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Editorial on the Research Topic

Advances of radiomics and artificial intelligence in the management of
patients with central nervous system tumors
Central nervous system (CNS) tumors can cause severe morbidity and mortality across

all populations. The average annual age-adjusted incidence rate of all CNS tumors was 24.25

per 100,000 in the US from 2014-2018 and 5.57 per 100,000 in China in 2016 (1, 2). Although

rare, CNS tumors are considered as a significant contributor to cancer mortality due to their

high mortality rate (3). In the US, only one-third of patients diagnosed with a malignant CNS

tumor survived at least 5 years past diagnosis (4). CNS tumors are extremely heterogeneous

with over 100 histological subtypes, requiring individualized management strategies (5, 6).

Nowadays, there is a plethora of imaging, biological, and clinical data that can inform

identification and management of patients with CNS tumors. Recent approaches allow us to

extract hidden information from this data to explore the deep nature of tumors.

Radiomics has shown the capability to extract quantitative information from medical

images and demonstrated robust performance in clinical diagnosis and grading, prognosis

prediction and molecular parameter recognition 7). Artificial intelligence (AI) has

demonstrated the potential to increase the workflow and performance of radiomics

models (8). In previous studies, we implemented deep learning models to determine IDH

status of glioma patients (9) and automatically segment abnormal contrast enhancement of

gliomas on post-treatment magnetic resonance imaging (MRI) (10). We also reported the use

of deep learning models to differentiate between glioma and germinoma (11), and

meningioma and hemangiopericytoma (12), providing valuable clinical information for

surgery and other treatments.

This Research Topic was introduced to highlight the use of AI-based radiomics and

radiogenomics methods to improve diagnostic approaches and therapeutic options for CNS

tumor patients. The papers within this Research Topic cover various types of CNS tumors
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including glioma, craniopharyngioma, meningioma, brain metastasis,

pituitary macroadenoma etc. The research objectives are diverse and

include tumor status evaluation, differential diagnosis, survival and

recurrence assessment, and genomic features prediction.

Gliomas are the most common type of primary CNS tumor (13).

Molecular biomarkers have been widely used in glioma tumor

taxonomy and survival assessment (14). Fan et al. identified five

valuable radiomics features with significant difference in WHO grade

II glioma patients with different 1p/19q status using elastic net and

support vector machine (SVM) algorithms. Similarly, Fang et al.

established a radiomics-based machine-learning algorithm

highlighting 12 radiomics features capable of predicting telomerase

reverse transcriptase promoter (pTERT) mutations in patients with

WHO grade II gliomas. Both studies obtained relatively high

predictive performance with area under the curve (AUC) of 0.808

and 0.844, respectively. Thus, radiomics offers a promising approach

to predict molecular biomarkers using radiological images, and has

the potential to save patients from invasive biopsies. Qi et al. studied

223 glioma samples from The Cancer Imaging Archive (TCIA) and

proposed a Voxel-based lesion-symptom mapping (VLSM) approach

to detect glioblastoma (GBM) topography of proneural and

mesenchymal subtypes. They found a difference in survival

characteristics and proneural-mesenchymal transition (PMT)

progression of samples in and outside of the VLSM-determined

area. This study provides a valuable VLSM-determined area related

to prognosis and PMT progression. To improve differential diagnosis,

Zhang et al. trained a deep learning model to classify MRI lesions as

GBM, primary central nervous system lymphoma (PCNSL), or

tumefactive demyelinating lesion (TDL). The model achieved

improved diagnostic performance over neuroradiologists. Imaging

data aside, radiology reports remain the major point of reference for

many diagnostic and treatment decisions. Cao et al. applied natural

language processing to automatically interpret glioma pre-operative

MRI reports and predict IDH mutation. They identified 30 glioma

enhancement descriptions and established a high-performance model

based on report features and age, achieving an AUC of 0.89 in

predicting IDH mutation status. These varying approaches

demonstrate the potential integration of a wide range of data into

glioma assessment.

Meningiomas are thought to originate from arachnoid cells and

account for over 30% of all primary brain tumors (15). Surgical

resection is generally the preferred treatment for meningiomas.

Malignant meningiomas, however, are more aggressive and have a

higher risk of recurrence after surgery compared to benign

meningiomas. Ko et al. applied pre-operative radiomic features

evaluated by SVM to predict progression/recurrence in 128

meningioma patients. Using SVM scores, an AUC of 0.80 was

achieved, with an optimal cutoff value of 0.224. Xiao et al. explored

the use of 3D radiomics features extracted frommulti-parameter MRI

to evaluate postoperative cerebral edema exacerbation in patients with

meningioma. A combined model was constructed from the

established radiomics signature and clinical data. This combined

model demonstrated a high prediction accuracy, with an AUC of

0.91 in the primary cohort and 0.83 in the validation cohort. This
Frontiers in Oncology 026
work demonstrates the potential contributions of AI-based radiomics

to characterization and clinical management of meningiomas.

Brain metastases (BM) are a common manifestation of cancer

that can worsen clinical outcomes (16). An estimated 20% of all

patients with cancer will develop brain metastases, with most brain

metastases occurring in those with lung cancer, especially non-small

cell lung cancer (NSCLC) (17). Advances in neuroimaging

and computer-assisted approaches have provided additional

opportunities to accurately screen and precisely target intracranial

lesions noninvasively. To predict survival of patients with BM from

NSCLC, Chen et al. retrospectively identified 110 patients with BM

from EGFR, ALK, and/or KRAS mutation-positive NSCLC and

constructed a model using MRI radiomics and clinical features. The

model yielded an AUC of 0.977, 0.905, and 0.947 for the EGFR, ALK,

and KRAS mutation-positive groups, respectively. Zhang et al.

implemented a CT-based radiomics nomogram model to predict

prognosis of patients with BM from NSCLC treated with whole

brain radiotherapy. Five radiomics features were selected through

LASSO Cox regression and used to construct the nomogram. The

resulting AUCs were 0.786 and 0.788 for short-term and long-term

survival predictions, respectively. These studies demonstrate the

applicability of radiomics and AI-based approaches to outcome

prediction in patients with brain metastases.

Lastly, we considered studies that applied radiomics methods to

biological status prediction of other tumors in CNS. Ma et al. reported

the construction of a radiomics-clinical nomogram for individualized

preoperative prediction of the invasiveness of adamantinomatous

craniopharyngioma (ACP) before surgery. A total of 355 patients

were enrolled in the study and 11 features associated with the

invasiveness of ACPs were selected. A nomogram incorporating

peritumoral edema and the radiomics signature reached an AUC of

0.735 in the validation cohort. This study described a potential and

reliable tool for clinical decision making. Zhang et al. constructed a

radiomics model based on routine MRI to predict progression/

recurrence of non-functioning pituitary macroadenomas (NFPAs)

after surgical resection. They used an SVM classifier to evaluate the

importance of extracted parameters to build a prediction model. The

model showed an accuracy of 82% and AUC of 0.78 in differentiating

between progression/recurrence and non-progression/recurrence

in NFPAs.
Conclusion and perspective

The 11 papers collected in this Research Topic produced

promising results in their application of radiomics and AI to the

management of patients with various CNS tumors. With the rapid

advancement of AI and medical imaging techniques, radiomics is

assuming a larger role in cancer diagnosis and treatment, as well as

biological investigation. We are encouraged by the great support from

the research community for this topic; a total of 99 authors

contributed to the 11 selected papers, which have already generated

significant attention within the field. Nevertheless, more work is

needed to advance computational precision medicine. Models with
frontiersin.org
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higher accuracy and robustness as well as clinical interpretability

require further exploration. All studies within this Research Topic are

retrospective and may be limited by smaller sample sizes. To facilitate

clinical translation, additional studies may need to focus on image

and data standardization between different institutions, data sharing,

and prospective research. However, the present contributions of

radiomics and AI-based approaches to tumor diagnosis and

management indicate significant promise for the near future.
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Objectives: A subset of non-functioning pituitary macroadenomas (NFPAs) may exhibit
early progression/recurrence (P/R) after surgical resection. The purpose of this study was
to apply radiomics in predicting P/R in NFPAs.

Methods: Only patients who had undergone preoperative MRI and postoperative MRI
follow-ups for more than 1 year were included in this study. From September 2010 to
December 2017, 50 eligible patients diagnosed with pathologically confirmed NFPAs
were identified. Preoperative coronal T2WI and contrast-enhanced (CE) T1WI imaging
were analyzed by computer algorithms. For each imaging sequence, 32 first-order
features and 75 texture features were extracted. Support vector machine (SVM)
classifier was utilized to evaluate the importance of extracted parameters, and the most
significant three parameters were used to build the prediction model. The SVM score was
calculated based on the three selected features.

Results: Twenty-eight patients exhibited P/R (28/50, 56%) after surgery. The median
follow-up time was 38 months, and the median time to P/R was 20 months. Visual
disturbance, hypopituitarism, extrasellar extension, compression of the third ventricle, large
tumor height and volume, failed optic chiasmatic decompression, and high SVM score were
more frequently encountered in the P/R group (p < 0.05). In multivariate Cox hazards
analysis, symptoms of sex hormones, hypopituitarism, and SVM score were high risk
factors for P/R (p < 0.05) with hazard ratios of 10.71, 2.68, and 6.88. The three selected
radiomics features were T1 surface-to-volume radio, T1 GLCM-informational measure of
correlation, and T2 NGTDM-coarseness. The radiomics predictive model shows 25 true
positive, 16 true negative, 6 false positive, and 3 false negative cases, with an accuracy of
82% and AUC of 0.78 in differentiating P/R from non-P/R NFPAs. For SVM score, optimal
cut-off value of 0.537 and AUC of 0.87 were obtained for differentiation of P/R. Higher SVM
scores were associated with shorter progression-free survival (p < 0.001).

Conclusions:Our preliminary results showed that objective and quantitative MR radiomic
features can be extracted from NFPAs. Pending more studies and evidence to support the
December 2020 | Volume 10 | Article 59008318
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findings, radiomics analysis of preoperative MRI may have the potential to offer valuable
information in treatment planning for NFPAs.
Keywords: radiomics, MRI, pituitary, macroadenoma, recurrence
INTRODUCTION

Pituitary adenomas constitute 10–15% of all intracranial tumors
(1), the majority being non-functioning pituitary adenomas (2, 3).
The most common presentation is the macroadenoma, which is
defined as a tumor larger than 10 mm in size. Non-functioning
pituitary macroadenomas (NFPAs) may cause bitemporal
hemianopia resulting from optic chiasm compression due to
mass effect. Hypopituitarism is observed in some patients due to
tumor compression of normal pituitary glandular tissue.
According to 2017 WHO classification system, pituitary tumors
are formally classified as adenoma, carcinoma, or blastoma (4).
Although more than 90% of NFPAs are diagnosed as benign
tumors, 25–55% of these tumors may undergo early progression/
recurrence (P/R) after surgical resection (5–8). Gross-total
resection (GTR) via a transsphenoidal approach (TSA) is the
optimal method of treatment for NFPAs in current clinical
practice. However, complete resection is often difficult to achieve
for large solid tumor with extrasellar extension (9). Although
adjuvant radiotherapy (RT) is implemented in some institutions in
attempts to minimize postoperative P/R in NFPAs, this approach
may result in progressive pituitary insufficiency and other long-
term complications (10).

Conventional MR imaging findings such as cavernous sinus
invasion, tumor size, and absence of tumor apoplexy have been
reported as important parameters related to P/R in NFPAs.
However, the abovementioned parameters are subjective
to significant inter-observer variation (11, 12). Radiomics
analysis is recently emerging as a comprehensive quantitative
method for the evaluation of various clinical diseases (13–15).
The extracted imaging features have been shown to reveal
visually imperceptible information extending beyond radiology
to histopathology. Several studies even suggest that radiomics
may be able to provide valuable predictors regarding diagnosis,
prognosis, and thus aid in therapeutic planning in brain tumors
(13, 16–18).

In regard to the application in NFPAs, radiomics has been
used in the evaluation of tumor subtypes, consistency, ki-67
proliferation indices, and cavernous sinus invasion (18–22), but
rarely for the prediction of clinical outcomes (23). The purpose
of this study was to investigate the role of radiomics features
extracted from segmented tumor sampling for the prediction of
P/R in NFPAs.
MATERIALS AND METHODS

Ethics Statement
This study was approved by our Institutional Review Board (IRB
no. 10902-009). Written consent was waived because the
29
retrospective nature of this project does not influence the
health-care of the included patients. All patients’ medical
records and imaging documentations were anonymized and
de-identified prior to analysis.

Patient Selection
The inclusion criteria of this study were patients diagnosed with
benign NFPAs by pathological confirmation, complete and good
imaging quality of preoperative brain MRIs, and postoperative
follow-up MRIs more than 1 year after treatment. Patients with
clinical, biochemical, and histopathological evidence of hormone
hypersecretion were excluded. According to studies by Brochier
et al. (11) and Hong et al. (24), diagnosis of prolactinoma is
considered unlikely if the prolactin levels were below 100 mg/L, a
conclusion thereafter confirmed by immunocytochemical
studies. Patients who received postoperative adjuvant RT
before P/R were also excluded. From September 2010 to
December 2017, 50 patients (29 men, 21 women, age 19–80
years; median age, 52 years) were identified for this study in
accordance with the abovementioned inclusion and exclusion
criteria. Forty-eight patients underwent surgery performed by
TSA, and craniotomy was performed in two patients due to large
tumor sizes. The median follow-up duration for all patients was
38 months (range from 12 to 115 months). In 28 patients with
P/R, the median time to P/R was 20 months (range from 6 to 67
months). Clinical and biochemical data were also obtained from
medical records.

Extent of Resection and Progression/
Recurrence
The extent of surgical resection was determined by review of
postoperative MRI by a neuroradiologist (C-CK) and a
neurosurgeon (S-WL). According to published literature (25),
GTR was defined as lesion resection with a residual tumor
volume of less than 10% of its original size. In contrast,
subtotal tumor resection (STR) was defined as the presence of
residual lesion more than 10% of its original volume. For
determining P/R in NFPAs, pretreatment and postoperative MR
images were evaluated by two experienced neuroradiologists (C-CK
with 6 years of experience and T-YC with 18 years of experience),
both of whom were blinded to the clinical and imaging outcomes of
the studied population. P/R was defined as tumor recurrence after
GTR or enlargement of residual tumor after STR observed on
postoperative contrast-enhanced (CE) T1WI. The threshold of P/R
was defined as a more than 2-mm increase in size of residual tumor
in at least one dimension when compared with postoperative MRI
studies (11, 26). Inter-observer reliability in the determination of
P/R was obtained via a Cohen k value of 0.9. In equivocal cases,
judgment was made via consensus. On preoperative MR images,
cavernous sinus invasion (Knosp classification) (27) and extrasellar
December 2020 | Volume 10 | Article 590083
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extension (Hardy’s classification) (28) were determined on coronal
T2WI and CE T1WI.

Imaging Acquisition
Preoperative brain MRI images were acquired with a 1.5-T
(Siemens, MAGNETOM Avanto) (n = 19), 1.5-T (GE
Healthcare, Signa HDxt) (n = 17), or a 3-T (GE Healthcare,
Discovery MR750) (n = 14) MR scanner equipped with eight-
channel head coils in each machine. Scanning protocols include
axial and sagittal spin echo T1-weighted imaging (T1WI), axial
and coronal fast spin echo T2- weighted imaging (T2WI), axial
fluid attenuated inversion recovery (FLAIR), and axial T2*-
weighted gradient-recalled echo (GRE). Dynamic contrast-
enhanced (CE) coronal T1WI images with a small field of view
through the pituitary gland as well as coronal and sagittal CE
T1WI with fat saturation were performed after intravenous
administration of 0.1 mmol/kg of body weight of gadobutrol or
gadoterate meglumine. Detailed imaging parameters in the MR
scanners were described in Supplementary File 1.

Tumor Segmentation
Because both T2WI and CE T1WI are associated with cavernous
sinus invasion, histopathologic subtypes, tumor consistency, and
therapeutic response in pituitary tumors (18, 19, 21, 29–31), they
were analyzed in our study. Figure 1 shows the flowchart in the
process of analysis. Tumor segmentation was performed on
coronal CE T1WI with MATLAB 2018b software (32). In
image pre-processing, the slices were resampled to isotropic
3D rendering. Then the pixel intensities inside the 3D
rendered ROIs were normalized to mean of 0 and standard
deviation of 1. For each lesion, the operator places an initial
rectangular region of interest (ROI) on the image to locate the
tumor as well as select the beginning and ending slices
containing the lesion. Subsequently, the fuzzy c-mean (FCM)
clustering algorithm was applied to segment the lesion ROI on
each image slice (33). In cases of under- or over-segmentation,
manual correction was performed. After segmentation/
correction was performed, the ROIs from all imaging slices
Frontiers in Oncology | www.frontiersin.org 310
containing the particular tumor were combined. The 3D
connected-component labeling was then applied to remove
scattered voxels not connected to the main lesion. The hole-
filling algorithm was applied to include all voxels contained
within the main ROI labeled as non-lesion. The segmented
tumor mask was transferred onto corresponding coronal T2WI
by using affine transformation with linear interpolation. This
process was conducted by FMRIB’s Linear Image Registration
Tool (FLIRT) (34).

Texture Feature Extraction and Selection
Within segmented tumor on CE T1WI and T2WI, 107 imaging
features, including 32 first order features and 75 textural features
were extracted on each modality by Python 3.75 software (35)
(Figure 1). Filters were not used in the feature extraction process.
Because some small NFPAs may be inseparable from
surrounding normal pituitary tissue, boundary pixels of tumor
masks on each slice were removed by binary erosion to ensure
only tumorous tissues were included in the ROI (32). Lengths of
0.25 and 0.5 cm were used to determine the outer shells of the
boundary pixels to be removed. Therefore, three tumor ROIs
were obtained: original masks, original mask with 0.25 cm
erosion, and original mask with 0.5 cm erosion. For each of
the abovementioned tumor ROIs, a total of 214 features were
extracted from CE T1WI and T2WI.

To evaluate the importance of these features in the
differentiation between patients with and without P/R, the
sequential feature selection process was implemented via
constructing multiple support vector machine (SVM) classifiers
by MATLAB 2018b software (32). In this process, SVM with
Gaussian kernel was used as the objective function to test the
performance of models built with a subset of features (36, 37). In
the beginning, an empty candidate set was presented, and
features were sequentially added. The 10-fold cross validation
method was applied to test the model performance (38). For each
iteration, the training process was repeated 1,000 times to
explore the robustness of each feature. At the conclusion of
each iteration, the feature which results in the best performance
FIGURE 1 | Flowchart of the analytical process for prediction of progression/recurrence (P/R) in non-functioning pituitary macroadenomas (NFPAs). The NFPA (red
outline) is segmented on coronal contrast-enhanced (CE) T1WI and then mapped to the coronal T2WI. On each set of images, a total of 107 imaging features,
including 32 first order features and 75 textural features, are extracted. The most important three features are selected by sequential feature selection and support
vector machine (SVM) classifiers to build the prediction model. A 10-fold cross validation method is applied to test the model performance.
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was added into the candidate set. In this instance, we use 10−6 as
the termination tolerance for the objective function value. Once
the addition of features no longer meets the criterion, cessation
of the selection process ensues.

Besides, the SVM score was calculated for each patient based
on the selected features as described below.

f xð Þ =  o
N

n=1
wnynG(xn, x) + b

where x was the input features, N was the length of support
vector. yn and xn were the entries of the supporting vector. Wn
was the parameter and b was the bias. G(xn, x) was the Gaussian
kernel function which indicated the dot product in the predictor
space between x and the support vectors (33). Here,

G(xn,   x) = e− ∥ xn−x ∥
2

Statistical Analysis
Statistical analyses were performed using SPSS for Windows
(V.24.0, IBM, Chicago, IL, USA). For the evaluation of clinical
parameters and conventional MR imaging, Chi-square (or Fisher
exact test) and Mann-Whitney U tests were performed for
categorical and continuous data, respectively. The true positive
(TP), true negative (TN), false positive (FP), false negative (FN),
accuracy, and area under the receiver operating characteristic
curve (ROC) curve (AUC) in prediction models of different
tumor masks were calculated. ROC analysis of SVM scores was
performed to obtain the optimal cut-off value. Further, Kaplan-
Meier analysis based on cut-off value of SVM score was used to
evaluate the progression-free survival (PFS), and log-rank test
was used to assess the significance. Cox proportional
hazard model with univariate and multivariate analysis was
performed to determine independent predictors of P/R.
Variables with a p < 0.05 in univariate analysis were brought
forward to the multivariate analysis. For multivariate analyses
and all other statistical analyses, p < 0.05 were considered
statistically significant.
RESULTS

Clinical Data and Conventional MRI
Findings
The clinical data and conventional MRI findings were
summarized in Table 1. P/R was diagnosed in twenty-eight
(28/50, 56%) patients. No statistical difference was found
between the extent of tumor resection and P/R (p = 0.157).
Visual disturbance, hypopituitarism, extrasellar extension,
compression of the 3rd ventricle, large tumor height and
volume, and high SVM score were more frequently observed in
the P/R group (p < 0.05) (Figure 2). In multivariate Cox
proportional hazards analysis (Table 2), symptoms of sex
hormones, hypopituitarism, and SVM score were high risk
factors for P/R (p < 0.05) with hazard ratios of 10.71, 2.68,
and 6.88.
Frontiers in Oncology | www.frontiersin.org 411
Radiomics Approach for Prediction of P/R
In radiomics analyses, the most important three parameters
selected by the final SVM model for the prediction of P/R
were: T1 surface-to-volume radio, T1 GLCM-informational
measure of correlation, and T2 NGTDM-coarseness, and all
show significant differences (Mann-Whitney U test) (Figure 3).
The reproducibility of ROI-based radiomics feature was good
between two readers, and the intra-class correlation coefficients
TABLE 1 | The clinical data and conventional MR imaging of non-functioning
pituitary macroadenomas (NFPAs) with and without progression/recurrence (P/R).

P/R Non-P/R p

Number of patients 28 22
Sex 0.111
Male 19 (67.9%) 10 (45.5%)
Female 9 (32.1%) 12 (54.5%)
Age (y) 53.5 (44, 63) 42 (23.5, 60.5) 0.089
Clinical symptoms
Visual disturbance 26 (92.9%) 13 (59.1%) 0.006*
Headache 8 (28.6%) 11 (50%) 0.121
Symptoms of sex
hormones (decreased
libido, sexual
dysfunction, and/or
amenorrhea/
oligomenorrhea)

5 (17.9%) 1 (4.5%) 0.211

Incidental 2 (7.1%) 4 (18.2%) 0.385
Hypopituitarism 0.047*
No 12 (42.9%) 17 (77.3%)
Single 8 (28.6%) 3 (13.6%)
Multiple 8 (28.6%) 2 (9.1%)
Hyperprolactinemia 10 (35.7%) 6 (27.3%) 0.525
Extent of surgical
resection

0.157

Gross-total resection
(GTR)

3 (10.7%) 6 (27.3%)

Gross-total resection
(STR)

25 (89.3%) 16 (72.7%)

Successful
chiasmatic
decompression

9 (32.1%) 17 (77.3%) 0.002*

Cavernous sinus
invasion
(Knosp classification)

0.077

Grade 1–2 18 (64.3%) 19 (86.4%)
Grade 3–4 10 (35.7%) 3 (13.6%)
Extrasellar extension
(Hardy’s
classification)

0.045*

Grade 1–2 17 (60.7%) 19 (86.4%)
Grade 3–4 11 (39.3%) 3 (13.6%)
Compression of optic
chiasm

27 (96.4%) 17 (77.3%) 0.075

Compression of the
third ventricle

21 (75%) 9 (40.9%) 0.015*

Hydrocephalus 2 (7.1%) 1 (4.5%) 1
Giant (>40 mm) 9 (32.1%) 2 (9.1%) 0.085
Maximum tumor
height (mm)

35.5 (27.5, 43.5) 18 (10, 26) <0.001*

Tumor volume (cm3) 12.3 (4.4, 20.1) 2.7 (1.2, 8) <0.001*
SVM score 0.999 (0.960, 1.040) 0.030 (−0.241, 0.301) <0.001*
December 202
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(ICCs) of the three imaging features were 0.90, 0.80, and
0.87 respectively.

The SVM classification results by the original mask shows 25
TP, 16 TN, 6 FP, and 3 FN cases (Figure 4) with accuracy of 82%
and AUC of 0.78 (Table 3). The optimal cut-off value of SVM
score for differentiation of P/R was 0.537, with AUC of 0.87
(Figure 5). When tumor progression trends were compared,
patients with high SVM score (more than the cut-off value of
0.537) were found to exhibit shorter PSF (p < 0.001) (Figure 5).
DISCUSSION

In this study, we developed a radiomics model to predict P/R in
NFPAs. Three tumor ROIs, including the original mask and
mask with binary erosions, were used. Three features were
selected by SVM algorithm to build the final predication
model: two from CE T1WI and one from T2WI. The overall
accuracy was 82% with AUC of 0.78, and there was no significant
Frontiers in Oncology | www.frontiersin.org 512
difference amongst the three tumor ROIs methods. This study
also calculated SVM score for prediction of P/R in NFPAs, and
patients with higher SVM score were found to exhibit shorter
PSF. In multivariate Cox hazards analysis, symptoms of sex
hormones, hypopituitarism, and SVM score were high risk
factors of P/R in NFPAs.

Although more than 90% of NFPAs are benign according to the
2017WHO classification system (4), 25–55%may exhibit early P/R
within 5 years after surgical resection (5–8). The Ki-67 index,
mitotic count, and tumor invasion are all associated with aggressive
clinical behavior in NFPAs (4). However, the invasive growth of
NFPAs is not clearly defined in the WHO criteria, and it is usually
underestimated if the corresponding information fromMR imaging
is not taken into consideration (8). A meta-analysis including 143
studies by Roelfsema et al. (8) showed that postoperative hormone
concentration is an important predictor for P/R in functioning
pituitary adenomas, but no specific factor is found for NFPAs.

Recently, low apparent diffusion coefficient (ADC) on
diffusion-weight MR imaging (DWI), indicating a higher
FIGURE 2 | A 55-year-old male patient with left hemianopia and pathologically confirmed NFPA. (A) Coronal CE T1WI shows an enhancing sellar tumor (red outline)
with upward suprasellar extension and bilateral cavernous sinus invasion, causing compression of the optic chiasm and the third ventricle (arrow indicates area of
optic chiasm and third ventricle). (B) The tumor (red outline) is segmented on coronal CE T1WI (A) and then mapped to the coronal T2WI (B). (C) Improvement of
blurred vision after subtotal tumor resection via transsphenoidal approach is clinically documented, and the maximum height of the residual tumor (arrowheads)
measured from coronal CE T1WI is 38 mm. (D) Recurrent visual deterioration with enlargement of the residual tumor (curved arrow) with maximum height up to
48 mm is observed 19 months after surgical resection.
December 2020 | Volume 10 | Article 590083
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TABLE 2 | Cox proportional hazards analysis for P/R.

Univariate Analysis Multivariate Analysis

HR (95% CI) for P/R p HR (95% CI) for P/R p

Sex (fraction male) 1.980 (0.861, 4.551) 0.108
Age (years) 1.020 (0.996, 1.045) 0.098
Visual disturbance 3.378 (0.797, 14.311) 0.098
Headache 0.825 (0.361, 1.889) 0.649
Symptoms of sex hormones 5.792 (2.000, 16.777) 0.001* 10.713 (2.884, 39.800) < 0.001*
Incidental 0.642 (0.152, 2.721) 0.548
Hypopituitarism 2.772 (1.27, 6.052) 0.01* 2.680 (1.121, 6.49) 0.027*
Hyperprolactinemia 1.162 (0.504, 2.679) 0.724
Non-GTR 1.311 (0.389, 4.418) 0.662
Successful chiasmatic decompression 0.400 (0.180, 0.888) 0.024* 1.012 (0.404, 2.537) 0.979
Cavernous sinus invasion (Knosp grades 3–4) 1.460 (0.647, 3.295) 0.363
Extrasellar extension (Hardy’s grade 3–4) 1.728 (0.792, 3.768) 0.169
Compression of optic chiasm 3.354 (0.454, 24.766) 0.236
Compression of the third ventricle 1.769 (0.74, 4.228) 0.199
Hydrocephalus 2.117 (0.483, 9.275) 0.32
Giant NFPA (>40 mm) 2.964 (1.277, 6.883) 0.011* 2.061 (0.562, 7.560) 0.276
Maximum tumor height (mm) 1.164 (1.046, 1.296) 0.005* 1.060 (0.889, 1.264) 0.518
Tumor volume (cm3) 1.031 (1.011, 1.051) 0.002* 0.988 (0.954, 1.024) 0.506
SVM score 10.037 (2.252, 44.740) 0.002* 6.879 (1.328, 35.621) 0.022*
Frontiers in Oncology | www.frontiersin.org
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FIGURE 3 | Box plot of (A) T1 surface-to-volume ratio, (B) T1 GLCM-informational measure of correlation, (C) T2 NGTDM-coarseness, and (D) SVM score for
prediction of P/R in NFPAs. Statistically significant differences (p < 0.05) (Mann-Whitney U test) in the selected features and SVM score are observed. Boxes indicate
the interquartile range (IQR), and whiskers indicate the range. The horizontal line represents the median in each box. Circles represent outliers, which are defined as
distances greater than 1.5 times the IQR below the first quartile or above the third quartile. Stars represent extreme values, defined as distances greater than three
times the IQR below the first quartile.
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cellular density, is reported to be associated with tumor
progression in NFPAs (26, 39). However, the ADC values may
be affected by susceptibility artifacts from blood products
because of apoplexy or necrosis; therefore, they could only be
measured for solid NFPAs without hemorrhage or cystic changes
(9, 26, 40). The radiomics analysis can be applied to the whole
tumor to obtain reproducible, objective, and quantitative data
from different imaging sequences, thus providing a more
comprehensive method in the approach of various acquired
information (13–15). For application of radiomics in pituitary
tumors, Saha et al. (41) reported a review article including 16
studies from the past 10 years (2009–2019). Ten of these studies
were undertaken from 2018 to 2019, most of which utilized
single-centered, retrospective data, semi-automatic pipelines,
and binary classifications as in our study. Zhang et al. (19)
Frontiers in Oncology | www.frontiersin.org 714
applied preoperative radiomics to distinguish null cell adenomas
from other subtypes in NFPAs with AUC of 0.8 to 0.83. Rui et al.
(18), Zeynalova et al. (31), and Cuocolo et al. (42) used
preoperative radiomics texture and histogram analysis to
predict consistency in pituitary macroadenomas with AUCs of
0.836, 0.71, and 0.99 respectively. Fan et al. (20, 29) and Kocak
et al. (30) used radiomics to predict response to radiotherapy and
somatostatin analogues in acromegaly with AUCs of 0.96 and
0.845 respectively. Niu et al. (21) used radiomics to predict
cavernous sinus invasion in NFPAs with AUC of 0.826 to
0.852. An SVM or radiomics score is a novel concept in
clinical applications. An individualized SVM (radiomics) score
could be calculated based on selected features (43–45). Xu et al.
(43) used SVM score to preoperative lymph node metastasis in
intrahepatic cholangiocarcinoma, with AUC of 0.87. Liu et al.
(44) reported excellent performance in SVM score for prediction
of treatment response in locally advanced rectal cancer, with
AUC of 0.98. Park et al. (45) reported radiomics score improved
the performance in MR prognostic model for glioblastoma.
Zheng et al. (46) reported radiomics score is an independent
prognostic factor for the postoperative outcome in solitary
hepatocellular carcinoma. These studies suggest that radiomics
FIGURE 4 | Examples of NFPAs (red outline) on coronal CE T1WI showing (A) true positive (TP), (B) true negative (TN), (C) false positive (FP), and (D) false negative
(FN) results in the prediction model. (A) In the TP group, larger tumor sizes with more surrounding bone invasion are observed. (B) In contrast, smaller tumor sizes
without bone invasion are found in most TN cases. (C) Most FP cases showed relatively homogeneous contrast enhancement without apoplexy or cystic change.
(D) Two of the three FN cases exhibit macrocystic components or apoplexy.
TABLE 3 | Performance in prediction models with and without binary erosions.

TP TN FP FN Accuracy AUC

Original mask 25 16 6 3 82% 0.78
With 0.25 cm erosion 24 16 6 4 80% 0.80
With 0.5 cm erosion 24 17 5 4 82% 0.79
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features might be a useful tool in predicting recurrences in
NFPAs, but no reports regarding this concept have been
published as of yet.

To the best of our knowledge, preoperative radiomics
approach for prediction of P/R in NFPAs is rarely reported.
The SVM algorithm was utilized for feature selection and
classification in this study. Three selected features were T1
surface-to-volume ratio, T1 GLCM-informational measure of
correlation, and T2 NGTDM-coarseness. The surface-to-volume
ratio is a shape index related to tumor infiltration. T1 GLCM-
information measure of correlation is a texture feature related to
the joint probability occurrence of the pixel pairs entropy. If the
distribution of the intensities is more homogeneous, the value of
this feature can be higher. T2 NGTDM-coarseness is an inverse
measure of the level of the spatial rate of change in intensity. A
higher value indicates a lower spatial change rate and a locally
more uniform texture (47). In this study, three ROI methods
were implemented, including the original tumor mask and two
masks with differential erosion of the boundary pixels. The goal
was to evaluate whether the potential inclusion of normal
pituitary glandular tissue and other surrounding, non-
tumorous structures would affect the prediction. The obtained
results, however, turned out to be similar. One possible reason
was that the eroded pixels were minimal compared to the whole
tumor mask, thus accounting for the minimal overall effects on
produced results.

In recent years, study of computer-extracted imaging
radiomic features has become an active research field.
However, the robustness and reproducibility of the selected
quantitative imaging features need to be extensively studied
before their clinical applications. Factors affecting the
robustness of radiomic approach are modality dependent. So
far only few studies have investigated the robustness of radiomic
features in MRI (48–51). How different imaging sequences and
imaging parameters will affect the reproducibility of radiomic
features is still not clearly known. A recent phantom study noted
that remarkable differences exist among different MRI sequences
in the number of robust and reproducible features (52).
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Nevertheless, more than 30% (15 of 45) features still showed
excellent robustness across all sequences and demonstrate
excellent reproducibility. It was supposed that these 15 features
can reliably be applied for the design of radiomics signatures
within clinical studies. Among these features, the shape-related
feature was noted to be robust. Another study of repeatability
and reproducibility of MRI-based radiomic features also showed
that shape features emerged as the most stable features among all
the selected features (53). It was suggested that radiomics
extracted from T1W and T2W imaging should be used with
caution, and only robust and reproducible features should be
selected for building a radiomics signature (52). However, it was
also true that through fully automatic image segmentation as our
study did, the effect of operators’ dependent bias of radiomic
features can be reduced (52).

There were 41 true and 9 false predictions using the model
developed with the original tumor mask. For most TP and FN
cases, large tumor sizes with heterogeneous enhancement and
surrounding bone invasion were observed. In contrast, small
tumor sizes without bone invasion were found in most TN cases.
Homogeneous contrast enhancement without apoplexy or cystic
change was observed in most FP cases. Based on our results,
macrocystic components or apoplexy may be an important
factor leading to FN. Further studies involving a larger sample
size is necessary to establish a better understanding regarding
factors related to true and false predictions.

It is known that the extent of tumor resection is an important
determining factor affecting recurrence rates in NFPAs (11).
Although no statistical difference is demonstrated between GTR
and P/R in our study, it may be due to the relatively small sample
size. In our study, tumor recurrence was present in three patients
despite having undergone GTR. In contrast, stable disease was
observed in 16 patients after receiving STR only. Since most
NFPAs are benign tumors, preoperative prediction of P/R in
NFPAs offers clinically valuable information regarding treatment
options. On the other hand, a significant correlation between the
number of surgical resections and complication rates in NFPAs
is reported (54). Anterior pituitary insufficiency and diabetes
A B

FIGURE 5 | Receiver operating characteristic (ROC) and Kaplan-Meier survival curves of SVM score. (A) ROC curve of SVM score for prediction of P/R in NFPAs,
with optimal cut-off value of 0.537 and AUC of 0.87. (B) Kaplan-Meier survival curves showing significant difference (p < 0.05) (Log-tank test) in overall trend of
progression-free survival based on cut-off value of SVM score.
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insipidus are the most commonly encountered postoperative
complications in NFPAs with occurrence rates of 19.4 and 17.8%
respectively (54). For patients with high possibilities of tumor
recurrence, aggressive resection combined with postoperative
adjuvant RT and close MR imaging follow-up should be
considered. In contrast, for patients with lower possibilities of
disease recurrence, the aim of surgery would be to relieve clinical
symptoms by decreasing tumor mass effects. Optimal surgical
planning for low risk patients could reduce potential
complications of endocrine disorders while maintaining a good
treatment outcome.

It is known that postoperative adjuvant RT offers excellent
tumor control in 96% of patients with non-secreting adenomas
(55). However, whether postoperative RT is beneficial for
patients with low possibility of recurrence is controversial
because RT may increase risks of complications such as visual
deterioration, hypopituitarism, cerebrovascular accident, and
dementia in NFPAs (55, 56). Because adjuvant RT may affect
the independent predictive value of the preoperative MR
radiomics analysis for P/R, patients who have received
adjuvant RT before P/R were excluded from our study.

The study had several limitations. Selection bias may exist due
to its retrospective nature. All MR images were acquired at a
single site with a single protocol, and lack of external validation.
Future testing with multi-institutional data and varying imaging
protocols is necessary to determine whether the trained classifier
is generalizable. Due to the relatively small sample size, only a
few imaging features can be selected to build the classification
model in order to avoid over-fitting. More advanced statistical
analysis methods that can take all clinical and imaging factors
into account need to be considered in the future. When more
cases become available, other machine learning strategies, such
as a fully automatic convolutional neural network able to
perform end-to-end learning may be applied to improve the
performance of prediction.
CONCLUSIONS

In summary, our preliminary study of MR radiomics analyses
based on CE T1WI and T2WI in preoperative MRI was able to
achieve an accuracy of 82% and AUC of 0.78 in predicting
recurrence in NFPAs. For SVM score based on selective features,
an AUC of 0.87 was obtained in differentiation of P/R. The
features extracted based on automatic segmentation and imaging
registration were objective and quantitative. Because the
Frontiers in Oncology | www.frontiersin.org 916
robustness and reproducibility of MR radiomic features may be
affected by imaging sequences and imaging parameters, more
studies in this field are needed to know which reproducible
radiomic features can be consistently used across imaging
sequences and different institutions. The results in our study
offer useful clinical information to aid in the preoperative as well
as postoperative planning in the management of NFPAs, such as
the extent of surgical resection, implementation of postoperative
adjuvant RT, and the time interval of MR imaging follow-up.
Nevertheless, this approach still needs to be validated with a
larger-scale study and long-term follow-up.
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Objectives: To measure the metrics of glioma pre-operative MRI reports and build IDH
prediction models.

Methods: Pre-operative MRI reports of 144 glioma patients in a single institution were
collected retrospectively. Words were transformed to lowercase letters. White spaces,
punctuations, and stop words were removed. Stemming was performed. A word cloud
method applied to processed text matrix visualized language behavior. Spearman’s rank
correlation assessed the correlation between the subjective descriptions of the
enhancement pattern. The T1-contrast images associated with enhancement
descriptions were selected. The keywords associated with IDH status were evaluated
by c2 value ranking. Random forest, k-nearest neighbors and Support Vector Machine
algorithms were used to train models based on report features and age. All statistical
analysis used two-tailed test with significance at p <.05.

Results: Longer word counts occurred in reports of older patients, higher grade gliomas,
and wild type IDH gliomas. We identified 30 glioma enhancement descriptions, eight of
which were commonly used: peripheral, heterogeneous, irregular, nodular, thick, rim,
large, and ring. Five of eight patterns were correlated. IDH mutant tumors were
characterized by words related to normal, symmetric or negative findings. IDH wild type
tumors were characterized words by related to pathological MR findings like
enhancement, necrosis and FLAIR foci. An integrated KNN model based on report
features and age demonstrated high-performance (AUC: 0.89, 95% CI: 0.88–0.90).

Conclusion: Report length depended on age, glioma grade, and IDH status. Description
of glioma enhancement was varied. Report descriptions differed for IDH wild and mutant
gliomas. Report features can be used to predict glioma IDH status.

Keywords: glioma, magnetic resonance imaging, electronic health records, quality improvement, biomarkers
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INTRODUCTION

The pre-operative MRI scan of patients with glioma plays both a
critical role in aiding diagnosis (1), the surgical approach, and
also in serving as a baseline reference for future management.
MR signal intensity data is easily available, and the MR scan data
have been the subject of intense focus as researchers seek to
analyze MR data in a qualitative and quantitative manner (2).
Through advanced MR imaging method and radiomics analysis,
the pre-operative genotype (3), immune phenotype (4), and
prognosis prediction (5) become possible. These findings based
on image data greatly expand the clinician’s vision on glioma
pathogenesis and treatment strategies.

The value and properties of another very important part of
the pre-operative MRI data, the radiology report, have not been
so well appreciated. Previous studies have put efforts into certain
aspects of reports including tumor volume estimation (6) and
treatment response evaluation (7), but the deconstruction and
analysis of the full text are still lacking. In clinical practice, the
qualitative and quantitative comments contained in MRI report
remain the major point of reference for many diagnostic and
treatment decisions. The major difficulties of using MRI reports
data could be divided into three parts. First, the text reports are of
non-structured data, which is largely due to the natural language
used in reports. The practice years, personal habit, and language
background may change the focus and sentence order of text
reports. Second, the heterogeneous MRI appearance of glioma
results in a variable subjective description of imaging findings.
Third, the general properties of disease-specific reports have not
been established using quantitative analyses designed to analyze
natural language. Interestingly, the above-mentioned difficulties
could also be advantages to study radiology reports. Unlike the
neural network models and many machine learning models, the
models based on natural language-based reports have inherent
interpretability. Also, the reports as unchangeable medical record
could better reflect real-world judgement and largely diminish
the possible retrospective bias.

Our study objectives were to characterize glioma pre-operative
MRIreportsandtoassess the IDHpredictionabilityof report features.
We collected the pre-operative MRI reports on glioma patients and
analyzed themwithautomaticnatural languageprocessing algorithm.
The processed and tokenized report features were then used to build
IDH prediction models. The success rate of the prediction algorithm
was calculated using the IDH status identified in the cases withwhole
exome sequencing or by targeted sequencing.
MATERIALS AND METHODS

Patients and Reports
We performed a retrospective review of 144 consecutive cases
between 2011 and 2018. For inclusion, patients who consented
Abbreviations: 2HG, 2-Hydroxyglutarate; GBM, Glioblastoma; IDH, Isocitrate
dehydrogenase; KNN, K nearest neighbors; MRS, Magnetic resonance
spectroscopy; MGMT, O6-methylguanine-DNA methyl-transferase; PWI,
Perfusion-weighted imaging.
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for clinical research had a confirmed pathological diagnosis of
astrocytic or oligodendroglial tumor at our institution and
underwent routine pre-operative MRI brain scan at the same
institution. Full-length text reports of pre-operative MRI scans
were collected from the picture archival and communication
system. If the patient underwent more than one pre-operative
MRI, the first report was included to prevent retrospective bias.

MRI Protocol
See Supplementary File 1.

Histology Subtypes and IDH Status
Surgical tumor samples underwent post-operative histology
assessment, in which the integrated diagnosis was made based
on the histological features, the initial IDH R132H status
(provided by immunohistochemical IHC method), and MGMT
promoter status (determined by PCR spell out method). The
subsequent IDH mutation status was determined by targeted or
whole exome sequencing.

The Extraction of Meta Data From Text
Reports
MRI text reports included study indication, clinical history,
comparison studies, imaging technique, findings, impression,
dictating radiologist, and co-signing radiologist. To minimize
the experience related bias and privacy exposure, only the
findings section was used for building the text report or
corpus. Meta data of the text reports was extracted through
manual or automatic methods. Manual extraction was
performed for scan date, dictating radiologist and co-signing
radiologist. Automatic extraction was performed for word count
and sentence count using R package quanteda (version 2.0.1) (8).

Detection and Correction of Misspellings
Misspellings were identified and corrected via R package
hunspell (version 3.0) (9) with plug-in medical term dictionary
and by manually checking. The corrected text matrix was used
for the next analysis, below.

Processing and Visualization of the Text
Reports
Reports underwent lowercase transformation, number removal,
punctuation removal, stopword removal and stemming
processing to build sparse document-feature matrix (DFM) via
R package quanteda (version 2.0.1). The DFM was used to
generate a word cloud with the top 100 frequent tokens. A
token is the word after the above processing was performed.

Detection of Abbreviations
The R package clean-NLP (version 3.0.0) with udpipe annotation
algorithm was used for abbreviation identification. After ranking
the annotated tokens by length, tokens with less than 10 letters
were manually checked. For potential abbreviations, the original
sentence was inspected to confirm the full word and
original meaning.
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Frequency and Redundancy Analysis
of the Subjective Description of
Enhancement Patterns
We manually labeled sentences containing the enhancement
description from each report. Enhancement pattern modifiers
were extracted from sentences. The frequency of enhancement
pattern modifiers was summarized. Modifiers used in at least five
or more reports underwent spearman correlation test. We
collected T1-contrast images corresponding to enhancement
patterns described in reports.

Analysis of Keywords Associated
With IDH Status
Keywords associated with IDH status were analyzed based on the
extracted document feature matrix (DFM). Keyword preference
was evaluated by the keyness score, which equals the calculated
chi-square value (Yates correction applied). The positive or
negative keyness score sign was based on the relationship
between observed value and expected value of target token
relative to the IDH-MT corpus (Supplementary File 1). We
summarized keywords with the 10 largest absolute keyness
scores in the positive and negative sign groups. Since word
counts with very low-frequency could also have high absolute
chi-square value by coincidence, words occurring no more than
five times were labeled. The p-values of all chi-square tests (Yates
correction applied) were given.

Establishment of IDH Status Prediction
Model Based on Pre-Operative
MRI Reports
Report-based glioma IDH prediction models were built via
Orange software datamining tool (10) (version 3.25). Tokens
were used as input features for model training. Samples were
separated into 70% training set (97 patients) and 30% test set (42
patients) for 100 times. Machine learning methods included
support vector machine, random forest, and k-nearest
neighbors. Machine learning model parameters are provided in
Supplementary File 1. Average performance of the models was
evaluated by AUC, sensitivity and specificity, by setting the IDH
mutant type as target class. Since age is a predictive factor for
IDH status, we generated age logistic regression model and
integrated machine learning models, using age and report
features. The threshold of 0.5 (<0.5, IDH wild type ≥0.5, IDH
mutant type.) was selected for all models.

Statistical Analysis
The normality of continuous variables was first assessed by the
Kolmogorov–Smirnov test. Due to insignificant results, non-
parametric statistics tests were used to compare group
differences. Pearson chi-square test, Fisher’s exact test and
likelihood-ratio test were used for categorical variables (sex,
histology subtype, WHO grade, IDH, and MGMT status)
according to expected count range and contingency table type.
Statistical tests were performed with SPSS software (version 22.0;
IBM). For model performance evaluation, MedCalc (version
19.0.7; MedCalc Software) was used to assess AUC, sensitivity,
specificity, and to compare ROC curves.
Frontiers in Oncology | www.frontiersin.org 321
RESULTS

Patient Characteristics
The characteristics of the 144 patients (84 men, 60 women) for
which the median age and interquartile range were 59 years and
19 years, respectively are summarized in Table 1. Differences
were found in age, initial histology reading, WHO grade, MGMT
status between IDH mutant and wild type groups (P <.001). IDH
wild type tumors were in older patients and were more
commonly Grade IV tumors. IDH mutant tumors were more
likely to be methylated with respect to MGMT. The
inconsistency of diagnosis of oligodendroglioma and IDH
status based on initial histology reading versus subsequent
whole exome sequencing was found in one patient labeled as
having anaplastic oligodendroglioma. There was an imbalance
between IDH subtype distributions (31 IDH mutant vs 107 wild
type patients).

General Characteristics of Reports
A total of 144 MRI reports signed by academic neuroradiologists
were included in this study. The radiologist numbers are
summarized in Table 1. All reports were generated using
microphones with voice recognition software. A dictation
template was used that had headings of study, date, study
indication, and clinical history, whether comparison studies were
available, imaging technique, findings, and impression. The date
was auto-populated. Therewere sentences included in the template
about normal structures that could be used or changed. Findings
were dictated by the radiologists into the appropriate fields. The
findings part of the reports started with the lesion location and size
description, followed by routine conventional sequence (T1, T1-
contrast, T2, FLAIR) appearance and optional advanced sequence
(DWI, SWI, PWI,MRS) characteristics. The report findings ended
with negative findings (findings not present) and assessment of
normal structures.

One hundred twenty of one hundred forty-four reports
included measurements of the glioma. In 13 of 144 reports, the
statement that the study was limited was found at the beginning
(10), middle (two) or end (one) of the reports. The evaluation
of negative findings included transtentorial herniation,
hydrocephalus, ventricle asymmetry, midline shift, global
parenchymal volume loss, acute infarct, and acute intracranial
hemorrhage. Evaluation of normal structure included extra axial
space, ventricular system, osseous structure, orbits, and
paranasal sinuses. One hundred thirty-three reports that used
free-text description in evaluation of normal structures. One
misspelled word was found in all 144 reports (“tthe”, should be
“the”). This misspelling was corrected before further analysis.

Processing of the 144 MRI reports generated a text corpus for
each report, resulting in 144 processed corpora (1,476 sentences,
21,357 words). The word and sentence count characteristics were
summarized in Table 2. Word counts were longer in older
patients (p < 0.05). In all samples, patients with WHO grade II
glioma were younger (p < 0.001) and had reports with lower
word counts (p = 0.01) when compared with patients with WHO
grade III and IV gliomas. In cases with an available IDH status,
patients with an IDH mutant glioma were younger (p < 0.001)
January 2021 | Volume 10 | Article 600327
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and had lower word counts in reports (p = 0.027) when
compared with IDH wild type gliomas. Patients with WHO
grade III glioma were younger (p = 0.006) but had similar word
counts (p = 0.873) when compared with patients with WHO
grade IV glioma. The largest word count interquartile range was
Frontiers in Oncology | www.frontiersin.org 422
found in WHO grade III glioma reports (median and
interquartile range, 161.5 and 85.5). No difference was found
in sentence count according to age, gender. WHO grade, IDH
status, or MGMT status. The median sentence count of 10 was
found in all groups.
TABLE 2 | The word and sentence count of the study reports.

Item Word count p value Sentence count p value

Median (Q1–Q3) Median (Q1–Q3)

Total study samples (n = 144) 144.5 (111.5–176.5) NA 10 (8–12) NA
Age (n = 144) 　 　 　 　

≤40 years (n = 23) 113 (98–173) 0.02* 10 (8–12) 0.42
>40 and ≤60 years (n = 54) 140.5 (105–168) 10 (8–11)
>60 years (n = 67) 155 (121–185) 10 (8–12)

Sex (n = 144) 　 　 　 　

Woman (n = 60) 147.5 (120.5–181.5) 0.20 10 (9–12) 0.17
Man (n = 84) 138 (107.5–172) 10 (8–11)

WHO grade (n = 144) 　 　 　 　

Grade II (n = 22) 110 (103–148) 0.04* 10 (9–12) 0.91
Grade III (n = 16) 161.5 (104–189.5) 10 (8.5–12.5)
Grade IV (n = 106) 146.5 (120–178) 10 (8–12)

IDH status (n = 138) 　 　 　 　

Wild type (n = 107) 147 (120–181) 0.03* 10 (8–12) 0.74
Mutant type (n = 31) 113 (102–168) 10 (9–12)

MGMT status (n = 138) 　 　 　 　

Methylated (n = 70) 137 (107–177) 0.60 10 (8–12) 0.96
Unmethylated (n = 68) 146.5 (118–178.5) 10 (8–12)
January 2021 | Volume 10 | Article
*Significant.
TABLE 1 | Clinical characteristics of the study samples.

Item Study cohort (n = 144) IDH mutant glioma (n = 31) IDH wild type glioma (n = 107) p value

Age 　 　 　 　 　

　 Median (Q1–Q3) 59 (50–69) 39 (33–51) 63 (54–71) <.001
Sex 　 　 　 　 　

　 Women 60 16 42 0.22
　 Men 84 15 65
Histology 　 　 　 　 　

　 Diffuse astrocytoma 12 10 2 <.001
　 Oliogoastrocytoma 2 2 0
　 Oligodendroglioma 8 7 0
　 Anaplastic astrocytoma 8 4 3
　 Anaplastic oligoastrocytoma 2 1 1
　 Anaplastic oligodendroglioma 6 5 1
　 Diffuse midline glioma, H3 K27M-mutant 2 0 2
　 Glioblastoma 104 2 98
WHO grade 　 　 　 　 　

　 Grade II 21 19 2 <.001
　 Grade III 16 10 5
　 Grade IV 106 2 100
IDH status 　 　 　 　 　

　 Wild type 107 0 107 NA
　 Mutant type 31 31 0
　 NA 6 0 0
MGMT status 　 　 　 　 　

　 Methylated 70 26 42 <.001
　 Unmethylated 68 3 62
　 NA 6 2 3
Reports meta feature: Radiologists 　 　 　 　

　 Report radiologist (persons) 47 17 38 NA
　 Co-sign radiologist (persons) 22 14 20
　 Total radiologist (persons) 68 31 57
600327
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The top 100 tokens (processed words) are shown in Figure 1.
The most frequent words were related to body side, tumor size
measurement (“x”), anatomical location, enhancement and other
MR signal descriptions. The brain ventricle was also frequently
mentioned in mass effect and infiltrated region.

Abbreviations
A total of 27 abbreviations were found in all reports. The
abbreviation frequency, full word and category are summarized
in Table 3. The abbreviations used could be classified into six
categories including MRI term, CT term, anatomy, pathology,
chemistry, and direction of imaging plane. The word transverse
was found to have the most variant abbreviation presentations,
which included TR, TRV, TV.

Subjective Description of Enhancement
Patterns
There were 112 of 144 reports (77.8%) that included a subjective
description of enhancement. Thirty subjective descriptions were
identified and are summarized in Supplementary File 1. Eight of
30 (26.7%) subjective descriptions that occurred in at least five
reports were taken to be major enhancement patterns. These
Frontiers in Oncology | www.frontiersin.org 523
included peripheral, heterogeneous, irregular, nodular, thick,
rim, large, and ring. The frequency and Spearman’s rank
correlation coefficient of major enhancement patterns are
shown in Figure 2 (the coefficient was only shown when
p <.05). The largest absolute correlation coefficient was found
between peripheral and heterogeneous enhancement (r = −0.38,
p <.001). Thick enhancement demonstrated positive correlation
with peripheral enhancement description (r = 0.29, p = .002).
Nodular enhancement showed negative correlation with
heterogeneous enhancement description (r = −0.30, p = .001).
Thick enhancement was positively correlated with irregular
enhancement description (r = 0.24, p = .01). Interestingly,
irregular enhancement showed both positive correlation with
peripheral enhancement (r = 0.21, p = .03) and negative
correlation with heterogeneous enhancement description (r =
−0.26, p = .004). The representative T1-contrast images
corresponding to the subjective descriptions of the major
enhancement patterns are in Figure 3.

Keywords Associated With IDH Status
The keywords occurring differentially based on in IDH mutant
and wild type gliomas are shown in Figure 4A (all grade
FIGURE 1 | The wordcloud of 144 pre-operative glioma MRI reports generated by R package quanteda. The top 100 tokens were selected. X means tumor measurement.
January 2021 | Volume 10 | Article 600327
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samples) and Figure 4B (Grade III and IV samples). IDHmutant
type gliomas were characterized by keyness values with positive
signs. Keywords associated with IDH mutant tumors were
associated with normal findings, symmetric ventricles, normal
gray matter, no appreciable enhancement, no intracranial
findings, normal appearance, or intact structures. IDH wild
type gliomas were characterized with keyness values with
negative signs. Keywords associated with IDH wild type
gliomas were associated with effacement, irregular
enhancement or shape, necrosis, foci of abnormal findings,
peripheral enhancement, extension of signal, FLAIR findings,
T2 findings, and peripheral enhancement.
Frontiers in Oncology | www.frontiersin.org 624
IDH Status Prediction Based
on Pre-Operative Reports
The overall test set results of model performance are summarized
in Table 4. The integrated KNN model which used both age and
report feature achieved the highest test set AUC (0.89, 95% CI:
0.88–0.90). The age only logistic regression model achieved the
secondhighest test setAUC(0.87, 95%CI:0.86–0.88).Thepairwise
comparison of ROC curves between integrated model (age and
report feature) and age only model showed statistical difference
(p < 0.001). The integrated KNNmodel showed higher sensitivity
than age only logistic regression model (Target class: IDH mutant
type. 58.9 vs 21.3%). For report feature models, SVM model
showed highest AUC (0.75, 95% CI: 0.73–0.76). All models
showed high specificity (>85%) and low sensitivity (<60%).
DISCUSSION

The pre-operative MRI reports of gliomas read by
neuroradiologists in an academic institution were analyzed to
provide report metrics and IDH prediction ability. Longer word
counts were found in older patients and in patients with high
grade (WHO grades III and IV) gliomas and wild type IDH
tumors. The patients with WHO grade III glioma were younger
and showed similar word counts compared with patients with
WHO grade IV glioma. We identified 30 different subjective
enhancement descriptions, in which eight descriptions were
commonly used in at least five reports. These included
TABLE 3 | The abbreviations used in the MRI reports.

Abbreviations Full word Category Count

FLAIR Fluid-attenuated inversion recovery MRI term 170
T2 T2 relaxation MRI term 111
AP Anterior-posterior Direction 56
CC Craniocaudal Direction 47
T1 T1 relaxation MRI term 28
TR Transverse Direction 21
TRV Transverse Direction 20
CT Computed tomography CT term 13
TV Transverse Direction 7
CSF Cerebrospinal fluid Anatomy 6
A2 Second segment of the anterior cerebral artery Anatomy 4
M1 First segment of the middle cerebral artery Anatomy 3
M2 Second segment of the middle cerebral artery Anatomy 3
MCA Middle cerebral artery Anatomy 3
SWI Susceptibility weighted imaging MRI term 3
DTI Diffusion Tensor Imaging MRI term 2
DWI Diffusion weighted imaging MRI term 2
C2 Second cervical vertebra Anatomy 1
ADC Apparent diffusion coefficient MRI term 1
C1 First cervical vertebra Anatomy 1
CTA Computed tomography angiography CT term 1
DVA Developmental venous anomaly Pathology 1
MPRAGE Magnetization-prepared rapid gradient-echo MRI term 1
NAA N-acetylaspartate Chemistry 1
rCBV Relative cerebral blood volume MRI term 1
SI Superior-inferior Direction 1
VIII Eight Anatomy 1
January 2021 | Volume 10 | Article 6
FIGURE 2 | The correlations between major descriptions of enhancement patterns.
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“peripheral”, “heterogeneous”, “irregular”, “nodular”, “thick”,
“rim”, “large”, and “ring”. Five of these eight descriptions were
correlated (p < 0.05). Reports in IDHmutant gliomas used words
like normal, symmetric, and intact. Reports in IDH wild type
gliomas used words like enhancement, necrosis, and abnormal
signal intensity on FLAIR sequences. The prediction model
generated by age and report features via KNN method showed
better performance than age only model (AUC, 0.89 vs 0.87. IDH
mutant detection sensitivity, 58.9 vs 21.3%).

During the past decades, efforts have been made to improve
brain tumor MRI reporting. The major approaches included a
focus on structured reporting and general quality. For structured
reporting, Mamlouk et al (11). in 2018 introduced a series of
neuroradiology structured templates that contained key points to
report based on specific indications. In the report template for
head and neck cancer, the findings part of the report required the
radiologist to report tumor and nodal characteristics. Apart from
pre-designed options, the template still has the free-text
description part. In our reports, we found the structured
system resulted in nearly similar sentence count for all reports.
Andrea et al (12). in 2018 compared the reporting with an expert
designed tumor MRI report template with free-text reporting.
Findings were more completely reported when using a template.
Our reports covered the majority of template fields suggested by
Andrea et al., but the lesion size was usually measured on single
sequence instead of both T1-contrast and FLAIR. Our reports
contained more detailed tumor components’ (enhancing tumor,
necrosis, edema) pattern description, which have been found to
correlate with glioma molecular subtypes.

For general quality, we found our reports were satisfactory as
there were few misspellings, and abbreviations were easy to
Frontiers in Oncology | www.frontiersin.org 725
understand. However, the enhancement patterns were described
in a variable way and may not be fully objective. For example, the
word “irregular” was found preferably used with “peripheral” and
not used with “heterogeneous”. This finding suggested there is the
potential risk of biased description caused by language habits. The
variable appearance of glioma enhancement on MR leads to a
multiplicity of language-based descriptions, in part due to using
synonyms or related words to describe a similar imaging feature
(Figure 3). The varied descriptions seen in Figure 3 suggest that a
more standardized manner of describing contrast enhancement
might be useful to the field.

Among various genomic alternations of glioma, the IDH
mutation has attracted attention due to its diagnosis and
prognosis prediction value. MRI features including
enhancement ratio (13), MRS 2HG signal (14), radiomics
features (15), and deep learning features (16) have been used
to build pre-operative prediction models. However, processing
procedures like drawing tumor region or additional scanning are
required to generate such features for prediction models. In our
study, the language features of report findings were directly
extracted without image processing procedures. The keyword
analysis suggested IDH mutation status was associated with
different descriptions in reports. The keywords differentiating
mutant and wild types were mainly about negative imaging
findings, enhancement, necrosis, edema, and anatomy. When
used with age information, the report features generated a
satisfactory prediction model. This type of model could be
directly implemented in the daily workflow without requiring
extra imaging analysis. Additional research could explore other
features that radiology reports might have in providing
information about brain tumors.
FIGURE 3 | Glioma enhancement patterns and how radiologists described them in pre-operative MRI reports. (A–F) peripheral enhancement; (G–L) heterogeneous
enhancement; (M–O) nodular enhancement; (P–R) irregular enhancement; (S, T) thick enhancement; (U, V) rim enhancement; (W) ring enhancement; (X) large enhancement.
January 2021 | Volume 10 | Article 600327
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Our study has several limitations. First, the study cohort was
retrospectively collected from a single institution. Second, the
imbalance of IDH status distribution in the study cohort might
be a result of referral bias of our institution. This imbalance could
Frontiers in Oncology | www.frontiersin.org 826
affect the specific keyword analysis and prediction model training.
A more balanced and larger cohort would be helpful for further
research. Third, the selection procedure of representative T1
contrast images could contain subjective bias since all imaging
A

B

FIGURE 4 | (A) The differential associations of keywords in MRI reports in IDH mutant and wild type gliomas (grades II–IV, n = 138). The positive keyness score was
correlated with IDH-mutant type glioma. *Infrequent description in reports (n < 5 reports). (B) The differential associations of keywords in MRI reports in IDH mutant and
wild type gliomas (grades III–IV, n = 117). The positive keyness score was correlated with IDH-mutant type glioma. *Infrequent description in reports (n < 5 reports).
TABLE 4 | The performance of the IDH prediction model from 100 test sets.

Feature group Modeling method AUC 95% CI Sensitivity 95% CI Specificity 95% CI

Age Logistic Regression 0.87 0.86–0.88 21.3% (192/900) 18.7–24.2% 96.1% (3170/3300) 95.3–96.7%
Report text feature KNN 0.65 0.63–0.66 26.4% (238/900) 23.6–29.5% 88.4% (2916/3300) 87.2–89.4%

SVM 0.75 0.73–0.76 16.4% (148/900) 14.1–19.0% 97.2% (3209/3300) 96.6–97.8%
RF 0.65 0.64–0.67 9.4% (85/900) 7.6–11.5% 97.7% (3225/3300) 97.2–98.2%

Report text feature + Age KNN 0.89 0.88–0.90 58.9% (530/900) 55.6–62.1% 90.6% (2988/3300) 89.5–91.5%
SVM 0.77 0.76–0.79 22.3% (201/900) 19.7–25.2% 96.6% (3188/3300) 95.9–97.2%
RF 0.73 0.72–0.75 14.8% (133/900) 12.5–17.3% 97.2% (3207/3300) 96.6–97.7%
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sequences were not analyzed. Finally, all of the radiologists who
signed the final report were academic neuroradiologists. Our
findings might not be applicable to a general radiology practice.

MRI reports were longer in older patients, high grade gliomas,
and IDH wild type gliomas. Patients with WHO grade III glioma
wereyoungerbuthad similarwordcounts compared topatientswith
WHO grade IV glioma. The descriptions of glioma enhancement
were variable. Five of the most common descriptions of
enhancement patterns were correlated. Keyword analysis of
radiology reports demonstrated different descriptions were used
for IDHwild and IDHmutant gliomas. Text features of reportswere
used to build a model that could predict glioma IDH status.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Yale Human Investigative Committee,
Frontiers in Oncology | www.frontiersin.org 927
Biomedical Board, Yale University School of Medicine. The
patients/participants provided their written informed consent
to participate in this study.
AUTHOR CONTRIBUTIONS

RF’s contributor roles include conceptualization (lead),
development of the methodology (lead), supervision (lead), and
writing, reviewing, and editing of the manuscript (lead). HC’s
contributor roles include data curation (lead), formal analysis
(Lead), development of the methodology (lead), visualization
(lead), and writing of the original draft (lead). EE-O’s
contributor roles include supervision (supporting), and writing,
reviewing, and editing the manuscript (supporting). MG’s
contributor role includes supervision (supporting). JM’s
contributor role includes supervision (supporting). All authors
contributed to the article and approved the submitted version.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2020.
600327/full#supplementary-material
REFERENCES

1. Anzalone N, Castellano A, Cadioli M, Conte GM, Cuccarini V, Bizzi A, et al.
Brain gliomas: multicenter standardized assessment of dynamic contrast-
enhanced and dynamic susceptibility contrast MR images. Radiology (2018)
287(3):933–43. doi: 10.1148/radiol.2017170362

2. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,
they are data. Radiology (2016) 278(2):563–77. doi: 10.1148/radiol.2015151169

3. Smits M, van den Bent MJ. Imaging correlates of adult glioma genotypes.
Radiology (2017) 284(2):316–31. doi: 10.1148/radiol.2017151930

4. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, et al. A
radiomics approach to assess tumour-infiltrating CD8 cells and response to
anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker,
retrospective multicohort study. Lancet Oncol (2018) 19(9):1180–91. doi:
10.1016/S1470-2045(18)30413-3

5. Bae S, Choi YS, Ahn SS, Chang JH, Kang S-G, Kim EH, et al. Radiomic MRI
phenotyping of glioblastoma: improving survival prediction. Radiology (2018)
289(3):797–806. doi: 10.1148/radiol.2018180200

6. Gui C, Lau JC, Kosteniuk SE, Lee DH, Megyesi JF. Radiology reporting of low-
grade glioma growth underestimates tumor expansion. Acta Neurochir (2019)
161(3):569–76. doi: 10.1007/s00701-018-03783-3

7. Yang D. Standardized MRI assessment of high-grade glioma response: a
review of the essential elements and pitfalls of the RANO criteria. Neuro
Oncol Pract (2016) 3(1):59–67. doi: 10.1093/nop/npv023

8. Benoit K, Watanabe K, Wang H, Nulty P, Obeng A, Müller S, et al. quanteda:
An R package for the quantitative analysis of textual data. J Open Source Softw
(2018) 3(30):774. doi: 10.21105/joss.00774

9. Ooms J. hunspell: High-Performance Stemmer, Tokenizer, and Spell Checker.
(2018) CRAN - Package hunspell. Available at: https://CRAN.R-project.org/
package=hunspell [Accessed Jan 11, 2021].
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Orange: data mining toolbox in Python. J Mach Learn Res (2013) 14(1):2349–
53. doi: 10.5555/2567709.2567736
11. Mamlouk M, Chang P, Saket R. Contextual radiology reporting: a new
approach to neuroradiology structured templates. Am J Neuroradiol (2018)
39(8):1406–14. doi: 10.3174/ajnr.A5697

12. Bink A, Benner J, Reinhardt J, Vere-Tyndall D, Stieltjes B, Hainc N, et al.
Structured reporting in neuroradiology: intracranial tumors. Front Neurol
(2018) 9:32. doi: 10.3389/fneur.2018.00032

13. Park Y, Han K, Ahn S, Bae S, Choi Y, Chang J, et al. Prediction of IDH1-
mutation and 1p/19q-codeletion status using preoperative MR imaging
phenotypes in lower grade gliomas. Am J Neuroradiol (2018) 39(1):37–42.
doi: 10.3174/ajnr.A5421

14. Branzoli F, Di Stefano AL, Capelle L, Ottolenghi C, Valabrègue R, Deelchand
DK, et al. Highly specific determination of IDH status using edited in vivo
magnetic resonance spectroscopy. Neuro Oncol (2018) 20(7):907–16. doi:
10.1093/neuonc/nox214

15. Wu S, Meng J, Yu Q, Li P, Fu S. Radiomics-based machine learning methods
for isocitrate dehydrogenase genotype prediction of diffuse gliomas. J Cancer
Res Clin Oncol (2019) 145(3):543–50. doi: 10.1007/s00432-018-2787-1

16. Bangalore Yogananda CG, Shah BR, Vejdani-Jahromi M, Nalawade SS,
Murugesan GK, Yu FF, et al. A novel fully automated MRI-based deep-
learning method for classification of IDH mutation status in brain gliomas.
Neuro Oncol (2020) 22(3):402–11. doi: 10.1101/757385

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Cao, Erson-Omay, Günel, Moliterno and Fulbright. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
January 2021 | Volume 10 | Article 600327

https://www.frontiersin.org/articles/10.3389/fonc.2020.600327/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2020.600327/full#supplementary-material
https://doi.org/10.1148/radiol.2017170362
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2017151930
https://doi.org/10.1016/S1470-2045(18)30413-3
https://doi.org/10.1148/radiol.2018180200
https://doi.org/10.1007/s00701-018-03783-3
https://doi.org/10.1093/nop/npv023
https://doi.org/10.21105/joss.00774
https://CRAN.R-project.org/package=hunspell
https://CRAN.R-project.org/package=hunspell
https://doi.org/10.5555/2567709.2567736
https://doi.org/10.3174/ajnr.A5697
https://doi.org/10.3389/fneur.2018.00032
https://doi.org/10.3174/ajnr.A5421
https://doi.org/10.1093/neuonc/nox214
https://doi.org/10.1007/s00432-018-2787-1
https://doi.org/10.1101/757385
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Harrison Bai,

Brown University, United States

Reviewed by:
Wenbin Ma,

Peking Union Medical College Hospital
(CAMS), China
Jiaojian Wang,

University of Electronic Science and
Technology of China, China

*Correspondence:
Lei Wang

wanglei_tiantan@163.com
Yinyan Wang

tiantanyinyan@126.com

†These authors have contributed
equally to this work and share

first authorship

‡These authors have contributed
equally to this work and share

last authorship

Specialty section:
This article was submitted to

Neuro-Oncology and
Neurosurgical Oncology,
a section of the journal
Frontiers in Oncology

Received: 15 September 2020
Accepted: 24 December 2020
Published: 11 February 2021

Citation:
Fang S, Fan Z, Sun Z, Li Y, Liu X,

Liang Y, Liu Y, Zhou C, Zhu Q,
Zhang H, Li T, Li S, Jiang T, Wang Y

and Wang L (2021) Radiomics
Features Predict Telomerase

Reverse Transcriptase Promoter
Mutations in World Health

Organization Grade II Gliomas via a
Machine-Learning Approach.

Front. Oncol. 10:606741.
doi: 10.3389/fonc.2020.606741

ORIGINAL RESEARCH
published: 11 February 2021

doi: 10.3389/fonc.2020.606741
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Organization Grade II Gliomas via a
Machine-Learning Approach
Shengyu Fang1†, Ziwen Fan2†, Zhiyan Sun1, Yiming Li2, Xing Liu3, Yuchao Liang2,
Yukun Liu2, Chunyao Zhou2, Qiang Zhu2, Hong Zhang2, Tianshi Li2, Shaowu Li4,
Tao Jiang1,2, Yinyan Wang1,2*‡ and Lei Wang2*‡

1 Beijing Neurosurgical Institute, Capital Medical University, Beijing, China, 2 Department of Neurosurgery, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China, 3 Department of Pathology, Beijing Tiantan Hospital, Capital Medical
University, Beijing, China, 4 Department of Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

The detection of mutations in telomerase reverse transcriptase promoter (pTERT) is
important since preoperative diagnosis of pTERT status helps with evaluating prognosis
and determining the surgical strategy. Here, we aimed to establish a radiomics-based
machine-learning algorithm and evaluated its performance with regard to the prediction of
mutations in pTERT in patients with World Health Organization (WHO) grade II gliomas. In
total, 164 patients with WHO grade II gliomas were enrolled in this retrospective study. We
extracted a total of 1,293 radiomics features from multi-parametric magnetic resonance
imaging scans. Elastic net (used for feature selection) and support vector machine with
linear kernel were applied in nested 10-fold cross-validation loops. The predictive model
was evaluated by receiver operating characteristic and precision-recall analyses. We
performed an unpaired t-test to compare the posterior predictive probabilities among
patients with differing pTERT statuses. We selected 12 valuable radiomics features using
nested 10-fold cross-validation loops. The area under the curve (AUC) was 0.8446 (95%
confidence interval [CI], 0.7735–0.9065) with an optimal summed value of sensitivity of
0.9355 (95% CI, 0.8802–0.9788) and specificity of 0.6197 (95% CI, 0.5071–0.7371). The
overall accuracy was 0.7988 (95% CI, 0.7378–0.8598). The F1-score was 0.8406 (95%
CI, 0.7684–0.902) with an optimal precision of 0.7632 (95%CI, 0.6818–0.8364) and recall
of 0.9355 (95% CI, 0.8802–0.9788). Posterior probabilities of pTERT mutations were
significantly different between patients with wild-type and mutant TERT promoters. Our
findings suggest that a radiomics analysis with a machine-learning algorithm can be useful
for predicting pTERT status in patients with WHO grade II glioma and may aid in
glioma management.

Keywords: low-grade glioma, machine-learning, nested cross-validation, radiomics, TERT promoter mutation
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INTRODUCTION

Large-scale tumor genomics research has altered the perspective
of tumor research by revealing a novel method for classification
of central nervous system (CNS) tumors, especially for the most
malignant primary brain tumor: gliomas. Currently, gliomas are
primarily classified based on the molecular characteristics of
tumor tissues according to the 2016 World Health Organization
(WHO) classification of CNS tumors (1), with the status of these
molecular biomarkers guiding the chemotherapy and radiation
therapy strategies after surgical resection. Based on these new
classification standards, glioblastomas and oligodendrogliomas
often exhibit mutations in the telomerase reverse transcriptase
promoter (pTERT) (1, 2). The function of TERT is to maintain
telomere length, which shortens with each division of normal
cells (3, 4). When pTERT is mutated, TERT is upregulated,
resulting in maintenance of cellular growth (5). Mutations in
pTERT can be detected in a variety of tumors. In high-grade
glioma glioblastoma and low-grade glioma oligodendroglioma,
mutations in pTERT can be detected with a high probability.
According to the cIMPACT-NOW update, mutations in pTERT
usually suggest a better prognosis in IDH-mutant diffuse gliomas.
Conversely, mutations in pTERT in IDH-wild-type diffuse
gliomas and glioblastomas suggest a poor prognosis (6). Thus,
determining pTERT status can be helpful for predicting
prognosis and optimizing clinical treatment targets.

Radiomics analysis has been widely adopted in the field of
preoperative prediction in gliomas. The use of radiomics to
analyze the WHO grades, molecular characteristics, and clinical
outcomes of tumor tissue via preoperative magnetic resonance
imaging (MRI) has produced good results (7–10). However, the
predominant focus of many prior studies has been the prediction
of the subtype combination of pTERT and IDH, which has
demonstrated moderate performance (11, 12), rather than the
status of pTERT alone. Other studies have exhibited superior
performance at predicting pTERT status in patients, including
those with higher-grade gliomas (WHO grade III or IV) (13, 14).
In this regard, pTERT status in WHO grade II gliomas has rarely
been predicted directly. In addition, the limited sample sizes used
in previous prediction models pose several issues arising from
overfitting when generalizing to other patient populations.

In the present study, we aimed to investigate the potential
association between radiomics features and pTERTmutations by
selecting valuable radiomics-based features. Based on extracted
radiomics features from conventional MRI sequences used in
most hospitals and clinical centers, we attempt to preoperatively
predict the pTERT mutation status of WHO grade II gliomas by
developing a machine-learning-based predictive model with
limited overfitting and bias via a nested 10-fold cross-validation.
MATERIALS AND METHODS

Patients
The clinical histories of 275 patients with pathologically confirmed
primaryWHO grade II gliomas were retrospectively collected from
the CGGA database from June 2014 to June 2019. The following
Frontiers in Oncology | www.frontiersin.org 229
inclusion criteria were used: (a) adult (age ≥18 years); (b)
histopathological diagnosis of primary grade II glioma; (c) no
history of preoperative therapy or biopsy; and (d) available
preoperative conventional MRI sequences, including T1-weighted
images (T1WIs), T2-weighted images (T2WIs), and contrast-
enhancement T1WIs (CE-T1WIs). Information on IDH and 1p/
19q statuses was acquired from the CGGA database (http://www.
cgga.org.cn/), and the details of the measurements and relationship
among molecular biomarkers are shown in the Supplementary
Materials and Supplementary Table S1, respectively.

Ethics Statement
All clinical information was retrospectively collected from the
institutional medical database, and the retrospective study was
approved by the local institutional review board.

Telomerase Reverse Transcriptase
Promoter Mutation
Polymerase chain reaction (PCR) and Sanger sequencing were
used to identify mutations in pTERT (15). The genomic mutational
hotspots in the core promoter region of TERT were covered by
sequences, including the nucleotide positions 1,295,228 [C228T]
and 1,295,250 [C250T]. Nested PCR was performed for
amplification based on the human genome reference sequence
(grCh37 February 2009; http://genome.ucsc.edu/). To remove any
unused primers, PCR products were purified using Illustra
ExoProStar system (GE Healthcare, Buckinghamshire, UK) after
amplification. The quality of PCR products was analyzed by
electrophoresis on 2% agarose gels before sequencing. Then, PCR
products were directly sequenced using a BigDye Terminator cycle
sequencing kit on an ABI 3100 PRISM DNA sequencer (Applied
Biosystems, Foster City, CA, USA).

Magnetic Resonance Imaging Acquisition
and Preprocessing
Regions of interest (ROIs) were drawn in slices presenting with
tumors based on T2WI, in which the abnormal area could
accurately represent the region implicated in low-grade
gliomas (16–19). MRI was mainly performed using a Trio 3.0-
T scanner (Siemens, Erlangen, Germany). T2WIs were obtained
with the following imaging parameters: TR = 5,500 ms; TE = 120
ms; field of view = 240 × 240 mm2; flip angle = 150°; and voxel
size = 0.65 × 0.65 × 5 mm3. T1WIs were obtained with the
following parameters: TR = 450 ms; TE = 15 ms; field of view =
240 × 240 mm2; voxel size = 0.65 ×0.65 × 5 mm3. Patients were
injected with gadopentetate dimeglumine intravenously (0.1
mM/kg), and CE-T1WIs were collected after contrast injection.
To delineate tumor masks, two neurosurgeons (>5 years of
experience, ZF and ZS) who were blinded to the patients’ clinical
information used MRIcro (http://www.mccauslandcenter.sc.edu/
mricro/) to draw the ROIs. Regions with hyperintense signals on
T2WI were considered tumor areas. The T2WI and ROI for each
patient were then registered to the high-resolution (1.0-mm
isotropic) MNI (Montreal Neurological Institute) brain space
using the SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/
software/spm8). A senior neuroradiologist (>20 years of
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experience, SL) made the final decision when the inter-
neurosurgeon’s discrepancies of tumor masks exceeded 5%
(DICE coefficient).

Quantitative Radiological
Feature Extraction
To avoid heterogeneity bias, various MRI signal intensity values
were transformed into standardized intensity ranges via z-score
transformation. Radiomics features were then extracted from
tumor masks based on the different types of MRI sequences using
an automated approach (details are provided in the
Supplementary Material) (20). For each sequence, 431
radiomics features were extracted and classified into four types
(Figure 1): (1) first-order statistics features (n = 14), which
quantitatively delineate the distribution of voxel intensities with
the MRI scan through commonly used and basic metrics; (2)
shape- and size-based features (n = 8), which used three
dimensional features to reflect the shape and size of the ROI;
(3) textural features (n = 33), which are calculated from gray-
level run-length and gray level co-occurrence texture metrics and
reflect the intra-tumoral heterogeneity differences; and (4)
wavelet features (n = 376), which were transferred from
intensity and texture features.
Frontiers in Oncology | www.frontiersin.org 330
Feature Selection and Model Development
We developed a commonly used machine-learning algorithm, the
linear support vector machine (linear SVM), to build predictive
models. A linear SVM, which specified the use of a linear kernel,
aimed to identify the best hyperplane that maximizes the margin
between the data points of two classes (21–25). The fitcsvm function
in MATLAB was used to build the linear SVM model. To optimize
the predictive models, we varied the box constraint and kernel scale
parameters in a 10-fold cross-validation (CV). In the CV, predictive
models with minimal loss were considered as the optimal model.

The linear SVM was evaluated with a nested k-fold CV
approach. Nested CV is widely employed in the machine-learning
analysis of neuro-imaging (12, 26–29). Compared to simple CV,
nested CV can reduce overfitting and limit optimistic biases,
especially in relatively small samples (30, 31). These methods can
make full use of all the information in the dataset and prevent
circular analysis. After the dataset is split into 10 non-overlapping
subsets, one selected subset (test dataset) is used to estimate the
performance of a model that is trained by the remaining nine
subsets (training dataset), which used another 10-fold CV for
hyperparameter tuning (inner loop). These processes are repeated
10 times (outer loop), each time selecting an independent subset as
the test dataset for model evaluation.We performed a 10-fold CV in
A B

C

D

FIGURE 1 | Workflow of patient recruitment, image processing, and machine-learning. (A) Patient recruitment process. (B) Image processing. Tumor segmentation
was performed with T2-weighted images (T2WIs). Radiomics features were extracted from T1-weighted images (T1WIs), T2WIs, and contrast-enhanced T1WI using
region-of-interest masks. (C) Feature selection and machine-learning were computed in a nested 10-fold cross-validation scheme, which comprised an inner and
outer loop. The inner loop included hyperparameter tuning and feature selection. The outer loop was performed for the evaluation of model performance. (D) ROC
analysis and P-R analysis were used for model performance evaluation. AUC, area under the curve; CGGA, Chinese Glioma Genome Atlas database; TERT,
telomerase reverse transcriptase; P-R analysis, precision and recall analysis; ROC, receiver operating characteristic.
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the outer loops and computed the model performance, which was
evaluated by ROC and PR analyses, using posterior probabilities.

Feature selection using elastic net (E-net) was conducted in the
training component with nine datasets of each outer loop. The E-net
penalty was regarded as a weighted sum of the least absolute
shrinkage and selection operator penalty (LASSO) and ridge
penalty (32, 33). l and a, ranging from 0 to 1 in steps of 0.1,
were selected using 10-fold CV viaminimum or minimum plus one
standard error criteria in the E-net model. We then selected the
valuable features with non-zero coefficient resulting from the
optimal l and a for further analysis. After feature selection, a
linear SVM was trained using the training dataset with an inner 10-
fold CV loop for hyperparameter tuning. Grid searches were used
for all of the hyperparameter tuning processes. Thus, 10 different
linear SVM models were built with specific sets of features
and hyperparameters.

Statistical Analyses
The entire nested 10-fold CV process was computed in MATLAB
2019b (MathWorks, Natick, MA, USA). Receiver operating
characteristic (ROC) and precision-recall analyses were
conducted to determine the performance of models in the
prediction of pTERT status. The optimal threshold was identified
when the sum of sensitivity and specificity was maximal. The 95%
confidence interval (CI) of performance was evaluated using
bootstrapping. We report the correlation coefficients and
corresponding p values of the point-biserial-correlation between
the true labels and posterior probabilities of TERT status, which
were transformed from the decision values of SVM (34). The linear
SVM model decision values of patients with wild-type or mutant
pTERTwere compared using unpaired t-test. Data are presented as
means ± standard deviations. Differences were considered
statistically significant at a P-value (p) <0.05.
RESULTS

Clinical Characteristics
Overall, 275 patients with pathological confirmed primary WHO
grade II gliomas were retrospectively collected from the CGGA
database. We excluded 26 patients younger than 18 years of age; 11
patients without results of TERT promoter mutation; eight patient
received radiotherapy; chemotherapy, biopsy, or any treatment
before preoperative MRI examinations; and 66 patients without
available preoperativeMRIs. As a result, we retrospectively enrolled
164 patients with primary WHO grade II gliomas (89 men and 75
women; age range, 20–80 years; Table 1). The proportion of
patients with a mutation in pTERT was 56.7% (93/164). The
proportion of patients with a mutation in IDH and a 1p/19q
codeletion were 86% (141/164) and 48.2% (79/164), respectively.
The mean ( ± standard deviation) age and tumor volume were
41.6 ± 10.4 years and 61.4 ± 55.3 cm3, respectively.

Radiomics Feature Selection
We extracted 431 features from each sequence and a total of 1,293
radiomics features from all conventional sequences for each patient.
The radiomics features selected by E-net in each outer loop ranged
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from 12 to 234. Features that were selected in at least nine of the 10
loops were considered to be the most valuable (Table 2). The 12
valuable radiomics features that were retained were textual features
(Group 3) and their wavelet-transformed features (Group 4), such
as CE-T1WI_Cluster Tendency, T1WI_Contrast, T1WI_Long Run
Low Gray Level Emphasis_1, T1WI_Low Gray Level Run
Emphasis, T2WI_Long Run High Gray Level Emphasis_1, etc.
The z-score-transformed value of each important radiomics
feature and pTERT status were compared, revealing that all
valuable radiomics features in patients with mutations in pTERT
were significantly different from patients with wild-type pTERT
(p < 0.05).

Model Performance
Ten predictive models were built in this study. Model parameters
are shown inTable 3, and the performance of each predictivemodel
in each loop are summarized in Supplementary Table S2. The box
constraints and kernel scale ranged from 10 to 1,000 and 0.46 to
215.4, respectively. The ROC analysis revealed an AUC value of
0.8446 (95% CI, 0.7735–0.9065), with optimal summed values of
sensitivity of 0.9355 (95% CI, 0.8802–0.9788) and specificity
of 0.6197 (95% CI, 0.5071–0.7371) (Figure 2). The overall
accuracy was 0.7988 (95% CI, 0.7378–0.8598). The P-R analysis
displayed an F1-score value of 0.8406 (95% CI, 0.7684–0.902) with
an optimal precision of 0.7632 (95% CI, 0.6818–0.8364) and
optimal recall of 0.9355 (95% CI, 0.8802–0.9788). A total of 34
patients were misclassified. There were 27 (79.4%) patients with
wild-type pTERT, 28 (82.4%) patients with wild-type IDH, and 26
(76.5%) patients with 1p/19q non-codeletion. To evaluate the
association between posterior probability and true labels, we
computed point-biserial-correlations, revealing r and p values of
0.59 and <0.0001, respectively. Further, we compared the posterior
probability between wild-type and mutant pTERT, revealing a
p-value <0.0001, which indicated that our model can be used to
predict the pTERT status of WHO grade II gliomas (Figure 3).

Furthermore, the performances of the prediction model in the
subgroup of IDH and 1p/19q were evaluated. Although the AUCs
TABLE 1 | Baseline demographics and clinical characteristics of patients.

Variable Value

Number of Patients 164
Sex
Male 89
Female 75

Age (years)* 41.6 ± 10.4
IDH
Wild-type 23
Mutant 141

1p/19q
Codeletion 79
Non-codeletion 85

pTERT
Wild-type 71
Mutant 93

Tumor volume (cm3) 61.4 ± 55.3
February 2021 | Volume 10 | Ar
*Data are presented as means ± standard deviations.
IDH, isocitrate dehydrogenase; NOS, not otherwise specified; pTERT, telomerase reverse
transcriptase promoter.
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of the ROC analysis reached a value of 0.853 (95% CI, 0.7834–
0.9153), 0.8333 (95% CI, 0.6445–0.9732), and 0.8868 (95% CI,
0.8094–0.9501) for mutant IDH, wild-type IDH, and 1p/19q non-
deletion groups, respectively, the AUC for the 1p/19q codeletion
showed a rather low value of 0.4595 (95% CI, 0.1638–0.7114).
Regarding the high rate of pTERT mutations in the 1p/19q
codeletion (74/79), the P–R Curve, which is suitable for
describing imbalances in binary data, showed a more reliable
result to evaluate the model performance. The precision,
recall, and F1-score in 1p/19q codeletion group were 0.9367 (95%
CI, 0.8797–0.9873), 1 (95% CI, 1–1), and 0.9673 (95% CI, 0.936–
0.9936), respectively. In addition, the accuracies were 0.8085 (95%
CI, 0.7447–0.8652), 0.7826 (95% CI, 0.6087–0.913), 0.9367 (95%CI,
0.8734–0.9873), and 0.8706 (95% CI, 0.8–0.9412) in mutant IDH,
wild-type IDH, 1p/19q codeletion, and 1p/19q non-deletion groups,
respectively. The detailed prediction model performances in
molecular subgroups are shown in Supplementary Table S3.
DISCUSSION

The clinical characteristics of patients with mutations in pTERT
were associated with poor prognosis with glioblastomas and a good
prognosis with oligodendroglioma (6, 35, 36). Based on the
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presence of pTERT mutations, IDH1/2 mutations, and 1p/19q
codeletion status, gliomas were divided into five subtypes with
different overall survival (37). Since patients with lower-grade
gliomas (LGGs) who carry mutations in pTERT always have a
better survival, the determination of pTERT status by a non-
invasive MRI scan may help patients make better decisions
regarding their treatment plan. The development of an efficient
method to accurately and preoperatively identify the pTERT status
of the tumor before surgery is a critical unmet need. In this regard,
radiomics offers a promising approach. To predict pTERTmutation
status preoperatively, we built a preoperative model based on
radiomics analysis that exhibited good performance and robustness.

Based on artificial intelligence, radiomics showed its potential
to connect radiological images and tumor metadata (38).
Radiological images contain tumor features, such as shape,
volume, density, structure, and other characteristics, which are
associated with tumor genomics (39). In this study, data from 164
patients with WHO grade II gliomas, whose pTERT status and
preoperative MRIs were available, were included into the dataset.
We used E-net to reduce dimensionality, identified the main
features of the data, and attempted to eliminate the overfitting
phenomenon of the model caused by excessive features (40). In
total, 12 important radiomics features were selected more than
nine times by E-net in the loops. These valuable radiomics features
were predominantly textual information that could not be fully
identified by the human eye in imaging and reflected the internal
tissue characteristics of tumor imaging, such as internal density,
morphological cell proliferation state, and infiltration degree (41–
44). Among the five top radiomics features selected by the loops
(10 times), three features were selected from T1WIs, and one
feature was selected from CE-T1WIs and T2WIs, respectively.
These results indicated that T1WIs provide the most valuable
information for predictions given that WHO grade II gliomas are
rarely contrast-enhanced.

By analyzing the textures extracted from patients’ radiological
images, substantial progress has been made with regard to WHO
grade and genotype prediction of gliomas (7, 9, 16, 45–48). On
one hand, since the classification of pTERT status has
predominantly been associated with IDH and 1p/19q
alterations, previous studies have aimed at combining subtypes
of mutations in pTERT and IDH mutations for predictions.
However, these attempts did not achieve a satisfactory result.
Based on the radiomics analysis of conventional MRI, a LASSO
regression model was used for predicting molecular subtypes of
LGGs including mutant IDH1/2, mutant IDH1/2 with pTERT
mutations, and wild-type IDH (11). The accuracies of the
prediction model reached 0.74 in the training set and 0.56 in
the validation set. Another study showed lower performance
based on the combination of patient age, radiomics features, and
convolutional neural network features; a linear SVM model was
used for predicting three subtypes of LGGs, and the accuracy
reached 0.63 ± 0.08 (12). On the other hand, some studies
presenting radiomics analysis focus on pTERT mutations only.
A previous study compared three machine-learning methods in
predicting pTERT mutations in LGGs, including random forest,
SVM, and adaboost methods (13). The results showed that the
TABLE 2 | Selected valuable features.

Feature name Selected times p*

CE-T1WI_Cluster Tendency (Group 3) 10 0.0025
T1WI_Contrast (Group 3) 10 <0.0001
T1WI_Long Run Low Gray Level
Emphasis_1 (Group 4)

10 <0.0001

T1WI_Low Gray Level Run Emphasis
(Group 3)

10 0.0066

T2WI_Long Run High Gray Level
Emphasis_1 (Group 4)

10 <0.0001

CE-T1WI_Homogeneity 2_4 (Group 4) 9 0.0055
CE-T1WI _Sum Entropy_1 (Group 4) 9 <0.0001
CE-T1WI _Sum Variance_2 (Group 4) 9 0.0056
CE-T1WI _Variance_2 (Group 4) 9 <0.0001
T1WI_Cluster Prominence (Group 3) 9 <0.0001
T1WI_ Inverse Difference Moment
Normalized (Group 3)

9 0.0006

T2WI_Homogeneity 2 (Group 3) 9 0.0007
*P-value of comparison between TERT promoter mutant and wild-type using unpaired t-test.
TABLE 3 | Optimal model parameters in each outer loop.

Loops Box constraint Kernel scale

Loop 1 1,000 215.4
Loop 2 215.4 46.4
Loop 3 46.4 46.4
Loop 4 1000 215.4
Loop 5 215.4 10
Loop 6 10 10
Loop 7 1,000 46.4
Loop 8 46.4 46.4
Loop 9 1,000 215.4
Loop 10 10 0.46
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random forest method had the best performance after feature
selection using LASSO, and the AUC value reached 0.827 (95%
CI, 0.667–0.988) in the validation group. An extreme gradient
boosting model with recursive feature selection showed
similarity AUC of 0.82 ± 0.04 (29), which was similar to our
prediction models. In addition, based on the convolutional
neural network features described above, the linear SVM
model reached an accuracy of 0.84 ± 0.09 (12). Further, the
prediction of mutations in pTERT in the subgroup of IDH also
reached stable performances, where the random forest model
achieved an AUC of 0.824 (95% CI, 0.639–1) and 0.750 (95% CI,
0.260–1) in the mutant IDH and wild-type IDH groups,
respectively (13).

Although the above radiomics-based analysis achieved good
performance in the predication of mutations in pTERT, previous
studies have focused on LGGs, which are composed of WHO
grades II and III gliomas, with limited sample sizes (11–13, 29).
However, gliomas in WHO grade II and HGG showed
differences in biological and radiomics features (49). Thus, the
present study focuses on WHO grade II gliomas, which
decreased the sample size but improved the consistency and
practicality of the results. As a result, we enrolled 164 patients
with WHO grade II gliomas and used nested CV to fully utilize
the information of the enrolled patients. In addition, the
Frontiers in Oncology | www.frontiersin.org 633
performance of the prediction was also evaluated in the
subgroups with IDH and 1p/19q alterations, which reached
high and stable accuracies. However, because of the highly
skewed dataset of the 1p/19q codeletion group (74 pTERT
mutant and five wild-type samples), the ROC curve was
limited, and the P–R curve gave a more informative picture of
performance (50), which showed a high F1-score of 0.9673 (95%
CI, 0.936–0.9936) and a high accuracy of 0.9367 (95% CI,
0.8734–0.9873).

There are some limitations of this study. First, as all patients
enrolled were from a single hospital, multi-center data
verification is lacking. In subsequent experiments, we will
include other clinical centers or glioma imaging datasets, such
as TCIA, to eliminate potential systematic errors caused by using
different equipment to collect image information. Second, ROI
labeling in this study relied on manual labeling by imaging
scientists, which inevitably resulted in differences in ROI
interpretation and affected subsequent analysis and processing.
To overcome this limitation, artificial intelligence labeling should
be introduced in future research to automatically label ROIs and
improve the efficiency and consistency of the prediction system.

In conclusion, our results demonstrate the clinical utility of
radiomics analysis for predicting pTERT mutation status
preoperatively. Through nested CV, we developed an efficient
A B

C D

FIGURE 2 | Performance of the prediction model for mutations in the promoter region of TERT (pTERT) in WHO grade II gliomas. (A, B) The receiver operating
characteristic (ROC) curve and P–R curve in the prediction of mutations in pTERT in WHO grade II gliomas. (C, D) The ROC curve and P–R curve in the prediction of
mutations in pTERT in the subgroups of molecular biomarkers in WHO grade II gliomas.
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machine-learning-based model with robust performance. Given
that pTERT mutation status plays an important role in glioma
patients’ outcomes, our predictive model will facilitate the
optimization of clinical management strategies for patients
with gliomas.
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Prognostic parameters and models were believed to be helpful in improving the treatment
outcome for patients with brain metastasis (BM). The purpose of this study was to
investigate the feasibility of computer tomography (CT) radiomics based nomogram to
predict the survival of patients with BM from non-small cell lung cancer (NSCLC) treated
with whole brain radiotherapy (WBRT). A total of 195 patients with BM from NSCLC who
underwent WBRT from January 2012 to December 2016 were retrospectively reviewed.
Radiomics features were extracted and selected from pretherapeutic CT images with least
absolute shrinkage and selection operator (LASSO) regression. A nomogram was
developed and evaluated by integrating radiomics features and clinical factors to
predict the survival of individual patient. Five radiomics features were screened out from
105 radiomics features according to the LASSO Cox regression. According to the optimal
cutoff value of radiomics score (Rad-score), patients were stratified into low-risk (Rad-
score <= −0.14) and high-risk (Rad-score > −0.14) groups. Multivariable analysis
indicated that sex, karnofsky performance score (KPS) and Rad-score were
independent predictors for overall survival (OS). The concordance index (C-index) of the
nomogram in the training cohort and validation cohort was 0.726 and 0.660, respectively.
An area under curve (AUC) of 0.786 and 0.788 was achieved for the short-term and long-
term survival prediction, respectively. In conclusion, the nomogram based on radiomics
features from CT images and clinical factors was feasible to predict the OS of BM patients
from NSCLC who underwent WBRT.
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INTRODUCTION

Brain metastasis (BM) is the most frequent intracranial
malignancy and remains a leading cause of morbidity and
mortality in both men and woman despite advances in
surgical, systemic, and radiotherapy treatments (1). Lung
cancer is the most common primary origin for patients with
BM, where non-small cell lung cancer (NSCLC) accounts for
approximately 80% of all lung cancers (2). The prognosis of
NSCLC patients with BM has significantly worsened with the
median overall survival (OS) varying from 2.8 to 25.3 months
(3). Studies indicated that the prognosis of individual BM
patients may be affected by a few clinical factors, such as the
type of primary cancer, systemic control, treatment modality,
treatment response, etc (4, 5). The identification of these
prognostic factors before or early after the beginning of
treatment was believed to be helpful in improving the
treatment outcome for patients with BM by adjusting and
choosing the right management strategy (6).

In the past decades, several prognostic models had been
suggested to predict the survival of BM patients (7–9).
Recently, prognostic models such as Golden Grading System
(GGS), Disease-Specific Graded Prognostic Assessment (DS-
GPA), Score Index for Radiosurgery (SIR) in brain metastases,
etc. have been published (10–12). Although these models and the
suggested prognostic factors have facilitated the prediction of
survival, lack of individualized survival probability and
disproportional size of prognostic groups observed in these
models hindered their wide application for clinical use (9).
Biomarkers derived from genomic and proteomic data in
primary cancers had also been reported to stratify patients into
different diagnostic/prognostic groups and lead to more effective
treatment paths (13, 14). However, the procedures of acquiring
genomic and proteomic biomarkers are usually invasive and are
not always technically feasible (15). Studies also pointed out core
biopsy specimens may not represent the entirety of the tumor
due to the spatial heterogeneity of tumors (16, 17).

As an emerging quantitative analysis technique, radiomics
has been used to provide valuable information from medical
images pertaining to tumor phenotype and microenvironment,
which had been used for cancer diagnosis, treatment response
monitoring, and outcome prediction for various cancers (18).
Recently, Della et al. demonstrated that three-dimensional (3D)
quantitative tissue enhancement in pre-treatment cranial
magnetic resonance imaging (MRI) may be a radiomic marker
to predict the survival of patients with singular BM treated with
stereotactic radiation therapy (SRT) (19). Karami et al. also
investigated that feasibility of using quantitative MRI (qMRI)
biomarkers to predict the outcome of local failure for BM
patients treated with SRT (20). Huang et al. pointed out that
radiomic features from T1 MRI could potentially be used as
Abbreviations:NSCLC, non-small cell lung cancer; BM, brain metastases; WBRT,
whole brain radiotherapy; LASSO, least absolute shrinkage and selection operator;
CECT, contrast enhanced computer tomography; OS, overall survival; AUC, area
under curve; MRI, magnetic resonance imaging.
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surrogate biomarkers for tumor prognosis prediction following
gamma knife radiosurgery (GKRS) (21).

The management options for patients with BM have
been diverse in the present era, including whole brain
radiation therapy (WBRT), hypo-fractionated SRT, stereotactic
radiosurgery (SRS), surgical resection, and systemic therapy (22).
WBRT is a standard treatment modality for NSCLC patients
with multiple BM and remains the cornerstone of management
of BM for many years (23). Despite the availability of diverse
scoring systems, there is still a lack of consensus regarding
the prognostic factors that can help the treatment decision-
making concerning the use of WBRT in NSCLC patients with
BM (24). On the other hand, although MRI is a more sensitive
than computer tomography (CT) for BM detection, contrast
enhanced CT (CECT) has been recommended on equal footing
with MRI in the 2007 evidence-based ACCP guidelines
for the detection of asymptomatic NSCLC metastases (25),
as no improvement in survival has been reported based on
screening with MRI versus CT (26). CT is also a standard
modality in the radiation treatment planning for BM. So
the purpose of this study is to investigate the feasibility
and sensitivity of CT radiomics based nomogram to predict
the survival of patients with BM from NSCLC treated
with WBRT.
MATERIALS AND METHODS

Patients and Computer Tomography
Acquisition
Patients with BM treated in our institute from January 2012 to
December 2016 were retrospectively reviewed in this study. The
including criteria were 1) BM metastasized from original
NSCLC; 2) BM treated with WBRT; 3) The number of
metastases is less than ten; 4) Patients with pretherapeutic
CECT images. BM metastasized from other origins and treated
with other radiotherapy techniques was excluded. The Ethics
Committee in Clinical Research of our institute approved this
retrospective study and waived the need of written informed
consent (ECCR#2019059). The study was conducted according
to the Declaration of Helsinki with confirmation of patient
data confidentiality.

BM patients were immobilized with a thermal plastic in
supine position for radiotherapy. Cerebral CECT images were
acquired using a 16-detector row CT simulator (Brilliance,
Phillips, Cleveland OH, USA). The scanning parameters were
set identical for these patients at 100 kV, 180–280 mA and a field
of view of 450 mm with a 3 mm reconstructed section thickness.
Before the CT scan, 100 ml of iodinated contrast material was
injected into vein via a high pressure injector at a rate of 3.0 to
4.0 ml/s.

Radiomics Feature Extraction
No preprocessing or normalization was performed for the
DICOM CT images. The tumors were manually contoured
by a junior radiation oncologist and verified by a senior
February 2021 | Volume 10 | Article 610691
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radiation oncologist via a 3D Slicer software (version 4.2.1,
https://www.slicer.org). For patients with two or more
metastases, all the metastatic tumors were contoured regarding
as an individual tumor.

CECT images with contoured target volumes were then
imported into python3.0(https://www.python.org). An in-
house algorithm in Python was coded to extract texture
features automatically from each segmented region of interest
(ROI) using Python package (PyRadiomics). A total of 105
radiomics features were extracted from individual BM lesion
quantifying phenotypic differences on the basis of shape (n = 13),
first-order (n = 18), and texture (n = 74) features. Detailed
information on the feature extraction algorithms was shown in
Supplementary Material 1.

Feature Selection and Radiomics
Signature
For individual patient, radiomics features were analyzed based
on the sum of the radiomics values of each lesion divided by the
number of lesions. The least absolute shrinkage and selection
operator (LASSO) is a computationally attractive alternative to
standard covariance selection for sparse high-dimensional
graphs and an effective approach for the biomarker selection of
high-dimensional data. The LASSO Cox regression model was
used to select the effective prognostic radiomics features.
Depending on the regulation weight l, LASSO shrinks all
regression coefficients towards zero and sets the coefficients of
many irrelevant features exactly to zero. A radiomics signature
was generated via a linear combination of selected features
weighted by their respective coefficients.

Survival Assessment and Nomogram
Kaplan–Meier survival analysis was applied to assess the association
between radiomics signature and survival. Patients were divided
into high-risk and low-risk groups based on a threshold of the
radiomics score (Rad-score). The threshold was estimated based on
the training cohort using an optimal cut-point analysis with X-tile
software (version 3.6.1, Yale University School of Medicine, New
Haven, Conn), and tested on the validation cohort. A weighted log-
rank test (G-rho rank test, rho = 1) was used to test the difference
between the high-risk and low-risk groups.

Clinical factors that associated with OS were also investigated
with univariate analysis and multivariate Cox regression analysis.
Factors with a p value less than 0.1 in the univariate analysis were
included in the multivariate analysis. A nomogram was developed
by integrating radiomics features and clinical factors to evaluate
quantitatively the survival of individual patient. The performance of
radiomics signature and nomogram was evaluated with Harrell
concordance index (C-index) (1 indicates perfect concordance; 0.5
indicates no better concordance than chance).

Statistical Analysis
The OS was defined as the time from the date of first WBRT until
death or the last follow-up. Patients were randomly divided into
training data set (70%) and validation data set (30%). Categorical
variables were compared using the x2 test or Fisher exact test.
Frontiers in Oncology | www.frontiersin.org 339
Continuous variables were compared by using the Student t test or
Mann–Whitney U test, when appropriate. Selection of radiomics
features and logistic regression model building were done using
the “glmnet” package. The receiver operating characteristics
(ROC) curve was performed using “pROC” package. The
nomogram was achieved using “rms” and “survival” packages.
The statistical analyses were conducted with R software (version
3.0.1, http://www.R-project.org), SPSS software (version 19.0,
IBM, Armonk, NY, USA) and Origin 2018. For all tests, p <
0.05 was considered as statically significant.
RESULTS

Patients’ Characteristics
A total of 195 patients (male 132, female 63) with BM from lung
cancer were enrolled in this retrospective study, as shown in the
flowchart for patient selection in Figure 1. Patients were divided
into training (133) and validation (62) cohorts with a median
and mean age of 62.0, 61.9 years, and 63.0, 63.0 years,
respectively. The median and mean OS were 8.7, 13.5 months
and 8.8, 12.6 month for the training and validation data sets,
respectively. The clinical characteristics were well balanced
between the training and validation data sets, as shown in
Table 1.

Feature Selection and Radiomics
Signature
As shown in Figure 2, 10-fold cross validation was performed in
the elastic net to tune parameter l, so as to select the radiomics
features that were associated with OS. Five radiomics features
were screened out from 105 radiomics features according to the
LASSO Cox regression analysis. They were one first order
feature, two gray-level run length matrix (GLRLM) features,
one gray-level size zone matrix (GLSZM) feature and one gray-
level different matrix (GLDM) feature. The radiomics signature
was constructed based on the Rad-score. Rad-score of individual
patients was computed through a linear combination of the
selected features weighted by their respective coefficients, as
shown in the Supplementary Data File 2.

An optimal cutoff value of −0.14 was calculated by the X-tile
plot based the Rad-scores of patients in the training cohort. The
patients were then stratified into low-risk (Rad-score < =−0.14)
and high-risk (Rad-score > −0.14) groups. Figures 3A, B shows
the distribution of Rad-scores in the training cohort and the
validation cohort for patients with low and high risk,
respectively. Significant survival differences were observed
between patients of low and high-risk groups according to the
log-rank test, as shown in Figure 4. The performance of selected
individual radiomics features and the radiomics signature in the
prediction of low and high-risk patients was shown in Table 2. A
C-index of 0.635 was achieved with radiomics score.

Risk Factors and Nomogram
Table 3 shows the results of univariate and multivariate Cox
analysis of the risk factors associated with OS in the training
February 2021 | Volume 10 | Article 61069
1

https://www.slicer.org
https://www.python.org
http://www.R-project.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. CT Radiomics Predict Survival

Frontiers in Oncology | www.frontiersin.org 440
cohort. According to the multivariable analysis, sex (HR = 1.733;
95% CI: 1.125–2.794; p = 0.014), karnofsky performance score
(KPS) (HR = 3.204; 95% CI: 2.003–5.125; p < 0.001) and Rad-
score (HR = 10.866; 95%CI: 1.711–68.981; p = 0.011) were
independent predictors for OS.

A nomogram was constructed by integrating the clinical
factors and radiomics signature (Figure 5A) to predict the
probability of 3-month OS and 1-year OS after treatment for
patients with BM. Figures 5B, C demonstrated the calibration
curves for the evaluation of agreement between nomogram
prediction and actual observation for 3-month and 1-year OS
with validation data set, respectively. The C-index of nomogram
in training cohort and validation cohort were 0.726, 0.660,
respectively. Further verification with ROC was shown in
Figure 6. An AUC of 0.786 (95% CI: 0.671–0.901) and 0.788
(95% CI: 0.657–0.918) was achieved for the short-term and long-
term survival prediction, respectively.
DISCUSSION AND CONCLUSIONS

In this study, the feasibility and sensitivity of a CT based radiomics
nomogram were investigated in the prediction of 3-month and 1-
year survival for patients with BM from NSCLC. Sex, KPS and
Rad-score were associated with the OS and integrated into the
nomogram. A C-index of 0.660 was achieved by the nomogram in
survival prediction for BM patients from NSCLC. An AUC of
0.786 and 0.788 was achieved for the 3-month and 1-year survival
prediction, respectively.
FIGURE 1 | The flowchart of patients’ selection for this retrospective study.
TABLE 1 | Characteristics of patients in the training and validation cohorts.

Characteristic Training
cohort

(N = 133)

Validation
cohort
(N = 62)

P
value

Sex, No. (%) 0.99
Male 90(67.7%) 42(67.7%)
Female 43(32.3%) 20(32.3%)

Age 0.85
Range 35-88 40-83
Median 63.0 61.5
Mean 61.87 61.82

Karnofsky performance score 0.73
Median 70 70

No. of metastases lesions,
No. (%)

0.38

single 62(46.6%) 24(38.7%)
multiple 71(53.4%) 38(61.3%)

Extracranial metastasis,
No. (%)

0.92

Yes 77(57.9%) 29(53.2%)
No 56(42.1%) 23(46.8%)

Smoking, No. (%) 0.94
Yes 62(46.6%) 30(48.4%)
No 71(53.4%) 32(51.6%)

Hypertension, No. (%) 0.019
Yes 52(39.1%) 13(21.0%)
No 81(60.9%) 49(79.0%)

Glycuresis, No. (%) 1.00
Yes 20(15.0%) 10(16.1%)
No 113(85.0%) 52(83.9%)

Overall Survival(d) 0.56
Range 4-1778 16-1765
Median 260 247.5
Mean 403.17 455.29
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More than 20% of patients with NSCLC are affected by BM
and are associated with poor prognosis (2, 3). Patients with
BM were usually reported with remarkable heterogeneity. BM
patients may have one or dozens of metastases with varied
response or resistance to radiation therapy or chemotherapy
(27). Similarly, in this study, there were about 55% (109/195)
patients with more than one metastasis with a mean OS around
13 months. Due to this heterogeneity, prognostic features and
treatment options for patients with BM should be carefully
investigated on an individual basis. Although there is still
controversy for the palliative treatment for BM patients with
poor prognosis, multidisciplinary palliative therapy must be
administered to increase the OS rates of patients with good
prognosis (28).

The prediction of survival for BM is usually difficult due to a
plethora of factors associated with survival. In the literature,
Frontiers in Oncology | www.frontiersin.org 541
multiple factors, such as control of primary disease, number of
metastasis, KPS, age, tumor volume, presence of extracranial
metastases etc., were investigated for the prediction of survival of
patients with BM (4). The type of treatment is certainly a
significant prognostic factor for patients with BM. Whole brain
volume reduction and neurocognitive function decline were the
major concerns with WBRT (29), while with the development of
hippocampal-sparing technique, neurocognitive function and
patient-reported symptoms were improved (30). In this study,
sex and KPS were correlated with the OS with a HR of 1.733 and
3.204, respectively, according to the multivariate Cox analysis for
BM patients treated with WBRT. This is consistent with
previously reported models (4, 8, 9).

In this study, radiomics features extracted from CT images
were also closely associated with the survival of BM patients as it
demonstrated that the HR of Rad-score was 10.866 with a p value
A B

FIGURE 2 | Selection of survival associated radiomics features using the elastic net method, (A) Tuning parameter (l) in the elastic net used 10-fold cross-validation
via maximum area under curve and criterion of minimum standard deviation were followed; (B) The coefficient profiles of 105 radiomics features against the L1 norm
(inverse proportional to log l).
A B

FIGURE 3 | Radiomics scores for each patient in the (A) training cohort and (B) validation cohort; patients were classified into high and low risk groups with a
threshold of −0.14.
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of 0.011. Similarly, Huang et al. demonstrated that radiomics
features extracted from pre-treatment T1 MRI was an
independent prognostic factor of local control for BM patients
who underwent gamma knife radiosurgery (21). Karami et al.
found it was possible to use MRI based radiomics features to
predict local failure early for BM patients treated with SRT (20).
Huang et al. also reported that the radiomics features extracted
from chest CT images were independent of clinical-pathologic
risk factors and significantly correlated with the disease free
survival of patients with early-stage NSCLC (31).
Frontiers in Oncology | www.frontiersin.org 642
With radiomics features alone, a C-index of 0.635 was
achieved in the prediction of survival of BM patients who
underwent WBRT in this study. This was better than a
nomogram integrating clinical factors of primary site,
histology, status of primary disease, metastatic spread, age,
KPS, and number of brain lesions by Barnholtz-Sloan et al., in
which a C-index of 0.60 was reported in the prediction of
survival of 2,350 BM patients from seven Radiation Therapy
Oncology Group (RTOG) randomized trials (32). Pietrantonio
et al. developed a survival prediction nomogram for BM from
A B

FIGURE 4 | The Kaplan–Meier survival curves of the low- and high-risk groups according to the log-rank test for patients in (A) training cohort and (B) validation
cohort. The vertical dashed line is 95% confidence interval.
TABLE 2 | The performance of the selected radiomics features and constructed radiomics signatures.

Radiomics features Training cohort Validation cohort

C-index 95%CI P value C-index 95%CI P value

Firstorder_Skewness 0.547 (0.486,0.608) 0.14 0.541 (0.436,0.646) 0.45
GLRLM_LowGrayLevelRunEmphasis 0.546 (0.487,0.605) 0.13 0.570 (0.468,0.679) 0.18
GLRLM_ShortRunLowGrayLevelEmphasis 0.549 (0.489,0.609) 0.11 0.582 (0.482,0.682) 0.11
GLSZM_GrayLevelNonUniformity 0.522 (0.455,0.589) 0.51 0.589 (0.496,0.682) 0.060
GLDM_DependenceNonUniformityNormalized 0.534 (0.471,0.597) 0.29 0.584 (0.478,0.690) 0.77
Radiomics score 0.581 (0.523,0.639) 0.0059* 0.635 (0.536,0.734) 0.0074*
February 202
1 | Volume 10 | Article
*Statistical significance.
TABLE 3 | Univariate and multivariate Cox regression analysis for risk factors associated with overall survival.

Variable Univariate analysis Multivariable analysis

HR 95%CI p value HR 95%CI p value

Sex 1.656 (1.059,2.590) 0.027 1.733 (1.125,2.794) 0.014*
Age (<=56, >56) 0.991 (0.662,1.484) 0.97
KPS (<=70, >70) 3.450 (2.185,5.447) <0.001 3.204 (2.003,5.125) <0.001*
Extracranial met 0.514 (0.338,0.783) 0.002 0.682 (0.441,1.053) 0.084
Smoking 0.778 (0.520,1.165) 0.22
Hypertension 1.052 (0.695,1.594) 0.81
Glycuresis 0.771 (0.443,1.341) 0.36
Rad-score 14.006 (2.233,87.845) 0.005 10.866 (1.711,68.981) 0.011*
KPS, Karnofsky performance score; met, metastasis; Rad-score, radiomics score.
*Statistical significance.
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A

B C

FIGURE 5 | (A) Radiomics nomogram integrated with radiomics signature and clinical factor; calibration curves of the radiomics nomogram for (B) 3 months survival
and (C) 1 year survival.
A B

FIGURE 6 | The evaluation of nomogram with receiver operating characteristic curves for (A) short-term survival prediction model; (B) long-term survival prediction model.
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colorectal cancer and achieved a similar C-index of 0.64 and
external validation C-index of 0.73 with the integrating of age,
KPS, site of BM and number of BM (33).

With the integrating of radiomics features and clinical factors,
the nomogram constructed in this study achieved a C-index of
0.726 and 0.660 for the training and validation cohorts,
respectively. This was close to the reported C-index of 0.74 in
a study of Park et al. in which the survival prediction of BM
patients from hepatocellular carcinoma treated with WBRT with
or without resection/radiosurgery was investigated (34). The
AUC of our radiomics based nomogram for short-term and
long-term survival was 0.786 and 0.788, respectively. These were
better than the reported two nomograms for the prediction of
early death (<3 months) and long-term survival (>1 year), which
was investigated by Zindler et al. with an AUC of 0.70 and 0.67
for early dearth and long-term survival, respectively, for BM
patients from NSCLC treated with SRS (35).

Some limitations of the current study are its retrospective
design and the risk of selection bias. The nomogram was built
and validated internally with data from our institution only;
external validations with additional independent data are needed
to further evaluate the performance of this nomogram. BM
patients from primary sites other than NSCLC were not
included in this study, such as breast, colorectal cancer, etc.
With the development of medical imaging technologies,
immobilization methods, and radiotherapy techniques, more
and more BM patients were treated with SRT and SRS. A
more comprehensive nomogram for patients treated with other
than WBRT and based on other image modality radiomics will
greatly improve our survival prediction ability and guide tailored
treatment for patients with BM.

In conclusion, a nomogram based on radiomics features from
CT images and clinical factors was constructed to predict the OS
for patients with BM from NSCLC who underwent WBRT. The
predicted short-term and long-term survival of BM patients who
underwent WBRT will help to adjust and choose the right
management strategy, so as to improve the outcome for
these patients.
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Purpose: Craniopharyngiomas (CPs) are benign tumors, complete tumor resection is
considered to be the optimal treatment. However, although histologically benign, the local
invasiveness of CPs commonly contributes to incomplete resection and a poor prognosis.
At present, some advocate less aggressive surgery combined with radiotherapy as a
more reasonable and effective means of protecting hypothalamus function and preventing
recurrence in patients with tight tumor adhesion to the hypothalamus. Hence, if a method
can be developed to predict the invasiveness of CP preoperatively, it will help in the
development of a more personalized surgical strategy. The aim of the study was to report
a radiomics-clinical nomogram for the individualized preoperative prediction of the
invasiveness of adamantinomatous CP (ACPs) before surgery.

Methods: In total, 1,874 radiomics features were extracted from whole tumors on
contrast-enhanced T1-weighted images. A support vector machine trained a predictive
model that was validated using receiver operating characteristic (ROC) analysis on an
independent test set. Moreover, a nomogram was constructed incorporating clinical
characteristics and the radiomics signature for individual prediction.

Results: Eleven features associated with the invasiveness of ACPs were selected by
using the least absolute shrinkage and selection operator (LASSO) method. These
features yielded area under the curve (AUC) values of 79.09 and 73.5% for the training
and test sets, respectively. The nomogram incorporating peritumoral edema and the
radiomics signature yielded good calibration in the training and test sets with the AUCs of
84.79 and 76.48%, respectively.

Conclusion: The developed model yields good performance, indicating that the
invasiveness of APCs can be predicted using noninvasive radiological data. This
reliable, noninvasive tool can help clinical decision making and improve patient prognosis.

Keywords: craniopharyngioma, adamantinomatous, invasiveness, radiomics, machine learning, nomogram
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INTRODUCTION

Craniopharyngiomas (CPs) are rare and non-neuroepithelial
entities arising from a malformation of embryonal tissue, with an
incidence of 0.5–2 cases per million persons per year (1–3). Two
histological subtypes have been identified: adamantinomatous CPs
(ACPs) and papillary CPs (PCPs). They are commonly located in
the suprasellar region and can cause devastating neuroendocrine
dysfunction by mass effect and/or invasion to the optic apparatus,
pituitary gland and hypothalamus. Complete tumor resection with
improvement in visual function, and no further deterioration of
neuroendocrine and cognitive function is considered the optimal
treatment outcome. However, although these massed are of a
benign histological nature, the abovementioned ideal treatment
goal is not always achievable due to the potential close adhesion
of CPs to surrounding brain tissue.

Pathological studies have confirmed that the histology of the
interface between CPs and surrounding brain tissue can be
classified into two types, including finger-like invasion and no
finger-like invasion (4–6). Numerous investigators have deemed
that such local invasion resulting in adhesion could be associated
with the failure of complete resection and poor prognosis (7–9).
Therefore, a preoperative noninvasive method for identifying the
invasiveness of CPs could help in the development of more
individualized treatment decisions. Addressing this problem, we
developed a machine learning radiomics model to predict the
invasiveness of ACPs before surgery.

Radiomics is an emerging research method that can
effectively evaluate the heterogeneity of tumors by extracting a
large number of image features from medical images. Its
applicability and utility have already been validated in several
tumor types; Zhang et al. focused on the preoperative prediction
of nonfunctioning pituitary adenoma subtypes before surgery
(10); Li et al. predicted P53 status, progression-free survival
(PFS), phosphatase and tensin homolog (PTEN) and vascular
endothelial growth factor (VEGF) expression in patients with
gliomas (11–14). Furthermore, radiomics approaches have also
been validated in meningiomas (15), lung cancer (16) and skull
base chordomas (17).

In the current study, we extracted a large number of
radiomics features from preoperative MRI scans of ACPs with
known local invasiveness. We hypothesized that a radiomics
model could predict the invasiveness of ACPs via a machine-
learning algorithm.
METHODS

Patients
We retrospectively reviewed the medical records of patients who
underwent surgery for craniopharyngioma from 2002 to 2019, and
a total 335 cases of ACPs were included in this study. Their
radiographic and pathological data were collected from picture
archiving and communications systems. The pathological sections
were reviewed by two individual senior neuropathologists to
confirm the histology of the interface between the ACPs and
Frontiers in Oncology | www.frontiersin.org 247
surrounding brain tissue (Figures S2 and S4). Potential candidates
were excluded if their pathological sections could not reflect the
relationship between the ACP and brain tissues. Furthermore,
MRI images were reviewed by two experienced radiologists to
identify whether peritumor edema was present on T2-weighted
images. Any disagreement was resolved by a consultation. The
inclusion criteria were as follows: 1) histologically confirmed as
ACPs; 2) the definite invasiveness of each tumor; 3) complete
preoperative MRI data [including T2-weighted, T1-weighted and
contrast enhanced (CE)-T1 images]; 4) no history of surgical
treatment; and 5) available clinical characteristics. Among 335
patients, 225 patients who were treated between January 2002 and
December 2015 were allocated to the training set, and 110 patients
who were treated between January 2016 and December 2019 were
allocated to the validating set. The training set was used to
establish a stable model to predict the invasiveness of ACPs via
radiomics features, while the validation set was used to assess the
prediction accuracy of the model. The study was approved and
reviewed by the institutional review board.

MRI Acquisition and Tumor Segmentation
CE-T1 images were used for the extraction of radiomics features,
as these images are optimal for identifying the tumor border.
MRI was performed in the head-first supine position on a 3-T
scanner (Tim Trio, Siemens) using a head coil. The acquisition
parameters for precontrast T1-weighted sequences were as
follows: repetition time, 156–2,520 ms; echo time, 2–19.7 ms;
flip angle:150°; field of view: 240×188 mm2; acquisition matrix:
384×300 and slice thickness: 5 mm. The study was repeated
immediately after the rapid injection of contrast agent
gadolinium-DTPA (0.1 mmol/kg Gadovist; Beijing Beilu
Pharmaceutical Co., Beijing China). The regions of interest
(ROI), i.e., whole tumors, were manually delineated by two
neuroradiologists on the CE-T1 images using MRIcron
software (http://www.mccauslandcenter.sc.edu/mricro) (Figure
S1 and S3). The two neuroradiologists were blinded to the
patients ’ clinical characteristics. Next, a third senior
neuroradiologist reevaluated the ROIs and made final decisions
when discrepancies were ≥ 5%.

Feature Extraction
First, we homogenized the image intensity on all MR images by
z-score transformation (MATLAB version 2014a; The
Mathworks, Natick, MA, USA) to avoid heterogeneity bias. In
this study, a total of 1,874 features were acquired (Table S1). The
features were divided into eight categories: (a) first-order
statistics, (b) shape-based, (c) Gray Level Cooccurence Matrix
(GLCM), (d) Gray Level Run Length Matrix (GLRLM), (e) Gray
Level Size Zone Matrix (GLSZM), (f) Neighboring Gray Tone
Difference Matrix (NGTDM), (g) Gray Level Dependence Matrix
(GLDM), and (h) wavelet features, they were derived from first-
order statistics and texture features via wavelet decomposition
(using directional low-pass and high-pass filtering.

Feature Selection and Classification
We used the least absolute shrinkage and selection operator
(LASSO) algorithm, which is a suitable and powerful method for
February 2021 | Volume 10 | Article 599888
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the regression of high-dimensional data, to screen the most
predictive features in the training set. In this procedure, the
tuning parameter (lambda) was selected by the cross-validation
method; the optimal lambda was confirmed as that which
resulted in the smallest cross-validation error. Then, a support
vector machine (SVM) classifier was used to establish a
machine-learning model for invasiveness prediction. The
performance of the classification model was evaluated and
validated by employing 10-fold cross-validation. Receiver
operator characteristic (ROC) curve analysis was performed for
both the training and validation sets to evaluate the discriminative
ability of the machine-learning model.

Radiomics-Clinical Nomogram
Construction and Performance
Assessment
To provide a more individualized predictive model, a nomogram
was built from the training set data. First, a radiomics signature
was constructed using the selected features, and represented by a
radiomics score. The score was calculated for each patient as a
linear combination of the selected features weighted by their
respective coefficients. Second, the radiomics signature and other
clinical predictors (age, sex, peritumoral edema, tumor size) were
tested using a multivariate logistic regression algorithm in the
training set. The final selection of the model for the nomogram
Frontiers in Oncology | www.frontiersin.org 348
was conducted using a backward step-down selection process
based on the Akaike information criterion. The performance of
the nomogram was estimated with the training cohort and then
tested with the validation cohort.

Statistics
The Mann–Whitney U test and chi-square test were used to
evaluate whether age, sex, tumor invasiveness and peritumoral
edema were significantly different between the training set and
validation set. They were performed by using SPSS software
version 22.0 (IBM Corp.) Statistical significance was set as p <
0.05. The LASSO algorithm, SVM classifier, ROC curve analysis
and nomogram were performed based on “glmnet”, “e1071”,
“pROC”, and “rms” packages in R software version 3.3.2 (The R
Foundation, Salt Lake City, UT, USA), respectively.
RESULTS

Clinical Characteristics
A total 187 male and 148 female patients was enrolled in the
study, with 51 pediatric patients (mean age 14.3 years, range 6–
17 years) and 284 adult patients (mean age 41.6 years, range 18–
71 years). Among these patients, 129 men and 96 women were
allocated to the training group and 58 men and 52 women were
allocated to the validation group via random assignment. The
ratios of invasiveness to noninvasiveness were 65/160 in the
training group and 31/79 in the validation set. The distributions
of the characteristics of the two groups were compared using the
Mann–Whitney U test and the chi-square test, and there were no
significant differences in age (p = 0.61), sex (p = 0.43),
peritumoral edema (p = 0.38), tumor size or invasiveness (p =
0.22). Detailed information pertaining to the clinical
characteristics of the patients is shown in Table 1.
TABLE 1 | Patient characteristics.

Training Validation P value

Age(years, mean) 37.2 35.63 0.61a

Sex(Male/Female) 129/96 58/52 0.43b

Peritumoral edema 48/177 19/91 0.38b

Tumor invasiveness 65/120 31/79 0.22b
aMann-Whitney U test, bChi-square test.
A B

FIGURE 1 | Texture feature selection using LASSO logistic regression. (A) Selection of the tuning parameter (lambda). The dotted vertical lines are plotted at the
optimal l values based on the minimum criteria and 1 standard error of the minimum criteria. (B) LASSO coefficient profiles are shown for the 1874 texture features.
A vertical line is drawn at the value where the optimal lambda results in 11 nonzero coefficients.
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Machine-Learning Model for Predicting
the Invasiveness of ACPs
In this study, the LASSO algorithm was used to select features
with nonzero coefficients, and a subset of 11 features were
screened from a total of 1,874 radiomic features (Figures 1A,
B). The names and descriptions of these 11 selected features are
shown in Table 2.

A machine-learning model was constructed based on the
selected features and the SVM classifier with the training set data.
The AUC was 79.09% following ROC curve analysis, and the
sensitivity, specificity, and accuracy were 81.97%, 66.74 and 75%,
respectively at the optimal cutoff point (0.609) (Figure 2A).
Then, the model was applied to the validation set, and the
invasiveness of the ACPs was effectively predicted. In the ROC
curve analysis, the AUC was 73.5%. In addition, the optimal
cutoff value (0.568) yielded a sensitivity, specificity, and accuracy
of 69.53, 72.44, and 66.53%, respectively (Figure 2B). Hence, the
11 radiological features that constituted our model were regarded
as an effective radiomics signature for the invasiveness of ACPs.
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Development and Validation of the
Individualized Predictive Nomogram
The radiomics signature and peritumoral edema were identified
as independent predictors of ACP invasiveness based on the
multivariate logistic regression algorithm (Table 3). The
nomogram showed favorable discrimination with an AUC of
84.79% [95% confidence interval (CI), 84.12–85.46%] in the
training set (Figures 3A, B). The radiomic nomogram also
showed good discrimination with an AUC of 76.48% (95% CI,
74.13–78.83%) in the testing set (Figure 3C).
DISCUSSION

Although the history of surgical treatment for CPs has been
spanned the course of more than 100 years, these masses still
pose a surgical challenge even after the application of modern
neurosurgical techniques (18–22). Numerous studies have
revealed that quality of life (QoL) and cognitive performance
TABLE 2 | Eleven prognostic radiomics features selected by the LASSO algorithm.

Features Descriptions Coefficients

First order_ Skewness Skewness measures the asymmetry of the distribution of values about the Mean value. -2.7 × 10-1

GLSZM_ Gray Level Variance Measuring the variance in gray level intensities for the zones. 4.32 × 10-1

Shape _Sphericity Measuring the roundness of the shape of the tumor region relative to a circle 1.13 × 10-1

Shape _ Surface Volume Ratio A lower value indicates a more compact (sphere-like) shape and dependent on the volume of the ROI. 2.46 × 10-2

GLCM _ Contrast Measuring the local intensity variation, favoring values away from the diagonal. 2.87 × 10-3

wavelet-HLL_ GLDM_ DNU Describing the homogeneity among dependencies in the image. The value is low if the image has more similarity. -5.1 × 10-1

wavelet-LHL_GLCM_
Autocorrelation

Describing the magnitude of the fineness and coarseness of texture. -6.72 × 10-2

wavelet-HLH_ NGTDM_ Busyness Describing the change from a pixel to its neighbor. The value is high if the changes of intensity between pixels and
its neighborhood is rapid.

-1.91

wavelet-LLL_ NGTDM _Complexity Describing the complexity of the image. The value is high if there are many rapid changes in gray level intensity. 4.09 × 10-3

wavelet-HLL_ GLSZM_ SAHGLE Describing the distribution of smaller size zones with higher gray-level values. -1.17 × 10-1

wavelet-LLH_ GLSZM _ SZNUN Describing the variability of size zone volumes throughout the image. -7.42 × 10-2
February 2021 | Volume 10 | A
DNU, Dependence Non Uniformity; SAHGLE, Small Area High Gray Level Emphasis; SZNUN, Size Zone Non Uniformity Normalized.
A B

FIGURE 2 | Receiver operating characteristic curves for the prediction of invasiveness of ACPs in the training and validation sets. (A) For the training set, the area
under the curve (AUC) was 79.09% with a sensitivity, specificity and accuracy of 81.97, 66.74, and 75%, respectively. (B) For the validation set, the AUC was 73.5%
with a sensitivity, specificity and accuracy of 69.53, 72.44, and 66.53%, respectively.
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are frequently impaired in long-term survivors after surgery
due to the anatomical proximity of the CPs to the optic
nerve and to the hypothalamic-pituitary axes (23–25). Some
researchers have advocated less aggressive surgery combined
with radiotherapy as a more reasonable and effective means of
protecting hypothalamus function and preventing recurrence in
the patients with tight tumor adhesion to the hypothalamus (26–
28). Therefore, it is important to assess the aggressiveness of the
tumor before surgery. In the present study, we used the
noninvasive radiomics method to predict the invasiveness of
ACPs before surgery, which made it possible to develop a
personalized surgical protocol. Note that to avoid heterogeneity
between the two histopathological CP subtypes, only ACPs were
included in the study.

In our cohort, there were more male patients (n = 187,
55.82%) than female patients (n = 148, 44.18%), consistent
with previous reports (29–31). Although CPs were more
Frontiers in Oncology | www.frontiersin.org 550
common among child patients, the proportion of adult
patients was higher in this study (84.78 vs. 15.22%); because
adult patients were the main group of patients in our ward.

To date, radiomics studies on craniopharyngiomas are rare.
Yue et al. proposed a machine learning model for discriminating
BRAF mutation and wild type among craniopharyngiomas with
sensitivity of 1.00 and specificity of 0.91 (32). Chen et al.
predicted the pathological subtype and gene mutations in
craniopharyngiomas with radiomics (33).

Radiomics is an emerging diagnostic technique, and the
potential ability of improving clinical decision support systems
has been well verified. Some successful precedents have been
demonstrated in radiomics studies for identifying the
invasiveness of tumors. For example, a previous report showed
that preinvasive pulmonary adenocarcinomas and invasive
pulmonary adenocarcinomas could be distinguished by
constructing a radiomics-clinical nomogram predictive model
TABLE 3 | Multivariate logistic regression analysis of the radiomics score and clinical predictors in the training set.

Univariate logistic regression Multivariate logistic regression

HR 95% CI P value HR 95% CI P value

Age, per 1 year increase 0.927 0.552–1.556 0.77
Sex (male) 0.988 0.972–1.005 0.16
Peritumoral edema 2.499 1.351–4.624 0.014 1.964 1.018–3.788 0.036
Tumor size, per 1cm increase 1.719 1.899–3.288 0.101
Radiomics score, per 0.1 increase 1.583 1.079–2.458 <0.001 1.257 1.072–1.473 0.005
February
 2021 | Volume 10 | Artic
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FIGURE 3 | The radiomic-clinical nomogram and its performance are illustrated. (A) The radiomics-clinical nomogram developed to predict the invasiveness of ACPs
is illustrated. (B) For the training set, the AUC was 84.79% with the sensitivity, specificity and accuracy of 83.27, 76.05, and 78.22%, respectively. (C) For the
validation set, the AUC was 76.48% with a sensitivity, specificity and accuracy of 71.24, 72.33, and 72.58%, respectively.
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with an AUC of 0.903 (34). Another report revealed that the
muscular invasiveness of bladder cancer could be evaluated by a
noninvasive radiomics model (35). Furthermore, Zhu et al.
proposed a learning radiomics model for preoperative grading
in meningioma (36). In the present study, we employed a
radiomics approach to provide preoperatively predict the
invasiveness of ACPs. The high-throughput features applied in
our radiomics model were extracted from the whole tumor on
preoperative CE-T1 images, which could reflect the heterogeneity
of the tumor. Subsequently, 11 invasiveness-associated features
were screened by using the LASSO algorithm, consisting of one
first-order feature, two shape-based features, two texture features,
and six wavelet features. Most of these selected features were also
reported in previous studies of tumor invasiveness (35, 37). Our
predicted model constructed by using an SVM classifier achieved
AUCs of 79.09% in the training set data and 73.5% in the
validation set data. The results indicate that the invasiveness of
APCs can be predicted using noninvasive radiological data, and
the proposed radiomics signature performed well in the training
and validation sets.

Tumor invasiveness is closely associated with gene mutations
and/or relative protein expression levels. However, owing to its
rarity and benign histological nature, studies of the genomics and
molecular pathology of CPs are limited. A previous study revealed
that the expression of claudin-1, a tight junction protein expressed
in epithelial tissues that plays important roles in cell polarity and
adhesion, could be strongly associated with the invasiveness of CPs
(38). The authors found that the invasive CPs exhibited significantly
lower claudin-1 expression than their noninvasive counterparts
regardless of CP subtype. We suggest that this difference may be the
basis of the molecular pathology for distinguishing invasive and
noninvasive ACPs by using the radiomics method.

The individualized predictive nomogram, incorporated the
radiomics signature and peritumoral edema into a model, which
facilitated the individualizedpredictionof the invasiveness ofACPs.
The radiomic-clinical nomogram showed better discrimination in
the training and validation sets with AUCs of 84.79 and76.48%,
respectively. This revealed that combining multiple clinical risk
factors to estimate and determine follow-up treatment, rather than
focusing on a single radiological feature, is very necessary.

There are some limitations in our study. First, to build the
radiomics signature and predictive model, we analyzed axial CE-
T1 images, which are usually referred to clinically; however,
combinations with other sequences such as fluid attenuated
inversion recovery (FLAIR) imaging and T2-weighted imaging
may have provided additional information and improved the
Frontiers in Oncology | www.frontiersin.org 651
performance of the predictive model. Second, potential selection
biases might have occurred because of the retrospective nature of
the study. Third, the imaging protocols used were not fully
consistent in that the imaging data were acquired with
different MRI scanners.
CONCLUSION

We proposed a radiomics-clinical nomogram for the
individualized preoperative prediction of the invasiveness of
ACPs. This reliable, noninvasive tool can help clinical decision
making and improve patient prognosis.
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Background: Brain metastases are associated with poor survival. Molecular genetic

testing informs on targeted therapy and survival. The purpose of this study was to

perform a MR imaging-based radiomic analysis of brain metastases from non-small cell

lung cancer (NSCLC) to identify radiomic features that were important for predicting

survival duration.

Methods: We retrospectively identified our study cohort via an institutional

database search for patients with brain metastases from EGFR, ALK, and/or KRAS

mutation-positive NSCLC. We segmented the brain metastatic tumors on the brain

MR images, extracted radiomic features, constructed radiomic scores from significant

radiomic features based on multivariate Cox regression analysis (p < 0.05), and built

predictive models for survival duration.

Result: Of the 110 patients in the cohort (mean age 57.51 ± 12.32 years; range:

22–85 years, M:F = 37:73), 75, 26, and 15 had NSCLC with EGFR, ALK, and KRAS

mutations, respectively. Predictive modeling of survival duration using both clinical and

radiomic features yielded areas under the receiver operative characteristic curve of

0.977, 0.905, and 0.947 for the EGFR, ALK, and KRAS mutation-positive groups,

respectively. Radiomic scores enabled the separation of each mutation-positive group

into two subgroups with significantly different survival durations, i.e., shorter vs. longer

duration when comparing to the median survival duration of the group.

Conclusion: Our data supports the use of radiomic scores, based on MR imaging of

brain metastases from NSCLC, as non-invasive biomarkers for survival duration. Future

research with a larger sample size and external cohorts is needed to validate our results.

Keywords: radiomics, machine learning, survival, lung cancer, brain metastases, brain MRI, artificial intelligence
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INTRODUCTION

Lung cancer is the second most commonly diagnosed cancer
(1). Non-small cell lung cancer (NSCLC) makes up ∼85–
90% of all lung cancer cases, and 30–50% of patients with
NSCLC develop brain metastases (2, 3). Despite advancements
in treatment, the survival duration of patients with lung cancer
brain metastases remains short, with a poor median survival of
4–8 months after diagnosis (4). Molecular characteristics help to
determine whether patients with cancer will respond to targeted
therapies thus prolong survival (5). The molecular testing of
lung cancer usually screens for genes encoding epidermal growth
factor receptor (EGFR), anaplastic lymphoma kinase (ALK)
and Kirsten rat sarcoma viral oncogene homolog (KRAS) (6–
8). Molecularly targeted medications that can penetrate the
central nervous system have improved outcomes in patients with
brain metastases from lung cancers with actionable mutations.
For example, tyrosine kinase inhibitors, such as erlotinib,
have been effective in treating brain metastases in NSCLC
patients with EGFR mutations (9). Therefore, the knowledge of
molecular mutation status is essential for planning individualized
treatments and for predicting survival.

Pathological tissue confirmation and molecular
characterization of brain metastases through invasive biopsy
or surgical resection are not always possible or practical.
In contrast, neuroimaging methods, such as brain magnetic
resonance imaging (MRI), are commonly used to non-invasively
assess the entire brain to diagnose and to plan treatments for
patients with brain metastases. In addition, brain metastases
may present with various imaging features depending on the
mutation status of the primary NSCLC (10). However, little
is known about the relationship between the neuroimaging
features of brain metastases and the NSCLC mutation subtypes
for survival prediction. There is an unmet need to identify
non-invasive neuroimaging biomarkers to predict survival
duration for NSCLC patients with brain metastases who may
have one of the three most common mutations, i.e., EGFR, ALK,
or KRAS.

Radiomics is a computerized method to extract high-
dimensional data from non-invasive standard-of-care medical
images (11). It can provide a detailed characterization of tumors,
in terms of tumor heterogeneity in relation to aggressiveness,
which are not perceptible to the human eye (12, 13). In
addition, linking imaging features with molecular and immune
characteristics will contribute valuable information that is critical
for cancer treatment and prognosis (14). Furthermore, the
radiomic approach allows the non-invasive analysis of treatment
response and prognosis at multiple time points, which is not
feasible or practical using invasive biopsies. Radiomic scores,
which incorporate information about key imaging features, have
shown potential as biomarkers for predicting survival in patients
with lung cancer and breast cancers (13, 15, 16). However,
to the best of our knowledge, no published studies have used
radiomic analysis of brain metastases to predict survival duration
of patients with NSCLC according to their mutation status.

Here, we performed a MRI radiomic analysis of brain
metastases for survival duration in patients with NSCLC. We

hypothesize that MRI radiomics of brain metastases could be
used to predict survival duration in patients with NSCLC. Our
objective was to use radiomic features extracted fromMR images
of the brain metastases to build machine learning models for
predicting survival durations of patients with NSCLC according
to the specific mutation status of their primary NSCLC, i.e.,
EGFR, ALK, or KRAS. In addition, we constructed a radiomic
score for each mutation-positive group to predict whether the
patients survived longer or shorter than the median survival
duration for each group.

METHODS

Patient Selection and Imaging Acquisition
We retrospectively identified consecutive patients for this study
by searching the Thoracic Oncology Registry for all lung cancer
patients treated at City of HopeNationalMedical Center (Duarte,
CA, USA) between 2009 and 2017. Eligibility criteria included
the following: diagnosis of NSCLC; confirmation via genotype
testing of an EGFR, ALK, and/or KRAS mutation in the primary
NSCLC tumors; and having brain MRI scans performed to
diagnose brain metastases but before initiating treatment for the
brain metastases. Patient demographic data, survival information
including date of death or last follow-up, and mutation status
were abstracted from electronic medical records (Table 1). The
Institutional Review Board at City of Hope National Medical
Center approved this study and waived informed consent due to
its retrospective nature. The study was conducted in accordance
with the Declaration of Helsinki.

Brain MR images including both the T1-weighted contrast-
enhanced (T1C) and T2-weighted fluid-attenuated inversion
recovery (FLAIR) sequences were retrieved from our Picture
Archiving and Communication System. Brain MR scans were
obtained from the same in-house 3T VERIO Siemens scanner

TABLE 1 | Demographic information for the study cohort.

EGFR (+) ALK (+) KRAS (+) p-value

N = 75 N = 21 N = 15

Age

Mean ± SD 57.43 ± 12.09 53.81 ± 14.79 63.67 ± 6.40 0.09

Race

Caucasian 34 (45.33%) 13(61.90%) 11 (73.33%)

Asian 35 (46.67%) 7 (33.33%) 1 (6.67%) 0.016

Other1 6 (8%) 1 (0.04%) 3 (20%)

Gender

Male 24 (32%) 8 (38.10%) 5 (33.33%) 0.83

Female 51 (68%) 13 (61.90%) 10 (66.67%)

History of Smoking

Yes 20 (26.67%) 5 (23.80%) 12 (80%) <0.001

No 55 (73.33%) 16 (76.19%) 3 (20%)

1American Indian or Alaska Native, African American, Native Hawaiian, or Pacific Islander.

EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; KRAS,

Kirsten rat sarcoma viral oncogene homolog.
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(Siemens, Erlangen, Germany). T1C sequence was acquired
with axial T1-weighted three-dimensional (3D) magnetization
prepared rapid gradient echo (MPRAGE) imaging after
intravenous administration of MultiHance R© (gadobenate
dimeglumine) at 0.1 mmol/Kg. The FLAIR sequence for the
peritumoral edema was acquired with routine imaging protocol.
Detailed scanning parameters have been reported in our previous
study (10).

Brain Tumor Segmentation
For image segmentation, we co-registered T1C and FLAIR
images into the same geometric space under an affine
transformation as established by the elastix toolbox (17). We
segmented the T1C and FLAIR images for enhancing tumor
and peritumoral edema, respectively. We performed image
transformation and re-slicing with FSL scripts (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/).

Subsequently, we used ITK-SNAP, an open-source 3D image
analysis software (www.itksnap.org) to contour the tumor
boundaries of both T1C (for the enhancing tumor) and FLAIR
(for the peritumoral edema) images in a semi-automated fashion
on a slice-by-slice basis (18). This semi-automated method
consisted of the two steps. First, the ITK-SNAP software
automatically placed a region of interest box around the tumors.
Second, the tumor boundaries were manually drawn slice-by-
slice by our trained research personnel (NY, TW, and BC). One
researcher (NY) was a neuroimaging researcher with 2 years of
experience in tracing tumors for radiomic research. The other
two researchers (TW and BC) were neuroradiologists with a
combined 20 years of experience in neuroimaging. Discrepancy
during tumor segmentation was resolved by consensus of
the research group. We have reported the details of brain
tumor segmentation previously (10). The imaging delineation
(mask) of the two segmented phenotypes (enhancing tumor and
peritumoral edema) were exported for radiomic analysis. Our
analysis included up to 10 of the largest tumors from each patient,
limited to tumors >5mm in diameter because smaller tumors
could not be reliably segmented for 3D analysis. Our dataset
consisted of 452 lesions from 110 patients. Figure 1 presents
the schema for brain tumor segmentation, radiomic feature
extraction, and predictive modeling for survival duration.

To assess the consistency of image segmentation and the
stability of radiomic features extracted for modeling, two
researchers (NY and TW) independently performed tumor
segmentation on the brain images from 20 randomly selected
patients with the results being blinded to each other. We
then used their segmentation results to test the inter-observer
variability. In addition, one researcher (NY) repeated the brain
tumor segmentation twice with 1 month apart for testing the
intra-observer variability. We used the interclass correlation
coefficient (ICC) test to assess the consistency of the radiomic
features for both inter-observer and intra-observer variability.
An inter-observer and intra-observer ICC > 0.80 was considered
stable for tumor segmentation and radiomic feature extraction.
The inter-observer ICC between the two researchers (NY and
TW) for tumor segmentation achieved at 0.96 ± 0.04 in a range
from 0.87 to 0.99 and for edema segmentation achieved at 0.95

± 0.05 in a range from 0.80 to 0.99. The intra-observer ICC
between the two measurements by the same researcher (NY)
achieved 0.99± 0.006 (range from 0.97 to 1.00), and 0.99± 0.007
(range from 0.97 to 1.00) for segmentation of tumor and edema,
respectively. The results indicated favorable inter- and intra-
observer reproducibility and stability for tumor segmentation
and subsequent radiomic feature extraction.

Radiomic Feature Extraction and Selection
The image preprocessing and radiomic feature extraction have
been previously reported by our group (10). Briefly, we
preprocessed each of the T1C or FLAIR images using a pipeline
consisting of three steps: (i) skull-stripping using the Brain
Extraction Tool (BET; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET)
and Free Surfer (https://surfer.nmr.mgh.harvard.edu/); (ii) bias
field correction using the routine N4ITKBiasFieldCorrection
of nipype (https://nipype.readthedocs.io/en/0.12.0/users/index.
html); (iii) image intensity normalization using an algorithm
to standardize the intensity scales across MR images of the
same contrast (19). Subsequently, we applied six different
filters (Wavelet, Laplacian of Gaussian, Square, Square Root,
Logarithm, or Exponential) to each of the preprocessed
images, generating six derived images. Therefore, there were
12 derived images associated with each brain lesion, 6 for
each of the two original (T1C and FLAIR) images. Finally, we
performed radiomic feature extraction using an open-source
python package PyRadiomics (https://pyradiomics.readthedocs.
io/en/latest/) (20) on each derived image by applying a tumor or
edema mask based on the modality of the original image, i.e.,
applying the tumor mask on the six images derived from the
original T1C image, and applying the edema mask on the six
images derived from the original FLAIR image. We extracted
three types of radiomic features from each image including: (i)
textural features, including Gray Level Co-occurrence Matrix
(GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level
Size Zone Matrix (GLSZM), Neighboring Gray Tone Difference
Matrix (NGTDM), and Gray Level Dependence Matrix (GLDM);
(ii) shape-based features, including Volume, Surface Area, and
Sphericity; and (iii) intensity-based features, such as Minimum,
Maximum, and Mean. We extracted a total of 2,786 radiomic
features from the 12 derived images for each lesion.

We performed feature selection in two steps. First, we selected
2,520 stable features from the total of 2,786 features based on the
inter-observer ICC test with a threshold of 0.8 (corrected p <

0.05). Second, from those 2,520, the 50 most relevant features for
model building were selected using a minimum redundancy and
maximum relevance (MRMR) algorithm (21).

Building Predictive Models for Survival
Duration
We dichotomized the patients in each mutation-positive group
into two subgroups, i.e., shorter and longer survival subgroups,
by assigning the patients with survival duration shorter than
the median of the mutation-positive group to the shorter
survival subgroup and the remaining patients to the longer
survival subgroup. Subsequently we built independent machine
learning models for each mutation-positive group to predict
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FIGURE 1 | Schema for brain tumor segmentation, radiomic feature extraction, and predictive modeling. (A) Representative tumor segmentation images from

post-contrast T1-weighted (T1C) and T2-weighted fluid-attenuated inversion recovery (FLAIR) data. (B) Illustrations of radiomic features extracted from the brain

tumor images, including texture, shape, and intensity. GLCM, Gray Level Co-occurrence Matrix; GLRLM, Gray Level Run Length Matrix; GLSZM, Gray Level Size

Zone Matrix; NGTDM, Neighboring Gray Tone Difference Matrix. (C) Receiver operating characteristic (ROC) curves for the models predicting the survival durations of

patients in each of the three mutation-positive groups (EGFR, ALK, and KRAS mutation-positive groups) and representative survival duration analysis.
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whether a patient survived longer than the median survival
duration of the group. We evaluated the predictive performance
of the machine learning models through leave one out cross
validation (LOOCV) using four commonly used performance
metrics including the area under the curve (AUC) of the
receiver operating characteristic curves (ROC), the specificity,
sensitivity and the prediction accuracy (22). We used an open
source software scikit-learn for the machine learning model
training and evaluation (23). Model training and prediction were
tumor-based rather than patient-based, meaning each tumor was
treated as an independent instance. The synthetic minority over-
sampling technique (SMOTE) was used to improve learning
using imbalanced datasets (24).

We built the predictive models using the 50 radiomic
features alone or together with 18 additional features including
demographic, clinical, and tumor information. Demographic
information included gender (male, female), race (Caucasian,
Asian, and other), and smoking history (yes, no). Clinical
information included the presence or absence of extracranial
metastases at 11 sites (bone, lymph, liver, lung, kidney, pancreas,
breast, spinal cord, mediastinum, pericardium, and pleura).
Tumor information included the number of tumors, the volume
of the enhancing tumor core, and the edema/tumor volume ratio.
TheMRMR-based feature selection was performed in each round
of LOOCV process, i.e., 50 most relevant radiomic features were
selected using the MRMR algorithm using the training dataset
(sample size equalsN−1 for aN sample dataset) after leaving one
sample out as the test dataset.

Selection of Machine Learning Algorithm
We used the gradient boosting classifier to build the machine
learning models for predicting the survival durations of all
three mutation groups. We selected this algorithm using a
model selection process that has been previously described (10).
Briefly, (a) we tested 30 classifiers implemented in Scikit-Learn
software (23) and evaluated their performance using leave-one-
out cross validation (LOOCV), (b) we subsequently ranked their
performances according to the area under the curve (AUC) of
the receiver operating characteristic curve (ROC) of each model,
and (c) we selected the algorithm, Gradient boosting classifier,
because it was the only one ranked among top three algorithms
for modeling each of the three patient groups.

Table 2 presents the performance data for the top three
algorithms for each of the three mutation groups. The
performance metrics include accuracy, AUC, sensitivity, and
specificity. A total of five classifiers (ada boosting, random forest,
extra tree, bagging, and gradient boosting) ranked among the top
three classifiers for modeling at least one of the three mutation
groups. Gradient boosting classifier was the only classifier ranked
among top three for all threemutation-positive groups, therefore,
we used this algorithm to build the predictive models for all three
mutation groups.

Statistical Analysis and Radiomic Score
Demographic Data
We used analysis of variance (ANOVA) to determine the
statistical significance of group differences in age. The normality

TABLE 2 | Performance metrics for the top three machine learning algorithms for

predicting whether patients survive longer than the group median in the EGFR,

ALK, and KRAS mutation-positive groups using radiomic features only.

Mutation Classifier Accuracy AUC* Sensitivity Specificity

EGFR Ada Boost Classifier 84.30% 0.905 86.00% 82.00%

Bagging Classifier 84.00% 0.915 90.00% 79.00%

Gradient Boosting

Classifier

88.10% 0.95 90.00% 87.00%

ALK Gradient Boosting

Classifier

85.70% 0.92 88.00% 83.00%

Random Forest

Classifier

77.80% 0.93 95.00% 68.00%

Extra Trees Classifier 85.70% 0.936 90.00% 81.00%

KRAS Extra Trees Classifier 78.70% 0.913 84.00% 75.00%

Gradient Boosting

Classifier

85.10% 0.955 83.00% 87.00%

Ada Boost Classifier 95.70% 0.957 100.00% 92.00%

*AUC, area under the receiver operating characteristic curve. EGFR, epidermal growth

factor receptor; ALK, anaplastic lymphoma kinase; KRAS, Kirsten rat sarcoma viral

oncogene homolog.

of the distribution was tested using the Shapiro-Wilk test, and
the homoscedasticity (the three groups have equal variance)
was tested using Bartlett’s test implemented in SciPy. We used
Fisher’s exact test to determine the statistical significance of
group differences in the distributions of the categorical variables,
including gender, race, smoking history, histology, and other
metastatic sites. P < 0.05 were considered statistically significant.
We used the statistical analysis package in the SciPy: open source
scientific tools for Python library (https://www.scipy.org/) for the
analysis described above.

Survival Analysis and Radiomic Score
We selected radiomic and clinical features that were important
for patients’ survival duration and subsequently computed
radiomic score for each patient by sequentially performing
univariate and multivariate Cox proportional hazard regression
through the following steps (Figure 2): (A) Selecting 20 radiomic
features potentially associated with patients’ survival duration.
In this step, we computed the feature importance of the 50
radiomic features used in the machine learning models using
scikit learn software as described in the Section: Building
Predictive Models for Survival Duration) and selected the
top 20 radiomic features according to the feature importance
value (Supplementary Table 1, Supplementary Material); (B)

Performing univariate Cox regression using each of the selected
top 20 radiomic features (one by one) and selected those with p<

0.05 in the analysis; (C) Performing multivariate Cox regression
using the above selected radiomic features together with the 18
clinical feature (described in Section Building Predictive Models
for Survival Duration) and chose those with p < 0.05 in the
analysis as the final selected radiomic and clinical features; (D)

Computing radiomic score for each patient in each mutation-
positive group using a linear combination of the features selected
in step C weighted by the coefficients determined by the
multivariate Cox regression. We divided each mutation group
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FIGURE 2 | Major steps of Cox proportional hazard regression analysis for determining the effects of radiomic features on survival durations of patients for each of the

three mutation-positive group (EGFR, ALK, and KRAS mutation-positive groups). The top 20 radiomic features (step A) were selected based on the feature

importance as determined by the multivariate Cox regression during classifier training.

into two subgroups according to the radiomic scores. In each
mutation group, those patients with higher radiomic scores than
the group median were assigned into the high radiomic score
subgroup, and the rest of the patients in the mutation-positive
group were assigned into the subgroup with lower radiomic
score. We tested the statistical significance of the differences in
the median survival durations between the two subgroups in
each mutation-positive group using log rank test. We used log
rank test to compare the median survival durations of patients
in the EGFR, ALK, and KRAS mutation-positive groups. We
used Lifelines, an open source software in Python (https://
lifelines.readthedocs.io/en/latest/), for the survival analysis and
presentation described in this section.

RESULTS

Patient Information
The 110 patients in this study cohort [mean age: 57.51 ± 12.32
years (range: 22 to 85 years), M:F = 37:73] were separated

into three groups according to mutation status of the three
oncogenes EGFR, ALK, and KRAS. In this cohort, 75 patients
had EGFR mutation, 21 had ALK mutation, and 15 had KRAS
mutation in their primary NSCLC, respectively (Table 1). There
was one patient who was positive for both ALK and EGFR
mutations. A detailed summary of the demographic and clinical
information for the cohort has been reported previously focusing
on classification of mutation status from lung cancer brain
metastases (10). Briefly, there were statistically significant group
differences for the two categorical variables, race (p < 0.05) and
smoking history (p< 0.001). There was a significant difference in
the racial distribution of the EGFR and KRAS groups (p= 0.005),
and the KRAS group had a higher percentage of smokers than the
EGFR (p= 0.0002) and ALK (p= 0.0036) groups.

We also compared the demographic data between the
mutation-positive group and the mutation-negative groups for
each gene mutation, i.e., EGFR (+) vs. EGFR (–), ALK (+) vs.
ALK (–), and KRAS (+) vs. KRAS (–). There was a significantly
greater percentage of Asian patients in the EGFR (+) group than
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FIGURE 3 | Receiver operating characteristic (ROC) curves for models predicting whether patients with mutations of (A) EGFR, (B) ALK, and (C) KRAS survived

longer than the median survival duration of the mutation-positive group. Curves are shown for models using clinical data only (green), radiomics features only (blue),

and a combination of both clinical data and radiomic features (red). The areas under the receiver operating characteristic curves (AUCs) are indicated in each panel.

KRAS mutation—positive group has too small a sample size to build the predictive model using clinical data alone.

the EGFR (–) group (p = 0.042). The KRAS (+) group was
significantly older than the KRAS (–) group (p = 0.002). There
was a higher percentage of smokers in the KRAS (+) group than
the KRAS (–) group (p= 0.0001).

The median survival durations for EGFR, ALK, and KRAS
mutation-positive groups were 12.7, 20.9, and 17.0 months,
respectively. The pair-wise log-rank test indicated that the
median survival duration of the ALK mutation-positive group
was significantly longer than that of the EGFR mutation-positive
group (p = 0.011), whereas the difference between the ALK and
KRAS mutation-positive groups was not significant (p > 0.05).

Prediction of Survival Duration
For all mutation-positive groups, the predictive performance of
models built with radiomic features alone was better than that
of models built with clinical data alone. Combining radiomic
features and clinical data resulted in the most accurate prediction
results (Figure 3). When using both clinical data and radiomic
features in the modeling, the AUCs for predicting whether
patients survived longer than the median survival duration of the
group was 0.977, 0.905, and 0.947 for EGFR, ALK, and KRAS,
respectively. Table 3 shows the accuracy, AUC, sensitivity, and
specificity of the survival duration predictions for the patients
in EGFR, ALK, or KRAS mutation-positive group, respectively.
Both radiomic features and clinical data were combined to
generate the performance data in Table 3. The accuracy was
94.9%, 84.1%, and 83.0% for the survival duration predictions for
EGFR, ALK, and KRAS mutation-positive group, respectively.
The sensitivity was 96.0, 88.0, and 83.0% for the survival duration
predictions of EGFR, ALK, and KRAS mutation-positive group,
respectively. The specificity was 94.0, 81.0, and 83.0% for the
survival duration predictions of the patients in the EGFR, ALK,
and KRAS mutation-positive groups, respectively.

TABLE 3 | Performance metrics for predicting whether patients survive longer

than the group median in EGFR, ALK, and KRAS mutation-positive groups.

Mutation Accuracy AUC* Sensitivity Specificity

EGFR 94.90% 0.977 96.00% 94.00%

ALK 84.10% 0.905 88.00% 81.00%

KRAS 83.00% 0.947 83.00% 83.00%

*AUC, area under the receiver operating characteristic curve.

EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; KRAS,

Kirsten rat sarcoma viral oncogene homolog.

Both clinical data and radiomics features were used for predictive modeling.

Cox Regression Analysis and Radiomic
Score Calculation
Table 4 presents multivariate Cox regression results for the
three mutation-positive groups. The demographic and radiomic
features that were statistically significantly associated with
survival duration (p < 0.05) are listed in Table 4. The features
with positive coefficients were associated with shorter survival
duration while those with negative coefficients were associated
with longer survival duration. For the EGFR mutation-positive
group, the radiomic score consisted of age {[Coefficient (coef):
2.76]}, Caucasian race (coef: 0.961), male sex (coef: 0.89),
edema/tumor volume ratio (coef: −3.71), tumor number (coef:
1.78), an intensity feature exacted from edema area (coef:
1.37) and a textual feature exacted from tumor area (coef:
−1.41). For the ALK mutation-positive group, the radiomic
score consisted of the tumor number (coef: 3.05), and an
intensity feature exacted from edema area (coef: −1.76).
For the KRAS mutation-positive group, the radiomic score
consisted of the edema/tumor volume ratio (coef: −16.8) and
the tumor number (coef: −1.06). The feature names and
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TABLE 4 | Demographic and radiomic features significantly associated with survival duration for each mutation-positive group as determined by multivariate Cox

regression analysis.

Group Features coef se(coef) z p Lower 0.95 Upper 0.95

EGFR Age 2.76 0.42 6.56 <0.001 1.93 3.58

Race Caucasian 0.96 0.14 6.83 <0.001 0.69 1.24

Sex Male 0.89 0.14 6.34 <0.001 0.62 1.17

Edema/Tumor Ratio −3.71 0.99 −3.74 <0.001 −5.65 −1.76

Tumor Number 1.78 0.38 4.75 <0.001 1.05 2.52

Edema Median Intensity* 1.37 0.43 3.21 0.001 0.54 2.21

Tumor Texture** −1.41 0.59 −2.40 0.016 −2.56 −0.26

ALK Tumor Number 3.05 0.60 5.12 <0.001 1.88 4.21

Edema Median Intensity* −1.76 0.88 −2.00 0.045 −3.48 −0.04

KRAS Edema/Tumor Ratio −16.80 3.89 −4.33 <0.001 −24.50 −9.22

Tumor Number −1.06 0.45 −2.32 0.020 −1.95 −0.17

Coef, Cox regression coefficient; se(coef), standard error of the Cox regression coefficient; lower 0.95, the lower bound of the 95% confidence interval; upper 0.95, the upper

bound of the 95% confidence interval; *Edema Median Intensity, Edema_Intensity_squareroot_Intensity_Median; **Tumor Texture, Tumor Texture log_sigma_3-mm_3D GLRLM

LongRunHighGrayLevelEmphasis; EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; KRAS, Kirsten rat sarcoma viral oncogene homolog.

FIGURE 4 | Radiomic scores of survival durations for EGFR, ALK, and KRAS mutation-positive groups. Each column represents the components of the radiomic

score for survival prediction for each mutation-positive group, as indicated on the left end. The color indicates the z-score for each feature, based on multivariate Cox

regression analysis, according to the scale shown on the right end. The numerical value of each Wald statistics is indicated with imbedded texts. Features with

positive values (red) are associated with shorter survival duration, while those with negative values are associated with longer survival duration. The corresponding Cox

regression coefficients of the features are shown in Table 4. *Edema Median Intensity: Edema_Intensity_squareroot_Intensity_Median. **Tumor Texture: Tumor Texture

log-sigma-3-mm-3D GLRLM LongRunHighGrayLevelEmphasis.

the z score listed in Table 4 are graphically presented in
Figure 4.

To assess the collective prognostic power of the features
that were statistically significantly associated with the patients’
survival, we constructed radiomic scores through a linear
combination of the significant radiomic features listed in Table 4

which were weighted by the coefficients. We then divided each
of the three patient groups into two subgroups based on the
radiomic scores, i.e., assigning those patients with the radiomic
scores lower than the median radiomic score of the group into a
lower score subgroup and assigning the rest of the patients in the
group into a higher score group. Figure 5 shows Kaplan–Meier
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FIGURE 5 | Kaplan–Meier plots for each mutation-positive group (A–C) separated into two subgroups by their radiomic scores (higher than or lower than the median

radiomic score for each mutation-positive group). The subgroup with radiomic score values higher than the median radiomic score of each mutation-positive group

had significantly shorter survival duration than the subgroup with values lower than the median radiomic score. The radiomic scores were computed as the weighted

average of the features shown in Table 4 (weighted by Cox regression coefficients).

plots of the two subgroups within each mutation-positive group
based on radiomic scores. In each of the three mutation-positive
groups, the subgroup with lower radiomic score had longer
median survival duration than that of the subgroup with higher
radiomic score.

DISCUSSION

In this study, we built machine learning models to predict
whether patients with EGFR, ALK, or KRAS mutation-positive
primary NSCLC survived longer than the median survival
duration for each specific mutation group. The final models of
our study used 50 radiomic features together with 18 clinical
features and achieved AUC of 0.977, 0.905, and 0.947 for the
three mutation-positive groups, i.e., EGFR, ALK, and KRAS
groups, respectively. Subsequently, we identified radiomic and
clinical features significantly associated with survival duration
for the patients in the three mutation-positive groups. Finally,
we constructed radiomic scores using linear combinations
of these features weighted with their coefficients in the
multivariate regression. After dividing each of the three mutation
groups into two subgroups according to radiomic scores, our
study showed that the subgroup with lower radiomic scores
had statistically significant longer median survival duration,
indicating strong association between radiomic scores and the
patients’ survival duration.

The performance of our predictive models compared
favorably to those of published predictive models based on the
computed tomography (CT) images of primary lung cancer
(25–28). Hosny et al. (29) used a 3D convolutional neural
network (CNN) to study prognostic stratification in a multi-
cohort radiomic study using the lung CT images of 1,194 patients
with NSCLC. Their models predicted whether patients could
survive longer than 2 years after treated either with radiotherapy
or surgery, and achieved AUC of 0.70 and 0.71, respectively. It
is challenging to compare our results, which were based on the
MRI radiomics of brain metastases, to the results of the deep
learning study which was based on lung CT images. Nevertheless,
judging by AUC values alone, the performance of our predictive

models was comparable to the work performed by deep learning
networks (29).

Our predictive models achieved reasonable performance as
compared to other studies using radiomic features from MR
images of brain metastases (30–33). For example, Béresová
et al. (33) demonstrated that using MR image-based textural
radiomic analysis could distinguish brain metastases originating
from lung cancer vs. breast cancer, achieving AUC of 0.70.
In another study, Ortiz-Ramon et al. (32) used radiomic
features extracted from MR images of brain metastases to
predict whether the primary cancer being lung cancer or
melanoma, achieving AUC of 0.95. Recently, Kniep et al., build
predictive models using radiomic features from MR images
to predict whether brain metastases originated from primary
breast cancer, small cell lung cancer, NSCLC, gastrointestinal
cancer, or melanoma. The AUC of their predictive
models were between 0.64 for NSCLC and 0.82 for breast
cancer (34).

Our approach using radiomic scores to predict survival
duration of NSCLC patients with brain metastases was novel.
We constructed radiomic scores with linear combinations
of 2–7 significant radiomic features for each mutation-
positive group, weighted by their Cox coefficients. Our
radiomic score calculations indicated that different sets of
radiomic features were significantly associated with survival
duration in different mutation groups. For example, an edema
feature, the Edema_Intensity_squareroot_Intensity_Median, was
significantly associated with survival duration of patients in
the EGFR and ALK mutation-positive groups, but not in
the KRAS mutation-positive group. Edema Tumor Volume
ratio on the other hand, was significantly associated with
survival duration in the EGFR and KRAS mutation-positive
groups, but not in ALK mutation-positive group. Our findings
indicated the potential mutation-specific association between
the radiomic features and survival durations. These results
were not unexpected since our radiomic scores were consisted
of features reflecting tumor heterogeneity such as edema
intensity and tumor texture which have been known to affect
survival (35).
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Our findings regarding the relationship between peritumoral
edema of brain metastases and the survival durations is generally
in line with published literature (35, 36). Spanberger et al.
studied the prognostic value of the extent of peritumoral brain
edema in the patients operated for single brain metastasis.
They reported a strong correlation between the extent of
peritumoral edema on brain MRI scans and overall survival,
i.e., patients with small peritumoral edema have longer survival
than patients with large peritumoral edema (35). Our current
study showed similar findings, i.e., lower edema/tumor ratio
in our radiomic scores indicated longer survival duration. In
addition, Berghoff et al. studied the role of tumor-infiltrating
lymphocytes (TIFs) in the immune microenvironment of 116
specimen of brain metastases originating from different primary
cancers including lung cancer, breast cancer, melanoma, and
renal cell carcinoma. They found that dense TIFs correlated
with peritumoral brain edema and the overall survival (36).
A recent study by Nardone et al. (37) has also shown that
the peritumoral edema and tumor volume of brain metastases
were correlated with overall survival in patients with NSCLC
undergoing radiosurgery. Taken together of the prior published
reports and our current study, there is supporting evidence
for incorporating brain tumor characteristics such as edema
and tumor volume into survival analysis of patients with
brain metastases.

The multivariate Cox regression in our study showed
that age at diagnosis, Caucasian race, and male gender,
were highly correlated with survival duration in the EGFR
mutation-positive group. This result was consistent with
literature indicating that age, active extracranial disease, and
EGFR mutation are independently associated with survival
(9). However, it is challenging to compare our analysis of
survival duration with others because of differences in study
cohorts, systemic disease status and treatment regimen for
both the primary cancers and brain metastases. Nevertheless,
it is reasonable to evaluate survival in terms of mutation
status since molecular targeted therapy based on mutation
information may improve prognosis and survival (38). For
instance, the progression-free and overall survival of patients
with EGFR and ALK mutations may be improved by treatment
with tyrosine kinase inhibitors and ALK inhibitors specifically
targeting these two mutations (38). Our study results provide
the pilot data supporting radiomic scores as non-invasive
biomarkers for assessment of survival duration in lung
cancer brain metastases according to the mutation status.
Nevertheless, independent validation is needed to substantiate
our results.

There were several limitations to this study. First, this was
a retrospective study focusing on NSCLC patients with brain
metastases who were treated at a single institution over a
9-year interval. Our study design was inherently limited by
various confounding variables, such as patient characteristics,
imaging parameters, and treatment regimens for the primary
NSCLC. Second, our sample size was modest, which might have
limited our ability to build more robust predictive models with
radiomic features. Third, the mutation status for this cohort
was obtained from the primary NSCLC. Since most patients

in our cohort did not undergo invasive biopsy or surgery of
the brain metastases, the brain metastases could not be directly
genotyped and we therefore assumed that brain metastases
having the same mutation status as the primary NSCLC. We
recognize this limitation with the understanding that mutation
status in the primary NSCLC and distant metastases may not
always be concordant (39). Lastly, this pilot study did not
evaluate or control for all the potential confounding factors
that might have contributed to survival duration, such as
primary tumor status, systematic disease status, neurological
deficits, and treatment regimen for the primary NSCLC and
brain metastases. This was because we did not have the
statistical power in this retrospective study with a modest
sample size to control for all the highly variable confounding
factors affecting survival. We recognize our approach for
building predictive models with the potential uncontrolled
variables may have affected our model performance. We will
consider those confounding factors in our future large-scale
multicenter research.

Despite these limitations, our study had strengths. First,
to the best of our knowledge, our study was the first to
use MRI radiomics of brain metastases and machine learning
algorithms to predict the survival durations of patients with
NSCLC, accounting for their mutation status. Second, we
used a 3D slice-by-slice approach to segment brain metastases
in their entirety, which we believe should have provided
a more detailed characterization of tumor heterogeneity
than what could be achieved using a 2D method (32).
Third, we constructed radiomic scores using both radiomic
features and clinical data, which improved predictive power
compared to the scores constructed using either clinical
data or radiomic data alone. Therefore, our study has merit
as an exploratory, proof-of-concept pilot study from which
to generate hypotheses for future large-scale, multicenter
studies using imaging biomarkers to predict survival durations
of patients with brain metastases from NSCLC and other
primary cancers.

In summary, our study showed that a MRI radiomic approach
capturing the critical radiological features of brain metastases
in patients with primary NSCLC may be used to predict
survival durations according to mutation status. Our data
supports the concept of using radiomic scores as non-invasive
imaging biomarkers for survival analysis, which is important
for personalized treatment and prognostic assessment for cancer
patients with metastatic disease.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors to qualified researchers, without
undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by the Institutional Review Board at City

Frontiers in Oncology | www.frontiersin.org 10 March 2021 | Volume 11 | Article 62108862

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chen et al. MRI Radiomics Predicting Survival

of Hope National Medical Center which approved this
study and waived informed consent due to its retrospective
nature. Written informed consent for participation
was not required for this study in accordance with the
institutional requirements.

AUTHOR CONTRIBUTIONS

BC and RS designed and conducted the study. NY, TJ,
IM, TW, BC, and RS analyzed the brain MR imaging
data. NY, TW, and BC performed tumor segmentation and
reviewed the segmented images for consistency. TJ developed
the pipeline for predictive modeling and machine learning.
TJ and NY performed statistical analysis. BC, TJ, NY, IM,
CW, TW, ZC, RR, RC, AH, SS, and RS contributed to
data interpretation. BC, TJ, NY, IM, and RS contributed to
the manuscript writing process and BTC prepared the first
draft of the entire manuscript. All authors approved the
final manuscript.

FUNDING

This work was supported by the National Cancer Institute of the
National Institutes of Health under Grants No. P30CA033572
and 1U54CA209978-01A1. TJ was partially supported by the
Center for Cancer and Aging Pilot Project Award at City of
Hope to BC. This work was also supported by the City of Hope
Research Initiative Health Equity Pilot Grant (Awarded to BC
and RS).

ACKNOWLEDGMENTS

The authors thank Kerin K. Higa, Ph.D. for editing
this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2021.621088/full#supplementary-material

REFERENCES

1. Fenske DC, Price GL, Hess LM, John WJ, Kim ES. Systematic review

of brain metastases in patients with non-small-cell lung cancer in the

United States, European Union, and Japan. Clin Lung Cancer. (2017) 18:607–

14. doi: 10.1016/j.cllc.2017.04.011

2. Hu C, Chang EL, Hassenbusch SJ 3rd, Allen PK, Woo SY, Mahajan

A, et al. (2006). Nonsmall cell lung cancer presenting with synchronous

solitary brain metastasis. Cancer. 106, 1998–2004. doi: 10.1002/cncr.

21818

3. Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK. Non-small-

cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer. (2014)

14:535–46. doi: 10.1038/nrc3775

4. Mak KS, Gainor JF, Niemierko A, Oh KS, Willers H, Choi NC, et al.

Significance of targeted therapy and genetic alterations in EGFR, ALK,

or KRAS on survival in patients with non-small cell lung cancer treated

with radiotherapy for brain metastases. Neuro Oncol. (2015) 17:296–302.

doi: 10.1093/neuonc/nou146

5. Ellison G, Zhu G, Moulis A, Dearden S, Speake G, Mccormack R. EGFR

mutation testing in lung cancer: a review of availablemethods and their use for

analysis of tumour tissue and cytology samples. J Clin Pathol. (2013) 66:79–89.

doi: 10.1136/jclinpath-2012-201194

6. Riely GJ, Marks J, PaoW. KRAS mutations in non-small cell lung cancer. Proc

Am Thorac Soc. (2009) 6:201–5. doi: 10.1513/pats.200809-107LC

7. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al.

Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl

J Med. (2010) 363:1693–703. doi: 10.1056/NEJMoa1006448

8. Siegelin MD, Borczuk AC. Epidermal growth factor receptor

mutations in lung adenocarcinoma. Lab Invest. (2014) 94:129–37.

doi: 10.1038/labinvest.2013.147

9. Porta R, Sanchez-Torres JM, Paz-Ares L, Massuti B, Reguart N, Mayo

C, et al. Brain metastases from lung cancer responding to erlotinib:

the importance of EGFR mutation. Eur Respir J. (2011) 37:624–31.

doi: 10.1183/09031936.00195609

10. Chen BT, Jin T, Ye N, Mambetsariev I, Daniel E, Wang T, et al.

Radiomic prediction of mutation status based on MR imaging of

lung cancer brain metastases. Magn Reson Imaging. (2020) 69:49–56.

doi: 10.1016/j.mri.2020.03.002

11. Kuo MD, Jamshidi N. Behind the numbers: Decoding molecular phenotypes

with radiogenomics–guiding principles and technical considerations.

Radiology. (2014) 270:320–5. doi: 10.1148/radiol.13132195

12. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Van Stiphout RG,

Granton P, et al. Radiomics: extracting more information from medical

images using advanced feature analysis. Eur J Cancer. (2012) 48:441–6.

doi: 10.1016/j.ejca.2011.11.036

13. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P,

Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging

using a quantitative radiomics approach. Nat Commun. (2014) 5:4006.

doi: 10.1038/ncomms5006

14. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR,

et al. A radiomics approach to assess tumour-infiltrating CD8 cells

and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging

biomarker, retrospective multicohort study. Lancet Oncol. (2018) 19:1180–91.

doi: 10.1016/S1470-2045(18)30413-3

15. Shen C, Liu Z, GuanM, Song J, Lian Y,Wang S, et al. 2D and 3D CT radiomics

features prognostic performance comparison in non-small cell lung cancer.

Transl Oncol. (2017) 10:886–94. doi: 10.1016/j.tranon.2017.08.007

16. Park H, Lim Y, Ko ES, Cho HH, Lee JE, Han BK, et al. Radiomics signature

on magnetic resonance imaging: association with disease-free survival in

patients with invasive breast cancer. Clin Cancer Res. (2018) 24:4705–14.

doi: 10.1158/1078-0432.CCR-17-3783

17. Klein S, Staring M, Murphy K, Viergever MA, Pluim JP. elastix: a toolbox for

intensity-based medical image registration. IEEE Trans Med Imaging. (2010)

29:196–205. doi: 10.1109/TMI.2009.2035616

18. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al.

User-guided 3D active contour segmentation of anatomical structures:

significantly improved efficiency and reliability. Neuroimage. (2006) 31:1116–

28. doi: 10.1016/j.neuroimage.2006.01.015

19. Shinohara RT, Sweeney EM, Goldsmith J, Shiee N, Mateen FJ, Calabresi PA,

et al. Statistical normalization techniques for magnetic resonance imaging.

Neuroimage Clin. (2014) 6:9–19. doi: 10.1016/j.nicl.2014.08.008

20. Van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V,

et al. Computational radiomics system to decode the radiographic phenotype.

Cancer Res. (2017) 77:e104–e107. doi: 10.1158/0008-5472.CAN-17-0339

21. Peng H, Long F, Ding C. Feature selection based on mutual information:

criteria ofmax-dependency,max-relevance, andmin-redundancy. IEEE Trans

Pattern Anal Mach Intell. (2005) 27:1226–38. doi: 10.1109/TPAMI.2005.159

22. Arlot S, Celisse A. A survey of cross-validation procedures formodel selection.

Statist Surv. (2010) 4:40–79. doi: 10.1214/09-SS054

23. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel

O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res.

(2011) 12:2825–30. doi: 10.1016/j.patcog.2011.04.006

Frontiers in Oncology | www.frontiersin.org 11 March 2021 | Volume 11 | Article 62108863

https://www.frontiersin.org/articles/10.3389/fonc.2021.621088/full#supplementary-material
https://doi.org/10.1016/j.cllc.2017.04.011
https://doi.org/10.1002/cncr.21818
https://doi.org/10.1038/nrc3775
https://doi.org/10.1093/neuonc/nou146
https://doi.org/10.1136/jclinpath-2012-201194
https://doi.org/10.1513/pats.200809-107LC
https://doi.org/10.1056/NEJMoa1006448
https://doi.org/10.1038/labinvest.2013.147
https://doi.org/10.1183/09031936.00195609
https://doi.org/10.1016/j.mri.2020.03.002
https://doi.org/10.1148/radiol.13132195
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1016/S1470-2045(18)30413-3
https://doi.org/10.1016/j.tranon.2017.08.007
https://doi.org/10.1158/1078-0432.CCR-17-3783
https://doi.org/10.1109/TMI.2009.2035616
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1016/j.nicl.2014.08.008
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1214/09-SS054
https://doi.org/10.1016/j.patcog.2011.04.006
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chen et al. MRI Radiomics Predicting Survival

24. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic

minority over-sampling technique. J Artif Intell Res. (2002) 16:321–57.

doi: 10.1613/jair.953

25. Liu Y, Kim J, Balagurunathan Y, Li Q, Garcia AL, Stringfield O,

et al. (2016). Radiomic features are associated with EGFR mutation

status in lung adenocarcinomas. Clin Lung Cancer. 17:441–8.e446.

doi: 10.1016/j.cllc.2016.02.001

26. Rizzo S, Petrella F, Buscarino V, De Maria F, Raimondi S, Barberis

M, et al. CT radiogenomic characterization of EGFR, K-RAS, and ALK

mutations in non-small cell lung cancer. Eur Radiol. (2016) 26:32–42.

doi: 10.1007/s00330-015-3814-0

27. Gevaert O, Echegaray S, Khuong A, Hoang CD, Shrager JB, Jensen KC, et al.

Predictive radiogenomics modeling of EGFR mutation status in lung cancer.

Sci Rep. (2017) 7:41674. doi: 10.1038/srep41674

28. Zhang L, Chen B, Liu X, Song J, Fang M, Hu C, et al. Quantitative

biomarkers for prediction of epidermal growth factor receptor mutation

in non-small cell lung cancer. Transl Oncol. (2018) 11:94–101.

doi: 10.1016/j.tranon.2017.10.012

29. Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A,

et al. Deep learning for lung cancer prognostication: a retrospective

multi-cohort radiomics study. PLoS Med. (2018) 15:e1002711.

doi: 10.1371/journal.pmed.1002711

30. Li Z, Mao Y, Li H, Yu G, Wan H, Li B. Differentiating brain

metastases from different pathological types of lung cancers using texture

analysis of T1 postcontrast MR. Magn Reson Med. (2016) 76:1410–9.

doi: 10.1002/mrm.26029

31. Nardone V, Tini P, Biondi M, Sebaste L, Vanzi E, De Otto G, et al. Prognostic

value of MR imaging texture analysis in brain non-small cell lung cancer

oligo-metastases undergoing stereotactic irradiation. Cureus. (2016) 8:e584.

doi: 10.7759/cureus.584

32. Ortiz-Ramon R, Larroza A, Arana E, Moratal D. A radiomics evaluation

of 2D and 3D MRI texture features to classify brain metastases from lung

cancer and melanoma. Conf Proc IEEE Eng Med Biol Soc. (2017) 2017:493–6.

doi: 10.1109/EMBC.2017.8036869

33. Béresová M, Larroza A, Arana E, Varga J, Balkay L, Moratal D. 2D

and 3D texture analysis to differentiate brain metastases on MR images:

proceed with caution. Magn Reson Mater Phys Biol Med. (2018) 31:285–94.

doi: 10.1007/s10334-017-0653-9

34. Kniep HC, Madesta F, Schneider T, Hanning U, Schonfeld MH, Schon G,

et al. Radiomics of brain MRI: utility in prediction of metastatic tumor type.

Radiology. (2019) 290:479–87. doi: 10.1148/radiol.2018180946

35. Spanberger T, Berghoff AS, Dinhof C, Ilhan-Mutlu A, Magerle M, Hutterer

M, et al. Extent of peritumoral brain edema correlates with prognosis,

tumoral growth pattern, HIF1a expression and angiogenic activity in

patients with single brain metastases. Clin Exp Metastasis. (2013) 30:357–68.

doi: 10.1007/s10585-012-9542-9

36. Berghoff AS, Fuchs E, Ricken G, Mlecnik B, Bindea G, Spanberger T,

et al. Density of tumor-infiltrating lymphocytes correlates with extent of

brain edema and overall survival time in patients with brain metastases.

Oncoimmunology. (2016) 5:e1057388. doi: 10.1080/2162402X.2015.10

57388

37. Nardone V, Nanni S, Pastina P, Vinciguerra C, Cerase A, Correale P, et al.

Role of perilesional edema and tumor volume in the prognosis of non-

small cell lung cancer (NSCLC) undergoing radiosurgery (SRS) for brain

metastases. Strahlenther Onkol. (2019) 195:734–44. doi: 10.1007/s00066-019-0

1475-0

38. Di Lorenzo R, Ahluwalia MS. Targeted therapy of brain metastases: latest

evidence and clinical implications. Ther Adv Med Oncol. (2017) 9:781–96.

doi: 10.1177/1758834017736252

39. Bozzetti C, Tiseo M, Lagrasta C, Nizzoli R, Guazzi A, Leonardi F,

et al. Comparison between epidermal growth factor receptor (EGFR) gene

expression in primary non-small cell lung cancer (NSCLC) and in fine-

needle aspirates from distant metastatic sites. J Thorac Oncol. (2008) 3:18–22.

doi: 10.1097/JTO.0b013e31815e8ba2

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Chen, Jin, Ye, Mambetsariev, Wang, Wong, Chen, Rockne, Colen,

Holodny, Sampath and Salgia. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Oncology | www.frontiersin.org 12 March 2021 | Volume 11 | Article 62108864

https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.cllc.2016.02.001
https://doi.org/10.1007/s00330-015-3814-0
https://doi.org/10.1038/srep41674
https://doi.org/10.1016/j.tranon.2017.10.012
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1002/mrm.26029
https://doi.org/10.7759/cureus.584
https://doi.org/10.1109/EMBC.2017.8036869
https://doi.org/10.1007/s10334-017-0653-9
https://doi.org/10.1148/radiol.2018180946
https://doi.org/10.1007/s10585-012-9542-9
https://doi.org/10.1080/2162402X.2015.1057388
https://doi.org/10.1007/s00066-019-01475-0
https://doi.org/10.1177/1758834017736252
https://doi.org/10.1097/JTO.0b013e31815e8ba2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


ORIGINAL RESEARCH
published: 17 March 2021

doi: 10.3389/fonc.2021.595259

Frontiers in Oncology | www.frontiersin.org 1 March 2021 | Volume 11 | Article 595259

Edited by:

Xuejun Li,

Central South University, China

Reviewed by:

Liang Wang,

Fourth Military Medical

University, China

Guihua Wang,

Huazhong University of Science and

Technology, China

*Correspondence:

Chuanlu Jiang

jcl6688@163.com

Jinquan Cai

jinquan.cai@ki.se;

caijinquan@hrbmu.edu.cn

†These authors share first authorship

Specialty section:

This article was submitted to

Cancer Imaging and Image-directed

Interventions,

a section of the journal

Frontiers in Oncology

Received: 15 August 2020

Accepted: 16 February 2021

Published: 17 March 2021

Citation:

Qi T, Meng X, Wang Z, Wang X,

Sun N, Ming J, Ren L, Jiang C and

Cai J (2021) A Voxel-Based

Radiographic Analysis Reveals the

Biological Character of

Proneural-Mesenchymal Transition in

Glioblastoma.

Front. Oncol. 11:595259.

doi: 10.3389/fonc.2021.595259

A Voxel-Based Radiographic Analysis
Reveals the Biological Character of
Proneural-Mesenchymal Transition in
Glioblastoma
Tengfei Qi 1†, Xiangqi Meng 1†, Zhenyu Wang 1, Xinyu Wang 1, Nan Sun 1, Jianguang Ming 1,

Lejia Ren 1, Chuanlu Jiang 1* and Jinquan Cai 1,2*

1Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China, 2Department of

Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden

Introduction: Proneural and mesenchymal subtypes are the most distinct demarcated

categories in classification scheme, and there is often a shift from proneural type

to mesenchymal subtype in the progression of glioblastoma (GBM). The molecular

characters are determined by specific genomic methods, however, the application of

radiography in clinical practice remains to be further studied. Here, we studied the

topography features of GBM in proneural subtype, and further demonstrated the survival

characteristics and proneural-mesenchymal transition (PMT) progression of samples by

combining with the imaging variables.

Methods: Data were acquired from The Cancer Imaging Archive (TCIA, http://

cancerimagingarchive.net). The radiography image, clinical variables and transcriptome

subtype from 223 samples were used in this study. Proneural and mesenchymal subtype

on GBM topography based on overlay and Voxel-based lesion-symptom mapping

(VLSM) analysis were revealed. Besides, we carried out the comparison of survival

analysis and PMT progression in and outside the VLSM-determined area.

Results: The overlay of total GBM and separated image of proneural and mesenchymal

subtype revealed a correlation of the two subtypes. By VLSM analysis, proneural subtype

was confirmed to be related to left inferior temporal medulla, and no significant voxel was

found for mesenchymal subtype. The subsequent comparison between samples in and

outside the VLSM-determined area showed difference in overall survival (OS) time, tumor

purity, epithelial-mesenchymal transition (EMT) score and clinical variables.

Conclusions: PMT progression was determined by radiography approach. GBM

samples in the VLSM-determined area tended to harbor the signature of proneural

subtype. This study provides a valuable VLSM-determined area related to the predilection

site, prognosis and PMT progression by the association between GBM topography and

molecular characters.

Keywords: voxel-based lesion-symptommapping, proneural subtype,mesenchymal subtype,magnetic resonance

imaging, glioblastoma
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INTRODUCTION

Glioblastoma (GBM), mainly diagnosed by magnetic resonance
imaging (MRI) and accurate pathological examination, is the
most aggressive brain tumor and indicates a poor prognosis (1).
The current standard of care refers to maximal surgical resection
followed by local radiotherapy and chemotherapy. However, the
tumor evolves rapidly in the progression, which is linked to
resistance to adjuvant treatment (2, 3).

As a non-invasive checking method, MRI is capable of

conducting qualitative and quantitative analysis with specific
phenotypic imaging features, to associate with potential
prognosis and characteristics (4). The genomic characteristics

of heterogeneous MRI features in GBM are investigated and

determined by scholars in a growing number of studies, which
provide chances for grouping, prognostication and innovation
of targeted therapies (5, 6). As a newly developed terminology,
Visually Accessible Rembrandt Images (VASARI) feature set
(https://wiki.nci.nih.gov/display/CIP/VASARI) incorporates
various visible subjective imaging features, which is designed to
normalize grading of the distinct features of gliomas on MRI,
containing different grades criteria corresponding to diverse
score to depict severity (7).

GBM with specific anatomical region shows similarity in
genomic alterations and gene expression patterns (8). Voxel-
based lesion-symptom mapping (VLSM) approach is one of the
most common method to explore the relationship between GBM
topography in MRI and lesion-behavior based on voxel-by-voxel
method (9). In consideration of tumorigenesis and progression
characteristics of GBM, VLSM is widely used to investigate tumor
location involved in occupation and other affected secondary
diseases (10). VLSM analysis is reported to identify the genomic
alterations and the object-action dissociation in studies (11, 12).

Both MRI features and transcriptome analysis reveal
distinct subtypes of GBM with different clinical and molecular
characteristics (13). The Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/) has described a robust gene expression-
based molecular classification of GBM including proneural,
mesenchymal, neural, and classical subtypes (14). Notably, there
is a consensus that proneural and mesenchymal subtypes are the
most distinct demarcated categories among different subtypes
(15–17). Proneural subtype is generally regarded as a common
precursor of several molecular subtypes, while mesenchymal
subtype indicates worst prognosis and lowest tumor purity
(18–20). It is worth noting that there is plasticity for proneural
subtype, and it has been proved to be with a tendency toward
proneural-mesenchymal transition (PMT) progression during
glioma progression (21, 22). Halliday found that a marked shift
away from a proneural expression pattern toward amesenchymal
one in GBM (23). PMT progression may represent for GBM
the equivalent of epithelial–mesenchymal transition (EMT)
process associated with other aggressive cancers (24). The EMT
process refers to transdifferentiation of epithelial cells into motile
mesenchymal cells in tumor progression and metastasis, which
is mediated by plenty of key transcription factors (25). To date,
GBM topography in proneural or mesenchymal subtypes is not
elaborately analyzed in previous studies.

In our study, we screened 223 samples in TCIA (The
Cancer Imaging Archive, TCIA, http://cancerimagingarchive.
net) database and elucidated the radiogenomic signatures in
GBM via common MRI alignment. As for GBM topography for
subtypes is not clear to date, we used VLSM method to evaluate
the predilection sites of proneural and mesenchymal subtypes.
The combination of VLSM method and VASARI features was
applied to analyze overall survival (OS) and other significant
information based on the VLSM-determined area, contributing
to understand the genomics pathogenesis potentially.

RESULTS

Demographic Characteristics
The distribution of 223 samples enrolled into the study were
illustrated in Figure 1 (Supplementary Table 1). In the age
distribution of patients, there were 65 patients (29% of 223)
were between 50 and 60 years old. In the gender distribution
of patients, there were 90 females (40% of 223) and 133 males
(60% of 223). As high as 81 an d84% of the patients had
received pharmaceutical and radiation treatment, respectively,
while only 5 and 2% lack relevant information, respectively.
Karnofsky performance status (KPS) value of 80 was in 49% of
the patients. The OS time was in a range of 4–1,730 days. The
survival of 100–300 days (34%) harbored the highest proportion.
The patients who had received tumor resection procedure were
91%, and 19% of the patients only experienced excisional biopsy
to acquire pathologic information. In the molecular subtypes
distribution, mesenchymal subtype had a proportion of 33%,
whereas proneural, neural and classical subtypes were 23, 18, and
26% of total, respectively.

GBM topography at lobe level was summarized in Table 1.
The predilection site of samples involved with temporal lobe
(75.34% of total, 80.77% of proneural subtype, 68.50% of
mesenchymal subtype, 82.50% of neural subtype, 74.13% of
classical subtype). The proportion of single temporal lobe
(21.92%) involved in mesenchymal subtype was a little higher
than other subtypes. Samples with mesenchymal subtype had the
highest percentage outside temporal lobes (31.51%). There were
103 samples with tumor located in the right hemisphere and 104
samples with tumor located in the left. All the subtypes indicated
no obvious inclination in tumor side.

To further explore characteristics of GBM topography,
the Volume of interests (VOIs) of the whole patient cohort
were overlapped on the standard template (Figure 2). GBM
topography was evenly distributed in periventricular zone and
adjacent to the subventricular zone. In addition, there was no
significant discrepancy between tumors in the left and those in
the right side.

VLSM-Determined Area
Firstly, separated tumor overlays were performed to detect
GBM topography of proneural and mesenchymal subtypes,
and we finally found that compared with integral overlay
displayed in Figure 2, the overlays of two subtypes had diversities
(Figures 3A,B). On one hand, overlay on the right side of the two
subtypes resembled each other and showed a favorable agreement
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FIGURE 1 | The selection criteria of the study and demographic characteristics of samples. (A) The original 262 samples collected from TCIA. According to the

availability of post-contrast T1 image, clinical data and subtype data, 223 samples were included in the study. (B) The distribution of clinical variables including age,

gender, pharmaceutical treatment, radiation treatment, KPS, OS time, pathologic diagnosis method and molecular subtype in 223 samples.

to integral overlay. On the other hand, two groups indicated
different distribution on the left side. High frequency of tumor
occurrence of the mesenchymal subtype located forward and
close to frontal lobe, while hotspot of the proneural subtype
located backwards in cerebral hemisphere and near occipital
lobe. These results suggested that the two subtypes had a
different tumorigenesis in topography but an intimate relation
in progression.

To further explore PMT progression, we selected 125
samples comprised of 52 proneural and 73 mesenchymal
subtypes to conduct VLSM analysis. The normalized lesion
maps in proneural and mesenchymal subtypes were calculated
independently. VLSM specifically associated proneural subtype
with lesions to a cluster of the left inferior temporal medulla,
while no significant voxel was found for mesenchymal subtype
(Figure 4). The results of significant clusters of proneural subtype
accorded with previous overlay map of the proneural subtype.
According to whether the tumors were in or outside the
VLSM-determined area of proneural subgroup, the samples were
classified into two groups. Of the 125 samples, there were 33

samples in the VLSM-determined area, and 22 samples (67% of
33) were proneural subtype while 11 samples (33% of 33) were
mesenchymal subtype. Among 92 samples that were outside the
VLSM-determined area, 30 samples (33% of 92) were proneural
subtype, whereas 62 samples (67% of 92) were mesenchymal
subtype. We also observed that among 52 proneural samples, 22
samples (42% of 52) were in the VLSM-determined area while
30 samples (58% of 52) were outside the VLSM-determined area.
Among 73 mesenchymal samples, 11 samples (15% of 73) were
in the VLSM-determined area and 62 samples (85% of 73) were
outside the VLSM-determined area (Table 2).

Survival Analysis
Survival analysis was carried out to find whether the VLSM-
determined area could serve as a prognostic role. Initially,
to exclude some recognized factors that influence survival
outcome obviously, we included samples with standard tumor
resection, radiotherapy and pharmaceutical treatment to
make the survival result more persuasive. Since contrast
enhancement of MRI was associated with survival (26), we
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TABLE 1 | The distribution of different subtypes based on tumor locations.

Total

(n = 223)

Proneural

(n = 52)

Mesenchymal

(n = 73)

Neural

(n = 40)

Classical

(n = 58)

Single temporal lobe,

n (%)

38

(17.04)

10

(19.23)

16

(21.92)

4

(10.00)

8

(13.79)

Multiple lobes including

temporal lobe, n (%)

130

(58.30)

32

(61.54)

34

(46.58)

29

(72.5)

35

(60.34)

Other locations, n (%) 55

(24.66)

10

(19.23)

23

(31.51)

7

(17.5)

15

(25.86)

Left, n (%) 103

(46.19)

29

(55.77)

36

(49.32)

14

(35.00)

24

(41.38)

Right, n (%) 104

(46.64)

21

(40.38)

33

(45.21)

21

(52.50)

29

(50.00)

Bilateral, n (%) 16

(7.17)

2

(3.85)

4

(5.48)

5

(12.50)

5

(8.62)

FIGURE 2 | The overlap of total GBM lesions. VOIs of 223 GBM samples included in the study were overlaid on standard template. The color scale indicated the

amount of the VOIs overlap from violet (1 case) to red (more than 20 cases). The distribution showed that a majority of GBM located in periventricular or subventricular

region. L represented left side, and R represented right side.

selected variable F5 of VASARI feature set to remove the
bias of contrast enhancement on survival. In this study, 95%
proportion of enhancing area is defined as the cut-off value
of striking enhancement. Another variable F1 was also chosen
as a reference, and GBM samples involved with temporal
lobe were selected (Figure 5A). Kappa consistency test was
executed before survival analysis. The results of inter-rater
analysis for VASARI features indicated excellent agreement, and
kappa values of F1 and F5 were 0.923 and 0.842, respectively
(Table 3). Log-rank survival analysis showed that GBM

samples in the VLSM-determined area had longer OS time
compared with those outside the VLSM-determined area (P
= 1.20E-2, Figure 5B). Then the data based on proneural or
mesenchymal subtype were subdivided to find the significant
difference of survival outcome. Proneural subtype in the VLSM-
determined area predicted a longer OS time (P = 3.00E-03,
Figure 5C), while in mesenchymal subtype, there was no
significant difference between GBM samples in and outside
the VLSM-determined area in survival analysis (P = 1.28E-01,
Figure 5D).
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FIGURE 3 | The overlap of proneural and mesenchymal subtypes of GBM. (A) The overlap of proneural subtype of GBM. The color scale indicated the amount of the

VOIs overlap, from violet (1 case) to red (more than 10 cases). (B) The overlap of mesenchymal subtype of GBM. The color scale indicated the amount of the VOIs

overlap, from violet (1 case) to red (more than 10 cases). L represented left side, and R represented right side.
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FIGURE 4 | The predilection region of proneural subtype defined by VLSM analysis. The VLSM analysis determined the predilection regions of proneural subtype in

the left inferior temporal medulla (marked in red). Three-dimensional render of the VLSM-determined area was also illustrated. L represented left side, and R

represented right side. This figure only showed the result below an FDR-adjusted threshold (P < 0.05).

Clinical Variables, EMT Process, and
Tumor Purity
Apart from clinical variables, the expression profiling data in
TCGA was used to calculate the corresponding signal pathway
score by single-sample Gene Set Enrichment Analysis (ssGSEA)
to evaluate EMT process and tumor purity of samples (Figure 6).
For clinicopathological characteristics, age, subtype, EMT score
and tumor purity were of significant association in and
outside the region (Figure 6A). VOI, KPS, MGMT and gender
showed no significant difference (Supplementary Table 2).
VLSM/VOI was illustrated as histogram in descending order. Age
distribution showed that patients with GBM outside the VLSM-
determined area were older than those in the VLSM-determined
area. The proportion of proneural subtype was higher in
the VLSM-determined area, while samples in mesenchymal
subtype had preference locating outside the VLSM-determined
area. Compared with samples in the VLSM-determined area,
samples outside the VLSM-determined area had a higher EMT
score, which indicated a tendency to mesenchymal phenotype.
As for tumor purity, we calculated immune signature and
stromal signature together. The top 10 genes with significant
differential expression were presented in the image (Figure 6B,
Supplementary Table 3). In EMT gene set, KLHL12, HDAC2,
STRAP, and FUZ were over-expressed in VLSM-determined
area, and other genes such as CTNNB1, HIF1A, and IL6
were over-expressed outside the VLSM-determined area. These
results demonstrated that there were significant differences
of EMT process and tumor purity between GBM in and
outside the VLSM-determined area, indicating the potential PMT
progression. We also analyzed the immune cells infiltration
between GBM in and outside the VLSM-determined area to
further discuss the changes of microenvironment in PMT
progression. The infiltrations of T cells CD8 and T cells
follicular helper were significantly down-regulated in GBM
outside the VLSM-determined area compared with those in
GBM in the VLSM-determined area (T cells CD8, P = 1.00E-
02; T cells follicular helper, P = 1.00E-02; Student’s t-test,
Supplementary Table 4).

DISCUSSION

GBM is categorized into four subtypes (proneural subtype,
mesenchymal subtype, classical subtype and neural subtype)

TABLE 2 | The distribution of proneural and mesenchymal subtypes in and

outside the VLSM-determined area.

Proneural

subtype

Mesenchymal

subtype

Total

In the VLSM-determined area 22 11 33

Outside the VLSM-determined area 30 62 92

Total 52 73 125

based on molecular and phenotypic differences. For instance,
mesenchymal subtype has higher rates of proliferation in
vitro and is markedly resistant to radiotherapy compared
with proneural subtype (27). PMT progression widely exists
in the process of GBM progression due to the invasive
mechanism and activation potential of mesenchymal feature
of proneural subtype (19). In this study, we found potential
relevance between proneural subtype and mesenchymal subtype
on GBM topography based on overlay and VLSM analysis,
and survival analysis revealed that patients with GBM in the
VLSM-determined area survived longer than patients with GBM
outside the VLSM-determined area. Furthermore, the results
of EMT score and tumor purity suggested a potential PMT
progression between GBM in and outside the VLSM-determined
area further. Samples with GBM in and outside the VLSM-
determined area harbored the signature of proneural subtype
and mesenchymal subtype in PMT progression, respectively. In
previous study, the PMT progression is determined by specific
genomicmethods generally, while this study discussed the subject
in radiography approach and presented ideas related to different
subtypes (28, 29).

The non-invasive method of MRI materials provides effective
mean to explore different molecular genetic signatures (4).
Tumor location can be associated with the genetic profile of
tumor precursor cells (14). In our study, 223 samples with
definite subtypes were selected to conduct tumor overlay maps.
The original GBM overlay result indicated the overlays with
higher proportion were around periventricular or subventricular
zone, which suggested the result was associated with the origin of
brain tumors (30). Proneural subtype and mesenchymal subtype
are the most distinct subtypes, which suggests a biological
significance in tumor biology and overall survival (31–33).
According to overlay of the VOIs in proneural and mesenchymal
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FIGURE 5 | The VASARI feature set used for screening samples and survival analysis in and outside the VLSM-determined area. (A) The F1 and F5 in VASARI feature

sets were applied. Patients with GBM involved temporal lobe with over 95% proportion of enhancing area were carried out for survival analysis. (B) Survival analysis

illustrated the significantly different prognosis of patients with GBM in and outside the VLSM-determined area (P = 1.20E-02). (C) Survival analysis illustrated the

significantly different prognosis of patients with proneural subtype of GBM in and outside the VLSM-determined area (P = 3.00E-03). (D) Survival analysis illustrated

the prognosis of patients with mesenchymal subtype of GBM in and outside the VLSM-determined area (P = 1.28E-01). P-value was determined by log-rank test.

subtypes gathered with diverse predilection site, we explored the
anatomical characteristics of the two subtypes. The predilection
area of proneural glioma was involved with left middle and
left inferior temporal gyrus. The brain temporal lobe plays a
role in recognition of specific objects and processing with visual
stimuli (34), and is one of the most predilection sites for GBM
in adults (35). Proneural subtype has classical events in the
robust classification scheme including TP53 mutation, and can
be a driver of initial oncogenic events and influenced by a
variety of genomic factors in tumor initialization and progression
(14, 18). The predilection area of mesenchymal glioma located

forward and close to brain frontal lobe. Gliomas located in
the frontal lobe have symptoms including dementia, personality
change, gait disturbance, expressive aphasia and others (36).
The mesenchymal gliomas expressed properties such as reduced
cell polarity, increased pseudopodia formation, cell motility and
invasion, upregulation of EMT markers (19). The overlays of
the VOIs in proneural and mesenchymal subtypes gathered
with diverse predilection site. Therefore, we employed VLSM
analysis to explore the anatomical characteristics of the two
subtypes. The overlays of the VOIs in proneural subtype and
mesenchymal subtype gathered with diverse predilection site.
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TABLE 3 | Inter-observer analysis for VASARI imaging features used in the study.

VASARI imaging features Description Options Kappa value

Tumor location (F1) Location of lesion

geographic

epicenter

0 = –

1 = Frontal

2 = Temporal

3 = Insular

4 = Parietal

5 = Occipital

6 = Brainstem

7 = Cerebellum

0.923

Proportion enhancing (F5) Enhancing

proportion of the

entire tumor

0 = –

1 = n/a

2 = None (0%)

3 = < 5%

4 = 6–33%

5 = 34–67%

6 = 68–95%

7 = > 95%

8 = All (100%)

9 = Indeterminate

0.842

Therefore, we employed VLSM analysis to explore the anatomical
characteristics of the two subtypes.

VLSM is a different method from overlay, which can
provide statistical significance for the observed difference
based on voxel level and bring forward to evaluate the
relationship between lesions and clinical symptoms (37).
In present study, proneural subtype was confirmed to be
related to left inferior temporal medulla. We morphologically
defined a VLSM-determined area as inclination tumorigenesis
of proneural subtype. However, no significant voxel was
detected in mesenchymal subtype. The overlay images provided
evidence that mesenchymal subtype GBM had a relative
diffused distribution. This characteristic might be explained
by the absence of diffused growing patterns of mesenchymal
subtype (38).

In the analysis of MRI radiography, tumor contrast
enhancement is applied to predict GBM prognosis and
malignancy, which can be easily distinguished, resulting to the
narrowing of subjective error of visual inspection and facilitating
feasibility or availability (39, 40). In this study, we employed
VASARI feature set to formulate proportion of enhancing area
for ensuring the normalized visual feature. GBM involved
temporal lobe with over 95% proportion of enhancing area, as
well as other potential factors involved in patient’s prognosis
such as tumor resection, radiation treatment and pharmaceutical
adjuvant, were used for sample filtration to further analysis of
VLSM-determined area. GBM samples in the VLSM-determined
area had longer OS time compared with those outside the
VLSM-determined area. For proneural subtype, samples in the
VLSM-determined area had longer survival time than those
outside the VLSM-determined area. However, there was no
significant difference for mesenchymal subtype, which could be
explained by the limited amount of data.

Different metastasis and immune related genes manifest
differential expression patterns among GBM subtypes (41, 42).

Mesenchymal subtype is characterized by an increased immune
cell presence compared to proneural subtype (43). The existence
of PMT progression can influence survival time, the sensitivity to
radiotherapy and chemotherapy, potential target in gene therapy
and tumor immunity (44). Quiescent GBM cells gain malignant
potency by engaging a mesenchymal shift that resembles EMT
process and increases invasive behaviors (45). Tumor purity
refers to the proportion of cancer cells in a tumor sample
and is negatively correlated with EMT process and immune
activity (46). Cases with low tumor purity are more likely
to be related to malignant entities and have reduced survival
time, which resembles PMT progression, indicating a worsening
process and enabling the tumor incline to obtain characters of
mesenchymal subtype (24). Besides, PMT progression indicates
a worsening process and enables the tumor incline to obtain
characters of mesenchymal subtype (24, 47). Compared with
proneural subtypes, mesenchymal subtype had the lower purity
score, indicating a lower tumor purity with the infiltration of
non-neoplastic cells into this subtype (19, 48). In order to
assess the PMT progression of GBM, we compared EMT process
and tumor purity by expression profiling data of samples in
and outside the VLSM-determined area via ssGSEA. Samples
outside the VLSM-determined area had higher EMT scores
than those in the VLSM-determined area, representing that the
EMT process were upregulated in GBM outside the VLSM-
determined area. Low tumor purity, indicating poor prognosis
and an intense immune phenotype (49), was detected in samples
outside the VLSM-determined area. The diverse pattern of the
presence of stromal and immune cells across tumor types more
broadly illustrates the impact of the tumor microenvironment on
tumorigenesis and homeostasis (46). In our study, the samples
outside the VLSM-determined area had lower tumor purity,
higher stromal and immune signature gene expression than
samples in the VLSM-determined area, indicating a higher
infiltration of stromal and immune cells in glioma tissues (50).
Immune signature genes, such as S100A8, had been shown to
be pro-tumorigenic by inducing infiltration of myeloid derived
suppressor cells (MDSCs) (51) or suppressing T cell function
at the tumor site (52). High expression of stromal signature
genes, such as COL3A1, is correlated with poor prognosis in
glioblastoma (53). These results demonstrated that the different
microenvironment could regulate the malignant progression
between GBM in and outside the VLSM-determined. In addition,
themicroenvironment plays a key role in PMTprogression. GBM
subtypes shift from one to another one upon changes in the
microenvironment. The average percentage of the different ratio
in 22 types immune cells betweenGBM in and outside the VLSM-
determined area were calculated and displayed. According to
the result, GBM outside the VLSM-determined area had lower
infiltrations of T cells CD8 and T cells follicular helper compared
with GBM in the VLSM-determined area. The immune response
of patients with glioma are characterized by defects in poor
tumor antigen-specific CD8+ T cell responses, and elevated
programmed death 1 (PD-1) in CD8+ T cells contributing to the
poor prognosis of these patients (54, 55). Low tumor-infiltrating
CD8+ T cells were associate with poor progression-free survival
(56). T follicular helper cell could activate B cells to facilitate

Frontiers in Oncology | www.frontiersin.org 8 March 2021 | Volume 11 | Article 59525972

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Qi et al. Analysis of GBM Topographical Features

FIGURE 6 | The comparison of EMT score, tumor purity, clinical variables and differential expressed genes between GBM in and outside the VLSM-determined area.

(A) The EMT score, tumor purity and the clinical variables including VLSM/VOI, VOI, KPS, MGMT, age, gender, subtype were used. The histogram presented

VLSM/VOI in descending order. The line chart presented the VOIs. The heatmaps presented differences between GBM in and outside the VLSM-determined area. (B)

The heatmaps showed the differential expressed genes of EMT gene set, immune signature and stromal signature of GBM in and outside the VLSM-determined area.

The scatter plot presented the fold change of differential expressed genes in logarithmic form. P-value was determined by Student’s t-test. Significant results were

presented as ns non-significant, *P < 0.05, **P < 0.01, or ***P < 0.001.

the anti-tumor response (57). These results demonstrated that
the different immune cells infiltration between GBM in and
outside the VLSM-determined area could regulate the malignant
progression of glioma.

In present study, the difference of gene expression patterns
between GBM in and outside the VLSM-determined area

provided reference to molecular targeting treatment according
to different topography (58). Among 141 genes of EMT
gene set, 16 genes including CTNNB1, HIF1A, and IL6
were upregulated. CTNNB1, the downstream effector of the
canonical WNT signaling pathway, is a key feature of EMT
process, which has been identified as a therapeutic target

Frontiers in Oncology | www.frontiersin.org 9 March 2021 | Volume 11 | Article 59525973

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Qi et al. Analysis of GBM Topographical Features

for GBM (59). Multiple HIF1A-responsive EMT regulators in
cancers is sufficient to induce all stages of cancer spread,
including invasion, intravasation, and distant extravasation (60).
Cytokines such as IL6 are capable of inducing EMT process
by downregulation of E-cadherin and upregulation of Vimentin
(61–63). The top 10 genes of differential expressed genes in
stromal signature and immune signature were also of vital
significance in PMT progression of GBM. Single cell analysis
of immune cells in GBM showed that S100A8/9 (macrophages
markers) was highly expressed in immune cells in the tumor
core, indicating that the infiltration of immune cells within
the mesenchymal subtype (19). CXCL14 enhances the sphere-
forming ability of GBM cells, overexpresses in mesenchymal
tumors and is responsible for tumor onset, growth and
recurrence (64).

We realized the limitations of our techniques. Firstly, the
VLSM method regarded each voxel as being independent and
separated from other adjacent voxels, which may influence the
calculation of involved regions. In addition, although the general
MR imaging sequences ensure the reliability or reproducibility of
the study, senior scans (such as DWI, DTI, MRS) are beneficial
for further study of intratumoural transcriptional heterogeneity
with novel algorithm.

Our study demonstrated a valuable VLSM-determined area
related to the predilection site, prognosis and PMT progression
by radiography approach. GBM involved in VLSM-determined
area exhibited the characters of proneural subtype. The results
also revealed the differences of EMT process and tumor purity
among GBM in and outside the VLSM-determined area.

MATERIALS AND METHODS

Data Collection
Original data used in this research were provided by TCGA, an
open resource containing comprehensive genomics information
on various cancers. TCGA data collection founded by the
cooperation between National Cancer Institute (NCI) and
several institutions, publicly available in TCIA database, was
selected to explore the connection between GBM phenotypes
and radiographs, for data were matched to store in TCGA
and TCIA (65). All information was available in an open
manner, and no institutional review board or Act approval
was essential. Imaging data comprised various general
sequences such as T1-weighted, T2-weighted images, and
other advanced MRI scans. Among different original pre-
operative multimodal MRI scans, post-contrast T1-weighted
and other available sequences such as T2-weighted images
were employed in present study. Clinical data and molecular
genetic data included gender, OS time, age, KPS, and other
information (66).

MRI data of total 262 GBM samples including multiple
sequences were acquired initially. The exclusion criteria
referred to sample lacks post-contrast T1-weighted, subtype
classification, and clinical features. After summarizing the
entire data together, we identified 223 samples who had
relevant variables available finally. A flowchart of the number

of samples included or excluded for each analysis was shown in
Supplementary Figure 1.

Imaging Processing
Prior to imaging processing, the original imaging dataset was
evaluated by VASARI feature set, which served as a semi-
quantitative imaging analysis for describing visual features on
MRI (67). In this study, two variables describing topography
of brain lobes of lesion and proportion of enhancing area were
used, which were visually estimated by observers and divided into
separate categories. For each sample, the images were evaluated
by a neurosurgeon and a neuroradiologist independently and
they knew nothing about other data. The third experienced
neurosurgeon made the final decision judged by multiple MRI
sequences when there was a discrepancy. All the observers
learned the visual examples of scoring consensus in advance
to ensure agreement. Kappa consistency test was used to check
inter-observer variation.

After radiography materials were downloaded, format
transformation was carried out to acquire NIfTI format profiles.
The neurosurgeon and neuroradiologist manually draw the
lesion map on post-contrast T1-weighted image in each axial
slice by the usage of MRIcron (http://www.sph.sc.edu/comd/
rorden/mricron) to delineate the boundary of the tumor. If
there was an evident discrepancy (the ratio of VOI between
two observers > 0.05), the VOIs of the samples would be
rechecked by another neurosurgeon to make the final decision.
Then VOIs of all samples were collected. The sequences were
normalized into the stereotactic Montreal Neurological Institute
(MNI) standard space. With Statistical Parametric Mapping
8 (SPM 8, http://www.fil.ion.ucl.ac.uk/spm/software/spm8)
implemented in MATrix LABoratory (MATLAB, Mathworks,
Natick, MA), images and generated VOIs were registered
to brain atlas and normalized at the MNI space using the
standard normalization algorithm followed by examination
of visual inspection (68). To explore the distribution of GBM
and correlations among different subtypes, all normalized
VOIs were summed up together to get the overlay maps on
ch2bet template.

VLSM Method
VLSM method was applied to relate lesion map to manifestation
of proneural and mesenchymal subtype in MRIcron software
by Non-parametric Mapping Statistics (NPM, http://www.
mccauslandcenter.sc.edu/mricro/mricron/) (69). Subsequently,
a spreadsheet was generated to link the lesion to subtype of
each sample. Non-parametric Liebermeister test was used to
perform statistical comparisons on voxel-wise base, which were
performed at each voxel using specific subtypes as dependent
variable (binary measure). Z-value corresponding to significant P
level indicated the minimum threshold of significant topography,
and a higher statistical output meant stronger association
between predilection site of GBM and specific subtypes. Analysis
was only computed on voxels damaged > 5%. NPM false
discovery rate (FDR) correction for multiple comparisons was
applied. VLSM maps were displayed on ch2bet template with a
statistical significance (P < 0.05).
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Estimation of EMT Process and Tumor
Purity
Expression profiling data from TCGA was used to evaluate EMT
enrichment and tumor purity (70). SsGSEAwas applied to get the
enrichment scores of EMT gene set and tumor purity associated
gene sets for each sample (71). A single sample’s genes expression
profiling data from the space of single genes were projected onto
the space of every gene set by ssGSEA, and each enrichment score
was on behalf of the degree to which the genes in every gene
set were coordinately up-regulated or down-regulated within a
sample (72).

Statistics
Statistical analysis (VLSM analysis excluded) was carried
out by IBM SPSS statistics and GraphPad Prism. All results
were shown as mean ± standard deviation or number of
observations and percentages. Kappa consistency test was
applied to evaluate consistency in the diagnosis of VASARI
scores between different observers (73), and the kappa values
> 0.8, in the range of 0.6–0.8, and < 0.6 indicated excellent,
good and poor agreement, respectively. χ

2-test was used to
detect the distribution of several attributes on categorical
variables, while Student’s t-test checked the differences
between two groups on continuous variables. R packages,
such as pheatmap, limma and affy, were used to produce
figures and calculate differential expressed genes. Regarding
to survival analysis, Kaplan-Meier curve and log-rank test
were applied to describe OS time. P < 0.05 was considered
statistically significant.
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Background: Postoperative cerebral edema is common in patients with meningioma. It is
of great clinical significance to predict the postoperative cerebral edema exacerbation
(CEE) for the development of individual treatment programs in patients with meningioma.

Objective: To evaluate the value of three-dimensional radiomics Features from Multi-
Parameter MRI in predicting the postoperative CEE in patients with meningioma.

Methods: A total of 136 meningioma patients with complete clinical and radiological data
were collected for this retrospective study, and they were randomly divided into primary
and validation cohorts. Three-dimensional radiomics features were extracted from
multisequence MR images, and then screened through Wilcoxon rank sum test, elastic
net and recursive feature elimination algorithms. A radiomics signature was established
based support vector machine method. By combining clinical with the radiomics
signature, a clin-radiomics combined model was constructed for individual CEE
prediction.

Results: Three significance radiomics features were selected to construct a radiomics
signature, with areas under the curves (AUCs) of 0.86 and 0.800 in the primary and
validation cohorts, respectively. Two clinical characteristics (peritumoral edema and tumor
size) and radiomics signature were determined to establish the clin-radiomics combined
model, with an AUC of 0.91 in the primary cohort and 0.83 in the validation cohort. The
clin-radiomics combined model showed good discrimination, calibration, and clinically
useful for postoperative CEE prediction.
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Conclusions: By integrating clinical characteristics with radiomics signature, the clin-
radiomics combined model could assist in postoperative CEE prediction before surgery,
and provide a basis for surgical treatment decisions in patients with meningioma.
Keywords: radiomics, meningioma, cerebral edema exacerbation, machine learning, MRI
INTRODUCTION

Meningioma is the most common intracranial tumor. Most
meningiomas occur in the intracranial region, and more than
90% of meningiomas show benign growth (1). The incidence of
meningiomas is 2:1 for females: males, the peak age is 45 years
old, and it is rare for children, many asymptomatic meningiomas
are incidental findings. At present, surgery is the first-line
treatment, most of them have good prognosis (2), peritumoral
edema is a common concomitant symptom of meningioma, up to
60-67.4% (3), easily complicated by cerebral edemapostoperatively.
Brain edema can be generally divided into cytotoxic brain edema
and vasogenic brain edema. Meningioma edema is mainly
angiogenic. For patients without peritumoral edema before
operation, severe brain edema occurs after operation. Brain
edema near the functional area is aggravated after operation,
which seriously affects the prognosis of patients and prolongs the
hospitalization time of patients. Peritumoral edema is a leading
cause of morbidity andmortality in patients with brain tumors (4).
Uncontrolled cerebral edema may result in refractory intracranial
hypertension (RICH), and also leads to severe neurological deficits
and potentially fatal herniation (5, 6). In a retrospective study, they
evaluated the clinical and surgical records of 376 consecutive
patients who underwent microsurgical removal of intracranial
meningiomas between January 1995 and January 2001. 13
patients (3.5%) who met the following criteria were included for
further analysis: CT scan or MR imaging showed increased
extensive brain swelling with neurological deterioration after
operation, which required further treatment intervention, such as
artificial ventilation, endotracheal intubation or decompressive
craniectomy for several days, however, not all of the edema
worsened to the extent of the need to perform further treatment
intervention, and most of them can get through the edema by
strengthening dehydration (7). Therefore, it is very important to
establish relevant models to predict the postoperative cerebral
edema exacerbation (CEE) in patients with meningioma, also
known as aggravation of postoperative edema (7, 8), closely
observe the changes of patient’s condition, regularly review the
head CT, strengthen the rational use of dehydration drugs,
glucocorticoids, and even remove bone flap, so as to formulate
the corresponding treatment plan.

Radiomics is a new machine learning method, which can
extract data reflecting important biological tissue characteristics
from medical image information (9). Compared with the
traditional methods, the data mining of radiomics has two
unique advantages (10). First of all, it allows semi-automatic or
automatic extraction of imaging features and provides rich data
related to qualitative analysis. Secondly, by identifying different
sub regions and defining the spatial complexity of the disease,
in.org 279
high-dimensional imaging information can reveal the
heterogeneity within a region.

Recent studies have shown that radiomics has broad
application prospects in early screening, accurate diagnosis,
grading and staging, molecular marker prediction, treatment
and prognosis of central nervous system diseases, and is
helpful to formulate individualized treatment strategies (11–
13). Therefore, in this retrospective study, we aimed to develop
a radiomics model based on the minimal radiomic feature set of
MR images to predict the aggravation of brain edema after
meningioma surgery.
MATERIALS AND METHODS

Patients
A total of 136 patients with meningioma from the Second
Affiliated Hospital of Nanchang University were included in
our study. The inclusion criteria were as follows: 1) meningioma
patients who underwent initial tumor resection surgery from
2017 to 2019 at the Second Affiliated Hospital of Nanchang
University; 2) available information of postoperative edema; 3)
available preoperative brain MRI examination; 4) complete
clinical data; and 5) meningioma confirmed by postoperative
pathological analysis.

The Ethical Review Committee of the Second Affiliated
Hospital of Nanchang University approved the study design and
protocol. All included patients were randomized to the primary
cohort (n=90) and validation cohort (n=46). The primary cohort
was used for model construction, while the validation cohort was
used for model internal validation.

Clinical Characteristics
Eight preoperative clinical features from these patients were
artificially collected: gender, age, peritumoral edema (negative
or positive), tumor size (<2cm, 2-5cm or >5cm), tumor location
(parasinoidal, facies convexa, skull base or others), hypertension
(negative or positive), diabetes (negative or positive), and
epilepsy (negative or positive).

One postoperative clinical feature CEE was artificially
collected, CEE was defined as CEE can be defined if it meets
any of the following criteria (8): 1) New sheet or finger brain
edema occurs after operation, and the maximum diameter of
edema is not less than 2cm; 2) If there is no peritumoral edema
before operation, flaky, finger shaped or annular brain edema
occurs after operation, and the maximum diameter of the tumor
cavity in the same layer of the tumor or operation area is not less
than 2 cm before operation or on the first day after operation. 3,
if there is peritumoral edema before operation, the maximum
April 2021 | Volume 11 | Article 625220

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xiao et al. Radiomics Predict Meningioma Postoperative CEE
diameter of lamellar, finger like or annular brain edema after
operation is not less than 2 cm compared with the maximum
diameter of brain edema on the same plane before operation or
on the first day after operation.

Brain MRI Sequence and Regions of
Interest Delineating
A flowchart of this study is shown in Figure 1. All patients
underwent brain T2-weighted imaging (T2WI) and contrast-
enhanced T1WI (CET1) MR imaging before surgery. The
acquisition parameters of T2WI sequence were as follows:
repetition time/echo time of 3640/98 ms, acquisition matrix of
320 × 224, slice thickness of 5 mm. Meanwhile, the acquisition
parameters of T1WI sequence were as follows: repetition time/
echo time of 2070/26 ms, flip angle of 90°, acquisition matrix of
320 × 256, slice thickness of 5 mm. CET1 was carried out the
T1WI sequence parameters after rapid injection of a gadolinium-
DTPA contrast agent. T2WI and contrast-enhanced T1WI in the
in axial plane were utilized, and all DICOM format images were
collected based on the picture archiving and communication
system of the Second Affiliated Hospital of Nanchang University.

A neuroradiologist with 9 years of experience in meningioma
diagnosis was responsible for mapping the three-dimensional
regions of interest (ROIs) of tumors on the MRI images using
ITK-SNAP software (University of Pennsylvania, www.itk snap.
org). Then another neuroradiologist with 15 years of experience
manually confirmed the findings. Any disagreement between the
two neuroradiologists was resolved through a neuroradiologist
with 31 years of experience.

Radiomics Feature Extraction
Then, quantitative radiomics features were extracted from these
ROIs using PyRadiomics (https://github.com/Radiomics/
pyradiomics) (14). Each sequence can extract a total of 1,562
Frontiers in Oncology | www.frontiersin.org 380
features, and these features were normalized to a value of 0 to 1 and
classified into four categories (15): shape and size features (n = 14),
first-order features (n = 180), textural features (n = 680), and
wavelet features (n = 688).

The four typesoffeaturesweredescribedas follows (16, 17):first-
order statistics describe the distribution of voxel intensities within
thebrainMRI image throughcommonlyusedandbasicmetrics; the
three-dimensional size and shape features were independent from
the gray level intensity distribution in the ROI, and were calculated
on thenon-derived imageandmask; the textural featuresdescribing
patterns or the spatial distribution of voxel intensities, which were
calculated from respectively gray level co-occurrence (GLCM) and
gray level run-length (GLRLM) texture matrices; Wavelet
transform effectively decouples textural information by
decomposing the original image, in a similar manner as Fourier
analysis, in low –and high-frequencies.

Radiomics Features Selection and
Radiomics Signature Construction
Due to the large number and high complexity of the radiomics
features, we needed to perform a selection process to reduce
overfitting (18). The selection method was conducted as
previously described (15) to prioritize the features. In short,
univariate analysis by Wilcoxon rank sum test was used to
identify the differential radiomics features between patients
with postoperative CEE and non-CEE. In addition, elastic net
algorithm (19) was used to select the most informative features.
Elastic net is a method combining least absolute shrinkage and
selection operator (LASSO) and ridge regression. LASSO (20) is a
commonly used high-dimensional data analysis method that can
improve the prediction accuracy and interpretation ability.
Finally, a recursive feature elimination (RFE) algorithm
through five-fold cross-validation was used to identity the
finally radiomics features.
FIGURE 1 | The flow chart of the present study. (I) Brain axial contrast-enhanced T1WI (CET1) T2-weighted imaging (T2WI) and MR images acquisition; Regions of
interest (ROI) segmentation by ITK-SNAP software. (II) Four categories radiomics features extracted by PyRadiomics algorithm. (III) Radiomics Feature selection by
elastic net and RFE algorithm, and model training and testing.
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A radiomics signature was established based on the radiomics
features selected from the primary cohort through the support
vector machine (SVM) method. At the same time, differences in
the signature distribution between soft and firm tumors were
compared between the two cohorts using a violin plot. A receiver
operating characteristic (ROC) (21) curve was drawn to display
the predictive value of the radiomics signature.

Construction and Validation of Clinical and
Clin-Radiomics Combined Model
Multivariable logistic regression analysis was applied to construct
a clinical model based on all included clinical features. Then, to
establish a more comprehensive and accurate model for
predicting the postoperative CEE, a clin-radiomics combined
model was constructed by combining the most valuable clinical
features with the radiomics signature. Akaike information
criterion (AIC) (22) were used to screen the most valuable
clinical features. And the usage and structure of the combined
model was presented as a nomogram. ROC curve analyses and
area under the ROC curve (AUC) were performed to evaluate the
discriminative efficacy of the clinical and clin-radiomics
combined model in both the primary and validation cohorts.

Calibration Curve Analysis and Decision
Curve Analysis
Calibration curves and the Hosmer–Lemeshow test were used to
assess the similarity between the predicted and observed
postoperative CEE (23). Decision curve analysis was performed
to evaluate the clinical application of the clin-radiomics
combined model by quantifying the net benefits at different
threshold probabilities (24).

Statistical Analysis
A two-sided P-value of <0.05 was deemed to be statistically
significant. The statistical software R (version 3.4.1, R
Foundation for Statistical Computing, Vienna, Austria) was
used to perform the statistical analysis. The calibration plot
was analyzed with the ‘hdnom’ packages. The decision curve
analysis was conducted by the function ‘dca.R’.
RESULTS

Clinical Characteristics
In total, 207 patients with meningioma underwent neurosurgery
at the Second Affiliated Hospital of Nanchang University from
2017 to 2019. After screening, 71 patients were excluded due to
unavailable preoperative MRI data, excessive preoperative
information loss or lack of postoperative information, or both.
Ultimately, 136 patients with meningioma were identified and
included in the study. The mean age at diagnosis was 54.169 ±
11.765 years, with a male-to-female ratio of 2.9:1 (101/35). Of the
136 patients, 45(33.1%) had a peritumoral edema. Postoperative
CEEwaspresent in60 (44.1%)patients andnon-CEEwaspresent in
76 (55.9%) patients. All included clinical characteristics are
summarized in Table 1.
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All patients were randomly divided into a primary cohort
(n=90) and a validation cohort (n=46). There was no significant
interclass difference in terms of gender, age, peritumoral edema,
tumor size, tumor location, hypertension, diabetes, epilepsy, and
postoperative CEE between the primary cohort and the
validation cohort (Table 1, P=0.086–0.741). The results justify
the use of the two datasets for training and testing.

Correlation Between Postoperative CEE
and Clinical Characteristics
As shown in Table 2, peritumoral edema, tumor size, and
location showed significant relationships with postoperative
CEE (P = 0.000–0.001). The results demonstrated that patients
who had larger tumor size, peritumoral edema, parasinoidal and
skull base tumor were more likely to have postoperative CEE.
Conversely, we found no significant differences in gender, age,
hypertension, diabetes, and epilepsy between the postoperative
CEE and non-CEE groups (P = 0.076–0.810).

As shown in Table 3, univariate analysis was used to
determine the independent clinical risk variables for
postoperative CEE in the primary cohort and the validation
cohort, respectively. Similar to the previous results, in the
primary cohort, we found a significant association between
postoperative CEE and peritumoral edema (P = 0.000), tumor
size (P = 0.000), and location (P = 0.018). In the validation
cohort, peritumoral edema (P = 0.021) and location (P = 0.038)
tended to be associated with postoperative CEE.

Radiomics Feature Selection and
Radiomics Signature Construction
We extracted 3,124 radiomics features from one patient in two
sequences. First, 1962 radiomics features were selected by
Wilcoxon rank-sum test. Then, we use elastic net algorithm to
determine 45 informative features. Finally, through the screening
by RFE algorithm with 5-fold cross validation, 3 features that
gave the best performance were selected as the final features for
subsequent use. Two features were selected from the CET1
images, and one features from the T2WI images. The three
selected radiomics features had significant differences in
postoperative CEE and non-CEE groups (Figure 2, Table 4).

All 3 selected features were then entered into an SVM to build
a radiomics signature. The violin plot showed significant
differences in the distribution of the radiomics signature
between postoperative CEE and non-CEE groups in both
primary and validation cohorts (P<0.01; Figure 3). The
radiomics signature showed favorable discrimination in
predicting the postoperative CEE with AUC values of 0.86
(95% confidence interval [CI], 0.833–0.881) and 0.800(0.771-
0.828) in the primary and validation cohorts, respectively
(Figure 4A).

Performance of Clinical and Clin-
Radiomics Combined Model
The 8 available features in the primary cohort were used to build
clinical model based on multivariable logistic regression analysis.
We then verified the performance of these models in the
April 2021 | Volume 11 | Article 625220

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xiao et al. Radiomics Predict Meningioma Postoperative CEE

Frontiers in Oncology | www.frontiersin.org April 2021 | Volume 11 | Article 625220582
TABLE 1 | Patients’ characteristics of primary and validation cohorts.

Characteristics Whole cohort (n=136) Primary cohort (n=90) Validation cohort (n=46) P-value

Gender
Male 101 (74.3%) 70 (77.8%) 31 (67.4%) 0.19
Female 35 (25.7%) 20 (22.2%) 15 (32.6%)

Age (year) 54.169 ± 11.765 53.578 ± 11.237 55.236 ± 12.786 0.414
Peritumoral edema
Negative 91 (66.9%) 62 (68.9%) 29 (63.0%) 0.493
Positive 45 (33.1%) 28 (31.1%) 17 (37.0%)

Tumor size
<2cm 18 (13.2%) 11 (12.2%) 7 (15.2%) 0.444
2-5cm 95 (69.9%) 66 (73.3%) 29 (63.1%)
>5cm 23 (16.9%) 13 (14.5%) 10 (21.7%)

Location
Parasinoidal 37 (27.2%) 23 (25.6%) 14 (30.4%) 0.741
Facies convexa 28 (20.6%) 19 (21.1%) 9 (19.6%)
Skull base 24 (17.6%) 18 (20.0%) 6 (13.0%)
Others 47 (34.6%) 30 (33.3%) 17 (37.0%)

Hypertension
Negative 113 (83.1%) 74 (82.2%) 39 (84.8%) 0.706
Positive 23 (16.9%) 16 (17.8%) 7 (15.2%)

Diabetes
Negative 132 (97.1%) 86 (95.6%) 46 (100%) 0.147
Positive 4 (2.9%) 4 (4.4%) 0 (0%)

Epilepsy
Negative 134 (98.5%) 89 (98.9%) 45 (97.8%) 0.626
Positive 2 (1.5%) 1 (1.1%) 1 (2.2%)

Cerebral edema exacerbation
Negative 76 (55.9%) 55 (61.1%) 21 (45.7%) 0.086
Positive 60 (44.1%) 35 (38.9%) 25 (54.3%)
Categorical variables were presented as the number (percentage). Continuous variables consistent with a normal distribution were presented as mean ± standard deviation, otherwise the
median and quartile are used. Chi-Square or Fisher Exact tests, as appropriate, were used to compare the differences in categorical variables, while the independent sample t-test was
used to compare the differences in continuous variables.
TABLE 2 | Correlation between cerebral edema exacerbation and clinical characteristics of patients with meningioma in all patients.

Characteristics All Patients (n=136) Non-CEE (n=76) CEE (n=60) P-value

Gender
Male 101 (74.3%) 59 (77.6%) 42 (70.0%) 0.312
Female 35 (25.7%) 17 (22.4%) 18 (30.0%)

Age (year) 54.169 ± 11.765 55.066 ± 10.765 53.033 ± 12.926 0.319
Peritumoral edema
Negative 91 (66.9%) 66 (86.8%) 25 (41.7%) 0.000
Positive 45 (33.1%) 10 (13.2%) 35 (58.3%)

Tumor size
<2cm 18 (13.2%) 16 (21.1%) 2 (3.3%) 0.000
2-5cm 95 (69.9%) 56 (73.7%) 39 (65.0%)
>5cm 23 (16.9%) 4 (5.2%) 19 (32.7%)

Location
Parasinoidal 37 (27.2%) 16 (21.1%) 21 (35.0%) 0.001
Facies convexa 28 (20.6%) 16 (21.1%) 12 (20.0%)
Skull base 24 (17.6%) 8 (10.5%) 16 (26.7%)
Others 47 (34.6%) 36 (47.3%) 11 (18.3%)

Hypertension
Negative 113 (83.1%) 67 (88.2%) 46 (76.7%) 0.076
Positive 23 (16.9%) 9 (11.8%) 14 (23.3%)

Diabetes
Negative 132(97.1%) 74 (97.4%) 58 (96.7%) 0.810
Positive 4 (2.9%) 2 (2.6%) 2 (3.3%)

Epilepsy
Negative 134 (98.5%) 76 (100%) 58 (96.7%) 0.109
Positive 2 (1.5%) 0 (0%) 2 (3.3%)
CEE, Cerebral edema exacerbation.
Categorical variables were presented as the number (percentage). Continuous variables consistent with a normal distribution were presented as mean ± standard deviation, otherwise the
median and quartile are used. Chi-Square or Fisher Exact tests, as appropriate, were used to compare the differences in categorical variables, while the independent sample t-test was
used to compare the differences in continuous variables.
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validation cohort. As showed in Figure 4B, the AUCs were 0.85
(95% CI, 0.828-0.757) and 0.79 (95% CI, 0.757-0.815) in the
primary and validation cohorts, respectively.

In addition, after screening by AIC, two clinical
characteristics (including peritumoral edema and tumor size)
and radiomics signature were determined to establish the clin-
radiomics combined model, yielded an AUC of 0.91 (95% CI,
Frontiers in Oncology | www.frontiersin.org 683
0.893-926) in the primary cohort and 0.83 (95% CI, 0.808-0.858)
in the validation cohort (Figure 4C). The predictive accuracy of
the clin-radiomics combined model was 0.800 (0.775-0.824) in
the primary cohort and 0.744 (0.718-0.770) in the validation
cohort. The detailed predictive indicators of the three models are
shown in Table 5. As showed in Figure 5, The clin-radiomics
combined model is presented as a nomogram.
TABLE 3 | Correlation between cerebral edema exacerbation and clinical characteristics of patients with meningioma in the primary cohort and validation cohort.

Characteristics Primary cohort (n=90) P-value Validation cohort(n=46) P-value

Non-CEE CEE Non-CEE CEE

No. 55 35 21 25
Gender
Male 44 (80.0%) 26 (74.3%) 0.525 15 (71.4%) 16 (64.0%) 0.592
Female 11 (20.0%) 9 (25.7%) 6 (28.6%) 9 (36.0%)

Age (year) 53.473 ± 10.706 53.743 ± 12.183 0.912 59.240 ± 9.990 52.040 ± 14.096 0.056
Peritumoral edema
Negative 49 (89.1%) 13 (37.1%) 0.000 17(81.0%) 12 (48.0%) 0.021
Positive 6 (10.9%) 22 (62.9%) 4 (19.0%) 13(52.0%)

Tumor size
<2cm 11 (20.0%) 0 (0%) 0.000 5 (23.8%) 2 (8.0%) 0.100
2-5cm 42 (76.4%) 24 (68.6%) 14 (66.7%) 15 (60.0%)

>5cm 2 (3.6%) 11 (31.4%) 2 (9.5%) 8 (32.0%)

Location
Parasinoidal 11 (20.0%) 12 (34.3%) 0.018 5 (23.8%) 9 (36.0%) 0.038
Facies convexa 11 (20.0%) 8 (22.8%) 5 (23.8%) 4 (16.0%)

Skull base 8 (14.5%) 10 (28.6%) 0 (0%) 6 (24.0%)

Others 25 (45.5%) 5 (14.3%) 11 (52.4%) 6 (24.0%)

Hypertension
Negative 48 (87.3%) 26 (74.3%) 0.116 19 (90.5%) 20 (80.0%) 0.324
Positive 7 (12.7%) 9 (25.7%) 2 (9.5%) 5 (20.0%)

Diabetes
Negative 53 (96.4%) 33 (94.3%) 0.641 21 (100%) 25 (100%) a*
Positive 2 (3.6%) 2 (5.7%) 0 (0%) 0 (0%)

Epilepsy
Negative 55 (100%) 34 (97.1%) 0.207 21 (100%) 24(96.0%) 0.354
Positive 0 (0%) 1 (2.9%) 0 (0%) 1 (4.0%)
April 2021 | Volume 11 | Article
CEE, Cerebral edema exacerbation. a* means no comparative significance.
Categorical variables were presented as the number (percentage). Continuous variables consistent with a normal distribution were presented as mean ± standard deviation, otherwise the
median and quartile are used. Chi-Square or Fisher Exact tests, as appropriate, were used to compare the differences in categorical variables, while the independent sample t-test was
used to compare the differences in continuous variables.
A B C

FIGURE 2 | The selected three radiomics features showed significant differences between the postoperative CEE and non-CEE groups. (A) Texture feature ‘lbp-3D-
m1_glrlm_GrayLevelNonUniformity’ in contrast-enhanced T1-weighted imaging sequence; (B) Texture feature ‘lbp-3D-k_glrlm_GrayLevelNonUniformity’ in contrast-
enhanced T1-weighted imaging sequence; (C) Texture feature ‘gradient_gldm_DependenceEntropy’ in T2-weighted imaging sequence.
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Calibration and Clinical Usefulness
Analysis
The calibration curve analysis and Hosmer-Lemeshow test
for clin-radiomics combined model demonstrated good
agreement between observations and predictions in both the
primary (P=0.95; Figure 6A) and validation cohorts (P=0.57;
Figure 6B).
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The decision curve analysis for the clin-radiomics combined
model is shown in Figure 7. The results showed that the clin-
radiomics combined model performed a higher net benefit than
both schemes, with a threshold probability of >0% for the primary
cohort (Figure 7A) and a threshold probability of >13% for the
validation cohort (Figure 7B). The results indicating that the clin-
radiomics combined model were clinically useful.
TABLE 4 | The detail information of three selected radiomic features.

Sequence Feature name Feature type Non-CEE CEE P value

CET1 lbp-3D-m1_glrlm_GrayLevelNonUniformity Texture 0.03975 (0.0235-0.151) 0.2025 0.0938-0.3483) <0.001
CET1 lbp-3D-k_glrlm_GrayLevelNonUniformity Texture 0.05305 (0.0212-0.2258) 0.2820 (0.1215-0.4578) <0.001
T2WI gradient_gldm_DependenceEntropy Texture 0.4970 (0.3500-0.7443) 0.7640 (0.6150-0.8648) <0.001
April 2021 | Volume 11 | Article
CEE, Cerebral edema exacerbation; T2WI, T2-weighted imaging; CE-T1, contrast-enhanced T1-weighted imaging.
FIGURE 3 | The distribution of the radiomics signature between postoperative CEE and non-CEE groups was compared by violin plot in the primary and validation cohorts.
A B C

FIGURE 4 | ROC curves of the radiomics signature, clinical model, and the clin-radiomics combined model in the primary and validation cohorts. The performances
of these models were assessed using the AUC value. (A) Radiomics signature. (B) Clinical model. (C) Clin-radiomics combined model.
625220
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DISCUSSION

Meningioma is a benign tumor originating from meningeal cells.
It has the characteristics of high incidence rate, wide invasion
area and high local recurrence rate. It seriously threatens people’s
health and lives. It has attracted widespread attention in clinic
(25). However, many patients have postoperative brain edema
and severe life threatening. Therefore, it is particularly important
to predict postoperative edema of meningioma. At present, most
of the studies are about peritumoral edema of meningiomas
before operation, and the mechanism is not completely clear. It
may be related to the tumor itself factors, location, volume,
pathological type (26), blood-brain barrier damage (27),
endocrine activity and so on. However, there are few studies
on the aggravation of postoperative brain edema. The edema of
meningioma was mainly vascular origin, and the edema fluid was
Frontiers in Oncology | www.frontiersin.org 885
generated in tumor tissue. The formation mechanism of
angiogenic brain edema is that the increase of capillary
permeability leads to the infiltration of edema fluid and edema
protein into peripheral brain tissue (28).Therefore, some scholars
have shown that the aggravation of brain edema after surgery
may be due to the further destruction of the structure adjacent to
the blood-brain barrier, increased permeability, a large amount
of water seeps from the capillary and accumulates in the
extracellular space of nerve cells. It is undeniable that surgical
injury is indeed one of the factors for aggravating brain edema
(29).Some studies have also shown that brain edema after
meningioma surgery is caused by the relief of tumor
compression. When the compression is relieved, the blood-
brain barrier is affected, which is easy to induce vasospasm and
further aggravate the edema (30). Studies have shown that there
is a significant correlation between the expression of vascular
TABLE 5 | Performance of radiomics signature, clinical model and combined model.

Model Performance AUC ACC SE SP PPV NPV

Radiomic
Signature

Primary cohort 0.86 (0.833-0.881) 0.7 (0.672-0.727) 0.857 (0.822-0.891) 0.6 (0.561-0.638) 0.577 (0.537-0.617) 0.868 (0.836-0.899)
Validation cohort 0.800 (0.771-0.828) 0.761 (0.734-0.787) 0.84 (0.809-0.871) 0.667 (0.623-0.709) 0.75 (0.714-0.784) 0.778 (0.738-0.818)

Clinical
model

Primary cohort 0.85 (0.828-0.757) 0.778 (0.751-0.804) 0.600 (0.552-0.650) 0.891 (0.866-0.915) 0.778 (0.732-0.823) 0.778 (0.747-0.810)
Validation cohort 0.79 (0.757-0.815) 0.630 (0.600-0.660) 0.480 (0.438-0.520) 0.810 (0.772-0.845) 0.750 (0.703-0.780) 0.567 (0.529-0.604)

Combined
model

Primary cohort 0.91 (0.893-926) 0.800 (0.775-0.824) 0.667 (0.621-0.710) 0.897 (0.872-0.921) 0.824 (0.782-0.864) 0.788 (0.757-0.818)
Validation cohort 0.83 (0.808-0.858) 0.744 (0.718-0.770) 0.615 (0.572-0.659) 0.851 (0.822-0.880) 0.774 (0.733-0.816) 0.727 (0.693-0.761)
April 2021 | Volume
AUC, area under curve; ACC, accuracy; SN, sensitivity; SP, specificity; PPV, positive predict value; NPV, negative predictive value.
FIGURE 5 | The clin-radiomics combined model is presented as a nomogram, which incorporated patients’ peritumoral edema, tumor size, and radiomics
signature. The value of peritumoral edema, tumor size, and radiomics signature is located on corresponding lines 2-4, respectively. Draw a vertical line to the first line
(point axis) to get the corresponding score. The total scores obtained for three included features are reflected in line 5 (total point axis), and the possibility of
postoperative CEE has been determined in the last line.
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endothelial factor (31) and aquaporin-4 (32), which may be the
factors of aggravating brain edema after surgery in patients
with meningioma.

Radiomics is a new research field, which mainly through the
extraction, processing and quantitative analysis of high-
throughput data to explore the relationship with clinical value
information (33). As described in our previous study and review
(12), the radiomics process will first convert the radiographic
images into the mineable data, which has involved 4 steps,
namely, (a) image acquisition as well as reconstruction, (b)
segmentation or labeling of the region of interest (ROI), (c)
feature extraction as well as quantification, and (d) statistical
analysis, establishment of the predictive and prognostic models.
It has many applications in the central nervous system, such as
Frontiers in Oncology | www.frontiersin.org 986
differential diagnosis (34–37) and classification (15, 17),
prediction of molecular characteristics (38, 39), therapeutic
response and progress of central nervous system diseases (40,
41). These studies have shown that radiomics can be used to
identify differences in treatment response, progression, and
prognosis between patients with different CNS diseases, thus
emphasizing that radiomics can be used as a new low-cost tool to
improve treatment decisions for CNS diseases. Thus, we aim to
develop an efficient and widely applicable preoperative radiomics
model based on T2 and CET1 MRI images for predicting
postoperative CEE in meningioma.

In the current study, Wilcoxon rank sum test, elastic net and
RFE algorithm were sequentially utilized to reduce redundant
features and select the most appropriate features for the
A B

FIGURE 6 | Calibration curve analysis for the clin-radiomics combined model in the primary (A) and validation (B) cohorts. Calibration curves depict the calibration of
each model in terms of the agreement between the predicted and actual probability of the postoperative CEE probability. The Y axis represents the actual rate. The X
axis represents the predicted probability. The diagonal purple line represents perfect prediction by an ideal model. The blue (primary cohort) and green (validation
cohort) lines represent the performance of the clin-radiomics combined model, of which a closer fit to the diagonal purple line represents a better prediction.
A B

FIGURE 7 | Decision curve analysis for clin-radiomics combined model in the primary (A) and validation (B) cohorts. The Y axis measures the net benefit. The blue
(primary cohort) and green (validation cohort) lines represent the clin-radiomics combined model. The purple line represents the assumption that the postoperative
CEE is highly expressed in all patients. The black line represents the assumption that no patients had a postoperative CEE.
April 2021 | Volume 11 | Article 625220
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construction of a radiomics signature. It is crucial to exclude
irrelevant features, because these features may obscure important
information and affect the performance of the prediction model
(42). First, after the Wilcoxon rank sum test, we conducted a
preliminary screening and got 1962 radiomics features. Then, 45
radiomics features were further obtained through the elastic net
algorithm, and a feasible number that balances insufficient fitting
and over fitting is obtained. Finally, using the RFE algorithm to
select 3 features, a prediction model was constructed, and
balanced performance was achieved in both the primary and
validation cohorts.

Next, a radiomics signature and a clin-radiomics combined
model that combined the radiomics signature and clinical
features were constructed to predict the postoperative CEE of
meningioma. The clin-radiomics combined model demonstrated
a stable and reliable performance, reaching an AUC of 0.91 (95%
CI, 0.893-926) and 0.83 (95% CI, 0.808-0.858), and an accuracy
of 0.800 (0.775-0.824) and 0.744 (0.718-0.770) in the primary
and validation cohorts, respectively. Good discrimination and
good calibration were observed with the clin-radiomics
combined model. The performance of the clin-radiomics
combined model constructed is significantly higher than that
of the clinical model, so the use of the clin-radiomics combined
model is more accurate and more effective in predicting the
postoperative brain edema and assisting clinical decision-
making. These results indicated the reliability of the radiomics
approach to non-invasively predict postoperative CEE in
patients with meningioma.

This study has some limitations. First, this is a single-center
retrospective study. Second, although internal patients were used
to validate the model, the number of patients we included was
small. Thus, more patients frommultiple centers and prospective
studies are necessary to verify the effectiveness and robustness of
this clin-radiomics combined model. Finally, the standard of
CEE adopted by us is as mentioned above, but different CEE
standards will lead to different results.
Frontiers in Oncology | www.frontiersin.org 1087
CONCLUSION

In conclusion, this retrospective study demonstrated that
multiparametric MRI-based radiomics analysis is a promising
approach for postoperative CEE prediction in patients with
meningioma. It can serve as an effective noninvasive approach
to predict postoperative CEE and determine individualized
therapeutic schemes for patients with meningioma.
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Objectives: A subset of meningiomas may show progression/recurrence (P/R) after

surgical resection. This study applied pre-operative MR radiomics based on support

vector machine (SVM) to predict P/R in meningiomas.

Methods: From January 2007 to January 2018, 128 patients with pathologically

confirmed WHO grade I meningiomas were included. Only patients who had undergone

pre-operative MRIs and post-operative follow-upMRIs for more than 1 year were studied.

Pre-operative T2WI and contrast-enhanced T1WI were analyzed. On each set of images,

32 first-order features and 75 textural features were extracted. The SVM classifier was

utilized to evaluate the significance of extracted features, and the most significant four

features were selected to calculate SVM score for each patient.

Results: Gross total resection (Simpson grades I–III) was performed in 93 (93/128,

72.7%) patients, and 19 (19/128, 14.8%) patients had P/R after surgery. Subtotal tumor

resection, bone invasion, low apparent diffusion coefficient (ADC) value, and high SVM

score were more frequently encountered in the P/R group (p < 0.05). In multivariate Cox

hazards analysis, bone invasion, ADC value, and SVM score were high-risk factors for

P/R (p < 0.05) with hazard ratios of 7.31, 4.67, and 8.13, respectively. Using the SVM

score, an AUC of 0.80 with optimal cutoff value of 0.224 was obtained for predicting P/R.

Patients with higher SVM scores were associated with shorter progression-free survival

(p = 0.003).

Conclusions: Our preliminary results showed that pre-operative MR radiomic

features may have the potential to offer valuable information in treatment planning

for meningiomas.

Keywords: magnetic resonance imaging, radiomics, support vector machine, meningioma, progression,

recurrence
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INTRODUCTION

Meningiomas are the most frequently diagnosed primary
brain tumors (1). Although most meningiomas are classified
as grade I benign tumors according to the 2016 WHO
classification system (2), a subset of these tumors may show
early progression/recurrence (P/R) after surgical resection (3–
5). Furthermore, the rate of P/R is especially high in cases
in which Simpson grade I resection is difficult to achieve,
such as for parasagittal and skull base meningiomas (6).
Conventional MR imaging findings such as tumor size, bone
invasion, and parasagittal location have all been identified as
important imaging parameters related to P/R in meningiomas
(5, 7). However, most data are presented in qualitative and
subjective terms, and interreader inconsistencies may occur
during data interpretation.

Radiomics is a new approach in the diagnosis, treatment
planning, and prediction of prognosis in brain tumors (8–10). It
works by extracting a large number of quantitative characteristics
from a medical image and then analyses these features by
means of a series of machine learning algorithms (11). Although
the radiomics approach for the evaluation of meningiomas
pertaining to tumor grades and histological subtypes had recently
been reported (12–15), models for predicting clinical outcomes in
overall meningiomas are still rare (10, 16). Among the machine
learning techniques, several studies had reported that support
vector machine (SVM) classifiers offer excellent results in the
classification and segmentation in brain tumors (17–22). The
purpose of this study is to investigate the role of quantitative
radiomics approach based on automatically segmented tumor
and SVM classification for the prediction of P/R in meningiomas.

MATERIALS AND METHODS

Ethics Statement
This study was approved by our Institutional Review Board
(IRB no.: 10902-009). Written consent was waived because the
retrospective nature of this study meant that the healthcare of
the included subjects was not affected. Personal information of
all included patients was anonymized and de-identified before
analyses were carried out.

Patient Selection
The inclusion criteria were patients diagnosed with WHO grade
I meningiomas by means of pathological confirmation. All the
included patients must have undergone pre-operative brain
MRI, post-operative follow-up brain MRIs for more than 1
year, and at least one MRI performed at 3 to 6 months after
surgery. Patients diagnosed with neurofibromatosis (N = 3)
were excluded. From January 2007 to January 2018, a total of
128 patients (43 men and 85 women with a median age of
57.5 years) diagnosed with WHO grade I meningiomas were
included according to the abovementioned criteria. No known
history of pre-operative intracranial radiation was documented
in any of the included subjects. The mean follow-up time was
64.2 months (ranging from 14 to 149 months). A total of
19 (19/128, 14.8%) patients were found to have P/R, and the

mean time to P/R was 33.3 months (ranging from 8 to 92
months). Based on anatomic location, the tumors were classified
into four subgroups: convexity, parasagittal and parafalcine
(PSPF), skull base, and intraventricular meningiomas. Skull
base meningiomas included tumors arising from the anterior
fossa/olfactory groove, spheno-orbital region, temporal floor,
sellar/cavernous sinus, and posterior fossa (23). The extent of
tumor resection was determined by a review of pre-operative
brain MRI and the first time post-operative MRI (3–6 months
after surgery) by a neuroradiologist (C.C.K.) and a neurosurgeon
(S.W.L.). Simpson grade I–III resections (considered gross total
resection, GTR) were performed in 93 patients, and Simpson
grade IV–V resections (considered subtotal tumor resection,
STR) were performed in 35 patients. Post-operative adjuvant
radiotherapy (RT) was provided for patients who underwent STR
in our institution. A total of 35 patients received post-operative
adjuvant RT. Post-operative adjuvant RT was carried out via
stereotactic radiosurgery (SRS) (N = 28, median dose of 25Gy,
ranging from 18 to 30Gy; median fraction of 5, ranging from
3 to 5 fractions) or fractionated stereotactic intensity-modulated
radiotherapy (IMRT) (N = 7, dose ranging from 55 to 60Gy with
30 to 33 fractions) by linear accelerators. Detailed information of
post-operative RT protocols is provided in Supplementary File 1
in Supplementary Material.

Determination of Progression/Recurrence
P/R was evaluated by two experienced neuroradiologists (C.C.K.,
7 years of work experience, and T.Y.C., 19 years of work
experience) by comparing the post-operative brain MRI findings
between the 3–6 months and more than 1 year follow-up. Both
readers were blinded to the clinical information of the studied
patients. In equivocal cases, final agreement was arrived at by
consensus. P/R was defined as recurrence of tumor in Simpson
grade I–III resections (GTR) or increasing residual tumor size
in Simpson grade IV–V resections (STR) on contrast-enhanced
T1WI. In cases of STR, the threshold of P/R was defined as a
10% increase in tumor volume in comparisonwith post-operative
brain MRIs (10). Interobserver reliability in determining P/R
with intraclass correlation coefficient (ICC) of 0.8 was obtained.
For patients who received post-operative adjuvant RT, P/R was
differentiated from post-irradiation effects (pseudoprogression)
based on progressive tumor growth, not transient increase in
tumor volume (24).

Imaging Acquisition
Pre-operative brain MRI images were acquired using a 1.5-T
(Siemens, MAGNETOM Avanto, n = 53, or GE Healthcare,
Signa HDxt, n = 58) or a 3-T (GE Healthcare, Discovery
MR750) (n = 17) MR scanner, equipped with eight-channel
head coils in each machine. Scanning protocols were as follows:
axial and sagittal spin echo T1-weighted imaging (T1WI), fast
spin-echo T2-weighted imaging (T2WI), axial fluid attenuated
inversion recovery (FLAIR), axial gradient recalled echo (GRE)
T2∗-weighted imaging, axial diffusion-weighted imaging (DWI),
and contrast-enhanced (CE) T1WI in axial and coronal sections.
DetailedMR imaging parameters can be found in Supplementary
File 2 in Supplementary Material.
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Tumor Segmentation
T2WI and CE T1WI were known to be associated with
histopathology and tumor grades in meningiomas (8, 25),
and the two sequences (slice thickness/spacing, 5 mm/5mm)
were consistently acquired in all subjects. Thus, they were
selected for radiomics analysis in this study. Figure 1 shows
the flowchart of the analysis process. For each lesion, the
operator placed an initial rectangle region of interest (ROI)
on axial CE T1WI exhibiting the maximal tumor diameter,
locating the approximate location and also deciding the initial
and final slices containing the lesion. The fuzzy c-mean (FCM)
clustering-based algorithmwas developed to calculate the outline
of the ROI on each imaging slice (26). In cases of under-
or oversegmentation, manual correction by inclusion of more
tumor tissue or exclusion of unnecessary normal tissue was
performed. After segmentation and correction, the ROIs gleaned
from all imaging slices containing the lesion were combined to
obtain the 3D information of the whole lesion. The 3D connected
component labeling was applied for removing scattered voxels
not connecting to the main lesion. The hole-filling algorithm was
then applied to include all voxels contained within the main ROI
that had been labeled as nonlesion. The final 3D tumor mask
was mapped to the axial T2WI to determine the tumor ROI
on corresponding imaging slices using affine transformation and
linear interpolation by FMRIB’s Linear Image Registration Tool
(FLIRT) (27).

Texture Feature Extraction and Selection
Within the segmented tumor on axial CE T1W images and
T2W images, 107 imaging features, consisting of 32 first-order
features and 75 textural features, were extracted on eachmodality
(Figure 1). Therefore, a total of 214 descriptor features were
obtained for each case. In order to evaluate the importance
of these features in differentiating P/R, the sequential feature
selection process was implemented via constructing multiple
SVM classifiers (28). Using this method, we selected imaging

features with high importance. In this process, SVM with
Gaussian kernel was used as the objective function (29, 30). Ten-
fold cross-validation was applied to test the model performance
(31). In each iteration, the training process was repeated
1,000 times to explore the robustness of each imaging feature.
After each iteration, the feature which contributed to the best
performance was added into the candidate set.When the addition
of features no longer improves the performance, the selection
process was terminated and a final set containing the optimal
features was obtained. The termination criterion for the
objective function was determined at 10−6. This procedure was
implemented in MATLAB 2018b. The most significant four
features selected by the SVMmodel for the prediction of P/Rwere
T1 gray-level co-occurrence matrix (GLCM) cluster shade, T1
gray-level size zone matrix (GLSZM) gray-level non-uniformity,
T2 GLCM cluster prominence, and T2 GLCM cluster shade. The
SVM score for each patient was calculated using the following
equation based on the selected features.

f (x) =

N∑

n=1

wnynG (xn, x) + b

where x is the input features and N is the length of the support
vector. wn is the parameter and b is the bias. yn and xn are the
entries of the supporting vector. G(xn, x) is the Gaussian kernel
function that indicates the dot product in the predictor space
between x and the support vectors. Herein,

G (xn, x) = e−‖xn−x‖2

Measurement of Apparent Diffusion
Coefficient Value
For comparison with the radiomics model in the prediction
of P/R in meningiomas, apparent diffusion coefficient (ADC)
values (b = 1,000 s/mm²) on DWI were measured manually
by two experienced neuroradiologists (C.C.K. and T.Y.C.) as

FIGURE 1 | Flowchart indicating the process of analysis for the prediction of progression/recurrence (P/R) in meningiomas. The tumor is first segmented based on

contrast-enhanced (CE) T1-weighted image (T1WI), and the region of interest (ROI) of the tumor is then mapped onto the T2-weighted image (T2WI). On each set of

the two sequences, a total of 32 first-order features and 75 textural features are extracted, and a total of 214 parameters for each case are collected to develop the

classification model. The most important four features are selected by means of the sequential feature selection and support vector machine (SVM) classifiers to

calculate SVM score. The 10-fold cross-validation method is applied to test the model performance.

Frontiers in Neurology | www.frontiersin.org 3 May 2021 | Volume 12 | Article 63623591

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ko et al. Radiomics in Predicting Meningioma Recurrence

FIGURE 2 | A 31-year-old woman with pathologically proven parafalcine

meningioma (WHO grade I). (A) Axial CE T1WI showing an enhancing

parafalcine tumor (red outline) at the frontal region. The tumor (red outline) is

segmented on axial CE T1WI (A) and then mapped onto axial T2WI (B). The

SVM score based on the four selected radiomic features is 0.831. (C) The

measured ADC value (circular ROI) is 0.805 × 10−3 mm2/s (b = 1,000

s/mm2). (D) Gross total tumor resection is performed. (E,F) Progressive

recurrence of tumor (arrowheads) was observed in 36 months (E) and 60

months (F) after surgery.

in previously published works (7, 29). The circular ROI (area
ranging from 35 to 78 mm2) was placed in a homogeneous
area of the tumor to avoid volume averaging with calcification,
necrosis, and cystic regions that might influence ADC values
(Figure 2) (7, 32, 33). Due to the almost perfect reproducibility in
the interobserver reliability, the subsequent statistical evaluation
of ADC values was performed using the mean value calculated
from both interpreters.

Statistical Analysis
Statistical analyses were performed using statistical package
SPSS (V.24.0, IBM, Chicago, IL, USA). For the evaluation of
the clinical parameters and conventional MRI findings, chi-
square (or Fisher’s exact test) and Mann–Whitney U tests were
performed for categorical and continuous data, respectively. The
area under the receiver operating characteristic curve (ROC)
curve (AUC) was calculated for SVM scores and ADC values to
obtain the optimal cutoff values. Kaplan–Meier analysis was used
to evaluate progression-free survival (PFS), and the log-rank test
was used to assess significance. Cox hazard regressionmodel with
univariate and multivariate analyses was performed to determine
independent predictors of P/R. Variables with a p < 0.05 in
univariate analysis were brought forward to the multivariate
analysis. For multivariate analysis and all other statistical
analyses, p < 0.05 was considered statistically significant.

RESULTS

Clinical Data and Conventional MRI
Findings
The clinical data and conventional MRI findings of the
included 128 meningiomas are summarized in Table 1. Nineteen

TABLE 1 | Clinical data and conventional MRI findings of meningiomas with and

without progression/recurrence (P/R).

P/R Non-P/R p-value

Number of patients 19 109

Sex 0.057

Male 10 (52.6%) 33 (30.3%)

Female 9 (47.4%) 76 (69.7%)

Age (years) 55 (49.5, 60.5) 59 (52, 66) 0.289

Histological subtypes 0.748

Meningothelial (syncytial) 17 (89.5%) 87 (79.8%)

Transitional (mixed) 2 (10.5%) 12 (11%)

Fibroblastic (fibrous) 0 7 (6.4%)

Angiomatous 0 2 (1.8%)

Psammomatous 0 1 (0.9%)

Simpson grade resection 0.007*

Grades I, II, and III (gross

total resection, GTR)

9 (47.4%) 84 (77.1%)

Grade IV and V (subtotal

resection, STR)

10 (52.6%) 25 (22.9%)

Post-operative adjuvant RT 0.118

Yes 8 (42.1%) 27 (24.8%)

No 11 (57.9%) 82 (75.2%)

Location 0.296

Convexity 4 (21.1%) 30 (27.5%)

Parasagittal and parafalcine 11 (57.9%) 43 (39.4%)

Skull base 3 (15.8%) 34 (31.2%)

Intraventricular 1 (5.3%) 2 (1.8%)

Peritumoral edema 9 (47.4%) 59 (54.1%) 0.586

Calcification 3 (15.8%) 38 (34.9%) 0.100

Heterogeneous

enhancement

7 (36.8%) 46 (42.2%) 0.662

Cystic change or necrosis 3 (15.8%) 19 (17.4%) 1.000

Dural tail sign 11 (57.9%) 65 (59.6%) 0.887

Adjacent bone invasion 8 (42.1%) 7 (6.4%) <0.001*

Reactive hyperostosis 5 (26.3%) 27 (24.8%) 1.000

Multiplicity 3 (15.8%) 5 (4.6%) 0.096

Maximal diameter (cm) 5.12 (4.22, 6.03) 4.43 (4.09, 4.76) 0.118

Tumor volume (cm3) 59.19 (30.35, 88.02) 44.07 (34.96, 53.17) 0.294

ADC value (×10−3 mm2/s) 0.785 (0.725, 0.845) 0.865 (0.78, 0.95) 0.002*

SVM score 0.787 (0.543, 1.032) 0.272 (0.080, 0.464) <0.001*

Follow-up time (months) 72 (40, 104) 57 (35.2, 78.8) 0.437

Continuous variables were presented as median and interquartile range (IQR).

*Statistical difference (p < 0.05).

(19/128, 14.8%) patients were diagnosed with P/R. Statistically
significant differences (p < 0.05) were observed in the extent
of resection, adjacent bone invasion, ADC value, and SVM
score between P/R and non-P/R groups (Table 1) (Figures 2, 3).
In multivariate Cox hazards analysis (Table 2), adjacent bone
invasion, low ADC value, and high SVM score were high-risk
factors for P/R (p < 0.05) with hazard ratios of 7.31, 4.67,
and 8.13.
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Radiomics Approach for the Prediction of
P/R
The most significant four imagining features selected by the
SVM model for the prediction of P/R were T1 GLCM cluster

FIGURE 3 | A 58-year-old man with pathologically proven parasagittal

meningioma (WHO grade I). (A) Coronal CE T1WI shows an enhancing tumor

mass (white arrow) in the midline parasagittal region with invasion into the

superior sagittal sinus (SSS) (open black arrow) and adjacent skull bone (open

curved arrow). (B,C) The tumor (red outline) is segmented on the axial CE

T1WI (B) and then mapped onto the axial T2WI (C). Mild peritumoral edema

(white open arrowheads) is noted on T2WI (C). The calculated SVM score

based on the four selected radiomic features is 0.337. (D) Subtotal tumor

resection is performed to preserve the SSS; residual tumor (curved arrow) is

noted in the posterior SSS. (E,F) Progressive recurrence of tumor (white

arrowheads) was observed in 37 months (E) and 56 months (F) after surgery.

shade, T1 GLSZM gray-level non-uniformity, T2 GLCM cluster
prominence, and T2 GLCM cluster shade. The reproducibility of
ROI-based radiomics feature was good, and the ICCs of the four
imaging features were 0.92, 0.78, 0.82, and 0.94, respectively.

For the prediction of P/R, AUCs of 0.80 and 0.73 with
optimal cutoff values of 0.224 and 0.825 × 10−3 mm2/s were
obtained in SVM score and ADC value, respectively (Figure 4).
Furthermore, improved performance in predictive model was
observed after combining SVM score and ADC value, with
AUC of 0.88 (Figure 4). When tumor progression trends were
compared, patients with adjacent bone invasion, high SVM score
(more than the cutoff value of 0.224), and low ADC value (lower
than the cutoff value of 0.825 × 10−3 mm2/s) were found to
exhibit shorter PSF (p < 0.05) (Figure 5).

DISCUSSION

In this study, an SVM-based radiomics model was built for
the prediction of P/R in meningiomas. A total of 214 first-
order and textural features were extracted from CE T1WI and
T2WI, and the four most significant features were selected
by the SVM algorithm to calculate the personalized SVM
score. In multivariate Cox hazards and Kaplan–Meier survival
analyses, adjacent bone invasion, low ADC value, and high
SVM score were high-risk factors of P/R in meningiomas. For
the prediction of P/R in meningiomas, the SVM score-based
predictivemodel is superior to themodel based on the ADC value
measured manually.

Although 90% of meningiomas are WHO grade I benign
tumors, about 21% of these tumors may recur in 5 years after
surgical resection (3, 4). Radiomics plays significant roles in

TABLE 2 | Cox proportional hazards analysis for P/R.

Univariate analysis Multivariate analysis

HR (95% CI) for P/R p HR (95% CI) for P/R p

Sex (fraction male) 2.559 (0.952, 6.879) 0.063

Age (years) 0.986 (0.950, 1.024) 0.476

STR 3.733 (1.366, 10.201) 0.010* 2.567 (0.746, 8.834) 0.135

Post-operative adjuvant RT 0.453 (0.165, 1.242) 0.124

Parasagittal and parafalcine 2.110 (0.785, 5.671) 0.139

Peritumoral edema 0.763 (0.287, 2.024) 0.587

Calcification 0.350 (0.096, 1.278) 0.112

Heterogeneous enhancement 0.642 (0.152, 2.721) 0.548

Cystic change or necrosis 0.888 (0.235, 3.354) 0.861

Dural tail sign 0.931 (0.347, 2.499) 0.887

Adjacent bone invasion 10.597 (3.224, 34.831) <0.001* 7.314 (1.830, 29.239) 0.005*

Reactive hyperostosis 1.085 (0.358, 3.291) 0.886

Multiplicity 3.900 (0.849, 17.922) 0.080

Maximal diameter (cm) 1.228 (0.947, 1.591) 0.121

Tumor volume (cm3) 1.005 (0.997, 1.014) 0.227

ADC <0.825 × 10−3 mm2/s (cutoff value) 5.752 (1.895, 17.458) 0.002* 4.667 (1.335, 16.319) 0.016*

SVM score >0.224 (cutoff value) 14.400 (1.855, 111.760) 0.011* 8.129 (0.978, 67.569) 0.048*

*Statistical difference (p < 0.05).
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FIGURE 4 | Statistically significant differences (p < 0.05) (Mann–Whitney U test) are observed in the box plot of (A) SVM score and (B) ADC value to differentiate

between patients with and without P/R. (C) Receiver operating characteristic (ROC) curves of SVM score and ADC value for the prediction of P/R in meningiomas,

with optimal cutoff value of 0.224 and AUC of 0.825 × 10−3 mm2/s, respectively. The AUCs of SVM score, ADC value, and combination of SVM and ADC in the

prediction of P/R are 0.80, 0.73, and 0.88, respectively.

FIGURE 5 | Kaplan–Meier survival curves of (A) adjacent bone invasion, (B) SVM score, and (C) ADC value for the prediction of P/R in meningiomas. All three

parameters showed significant difference (p < 0.05) (log-rank test) in overall trend of progression-free survival.

the analysis of meningioma characteristics both quantitatively
and objectively. Zhu et al. (12) and Chen et al. (34) performed
radiomics-based machine learning for pre-operative grading in
meningiomas, with AUC of 0.81 and accuracy of 75.6%. Park et al.
(8) used the radiomics feature-based machine learning classifiers
on conventional and diffusion tensor imaging to predict the grade
and histological subtype in meningiomas, with accuracy of 89.7%
and AUC of 0.86. Morin et al. (16) integrated radiologic and
radiomic features to predict meningioma grade, local failure,
and overall survival with AUCs of 0.75 to 0.78. The clinical
application of SVM or radiomics score is a new concept. A
personalized SVM score could be calculated based on selected
radiomic features (35–37). Xu et al. (35) used SVM score to
predict pre-operative lymph node metastasis in intrahepatic
cholangiocarcinoma, with AUC of 0.87. Fan et al. (38) used SVM-
based radiomics score to predict radiotherapeutic response in
acromegaly, with AUC of 0.96. Liu et al. (36) reported excellent

performance in SVM score to predict treatment response in
advanced rectal cancer, with AUC of 0.98. Zhang et al. (10)
first applied radiomics to evaluate recurrence in skull base
meningiomas, with accuracy of 90%. These studies suggest
that SVM score based on radiomics might be a useful tool
in predicting recurrences in meningiomas, but rare reports
regarding this concept have been published.

Recently, research of computer-extracted radiomic imaging
features has become a new field in medical imaging. However,
the reproducibility and robustness of the selected imaging
features need to be extensively studied before their applications
in clinical practice. Factors influencing the robustness of the
radiomics approach are modality dependent. However, only
few studies have investigated the robustness in MR radiomics
(39–42). How different imaging sequences and parameters will
affect the reproducibility of radiomic features is still unclear.
A recent phantom study showed that obvious differences exist
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among different MRI sequences in the number of robust and
reproducible features (43). However, more than 30% (15 of 45) of
the features still showed excellent robustness across all different
MR sequences and demonstrate excellent reproducibility. It was
supposed that these 15 features can be applied reliably for the
design of radiomic models in clinical studies. Among these
features, the shape-related feature was noted to be the most
robust and reproducible. Only robust and reproducible T1W
and T2W radiomic features were suggested to build a radiomics-
based model (43). However, it was also true that the effect of
operator-dependent bias can be reduced in radiomic features
through fully automatic image segmentation as in our study (43).

Lower ADC values have been reported to be associated
with a higher rate of recurrence in meningiomas (7). However,
subjective ROI placement with various methods for ADC
measurement may result in varying results (44). Susceptibility
artifact caused by intratumoral calcifications, necrosis, and cystic
changes within meningiomas may also interfere with obtaining
optimal ADC values (45). The extent of surgical resection is the
most important determining factor in the rate of recurrence in
meningiomas (46). Nanda et al. (47) reported that the overall
recurrence rates of WHO grade I meningiomas in Simpson
resection grades I, II, III, and IV are 5, 22, 31, and 35%,
respectively. Recurrence rates of 9.7% in the GTR group and
28.6% in the STR group are observed in our study. Although
post-operative adjuvant RT improves tumor control status in
high-grade meningiomas (48), no standard protocol could be
reliably adopted regarding adjuvant RT for benign meningiomas,
and clinical practices among different institutions are varied
(49). Whether post-operative adjuvant RT will be beneficial
for benign meningiomas is still unclear because it increases
the risk of complications such as symptomatic peritumoral
edema, cranial nerve deficits, and other neurologic deficits
(50). Pre-operative radiomics-based prediction for P/R, thus,
offers additional information for determining the treatment
strategies in meningiomas. For patients with high risks of P/R,
aggressive tumor resection in primary surgery combined with
post-operative adjuvant RT should be considered. In contrast, the
aim of surgery would be the relief of clinical symptoms for other
patients to avoid post-operative neurological deficits. Although
adjuvant RT may affect the independent predictive value for P/R
in our study, no statistically significant difference was observed
between the P/R and non-P/R groups.

This study still had several limitations. Selection bias existed
due to its retrospective nature. All images are acquired
from a single institution, and there is a lack of external
validation. Future testing with multi-institutional data and
varying imaging protocols is necessary to determine whether
the trained predictive classifier is generalizable. The extent of
tumor resection and adjuvant RT may affect the independent
predictive performance in radiomics analysis although this
limitation always exists in studies focusing on this topic due to
variations in treatment protocol (6, 7, 10, 32). Because the sample
size of P/R is relatively small, only a few imaging features can
be selected to build the classification model in order to avoid
overfitting. When more cases become available, other machine

learning algorithms such as the fully automated convolutional
neural network could be implemented. Finally, there is a lack
of complete histopathologic findings such as Ki-67 (MIB-1),
nuclear atypia, and genomic signature for correlation in this
retrospective study.

CONCLUSIONS

Our preliminary study revealed that SVM score based on
pre-operative MR radiomic features was a useful tool for
the prediction of P/R in meningiomas. Although this was a
single institution study, the imaging features extracted based
on automatic segmentation and imaging registration were
quantitative and objective. Pre-operative MRI radiomics and
SVM score, thus, may have the potential to offer valuable
information for the planning of treatments in meningiomas,
such as the extent of tumor resection, implementation of post-
operative adjuvant RT, and the time interval of imaging follow-
up. Nevertheless, this method still needs to be validated in a
larger-scale study in the future.
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Purpose: The present study aimed to preoperatively predict the status of 1p/19q based
on radiomics analysis in patients with World Health Organization (WHO) grade II gliomas.

Methods: This retrospective study enrolled 157 patients with WHO grade II gliomas
(76 patients with astrocytomas with mutant IDH, 16 patients with astrocytomas with wild-
type IDH, and 65 patients with oligodendrogliomas with mutant IDH and 1p/19q
codeletion). Radiomic features were extracted from magnetic resonance images,
including T1-weighted, T2-weighted, and contrast T1-weighted images. Elastic net and
support vector machines with radial basis function kernel were applied in nested 10-fold
cross-validation loops to predict the 1p/19q status. Receiver operating characteristic
analysis and precision-recall analysis were used to evaluate the model performance.
Student’s t-tests were then used to compare the posterior probabilities of 1p/19q co-
deletion prediction in the group with different 1p/19q status.

Results: Six valuable radiomic features, along with age, were selected with the nested 10-
fold cross-validation loops. Five features showed significant difference in patients with
different 1p/19q status. The area under curve and accuracy of the predictive model were
0.8079 (95% confidence interval, 0.733–0.8755) and 0.758 (0.6879–0.8217),
respectively, and the F1-score of the precision-recall curve achieved 0.6667 (0.5201–
0.7705). The posterior probabilities in the 1p/19q co-deletion group were significantly
different from the non-deletion group.

Conclusion: Combined radiomics analysis and machine learning showed potential clinical
utility in the preoperative prediction of 1p/19q status, which can aid in making customized
neurosurgery plans and glioma management strategies before postoperative pathology.

Keywords: radiomics, 1p/19q co-deletion, low grade glioma, nested cross-validation, machine learning
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INTRODUCTION

Molecular pathology is valuable for determining strategies for
treating gliomas and for predicting the prognostic outcome (1).
Patients without chromosome 1p/19q co-deletions showed poor
overall and progression-free survival (2, 3). Neurosurgeons
intended to protect the fundamental functions for patients
whose eloquent cortices or white matter were invaded by
gliomas, especially gliomas with 1p/19q co-deletions (4, 5).
Although the association between prognosis and extent of
tumor resection in gliomas with 1p/19q co-deletion remains
controversial, some studies have indicated that gross total
resection showed better prognosis than that in subtotal
resection (6, 7). Nevertheless, other studies have shown no
significant difference (8, 9). Undoubtedly, the prediction of the
1p/19q status before performing neurosurgery can aid in making
customized neurosurgery plans and glioma management.

Radiomics is a novel practice for detecting the intrinsic
imaging features of tumors (10–12). By using radiomics
analysis (1), which converts sparse magnetic resonance
imaging (MRI) data into big data, we can acquire a large
amount of imaging information that is otherwise invisible
to the naked eye in multiple dimensions (13–15). Moreover,
machine learning is a prevalent artificial intelligent measurement
to make classifications. The status of some well-known
biomarkers has been accurately predicted in glioma patients,
such as IDH mutations (16), ATRX mutations (17), p53 status
(18), and the expression index of Ki-67 (19). However, an
accurate and effective method for the preoperative prediction
of 1p/19q co-deletion is lacking.

Consequently, in the current study, we retrospectively
enrolled patients with low-grade glioma [grade II in
pathological criteria of the World Health Organization (WHO,
2016)] (1). By using radiomics analysis, we acquired relevant
neuroimaging features and then built a predictive model for 1p/
19q status through a machine learning method.
MATERIALS AND METHODS

Patients
In this retrospective study, we collected the clinical data and
biological information regarding the gliomas from the Chinese
Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/)
database (from June 2014 to June 2019; Figure 1). A total of
157 patients formed a consecutive series following the selection
criteria: (a) older than 18 years; (b) histopathological diagnosis of
primary World Health Organization (WHO) II gliomas; (c) no
preoperative treatment or biopsy; and (d) available preoperative
contrast-enhancement T1-weighted images (CE-T1WI), T1WI,
and T2-weighted images (T2WI). The tumor subtypes of WHO
grade II gliomas were identified according to the WHO 2016
classification (20). The information of IDH mutations was
acquired from the CGGA database, and the details of the
measurements can be found in the Supplementary Materials.
Frontiers in Oncology | www.frontiersin.org 299
Imaging Acquisition and
Tumor Segmentation
MRI scans were performed using a Trio 3.0-T scanner (Siemens,
Erlangen, Germany) to obtain the MR images and typically
included axial T1WI (TE, 15 ms; TR, 450 ms; slice thickness,
5 mm), T2WI (TE, 110 ms; TR 5800 ms; slice thickness, 5 mm),
and CE scans using 0.1 mM/kg gadopentetate dimeglumine (Ga-
DTPA injection, Beilu Pharma, Beijing, China) (TE, 15 ms; TR,
450 ms; slice thickness, 5 mm), with field of view 240 × 188 mm2.
The tumor masks were manually segmented on T2WI by two
experienced neurosurgeons (ZF and SF >5 years of experience in
diagnosis) using MRIcro software (http://www.mccauslandcenter.
sc.edu/mricro/), and a third senior neuroradiologist (SL, >20 years
of experience) reevaluated the tumor masks and made the final
decision when discrepancies were >5%.

Fluorescence In Situ Hybridization
of 1p/19q Co-Deletion
The 4-mm formalin-fixed paraffin-embedded tissue sections,
which were obtained from neurosurgical operations, were
deparaffinized, permeabilized, and hybridized. Dual-color
fluorescence was performed using Vysis (Illinois, USA) of
1p36/1q25 and 19q13/19p13 according to the standardized
procedure (21) and evaluated in at least 200 non-overlapping
nuclei with intact morphology. We defined >25% of nuclei
showing DNA loss as having chromosome loss. Co-deletion of
1p/19q was defined as loss of both 1p and 19q in tumor cells; 1p/
19q non-codeletion included tumors with maintenance in 1p
or 19q.

Extraction of Radiomic Signatures
All the sequences of the MRIs and ROIs for each patient were
resliced to high-resolution (1.0-mm isotropic) images using
MATLAB, and the T1WI and CE-T1WI were then registered
to the T2WI using the SPM8 software (http://www.fil.ion.ucl.ac.
uk/spm/software/spm8). The z-score transformations were used
to normalize the brain MRI signal intensity values into
standardized intensity ranges. These procedures helped avoid
bias from heterogeneity and sequences. Thereafter, the radiomic
features were extracted from the tumor masks based on different
types of MRI sequences using an automated approach in
MATLAB (details shown in Supplementary Material) (22). A
total of 431 radiomic features were included for each sequence.
The feature groups included 14 first-order statistics (pertaining
to the distribution of signal intensity of images, Group 1), eight
shape- and size-based features (Group 2), 33 textural features
(pertaining to intratumoral heterogeneity, Group 3), and 376
wavelet features that were derived from group 1 and group 3
features via wavelet decomposition (using directional low-pass
and high-pass filtering; the original features were decomposed
into eight decompositions, group 4).

Feature Selection Method: Elastic Net
Elastic net (E-net), which linearly combined the penalty terms of
the least absolute shrinkage and selection operator and ridge
methods, was used to select features. This method minimized the
July 2021 | Volume 11 | Article 616740
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residual sum of squares of the estimated errors plus the penalty
term to select a model with the best trade-off between fit and
complexity (23, 24). E-net was trained in the training set with
tuning parameter a (0–1, step 0.1) and l using 10-fold cross-
validation, which followed the criterion of minimum standard
deviation. Features with non-zero coefficients were finally
selected from the model with optimal values of a and l.

Model Development: Kernel Support
Vector Machine
A support vector machine (SVM) was used to develop the
predictive 1p/19q co-deletion model. SVM is one of the most
widely used machine learning algorithms. This classifier is based
on Gaussian or Radial Basis Function kernel, which deals with
non-linearity and higher dimensions and is aimed to find the
best hyperplane that separates two groups of data points having a
clear gap as wide as possible (25–29). The optimization attempts
Frontiers in Oncology | www.frontiersin.org 3100
to minimize the loss of 10-fold cross-validation by varying the
parameters, including box constraint and kernel scale parameter.
The algorithms of E-net and kernel SVM were adopted from
the MATLAB toolbox provided by the Statistics and Machine
Learning Toolbox.

Cross-Validation Strategy
The 1p/19q co-deletion status for WHO grade II gliomas was
predicted using radiomic features while also considering age
and gender as predictors. Nested cross-validation (CV) was
considered as the gold standard method when an independent
validation set was lacking. The nested CV makes full use of
information without leaking and double dipping (30). To
thoroughly assess the classifiers’ performance, a 10 × 10-fold
nested CV scheme (Figure 1) was used in this study. Data were
split into 10 sets; nine sets were used for training, whereas one
non-overlapped set was used for testing, in each outer loop.
A C

B

D

FIGURE 1 | Workflow. (A) Patient recruitment strategy. (B) 431 features were extracted from region of interest (ROI) on each magnetic resonance imaging (MRI)
sequence. (C) To compute a 10 × 10-fold nested cross-validation scheme, data were split into 9 training sets and a test set in the outer loop. The inner loop
included hyperparameter tuning and features selection in the training datasets. After feature selection, the model with optimal parameters was used for prediction in
the test set. This procedure developed 10 different models with specific sets of features and hyperparameters. (D) receiver operating characteristic (ROC) analysis
and precision and recall (P-R) analysis were used for model performance evaluation. CGGA, Chinese Glioma Genome Atlas database; CE-T1WI, contrast-enhanced
T1-weighted imaging; T2WI, T2-weighted imaging; AUC, area under the curve.
July 2021 | Volume 11 | Article 616740
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Feature selection and model optimization of hyperparameter
tuning were trained in each outer loop with an additional 10-fold
CV, which was called the inner loop. After the feature selection
and model optimization, we evaluated the model performance in
the test set with the optimal model in each outer loop. This
procedure was repeated 10 times and formed the outer loops of
the nested CV. Finally, we built 10 different optimal models.

Statistical Analysis
We used MATLAB 2019b (MathWorks, Natick, MA, USA) for
data processing. The paired classification models, based on
radiomic signatures, which underwent z-score transformation,
were evaluated by receiver operating characteristic (ROC)
analysis and precision-recall (P-R) analysis. We computed the
area under the curve (AUC), accuracy, sensitivity [also known as
true-positive rate (TPR) or recall)], specificity [also known as 1 −
false-positive rate (1 − FPR)] from the ROC analysis, and
precision, recall, and F1-score from the P-R analysis. The 95%
confidence interval (CI) of performance was evaluated by the
bootstrap method (1000 times sampling). We used point-
biserial-correlation to compute the r and p values between the
posterior probabilities of the 1p/19q co-deletion predicted by the
SVM model and the true labels (31). To compare the posterior
probability (transformed from the decision value of each model)
of the kernel SVM model between the 1p/19q co-deletion
and non-codeletion groups, a t-test was used, and a 1p/19q
co-deletion was considered as 1 and non-codeletion as 0. A
p-value < 0.05 was considered statistically significant.
Frontiers in Oncology | www.frontiersin.org 4101
RESULTS

Clinical Characteristics
The clinical and pathological characteristics of all 157 patients
are summarized in Table 1. Of the 157 enrolled patients with
WHO grade II gliomas, 73 (46.5%) were women and the ages
of patients ranged from 20 to 68 years (mean ± standard
deviation, 41.6 ± 10.4 years). There were 76 (48.4%) patients
with astrocytomas with mutant IDH, 16 (10.2%) patients with
astrocytoma with wild-type IDH, and 65 (41.4%) patients with
oligodendrogliomas with mutant IDH and 1p/19q codeletion.
The mean ± standard deviation of tumor volume was 59.87 ±
52.74 cm3.

Radiomic Features Selection
A total of 431 radiomic features were extracted from each
sequence, and a total of 1,293 radiomic features grouped by
age and gender were screened by the E-net in the nested cross-
validation. The number of selected signatures ranged from 11 to
103. Features that were selected in all of the 10 loops were
considered to be the most valuable features. Six valuable
radiomic features and age were selected in each outer loop
(Table 2). Most of the radiomic features were textual (group 3)
with wavelet transformed features (group 4) such as
Informational Measure of Correlation_2, Long Run High Gray
Level Emphasis_2, Long Run High Gray Level Emphasis_1,
Short Run Low Gray Level Emphasis_1, Low Gray Level Run
Emphasis_1, and Cluster Tendency. Only Skewness_1 extracted
from CE-T1WI belonged to the wavelet transformation of first-
order statistics (Group 1) features. We compared the value of age
and z-scored value of six selected radiomic features between 1p/
19q co-deletion and non-codeletion groups. The results showed
that all the features except age (p = 0.2366) and CE-
T1WI_Group 4_Cluster Tendency_6 (p = 0.7415) in the 1p/
19q co-deletion group were significantly different (p < 0.05) from
those in the 1p/19q non-codeletion groups.

Model Performances
The AUC of the SVM models with features selected by E-net
in the nested CV was 0.8079 (95% CI, 0.733–0.8755) (Figure 2).
The accuracy, sensitivity, specificity, precision, and F1-score of
the prediction model were 0.758 (0.6879–0.8217), 0.5846
(0.4328–0.68), 0.8804 (0.8025–0.9359), 0.7755 (0.6515–0.8889),
and 0.6667 (0.5201–0.7705), respectively. The range of box
TABLE 2 | Selected valuable features.

Feature name Selected times p*

Age 10 0.2366
T2WI_Group 4_Informational Measure of Correlation_2 10 0.0004
T2WI_Group 3_Long Run High Gray Level Emphasis_2 10 0.0319
T2WI_Group 4_Long Run High Gray Level Emphasis_1 10 <0.0001
T1WI_Group 4_Short Run Low Gray Level Emphasis_1 10 <0.0001
T1WI_Group 4_Low Gray Level Run Emphasis_1 10 <0.0001
CE-T1WI_Group 4_Skewness_1 10 <0.0001
CE-T1WI_Group 4_Cluster Tendency_6 10 0.7415
July 2021 | Volume 11 | Article
*p-value of comparison between 1p/19q co-deletion and non-codeletion groups using unpaired t-test, the p-value < 0.05 were bolded.
TABLE 1 | Baseline demographics and clinical characteristics of patients.

Variable Value

Number of Patients 157
Sex, %
Male 84 (53.5%)
Female 73 (46.5%)

Age (years)* 41.6 ± 10.4
Pathology classification, %
Diffuse astrocytoma, IDH-mutant 76 (48.4%)
Diffuse astrocytoma, IDH-wildtype 16 (10.2%)
Oligodendroglioma, IDH-mutant, and 1p/19q codeletion 65 (41.4%)

Tumor volume (cm3)* 59.87 ± 52.74
*Data are mean ± standard deviation.
IDH, isocitrate dehydrogenase; NOS, not otherwise specified.
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constraint and kernel scale parameters of SVM classifiers in the
nested CV were 2.1544–1000 and 10–215.4435, respectively. The
hyperparameters and performances of models in each outer loop
are summarized in Supplementary Table S1. The misclassified
number of patients in the patients with wild-type IDH was 4/16.
We further performed the 1p/19q predictive models in patients
with mutant IDH. The predictive models reached an AUC,
accuracy, sensitivity/recall, specificity, precision and F1-score
of 0.8105 (0.732—0.8801), 0.7589 (0.6879—0.8227), 0.6462
(0.5189—0.754), 0.8553 (0.7746—0.9275), 0.7925 (0.6667—
0.8966) and 0.7119 (0.5825—0.8234).

The p and r values of the point-biserial-correlation were <
0.001 and 0.52, respectively. Moreover, the p value of t tests for
comparison of posterior probabilities of groups, which was
computed by the 1p/19q predictive model, for different 1p/19q
status was < 0.001. The results indicated that these radiomic
features could distinguish and predict the 1p/19q status of
patients (Figure 3).
DISCUSSION

Patients with gliomas without 1p/19q co-deletions have poor
prognostic survival outcomes (32, 33). Previous findings showed
similar survival outcomes for patients with 1p/19q co-deletions
Frontiers in Oncology | www.frontiersin.org 5102
who underwent subtotal resection. This information prevents
damage to the eloquent cortices through total resection, which
could potentially cause functional deficits (paralysis, aphasia,
etc.) (8). Considering this, the prediction of 1p/19q co-deletion
before surgery is useful in determining neurosurgery strategies.
In this study, we built a machine learning model to
preoperatively predict the status of 1p/19q co-deletion using
radiomics analysis.

The predictive models of lower-grade gliomas (including
WHO grade II and III gliomas) based on 1p/19q status and
radiomics analysis can be clinically useful. Zhou et al. extracted
textural features from preoperative MRIs of 165 patients of The
Cancer Imaging Archive (TCIA) data set to develop a logistic
regression model that achieves an AUC of 0.78 in predicting 1p/
19q status of lower-grade gliomas (34). Further studies by this
group showed a lower AUC of 0.72 of 1p/19q status prediction
(random forest model) in all grade gliomas with an IDH
mutation (35). Another study using nested LOOCV Xg-boost
model exhibited a higher AUC (0.83 ± 0.03) in lower-grade
gliomas (36), which may owe to the nested cross-validation.
Considering information leakage of the validation group in the
holdout method for CV and the small sample size, nested CV was
considered the “gold standard” for building a predictive model
(30). Previous studies developed a deep learning model including
the features extracted from MRI, positron emission tomography,
A

B

FIGURE 2 | Performance of 1p/19q co-deletion predictive models. (A) Receiver operating characteristic (ROC) curve and precision-recall (P-R) curve of the
predictive models in low-grade gliomas. (B) ROC curve and P-R curve of the predictive models in low-grade gliomas with mutant IDH.
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and computed tomography (CT), which showed an overall
accuracy of 75.1% in the prediction of 1p/19q status in lower-
grade gliomas (37). Since the predictive performance of these
models was restrained by the small sample size, data
augmentation was introduced to enlarge the size of the
training set. Based on Cycle Generative Adversarial Network,
multi-stream convolutional autoencoder and feature fusion are
proposed for the prediction of 1p/19q co-deletion, which
displayed an accuracy of 78.41% in low-grade gliomas (38).
After adding 30-fold augmented data, another study improved
the accuracy of the convolutional neural networks model from
78.3% to 87.7% (39). However, it ignored the global information
of tumors since only three MRI slices were used.

Although the prediction of 1p/19q status can achieve good
outcomes among patients with lower-grade gliomas (40),
building an effective predictive model for low-grade gliomas,
which only contain WHO grade II gliomas, is complicated
primarily because of the limited sample size. However, the
radiomic features of low-grade gliomas are different from those
in WHO grade III in conventional MRI sequences (41, 42). To
avoid bias caused by the differences of radiomic features in
different WHO grades, our study developed a radiomic-based
SVM model to predict 1p/19q co-deletions in WHO grade II
gliomas. Although the sample size was limited, it allowed the
results to be more consistent. Our model showed a similar
performance to the machine-learning and deep-learning
models mentioned above, with an overall AUC of 0.8079 and
an accuracy of 0.758 (34, 35, 38, 39). We specifically analyzed the
predictive model in the subgroup analysis of gliomas with
mutant IDH, which excluded the influence of gliomas with
wild-type IDH, and found a similar performance value. We
further compared the predictive probabilities for patients with
1p/19q co-deletion and non-codeletion, and the result exhibited
a significant difference. These results indicated that radiomics
analysis combined with machine learning can potentially predict
1p/19q mutation in WHO grade II gliomas.

We extracted six valuable radiomic signatures from each
outer loop for our predictive model. Gliomas with 1p/19q co-
Frontiers in Oncology | www.frontiersin.org 6103
deletion showed a lower homogeneity than those without (43).
Our findings confirmed that a lower Informational Measure of
correlation in T2WI is exhibited in patients with 1p/19q co-
deletion, which shows a positive correlation with homogeneity
degrees (44). Moreover, cluster tendency is another feature used
to reveal the degree of homogeneity, which represents the
measure of the groupings of voxels with similar gray-level
values. Our results showed that patients with 1p/19q co-
deletion had a lower Cluster Tendency than those patients
without. This finding indicated that the degree of homogeneity
in an oligodendroglioma is lower compared with an astrocytoma
(45). Besides, features belonging to Gray Level Run Length are
often applied to distinguish malignant and benign brain tumors
(46). In our model, these features (Long Run High Gray Level
Emphasis and Short Run Low Gray Level) were crucial for
predicting the status of 1p/19q co-deletion due to the
difference in prognostic outcomes between oligodendroglioma
and astrocytoma (1, 3). Furthermore, skewness, which was
significantly different in patients with or without 1p/19q co-
deletion, was a classical feature used in distinguishing brain
tumors and in the differentiation of glioblastomas and primary
central neuro-lymphoma (8, 47, 48).

There are several limitations to the present study. First, our
model was generated using retrospectively collected data.
Although we performed nested CV to minimize the potential
bias, the lack of an external validation data set limited the
generalizability of our models. In addition, since our small
sample size limited the efficacy of our model, we plan to
develop a model based on a larger population combined with
independent external validation. Furthermore, we would like to
develop a multi-model radiological data-based classifiers in the
future, which would include T2-FLAIR, diffusion-weighted
imaging, and CT (49–53).

In conclusion, we developed a nested cross-validation
machine learning model with efficacy and robust performance,
which displayed an AUC of 0.8079 and an accuracy of 0.758. Our
results revealed the potential clinical utility of radiomics analysis
in the preoperative prediction of 1p/19q status, which can aid in
FIGURE 3 | Boxplots comparing differences of posterior probabilities between 1p/19q co-deletion and non-codeletion groups.
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preoperative genomic marker prediction and making customized
neurosurgery plans and glioma management before
postoperative pathology.
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Deep Learning With Data
Enhancement for the Differentiation
of Solitary and Multiple Cerebral
Glioblastoma, Lymphoma, and
Tumefactive Demyelinating Lesion
Yu Zhang1,2†, Kewei Liang2,3,4†, Jiaqi He2,5, He Ma4, Hongyan Chen1, Fei Zheng1,
Lingling Zhang1, Xinsheng Wang6*, Xibo Ma2,3* and Xuzhu Chen1*

1 Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 2 CBSR&NLPR, Institute of
Automation, Chinese Academy of Sciences, Beijing, China, 3 School of Artificial Intelligence, University of Chinese Academy
of Sciences, Beijing, China, 4 College of Medicine and Biological Information Engineering, Northeastern University,
Shenyang, China, 5 Dalian Medical University, School of Stomatology, Dalian, China, 6 School of Information Science and
Engineering, Harbin Institute of Technology at Weihai, Weihai, China

Objectives: To explore the MRI-based differential diagnosis of deep learning with data
enhancement for cerebral glioblastoma (GBM), primary central nervous system lymphoma
(PCNSL), and tumefactive demyelinating lesion (TDL).

Materials and Methods: This retrospective study analyzed the MRI data of 261 patients
with pathologically diagnosed solitary and multiple cerebral GBM (n = 97), PCNSL (n = 92),
and TDL (n = 72). The 3D segmentation model was trained to capture the lesion. Different
enhancement data were generated by changing the pixel ratio of the lesion and non-lesion
areas. The 3D classification network was trained by using the enhancement data. The
accuracy, sensitivity, specificity, and area under the curve (AUC) were used to assess the
value of different enhancement data on the discrimination performance. These results
were then compared with the neuroradiologists’ diagnoses.

Results: The diagnostic performance fluctuated with the ratio of lesion to non-lesion area
changed. The diagnostic performance was best when the ratio was 1.5. The AUCs of
GBM, PCNSL, and TDL were 1.00 (95% confidence interval [CI]: 1.000–1.000), 0.96 (95%
CI: 0.923–1.000), and 0.954 (95% CI: 0.904–1.000), respectively.

Conclusions: Deep learning with data enhancement is useful for the accurate
identification of GBM, PCNSL, and TDL, and its diagnostic performance is better than
that of the neuroradiologists.

Keywords: glioblastoma, lymphoma, tumefactive demyelination, differential diagnosis, deep learning
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INTRODUCTION

Cerebral glioblastoma (GBM), primary central nervous
system lymphoma (PCNSL), and tumefactive demyelinating
lesion (TDL) are distinct neurological lesions with respect
to their pathology, treatment, and prognosis. GBM and
PCNSL are both malignant primary intracranial tumors in
adults (1, 2). The conventional management strategies
are surgical resection followed by radiochemotherapy for
GBM, and chemotherapy for PCNSL, respectively. The
clinical onsets of the two kinds of neoplasms are not
specific and closely related to the extent and location of
lesions (3). TDL is an inflammatory disease characterized
by varied neurodegenerative clinical manifestations, such as
movement disorder and vision impairment (4). Hormone
therapy is effective for TDL, and the clinical course is more
favorable than brain malignancy.

All these three kinds of lesions can be either solitary or
multiple (5–7). The conventional MRI findings of these three
kinds of lesions are overlapping. As solitary lesions, they usually
present as enhanced masses with peripheral edema. As multiple
lesions, they present as scattered and enhanced masses in the
brain. The open-ring enhancement in TDL may be an important
sign that distinguishes it from other tumors (8). This typical
radiological finding, however, is not frequent, resulting in a
difficult diagnosis.

The similar routine MRI findings represent a challenge for the
differential diagnosis. Given the conventional radiology
characteristics, some advanced MRI modalities have been used
for the differentiation of three lesions. A systematic review
showed that the dynamic susceptibility contrast-enhanced
image (DSC) and arterial spin labeling (ASL) had the potential
to discriminate PCNSL from GBM (9). Another study reported
that diffusion-weighted imaging (DWI) could be a useful
diagnostic tool to differentiate among PCNSL, GBM, and
inflammatory demyelination pseudotumor (10). Moreover,
MRS had been a valuable approach to distinguish the
mimicked pathologies (11).

However, these advanced MR modalities mainly focused only
on the enhanced component of the lesion. Radiomics-based
analysis, on the other hand, can explore the whole lesion
including the enhanced and non-enhanced components.
Recently, different radiomics have been developed to better
understand cerebral entities. For example, the deep learning
approach has been used for the differential diagnosis or
grading in meningioma (12–14).

Thus far, both the advanced MR modalities and radiomics
analysis have been used for the differentiation of the three
lesions; however, these have only focused on the solitary form
of the three lesions. All three lesion types can be multiple (4, 15).
Moreover, most radiomics analysis have only considered
machine learning algorithms with small datasets (10, 16).
Thus, we collected more data and attempted to identify the
three types of lesions by using MRI-based deep learning with
data enhancement algorithm, with simultaneous focus on single
and multiple lesions.
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MATERIALS AND METHODS

Ethics Statement
This study is retrospective in nature. It was approved by the
ethics committee of Beijing Tiantan Hospital. The need for
patient informed consent was waived.

Subjects
Our study recruited 97, 92, and 72 patients with GBM, PCNSL,
and TDL, between January 2005 and December 2019. Of these
subjects, 97 patients with GBM, 76 patients with PCNSL, and 52
patients with TDL were from a single medical institute. The
remaining 16 patients with PCNSL and 20 patients with TDL
were from another medical institute. All patients with GBM and
PCNSL were confirmed by pathology. Among 72 patients with
TDL, 52 were diagnosed based on the definition of TDL:
demyelinating lesions (2 cm or greater) or lesions between 0.5
and 2 cm with possible mass effect that can be mistaken for
tumor-like space-occupying lesions and have a characteristic
radiographic appearance (17). With analysis of medical records
and clinical and MRI characteristics, 20 were pathologically
confirmed owing to the diagnostic uncertainty.

The inclusion criteria were as follows: (1) GBM and PCNSL
confirmed by pathology, respectively; (2) TDL diagnosed by
pathology or the corresponding criteria (17); (3) available
cerebral MRI before diagnosis. The exclusion criteria were as
follows: (1) patient age <18 years; (2) missing clinical
information; (3) receipt of hormone therapy before undergoing
MRI; (4) no data on enhanced MRI; (5) lesions not in the
cerebral parenchyma; and (6) MR images with obvious artifact.
The enrollment process is presented in Supplementary File 1.
Each type of entity was composed of solitary or multiple lesions.

MRI Acquisition and Lesions
Segmentation
The MRI acquisition protocols were composed of pre- and post-
enhanced T1-weighted (CE-T1) images. The contrast media
type, venous injection dose, and acquisition parameters for
CE-T1 are given in Supplementary File 2.

All MR images in the form of digital imaging and
communications in medicine (DICOM) were input to the ITK-
SNAP (version 3.4.0, www.itk-snap.org). The regions of interest
(ROIs) of these three types of lesions were manually delineated
on axial CE-T1 by a neuroradiologist using ITK-SNAP.

Before the ROI segmentation, two blinded neuroradiologists
with 10 years of experience independently diagnosed these three
types of diseases for 130 randomly selected cases out of the 261
cases. Each neuroradiologist had access to the full DICOM
images from different MRI scanners. The number of accurately
diagnosed cases by the two senior neuroradiologists were divided
by that of all diagnosed cases. The result was determined to
calculate the diagnostic performance.

Statistical Analysis
All continuous and categorical variables were expressed as the
mean ± standard deviation and the number (percentage),
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respectively. One-way analysis of variance (ANOVA) and
Pearson’s chi-square tests were used to compare the group
differences with regard to patient age, sex ratio, and number of
multiple lesions by SPSS (version 23.0, IBM Corporation,
Armonk, NY, USA). A p < 0.05 was considered to indicate
statistical significance. The receiver operating characteristic
(ROC) curve obtained from the pROC (version 1.16.2) of
R (version 4.0.2) was used to show the area under the
curve (AUC), accuracy, specificity, and sensitivity under
different thresholds to evaluate the performance of the
classification model.
Algorithm Implementation
Most of the algorithms were implemented by Python 3.7.4. The
261 subjects were randomly divided into a training set and a
testing set. The training set included 67 cases of GBM, 65 cases
of PCNSL, and 50 cases of TDL, and the testing set consisted of
30 cases of GBM, 27 cases of PCNSL, and 22 cases of TDL. All
data were converted into a NIFTI format to adapt to a
3D network.

The diagnosis process is presented in Figure 1. It was divided
into three stages and was not an end-to-end solution.

In the first stage, a 3D U-Net (18) was used to automatically
predict the lesion area. First, MRI was cropped to reduce the
consumption of computing resources, and then the data were
normalized to reduce the interference of medical image caused
by uneven light. The initial input network image size was
reduced to 128 × 128 × 32 without affecting the segmentation
performance. Second, the fixed-size image was entered into a
convolution layer and four ResBlock downsampling modules to
obtain different depth features. Third, the features obtained after
the fourth downsampling were fused with the features obtained
after the third downsampling module. The fused features were
entered into the upsampling ResBlock module to obtain the
upsampling features. By analogy, the image size was finally
restored to 128 × 128 × 32. Finally, the number of channels
were reduced to two after the image entered a convolution layer.
The segmentation mask was obtained by argmax function, and
the segmentation mask was restored to 512 × 512 × 24 by
bilinear interpolation.

In the second stage, the segmented lesion area was combined
with the original MR image to change the pixels of the lesion area
by a certain multiple, and the pixels of the non-lesion area were
unchanged. The following combination equation was used:

Mn = M +M • n • k

Where Mn represents the enhanced data, M represents the
original MR image, n represents the segmented mask, and k
represents the enhancement coefficient. In this experiment, five k
values were selected, namely, −0.5, 0, 0.5, 1, and 2, to explore the
best model. The Mn visualization for different k values is shown
in Figure 2.

In the third stage, the enhanced data were preprocessed
similar to the first stage. The Resnet18 (19) was trained and
Frontiers in Oncology | www.frontiersin.org 3108
tested by the preprocessed images to identify GBM, PCNSL,
and TDL.

In addition, identification using the lesion area was
considered one of the comparative experiments. The mask
segmented by the automatic segmentation network was
multiplied with the original MR image so that the surrounding
area of the original MR image was removed and only the lesion
area was retained. Resnet18 was used for identification of the
lesion area. The flow chart of a comparative experiment is shown
in Figure 3.

The AUC, accuracy, sensitivity, and specificity were
calculated according to the output of the classification network.
When ROC curves were plotted, one disease was considered
positive and the other two were considered negative.
RESULTS

Subjects’ Clinical Characteristics
Patients with TDL were the youngest. Those with GBM had the
highest ratio of solitary lesions (85.6%, 83/97) (Table 1).

Diagnostic Performance
The AUC (95% confidence interval [CI]), accuracy, sensitivity,
specificity, and overall accuracy are presented in Tables 2 and 3.
The ROC curves are shown in Figure 4. When k was 0.5, the
diagnostic performance was the best, and the overall accuracy
was 92.4%. The AUC (95% CI) of GBM, PCNSL, and TDL were
1.00 (1.000–1.000), 0.96 (0.923–1.000), and 0.95 (0.904–1.000),
respectively. The selected radiomics features of GBM, PCNSL,
and TDL at the optimal k value are shown in Figure 5. The
overall diagnostic performances of the two neuroradiologists
were 52.4%.
DISCUSSION

In our study, GBM and PCNSL were found more in male than
female patients, while TDL was found more in female than male
patients. This observation was in accordance with previous
studies (7, 20). The mean age of patients with these three types
of lesions was between 40 and 50 years in our subjects, consistent
with some previous reports (7, 20, 21). Regarding the number of
lesions, solitary GBM was found in 85.6% (83/97) patients,
similar to that reported by Kapoor et al. (6). The ratio of
multifocal PCNSL and TDL lesions was slightly higher than
that of non-focal lesions, inconsistent with some previous reports
(7, 22). This discrepancy may be due to the different case
selection criteria among studies.

In this study, we aimed to simultaneously differentiate
among three types of lesions. This is different from existing
similar studies that only differentiated between two types of
lesions. For example, GBM was differentiated from PCNSL by
using different MRI modalities (23, 24), machine learning
August 2021 | Volume 11 | Article 665891
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FIGURE 1 | The implementation process of three-stage algorithm based on deep learning with data enhancement.
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TABLE 1 | Clinical characteristics of subjects.

GBM PCNSL TDL p

Number of subjects 97 92 72
Age (years, mean ± SD) 54.61 ± 12.35 53.34 ± 12.57 41.33 ± 12.82 <0.001*
Sex 0.224
Male 56 (57.7%) 57 (62.0%) 35 (48.6%)
Female 41 (42.3%) 35 (38.0%) 37 (51.4%)
Number of lesions <0.001*
Solitary 83 (85.6%) 45 (48.9%) 32 (44.4%)
Multiple 14 (14.4%) 47 (51.1%) 40 (55.6%)
Frontiers in Oncology | www.frontiersin.org
 5110
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*p < 0.05. GBM, cerebral glioblastoma; PCNSL, primary central nervous system lymphoma; TDL, tumefactive demyelinating lesion; SD, standard deviation.
FIGURE 2 | Enhanced data with different k values. The top row represents solitary figures, and the bottom row represents multiple lesions. k is −0.5 (A), 0 (B), 0.5
(C), 1 (D), and 2 (E).
FIGURE 3 | The implementation process of the lesion area diagnosis algorithm.
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applications (25), and radiomics approach (26); GBM was
differentiated from TDL by using methionine positron
emission tomography (PET) (27) ; and PCNSL was
differentiated from TDL by using different MRI modalities
(28, 29). Moreover, these differential studies between two kinds
of entities only focused on solitary lesion. Multiple PCNSL was
differentiated from multifocal gliomas by using PET (30).
However, the differentiation was also being performed
between two types of lesions. To our knowledge, our study is
the first to simultaneously differentiate the three entities with
solitary and multifocal types by radiomics analysis.

Our study showed that a deep learning algorithm with data
enhancement could accurately differentiate among solitary and
multifocal GBM, PCNSL, and TDL. This method has two
advantages. First, an automatic segmentation network was
designed for the lesion region. The neural network can
improve focus to the lesion area by enhancing it; this
significantly improves the overall diagnostic performance of
the neural network for GBM, PCNSL, and TDL. The
performance of the model rises first and then falls with the
increase in the ratio of lesion area to non-lesion area, and there is
an optimal ratio. This means that both the focus area and the
non-focus area contain information that can be used for
diagnosis. When the ratio is appropriate, the neural network
can maximize the information in the two areas for the
identification of three lesions. Second, the data were
transformed into 3D data, and 3D u-net and 3D Resnet were
used for image segmentation and classification, respectively. 3D
data have better diagnostic performance than 2D data and 2D
networks. The consumption of computing resources is reduced
by dividing the training into three stages.

Our study had several limitations. First, although we tried to
minimize it, there may be some selection bias owing to the
Frontiers in Oncology | www.frontiersin.org 6111
retrospective nature of the study. Second, our training process
was not end-to-end, and while this saves computing resources,
this makes it more challenging for non-professionals to use this
diagnostic method. Although we tried to use the end-to-end
network for training, the existing data could not support training
several times larger than the existing model to achieve better
diagnostic performance. Therefore, more data need to be
collected to support end-to-end networks. Third, this
experiment only studied the differentiation of three
radiologically similar lesions; neuroradiologists may consider
additional diseases when making a diagnosis. The existing
supervised machine learning and deep learning methods can
only diagnose the disease as one of the training set labels, and
ignore other possible diseases. If the subject is not one of the
training set labels, there is no possibility of being diagnosed
correctly. Fourth, no external validation was performed. Last,
only single-mode MRI data were used in this study. Inclusion of
multimodal data will provide more diagnostic information and is
one of the important ways to improve diagnostic performance.
However, the single-model data reduce the difficulty of data
collection, which makes our method more easily applicable to
other diagnosis processes than other methods. Therefore, our
method showed good performance in diagnostic accuracy and
can provide a feasible reference for the identification of
other diseases.
CONCLUSION

Deep learning with data enhancement is useful for the
identification of GBM, PCNSL, and TDL, and its diagnostic
performance is better than that of neuroradiologists.
TABLE 3 | Diagnostic performance of the model using the lesion area.

AUC (95% CI) ACC SEN SPE

GBM 1.00 (1.000–1.000) 1.00 1.00 1.00
PCNSL 0.94 (0.900–0.989) 0.84 0.70 0.90
TDL 0.94 (0.892–0.991) 0.84 0.77 0.86
Overall accuracy 0.84
Aug
ust 2021 | Volume 11 | Article 66
AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; GBM, cerebral glioblastoma; PCNSL, primary central nervous system lymphoma; TDL, tumefactive
demyelinating lesion.
TABLE 2 | Diagnostic performance at different k values.

k Overall accuracy AUC (95% CI) ACC SEN SPE

GBM PCNSL TDL GBM PCNSL TDL GBM PCNSL TDL GBM PCNSL TDL

–0.5 0.81 1.00 (1.000–1.000) 0.86 (0.785–0.943) 0.83 (0.738–0.924) 1.00 0.81 0.81 1.00 0.82 0.55 1.00 0.81 0.91
0 0.86 1.00 (1.000–1.000) 0.92 (0.856–0.980) 0.90 (0.823–0.975) 1.00 0.86 0.86 1.00 0.82 0.73 1.00 0.88 0.91
0.5 0.92 1.00 (1.000–1.000) 0.96 (0.923–1.000) 0.95 (0.904–1.000) 1.00 0.92 0.92 1.00 0.85 0.91 1.00 0.96 0.93
1 0.91 1.00 (1.000–1.000) 0.95 (0.900–1.000) 0.92 (0.838–1.000) 1.00 0.91 0.91 1.00 0.85 0.86 1.00 0.94 0.93
2 0.92 1.00 (1.000–1.000) 0.96 (0.906–1.000) 0.92 (0.813–1.000) 1.00 0.92 0.92 1.00 0.85 0.91 1.00 0.96 0.93
AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; GBM, cerebral glioblastoma; PCNSL, primary central nervous system lymphoma; TDL, tumefactive
demyelinating lesion.
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FIGURE 4 | Receiver operating characteristic (ROC) curve at different k values and region of interest (ROI).
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