About this Research Topic
The potential to use MCFCs for CO2 capture was identified over 20 years ago and a large number of papers have been published on the topic, particularly on process configurations that could benefit from MCFCs and CO2 capture. Additionally, research into the fundamentals and basic properties of MCFCs continues in a wide variety of domains, such as electrodes optimization, O2 solubility in electrolytes, materials corrosion, electrochemical modeling, and system techno-economics. MCFC carbon capture system studies have shown the economic benefits of power and hydrogen co-production for CO2 removal from coal power plant and industrial flue gases that have high concentrations of carbon dioxide. Current research activities are focused on optimization of MCFC materials set, stack configurations, and system operating strategies for cases with very low CO2 concentrations, where the formation of the carbonate ion is reduced by the evolution of competing hydroxide ions. Further understanding these issues, as well as advancing our knowledge of general MCFC operations, will lead to the large-scale implementation of MCFCs for CO2 capture.
The aim of the current Research Topic is to cover promising, recent, and novel research trends in the MCFC and MCFC-like field. Areas to be covered in this Research Topic may include, but are not limited to:
• Physical and electrochemical properties of molten carbonates, such as O2 and CO2 solubility, ionic conductance, surface tension, and the like;
• Electrochemical experiments and modeling, particularly at low CO2 and/or O2 concentrations such as would be present in a CO2 capture implementation;
• Corrosion and other metallurgical studies of the key components of MCFCs;
• Novel reforming catalysts, particularly sulfur stability and methods to prevent poisoning from the electrolyte;
• Dual-phase membranes with molten carbonate electrolytes and electrochemical action;
• Process configurations that use MCFCs to capture CO2 from existing flue gas sources;
• Process configurations that use MCFCs in novel ways integrated with other technologies to produce power, steam, hydrogen, or another commodity;
• Advantaged methods to produce and use the hydrogen co-product of the MCFCs.
All types of articles are encouraged, from presentation of initial experimental findings to reviews of the state of the art of various aspects of MCFC operations and system techno-economic analysis.
Topic editor Tim Barckholtz is employed by ExxonMobil and Hossein Ghezel-Ayagh is employed by FuelCell Energy. All other Topic Editors declare no competing interests with regards to the Research Topic subject.
The Article Processing Charges for the articles included in this Research Topic have been covered by ExxonMobil. The funder was not involved in the study design, collection, analysis, interpretation of data, or the writing of the articles.
Keywords: CO2 capture, fuel cells, hydrogen, GHG emissions, CSS
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.