finally, after
traversing five machine-learning algorithms, we chose
multinomial logistic regression as the final classifier.

Radiomics Model Construction and
Evaluation
R1 and R2 models that reflected the radiomics signature of the
primary tumor and adjacent pleura were established; an R1+R2
model was also constructed as a whole ROI to explore the ability
to predict LNM in patients with PLADC. A combined model,
including R1 and R2, CT morphological features, and clinical
risk factors, was developed by multivariate logistic regression
analysis. Moreover, a combined nomogram based on the logistic
regression model was then plotted. Hosmer–Lemeshow
goodness of fit test was applied to evaluate the calibration of
FIGURE 3 | Pleural involvement of Type II. (A, B) Linear or cord-like shadows are observed between the tumor and pleura in both the lung window and mediastinal
window images. (C, D) ROI delineation of the primary tumor and nearby pleura.
FIGURE 4 | Pleural involvement of Type III. (A, B) Tumor attached to the pleura with a broad base observed in both the lung window and mediastinal window
images. (C, D) ROI delineation of the primary tumor and nearby pleura.
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the combined model, and the results were represented by a
calibration curve.

Lymph Node Status Ascertainment
All patients underwent lobectomy or a more extensive resection.
Systematic lymph node dissection was performed in all patients
according to the European Society of Thoracic Surgeons
guidelines (18, 19). The minimal number of dissected lymph
nodes was six and at least three mediastinal lymph nodal stations
and subcarinal stations had to be included. The hilar and
intrapulmonary lymph nodes were excised as well. All surgical
specimens and lymph nodes were fixed in 10% formalin and then
sliced at the maximum dimension, and all sections were
embedded in paraffin. Two experienced pathologists blindly
evaluated all slices and lymph nodes together, and any
disagreement was resolved by consensus. Pathological TNM
stage, histological type, and lymph node station were evaluated
according to the 8th edition of the TNM classification of lung
cancer (2017) provided by the International Union against
Cancer and the American Joint Commission on Cancer (20, 21).

Statistical Analysis
Statistical analysis was performed using SPSS statistics (version 24;
IBM,Armonk,NY,USA)andRsoftware (version3.6.1; http://www.
Rproject.org). For continuous variables of clinical characteristics
and CT morphological features, independent t-test or Mann–
Whitney U test was performed; for categorical variables, Chi-
square test was used for comparisons between the two groups.
The combined model was constructed with multivariate logistic
regression analysis and the performance of the combined model
was evaluated using receiver operating characteristic (ROC) curve.
A combined nomogram and a calibration curve of the combined
model were then plotted. A calibration curve showing discrete
experimental points close to or nearly coinciding with the diagonal
Frontiers in Oncology | www.frontiersin.org 540
would indicate that the calibrationof the combinedmodelwas high.
A two-sided P value < 0.05 was considered to be indicative of
statistical significance.
RESULTS

Clinical Characteristics and
CT Morphological Features
Males (P = 0.025) and smokers (P = 0.005) were more common in
the LNM (+) group than in the LNM (−) group. However, no
significant difference in age was observed between the two groups
(P = 0.794). Tumor size, density, air bronchogram, spiculation,
lobulation, necrosis, pleural effusion, and pleural involvement were
found to be associated with LNM (all P < 0.05). Tumor size was
larger in the LNM (+) group than that in the LNM (−) group (P <
0.001). Tumors with solid density, air bronchogram, spiculation,
lobulation, necrosis, and pleural effusion were more common in the
LNM (+) group than in the LNM (−) (all P < 0.05). However, there
were no significant differences in air space and vascular
convergence between the two groups (all P > 0.05, Table 1).

Radiomics Model Construction
The R1 model was built with 13 features, including original first-
order variance, wavelet transform, gray histogram features,
gradient, and lbp.3D.k glszm small-area emphasis; the areas
under the ROC curves (AUCs) for predicting LNM were 0.847
and 0.859 in training cohort and validation cohort, respectively
(Figure 5). The R2 model was built with 19 features, including
wavelet, square root, logarithm, and gradient, with AUCs of
0.837 and 0.815 for the prediction of LNM in the training cohort
and validation cohort, respectively. In total, 1300 features were
extracted from both the primary tumor and pleura. After ranking
these features, 31 features from R1 and R2 were found to be
TABLE 1 | Comparison of the clinical characteristics and CT morphological features between the LNM (−) and LNM (+) groups (n, %).

Characteristics LNM(−) group (237) LNM(+) group (319) Sig. P value

Age (years) 60.28 ± 10.21 60.50 ± 9.33 0.261 0.794a

Sex (male) 111 (46.84%) 180 (56.43%) 5.014 0.025b

Smoker 82 (34.60%) 147 (46.08%) 7.931 0.005b

Tumor size (mm) 23.00 (16.00, 30.00) 32.00 (24.00, 42.00) 9.023 < 0.001c

Density 82.686 < 0.001b

Solid 162 (68.35%) 308 (96.55%)
Sub-solid 75 (31.65%) 11 (3.45%)
Air space 74 (31.22%) 81 (25.39%) 2.300 0.129b

Air bronchogram 53 (22.36%) 32 (10.03%) 15.966 < 0.001b

Spiculation 56 (23.63%) 134 (42.01%) 20.415 < 0.001b

Lobulation 209 (88.19%) 304 (95.30%) 9.639 0.002b

Necrosis 20 (8.44%) 64 (20.06%) 14.325 < 0.001b

Vascular convergence 54 (22.78%) 69 (21.63%) 0.105 0.746b

Pleural effusion 2 (0.84%) 13 (4.08%) 5.409 0.020b

Pleural involvement 44.470 < 0.001b

Absent 23 (9.70%) 20 (6.27%) P#

Type I 144 (60.76%) 114 (35.74%) P*
Type II 30 (12.66%) 82 (25.71%) P*
Type III 40 (16.88%) 103 (32.29%) P*
Ma
y 2021 | Volume 11 | Articl
aindependent t-test; bChi-squared test; cMann–Whitney U test; P# means P > 0.05 and P* means P < 0.05 for further pairwise comparison between two groups. LNM, lymph node
metastasis; CT, computed tomography.
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significantly associated with LNM (all P < 0.05), and AUCs of
R1+R2 model were 0.878 and 0.870 in the training and validation
cohorts, respectively (Figure 5). Furthermore, the combined
model was also developed with AUCs of 0.897 and 0.883 for
the training and validation cohorts, respectively (Figure 5).

Evaluation of the Radiomics Models
Multivariable analysis revealed that long diameter, presence of
spiculation, radiomics score of the primary tumor (RS1), and
radiomics score of the pleura around the tumor (RS2) were
significant predictors (Table 2). Therefore, they were fused as a
radiomics nomogram (Figure 6A). The calibration curve showed
that the discrete experimental points were similar to or the same
Frontiers in Oncology | www.frontiersin.org 641
as the diagonal, which indicated that the calibration of the
combined model was high (Figure 6B).

Radiomics Model for Identifying N0, N1,
N2, and N3
Radiomic signatures also showed good performance in
identifying the lymph node stage of N0, N1, N2, and N3
(Supplementary Figure A3) as shown by the following AUCs:
for the R1 model, 0.839, 0.691, 0.768, and 0.864 in the training
cohort and 0.870, 0.700, 0.769, and 0.845 in the validation
cohort, respectively; for the R2 model, 0.808, 0.783, 0.763, and
0.885 in the training cohort, and 0.810, 0.777, 0.752, and 0.943 in
the validation cohort, respectively; for the R1+R2 model, 0.866,
0.812, 0.824, and 0.927 in the training cohort and 0.841, 0.794,
0.815, and 0.951 in the validation cohort, respectively; and for the
combined model, 0.916, 0.797, 0.823, and 0.927 in the training
cohort and 0.860, 0.773, 0.832, and 0.859 in the validation
cohort, respectively (Table 3, Figure 7).
DISCUSSION

Radiologic examinations, including CT, magnetic resonance
imaging (MRI), and positron emission tomography combined
A B

FIGURE 5 | ROC curves of R1, R2, R1+R2, and the combined model for distinguishing LNM. (A) Training cohort. (B) Validation cohort.
A B

FIGURE 6 | Nomogram and calibration curve of radiomic models. (A) Nomogram of the combined model. (B) Calibration curve showing that the discrete
experimental points are coincident with the diagonal, which indicates that the calibration of the combined model is high.
TABLE 2 | Variables and coefficients of the radiomics nomogram.

Variables b Adjusted OR (95% CI) P value

RS1 (per 0.1 increase) 3.9867 53.88 (14.89–215.1) < 0.0001
RS2 (per 0.1 increase) 3.4074 30.19 (8.73–112.25) < 0.0001
Tumor size 0.0117 1.01 (0.99–1.04) 0.3856
Spiculation −1.4176 0.24 (0.13–0.45) < 0.0001
Intercept −1.9709 0.14 (0.04–0.44) 0.0009
RS1, radiomics score of the primary tumor; RS2, radiomics score of the adjacent pleura.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Prediction of LNM With Radiomics
with CT (FDG-PET/CT), can be used for pretherapeutic lymph
node assessments (22–24). As an alternative, CT is an important
part of the PLADC staging process in clinical practice. However,
some previous studies have observed low sensitivity and
specificity of CT, and others have shown that CT was severely
limited when relying solely on a short-axis diameter of ≤10 mm
of the thoracic lymph nodes in accurately evaluating malignant
nodes (25, 26). Diffusion-weighted magnetic resonance imaging
(DWI) of MRI has been applied in lung cancer staging for the last
two decades; however, further development of protocols and
more clinical trials for lymph node evaluation are still needed
(23). FDG-PET/CT has been reported to be superior to CT for
evaluating LNM of lung cancer, but high false-positive rate and
radiation dosage have restricted its clinical application (27).
Therefore, preoperative imaging for noninvasive evaluation of
Frontiers in Oncology | www.frontiersin.org 742
the status of lymph nodes is highly desirable. In the present
study, we developed and validated a radiomics signature-based
model that incorporates radiomic signatures of both the primary
tumor and adjacent pleura, CT morphological features, and
clinical factors for prediction of LNM in patients with PLADC.

In this study, R1, which reflects radiomic signatures of the
primary tumor had AUCs of 0.847 and 0.859 for predicting LNM
in the training and validation cohorts, respectively, suggesting a
huge potential for radiomics in predicting LNM. Consistent with
our results, previous researchers have also reported that radiomic
signatures were of great value in predicting LNM in lung cancer
(15, 28); Wang et al. (17) confirmed that radiomic signatures
from peritumoral lung parenchyma would increase the
prediction efficiency of LNM in clinical stage T1 lung
adenocarcinoma. Additionally, R2, which showed radiomic
TABLE 3 | AUCs of radiomics models for evaluating lymph node staging.

Models Training cohort Validation cohort

N0 N1 N2 N3 N0 N1 N2 N3

R1 0.839 0.691 0.768 0.864 0.870 0.700 0.769 0.845
R2 0.808 0.783 0.763 0.885 0.810 0.777 0.752 0.943
R1+R2 0.866 0.812 0.824 0.927 0.841 0.794 0.815 0.951
Combined model 0.916 0.797 0.823 0.927 0.860 0.773 0.832 0.859
May 2021 | Vo
lume 11 | Article 6
N0, No regional node metastasis; N1, Metastasis in ipsilateral pulmonary or hilar nodes; N2, Metastasis in ipsilateral mediastinal/subcarinal nodes; N3, Metastasis in contralateral
mediastinal/hilar or supraclavicular nodes.
A B

DC

FIGURE 7 | ROC curves of R1, R2, R1+R2, and the combined model in identifying N0, N1, N2, and N3. (A) ROC curves of R1. (B) ROC curves of R2. (C) ROC
curves of R1+R2. (D) ROC curves of the combined model.
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signatures of pleura around the tumor, was associated with LNM
in patients with PLADC, and yielded AUCs of 0.837 and 0.815
for predicting LNM in the training and validation cohorts,
respectively. To the best of our knowledge, few studies have
applied radiomic signatures of pleura around the tumor to
predict LNM. Researchers have concluded that LNM depends
on selected cancer cells (the “seeds”) and micro-environments
(the “soil”), and metastases formed only when the seeds and soil
were compatible (29, 30). We thus hypothesized the “seed and
soil” theory for LNM prediction. Based on the “seed and soil”
theory, interestingly, we found that LNM was associated with
both the tumor and the phenotype of its nearby pleura. This
finding might partly be explained by the rich subpleural lymph
drainage and direct drainage route into the mediastinum,
through which tumor cells may spread and metastasize easily
(6, 31). We concluded that tumor invasion to the network of
subpleural lymph vessel would lead to higher occurrence of
LNM. Moreover, radiomic signatures of R1+R2, which
contained 31 characteristics in total, showed good performance
in predicting LNM in patients with PLADC, with AUCs of 0.878
and 0.870 in the training and validation cohorts, respectively.

Previous studies have confirmed that several CT features and
clinical risk factors were closely related to LNM of lung
adenocarcinoma (8, 32–39). Similarly, we found that sex,
smoking history, and eight CT morphological features of tumors,
including long diameter, tumor density, air bronchogram,
spiculation, lobulation, necrosis, pleural effusion, and pleural
involvement, were significantly associated with LNM in this
study. Therefore, we further established a prediction model that
combined radiomic signatures of R1 and R2, CT features, and
clinical risk factors. The combined model is of great value in
predicting LNM with AUCs of 0.897 and 0.883 in the training
andvalidationcohorts, respectively.Thedecisioncurve showed that
the combined model was of great help in clinical decision-making.
We have also developed a radiomics nomogram and calibration
curve of the combined model, both of which showed that the
combined model had good predictive ability for LNM in patients
with PLADC.

Asamura et al. (40) reported that the 5-year survival rates in
patients with lung cancer according to the pathological N
statuses were 75% (N0), 49% (N1), 36% (N2), and 20% (N3).
Therefore, the survival differed significantly between all
neighboring nodal categories, and it is very important to
accurately evaluate the metastasis status of lymph nodes before
operation. In the present study, the radiomics model was also
used to distinguish N0, N1, N2, and N3, and the combined
model revealed good diagnostic performance in estimating N
stages for patients with PLADC.

The present study had several limitations. All data were
collected within a single institution, but we are preparing to
conduct a multicenter study to verify the reliability and general
applicability of this model. Previous studies have shown the
relationship between different pleural involvement and LNM or
nodal staging. Radiomics was used only to further quantify the
relevant features, and we believe that we can achieve good
performance in external verification. Moreover, due to the lack of
Frontiers in Oncology | www.frontiersin.org 843
MRI andPET images, there is scope for improving the performance
of the model, especially under the condition wherein PET/CT can
provide better reference for evaluating LNM. We chose only three
slices instead of the whole tumor for image-feature extraction.
Future work might benefit from automatic target area delineation
software, and more auxiliary information around the tumor can be
added to achieve an accurate assessment of tumor lymph nodes.
CONCLUSION

This study showed that obtaining information about the primary
tumor and pleura around the tumor provides complementary
information that can be useful in clinical decision-making. The
combined model, which incorporates radiomic signatures, CT
features, and clinical factors, can be used as an auxiliary tool to
predict LNM in patients with PLADC.
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Artificial Intelligence Can Cut Costs
While Maintaining Accuracy in
Colorectal Cancer Genotyping
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Nicole A. Cipriani4, Jakob N. Kather5* and Alexander T. Pearson2*
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University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany

Rising cancer care costs impose financial burdens on health systems. Applying artificial
intelligence to diagnostic algorithms may reduce testing costs and avoid wasteful therapy-
related expenditures. To evaluate the financial and clinical impact of incorporating artificial
intelligence-based determination of mismatch repair/microsatellite instability status into
the first-line metastatic colorectal carcinoma setting, we developed a deterministic model
to compare eight testing strategies: A) next-generation sequencing alone, B) high-
sensitivity polymerase chain reaction or immunohistochemistry panel alone, C) high-
specificity panel alone, D) high-specificity artificial intelligence alone, E) high-sensitivity
artificial intelligence followed by next generation sequencing, F) high-specificity artificial
intelligence followed by next-generation sequencing, G) high-sensitivity artificial
intelligence and high-sensitivity panel, and H) high-sensitivity artificial intelligence and
high-specificity panel. We used a hypothetical, nationally representative, population-
based sample of individuals receiving first-line treatment for de novo metastatic
colorectal cancer (N = 32,549) in the United States. Model inputs were derived from
secondary research (peer-reviewed literature and Medicare data). We estimated the
population-level diagnostic costs and clinical implications for each testing strategy. The
testing strategy that resulted in the greatest project cost savings (including testing and
first-line drug cost) compared to next-generation sequencing alone in newly-diagnosed
metastatic colorectal cancer was using high-sensitivity artificial intelligence followed by
confirmatory high-specificity polymerase chain reaction or immunohistochemistry panel
for patients testing negative by artificial intelligence ($400 million, 12.9%). The high-
specificity artificial intelligence-only strategy resulted in the most favorable clinical impact,
with 97% diagnostic accuracy in guiding genotype-directed treatment and average time
to treatment initiation of less than one day. Artificial intelligence has the potential to reduce
both time to treatment initiation and costs in the metastatic colorectal cancer setting
without meaningfully sacrificing diagnostic accuracy. We expect the artificial intelligence
value proposition to improve in coming years, with increasing diagnostic accuracy and
decreasing costs of processing power. To extract maximal value from the technology,
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health systems should evaluate integrating diagnostic histopathologic artificial intelligence
into institutional protocols, perhaps in place of other genotyping methodologies.
Keywords: deep learning, microsatellite instability (MSI), colorectal (colon) cancer, financial implication, digital
biomarker, digital pathology, cost savings, artificial intelligence
INTRODUCTION

Oncologic diagnostic algorithms, specifically those involving next-
generation sequencing (NGS), financially burden healthcare
systems. Just as the advent of NGS was an advancement over
polymerase chain reaction (PCR) and immunohistochemistry
(IHC) for some applications, artificial intelligence (AI) may be the
next innovative oncologic diagnostic agent. From routine
histopathology images, AI can recapitulate genetic information
with area under the receiver-operator curve (ROC) approaching
0.9 (1, 2). AI may help overcome NGS-related challenges like cost,
packing and shipping delays, and turnaround time. Due tomassive
scalability,AI costs, following initial investment,wouldbe a fraction
of other technologies’ costs. Since tumors grow in the absence of
treatment, AI’s faster turnaround (and associated earlier treatment
initiation) could impact clinical outcomes.

AI may be especially impactful in common malignancies. In
the United States (U.S.), nearly 150,000 cases of colorectal cancer
(CRC) are diagnosed annually (3). In themetastatic setting (22% of
cases), deficient mismatch repair (dMMR) or high microsatellite
instability (MSI-H) – genetic features seen in 5%ofmetastatic CRC
(mCRC) cases – are predictive and prognostic (4). For individuals
with dMMR/MSI-H mCRC, KEYNOTE-177 demonstrated
superior outcomes for front-line pembrolizumab over cytotoxic
chemotherapy (5). The high price of immunotherapies
(like pembrolizumab) could portend a significant escalation
in the total cost of mCRC care. Diagnostic strategies can limit
immunotherapy use to only those patients who are most likely to
benefit. LikeNGS, PCR, and IHC,AI, althoughnot currently part of
routine clinical practice, can infer actionable genetic features like
MMR/MSI, KRAS, and BRAF status from histopathology (1, 2). In
the present study, we projected the financial and clinical impacts of
incorporating AI into the diagnostic algorithm.We are unaware of
any prior research in estimating the financial impact of
implementing AI in a clinical context – this study is the first one
in our knowledge to do so. Our results, alongwith future real-world
confirmation across cancers, could inform policy and practice to
optimize oncologic diagnostic pathways.
MATERIALS AND METHODS

Wegenerated eight potential diagnostic algorithms for determining
MMR/MSI status in the U.S. first-line newly-diagnosed (de novo)
mCRC population: NGS alone, high-sensitivity PCR or IHC panel
(“panel” for short) alone, high-specificity panel alone, high-
specificity AI alone, high-sensitivity AI with confirmatory NGS
for patients testing negative by AI, high-specificity AI with
confirmatory NGS for patients testing positive by AI, high-
247
sensitivity AI with confirmatory high-sensitivity panel for
patients testing positive by AI, and high-sensitivity AI with
confirmatory high-specificity panel for patients testing positive by
AI (Figure 1).Wechose thesediagnostic scenarios basedoncurrent
standard-of-care and, based on clinical and cost considerations,
where AI might reasonably fit within the diagnostic paradigm. We
took “NGSalone” as the reference approach, as it was expected tobe
the costliest, and chose other scenarios to include clinically
reasonable permutations of using NGS, panel, and/or AI. We
evaluated costs from the perspective of the U.S. healthcare
system, agnostic of payer. We assessed costs over one year, as
longer time horizons might not account for yet-unknown future
changes in oncologic technology and practice over longer
timeframes. Given the relatively short time horizon, our model
did not incorporate a discount rate. Consideration of opportunity
costs (e.g., potential use of cost-savingsderived fromnewdiagnostic
approaches) was outside our scope.

We incorporated data from peer-reviewed literature and
government sources into a financial and clinical model (Table 1
and Figure 2) (6, 7, 10–14). All cost assumptions were based on
values reported in 2017-2020. We aimed to use as few data sources
as possible in the interest of minimizing heterogeneity of
assumptions. We gathered nearly all dollar values from publicly
available reimbursement schedules of the Centers for Medicare &
Medicaid Services. Test characteristics of the AI platform is based
on our group’s previous work. Absolute population and incidence
estimates were derived from the Surveillance, Epidemiology, and
End Results Program (SEER) database, while proportions of
patients falling into genetic and treatment subgroups was derived
from a variety of peer-reviewed publications. The timing of
restaging scans was based on the restaging cadence in the
KEYNOTE-177 trial. We chose the AI sensitivity/specificity
cutoffs based on two points along our previously-developed ROC
(Figure 1) (2). Briefly, we developed our AI algorithm using
hematoxylin and eosin-stained slides for samples that had
previously been analyzed for MSI-H/dMMR status by either IHC
or PCR. Pathologists who had been blinded to clinical data and
MSI-H/dMMRstatus determined sample quality and area of tumor
tissue. Images were saved digitally, color-normalized, then
subjected to our deep learning system. We did not incorporate
the cost of developing the deep learning model into our financial
estimate, as we have already developed this approach.

We grouped PCR and IHC and assessed two sets of test
characteristics (high-specificity and high-sensitivity) for these
platforms, as characteristics vary across studies (8, 9). Our
primary objective was to compare total costs of testing and first-
line therapy across the scenarios. To assess clinical impact of each
diagnostic strategy, we estimated time to treatment initiation,
proportion of patients receiving results within guideline-
June 2021 | Volume 11 | Article 630953
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FIGURE 1 | Treatment decision tree with various testing strategies. (A) Next-generation sequencing alone; (B) High-sensitivity immunohistochemistry panel alone;
(C) High-specificity immunohistochemistry panel alone; (D) High-specificity artificial intelligence alone; (E) High-sensitivity artificial intelligence followed by next-
generation sequencing for individuals with deficient mismatch repair/microsatellite instability-high tumors by artificial intelligence; (F) High-specificity artificial
intelligence followed by next-generation sequencing for individuals with intact mismatch repair/microsatellite stable tumors by artificial intelligence; (G) High-sensitivity
artificial intelligence followed by high-sensitivity immunohistochemistry panel for individuals with deficient mismatch repair/microsatellite instability-high tumors by
artificial intelligence; (H) High-sensitivity artificial intelligence followed by high-specificity immunohistochemistry panel for individuals with deficient mismatch repair/
microsatellite instability-high tumors by artificial intelligence. AI, artificial intelligence; CTx, chemotherapy; dMMR, deficient mismatch repair; FU, fluorouracil; IHC,
immunohistochemistry; mCRC, metastatic colorectal cancer; MSI-H, microsatellite instability-high; MSS, microsatellite-stable; NGS, next-generation sequencing;
PCR, polymerase chain reaction; PFS, progression-free survival; pMMR, proficient mismatch repair.
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recommended 10 working days from laboratory sample receipt
(15), and proportion of patients receiving first-line therapy
supported by KEYNOTE-177. Since we did not have a direct way
of linking these clinical consequenceswith clinical outcomes,wedid
not compare incremental cost-effectiveness ratios.
RESULTS

We projected the high-sensitivity AI followed by high-specificity
panel strategy to result in the lowest total testing and first-line
drug therapy cost, $2.72 billion, compared to $3.13 billion for
TABLE 1 | Model assumptions and inputs.

Model input Assumed value
(reference)

Population characteristics
# newly diagnosed colorectal cancer per year in the U.S. 147,950 (3)
% metastatic 22% (3)
# newly diagnosed (de novo) metastatic colorectal cancer
per year in the U.S.

32,549

% dMMR/MSI-H 5% (4)
% pMMR/MSS 95% (4)
Diagnostic characteristics
Cost per patient of next-generation sequencing $3,500.00 (6)
Cost per patient of PCR or IHC panel $1,206.25
KRAS/NRAS $682.29 (6)
BRAF $175.40 (6)
dMMR/MSI-H $348.56 (6)

Cost per patient of artificial intelligence (digital image
scanning)

$6.07a

Time for next-generation sequencing (days) 12 (7)
Time for PCR or IHC panel (days) 4 (7)
Time for artificial intelligence (months) – assumed nominal
value

-

Next generation sequencing sensitivity – conservative
assumption

100%

Next generation sequencing specificity – conservative
assumption

100%

PCR or IHC dMMR/MSI-H panel sensitivity (high
sensitivity cutoff):

100% (8)

PCR or IHC dMMR/MSI-H panel specificity (high
sensitivity cutoff):

81% (8)

PCR or IHC dMMR/MSI-H panel sensitivity (high
specificity cutoff):

67% (9)

PCR or IHC dMMR/MSI-H panel specificity (high
specificity cutoff):

93% (9)

Artificial intelligence dMMR/MSI-H sensitivity (high
sensitivity cutoff)

98% (2)

Artificial intelligence dMMR/MSI-H specificity (high
sensitivity cutoff)

79% (2)

Artificial intelligence dMMR/MSI-H sensitivity (high
specificity cutoff)

70% (2)

Artificial intelligence dMMR/MSI-H specificity (high
specificity cutoff)

98% (2)

Therapeutic characteristics
Cost per patient per month for dMMR/MSI-H therapy $23,021.13 (5)
Weighted average cost per patient per month of
5-fluorouracil-based therapyb

$7,625.88

% receiving FOLFOX + bevacizumab 35% (10)
Cost per patient per month for FOLFOX + bevacizumab $6,316.70 (11)
% receiving FOLFOX + cetuximab 45% (10)
Cost per patient per month for FOLFOX + cetuximab $11,945.73 (11)
% receiving 5-fluorouracil + leucovorin 20% (10)
Cost per patient per month for 5-fluorouracil + leucovorin $179.76 (11)

Weighted average cost per patient per dose of 5-fluorouracil-
based therapy

$3,807.68

% receiving FOLFOX + bevacizumab 35% (10)
Cost per patient per dose for FOLFOX + bevacizumab $3,158.35 (11)
% receiving FOLFOX + cetuximab 45% (10)
Cost per patient per dose for FOLFOX + cetuximab $5,972.86 (11)
% receiving 5-fluorouracil + leucovorin 20% (12)
Cost per patient per dose for 5-fluorouracil + leucovorin $63.63 (11)

Weighted average median time on of 5-fluorouracil-based
therapy (months)

9.0

% receiving FOLFOX + bevacizumab 35% (10)
Median time on therapy for FOLFOX + bevacizumab 10.3 (13)
% receiving FOLFOX + cetuximab 45% (10)

(Continued)
TABLE 1 | Continued

Model input Assumed value
(reference)

Median time on therapy for FOLFOX + cetuximab 10 (13)
% receiving 5-fluorouracil + leucovorin 20% (12)
Median time on therapy for 5-fluorouracil + leucovorin 4.4 (14)

Time between scans (months) 2.07 (5)
Number of pembrolizumab doses before first restaging scans 3
Time between pembrolizumab doses (months) 0.69 (5)

Number of chemotherapy ± targeted therapy doses before
first restaging scans

5

Time between chemotherapy ± targeted therapy doses
(months)

0.46 (5)
June 2021 | Volume 1
Superscript numbers represent references. Values without references are calculated from
other values in the table unless otherwise noted.
aInternal, documentation available upon request.
bAmong patients with pMMR/MSS disease, we assumed that patients ineligible for
intensive therapy would receive 5-fluorouracil (5-FU) and leucovorin (LV). Among the
remaining patients with pMMR/MSS disease, we assumed that all patients with RAS wild
type disease would receive 5-FU, LV, oxaliplatin (FOLFOX), and cetuximab, while all
patients with RAS mutant disease would receive FOLFOX and bevacizumab.
dMMR, deficient mismatch repair; FOLFOX, 5-fluorouracil, leucovorin, oxaliplatin; IHC,
immunohistochemistry; MSI-H, microsatellite instability-high; MSS, microsatellite-stable;
PCR, polymerase chain reaction; pMMR, proficient mismatch repair; U.S., United States.
FIGURE 2 | Comparison of total testing and treatment-related costs by
clinical scenario. AI, artificial intelligence; IHC, immunohistochemistry; NGS,
next-generation sequencing; PCR, polymerase chain reaction.
1 | Article 630953

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kacew et al. AI Micro-Satellite Instability Detection Costs
NGS alone, representing savings of $400 million (12.9%)
(Table 2). The high-specificity panel-only and the high-
specificity AI-only scenarios resulted in nearly as much cost
savings ($360 million and $370 million, respectively).

The high-specificity AI-only scenario was associated with the
shortest time to treatment initiation (<1 day) (versus 12 days for
NGS), with 100% of patients receiving results within the
guideline-recommended ten working days (versus 0% for
NGS). Compared with the NGS-only scenario, in which all
32,549 (100%) patients received KEYNOTE-177-supported
therapy, 31,442 of 32,549 (97%) patients received KEYNOTE-
177-supported therapy in the high-specificity AI-only scenario.

We estimate that the accuracy of AI is similar to the
accuracies of PCR and IHC in determining MSI/MMR status.
For the high-sensitivity context (i.e., as screening tests), we
estimate 98% sensitivity and 79% specificity for AI compared
to 100% sensitivity and 81% specificity for PCR/IHC. In the
high-specificity context (i.e., as confirmatory tests), we estimate
70% sensitivity and 98% specificity for AI compared to 67%
sensitivity and 93% specificity for PCR/IHC.
DISCUSSION

The $400 million (12.9%) difference between the most and least
expensive scenarios highlights that testing approach can
significantly impact costs in the setting of first line mCRC. The
least costly scenario, high-sensitivity AI with confirmatory high-
specificity panel, comes with the tradeoff of 9% of patients (2,815)
receiving a first-line therapy not supported byKEYNOTE-177 data
(versus 0%withNGS-only). The second-least costly scenario, using
high-specificity AI alone, results in only 3% of patients (1,107)
receiving a non-supported therapy. It is our view that the ability to
start therapy earlier due to elimination of treatment initiation delay
(e.g., time for packing and shipping of tissue samples to outside
facilities, time to conduct tests) may compensate, to some degree,
for any reduction in median progression-free survival (PFS)
resulting from that 3%. Moreover, the Kaplan-Meier PFS curves
from KEYNOTE-177 suggest that PFS for pembrolizumab and
chemotherapies are similar for the first eight months of therapy.
Only after this timepoint do the curves separate, disease tends to
progress (PFS 8.2 months), and patients will likely switch therapy.
We could draw the conclusion, then, that chemotherapy offers
similar benefit to pembrolizumab in dMMR/MSI-H disease for
several months. If we accept this premise, at least in part, then
perhaps treating 1,107 patients with a non-KEYNOTE-177-
supported therapy, and avoiding additional immunotherapy cost,
becomes more reasonable. If we consider where else in the health
system the $400 million in savings could be spent, the prospect
becomes more palatable still.

It is important to acknowledge that established tests are only as
powerful as the biomarkers that theyassess.While 43.8%ofdMMR/
MSI-H patients respond to pembrolizumab, health systems would
benefit from diagnostic tools that could help avoid using costly
immunotherapy in the dMMR/MSI-H patients who will not
respond (i.e., the majority of these patients). With potential to
consider tumor characteristics beyond genetics (e.g., intratumoral
Frontiers in Oncology | www.frontiersin.org 550
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heterogeneity, three-dimensional structure), AI could prove to
be even more predictive than NGS. In other words, the promise
of AI is not to be a cost-effective approximating of existing
technologies, but rather an improvement upon them, both in
terms of clinical utility and cost.

It is important to recognize that applying artificial intelligence
to digital histopathology is only one cog in a much broader wheel
of strategies to curbhealthcare spending. For example, screening for
early detection of colorectal cancer is another vital component of
a greater program to curb costs, as screening is estimated to be
associated with $1.50 to $2.00 in returns for each dollar spent (16).
Uptake of cost-cutting measures like AI relies on appropriate
financial incentives presented to hospitals and clinics. Whereas
classic buy-and-bill outpatient reimbursement actually encourages
overspending (as the reimbursement is pegged to the cost of the
purchase), structures like the oncology care model encourage
providers to make choices that curb costs. Health systems must
seek to target multiple levers (e.g., at the levels of screening,
diagnosis, and treatment) to achieve financial sustainability in
oncologic health. Besides, any dollar saved from one sector within
the field of oncologic health can be routed towards spending on
those areas with the highest value (e.g., investment in screening).

The main limitation of our study was the use of a theoretical
model, which will require real-world validation. The integrity of
our estimates is dependent on the validity of the sources that we
used to develop input assumptions. Although we aimed to use as
few sources as possible to allow for some standardization among
or assumptions, our assumptions are derived from a diverse
range of sources. We aimed, too, to use data from high-quality,
prospective clinical trials, where possible, but there were
numerous cases in which the required data was only available
in the form of retrospective analyses. Since the application of AI
to histopathology diagnostics has not been widely used in clinical
contexts, we do not yet have access to real-world cost and
outcomes data. Our model did not consider important aspects
like heterogeneity in the population and varying costs by setting
and payer, instead assuming a monolithic U.S. healthcare system
for demonstrative purposes. Each individual institution’s initial
fixed costs associated with implementing digital histopathology
are also outside of the scope of our study. These costs might
include purchasing or renting hardware (e.g., slide scanners) and
software (e.g., cloud data storage) from digital histopathology
vendors. On an ongoing basis, additional pathology personnel
would likely be required to perform new tasks like internal
validation, maintaining hardware and software, and scanning
slides. However, multiple previous analyses have suggested
that gains in efficiency and productivity associated with
implementing digital histopathology more than pay for these
upfront and ongoing costs (17, 18). There may be additional
costs of which we are not currently aware, as potential costs may
arise in the real world that have not been encountered before,
given the novelty of this platform. It is important to be
conscientious, too, of more abstract implementation hurdles
like earning clinicians’ confidence in new technologies. NGS,
IHC, and PCR are trusted tools on which clinicians have long
relied for guiding treatment decisions. Encouraging the adoption
Frontiers in Oncology | www.frontiersin.org 651
of a technology unlike any of the current diagnostic tools may be
an uphill battle in some contexts. Finally, any new tool of this
kind must undergo rigorous validation to ensure that in offers
equal benefit across demographic groups (e.g., by race, ethnicity,
socio-economic status). Our study did not account for any such
heterogeneity. Our conclusions would benefit greatly from
validation with future independent cohorts.

While we used first-line therapy for mCRC as an example, we
view these findings as relevant across cancers whose diagnostic
algorithm involves genetic evaluation – with savings far beyond
this sliver of total spending on cancer care. Not only would the
initial investment in AI eventually pay for itself, but, because of
the nature of the technology, AI improves as the platform
“learns” from each sample. In this way, every dollar spent on
AI is an investment in a better technology. This valuable
characteristic of AI differentiates it and positions it as a vehicle
for improving the quality and cost of cancer care.
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Background: Gastric cancer (GC) is a highly heterogeneous tumor with different
responses to immunotherapy. Identifying immune subtypes and landscape of GC could
improve immunotherapeutic strategies.

Methods: Based on the abundance of tumor-infiltrating immune cells in GC patients from
The Cancer Genome Atlas, we used unsupervised consensus clustering algorithm to
identify robust clusters of patients, and assessed their reproducibility in an independent
cohort from Gene Expression Omnibus. We further confirmed the feasibility of our immune
subtypes in five independent pan-cancer cohorts. Finally, functional enrichment analyses
were provided, and a deep learning model studying the pathological images was
constructed to identify the immune subtypes.

Results:We identified and validated three reproducible immune subtypes presented with
diverse components of tumor-infiltrating immune cells, molecular features, and clinical
characteristics. An immune-inflamed subtype 3, with better prognosis and the highest
immune score, had the highest abundance of CD8+ T cells, CD4+ T–activated cells,
follicular helper T cells, M1 macrophages, and NK cells among three subtypes. By
contrast, an immune-excluded subtype 1, with the worst prognosis and the highest
stromal score, demonstrated the highest infiltration of CD4+ T resting cells, regulatory T
cells, B cells, and dendritic cells, while an immune-desert subtype 2, with an intermediate
prognosis and the lowest immune score, demonstrated the highest infiltration of M2
macrophages and mast cells, and the lowest infiltration of M1 macrophages. Besides,
higher proportion of EVB and MSI of TCGA molecular subtyping, over expression of
CTLA4, PD1, PDL1, and TP53, and low expression of JAK1 were observed in immune
subtype 3, which consisted with the results from Gene Set Enrichment Analysis.
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These subtypes may suggest different immunotherapy strategies. Finally, deep learning
can predict the immune subtypes well.

Conclusion: This study offers a conceptual frame to better understand the tumor immune
microenvironment of GC. Future work is required to estimate its reference value for the
design of immune-related studies and immunotherapy selection.
Keywords: tumor-infiltrating immune cells, immune subtypes, immunotherapy, deep learning, gastric cancer
INTRODUCTION

Gastric cancer (GC) is the fifth most common malignant tumor
and third leading cause of cancer-related death worldwide (1).
Despite major advancements in therapies, the 5-year overall
survival (OS) rate for patients in advanced stage remains 20%
(2). Even patients with locally advanced disease underwent
radical resection and perioperative chemotherapy, the 5-year
OS rate is still less than 40% (3–7). Thus, more effective systemic
treatments are obviously urgent.

Immunotherapy is catching attention in multiple solid
tumors recently, including gastric cancer. Specifically, immune
checkpoint inhibitors, such as cytotoxic T-lymphocyte associated
protein 4 (CTLA4) antibodies and programmed cell death
protein 1 (PD1) antibodies, presented unprecedented clinical
benefit in a variety of tumors (8–18). However, for patients with
advanced gastric cancer, only a small subset (10–20%) responded
to anti-CTLA4 (ipilimumab) and anti-PD1 (nivolumab,
pembrolizumab) (8–12). A randomized controlled phase 3 trial
ONO-4538-12/ATTRACTION-2 indicates an improvement of
objective response rate (ORR) of 11% for patients with advanced
gastric cancer receiving nivolumab versus placebo (10). Also,
the ORR remains similar for other clinical trials, including the
phase 1b KEYNOTE-012 (ORR 22%) and phase II KEYNOTE-
059 (ORR 12%) trials (9, 11). Therefore, researches to identify
mechanisms of response and resistance to immune checkpoint
inhibition and to screen underlying patients who may benefit are
required. However, our understanding of the role of tumor
microenvironment (TME) in immune response remains
incomplete because of its complexity.

The tumor microenvironment is a complex system composed
of extracellular matrix, cytokines, chemokines, and non-tumor
cells (19). As an important component of non-tumor cells in
TME, tumor infiltrating immune cells (TIICs) is associated
with the promotion or inhibition of tumor growth (20–22). In
particular, the presence of tumor-associated CD8+ T cells, CD4+
T cells, T follicular helper cells (Tfhs), and natural killer (NK)
cells in TME, suggesting activated immune response, is
associated with good prognosis, while regulatory T cells
(Tregs), B cells, macrophages, mast cells and plasma cells
inhibiting immune response indicate poor prognosis (22–31).
Conventional detection techniques for TIICs, such as flow
cytometry and immunohistochemistry, are generally confined
to evaluate limited types of immune cells, due to inability to
measure numbers of markers simultaneously (29, 32). However,
the interactions among tumor-infiltrating immune cells are
org 254
extremely complicated. Thus, a systematic assessment of all
immune cells in the TME offers better clinical value.

Immune subtypes have presented with meaningful clinical
value in multiple tumors, including melanoma, esophageal
cancer, lung cancer, and breast cancer (33, 34). Although the
relationship between tumor infiltrating immune cells and gastric
cancer has been described, the overall function of TME is ignored
(35). Therefore, our understanding of the immune subtypes
based on TIICs in gastric cancer is far from complete. From
this perspective, our study is of great significance.

Deep learning performs excellently as a powerful technique
for reading pathological images (36, 37). The emergence
of pathological scanning copy for the whole slide images
(WSIs) provides a platform for deep learning (34, 37). It is
generally acknowledged that the histopathology images contain
valuable information of TME (38). Therefore, deep learning
could extract high dimensional data from standard medical
images for clinical applications, such as distinguishing immune
subtypes. Besides, convincing performance for deep learning has
been observed in prediction of microsatellite instability status,
immune cell types and prognosis in a variety of tumors (39–42),
which provides reference for our study.

In the present study, we identified three robust immune
subtypes of gastric cancer based on unsupervised consensus
clustering of TIICs, and their reproducibility was further
validated in an independent cohort. We observed that each of
the three immune subtypes presented distinct immune cells
proportion, molecular features, and clinical characteristics,
which could provide reference for the design of immune-related
studies and the choice of immunotherapy. Moreover, we verified
the feasibility and prognostic value of this classification system in
five pan-cancer data sets, including breast cancer, esophageal
cancer, colorectal cancer, liver cancer, and pancreatic cancer.
Finally, we developed and validated a deep learning model based
on pathological images to predict the immune subtypes for easy-
use in clinical practice.
MATERIALS AND METHODS

Patients and Data Sets
The discovery cohort to identify the immune subtypes consisted
of 375 patients with gastric cancer obtained from The Cancer
Genome Atlas (TCGA) database (https://cancergenome.nih.
gov). Another cohort including 433 patients with gastric cancer
in GSE84437 downloaded from the Gene Expression Omnibus
June 2021 | Volume 12 | Article 685992
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(GEO) database was used to validate the immune subtypes
(https://www.ncbi.nlm.nih.gov/geo/). Besides, five independent
cohorts (total n = 2230), including breast cancer (n=1108),
esophageal cancer (n=185), colorectal cancer (n=383),
liver cancer (n=375), and pancreatic cancer (n=179), acquired
from UCSC Xena (https://xenabrowser.net/) were applied to
further elucidate feasibility of the immune subtypes. For details
about study design and data preprocessing, please refer to
supplementary methods and Figure S1.

Data Processing and Quantification of
Immune Cells
Based on the gene expression profiles, the CIBERSORT
algorithm was employed to quantify the proportions of 22
Tumor-infiltrating immune cells using the LM22 signature and
1,000 permutations (43). Cases with P<0.05 in CIBERSORT,
which indicated that the deconvolution results were accurate,
would be retained for further analysis. In this study, a total of 194
GC samples from discovery cohort and 299 GC samples from
validation cohort were screened out (Figure S2). Finally, we
obtained 22 types of immune cells, including B cells (naive B cells
and memory B cells), CD8+ T cells, naive CD4+ T cells, resting
memory CD4+ T cells, activated memory CD4+ T cells, T
follicular helper cells (Tfh), regulatory T cells (Tregs), natural
killer cell (resting NK cells, activated NK cells), macrophages
(M0, M1 and M2), dendritic cells (resting DC and activated DC),
mast cells (resting mast cells and activated mast cells), plasma
cells, gamma delta T cells, monocytes, neutrophils,
and eosinophils (Figure S3).

Discovery and Validation of the
Immune Subtypes
To dissect inter-tumor heterogeneity defined by TIICs, we applied
unsupervised consensus clustering to define the robust subgroup of
patients, i.e., immune subtypes. Specifically, the K-Means clustering
algorithm with the Euclidean distance metric and performed
10,000 bootstraps, with 80% resampling of the immune cells.
The consensus clustering algorithm was implemented with
the ConsensusClusterPlus package (44). The number of clusters
was determined by the optimal consensus matrix and explicit
cluster allocation across permuted runs. Besides, in order to
evaluate the reproducibility of the clusters, the same clustering
procedure was performed independently in the validation cohort.
We then calculated the in-group proportion (IGP) index with
“clusterRepro” R package to quantitatively measure the similarity
of clusters produced from the two data sets (45).

Assessing the Clinical, Molecular, Cellular
Characteristics Associated With the
Immune Subtypes
We first evaluated the association of immune-related cellular features
with immune subtypes using Kruskal-Wallis statistic. TIICs (naive
CD4+ T cells, gamma delta T cells, monocytes, neutrophils, and
eosinophils) with zero value in more than 40% of all samples were
excluded from the analysis. Next, we described the distribution of
demographic, clinicopathological characteristics, and molecular
Frontiers in Immunology | www.frontiersin.org 355
feature of the immune subtypes, including age, sex, Lauren’s
classification, pathological differentiation status, tumor location,
stage, TCGA molecular subtyping, and stromal-immune score
based on ESTIMATE algorithm (46, 47). Finally, log-rank test and
multivariable Cox regression were used to measure the prognostic
value of the immune subtypes with OS as the endpoint. For details
about identification of TCGA molecular subtyping, please refer to
Supplementary Methods.

Validation Using Pan-Cancer Data Set
Tumor-infiltrating immune cells data were extracted based on the
CIBERSORT method described above from the pan-cancer data
sets (breast cancer, esophageal cancer, colorectal cancer,
liver cancer, and pancreatic cancer). However, for those cohorts
with too few samples, we chose P<0.1 as the cutoff point. Then, the
consensus clustering algorithm and Kaplan-Meier analysis were
performed to illustrate the feasibility of our immune subtypes.

Functional Enrichment Analyses for
Immune Subtypes
Differentially expressed genes (DEGs) were identified between
any two immune subtypes (IS1 vs IS2, IS1 vs IS3, IS2 vs IS3) using
an R package “limma”. An absolute value of log2 (fold
change) >1 combined with the false discovery rate (FDR)
adjusted p-value <0.05 was selected as the threshold for DEG
identification. The intersection of the DEGs in TCGA-GC cohort
and GSE84437 cohort was applied to Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene Set
Enrichment Analysis (GSEA). For the enrichment analysis, we
focused on the immune related gene sets and cancer hallmark
gene sets. Besides, several classic immune checkpoints (PD1,
PDL1, and CTLA4) and cancer related genes (TP53, JAK1)
were evaluated among the immune subtypes.

Deep Learning to Identify
Immune Subtypes
Deep learning can identify the macroscopic contents of pathological
images, including tumor cells and TIICs nuclear size, nuclear
location, nuclear morphology, etc. It can even identify high-
dimensional data, such as color matrix, histogram matrix, and
high-order matrix, which cannot be distinguished by naked eye.
Thus, we trained a convolutional neural network with deep residual
learning (based on ResNet-18) model to detect the immune subtype
by transfer learning using patches segmented from the whole slide
images (WSIs). First, high-quality WSIs without obvious interfering
factors, including bleeding, creases, necrosis, and blurred areas, were
screened and divided into training, validation and test sets at a 5:3:2
ratio for further processing. Next, tumor regions of interest (ROIs)
on WSIs were manually delineated by expert pathologists. All WSIs
were digitalized at 20× objective lens. Then, ROIs were subsequently
separated into 512 pixels × 512 pixels patches. Finally, after
preprocessed with random cutting, random horizontal flipping,
and random affine transformation, center cropping (224 pixels ×
224 pixels), and normalization, patches were put into the deep
learning model based on ResNet-18. For details about data
preprocessing, please refer to Supplementary Methods.
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Statistical Analysis
All the statistical significance values were set as two-tail and
P < 0.05 was considered statistically significant. Statistical
analyses were performed using SPSS statistical software (version
22.0), GraphPad Prism software (version 7.00), Perl 5 software
(version 5.28.1) and R software (version 3.5.3). Deep learning was
implemented with torch library in Python software (version 3.6.7).
RESULTS

Immune Subtypes Discovery
and Validation
By performing the unsupervised consensus clustering on the 194
GC cases fromTCGA based on the 22 TIICs, the optimal number of
Frontiers in Immunology | www.frontiersin.org 456
clusters was found to be three with maximal consensus within
clusters and minimal ambiguity among clusters (Figures 1A–C).
Based on this, we identified three robust immune subtypes—
immune subtype 1 (IS1), immune subtype 2 (IS2) and immune
subtype 3 (IS3). To evaluate the reproducibility of the immune
subtypes, we performed the same algorithm in the 299 GC cases
fromGSE84437. Interestingly, we found that the optimal number of
clusters was three, too (Figures 1D–F). The tSNE analysis well
represented the discrete distribution of three clusters and
the consistency of the discovery and validation cohorts
(Figures 1G, H). Furthermore, we calculated the in-group
proportion (IGP) statistic to quantify the similarity of the
immune subtypes between the discovery and validation cohort.
And immune subtypes showed good consistency between the two
cohorts, with corresponding IGP value at 79%, 81%, and 86% in IS1,
IS2, and IS3, respectively.
A B

D E F

G H

C

FIGURE 1 | Discovery and validation of the immune subtypes in TCGA (A) and GEO (D). Patient samples are both in rows and columns, and consensus values
range from 0 (never clustered together) to 1 (always clustered together). The optimal cluster number (K = 3) is determined by the area under the cumulative
distribution function (CDF) curve in the discovery (B, C) and validation cohort (E, F), which corresponds to the largest number of clusters that induced the smallest
incremental change in the area under the CDF curves. The tSNE well represents the discrete distribution of three clusters (G, H).
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Profound Differences in Immune
Infiltration Among Immune Subtypes
Each of the three immune subtypes represented distinct immune
cells expression patterns in the discovery cohort, which was found to
be highly consistent with the validation cohort, surprisingly. Highest
CD8+ T cells and M1 macrophages abundance was confirmed in
IS3 (Figures 2A and S5B). IS3 was also characterized by the highest
abundance of activated CD4+ T memory cells (Figure 2C).
However, the least abundance of resting CD4+ T memory cells
and M2 macrophages presented in IS3 (Figures 2B and S5C).
Moreover, IS3 was also associated with highest abundance of Tfh
and NK cells (Figures 2H, J) and lowest abundance of B cells and
mast cells (Figures 2D, G). Besides, the expression of DC and Tregs
of IS3 was in themiddle among three immune subtypes (Figures 2E,
I), whereas the expression of plasma cells in IS3 was high in the
discovery cohort and low in the validation cohort (Figure S4I, K). In
comparison, IS1 exhibited the highest density of CD4+ T memory
resting cells, B cells, DC cells, and Tregs (Figures 2B, D, E, I), and
the lowest density of macrophages and Tfh (Figures 2F, H). The
Frontiers in Immunology | www.frontiersin.org 557
expression of CD8+ T cells of IS1 was in the middle among three
immune subtypes (Figure 2A). Furthermore, compared with IS1
and IS3, the highest abundance of macrophages in IS2 was
confirmed (Figure 2F), accompanied with the lowest abundance
of CD8+ T cells, DC and Tregs (Figures 2A, E, I). Besides, the
highest abundance of M0 andM2macrophages was observed in IS2
(Figures S5A, C, D, F), while the lowest abundance
of M1 macrophages was observed in IS2 compared with IS1 and
IS3 (Figure S5). And the expression of CD4+ T memory resting
cells, B cells, Tfh of IS2 was in the middle among three immune
subtypes (Figures 2B, D, H). The expression of activated CD4+ T
memory cells, mast cells, NK cells was inconsistent in IS1 or IS2
between the discovery cohort and validation cohort (Figures 2C,
S4C, 2G, S4G, 2J and S4J). Additionally, comparison of TIICs
between any two immune subtypes (IS1 vs IS2, IS1 vs IS3, IS2 vs IS3)
was provided in supplementary results. Lastly, we identified
that IS3 exhibited the lowest stromal score and highest immune
score (Figures 2K, L), while IS1 exhibited the highest stromal score
(Figures 2K) and IS2 exhibited the lowest immune score
A B

D E F

G IH

J K L

C

FIGURE 2 | The discovery cohort shows heterogeneity of immune infiltration among immune subtypes. Highest abundance of CD8+ T cells, CD4+ T memory
activated cells, follicular helper T cells, and NK cells was observed in IS3 (A, C, H, J), while highest abundance of CD4+ T memory resting cells, B cells,
macrophages cells, and mast cells was observed in IS3 (B, D, F, G). DC cells and regulatory T cells abundance showed one highest and one lowest in IS1 and IS2
(E, I). Besides, IS3 exhibited the lowest stromal score and highest immune score (K, L). The plot of patient immune cells abundance shows the median, 25th and
75th percentile values (horizontal bar, bottom, and top bounds of the box), and the highest and lowest values (top and bottom whiskers, respectively).
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(Figures 2L). The results of these findings were consistent with the
validation cohort (Figures S4 and S5). Specific values of TIICs
abundance and their P values are presented inTable 1. These results
suggested that IS3 had the strongest immune activity accompanied
with a weaker immune-suppression (immune-inflamed phenotype),
while IS1 had a moderate immune response accompanied by a
stronger immune-suppression (immune excluded phenotype), while
IS3 was characterized by immune deficiency (immune-
desert phenotype).

Clinical Characteristics, Molecular
Features, and Prognoses of the
Immune Subtypes
The TCGA cohort containing GC patients with available
clinicopathologic information and molecular features, stratified by
immune subtypes, was analyzed and listed in Table 2. Compared to
IS1 and IS3, the median age of IS2 is slightly higher (Figure 3B). In
addition, IS2 was associated with highest proportion of men and
intestinal type tumor (Figures 3A, F). Furthermore, IS3 was
associated with a lower incidence of cardia/fundus cancer, while
presented with worse pathological differentiation (Figures 3D, E).
Besides, there was no significant difference in the proportion of TNM
stages among the three immune subtypes (Figure 3C). In terms of
TCGA molecular subtyping, IS3 revealed more EVB and MSI, and
less CIN and GS than that in 1 and 2 (Figure 3G). The
clinicopathological information available in the validation cohort is
listed in Table S1 and Figure S6. Lastly, we observed that the
immune subtypes revealed significantly prognostic impact in
TCGA-GC and GEO cohort (Figures 3H, I). Overall, the immune-
hot subtype IS3 was associated with the best prognosis for OS among
all subtypes. By contrast, the immune-cold subtype IS1 and IS2 was
associated with poor outcomes. This survival difference was
confirmed after excluding confounding factors of age, gender,
tumor location, Lauren’s classification, pathological differentiation
and stage and was showed in Tables 3 and S2.

Validation Using Pan-Cancer Data Set
The consensus clustering algorithm was conducted using the 22
TIICs based on patients in the pan-cancer data set (breast cancer,
esophageal cancer, colorectal cancer, liver cancer, and
pancreatic cancer). We observed that the optimal number of
clusters was four in liver cancer, two in colorectal cancer, four in
breast cancer, two in esophageal cancer, and two in pancreatic
cancer. And survival difference was found in liver cancer, breast
cancer, and pancreatic cancer. However, significant statistical
differences were found only in liver cancer and pancreatic cancer.
The total results were visualized in Figure S8.

Functional Enrichment Analyses
To investigate the underlying functional differences among immune
subtypes, we conducted GO and GSEA analyses on the differentially
expressed genes. Through the abovementioned analysis, GC cases in
TCGA and GEO database were divided into three immune subtypes
—IS1, IS2, and IS3. Thus, the functional enrichment analyses were
performed between any two immune subtypes (IS1 vs IS2, IS1 vs
IS3, IS2 vs IS3). First, 1639 DEGs, including 737 up-
regulated expression (UE) and 902 down-regulated expression
Frontiers in Immunology | www.frontiersin.org 658
 June 2021 | Volume 12 | Article 685992
T
A
B
LE

1
|
Th

e
pr
op

or
tio

n
of

tu
m
or
-in

fi
ltr
at
in
g
im
m
un

e
ce

lls
in

pa
tie
nt
s
w
ith

ga
st
ric

ca
nc

er
fro

m
TC

G
A
an

d
G
EO

.

V
ar
ia
b
le
s

T
C
G
A

G
E
O

IS
1
(n
=
99

)
IS
2
(n
=
43

)
IS
3
(n
=
52

)
P
va

lu
e

IS
1
(n
=
15

3)
IS
2
(n
=
59

)
IS
3
(n
=
87

)
P
va

lu
e

m
ed

ia
n
(IQ

R
)

m
ed

ia
n
(IQ

R
)

m
ed

ia
n
(IQ

R
)

m
ed

ia
n
(IQ

R
)

m
ed

ia
n
(IQ

R
)

m
ed

ia
n
(IQ

R
)

B
ce

ll
0.
05

3
(0
.0
29

-0
.1
17

)
0.
03

5
(0
.0
10

-0
.0
53

)
0.
02

5
(0
.0
11

-0
.0
56

)
<
0.
00

1
0.
05

5
(0
.0
29

-0
.0
92

)
0.
04

2
(0
.0
17

-0
.0
67

)
0.
02

4
(0
.0
11

-0
.0
53

)
<
0.
00

1
P
la
sm

a
ce

lls
0.
03

9
(0
.0
09

-0
.0
66

)
0.
01

8
(0
.0
0-
0.
01

8)
0.
02

8
(0
.0
15

-0
.0
68

)
0.
08

9
0.
01

5
(0
.0
0-
0.
07

3)
0.
00

2
(0
.0
0-
0.
03

5)
0.
02

4
(0
.0
0-
0.
06

3)
0.
03

48
C
D
8+

T
ce

ll
0.
10

0
(0
.0
66

-0
.1
45

)
0.
02

8
(0
.0
05

-0
.0
28

)
0.
24

6
(0
.1
87

-0
.3
04

)
<
0.
00

1
0.
06

4
(0
.0
25

-0
.1
17

)
0.
03

0
(0
.0
08

-0
.0
61

)
0.
15

9
(0
.1
11

-0
.2
22

)
<
0.
00

1
C
D
4+

T
m
em

o
ry

re
st
in
g
ce

lls
0.
19

0
(0
.1
49

-0
.2
46

)
0.
16

6
(0
.1
22

-0
.2
07

)
0.
06

9
(0
.0
29

-0
.1
28

)
<
0.
00

1
0.
20

8
(0
.1
68

-0
.2
85

)
0.
13

0
(0
.0
86

-0
.1
89

)
0.
05

0
(0
.0
03

-0
.0
85

)
<
0.
00

1
C
D
4+

T
m
em

o
ry

ac
ti
va

te
d
ce

lls
0.
01

6
(0
.0
0-
0.
04

5)
0.
00

4
(0
.0
0-
0.
03

5)
0.
09

3
(0
.0
53

-0
.1
32

)
<
0.
00

1
0.
02

8
(0
.0
03

-0
.0
63

)
0.
04

5
(0
.0
0-
0.
09

8)
0.
17

3
(0
.1
21

-0
.2
24

)
<
0.
00

1
T
fo
lli
cu

la
r
he

lp
er

ce
lls

0.
01

3
(0
.0
0-
0.
03

1)
0.
02

1
(0
.0
0-
0.
03

3)
0.
02

6
(0
.0
15

-0
.0
47

)
0.
00

2
0.
02

4
(0
.0
0-
0.
04

6)
0.
02

3
(0
.0
01

-0
.0
51

)
0.
04

1
(0
.0
18

-0
.0
70

)
<
0.
00

1
T
re
g
ul
at
o
ry

ce
lls

0.
07

2
(0
.0
42

-0
.0
94

)
0.
04

2
(0
.0
16

-0
.0
68

)
0.
06

3
(0
.0
34

-0
.0
91

)
0.
00

1
0.
00

2
(0
.0
0-
0.
01

6)
0.
00

6
(0
.0
0-
0.
02

8)
0.
00

(0
.0
0-
0.
00

8)
<
0.
00

1
N
K

ce
lls

0.
02

9
(0
.0
14

-0
.0
47

)
0.
02

1
(0
.0
11

-0
.0
22

)
0.
03

0
(0
.0
12

-0
.0
51

)
0.
51

5
0.
02

6
(0
.0
14

-0
.0
48

)
0.
03

7
(0
.0
28

-0
.0
51

)
0.
04

6
(0
.0
28

-0
.0
70

)
<
0.
00

1
M
ac

ro
p
ha

g
es

0.
27

9
(0
.1
89

-0
.3
61

)
0.
46

8
(0
.3
93

-0
.5
51

)
0.
28

0
(0
.2
14

-0
.3
45

)
<
0.
00

1
0.
22

3
(0
.1
60

-0
.2
91

)
0.
47

4
(0
.3
94

-0
.5
27

)
0.
24

3
(0
.2
05

-0
.3
05

)
<
0.
00

1
D
C

ce
ll

0.
02

8
(0
.0
11

-0
.0
53

)
0.
00

4
(0
.0
0-
0.
02

7)
0.
02

6
(0
.0
14

-0
.0
61

)
<
0.
00

1
0.
02

2
(0
.0
12

-0
.0
35

)
0.
01

1
(0
.0
0-
0.
02

9)
0.
02

0
(0
.0
11

-0
.0
45

)
0.
00

4
M
as

t
ce

ll
0.
04

9
(0
.0
31

-0
.0
86

)
0.
07

4
(0
.0
25

-0
.1
18

)
0.
02

6
(0
.0
11

-0
.0
41

)
<
0.
00

1
0.
15

9
(0
.0
99

-0
.2
14

)
0.
08

9
(0
.0
61

-0
.1
21

)
0.
08

0
(0
.0
48

-0
.1
26

)
<
0.
00

1

IS
1,

im
m
un

e
su

bt
yp

e
1;

IS
2,

im
m
un

e
su

bt
yp

e
2;

IS
3,

im
m
un

e
su

bt
yp

e
3.

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Immune Microenvironment for Gastric Cancer
(DE), were filtered out from TCGA cohort and 208 DEGs (106 UE
and 167 DE) were filtered out from GEO cohort in IS1 vs IS2
(Figures 4A, D, and S7). Next, a total of 115 DEGs (35 UE and 80
DE) were observed in the intersection between them (Table S4 and
Figure 4G). In IS1 vs IS3, 1312 DEGs (363 UE and 949 DE) were
filtered out from TCGA and 272 DEGs (55 UE and 217 DE) were
filtered out from GEO (Figures 4B, E, and S7). Next, a total of 124
DEGs (31 UE and 93 DE) were observed in the intersection between
them (Table S5 and Figure 4H). In IS2 vs IS3, 1685 DEGs (637 UE
and 1048 DE) were filtered out from TCGA and 293 DEGs (111 UE
and 182 DE) were filtered out from GEO (Figures 4C, F, and S7).
Next, a total of 136 DEGs (65 UE and 71 DE) were observed in the
intersection between them (Table S6 and Figure 4I). Furthermore,
GO, KEGG, and GSEA analyses were performed based on the
DEGs separately (Figures 4D, E).

From the above, we found significant difference of chemokine
pathway between IS1 and IS2. IS presented with more active
chemokine respondence and interactions (Figures 5A–C).
Additionally, compared to IS3, TGF-b signaling was significantly
enriched in IS1 and IS2, which suggested immunosuppression
(Figures 5F, I). Also, IS3 was associated with significantly
upregulated T cell receptor signaling, antigen processing, and
presentation signaling, suggesting that active inflammation and
immune infiltration (Figures 5D, E, G, H). In addition, the classic
Frontiers in Immunology | www.frontiersin.org 759
tumor suppressor signaling P53 was observed to enrich in IS3 and the
typical carcinogenic signaling JAK-STAT enriched in IS1-2
(Figures 5F, I). The results consisted with the profound differences
in immune infiltration among immune subtypes. And these may
explain why IS3 has a better prognosis than IS1-2. Base on the above,
we studied the relationship among several immune checkpoints
(PD1, PDL1, and CTLA4), cancer related genes (TP53, JAK1) and
the immune subtypes (Table S3). Interestingly, we found that
compared with that in IS1-2, expression of PD1, PDL1, CTLA4,
and TP53 was higher in IS3 and expression of JAK1 was lower, which
was consistent with the functional enrichment analyses (Figure S9).

Deep Learning Can Identify
Immune Subtypes
After removing low quality pathological images, 169 samples with
WSIs were divided into training (84 cases), validation (51 cases),
and test cohorts (34 cases), and then tumor ROI was separated into
512 × 512 patches. Finally, the training cohort contained
12,986 normalized tiles marked as IS1, 3,399 normalized tiles
marked as IS2 and 6,323 normalized tiles marked as IS3. The
validation cohort contained 11,070 normalized tiles marked as IS1,
3,003 normalized tiles marked as IS2, 5114 normalized tiles marked
as IS3. And the test cohort contained 5344 normalized tiles marked
as IS1, 1,790 normalized tiles marked as IS2, and 2,508 normalized
TABLE 2 | Clinicopathological characteristics of patients with gastric cancer in TCGA.

Variables TCGA

IS1 (n=99) IS2 (n=43) IS3 (n=52)

N % N % N %

Age (median, IQR, Y) 65 (57-72) 69 (58-75) 65 (56-75)
Gender
Male 58 58.6 34 79.1 30 57.7
Female 41 41.4 9 20.9 22 42.3

Lauren’s type
Intestinal 29 47.5 22 84.6 17 54.8
Diffuse 32 52.5 4 15.4 14 45.2
Unknown 38 NA 17 NA 21 NA

Differentiation
Well 26 26.3 24 55.8 6 11.5
Poor 73 73.7 19 44.2 46 88.5

Location
Cardia/Fundus 41 43.2 20 47.6 15 29.4
Body 22 23.2 8 19.1 16 31.4
Antrum/Pylorus 32 33.6 14 33.3 20 39.2
Unknown 4 NA 1 NA 1 NA

Stage
I 8 8.1 6 14.0 6 11.5
II 39 39.4 18 41.9 21 40.4
III 41 41.4 18 41.9 23 44.2
IV 11 11.1 1 2.3 2 3.8

Stromal score (median, IQR) 445.4 (13.8-1104.2) 202.7 (-161-853.8) 113.9 (-248-853.2)
Immune score (median, IQR) 1017.9 (659.1-1611.7) 694.7 (45.9-1086.7) 1394.3 (1016.3-1848.1)
Molecular characterization
EVB 3 3.0 0 0 19 37.3
MSI 14 14.1 7 16.7 17 33.3
CIN 53 53.5 31 73.8 11 21.6
GS 29 29.3 4 9.5 4 7.8
Unknown 0 NA 1 NA 1 NA
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tiles marked as IS3. Next, we developed a ResNet-18 deep learning
model to predict the immune subtypes based on training and
validation, and measured the performance in the test cohort. The
model first predicted the probability of immune subtypes for each
patch. We found that the accuracy of IS prediction for each patch in
the training, validation, and test cohort was 80.23%, 74.45%, and
68.89%, respectively. Then GC cases would be designated as one of
the three subtypes (IS1 or IS2 or IS3) according to the accumulated
number of patches in tumor ROI (Figure 6). We observed that the
accuracy of IS prediction ResNet-18 model for GC cases was about
85.71%, 80.39%, 76.47% in the training, validation, and test cohorts,
Frontiers in Immunology | www.frontiersin.org 860
separately (Figures S10A, C). Additionally, we observed that the
accuracy of IS3 prediction would increase to about 90% when IS1
and the two were combine as IS1-2 (Figures S10D–F). More details
refer to supplementary results.
DISCUSSIONS

Immunotherapy is increasingly being recognized for its potential
therapeutic effect on a variety of tumors. However, only a subset of
patients has response or survival benefit to immunotherapy. Thismay
A B

D E F

G IH

C

FIGURE 3 | Differences in clinical and histological characteristics among immune subtypes, including age, sex, stage, tumor location, pathological differentiation, and
Lauren classification (A–F). The plot of patient age at initial diagnosis shows the median, 25th and 75th percentile values (horizontal bar, bottom, and top bounds of
the box), and the highest and lowest values (top and bottom whiskers, respectively). The distribution of TCGA molecular subtyping among immune subtypes (G).
The prognostic value of the immune subtypes in TCGA (H) and GEO (I), indicating best prognosis of IS3.
TABLE 3 | Univariable and multivariable analyses for overall survival in patients with gastric cancer.

Variables Univariable analysis (N=194) Multivariable analysis (N=194)

OR (95%CI) P OR (95%CI) P

Age (years) 1.018 (0.999-1.038) 0.061 NA NA
Gender (female vs. male) 1.549 (0.984-2.437) 0.059 NA NA
Lauren type (intestinal vs diffuse) 1.100 (0.859-1.409) 0.453 NA NA
Differentiation (well vs. poor) 1.075 (0.671-1.723) 0.764 NA NA
Location (cardia/fundus vs. body vs. antrum/pylorus) 0.865 (0.685-1.093) 0.224 NA NA
Stage 1.399 (1.055-1.854) 0.020 1.371 (1.037-1.810) 0.026
Stromal score 1.020 (1.001-1.006) 0.086 NA NA
Immune score 1.032 (1.000-1.144) 0.800 NA NA
Immune subtype
IS1 1 NA 1 NA
IS2 0.729 (0.425-2.148) 0.249 0.747 (0.435-1.282) 0.289
IS3 0.480 (0.277-0.834) 0.009 0.491 (0.282-0.853) 0.012
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be caused by our incomplete understanding of the tumor immune
microenvironment. Thus, to better understand the tumor immune
microenvironment and further to filter out patients suitable for
immunotherapy are particularly important. Here, we present the
identification and validation of three reproducible immune subtypes
of GC in a retrospective study with multiple cohorts. We observe that
each of the immune subtypes presented with distinct composition of
tumor infiltrating immune cells, and hence demonstrated widely
different modes in gene expression profiles, functional
orientation, molecular feature and clinical characteristics. Moreover,
validation of a pan-cancer cohort can reinforce the credibility of our
results. Lastly, a deep learning model with good performance to
predict the status of immune subtypes in gastric cancer based on the
whole-slide images is presented. This study provides a concept of
immune subtypes to understand the immune microenvironment of
GC and make it easy-use in clinical implications, which may have
benefit for personalizedimmunotherapy and prognosis evaluation.

Immune microenvironment has been confirmed to be
associated with prognosis in gastric cancer. However, traditional
methods simply describe the relationship between the cell
composition of the immune microenvironment and prognosis
Frontiers in Immunology | www.frontiersin.org 961
according to the known outcome. Our method is ‘unsupervised’,
which can better represent the complex and obscure information
within the immune microenvironment. Significant survival
differences are observed among the immune subtypes in this
study, which can be a supplement to traditional TNM staging
system. Specifically, an immune-hot subtype 3 presents with better
prognosis, and by contrast, the immune-cold subtype 1 to 2
demonstrated a poor prognosis. Furthermore, the proportion
EVB and MSI of the TCGA molecular subtyping in the IS3 are
significantly higher than that in IS1-2, which is consistent with the
previous report (48). EVB and MSI subtyping always present a
more active immune response.

Appropriate classification for GC is essential to individual
treatment. Several subtyping systems have been proposed in the
past few decades, including the World Health Organization
(WHO) classification, the Lauren’s classification, intrinsic
Subtypes, Lei subtypes, The Cancer Genome Atlas (TCGA)
subtypes, Asian Cancer Research Group (ACRG) subtypes, and
some other additional classifications (49). Some are based on
morphology or pathology, and some are based on the molecular
and genetic features. However, classification based on immune
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FIGURE 4 | The results of differential expression analysis in the TCGA and GEO cohort (A–F). 115 DEGs was found in IS1 vs IS2 (G). 124 DEGs was found in IS1
vs IS3 (H). 136 DEGs was found in IS2 vs IS3 (I).
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data for GC is not well elaborated. Tumor-related immune
information plays an important role in the development of
tumors. The immune subtypes proposed in this study based on
TIICs are independent of existing classifications. Interestingly, we
also find that the proportion of different Lauren’s classification
(intestinal and diffuse) and TCGA classification (EVB, MSI, CIN,
GS) is different among three immune subtypes, which suggests an
interaction between them. This underlying implication is worth
further study. Besides, different from the previous classification,
Frontiers in Immunology | www.frontiersin.org 1062
our immune subtypes have the underlying value to guide the
immunotherapy and to predict prognosis.

The relationship between various types of immune cells as
immune-suppressive and immune-promoting elements and
tumor has been widely explored. The high abundance of
tumor-associated lymphocytes, including CD8+ T cell, CD4+ T
cell, and NK cell, plays a positive impact on prognosis of gastric
cancer by dissolving tumor cells directly (22–25). Also, Tfh cells
promote tumor-associated lymphocytes to play an anti-tumor
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FIGURE 5 | Lots of cytokine secretion and immune regulation pathways were found in the GO, KEGG and GSEA analysis for IS1 vs IS2 (A–C). Lots of classical
tumor and immune-related pathways were found in the GO, KEGG and GSEA analysis for IS1 vs IS3 (D–F). Lots of classical tumor and immune-related pathways
were found in the GO, KEGG, and GSEA analyses for IS2 vs IS3 (G–I). These suggest more active immune respond and antitumor reaction in IS3.
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role in gastric cancer by producing diverse antibodies and
cytokines (23). By contrast, tumor-associated macrophages
(TAMs), Tregs, B cell, and mast cells play the central role in
the antitumor immune responses, such as negatively regulating T
cell immunity (22–26). Besides, DC, as the key role in antigen
presenting cells, had many subtypes. Some could induce the
generation of CD8+ effector T cells through presenting the MHC
class I molecules to T cells and some may inhibit immune
response. In this study, we find that IS3 with high abundance
of CD8+ T cells, NK cells, and Tfh cells have a better prognosis,
and IS1-2 with high abundance of DC, Tregs, B cell, and mast cell
have a poor prognosis. Interestingly, the two subtyping of CD4+
T cells show an opposite trend of aggregation in immune
subtypes, which may play different immune functions.
Furthermore, different research directions of immunotherapy
could be suggested according to the immune subtypes. For IS3, it
may be sufficient to mobilize the antitumor function of tumor-
associated lymphocytes alone; whereas IS1-2, inhibition of anti-
tumor immune response, and promoting the formation
of tumor-associated lymphocytes are equally important
in immunotherapy.
Frontiers in Immunology | www.frontiersin.org 1163
A series of classical tumor and immune-related pathways are
found in the GO and GSEA analyses. For example, in our study,
gastric cancer of IS3 is demonstrated with the highest enrichment
of T cell receptor signaling and P53 signaling. In comparison,
tumors of IS1-2 are confirmed with the highest enrichment of
TGF-BETA signaling and JAK-STAT signaling. This reflects the
difference in the composition of immune microenvironment and
partly explains the difference in prognosis between them.
More interestingly, high expression of PD1, PDL1, CTLA4, and
TP53, and low expression of JAK1 are found in IS3. Currently, the
most well-studied immune checkpoint inhibitors, such as
ipilimumab and pembrolizumab, target at CTLA4 and PD1,
then releases effector T cells from negative feedback pathway.
Therefore, immune-hot IS3 tumor with high expression of CTLA4
and PD1 may respond better to current immunotherapy which
should be fully considered in immunotherapy.

T cell infiltration and immune checkpoint (PD-1, PD-L1, and
CTLA-4) are known as predictors to immunotherapy (22). Tumor
immune microenvironment involves the interaction of multiple
immune cells, which contains a more complex relationship and is
closely related to immunotherapy. Relationship between T cell
A

B

C

FIGURE 6 | Overview of the deep learning model. The whole slide image (WSI) of each patient was obtained and annotated with regions of carcinoma (ROI) (A).
Then, tumor of ROI was segmented into patches, and the immune subtypes likelihood of each patch was predicted by deep learning model based on ResNet-18
(B). Finally, multiple patch-level IS likelihoods were integrated into a WSI-level IS prediction (C).
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infiltration and immune response is not clear. The location of T cell
and other immune cells (e.g. Tregs and DC) also play an
important role (25, 50). Meanwhile, not all patients with positive
immune checkpoints respond well to the immunotherapy (15, 16).
In this study, we find that the IS1 was also infiltrated with abundant
T cells, but the expression of immune checkpoint is not high,
and the prognosis is poor. This may be related to its strong
immunosuppression, such as high abundance of Tregs and low
abundance of Tfh cells (31, 51). Meanwhile, the expression level of
almost all immune-infiltrating cells, except for macrophages, is low
in IS2. And M2 macrophages abundance is the highest in IS2, while
M1 macrophages’ abundance is the lowest in IS2. This indicates a
status of immunologic deficiency and immunosuppression (52). IS3
shows an immune-hot status with high T cell infiltration. These
findings suggest that it is more valuable to study the tumor immune
cell microenvironment as a whole and suggest the possibility of
different immunotherapeutic strategies for different immune
subtypes. For IS1, appropriate treatment targeting regulatory cells
(e.g., Tregs and DC) is also important (31, 51). For IS2, in addition
to enhancing immune activity, it can also be considered to promote
M1 polarization of macrophages and inhibit M2 polarization to
promote the immune response (52). For IS3, enhancing the
function of existing T cells may be enough.

The whole transcriptome sequencing data are difficult to
obtain due to its high cost. Besides, flow cytometry to detect all
immune cells in the immune microenvironment is difficult and
requires complex protocol and high quality of GC tissue. Thus,
we hope to get information about the immune subtypes in a
more convenient way. Therefore, considering the extensive and
easy application of HE pathological sections in clinical practice, a
deep learning model based on ResNet-18 is developed and
validated for our immune subtypes based on the whole-slide
image. We put forward such a conceptual framework that the
immune subtype could be predicted based on the whole-slide
pathological image. With limited cases, we find that deep
learning can predict the immune subtypes well. In the future, if
enough cases and a perfect deep learning model are available, the
immune subtypes can be easily used in clinical practice.

There are several limitations to this study. First, our analysis is
only focused on tumor-infiltrating immune cells, while other
components in tumor microenvironment might also play
important role. Second, immune infiltration cells were
generated from gene expression profiles, which means the
location information of immune cells could not be further
analyzed. Third, the possibility of selection bias in this
retrospective study could not be excluded. Fourth, gastric
cancer is a highly heterogenous cancer. Three subtypes to
predict the response to immunotherapy may not be enough. In
the future, we will focus on the discovery of new immune
subtypes for GC. Fifth, the exactly parameters used by deep
learning to distinguish subtypes cannot be acquired. Finally, a
small sample size should not be ignored.

In conclusion, we confirm three reproducible immune
subtypes of gastric cancer. Each of the three immune subtypes
possess distinct compositions of tumor immune-infiltrating
cells, molecular features, and clinical characteristics. We then
Frontiers in Immunology | www.frontiersin.org 1264
develop and validate a deep learning model based on
pathological images to predict the immune subtypes. Our study
puts forward a conceptual framework of immune subtypes to
understand the immune microenvironment of gastric cancer
better, which may provide references for the future design of
immune-related studies and immunotherapy selection.
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Background: Renal cell carcinoma (RCC) is associated with poor prognostic outcomes.
The current stratifying system does not predict prognostic outcomes and therapeutic
benefits precisely for RCC patients. Here, we aim to construct an immune prognostic
predictive model to assist clinician to predict RCC prognosis.

Methods: Herein, an immune prognostic signature was developed, and its predictive
ability was confirmed in the kidney renal clear cell carcinoma (KIRC) cohorts based on The
Cancer Genome Atlas (TCGA) dataset. Several immunogenomic analyses were
conducted to investigate the correlations between immune risk scores and immune cell
infiltrations, immune checkpoints, cancer genotypes, tumor mutational burden, and
responses to chemotherapy and immunotherapy.

Results: The immune prognostic signature contained 14 immune-associated genes and
was found to be an independent prognostic factor for KIRC. Furthermore, the immune risk
score was established as a novel marker for predicting the overall survival outcomes for
RCC. The risk score was correlated with some significant immunophenotypic factors,
including T cell infiltration, antitumor immunity, antitumor response, oncogenic pathways,
and immunotherapeutic and chemotherapeutic response.

Conclusions: The immune prognostic, predictive model can be effectively and efficiently
used in the prediction of survival outcomes and immunotherapeutic responses of RCC
patients.
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BACKGROUND

The prevalence of renal cell carcinoma (RCC), a lethal urogenital
cancer, ranks third after prostate and bladder cancers (1–3). In
2020, about 73,750 new RCC cases were diagnosed, with
approximately 14,830 deaths in the USA (3). Nowadays, a
range of treatments, such as surgery accompanied with or
without postoperative adjuvant therapy, chemotherapy,
immunotherapy, and target therapy, have been developed for
RCC. Although these options have certain therapeutic effects, the
overall prognosis of RCC patients remains dismal, especially in
the late-stage RCC (4).

Over recent decades, the development of immunotherapy has
revolutionized cancer treatment paradigms and has been
recognized as a promising therapeutic frontier (5–7). For
example, immune checkpoint blockade (ICB) is a new
therapeutic strategy for several cancer types, such as breast
cancer (8, 9), melanoma (10, 11), and lung cancer (12, 13).
ICB has also evolved in RCC and showed certain practical
application value through the years based on the phase III
CheckMate 025 study, whether or not patients have been
previously treated (14, 15). In addition, accumulating evidence
has also proven that the tumor immune microenvironment
(TIME), which encompasses immune cells, fibroblasts,
extracellular matrix, endothelial cells, and various cytokines, is
associated with tumor progression and metastasis (16–19). In
2017, Chevrier et al. depicted an in-depth Immune Atlas of Clear
Cell Renal Cell Carcinoma by applying mass cytometry for the
high-dimensional single-cell analysis of kidney primary Tumors
(20). In addition, an increased number of studies have proved
that multiple immune cells, including CD8+ T cells, CD4+ T cells
and NK cells et al, have been associated with ccRCC tumor (21,
22). An in-depth understanding of TIME is critical to identifying
potential immunotherapeutic targets for RCC. However, the
majority of the studies have only evaluated gene expressions in
the prediction of survival rates for RCC patients, and most of
these biomarkers only reveal the status of TIME in some aspects
(23, 24). Hence, a comprehensive immune-based model might
provide an in-depth insight into the association between
prognosis and TIME in RCC.
Abbreviations: RCC, renal cell carcinoma; KIRC, kidney renal clear cell
carcinoma; DEGs, differentially expressed genes; ccRCC, clear cell renal cell
carcinoma; CMAP, connectivity map; ssGSEA, single sample gene set
enrichment analysis; GSEA, gene set enrichment analysis; NES, normalized
enrichment score; IS, immune cells; TS, tumor cells; ICB, immune checkpoint
blockade; TIME, tumor immune microenvironment; TME, tumor
microenvironment; TMB, tumor mutation burden; TCGA, The Cancer Genome
Atlas; GEO, Gene Expression Omnibus; TCIA, the cancer immune group atlas;
IRGs, immune-related genes; ImmPort, Immunology Database and Analysis
Portal; DE-IRGs, differentially expressed immune-related genes; FDR, false
discovery rate; LASSO, least absolute shrinkage and selection operator; ROC,
receiver operating characteristic curves; C-index, concordance index; DCA,
decision curve analysis; ES, ESTIMATE scores, TP, tumor purity, SS, stromal
scores; IS, immune scores; CYT, cytolytic activity; PD, progressive disease; SD,
stable disease; PR, partial response; CR, complete response; IPS,
immunophenoscore; GDSC, Genomics of Drug Sensitivity in Cancer; PCA,
principal component analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia
of Genes and Genomes; BP, biological process; CC, cellular component; MF,
molecular function; PAC, antigen-presenting cell; OS, overall survival.
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In the current study, we established an immune prognostic
signature model for RCC using the training cohort and further
confirmed the effectiveness of the prognosis model in the testing
and the entire cohort. Additionally, the associations between the
risk score subtypes and immune checkpoints, antitumor
immunity, antitumor response, oncogenic pathways, immune
cell infiltration, and tumor mutation burden (TMB) were
explored. Also, the models’ ability for the prediction of
chemotherapeutic and immunotherapeutic responses was
evaluated. Finally, we screened out two compounds that could
improve the prognosis of RCC.
MATERIALS AND METHODS

Data Acquisition as Well as Preprocessing
Transcriptional expression profiles, mutation patterns, and
related clinical data for KIRC patients were retrieved from the
Cancer Genome Atlas (TCGA) cohort (https://cancergenome.
nih.gov/). Immune-associated genes (IRGs) were derived from
the Immunology Database as well as Analysis Portal (ImmPort)
database (25). The immunophenoscore (IPS) for RCC patients
were retrieved from the cancer immune group atlas (TCIA)
(https://tcia.at/home). In addition, the advanced urothelial
cancer database of administered anti-PD-L1 therapy was
downloaded using the R package “IMvigor210CoreBiologies”
(version 1.0.0) (26). The malignant melanoma dataset that
received anti-PD-1 and antiCTLA4 therapy were obtained
from the GSE91061 cohort. All data were subjected to
background correction and logarithmic conversion using
R software.

Differentially Expressed Immune-Related
Genes (DE-IRGs) and Functional
Enrichment Analyses
Differential gene expression analysis between tumor and
corresponding normal tissues in KIRC were screened based on
the count data for TCGA kidney cancer cohort using the R
package “DESeq2” (27), according to the screening criteria (log2|
fold change| >2, P-value <0.05). The IRGs involved in
oncogenesis were provide by IMMPORT website. Then, DE-
IRGs were identified by the intersection between DEGs
and IRGs.

The R package “clusterProfiler” was used for Gene Ontology
(GO) as well as Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses of these significant DE-
IRGs and their visualization (28). Next, we defined the pathways
and terms using false discovery rate (FDR) ≤0.05 as
statistically significant.

Establishment of the Immune-Related
Risk Score
Among 538 KIRC with mRNA expression data, 517 patients with
the overall survival (OS) data were retained for further analyses.
First, 70% of samples were randomly drawn and grouped as
training cohort to develop a prognostic risk model, and the other
October 2021 | Volume 12 | Article 762120
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30% of samples comprised the validation set, which was used in
evaluating the model’s predictive ability and robustness in the
entire cohort. Then, DE-IRGs were screened out by univariate
Cox proportional hazard regression through the “coxph” R-
function from the “survival” package (29). Subsequently, the
least absolute shrinkage and selection operator (LASSO) Cox
regression analysis was carried out to select the prognostic genes
using the R package “glmnet” (30). Finally, the immune-
associated risk score was calculated using LASSO Cox
regression hazard regression − retrieved regression coefficients
to multiply expression levels of genes (the risk score = mRNA
expression levels of gene a × coefficient a + mRNA expression
levels of gene b × coefficient b + ……+ mRNA expression levels
of gene n × coefficient n).

In addition, by setting the median of risk score as the cutoff
value, the patients were classified into a high-risk group and a
low-risk group. To establish the prognostic accuracy of the
established model, we used Kaplan–Meier survival curve
analysis, concordance (C)-index, log-rank test in addition to
time-dependent receiver operating characteristic curves (ROC)
and XGBoost algorithm.

Independent Prognostic Value of the
Immune-Associated Prognostic Signature
Multivariate Cox regression analysis with the forward stepwise
procedure was performed to investigate if the risk score is an
independent prognostic factor. The immune-associated risk
score and other clinical variables with P <0.05 were identified
as independent prognostic risk factors.

Establishment and Validation
of the Nomogram
To develop a prognostic signature for 1-, 3-, and 5-year survival
rates, a nomogram was constructed using the identified
independent prognostic variables, such as stage, age, and risk
score (31). Moreover, the C-index, calibration curve, decision
curve analysis (DCA), and ROC analysis were performed to
determine its predictive accuracy and discriminatory capacity
(32). The C-index was evaluated using a bootstrap method
involving 1000 resamples (33). The C-index values, dependent
on the nomogram’s predictive ability, ranged from 0.5 (no
discrimination) to 1 (perfect discrimination). The consistency
between the predictive survival rate and the actual survival rate in
unknown samples was assessed using calibration curves.
Additionally, DCA (34) was used to evaluate the clinical utility
and the net benefits of the nomogram as it takes both
discrimination and calibration into consideration. Finally, the
area under the receiver operating characteristic (ROC) curve
(AUC) was also determined for each variable to evaluate the
discriminative performance of the nomograms.

Immune Cell Proportion Analyses and
Immune Related Features
To explore immune cell abundance in KIRC tissues,
CIBERSORT (35) was employed to evaluate the proportions of
22 immune cell types using a deconvolution algorithm by the R
Frontiers in Immunology | www.frontiersin.org 369
package with default parameters. In addition, the ESTIMATE
scores (ES), tumor purity (TP), stromal scores (SS), and immune
scores (IS) for each KIRC sample were evaluated using the
ESTIMATE algorithm (19) of the “estimate” package. The
cytolytic activity (CYT) index is a geometric mean of mRNA
expression levels of GZMA and PRF1, and was utilized to assess
the intratumoral immune cytolytic T-cell activities (36).

Immunotherapy and Chemotherapeutic
Response in Risk Score Subtype
As immune checkpoint molecules are widely explored in the
immunotherapeutic studies of multiple cancers, programmed
cell death 1 (PDCD1, also referred to as PD-1), CD274 molecule
(also referred to as PD-L1), and cytotoxic T-lymphocyte protein
4 (CTLA4) were used to evaluate the associations between risk
scores and immunotherapeutic efficacies. The urothelial cancer
dataset (IMvigor210) comprising of administered anti-PD-L1
therapy was used to establish the therapeutic benefits between
high- and low-risk score subtypes using four treatment
categories: progressive disease (PD), stable disease (SD),
complete response (CR), and partial response (PR).

IPS is a machine learning-based scoring system applied for
the prediction of patients’ responses to immune checkpoint
inhibitor (ICI) treatment based on the weight average Z scores
representing immune-related genes expression in cell types (37).
High IPS scores reflect increased immunogenicity.

As chemotherapy and targeted therapy are widely used to
treat clear cell renal cell carcinoma (ccRCC), risk scores were
used to predict the drug sensitivity based on half-maximal
inhibitory concentrations (IC50) for each KIRC patient from
the Genomics of Drug Sensitivity in Cancer (GDSC) website (38)
using the R package “pRRophetic” (39–44). The common target
drugs, such as Cisplatin, Gefitinib, Gemcitabine, Sorafenib,
Sunitinib, Vinblastine, Vinorelbine, and Vorinostat, were
selected for ccRCC.

Tumor Mutational Burden (TMB),
Connectivity Map (CMAP) and Molecular
Docking Analysis
KIRC patients’ somatic variants data were analyzed and
visualized by “maftool” R package (45) to identify the
mutation burden of KIRC in the high- and low-risk scores.
Then, the TMB of each patient was calculated as follows:
mutations/million bases.

Next, to identify the potentially small molecules related to this
signature, genes in the model were assessed via CMAP analysis.
Thus, the positive mean represented that these selected drugs
may share similar functions with the model, while the negative
mean indicated that these drugs could improve the prognosis of
RCC. Herein, we screened compounds by setting the criteria as
P <0.05.

Moreover, the crystal structure of the protein was obtained
from RCSB Protein Data Bank. The three-dimensional structures
for all compounds were downloaded from PubChem database
using MOL2 format. The molecular docking calculations were
conducted using Schrodinger and Pymol 2.1 software.
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Statistical Analysis
The differences between variables were determined by chi-square
as well as Student’s t-tests. For baseline clinical data, the
Wilcoxon test and the Kruskal–Wallis were utilized to evaluate
the significant differences between two or multiple groups,
respectively. The Kaplan–Meier survival curves were compared
using the log-rank test. P<0.05 indicated statistical significance. R
4.0.3 and SPSS 26.0 software were used for all analyses.
RESULTS

Identification and Functional Analyses of
DE-IRGs
All 517 KIRC samples with OS information were split into training
(367 patients) and test groups (151 patients). Between the training
and validation cohorts, no significant differences were detected
among most of the clinical characteristics (Table 1).

With the cutoff value |log2 fold change (logFC)|>2 and adjusted
P<0.05, 953 DEGs were filtered, of which 539 genes were
significantly elevated, while 414 genes were significantly
suppressed in tumor samples compared to normal samples
(Figures 1A, B). Moreover, principal component analysis (PCA)
results (Figure 1C) revealed that KIRC samples clustered
separately from normal samples. Subsequently, the intersection
between DEGs and immune-associated genes retrieved from the
ImmPort database was determined, and 98 DE-IRGs were selected
and visualized on a Venn diagram (Figure 1D).

These 98 DE-IRGs were further utilized in functional
enrichment analyses, including KEGG and GO analyses. Based
Frontiers in Immunology | www.frontiersin.org 470
on GO analysis, in the biological process (BP), these DE-IRGs
were enriched in cell chemotaxis, leukocyte chemotaxis,
lymphocyte chemotaxis, positive regulation of cell adhesion,
and T cell activation (Figure 2A). In the cellular component
(CC) category, the DE-IRGs were mainly enriched in the
cytoplasmic vesicle lumen, plasma membrane’s external side,
platelet alpha granule, platelet alpha granule lumen, and vesicle
lumen (Figure 2B). Regarding molecular function (MF), these
DE-IRGs were enriched in cytokine receptor binding, growth
factor activity, receptor ligand activity, cytokine activity, and
signaling receptor activator activity (Figure 2C). Regarding
KEGG pathways analysis, these DE-IRGs were mainly involved
in the calcium signaling pathway, chemokine signaling pathways,
cytokine-cytokine receptor interactions, Ras signaling pathways,
and viral protein interactions with cytokine receptors and
cytokines (Figure 2D).

Establishment and Validation of
Prognostic Immune Score Model
All 367 KIRC samples in the training cohort were utilized in a
prognostic model establishment. First, univariate Cox regression
analysis was carried out to explore the association between DE-
IRGs and the OS outcomes for KIRC samples. Among 98 DE-
IRGs, 47 genes were selected. To avoid overfitting, we further
conducted the LASSO Cox regression analysis with minimized
lambda (Figures 3A, B). A total of 14/47 genes were used to
establish the prognostic immune score model using the
following formula: risk score = (SAA1 × 0.08215) + (IL20RB ×
0.07643) + (TNFSF14 × 0.09743) + (ESRRG × -0.09743) +
(FGF21 × 0.23324) + (IFNG × 0.05956) + (CTLA4 ×
0.01439) + (KLRK1 × 0.00717) + (IL11 × 0.01639) + (GDF6 × -
TABLE 1 | The clinical characteristics of KIRC patients.

Variables Group Total set (n = 517) Training set (n = 367) Testing set (n = 151) P value

Vital status Alive 361 249 111 0.136
Dead 156 118 38

Survival time 1054.797 1046.125 1070.073 0.815
Clinical Stage I 257 189 68 0.233

II 54 36 19
III 123 80 43
IV 83 62 21

T stage T1 262 192 70 0.637
T2 65 46 20
T3 179 122 57
T4 11 7 4

N stage N0 233 166 67 0.348
N1 15 8 7
NX 269 193 77

M stage M0 413 286 128 0.144
M1 78 59 19
MX 26 22 4

Grade G1 13 11 2 0.478
G2 225 161 65
G3 204 146 58
G4 75 49 26

Gender Male 339 236 104 0.32
Female 178 131 47

Age <65 326 233 94 0.791
≥65 191 134 57
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0.02484) + (BMP7 × 0.05433) + (GNLY × 0.11780) + (AVPR1B ×
-0.06460) + (CXCL11 × 0.03907) (Figure 3C).

Based on the above calculated formula, the risk scores for
every patient in the training set were computed. Then, with the
median risk score as the basis, patients were allocated into the
high- and low-risk groups. The high-risk patients exhibited
significantly poor OS outcomes compared to low-risk patients
(P=1.398E-10) (Figure 4A). As illustrated in Figure 4B, the
AUCs of risk scores for 1-, 3-, and 5-years were 0.725, 0.723, and
0.745, respectively, in the training group. The distribution of the
risk scores, survival time, survival status, and the expression of 14
OS-associated DE-IRGs for KIRC patients in the training cohort
are displayed in Figures 4C–E. The model’s C-index was 0.698
(95% confidence interval (CI): 0.647–0.750, P=6.849E-14). To
further explore whether the prognostic model was independent
of other clinical elements, such as grade, age, T stage, and clinical
stage, univariate and multivariate Cox regression analyses were
conducted (Table 2). The risk score was confirmed as an
independent prognostic factor (HR=2.699, 95% CI: 1.716–
4.243, P<0.0001).

In addition, a quantitative strategy for the prediction of the
prognostic outcomes of patients was established by constructing
a nomogram that integrated the risk scores as well as other
independent clinical prognostic factors for OS (Figure 4F).
Then, the nomogram’s performance was determined using the
ROC curve, C-index, calibration curve, and decision curve
Frontiers in Immunology | www.frontiersin.org 571
analyses. The AUCs of the nomogram were 0.828, 0.783, and
0.774 for 1-, 3-, and 5-year survival times, respectively
(Figure 4G). The C-index was 0.762 (95% CI: 0.720–0.804,
P=1.800E-34). Based on the calibration curve, the training
cohort predicted that 1-, 3-, and 5-year survival probabilities
were good (Figure 4H). For the decision curve, the nomogram
exhibited a higher net benefit than other schemes to predict the
OS (Figure 4I).

To delineate the robustness and versatility of the immune
score model, the risk score in the training cohort was validated in
the testing and entire cohorts. The participants in the testing and
entire cohorts were grouped into high- and low-risk score
subtypes using the same formula. The findings in the testing
and entire datasets were similar. The Kaplan–Meier survival
curves revealed poor survival rates for the high-risk group in the
testing (P=3.58E-8) (Figure 5A) and the entire cohorts
(P=3.616E-12) (Figure 6A). The AUC for 1-, 3-, and 5-years
are 0.858, 0.842, and 0.857 in the testing group (Figure 5B) and
0.736, 0.727, and 0.746 in the entire group (Figure 6B). The
survival data, risk score, scatterplots, and gene expression pattern
distributions in the testing and entire cohorts are shown in
Figure 5C–E and Figures 6C–E. The C-indices of the model
were 0.835 (95% CI: 0.782–0.888, P=1.034E-35) and 0.709 (95%
CI: 0.666-0.752, P=7.520E-22) in the testing and entire cohorts,
respectively. Univariate and multivariate Cox regression analyses
for clinicopathological parameters were carried out in the testing
C D

A B

FIGURE 1 | Differentially expressed immune-associated genes. (A) Heatmap of top 10 up- and down-regulated genes between normal and tumor tissues. (B) Volcano
plot for DEGs between normal and tumor tissues. (C) PCA plot of the data. (D) Venn diagram for intersections between DEGs and IRGs.
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and entire cohorts. Also, the risk score was an independent
prognostic indicator of OS in KIRC patients (Table 2). To
improve the prognostic immune score model, the nomogram
system was established based on testing and entire cohorts
(Figure 5F and Figure 6F). The AUC of our nomogram for
predicting 1-, 3-, and 5-year OS was 0.9, 0.875, and 0.891,
respectively, in the testing cohort and 0.858, 0.808, and 0.787,
respectively, in the entire cohort (Figure 5G and Figure 6G). The
C-indices of the nomogram in the testing and entire cohorts were
0.859 (95% CI: 0.809–0.909, P=4.980E-45) and 0.786 (95% CI:
0.752-0.821, P=4.201E-59), respectively. Finally, the calibration
curves and decision curves for 1-, 3-, and 5-year survival
probabilities were established (Figures 5H, I and Figures 6H,
I). These findings indicated that the nomogram has excellent
predictive performance in all cohorts.

Associations Between DE-IRGs
Signature and Clinical Characteristics
of KIRC Patients
Next, we further investigate the association between clinical
characteristics, including tumor burden, age at diagnosis, gender,
grade, clinical stage, T stage, and the prognostic risk signature. A
significant correlation was established between high-risk score and
a high tumor burden (P=9.87E-08), male gender (P=0.03),
advanced grade (P=2.54E-09), higher stage (P=8.85E-11), and T
stage (P=5.6E-08) (Figure S1). Additionally, no statistical
Frontiers in Immunology | www.frontiersin.org 672
significance was observed between < 65-year-old group and
>65-year-old group (P=0.1). Subsequently, we also assessed
whether the model could assess the survival probability in
subgroups exhibiting varying clinical patterns. The prognostic
model could be utilized for the prediction of survival
probabilities for various clinicopathological parameters (P<0.05)
(Figure S2).

Immune Cell Proportions Between
High- and Low-Risk Score Patients
Using the CIBERSORT algorithm, 22 immune cell types were
determined in each KIRC sample between high- and low-risk
score subtypes. The proportions of 22 immune cells and their
distribution in tumor samples are illustrated in Figure 7A and
Figures 7B, C, respectively. Compared to the low-risk group, the
high-risk score group exhibited significantly elevated
proportions of plasma cells, T cells CD8+, T cells follicular
helper, T regulatory cells (Tregs), and M0 macrophages
(P<0.05) (Figures 7C, D). Conversely, the proportions of
macrophages M1, activated natural killer (NK) cells, naïve B
cells, macrophages M2, resting NK cells, monocytes, T cells
CD4+ memory resting, and resting mast cells in the high-risk
score subtype were remarkably elevated compared to those in the
low-risk score subtypes (P<0.05) (Figures 7C, D). In addition, in
22 immune cell types, high plasma cells, Tregs, follicular helper T
cells, and monocytes M0 level were remarkably correlated with
C D
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FIGURE 2 | Enrichment analysis of DE-IRGs. (A) Visualization of top 5 enriched GO analysis in BP. (B) Visualization of top 5 enriched GO analysis in CC. (C) Visualization
of top 5 enriched GO analysis in MF. (D) Visualization of top 5 enriched KEGG pathways.
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poor OS outcomes (P=0.01, 0.0019, <0.0001, and 0.031,
respectively), while the increase in activated dendritic cells was
related to better OS (P=0.0079) (Figure S3). Figure S4 displayed
a weak or moderate correlation between the levels of various
tumor-infiltrating immune cells and the risk score.

Immune Landscape in KIRC Patients
Subsequently, the associations between risk score and some
immune-associated features were assessed. The cGAS-STING
Frontiers in Immunology | www.frontiersin.org 773
pathway has been shown to be a key signaling pathway in
antitumor immunity and cancer therapeutics (46–48). Thus,
four key genes (TBK1, IRF3, MB21D1, and TMEM173) in the
cGAS-STING signaling pathway, three immune checkpoint
molecules (PD-L1, CTLA-4, and PD-1), CYT, and the results
of ESTIMATE algorithm (SS, IS, ES, and TP) and risk score were
investigated. Figure 8A shows that the risk score values are
correlated with the immune score, tumor purity, TBK1,
ESTIMATE score, IRF3, stromal score, MB21D1, PD-1, and
C
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FIGURE 3 | LASSO regression analyses and a forest plot describing Cox regression model findings of 14 immune-associated genes. (A) Partial likelihood deviance
with changing of log (l) plotted by LASSO regression in 10-fold cross-validations. Vertical dotted lines were described at the optimal values using minimum criteria
and the 1-SE criteria. (B) The LASSO coefficient profiles for 14 DE-IRGs in the 10-fold cross-validation. (C) Forest plot representing correlations between the
expression levels of 14 DE-IRGs and overall survival outcomes in the training dataset. HR, 95% CI, and P-values were evaluated by LASSO regression analyses.
** means P < 0.01.
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FIGURE 4 | Constructing an immune risk score predictive model using the training set. (A) Kaplan–Meier curves for OS outcomes in the training cohort
grouped into high- and low-risk score groups. (B) Time-dependent ROC curves for prediction of 1-, 3-, and 5-year survival outcomes. (C) Distribution of risk
scores of the training cohort. (D) Vital statuses for patients in high- and low-risk patients. (E) Expression patterns for 14 immune-associated genes in high-
and low-risk score cohorts. (F) A nomogram for the estimation of 1-, 3-, and 5-year OS probabilities in the training cohort. Risk scores and other independent
prognostic factors are incorporated in the model. (G) Time-dependent ROC curves for the prediction of 1-, 3-, and 5-year survival rates using the nomogram.
(H) Calibration plot of nomogram in the training cohort according to the agreement between predicted and observed 1-, 3-, and 5-year outcomes. The
model’s ideal performance is shown by dashed lines. (I) Decision curve analysis for 1-, 3-, and 5-year risk using the nomogram. Black line represents the
hypothesis that no patient died at 1-, 3-, and 5-years.
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CTLA-4. Figure S5 showed significant differences in the CYT,
immune score, ESTIMATE score, stromal score, and tumor
purity based on the Wilcoxon test between the two risk score
subtypes (P<0.0001). Importantly, the expression of IRF3,
MB21D1, TMEM173, PD-1, and CTLA-4 was elevated in the
high-risk than in the low-risk score subtype.

To further characterize immune cell infiltration, 28 immune
cell signatures (25, 49–53) from diverse resources were
investigated based on the single sample gene set enrichment
analysis (ssGSEA) algorithm. As shown in Figure 8B, 23
immune subpopulations (multiple T cell signatures, including
T helper cells, central memory CD8+ T cells, and activated CD T
cells) were enriched in high-risk patient cohort, whereas only two
subpopulations (immature dendritic cells and neutrophils) were
enriched in the low-risk patient group. Furthermore, DEGs
between low- and high-risk groups were determined by gene
set enrichment analysis (GSEA) using two MeSH terms
(gene2pubmed and gendoo) to explore their immune-related
functions. The DEGs were enriched in multiple immune-
associated terms, including CD4-CD8 ratio, immune tolerance,
lymphocyte cooperation, lymphocyte count, immunologic
memory, and T-cell antigen receptor specificity in gendoo and
gene2pubmed (Figures 8C, D).

Correlation Between Risk Score Model
and T Cell Infiltrations, Antitumor
Immunity, Antitumor Responses, and
Oncogenic Pathways
Several studies have shown that cDC1 cells play a central role in
the initiation of antitumor CD8+ T cells and driving tumor-
specific CD+8 T cells by activating CXCL10 (54–57). Some
studies (57–59) also clarified that the two key chemokines
(CCL4 and CCL5) are the key modulators of cDC1
recruitment into tumors via activating CCR5 expression.
Moreover, chemokines CXCR3, CXCL9, and CXCL10 have
Frontiers in Immunology | www.frontiersin.org 975
been documented on T cell infiltration and NK cell
recruitment (60). Thus, we investigated the expression level of
CCL4, CXCR3, CXCL9, CCL5, and CXCL10 between high- and
low-risk subtypes and the correlations between these genes and
the risk score. The high-risk group patients exhibited higher
expression levels compared to low-risk patients (P<0.05)
(Figures S6A–E). Moreover, strong positive correlations were
established between risk scores and CXCR3, CCL5, CXCL9,
CCL4, and CXCL10 (P<0.05) (Figures S6F–J).

Moreover, we explored the association between risk scores, T
cell infiltrations, and antitumor response scores (BATF3_DC,
IFNA, IFNG, IL_1_speed, T ce l l_ infi l t ra t ion_1, T
cell_infiltration_2, TFNA, and TNFa_speed) determined by
ssGSEA from the corresponding TME gene signatures (57, 61).
For the high-risk group, the ssGSEA scores for T cell infiltrations
and antitumor responses were significantly elevated compared to
the low-risk group, as determined by the Wilcoxon test (P<0.05)
(Figure S7A). A strong positive correlation was established
between risk scores and ssGSEA scores save to BATF3_DC
(P<0.05) (Figures S7B–I). Conclusively, high-risk score
patients exhibited elevated T cell infiltration levels.

The differences in the normalized enrichment score (NES)
value of 10 oncogenic pathways between low- and high-risk
groups were calculated using ssGSEA algorithm; also, the
correlation between the NES value and the risk score was
evaluated. Compared to the low-risk group, cell cycle and TP53-
related pathways exhibited significantly elevated NES values in the
high-risk patient group, whereas the Hippo-, NRF2-, PI3K-, RAS-,
and TGF-b-related pathways in the high-risk patient group had
lower NES value (P<0.05) (Figure S8A). The correlations between
the risk score and the NES value in the cell cycle (P=1.44e-12) and
TP53-related (P=0.024) pathways were found to be positive
(Figure S8B). Nevertheless, we also observed that the NES value
of the Hippo-, NRF2-, PI3K-, RAS-, and TGF-b-related pathways
had a negative correlation with the risk score (Figure S8B).
TABLE 2 | Univariate and multivariate Cox regression analysis.

Variables Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

Training set
Age (≥65 vs <65) 1.595 (1.106~2.301) 0.012 1.518 (1.044~2.29) 0.0291
Grade (G3+4 vs G1+2) 2.427 (1.601~3.679) <0.001 1.264 (0.803~1.990) 0.3109
T stage (T3+4 vs T1+2) 3.108 (2.143~4.508) <0.001 1.986 (1.028~3.915) 0.0514
Stage (III+IV vs I+II) 4.066 (2.749~6.015) <0.001 5.384 (2.551~11.369) <0.001
Risk score (high vs low) 3.678 (2.372~5.703) <0.001 2.699 (1.716~4.243) <0.001
Testing set
Age (≥65 vs <65) 2.015 (1.061~3.826) 0.032 2.737 (1.412~5.305) 0.003
Grade (G3+4 vs G1+2) 5.956 (2.311~15.350) <0.001 2.318 (0.788~6.821) 0.127
T stage (T3+4 vs T1+2) 5.279 (2.543~10.957) <0.001 2.443 (0.321~18.575) 0.127
Stage (III+IV vs I+II) 5.265 (2.480~1.177) <0.001 1.510 (0.199~11.461) 0.69
Risk score (high vs low) 10.371 (3.656~29.418) <0.001 7.991 (2.684~23.786) <0.001
Total set
Age (≥65 vs <65) 1.674 (1.220~2.298) 0.001 1.734 (1.262~2.383) 0.001
Grade (G3+4 vs G1+2) 2.887 (1.987~4.196) <0.001 1.766 (1.189~2.622) 0.005
T stage (T3+4 vs T1+2) 3.468 (2.500~4.811 <0.001 1.352 (0.722~2.530 0.346
Stage (III+IV vs I+II) 4.248 (3.012~5.993) <0.001 3.903 (2.018~7.549) <0.001
Risk score (high vs low) 3.358 (2.316~4.868) <0.001 2.424 (1.648~3.563) <0.001
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FIGURE 5 | Validating immune risk score prognostic predictive model in the testing set. (A) Kaplan–Meier curves for OS outcomes in the testing cohort divided by
high- and low-risk score groups. (B) The time-dependent ROC curves for predicting 1-, 3-, and 5-year survival outcomes using this signature. (C) Risk score
distribution in the testing cohort. (D) Vital statuses of patients in high- and low-risk patients. (E) Expression patterns for 14 immune-associated genes in the high-
and low-risk score cohorts. (F) Nomogram developed for the prediction of probabilities for 1-, 3-, and 5-year OS outcomes in the testing cohort. Risk scores and
other independent prognostic factors were incorporated in the nomogram. (G) Time-dependent ROC curves for prediction of 1-, 3-, and 5-year survival outcomes
using the nomogram. (H) Calibration plot of nomogram in the training cohort according to the agreement between estimated and observed 1-, 3-, and 5-year
outcomes. Dashed lines represent the nomograms’ ideal performance. (I) Decision curve analysis for 1-, 3-, and 5-year risk using the nomogram. Black line
represents the hypothesis that no patient died after 1-, 3-, and 5-years.
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FIGURE 6 | Validating the immune risk score prognostic predictive model for the entire set. (A) Kaplan–Meier curves of the OS outcomes in the entire cohort divided
as high- and low-risk score groups. (B) Time-dependent ROC curves for prediction of 1-, 3-, and 5-year survival outcomes using this signature. (C) Risk score
distributions for the entire cohort. (D) Vital statuses for high- and low-risk group patients. (E) Expression patterns for 14 immune-associated genes in the high- and
low-risk score cohorts. (F) Nomogram for the prediction of the probability of 1-, 3-, and 5-year OS outcomes in the entire cohort. Risk scores and other independent
prognostic factors were incorporated into the model. (G) Time-dependent ROC curves for prediction of 1-, 3-, and 5-year survival outcomes using the nomogram.
(H) Calibration plot of nomogram in the training cohort according to the agreement between observed and predicted 1-, 3-, and 5-year outcomes. The models’ ideal
performance is shown by the dashed lines. (I) Decision curve analysis for 1-, 3-, and 5-year risks using the nomogram. Black line represents the hypothesis that no
patient died after 1-, 3-, and 5-years.
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Therapeutic Benefit of the Risk Score
Recently, ICB therapies have exhibited striking clinical benefits.
However, the main challenge faced by ICB therapies is the
limitation of effective predictive markers with only a few
patients showing therapeutic response. Herein, the urothelial
cancer database (IMvigor210) consisting of anti-PD-L1 therapy
and the malignant melanoma database (GSE91016) administered
with anti-PD-1 and-CTLA-4 therapy were used to investigate the
association between risk score and immunotherapeutic benefits.
Figures 9A–F and Figures S9A–C showed the distribution of
clinical and molecular characteristics (immunotherapy response,
binary response, immune phenotype, immune cells (IC) level,
and tumor cells (TC) level and correlation with risk scores
between high- and low-risk groups in the IMvigor210 cohort
and GSE91061 cohort separately. For the immunotherapy
response, the risk score of RCC with CR/PR were significantly
lower than those of RCC with SD/PD, as assessed by the chi-
squared test (IMvigor210 dataset: P<0.001, GSE91061 dataset:
P=0.036) (Figure 9A and Figure S9C). The violin plot further
revealed that the risk scores in CR/PR were lower than those in
SD/PD, as assessed by the Wilcoxon test (IMvigor210 cohort:
Frontiers in Immunology | www.frontiersin.org 1278
P=1.3e-08, GSE91061 cohort: P=0.0075) (Figure 9C and Figure
S9B). Strikingly, Kaplan–Meier curves showed that high-risk
score patients exhibited worse prognosis compared to the low-
risk score patients in IMvigor210 (P<0.0001) (Figure 9G) and
GSE91061 cohort (P=0.00016) (Figure S8D). In addition,
IMvigor210 and GSE91061 were used to plot a time-dependent
ROC. The current results displayed that the AUCs of our model
for OS were 0.61 at 6 months, 0.673 at 12 months, and 0.729 at 18
months in the IMvigor210 cohort (Figure 9H) and 0.746 at 12
months, 0.712 at 18 months, and 0.753 at 24 months in the
GSE91061 cohort (Figure S9A).

To further expand this study, the machine learning-based
score (IPS) was determined to predict patients’ response to ICI
treatment. Four subtypes of IPS values (CTLA4_neg_PD1_neg,
CTLA4_pos_PD1_neg , CTLA4_neg_PD1_pos , and
CTLA4_pos_PD1_pos) were carried out to predict the KIRC
patients’ responses to anti-CTLA4 and anti-PD1 treatment. We
found that relative probabilities to response to anti-PD1 were
elevated in high-risk score patients (P=0.023), and the similar
results were obvious in the combination treatment of anti-PD1
and anti-CTLA4 (P=2.24e-04) (Figure 10A). In addition, CTLA-
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FIGURE 7 | Immune cell proportion analyses in the TCGA cohort between high- and low-risk score patients. (A) Overall view of relative proportions of immune cell
infiltrations for 22 immune signatures. (B) Boxplots for 22 immune cell proportions in the TCGA cohort. (C) Boxplots for different immune cell infiltrations in the high-
and low-risk score patients. Significance: ns≥0.05, ∗<0.05, ∗∗∗<0.001, and ∗∗∗∗<0.0001. (D) Immune cell heatmap for patients in the high- and low-risk score
subtypes. Only immune cells whose non-zero proportions exceeded half in all samples were plotted.
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4 and PD-1mRNA expression levels in the high-risk score group
were significantly elevated compared to the low-risk score
patients (P=1.07e-14 and P=2.02e-15), whereas no obvious
difference was detected in the PD-L1 mRNA expression level
between high- and low-risk patients (P=0.603) (Figure 10B).
This phenomenon was consistent with the concept that high
expression of ICI genes had a poor prognosis. Owing to the
complex environment between immune infiltration and ICI
genes, we further examined whether immune infiltration had
consequences on the clinical prognosis in ICI genes. Figure 10C
shows that low-risk score patients with high PD-1 exhibited
better clinical outcomes compared to high-risk score and high
PD-1, and the outcomes of low-risk score patients with low PD-1
were superior to those of high-risk score patients and low PD-1
levels (P<0.0001). Also, patient groups showed similar findings,
and survival patterns were yielded using risk score and PD-L1 or
CTLA4 (P<0.0001) (Figures 10C).
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The responsive predictive values of the risk score to
chemotherapy and target-therapy were also investigated by the
IC50 of eight drugs. The estimated IC50 values of Cisplatin,
Gemcitabine, Sorafenib, and Vinorelbine in high-risk patients
were significantly elevated compared to low-risk patients, which
indicating the high-risk patients showed a stronger drug
resistance (P<0.05) (Figures 11A, B). Similarity, patients with
high-risk group were associated with increased sensitivity to
Gefitinib, Vinblastine, and Sunitinib relative to low-risk patients
(P<0.05) (Figures 11A, B).

Risk Score and TMB
Next, we analyzed the gene mutations of each KIRC patient. The
waterfall chart showed the top 20 genes with the highest
mutation frequencies: VHL, PBRM1, SETD2, MTOR, TTN,
MUC16, KDM5C, BAP1, HMCN1, DNAH9, LRP2, ATM,
ARID1A, CSMD3, DST, KMT2C, ERBB4, SMARCA4, USH2A,
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FIGURE 8 | Immune landscape of risk score in the TCGA cohort. (A) Correlations between risk score, levels of expression of PD-L1, CYT, TBK1, IRF3, MB21D1,
CTLA-4, PD-1, and TMEM173, immune score, stromal score, ESTINATE score, and tumor purity in the TCGA cohort. (B) Volcano plots for immune cell sub-population
enrichment in high- and low-risk patients according to NES scores from ssGSEA. (C) Gene set enrichment analyses described the MeSH terms correlated with risk
score using gendoo term in the TCGA cohort. (D) Gene set enrichment analysis described the MeSH terms correlated with the risk score using gene2pubmed term in
the TCGA cohort.
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FIGURE 9 | Therapeutic benefits of risk scores calculated by our model. (A) Bar graphs illustrate the distribution of the clinicopathological parameters for IMvigor210
dataset in high- and low-risk patients based on chi-square test. (P=4.8008E-08, P=4.8008E-08, P=0.3305, P=6.0E-6, and P=1.6023E-59, respectively). (B)
Waterfall plot illustrates the risk score distributions for patients exhibiting different immunotherapeutic responses in the IMvigor210 dataset. (C) Violin plot illustrates
the risk score distributions for patients exhibiting different anti-PD-L1 immunotherapies in IMvigor210 dataset. (D) Violin plot illustrates the risk score distributions for
patients exhibiting different immune phenotypes in the IMvigor210 dataset. (E) Violin plot illustrates the risk score distributions for patients with varying IC levels in the
IMvigor210 dataset. (F) Violin plot illustrates the risk score distributions for patients with varying TC levels in the IMvigor210 dataset. (G) Kaplan–Meier curves for OS
outcomes in the IMvigor210 cohort assigned into high- and low-risk score groups. (H) Time-dependence ROC curves of anti-PD-L1 immunotherapy response
prediction at 0.5-, 1-, and 1.5-year survival rate in the IMvigor210 dataset. Significance: ns≥0.05, ∗∗∗<0.001, and ∗∗∗∗<0.0001.
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and PCLO (Figure 12A). Subsequently, the TMB for each sample
was determined and was found to be higher in the high-risk
patients (P=0.037) (Figure 12B) and related to shorter OS
(P=0.023) than in low-risk patients (Figure 12C).

Prediction of High- and Low-Risk Scores
by XGBoost Algorithm
XGBoost is an efficient and reliable machine learning classifier
based on gradient boosting, designed to solve data science
challenges accurately and rapidly in bioinformatics (62, 63).
Using this approach, a classifier that could predict high- and
low-risk score groups for KIRC patients based on expression
levels of 14 selected genes was constructed for the training
cohort. SHAP dependency plot and the importance of 14
features were visualized in Figures 13A, B to evaluate the
contribution of each feature towards prediction. Figure 13C
showed that the AUC of the training cohort was 100%. Then,
classification model performance was assessed using the testing
and entire total cohorts (Figures S10A, B and Figures 13C).
Taken together, the middle cutoff value might be suitable to
classify KIRC patients.
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Identification of Potential Small
Molecule Drugs
According to CMAP analysis, 10 small molecule drugs with
highly significant correlations are listed in Table 3. Among
these, Finasteride, Biperiden, Merbromin, Cefamandole,
Fludrocortisone, and Vincamine displayed a high negative
correlation and potential to improve the prognosis of RCC.
Subsequently, the SAA1 gene contributing to the model
according to the feature importance was docked with these 10
compounds (Table 4). Next, we identified the compounds except
for Orphenadrine that showed a high binding affinity against the
target protein due to their binding energy <-5 kcal/mol. Moreover,
the three-dimensional structure of top two high-affinity
compounds combined with SAA1 is shown in Figures S11A, B.
In SAA1-merbromin complex, due to multiple phenylene rings
and active groups, merbromin forms hydrogen bonds with activity
groups of amino acids, such as GLN-66, ARG-25, and TRP-53,
indicating that merbromin could match well with SAA1 protein.
Similarly, the SAA1-Cefamandole complex can be formed by
multiple interactions, such as the cooperation of hydrogen
bonding and multiple p-p stacking interactions. Hence, these
C

A

B

FIGURE 10 | Responses to immune checkpoint inhibitors. (A) Violin plots illustrate the relative probabilities for anti-PD-1 and anti-CTLA-4 treatment responses
between high- and low-risk groups. (B) Violin plots for expression levels of PD-1, CTLA-4, and PD-L1 between high- and low-risk patients. (C) Kaplan–Meier curves
for OS outcomes among four groups, according to risk score and PD-1, CTLA-4, and PD-L1.
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two compounds were both regarded as potential SAA1 inhibitors
that could improve the prognosis of RCC.
DISCUSSION

Epidemiological evidence indicated that the incidence of RCC
had a continually increasing trend with high mortality (64, 65).
Clinical decision-making tools were effective prognostic
biomarkers to predict the survival outcomes of RCC patients,
rendering them a viable choice for clinicians. To date, the
prognostic prediction of RCC patients relies on the TNM
staging system according to the clinical practice guidelines
(66). However, this system failed to taken the influence of gene
level of RCC into consideration and made it not always able to
predict the patients accurately. In recent years, IRGs have
gradually gained attention with in-depth studies on immune-
escape and immunotherapeutic mechanisms. Hence, an
immune-related prognostic system is an urgent requirement
for a supplementary TNM staging system.

Next, we screened for immune-associated DEGs in RCC. To
minimize the potential for overfitting, 14 genes established the
prognostic immune signature and were validated in TCGA
through the univariate Cox proportional hazard regression and
LASSO Cox analysis. Subsequently, we confirmed the
Frontiers in Immunology | www.frontiersin.org 1682
independent predictive roles of this signature. Then, a
personalized, predictive nomogram with a risk score was
developed, which served as a predictive indicator; the signature
encompassed a total of 14 IRGs. Among these, SAA1, TNFSF14,
FGF21, IFNG, BMP7, and IL11 are biomarkers for predicting
RCC outcomes (67–72). For example, as a member of the serum
amyloid A family of apolipoproteins, SAA1 can increase the
invasive capacity of tumor cells in RCC by inducing MMP-9
expression (73), which make it serve as a biomarker for the
diagnosis and prognosis of advanced and metastatic renal cell
carcinoma. In addition, as a member of the IL-6 family of
cytokines, IL-11 exerts pleiotropic oncogenic activities may by
stimulating angiogenesis and metastasis, which make it become
an independent indicator of poor prognosis in RCC (71). The
other IRGs, such as IL20RB, ESRRG, GDF6, were reported to be
involved in the regulation of carcinogenesis (74–76) but not yet
investigated in RCC. Moreover, some IRGs were also involved in
TIME. For example, NKG2D receptor, KLRK1, is expressed in
NK cells and activated CD8+ T cells, involved in innate immune
responses (77). In some studies also identified GNLY as the first
lymphocyte-derived alarmin protein to promote antigen-
presenting cell (APC) recruitment, activation, and antigen-
specific immune responses (78). CTLA-4 is a negative
regulator and modulates T cell activation, and induces
tolerance (79). CXCL11 is activated by IFN-g and IFN-b and
A

B

FIGURE 11 | Immunotherapeutic and chemotherapeutic responses for high- and low-risk patients. (A) Boxplots illustrate the immunotherapeutic and
chemotherapeutic responses of Cisplatin, Gefitinib, Gemcitabine, and Sorafenib in the high- and low-risk patients. (B) Boxplots illustrate the immunotherapeutic and
chemotherapeutic responses of Vinblastine, Vinorelbine, Vorinostat, and Sunitinib in the high- and low-risk patients. Significance: ns≥0.05, ∗<0.05, ∗∗<0.01,
∗∗∗<0.001, and ∗∗∗∗<0.0001.
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can stimulate immune cells by promoting Th1 polarization and
enhancing the antitumor immunity (80). To sum up, these IRGs
may affected the prognosis and treatment of RCC by
influencing TIME.

Herein, some self-validation processes, including the
associations between risk scores and immune cell proportions,
T cell infiltrations, antitumor immunity, antitumor response,
GSEA analysis, and oncogenic pathways, were conducted
to identify the risk score effectiveness in characterizing
the immune landscape features of RCC patients. For
immunotherapeutic development, anti-PD-1, anti-CTLA-4,
Frontiers in Immunology | www.frontiersin.org 1783
and anti-PD-L1 treatment have been under intensive focus in
solid tumors. Nevertheless, a small number of patients respond
to such treatment, and some studies (81–83) pointed out that
PD-L1 and PD-1 expression levels are not reliable biomarkers to
predict ICI treatment. Hence, it is necessary for clinicians to
develop a reliable tool for appropriate patient selection in
immunotherapy. Based on these findings, we established that
the risk score is a robust immune classifier for classifying RCC
patients in different subtypes. Moreover, we also demonstrated
that high-score patients were more immunotherapeutically
suitable compared to patients in the low-risk score group.
C

A

B

FIGURE 12 | Correlations between risk scores and TMB. (A) OncoPrint displays the mutation profile of top 20 frequently mutated genes. Each column represents
individual patients and mutated genes arranged by mutation rates. The right shows the mutation percentage, and color-coding indicates the mutation type. (B)
Boxplot shows the difference of TMB between high- and low-risk patients. (C) Kaplan–Meier curves for OS divided by the high TMB group and the low TMB group.
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C

A

B

FIGURE 13 | Prediction results from the XGBoost algorithm. (A) SHAP contribution dependency plots for the training cohort. (B) Importance of 14 features of the
training cohort. (C) ROC curve for XGBoost algorithm for the prediction of high- and low-risk patients in training, testing, and entire cohorts.
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Targeted therapy is currently the main treatment strategy for
metastatic RCC. Thus, it is necessary to identify patients with the
potential to benefit from targeted therapy for RCC. Interestingly,
our data showed that high-risk patients had a high sensitivity to
Gefitinib, Vinblastine, and Sunitinib compared to low-risk score
patients, who exhibited high sensitivity to Cisplatin, Sorafenib,
Gemcitabine, and Vinorelbine. These responses could be
attributed to the differences in the drug target. In addition, the
TMB values of the high-risk score patients were elevated
compared to those of the low-risk score patients. This finding
was consistent with the concept that elevated TMB values
are associated with a high probability of satisfactory
immunotherapeutic outcomes (84, 85).

Nevertheless, the present study had some limitations. First,
although our model exhibited precise predictive capability to
predict the survival of RCC patients, multiple large external
Frontiers in Immunology | www.frontiersin.org 1985
cohorts of patients with RCC are also needed to further validate.
Secondly, only the median risk score was used to classify the RCC
patients into high- and low-risk score subtypes. An optimal
cutoff of the risk score is essential for the stratification of RCC
patients. Although our model had been correlated with immune
cells, the mechanism underlying poor prognosis is unclear,
requiring additional experimental and theoretical studies on
immune cells in RCC to further understand their functional role.
CONCLUSIONS

Taken together, our proposed immune prognostic, predictive
model could be used as a robust classifier for the prediction of
survival outcomes and individual treatment guidance of adjuvant
chemotherapy and anticancer immunotherapy for RCC.
TABLE 3 | The results of CMAP analysis.

rank Cmap name mean n enrichment p specificity

1 cetirizine 0.62 4 0.902 0.0001 0
2 finasteride -0.385 6 -0.791 0.00016 0
3 orphenadrine 0.499 6 0.779 0.00028 0
4 biperiden -0.516 5 -0.83 0.00034 0.0204
5 merbromin -0.524 5 -0.807 0.00062 0.0081
6 natamycin 0.572 4 0.849 0.00074 0
7 sulfathiazole 0.515 5 0.785 0.00104 0
8 cefamandole -0.478 4 -0.834 0.00137 0
9 fludrocortisone -0.308 8 -0.63 0.00144 0.0704
10 vincamine -0.539 6 -0.699 0.00171 0.0177
Octobe
r 2021 | Volume 12 | Art
TABLE 4 | The selected compounds of docking results.

Name Compound Structure Target Binding Energy (kcal/mol) Combination Type

merbromin SAA1 -7.85 Hydrogen bonds, Hydrophobic interactive, p-stacking

cefamandole SAA1 -7.43 Hydrogen bonds, Hydrophobic interactive, p-stacking

fludrocortisone SAA1 -7.35 Hydrogen bonds, Hydrophobic interactive

cetirizine SAA1 -7.26 Hydrogen bonds, Hydrophobic interactive, p-stacking

finasteride SAA1 -7.09 Hydrogen bonds, Hydrophobic interactive

vincamine SAA1 -6.96 Hydrogen bonds, Hydrophobic interactive

sulfathiazole SAA1 -6.01 Hydrogen bonds, Hydrophobic interactive

biperiden SAA1 -5.61 Hydrophobic interactive, p-stacking

natamycin SAA1 -5.35 Hydrophobic interactive, p-stacking

orphenadrine SAA1 0 0
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Locoregional recurrence after surgery is a major unresolved issue in cancer treatment.
Premalignant lesions are considered a cause of cancer recurrence. A study showed that
premalignant lesions surrounding the primary tumor drove a high local cancer recurrence
rate after surgery in head and neck cancer. Based on the multistage theory of
carcinogenesis, cells harboring an intermediate number of mutations are not cancer
cells yet but have a higher risk of becoming cancer than normal cells. This study
constructed a mathematical model for cancer initiation and recurrence by combining
the Moran and branching processes in which cells require two specific mutations to
become malignant. There are three populations in this model: (i) normal cells with no
mutation, (ii) premalignant cells with one mutation, and (iii) cancer cells with two mutations.
The total number of healthy tissue is kept constant to represent homeostasis, and there is
a rare chance of mutation every time a cell divides. If a cancer cell with two mutations
arises, the cancer population proliferates, violating the homeostatic balance of the tissue.
Once the number of cancer cells reaches a certain size, we conduct computational
resection and remove the cancer cell population, keeping the ratio of normal and
premalignant cells in the tissue unchanged. After surgery, we considered tissue
dynamics and eventually observed the second appearance of cancer cells as
recurrence. Consequently, we computationally revealed the conditions where the time
to recurrence became short by parameter sensitivity analysis. Particularly, when the
premalignant cells’ fitness is higher than normal cells, the proportion of premalignant cells
becomes large after the surgical resection. Moreover, the mathematical model was fitted
to clinical data on disease-free survival of 1,087 patients in 23 cancer types from the TCGA
database. Finally, parameter values of tissue dynamics are estimated for each cancer
type, where the likelihood of recurrence can be elucidated. Thus, our approach provides
insights into the concept to identify the patients likely to experience recurrence as early
as possible.
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INTRODUCTION

Locoregional recurrence after surgery appears in many cancer
types. About 8% of invasive breast cancer patients exhibited local
recurrence after surgical resection with free resection margins
(1). In non-small-cell lung cancer, about 25% of patients showed
locoregional recurrence after wedge resection (2). In colorectal
cancer, over 4% of patients developed locoregional recurrence
after surgery (3). To prevent the emergence of recurrent tumors,
treatment strategies, such as adjuvant chemotherapy has been
examined and improved (4). However, tumor recurrence
remains a problem.

A major cause of local recurrence is field cancerization (5–7).
Field cancerization was initially defined as the presence of
histologically abnormal tissue surrounding primary cancer, but
currently, the concept includes the spread of histologically normal
but genetically altered cells (5, 8). These cells are prone to be hotbeds
for recurrent tumors because they have already accumulated specific
cancer-related mutations, and a small number of additional ones is
necessary to trigger cancer initiation there. Molecular evidence of
field cancerization has been investigated in each tissue (6, 8–10). For
example, in breast cancer, microsatellite markers, epigenetic
aberrations, and hTERT overexpression have been detected in
histologically normal mammary tissues (8). In head and neck
cancer, loss of heterozygosity of chromosome 9p was commonly
observed in benign squamous hyperplasia (9). In colon cancer
patients with Crohn’s ileocolitis, the same mutations of KRAS,
CDKN2A, and TP53 were observed within neoplasia and non-
tumor epithelium (10). Interestingly, locoregional recurrence
rates and field cancerization molecular mechanism vary among
cancer types. Therefore, understanding field cancerization
formation process will contribute to the estimation of the risk of
locoregional recurrence and the development of optimal treatment
in each tissue.

Theoretical studies have investigatedfield cancerization impacts
on the emergence of recurrent tumors (11–15). Jeon et al. examined
the multistage clonal expansion model by employing the Poisson
process to consider the effects of premalignant cells on cancer
initiation (11). The model was applied to the clinical practice of
neoplasia in Barrett’s esophagus. In this study, they succeeded in
demonstrating the clinical utility of the model by predicting the
long-term impact of ablative treatments on reducing esophageal
adenocarcinoma incidence (13). Foo et al. developed a spatial
evolutionary framework to study the cancer field effect. They
analytically showed the size distribution of histologically
undetectable premalignant fields during diagnosis (12). The
model was applied to the head and neck cancer and revealed that
the patient’s age was a critical predictor of the size and multiplicity
of precancerous lesions (14).Although theoretical studies have shed
light on field cancerization effects on the emergence of primary and
recurrent cancers, the relationship between tissue kinetic
parameters and the incidence of recurrent cancers is unclear.

This study developed a novel mathematical model of
recurrent tumor evolution. We employed a stochastic process
of a multistage model to represent the accumulation of
mutations in a tissue, leading to cancer relapse after surgical
resection of the first tumor. Particularly, we focused on the
Frontiers in Oncology | www.frontiersin.org 290
relationship between the tissue compositions at the time of
surgery and the time until the emergence of recurrent tumors.
Our approach provided insights on how to predict the time of
recurrence from the tissue dynamics at the time of surgery and
how to intervene patients to prevent the recurrence.
MATERIAL AND METHODS

Mathematical Model
Let us consider the dynamics of three types of cells in a tissue
(Figure 1). “Type0,” “Type1,” and “Type2” represent normal
healthy cells with no mutation, premalignant cells with one
cancer-related mutation, and cancer cells with two cancer-
related mutations, respectively. We assume that a normal
healthy tissue consists of Type0 and Type1 cells performing a
turnover of cells with a small probability of a mutation. Moran
process is employed to consider the tissue turnover dynamics,
where the total number of Type0 and Type1 cells is kept constant
as N (16). The average turnover time of a whole tissue is defined
by d days. Type2 cells are considered as uncontrolled cancer cells
proliferating. The branching process is employed to consider the
process of Type2 proliferation (17).

Initially, N Type0 cells occupy the tissue. There is a rare
chance of a mutation every time a cell divides, and a daughter cell
may change into a Type1 cell with a mutation rate, m1. A cell to
be divided in a tissue is selected depending on the fitness of
Type0 cells (r0) and that of Type1 cells (r1) weighted by the
proportion of Type0 and Type1 cells in a tissue. When a Type1
cell divides, a daughter cell may change into a Type2 cell with a
mutation rate, m2. Once a Type2 cell appears, the cells proliferate
indefinitely based on the growth rate of Type2 cells, r2, ignoring a
number restrictions of a tissue unless they go extinct
stochastically. In other words, the net growth of Type0 and
Type1 cells is zero (equal frequency of cell division and death),
while that of Type2 cells is positive. Type0 and Type1 cells
consist of a healthy tissue based on the Moran process, so r0 and
r1 are just parameters to determine which to choose as a dividing
cell at the time of a cell turnover. Alternatively, r2 is the growth
rate, which determines the average number of increases in Type2
cells during a unit time. When the number of Type2 cells reaches
109 at the first time, all the Type2 cells are discarded to represent
surgical resection, whereas the number of Type1 cells in a tissue
is preserved so that the time until the emergence of the recurrent
tumor is influenced by the frequency of residual Type1 cells.
Since the conversion from the number of cells to the tumor
volume is frequently done using the following relationship as 109

cells in a 1 cm3 tumor, the time of surgery in this model is
conducted when the size of the tumor becomes 1 cm3. After the
first treatment, the simulation continues until the next Type2 cell
appears from the tissue and number reach 109 again,
representing the recurrence of the tumor after surgery.

Simulation Framework
To integrate the Moran process and branching process, we
adopted stochastic simulations based on Gillespie’s algorithm
(18) as follows: We firstly considered three events: (i) cell
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turnover in a healthy tissue, (ii) death of a Type2 cell, and
(iii) birth of a Type2 cell. The rates of each event at time t is given
by (i) 1

d N (ii) d2X2(t), and (iii) r2X2(t), respectively. Here d2, r2,
and X2(t) were a death rate, a proliferation rate, and the number
of Type2 cells, respectively. Then an average time until one of the
three events happens, DT, is given by

DT =
1

1
d N + d2X2 tð Þ + r2X2 tð Þ (1)

When the event of cell turnover in a healthy tissue occurs, one
of N cells is selected as a cell to die, and another cell divides
within the time step to complete cell turnover. In detail, there are
three possibilities of state transitions in the tissue dynamics: the
number of Type1 cells (i) increases by one, (ii) decreases by one,
and (iii) does not change. Let us denote the number of Type1
cells by i.

First of all, the case (i) occurs through two ways: (a) A Type0
cell dies, and a Type1 cell divides without a mutation; and
(b) a Type0 cell dies, and another Type0 cell divides with a
mutation to be a Type1 cell. Exceptionally, when a Type0 dies,
and a Type1 cell divides with a mutation to be a Type2 cell, an
additional selection of a cell to divide is done because a Type2 cell
cannot reside in a normal tissue under the assumption of the
model. In this situation, if a Type1 cell is selected to divide
Frontiers in Oncology | www.frontiersin.org 391
without a mutation, the number of Type1 cells increases by one.
The probabilities of these three events are given by N−i

N · r1i(1−m2)F ,
 N−i
N · r0(N−i) μ1

F , and N−i
N · r1i μ2 c1F respectively. Here F = r0 (N – i) +

r1i is a scaling factor for the probability to be chosen for a dividing
cell and c1 =

r1i
r0(N−i)+r1i

is the probability that a Type1 cell is
selected to divide in an additional round after a mutation of a
Type1 cell to be a Type2 cell. The probability that a Type0 cell
is selected to die is given by N−i

N . Taken together, the transition
probability that the number of Type1 cells increases by one is
given by

Pr i ! i + 1½ � = r0 N − ið Þμ1 + r1i 1 − μ2 + μ2c1ð Þ
F

·
N − i
N

(2)

Secondly, the case (ii) occurs in such a way that a Type1 cell
dies and a Type0 cell divides without a mutation. Exceptionally,
when a Type1 cell dies, and another Type1 cell divides with a
mutation to be a Type2 cell, an additional selection for a cell
division is done. In this case, if a Type0 cell is selected for the
additional cell division, the number of Type1 cells decreases by
one. The probabilities of the two events are given by i

N ·
r0(N−i)(1−μ1 )

F and i
N · r1i μ2 c0F and c0 =

r0(N−i)
r0(N−i)+r1i

is the probability
that a Type0 cell is selected to divide in an additional round after
a mutation of a Type1 cell to be a Type2 cell. The probability that
a Type1 cell is selected to die is given by i

N . Taken together, the
A

B

FIGURE 1 | The schematic diagram of our model. (A) There are three types of cells with each own mutation rate and fitness in the model. (B) In a normal tissue,
composed of Type0 and Type1 cells, cell turnover is conducted according to the Moran process, and the number of cells is kept constant. If a Type2 cell emerges, it
proliferates unlimitedly over the tissue, and grows up to 109. Once the number reaches 109, all the Type2 cells are resected while the number of Type1 cells in a
tissue are preserved. Then the time until the next Type2 population reaches 109 is measured as time of recurrence.
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transition probability that the number of Type1 cells decrease by
one is given by

Pr i ! i − 1½ � = r0 N − ið Þ(1 − μ1) + r1iμ2c0
F

·
i
N

(3)

Finally, the probability that the number of Type1 does not
change [case (iii)] is given by

Pr i ! i½ � = 1 − Pr i ! i + 1½ � − Pr i ! i − 1½ � (4)

In summary, the time of one step in simulations is calculated
using Eq. (1), and in one step, one of the following three
processes occurs: (i) cell turnover in a tissue, (ii) the death of a
Type2 cell, or (iii) the birth of a Type2 cell. When case
(i) happens, there are three possibilities in tissue dynamics.
The number of type1 cells increases by one, decreases by one,
or does not change. Initially, all the cells are Type0. Once the
number of Type2 cells reaches 109, computational surgical
resection to set the number of Type2 cells to be 0 again will be
conducted. After that, the time until the number of Type2 cells
reaches 109 again is measured as recurrence time.

Deterministic Approximation of
Type2 Growth
As for the calculation of the Type2 growth, we assumed that
when the number of cells is small, the stochastic effect should be
considered. When the number of Type2 cells exceed twice as
large as the size of the normal tissue, 2N, growth can be regarded
as a deterministic process. Then the time duration from when the
number of Type2 cells is 2N to 109, Dts, is given by

Dts = r2 − d2ð Þ ln 109

2N

� �
(5)

DuringDts, tissue dynamics to reflect the cell turnover is conducted.

Clinical Data
The data used in our analysis were downloaded from TCGA
Pan-Cancer Clinical Data Resource provided in the previous
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publication (19). We adopted the data of disease-free intervals
from 23 cancer types. Data processing was performed on Excel.

Survival Time Analysis
Disease-free survival of clinical data were calculated using the
Kaplan–Meier method from disease-free intervals mentioned in
Clinical Data section. In this study, disease-free interval is
defined as the survival time without cancer recurrence of each
patient, which corresponds to the time to recurrence of each
simulation trial. Disease-free survivals in silico were then
calculated from that.

Simulation and Statistical Analysis
The whole process of our model was conducted on C++.
Parameter optimization was conducted using the Nelder–Mead
method on R (version 3.6.2). The survival time analysis was
conducted on Prism (version 8.4.3).
RESULTS

Three Patterns of Cancer Initiation
First of all, we conducted stochastic simulations of the model for
the initial cancer progression, and the time courses of three
populations: Type0, Type1, and Type2 were shown (Figure 2).
We classified the tissue dynamics until the emergence of Type2
cells into three patterns. When Type1 cells had less fitness than
Type0 cells, sporadic cancer initiation from a tissue dominated
by Type0 cells could be observed (Figure 2A). In this case, Type1
cells could not spread in a normal tissue, and cancer initiation
depended on two sequential mutations in one Type1 cell. After
surgical resection of the first Type2 lineage, the time to
recurrence would be almost the same as that of the first cancer
initiation because the frequency of Type1 cells in a tissue was
almost the same as the initial condition. When the fitness of
Type1 cells was as high as that of Type0 cells, cancer initiation in
a moderate frequency of Type1 cells could be observed
(Figure 2B). In this case, the time to recurrence could be faster
A B C

FIGURE 2 | Three patterns of cancer initiation. Gray, blue, and red curves describe Type0, Type1, and Type2 cells, respectively (the full growth dynamics are not
shown). Each panel contains three trials of the same parameter sets distinguished by the type of lines: Joined, dashed, and long-dashed. Cancer initiates from:
(A) almost no Type1 cells (i ≤ 0.1N); (B) moderate number of Type1 cells (0.1N < i ≤ 0.9N); and (C) occupied Type1 cells (i > 0.9N). Parameter values used are
N = 1,000, d = 1.0, r0 = 1.0, r1 = 0.75, r2 = 1.5, m1 = 0.001, and m2 = 0.1 for (A); N = 1,000, d = 1.0, r0 = 1.0, r1 = 1.0, r2 =1.2, m1 = 0.01, and m2 = 0.01 for
(B); and N = 1,000, d = 1.0, r0 = 1.0, r1 = 1.5, r2 = 1.5, m1 = 3.16 ∙ 10–4, and m2 = 3.16 ∙ 10–4 for (C).
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than that of the first cancer initiation because the proportion of
Type1 cells in a tissue was larger than that in the initial condition.
When Type1 cells had much higher fitness than Type0 cells,
multiple cancer initiations from a Type2-dominated tissue could
be observed (Figure 2C). In this case, the recurrence of tumors
happened easily. From these results, we found that different
situations of Type1 cells at the time of cancer initiation were
considered to influence the difficulty of recurrence, and they
could be classified by parameter regions.

Parameter Dependency
Next, we examined the time to recurrence after surgical resection
and the proportion of premalignant (Type1) lesions at the time of
surgery in a vast parameter range (Figure 3). The mean recurrence
time became shorter as the fitness of Type1 cells increased because
higher fitness enabled Type1 cells to dominate the normal tissue,
which facilitated the emergence of recurrent cancer (Type2)
(Figures 3A, B). When the size of the normal tissue is small,
the effect offitness advantage on the proportion of Type1 cells in a
tissue became large (Figures 3A, B). Figures 3C, D showed that
recurrence time became shorter when the growth rate of Type2
cells was large. Compared to the case where the fitness of Type1
was large, the early recurrence occurred from the small proportion
of Type1 cells in a tissue (Figures 3C, D). High mutation rates
accelerated the time of recurrence (Figures 3E–H). A higher
mutation rate from Type0 to Type1 made the proportion of
Type1 cells larger (Figures 3E, F), while a higher mutation rate
from Type1 to Type2 made proportion smaller (Figures 3G, H).
Furthermore, when the size of normal tissues became large, the
time to recurrence became short, and the variation became small
(Figures 3B, D, F, H).

Relationship Between the Proportion of
Type1 Cells and Time to Recurrence
To investigate the relationship between the proportion of Type1
cells during initial treatment and time to recurrence
comprehensively, we conducted computational simulations
with parameter sets randomly picked (Figure 4A) .
Additionally, we did 1,000 runs of stochastic simulations with
the same parameter set to obtain each point. A total of 1,200
parameter combinations were examined.

We confirmed that recurrence time was significantly different
among the proportion of Type1 cells during the first treatment
(Figure 4B). It would be intuitive that the time to recurrence
became long when the proportion of Type1 cells was very small
(between 0 and 0.2 of a tissue). Interestingly, the proportion of
Type1 cells that minimize recurrence time was not the largest
group (between 0.8 and 1.0 of a tissue), but the moderate group
(Figure 4B). This result showed that patients with a moderate
number of premalignant cells (Type1) have a risk of shorter
recurrence time in many cases. When we investigated the
characteristics of parameter values in each category
(Figures 4C–F), we found that the fitness of Type1 cells was
lower, and their mutation rate was higher in areas a and b than
those in areas e and f (Figures 4C, F). These results suggested
that Type1 cells could occupy the normal tissue before the first
Frontiers in Oncology | www.frontiersin.org 593
treatment when Type1 cells could spread rapidly and were hardly
mutated to be Type2 cells. The mutation rate of Type0 cells did
not affect the proportion of Type1 cells at the first treatment
(Figure 4E). Points with time to recurrence more than 103 only
resided in area b, indicating that there was no parameter set that
could realize both conditions of a large proportion of Type1 cells
at the time of first treatment and a long recurrence time
(Figure 4A). In area a, time to recurrence was short despite
small premalignant cells (Type1). In that case, the fitness of
Type1 cells was almost neutral, and the mutation rate of Type1
cells and the growth rate of Type2 cells were relatively high
(Figures 4C, D, F). In area f, recurrence was relatively long,
although the normal tissue was occupied by premalignant cells
(Type1). In that case, the growth rate of Type 2 cells was
extremely small (Figure 4D). Mutation rates of areas d, e, and
f were almost the same, and their difference was generated by the
fitness of Type1 cells and the growth rate of Type2 cells
(Figures 4C, D).

Fitting to Clinical Data of Time to
Recurrence
Results of recurrence time in silico were fitted to published
clinical data of disease-free survivals in 23 cancer types
(Figure 5 and Table 1) (19). A thousand runs of stochastic
simulations with a single parameter combination for each cancer
type were conducted. The sum of squared logarithmic residuals
(log-SSR) between outputs in silico and five data points extracted
from clinical data was calculated. A set of the five data points was
when 20, 40, 60, 80, and 100% of patients experienced a
recurrence. We then investigated the parameter sets that could
minimize log-SSR for each cancer type (Table 1), and depicted
the survival curves with the estimated parameters (Figure 5). We
also conducted a log-rank test between the curves of clinical and
simulated data (Table 1). In most clinical data, we could find the
optimal parameter sets, and with these parameters, significant
differences were not observed between simulation results and
clinical outcomes. However, in some cancer types (BRCA,
CHOL, LUAD, OV, SARC, and THCA), significant deviations
were observed (p < 0.05). Notably, the fitness of Type1 cells was
lower than that of Type0 cells, 1.0, among most cancer types,
indicating a cancer-related mutation tends to be disadvantageous
before the emergence of cancer cells (Type2). Mutation rates
were distributed around 10−3.6 for almost all cancer types.
Alternatively, the growth rates of Type2 were widely distributed.
DISCUSSION

In this study, we constructed a mathematical model that could
describe cell population dynamics in both normal tissue and
cancer tissues. We revealed the relationship between the
proportion of premalignant cells and recurrence time
(Figures 3 and 4). Importantly, we found that recurrence time
became shorter when the mutation rate or growth rate of
cancer cells was large, while the time became longer when the
fitness of premalignant cells or growth rate of cancer cells was
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low (Figure 4). Moreover, we successfully estimated the
characteristic parameter sets of the computational model by
fitting the model results to the clinical data of disease-free
survival in each cancer type (Figure 5 and Table 1). This
study is the first attempt to quantitatively predict recurrence
time after the first treatment in various cancer types with a
Frontiers in Oncology | www.frontiersin.org 694
mathematical model by considering the effect of premalignant
cells in a healthy tissue.

This model successfully reproduced the disease-free survivals
in 17 out of 23 cancer types (Figure 5 and Table 1). Notably, the
estimated fitness values of premalignant cells (r1) were less than
those of normal cells in many cancer types (Table 1). According
A B

D

E F

G H

C

FIGURE 3 | Parameter dependence on recurrence time. Mean values obtained from the simulations are shown by dots, and standard deviations are indicated by
bars. Pie charts in the panels indicate the proportion of Type1 cells in normal tissue at the first treatment. Light blue, blue, dark blue represent small (i ≤ 0.1N),
intermediate (0.1N < i ≤ 0.9N), and large (i > 0.9N) proportion of Type1 cells, respectively. Standard parameter values used in (A–H) are d = 1.0, r0 = 1.0, r1 = 1.0,
r2 = 1.2, m1 = 0.001, m2 = 0.001; and N = 1,000 in (A, C, E, G); and N = 10,000 in (B, D, F, H).
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to the analysis on how the proportion of premalignant cells
depended on their fitness (Figure 4C), the characteristics of
those cancers residing in area b in Figure 4A suggest the small
abundance of premalignant cells during the first treatment.
Therefore, the efforts to find and eradicate the residual
premalignant lesions in a normal tissue after the first treatment
may be inefficient; rather, the suppression of the emergence of
new premalignant cells from the normal cells by adjuvant
therapy should be recommended. In most cancer types, the
fitting tends to work for the early reduction of the disease-free
survivals and not for the long tail of the survivals (Figure 5).
Because the estimated parameters of the low fitness of
premalignant cells (r1) indicate that recurrence arises from the
almost non-mutated tissue, it implies that the deviance
recurrence time in the same cancer type is caused by variations
of mutation rates or efficiency of adjuvant therapy among
patients, not incorporated into the model. It suggests the
importance of identifying a biomarker to classify recurrence-
prone patients (20).

For the model’s simplicity, we prepared only one
population for intermediate cell type as premalignant cells.
However, the multistage theory suggested more than two steps
to generate a cancer cell from a normal cell (21). This
restriction resulted in the simple tendency of the survival
curves from the model and failure to fit the long tail of
clinical survival curves (Figure 5). With multiple stages of
Frontiers in Oncology | www.frontiersin.org 795
premalignant cells in the model, the premalignant cells after
the first treatment have several mutational distances to
recurrence, which may generate multiple inclinations of the
survival curves. In contrast, the number of mutations required
to be a cancer cell varies in each patient, even in the same
cancer type, so that it was difficult to determine it accurately
for each cancer type. This simple model structure had the
abovementioned weakness but still could imply that the single-
intermediate population might be enough to reproduce the
data of well-fitted cancer types, while more populations would
be required for the others. We also adopted a spatially
homogeneous process, though a spatial process can contain
detailed information, such as molecular mechanisms of field
cancerization and cell competition. Note that this study
focused on constructing the basic mathematical model
extensible for various types of cancer to quantitatively
predict recurrence time after the first treatment by
considering the effect of premalignant cells. Molecular
mechanisms vary among cancer types, and cell competition
can be regarded as dynamics based on the fitness and the
number of the cells. The simple model structure enabled us to
analyze the various types of cancer by uniformed parameters,
fitness, and mutation rate. This was the first attempt, and even at
the current stage, we obtained many new insights. A spatial
structure and additional intermediate populations optimized for
each cancer type would be a possible future extension of the model.
A B

D E FC

FIGURE 4 | The relationship between the number of Type1 cells in the normal tissue at the first treatment and time to recurrence with various parameter values.
(A) Points are generated by the simulations with parameter sets which are randomly chosen from: 0.90 < r1 < 1.10, 1.10 < r2 < 1.20, 10–4.5 < m1 < 10–3.0, and
10–4.5 < m2 < 10–3.0, respectively. The plots are categorized into six areas with the median of time to recurrence. Note that d = 1.0, r0 = 1.0, and N = 1,000. (B) Box
plots show the distributions of time to recurrence from different ranges of the Type1 proportion in a tissue at the time of the first treatment. (C–F) Box plots represent
the parameter distributions in each category determined in panel (A). Each bar corresponds to the area notation in panel (A).
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FIGURE 5 | Fitting of our model to clinical data of disease-free survival in 23 cancer types. Results of disease-free survival in silico (thin curve) are fitted to that of
published clinical data in 23 cancer types (thick curve). A thousand runs of stochastic simulations with a single parameter combination for each cancer type are
performed. The parameter values used for each panel is listed in Table 1. ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive
carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; ESCA, esophageal
carcinoma; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LGG, brain lower
grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; PAAD,
pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; SARC, sarcoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid
carcinoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinoma.
TABLE 1 | Estimated parameters and p-values by fitting the outputs from our simulations to clinical data.

Cancer type r1 r2 Log10m log-SSR p-value

ACC 0.916 1.62 −3.61 0.272 0.2008
BLCA 0.908 1.43 −3.60 0.717 0.4658
BRCA 0.922 1.52 −4.02 0.294 <0.0001
CESC 0.905 1.36 −3.63 0.815 0.8958
CHOL 0.964 1.52 −3.43 0.113 0.0272
COAD 0.924 1.40 −3.71 0.564 0.5966
ESCA 0.934 1.60 −3.42 0.128 0.3458
HNSC 0.914 1.58 −3.56 0.926 0.3446
KIRC 0.920 1.27 −3.77 0.314 0.3945
KIRP 0.908 1.38 −3.62 0.981 0.6651
LGG 0.905 1.35 −3.62 0.0312 0.0803
LIHC 0.962 1.72 −3.54 0.647 0.8949
LUAD 0.920 1.62 −3.62 1.52 0.0039
LUSC 0.904 1.43 −3.55 0.588 0.4501
OV 0.905 1.56 −3.37 0.604 <0.0001
PAAD 0.918 1.54 −3.44 0.139 0.3649
PRAD 0.913 1.34 −3.80 0.165 0.1207
SARC 0.930 1.51 −3.42 1.05 0.0036
STAD 0.917 1.59 −3.59 0.432 0.3859
TGCT 0.916 1.61 −3.63 1.68 0.4146
THCA 1.04 1.10 −3.31 7.74 <0.0001
UCEC 0.909 1.33 −3.65 0.168 0.4777
UCS 0.904 1.53 −3.49 0.633 0.6923
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ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma;
CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma;
KIRP, kidney renal papillary cell carcinoma; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV,
ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; SARC, sarcoma; STAD, stomach adenocarcinoma; TGCT, testicular germ
cell tumors; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinoma.
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Conclusively, this model suggests special care of recurrence in
the clinic when the fitness of premalignant cells and the growth
rate of recurrent tumors is high. Furthermore, this approach can
be extended to explore the deviance of recurrence rates among
cancer types by introducing the variations of mutational stages
and standard adjuvant therapies in each cancer according to
growing knowledge.
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Uveal melanoma (UM) is a comparatively rare cancer but requires serious consideration
since patients with developing metastatic UM survive only for about 6–12 months.
Fortunately, increasingly large multi-omics databases allow us to further understand
cancer initiation and development. Moreover, previous studies have observed that
associations between copy number aberrations (CNA) or methylation (MET) versus
messenger RNA (mRNA) expression have affected these processes. From that, we
decide to explore the effect of these associations on a case study of UM. Also, the
current subtypes of UM display its weak association with biological phenotypes and its
lack of therapy suggestions. Therefore, the re-identification of molecular subtypes is a
pressing need. In this study, we recruit three omics profiles, including CNA, MET, and
mRNA, in a UM cohort from The Cancer Genome Atlas (TCGA). Firstly, we identify two
sets of genes, CNAexp and METexp, whose CNA and MET significantly correlated with
their corresponding mRNA, respectively. Then, single and integrative analyses of the three
data types are performed using the PINSPlus tool. As a result, we discover two novel
integrative subgroups, IntSub1 and IntSub2, which could be a useful alternative
classification for UM patients in the future. To further explore molecular events behind
each subgroup, we identify their subgroup-specific genes computationally. Accordingly,
the highest expressed genes among IntSub1-specific genes are mostly enriched with
immune-related processes. On the other hand, IntSub2-specific genes are highly
associated with cellular cation homeostasis, which responds effectively to
chemotherapy using ion channel inhibitor drugs. In addition, we detect that the two
integrative subgroups show different age-related risks and survival rates. These
discoveries can influence the frequency of metastatic surveillance and support medical
practitioners to choose an appropriate treatment regime.
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1 INTRODUCTION

Uveal melanoma (UM) is a comparatively rare cancer formed
from melanocytes within the uveal tract of the eye involving
either in the iris, ciliary body, or mostly choroid (1) and
responsible for about five cases per million per year (2).
Although current first-line treatment approaches receive good
results for this malignancy, specifically, UM patients can live
longer, but we want to improve early diagnosis more with the
hope of raising overall patient survival as smaller tumors are
treated, resulting in achieving local disease control and vision
preservation with the possibility to prevent metastases (3).
However, it has still remained challenging. Indeed, UM patients
with the metastatic disease only lived for approximately 6–12
months (4). This emphasizes a pressing need of improving the
diagnosis, prevention, and treatment of UM patients.

Besides, several recent large-scale and multi-omics databases
have enabled us to see associations between the genetic or
epigenetic alterations versus the tumorigenesis and progression
of UM. For example, the importance of different types of RNA
such as mRNA, microRNA (miRNA), and long non-coding RNA
(lnCRNA) was investigated in UM (5, 6). Based on an in silico
and experimental biology, lnCRNA LINC00518 was identified to
be a oncogene in UM and could be used in RNA-based
therapeutic approaches as a promising target (6). Additionally,
UM has frequently had copy number aberrations (CNA) gain
regions of chromosomes 6p and 8q as well as loss regions of
chromosomes 1p, 3, 6q, 8p, and 16q (7, 8). Particularly, BAP1
mutations related to chromosome 3 monosomy and SF3B1 and
SRSF2 alterations related to chromosome 3 disomy contributed
to high risk of metastasis. Meanwhile, mutations on EIF1AX
related to chromosome 3 disomy were associated with low
metastatic risk (9). In addition, Yang et al. (4) have made a
comprehensive review of the role of DNA methylation in the
development and metastasis of UM. They highlighted that
several tumor suppressor genes comprising RASSF1A and
p16INK4a have been altered by DNA methylation (MET) and
contributed to controlling cell migration and invasion in UM.
Moreover, p16INK4a expression was reported in all UM liver
metastatic cases and may have potential in discriminating UM
and cutaneous melanoma (10). Besides, the autophagy has been
hypothesized to have a role in inhibiting tumor growth when
investigating this process-related protein, Beclin-1. The high
level of immunohistochemistry in Beclin-1 was found to be a
positive prognosis of UM patients (11).

Moreover, multiple prior studies have been conducted to
stratify UM patients using various kinds of -omic data. Among
them, the most popular work proposed by Robertson et al. (5)
has conducted a multiplatform analysis of 80 UM patients using
only one single data type of omics data, including mRNA
expression, miRNA, long non-coding RNA, MET, and CNA,
and successfully identified four different subtypes: two associated
with poor-prognosis monosomy 3 (M3) and the others with
better-prognosis disomy 3 (D3). However, we claim that not a
single data alone but instead integrated omics data are powerful
enough to explain the interplay of molecules and the biological
phenotypes of cancer holistically (12–14). This motivates us to
Frontiers in Oncology | www.frontiersin.org 299
do this study in order to discover novel subgroups of UM
patients that adopt an integrative approach.

In this study, we aimed to analyze three omics profiles,
namely, CNA, MET, and mRNA, in a UM cohort from The
Cancer Genome Atlas (TCGA). To this purpose, we identified
the significant correlation between CNA and MET versus their
own corresponding expression levels (Figure 1). It was of
importance to note that the omics experiments were conducted
with thousands of simultaneous hypothesis tests (15). Therefore,
the adjusted P-value using the Benjamini–Hochberg procedure
(16) as a measure of significant tests controlling the number of
false discoveries was necessarily considered in this work. Then,
single and joint analyses of the three data types were performed
using the tool PINSPlus (17, 18). As a result, we discovered two
novel integrative subgroups, IntSub1 and IntSub2, which could
be potentially a future classification system for UM patients.
These discoveries could influence the frequency of metastatic
surveillance and support medical practitioners to choose an
appropriate treatment regime.
2 MATERIALS AND METHODS

2.1 Materials
The three datasets, namely, CNA, MET, and mRNA expression,
were collected from the TCGA project (TCGA, Firehose Legacy)
(5) and downloaded from the cBioPortal website (19, 20). The
UM cohort is described in Table 1.

2.2 Data Preprocessing
There were two preprocessing steps applied to the three profiles
(i.e., mRNA, CNA, and MET) from the data. We first checked if
the 80 patients from each of the three profiles and clinical data
were matched. Then, we detected genes whose missing values
were more than 50% using the k-nearest neighbor algorithm (21)
from the CancerSubtypes package (version 1.14.0) (22).

2.3 Identification and Examination of the
Relationship of CNAexp and
METexp Genes
Here, we kept only genes shared between CNA andmRNA, as well
as between MET and mRNA. To identify and examine the
relationship of CNAexp and METexp genes, we used the R tool
geneCor (14). Roughly, the tool first computed the correlation
coefficients (r) between MET and mRNA, as well as between CNA
and mRNA based on Spearman’s rank method, and then, the
conversion of significant r (i.e., adjusted P-value ≤ 0.05;
Benjamini–Hochberg (16); two-sided) into Z values by Fisher’s
Z-transformation following the equation: Z = 0.5 ln[(1 + r)/(1 − r]).
Secondly, the overall distributions of calculating Z values were
pictured automatically. Thirdly, geneCor computed the skewness
of the Z-score distributions using the D’Agostino test. The overall
skewness illustrated whether CNA or MET was correlated
positively or negatively with their own corresponding mRNA.
Parallelly, geneCor also issued two sets of genes, CNAexp and
METexp, whose CNA and MET significantly correlated with their
October 2021 | Volume 11 | Article 731548
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corresponding mRNA expression levels, respectively. Further
analysis was performed using FSbyCOX in the package
CancerSubtypes (version 1.14.0) (22) to only retain a small
number of genes associated significantly with a prognostic value
(P-value ≤ 0.0005; log-rank test; two-tailed) in the two gene sets
(i.e., CNAexp and METexp).

2.4 Single and Integrated Subtyping
The related study proposed by Robertson et al. (5) found the four
different molecular groups based on highly expressed genes, CNA
and MET, separately. We hypothesized that an integrative
clustering analysis, comprising the three profiles above, would
be a more powerful approach. Moreover, our clustering tool,
PINSPlus (version 2.0.5) (17, 18), demonstrated its great ability
in cancer subtyping, in general, using multi-omics data. Especially,
it classified breast cancer patients into two subgroups that
have possessed biologically and clinically meaningful properties
(14). We, therefore, continued applying this tool to seeking
Frontiers in Oncology | www.frontiersin.org 3100
the optimal group number of UV patients. In this study, we
kept all the parameters of PINSPlus as default (i.e., clustering
method was k-means); except for the number of candidate
groups, k was set to a range from 2 to 10. The area under the
receiver operating characteristic (AUC) value allowed us to choose
the optimal k.

2.5 Subgroup-Specific Gene Determination
and Enrichment Analysis
To observe the biological differences between identified UM
subgroups, we sought to discover the subtype-specific genes
using the package GeneCluster (version 0.1.0) (14). Given the
lists of genes (i.e., METexp and CNAexp), this tool computed the
mean expression level of each gene in each identified patient
subgroup across all samples. Then, the gene whose mean
expression value was the highest will be allotted to a cluster if
the P-value ≤0.05 (one-way ANOVA test; two-sided). Finally, the
gene will be recognized officially as belonging to that subtype if
TABLE 1 | Description of a cohort of UM patients used in the study.

Omics
data

Platform Description

mRNA mRNA sequencing A continuous matrix whose columns (the number of samples) are 80 samples and rows (the number of genes) are 20,440 genes
CNA Affymetrix SNP6

Whole-exome
sequencing

A discrete matrix whose columns (the number of samples) are 80 samples and rows (the number of genes) are 24,776 genes. There are
four copy-number levels indicated for each gene, namely, −2, −1, 1, and 2. Two levels presented with minus value (i.e., −2, −1) show the
loss level of copy-number compared with the two positive values (i.e., 1, 2) expressing the additional copies degree. For the 0 level, the
gene is located in the diploid chromosomal region.

MET Illumina Infinium
HumanMethylation
450 platform

A continuous matrix whose columns (the number of samples) are 80 samples and rows (the number of genes) are 15,477 genes

Clinical
data

Samples: 80
Overall survival (OS) status was defined as vital status (dead or alive), whereas OS time was identified as the time to UM death or last
follow-up (unit: day). The follow-up time OS was truncated to 2,600 days.
FIGURE 1 | Analysis pipeline. Firstly, we inputted CNA and MET datasets with their corresponding mRNA data to the function geneCor to identify a list of CNAexp
and METexp genes, respectively. Then, PINPlus was used to extract different patient subgroups for individual CNAexp and METexp datasets and integration of
CNAexp + METexp + mRNA data through single and integrated analyses, respectively. Finally, we discovered subtype-specific genes within each identified
integrated subgroup, IntSub1 and IntSub2, using the R package GeneCluster. UM, uveal melanoma.
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the adjusted P-value ≤0.05 (Benjamini–Hochberg procedure
(16); two-tailed).

Subsequently, in order to investigate further the biological themes
from the gained subgroup-specific genes, we implemented the
enrichment analysis using the DAVID tool (version 6.8) (23, 24).
Also, the output was concentrated into functional-related gene
groups or different meaningful terms that were convenient to
translate into the clinic. The significance levels of these terms were
assessedbased onP-value (Fisher’s exact test). In otherwords, a list of
genes with a smaller P-value was more overrepresented and had a
stronger association to the subtype phenotypes.
3 RESULTS

3.1 Identification and Examination of the
Relationship of CNAexp and METexp Genes
Our tool geneCor provided us with the two sets comprising 4,139
CNAexp genes and 8,157 METexp genes (see Supplementary
Table S1). As pictured in Figure 2A, the CNAexp genes were
significantly skewed to the right (skewness = 1.3511, P-value < 2.2 ×
10−16; D’Agostino test; two-sided) consistent with the results
reported in (25), while the METexp genes were significantly
skewed to the left (skewness = −0.3419, P-value < 2.2 × 10−16;
D’Agostino test; two-sided) consistent with the results reported in
(26). This indicated that there was a consistently converse relation
of mRNA with CNA andMET genes. As mentioned, we truncated
genes per the gene set above (i.e., CNAexp andMETexp) based on
the association with the OS of patients. Particularly, due to an
overwhelmingnumberof genes in each set, weonlypreserved genes
per set if P-value <0.0005. Finally, 179 CNAexp genes and 859
METexp genes were obtained. It was a weak intersection (50 genes)
between CNAexp and METexp, indicating that the CNAexp and
Frontiers in Oncology | www.frontiersin.org 4101
METexp were two poorly non-disjoint events (Figure 2B).
Figure 2C shows the frequency of the CNAexp or METexp genes
against the total count of genes in each chromosome arm. Of
particular interest,CNAexponlydistributed in two chromosomes3
and 8, especially almost in chromosome 8, implying not only a poor
prognosisbut also a considerably reducedsurvival (27–30).Also,we
could observe that theMETexp genes displayed a regional genomic
preference for MET, particularly on chromosome 3, involving in
high metastatic risk (26).

3.2 Single and Integrated Subtyping
Asdescribed in theMaterials andMethods section,we implemented
the single clustering analyses for CNAexp andMETexp, separately.
For METexp, the k of two with the AUC of 1.0000 was optimal
(Figure 3A). Similarly, for CNAexp, the same k andAUCwere also
optimal again (Figure 3A). Notably, the number of patients
assigned to either of the two CNAexp subgroups significantly
overlapped with that of the two METexp subgroups (P-value =
3.6714 × 10−15; c2 test; two-sided; Figure 3B). The heatmap shows
the expression patterns of CNAexp subgroups and METexp
subgroups from integrated analysis by PINSPlus (Supplementary
Figure S1). Moreover, the association between our integrated
subgroups, IntSub1 and IntSub2, versus patient subtypes in (5)
using mRNA data is also shown in Supplementary Figure S2.
Interestingly, IntSub1 was divided almost into subgroups 1 to 3,
whereasmost patients in IntSub2 belonged previously to subtype 4.
We then employed the survival analysis for the acquired subgroups
of CNAexp and METexp. The two CNAexp subgroups were
revealed to be statistically meaningful to the OS (P-value =
1.7844 × 10−5; two-sided; Figure 3C). Also, with the Cox
P-value = 1.1006 × 10−6, the two METexp subgroups were
significantly correlated with the OS (Figure 3C). These results
told us that the data single clustering strategy seemed to be effective
A B

C

FIGURE 2 | Characteristics of CNAexp and METexp in UM. (A) Two Z-score distributions showed two associations of MET or CNA with their respective mRNA.
(B) Intersection between 859 METexp genes and 179 CNAexp genes. (C) Side-by-side bar chart showed the frequency of the CNAexp or METexp genes against
the total count of genes in each chromosome arm. CNA, DNA copy number aberrations; MET, epigenetic DNA methylation.
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in this case.However, the given single analysesmight only show the
results that reflected the solitary aberration in UM pathology.

Next, the integrative clustering analysis was leveraged for a
combination of CNAexp, METexp, and mRNA gene sets in a
similar manner with the single clustering analysis above.
Interestingly, PINSPlus classified UM patients into two
integrative subgroups called IntSub1 (n = 60) and IntSub2 (n =
20) (Figure 3D). Specially, they were consistent significantly
with the single subgroups of the CNAexp dataset (P-value =
1.0266 × 10−5; c2 test; two-sided; Figure 3E) and the METexp
dataset (P-value = 9.3057 × 10−7; c2 test; Figure 3E). On top of
that, we then investigated the survival analysis which revealed
that the two integrated subgroups possessed statistically different
factors for the survival of UM patients (P-value = 4.0228 × 10−5;
log-rank test; Figure 3F). Also, in Figure 3F, the patients in
IntSub2 were significantly worse than those in IntSub1 (hazard
ratio of 6.1204 and 95% confidence interval between 2.5970 and
14.4200; IntSub1 was reference; log-rank test). Also, we reviewed
the statistical descriptions for UM patients, containing age,
gender, tumor stages, and metastasis status, between the
IntSub1 and IntSub2 provided in Supplementary Table S2.
These results bolstered our confidence in the effectiveness of
our previous strategy (14) in discovering the novel UM patient
subgroups under the perspective of integration.

3.3 Molecular Characteristics of Integrated
Subgroups
3.3.1 Determination of Subgroup-Specific Genes
As mentioned earlier, the GeneCluster tool was leveraged to
exploit subtype-specific gene lists. Accordingly, we extracted
Frontiers in Oncology | www.frontiersin.org 5102
three subgroup-specific gene lists for the two integrative
subgroups using three kinds of profiles: mRNA, CNAexp, and
METexp. Specifically, these lists were established on average
mRNA expression levels (IntSub1: 347 genes and IntSub2: 431
genes; Supplementary Table S3), average CNA aberrations
(IntSub1: 108 genes and IntSub2: 71 genes; Supplementary
Table S4), and average MET aberrations (IntSub1: 492 and
IntSub2: 345 genes; Supplementary Table S5). Notably, we
checked the intersection of the subgroup-specific genes from
mRNA with UM immune single-cell gene signature from
Durante et al. (31) and revealed that 46 overlapped genes
(13.26%) in IntSub1 belonged to B-cell cluster, CD4 T
follicular helper cluster, M2 macrophage cluster, Mitotic CD8
T-cell cluster, etc. (Supplementary Table S6). Meanwhile, 107
overlapped genes (24.82%) in IntSub2 were associated with
immune cells such as B cells, CD4 T follicular helper, CD8,
gamma delta T cells, and mitotic CD8 T cells (Supplementary
Table S6). This indicated that the UM pathology had a strong
connection to the abnormally expressed genes related to immune
cells. Interestingly, we found that that the highest expressed gene
based on copy number aberrations, SLCO5A1, was identified to
associate with poor outcome (32), which could be a prospective
interpretation for the worse prognosis of IntSub2 patients
compared with those in IntSub1. Notably, SLCO5A1 was
considered as a prognosis gene correlated with the immune
infiltrates. The immune cell infiltration level was noted to be a
crucial factor in predicting the UM prognosis (33).
Supplementally, we sought out that BAP1 was associated with
abnormal DNA methylation within IntSub2 samples rather than
other subtypes. It was reported that about 22% of familial UM
A B

D

E
F

C

FIGURE 3 | Identification of UM molecular subgroups using individual CNAexp and METexp genes for single clustering and mRNA + CNAexp + METexp for joint
clustering. (A, D) AUC values obtained for each value of k. The optimal k has the highest AUC value, in which (A—left, A–right, and D) the results are of CNAexp
alone, METexp alone, and integration of mRNA + CNAexp + METexp, respectively. (B) Overlap test between subgroups of CNAexp and METexp. (E) Overlap test
between integrative subgroups versus CNAexp subgroups (left) and versus METexp subgroups (right). (C, F) Kaplan–Meier survival curves for the CNAexp
subgroups (C—left), METexp subgroups (C—right), and (F) integrated subgroups.
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cases found the muted BAP1. BAP1 mutations raised not only a
large tumor diameter percentage but also the metastasis risk in
UM patients. This indicated that BAP1 testing is a reasonable
recommendation for hereditary melanoma (34). Additionally,
PTP4A3, the most overexpressed gene ranked by mean
expression value among specific genes of IntSub2, was defined
as a marker of poor prognosis involved in cell migration and
metastatic progression (35). Furthermore, metastasis is a
confident signal of the poor outcome, resulting in death in
most UM cases (36).

3.3.2 Enrichment Analysis Using the DAVID Tool
We next performed the enrichment analysis as described above
with the given subgroup-specific genes. Remarkably, the top
biological processes for IntSub1-specific CNAexp genes included
endonuclease activity and interleukin-17 receptor activity and
transcription factor binding (Supplementary Table S7 and
Supplementary Figure S3); IntSub1-specific METexp genes
were associated with the positive regulation of cell migration,
immune effector process, and positive regulation of hydrolase
activity (Supplementary Table S8 and Supplementary Figure
S4). Conversely, the IntSub2 was characterized most in cellular
cation homeostasis embracing, especially, the regulation of pH
and the regulation of calcium ion in the CNAexp profile
(Supplementary Table S7 and Supplementary Figure S5).
Also, the IntSub2 was distinguished by common abnormalities
of METexp genes related to the regulation of gene expression and
cellular macromolecule biosynthetic process (Supplementary
Table S8 and Supplementary Figure S6).

In this study, we also compared the subgroup-specific genes
from the two lists: mRNA (Supplementary Table S3) andCNAexp
(SupplementaryTable S4)with the FoundationOneCDx (updated
on June 15, 2020) that included 321 genes relating closely to cancer
andparticipating in the process of tumorigenesis. Consequently,we
revealed 22 subgroup-specific mRNA expression genes (bold red
gene names in Supplementary Table S3) and eight subgroup-
specific CNAexp genes (bold red gene names in Supplementary
Table S4) included in the database above. Collectively, our results
reinforced the clinical association between the obtained subgroup-
specific genes and melanoma formation.

3.3.3. Prognostic Factor Identification
We then sought to conduct the age at diagnosis and survival time
analyses in order to define the prognosis factor of two UM
subtypes. The results are shown in Table 2. It is worth
mentioning that 60-year-old or older patients were highly risky
to have UM. In addition, there was a distinct difference in the
average survival day between IntSub1 and IntSub2 patients:
885.2667 and 617.0000 days, respectively. This indicated that
Frontiers in Oncology | www.frontiersin.org 6103
the OS of UM patients could be foreknown dependent partly on
which subgroup a patient is assigned to, to some extent. Besides,
the patients in the IntSub1 were characterized by the average age
of 60.3333 as well as the average OS of 885.2667 days, whereas
those numbers in the IntSub2 were 65.6000 years old and
617.0000 days. Obviously, although the average age of the
patients in the IntSub1 was only 5 years younger than that of
their counterparts in IntSub2, they could live about 9 months
longer than the patients in IntSub2. These results should be
understood that age-related risks and survival rates might be
separate in these integrative subgroups. For a better
understanding, we took into account the risk of the two age
groups in each subgroup comprising the mid-adults (21–65
years) and the older adults (>65 years) from the 80 UM
patients (22–86 years old) in the clinical data. The reason we
chose the threshold of 65 years old was because Figure 4A
illustrates a bimodal age distribution, implying that we had two
groups naturally.

The two age groups, the non-old group and the old group, in
each subgroup were interrogated by the survival analyses.
Observing the results reported in Figure 4B, we revealed a
significant survival difference between the two age groups in
the IntSub2, whereas no statistical significance in patient
outcome between the two age groups was seen in the IntSub1,
indicating that age factor could be a risk factor to predict the
survival time.
4 DISCUSSION AND CONCLUSION

Recently, genomic profiling at multiple levels (e.g., genomics,
epigenomics, transcriptomics) has been boomed (37). The
abundant omics type of data has been easily accessed from
public databases like TCGA facilitating a better understanding
of molecular events behind cancer progression. Additionally,
based on the associations between the three types of omics data
(mRNA, MET, and CNA), we successfully classified breast
cancer into two patient subsets which improved the weak
manifestations of the intrinsic subtypes, especially in
association with the biological phenotype in a prior work.
With these concerns in mind, we have decided to apply this
successful framework to a rare cancer like UM.

Here, we defined the two lists of CNAexp and METexp based
on the correlations of CNA and MET with their mRNA at first.
The resulting lists are leveraged to stratify not only individually
but also integratively the 80 UM patients using the PINSPlus
tool. We revealed the two molecular subgroups (IntSub1 and
IntSub2) along with their subtype-specific genes that help to
uncover significantly different clinical characteristics as well as
TABLE 2 | Average diagnosis ages and survival time of the UM patients in the two integrated subgroups.

IntSub1 IntSub2

Average age (years) 60.3333 65.6000
Average survival time (days) 885.2667 617.0000
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patient outcomes. Importantly, there existed several poorly
prognostic genes (SLCO5A1, BAP1, and PTP4A3) which could
lead to shorter OS of IntSub2 patients. We next recruited the
DAVID tool to perform the enrichment analysis in each
integrated clustering. Notably, the IntSub1 showed the
overexpression of genes enriched significantly in the immune
system process (Supplementary Table S4). Besides, the IntSub2
displayed CNAexp genes known to be key factors in cellular
cation homeostasis and regulation of calcium. These findings are
likely to help oncologists and physicists find out distinct
treatment strategies for the two subgroups.

The finding of these subgroups could be a suggestion in clinical
application for UM treatment. For example, in the IntSub1, the IL-
17 (IL17RE, IL17RD, and IL17RC) played vital roles in immune
responses which stimulated the tumor growth and repressed the
antitumor activity (38). Fabre et al. (39) affirmed in their study that
the IL-17/IL-17R axis could be a novel immunotherapeutic target
relevant to the antitumor purpose. Besides, the dense appearance of
mutated genes is enriched in the cellular cation homeostasis group
(i.e., K+, Ca2+, Na+, and H+). Cell proliferation and apoptosis were
regulated by various cation channels. For instance, K+ channels
participated in the stimulation of the cell end, thus declining the cell
number.Therefore, the changeablepotassiumchannels contributed
to the malignant expression of cancer (40). In the cellular cation
homeostasis gene group, SGK3 played an activation role of
potassium channels (41). Moreover, several prior studies showed
the promising therapy of K+ channel blocking in cancer treatment.
This enhanced the consideration of using drugs inhibiting the
potassium channels as chemotherapy for UM patients. As an
example, astemizole was repositioned in its use by blocking the
EAG1 channel which was one of themajor potassium channels and
brought remarkable efficacy for cancer cell growth (42).
Alternatively, the small molecule which was able to block, inhibit,
or regulate the calcium ion transport was reported to be a potential
anticancer drug, such as brilliant blue G, oxidized ATP for
melanoma cases (43). Taken together, targeted therapies may be
efficient for the IntSub1 subgroup, while the combination of the
cation channel blocker and chemotherapeutic drugs has the
potential for IntSub2 patients.

In addition, we saw that the baselines of both IntSub1 and
IntSub2 subgroups varied depending potentially on several clinical
Frontiers in Oncology | www.frontiersin.org 7104
features being vital factors for prognosis. Thus, the survival
comparison between the two subgroups was further interrogated
by utilizing a multivariate Cox regression model in terms of age
groups, tumor stages, gender, and histology cell type comparisons.
The analysis results are shown in Supplementary Table S8. As a
consequence, old age groups, tumor stage IV, andhistology cell type
comparison between spindle cell and predominant mixed spindle
cellwere consideredas significantly independentprognostic factors.

Furthermore, some powerful predictive genes (exceptBAP1) for
prognosis used in clinical routine in UM are not identified by our
strategy. This can be regarded as a potential restriction of our work
when deliberately leveraging the power of integration of multi-
omics data. The following are several factors giving rise to the poor
performance of our strategy. The first factor can be the “curse of
dimensionality” being a typical problem when using multimodal
data. Another factor can be possibly due to the different nature
of data types. Most of the statistical tools only work well on
continuous data, whereas the minority of them do well on
discrete data. In this study, we have combined the two types.

In conclusion, multi-omics data integration contributes to
dealing with the bottleneck in getting insights into complex
multi-mechanism diseases like cancer in general and UM in
particular. We determined the two clinically and molecularly
distinct integrative subgroups, IntSub1 and IntSub2, which not
only can be a potential alternative classification system in the
future but also give more effective suggestions for UM treatment.
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Cancer is an umbrella term that includes a range of disorders, from those that are fast-
growing and lethal to indolent lesions with low or delayed potential for progression to
death. The treatment options, as well as treatment success, are highly dependent on the
correct subtyping of individual patients. With the advancement of high-throughput
platforms, we have the opportunity to differentiate among cancer subtypes from a
holistic perspective that takes into consideration phenomena at different molecular
levels (mRNA, methylation, etc.). This demands powerful integrative methods to
leverage large multi-omics datasets for a better subtyping. Here we introduce
Subtyping Multi-omics using a Randomized Transformation (SMRT), a new method for
multi-omics integration and cancer subtyping. SMRT offers the following advantages over
existing approaches: (i) the scalable analysis pipeline allows researchers to integrate multi-
omics data and analyze hundreds of thousands of samples in minutes, (ii) the ability to
integrate data types with different numbers of patients, (iii) the ability to analyze un-
matched data of different types, and (iv) the ability to offer users a convenient data analysis
pipeline through a web application. We also improve the efficiency of our ensemble-
based, perturbation clustering to support analysis on machines with memory constraints.
In an extensive analysis, we compare SMRT with eight state-of-the-art subtyping methods
using 37 TCGA and two METABRIC datasets comprising a total of almost 12,000 patient
samples from 28 different types of cancer. We also performed a number of simulation
studies. We demonstrate that SMRT outperforms other methods in identifying subtypes
with significantly different survival profiles. In addition, SMRT is extremely fast, being able
to analyze hundreds of thousands of samples in minutes. The web application is available
at http://SMRT.tinnguyen-lab.com. The R package will be deposited to CRAN as part of
our PINSPlus software suite.
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1 INTRODUCTION

Since cancer is a heterogeneous disease, the correct identification
of cancer subtypes is essential for accurate prognosis and
improved treatment. With the advancement of high-throughput
platforms, subtyping methods have shifted toward multi-omics
integration in order to differentiate between subtypes from a
holistic perspective that takes into consideration phenomena at
different molecular levels (mRNA, methylation, etc.). Vast
amounts of molecular data have accumulated in public
repositories, including The Cancer Genome Atlas datasets
(TCGA) (1), Genomic Data Commons Data Portal (GDC) (2),
Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) (3), and UK Biobank (4). This demands powerful
yet fast analysis methods to leverage large multi-omics datasets for
a more accurate subtype discovery.

Current approaches for multi-omics integration and cancer
subtyping can be categorized into four categories based on their
integration strategy. The first strategy is to concatenate different
types of data into a single matrix and then partition the patients
using the concatenated data. For example, users can normalize
and concatenate multiple data types (e.g., mRNA, methylation,
miRNA, etc.) into one single matrix and then apply well-known
methods developed for single-omics analysis, such as
ConsensusClusterPlus (5), to determine the subtypes. Such
approaches are simple and computationally efficient. However,
they do not account for data heterogeneity, e.g., different data
types might have different scales, dimensions and might require
different normalization procedures.

The second strategy is to model the multi-omics data as a
mixture of statistical models. Methods in this category include
LRACluster (6), rMKL-LPP (7), iClusterPlus (8), iClusterBayes
(9), OTRIMLE (10), SBC (11), BCC (12), MID (13), JIVE (14),
MCIA (15), moCluster (16), and sMBPLS (17). These methods
typically maximize a joint likelihood function to determine the
model parameters and the subtypes. Though statistically sound,
these methods need to estimate a large number of parameters
that often lead to overfitting and high computational complexity.
Therefore, an added step of gene filtering or data transformation
is often applied before the statistical analysis.

The third strategy is to project all data types into a joint latent
space. A common technique used for this strategy is non-
negative matrix factorization. Methods in this category include
MvNMF (18), MultiNMF (19), IntNMF (20), iNMF (21),
jointNMF (22). Another method is MCCA (23) that performs
correlation analysis and then concatenates the correlation
matrices into one single matrix. After projecting the data onto
a joint space, cluster analysis is performed to determine the final
subtypes. Similar to the second strategy, methods in this category
often have excessive computational complexity and cannot be
applied on the whole genome-scale. Therefore, gene filtering is a
necessary step in the data processing.

The fourth strategy is also called similarity-based strategy.
Methods in this category include SNF (24), PSDF (25), PFA (26),
IS-Kmeans (27), NEMO (28), PINS (29, 30), SCFA (31), and
CIMLR (32). These methods first compute a pair-wise
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connectivity matrix for each data type, that represents the
similarity/connectivity between patients. The connectivity
matrices are then fused onto a single similarity matrix that can
be used for the final clustering. Although powerful, the similarity
matrix requires a quadratic memory space. This is problematic
when the number of samples increases. As we will demonstrate
in our analysis, these methods cannot analyze data with tens of
thousands of samples.

Here we introduce Subtyping Multi-omics using a
Randomized Transformation (SMRT), a new method for
cancer subtyping and big data analysis. This method offers
important advantages over existing software: (i) it allows
researchers to analyze hundreds of thousands of samples in
minutes, (ii) it can integrate data types with different numbers
of patients, (iii) the ability to integrate and analyze un-matched
data of different types, and (iv) the web application offers a
convenient data analysis pipeline. We also improve the efficiency
of our ensemble-based, perturbation clustering to support
analysis on machines with memory constraints. Our extensive
analysis on 37 TCGA and two METABRIC datasets shows that
SMRT is more accurate than state-of-the-art subtyping methods
in identifying subtypes with significantly different survival
profiles. In addition, our simulations with big data show that
SMRT is fast and many-fold more scalable than existing
methods. Specifically, SMRT is able to analyze hundreds of
thousands of samples in minutes.
2 MATERIALS AND METHODS

2.1 The SMRT Pipeline
The overall workflow of SMRT is presented in Figure 1. This
workflow offers two different analysis pipelines for big data and
data with a moderate size. In the first case, given a multi-omics
dataset with a moderate size (e.g., less than 2,000 samples),
SMRT performs subtyping as follows. It first projects each data
type onto a lower-dimensional space using randomized singular
value decomposition (RSVD) and then performs a perturbation
clustering (PINS) (29, 30) to determine the subtypes within each
data level. It also builds a pair-wise connectivity matrix for each
data type that represents the connectivity between patients red
(See Supplementary Section 5 for the differences between SMRT
and PINS). Next, the method combines the connectivity matrices
into a single similarity matrix and then determines the final
subtypes using an ensemble of multiple similarity-based
methods. In the second case, when the data has more than
2,000 samples, SMRT splits the data into two different sets of
patients: a sampled set and a propagated set. It then performs the
subtyping on the sampled set and then assigns the patients from
the propagated set to the identified subtypes. Note that the
number 2,000 is chosen to balance between the accuracy and
time complexity of the method. This moderate number of
samples allows SMRT to perform a fast and accurate analysis
in limited memory (see Supplementary Section 3). Our
simulation studies show that the results do not change when
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we vary this number. However, users are free to change this
parameter when using the R package. Below is the description of
each of these analysis modules.

2.2 Dimension Reduction Using
Randomized Singular Value
Decomposition
The goal of this step is to project the multi-omics data into a
lower-dimensional space using randomized singular value
decomposition (RSVD). For data with hundreds of thousands
of dimensions (e.g., Illumina 450k), this step substantially
reduces the required computational power while maintaining
the clustering accuracy. Let us denote X ∈ Rn×m as the input
matrix, where n is the number of samples/patients, and m is the
number of genes/features. Briefly, the RSVD method starts by
generating a random projection matrix P ∈ Rm×r from a
standard normal distribution where r ≪ m. It then projects
X∈Rn×m to the column space of P to get a matrix Z such that Z =
XP. Due to the random projection, Z and X will have
approximately the same dominant columns (features). Now,
we can obtain the orthogonalized matrix Q of Z by using QR
decomposition, where Q has the same size as Z of n × r. In the
next step, the method projects X into a smaller space to get a
matrix Y ∈ Rr×m such that Y = Q^T *X and then computes
singular value decomposition (SVD) of Y as Y = USV* using the
traditional SVD method (33). U and V matrices only keep at
most r eigenvectors so the size of U is r × r and the size of V* is
m × r. Finally, the low rank rotated data of the original matrix X
can be computed using: X′ = XV*.

In practice, RSVD is faster and requires less memory than the
traditional SVD. To further speed up our approach, we
implement a parallel version of RSVD that can efficiently
utilize multiple cores available in modern processors. Note that
when the input data is large (e.g., more than 2,000 samples), we
do not perform RSVD on the whole input. Instead, we split the
data into two sets of patients: a sampled set and a propagated set.
We first perform RSVD on the sampled set, and then project the
original data matrix (both sampled and propagated set) to the
subspace of the sampled set by multiplying it with the rotation
matrix obtained from the RSVD for the sampled set. This
implementation allows us to perform SVD in at most a few
seconds, even for datasets with hundreds of thousands of
samples and features.

The output of this module is multiple matrices – one per data
type. In each matrix, the rows represent patients while the
columns represent the principal components (PCA). These
matrices will serve as input of the next module: perturbation
clustering that will be described in the next section. This will
compute the perturbed connectivity matrices and determine
the subtypes.

2.3 Subtype Discovery Using One
Data Type
Given a single data type, SMRT utilizes our previously developed
perturbation clustering (PINS) (29, 30) to partition the data.
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Briefly, we perturb the data (by adding Gaussian noise) and
repeatedly partition the patients (using k-means by default). For
each partitioning, we build a pair-wise connectivity matrix of 0’s
and 1’s in which 1 means that the two patients belong to the same
cluster, and 0 otherwise. By perturbing and clustering the data
multiple times, we obtain multiple connectivity matrices that
represent how stable the connectivity between patient pairs.
Finally, we choose the partitioning that is the most stable to
data perturbation. This algorithm automatically determines the
number of clusters and patient subgroups.

When the number of samples is large, the perturbation
clustering becomes slow and memory-inefficient. The
perturbation clustering algorithm relies on the pair-wise
connectivity of size n × n for clustering (n is the number of
patients). The time and space complexity (running time and
memory usage) of this method increase quadratically when the
number of samples increases. Therefore, when the number of
samples is large (by default setting, when n > 2,000), we perform
a sub-sampling process over the original data to obtain a subset
of 2,000 patients/samples. Next, we transform the data into a
lower-dimensional space, and use the perturbation clustering to
partition these patients. After this step, each of the 2,000 patients
has a subtype. Let us refer to this selected set of 2,000 patients as
the sampled set. The next step is to determine the subtypes for the
rest of the patients, called the propagated set. For this purpose, we
use the fast k-nearest neighbor searching algorithms (FKNN)
algorithm (34, 35) to assign each patient from the propagated set
to one of the subtypes in the sampled set. Briefly, the FKNN
method calculates the distance between the new patient to the k
nearest patients in the sampled set. Next, the FKNN method
classifies the new patient using vote counting (i.e., it chooses the
subtype with the most patients among the k neighbors). By
default, k is determined using the Elbow method on the sampled
set using 5-fold cross-validation. The sampled set is divided
randomly into 5 equally smaller sets. In each round, the
combination of 4 sets is used as the training set, and the other
is used as the validation set for the KNN algorithm with k ranges
from 5 to a maximum of 50. The k that yields the lowest average
classification error rate will be used as the optimal k. However,
users are also free to modify the value of this parameter.
Supplementary Section 6 provides more details on the
performance of using the Elbow method versus using a fixed
number of k.

One note of caution is that the number of dimensions of the
data can be high, thus slowing the process of distance calculation
and neighbor finding. Therefore, instead of calculating the
distance between patients in the original space, we calculate
the distance between patients in the principal component (PC)
space of the sampled set. As described above, we project the
original data matrix (both sampled and propagated set) to the
subspace of the sampled set by multiplying it with the projection
matrix obtained from the RSVD for the sampled set. After this
transformation, the pair-wise distance between patients will be
calculated in the new space with a much lower number
of dimensions.
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2.4 Subtype Discovery Using
Multi-Omics Data
When the number of samples is small (by default, when n ≤ 2,000),
we utilize an ensemble strategy to partition the patients. The
method first clusters each data type (using the algorithm described
in Section 2.3) and constructs the perturbed connectivity matrices.
It thenmerges the connectivity matrices of all data types to a single
similarity matrix that represents the similarity between patients
across all data types by averaging the connectivity values for each
pair of samples. Next, to cluster the similarity matrix, it uses
several similarity-based algorithms, including hierarchical
clustering, partitioning around medoids (36), and dynamic tree
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cut (37) and then chooses the partitioning that agrees the most
with the partitioning of individual data types. This ensemble
strategy ensures that the identified subtypes are consistent across
all data types and are robust against the choice of
clustering algorithms.

When the number of samples is large (by default, when n >
2,000), we perform a sub-sampling and classifying procedure
that is similar to the algorithm described in the Section 2.3. The
difference here is that multiple data types are involved. First, we
randomly select 2,000 samples/patients and then apply the multi-
omics algorithm described above to partition the selected
samples. We refer to this selected set of 2,000 patients as the
A

B

C

FIGURE 1 | The overall workflow of SMRT. (A) Analysis pipeline for data with moderate size. First, SMRT projects each data type to a lower-dimensional space
using randomized singular value decomposition (RSVD). Next, it performs a perturbation clustering to determine the subtypes, and to build a pair-wise patient
connectivity for each data type. Finally, it merges the connectivity matrices onto a single similarity matrix and then determines the final subtypes using a cluster
ensemble. The output is the clustering results for each data type, as well as the results after the multi-omics data integration. (B) Analysis pipeline for big data. SMRT
first splits the data into two different sets: a sampled and a propagated set. The method first determines the subtypes using the sampled set and then assigns the
patients from the propagated set to subtypes identified using the sampled set. The sampled data is partitioned using the pipeline described assignments for samples
in the propagated set are determined by averaging the probabilities from all k-NN models. (C) An example of the subtypes discovered by the SMRT web service for
the KIRC dataset. The left panel shows a preview of the uploaded data. The middle panel shows the visualization of the discoveredSMRT web service for the KIRC
dataset. The left panel shows a preview of the uploaded data. The middle panel shows the visualization of the discovered subtypes and export functions. The right
panel shows patient connectivity matrices for each data type.
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sampled set and the remaining patients as the propagated set. The
next task is to determine the subtypes of patients in the
propagated set. Given a patient in the propagated set, we
perform the FKNN procedure for each data type to obtain the
probability that it belongs to each subtype using the labels
obtained from the nearest neighbors. The final probabilities are
calculated by averaging the probabilities across all data types.
Finally, we classify the patient to the subtype that has the highest
probability. This strategy is also applied when integrating multi-
omics data whose each data type has different number of
samples. Here the sampled set will be the set of patients (by
default, maximum 2,000 patients) that have data in all data types,
and the remaining patients will be in the propagated set.

2.5 The SMRT Web Interface
The web application is publicly available at http://SMRT.
tinnguyen-lab.com. The website is built using the R Shiny
framework (38). Shiny is an R package that allows developers
to directly build an interactive web interface using the R
programming language. We use the web interface to forward
data and requests from users to the new SMRT method to
perform data integration and clustering. Because of the
efficiency of the SMRT method, the website is able to return
the results in minutes even for datasets with hundreds of
thousands of samples.

Analysis using the web application is simple and
straightforward. Users can either upload expression data in .csv
files or a single .rds file using the upload function on the left
panel. Each data type is presented as a matrix in which rows
represent samples and columns represent genes/features. SMRT
can automatically determine the number of subtypes. It does not
require any extra configuration or parameters to perform the
analysis. See Supplementary Section 4 and Figures S6, S7 for a
more detailed description of the web application.
3 RESULTS

To assess the performance of SMRT, we perform an extensive
analysis using 39 cancer datasets and simulated data. First, we
demonstrate that SMRT is able to identify cancer subtypes with
significantly different survival profiles. Second, we provide an in-
depth analysis for a Glioma dataset. Finally, we illustrate the
scalability of SMRT by analyzing simulated datasets with
hundreds of thousands of samples. We also provide a
comparative analysis between subtypes discovered by SMRT and
those of PAM50 classifier on three Breast cancer datasets (TCGA-
BRCA, METABRIC_Discovery, and METABRIC_Validation) in
Supplementary Section 7.

3.1 Experimental Studies Using 39
Cancer Datasets
In this article, we analyze 37 TCGA and 2 METABRIC datasets.
For TCGA datasets, we downloaded the matched mRNA, DNA
methylation, and miRNA expression data from the TCGA data
portal. For the METABRIC datasets, we were able to obtain
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matched mRNA and copy number variation data from the
European Genome-Phenome Archive. We also downloaded
clinical data and survival information of each patient, which
will be used to assess the performance of the subtyping methods.
Supplementary Tables 1, 2 provide more details of the datasets.

We compare SMRT with eight state-of-the-art subtyping
algorithms: SNF (24), CIMLR (32), NEMO (28), moCluster
(16), iClusterBayes (9), LRACluster (6), MCCA (23), and
IntNMF (20). The following packages were used in our
comparison: SNFtool v2.3.0 on CRAN for SNF, CIMLR v1.0.0
at https://github.com/danro9685/CIMLR for CIMLR, NEMO
v0.1.0 at https://github.com/Shamir-Lab/NEMO for NEMO,
mogsa v1.16.0 on Bioconductor for moCluster, iClusterPlus on
Bioconductor v1.18.0 for iClusterBayes, LRACluster v1.18.0 at
http://bioinfo.au.tsinghua.edu.cn/member/jgu/lracluster/ for
LRACluster, PMA v1.2.1 on CRAN for MCCA, and IntNMF
on CRAN v1.2.0 for IntNMF. When the number of dimensions
exceeded 2,000, we used only the top 2,000 variables with the
largest variance for iClusterBayes, IntNMF, and MCCA, because
these methods cannot analyze the data on the whole-genome
scale. For all methods, we used default parameters and let all
methods automatically determine the optimal number of
clusters. For MCCA, which is not a clustering method itself,
we follow the implementation at https://github.com/Shamir-
Lab/Multi-Omics-Cancer-Benchmark for cluster analysis.

Using each method, we partition the patients in each dataset,
and then assess the survival difference of the discovered patient
groups using Cox regression (39). Overall survival data is used for
TCGA datasets and Disease-free survival data is used for
METABRIC datasets. Table 1 shows the Cox p-values obtained
from each dataset and method (See Supplementary Section 9,
Figures S10–S17 for the Kaplan-Meier survival curves for each
dataset). There are seven datasets in which no method is able to
identify subtypes with significant Cox p-values. For the remaining
32 datasets, SMRT has significant p-values in 28 datasets, whereas
NEMO has significant p-values in 19 datasets and all other
methods have significant p-values in 15 datasets or less. SMRT
has the most significant p-values in 12 datasets out of those 28
datasets, while SNF, CIMLR, NEMO, moCluster, iClusterBayes,
LRACluster, MCCA, and IntNMF have the most significant p-
values in 0, 3, 8, 4, 2, 0, 1, and 2 datasets, respectively.

Figure 2 shows the distributions of the Cox p-values in the
-log10 scale. Overall, the median -log10 p-values of SMRT is
close to 2 (i.e., median p-value of 0.01) whereas the median
-log10 p-value of the second-best method (NEMO) is close to 1
(i.e., median p-value of 0.1). A Wilcoxon test also confirms that
the p-values of SMRT are significantly smaller than the p-values
obtained from other methods (p = 0.0002 using the one-tailed
Wilcoxon test).

The running time of each method is shown in Table 2. The
top 39 row shows the running time of each method in each
dataset while the last row shows the average running time. On
average, SMRT, SNF, NEMO, and MCCA are fast and able to
finish each analysis in less than a minute. The remaining
methods are slower, especially iClusterBayes and IntNMF,
although their analysis is limited to only 2,000 most varied genes.
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To reveal the contribution of each data type, we used SMRT to
partition the patients using each of the data types independently.
Next, we calculated the Cox p-values obtained from each data type
and compared them with those obtained from subtyping the
multi-omics data. Figure 3 shows the distribution of -log10 p-
values of subtypes by each data type for 37 TCGA datasets. The p-
values obtained from multi-omics data are substantially more
significant than those obtained from individual data types. The
median p-value obtained from multi-omics data is close to 0.01
(-log10 values are close to 2) while the median p-values of each
data type are even higher than 0.1 (-log10 values are close to 1).
This demonstrates that SMRT is able to exploit the
complementary information available in each data type to
determine subtypes with significant survival differences.
Supplementary Section 10 and Table S15 provide more details
on the contribution of individual data types in each dataset.
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Next, we investigated the association between discovered
subtypes and clinical variables. We performed our analysis on
gender, age, cancer stage, and tumor grade, which are available
for at least 15 datasets. We perform the following analyses:
(1) Fisher’s exact test to assess the significance of the
association between gender (male and female) and the
discovered subtypes; (2) ANOVA to assess the age difference
between discovered subtypes; and finally (3) calculate the
agreement between the discovered subtypes and known cancer
stages and tumor grades using Normalized Mutual Information
(NMI). The distributions of –log10 of p-values for gender and
age are shown in Supplementary Figure S8 (see Supplementary
Tables 11-12 for the exact p-values). With the exception of
NEMO and iClusterBayes, the clustering methods do not
generally yield differences in gender or age in their clustering.
For gender, iClusterBayes has significant p-values in 17 out of 31
TABLE 1 | Cox p-values of subtypes discovered by SNF, CIMLR, NEMO, moCluster, iClusterBayes (iCB), LRACluster (LRA), MCCA, IntNMF, and SMRT for 37 TCGA
datasets and two METABRIC breast cancer datasets (M_Discovery and M_Validation).

Dataset SNF CIMLR NEMO moCluster iCB LRA MCCA IntNMF SMRT

1. ACC 4.34e-05 3.96e-01 2.07e-04 2.63e-09 4.26e-03 2.46e-03 1.24e-08 6.11e-03 1.33e-02
2. BLCA 1.09e-01 3.09e-01 6.74e-02 3.13e-01 4.95e-01 7.42e-02 3.57e-01 3.43e-02 1.95e-02
3. BRCA 1.19e-01 4.95e-03 2.93e-02 2.58e-01 3.07e-02 3.90e-01 3.80e-04 2.53e-01 1.96e-03
4. CESC 5.10e-01 1.90e-01 3.33e-01 1.81e-01 1.69e-01 2.90e-01 6.69e-01 8.89e-01 2.95e-02
5. CHOL 5.72e-01 3.35e-01 3.02e-01 5.17e-01 6.51e-01 6.93e-01 4.50e-01 9.63e-01 3.01e-02
6. COAD 1.28e-01 2.52e-01 6.76e-01 3.73e-01 6.47e-01 5.05e-01 6.20e-01 5.35e-01 1.44e-03
7. COADREAD 6.60e-01 1.35e-01 8.11e-01 4.72e-02 2.55e-01 7.47e-01 7.87e-01 4.76e-01 2.89e-03
8. DLBC 7.55e-01 7.44e-01 3.53e-01 9.82e-01 7.42e-01 8.94e-01 8.15e-01 7.28e-01 4.74e-01
9. ESCA 3.92e-01 3.91e-01 3.92e-01 5.01e-01 3.75e-01 1.71e-01 2.25e-01 4.90e-01 3.30e-01
10. GBM 2.08e-02 8.11e-02 1.49e-04 5.12e-01 1.24e-01 5.37e-01 3.69e-01 7.04e-01 8.75e-05
11. GBMLGG 4.75e-14 6.36e-10 2.31e-17 6.46e-16 8.66e-12 8.04e-14 3.83e-07 1.25e-10 7.48e-17
12. HNSC 3.66e-01 6.19e-01 7.41e-05 2.44e-01 1.42e-01 3.27e-01 9.88e-01 1.55e-01 4.56e-02
13. KICH 7.01e-01 4.63e-01 8.14e-14 0.00e+00 4.03e-01 2.10e-01 8.08e-01 6.61e-01 2.77e-02
14. KIPAN 2.11e-07 9.84e-05 4.81e-08 4.04e-13 2.16e-08 4.21e-08 3.82e-03 4.36e-04 1.16e-11
15. KIRC 6.91e-01 9.79e-01 2.46e-01 1.76e-01 6.70e-01 1.76e-01 1.32e-01 7.29e-01 5.98e-05
16. KIRP 5.33e-03 1.85e-02 8.42e-18 1.00e+00 4.60e-02 5.97e-03 2.49e-02 1.93e-01 1.15e-09
17. LAML 1.73e-03 1.24e-02 5.14e-04 7.00e-01 9.38e-01 1.19e-01 1.75e-02 7.78e-02 8.72e-04
18. LGG 1.60e-14 7.14e-15 1.17e-17 3.52e-01 6.08e-03 1.01e-01 1.16e-09 4.04e-02 4.26e-15
19. LIHC 3.34e-01 1.28e-01 1.09e-03 8.25e-01 2.57e-01 2.93e-01 5.04e-01 8.80e-01 7.04e-01
20. LUAD 5.01e-01 3.73e-01 7.51e-03 5.92e-01 2.55e-02 1.49e-01 2.08e-01 8.21e-03 4.66e-01
21. LUSC 8.71e-02 3.91e-02 1.32e-01 7.04e-01 5.11e-01 9.05e-01 2.88e-01 6.75e-01 8.37e-03
22. MESO 4.24e-04 1.72e-02 7.94e-04 7.29e-02 8.66e-05 2.77e-01 5.53e-04 3.85e-04 7.34e-04
23. OV 4.45e-01 5.88e-01 6.95e-01 9.73e-01 4.35e-01 6.47e-01 7.78e-01 9.60e-01 6.81e-01
24. PAAD 7.36e-04 2.03e-03 1.44e-03 2.96e-03 4.19e-03 4.86e-04 3.18e-01 3.45e-02 2.73e-04
25. PCPG 3.32e-01 4.57e-01 2.57e-01 3.11e-01 3.39e-01 1.41e-01 6.63e-01 7.67e-01 8.66e-01
26. PRAD 4.75e-01 6.95e-01 6.61e-01 9.56e-01 3.73e-01 4.97e-01 7.07e-01 3.90e-01 3.49e-01
27. READ 7.62e-01 3.35e-01 6.27e-01 1.00e+00 5.68e-01 2.72e-01 3.53e-01 3.41e-01 2.35e-02
28. SARC 4.37e-02 5.58e-02 7.23e-02 3.37e-02 3.07e-01 6.36e-01 9.54e-02 2.83e-01 3.03e-02
29. SKCM 4.78e-01 7.54e-05 6.37e-04 4.30e-03 4.67e-03 3.92e-02 1.90e-01 1.48e-03 1.05e-01
30. STAD 4.07e-02 5.11e-01 1.02e-01 4.83e-01 6.25e-01 3.08e-01 3.16e-01 5.55e-01 1.86e-04
31. STES 1.57e-01 3.41e-02 1.18e-01 4.97e-01 4.13e-03 5.92e-01 6.35e-02 8.45e-02 1.51e-02
32. TGCT 8.38e-01 8.39e-01 8.38e-01 5.89e-01 2.96e-01 3.74e-01 5.65e-01 5.41e-01 5.31e-01
33. THCA 6.20e-01 8.62e-03 3.87e-02 5.11e-01 7.42e-01 5.51e-01 3.87e-01 1.75e-02 8.82e-02
34. THYM 9.69e-02 1.15e-01 7.11e-02 8.89e-05 7.06e-02 5.96e-01 5.47e-02 1.38e-01 1.33e-02
35. UCEC 1.81e-02 1.70e-01 1.64e-01 6.88e-01 1.65e-01 8.61e-01 1.58e-02 3.02e-03 4.83e-03
36. UCS 8.59e-01 3.59e-01 7.16e-01 1.68e-01 8.76e-01 8.34e-01 5.85e-01 6.27e-01 4.26e-01
37. UVM 1.67e-04 5.80e-04 1.67e-04 5.50e-01 9.19e-02 4.92e-03 2.06e-04 2.20e-05 6.43e-03
38. M_Discovery 2.26e-05 3.15e-12 1.16e-11 2.87e-01 9.16e-01 4.32e-06 4.59e-10 2.01e-07 3.25e-10
39. M_Validation 1.04e-02 4.68e-06 2.75e-07 1.57e-01 1.97e-01 1.28e-01 7.46e-04 9.16e-04 2.66e-05
#Significant 15 15 19 9 11 8 12 14 28
O
ctober 2021 | Vo
lume 11 | Articl
Cells highlighted in yellow have significant Cox p-values at the threshold of 5%. Cells highlighted in green have the most significant Cox p-value in their respective rows. No methods were
able to yield subtypes with significantly different survival in 7 data sets (shown with red fonts). SMRT yields subtypes with significantly different survival profiles in 28 out of the 39 datasets.
In 12 such datasets, SMRT also p-values more significant than any of those provided by the other eight methods.
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FIGURE 2 | Distributions of Cox p-values (in –log10 scale, higher is better) of the subtypes discovered from 37 TCGA and 2 METABRIC datasets. The red dashed
line shows the 5% significance level. Note that all existing methods do not reach this level of significance on average (median). Overall, the Cox p-values obtained
from SMRT are substantially more significant than those of other methods (p = 0.0002 using the one-tailed Wilcoxon test).
TABLE 2 | Running time (in minutes) of SNF, CIMLR, NEMO, moCluster, iClusterBayes (iCB), LRACluster (LRA), MCCA, IntNMF, and SMRT for 37 TCGA and two
METABRIC datasets.

Dataset Size SNF CIMLR NEMO moCluster iCB LRA MCCA IntNMF SMRT

1. ACC 79 0.40 1.14 0.05 0.97 9.09 5.58 0.50 6.64 0.25
2. BLCA 404 0.73 3.71 0.28 7.85 29.57 34.92 0.83 21.94 1.30
3. BRCA 622 1.61 9.44 0.75 24.09 56.39 102.13 1.61 40.07 1.53
4. CESC 304 1.01 3.23 0.28 8.78 30.49 50.41 1.20 20.66 0.90
5. CHOL 36 0.33 0.60 0.02 0.38 5.23 2.02 0.53 4.77 0.10
6. COAD 220 0.93 1.84 0.20 5.28 23.77 30.81 1.07 16.44 0.67
7. COADREAD 294 0.98 4.41 0.30 9.14 29.81 40.10 1.17 21.07 0.96
8. DLBC 47 0.37 0.61 0.03 0.52 6.25 2.66 0.44 4.90 0.16
9. ESCA 183 0.75 2.44 0.14 4.45 16.91 27.54 0.84 12.93 1.20
10. GBM 273 0.05 2.15 0.02 0.46 20.30 1.02 0.19 15.03 0.91
11. GBMLGG 510 0.89 5.33 0.40 11.61 44.30 41.47 0.97 31.08 1.43
12. HNSC 228 0.84 2.24 0.18 5.41 16.32 32.22 1.06 13.51 0.77
13. KICH 65 0.37 1.13 0.03 0.70 5.93 3.47 0.47 4.93 0.33
14. KIPAN 654 1.14 13.77 0.49 14.90 41.54 63.67 1.16 31.39 3.51
15. KIRC 124 0.04 1.14 0.01 0.15 8.53 0.65 0.09 7.76 0.16
16. KIRP 271 0.61 3.93 0.15 3.96 16.85 18.91 0.70 15.96 0.94
17. LAML 164 0.04 1.57 0.01 0.20 10.84 0.68 0.10 8.13 0.13
18. LGG 510 1.29 7.60 0.60 13.95 33.18 83.92 1.37 28.77 1.76
19. LIHC 366 0.80 3.81 0.28 6.54 23.33 34.19 0.94 20.12 0.84
20. LUAD 428 0.81 4.42 0.28 7.95 34.64 39.17 1.02 29.77 1.26
21. LUSC 110 0.04 1.15 0.00 0.11 7.83 0.46 0.09 6.40 0.12
22. MESO 86 0.42 0.85 0.03 0.88 7.67 5.40 0.60 6.98 0.26
23. OV 286 0.36 2.37 0.10 3.14 19.37 16.24 0.53 16.99 0.72
24. PAAD 178 0.46 1.96 0.08 2.23 11.72 12.25 0.67 8.86 0.98
25. PCPG 179 0.55 2.35 0.12 2.52 15.98 14.51 0.64 11.79 0.52
26. PRAD 493 1.51 6.13 0.54 12.52 33.67 79.05 1.29 32.18 1.75
27. READ 74 0.39 0.86 0.03 0.64 6.32 4.24 0.59 5.88 0.22
28. SARC 257 0.54 3.07 0.14 3.29 18.00 17.82 0.63 12.64 1.40
29. SKCM 439 0.83 6.51 0.34 7.71 27.58 35.17 0.78 23.61 1.76
30. STAD 362 0.87 5.07 0.33 5.77 24.99 34.14 0.89 18.61 1.07
31. STES 545 1.55 8.79 0.53 14.11 37.81 88.00 1.22 28.85 1.85
32. TGCT 134 0.85 1.79 0.10 2.01 10.61 18.49 0.93 7.01 0.41
33. THCA 499 1.06 5.90 0.46 8.85 33.01 53.59 0.92 25.35 1.66
34. THYM 119 0.49 0.97 0.07 1.18 8.78 9.76 0.52 7.16 0.28
35. UCEC 234 1.04 2.57 0.19 4.60 19.61 34.42 1.08 14.78 0.88
36. UCS 56 0.47 0.64 0.04 0.49 6.18 3.92 0.62 4.58 0.19
37. UVM 80 0.41 0.73 0.04 0.61 7.91 5.27 0.60 6.25 0.24
38. M_Discovery 997 0.38 17.96 0.21 7.10 60.24 16.17 0.38 49.62 2.42
39. M_Validation 983 0.37 10.14 0.19 6.85 58.11 17.95 0.40 50.87 2.28
Mean 305 0.68 3.96 0.21 5.43 22.53 27.75 0.76 17.80 0.98
Frontiers in Oncology |
 www.frontier
sin.org
 7113
 Octob
er 2021 | Volu
me 11 | Article 7
25133

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Nguyen et al. SMRT Cancer Subtyping
datasets. For age, NEMO and iClusterBayes have significant p-
values in 17 and 15 out of 29 datasets, respectively. This result
demonstrates that there are meaningful and survival-related
molecular signatures inside the data to be discovered, and the
methods do not simply separate patients based on some visible
clinical variables such as gender or age. Supplementary Figure
S9 and Supplementary Tables 13, 14 show the NMI values that
represent the agreement between the discovered subtypes and
known cancer stages and tumor grades. For the cancer stage, the
median NMI values of SMRT and NEMO are comparable and
are higher than the rest. For tumor grade, SMRT has the highest
median NMI. However, for both cancer stage and tumor grade,
the NMI values of all methods are low, meaning that there is a
Frontiers in Oncology | www.frontiersin.org 8114
low agreement between the known stages/grades and the
discovered subtypes using any of the subtyping methods. In
conclusion, the discovered subtypes from SMRT and other
subtyping methods have little agreement with clinical variables
like gender, age, cancer stage, and tumor grade.

3.2 Case Study of the GBMLGG Dataset
Here we perform an in-depth analysis for the GBMLGG
(Glioma). Figure 4A shows the Kaplan–Meier survival analysis
of the discovered subtypes. For this dataset, SMRT discovers
three subtypes in which one subtype (group 2) has a very low
survival rate where at year 3, the survival probability of patients
this group is only at 26% while that number for the patients in
A B

FIGURE 4 | (A) Kaplan–Meier survival analysis of the GBMLGG dataset. The horizontal axis represents the time (days) while the vertical axis represents the estimated
survival probability. (B) Number of patients in each group for each mutated gene in GBMLGG dataset. The horizontal axis shows the count for other subtypes with high
survival rates, and the vertical axis represents the count in the subtype with low survival rates.
FIGURE 3 | Distribution of -log10 Cox p-values for each data type of the 37 TCGA datasets. The horizontal red line indicates the significant threshold of p-value =
0.05. The p-values of subtypes discovered using multi-omics integration are substantially more significant than those obtained from individual data types (mRNA,
methylation, miRNA).
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the other two subtypes (groups 1 and 3) is 84%. We also perform
a variant analysis for the dataset in order to find mutations that
highly occur in the short-term-survival patient group (group 2)
but not in the long-term-survival patient group (groups 1 and 3)
and vice versa. Figure 4B shows the mutations of each group in
which each point is a gene, and its coordinates represent the
number of patients that have that mutation in the corresponding
group. In principle, we want to investigate the mutated genes in
the top left or bottom right of the figure. In this figure, we can
easily identify four marker genes that associate with GBMLGG
disease: IDH1, TP53, PTEN, and EGFR. Among those, IDH
mutant (bottom-right) is known as a factor driving Low Grade
Glioma (LGG) and has been used in the WHO classification
system (40) to classify IDH-mutant and IDH-wildtype, which
has worse prognoses. On the other hand, EGFR is not a common
mutation in LGG but in GBM (Glioblastoma) (41) which has a
very low survival rate (42). The amplification of EGFR can cause
the mutation of PTEN gene (43) which is a tumor suppressor
gene (44). Interestingly, no patient in the long-term-survival
group has PTEN mutation. The occurrence of EGFR mutated
genes may be another cause that leads to a low survival rate of
patients in the short-term-survival group.

We further conduct pathway analysis using the discovered
subtypes on the Consensus Pathway Analysis platform (45) using
the FGSEA method (46) and KEGG pathway database.
Supplementary Figure S4 shows the pathways that are
significant with a significance threshold of 0.5%. In this
connected network, each node is a pathway and there is an
edge between two pathways if they have common genes. As
shown in the figure, the Glioma pathway is significantly
Frontiers in Oncology | www.frontiersin.org 9115
impacted. Other pathways that have common components
with the Glioma pathway, including MAPK signaling pathway,
ErbB signaling pathway, Calcium signaling pathway, and
Pathway in cancer, are also significantly impacted. This
confirms that the subtypes discovered by SMRT have
significant differences in the activity of Glioma- and cancer-
related pathways. Supplementary Section 2 and Figures S1–S4
provide a more detailed analysis of this dataset.

3.3 Scalability of the Subtyping Methods
In order to assess the scalability of the nine subtyping methods,
we generate a number of simulated datasets with a fixed number
of genes/features of 5,000 and varying numbers of samples (from
1,000 to 100,000). In each dataset generated, there are three
classes of samples – each with a different set of up-regulated
genes. The true class information was used a posteriori to assess
the accuracy of each clustering method. The memory of our
server is limited to 376 GB.

Figure 5 shows the running time of the methods with varying
numbers of samples. The time complexity of SNF, CIMLR,
NEMO, and moCluster increases exponentially with respect to
sample size. These methods are not able to analyze datasets with
more than 30,000 samples (out of memory, produce errors, or
take more than 24 hours to analyze a single dataset). MCCA and
LRACluster are able to analyze datasets with 50,000 samples but
fail to analyze larger datasets. Only SMRT is able to analyze all
large datasets, including those with 100,000 samples. SMRT is
much faster than other methods and can analyze datasets with
100,000 samples in three minutes. See Supplemental Section 3,
Figure S5, and Tables 4, 5 for details on simulation and results.
FIGURE 5 | Running time of the nine subtyping methods with respect to varying numbers of samples and features. SMRT is the only method that can analyze all
datasets. Even for large datasets with 100,000 samples, SMRT needs only a couple of minutes to finish the analysis.
October 2021 | Volume 11 | Article 725133
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4 CONCLUSION

In this article, we introduced SMRT, a fast yet accurate method
for data integration and subtype discovery. In an extensive
analysis using 39 cancer datasets, we showed that SMRT
outperformed other state-of-the-art methods in discovering
novel subtypes with significantly different survival profiles. We
also demonstrated that the method could accurately partition
hundreds of thousands of samples in minutes with low memory
requirements. At the same time, the provided web application
will be extremely useful for life scientists who lack computational
background or resources. Although the software was developed
for the purpose of cancer subtyping, researchers in other fields
can use the web application and R package for unsupervised
learning and data integration.
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Gene regulatory and signaling phenomena are known to be relevant players underlying the
establishment of cellular phenotypes. It is also known that such regulatory programs are
disrupted in cancer, leading to the onset and development of malignant phenotypes.
Gene co-expression matrices have allowed us to compare and analyze complex
phenotypes such as breast cancer (BrCa) and their control counterparts. Global co-
expression patterns have revealed, for instance, that the highest gene-gene co-
expression interactions often occur between genes from the same chromosome (cis-),
meanwhile inter-chromosome (trans-) interactions are scarce and have lower correlation
values. Furthermore, strength of cis- correlations have been shown to decay with the
chromosome distance of gene couples. Despite this loss of long-distance co-expression
has been clearly identified, it has been observed only in a small fraction of the whole co-
expression landscape, namely the most significant interactions. For that reason, an
approach that takes into account the whole interaction set results appealing. In this
work, we developed a hybrid method to analyze whole-chromosome Pearson correlation
matrices for the four BrCa subtypes (Luminal A, Luminal B, HER2+ and Basal), as well as
adjacent normal breast tissue derived matrices. We implemented a systematic method for
clustering gene couples, by using eigenvalue spectral decomposition and the k–medoids
algorithm, allowing us to determine a number of clusters without removing any interaction.
With this method we compared, for each chromosome in the five phenotypes: a)Whether
or not the gene-gene co-expression decays with the distance in the breast cancer
subtypes b) the chromosome location of cis- clusters of gene couples, and c) whether or
not the loss of long-distance co-expression is observed in the whole range of interactions.
We found that in the correlation matrix for the control phenotype, positive and negative
Pearson correlations deviate from a random null model independently of the distance
between couples. Conversely, for all BrCa subtypes, in all chromosomes, positive
correlations decay with distance, and negative correlations do not differ from the null
model. We also found that BrCa clusters are distance-dependent, meanwhile for the
control phenotype, chromosome location does not determine the clustering. To our
knowledge, this is the first time that a dependence on distance is reported for gene
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clusters in breast cancer. Since this method uses the whole cis- interaction geneset,
combination with other -omics approaches may provide further evidence to understand in
a more integrative fashion, the mechanisms that disrupt gene regulation in cancer.
Keywords: eigenvalue decomposition, gene co-expression clustering, loss of long-distance co-expression,
co-expression matrices, breast cancer molecular subtypes
1 INTRODUCTION

1.1 Breast Cancer: A Complex Disease
Breast cancer is the first cancer-related cause of death in women
worldwide. It is also, according to the most recent data (1), the
most diagnosed neoplasm in the world. Breast cancer is also the
malignant neoplasm with the highest incidence (1). Its diagnosis,
response to treatment, relapse, and outcome are strongly
determined by the molecular profile underlying the disease (2–4).
The PAM50 classifier is among the most relevant methods of
classification for breast cancer molecular subtypes (5). This
molecular classification is based on the expression signature of
50 genes relevant to the oncogenic phenotype (5–7).

Publicly available massive cohorts of genomic and clinical
data in the study of cancer, have allowed the analysis of an
immeasurable amount of information. The latter has contributed
to a better understanding of the oncogenic process (8). Based on
gene expression of hundreds-to-thousands of samples, now it is
possible to study such vast experimental information to infer and
analyze the whole-genome co-expression landscape, aiming to
highlight similarities and differences between cancer and non-
cancer samples. Among these efforts, The Cancer Genome Atlas
(TCGA) has contributed in an outstanding way (9).
1.2 Gene Co-Expression Networks
The study of Cancer within the framework of complex networks
has become increasingly relevant in the last years (10–20). Given
its size and complexity, genome-wide regulation may include a
large number of features (all the genes), potentially inducing a
fully connected network, with contributions of very different
relevance and certainty. For this reason, several approaches to
reduce its dimensionality have been implemented, including the
use of threshold methods, to look for the most significant co-
expression relationships (18, 21). In particular, in the case of
breast cancer molecular subtype networks, the most significant
co-expressed pairs have been used as connected nodes in
biologically relevant modules (22–25).

Further approaches to determine the optimal network size
may analyze a wide range of network scales (13, 26, 27) or
backbone-related threshold networks (28), and even use gene co-
expression subsets of clinical/biological relevance (29).

In the attempt of reducing the dimensionality of a fully-
connected network, identification of groups of genes that behave
in a similar way –indicating that their expression profiles are
correlated– is a relevant problem and is still an open challenge in
network biology (29, 30). The latter point is closely related to the
2119
so-called graph sparsification problem in graph theory. The
choose of a significance threshold then becomes relevant.

For instance, in a recent study by Kimura et al. (31), an
approach was developed to select parameters in genetic networks
by computational methods (mainly Machine Learning and
Artificial Intelligence). Other approaches have used the
complete set of interactions in order to construct a network
backbone (28). There, the authors used the complete matrix of
interactions to obtain the most important relationships,
preserving those edges with statistically significant deviations
with respect to a nul l model for the local edge ’s
weight assignment.
1.3 Gene Co-Expression Is Distance
Dependent
In cancer, gene co-expression networks have been used to
uncover genes and relationships that may represent crucial
elements to determine differences between phenotypes (32). In
particular, in breast cancer and breast cancer molecular subtypes
(4), gene co-expression networks have been useful to identify the
phenomenon of loss of long-range co-expression (10, 12, 14, 33):
this is, a property observed in cancer networks in which the most
significant gene co-expression relationships occur between genes
that belong to the same chromosome, i.e., cis- interactions.
Conversely, inter-chromosome (trans-) interactions are often
weak in cancer.

Furthermore, the loss of long-range co-expression is not only
observed at the level of genes located on different chromosomes.
Regarding cis- (intra-chromosome) gene interactions, there is an
exponential decay of strength of correlations (14) as genes
become more distant. This situation could be related to a
diminishing of the accessibility that a certain region of the
genome may have of its environment during the carcinogenic
process. Importantly, this lack of accessibility can be attributed to
several factors, among which we can mention aberrant
expression of transcription factors, copy number alterations,
incorrect binding to CTCF, or changes in Topologically
Associated Domains (TADs). All of these factors have the
potential to alter, both, the structure of DNA and
gene expression.

Despite this phenomenon has been discovered not only in
breast cancer, but also in clear cell renal carcinoma (13), lung
adenocarcinoma and squamous cell lung carcinoma (12), loss of
long-range co-expression has been determined for the top
highest interactions: a small subset of the most co-expressed
gene-gene interactions (tens-to-hundreds of thousands) of the
November 2021 | Volume 11 | Article 726493
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whole co-expression landscape is observed to be biased to
cis- interactions.

Since the strength of intra-chromosome interactions have
been observed to be the highest ones, it becomes important to
evaluate the behavior of the whole intra-chromosome landscape
of cancer networks. In these terms, network clustering may
provide us with information related to, for example, sets of
genes constrained by physical restrictions in certain regions of
the genome, genes that act in tandem, events related with the
transcriptional process, etc.

To address the questions above, we performed a data-driven
clustering analysis using a hybrid algorithm that involves
eigenvalue decomposition and k–medoids from correlation
matrices of each chromosome. These matrices were inferred
from RNA-Seq-based gene expression. We evaluated whether or
not the loss of long-range co-expression is preserved, by studying
all chromosomes for the four breast cancer subtypes as compared
with normal tumor-adjacent tissue as control.

With this approach, we constructed co-expression matrices
for all chromosomes in adjacent normal breast tissue network, as
well as in all four breast cancer subtypes. We analyzed the
statistics for their clustering nearest neighbor distributions
within each chromosome, comparing each breast cancer
molecular subtype as well as the adjacent normal tissue.
Additionally, for all phenotypes, we constructed a null model
to provide statistical robustness to our analyses. With this, we
present a systematic method for intra-chromosome gene
clustering, which allows to compare the whole co-expression
landscape between a cancerous phenotype with its
control counterpart.
2 MATERIALS AND METHODS

2.1 Data Acquisition
Gene expression data of breast invasive carcinoma was collected
from The Cancer Genome Atlas (TCGA) (34). 735 tumor and
113 non-cancerous (adjacent normal), samples were considered,
see Table 1. Illumina HiSeq RNASeq samples were filtered
(biotype, expression mean >10), pre-processed, and log2
normalized gene expression values as described in (10). We
performed data corrections for transcript length, GC content
and RNA composition. Tumor expression values were classified
using PAM50 algorithm into the respective intrinsic breast
cancer sub-types (Luminal A, Luminal B, Basal, and HER2-
Enriched) using the Permutation-Based Confidence for
Molecular Classification (35) as implemented in the pbcmc R
package (36).

Tumor samples with a non-reliable breast cancer sub-type call
were removed from the analysis. To avoid overlapping patterns
Frontiers in Oncology | www.frontiersin.org 3120
among subtype expression values, multidimensional noise
reduction was performed using ARSyN R implementation (37),
and a multidimensional Principal Component Analysis (PCA)
was implemented to confirm noise reduction (14).

Since a crucial part of this work lies in having a highly-
confident set of matrices, it is necessary to obtain as many well-
characterized samples as possible, for each molecular subtype.
Due to this fact, we decided to include all the available samples
with a molecular subtype classification i.e., those samples with a
molecular subtype label from the original source. Further
investigations must be conducted with even more stringent
inclusion and exclusion criteria, such as histologically
confirmed diagnosis, histopathologically-assessed axillary
lymph nodes, metastatic disease at presentation, adjuvant
treatment, etc.

In order to provide all the information to reproduce our
results, the clinical information about histological data by
subtype-samples is now included in the Supplementary
Material S1. There, for each breast cancer subtype sample we
describe: 1) availability of historical adjuvant treatment,
2) lymph node assessment existence, 3) histological type of
tumor and 4) axillary lymph-node-stage method type.

To show that those samples with the same molecular subtype
are indeed properly classified in their molecular profiles to be
included in our correlation matrices, we performed a Principal
Component Analysis (PCA) for each subtype (Supplementary
Figure S1). The PCA groups samples based on the main
eigenvalues of the expression profiles. In this case, we present
the two main principal components (X and Y axes of the
Supplementary Figure S1) -though the calculations were
made with the full eigenvalue spectra of the matrices. Hence,
the PCA could indicate those samples that are not similar to the
rest of their class (if any) or if there is any “confounded” or
misclassified sample.

As it can be noticed in the Supplementary Figure S1, all
subtype samples are clearly separated based on the molecular
classification. All samples are grouped by its subtype (color).
Hence, constructing correlation matrices by using these subtype-
separated samples, certainly improves the statistical significance
without adding a clear source of noise.

2.2 Correlation Matrices
We built intra-chromosomal cross-correlation matrices by
estimating the Pearson correlation coefficient between the
expression of two genes i and j, defined as follows:

Cij =
Cov(gi, gj)

sgisgj
=

1
Ns
o
Ns

s=1

(gis − mgi)(gjs − mgj)

sgisgj
, (1)

where gi is the set of Ns expression samples for gene i. By
definition, a correlation matrix is symmetric (Cij = Cji),
TABLE 1 | Samples for each subtype.

Control Basal Her2 LumA LumB

113 221 105 217 192
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the elements in the diagonal are 1 (Cii = 1, ∀i), and its values are
bounded to –1 ≤ Cij ≤ 1, where Cij = 1 corresponds to perfect
correlations, Cij = –1 corresponds to perfect anticorrelations, and
Cij = 0 corresponds to uncorrelated gene pairs.

We calculated Pearson correlation between all genes for each
chromosome for the five phenotypes. The code for calculation of
Pearson correlations can be found in (38).
2.3 Spectral Decomposition
Pearson correlation matrices for each chromosome were
calculated in order to analyze their spectral properties.
Previous works on correlation matrices have shown that their
spectral properties carry information about the structure and
dynamics of the system (39–48).

For example, in stock market data, the first eigenvectors
correspond to clusters of related industries (49, 50). In
Electroencephalography measurements, these eigenvectors
correspond to different functional regions in the brain (51).
However, not all of the eigenvalues carry relevant information
about the system. It has been shown that the smallest ones are the
most sensitive to noise and some of them correspond to weak
interrelations between small components from different clusters
(47, 48). To distinguish how many eigenvalues contain useful
information to identify clusters, we compared the spectral
properties of the empirical correlation matrix to a null model
represented by an ensemble of random matrices.

This ensemble of random matrices, is obtained by doing non-
biased shuffling over the gene expression values for each sample
(in this way, the original distribution of the data is preserved
while its correlations will be destroyed) and computing the
correlation matrix of each randomized data as in equation 1,
we generated an ensemble of nm = 100 random matrices for each
chromosome and phenotype.

The k deviating eigenvalues of the empirical matrix from the
randomized data max(lR) < {l1, … ,lk} are the ones containing
correlations that cannot be attributed to either the noise in the
system or data randomization. It is worth noticing that instead of
using the eigenvectors from the spectral decomposition, which
can be difficult to separate into independent clusters (52) (see
Supplementary Figure S2), we used the number of k deviating
eigenvalues as the number of independent clusters for a different
clustering method.
2.4 Clustering Analysis
We implemented a clustering analysis based on the k-medoids
algorithm. In a similar fashion to k-means, k-medoids clustering
attempts to minimize the distance between the elements inside a
cluster but one element is designated as the center of the cluster.
The k-medoids algorithm works not exclusively with Euclidean
distances, but with general pairwise interactions, this means we
can use the correlation values we have estimated for each intra-
chromosome matrix. Since correlation values are signed and
their magnitude goes from –1 to 1, we define the pairwise
interactions between genes i and j as:
Frontiers in Oncology | www.frontiersin.org 4121
Di,j ≡ 1 − Ci,j

�� ��, (2)

with 0 ≤ D ≤ 1, high correlation or anti-correlation values mean
close distance between points, while small correlation values will
give higher distances. Finally, for the parameter k in the
clustering algorithm, we considered the number of deviating
eigenvalues as obtained from the spectral decomposition.

Given the stochastic nature of the k-medoids algorithm, we
did nr = 100 realizations for each clustering computation to
ensure statistical significance (p < 0.01), choosing the output
configuration as the one with the minimum mean distance
between the centroids and the elements in each cluster.

In order to compare the clustering results between the control
phenotype and any other cancer subtype in a given chromosome,
we constructed the intra-cluster Nearest Neighbor Distance
(NND) distribution for each subtype. The NND of a given
gene i in a cluster k is defined as:

Di
nn ≡ min ( j − ij j) ∀ j ∈ Ck, (3)

where Ck refers to the cluster k. To quantify the difference
between the clustering in adjacent normal and cancer subtypes
we compute Shannon’s entropy H(x) = −Sx∈cp(x) log (p(x)) for
the NND distributions, which in this case can be interpreted as
how localized or how spread are the genes within each cluster in
the chromosome. We also computed the Kolmogorov-Smirnov
distance between the adjacent normal case and each of the
Cancer subtypes. Given two cumulative distribution functions
(CDF) the Kolmogorov-Smirnov distance is defined as:

DKS(Fn, Fm) = sup
x

Fn(x) − Fm(x)j j, (4)

where the functions Fn and Fm are the CDFs for two samples n
and m.
3 RESULTS

A correlation matrix of the sort just described, can be visualized
as a heatmap as shown in Figure 1 where correlation matrices for
adjacent normal and basal subtype samples in the chromosome 1
are displayed. The axis represent the genes ordered by their
physical location in the chromosome. The clearest difference
between both matrices seems to be the lowest value of absolute
correlation for genes that are physically distant in the basal
subtype case. The heatmaps for each chromosome in the five
phenotypes can be observed in Supplementary Materials S2–S6.

The effect of loss in long range co-expression is consistent
with previous works of regulatory networks in breast cancer (10,
12–14, 33, 53). The block-type structure of the basal subtype
matrix suggests the utility of clustering analysis to compare the
structural properties of the correlation matrices. In what follows,
we will present results for these clustering analyses. Through the
manuscript, the presented figures will show different
chromosomes for the five phenotypes. This has been done, in
November 2021 | Volume 11 | Article 726493
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order to illustrate the universal nature of the gene clustering in
breast cancer molecular subtypes, compared with the adjacent
normal tissue.

3.1 Co-Expression Decays in All
Chromosomes in All Subtypes
We observed a common pattern of distance dependency in all
chromosomes in all breast cancer phenotypes. The decay in gene
co-expression corresponds exclusively to positive correlations. In
the case of negative correlations, such effect is not observed.
Conversely, in adjacent normal chromosomes, there is no
dependency of distance neither in negative nor positive
interactions. Interestingly, this effect is observed in all
chromosomes in the four breast cancer molecular subtypes and
not observed in adjacent normal breast tissue-derived
correlations (Figure 2 and Supplementary Materials S7–S11).

In order to evaluate the differences between the empirical data
and the null model, we performed a non-parametric hypothesis
test (Kolmogorov-Smirnov) for the correlation values
distributions (in all tumor subtypes and adjacent normal
Frontiers in Oncology | www.frontiersin.org 5122
tissue) versus phenotype-specific null models. Additionally we
implemented their corresponding significance tests (obtained via
bootstrap/permutation analysis). The results of the KS test can be
observed in Figure 3. The results for the rest of chromosomes, as
well as their significance p-values, are presented in
Supplementary Materials S12, S13).

Notice that at short distances, the cancer phenotypes have
larger values than the adjacent normal correlations. However, at
larger distances, KS for adjacent normal network are larger than
those for cancerous phenotypes. The p-values shown in the
upper right part of the figure, represent the average of all set
of distances.

Based on a null model that lacks the linear correlations from
the original data (see Methods), we observed that in adjacent
normal chromosomes, positive and negative correlation values
seem to be independent of the distance between genes, having
significantly higher absolute values when compared with the null
model at any distance. In the case of cancer subtypes, negative
correlations are non-significant, but a few small regions in
specific chromosomes (See Supplementary Figure S3).
FIGURE 1 | Pearson correlation square matrices for chromosome 1 in control samples (up) and basal breast cancer subtype (down). Genes are placed according to
their physical location on the chromosome. Colors represent the correlation value: red corresponds to positive values, meanwhile negative correlations are depicted
in blue. The inserts in the right part of both matrices correspond to the scatterplot of Pearson correlations versus distance. The horizontal red line corresponds to
Pearson correlation = 0.
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3.2 Eigenvalue Decomposition Defines the
Number of Clusters in All Phenotypes
We generated an ensemble of (N = 100) random matrices and
compare the eigenvalue distributions from both, original and
random matrices (see Materials and Methods). The left panel of
Figure 4 shows the eigenvalue distribution for the ensemble of
random matrices, where its shape is the well-known Marchenko-
Pastur distribution from random matrix theory (54). Overlapped
eigenvalue distributions for the original matrix of chromosome
Frontiers in Oncology | www.frontiersin.org 6123
17 and the ensemble of surrogates are shown in the right panel of
Figure 4. A set of significant eigenvalues was determined by
random matrix permutations (p < 0.01) (see box in Figure 4).
3.3 Gene Clustering Is Distance
Dependent in Breast Cancer
With the method referred in Section 3.2 we obtained the full set
of clusters for each chromosome in all phenotypes. Figure 5
FIGURE 2 | Pearson correlation of gene-gene expression versus distance. Plots for adjacent normal and cancer subtypes of chromosome 8 (green) and their
respective null model (orange). The solid lines represent the median of a moving average in the distribution of correlation values over each window and the shaded
area is the range from its first and third quartiles.
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shows Chromosome 19 clusters with genes sorted by gene start
base pair position. In the adjacent normal chr19 figure (upper
part) we cannot discern a pattern in cluster colors. The
distribution of clusters does not seem to depend on the
distance between genes. Meanwhile, in basal breast cancer, we
can observe cluster panels of colors, clearly detached. In the same
figure, in the right panels, we plot the cumulative distribution of
genes for each cluster. The larger the slope, the more often
contiguous genes belong to the same cluster. All clusters for the
five phenotypes in all chromosomes can be found in
Supplementary Material S14. Cumulative distribution for all
clusters can be found in Supplementary Material S15.

Cumulative distributions for the Nearest Neighbor Distance
(NND) of two different chromosomes are shown in Figure 6,
which can be interpreted as the probability distribution of the
minimum distance between two genes in the same cluster. The
Frontiers in Oncology | www.frontiersin.org 7124
behavior seen in the previous Figure 5 holds: genes from the
same cluster are more likely to be close to each other.

Results for the entropies for the NND distributions are shown
on the left panel of Figure 7, where a clear trend with the valueH
(x) can be identified: Luminal A, Luminal B, HER2+, Basal. It is
worth noticing that the aforementioned order coincides with
survival rates and metastatic behavior (14, 55, 56). The subtypes
with the lowest survival rates and more metastatic behavior also
present lower entropy values.

The latter is in agreement with a previously observed trend for
the top 0.1% gene co-expression interactions for the four
phenotypes: The most aggressive phenotype (basal) has the
lowest number of inter-chromosome interactions, meanwhile
the Luminal A subtype, which is considered the one with the best
prognosis, contains a much larger fraction of interactions
between genes from different chromosomes (14).
FIGURE 4 | Probability distributions of eigenvalues for a) the ensemble of random matrices, b) random and empirical data for the chromosome 17 in the Basal sub-type.
FIGURE 3 | KS hypothesis test between empirical data from chromosome 8 and null model for the five phenotypes. This plot represents the KS statistic versus
distance for all phenotypes in chromosome 8. The p– value for the control phenotype is smaller than 10–5.
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The decay in the entropy for the NND distribution presents
further evidence that in the cancer subtypes, genes co-express in
tighter patterns, in contrast with genes in the control phenotype
that co-express at broadly scattered distances over the
chromosome. A similar trend holds for the KS distance
between the control phenotype and each subtype in the right
panel of Figure 7, where higher values indicate a larger difference
in the spatial organization of the clusters. The difference in
spatial organization within the clusters in the chromosome is
evident with both measures and it is correlated with the survival
rate and metastasis of the subtype (14).
Frontiers in Oncology | www.frontiersin.org 8125
4 DISCUSSION

Cancer research increasingly requires comprehensive
computational analysis tools. In the search for relevant
biological information, it is essential to be able to find selective
patterns of individual or collective gene expression. In this sense,
clustering methods are becoming a pivotal computational tool.

In this work, we studied the co-expression of genes in breast
cancer molecular subtypes. We implemented a method to find
the optimal clustering between genes that are co-expressed. We
observed a grouping pattern in the case of cancer phenotypes
FIGURE 6 | Cumulative NND distributions for each subtype in Chromosomes 14 and 19. Distributions of Cancer subtypes have different behavior in short and long
distances compared with the adjacent normal tissue.
FIGURE 5 | Cluster assembly of Chromosome 19 for adjacent normal-tissue and Basal breast cancer matrices. Upper part: Heatmap for all clusters in the adjacent
normal matrix. Lower part: analog heatmap for Basal breast cancer network. The right panels correspond to the cumulative distribution for each cluster in
chromosome 19. Colors represent the top-10 largest clusters.
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with respect to the adjacent normal group. These patterns in the
genome indicate that in cancer, physically close genes are co-
expressed (cis- interactions), while for distant genes (trans-
interactions) the clustered co-expression is, to a large extent, lost.

The piece-wise Kolmogorov-Smirnov tests for all tumor
subtypes and adjacent normal tissue versus phenotype-specific
null models and their corresponding significance tests (obtained
via bootstrap/Permutation analysis) (included in the
Supplementary Materials S12, S13), show that correlation
values at short distances are much more significant for all
chromosomes in any cancer phenotype than the adjacent
normal network.

It is worth noticing that the significance of the KS tests also
decays with the distance for all chromosomes in any cancer
phenotype. Conversely, for the adjacent normal network,
distance does not exert a considerable influence in the
significance of the KS test. Finally, the KS test also show that
the significance of differences between the correlation of our
empirical data with the null model is unique for each
chromosome and for each phenotype.

The fact that genes are highly co-expressed in groups with
close positions, may be due to a favored number of nearby
transcription sites or to the strong presence of transcription
factors. It has been observed for instance, that in Luminal A
breast cancer gene co-expression networks, co-factors, CTCF
binding sites (57, 58) or copy number alterations (59, 60), may
remodel chromatin making it more or less accessible, thus
allowing gene transcription of local neighborhoods, resulting in
the concomitant high co-expression between those neighboring
genes (53). On the other hand, TFs influence more often inter-
chromosome edges, meanwhile intra-chromosome interactions
are less affected by them (53).

Physical interactions such as CTCF binding sites have
captured attention in recent years (61, 62), and more
importantly, in breast cancer (63).
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For instance, in (53), we constructed an intra-chromosome
gene-co-expression network for Luminal A breast cancer
samples. There, a community detection method was performed
to determine whether CTCF binding sites appeared in the
borders of those communities. We observed that there is no
link between CTCF binding sites and the border of intra-
chromosome communities. In that sense, we argued that, at
least for Luminal A breast cancer gene co-expression networks,
CTCF binding sites are not determinant for network structure.

Transcription factor (TF) regulation is, of course, one of the
central mechanisms for gene regulation. With respect to the role
that TFs may exert on gene clustering, we have previously shown
that TFs influence genes in a trans- fashion, i.e. TFs from a given
chromosome regulate genes from different chromosomes. We
have shown that in terms of Master Regulators in breast cancer
(64, 65), but also in Luminal A breast cancer networks (53).
Conversely, for intra-chromosome genes, TFs influence is much
less evident.

Finally, Copy Number Variations (CNVs) have been
considered as a crucial factor in the rise and development of
breast cancer (59). In fact, a correlation between CNVs, protein
levels and mRNA gene expression has also been reported
previously (66). Hence, high correlations between clusters of
physically closed genes appear to be related to copy
number alterations.

We have used TCGA-derived CNV data and compared the
amplification/deletion peaks with LumA network communities.
Interestingly, the community with more overexpressed genes,
composed of genes such as FOXM1, HJURP, or CENPA,
presented large regions of deletions. The apparently
contradictory result suggested that the copy number alterations
do not influence the structure of that community. On the other
hand, a gene community formed by HLA family genes, presented
a common pattern of amplification, but those genes were not
differentially expressed (53).
A B

FIGURE 7 | (A) Entropy for the NND distribution in all chromosomes. (B) Kolmogorov-Smirnov distance between the CDF of the NND in the adjacent normal
phenotype and each of the Cancer subtypes for each chromosome.
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With the aforementioned in mind, we argue that CNVs are
not as relevant as one could expect in terms of the gene clustering
shown here. Moreover, CNVs influence may be at the expression
level, but said effect is more limited regarding co-expression.
However, further investigation is necessary to clarify these ideas.

The structure of clustered genes in physically close
neighborhoods resembles the images obtained by Hi-C
methods (67–69).

In recent times, there has been an increased interest as to how
chromosome conformation capture experiments such as Hi-C
may lead to relevant clues towards our understanding of further
effects in connection with transcriptional regulation. Indeed, we
are currently conducting research along these lines in our group.
Work is ongoing, however, we can advance that there seems to be
important correlations between loss/gain of statistically
significant chromosomal contacts and co-expression
relationships between genes in the associated genomic regions.
It remains to be determined however whether said correlations
are significant via proper assessment of null models and, more
importantly, to determine what may be the biological
consequences of these associations.

Preliminary findings from our Hi-C analysis in breast cancer
indicate that more relevant contacts are mostly (but not
exclusively) on close genomic regions. This is not unlike what
we have observed with MI-based gene co-expression networks in
which there is a preponderance of co-expression interactions in
shorter distances for tumors. Future work undoubtedly will focus
on the comparison between the network clusters constructed by
this method and those from Hi-C. In particular, the zones/genes
between gene groups. The assessment and comparison of both
structures will provide us more information regarding the
structural alterations during the carcinogenic process.

In brief, after revising the evidence about other mechanisms
of gene regulation, we may hypothesize that the ultimate cause of
the distance-dependent gene clustering is not a single
mechanism, but instead, it could be a non-linear combination
of different phenomena. In particular, regarding gene clustering,
we have evaluated for the first time the whole set of gene
interactions, and the loss of long-distance co-expression
remains, which is more evident in the most aggressive subtypes.

Homogeneity/redundancy promotes higher entropy. Systems
with redundancy are less likely to fail to catastrophic events. In
other words, it seems there are mechanisms that give robustness to
gene regulation in a control phenotype. It is still uncertain whether
the loss of long range (or gain in short range) gene co-expression is
a consequence of cancer, forcing the system to work in a less
entropic configuration, but it seems that this preference for a less
entropic configuration is common in all cancer subtypes and is
consistently progressive with subtype aggressiveness.

As a summary of findings, we may establish the following:

• We used tools previously implemented in time series analysis
in the stock market and neuroscience settings (49–51) to
develop a systematic, data-driven method for intra-
chromosomal gene expression clustering. Using spectral
decomposition and a null model, we were able to determine
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the number of co-expressed group of genes to perform k–
medoids algorithm calculations and determine the most
accurate clustering configuration. This method allowed us
to have significant results, avoiding to set an a priori threshold
for co-expression values.

• In the adjacent normal phenotype matrices, negative and
positive correlations are significant throughout the entire
chromosome. On the other hand, in breast cancer, negative
correlations are observed in the same rank than those from a
null model (see Figure 2); furthermore, the positive ones are
only out of the null model cloud over short distances.

• In cancer, clustering mostly occurs between nearby genes,
unlike what happens in the adjacent normal phenotype
matrices. This is a representation of high co-expression over
short distances. This fact coincides and corroborate previous
results on mutual information-based co-expression networks
in these and other types of cancer (10, 12–14).

• The intra-cluster Nearest Neighbor Distance (NND) clearly
decays from the adjacent normal network to those cancerous
ones. Additionally, the NND for breast cancer networks also
decays according to the aggressiveness of the subtype:
Luminal A, Luminal B, HER2+ and Basal.

• Analogously to the last point, Kolmogorov-Smirnov (KS)
distance between the Cumulative Distribution Function of
the NND in the adjacent normal and each breast cancer
subtype network, increases with the aggressiveness of the
subtype, thus indicating that the larger value of the KS
distance, the larger difference between adjacent normal and
breast cancer phenotypes’ networks.

Clustered genes may be subject to further analyses to reveal,
for instance, statistical enrichment of functional categories
revealing certain biological functions, additional patterns of
coordinated activity, etc. This in turn may lead to the
generation of hypotheses to be tested via more narrowly
targeted assays and interventions.

A closer look at matrices’ patterns generated by other type of
sorting methods may shed some light on possible mechanisms
behind the regulatory changes in co-expression and perhaps even
in the establishment of the tumor phenotypes. This is, indeed,
still ongoing work.

Further steps towards the understanding of co-expression
patterns and the differences in clustering among adjacent normal
and cancerous phenotypes may be also based on the usage of
multi-layer approaches (11, 70).

There are remaining questions prompted by this study.
For example, while it is evident that there is a decay in the
strength of correlations depending on the distance in all
chromosomes, it is not fully clear what is the origin of the
differences in the slope of the aforementioned decays. Also, the
negative correlations in adjacent normal network are significant,
independently of the position in the chromosome. Is the anti-
correlation between genes a possible mechanism of negative
feedback? Is that mechanism disrupted in breast cancer?
Another important question regarding the clustering in cancer
network is the size of the clusters. Is there an “optimal” cluster
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size for cancer networks? If so, what is the rationale behind
such number?

Finally, the fact that other types of cancer, which have been
analyzed in terms of gene co-expression interactions, such as
clear cell renal carcinoma (13), lung adenocarcinoma, or lung
squamous cell carcinoma (12) have been reported to have the
same bias in short-distance interactions, a remaining question is
whether the clustering behavior observed in breast cancer
subtype networks is a conserved phenomenon along other
cancer types.

The above mentioned questions, together with the acquired
knowledge on cancer networks, will be eventually answered and
that will bring us with complementary information to have a
broader point of view on gene regulation in cancer.
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Supplementary Figure 1 | Principal component analyses of RNA-seq data
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Supplementary Figure 2 | Comparison of the squared components of the four
largest eigenvectors from the correlation matrix b in Figure 1. It can be seen that
there is an overlap between the eigenvectors that does not allow to separate the
components into clusters.

Supplementary Figure 3 | Outliers of positive correlations (red dots) in some
chromosomes of the breast cancer subtype networks. Plots for chromosomes 1, 9,
19 and 17 for the four subtypes. Arrows indicate sets of positive correlations
considered outliers. Notice that the outliers in each plot form almost vertical lines,
indicating that those interactions present approximately the same distance.
Additionally we can see a null model overlapping (blue).

Supplementary Material S1 | Excel file containing cross tables between
subtype-samples and histological variables.

Supplementary Material S2 | Heatmaps of Pearson correlation for each
chromosome in the adjacent normal phenotype. The color code is the same
than in Figure 1.

Supplementary Material S3 | Heatmaps of Pearson correlation for each
chromosome in the Luminal A phenotype.

Supplementary Material S4 | Heatmaps of Pearson correlation for each
chromosome in the Luminal B phenotype.

Supplementary Material S5 | Heatmaps of Pearson correlation for each
chromosome in the HER2+ phenotype.

Supplementary Material S6 | Heatmaps of Pearson correlation for each
chromosome in the Basal phenotype.

Supplementary Material S7 to S11 | Pearson distribution scatter plots for
normal adjacent tissue, Basal HER2+, Luminal A and Luminal B, respectively. These
plots show correlations sorted by gene start position for the four cancer phenotypes
and the adjacent normal network per chromosome.

Supplementary Material S12 | Kolmogorov-Smirnov significance tests for all
chromosomes in the five phenotypes. As in Figure 3, the figures represent the KS
statistics of 50 equal-area (same number of data-points) intervals for each
chromosome. In the figures, the phenotypes are represented by different colors.
The associated p-value for the complete set of correlations are depicted in the
upper right part of the figures.

Supplementary Material S13 | Piece-wise permutation p-values of the KS
statistics, calculated for all bins obtained in Supplementary Material S8, in every
chromosomal region for each phenotype.

Supplementary Material S14 | Clusters by chromosome for the five
phenotypes, obtained by eigenvalue decomposition and k-medoids method. The
figures are depicted as in the manuscript. Additionally, this material contains files for
clusters including the name of the gene, the cluster that the gene belong to, the
assignment cost function value, the chromosome location of the gene, and the gene
start position of said gene.

Supplementary Material S15 | Cumulative distribution for the four cancer
phenotypes and the adjacent normal network per chromosome. Color code
coincides with clusters in Supplementary Material S7. For clarity, only the top-ten
clusters were colored.
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Based Genome-Wide Analysis Reveals Loss of Inter-Chromosomal Regulation
in Breast Cancer. Sci Rep (2017) 7:1760. doi: 10.1038/s41598-017-01314-1
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25. Velazquez-Caldelas TE, Alcalá-Corona SA, Espinal-Enrıq́uez J, Hernandez-
Lemus E. Unveiling the Link Between Inflammation and Adaptive Immunity
in Breast Cancer. Front Immunol (2019) 10:56. doi : 10.3389/
fimmu.2019.00056

26. Liesecke F, De Craene JO, Besseau S, Courdavault V, Clastre M, Vergès V,
et al. Improved Gene Co-Expression Network Quality Through Expression
Dataset Down-Sampling and Network Aggregation. Sci Rep (2019) 9:1–16.
doi: 10.1038/s41598-019-50885-8
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34. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas
(TCGA): An Immeasurable Source of Knowledge. Contemp Oncol (Poznan
Poland) (2015) 19:A68–77. doi: 10.5114/wo.2014.47136
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39. Vinayak, Prosen T, Buča B, Seligman TH. Spectral Analysis of Finite-Time
Correlation Matrices Near Equilibrium Phase Transitions. Epl (2014)
10820006. doi: 10.1209/0295-5075/108/20006

40. Vinayak V, Seligman TH. Time Series, Correlation Matrices and Random
Matrix Models. AIP Conf Proc (2014) 1575:196–217. doi: 10.1063/1.4861704

41. Gopikrishnan P, Rosenow B, Plerou V, Stanley HE. Quantifying and
Interpreting Collective Behavior in Financial Markets. Phys Rev E - Stat
Physics Plasmas Fluids Related Interdiscip Topics (2001) 64:4. doi: 10.1103/
PhysRevE.64.035106

42. Luo F, Zhong J, Yang Y, Zhou J. Application of Random Matrix Theory to
Microarray Data for Discovering Functional Gene Modules. Phys Rev E - Stat
Nonlinear Soft Matter Phys (2006) 73:1–5. doi: 10.1103/PhysRevE.73.031924
November 2021 | Volume 11 | Article 726493

https://doi.org/10.3322/caac.21590
https://doi.org/10.4137/BIC.S9455
https://doi.org/10.1056/NEJMoa063994
https://doi.org/10.3389/fphys.2016.00568
https://doi.org/10.1038/35021093
https://doi.org/10.1073/pnas.191367098
https://doi.org/10.1038/onc.2011.301
https://doi.org/10.1016/j.cels.2019.06.006
https://doi.org/10.1016/j.cell.2018.03.022
https://doi.org/10.1038/s41598-017-01314-1
https://doi.org/10.1007/s41109-020-00291-1
https://doi.org/10.1007/s41109-020-00291-1
https://doi.org/10.3389/fgene.2021.625741
https://doi.org/10.3389/fgene.2020.578679
https://doi.org/10.3389/fonc.2020.01232
https://doi.org/10.1038/ncomms4231
https://doi.org/10.1371/journal.pone.0087075
https://doi.org/10.1109/TCBB.2015.2476790
https://doi.org/10.3389/fonc.2018.00374
https://doi.org/10.3389/fgene.2020.00311
https://doi.org/10.1038/s41598-020-67476-7
https://doi.org/10.1186/1752-0509-4-132
https://doi.org/10.3389/fphys.2016.00184
https://doi.org/10.3389/fphys.2017.00915
https://doi.org/10.1155/2018/9585383
https://doi.org/10.3389/fimmu.2019.00056
https://doi.org/10.3389/fimmu.2019.00056
https://doi.org/10.1038/s41598-019-50885-8
https://doi.org/10.3389/fphys.2018.01423
https://doi.org/10.1073/pnas.0808904106
https://doi.org/10.1186/1471-2105-10-s11-s4
https://doi.org/10.1016/b978-0-12-809633-8.20290-2
https://doi.org/10.3389/fgene.2020.595912
https://doi.org/10.1007/s41109-019-0129-0
https://doi.org/10.1038/s41598-021-95313-y
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.1093/bioinformatics/btw704
https://doi.org/10.1093/bioinformatics/btw704
https://doi.org/10.18129/B9.bioc.pbcmc
https://doi.org/10.1093/biostatistics/kxr042
https://doi.org/10.1093/biostatistics/kxr042
https://github.com/josemaz/gene-matrices/blob/master/Notebooks/CorrelationVsDistance.ipynb
https://github.com/josemaz/gene-matrices/blob/master/Notebooks/CorrelationVsDistance.ipynb
https://doi.org/10.1209/0295-5075/108/20006
https://doi.org/10.1063/1.4861704
https://doi.org/10.1103/PhysRevE.64.035106
https://doi.org/10.1103/PhysRevE.64.035106
https://doi.org/10.1103/PhysRevE.73.031924
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
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Copyright © 2021 Gonzaĺez-Espinoza, Zamora-Fuentes, Hernańdez-Lemus and
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For decades, researchers have used the concepts of rate of change and differential
equations to model and forecast neoplastic processes. This expressive mathematical
apparatus brought significant insights in oncology by describing the unregulated
proliferation and host interactions of cancer cells, as well as their response to
treatments. Now, these theories have been given a new life and found new
applications. With the advent of routine cancer genome sequencing and the resulting
abundance of data, oncology now builds an “arsenal” of new modeling and analysis tools.
Models describing the governing physical laws of tumor–host–drug interactions can be
now challenged with biological data to make predictions about cancer progression. Our
study joins the efforts of the mathematical and computational oncology community by
introducing a novel machine learning system for data-driven discovery of mathematical and
physical relations in oncology. The system utilizes computational mechanisms such as
competition, cooperation, and adaptation in neural networks to simultaneously learn the
statistics and the governing relations between multiple clinical data covariates. Targeting
an easy adoption in clinical oncology, the solutions of our system reveal human-
understandable properties and features hidden in the data. As our experiments
demonstrate, our system can describe nonlinear conservation laws in cancer kinetics
and growth curves, symmetries in tumor’s phenotypic staging transitions, the preoperative
spatial tumor distribution, and up to the nonlinear intracellular and extracellular
pharmacokinetics of neoadjuvant therapies. The primary goal of our work is to
enhance or improve the mechanistic understanding of cancer dynamics by exploiting
heterogeneous clinical data. We demonstrate through multiple instantiations that our
system is extracting an accurate human-understandable representation of the underlying
dynamics of physical interactions central to typical oncology problems. Our results and
evaluation demonstrate that, using simple—yet powerful—computational mechanisms,
such a machine learning system can support clinical decision-making. To this end, our
system is a representative tool of the field of mathematical and computational oncology
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and offers a bridge between the data, the modeler, the data scientist, and the practicing
clinician.

Keywords: mathematical oncology, machine learning, mechanistic modeling, data-driven predictions, clinical data,
decision support system

1 INTRODUCTION

The dynamics governing cancer initiation, development, and
response to treatment are informed by quantitative
measurements. These measurements carry details about the
physics of the underlying processes, such as tumor growth,
tumor–host cell encounters, and drug transport. Be it through
mathematical modeling and patient-specific treatment
trajectories—as in the excellent work of Werner et al. (2016)—
through tumor’s mechanopathology—systematically described
by Nia et al. (2020)—or through hybrid modeling frameworks
of tumor development and treatment—identified by
Chamseddine and Rejniak (2020)—capturing such processes
from data can substantially improve predictions about cancer
progression.

Machine learning algorithms are now leveraging automatic
discovery of physics principles and governing mathematical
relations for such improved predictions. Proof stands the
proliferating body of such research—for representative
results, see the works of Raissi (2018), Schaeffer (2017),
Long et al. (2018), and Champion et al. (2019). However,
the naive application of such algorithms is insufficient to infer
physical laws underlying cancer progression. Simply positing a
physical law or mathematical relation from data is useless
without simultaneously proposing an accompanying ground
truth to account for the inevitable mismatch between model
and observations, as demonstrated in the work of de Silva et al.
(2020).

Such a problem is even more important in clinical oncology
where, in order to understand the links between the physics of
cancer and signaling pathways in cancer biology, we need to
describe the fundamental physical principles shared by most, if
not all, tumors, as proposed by Nia et al. (2020). Here,
mathematical models of the physical mechanisms and
corresponding tumor physical hallmarks complement the
heterogeneity of the experimental observations. Such a
constellation is typically validated through in vivo and in vitro
model systems where the simultaneous identification of both the
structure and parameters of the dynamical system describing
tumor–host interactions is performed (White et al., 2019).

Given the multidimensional nature of this system
identification process, some concepts involved are nonintuitive
and require deep and broad understanding of both the physical
and biological aspects of cancer. To circumvent this, combining
mechanistic modeling and machine learning is a promising
approach with high potential for clinical translation. For
instance, in a bottom-up approach, fusing cell-line tumor
growth curve learning from heterogeneous data (i.e., caliper,
imaging, microscopy) and unsupervised extraction of cytostatic
pharmacokinetics, the study by Axenie and Kurz (2020a)
introduced a novel pipeline for patient-tailored neoadjuvant

therapy planning. In another relevant study, Benzekry (2020)
used machine learning to extract model parameters from high-
dimensional baseline data (demographic, clinical, pathological
molecular) and used mixed-effects theory to combine it with
mechanistic models based on longitudinal data (e.g., tumor size
measurements, pharmacokinetics, seric biomarkers, and
circulating DNA) for treatment individualization.

Yet, despite the recent advances in mathematical and
computational oncology, there are only a few systems
trying to offer a human-understandable solution, or the
steps to reach it—the most relevant are the studies by
Jansen et al. (2020) and Lamy et al. (2019). But, such
systems lack a rigorous and accessible description of the
physical cancer traits assisting their clinical predictions.
Our study advocates the improvement of mechanistic
modeling with the help of machine learning. Our thesis
goes beyond measurements-informed biophysical processes
models, as described by Cristini et al. (2017), and toward
human-understandable personalized disease evolution and
therapy profiles learned from data, as foreseen by
Kondylakis et al. (2020).

1.1 Study Focus
The purpose of this study is to introduce a system (and a
framework) capable of learning human-understandable
mathematical and physical relations from heterogeneous
oncology data for patient-centered clinical decision support.
To demonstrate the versatility of the system, we introduce
multiple of its instantiations, in an end-to-end fashion
(i.e., from cancer initiation to treatment outcome) for
predictions based on available clinical datasets1:

• learning initiation patterns of preinvasive breast cancer
(i.e., ductal carcinoma in situ [DCIS]) from histopathology
and morphology data available from the studies by Rodallec
et al. (2019), Volk et al. (2011), Tan et al. (2015),and Mastri
et al. (2019);

• learning unperturbed tumor growth curves within and
between cancer types (i.e., breast, lung, leukemia) from
imaging, microscopy, and caliper data available from the
studies by Benzekry et al. (2019) and Simpson-Herren and
Lloyd (1970);

• extracting tumor phenotypic stage transitions from three
cell lines of breast cancer using imaging,
immunohistochemistry, and histopathology data available
from the studies by Rodallec et al. (2019), Volk et al. (2011),
Tan et al. (2015), and Edgerton et al. (2011);

1A copy of the used datasets along with the study generating them is included in the
codebase associated with the manuscript.
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• simultaneously extracting the drug-perturbed tumor
growth and drug pharmacokinetics for neoadjuvant/
adjuvant therapy sequencing using data available from
the studies by Kuh et al. (2000), Volk et al. (2011), and
Chen et al. (2014);

• predicting tumor growth/recession (i.e., estimating tumor
volume after each chemotherapy cycle under various
chemotherapy regimens administered to breast cancer
patients, using real-world patient data available from the
study by Yee et al. (2020) as well as cell lines studies from
Rodallec et al. (2019), Volk et al. (2011), Tan et al.
(2015),and Mastri et al. (2019).

In each of the instantiations, we use the same computational
substrate (i.e., no specific task parametrization) and compare
the performance of our system against state-of-the-art
systems capable of extracting governing equations from
heterogeneous oncology data from Cook et al. (2010),
Mandal and Cichocki (2013), Weber and Wermter (2007),
and Champion et al. (2019), respectively. The analysis focuses
on (1) the accuracy of the systems in the learned
mathematical and physical relations among various
covariates, (2) the ability to embed more data and
mechanistic models, and (3) the ability to provide a
human-understandable solution and the processing steps
to obtain that solution.

1.2 Study Motivation
In clinical practice, patient tumors are typically described
across multiple dimensions from (1) high-dimensional
heterogeneous data (e.g., demographic, clinical,
pathological, molecular), and (2) longitudinal data (e.g.,
tumor size measurements, pharmacokinetics, immune
screening, biomarkers), to (3) time-to-event data (e.g.,
progression-free or overall survival analysis), and, in the
last years, (4) genetic sequencing that determine the
genetic mutations driving their cancer. With this
information, the clinical oncologist may tailor treatment to
the patient’s specific cancer.

But, despite the variety of such rich patient data available, tumor
growth data, describing the dynamics of cancer development, from
initiation to metastasis has some peculiarities. These features
motivated the study and the approach proposed by our system.
To summarize, tumor growth data:

• is typically small, with only a few data points measured,
typically, at days-level resolution (Roland et al., 2009);

• is unevenly sampled, with irregular spacing among tumor
size/volume observations (Volk et al., 2011);

• has high variability between and within tumor types
(Benzekry et al., 2014) and type of treatment (Gaddy
et al., 2017).

• is heterogeneous and sometimes expensive or difficult to
obtain (e.g., biomarkers, functional magnetic resonance
imaging (Abler et al., 2019), fluorescence imaging
(Rodallec et al., 2019), flow cytometry, or calipers
(Benzekry et al., 2019).

• determines cancer treatment planning, for instance,
adjuvant versus neoadjuvant chemotherapy (Sarapata and
de Pillis, 2014).

Using unsupervised learning, our system seeks to overcome
these limitations and provide a human-understandable
representation of the mathematical and physical relations
describing tumor growth, its phenotype, and, finally, its
interaction with chemotherapeutic drugs. The system exploits
the temporal evolution of the processes describing growth data
along with their distribution in order to reach superior accuracy
and versatility on various clinical in vitro tumor datasets.

2 MATERIALS AND METHODS

In the current section, we introduce our system through the lens
of practical examples of discovering mathematical and physical
relations describing tumor–host–drug dynamics. We begin by
introducing the basic computational framework as well as the
various configurations in which the system can be used. The
second part is dedicated to introducing relevant state-of-the-art
approaches used in our comparative experimental evaluation.

2.1 System Basics
Physical interactions of cancer cells with their environment (e.g.,
local tissue, immune cells, drugs) determine the physical
characteristics of tumors through distinct and interconnected
mechanisms. For instance, cellular proliferation and its inherent
abnormal growth patterns lead to increased solid stress (Nia et al.,
2016). Subsequently, cell contraction and cellular matrix
deposition modify the architecture of the surrounding tissue,
which can additionally react to drugs (Griffon-Etienne et al.,
1999) modulating the stiffness (Rouvière et al., 2017) and
interstitial fluid pressure (Nathanson and Nelson, 1994). But
such physical characteristics also interact among each other
initiating complex dynamics, as demonstrated in Nia et al. (2020).

Our system can capture such complex dynamics through a
network-based paradigm for modeling, computation, and
prediction. It can extract the mathematical description of the
interactions exhibited by multiple entities (e.g., tumor, host cells,
cytostatic drugs) for producing informed predictions. For guiding
the reader, we present a simple, biologically grounded example in
Figure 1.

In this example, our system learns simultaneously the power-
law tumor growth under immune escape (Benzekry et al., 2014)
and the nonlinear potentiation–inhibition model of natural killer
(NK) cells–tumor interactions (Ben-Shmuel et al., 2020), while
exhibiting the known overlapping cytotoxic T lymphocytes
(CTLs)–NK cell mutual linear regulation pattern (Uzhachenko
and Shanker, 2019). As shown in Figure 1, our system offers the
means to learn the mathematical relations governing the physical
tumor–immune interactions, without supervision, from available
clinical data (Figure 1—input data relations and learned and
decoded relations). Furthermore, the system can infer unavailable
(i.e., expensive to measure) physical quantities (i.e., after learning/
training) in order to make predictions on the effects of modifying
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FIGURE 1 | Basic functionality of the proposed machine learning system. Data are fed in the system through the representations maps, mi which encode each
quantity in a distributed (array-like) representation. The system dynamics brings all available quantities into agreement and learns the underlying mathematical relations
among them [see representation space—(A)]. The relations resemble the mathematical model of the interactions: power-law tumor growth under immune escape,
nonlinear potentiation–inhibition tumor–immune interaction, and linear regulation pattern among immune system cells. The learned mathematical relations are then
compared with the data (i.e., the ground truth) and the mechanistic model output [see input/output space—(B)]. Note: to simplify the visualization data points are
depicted as clusters (i.e., the size of a cluster reflects the number of points concentrated in a region.

FIGURE 2 | Basic functionality of the system. (A) Tumor growth data following a nonlinear mathematical relation and its distribution—relation is hidden in the time
series (i.e., number of cells vs. measurement index). Data from Comen et al. (2016). (B) Basic architecture of our system: one-dimensional (array) SOM networks with N
neurons encoding the time series (i.e., number of cells vs. measurement index), and an N × N Hebbian connection matrix (coupling the two SOMs) that will encode the
mathematical relation after training.
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the pattern of interactions among the tumor and the immune
system. For instance, by not feeding the system with the innate
immune response (i.e., the NK cells dynamics), the system infers,
based on the CTL–NK cell interaction pattern and the tumor
growth pattern, a plausible tumor–NK cell mathematical relation
in agreement with observations (Figure 1B, squared root
nonlinearity).

Basically, our system acts as constraint satisfaction network
converging to a global consensus given local (i.e., the impact of
the measured data) and global dynamics of the physics governing
the interactions (see the clear patterns depicting the mathematical
models of interaction in Figure 1). The networked structure
allows the system to easily interconnect multiple data quantities
measuring different biological components (Markowetz and
Troyanskaya, 2007) or a different granularity of representation
of the underlying interaction physics (Cornish and Markowetz,
2014).

2.2 Computational Substrate
The core element of our study is an unsupervised machine
learning system based on Self-Organizing Maps (SOMs)
Kohonen (1982) and Hebbian learning (HL) Chen et al.
(2008). The two components are used in concert to represent
and extract the underlying relations among correlated data. In
order to introduce the computational steps followed by our
system, we provide a simple example in Figure 2. Here, we feed
the system with data from a cubic growth law (third power-law)
describing the effect of drug dose density over 150 weeks of
adjuvant chemotherapy in breast cancer (data from Comen
et al., 2016). The two data sources (i.e., the cancer cell number
and the irregular measurement index over the weeks) follow a
cubic dependency (cmp. Figure 2A). Before being presented the
data, our system has no prior information about the data
distribution and its generating process (or model). The
system learns the underlying (i.e., hidden) mathematical
relation directly from the pairs of input data without
supervision.

The input SOMs (i.e., one-dimensional [1-D] lattice
networks with N neurons) extract the probability distribution
of the incoming data, depicted in Figure 2A, and encode
samples in a distributed activity pattern, as shown in
Figure 2B. This activity pattern is generated such that the
closest preferred value of a SOM neuron to the input will be
strongly activated and will decay, proportional with distance, for
neighboring units. This process is fundamentally benefiting
from the quantization capability of SOM. The tasks we solve
in this work have low dimensionality, basically allowing a 1-D
SOM to provide well-behaved distributed representations. 1-D
SOMs are proven mathematically to converge and handling
boundary effects. For higher-dimensional data, our system can
be coupled with a reduction technique (i.e., principal
component analysis, t-Distributed Stochastic Neighbor
Embedding) to reduce data to 1-D time series, without a
large penalty in complexity. In addition, this process is
extended with a dimension corresponding to the latent
representation of network resource allocation (i.e., number of
neurons allocated to represent the input data space). After

learning, the SOMs specialize to represent a certain
(preferred) value in the input data space and learn its
probability distribution, by updating its tuning curves shape.

Practically, given an input value sp(k) from one time series at
time step k, the network follows the processing stages in Figure 3.
For each ith neuron in the pth input SOM, with preferred value
wp

in,i and tuning curve size ξpi (k), the generated neural activation
is given by

api k( ) � 1���
2π

√
ξpi k( )e

−(sp k( )−wp
in,i

k( ))2

2ξ
p
i

k( )2 . (1)

The most active (i.e., competition winning) neuron of the pth
population, bp(k), is the one that has the highest activation given
the time series data point at time k

bp k( ) � argmax
i

api k( ). (2)

The competition for highest activation (in representing the
input) in the SOM is followed by a cooperation process that
captures the input space distribution. More precisely, given the
winning neuron, bp(k), the cooperation kernel,

hpb,i k( ) � e
−‖ri − rb‖2
2σ k( )2 , (3)

allows neighboring neurons in the network (i.e., found at position
ri in the network) to precisely represent the input data point given
their location in the neighborhood σ(k) of the winning neuron.
The topological neighborhood width σ(k) decays in time, to avoid
artifacts (e.g., twists) in the SOM. The kernel in Eq. 3 is chosen
such that adjacent neurons in the network specialize on adjacent
areas in the input space, by “pulling” the input weights
(i.e., preferred values) of the neurons closer to the input data
point,

Δwp
in,i k( ) � α k( )hpb,i k( ) sp k( ) − wp

in,i k( )( ). (4)

This process updates the tuning curves width ξpi given the
spatial location of the neuron in the network, the distance to the
input data point, the cooperation kernel size, and a decaying
learning rate α(k),

Δξpi k( ) � α k( )hpb,i k( )( sp k( ) − wp
in,i k( )( )2 − ξpi k( )2). (5)

To illustrate these mechanisms, we consider the learned
tuning curves shapes for five neurons in the input SOMs
(i.e., neurons 1, 6, 13, 40, 45) encoding the breast cancer cubic
tumor growth law, depicted in Figure 4. We observe that higher
input probability distributions are represented by dense and
sharp tuning curves (e.g., neuron 1, 6, 13 in SOM1), whereas
lower or uniform probability distributions are represented by
more sparse and wide-tuning curves (e.g., neuron 40, 45 in
SOM1).

This way, the system optimally allocates neurons such that a
higher amount of neurons represent areas in the input space,
which need a finer resolution, and a lower amount for more
coarsely represented input space areas. Neurons in the two SOMs
are then linked by a fully (all-to-all) connected matrix of synaptic
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connections, where the weights are computed using HL. The
connections between uncorrelated (or weakly correlated) neurons
in each SOM (i.e., wcross) are suppressed (i.e., darker color),
whereas correlated neuron connections are enhanced
(i.e., brighter color), as depicted in Figure 3. Each connection
weight wp

cross,i,j between neurons i, j in the input SOMs is updated
with an HL rule as follows:

Δwp
cross,i,j k( ) � η k( ) api k( ) − �api k( )( ) aqj k( ) − �aqj k( )( ), (6)

where

�api k( ) � 1 − β k( )( )�api k − 1( ) + β k( )api k( ), (7)

is an exponential decay (i.e., momentum), and η(k), β(k) are
monotonic (inverse-time) decaying functions. HL ensures a
weight increase for correlated activation patterns and a weight
decrease for anticorrelated activation patterns. The Hebbian
weight matrix encodes the coactivation patterns between the
input SOMs, as shown in Figure 2B, and, eventually, the
learned mathematical relation given the data, as shown in
Figure 4. Such a representation, as shown in Figure 4,
demonstrates the human-understandable output of our system
that employs powerful, yet simple and transparent, processing
principles, as depicted in Figure 3.

Input SOM self-organization and Hebbian correlation
learning operate at the same time in order to refine both
the input data representation and the extracted

mathematical relation. This is visible in the encoding and
the decoding functions where the input activations a are
projected through the input weights win (Eq. 1) to the
Hebbian matrix and then decoded through the wcross

correlation weights (Eq. 8).
In order to recover the real-world value from the network, we

use a decoding mechanism based on (self-learned) bounds of the
input data space. The input data space bounds are obtained as
minimum and maximum of a cost function of the distance
between the current preferred value of the winning neuron
(i.e., the value in the input which is closest [in Euclidian
space] to the weight vector of the neuron) and the input data
point in the SOM (i.e., using Brent’s optimization Brent, 2013).
Depending on the position of the winning neuron in the SOM,
the decoded/recovered value y(t) from the SOM neurons weights
is computed as follows:

y t( ) �
wp

in,i + dp
i if i≥

N

2

wp
in,i − dp

i if i<N

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
where dpi �

�������������������������
2ξpi (k)2 log(

���
2π

√
api (k)ξpi (k)2)

√
for the winning

neuron with index i in the SOM, a preferred value wp
in,i and

ξki (k) tuning curve size and Δapi (k) � wp
cross,i,j(k)aqj(k). The

activation api (k) is computed by projecting one data point
through SOM q and subsequently through the Hebbian matrix

FIGURE3 |Detailed computational steps of our system, instantiated for tumor growth learning given the observed number of cells and themeasurement index data
from Comen et al. (2016).
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to compute the paired activity (i.e., at the other SOM p, Eq. (8))
describing the other data quantity.

Δapi k( ) � wp
cross,i,j k( )aqj k( ) (8)

where wp
cross,i,j(k) � rot90(wq

cross,i,j(k)) and rot90 is a clockwise
rotation. The processes described in the previous equations
denote the actual inference process following the training
phase (i.e., classifying new data). Basically, after applying the
input time series and finding the winner in the input SOM
population, the decoding decision is based on the position of
the winner. Two bounds (i.e., left and right) are defined with
respect to the winner’s position such that the recovered value is
obtained by running Brent’s algorithm between the preferred
values of the neurons with indices given by the bounds. The
method is guaranteed to converge to global minima (of the cost
function), and it is immune to boundary effects, if winners are
placed at the extremes of the SOM population. A thorough
analysis of the learned relations in the Hebbian matrix
demonstrated that because of the asymmetric neighborhood
function in the input SOMs. the activity saturated at the edges
of the latent representation space. Interestingly, this was also
visible in the coactivation pattern, such that the higher activity
values characterize the bounds of the Hebbian representation
toward the edges. When decoding the activity pattern from the
Hebbian matrix, we were able to recover a relatively good
probability distribution shape. This, interesting and useful,

behavior emphasizes the joint effect that the SOM distributed
representation boundary effects and the Hebbian temporal
coactivation have upon the data. The resulting distributions
have a convex profile, concentrating a large number of
samples toward the edges of the histogram with a large
variance, whereas precisely decoded areas follow a relatively
uniform distribution. We noticed that the decoder treated
equally (i.e., accuracy of decoding) linear relations with strong
boundary conditions and symmetric nonlinear relations without
boundary conditions. The decoding step is a fundamental aspect
contributing to the human-understandable output of our system.
This demonstrates that simple operations, such as competition
and cooperation in neural networks, can exploit the statistics of
clinical data and provide a human-understandable representation
of the governing mathematical relations behind tumor growth
processes.

2.3 Comparable Systems
In this section, we briefly introduce four state-of-the-art
approaches that we comparatively evaluated against our
system. Ranging from statistical methods, to machine learning,
and up to deep learning (DL), the selected systems were designed
to extract governing equations from the data.

Cook et al. The system of Cook et al. (2010) uses a combination
of simple computational mechanisms, like winner-take-all
(WTA) circuits, HL, and homeostatic activity regulation, to
extract mathematical relations among different data sources.

FIGURE 4 | Extracted mathematical relation describing the growth law and data statistics for the experimental observations in Figure 2A depicting a cubic breast
cancer tumor growth law among number of cells and irregular measurement over 150 weeks from Comen et al. (2016). Raw data time series is overlaid on the data
distribution and corresponding model encoding tuning curves shapes.
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Real-world values presented to the network are encoded in
population code representations. This approach is similar to
our approach in terms of the sparse representation used to
encode data. The difference resides in the fact that in our
model the input population (i.e., SOM network) connectivity
is learned. Using this capability, our model is capable of learning
the input data bounds and distribution directly from the input
data, without any prior information or fixed connectivity.
Furthermore, in this system, the dynamics between each
population encoded input is performed through plastic
Hebbian connections. Starting from a random connectivity
pattern, the matrix finally encoded the functional relation
between the variables that it connects. The Hebbian linkage
used between populations is the correlation detection
mechanism used also in our model, although in our
formulation we adjusted the learning rule to accommodate
both the increase and decrease of the connection weights.

Weber and Wermter. Using a different neurally inspired
substrate, the system of Weber and Wermter (2007) combines
competition and cooperation in a self-organizing network of
processing units to extract coordinate transformations. More
precisely, the model uses simple, biologically motivated
operations, in which coactivated units from population-coded
representations self-organize after learning a topological map.
This basically assumes solving the reference frame
transformation between the inputs (mapping function). Similar
to our model, the proposed approach extends the SOM network
by using sigma–pi units (i.e., weighted sum of products). The
connection weight between this type of processing units
implements a logical AND relation. The algorithm produces
invariant representations and a topographic map representation.

Mandal and Cichocki. Going away from biological inspiration,
the system of Mandal and Cichocki (2013) used a type of
nonlinear canonical correlation analysis (CCA), namely,
alpha–beta divergence correlation analysis (ABCA). The
ABCA system extracts relations between sets of
multidimensional random variables. The core idea of the
system is to first determine linear combinations of two
random variables (called canonical variables/variants) such
that the correlation between the canonical variables is the
highest among all such linear combinations. As traditional
CCA is only able to extract linear relations between two sets
of multidimensional random variable, the proposed model comes
as an extension to extract nonlinear relations, with the
requirement that relations are expressed as smooth functions
and can have a moderate amount of additive random noise on the
mapping. The model employs a probabilistic method based on
nonlinear correlation analysis using a more flexible metric
(i.e., divergence/distance) than typical CCA.

Champion et al. As DL is becoming a routine tool for data
discovery, as shown in the recent work of Champion et al. (2019),
Raissi (2018), Schaeffer (2017), and de Silva et al. (2020), we also
consider a DL system (inspired from Champion et al., 2019) and
evaluate it along the other methods. To apply this prediction
method to tumor growth, we need to formulate the setup as a time
series prediction problem. At any given point, we have the dates
and values of previous observations. Using these two features, we

can implement DL architectures that predict the size of the tumor at
a future step. Recurrent neural networks (RNNs) are the archetypal
DL architectures for time series prediction. The principal
characteristic of RNN, compared with simpler DL architectures,
is that they iterate over the values that have been observed, obtaining
valuable information from it, like the rate at which the objective
variable grows, and use that information to improve prediction
accuracy. The main drawback of using DL in the medical field is the
need of DL models to be presented with large amounts of data. We
address this problem by augmenting the data.We use support vector
machines (SVMs) for augmenting data, to obtain expected tumor
development with normal noise generates realistic measurements.
This approach presents the expected average development of
a tumor.

3 EXPERIMENTAL SETUP AND RESULTS

In order to evaluate our data-driven approach to learn
mathematical and physical relations from heterogeneous
oncology data, we introduce the five instantiations and their
data briefly introduced in the Study Focus section.

3.1 Datasets
In our experiments, we used publicly available tumor growth,
pharmacokinetics, and chemotherapy regimens datasets
(Table 1), with in vitro or in vivo clinical tumor volume
measurements, for breast cancer (datasets 1, 2, 5, 6, 7) and
other cancers (e.g., lung, leukemia—datasets 3 and 4,
respectively). This choice is to probe and demonstrate transfer
capabilities of the system to tumor growth patterns induced by
different cancer types. The choice of the dataset for each of the
experiments was determined by the actual task we wanted to
demonstrate. For instance, for demonstrating the capability to
predict preinvasive cancer volume, we used the DCIS dataset. For
the between-cancer predictions, we used four (i.e., two breast and
two nonbreast) out of the whole seven datasets, whereas for the
within-cancer-type analysis, we only looked at the breast cancer
growth prediction (i.e., four datasets). For the in vivo experiment,
we only considered the I-SPY2 trial data.

It is important to note that tumor cancer types are staged
based on the size and spread of tumors, basically their volume.
However, because leukemia occurs in the developing blood cells
in the bone marrow, its staging is different from solid tumors. In
order to emphasize the versatility of the evaluated systems, for the
leukemia datasets, we used experiments that monitored human
leukemic cell engraftment over time bymonitoring tumor volume
in scaffolds (Antonelli et al., 2016). For the pharmacokinetics
experiments (i.e., mainly focused on taxanes family for
experiments on MCF-7 breast cancer cell line from Tan et al.
(2015)), we used the data from Kuh et al. (2000) describing
intracellular and extracellular concentrations of Paclitaxel during
uptake. The datasets and the code for all the systems used in our
evaluation are available on GitLab2.

2Experimental codebase: https://gitlab.com/akii-microlab/math-comp-ml.
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3.2 Procedures
In order to train the different approaches we considered in our
study, basically the datasets were preprocessed to represent
two-dimensional dynamics, namely, tumor growth or drug
concentration evolution and irregular time evolution,
respectively. Each of the two time series was directly
encoded in neural distributed neural populations for the
work by Cook et al., Weber et al., and our approach,
whereas the approaches of Mandal et al. and Champion
et al. fused the time series in a single input vector. For the
training part, the work by Mandal et al. used alternating
conditional expectation algorithm to calculate optimal
transformations by fast boxcar averaging the rank-ordered
data, whereas the Champion et al. approach used
backpropagation. The neurally inspired approaches in Cook
et al., Weber et al., and our system used HL, Sigma-Pi (Sum-
Product) learning, and a combination of competition and
cooperation for correlation learning, respectively. Finally,
for inference, we used the systems resulting from the
training phase (without modification) for one pass (forward
pass) of unseen data through the system (i.e., basically
accounting to a series of linear algebra operations).

Our system in all of our experiments, data depicting tumor
growth, pharmacokinetics, and chemotherapy regimens are fed to
our system, which encodes each time series in the SOMs and
learns the underlying relations in the Hebbian matrix. The SOMs
are responsible for bringing the time series in the same latent
representation space where they can interact (i.e., through their
internal correlation). Throughout the experiments, each of the
SOM has N � 100 neurons, the Hebbian connection matrix has
size N × N, and parametrization is done as follows: α � [0.01, 0.1]
decaying, η � 0.9, σ � N

2 decaying following an inverse time law.
The training procedure of our system follows the next steps:

• normalize the input dataset;
• set up condition to reach relaxed state (i.e., no more
fluctuations [Δϵ] in the SOM neural activation and
Hebbian matrix);

• for each new data item, go through the pairs of neural
populations (i.e., SOMs) and compute activation;

• for cross-connection among SOMs compute the Hebbian
matrix entries;

• after convergence (i.e., reached Δϵ), the system comprises
the learned relation encoded in the matrix;

The testing procedure of our system follows the next steps:

• decode the encoded relation from the Hebbian matrix;
• denormalize data to match the original input space;
• compare with ground truth.

An important aspect is that for our system, after convergence
(i.e., reaching an Δϵ of changes in weights), the content of the
Hebbian matrix is decoded. This amounts to a process in which
the (now) static layout of values in the matrix actually depicts the
underlying function y � f (x). Our system is basically updating the
weights and shapes of the tuning curves (i.e., preferred values) of
the SOMs and the cross-SOM Hebbian weights in the training
process. After training, for inference and testing, the decoded
function (i.e., using Brent’s derivative-free optimization method)
accounts for a typical regression neural network for which cross-
validation is applied. More precisely, we ran a fourfold cross-
validation for each dataset.

Cook et al. For the neural network system proposed by Cook
et al. (2010), in all our experiments, we used neural populations
with 200 neurons each, a 0.001 WTA settling threshold, 0.005
scaling factor in homeostatic activity regulation, 0.4 amplitude
target for homeostatic activity regulation, and 250 training
epochs. More details and the reference codebase are available
on GitLab.

Weber et al. For the neural network system proposed by
Weber and Wermter (2007), in all our experiments, we used a
network with 15 neurons, 0.001 learning rate, 200,000 training
epochs, and unit normalization factor. The fully parametrized
codebase is available, along the other systems reference
implementations, on GitLab.

TABLE 1 | Description of the datasets used in the experiments.

Experimental dataset setup

Dataset Cancer type Data type Data points Data freq.

1 Breast1 (MDA-MB-231 cell line) Fluorescence imaging 7 2×/week
2 Breast2 (MDA-MB-435 cell line) Digital caliper 14 2×/week
3 Lung3 Caliper 10 7×/week
4 Leukemia4 Microscopy 23 7×/week
5 Breast5 (MCF-7 cell line) Microscopic imaging 8 1×/week
6 Breast6 (LM2-4LUC + cell line) Digital caliper 10 3×/week
7 Breast7 (stage 2/3 cancers) Functional magnetic resonance imaging 5 1×/week
8 Breast8 (ductal carcinoma in situ) Histopathology 5 1×/week
1Dataset from the study by Rodallec et al. (2019)
2Dataset from the study by Volk et al. (2011)
3Dataset from the study by Benzekry et al. (2019)
4Dataset from the study by Simpson-Herren and Lloyd (1970)
5Dataset from the study by Tan et al. (2015)
6Dataset from the study by Mastri et al. (2019)
7Dataset from the study by Yee et al. (2020)
8Dataset from the study by Edgerton et al. (2011)

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 7136909

Kurz et al. Computational Framework for Physical Oncology

139

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Mandal et al. For the CCA-based system proposed by Mandal
and Cichocki (2013), in all our comparative experiments, we used
a sample size of 100, replication factor 10, 0.5 divergence factor,
1,000 variable permutations, and 1.06 bandwidth for Gaussian
kernel density estimate. The full codebase is provided, along the
other systems reference implementations, on GitLab.

Champion et al. For our DL implementation, we used the
system of Champion et al. (2019) as a reference. We then
modified the structure to accommodate the peculiarities of the
clinical data. In all the experiments, the DL system contained
hidden layers of size 128 neurons, trained for 100 epochs, with a
mini-batch size of 1, and 50% augmentation percentage. The full
codebase is provided, along the other systems reference
implementations, on GitLab. Another important
implementation aspect is that we use a combination of SVM
and DL approaches. While SVM can work with a limited amount
of data, DL models tend to perform worse when big data are not
available. Therefore, we test multiple approaches to artificially
augment the training data:

• DLwith no augmentation, DL.We train the model directly
from the data without further transformations.

• DL with SVM augmentation, DL + SVM. We used the
SVMmodel trained beforehand to enhance the data. We set
a number of observations that we want to enhance and
generate random timestamps we use for prediction using
SVM. Then we add those artificial values as new
observations for training.

• DL with SVM augmentation and random noise, DL +
SVM + noise. We follow the same process as in SVM
augmentation, but before adding the predictions to the
training pool, we add normal noise.

For the SVM we use one input feature, the days passed, and
one output feature, the size of the tumor. For DL, we use the gated
recurrent units (GRUs; Chung et al. (2014)) as building blocks to
design a structure inspired by the work of Champion et al. (2019).
The architecture consists on one GRU layer, one ReLU activation,
a fully connected layer, and another ReLU activation. We
designed a simple architecture to better suit the model to the
scarce availability of data inspired by the study by Berg and
Nyström (2019). As the DL model is a recurrent model, our input
data consist of all data available from a certain patient up to a
point. Both models normalize the data (both days and tumor size)
by dividing by the maximum value observed. For consistency
across methods, we run a fourfold cross-validation for each
dataset (except dataset 0, which has only two samples;
therefore, we run a twofold cross-validation). We present the
average results over the cross-validation. The complete
parametrization and implementation are available on GitLab.

3.3 Results
As previously mentioned, we evaluate the systems on a series of
instantiations depicting various decision support tasks relevant
for clinical use. All of the five models were evaluated through
multiple metrics (Table 2) on each of the four cell line datasets. In
order to evaluate the distribution of the measurement error as a

function of the measured volumes of the tumors, the work of
Benzekry et al. (2014) recommended the following model for the
standard deviation of the error σi at each measurement time
point i,

σ i � σ yi
m( )α, ifyi

m ≥yi

σ yi( )α, ifyi
m <yi{

This model shows that when overestimating (ym ≥ y), the
measurement error α is subproportional, and when
underestimating (ym < y), the obtained error is the same as
the measured data points. In our experiments, we consider
α � 0.84 and σ � 0.21 as a good trade-off of error penalty and
enhancement. We use this measurement error formulation to
calculate the typical performance indices (i.e., sum of squared
errors [SSE], root mean squared error [RMSE], symmetric mean
absolute percentage error [sMAPE]) and goodness-of-fit and
parsimony (i.e., Akaike information criterion [AIC] and
Bayesian information criterion [BIC]), as shown in Table 2.

3.3.1 Learning Growth Patterns of Preinvasive Breast
Cancer
Analyzing tumor infiltration patterns, clinicians can evaluate the
evolution of neoplastic processes, for instance, from DCIS to breast
cancer. Such an analysis can provide very important benefits, in early
detection, in order to (1) increase patient survival, (2) decrease the
likelihood for multiple surgeries, and (3) determine the choice of
adjuvant versus neoadjuvant chemotherapy. For a full analysis and
in-depth discussion of our system’s capabilities for such a task, refer
to Axenie and Kurz (2020b). For this task, we assessed the capability
of the evaluated systems to learn the dependency between
histopathologic and morphological data. We fed the systems with
DCIS data from Edgerton et al. (2011), namely, time series of
nutrient diffusion penetration length within the breast tissue (L),
ratio of cell apoptosis to proliferation rates (A), and radius of the
breast tumor (R). The study by Edgerton et al. (2011) postulated that
the value of R depends on A and L following a “master equation”
Eq. 9

A � 3
L

R

1

tanh R
L( ) − L

R
⎛⎝ ⎞⎠ (9)

whose predictions are consistent with nearly 80% of in situ
tumors identified by mammographic screenings. For this

TABLE 2 | Evaluation metrics for data-driven relation learning systems. We
consider N—number of measurements, σ—standard deviation of data,
p—number of parameters of the model.

Metric Equation

SSE ΣN
i�1(y

i−yim
σ i
σ

)
RMSE

���
SSE
N−p

√
sMAPE 1

NΣN
i�1(2 |yi−yim |

(|yi |+|yim |))
AIC N ln(SSEN ) + 2p
BIC N ln(SSEN ) + ln(N)p
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initial evaluation of the data-driven mathematical
relations learning systems, we consider three typical
performance metrics (i.e., SSE, RMSE, and sMAPE,
respectively) against the experimental data (i.e., ground
truth and Eq. 9):

As one can see in Table 3, our system overcomes the other
approaches on predicting the nonlinear dependency between
radius of the breast tumor (R) given the nutrient diffusion
penetration length within the breast tissue (L) and ratio of cell
apoptosis to proliferation rates (A) from real in vivo
histopathologic and morphological data.

3.3.2 Learning Unperturbed Tumor Growth Curves
Within and Between Cancer Types
In the second task, we evaluated the systems on learning
unperturbed (i.e., growth without treatment) tumor growth
curves. The choice of different cancer types (i.e., two breast
cell lines, lung, and leukemia) is to probe and demonstrate
between- and within-tumor-type prediction versatility.

Our system provides overall better accuracy between- and
within-tumor-type growth curve prediction, as shown in Table 4

TABLE 3 | Evaluation of the data-driven relation learning systems.

Evaluation metrics

Dataset/system SSE RMSE sMAPE

Breast (DCIS), Edgerton et al. (2011)
Cook et al. 56.321 0.4867 0.5901
Weber et al. 59.879 0.5099 0.6512
Mandal et al. 62.346 0.5617 0.6800
Champion et al. 58.645 0.4721 0.6054
Our system 54.216 0.4656 0.5734

TABLE 4 | Evaluation of the data-driven relation learning systems on tumor growth curve extraction.

Evaluation metrics (smaller value is better)

Dataset/system SSE RMSE sMAPE AIC BIC Rank3

Breast4 cancer
Cook et al. 7,009.6 37.4423 1.7088 52.3639 52.2557 2
Weber et al. 8,004.9 44.7350 1.7088 55.2933 55.1310 5
Mandal et al. 7,971.8 39.9294 1.7088 53.2643 53.1561 4
Champion et al. 6,639.1 40.7403 1.4855 53.9837 53.8215 3
Our system 119.3 4.1285 0.0768 19.8508 19.8508 1

Breast5 cancer
Cook et al. 0.2936 0.1713 0.1437 −40.5269 −39.5571 4
Weber et al. 0.2315 0.1604 0.1437 −41.3780 −39.9233 2
Mandal et al. 0.3175 0.1782 0.1437 −39.5853 −38.6155 5
Champion et al. 0.2699 0.1732 0.1512 −39.5351 −38.0804 3
Our system 0.0977 0.0902 0.0763 −57.7261 −57.7261 1

Breast6 cancer
Cook et al. 3.0007 0.7071 1.0606 50.1322 51.2887 2
Weber et al. 3.2942 0.8116 1.6626 56.4133 55.1915 5
Mandal et al. 3.1908 0.7292 1.3506 53.2643 52.5421 4
Champion et al. 3.4772 0.8339 1.1288 53.9837 53.7775 3
Our system 0.7668 0.3096 0.2615 19.3208 19.1298 1

Breast7 cancer
Cook et al. 45.6031 2.3875 1.2216 −40.0084 −39.9975 4
Weber et al. 56.0738 2.8302 1.8346 −41.2345 −39.1234 2
Mandal et al. 53.2428 2.5797 1.4816 −39.5853 −37.1260 5
Champion et al. 54.7189 2.7958 1.5086 −39.1234 −38.0664 3
Our system 0.2008 0.1417 0.0364 −57.1221 −57.6112 1

Lung cancer
Cook et al. 44.5261 2.2243 1.5684 19.3800 20.1758 2
Weber et al. 54.1147 2.6008 1.5684 23.5253 24.7190 5
Mandal et al. 53.2475 2.4324 1.5684 21.3476 22.1434 4
Champion et al. 50.6671 2.5166 1.5361 22.8012 23.9949 3
Our system 3.6903 0.5792 0.2121 −12.0140 −12.0140 1

Leukemia
Cook et al. 223.7271 3.2640 1.6368 56.3235 58.5944 2
Weber et al. 273.6770 3.6992 1.6368 62.9585 66.3649 5
Mandal et al. 259.9277 3.5182 1.6368 59.7729 62.0439 4
Champion et al. 248.5784 3.5255 1.6001 60.7461 64.1526 3
Our system 35.2541 1.2381 0.3232 9.8230 9.8230 1

Notes: 3—Calculated as best in 3/5 metrics; 4—MDA-MB-231 cell line; 5—MDA-MB-435 cell line; 6—MCF-7, T47D cell line; 7—LM2-4LUC + cell line.
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and the summary statistics (depicted in Figure 5). The superior
performance is given by the fact that our system can overcome the
other approaches when facing incomplete biological descriptions,
the diversity of tumor types, and the small size of the data.
Interested readers can refer to Axenie and Kurz (2021) for a
deeper performance analysis of our system.

3.3.3 Extracting Tumor Phenotypic Stage Transitions
The next evaluation task looks at learning the mathematical
relations describing the phenotypic transitions of tumors in
breast cancer. For this experiment, we considered the study of 17
breast cancer patients in the study by Edgerton et al. (2011).
Typically, in the breast cancer phenotypic state space, quiescent
cancer cells (Q) can become proliferative (P) or apoptotic (A). In
addition, nonnecrotic cells become hypoxic if the oxygen supply
drops below a threshold value. But, hypoxic cells can recover to their
previous state or become necrotic, as shown byMacklin et al. (2012).

In this instantiation, we focus on a simplified three-state
phenotypic model (i.e., containing P, Q, A states). The
transitions among tumor states are stochastic events generated
by Poisson processes. Each of the data-driven relation learning
systems is fed with time series of raw immunohistochemistry and
morphometric data for each of the 17 tumor cases (Edgerton
et al., 2011; Supplementary Tables S1, S2) as follows: cell cycle

time τP, cell apoptosis time τA, proliferation index PI, and
apoptosis index AI. Given this time series input, each system
needs to infer the mathematical relations for αP, the mean
quiescent-to-proliferation (Q–P) transition rate, and αA, the
quiescent-to-apoptosis (Q–A) transition rate, respectively
(Figure 6). Their analytical form state transition is given by:

αP �
1
τP

PI + PI2( ) − 1
τA
AIPI

1 − AI − PI
, αA �

1
τA

AI − AI2( ) + 1
τP
AIPI

1 − AI − PI
(10)

Q–A and Q–P state transitions of cancer cells are depicted in
Figure 6, where we also present the relation that our system
learned. Both in Figure 6 and Table 5, we can see that our system
is able to recover the correct underlying mathematical function
with respect to ground truth (clinically extracted and modeled
Eq. 10 from the study by Macklin et al. (2012).

3.3.4 Simultaneously Extracting Drug-Perturbed
Tumor Growth and Drug Pharmacokinetics
Chemotherapy use in the neoadjuvant and adjuvant settings
generally provides the same long-term outcome (de Wiel et al.,
2017). But what is the best choice for a particular patient? This
question points at those quantifiable patient-specific factors (e.g.,

FIGURE 5 | Evaluation of the data-driven relation learning systems on tumor growth: summary statistics.
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tumor growth curve under chemotherapy, drug pharmacokinetics)
that influence the sequencing of chemotherapy and surgery in a
therapy plan. A large variety of breast cancer tumor growth patterns
used in cancer treatments planningwere identified experimentally and
clinically and modeled over the years (Gerlee, 2013). In addition,
progress in pharmacokinetic modeling allowed clinicians to
investigate the effect of covariates in drug administration, as shown
in the work by Zaheed et al. (2019). Considering breast cancer,
paclitaxel is a typical drug choice with broad use in monotherapy
as well as immune-combined therapies (Stage et al., 2018).

In the current section, we present the experimental results of
all the evaluated systems and consider (1) accuracy in learning the
chemotherapy-perturbed tumor growth model and (2) accuracy
in learning the pharmacokinetics of the chemotoxic drug
(i.e., paclitaxel) dose. For the tumor growth curve extraction,
we considered four cell lines of breast cancer (i.e., MDA-MB-231,
MDA-MB-435, MCF-7, LM2-LUC + cell lines; Table1). The
evaluation results of the systems in the perturbed tumor

growth scenario are provided in Figure 7. Note that our
system learns the temporal relationships among the quantities
fed to the two sides of the system (Figure 3), which can,
subsequently, be used to infer one (unavailable) quantity based
on the one available. For instance, if the system had learned the
change in volume at irregular time points, given a next time point,
the system will recover the most plausible volume
value—basically accounting for a one-step-ahead prediction.
For a longer prediction horizon, one can recurrently apply this
process for new predictions and so on.

Table 6 presents the results using SVM and the different
versions of DL. We can see that usually vanilla DL outperforms
SVM. DL is a more complex model, as well as uses more input data,
so this result is expected. Once we add the augmentation from SVM,
themodel has a comparable performance to SVM.Our theory is that
this is caused by DL learning to imitate SVM instead of real data.
Once we add noise to the augmentation, the data become more
realistic and usually yield improvements in performance.

For the pharmacokinetics learning experiments, we used the
data from the computational model of intracellular
pharmacokinetics of paclitaxel of Kuh et al. (2000) describing
the kinetics of paclitaxel uptake, binding, and efflux from cancer
cells in both intracellular and extracellular contexts.

As one can see in Figure 8A, the intracellular concentration
kinetics of paclitaxel is highly nonlinear. Our system is able to
extract the underlying function describing the data without any
assumption about the data and other prior information, opposite
to the model from (Kuh et al., 2000). Interestingly, our system
captured a relevant effect consistent with multiple paclitaxel
studies (Stage et al., 2018), namely, that the intracellular
concentration increased with time and approached plateau
levels, with the longest time to reach plateau levels at the
lowest extracellular concentration—as shown in Figure 8.

Analyzing the extracellular concentration in Figure 8B, we
can see that our system extracted the trend and the individual
variation of drug concentration after the administration of the
drug (i.e., in the first 6 h) and learned an accurate fit without any
prior or other biological assumptions. Interestingly, our system
captured the fact that the intracellular drug concentration

FIGURE 6 | Learning cancer cells phenotypic states transitions mathematical relations.

TABLE 5 | Evaluation of the data-driven relation learning systems for extracting
phenotypic transitions relations.

Evaluation metrics

State transition/system SSE RMSE sMAPE

Quiescent(Q) to proliferation(P) transition relation
Cook et al. 0.820 0.240 0.190
Weber et al. 0.865 0.294 0.196
Mandal et al. 0.904 0.320 0.214
Champion et al. 0.845 0.274 0.189
Our system 0.750 0.210 0.172

Quiescent(Q) to apoptosis(A) transition relation
Cook et al. 0.421 0.162 0.140
Weber et al. 0.484 0.178 0.154
Mandal et al. 0.490 0.182 0.151
Champion et al. 0.441 0.166 0.147
Our system 0.398 0.153 0.131

Note that none of the evaluated system had prior knowledge of the data distribution or
biological assumptions. To have a more detailed overview on the capabilities of our
system to capture phenotypic dynamics, refer to Axenie and Kurz (2020c).
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increased linearly with extracellular concentration decrease, as
shown in Figure 8.

The overall evaluation of pharmacokinetics learning is given in
Table 7.

In this series of experiments, all of the systems learned that
changes in cell number were represented by changes in volume,
which (1) increased with time at low initial total extracellular drug
concentrations due to continued cell proliferation and (2)
decreased with time at high initial total extracellular drug
concentrations due to the antiproliferative and/or cytotoxic
drug effects, as reported by Kuh et al. (2000). In order to
assess the impact the predictions have on therapy sequencing
(i.e., neoadjuvant vs. adjuvant chemotherapy), refer to Axenie
and Kurz (2020a).

3.3.5 Predicting Tumor Growth/Recession Under
Chemotherapy
In the last series of experiments, we used real patient data from
the I-SPY 1 TRIAL: ACRIN 6657 (Yee et al., 2020). Data for the
136 patients treated for breast cancer in the IPSY-1 clinical
trial were obtained from the cancer imaging archive3 and the
Breast Imaging Research Program at UCSF. The time series
data contained only the largest tumor volume from magnetic
resonance imaging measured before therapy, 1 to 3 days after
therapy, between therapy cycles, and before surgery,

FIGURE 7 | Evaluation of the data-driven relation learning system on perturbed tumor growth: accuracy evaluation. The decrease in the MCF7 dataset is due to a
high-dose chemotherapy administration and demonstrates the adaptivity of the methods to cope such abnormal growth behaviors.

TABLE 6 | Description of the DL approach inspired by Champion et al. (2019).

Evaluation of the deep learning approach

Dataset Cancer (cell line) RMSESVM RMSEDL RMSEDL+SVM RMSEDL+SVM+noise

1 Breast (MDA-MB-231) 1.8424 1.5382 1.7544 1.7088
2 Breast (MDA-MB-435) 1.0977 1.5990 0.9584 0.9012
3 Breast (MCF-7) 1.4112 1.7295 1.3632 1.0607
4 Breast (LM2-4LUC+) 1.8945 1.8345 1.7620 1.4816

Note that for all of the evaluation datasets, the best performing DL approach [i.e., inspired by Champion et al. (2019)] is the combined DL—SVM—noise configuration.

3https://wiki.cancerimagingarchive.net/display/Public/ISPY1.
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respectively. To summarize, the properties of the dataset are
depicted in Figure 9.

As we can observe in Table 8, our system learns a superior fit to
the tumor growth data, with respect to the other systems, despite the
limited number of samples (i.e., 7 data points for MDA-MD-231 cell
line dataset and up to 14 data points for MDA-MD-435 cell line
dataset). It is important to note that when analyzing tumor growth
functions and response under chemotherapy, we faced the high
variability among patients given by the typical constellation of
hormone receptor indicators (i.e., HR and HER2neu, which
covered the full spectrum of positive and negative values) for
positive and negative prognoses. All data-driven learning systems
capture such aspects to some extent. Our system learns a superior fit
overall the three metrics, capturing the intrinsic impact
chemotherapy has upon the tumor growth function, despite the
limited number of samples (i.e., 4 data points of the dataset overall
evaluation dataset of 20% of patients). An extended evaluation of our
system on a broader set of datasets for therapy outcome prediction is
given by Kurz and Axenie (2020).

4 DISCUSSION

We complement the quantitative evaluation in the previous
section with an analysis of the most important features of all
the systems capable to extract mathematical relations in the
aforementioned clinical oncology tasks. As the performance
evaluation was done in the previous section, we will now focus
on other specific comparison terms relevant for the adoption of
such systems in clinical practice.

One initial aspect is the design and functionality. Using either
distributed representations (Cook et al., 2010; Weber and
Wermter, 2007; Champion et al., 2019) or compact
mathematical forms Mandal and Cichocki (2013), all methods
encoded the input variables in a new representation to facilitate
computation. At this level, using neural network dynamics (Cook
et al., 2010; Weber and Wermter, 2007) or pure mathematical
multivariate optimization (Mandal and Cichocki, 2013;
Champion et al., 2019), the solution was obtained through
iterative processes that converged to consistent representations
of the data. Our system employs a lightweight learning
mechanism, offering a transparent processing scheme and
human-understandable representation of the learned relations
as shown in Figure 4. Besides the capability to extract the
correlation among the two features, the system can
simultaneously extract the shape of the distribution of the
feature spaces. This is an important feature when working
with rather limited medical data samples.

A second aspect refers to the amount of prior information
embedded by the designer in the system. It is typical that,
depending on the instantiation, a new set of parameters is
needed, making the models less flexible. Although less
intuitive, the pure mathematical approaches (Mandal and
Cichocki, 2013) (i.e., using CCA) need less tuning effort due
to the fact that their parameters are the result of an optimization
procedure. On the other side, the neural network approaches
(Cook et al., 2010; Weber and Wermter, 2007; Champion et al.,
2019) need a more judicious parameter tuning, as their dynamics

FIGURE 8 | Learning the pharmacokinetics of the intracellular (A) and extracellular (B) paclitaxel concentration. Data from Kuh et al. (2000), log scale plot.

TABLE 7 | Evaluation of the data-driven relation learning systems for
pharmacokinetics extraction.

Evaluation metrics

Pharmacokinetics data/system SSE RMSE sMAPE

Intracellular paclitaxel
Cook et al. 0.6234 0.2812 0.1487
Weber et al. 0.7212 0.3689 0.1794
Mandal et al. 0.6743 0.3046 0.1602
Champion et al. 0.6539 0.2607 0.1500
Our system 0.5960 0.2141 0.1403

Extracellular paclitaxel
Cook et al. 0.5676 0.2341 0.1213
Weber et al. 0.6674 0.2891 0.1289
Mandal et al. 0.6128 0.2974 0.1366
Champion et al. 0.5790 0.2633 0.1156
Our system 0.5484 0.2054 0.1068
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are more sensitive and can reach either instability (e.g., recurrent
networks) or local minima. Except parametrization, prior
information about inputs is generally needed when
instantiating the system for a certain scenario. Sensory value
bounds and probability distributions must be explicitly encoded
in the models through explicit distribution of the input space
across neurons in the studies by Cook et al. (2010) andWeber and
Wermter (2007), linear coefficients in vector combinations
(Mandal and Cichocki, 2013), or standardization routines of
input variables (Champion et al., 2019). Our system exploits
only the available data to simultaneously extract the data
distribution and the underlying mathematical relation
governing tumor growth processes. Capable of embedding
priors (i.e., mechanistic models) in its structure, our system
can speed up its computation, through a data-driven model
refinement similar in nature with the unsupervised learning
process. Basically, in order to combine the learning process
with a mechanistic model, the only update will be done in the
factorization of the weight update in Eq. 6.

A third aspect relevant to the analysis is the stability and
robustness of the obtained representation. The representation of
the hidden relation (1) can be encoded in a weight matrix Cook
et al. (2010) and Weber and Wermter (2007) such that, after
learning, given new input, the representation is continuously
refined to accommodate new inputs; (2) can be fixed in vector
directions of random variables requiring a new iterative
algorithm run from initial conditions to accommodate new
input (Mandal and Cichocki, 2013); or (3) can be obtained as
an optimization process given the new available input signals
(Champion et al., 2019). Given initial conditions, prior
knowledge and an optimization criteria (Mandal and Cichocki,
2013) or a recurrent relaxation process toward a point attractor
(Cook et al., 2010; Weber and Wermter, 2007; Champion et al.,
2019) are required to reach a desired tolerance. Our system
exploits the temporal regularities among tumor growth data
covariates, to learn the governing relations using a robust
distributed representation of each data quantity. The choice of
a distributed representation to encode and process the input data
gives out the system an advantage in terms of explainability for
clinical adoption. As shown in Figure 3, each scalar quantity can
be projected in a high dimension where the shape of the
distribution can be inferred. Such insights can support the
decisions of the system by explaining its predictions.

The capability to handle noisy data is an important aspect
concerning the applicability in real-world scenarios. Using either
computational mechanisms for denoising (Cook et al., 2010; Weber
andWermter, 2007), iterative updates to minimize a distance metric
Mandal and Cichocki (2013), or optimization Champion et al.
(2019), each method is capable to cope with moderate amounts
of noise. Despite this, some methods have intrinsic methods to cope
with noisy data intrinsically, through their dynamics, by recurrently

FIGURE 9 | The I-SPY2 trial dataset properties.

TABLE 8 | Evaluation of the data-driven relation learning systems on real patient
breast cancer data.

Evaluation metrics

Dataset/model SSE RMSE sMAPE

I-SPY2 trial Yee et al. (2020)
Cook et al. 1.3735 1.1439 0.1133
Weber et al. 1.7543 1.2005 0.2539
Mandal et al. 2.963 1.0963 0.7834
Champion et al. 2.0747 1.04100 0.1073
Our system 0.8650 0.4650 0.0389

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 71369016

Kurz et al. Computational Framework for Physical Oncology

146

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


propagating correct estimates and balancing new samples (Cook
et al., 2010). The distributed representation used in our system
ensures that the system is robust to noise, and the local learning rules
ensure fast convergence on real-world data—as our experiments
demonstrated.

Another relevant feature is the capability to infer
(i.e., predict/anticipate) missing quantities once the
mathematical relation is learned. The capability to use the
learned relations to determine missing quantities is not
available in all presented systems, such as the system of
Mandal and Cichocki (2013). This is due to the fact that the
divergence and correlation coefficient expressions might be
noninvertible functions that support a simple pass-through of
available values to extract missing ones. On the other side, using
either the learned co-activation weight matrix (Cook et al., 2010;
Weber andWermter, 2007) or the known standard deviations of
the canonical variants (Champion et al., 2019), some systems are
able to predict missing quantities. Our system stores learned
mathematical relations in the Hebbian matrix, which can be
used bidirectionally to recover missing quantities on one side of
the input given the other available quantity. This feature is
crucial for the predictive aspects of our system. Basically, in its
typical operation, the system learns from sets of observations the
underlying relations among quantities describing the tumor’s
state (e.g., growth curve, phenotypic stage, extracellular drug
concentration). For prediction purposes, the system is fed with
only one quantity (e.g., time index) and, given the learned
relation, will recover the most plausible value for the
correlated quantity that was trained with (e.g., growth curve)
for the next step.

Finally, because of the fact that all methods reencode the
real-world values in new representation, it is important to
study the capability to decode the learned representation and
subsequently measure the precision of the learned
representation. Although not explicitly treated in the
presented systems, decoding the extracted representations is
not trivial. Using a tiled mapping of the input values along the
neural network representations, the system of Cook et al.
(2010) decoded the encoded value in activity patterns by
simply computing the distribution of the input space over
the neural population units, whereas Weber and Wermter
(2007) used a simple WTA readout, given that the
representation was constrained to have a uniquely defined
mapping. Given that the model learns the relations in data
space through optimization processes, as in the system of
Champion et al. (2019), one can use learned curves to
simply project available sensory values through the learned
function to get the second value, as the scale is preserved.
Albeit its capability to precisely extract nonlinear relations
from high-dimensional random datasets, the system of Mandal
and Cichocki (2013) cannot provide any readout mechanisms
to support a proper decoded representation of the extracted
relations. This is due to the fact that the method cannot recover
the sign and scale of the relations. The human-understandable
relation learned by our system is efficiently decoded from the
Hebbian matrix back to real-world values. As our experiments
demonstrate, the approach introduced through our system

excels in capturing the peculiarities that clinical data carry.
Contributing to the explainability features of our system, the
read-out mechanism is able to turn the human-understandable
visual representation of the learned relation (Figure 4) into a
function providing the most plausible values of the queried
quantities.

5 CONCLUSION

Data-driven approaches to improve decision-making in clinical
oncology are now going beyond diagnosis. From early
detection of infiltrating tumors to unperturbed tumor
growth phenotypic staging, and from pharmacokinetics-
dictated therapy planning to treatment outcome, data-
driven tools capable of learning hidden correlations in the
data are now taking the foreground in mathematical and
computational oncology. Our study introduces a novel
framework and versatile system capable of learning physical
and mathematical relations in heterogeneous oncology data.
Together with a lightweight and transparent computational
substrate, our system provides human-understandable
solutions. This is achieved by capturing the distribution of
the data in order to achieve superior fit and prediction
capabilities between and within cancer types. Supported by
an exhaustive evaluation on in vitro and in vivo data, against
state-of-the-art machine learning and DL systems, the
proposed system stands out as a promising candidate for
clinical adoption. Mathematical and computational
oncology is an emerging field where efficient, transparent,
and understandable data-driven systems hold the promise
of paving the way to individualized therapy. But this can
only be achieved by capturing the peculiarities of a patient’s
tumor across scales and data types.
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The most common form of cancer among women in both developed and developing
countries is breast cancer. The early detection and diagnosis of this disease is significant
because it may reduce the number of deaths caused by breast cancer and improve the
quality of life of those effected. Computer-aided detection (CADe) and computer-aided
diagnosis (CADx) methods have shown promise in recent years for aiding in the human
expert reading analysis and improving the accuracy and reproducibility of pathology
results. One significant application of CADe and CADx is for breast cancer screening using
mammograms. In image processing and machine learning research, relevant results have
been produced by sparse analysis methods to represent and recognize imaging patterns.
However, application of sparse analysis techniques to the biomedical field is challenging,
as the objects of interest may be obscured because of contrast limitations or background
tissues, and their appearance may change because of anatomical variability. We introduce
methods for label-specific and label-consistent dictionary learning to improve the
separation of benign breast masses from malignant breast masses in mammograms.
We integrated these approaches into our Spatially Localized Ensemble Sparse Analysis
(SLESA) methodology. We performed 10- and 30-fold cross validation (CV) experiments
on multiple mammography datasets to measure the classification performance of our
methodology and compared it to deep learning models and conventional sparse
representation. Results from these experiments show the potential of this methodology
for separation of malignant from benign masses as a part of a breast cancer
screening workflow.

Keywords: computer-aided diagnosis (CADx), sparse approximation, breast cancer screening, mass classification,
mammographic imaging
1 INTRODUCTION

The topic of this work is automated classification of breast masses into benign or malignant using
mammograms. The diagnosis of breast cancer is an impactful domain of research (1), therefore,
automated methods of detection and diagnosis of breast cancer have gained popularity in the past
few decades (2–6). Early diagnosis of breast cancer has been shown to reduce mortality related to
this disease and significantly improve the quality of life of those affected. To achieve early diagnosis,
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mammograms are used to aid in detecting breast cancer. Proper
detection and diagnosis of breast abnormalities requires the
experience and high levels of expertise of trained radiologists.
Computer-aided diagnosis would improve the reproducibility of
diagnosis states and reduce the time spent to thoroughly
diagnosis breast cancer.

The X-ray mammographic test is a commonly used method
for early prediction and diagnosis of breast cancer (7). Therefore,
the development of CADe and CADx techniques for breast
cancer using mammograms has attracted significant interest.
Among these techniques, conventional classification models use
specific procedures to craft features for representing and
classifying imaging pattern. Such conventional approaches are
introduced in (8–13). Features such as shape, texture, and
intensity were extracted in (9). Among the extracted features,
the genetic algorithm (GA) selected the most relevant features.
Additionally, feature extraction through Zernike moments have
been used because of their useful ability to well describe shape
characteristics (14). In recent years, feature extraction and
selection has been achieved through state-of-the-art techniques
that use neural networks (NN) (15). A popular group of NN
techniques use Convolutional Neural Nets (CNNs) for
classification. Key advances in both the design and application
of CNNs (16, 17) led to significant improvement in the state-of-
the-art object recognition on the Imagenet dataset. A common
training method used for CNNs is transfer learning; this
technique has been applied to medical imaging for
classification tasks (15, 18, 19). In (20), for example, pretrained
VGG16, ResNet50, and Inception v3 networks were customized
and applied to several mammographic datasets.

The concentration of this research is the diagnosis (CADx) of
breast cancer masses into benign or malignant states using sparse
representation and dictionary learning techniques. Sparse
representation has been applied in the areas of computer
vision, signal/image processing, and pattern recognition. The
objective of sparse representation methods is to use sparse linear
approximations of patterns, or atoms, from a dictionary of
signals to represent a specific signal . These sparse
approximations can then be used for applications such as
compression and denoising of signals/images, classification,
object recognition, and other areas. A common area of interest
in such techniques is dictionary learning. Dictionary learning
focuses on the methods for learning dictionaries in order to
obtain optimal representations according to the application
objective. Dictionary learning techniques have produced
impressive results in a variety of signal and image processing
applications (21–30). In more recent years, a widely studied area
has been convolutional sparse coding, and its relationship with
deep learning techniques (27, 30, 31).

Although there is substantial interest in the aforementioned
techniques, their application to the biomedical field remains
within limits to the straightforward utilization of sparse
representation classification (SRC), or learning of multiple
separate dictionaries. Hence motivation remains for the design
of methods that leverage the capabilities of dictionary learning and
sparse coding using joint discriminative-generative approaches.
Frontiers in Oncology | www.frontiersin.org 2151
Here we propose the integration of discriminative dictionary
learning methods into our spatially localized ensemble sparse
analysis classification (SLESA) model. Our dictionary learning
techniques incorporate class label separation and label
consistency and we denote these variations as LS-SLESA and
LC-SLESA respectively. We train multiple dictionaries on the
same set of ROIs and fuse the residuals of multiple
approximations to obtain more robust class estimates than
those obtained by single dictionary learning as also supported
by (32). Our premise is that optimized spatially localized
dictionaries trained using label separation or label consistency
constraints, will improve the classification accuracy of our
spatially localized sparse analysis. We employ this system for
diagnosis of breast cancer in mammograms. We evaluate the
performance of our framework and compare it to straightforward
sparse representation classification (SRC), and the well-known
CNN architectures of Alexnet (16), Googlenet (17), Resnet50 (33),
and InceptionV3 (34), after applying transfer learning and data
augmentation techniques.
1.1 Sparse Analysis
In recent years, the research area of sparse representation of
signals has attracted considerable interest. The central focus of
sparse analysis is to optimize an objective function. The objective
function is comprised of a reconstruction error term and a
sparsity term. The reconstruction error term or the residual,
produces the measurement of the difference between the signal
reconstruction and the test signal. The sparsity term measures
the sparsity of the computed solution. The residual term may be
set to measure the test signal exactly or within a defined bound
of constraint.

In image classification tasks, the sparse representation of a
test image is used to assign that image to a class. Sparse
representation-based classification has two phases: coding and
classification. In the coding phase, an image or signal is
collaboratively coded with a dictionary of atoms given a
sparsity constraint. The classification of the image is performed
based on the coding coefficients and the dictionary. One of the
advantages of sparse representation in image classification tasks
is its ability to represent a high-dimensional image by few
representative samples.

The dictionary D consists of columns of signals, also called
atoms. The design of the dictionary could be simply predefined.
For example, a dictionary that consists of all training samples
from all classes is considered predefined. However, dictionaries
of this form may fail to represent test samples well, if the atoms
are inter-correlated, or they do not span the range of the image
content. Moreover, very large dictionaries increase the
coding complexity.

Sparse analysis solves the following optimization problem:
given signals in an Rd space, a dictionary D ∈ Rd×n of signals
partitioned by class, and a test signal y ∈Rd, sparse coding seeks
to find a coding vector x̂ ∈Rn. The test signal y is represented as a
linear combination of the dictionary atoms and a sparse code.
This mathematical optimization problem is expressed by
December 2021 | Volume 11 | Article 725320
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bx = argmin
x
jjbx j0 subject to y = Dx :j (1)

Sparsity is represented by the ℓ0 norm, but may also be
approximated by the ℓ1 norm, or ℓp norms where p ∈(0,1).
Assuming that the signal contains noise, we can introduce ∈ as a
tolerance parameter and solve the following problem,

bx = argmin
x
jjbx j0 subject to j j y − Dxj j < ej (2)

Pursuit algorithms such as basis pursuit (BP) and orthogonal
matching pursuit (OMP) are often used to solve the sparse
coding problems defined in Equations 1 and 2. Basis pursuit is
a linear programming technique that seeks to find the sparsest L1
solution to to the mathematical optimization problem defined in
Equation 1. The orthogonal matching pursuit is considered a
greedy pursuit algorithm in that it updates the sparse solution
vector coefficients using previously updated solution vector
atoms. OMP is a more complex and computationally expensive
extension of the matching pursuit algorithm (MP), however, can
often lead to better sparse solutions.

Early sparse representation techniques such as SRC (35),
optimize an objective function of two terms, and design the
dictionary D with the original training images as dictionary
columns or atoms. In more recent works, we see an emphasize
on the design of the dictionary and task-specific optimization, of
which we discuss in the next section.

1.2 Dictionary Learning
As discussed before, the dictionary is a key component of the
optimization problem. Learning a dictionary from training data
has been an area of interest in recent years (25, 36). The goal of
such techniques is to construct dictionaries optimized for class
representation and separation. Previous works have shown that
dictionary learning may improve the performance of image
processing and recognition tasks (25). Dictionary learning
techniques can be divided into the following groups (23):
(i) probabilistic learning methods, (ii) clustering-based learning
methods, and (iii) construction methods.

The type, design, and dimensions of the dictionary have a
significant effect on the solutions of the sparse optimization
problem. The atoms are expected to be able to approximate the
variations of the specific image domain and have low correlation
with each other. Considering the dictionary dimensions, a
dictionary is considered overcomplete when the number of
signals within the dictionary (n) exceeds the dimension of the
signal to be represented (d), that is if d<n. Overcomplete
dictionaries are required to produce sparse representations of
signals (37).
2 METHODOLOGY

In this work, we introduce class label separation and class label
consistency into the localized dictionaries within our spatially
localized sparse analysis (SLESA) framework. We denote the
respective methods by LS-SLESA and LC-SLESA. Our SLESA
approach applies localized block decomposition that reduces the
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length of the feature vector and helps to build overcomplete
dictionaries. In the classification stage, we solve the sparse
representation problem for each block using orthogonal
matching pursuit (OMP), and fuse the individual block-wise
responses to determine the lesion category. LS-SLESA and LC-
SLESA aim to further improve the performance of our previous
work, SLESA, by finding task-specific dictionaries that utilize the
class labels of the training data. We consider two approaches: one
calculates separate dictionaries for benign and malignant breast
masses, and the other incorporates linear classification errors
into the optimization problem. Figure 1 outlines the main stages
of our methodology.

2.1 Spatially Localized Block
Decomposition
We divide each training image I into m×n px blocks that are
spatially ordered. Therefore, I = [B1, B2, …, BNB], where Bj

denotes a block of each training image and NB is the total
number blocks of an image. We construct dictionaries Dj, where
j = 1,2,…, NB, from the same position of the block Bj for all s
images of the training set:

Dj = ½Bj
1,B

j
2,⋯Bj

s� : (3)

Therefore, a number of NB block dictionaries are constructed,
each unique in the spatial information that they provide to
classify spatially localized image blocks.

2.2 Label Specific Spatially Localized
Ensemble Sparse Analysis
We introduce dictionary learning techniques to improve the
sparse approximation accuracy and generalizability. We learn a
separate dictionary for each type of mass and we then merge the
dictionaries to perform sparse coding and classification.

We employ the KSVD algorithm by (21) to learn the
dictionary. KSVD updates the atoms of the dictionary by
iteratively solving sparse coding problems that alternate
between residual and sparsity constraints. The optimized atom
in each iteration is computed by Singular Value Decomposition
(SVD). This method has been shown to converge to effective
solutions and has been widely applied for sparse representation.

After the block decomposition step, we learn NB
discriminative dictionaries using block-based label-separated
KSVD. We denote this approach by LS-SLESA.

argmin
Dj ,Aj

jjYj − Dj
mX

j
m j22 s : t :  
�� �� xjm�� ��j0 ≤ T , (4)

where Yj denotes the training block samples. We solve the above
problem for each class index m, and then concatenate the class-
specific dictionaries Dj

m to form the complete dictionary Dj for
the j-th block.

2.3 Label Consistent Spatially Localized
Ensemble Sparse Analysis
Another approach is to learn NB discriminative dictionaries
using the label consistent KSVD algorithm (denoted by LC-
KSVD). Sparse coding and sparse classification errors are added
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to the optimization problem in order to compute a single
discriminative dictionary. We employ LC-KSVD to learn the
dictionaries Dj. The authors in (24) proposed two variants
named LC-KSVD1 and LC-KSVD2. In their work,
classification performance was consistently greater when the
LC-KSVD2 variant is used versus the LC-KSVD1 dictionary
learning approach. Thus, we employed the objective function of
LC-KSVD2 in our LC-SLESA approach. Thus, omitting the need
for ablation experiments on the effectiveness of the loss terms in
the LC-KSVD methods.

LC-KSVD2 adds a label consistency regularization term and a
joint classification error term to the objective function. The
optimization problem is:

arg  min
Dj ,Aj ,Wj ,xj

jjYj − DjXj j22+
�� �� Qj − AjXj

�� ��j22 +  jjHj −WjXj j22
��

s : t :  j xj�� ��j0 ≤ T :

(5)

Qj denotes the class-specific sparse codes for Yj, and Aj is a
linear transformation matrix. Wj symbolizes the parameters of
the linear classifier, andHj contains the class labels of the training
data Yj. T is the sparsity threshold. The term jjQj − AjXjjj22 is the
discriminative sparse code error that forces patterns from the
same class to have similar sparse codes. Qj is defined as Qj =
½qj1,…, qjN � for Nmany training samples where the discriminative
sparse codes for a sample, qji contains zero indices where the
training sample yji ∈ Yj and its corresponding dictionary do not
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share the same class label. The term jjHj −WjXjjj22 expresses the
classification error.

2.4 Ensemble Classification
In this stage of our method, we combine the individual spatially
localized decisions to classify the test samples. We find the
solution xj of the regularized noisy ℓ1-minimization problem,
for each test sample yj corresponding to the jth block:

x̂ j = argminjjxj j1 subject to j j Djx − yj
�� ��j2 ≤   e (6)

We propose ensemble learning techniques in a Bayesian
probabilistic setting to fuse classifier predictions. We propose a
decision function that applies majority voting to individual
hypotheses (BBMAP), and an ensemble of log-likelihood
scores (BBLL) computed from either the sparsity of the
solution (BBLL-S), or approximation residual (BBLL-R).

2.4.1 Maximum a Posteriori Decision Function
(BBMAP)
The class label of a test sample is determined by the MAP
estimate produced by NB block-based classifiers. The predicted
class label ŵ is

ŵ BBMAP = F BBMAP(x̂ )≐ argmax
i
 pr(wijx̂ ), (7)

where pr(wijx̂ ) is the posterior probability for class wi given x̂ .
FIGURE 1 | Main stages of the proposed methodology; block decomposition, dictionary learning, and ensemble classification. ROIs of benign and malignant image
samples are first divided into blocks. Block dictionaries are constructed for each block index overall the training samples. Each block of a test image is classified
using the corresponding block dictionary. If no dictionary learning is performed, our SLESA method is employed and an image is classified using an ensemble of its
block classifications. When dictionary learning is used, either through KSVD (our LS-SLESA method) or through LC-KSVD2 (our LC-SLESA method) the block
dictionaries are learned to produce more discriminative dictionaries. Individual spatially localized decisions are combined to classify test samples using ensemble
techniques BBMAP and BBLL-S or -R.
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2.4.2 Log Likelihood Sparsity-Based Decision
Function (BBLL-S)
This decision function first computes a log-likelihood score
based on the relative sparsity scores jjdm(x̂ j)jj1,  jjdn(x̂ j)jj1,
obtained from the sparse representation stage of each classifier

LLS(x̂ j) = −log 
dm(x̂ j)

�� ��
1

dn(x̂ j)k k1
 

≥ 0, x̂ j ∈  mth class

< 0, x̂ j ∈ nth class

(
(8)

We estimate the expectation of LLSj(x̂ ) that we denote by
ELLS over the individual classification scores obtained by (8)

ELLS(x̂ )≐
 
E LLS(x̂ j)
� �

=
1
NB

S
NB

j
LLS(x̂ j)

= − 1
NB S

NB

j
log dm(x̂

j)
�� ��

1−S
NB

j
log dn(x̂

j)
�� ��

1

� �
:

(9)

We apply a sigmoid function ς(.)to produce classification
scores in the range of [–1,1]. We employ a shift parameter tLLS to
account for classification bias,

F LLS(x̂ )≐ ς(ELLS(x̂ ) − tLLS) : (10)

The final decision is given by the sign of FLLS(x̂ ):

ŵ LLS(x̂ ) = Sgn F LLS(x̂ )f g : (11)

2.4.3 Log Likelihood Residual-Based Decision
Function (BBLL-R)
This function computes a log-likelihood score based on the
relative residual scores jjdm(x̂ j)jj1,  jjdn(x̂ j)jj1, obtained from
the sparse representation stage,

LLR(x̂ j) = −log 
Djdm(x̂ j) − yj

�� ��
2

Djdn(x̂ j) − yjk k2
 

≥ 0, x̂ j ∈  mth class

< 0, x̂ j ∈ nth class

(

(12)

We estimate the expectation of LLR(x̂ ), denoted by ELLR,
over all the individual classification scores obtained by (12),

ELLR(x̂ )≐E LLR(x̂ j)
� �

=
1
NBo

NB

j
LLR(x̂ j) (13)

We apply a sigmoid function ς(.)with a shift parameter tLLR
and a sign function, to determine the state of x̂ , symbolized by
ŵ LLR(x̂ ), as in (10, 11).
3 EXPERIMENTS AND DISCUSSION

We evaluated our method for classification of breast masses into
malignant or benign states on two digital mammographic
databases. Next, we describe our experiments and report
results produced by our approach. For comparison, we report
the results of variants to our proposed method including
straightforward sparse representation and multiple strategies
for dictionary learning in SLESA, LS-SLESA and LC-SLESA.
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These may serve as ablation experiments to evaluate the effect of
ensemble classification and the effect of dictionary learning on
the performance of our method. We have also validated the
performance of widely used convolutional neural networks (16,
17, 33, 34), after applying transfer learning, random resampling,
and extensive optimization.

3.1 Datasets
The training and testing data used in our experimentation
were obtained from the Mammographic Image Analysis
Society (MIAS) (2) and the Digital Database for Screening
Mammography (DDSM). The Mammographic Image Analysis
Society (MIAS) database is one of oldest and the most widely
used mammography databases. The resolution of the
mammograms is 200-micron pixel edge that is approximately
equivalent to 264.58 mm pixel size. The image size after clipping
or padding is 1024×1024 px. The MIAS dataset consists of 322
digitized mediolateral oblique (MLO) images (68 benign, 51
malignant, 203 normal). We selected mammograms containing
51 malignant and 66 benign masses in total, to evaluate
classification performance. The Digital Database for Screening
Mammography (DDSM) is a large public database including a
total of 10,480 images. CBIS-DDSM (Curated Breast Imaging
Subset of DDSM) is a carefully selected and updated subset
DDSM (Digital Database in for Screening Mammography). It
contains 753 calcification subjects and 891 mass subjects. In our
experiments we used the CC view (craniocaudal view) of benign
and malignant lesions of CBIS-DDSM (Curated Breast Imaging
Subset of DDSM). Thus, the number of malignant cases used in
our experiments was narrowed down to 296 malignant and 311
benign cases.

To prepare the data for the first stage of our method, block
decomposition, we first selected regions of interest (ROIs)
containing the masses. Our method reads-in two key values
from radiological readings, that is, the centroid and radius of
each mass. It determines a minimum bounding square ROI and
select the masses that satisfy a size criterion. In the first approach,
we ensured that the majority of the blocks cover the complete
mass area. The mass ROI sizes are required to be greater than, or
equal to a fixed ROI size. The qualifying masses are center-
cropped to generate the ROI data. In the second approach, we
selected the complete ROIs including background tissue using
the mass centroid and radius. Then we resampled all ROIs to a
fixed size, instead of applying a minimum size criterion. In MIAS
data we followed both approaches for ROI selection. In the CBIS-
DDSM data we followed the second approach. We performed
10- and 30-fold cross-validation on the ROIs to examine the
effect of the cross-validation fold size on performance.

3.2 Convolutional Neural Networks With
Transfer Learning
For comparison purposes, we implemented CNN classifiers
using the Alexnet (16), Googlenet (17), Resnet50 (33), and
InceptionV3 (34) architectures with transfer learning. All
networks were pre-trained on the Imagenet database that
contains 1.2 million natural images.
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Transfer learning was applied to each network in various
ways. To modify Alexnet to our data, we replaced the pre-trained
fully connected layers with three new fully connected layers. The
learning rates of the pre-trained layers were set to 0 in order to
keep the network weights fixed. We only trained the new fully
connected layers. For Googlenet, the learning rates of the bottom
10 layers were set to 0, and the top fully connected layer was
replaced with a new fully connected layer. We also assigned a
greater learning rate factor for the new layer than the pre-trained
layers. In Resnet50, we replaced the pre-trained fully connected
layers with three new fully connected layers. We set the learning
rates of the pre-trained layers to 0, in order to train only the new
fully connected layers. In InceptionV3, we replaced the top
classification layers with three new fully connected layers. We
set the learning rates of the pre-trained layers of InceptionV3 to
0, as we did in Alexnet and Resnet50.

To provide the networks with additional training examples,
we applied data resampling using randomly-centered patches
inside each ROI. Additionally, we applied data augmentation by
rotation, scaling, and horizontal and vertical flipping. Finally, we
used Bayesian optimization (38, 39) to tune the learning rate,
mini-batch size, and number of epochs.

Due to the ability of deep networks to learn information from
the edges of masses and not just the texture, we decided to test
our method on 256×256 px ROIs of all masses including the
background tissue in the MIAS database (66 benign and 51
malignant). Table 1 summarizes the results of our cross-
validation experiments. Googlenet yields the top ACC of
67.65% and the top AUC of 63.04% for 30-fold cross-validation.

When using DDSM data, we applied the same ROI selection
strategy with that of MIAS. The Alexnet architecture yields the
Frontiers in Oncology | www.frontiersin.org 6155
top ACC of 69.59% and the top AUC of 73.04% using 30-fold
cross-validation (Table 2). We note the increase in classification
performance when using DDSM for training and testing. This is
expected, because CNNs require a large number of diverse
training samples to achieve good performance. DDSM is a
larger database than MIAS, therefore CNNs are able to learn
more relevant features for classification. Of note is that simpler
networks such as Alexnet and Googlenet, with smaller numbers
of trainable weights, produce more accurate classifications than
deeper networks such as InceptionV3. This is expected because
of the limited number of training samples in both datasets.

3.3 LS-SLESA and LC-SLESA
Next, we evaluated the performance of our block-based ensemble
classification method by 10- and 30-fold cross-validation. In the
MIAS section of our experiments, we present results using
minimum ROI size of 64×64 pixels, resulting in a dataset of 36
benign and 37 malignant masses. In Table 3, we report the
classification rates produced for multiple block sizes. When the
block size is equal to the ROI size, conventional SRC is
performed (35); these results are reported in the first row of
Table 3. We observe that ACC and AUC generally increase when
the number of folds increases, for the same ROI size. The top
ACC using 10-fold cross-validation is 72.86% for 8×8 block size
by SLESA, and for 64×64 block size by LS-SLESA with BBLL-S
decision function. The top AUC for 10-fold CV is 75.35% for 8×8
block size, produced by LS-SLESA. The best overall performance
is obtained for 30-fold cross validation. The top accuracy is 90%
for 16×16 and 8×8 block sizes by SLESA, and the largest area
under the curve is 93.10% for 8×8 block size by SLESA with
BBLL-S decision function. In 30-fold cross-validation, 2 or 3
TABLE 1 | Breast mass classification performance on MIAS data using convolutional neural network classifiers (ROI size: 256 × 256).

Method k-Fold CV ROI Size TPR (%) TNR (%) ACC (%) AUC (%)

Alexnet 10 256 × 256 56.86 72.55 64.71 62.19
30 256 × 256 58.82 64.71 61.77 60.29

Googlenet 10 256 × 256 64.71 58.82 61.77 57.86
30 256 × 256 66.67 68.63 67.65 63.04

Resnet50 10 256 × 256 60.78 62.75 61.76 57.32
30 256 × 256 44.12 55.88 53.6 56.8

InceptionV3 10 256 × 256 58.82 60.78 59.80 58.59
30 256 × 256 58.82 60.78 59.80 57.44
December 2
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The top performances of 10- and 30-fold cross-validation are shown in bold.
TABLE 2 | Breast mass classification performance on DDSM data using convolutional neural network classifiers (ROI size: 256 × 256).

Method k-Fold CV ROI Size TPR (%) TNR (%) ACC (%) AUC (%)

Alexnet 10 256 × 256 67.57 65.88 66.72 69.70
30 256 × 256 72.64 66.55 69.59 73.04

Googlenet 10 256 × 256 72.64 59.46 66.05 69.55
30 256 × 256 66.89 64.19 65.5 69.43

Resnet50 10 256 × 256 56.42 75.68 66.05 70.35
30 256 × 256 60.81 73.31 67.06 71.34

InceptionV3 10 256 × 256 61.82 67.57 64.70 64.70
30 256 × 256 65.20 64.19 64.70 66.94
The top performances of 10- and 30-fold cross-validation are shown in bold.
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TABLE 3 | Breast mass classification performance on MIAS data using ensembles of block-based sparse classifiers with dictionary learning (ROI size: 64×64).

Method k-Fold Block
Size

SLESA SLESA SLESA SLESA LS-
SLESA

LS-
SLESA

LS-
SLESA

LS-
SLESA

LC-
SLESA

LC-
SLESA

LC-
SLESA

LC-
SLESA

CV TPR
(%)

TNR
(%)

ACC
(%)

AUC
(%)

TPR (%) TNR (%) ACC (%) AUC (%) TPR (%) TNR (%) ACC (%) AUC (%)

BBMAP-S 10 64×64 45.95 84.85 64.29 63.55 64.86 81.82 72.86 70.11 75.68 36.36 57.14 53.81
32×32 51.35 87.88 68.57 69.53 62.16 81.82 71.43 70.84 78.38 36.36 58.57 52.33
16×16 40.54 90.91 64.29 65.52 59.46 81.82 70.00 69.70 56.76 72.73 64.29 61.26
8×8 56.76 81.82 68.57 67.90 48.65 81.82 64.29 63.23 62.16 63.64 62.86 60.77
Mean 48.65 86.37 66.43 66.63 58.78 81.82 69.64 68.47 68.25 52.27 60.72 57.04
Std Dev 6.98 3.91 2.47 2.63 7.11 0.00 3.76 3.53 10.44 18.75 3.40 4.63

BBLL-S 10 64×64 64.86 72.73 68.57 70.35 72.97 72.73 72.86 71.33 64.86 66.67 65.71 66.42
32×32 70.27 63.64 67.14 70.02 62.16 81.82 71.43 69.70 70.27 60.61 65.71 68.80
16×16 59.46 84.85 71.43 74.37 59.46 81.82 70.00 69.94 64.86 75.76 70.00 71.42
8×8 72.97 72.73 72.86 71.58 59.46 81.82 70.00 75.35 51.35 81.82 65.71 64.78
Mean 66.89 73.49 70.00 71.58 63.51 79.55 71.07 71.58 62.84 71.21 66.79 67.85
Std Dev 5.99 8.70 2.61 1.97 6.43 4.55 1.37 2.61 8.07 9.42 2.14 2.89

BBMAP-S 30 64×64 22.58 93.10 56.67 52.28 64.52 55.17 60.00 56.62 70.97 62.07 66.67 63.52
32×32 9.88 100.00 53.33 48.50 48.39 75.86 61.67 59.40 100.00 63.33 63.33 57.17
16×16 61.29 65.52 63.33 59.96 45.16 82.76 63.33 60.73 75.86 71.67 71.67 69.30
8×8 38.71 96.55 66.67 61.96 54.84 86.21 70.00 66.07 74.19 55.17 65.00 60.85
Mean 33.07 88.79 60.00 55.68 53.23 75.00 63.75 60.71 80.26 63.06 66.67 62.71
Std Dev 22.25 15.77 6.09 6.35 8.54 13.90 4.38 3.97 13.32 6.77 3.60 5.11

BBLL-S 30 64×64 83.87 86.21 85.00 82.09 45.16 86.21 65.00 60.62 90.32 65.52 78.33 79.98
32×32 83.87 75.86 80.00 84.43 64.52 62.07 63.33 60.78 61.29 75.86 68.33 69.30
16×16 87.10 93.10 90.00 92.00 70.97 82.76 76.67 74.53 96.77 68.97 83.33 88.43
8×8 96.77 82.76 90.00 93.10 74.19 89.66 81.67 82.43 67.74 82.76 75.00 77.42
Mean 87.90 84.48 86.25 87.91 63.71 80.18 71.67 69.59 79.03 73.28 76.25 78.78
Std Dev 6.10 7.18 4.79 5.47 13.00 12.39 8.93 10.76 17.20 7.65 6.29 7.88
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The top performances of 10- and 30-fold cross-validation are shown in bold.
FIGURE 2 | ROC plots for 64 × 64, 32 × 32, 16 × 16, and 8 × 8 block sizes using the proposed block-based ensemble method on the MIAS dataset with BBLL
decision functions and 30-fold CV.
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images are tested in each fold. Additionally, in Table 3 we report
true positive rates (TPR) and true negative rates (TNR) for each
experiment. Generally, we observe higher true negative rates on
average than true positive rates, which is an indication that the
positive class, malignant, is more difficult to classify. Figure 2
displays the receiver operating curves (ROC) by SLESA, LS-
SLESA and LC-SLESA for 64,32,16 and 8px block lengths using
30-fold CV. The ROC graphs are consistent with the results in
Table 3. We compare BBLL-S ROC curves in Figure 2 among
the SLESA methods by applying DeLong’s statistical test for 30-
fold cross-validation on the MIAS dataset. These tests produced
statistically significant differences in AUCs at the level a = 0.05
between SLESA and LS-SLESA for 64,32, and 16px block lengths.
These tests determined as significant, AUC differences between
SLESA and LC-SLESA for 8px block length, and between LS-
SLESA and LC-SLESA for 64px block length. The results indicate
that SLESA produced better AUC values in 30-fold CV.

In the DDSM section of our experiments, we selected the
complete ROIs including background tissue using the centroid
and radius data. Then we resampled all ROIs to the fixed size of
128×128px. Table 4 contains a summary of the results. LS-
SLESA using 8×8 blocks and BBLL-R decision in 10-fold cross-
validation, produces the highest AUC and ACC at 65.34% and
63.17% respectively. Overall, label-specific and label-consistent
dictionary learning improves the ACC and AUC.
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Another general comparison can be made with the cases of
equal ROI and block sizes, for example when we use 64×64 block
size in MIAS experiments. These cases are equivalent to
conventional SRC, proposed by (35) and do not perform
ensemble classification. Hence, these are ablation tests for the
ensemble stage of our framework. The results indicate that our
SLESA techniques outperform conventional SRC in both datasets.
This is because block decomposition reduces the dimensionality of
the images and enables the creation of multiple overcomplete
dictionaries. An additional benefit is that we train multiple
dictionaries on the same set of ROIs and fuse the residuals of
multiple approximations to improve the classification accuracy.

Furthermore, Figure 3 compares the ACC and AUC values of
Alexnet, Googlenet, Resnet50 and InceptionV3 with SLESA, LS-
SLESA and LC-SLESA. We observe that sparse approximations
yield clearly better results on MIAS data, while CNNs with
transfer learning are a bit more accurate on DDSM data.

We highlight the top AUC performances of CNNs and sparse
methods per CV fold and dataset in Table 5. Our observations
here are consistent with those we made in Figure 3. Our SLESA
methods significantly outperform the best CNN performance on
the MIAS dataset. On the DDSM dataset, the top CNN
performances are slightly better than the SLESA counterparts in
10-fold CV, and the difference increases a bit in 30-fold CV. The
size of the dataset may play a role in this difference, as neural
TABLE 4 | Breast mass classification performance on DDSM data using ensembles of block-based sparse classifiers with dictionary learning (ROI size: 128×128).

Method k-Fold Block
Size

SLESA SLESA SLESA SLESA LS-SLESA LS-SLESA LS-SLESA LS-SLESA LC-SLESA LC-SLESA LC-SLESA LC-SLESA
CV TPR

(%)
TNR
(%)

ACC
(%)

AUC
(%)

TPR (%) TNR (%) ACC (%) AUC (%) TPR (%)) TNR (%) ACC (%) AUC (%)

BBMAP-R 10 128×128 55.97 49.83 52.83 53.12 69.62 43.65 56.33 56.93 57.00 54.07 55.50 55.82
64×64 40.61 63.52 52.33 51.90 49.15 64.17 56.83 56.70 48.81 66.45 57.83 57.62
32×32 54.61 55.70 55.17 55.25 59.04 62.22 60.67 61.00 60.07 54.07 57.00 57.21
16×16 62.12 50.81 56.33 56.71 75.43 36.81 55.67 55.92 57.68 57.00 57.33 57.49
8×8 60.07 50.81 55.33 55.84 62.12 56.68 59.33 60.05 51.19 66.45 59.00 58.97
Mean 54.68 54.13 54.40 54.56 63.07 52.71 57.77 58.12 54.95 59.61 57.33 57.42
Std Dev 8.42 5.73 1.73 1.99 10.08 11.96 2.13 2.25 4.74 6.36 1.27 1.12

BBLL-R 10 128×128 44.30 65.87 54.83 53.35 69.97 43.65 56.50 57.17 34.13 77.85 56.50 56.82
64×64 73.72 36.16 54.50 54.11 55.97 62.54 59.33 60.93 50.17 69.71 60.17 61.37
32×32 48.46 68.08 58.50 58.26 45.05 73.94 59.83 62.13 44.37 74.92 60.00 62.31
16×16 61.43 57.33 59.33 60.37 64.85 58.63 61.67 62.04 63.83 56.35 60.00 61.09
8×8 47.44 75.24 61.67 62.04 54.61 71.34 63.17 65.34 68.26 57.33 62.67 63.75
Mean 55.07 60.54 57.77 57.62 58.09 62.02 60.10 61.52 52.15 67.23 59.87 61.07
Std Dev 12.31 15.05 3.06 3.81 9.66 12.02 2.52 2.94 14.01 9.93 2.20 2.59

BBMAP-R 30 128×128 55.63 48.86 52.17 52.48 60.41 50.49 55.33 55.49 31.40 78.18 55.33 54.87
64×64 38.91 65.15 52.30 52.02 42.66 65.15 54.17 53.82 48.46 69.38 59.17 58.97
32×32 52.22 49.84 51.00 51.28 52.56 55.70 54.17 54.31 62.46 56.68 59.50 59.85
16×16 36.18 80.78 59.00 58.19 69.97 47.23 58.33 59.09 50.85 70.68 61.00 61.30
8×8 35.84 77.85 57.33 57.21 77.47 43.97 60.33 60.51 49.83 67.10 58.67 58.45
Mean 43.76 64.50 54.36 54.24 60.61 52.51 56.47 56.64 49.83 67.10 58.73 58.69
Std Dev 9.44 15.03 3.56 3.21 13.77 8.29 2.75 2.99 11.12 7.76 2.09 2.39

BBLL-R 30 128×128 62.80 43.97 53.17 52.18 18.43 92.83 56.50 54.57 32.08 80.78 57.00 56.75
64×64 27.65 80.78 54.80 52.30 59.73 57.33 58.50 58.30 47.44 71.34 59.67 61.73
32×32 83.96 22.48 52.50 51.69 37.88 82.08 60.50 62.64 66.55 57.34 61.83 62.32
16×16 56.31 64.17 60.33 61.43 48.12 74.27 61.50 61.93 51.53 66.78 59.33 61.40
8×8 39.25 79.48 59.83 61.82 62.45 60.91 61.67 65.24 63.14 57.65 60.83 62.00
Mean 53.99 58.18 56.13 55.88 45.32 73.48 59.73 60.54 52.15 66.78 59.73 60.84
Std Dev 21.75 24.88 3.71 5.25 17.94 14.73 2.20 4.16 13.73 9.86 1.82 2.31
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FIGURE 3 | ACC performance comparisons on MIAS (top row) and DDSM (bottom row) datasets using 10- and 30-fold cross-validation.
TABLE 5 | Top AUC performances of sparse analysis and deep learning methods on MIAS and DDSM datasets.

Dataset k-
Fold

Method Block
Size

TPR TNR ACC AUC

CV (%) (%) (%) (%)

MIAS 10 Alexnet N/A 56.86 72.55 64.71 62.19
SLESA 16 × 16 59.46 84.85 71.43 74.37
LS-SLESA (BBLL-S) 8 × 8 59.46 81.82 70.00 75.35
LC-SLESA (BBLL-S) 16 × 16 64.86 75.76 70.00 71.42

MIAS 30 Googlenet N/A 66.67 68.63 67.65 63.04
SLESA (BBLL-S) 8 × 8 96.77 82.76 90.00 93.10
LS-SLESA (BBLL-S) 8 × 8 74.19 89.66 81.67 82.43
LC-SLESA (BBLL-S) 16 × 16 96.77 68.97 83.33 88.43

DDSM 10 Resnet50 N/A 56.42 75.31 66.05 70.35
SLESA (BBLL-R) 8 × 8 47.44 75.24 61.67 62.04
LS-SLESA (BBLL-R) 8 × 8 54.61 71.34 63.17 65.34
LC-SLESA (BBLL-R) 8 × 8 68.26 57.33 62.67 63.75

DDSM 30 Alexnet N/A 72.64 66.55 69.59 73.04
SLESA (BBLL-R) 8 × 8 39.25 79.48 59.83 61.82
LS-SLESA (BBLL-R) 8 × 8 48.12 74.27 61.67 65.24
LC-SLESA (BBLL-R) 32 × 32 66.55 57.34 61.83 62.32
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networks learn best with large amounts of data. Additionally, the
complexity of finding sparse solution in our sparse analysis
methods increases as a larger amount of training samples are
learned. Overall, the results indicate that sparse approximations
produce good results on both datasets. In addition, they require
fewer training data than CNNs, hence can produce better results
than CNNs for smaller datasets.

We illustrate the effect of block localized learning on
classification by performing block experiments on both
datasets and comparing the classification rates per block. We
include example block ACC experiment results in Figures 4 and
5. In MIAS block ACC experimentation we notice that top block
ACC rates increase as the block size decreases, which confirms
our expectation. A comparison between the top individual block
ACCs and the ensemble BBLL rates reported in both Figures 4, 5
shows that BBLL is effectively combining block-based
predictions to produce equivalent or improved ACC rates. In
the block ACC experiments on DDSM (Figure 5), we observe
consistent patterns of block ACC rates between 10-fold and 30-
fold CV for all block sizes except for 64×64 px. While ensemble
classification has its limitations, such as increased complexity in
configuration and training, we see that ensembling reduces the
variance and bias of classification.
Frontiers in Oncology | www.frontiersin.org 10159
In our next experiment, we explored the dictionaries learned
by LS-SLESA and LC-SLESA in terms of visual pattern
representation and inter-class separability. Figure 6 displays
examples of dictionaries produced by LS-SLESA and LC-
SLESA based on 16×16 blocks from 64×64 ROIs of the MIAS
database. We also display the training set for reference. These
blocks correspond to one of the Dj dictionaries defined in (3) and
computed by (4) and (5). They were spatially localized –7th in
lexicographical order out of a 4×4 grid. We see that the
dictionary atoms correspond to basic structural patterns of the
intensity distribution and texture of the masses.

In Figure 7 we display the 4-D t-SNE (40) clustering-based
embeddings of dictionaries produced under the same conditions
as Figure 6 by LS-SLESA and LC-SLESA. This figure displays
pair-wise feature scatterplots and single feature histograms
grouped by the mass state. We include a t-SNE clustering plot
of the training data without dictionary learning for comparison.
We observe greater separation between class dictionaries when
dictionary learning is applied to the training data. We also
computed the symmetric Kullback Leibler (KL) divergence
between the classes of benign and malignant samples in the
embedded spaces to measure the level of inter-class separation.
The greatest KL divergence of 4.7651 occurs in the third feature
FIGURE 4 | Classification accuracy by block for 32 × 32, 16 × 16, and 8 × 8 block experiments performed on the MIAS dataset for 10 fold CV (top row) and 30
fold CV (bottom row). The corresponding ensemble BBMAP-S and BBLL-S classification decision ACCs for 10-fold experiment examples are 70.00%, 70.00%,
70.00%, and 70.00%, 70.00%, 71.43% respectively for 32, 16, and 8 blocks. The corresponding ensemble BBMAP-S and BBLL-S classification decision ACCs for
30-fold experiment examples are 53.33%, 48.33%, 66.67%, and 80%, 90%, 90% respectively for 32, 16, and 8 blocks.
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embedding of the LS-SLESA block dictionary and the second
highest KL divergence, 4.7252, occurs in the first feature
embedding of the LC-SLESA block dictionary. The observed
separation constitutes the presence of similarities within class
specific samples and further illustrates the benefit of dictionary
learning on the training samples.

In both the MIAS and DDSM experiments we performed
parameter optimization on the sparse techniques using grid
search. In SLESA we used ∈ values of {0.001,0.01,0.1,0.5}. In
LS-SLESA we added to the search, sparsity levels of
Frontiers in Oncology | www.frontiersin.org 11160
{1,5,10,30,60}, and dictionary sizes of {300,500} atoms for
DDSM. For the MIAS data, we used 60 atoms because of the
small sample size. In LC-SLESA we added to the search, (

ffiffiffiffiffi
a ,

pffiffiffi
b

p
) values of {(4e–4,2e–4), (4e–3,2e–3), (0.04,0.02), (0.4,0.2)}.
4 CONCLUSION

We introduced discriminative localized sparse representations to
classify breast masses as benign or malignant using
FIGURE 5 | Classification accuracy by block for 64 × 64, 32 × 32, 16 × 16, and 8 × 8 block experiments performed on the DDSM dataset for 10 fold CV (top row) and
30 fold CV (bottom row). The corresponding ensemble BBMAP-R and BBLL-R classification decision ACCs for 10-fold experiment examples are 57.33%, 53.67%,
56.17%, 54.67%, and 59.50%, 59.67%, 60.17%, 57.33% respectively for 64, 32, 16, and 8 blocks. The corresponding ensemble BBMAP-R and BBLL-R classification
decision ACCs for 30-fold experiment examples are 54.67%, 57.00%, 57.67%, 54.50% and 55.00%, 61.33%, 59.50%, 58.83% respectively for 64, 32, 16, 8 blocks.
FIGURE 6 | Dictionary comparison example for SLESA without dictionary learning (left), LS-SLESA (middle), and LC-SLESA (right).
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-SLESA (bottom). The greatest KL divergence for SLESA is 3.9353
ce for LC-SLESA is 4.7252 produced by the first feature.
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mammograms. LS-SLESA and LC-SLESA were designed to
incorporate class-based discriminant information into the
generative method of sparse representation using dictionary
learning. We incorporated these approaches into a spatially
localized ensemble learning methodology and extensively
evaluated their classification performance. As we observed
through our experimentation, these approaches produce sparse
approximations that improve the classification accuracy and
accomplish 93.1% area under the ROC using 30-fold cross-
validation. Our results indicate that this methodology may be
applicable for breast mass characterization in a breast cancer
screening workflow.
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From Fitting the Average to Fitting
the Individual: A Cautionary Tale
for Mathematical Modelers
Michael C. Luo1†, Elpiniki Nikolopoulou2† and Jana L. Gevertz1*

1 Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ, United States, 2 School of Mathematical
and Statistical Sciences, Arizona State University, Tempe, AZ, United States

An outstanding challenge in the clinical care of cancer is moving from a one-size-fits-all
approach that relies on population-level statistics towards personalized therapeutic
design. Mathematical modeling is a powerful tool in treatment personalization, as it
allows for the incorporation of patient-specific data so that treatment can be tailor-
designed to the individual. Herein, we work with a mathematical model of murine cancer
immunotherapy that has been previously-validated against the average of an experimental
dataset. We ask the question: what happens if we try to use this same model to perform
personalized fits, and therefore make individualized treatment recommendations?
Typically, this would be done by choosing a single fitting methodology, and a single
cost function, identifying the individualized best-fit parameters, and extrapolating from
there to make personalized treatment recommendations. Our analyses show the
potentially problematic nature of this approach, as predicted personalized treatment
response proved to be sensitive to the fitting methodology utilized. We also demonstrate
how a small amount of the right additional experimental measurements could go a long
way to improve consistency in personalized fits. Finally, we show how quantifying the
robustness of the average response could also help improve confidence in personalized
treatment recommendations.

Keywords: cancer, mathematical modeling, personalized therapy, immunotherapy, nonlinear mixed
effects modeling
1 INTRODUCTION

The conventional approach for developing a cancer treatment protocol relies on measuring average
efficacy and toxicity from population-level statistics in randomized clinical trials (1–3). However, it
is increasingly recognized that heterogeneity, both between patients and within a patient, is a
defining feature of cancer (4, 5). This inevitably results in a portion of cancer patients being over-
treated and suffering toxicity consequences from the standard-of-care dose, and another portion
being under-treated and not benefiting from the expected efficacy of the treatment (6).

For these reasons, in the last decade there has been much interest in moving away from this ‘one-
size-fits-all’ approach to cancer treatment and towards personalized therapeutic design (also called
predictive or precision medicine) (1, 2, 7). Collecting patient-specific data has the potential to
improve treatment response to chemotherapy (6, 8–11), radiotherapy (12–14), and targeted
April 2022 | Volume 12 | Article 7939081164
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molecular therapy (11, 15–17). However, it has been proposed
that personalization may hold the most promise when it comes
to immunotherapy (18). Immunotherapy is an umbrella term for
methods that increase the potency of the immune response
against cancer. Unlike other treatment modalities that directly
attack the tumor, immunotherapy depends on the interplay
between two complex systems (the tumor and the immune
system), and therefore may exhibit more variability across
individuals (18).

Mathematical modeling has become a valuable tool for
understanding tumor-drug interactions. However, just as
clinical care is guided by standardized recommendations, most
mathematical models are validated based on population-level
statistics from preclinical or clinical studies (19). To truly realize
the potential of mathematical models in the clinic, these models
must be individually parameterized using measurable, patient-
specific data. Only then can modeling be harnessed to answer
some of the most pressing questions in precision medicine,
including selecting the right drug for the right patient,
identifying the optimal drug combination for a patient, and
prescribing a treatment schedule that maximizes efficacy while
minimizing toxicity.

Efforts to personalize mathematical models have been
undertaken to understand glioblastoma treatment response
(20, 21), to identify optimal chemotherapeutic and granulocyte
colony-stimulating factor combined schedules in metastatic
breast cancer (22), to identify optimal maintenance therapy
chemotherapeutic dosing for childhood acute lymphoblastic
leukemia (9), and to identify optimized doses and dosing
schedules of the chemotherapeutic everolimus with the
targeted agent sorafenib for solid tumors (23). Interesting work
has also been done in the realm of radiotherapy, where
individualized head and neck cancer evolution has been
modeled through a dynamic carrying capacity informed by
patient response to their last radiation dose (24).

Beyond these examples, most model personalization efforts
have focused on prostate cancer, as prostate-specific antigen is a
clinically measurable marker of prostate cancer burden (25) that
can be used in the parameterization of personalized mathematical
models. The work of Hirata and colleagues has focused on the
personalization of intermittent androgen suppression therapy
using retrospective clinical trial data (26, 27). Other interesting
work using clinical trial data has been done by Agur and
colleagues, focusing on individualizing a prostate cancer vaccine
using retrospective phase 2 clinical trial data (25, 28), as well as
androgen deprivation therapy using data from an advanced stage
prostate cancer registry (29). Especially exciting work on
personalizing prostate cancer has been undertaken by Gatenby
and colleagues, who used a mathematical model to discover
patient-specific adaptive protocols for the administration of the
chemotherapeutic agent abiraterone acetate (30). Among the 11
patients in a pilot clinical trial treated with the personalized
adaptive therapy, they observed the median time to progression
increased to at least 27 months as compared to 16.5 months
observed with standard dosing, while also using a cumulative drug
amount that was 47% less than the standard dosing (17).
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Despite these examples, classically mathematical models are
not personalized, but are validated against the average of
experimental data. In particular, modelers choose a single
fitting methodology, a single cost function to minimize, and
find the best-fit parameters to the average of the data. Using the
best-fit parameters and the mathematical model, treatment
optimization can be performed. Recognizing the limitations of
this approach in describing variable treatment response across
populations, modelers have begun employing virtual population
cohorts (31–33). There is much value in this population-level
approach to study variability, but it is not equivalent to looking at
individualized treatment response.

In this work, we explore the consequences of performing
individualized fits using a minimal mathematical model
previously-validated against the average of an experimental
dataset. In Materials and Methods, we describe the preclinical
data collected by Huang et al. (34) on a mouse model of
melanoma treated with two forms of immunotherapy, and our
previously-developed mathematical model that has been
validated against population-level data from this trial (35).
Individual mouse volumetric time-course data is fit to our
dynamical systems model using two different approaches
detailed in Materials and Methods: the first fits each mouse
independent of the other mice in the population, whereas the
second constrains the fits to each mouse using population-level
statistics. In Results, we demonstrate that the treatment response
identified for an individual mouse is sensitive to the fitting
methodology utilized. We explore the causes of these predictive
discrepancies and how robustness of the optimal-for-the-average
treatment protocol influences these discrepancies. We conclude
with actionable suggestions for how to increase our confidence in
mathematical predictions made from personalized fits.
2 MATERIALS AND METHODS

2.1 Data Set
The data in this study considers the impact of two
immunotherapeutic protocols on a murine model of melanoma
(34). The first protocol uses oncolytic viruses (OVs) that are
genetically engineered to lyse and kill cancer cells. In (34) the
OVs are immuno-enhanced by inserting transgenes that cause
the virus to release 4-1BB ligand (4-1BBL) and interleukin (IL)-
12, both of which result in the stimulation of the tumor-targeting
T cell population (34). The preclinical work of Huang et al. has
shown that oncolytic viruses carrying 4-1BBL and IL-12 (which
we will call Ad/4-1BBL/IL-12) can cause tumor debulking via
virus-induced tumor cell lysis, and immune system stimulation
from the local release of the immunostimulants (34).

The second protocol utilized by Huang et al. are dendritic cell
(DC) injections. DCs are antigen-presenting cells that, when
exposed to tumor antigens ex vivo and intratumorally injected,
can stimulate a strong adaptive immune response against cancer
cells (34). Huang et al. showed that combination of Ad/4-1BBL/
IL-12 with DC injections results in a stronger antitumor response
than either treatment individually (34). Volumetric trajectories
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of individual mice treated with three doses of Ad/4-1BBL/IL-12
on days 0, 2 and 4, and three doses of DCs on days 1, 3, 5, along
with the average trajectory, are shown in Figure 1.

2.2 Mathematical Model
Our model contains the following five ordinary differential equations:

dU
dt

= rU − b
UV
N

− k0 + ckillIð Þ UT
N

,U 0ð Þ = U0, (1)

dI
dt

= b
UV
N

− dI I − k0 + ckillIð Þ IT
N

, I 0ð Þ = 0, (2)

dV
dt

= uV tð Þ + adI I − dVV ,V 0ð Þ = 0 (3)

dT
dt

= cTI + cDD − dTT ,T 0ð Þ = 0, (4)

dD
dt

= uD tð Þ − dDD,D 0ð Þ = 0 (5)

where U is the volume of uninfected tumor cells, I is the volume
of OV-infected tumor cells, V is the volume of free OVs, T is the
volume of tumor-targeting T cells, D is the volume of injected
dendritic cells, and N is the total volume of cells (tumor cells and
T cells) at the tumor site. When all parameters and time-varying
terms are positive, this models captures the effects of tumor
growth and response to treatment with Ad/4-1BBL/IL-12 and
DCs (35). By allowing various parameters and time-varying
terms to be identically zero, other treatment protocols tested in
Huang et al. (34) can also be described.

This model was built in a hierarchical fashion, details of
which have been described extensively elsewhere (32, 35–37).
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Here, we briefly summarize the full model. Uninfected tumor
cells grow exponentially at a rate r, and upon being infected by an
OV convert to infected cancer cells at a density-dependent rate
bUV/N. These infected cells get lysed by the virus or other
mechanisms at a rate of dI, thus acting as a source term for the
virus by releasing an average of a free virions into the tissue
space. Viruses decay at a rate of dv.

The activation/recruitment of tumor-targeting T cells can
happen in two ways: 1) stimulation of cytotoxic T cells due to 4-
1BBL or IL-12 (modeled through I, at a rate of cT, as infected cells
are the ones to release 4-1BBL and IL-12), and 2) production/
recruitment due to the externally-primed dendritic cells at a rate
of cD. These tumor-targeting T cells indiscriminately kill
uninfected and infected tumor cells, with the rate of killing
that depends on IL-12 and 4-1BBL production (again, modeled
through I in the term (k0 + ckillI)), and they can also experience
natural death at a rate of dT. The time-dependent terms, uv(t) and
uD(t), represent the source of the drug and are determined by the
delivery and dosing schedule of interest.

2.3 Fitting Methodologies
For both fitting methodologies, the full set of model parameters
{r,b,a,dv,ĸ0,dT,cD,dI,cĸill,cT,dD,U0}, which includes the initial
uninfected tumor volume, is fit to each individual mouse.

2.3.1 Independently Fitting Individuals
Our first attempt at individualized fitting is to find the parameter
set that minimizes the square of the ℓ2-norm between the model
and the individual mouse data:

z =o
n

t=0
Vmodel tð Þ − Vdata tð Þð Þ2 (6)

where Vmodel(t) = U(t) + I(t) is the volumetric output predicted
by our model in eqns. (1)-(5), Vdata(t) represents the volumetric
FIGURE 1 | Individual volumetric trajectories are shown for eight mice treated with Ad/4-1BBL/IL-12 (on days 0, 2, 4) + DCs (on days 1, 3, 5). The average, with
standard error bars, is also shown in black (34).
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data for an individual mouse, and n is the last time point at which
the volume is measured in the experiments.

To independently fit an individual mouse, 12-dimensional
space is first quasi-randomly sampled (with each point sampled
in the range [0,1]) using high-dimensional Sobol’ Low
Discrepancy Sequences (LDS). LDS are designed to give rise to
quasi-random numbers that sample points in space as uniformly
as possible, while also (typically) having faster convergence rates
than standard Monte Carlo sampling methods (38). Each
randomly sampled point is then scaled to be in a biologically
plausible range for the corresponding parameter value. For those
parameters that were previously-fit to the average of the
experimental data (r,b,cD,cT,cĸill), the range was set using
the lower and upper-bound of the 95%-credible interval for the
parameter, as determined in (35). For parameters not fit to the
average in prior work, the minimum and maximum values were
set to 50% and 200% of the value the parameter was fixed to for
the average, respectively. See Supplementary Table 1 for details.

After the best-fit parameter set has been selected among the
106 randomly sampled sets chosen by LDS, the optimal is refined
using simulated annealing (39). Having observed that the
landscape of the objective function near the optimal parameter
set does not contain local minima, we randomly perturb the
LDS-chosen parameter set, and accept any realistic parameter
changes that decrease the value of the objective function -
making the method equivalent to gradient descent. We
consider a parameter set realistic at this stage if all parameter
values are non-negative. This random perturbation process is
repeated until no significant change in z can be achieved, which
we defined as the relative change in z for the last five accepted
parameter sets being less than 10–5. We call this final parameter
set the optimal parameter set. More details can be found in
Supplementary Algorithm 1.

It is important to note that, by approaching fitting in this way,
the parameters for Mouse i depend only the volumetric data for
Mouse i; that is, the volumetric data for the other mice are not
accounted for.

2.3.2 Fitting Individuals with Population-Level
Constraints
Nonlinear mixed effects (NLME) models incorporate fixed and
random effects to generate models to analyze data that are non-
independent, multilevel/hierarchical, longitudinal, or correlated
(40). Fixed effects refer to parameters that can generalize across
an entire population. Random effects refer to parameters that differ
between individuals that are randomly sampled from a population.
To employNLMEfor ourmathematicalmodel, for eachmouse iwe
define the structural model T(tij,yi)=U(tj)+I(tj). We assume that
each parameter yi,k in the parameter set yi is lognormally
distributed with mean y i,k and standard deviation wi,k:

Nlog yi,k

� �
∼      log y i,k,w

2
i,k

� �� �
(7)

We also assume that the error is a scalar value proportional to
our structural model. Our resultant mixed effects model is:

yij = T ti,j,yi

� �
+ bT ti,j,yi

� �
ei,j, i = 1,…,M, j = 0,…, ni − 1, (8)
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where yij is the predicted tumor volume at each day j for each
individual i (that is, at time tij),M = 8 is the number of mice, ni =
31 is the number of observations per mouse, and eij is the
random noise term, which we assume to follow a standard
normal distribution.

Typically, NLME models attempt to maximize the likelihood
of the parameter set given the available data. There does not exist
a general closed-form solution to this maximization problem
(41), so numerical optimization is often needed to find a
maximum likelihood estimate. In this work, we employ
Monolix (42), which uses a Markov Chain Monte Carlo
method to find values of the model parameters that optimize
the likelihood function. To implement NLME in Monolix, we
first processed and arranged our experimental data consisting of
tumor volume and dosing schedule in a Monolix-specified
spreadsheet. The data is then censored to avoid overfitting very
small tumor volumes, as detailed in (43). To understand why this
overfitting occurs in uncensored data, consider the scenario
where the model predicts a volume 10–4 mm3 at a time point
whereas the experimental measurement is 0 mm3. The parameter
set corresponding to this prediction is assigned a lower
likelihood, despite the fact that 10–4 is a perfectly reasonable
model prediction of an experimental measurement of 0. To avoid
penalizing insignificant prediction errors at very small tumor
volumes, the data has been censored so that when the negative
log likelihood is computed, instead of calculating the likelihood
the model gives exactly the value of 0, it computes the likelihood
the model predicts a value between 0 and 1. While this censoring
was necessary to prevent NLME from over-fitting data points of
volume zero at the expense of the fits to the nonzero data points,
such censoring was not required for the independent fitting
approach, as there we are just minimizing the sum of the square
error. That is, in the independent fitting approach, when the
model predicts a very small volume and the experimental
measurement is 0, the contribution to the sum of the square
error is negligible and thus censoring is not needed.

In order to solve this NLME model in Monolix, initial guesses
are needed for the mean and standard deviation of our
lognormally-distributed parameters. Based on previous fits to
the average of the data in (37), we used the following set of initial
guesses for the mean of each parameter:

r, b ,a , dv , k0, dT , cD, dI,ckill , cT , dD,U0

� �
= 0:32, 1, 3, 2:3, 2, 0:35, 5:5, 1, 0:51, 1:2, 0:35, 55:6½ �;

and after numerical exploration, we ended up choosing the initial
standard deviations as:

wr ,wb ,wa ,wdV ,wk0 ,wdT ,wcD ,wdI ,wCkill
,wCT

,wdD ,wk0

� �
= 0:25, 0:5, 1, 0:1, 1, 0:1, 0:25, 0:1, 0:5, 0:5, 0:1, 5½ �

2.4 Practical Identifiability via the Profile
Likelihood Method
It is well-established that estimating a unique parameter set for a
mathematical model can be challenging due to the limited
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availability of often noisy experimental data (44). A non-
identifiable model is one in which multiple parameter sets give
“good” fits to the experimental data. Here, we will study the
practical identifiability of our system in eqns. (1) - (5) using the
profile likelihood approach (45, 46).

A single parameter is profiled by fixing it across a range of
values, and subsequently fitting all other model parameters to the
data (44). To execute the profile likelihood method, let p be the
vector that contains all parameters of the model, q be one
parameter of interest contained in the vector p. The profile
likelihood PL for the parameter q is defined in (47) as:

PL qð Þ = min
p∈ pjpk=qf g o

n

t=0

Vdata tð Þ − Vmodel t; pð Þ
s tð Þ

� �2� �
(9)

whereVmodel(t;p) =U(t) + I(t) is the volumetric output predicted by
our model for parameter set p, and Vdata represents the average
volume across all mice at that time point with corresponding
standard deviation s(t). For normally distributed observational
noise this corresponds to the maximum likelihood estimate of q:

PL(q) = min
p∈ pjpk=qf g

−2LL(p;Vdata(0), :::,Vdata(n))ð Þ (10)

where LL(p;Vdata(0),...,Vdata(n)) is the log of the likelihood
function. The likelihood function represents the likeliness of
the measured data Vdata given a model with parameters p (48).
This likelihood is higher for a parameter set that is more likely
given the available data, and it is smaller for parameter sets that
are less likely given the data. The profile likelihood curve for any
parameter of interest q is found using the following process:

1. Determine a range for the parameter values of q.
2. Fix q = q* at a value in the range.
3. Find the value of the non-fixed parameters that minimize the

objective function in eqn. (9). The quasi-random Monte
Carlo method with gradient descent was used for the
fitting, as detailed previously.

4. Evaluate the objective function at those optimum values for
the fixed value of q*.

5. Repeat the process described in steps 2-4 for a discrete set of
values in the range of the parameter q. This yields the profile
likelihood function for the parameter q.

This process results in a population-level (not individual)
profile likelihood curve for each parameter. Once PL(q) is
determined, the confidence interval for q at a level of
significance a can be computed using:

PL qð Þ − 2LL p∗kð Þ ≤ Da (11)

where Δa denotes the a quantile of the c2 distribution with df
degrees of freedom (which represents the number of fit model
parameters when calculating PL(q)) (44). We use a = 0.95 for a
95% confidence interval. The intersection points between the
threshold 2LL(p∗k) + Da and PL(q) result in the bounds of the
confidence interval. A parameter is said to be practically
identifiable if the shape of the profile likelihood plot is close to
Frontiers in Oncology | www.frontiersin.org 5168
quadratic on a finite confidence interval (49). Otherwise, a
parameter is said to be practically unidentifiable.
3 RESULTS

3.1 Personalized Fits
The individual mouse data in response to treatment with Ad/4-
1BBL/IL-12 + DCs (34) is fit using the two methodologies
discussed previously: 1) quasi-Monte-Carlo method with
gradient descent in which each mouse is fit independently
(which we will call the “QMC” method for short), and 2)
nonlinear mixed effects modeling in which population-level
statistics constrain individual fits. In Figure 2, we can see the
best-fit for each mouse using the two fitting approaches.

We do observe some shortcomings in the fits, particularly at
earlier time points. These are most-pronounced in Mouse 1 and 4,
where the model cannot capture the early-time decrease in tumor
volume. This highlights that a model validated against the average
of a dataset may not be fully sufficient at describing individual
trajectories. That said, we overall find that the model is able to
capture the trends in the volumetric data despite the heterogeneity
across individual mice. While a more detailed model could
potentially pick up some early-time trends our model did not
capture, this would come at the expense of introducing more
(likely non-identifiable) parameters.

For each mouse, the QMC algorithm results in a fit that more
accurately captures the dynamics in the experimental data. The
differences between the two fitting methodologies explain why
this is occurring. NLME assumes each parameter is sampled
from a lognormal distribution whose mean and variance are
determined by the full population of mice. The estimated
lognormal distributions for each model parameter are shown
in Figure S1. On the other hand, the QMC algorithm fits each
mouse independently, and despite the initial bounds set on the
parameters when sampling parameter space, gradient descent
relaxes these constraints and the end result is that non-negativity
is the only constraint imposed. This allows the QMC algorithm
to explore a larger region of parameter space, resulting in better
fits. The potential downside, as we will show, is that the QMC
algorithm can select parameter values that deviate more
significantly from the average value. This variability may
represent the true variability across individual mice, or may be
a consequence of doing independent fits.

In Figure 3 and Figure S2we show the best-fit parameter value
for each mouse and fitting methodology relative to the best-fit
parameter value for the average mouse. For example, the best-fit
value of the tumor growth rate r to the average of the control data
has been shown to be r = 0.3198 (35). Since Mouse 1 has a relative
value of 1.0916 when fitting is done using QMC, the value of r
predicted for that Mouse is 9.16% larger than the value for the
average mouse, meaning QMC predicts r = 0.3491 for Mouse 1.
On the other hand, the relative value is 0.7512 when fitting is done
using NLME, meaning the predicted value is r = 0.2402, which is
24.88% less than the value for the average mouse.
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A study of the values a parameter can take on across
methodologies reveals that while most values are of the same
order of magnitude, differences can exist across methodologies.
As expected due to the constraining lognormal distribution,
NLME-associated parameters exhibit smaller variations from
the best-fit parameter for the average mouse than QMC-
associated parameters. Generally speaking, the variation seen
Frontiers in Oncology | www.frontiersin.org 6169
could be explained by a heterogeneous response to the treatment
protocol across mice. For instance, a very small value of cD in
Mouse 3 indicates the DCs are not successfully stimulating the
production of tumor-targeting T cells. As another example, a
very small value of k0 in Mouse 2 indicates that in the absence of
immunostimulation, the T cells are unable to target and destroy
cancer cells. There is one scenario that emerges in both Mouse 2
FIGURE 2 | Best-fit for each mouse treated with Ad/41BBL/IL-12 and DCs in the order VDVDVD at a dose of 2.5 × 109 OVs and 106 DCs (34). The QMC fits (in
which each mouse is treated independently of the others) are shown in blue, and the NLME fits are shown in red. The experimental data (black if uncensored for
NLME fitting, grey if censored) is also provided on each plot.
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and 3, however, that cannot be explained by a heterogeneous
treatment response. In particular, the QMC approach predicts
that these mice have dv = 0, indicative that the virus will not
decay over the 30-day experimental time period. As this scenario
is highly unlikely, we also refit these mice using the QMC
approach, assuming a (somewhat arbitrary) lower bound on
the viral decay rate of dv = 0.46 day–1, which assumes the decay
rate can never be smaller than a quarter of the average value of dv
= 2.3 day–1 (37). Refitting both mice with the QMC algorithm
and this additional constraint resulted in the best-fit value of dv
being this strict lower bound. All treatment predictions
presented in this manuscript were identical whether Mouse 2
or 3 was analyzed using the parameter set with dv = 0 or the
parameter set where dv was a quarter the maximum value.

Looking across methodologies, parameter disparities are the
most pronounced in cT, the rate of cytotoxic T cell stimulation from
4-1BBL and IL-12. The QMC-predicted parameters cover a much
larger range of values relative to the average mouse. According to
the QMC fits, cT can range anywhere from 92.15% below the value
in the average mouse to 4.69 times higher than the value in the
average mouse. Compare this to the NLME-predicted values of cT,
which can range from90.29%below the value in the averagemouse
to 31.87%below the value for the averagemouse.What is clear from
looking at the best-fit parameter values acrossmethodologies is that
it is not differences in a single or small set of parameter values that
explain the difference in fits. The nonlinearities in themodel simply
donot allow the effects of one parameter to be easily teasedout from
the effects of the other parameters.

3.2 Personalized Treatment Response
at Experimental Dose
Here we seek to determine if the two sets of best-fit parameters
for a single individual yield similar personalized predictions
about tumor response to a range of treatment protocols. The
Frontiers in Oncology | www.frontiersin.org 7170
treatment protocols we consider are modeled after the
experimental work in (34). Each day consists of only a single
treatment, which can be either an injection of Ad/4-1BBL/IL-12
at 2.5 × 109 viruses per dose, or a dose of 106 DCs. Treatment will
be given for six consecutive days, with three days of treatment
being Ad/4-1BBL/IL-12, and three days being DCs. If only one
dose can be given per day, there are exactly 20 treatment
protocols to consider. The 20 protocols are shown on the
vertical axis in Figure 4, where V represents a dose of Ad/4-
1BBL/IL-12, and D represents a dose of dendritic cells.

To quantify predicted tumor response, we will simulate mouse
dynamics using the determined best-fit parameters for each of the
20 6-day protocols. Unless otherwise stated, we will use the
predicted tumor volume after 30 days, V(30), to quantify
treatment response. For each fitting methodology, mouse, and
protocol we display the log (V(30)) in a heatmap (as in Figure 4).
For all V(30)≤1 mm3, we display the logarithm as 0, as showing
negative values would hinder cross-methodology comparison and
overemphasize insignificant differences in treatment response. We
consider any tumor with V(30)<1 mm3 to be effectively treated by
the associated protocol. Any nonzero values correspond to the
value of log(V(30)) when V(30)>1 mm3, and we assume these
tumors have not been successfully treated. The resulting heatmap
at the experimental dose of 2.5 × 109 viruses per dose, and 106 DCs
per dose is shown in Figure 4.

Ideally, we would find that treatment response to a protocol
for a given mouse is independent of the fitting methodology
utilized, at least in the binary sense of treatment success or
failure. However, that does not generally appear to be the case for
our data, model and fitting methodologies, as we elaborate
on here.

• Cumulative statistics on consistencies across methodologies.
As shown in Figure 4, the two fitting methodologies give the
FIGURE 3 | Best-fit values of tumor growth rate parameter r, virus infectivity parameter b, viral decay rate dv, infected cell lysis rate dI, T cell stimulation term by
immunostimulants cT, and T cell stimulation term by DCs cD. The best-fit values are shown for each mouse and are presented relative to the best-fit value of the
parameter in the average mouse (35). Therefore, a value of 1 (shown in the dashed black line) means the parameter value is equal to that in the average mouse, less
than 1 is a smaller value, and greater than 1 is a larger value. Values for other model parameters are shown in Figure S2.
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same qualitative predictions for 73.75% (118/160) of the
treatment protocols. Of the 118 agreements, 57 consistently
predict treatment success whereas 61 consistently predict
treatment failure. It is of note that these numbers only
change slightly if we use V(80) as our measurement for
determining treatment success or failure (81.875% agreement
with 78/131 consistently predicting eradication and 53/131
consistently predicting failure - see Figure S3). Mouse 2, 3
and 6 have perfect agreement across fitting methodologies, and
Mouse 7 has 95% agreement across methodologies. For these
mice, treatment response is generally not dependent on dosing
order. For instance, Mouse 2 and 3 are successfully treated by
all twenty protocols considered, whereas Mouse 6 cannot be
successfully treated by any protocol. In fact, V(30) for Mouse 6
is highly conserved across dosing order, suggesting that the
ordering itself is havingminimal impact on treatment response.
While performing a bifurcation analysis in 11D parameter
space is not feasible, what is clear is that for the mice with
significant agreement across methodologies, the best-fit
parameters must be sufficiently far from the bifurcation
surface, as shown in the schematic diagram in Figure 5. As a
result, predicted treatment response is not sensitive to changes
in the parameter values that result from using a different fitting
methodology. While not equivalent, they also do not appear to
be sensitive to dosing order.

• Cumulative statistics on inconsistencies across methodologies.
The two fitting methodologies give different qualitative
predictions for 26.25% (42/160) of the treatment protocols (see
Figure 4). Mouse 1 and 4 are largely responsible for these
predictive discrepancies, with Mouse 1 having inconsistent
predictions for 75% of protocols, and Mouse 4 having
inconsistent predictions for 90% of protocols. Note that each
methodology must agree for the protocol VDVDVD, as this was
the experimental protocol that was used for parameter fitting. So,
95% is the maximum disagreement rate we can see across
methodologies for a given mouse. We observe that the QMC-
associated parameter set is much more likely to predict treatment
failure for these mice, whereas the NLME parameter set is more
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likely to predict treatment success. Contrary to themice for which
there is significant cross-methodology agreement, we see a high
dependency of treatment response to dosing order for Mouse 1
and 4. From the perspective of the high dimensional bifurcation
diagram, these parameters must fall sufficiently close to the
bifurcation surface so that parametric changes that result from
using different fitting methodologies can lead to wildly different
predictions about treatment response (see schematic in Figure 5).
FIGURE 4 | Heatmaps showing the log of the tumor volume measured at 30 days, at the OV and DC dose used in (34). If log(V (30))≤1, its value is shown as 0 on
the heatmap. Left shows predictions when parameters are fit using QMC, and right shows NLME predictions.
FIGURE 5 | Schematic representation of a bifurcation diagram in two-
dimensional parameter space. For certain nonlinear combinations of
parameters, a treatment can successfully eradicate a tumor (as occurs for
Mouse 8 treated with VVVDDD according to NLME parameters), result in
tumor stabilization (as occurs for Mouse 6 treated with VVVDDD according to
NLME parameters), or can fail to control the tumor (as occurs for Mouse 5
treated with VVVDDD according to NLME parameters). Note the bifurcation
diagram is dependent on both the dose of drug being given, and the ordering
of those drugs.
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In turn, this appears to make these mice significantly more
sensitive to dosing order.

Though the results in this paper are presented for one best-fit
parameter set per methodology, we have also explored how
parametric uncertainty influences treatment predictions. In
particular, for the QMC fitting method, for each mouse we
identified suboptimal parameter sets by performing Sobol
sampling in a 10% range about the optimal parameter set. Any
sampled parameter set that gives a goodness-of-fit within 10% of
the optimal is considered a suboptimal parameter set (see Figure
S4). For all such suboptimal parameter sets, treatment response
to the 20 protocols was determined. This allows us to study if
binary treatment response is insensitive to the precise best-fit
parameters used. In Figure S5 we show the probability a
treatment is effective for each mouse across all suboptimal
parameter sets. Overwhelmingly, treatment response predicted
for an individual mouse and protocol shows excellent agreement
across suboptimal parameter sets. Besides treatment response to
the protocols VDVVDD and VDVDVD for Mouse 7, predicted
treatment response across suboptimal parameter sets agrees over
a minimum of 95% of the suboptimal parameter sets. This is seen
in Figure S6 by the probabilities of an effective treatment being
either >0.95 or <0.05. As small parametric perturbations that
result in “good” fits to the data do not significantly influence
predicted treatment response, we conclude it is reasonable to
compare the prediction across methodologies using only the
best-fit parameters.

3.3 Exploring Predictive Discrepancies
Between Fitting Methodologies
The predictive discrepancies across fitting methodologies begs
the question of whether the parameters we are fitting are actually
practically identifiable given the available experimental data. To
explore this question, we generated profile likelihood curves for
fitting the average tumor growth data, following the
Frontiers in Oncology | www.frontiersin.org 9172
methodology detailed in Section 2. As a first step, we fixed the
parameters whose values we could reasonably approximate from
experimental data: dI = 1, a = 3000, dv = 2.3, ĸ0 = 2, dT = 0.35,
and dD = 0.35 (37). This means we are using df = 5 in the
calculation of the threshold, as the generation of each profile
likelihood curve requires fitting four model parameters plus the
initial condition U(0).

The resulting profile likelihood curves in Figure 6 show that,
even under the assumption that six of the eleven non-initial
condition parameters are known, several of the fit model
parameters lack practical identifiability. The tumor growth rate r
and the infectivity parameter b are both practically identifiable,
ignoring slight numerical noise. The T cell activation parameters
cD and cT lack practical identifiability as they have profiles with a
shallow and one-sided minimum (44). The profile for ckill
demonstrates that the model can equally well-describe the data
over a large range of values for this enhanced cytotoxicity
parameter. The flat likelihood profile is indicative of (local)
structural unidentifiability, which also results in the parameter
being practically unidentifiable (44). It is worth noting that the
original work fitting to the average mouse was done in a
hierarchical fashion (35, 37), and this circumvented the
identifiability issues that emerge when doing simultaneous
parameter fitting.

As we are unable to exploit the benefits of hierarchical fitting
when performing personalized fits, this lack of practical
identifiabili ty poses significant issues for treatment
personalization. We have already seen the consequences of this
when we observed that despite both giving good fits to the data,
QMC and NLME make consistent qualitative predictions in only
73.75% of the treatment protocols tested across all individuals.
While the lack of practical identifiability helps explain why this can
happen, it does not explain the mechanisms that drive predictive
differences. To this end, we will now focus on the simulated
dynamics of Mouse 4 in more detail, as this was the mouse with
the most predictive discrepancies across methodologies.
FIGURE 6 | Profile likelihood curves. Top row: tumor growth rate r, infectivity rate b, T cell activation rate by DCs cD. Bottom row: T cell stimulation rate by
immunostimulants cT, and rate at which immunostimulants enhance cytotoxicity of T cells cĸill. The threshold (red dashed line) is calculated using df = 5 and a 95%
confidence interval.
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As shown in Figure 7, when we simulate the model ten days
beyond the data-collection window, we see that the QMC and
NLME parameters fall on different sides of the bifurcation
surface. In particular, in the QMC-associated simulation, at
around 34 days the tumor exhibits a local maximum in volume
and continues to shrink from there (Figure 7, left). This is in
comparison to the NLME-associated simulation, where the
tumor grows exponentially beyond the data-collection window.
To uncover the biological mechanism driving these extreme
differences, we look at the “hidden” variables in our model -
that is, variables for which we have no experimental data. As
shown in Figure 7, despite the similar fits to the volumetric data,
the two parameters sets predict drastically different dynamics for
the OVs and T cells. For the NLME-associated parameters, the
virus and T cell population die out, eventually resulting in
unbounded tumor growth. On the other hand, the virus and T
cell population remain endemic throughout the simulation when
using the QMC-associated parameters, driving the tumor
population towards extinction.

It is common knowledge that more data improves parameter
identifiability. Not all data is created equal, however. We could get
a lot more time-course data on total tumor volume over the 30-
day window, but that would not necessarily improve parameter
identifiability. Instead, we have identified that the addition of a
single data point, for the right variable, at the right time, could go a
long way in reconciling predictive discrepancies across fitting
methodologies. To make this concrete, suppose we had data
that, for Mouse 4, no tumor-targeting T cells are detected at 30
days. If we introduced a modified cost function that weighed both
the contribution of the tumor volume and this T cell
measurement, the parameter set identified by QMC would no
longer be optimal, as it predicts a T cell burden on the order of 108

(100×106). The optimal parameter set should be one for which
T!0, and once this occurs, there is no mechanism to control the
tumor in the long-term. As a result, the tumor must regrow, just as
predicted for the NLME-associated parameters. While this
thought experiment does not suggest all practical identifiability
issues would be reconciled by having this one data point, it does
indicate why the predictive discrepancies we see for Mouse 4 (and
also Mouse 1) would be at least partially resolved by the addition
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of a single data point on tumor-targeting T cell volume. This
highlights that although one must be quite cautious in using
mathematical models to make personalized predictions, models
can help us determine precisely what additional data is needed so
that we can have more trust in our mathematical predictions.

3.4 Personalized Treatment Response to
the Optimal for Average Protocol
Ideally, when an optimal prediction is made for the average of a
population, that optimal treatment protocol would also well-
control the tumors of individual patients in the population.
However, it is well known and supported by our earlier work
with virtual populations that this is not necessarily the case. In (32)
we showed that the experimental dose being considered herein is
fragile or non-robust. We define a dosing regime as robust if virtual
populations that deviate somewhat from the average population
have the same qualitative response to the optimal-for-the-average
protocol. Otherwise, a protocol is called fragile. The ability to
classify fragility/robustness relies on the generation of a virtual
population cohort that mimics a broad spectrum of individuals
with different disease dynamics (31–33). By determining
treatment response for each individual in the virtual cohort, we
arrive at a statistic describing the likelihood the considered
treatment is effective across heterogeneous individuals in the
virtual population. We previously classified the optimal-for-the-
average protocol of VVVDDD as fragile because this protocol
eradicates the average tumor (37), yet only 30% of individuals in
our virtual cohort were successfully eradicated by this treatment
(32). Importantly, fragility is a probabilistic population-level
descriptor, and not an individual descriptor. While it tells us
that populations that deviate somewhat from the average are less
likely to behave like the average, it tells us nothing about
individuals, particularly if the individuals have behavior that
deviates significantly from the average (which is often the case,
as shown in Figure 1). Though, it seems natural to hypothesize
that in such a fragile region we may have to be more careful about
applying a prediction for the average of a population to any one
individual in that population.

We will explore that hypothesis here by looking at statistics on
how individual mice respond to VVVDDD, the predicted optimal
FIGURE 7 | Left: QMC and NLME-associated fits to Mouse 4 treated with VDVDVD, with model predictions extended 10 days beyond the data-collection window.
Center and right: Predicted virus and T cell counts associated with each fitting methodology, respectively.
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treatment protocol for the average mouse. While this protocol was
effectively able to eradicate the average tumor in the population, its
success across individual mice varies significantly across fitting
methodologies. For the QMC-associated predictions, this protocol
eradicates tumors in 75% of the individual mice (second row of the
heatmaps in Figure 4, left). Compare this to the NLME-associated
predictions, in which this protocol eradicates tumors in only 25%
of the individual mice (second row of the heatmaps in Figure 4,
right). As shown in Figure S3, this prediction is unchanged if we
determine treatment success or failure at day 80 instead of day 30.

We can also compare response to the optimal-for-the-average
protocol across methodologies. We see a qualitative agreement
across methodologies (eradication or treatment failure) in only
50% of the mice (Mouse 2, 3, 5, 6). Mouse 7 is particularly
interesting, as there was 95% agreement across methodologies
when using V(30) to measure treatment success or failure, and
the optimal for the average of VVVDDD is the only protocol for
which treatment response differed (with QMC predicting tumor
eradication, and NLME predicting treatment failure). As a further
sign of caution, notice how for Mouse 1 and 4 (the cases with
significant predictive discrepancies across methodologies), and
Mouse 8 (intermediate case with 25% predictive discrepancies),
VVVDDD eradicates the tumor with the QMC-associated
parameters yet is the worst protocol that could be given (largest
log(V(30))) for the NLME-associated parameters. This is
particularly unsettling as it means the population-level optimal
treatment recommendation could be the worst protocol
recommendation for some individuals. This confirms our
hypothesis that a population-level prediction should be applied to
individuals very cautiously when in a fragile region of dosing space.

This raises the question: what if we were assessing individualized
response to a protocol in a robust region of dosing space, wherein
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treatment response across individuals in a virtual population is
statistically similar to the treatment response in the population
average? In (32), we previously classified the optimal-for-the-
average protocol of DDDVVV as robust in the high DC (50%
greater than experimental dose), low OV (50% lower than
experimental dose) region of dosing space. It was classified as
robust because this protocol eradicates the average tumor, and it
also eradicates 84% of the individuals in our virtual cohort (32). This
probabilistic population-level assessment of robustness naturally
leads to the hypothesis that in a robust region of dosing space, we
may have more success with the optimal-for-the-average treatment
in individual mice. We will explore that hypothesis here.

The robust population-level optimal of DDDVVV yields a
successful treatment response in all eight mice for the NLME-
associated parameters. This holds whether we use V(30), our
original measure for establishing treatment success (as shown in
Figure S6), or if we use V(80) as shown in Figure 8. This is
consistent with the robust nature of this region of dosing space,
as the NLME-associated parameters are less likely to wildly
deviate from the average mouse due to population-level
distributions constraining the value of these parameters. In
comparison, the QMC-associated predictions show that only
62.5% of the individual mice are successfully treated by the
optimal for the average in an 80-day window (Figure 8, top left).
That said, if we look at the data more closely, we can see that
Mouse 7 has essentially been eradicated even though 80 days was
not quite long enough to drive V(80)<1 mm3, our threshold for
eradication. Figure 8 also shows that the tumor volume for
Mouse 6 has stabilized. Thus, we see that the QMC-associated
predictions actually agree with the optimal-for-the-average
response in 75% of cases (or, 87.5% if you consider the
stabilization of Mouse 6 to be a “success” rather than a “failure”).
FIGURE 8 | Heatmaps showing the log of the tumor volume measured at 80 days, at the high DC (50% greater than experimental dose), low OV (50% lower than
experimental dose) region of dosing space. Left shows predictions if parameters are fit using QMC, and right shows NLME predictions. Inserts show time course of
predicted treatment response for Mouse 6 and 7 to the optimal-for-the-average protocol of DDDVVV.
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In closing, we have confirmation of our hypothesis that there
is a significant benefit to working with a robust optimal-for-the-
average protocol, even in the absence of all model parameters
being practically identifiable. In the presence of robustness, we
predict that one could generally apply the optimal-for-the-
average protocol and expect a qualitatively similar response in
most individuals. While this does not mean each individual is
treated with their personalized optimal protocol, this has
important consequences for determining when a population-
level prediction will be effective in an individual.
4 DISCUSSION

In this work, we demonstrated that computational challenges can
arise when using individualized model fits to make treatment
recommendations. In particular, we showed that treatment
response can be sensitive to the fitting methodology utilized
when lacking sufficient patient-specific data. We found that for
our model and preclinical dataset, predictive discrepancies can be
at least somewhat explained by the lack of practical identifiability
of model parameters. This can result in the dangerous scenario
where an effective treatment recommendation according to one
fitting methodology is predicted to be the worst treatment option
according to a different fitting methodology. This raises concerns
regarding the utility of mathematical models in personalized
oncology when individual data is limited.

While it is well-established that more data improves parameter
identifiability, here we highlight how we can identify precisely what
data would improve the reliability of model predictions. In
particular, we see how having a single additional measurement on
the viral load or T cell count at the end of the data collection
window would go a long way to reducing the predictive
discrepancies across fitting methodologies (Figure 7). While the
full benefits of this observation are not realized in a retrospective
study, they could be realized in a scenario where data collection and
modeling are occurring simultaneously. In this scenario, an
experimentalist could collect data on a small number of
individuals (like the eight mice shown in Figure 1). A
mathematical model validated against this data can be used to
identify any predictive challenges that emerge within this dataset,
and what data would be needed to overcome these predictive
challenges. This would inform the experimentalist of what data to
collect in the next cohort of individuals in order to have more
confidence in personalized treatment predictions.

When additional data is not available, an alternative option
to personalization is simply treating with the population-level
optimal. Here we showed the dangers of applying the optimal-
for-the-average for a fragile protocol, and we demonstrated that
such a one-size-fits all approach is much safer to employ for a
robust optimal protocol. Therefore, even when data is lacking to
make personalized predictions, establishing the robustness of
treatment response can be a powerful tool in predictive oncology.

It is of note that this study uses just one mathematical model,
with one set of assumptions, to reach our cautionary conclusion
regarding the fitting methodology utilized and the resulting
biological predictions. And this model is quite a simple one,
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ignoring many aspects of the immune system, and spatial
aspects of immune infiltration (as done in (50), among many
other references). The model used herein was chosen because it
has been previously validated against the average of the available
experimental data. A more complex model would be problematic
here, as there is simply not the associated experimental data to
validate such a model. While this study certainly does not
guarantee that similar issues will arise when working with other
models and datasets, it highlights the need for caution when using
personalized fits to draw meaningful biological conclusions.

As we enter the era of healthcare where personalized medicine
becomes a more common approach to treating cancer patients,
harnessing the power of mathematical models will only become
more essential. Understanding the identifiability of model
parameters, what data is needed to achieve identifiability and/or
predictive confidence, and whether treatment response is robust
or fragile are all important considerations that can greatly
improve the reliability of personalized predictions made from
mathematical models.
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Oncology - Mathematical Modelling of Drug Regimens for Precision
Medicine. Nat Rev Clin Oncol (2016) 13:242–54. doi: 10.1038/
nrclinonc.2015.204
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