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The Editorial on the Research Topic

Cognitive Mechanisms for Safe Road Traffic Systems

Human behavior is often cited as the primary contributing factor to road accidents—over 90% of all
crashes are attributed to “human error” (Singh, 2015). This implicitly suggests that accidents could
be avoided if only drivers behaved better and has, thus, fuelled enthusiasm for (semi-)automated
vehicles, which do not suffer from human frailty and are more likely to follow the rules.
Nonetheless, this perspective is flawed. First, most road users strive to avoid road accidents. Second,
fatalities persist even with (semi-)automated vehicles and it remains unclear if increased adoption
of more automation will change the situation at all (Mueller et al., 2021). Modern perspectives
suggest that “human error” is a product of not only individual behavior but the system that we
operate within (Read et al., 2021). An individual cannot be understood without taking into account
their relationship with the working environment. Safe vehicles are those that enable drivers to
act with a minimal margin for unintended error while ensuring that road traffic systems cater
to user autonomy. Even if automation can mitigate driving-related risks, it will simply present
new challenges that can only be anticipated by first understanding the cognitive mechanisms
associated with operating in road traffic systems. To this aim, it is vital that we possess better tools to
understand, measure and monitor human behavior and the corresponding cerebral activity across
diverse road scenarios, including those that do not generate overt behavior.

This Research Topic invited manuscripts that covered modeling, behavioral and
neurophysiological measures investigating conventional and (semi-)automated driving with
the goal to develop a safe human-centric road traffic system. The submitted contributions
responded to this challenge in various ways, including state-of-the-art physiological measures to
assess the driver’s mental state, theoretical and empirical methodological approaches to advance
the present knowledge, and challenges in vehicle automation.

Several papers in this article Research Topic emphasize that fatigue, cognitive load, inattention,
and stress are multidimensional constructs that must be interpreted within a context, taking both
endogenous and exogenous factors into account. This is important not only for accurate estimation
of the driver’s state, but also when selecting appropriate countermeasures.

Here, the review by Chong and Baldwin addresses the underlying mechanisms of fatigue and
how different types of fatigue arise. For example, active fatigue is related to long-term neuronal
potentiation and local sleep, whereas passive fatigue disturbs the interplay between the dorsal
attention network and the default mode network. Circadian effects can further moderate both
passive and active fatigue, linking the two to a third category of fatigue, namely sleep-related
fatigue. Discriminating for different types of fatigue is a crucial first step for adopting appropriate
countermeasures: active fatigue should be countered by reduced task demand, passive fatigue by
increased task demand, and sleep-related fatigue by sleep and recuperation.
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The effects of task demand on cognitive load is addressed
by Nilsson et al. Their approach accounts for the many
complexities that arise when estimating cognitive load in a
realistic situation, such as traffic. First, they characterize cognitive
load as a multidimensional construct that consists of many
mental responses to added task demand. Second, they highlight
that cognitive load does not occur in isolation but is part of a
complex response to task demands in a specific context. Finally,
physiological measures typically correlate with more than one
mental state, thus limiting the inferences that can be made from
any individual state.

Kerautret et al. provide a systematic review that guides the
selection of appropriate physiological measures for quantifying
acute stress. Once again, physiological response to a driver state
change is characterized as a multidimensional construct, where
several measures, including heart rate, R-R intervals and pupil
diameter, respond to driver stress levels.When aiming to improve
the practical usefulness of stress detection devices, it is important
to start considering the context where the stress level is measured.
Increased sympathetic activity is a reasonable response to a
critical event or complex unfamiliar environments, and it is
important to realize that a temporarily elevated stress level is not
necessarily a bad thing.

What is appropriate and inappropriate behavior? More
importantly, Ahlström et al. demonstrate that this deceptively
simple classification depends on context in this article that
describes eyemovements and how they relate to attentive driving.
Essentially, it is not just where drivers look, but also why and
what else they can see and where they do not look. The authors
suggest a glance analysis approach that classifies glances based on
their purpose, thus accounting for context or motivation behind
eye movements.

The present article Research Topic also comprises a series
of theoretical and empirical works that leverage methodological
aspects to foster the knowledge on fundamental brain processes
for driving research.

Kujala and Lappi outline a predictive processing approach
for studying attentional demand and inattention in driving,
based on neuro-inspired theories of uncertainty processing
and experimental research that combine brain imaging, visual
occlusion and computational modeling. This approach improves
the definition and detection of inattentive driving as a step toward
designing attention monitoring systems for conventional and
semi-automated driving.

Vecchiato provides a perspective on the technological
maturity of hybrid systems, which could improve the
predictive power of a single neurophysiological measurement.
Electroencephalography (EEG) is often constrained by
robustness, comfortability, and high data variability affecting the
decoding performance in driving scenarios. Hence, additional
peripheral signals can be combined with EEG for increasing
replicability and the overall performance of the brain-based
action decoder.

Getzmann et al. explored the ecological and internal validity
of round-the-ear electrodes (cEEGrids) measurements. Their
longitudinal study returns consistent modulations in the alpha

and theta bands, along with driving speed and steering wheel
angular velocity reflecting the complexity of the driving task
between the two measurements. Overall, the reliability and
ecological validity of cEEGrid electrodes were satisfactory in the
context of driving-related parameters.

Among the many issues related to the safe use of driving
automation, attention drift due to the modulation of internal
sources could play an important role in the emergence of
out-of-the-loop (OOTL) situations and associated performance
problems (Merat et al., 2019).

Gouraud et al. address the possibility of the gradual
emergence of attentional decoupling and the differences created
by the sensory modality used to convey targets using EEG
measurements. Their results underline the complex influence of
perceptual decoupling on operators’ behavior and EEGmeasures.

Sensory skills can be augmented through training and
technological support. Exploiting this, Sakai et al. used fMRI to
compare brain responses to auditory cues for self-localization,
modulated by a sensory augmentation training in a simulated
driving environment. Their results suggest that the use of
auditory cues for self-localization during locomotion relies
on multimodality in higher-order somatosensory, rather than
visual, areas.

The complexity of autonomous navigation increases due to
the lack of road signs and pedestrians’ presence. The work by
Petit et al. deals with the perception of collision risk from the
viewpoint of a passenger sitting in the driver’s seat. Such users
delegate total control of their vehicle to an autonomous system
and this article investigated the subjective risk assessment with a
system based on the measurement of the electrodermal activity.
The results demonstrate that reducing safety margins increases
risk perception.

Considerable evidence suggest that humans may interact
differently with autonomous vehicles (AVs) as compared to
human-driven vehicles (HVs). Unni et al. investigated whether
participants would value interactions with AVs differently
compared to HVs, and if these differences can be characterized
in terms of behavior and brain responses. Using hemodynamic
response features from whole-head fNIRS, they could predict
whether participants decided to turn in front of HVs or AVs
in the decision-making phase. The insights provided here may
be useful for developing driver assistance systems to assess
interactions in future mixed traffic environments involving AVs
and HVs.

Finally, Fredriksson et al. provide a roadmap for the
development of future Occupant Status Monitoring (OSM)
in the EuroNCAP protocol. This considers a range of
known and emerging safety risks, including driving while
intoxicated by alcohol or drugs, cognitive distraction, and the
driver engagement requirements for supervision and take-over
performance with assisted and automated driving features.

The works collected by this Research Topic describe a wide
range of challenges that have to be addressed as we improve
on our knowledge of cognitive mechanisms, relevant for the
design of safe road traffic systems. In view of the strong
interest in the academic and industrial fields, we believe that the
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present Research Topic will increase rigor and reproducibility in
driving research.
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Mind Wandering Influences EEG
Signal in Complex Multimodal
Environments
Jonas Gouraud 1*, Arnaud Delorme 2 and Bruno Berberian 1

1 Systems Control and Flight Dynamics Department, Office National d’Etudes et de Recherche Aérospatiales,

Salon de Provence, France, 2Center of Research on Brain and Cognition (UMR 5549), Centre National de Recherche

Scientifique, Toulouse, France

The phenomenon of mind wandering (MW), as a family of experiences related to

internally directed cognition, heavily influences vigilance evolution. In particular, humans

in teleoperations monitoring partially automated fleet before assuming manual control

whenever necessary may see their attention drift due to internal sources; as such, it

could play an important role in the emergence of out-of-the-loop (OOTL) situations and

associated performance problems. To follow, quantify, and mitigate this phenomenon,

electroencephalogram (EEG) systems already demonstrated robust results. As MW

creates an attentional decoupling, both ERPs and brain oscillations are impacted.

However, the factors influencing these markers in complex environments are still not fully

understood. In this paper, we specifically addressed the possibility of gradual emergence

of attentional decoupling and the differences created by the sensory modality used

to convey targets. Eighteen participants were asked to (1) supervise an automated

drone performing an obstacle avoidance task (visual task) and (2) respond to infrequent

beeps as fast as possible (auditory task). We measured event-related potentials and

alpha waves through EEG. We also added a 40-Hz amplitude modulated brown

noise to evoke steady-state auditory response (ASSR). Reported MW episodes were

categorized between task-related and task-unrelated episodes. We found that N1

ERP component elicited by beeps had lower amplitude during task-unrelated MW,

whereas P3 component had higher amplitude during task-related MW, compared with

other attentional states. Focusing on parieto-occipital regions, alpha-wave activity was

higher during task-unrelated MW compared with others. These results support the

decoupling hypothesis for task-unrelated MW but not task-related MW, highlighting

possible variations in the “depth” of decoupling depending on MW episodes. Finally,

we found no influence of attentional states on ASSR amplitude. We discuss possible

reasons explaining why. Results underline both the ability of EEG to track and study MW

in laboratory tasks mimicking ecological environments, as well as the complex influence

of perceptual decoupling on operators’ behavior and, in particular, EEG measures.

Keywords: out of the loop, mind wandering, automation, vigilance, attentional decoupling, sensory modalities
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INTRODUCTION

Context
The last decade has seen important research toward road
automation (Badue et al., 2019). Promised as a revolution for
users to gain flexibility, leisure time, and safety (Harb et al.,
2018; Correia et al., 2019), self-driving cars have nonetheless
several important technological gaps that must be filled before
becoming a reality. On the way toward level 5 automation
(full automation anywhere, see SAE International, 2018),
teleoperation could represent an important trade-off to maintain
safety while developing system capabilities. Teleoperation,
literally operating a vehicle at a distance, is already used in
environments unreachable or dangerous to humans, such as war
theaters, nuclear environments, and space (Lichiardopol, 2007).
Tomorrow, teleoperation could be performed by algorithms in
the cloud and allow any vehicle to reach level 5 automation with
minimal modifications (Zhang, 2020). However, the technology
could also use human intervention today to enhance partial
automation and widen its operational design domain (Kang et al.,
2018). Operators would then monitor a set of vehicles, taking
control whenever necessary, such as in the event of snow or in
an emergency. Specifically, an important advantage of human
teleoperation is the assumption that there could be more vehicles
to monitor than operators, as not all vehicles would require
assistance at the same time (Zhang, 2020).

Aside from technical challenges like latency (Neumeier et al.,
2019), the possibility of jumping into a specific situation only
when needed raises important interrogations regarding the
ability of operators to assume manual control when needed.
Humans would then only have to monitor, presumably ever-
alert, for deviations and problems. Situations where operators
are supervising automated control loop are called out-of-the-
loop (OOTL) situations (Norman and Orlady, 1988; Endsley
and Kiris, 1995). Unfortunately, OOTL situations reduce the
operators’ ability to intervene, if necessary, and to assumemanual
control, i.e., to come back in the control loop (Kurihashi et al.,
2015; Louw et al., 2015a; Naujoks et al., 2016). Supervisors
at this point seem dramatically powerless to diagnose the
situation, determine the appropriate solution, and execute it
before the accident happens. Accident reports may contain the
terms “total confusion” (National Transportation Safety Board,
1975, 17; Bureau d’Enquête et d’Analyse, 2002, 167), “surprise
effect” (Bureau d’Enquête et d’Analyse, 2012a, 44, 2016, 10),
or “no awareness of the current mode of the system” (Bureau
d’Enquête et d’Analyse, 2012b, 178). These negative side effects
on overall performance are commonly referred to as OOTL
performance problems.

Nowadays, it is assumed that OOTL performance problem
is fundamentally a matter of human–automation interaction
arising from both operators’ internal states and system properties,
which ultimately spoils performance (Berberian et al., 2017).
From this definition, one way to mitigate related performance
drops may be to monitor operators’ internal states and look
for precursors to OOTL performance problems. Among others,
it has been demonstrated that non-challenging tasks, such as
passive monitoring of automation, can promote episodes of mind

wandering, whereby attention drifts away from the task at hand
(Smallwood et al., 2008; Durantin et al., 2015; Smallwood and
Schooler, 2015; Gouraud et al., 2018a,b; Dehais et al., 2020).
Mind wandering (MW) is a family of experiences unrelated to
the here and now (Seli et al., 2018). When MW happens during
a task, it moves operators’ minds away from their tasks toward
matters not directly related to their current works. Although such
uncontrolled thoughts could be beneficial as long-term planning
and mind refreshment (McMillan et al., 2013; Ottaviani and
Couyoumdjian, 2013; Terhune et al., 2017), it may thwart short-
term performances (He et al., 2011; Galera et al., 2012; Cowley,
2013; Casner and Schooler, 2014; Dündar, 2015). Therefore,
real-time tracking of MW is an important goal within safety-
critical industries, particularly when automation supervision
fills a significant part of the job. Indeed, real-time tracking of
internal states like MW would allow detecting problems before
performance drops and accidents happen. However, a better
understanding of the emergence of this attentional decoupling
remains essential to achieve such a goal. This is precisely the
objective of this study.

Emergence of Attentional Decoupling
Many physiological tools have already demonstrated sensitivity
to several aspects of MW; however, electroencephalography
(EEG) is among the most promising. EEG signal has already
helped uncover an important facet of MW: attentional
decoupling. People subject to MW experience a drop in
the cortical processing of the external environment, as their
attention is redirected to inner thoughts (Schooler et al., 2011).
Neurologically, attentional decoupling is characterized by weaker
neuronal responses to external stimuli and greater deactivation
of the regions dedicated to their processing. During GO/NOGO
tasks, researchers (Kam et al., 2011) showed that the amplitude
of P1, N1, and P3 components (respectively associated with
visual perception, auditory perception, and external stimuli
processing) were all lower during task-unrelated MW. This effect
held true whether stimuli were the SART (Sustained Attention
to Response Task) stimuli or irrelevant to the task. Such results
were replicated in two other settings: a time-estimation task
(Kam et al., 2012) and during monotonous manual driving
(Baldwin et al., 2017). It was also highlighted through ERPs that
attentional decoupling involved lower emotional reactions (Kam
et al., 2014). Experiments also uncovered the signature of MW
on alpha waves in occipital, i.e., visual stimuli processing, areas
(O’Connell et al., 2009; Braboszcz and Delorme, 2011; Baird
et al., 2014; Atchley et al., 2017; Baldwin et al., 2017; Arnau et al.,
2020), although the exact way is still debated as explicated in the
next sections. Nevertheless, changes in alpha activity during MW
are in line with the alpha band being involved in the deactivation
of the concerned areas (Bonnefond and Jensen, 2012; Benedek
et al., 2014; Villena-González et al., 2016).

Factors Influencing Attentional Decoupling
Even though MW has a strong influence on the neuronal
signal, the factors modulating the attentional decoupling remain
unidentified. A first important question is the exact degree of
attentional decoupling. Put differently, do all MW have the same
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potential for attentional decoupling? Is “depth” a feature of MW
episodes? Several studies provide insight into depth as a feature
of MW episodes. Cheyne et al. (2009) used a SART to investigate
the validity of their bi-directional model of inattention. They
obtained converging measures supporting three postulated states
of inattention: level 1 characterized bymore erratic reaction time,
level 2 by anticipations, and level 3 by omissions. Following
the same path, Schad et al. (2012) detailed the “levels of
inattention hypothesis” based on the assumption that our mind
processes information sequentially, involving greater complexity
at each step. MW could then thwart information processing at
different stages, depending on the depth of the episode. While
some MW episodes could be superficial, only impacting higher
cognition, others could completely decouple from the task by
blocking external information encoding and “cascade through
the cognitive system” to impact more complex processing
(Smallwood, 2011).

A second issue refers to the impact of MW on non-
relevant stimulation. It was initially assumed that MW involves
a specific impairment in the processing of task-relevant events
(e.g., Smallwood et al., 2003, 2004). Studies using ERPs have
shown that MW dampens the processing of sensory information,
regardless of the relevance of this information to the task (Barron
et al., 2011; Kam et al., 2011). However, the fact that MW can
impact mechanisms of selective attention does not mean that all
stages of sensory processing are turned off. Rather, it signifies
that the highlighting of specific sensory inputs for higher levels
of cognitive analysis is attenuated. After all, we are able to
perform most of our daily tasks without any errors, even during
MW episodes. In this context, steady-state responses (SSR) may
highlight the exact impact of MW on cognition. An SSR is
an evoked potential emerging from external periodical stimulus
and whose phase and amplitude remain constant (Picton et al.,
2003). Multiple studies have highlighted that in environments
with multiple SSR competing for attention, focusing on one SSR
increases its amplitude to the detriment of the others (Skosnik
et al., 2007; Müller et al., 2009; Saupe et al., 2009a; Diesch
et al., 2012; Mahajan et al., 2014). However, it has been shown
that this effect is highly dependent on experiments’ features:
paying attention to a 20-Hz ASSR presented on one ear showed
increase amplitude ipsilaterally, but not for a 40-Hz stimulus
(Müller et al., 2009); in another study, the attention-competition
effect decreased SSR amplitude only when concurrent SSR were
presented on the same sensory modality (Porcu et al., 2014).
These results highlight the complexity of the different stages
of perception and attention, and SSR may help to understand
the influence of MW on them. Moreover, if SSR were to be
impacted by MW, it could reveal extraordinarily useful to study
the features of attentional decoupling. Indeed, it would allow
continuous monitoring, contrary to ERPs, while being fully
controlled in frequency, in contrast to natural brain waves.
O’Connell et al. (2009) has already investigated the influence of
lapses of attention on a visual SSR without finding significant
results regarding its amplitude. However, they did not use a
questionnaire to track MW episodes. To our knowledge, no
research has specifically addressed the impact of internally
directed attention on SSR amplitude.

Our purpose in this experiment is to evaluate the viability
of MW neuronal markers in complex laboratory tasks
mimicking automated ecological environments, as well as
help to characterize features of the attentional decoupling in
these environments. Our hypotheses are (1) the evolution
of MW can be tracked in complex environments through a
decrease in ERPs and ASSR amplitude coupled with an increase
in alpha power during MW episodes compared with focus
moments, (2) MW attentional decoupling demonstrates a
gradual nature on EEG measures (ERP, alpha, ASSR) correlated
to the proximity of the thoughts content to the task at hand; more
precisely, a MW episode with thoughts closer to the immediate
environment will have less influence on EEG measures than
another MW episodes with thoughts totally unrelated to the here
and now.

MATERIALS AND METHODS

Participants
We performed an a priori analysis to estimate the required
sample size. Most publications investigating the links between
MW and EEG did not report effect size explicitly. However, as
repeated-measure ANOVA was often used, we could calculate
from these publications Cohen’s f using F-value, CI, and degrees
of freedom. The lower value computed, which we retained to
adopt a conservative view, was 0.54 (Kelley, 2007a,b, 2020;
Uanhoro, 2017). We then used G∗Power (Faul et al., 2007,
2009) to calculate the sample size, which yielded a minimum of
14 participants.

Eighteen participants (12 females, all right-handed)
performed the experiment (age ranging from 21 to 45 years;
M = 25, 95% CI = [22; 29]). After pre-processing the data, we
discarded three subjects:

• one subject reported “external distraction” on half experience-
sampling probes (see Experience-sampling probes);

• a second subject reported 85% “task-related MW” but only
one “task-unrelated MW”; moreover, only one epoch linked
to “focus” was free from artifacts (two out of three epochs
were discarded due to muscle activity). Subsequent questions
at the end of the experiment revealed that he/she did only
partially understood the difference between task-related MW
and task-unrelated MW;

• a third subject displayed many movements during the
experiment (foot tapping, jaw clench, armmovements), which
were later found heavily decreasing data quality.

This resulted in 15 subjects in the analysis. The participants in
this study were volunteers from the ONERA Company (ONERA,
the French Aerospace Lab) orMarseille University. They received
20e vouchers (cards for online payment) for the experiment. All
the participants had normal or corrected-to-normal visual acuity
and hearing, had no neurological or psychiatric disorders, and
were not under any medication. All participants signed a written
declaration of informed consent. The procedure was approved
by ONERA ethical committee and was conducted in accordance
with the World Medical Association Declaration of Helsinki.
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FIGURE 1 | Experimental setup. The participant is equipped with the EEG

system and sits in front of the right screen (LIPS screen). Speakers are on both

sides of the right screen. The left screen is used to display attentional probes.

FIGURE 2 | Screenshot of the LIPS interface. The plane in the center is static

and the surrounding (yellow and red numbered symbols) are moving. During

the left and right avoidance maneuver, again, the plane remains static and the

background rotates.

Experimental Tasks
Environment
Participants were seated in front of a desk with two screens, two
speakers, a keyboard, and a mouse (see Figure 1). Participants
performed two tasks in parallel: a visual task and an auditory
task. The visual task, an obstacle avoidance task (see Visual
task), was displayed on the right screen. The auditory task was
presented with speakers on the left and right sides of the right
screen, which sent the beeps at semi-random intervals as well as
the continuous modulated brown noise (see Auditory task). On
the left screen, attentional probes appeared semi-randomly (see
Experience-sampling probes).

Visual Task
The visual task consisted in the supervision of an obstacle
avoidance simulator displayed on the right screen (the
Laboratoire d’Interactions Pilote-Système (LIPS), or Pilot-
System Interactions Laboratory an ONERA distributed
simulation environment). The aircraft moved at a constant
speed. It was displayed in white onto a 22

′′
LCD monitor (with

a 1,024 × 768 pixel resolution and a 60-Hz refresh rate) located
about 50 cm from the participant in an unlit room.

The visual task displayed an unmanned air vehicle (UAV)
depicted as a plane seen from above. The vehicle stayed at the
center of a 2D radar screen (right screen, see Figure 2) and
moved following waypoints arranged in a semi-straight line with
clusters of obstacles along the way (every 45 s on average). Each
cluster could contain between one and five obstacles, including
one on the trajectory. When an obstacle was present on the
trajectory (a situation called “conflict”), the autopilot detected it
and initiated a left or right deviation, depending on the placement
of the obstacles. Once the obstacle on the trajectory had been
cleared, the UAV initiated another maneuver to come back on
its initial straight-line trajectory. Participants were instructed to
monitor the UAV, acknowledge its decisions, and correct any
mistake the autopilot might make, i.e., choosing an avoidance
trajectory that would result in an impact with another obstacle.
In more details:

– Whenever they saw the autopilot changing the trajectory,
participants clicked on an “Acquittement” (acknowledgment)
button to acknowledge automated avoidance decisions (twice
per conflict, once to acknowledge avoidance of the object and
once to acknowledge the return to normal trajectory after
avoiding the object);

– If they detected an incoming collision, they clicked on the
button “Changement d’altitude” (change height) so that the
UAV would perform an emergency descent to avoid colliding
with the obstacle.

In both cases, a feedback message was displayed to the
participants whenever they clicked.

Auditory Task
An auditory task was proposed at the same time as the visual
task. Participants had to react as fast as possible to beeps (100ms
duration, 1,000Hz frequency). Participants had 1 s to answer
to these beeps presented at semi-random intervals; if they did
not respond within the given time, the auditory stimulus was
counted as a miss. This task was supported by E-Prime 2.0
(Psychology Software Tools, 2018). The auditory task was used
to measure attention through reaction time and EEG measures
(see Electroencephalography).

On top of the beeps for the auditory task, we played using
E-Prime a background brown noise modulated in amplitude
to elicit ASSR. Amplitude modulation was chosen as the most
widely used steady-state stimuli (Picton et al., 2003) better
tolerated by people than clicks (Voicikas et al., 2016). We first
generated brown noise using the acoustics.generator.brown
function (felipeacsi and Rietdijk, 2018). This signal was then
modulated with a 50% and 40-Hz sinusoidal amplitude
modulation. Because E-Prime loads file sounds as the
experiment develops, a 1-h file would have exceeded the
cache memory. To allow for easier loading, we divided the
sound into 5-s soundtracks played one after the other in a loop
(Supplementary Audios 1–3). To avoid participants to develop
explicit or implicit learning with repetitive sound features, we
generated three different 5-s soundtracks, which E-Prime played
in random order. Tests before the experiment did not reveal any
audible problem when switching between soundtracks, nor did
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participants realize it when asked after the experiment (Agus and
Pressnitzer, 2013). We used Python 3.6 to generate modulated
background brown noise with the base packages acoustics, wave,
math, and random (Python Software Foundation, 2018).

Experience-Sampling Probes
On average, every 2min, an experience-sampling probe
programmed with E-Prime 2.0 (Psychology Software Tools,
2018) appeared on the left screen (Figure 1). For technical
reasons, the visual task (obstacle-avoidance task) was not paused
when the experience sampling probes appeared. Participants
were asked to answer the probe as soon as it appeared, and
any successful or failed trial on the obstacle-avoidance task
during this interval was not taken into account to compute their
performances on the visual task. Participants were informed that
the questionnaire probes were for informational purposes only
and were not used to assess performance.

Participants were required to answer the following question
(originally in French): “When this questionnaire appeared,
where was your attention directed?” Answers could be “On
the task” (focused, e.g., thinking about the next obstacle, the
decision to make, the incoming waypoint), “Something related
to the task” (task-related MW, e.g., thinking about performance,
interface items, last trial), “Something unrelated to the task”
(task-unrelated MW, e.g., thinking about a memory, their last
meal, or a body sensation) or “External distraction” (e.g.,
conversation, noise). The preceding examples were given to
participants to illustrate each category before the experiment. We
were primarily interested in reports of being focused or having
task-related or task-unrelated MW. The possibility of reporting
“task-related MW” was proposed to avoid participants reporting
task-unrelated MW when thinking about their performance
(Head and Helton, 2016). The answer “External distraction”
was proposed to avoid participants reporting MW if they were
distracted by a signal external to themselves and the task.

Procedure
Sessions started with an explanation of the two tasks, followed
by a 10-min training period and a 55-min session. During this
study, participants had to perform the visual task (supervise the
UAV avoiding obstacles and acknowledge or correct any mistake,
see Visual task) and the auditory task (press a button as fast as
possible when hearing a beep, see Auditory task) at the same
time. The session contained 70 clusters of obstacles for a total
of 210 obstacles. Clusters were separated by 45 s on average. All
autopilot decisions and collisions were predefined and, therefore,
they were the same for all subjects. The autopilot made two errors
initially placed randomly (3% errors; errors on trials 31 and 52 for
all subjects). This low error rate was chosen to have a relatively
safe system and reproduce ecological OOTL conditions.

Parallel to the visual task, participants performed the auditory
task and had to react to infrequent beeps by pushing “Enter”
button as fast as possible with their left hand. This secondary
task served as a way to measure attention (see Measures and
analysis for the exact measures reported). They were explicitly
told that beeps and experience-sampling probes were to be
treated as fast as possible, whatever was happening on the

obstacle-avoidance task. Beeps were presented every 20–40 s. On
average, one out of three beeps was followed by an attentional
probe. In total, 32 probes were displayed during the whole
session. The distribution of the experience-sampling probes
was not correlated with events on the obstacle-avoidance task,
to minimize performance influence on experience-sampling
reports. We instructed participants not to pay attention to the
ASSR background sound.

Measures and Analysis
We used R-Studio 1.1.456, R 3.5.1 (RStudio Team, 2015; R
Core Team, 2016) for statistical analysis, and Matlab 2018a (The
Mathworks Inc., 1992), EEGLAB (Delorme and Makeig, 2004),
and FieldTrip (Oostenveld et al., 2010) to filter and analyze EEG
data. All 95% CIs reported hereafter were computed using the
boot R package with 10,000 iterations with normal bootstrap
approximation (Canty and Ripley, 2017).

All linear mixed-effect analyses used the R lme function to
create the models (Bates et al., 2017), with a random intercept
for subjects to account for our repeated-measure design. Each
time, we visually inspected residual plots to spot any obvious
deviations from normality or homoscedasticity. We assessed the
influence of predictors by creating a baseline model and then
added each predictor in turn; we compared each model with the
previous one to verify if adding a predictor significantly reduced
uncertainty. The R Anova function was used to compare models
by performing likelihood-ratio tests between given models and
report the χ² value (R Core Team, 2016). We chose type 2
sum of squares or type 3 sum of squares when there were
interactions to consider between predictors. Post hoc tests were
conducted using the glht and mes functions on the complete
model (R Core Team, 2016).

Subjective Measures
Subjective measures consisted of the answers to the experience-
sampling probes. We split the 55-min sessions into four blocks
of ∼14min containing eight experience-sampling probes each.
We focused on task-related and task-unrelated MW frequency
evolution over time and conditions using linear mixed-effect
analysis. We considered blocks as a four-level categorical
variable. Without specific a priori predictions regarding the
block-by-block evolution, we conducted Tukey’s post-hoc tests on
the complete model.

Behavioral Measures
To assess performance in the auditory condition, we recorded
accuracy and reaction time related to beep answers (the difference
between start of the beep and the button press). The influence of
attentional states and blocks on reaction time was analyzed using
a linear mixed-effect analysis. We conducted Tukey’s post-hoc
tests to break the potential effects of blocks.

Electroencephalography
We used the ActiCHamp system and Brain Vision software
(Brain Products, 2018) to record scalp potentials. A total of 64
Ag–Cl electrodes were mounted on a standard elastic cap at
the standard sites of the 10–10 International system (Oostenveld
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and Praamstra, 2001). Impedance was kept below 5 k� for all
electrodes. The Fpz electrode was used as the ground electrode.
We used electrooculographic sites to capture eye movements.We
chose the left mastoid FT9 electrode as a reference for recording.

We were interested in the influence of attentional states on
stimuli perception and treatment. Beeps served as a way to
measure attention through ERPs. We selected N1 (a marker of
perception) and P3 (a marker of stimuli processing) elicited by
the auditory task. Following the literature, we analyzed the 180–
200ms interval average on electrodes Fz, Pz, and Cz for the P3
and N1 components (Kam et al., 2011, 2014; Kam and Handy,
2013). Similarly, we chose the 380–420ms interval average and
the same electrodes for P3 component.

Regarding spectral analysis, we also used the auditory task
and the time immediately preceding beeps. We focused on the
upper alpha band because previous studies repeatedly revealed
consistent results for the lower and upper alpha band (e.g.,
Benedek et al., 2011; Jauk et al., 2012). We also investigated the
ASSR frequency. We chose the electrodes Pz, P1/2, P3/4, P5/6,
POz, PO3/4, Oz, and O1/2 for alpha to cover the parieto-occipital
region. Previous studies observed higher alpha amplitude linked
with visual sensory inhibition in this region, in line with the MW
perceptual decoupling (Foxe et al., 1998; O’Connell et al., 2009;
Benedek et al., 2014). For the ASSR, we monitored the 39.5–
40.5Hz band where the stimulus was supposed to elicit a peak.
We used the sites FCz, FC1/2 for ASSR, which had already been
used by Saupe and colleagues in experiments investigating ASSR
and attention (Saupe et al., 2009b; Keitel et al., 2011).

Each time an experience-sampling probe appeared, a signal
was sent to the ActiCHamp software to record a trigger on the
EEG signal. Similarly, another trigger was sent when participants
answered the probe, whose value depended on attentional state
reported by participants, and a last signal was sent by the auditory
task whenever a beep played. Triggers sent by beeps served as
a synchronization point to study EEG metrics, whereas triggers
of probes served to classify the attentional state of participants
when the beep immediately preceding played. The timing of the
overall setup was tested and revealed no important deviations.
We usedMatlab, EEGLAB, and FieldTrip to import, re-reference,
filter, epoch, remove ICA components, and build our design. The
exact filtering pipeline was as follows:

• Add coordinates to existing 63 electrodes using template
10–20 location (BESA spherical format; function
used: pop_chanedit).

• Re-reference data to FT9 and FT10 channels (Yao et al.,
2005; Griskova et al., 2007; Kam et al., 2011, 2012; function
used: pop_reref).

• Filter using a two-pass pass-band Butterworth filter to avoid
shifting introducing the signal. The pass-band used was [0.01;
30] Hz for ERPs and [0.01; 100] Hz for ASSR and alpha
(function used: ft_preprocessing).

• Interpolate electrodes when the line noise was deemed too
important: if it displayed (1) variation above ∼300 µV
amplitude, (2) variation uncorrelated to other electrodes
around it, and (3) previously mentioned issues were spotted
on at most one subject, as the same problem found on

multiple subjects would mean that the electrode itself is faulty
and should be suppressed from the overall study (overall
decision made after visual inspection; on average 0.1 electrode
interpolated per participant for ERPs and 0.5 electrodes
interpolated per participant for ASSR and alpha wave).

• Create epochs by taking signal intervals around beeps. The
interval was [−800; 1,000] ms for ERPs and [−5,000; 0] ms
for ASSR and alpha (on average 31.7 epochs per participant;
function used: pop_epoch).

• Remove the baseline of each epoch: for ERPs, we took the
average signal in [−200; 0] ms and subtract it from the
whole epoch; for ASSR and alpha, remove base power of each
frequency (function used: pop_rmbase).

• Discard epochs when they were heavily contaminated by
muscle artifacts which would lower ICA power (decisionmade
after visual inspection, although multiple backs and forth
were made to determine ICA impact tolerance; on average
3.3 epochs discarded per participant for ERPs, 4.4 epochs
discarded per participant for ASSR and alpha wave; function
used: eegplot).

• Run the ICA with option “extended, 1” also reducing the
number of dimension by one due the rank deficient matrix
(function used: pop_runica).

• Discard components in case of ocular movements (high
power coupled with activity frontal, dissymmetrical from both
eyes perspective, spatially and temporarily narrowed), blinks
(high power coupled with activity frontal, symmetrical from
both eyes’ perspective, spatially and temporarily narrowed),
other muscle activity (very high power coupled with
activity spatially and temporarily narrowed), and electrode
malfunction (very high power, activity centered on one
specific electrode). The final decision was made after visual
inspection (no epochs discarded for ERPs, on average 1.6
epochs discarded per participant for ASSR and alpha wave;
function used: pop_selectcomps).

We then exported data to R to perform statistical analysis. We
used a linear mixed-effect analysis to look at the influence of
attentional states on ERPs, alpha, and ASSR amplitude.

RESULTS

MW Frequency Analysis
Participants reported on average 31.3% task-related MW (SD
= 4.4%) and 36.6% task-unrelated MW (SD = 5.0%, see
Figure 3, Supplementary Data Sheet 1). This rate is consistent
with previous studies (Smallwood et al., 2006; Smallwood and
Schooler, 2015; Gouraud et al., 2018a,b). Each participant
reported on average 1.5% “External distraction” reports (SD
= 1.21). Considering this low rate, we discarded “External
distraction” reports and adopted the ternary approximation of
attentional states (i.e., either focused, task-related MW, or task-
unrelated MW). All participants answered all 32 probes, except
one participant who did not answer four probes.

Blocks did not significantly influence task-related MW. On
the contrary, blocks significantly influenced task-unrelated MW
rates, χ² = 12.13, p = 0.007. Post-hoc tests revealed that
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FIGURE 3 | Task-related and task-unrelated MW evolution through blocks. Error bars show the 95% CIs based on bootstrap.

TABLE 1 | Influence of blocks on task-related and unrelated MW frequency.

Task-related MW Task-unrelated MW

Effect added df χ² p-value χ² p-value

Block 3 0.30 0.828 12.13 0.007

Bold values are significant results.

TABLE 2 | Influence of attentional states and blocks on beep reaction time.

Effect added df χ² p-value

Attentional states 2 2.89 0.24

Block 3 25.52 <0.001

Attentional states: blocks 6 10.09 0.121

Bold values are significant results.

task-unrelated MW rate were significantly higher under the
second block compared with the first and third blocks, p =

0.021, d = 0.55, p = 0.010, d = 0.62, respectively. All results
from model comparisons are gathered in Table 1, bold values
being significant.

Auditory Task: Reaction Time to Beeps
The auditory task performance was investigated using reaction
time when presented a beep followed by a probe. Participants
reacted to on average 31.3 beeps out of the 32 presented.
Attentional states did not influence reaction time. On the

contrary, there was a significant influence of blocks on reaction
time, χ ² = 25.52, p < 0.001. Post-hoc tests revealed that
participants were significantly slower during the fourth block
compared with the first and third blocks, respectively (p= 0.007,
d = 0.48 and p = 0.016, d = 0.28). All results from model
comparisons are gathered in Table 2 and illustrated in Figure 4.

Auditory Task: Influence of Attentional
States on ERPs
The amplitude evolution of ERPs elicited by the auditory
task (beeps) was investigated. Attentional states significantly
influenced both N1 and P3 components (see Table 3 and
Figure 5). Post-hoc tests revealed that for the N1 component,
reports of task-unrelated MW were accompanied with a lower
amplitude (M = −6.06 µV, 95% CI = [−8.01; −4.12] µV)
compared with periods of focus (M = −9.39 µV, 95% CI =

[−12.21;−6.60]µV), p= 0.024, d= 0.36. For the P3 component,
the statistics showed a significantly higher amplitude for task-
related MW (M = 12.69 µV, 95% CI = [9.28; 16.13] µV)
compared with focus periods (M = 8.20 µV, 95% CI = [5.54;
10.85] µV), p= 0.009, d = 0.16.

Visual Task: Influence of Attentional States
on Alpha Wave Amplitude
Alpha wave power evolution before experience-sampling probes
was investigated. Results showed a significant influence of
attentional states on alpha amplitude (see Figure 6 and Table 4,
bold values being significant), χ2 = 8.35, p = 0.015. Post-hoc
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FIGURE 4 | Influence of blocks and attentional states on beep reaction time. Error bars show the 95% CIs based on bootstrap.

TABLE 3 | Influence of attentional states on the amplitude of the ERP

components N1 and P3.

Effect added df N1 component P3 component

χ² p-value χ² p-value

Attentional states 2 9.41 0.009 8.83 0.012

Bold values are significant results.

tests showed significantly higher alpha amplitude during task-
unrelated MW (M = 53.83 µV²/Hz, 95% CI = [52.35; 55.31]
µV²/Hz) compared with focus episodes (M = 53.03 µV²/Hz,
95% CI = [51.90; 54.16] µV²/Hz), p = 0.014, d = 0.27. Other
comparisons (task-related MW vs. focus, task-related MW vs.
task-unrelated MW) were not significant.

Influence of Attentional States on ASSR
Amplitude
No influence of attentional states on ASSR amplitude was
uncovered (Figure 7). However, spectral plots still revealed a
peak at 40Hz, showing that the ASSR was visible on participants’
spectrum even during this complex task (see Figures 8, 9).
Should anyone want to reuse this background noise for other
ASSR activities within aeronautical-inspired environments, we
mention that 12 participants out of 18 reported that they felt the
noise was similar to a propeller airplane.

DISCUSSION

The aim of this study was to evaluate the viability of
MW neuronal markers in complex ecological automated

environments, and to help characterize features of the attentional
decoupling in these settings. We chose an automated obstacle
avoidance task that participants had to supervise while reacting
as fast as possible to beeps they heard. EEG signal was
chosen to acquire cerebral activity in the form of ERPs,
alpha wave amplitude, and ASSR. To yield detailed results, we
decomposed MW into task-related and task-unrelated acquired
using attentional probes. We decomposed the 40-min task into
4 blocks of 10min each. Participants did not show any increase
in task-related or non–task-related MW during the time spent
on the task although more task-unrelated MW emerged during
the second block. When analyzing ERP components created
by beeps, we observed lower N1 component amplitude during
task-unrelated MW, while P3 component had higher amplitude
during task-related MW, compared with other attentional states.
Alpha wave activity was higher in parieto-occipital regions
during task-unrelated MW compared with other attentional
states. Finally, ASSR was clearly elicited, but its amplitude was
not significantly influenced by attentional states. Overall, these
results underline the complex influence of the MW perceptual
decoupling on operator’s behavior in ecological environments
and have several implications when considered together.

Measuring the Impact of MW
Taken together, the observed effects support a reduction in
cortical processing of the external environment during task-
unrelated MW. First, for the auditory task, N1 component
elicited by the beeps had a lower amplitude during task-unrelated
MW, indicating a state of reduced perception of stimuli already
identified by Kam et al. (2011). Participants who experienced
task-unrelatedMWwere less receptive to the beeps. Nevertheless,
only a non-significant trend could be observed in reaction times
(Figure 4), with subjects being faster during the fourth block
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FIGURE 5 | Beep ERP signal for task-related MW (green), task-unrelated MW (blue), and focus (red) attentional states.

FIGURE 6 | Topography of alpha frequency for each attentional state.

for task-unrelated MW compared with other attentional states.
Subjects may have focused, maybe even attention-tunneling, on
the visual task when being focused or in task-relatedMW. On the
contrary, being in task-unrelated MW may have led participants
to use strategies favoring speed over precision, without significant
impact on the accuracy due to the low difficulty of the task
(Salomone et al., 2021).

Second, regarding the visual task, the increase in alpha power
in the parieto-occipital lobe shows that participants inhibited
visual perception during MW episodes (Foxe and Snyder, 2011;
Benedek et al., 2014; Clayton et al., 2015). Although the debate
still exists on alpha power, both analyses are congruent and
consistent with research sharing the same features, i.e., probe-
caughtMW (Baird et al., 2014), visual (Compton et al., 2019), and
ecological task (Baldwin et al., 2017). MW creates a decoupling
from the task at hand, even in complex bimodal environments.
Our results are a first step toward filling the gap between real

TABLE 4 | Influence of attentional states on alpha and ASSR amplitude.

Effect added df Alpha power (log) ASSR amplitude

χ² p-value χ² p-value

Attentional states 2 8.35 0.015 2.55 0.279

Bold values are significant results.

consequences of MW (Galera et al., 2012; Berthié et al., 2015)
and EEG research in laboratory settings (Kam, 2010; Kam et al.,
2019). Taken together, visual and auditory analyses support the
multimodal influence of MW in complex environments (Kam
et al., 2011), although our setup does not allow us to make
quantified claims and compare modalities.

We observed no effect of attention on ASSR amplitude, even
though its evoked power was visible on the EEG spectrum of the
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FIGURE 7 | Topography of ASSR frequency for each attentional state.

FIGURE 8 | Spectrum of 35–45Hz interval for each attentional state.

participants. This outcome is in line with the results of O’Connell
et al. (2009) regarding the absence of amplitude modulation of
MW on SSR. It is possible that our experiment did not succeed
because of its features, such as the use of amplitude modulation
instead of clicks (Voicikas et al., 2016) or the insufficient number
of participants. Another possibility may be that SSR produced
by non-target background noise is already being reduced by
participants instructed to ignore it from the start; it may therefore
not be further influenced by MW. However, this hypothesis
is in contradiction with both literature on ASSR in attention
modulation settings (Skosnik et al., 2007; Müller et al., 2009;
Mahajan et al., 2014) and our own results regarding lower

N1 amplitude during task-unrelated MW. To account for this
observation, a final explanation may be that internally directed
attention like MW is fundamentally different from the evolution
of external direction between sensory modalities. In this case,
the absence of amplitude modulation would show that MW does
not impact the earliest stages of perception, allowing for a basic
processing of external stimuli. Further work in this area is needed
to provide robust conclusions.

Gradual Impact of MW
Important differences were highlighted between task-related and
task-unrelated MW, supporting the existence of “depth” or
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FIGURE 9 | Spectrum of 0–45Hz interval for each attentional state.

“intensity” (related to the decoupling) in MW episodes. During
task-unrelatedMW, participants inhibited perception of auditory
stimuli (as shown by the N1 amplitude), but not during task-
related MW compared with focus moments. On the contrary,
auditory information processing (P3 amplitude) was higher
during task-related MW than during focus intervals. Participants
reporting being focused may actually focus on the visual part
of the task (the most cognitively demanding) while inhibiting
all auditory stimuli, whether relevant to the task or not. On
the other hand, task-related MW may create a more superficial
decoupling than task-unrelated MW. This mental state may
redirect attentional resources from the exhausting visual task
to listening to auditory cues, thus participating in a more
balanced resource allocation independently of task demand.
Unfortunately, we did not observe differences in performance,
i.e., reaction time during the auditory task. It is likely that because
the processing of auditory stimuli did not require much cognitive
resources, superficial perception was enough to perform it.

Previous explanation remains very conditional, as the
available observations are not sufficient to definitely establish the
depth of MW. A graded MW with a different decoupling could
explain why we are most of the time able to perform tasks while
being in MW, while sometimes we make clear errors that could
have been avoided with our full attention (Cheyne et al., 2006;
Carriere et al., 2008; Farley et al., 2013). Two protocols may
complete the present study in relation to MW depth: using the
same experiment, but asking the participant to ignore the beeps;
the irrelevance of beeps may thwart interesting results when
analyzing the influence of task-related MW on ERPs. Another
possibility would be to use the same experiment once again, but
this time participants would have two different beeps to react

to, each associated with a different button. The needs for more
processing of auditory stimuli could link the performance data
to MW decoupling depth. Nevertheless, more data are needed to
rule over the depth dimension.

Factors Stimulating MW Emergence
In this experiment, MW rates remained mostly stable through
time-on-task, only the second block exhibiting higher task-
unrelated MW rates compared with the first and third ones. We
witnessed similar behavior in our previous study (although here
MW increased in the middle of the task instead of decreasing,
see Gouraud et al., 2018a). Literature generally agrees that
MW rates should increase with time-on-task (Smallwood et al.,
2002; Pattyn et al., 2008; Risko et al., 2012; Gouraud et al.,
2018a) although several studies failed to observe such behavior
(Thomson et al., 2014; Arnau et al., 2020). Nevertheless, the
exact link between MW and time-on-task may be mediated by
task difficulty, i.e., task demands in attentional resources (McVay
and Kane, 2009; Krimsky et al., 2017). We have already used
as the only task our automated UAV monitoring environment
in previous experiments without observing more MW, which
shows that the multitasking did not require much attention
from participants (see Mind Wandering Frequency Analysis
and Gouraud et al., 2018a,b). Moreover, attention demand
remained constant throughout the task, which further decreased
the possibility of bias in our subsequent analysis. To explain the
lack of increase in MW with time-on-task, a first explanation
might be that participants, aware of the overall duration of the
experience, sensed time passing by and reengaged in the task in
the second half (Arnau et al., 2020). The lack of MW increase
with time-on-task might also be due to automation errors, placed
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at the ends of the second and third blocks. A third possibility
might be explained by a too disruptive setup (e.g., beeps allowing
reengagement, EEG being too uncomfortable). However, our
previous experiments with the same visual environment, but no
auditory stimuli, yielded equivalent attentional state percentages
on average (Gouraud et al., 2018a,b).

More generally, the question of what conditions will stimulate
the emergence of MW remains, both in experiments and in the
open. Time-on-task plays an important role (Smallwood et al.,
2002). However, it may not be the only factor: on top of various
individual features linked with different MW rates [training
in Casner and Schooler (2015); positivity in Hancock (2013);
gender in Mar et al. (2012); creativity in Zedelius and Schooler
(2016)], the very nature of tasks to perform could influence
MW and its evolution. In particular, operators faced with
increased automation see their relation to the task dramatically
modified. We already investigated the influence of automation
levels in a previous experiment (Gouraud et al., 2018b) without
significant differences in MW rates between a manual and an
automated condition.

Nevertheless, many dimensions of automation that could
influence MW rates remain unexplored. One of the main
impacts of higher automation is a drop in operators’ sense
of control or agency (Haggard, 2017). Sense of agency is the
experience of identifying oneself as the author of an action
and its consequences (Gallagher, 2000). This form of self-
awareness is important not only for motor control but also for
causal responsibility and serves as a key motivational force for
human behavior. Recently, it has been shown that the sense
of agency could be dramatically impaired when interacting
with automation (Berberian, 2019). While co-workers develop
a form of we-agency (Crivelli and Balconi, 2010; Obhi and
Hall, 2011), the same does not stand true for human–system
cooperation (Wohlschläger et al., 2003a,b; Glasauer et al., 2010;
Sahaï et al., 2017). Similarly, there is a loss of agency when
operators’ tasks shift from working a system to monitoring
it (Berberian et al., 2012). Even though automation generally
brought safer and more productive systems, the loss of agency
could generate task disengagement and be one of the main
reasons why operators are unable to regain manual control in
critical situations (Bainbridge, 1983; Endsley and Kiris, 1995;
Cummings, 2004; Louw et al., 2015b; Berberian et al., 2017).
Critically, Wen and Haggard (2018) have highlighted important
differences in attention allocation correlated with differences in
the sense of agency: the loss of a sense of control could decrease
the allocation of attentional resources to stimuli relevant to the
task at hand. In this context, loss of agency may have a significant
influence on MW rates. To our knowledge, no experiment has
investigated the relation between MW and agency.

MW and Operator Engagement Issue
As our results showed, distinguishing different types of MW
revealed different impacts on EEGmeasures, while the absence of
MW influence on ASSR may highlight a fundamental difference
between internally and externally directed attention. Despite
these unknowns, our results add to the existing literature
supporting the decoupling hypothesis and linking MW to a form

of attentional disengagement. Indeed, task engagement strongly
modulates performance through goals and motivation (Bedny
and Karwowski, 2004; Fairclough et al., 2013; Leontiev, 2014),
concepts that are strongly linked with MW (Cheyne et al., 2009;
Danckert, 2017; Gouraud et al., 2018b). MW could exacerbate
task disengagement by highlighting the discrepancy between
entertaining thoughts and the ungratifying present (Smallwood
and Schooler, 2006; Eastwood et al., 2012) and drawing attention
to one’s own failure to maintain vigilance (Critcher and Gilovich,
2010; Westgate andWilson, 2018). Other researchers believe that
MW may be just a symptom of boredom: internal sources of
stimulation could serve as a second-best option when external
tasks fail to keep us focused (Singer, 1975; Bench and Lench,
2013). Neurologically, MW episodes are characterized by the
deactivation of the dorsolateral prefrontal cortex (DLPFC, see
Christoff et al., 2009; Stawarczyk et al., 2011). DLPFC interacts
with dorsal and ventral attentional pathways to shift and focus
attention on the most relevant stream of task-related information
(Johnson and Zatorre, 2006). It is a network thought to play
a crucial role in maintaining task engagement (Curtis and
D’Esposito, 2003). MW is thought to represent the lower end of a
continuum of task engagement (Lee, 2014; Dehais et al., 2020).

MW pertains to a wider collection of mental states
linked to engagement and negatively impacting performance.
These suboptimal neurocognitive states are investigated by
neuroergonomics, whose purpose is the study of the human brain
in relation to performance at work and in everyday settings
(Parasuraman, 2011; Gramann et al., 2017). The development
of this field has been facilitated by the twenty-first century
revolution in our understanding of neural mechanisms, but also
by recent developments in advanced and portable neuroimaging
techniques (Dehais et al., 2020). Several attempts have been made
to identify MW features within dry EEG signals, with success on
ERPs and alpha waves (van der Wal and Irrmischer, 2015; Kam
et al., 2019). Functional Neuro InfraRed Spectroscopy (fNIRS)
has also demonstrated its capability to detect MW episodes in
ecological simulation by monitoring the Default Mode Network
(Durantin et al., 2015), a network involved in attention drifting
processes (Raichle et al., 2001; Konishi et al., 2015; Golchert
et al., 2016). Both dry EEG and fNIRS could be integrated
into operational environments with little disruption for the user
(Mullen et al., 2015; OpenBCI, 2016; This Place, 2016; SmartCap,
2020). On top of neuroimaging techniques, oculometry has also
been substantially improved over the past decade, producing
efficient, small, and cheap devices. It has demonstrated a high
sensitivity to MW in safety-critical environments, although only
in simulators (Louw et al., 2015a; Louw and Merat, 2017).
Thanks to these systems and models, neuroergonomics could
help translate MW findings from psychology and neurosciences
into procedures changes to enhance safety in the industry.

CONCLUSION

We presented the results of an EEG study with a visual
(monitoring and correction of an automated UAV avoiding
obstacles) and an auditory (infrequent beep which required fast
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button press) task presented simultaneously with the aim to
understand the cerebral signature of MW. Participants also heard
a background noise designed to elicit ASSR. We saw that task-
related and task-unrelatedMW exhibit a different EEG signature,
whether it is on ERP components or on alpha waves, suggesting
the existence of depth in perceptual decoupling. Our results also
stress the need to carefully discriminate MW dimensions when
evaluating MW-induced decoupling. Finally, the absence of MW
hallmark on ASSR amplitude does not support the possibility
to use SSR to study MW continuously. However, it also means
that the earliest stages of perception may not be impacted by
attentional decoupling.

Overall, our results highlight the crucial need to study the
neural correlates of MW to identify its exact influence on
operators. Even though the setup involved remained highly
controlled and laboratory related, our tasks were relatively close
to complex automated environments encountered in operations,
and more specifically teleoperations. Contrary to recent claims
(Neigel et al., 2019), MW pervasive effects have been widely
reported in monotonous ecological simulations (He et al., 2011;
Casner and Schooler, 2014, 2015; Louw et al., 2015a,b; Baldwin
et al., 2017; Gouraud et al., 2018a,b) and real environments
(Galera et al., 2012; Berthié et al., 2015). Moreover, they are
perfectly integrated in several recent neuroscientific models
(Pattyn et al., 2008; Dehais et al., 2020). Other problems
teleoperations should overcome involve operators’ ability to
mentally jump into a situation while being physically away
and should be specifically assessed, and the related issues
studied. Distraction and other forms of inattention are already
a significant safety problem within the transport industry, e.g.,
in the air (Loukopoulos and Field, 2001; Casner and Schooler,
2015) or on the road (Galera et al., 2012; Berthié et al.,
2015). In this context, a better understanding of MW, which
participates in operator distraction, is crucial to limit distraction

consequences. It is essential that research investigates the effects
of the different characteristics of MW, while the possibilities to
mitigate its consequences must also be examined through both
ecological setup and operational environments and the outcomes
adopted by the industry. Taking the problem into account when
designing the technology (Nielsen et al., 2007; Hosseini and
Lienkamp, 2016) could enhance teleoperations and install it as
the next important step toward full automation. In this context,
neuroergonomics could bring a new perspective on this kind
of suboptimal neurocognitive state to go further than broad
metaphorical concepts.
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Sensory skills can be augmented through training and technological support. This

process is underpinned by neural plasticity in the brain. We previously demonstrated

that auditory-based sensory augmentation can be used to assist self-localization

during locomotion. However, the neural mechanisms underlying this phenomenon

remain unclear. Here, by using functional magnetic resonance imaging, we aimed to

identify the neuroplastic reorganization induced by sensory augmentation training for

self-localization during locomotion. We compared activation in response to auditory

cues for self-localization before, the day after, and 1 month after 8 days of sensory

augmentation training in a simulated driving environment. Self-localization accuracy

improved after sensory augmentation training, compared with the control (normal driving)

condition; importantly, sensory augmentation training resulted in auditory responses not

only in temporal auditory areas but also in higher-order somatosensory areas extending

to the supramarginal gyrus and the parietal operculum. This sensory reorganization had

disappeared by 1month after the end of the training. These results suggest that the use of

auditory cues for self-localization during locomotion relies onmultimodality in higher-order

somatosensory areas, despite substantial evidence that information for self-localization

during driving is estimated from visual cues on the proximal part of the road. Our findings

imply that the involvement of higher-order somatosensory, rather than visual, areas is

crucial for acquiring augmented sensory skills for self-localization during locomotion.

Keywords: augmentation, plasticity, driving, fMRI, locomotion

1. INTRODUCTION

1.1. Background
Sensory skills can be augmented through training and technological support. An obvious example
is Braille reading, in which well-trained individuals can read letters via tactile sensation when
touching Braille symbols. Various devices have been developed to facilitate sensory augmentation.
Such devices detect environmental information by using electronic sensors and convert it into
stimuli delivered to a sensory organ that is not innately associated with the information. For
example, one device translates visual scenes recorded by a digital camera into auditory stimuli by
converting elevation to pitch and brightness to loudness (Meijer, 1992). After training with such a
device, users are able to discriminate several visual objects without actually seeing them (Striem-
Amit et al., 2012). Another research group has developed a waist-belt-type vibration device that
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constantly displays magnetic north (Nagel et al., 2005). This
enables users to utilize a newly acquired magnetic orientation
sense to navigate in outdoor environments.

Sensory augmentation is underpinned by neuroplastic
reorganization in the brain. A pioneering study by Sadato et al.
(1996) demonstrated the activation of visual cortical areas
in blind individuals during Braille reading. Similar cortical
reorganization in visual cortical areas has been observed after
training of blind individuals in distance perception aided by an
ultrasound echolocation device (De Volder et al., 1999) or in
letter recognition by using an electrotactile stimulation device
(Ptito et al., 2005). Such reorganization has also been observed
after training of sighted individuals in depth perception by
using a device that converts visual scenes into auditory stimuli
(Renier et al., 2005), and of both sighted and blind individuals in
object recognition with a visual-to-auditory sensory substitution
device (Amedi et al., 2007). In the case of this last device, it has
been further demonstrated that shape information conveyed by
auditory stimuli activates different visual areas, depending on
the category of the object (Reich et al., 2011; Striem-Amit et al.,
2012; Abboud et al., 2015).

Recently, we proposed a novel sensory augmentation system
that assists self-localization during vehicle driving (Ueda et al.,
2019). This system translates a vehicle’s lateral position in
a traffic lane into binaural balance of white-noise loudness,
enabling drivers to sense a lane line they are approaching as
increased loudness to the ipsilateral ear and decreased loudness
to the contralateral ear. By using this auditory-based self-
localization assistance system for locomotion, we demonstrated
in a simulated driving environment that drivers developed the
ability to control the vehicle accurately by using auditory cues,
even when the visual information needed to estimate vehicle
lateral position (i.e., the proximal part of the road) was occluded.
This was the first successful attempt to show the applicability
of sensory augmentation to time-sensitive daily-life situations in
healthy individuals. However, the underlying neural mechanisms
of the training effects remain unclear.

1.2. Objective
Here, by using functional magnetic resonance imaging (fMRI),
we aimed to identify the neuroplastic reorganization induced
by sensory augmentation training for self-localization during
locomotion. Specifically, we employed a pretest-training-posttest
design comprising three separate fMRI sessions (pretest, posttest,
and follow-up test), before and after driver training with
or without the sensory augmentation assistance system in a
simulated environment. In the pretest fMRI session, activation of
the response to auditory stimuli conveying vehicle lateral position
information was investigated by using a conventional block
design protocol. After the pretest fMRI session, participants were
randomly assigned to one of two training conditions (normal
driving [ND] or sensory augmentation [SA] conditions) and
accordingly performed 8 days of driver training. On the day after
the last training day, a posttest fMRI session was conducted by
using a protocol identical to that applied in the pretest. The fMRI
session was further repeated approximately 1 month later as a

follow-up test. We then identified training-related changes in
auditory responses under each condition.

Previous studies examining neuroplasticity after sensory
augmentation have reported a clear tendency for trained sensory
information to become processed in the brain areas for a sensory
modality associated with the content of the information, rather
than the carrier of the information. Therefore, we expected
that vehicle lateral position translated into auditory stimuli
would be processed in visual areas after training, because vehicle
lateral position is considered to be estimated from the visual
cues contained in driving scenes as viewed from the driver’s
perspective (Land and Horwood, 1995; Billington et al., 2010;
Frissen and Mars, 2014).

2. MATERIALS AND METHODS

2.1. Participants
Fourteen adults (2 females; 12 males) aged 20–28 years
participated in the study and received financial compensation
for their participation. All participants self-reported normal or
corrected-to-normal vision and normal hearing. In addition,
all participants were free from psychiatric, neurological, and
major medical illnesses, as determined by medical history. They
were all right-handed according to the Edinburgh Handedness
Inventory (Oldfield, 1971). Each participant provided written
informed consent. Experimental protocols were approved by
the RIKEN Research Ethics Committee [Wako3 28-17(4)] and
were conducted according to the principles of the Declaration
of Helsinki.

2.2. Study Design
To identify neuroplastic reorganization associated with sensory
augmentation for self-localization during locomotion, we
employed a pretest-training-posttest design comprising three
separate fMRI sessions (pretest, posttest, and follow-up). After
the pretest fMRI scan, participants were randomly assigned to
either the ND or SA condition, and they accordingly performed
eight sequential days of training (excluding weekends and
occasional absences) in a simulated environment. On the day
after the last training day, a posttest fMRI scan was conducted. In
addition, another follow-up fMRI scan was performed∼1 month
after the end of the training. To minimize observer effects, the
experimenters conducting the fMRI sessions were blind to which
participant was assigned to which training condition.

2.3. Driving Training
For sensory augmentation training, we used a custom-made
driving simulator comprising a fixed-base cockpit (GTD-SPECi,
Rossomodello Co., Ltd., Tomioka, Japan), a force-feedback
steering device (T500RS, Guillemot Corp., Carentoir, France),
and a 60-inch LCD monitor (LC60XL10, Sharp Corp., Sakai,
Japan) located in front of the cockpit (Figure 1A). The system
was identical to the one used in our previous behavioral study
(Ueda et al., 2019). Driving scenes as viewed from the driver’s
perspective were reconstructed at 60 Hz and displayed on the
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FIGURE 1 | Experimental setup. Participants performed 8 days of lane-keeping training on a custom-made driving simulator (A). Driving courses consisted of a

winding road that alternately curved leftward and rightward with a random curvature between 1/120 and 1/60 m−1, interleaved with straight sections with a constant

length of 60 m (B). Under normal driving (ND) condition, driving scenes were presented with auditory white noise with a constant loudness to both ears via

headphones (C). Under sensory augmentation (SA) condition, the lower part of the driving scene was occluded to restrict the visual cues needed for estimating

vehicle lateral position, and information regarding vehicle lateral position was instead provided via binaural auditory stimuli (D). The pretest and posttest MRI sessions

comprised two block-design runs, in which participants were exposed to sensory stimuli that were relevant to the lane-keeping task under SA condition. In each run,

driving scenes were presented alternately with (Aon) and without (Aoff ) auditory cues for vehicle lateral position (E).

monitor, subtending horizontal and vertical visual angles of 66◦

and 43◦, respectively, at a viewing distance of 105 cm.
On each of the 8 training days, participants performed 20

trials of a lane-keeping task (180 s for each trial) under their
assigned training condition (i.e., ND or SA condition). In each
trial, participants were required to keep their vehicle in the center
of a traffic lane by using the steering wheel. The traffic lane
was defined by left and right lane lines, giving a lane width
of 3.5 m. The lane alternately curved leftward and rightward
with a random curvature between 1/120 and 1/60 m−1; this was
interleaved with straight sections with a constant length of 60 m
(Figure 1B). The vehicle automatically traveled with a constant
speed of 80 km/h and, therefore, no pedal operations were
needed. No other road users were present throughout the task.
Under ND condition (Figure 1C), white noise with a constant
loudness (−50 dB attenuated from the maximum level that we
predetermined to be comfortably tolerable to participants) was
presented to both ears of participants via headphones during
the entire lane-keeping task. In contrast, under SA condition
(Figure 1D), the lower part of the driving scenes (i.e., the
proximal part of the road) was occluded to restrict the visual cues
needed to estimate vehicle lateral position. Instead, information
regarding vehicle lateral position was provided via binaural
auditory stimuli. Specifically, leftward (rightward) deviation of

vehicle lateral position from the center of the lane was signaled
by increasing the loudness of white noise in the left (right) ear
and decreasing the loudness of white noise in the right (left)
ear with a constant gain of 25 dB/m; in the center of the lane,
the loudness level was equal in both ears (−50 dB). Participants
assigned to SA condition were instructed in advance regarding
the meaning of the auditory stimuli. Under both conditions, the
entire experiment, including preparation and rest breaks (< 1
min) between trials, took <90 min on each training day.

Driving performance in the lane-keeping task was evaluated
in terms of accuracy and smoothness of vehicle control by using
the standard deviation of vehicle lateral position (SDLP) and
the maximum steering wheel velocity during curve negotiation
(SWV), respectively. There is accumulating evidence that SDLP
reflects compensatory steering control that makes use of the
visual information provided by the proximal part of the road,
whereas SWV reflects anticipatory steering control that makes
use of the information provided by the more distant part of the
road (Frissen and Mars, 2014; Ueda et al., 2019). For both SDLP
and SWV, lower values represent better performance. To examine
the effects of the training on driving performance, we estimated
the learning plateau and learning rate under each training
condition. First, we computed the trajectory of each performance
metric (i.e., SDLP or SWV) as a function of trial number (total,
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160 trials) for each participant and fitted an exponential function
[Y = a + b exp(−cX) where Y is a performance metric, X is
the trial number, and a, b, and c are regression parameters] to
the mean trajectory averaged across participants to estimate the
learning plateau (a) and learning rate (c) with a 95% confidence
interval (CI).

2.4. MRI Data Acquisition
MRI data acquisition was performed on a Siemens 3T Prisma
scanner with a 64-channel head array coil (Siemens Medical
System, Erlangen, Germany). In each fMRI session, a high-
resolution T1-weighted structural image was acquired by using
a 3D MPRAGE sequence (Mugler and Brookeman, 1990) with
an echo time (TE) of 3.25 ms, a repetition time (TR) of 1,700
ms, an inversion time (TI) of 0.9 s, a flip angle (FA) of 8◦, a
field of view (FOV) of 256 × 256 mm2, a matrix size of 256
× 256, a slice thickness of 1 mm, 192 contiguous sagittal slices,
and an acceleration factor of 2 for the GRAPPA parallel imaging
technique (Griswold et al., 2002). Then, fMRI data were collected
by using a gradient echo T2∗-weighted echo-planar imaging
(EPI) sequence with a TE of 30 ms, a TR of 1,556 ms, an FA of
74◦, an FOV of 200 × 200 mm2, a matrix size of 100 × 100, a
slice thickness of 2 mm, 72 contiguous axial slices, an acceleration
factor of 2 for the GRAPPA parallel imaging technique, and a
multi-band factor of 3.

During fMRI, participants were exposed to sensory stimuli
that were relevant to the lane-keeping task under SA condition
(Figure 1E). Specifically, after a 16-s rest period, participants
were given a 16-s stimulation period followed by a 16-s rest
period 8 times (giving a “run” of 272 s in total, corresponding
to 175 EPI volumes). For the stimulation periods, driving video
clips were created from driving log data in which an experimenter
(HS) had performed lane-keeping under SA training condition.
The video clips were displayed on a translucent screen with
visual angles of 26.3 and 15.6◦. In half of the video clips in
each run, the audio tracks containing auditory cues for vehicle
lateral position were present (Aon). In the other half, the audio
tracks were removed (Aoff ). These two kinds of video clips were
presented alternately in a run. Throughout the run, regardless
of whether the participant was in a rest period or a stimulation
period, a red dot was presented constantly for fixation. The run
was presented twice to each participant, with the first run starting
with Aon after the first rest period and the second starting with
Aoff instead. In each run, participants were asked to answer which
lane line (left or right) was being approached by pressing either
the left or right button of a hand-held switch box with their
right index finger or middle finger, respectively. The purpose
of this instruction was to maintain the participant’s attention
on the sensory stimuli, rather than to evaluate performance in
the scanner. Throughout the entire fMRI session, we confirmed
that participants were in a state of arousal by monitoring their
eyes via a camera. In addition, their respiratory and cardiac
signals were collected by using a pressure sensor and a pulse
oximeter, respectively. These electrophysiological signals were
used afterwards to remove physiological fluctuations from the
EPI images (Hu et al., 1995).

2.5. fMRI Data Analysis
Task fMRI data were preprocessed for each participant using
SPM12 (v7487; www.fil.ion.ucl.ac.uk/spm) with the CAT12
toolbox (r1184; www.neuro.uni-jena.de/cat). First, to obtain a
deformation field for accurate normalization of EPI images, a
T1-weighted structural image collected in the pretest session was
processed by using a segmentation procedure in CAT12. Second,
EPI images were preprocessed by using SPM12. All EPI images
acquired in the three fMRI sessions were realigned to the first
image in the pretest session for head motion correction and
then coregistered to the structural image in the pretest session.
The coregistered EPI images were normalized to MNI (Montreal
Neurological Institute) space by using the deformation field and
then smoothed with an isotropic Gaussian kernel with a full
width at half maximum of 6 mm.

To identify neuroplastic reorganization induced by the
sensory augmentation training, we performed a voxelwise
general linear model analysis. At the first level, we modeled
the two stimulus effects (Aon and Aoff ) for each run by using
boxcar functions convolved with the canonical hemodynamic
response function. By contrasting the two stimulus conditions
(Aon > Aoff ) for each fMRI session, we obtained activation
in response to auditory cues for vehicle lateral position. At the
second level, we entered these individual contrast images into
a 2-by-3 full factorial model with a between-subjects factor of
training condition (ND, SA) and a within-subjects factor of
fMRI session (pretest, posttest, follow-up). We then performed
a conjunction analysis of auditory responses in all fMRI sessions
(pretest ∩ posttest ∩ follow-up) to identify the brain regions
consistently activated before and after the lane-keeping training.
We also compared auditory responses between different fMRI
sessions to identify brain regions that were more active after
training, compared with before training (i.e., pretest < posttest
and pretest < follow-up). For all analyses, the results were
considered statistically significant at P < 0.01 cluster-level
family-wise error (FWE) corrected for multiple comparisons,
with a voxel-level threshold of P < 0.005 uncorrected.

3. RESULTS

3.1. Driving Training
Under both ND and SA conditions, lane-keeping accuracy
as assessed by using SDLP improved as training progressed
(Figure 2A). Regression analysis revealed that learning rate for
lane-keeping accuracy was slower under SA condition (0.036;
95% CI, 0.29–0.42) than under ND condition (0.055; 95% CI,
0.044–0.067), and that the learning plateau was lower under SA
condition (0.31; 95% CI, 0.30–0.32) than under ND condition
(0.37; 95% CI, 0.37–0.38). Lane-keeping smoothness, as assessed
by using SWV, also improved as training progressed, under
both conditions (Figure 2B). Regression analysis revealed that
learning rate for lane-keeping smoothness was slower under SA
condition (0.20; 95% CI, 0.15–0.25) than under ND condition
(0.55; 95% CI, 0.32–0.78) and that the learning plateaus were
comparable under SA (0.057; 95% CI, 0.056–0.057) and ND
(0.056; 95% CI, 0.055–0.056) conditions. Overall, lane-keeping
performance under SA condition improved more slowly during
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FIGURE 2 | Trajectories of driving performance during lane-keeping training. Driving performance was indexed with regard to the accuracy (A) and smoothness (B) of

steering as a function of trial number. Blue and red dots represent mean performance in each trial, separately averaged across participants under ND and SA

conditions. Each line denotes a learning curve fitted to determine learning rate and learning plateau. Vertical thin lines indicate respective training days.

training, but after training it was eventually comparable to,
or better than, that under ND condition, even though for SA
participants the visual information essential for lane-keeping
was unavailable.

3.2. Brain Activation
During fMRI, participants kept their eyes open except for natural
blinking. In addition, all participants pressed the buttons more
than 3 times in every task block (Supplementary Figure 1).
These results suggest that the participants were engaged in
the task.

Conjunction analysis of auditory responses across the three
fMRI sessions (i.e., pretest, posttest, and follow-up) revealed
significant brain activation in the superior temporal gyri
bilaterally under both ND and SA conditions (Table 1), although
the left clusters did not satisfy the statistical criteria under ND
condition. These results indicate that auditory cues for vehicle
lateral position consistently activated temporal auditory areas.

Training-induced changes (pretest < posttest) in auditory
responses differed between SA and ND conditions (Table 1).
Under ND condition, comparison of pretest and posttest
auditory responses revealed increased activation in the pre-
supplementary motor area (pre-SMA) and anterior insular
cortex (Figure 3A). In contrast, under SA condition, increased
activation in the posttest fMRI compared with the pretest fMRI
was found in the somatosensory areas bilaterally, including in the
parietal operculum, supramarginal gyrus (SMG), and postcentral
gyrus (Figure 4A), which were adjacent to, but not overlapping
with, the superior temporal auditory areas revealed by the
conjunction analysis. Under both conditions, no significant
clusters were found in the follow-up fMRI compared with the
pretest fMRI. These changes in the posttest fMRI results can be
regarded as the signatures of neuroplastic reorganization induced
by the lane-keeping training.

Furthermore, we examined the relationships between
training-induced neuroplastic changes (pretest < posttest)

and driving performance achieved by the training (i.e., the
learning plateau in lane-keeping accuracy; Figure 2A). In the
somatosensory areas, increased activation after the training
was negatively correlated with lane-keeping accuracy under
SA condition (left cluster, r = −0.69, P = 0.044; right cluster,
r = −0.36, P = 0.21; one-tailed t-test) but positively correlated
under ND condition (left cluster, r = 0.51, P = 0.12; right
cluster, r = 0.79, P = 0.017; Figures 4B,C), suggesting that
better lane-keeping performance under SA condition was
associated with greater involvement of the somatosensory areas
in auditory processing after the training. A similar tendency was
also found in both the pre-SMA (ND, r = 0.86, P = 0.0069;
SA, r = −0.35, P = 0.22; Figure 3B) and the anterior insular
cortex (ND, r = 0.78, P = 0.019; SA, r = −0.59, P = 0.083;
Figure 3C), suggesting that better lane-keeping performance
under ND condition was associated with less involvement of
these frontal areas in auditory processing after the training. In
all clusters, between-group differences in correlation coefficients
were statistically significant (for the left somatosensory cluster,
P = 0.023; for the right somatosensory cluster, P = 0.020; for
the pre-SMA cluster, P = 0.010; for the anterior insular cluster,
P = 0.0073; one-tailed Z-test).

4. DISCUSSION

Increasing attention has been paid to sensory augmentation
for not only sensory impaired but also healthy individuals,
because it can open new horizons for human-machine/computer
interface development by reconsidering human-environment
interactions (Di Pino et al., 2014). We previously demonstrated
the potential of an auditory-based self-localization assistance
system for locomotion in a simulated driving environment;
this demonstration pioneered the application of sensory
augmentation to time-sensitive daily-life situations in healthy
individuals (Ueda et al., 2019). However, the neural mechanisms
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TABLE 1 | Brain regions activated in response to auditory cues for self-localization.

Region x y z t Size

(ND, pretest ∩ posttest ∩ follow-up)

Superior temporal gyrus 50 −28 12 5.95 511

Superior temporal gyrus −34 −36 16 4.05 111†

Superior temporal gyrus −56 −36 12 3.49 79†

(SA, pretest ∩ posttest ∩ follow-up)

Superior temporal gyrus 66 −32 12 7.09 824

Superior temporal gyrus −62 −38 10 6.48 806

(ND, pretest < posttest)

Pre-supplementary motor area 10 12 56 5.76 1284

Anterior insular cortex −36 8 6 5.63 392

(SA, pretest < posttest)

Parietal operculum −60 −28 18 3.91 372

Supramarginal gyrus −58 −28 28 3.73

Postcentral gyrus −56 −28 52 3.60

Postcentral gyrus 64 −16 22 3.76 392

Supramarginal gyrus 66 −24 24 3.62

Statistical significance was set at cluster-level P< 0.01, family-wise error (FWE) corrected for multiple comparisons; the clusters marked with a dagger (†) were not large enough to satisfy

this criterion. ND and SA represent normal driving and sensory augmentation training conditions, respectively. Cluster locations are given in Montreal Neurological Institute coordinates.

FIGURE 3 | Brain regions showing increased auditory responses after lane-keeping training under ND condition (pretest < posttest). Significant clusters (family-wise

error (FWE) corrected P < 0.01) were found in the pre-supplementary motor area (pre-SMA) and left anterior insula (A). In both clusters, increased activation after the

training was positively correlated with lane-keeping accuracy under ND condition, but negatively under SA condition (B, pre-SMA; C, anterior insula).

underlying sensory augmentation for self-localization
during locomotion remain unclear. Identifying the neural
underpinnings of augmentation could provide information

that would improve our self-localization assistance systems and
facilitate the development of novel sensory augmentation devices
to assist locomotion.
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FIGURE 4 | Brain regions showing increased auditory responses after lane-keeping training under SA condition (pretest < posttest) (A). Significant clusters

(FWE-corrected P < 0.01) were found in the somatosensory areas bilaterally (red), which were not overlapped with the superior temporal auditory areas (green)

revealed by the conjunction analysis (i.e., pretest ∩ posttest ∩ follow-up). In both clusters, increased activation after the training was negatively correlated with

lane-keeping accuracy under SA condition, but positively under ND condition (B, left cluster; C, right cluster).

Here, we measured brain activation in response to auditory
cues on vehicle lateral position before and after lane-keeping
training to identify training-induced neuroplastic reorganization.
Although we expected auditory responses in the occipital visual
areas after the training, we found training-induced increases
in the activation of somatosensory areas in the parietal lobe.
We also found that greater involvement of somatosensory
areas in auditory processing after the training was associated
with better lane-keeping performance under SA condition. Not
only the parietal operculum, which is considered to be the
location of the secondary somatosensory cortex (Ruben et al.,
2001; Eickhoff et al., 2006), but also the SMG is involved
in somatosensory processing as a human homologue of the
tertiary somatosensory cortex in the monkey (Caselli, 1993;
Hagen and Pardo, 2002). Our findings appear to be consistent
with the neuroplastic changes involved in auditory-induced
somatosensory sensation after stroke. Beauchamp and Ro (2008)
investigated auditory responses in a stroke patient complaining of
sound-touch synesthesia and found substantial activation within
the secondary somatosensory cortex in response to auditory
stimuli. Furthermore, there is growing evidence of the inherent
multimodal nature of the higher-order somatosensory cortices.
Bremmer et al. (2001) demonstrated that the SMG was activated
consistently by visual, auditory, and tactile motion stimuli.
More recently, Pérez-Bellido et al. (2018) reported that auditory
frequency information was represented in somatosensory areas,
including the SMG, as well as in the auditory cortices.

These findings clearly indicate that auditory information can
be processed in higher-order somatosensory cortices. Taken
together, our data suggest that the use of auditory cues for self-
localization during locomotion relies onmultimodality in higher-
order somatosensory cortices rather than the occipital visual
cortices, even though the vehicle lateral position conveyed by the
auditory cues in this study is usually estimated from visual cues
within the proximal part of the road (Land and Horwood, 1995;
Frissen and Mars, 2014; Ueda et al., 2019).

However, another interpretation is possible because there
were differences in visual as well as auditory stimuli during
driving training between ND and SA conditions. Specifically,
the lower part of the driving scenes (i.e., the proximal part of
the road) was visually occluded in SA, but not ND, condition.
Therefore, the results could be interpreted as indicating that
improved driving performance in SA condition resulted from
the completion of occluded visual information rather than the
complementary use of auditory cues (sensory augmentation).
Although this interpretation cannot be ruled out in the current
experiment, our previous behavioral study (Ueda et al., 2019)
revealed that when the proximal part of the road is occluded,
driving performance does not improve without auditory cues
for self-localization. Thus, we concluded that it is more
likely that somatosensory involvement in auditory processing
after SA training resulted from the acquisition of augmented
sensory skill using auditory cues for self-localization rather than
visual completion.
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It could be argued that this sensory augmentation for
self-localization during locomotion resembles echolocation and
therefore that they are likely to share neural substrates.
Echolocation is an augmented sensory skill by which the
sound reverberation of mouth clicks is used to infer spatial
information in the surrounding environment, and it can be
used for navigation by blind people. From a functional point
of view, echolocation and the sensory augmentation that
we examined here can both be regarded as auditory-based
localization skills. However, their neural bases appear to differ
from each other. Several lines of evidence demonstrate the
involvement of occipital visual, rather than somatosensory, areas
in echolocation (Thaler et al., 2011, 2014; Wallmeier et al.,
2015). Furthermore, Thaler and Foresteire (2017) reported that,
in sighted individuals, echolocation performance was disrupted
by task-unrelated visual, but not tactile, stimuli, also suggesting
that there is a lack of involvement of the somatosensory areas
in echolocation. The major difference between our findings and
those of these previous echolocation studies is in the action
demanded for locomotion. Our participants were required to
control a vehicle by using augmented sensory information for
self-localization, whereas in the previous studies participants
were asked to extract spatial information on the surrounding
objects from echoes. The use of augmented sensory information
for self-localization during locomotion might be crucial for
the involvement of somatosensory areas. In fact, one previous
study reported the echo-related activation of extensive parietal
areas in a situation where the use of echolocation ability to
detect path directions during walking was required (Fiehler
et al., 2015). The neuroplastic reorganization induced by
sensory augmentation may depend not only on what kinds
of content are conveyed via an augmented sense, but also on
how the augmented sensory information is used to accomplish
task demands. This notion requires further clarification in
future research.

Another important finding of our study was that superior
lane-keeping accuracy was achieved with, rather than without,
the auditory-based self-localization assistance system. It is
evident that the visual information contained in the proximal
part of the road is typically critical to accurate lane-keeping
(Land and Horwood, 1995; Frissen and Mars, 2014). By using
the same experimental setup, we previously demonstrated
that when the proximal part of the road was occluded,
lane-keeping accuracy was markedly degraded and did not
improve with training (Ueda et al., 2019). However, we
observed that the learning curve of lane-keeping accuracy
reached a better plateau under SA condition than under
ND condition. This result may be attributable to more
accurate and precise feedback of lane-keeping errors under
SA condition. In general, sensorimotor learning tasks require
sensory error signals if a person is to achieve fine motor
control (Kawato et al., 1987). Under ND condition and in
typical visual-based vehicle driving, drivers are required to
estimate the vehicle lateral position by using visual cues from
the proximal part of the road. In contrast, the auditory cues
used under SA condition can provide exact information about
the vehicle lateral position. Nevertheless, in terms of both

accuracy and smoothness performance metrics, learning was
slower under SA than under ND condition. This presumably
reflects the additional cognitive cost of utilizing auditory cues
for self-localization.

We also found training-induced neuroplastic changes
under ND condition. This was an unexpected result, because
under ND condition the auditory stimuli presented during
lane-keeping training were totally irrelevant to the task. A
possible interpretation for this is that the cognitive control
required to ignore the task-irrelevant auditory stimuli
during lane-keeping training resulted in training-induced
greater activation of the pre-SMA and the anterior insular
cortex. In fact, both these regions are considered part of
the cognitive control network (Cole and Schneider, 2007;
Niendam et al., 2012). In addition, Smucny et al. (2013)
showed that the pre-SMA is engaged when auditory distraction
is present during a highly demanding cognitive task. The
anterior insular cortex is also known to play a crucial role
in suppressing distractor inference (Bunge et al., 2002). This
interpretation seems to dovetail with lesser involvement of
the superior temporal auditory cortex under ND condition
than under SA condition (Table 1). Under this interpretation,
furthermore, more involvement of the abovementioned
frontal regions under ND condition would indicate the
assignment of more cognitive resources to distractor inference
suppression; this is consistent with our finding that under
ND condition, lane-keeping performance was negatively
associated with increased involvement of these areas after
the training.

Several limitations of our study should be noted. First,
the small sample size restricts the ability to generalize
our findings. In particular, we identified training-induced
neuroplastic changes only as within-group differences,
not as between-group differences (i.e., interaction between
training condition and fMRI session). Replication with a
larger sample size is needed to improve the generalizability
of our results. Second, brain activation associated with
sensory augmentation for self-localization needs to be
investigated by using a more realistic driving environment.
We made a substantial effort to expose participants in the
MRI scanner to sensory stimuli similar to those experienced
during sensory augmentation training. However, the sensory
stimulation remained different between inside and outside
the scanner (e.g., the size of the visual stimuli). In addition,
we examined brain activation during passive exposure
to sensory stimuli, but not during active behaviors using
augmented sensory information. According to previous
neuroimaging studies (Uchiyama et al., 2003, 2012), active
compared with passive driving additionally activates not
only motor areas but also various sensory and association
areas. It will be important for future studies to investigate
the role of somatosensory responses to auditory cues for self-
localization in such driving-related networks. Because there
is empirical evidence that brain activation associated with
sensory augmentation is context-dependent (Sadato et al.,
1996), differences in stimuli and behavior might have influenced
our findings.
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5. CONCLUSION

We demonstrated here that sensory augmentation for self-
localization during locomotion results in extensive neuroplastic
reorganization in the human cerebral cortex. Interestingly,
although we expected training-induced reorganization in the
occipital visual areas, we observed neuroplastic changes in
higher-order somatosensory areas. This finding suggests that
the involvement of somatosensory, rather than visual, areas
is crucial for acquiring augmented sensory skills for self-
localization during locomotion, even though self-localization
is considered to rely heavily on vision. Our data also showed
that, depending on how it is used, sensory augmentation can
enable better performance in healthy individuals, particularly
in situations where the information provided by an augmented
sense initially requires the complex computation of sensory
signals. Our findings will facilitate further applications
of sensory augmentation to human-computer/machine
interface development.
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The EEG reflects mental processes, especially modulations in the alpha and theta

frequency bands are associated with attention and the allocation of mental resources.

EEG has also been used to study mental processes while driving, both in real

environments and in virtual reality. However, conventional EEGmethods are of limited use

outside of controlled laboratory settings. While modern EEG technologies offer hardly

any restrictions for the user, they often still have limitations in measurement reliability.

We recently showed that low-density EEG methods using film-based round the ear

electrodes (cEEGrids) are well-suited to map mental processes while driving a car in

a driving simulator. In the present follow-up study, we explored aspects of ecological

and internal validity of the cEEGrid measurements. We analyzed longitudinal data of 127

adults, who drove the same driving course in a virtual environment twice at intervals

of 12–15 months while the EEG was recorded. Modulations in the alpha and theta

frequency bands as well as within behavioral parameters (driving speed and steering

wheel angular velocity) which were highly consistent over the two measurement time

points were found to reflect the complexity of the driving task. At the intraindividual

level, small to moderate (albeit significant) correlations were observed in about 2/3 of

the participants, while other participants showed significant deviations between the two

measurements. Thus, the test-retest reliability at the intra-individual level was rather low

and challenges the value of the application for diagnostic purposes. However, across all

participants the reliability and ecological validity of cEEGrid electrodes were satisfactory

in the context of driving-related parameters.

Keywords: EEG, driving, mental work load, cEEGrids, test-retest reliability

INTRODUCTION

Neurophysiological research methods have a long tradition of deriving mental processes
both under laboratory conditions and in real-life environments. While in the first
case a high degree of experimental control and reliability of measurements is can be
assumed, measurements of neurophysiological parameters in the field (still) represent
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a challenge, but also an opportunity toward a higher ecological
validity (Engel et al., 2013; Parada, 2018; Parada and Rossi,
2020). Especially with regard to EEG, the development of
modern recording methods and analysis routines has opened
up completely new possibilities to map the work of the brain
under real conditions (for a recent review, Wascher et al.,
2021). In two recent studies, for example, we showed that
mental workload during the processing of cognitive tasks
while walking on differently challenging courses was not only
reflected in performance measures, but that it was also associated
with modulations in brain activity (Reiser et al., 2019, 2020).
While both studies clearly demonstrated the usability of EEG
measurements under out-of-laboratory everyday conditions,
conventional electrode caps have been used here, which offer
a good prerequisite for EEG recording, but are unfavorable in
real-life environments for many reasons: they are conspicuous,
time-consuming to apply, restrict the user’s mobility, and are of
limited use when high ecological validity is important – especially
when possible influence of the measurement method on the
measurement results should be minimized (e.g., Sterr et al., 2018;
Mikkelsen et al., 2019).

Alternative solutions are provided by new recording
technologies. The use of dry electrodes, for example, is such a
technology, which has proven to be very reliable, but easier to
apply and wear compared to conventional wet electrodes (Di
Flumeri et al., 2019). Even more inconspicuous is the cEEGrid
system, in which the EEG is recorded by only a few film-based
round the ear electrodes. The cEEGrids technology not only
avoids restrictions arising from conventional electrode setups
(Symeonidou et al., 2018), but is also easier and faster to apply
than conventional multichannel Cap-EEG. At the same time,
they offer a sufficient signal quality and allow for valid and
reliable measurements (Mirkovic et al., 2016; Bleichner and
Debener, 2017). Previous research has shown, for example,
that it is possible to derive neurophysiological correlates of
cognitive processes from the oscillatory brain activity recorded
via cEEGrid electrodes both in an auditory oddball task (Debener
et al., 2015) and a visual Simon task (Pacharra et al., 2017).

The good practicability of the cEEGrids technology was only
recently demonstrated in a large-scale study on driving abilities
of seniors, in which older adults drove an ∼1-h close-to-reality
driving simulator course, consisting of different road sections
with various challenges for the driver (Wascher et al., 2019).
Using behavioral (driving speed, steering wheel angular velocity)
and neurophysiological measures (EEG oscillatory power in the
theta and alpha band frequencies), it was possible to estimate
mental workload while driving, based only on characteristics
of the driving situation. They found that with increasing
track difficulty the steering angular velocity increased while
driving speed decreased. A similar pattern was found on the
electrophysiological level, whereas relative theta power increased
and relative alpha power decreased. Finally, using a track-
frequency analysis, it was possible to map modulations in EEG
spectral power to the difficulty of the traffic situation, which
highly corresponded with a priori expert ratings. This highlights
the connection of behavioral and electrophysiological measures,
as the findings are in line with the assumption that, firstly,

reduced alpha power is a correlate of increased mental workload
(Wascher et al., 2016) and attentional engagement (Pattyn et al.,
2008), and, secondly, increased theta power is related to mental
processing demands (Lal and Craig, 2001; Borghini et al., 2014)
and associated with higher workload (Wilson and Hankins,
1994; Gevins et al., 1997) or task engagement (Yamada, 1998;
Onton et al., 2005). However, the cognitive processes represented
by alpha and theta activity cannot be considered separately.
Especially in natural environments, for example, when driving
a car (Di Flumeri et al., 2018) and when multi-tasking is
required (Puma et al., 2018), numerous subtasks have to be
performed, which are represented differently in oscillatory brain
activity. It has been proposed that visual processing, information-
gathering, and early attention allocation seems to be represented
more by alpha activity, while higher cognitive processes such
as integration of information, problem solving, and executive
functions seem to be represented more by theta activity (Berka
et al., 2007). This is also reflected in the topography, with
alpha activity typically derived over parietal and theta activity
over fronto-central areas (e.g., Wang et al., 2018; for review,
Klimesch, 1999). Accordingly, by combining driving parameters
and oscillatory activity in the alpha and theta frequency bands
derived over parietal and frontal areas, respectively, it has
recently been demonstrated that the current workload of a driver
can reliably be determined using a mobile EEG system (Islam
et al., 2020). Taken together, both measures demonstrated the
flexible allocation of cognitive resources depending on the route
section and difficulty (Borghini et al., 2014; Karthaus et al., 2018;
for review, Lohani et al., 2019).

Results like these are overall promising, but lead toward
a still unanswered question: to what extent are these EEG
measurements reliable? This arising question of EEG test-retest
reliability is nothing new, as studies on resting-state EEG proved
that the normal EEG can be treated as an intraindividually rather
stable trait (e.g., Gasser et al., 1985; Van Albada et al., 2007;
Angelidis et al., 2016), with test-retest reliabilities in healthy
adults typically exceeding 0.80 over intervals of more than 1
year (Hatz et al., 2015). Adding to this, task-related EEG which
maps changes in cognitive states related to, for example, task
difficulty was also found to have a high test-retest reliability.
An exemplary study was conducted by McEvoy et al. (2000), in
which subjects performed cognitive tasks at intervals of 7 days,
resulting in high intraindividual correlations in oscillatory brain
activity in the theta and alpha frequency bands. Comparably high
reliabilities were also found in other works (e.g., Fernández et al.,
1993; Fallgatter et al., 2002; Näpflin et al., 2008). In the context
of driving, a study on the reproducibility of EEG modulations as
consequence of driver fatigue showed high test-retest reliability
as well (Lal and Craig, 2005). However, transient fluctuations
in mental states like alertness and vigilance are hard to control
especially under less structured experimental conditions and have
typically been associated with reduced test-retest reliabilities – a
pattern typically found in natural environments (Fernández et al.,
1993). For mobile EEG systems, only few findings are available so
far. A study in which the test-retest reliability of a single-channel,
wireless EEG system was tested in healthy individuals showed
reduced, but still satisfactory reliabilities over short (1-day) and
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longer (1-week and 1-month) retest-intervals, with Intra-Class
Correlations for a group of older adults ranging between 0.51
and 0.89 in an eyes-open condition (Rogers et al., 2016). A study
on cEEGrids demonstrated a sufficient test-retest reliability when
measuring resting-state and task-related EEG in an auditory
oddball paradigm over many hours (Debener et al., 2015).

The aim of the present study was to evaluate the test-
retest reliability of the cEEGrid technology under less favorable
recording conditions over an even longer time interval. For this
purpose, the data of the first measurement point of our driving
study presented in Wascher et al. (2019) were compared with
those of the second measurement more than 1 year later. All
data analyzed here were taken from a (still ongoing) large-scale
investigation of the driving abilities of older adults aged between
67 and 76 years, which is designed as a longitudinal study
with the same individuals being tested several times at intervals
of 12–15 months. In addition to several neuropsychological
tests, the project also comprises a simulated driving test during
which the EEG is recorded using cEEGrid technology. The
comparison between the two time points of measurement was
performed on the behavioral (i.e., driving speed and steering
wheel angular velocity) and EEG data (alpha and theta power)
as well as their dependencies on the characteristics of the driving
route. In addition, it was assessed to what extent interindividual
differences could be replicated regarding the allocation of mental
resources as a function of workload. Thus, while our former study
demonstrated that task-related modulations of driving behavior
and EEG—previously found in controlled lab settings—are also
observable in a naturalistic driving simulation and cEEGrids
measurements, now we focused on the following questions:
(1) How have the performance parameters assessed during the
driving course (i.e., driving speed and steering wheel angular
velocity) changed compared to the first measurement point? (2)
Can the previously found dependence of relative alpha and theta
power on track difficulty be replicated at a between-subject level?
(3) How strong is the intraindividual correspondence of the
oscillatory measures in dependence on the track difficulty?

METHODS

Participants
All participants were part of a large-scale longitudinal
investigation of the driving abilities of older adults which
started in 2016. One hundred twenty-seven participants took
also part in both measurement time points, completed the
required driving distance twice and provided a sufficient data
quality in the EEG (see below). These 127 participants (mean
age 72.2 years, age range 68–77 years; 22.0 % female) all had
a valid driving license and reported to be experienced drivers
with an average annual mileage between 5,000 and 10,000
km/year. They had normal or corrected to normal vision and
reported an overall good health status. They completed a
battery of neuropsychological tests which will not be reported
here. Before starting the experiment, all participants provided
written informed consent. The study was approved by the local
ethics committee of the Leibniz Research Centre for Working
Environment and Human Factors.

Task and Procedure
The task and the experimental procedure were exactly the same
for measurement points 1 and 2 (MP1 and MP2). Between MP1
and MP2, there was an average of 398.17 days (minimum 350,
maximum 580, SD 37.79; about 13 months). The test procedure
and data analysis have been described in detail in Wascher et al.
(2019). In brief: After completing various questionnaires and
performing a battery of neuropsychological followed by a vision
test, the participants completed a pre-test drive lasting about
15min. The driving route of the pre-test drive was not part
of the actual test drive and intended to familiarize the drivers
with the characteristics of the vehicle, its steering and braking
behavior, and the static driving simulator (ST Sim, St Software
B.V. Groningen, NL). Then the cEEGrid electrodes were attached
and the participants completed a driving course which resembled
a regular German driving test consisting of four different road
sections: a section of state road with several intersections,
roundabouts, and a foggy passage (SR1) was followed by a longer
freeway section including several roadwork sites and a freeway
parking area had to be passed (FW). This was followed by
another section of state road with several left and right turn
intersections (SR2), before the drivers entered the city where
traffic lights, pedestrians, and cyclists had to be attended to (CT).
Acoustic (verbal) and visual navigation information guided the
drivers through the ∼37-km driving course. Given that not all
participants finished the complete course, only the first 30 km
were analyzed here.

In order to test how the mental workload of the driver
was modulated by the characteristics of the driving route, the
driving scenario was a priori subdivided into three driving
profiles, being either simple (undisturbed ride on a free
route), complex (junctions with turning, roundabouts, left turns,
traffic lights, motorway entrances and exits), or interactive
(interactions with other traffic participants, like overtaking or
driving behind a vehicle ahead). In total, sections of simple,
complex, and interactive driving profiles comprised ∼13, 8, and
9 km, respectively. These driving profiles were classified by an
expert according to their assumed mental demands as of low,
medium, and high task load (cf. Pauzié, 2008; Rahman et al.,
2017). It should be noted, however, that this subdivision was
done across all road sections (i.e., state road, freeway, and city
sections), since the proportion of different route profiles was
distributed rather unevenly across the road sections. Since the
driving distance had to be limited to a reasonable level (also
in view of the background of the study and the age of the
participants), the data basis did not appear to be sufficient for a
more fine-grained differentiation.

Data Recording and Processing
EEG was recorded using cEEGrids, consisting of flex-printed,
C-shaped electrode arrays with 10 silver printed electrodes
(Debener et al., 2015; Bleichner et al., 2016; Mirkovic et al.,
2016; Pacharra et al., 2017). The cEEGrids are positioned
around the participant’s left and right ear using an adhesive
surface (Figure 1). In contrast to conventional electrode setups,
cEEGrids are barely visible, comfortable to wear, require only
a small amount of electrode gel, and are therefore fast and
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FIGURE 1 | cEEGrids technology, consisting of C-shaped electrode arrays

with 10 electrodes placed around the participant’s left and right ears (photo:

IfADo).

easy to apply and remove. The cEEGrids were connected to a
QuickAmp DC-amplifier with an on-line low-pass filtering at
280Hz. Data were sampled at 1 kHz with a resolution of 24 bits.
The two electrodes in the middle of the right cEEGrid served
as ground and online reference respectively (R4a, R4b). EEG
data were stored together with the driving simulator data from
which driving speed and steering wheel angular velocity were
derived offline. Driving speed was defined as the distance (in
meters) traveled per time (in seconds) over a distance of 10m
and converted in kilometers per hour (km/h). Steering wheel
angular velocity was defined as the angular speed at which the
drivers turned the steering wheel, averaged over a distance of
10m and converted in degrees per second (deg/s). In general,
steering wheel angular velocity is considered an indicator of task
load while driving (e.g., Antin et al., 1990; Verwey and Veltman,
1996).

The EEG analysis procedure is described in detail in Wascher
et al. (2019) and is therefore only outlined briefly here.
Firstly, data were checked for integrity, so that data sets with
either incomplete driving distance or corrupt transmission of
simulator data into the EEG recording files were discarded. After
resampling to 200Hz and band-pass filtering (1–40Hz) of the
EEG and simulator data, single EEG channels were checked
for integrity by using the EEGLAB implemented rej_channel
function (normed data; criterion: 4 standard deviations) to
detect and discard faulty channels. Only datasets with intact
reference channels after channel rejection were kept for further
analyses. They were re-referenced to the average of L4b and
R4b and entered into the artifact subspace reconstruction (ASR)
procedure (Mullen et al., 2014, 2017). ASR is a component-based
method and was proven in a number of studies (e.g., Plechawska-
Wojcik et al., 2019) including a driving simulator study (Chang
et al., 2019) to be highly effective in automatic filtering transient
or large-amplitude artifacts (like produced by eye blinks and
eye movements) from EEG data. Followingly, a time frequency
decomposition was performed on each channel by convolving
the data with complex Morlet wavelets. Spectral power estimates
were calculated as the squared absolute values of the complex

convolution result and were averaged across channels. Finally,
participants with total EEG power that deviated by more than
3 standard deviations from the median were discarded and the
complete data set was excluded. In total, the 127 participants
(described in section Participants) who had complete data sets at
both measurement points were included into the further analysis.

Data Analysis
We conducted two different approaches to assess the retest
reliability of the EEG data, first a task-load related analysis,
investigating whether the EEG measures at both measurement
points depended on the driving profile in the same way, and
second an (intra-individual) correlational analysis, comparing
the EEGmeasures along the route at MP1 andMP2 separately for
each subject. In addition to the spectral power in theta (3–6Hz)
and alpha (7–10Hz) frequency bands, behavioral data (driving
speed and steering wheel angle velocity) were analyzed to test
whether behavioral results reflect the same pattern as the EEG
results. It should be noted that we chose a lower than typical
frequency range for determining alpha activity. The reason for
this is the shift in alpha activity toward lower frequencies that
is often observed with increasing age (e.g., Van Albada et al.,
2010; Chiang et al., 2011). In our earlier analysis, we also
measured a mean alpha frequency of <9Hz and therefore chose
the frequency range of 7–10Hz (Wascher et al., 2019). For this
reason, and also for reasons of better comparability with our
previous study, we have maintained this frequency range here
as well.

In the task-load related analysis, behavioral and EEG data
were averaged across the driving course, separately for simple,
complex, and interactive driving profiles, and mean values
were entered into 2 × 3 ANOVAs with measurement point
(MP1, MP2) and driving profile (simple, complex, interactive) as
within-subjects factors. Effect size estimates (adj η2p) are reported
according to Mordkoff (2019). As in our former study, not only
raw power values of alpha and theta activity were analyzed, but
also relative power values, representing the percentage of the
power in a given frequency band relative to the total power.
We therefore calculated the contribution of each frequency to
the overall signal by applying a vector normalization across all
frequencies for each time point. The result were the so-called
alpha and theta fractions. The idea behind this normalization
is that high power and high variance in oscillatory activity
across all frequency ranges often masks effects in the alpha and
theta regions, which may become more prominent by forming
the relative power values. Thus, there is evidence that relative
power fluctuations are more related to experimental effects than
absolute power fluctuations (Klimesch, 1999; Kilner et al., 2005;
Labounek et al., 2015).

For the correlational analysis, we conducted the track-
frequency analysis (as detailed in Wascher et al., 2019), in which
the time period of the EEG recording was mapped onto the
30-km driving route using 43 predefined landmarks for each
participant. The landmarks consisted of defined route points to
which a trigger was written into the EEG recording as soon
as the vehicle passed this point. For the sections between the
landmarks, the waypoints were estimated from the current speed
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of the vehicle at that point. Thus, we achieved a temporal-spatial
assignment, in which each time point of the EEG measurement
was assigned to a track section by stretching and compressing
the EEG data in the temporal domain. For the track-frequency
analysis, 3,000 10-meter track segments were generated, covering
the entire 30-km driving route. To determine the alpha and
theta power along the track, first a time-frequency analysis was
performed over all time points. Based on this analysis, the mean
power fraction for alpha and theta power was calculated for
each of the 10-meter track segments, then z-transformed across
all the 3,000 data points and low-pass filtered by a ± 40m
moving average. The 95% confidence intervals were calculated
and are shown in Figure 4 for MP1 and MP2. In order to
determine the relationships of oscillatory power measured at the
two measurement points on an intraindividual level, correlations
between MP1 and MP2 were computed across the entire 30-
km driving course. That is, Pearson’s r correlations between
the alpha and theta power values measured at MP1 and MP2
were computed across the 3,000 10-meter track segments for
each participant. Associations between the two measurement
points were regarded as weak, moderate, or high for correlation
coefficients of 0.10, 0.30, or 0.50 or larger, respectively, according
to the interpretation of effect sizes proposed by Cohen (2013).
Since effects of the driving course should rather appear on relative
(than on absolute) power values (see above), the correlation
analysis was exclusively performed for alpha and theta fractions.

The track-frequency analysis was completed by a simple
classifying algorithm intended to estimate the track-specific task
load based on the EEG data. Here, it was assumed that high
theta activity is associated with increased mental effort and high
alpha activity with reduced attentional allocation. Therefore, as in
our previous analysis (Wascher et al., 2019), the algorithm tested
theta and alpha fraction against each other using a paired-sample
t-test for each data point (i.e., for each 10-meter track segment),
and assigned low task load to track segments with significantly
higher alpha than theta fraction, and high task load to segments
with significantly higher theta than alpha fraction. If theta and
alpha fraction did not differ significantly, a median task load was
assigned to this track segment. This classification procedure was
performed equally for MP1 and MP2, and it was determined
how many road sections were rated as equally difficult at both
measurement times (suggesting a reliable estimation of task load
from the EEG) or were rated as easier or more difficult in MP1
and MP2. Finally, for each participant the correlation of EEG-
based task load estimates at MP1 and MP2 was computed across
the entire 30-km driving course (i.e., across the each 10-meter
track segment), using Pearson’s r correlations.

RESULTS

Behavior
The track-based analyses of the driving parameters showed
that both driving speed and steering wheel angular velocity
profoundly varied along the driving course (Figure 2). In
particular, while the freeway section (FW) was characterized by
high driving speed and low steering angular velocity (apart from
passing through a freeway parking area at kilometer 15), the

second state road section (SR2) and especially the city traffic drive
(CT) were characterized by lower and highly varying driving
speed as well as increased and higher steering angular velocities.
More importantly, however, it is to notice that the driving
speed increased overall, while the steering wheel angular velocity
decreased at MP2 relative to MP1. Also, the mean drive time for
the entire course went from 51.6min (SD 9.0) to 46.7min (SD
8.3), t(126) = 5.65, p < 0.001.

These differences were even more evident in the task-load
related analysis, analyzing the driving parameters separately for
passages with simple, complex, and interactive driving profiles
(Figure 3). The mean driving speed significantly increased from
MP1 to MP2, F(1, 126) = 25.60, p < 0.001, adj η2p = 0.162, while
the mean steering wheel angular velocity decreased, F(1, 126) =
20.15, p < 0.001, adj η2p = 0.131. There were no interactions
of measurement time and driving profile, neither for driving
speed, F(2, 252) = 0.35, p = 0.71, adj η2p = 0.005, nor for steering

wheel angular velocity, F(2, 252) = 1.36, p = 0.26, adj η2p = 0.003,
indicating that the effects of driving profile on driving speed,
F(2, 252) = 4,402.95, p < 0.001, adj η2p = 0.972, and steering

angular velocity, F(2, 252) = 2,118.03, p < 0.001, adj η2p = 0.944,
did not depend on measurement time. Thus, the participants
drove at highest speed in simple passages and significantly
reduced the speed in complex passages, F(1, 126) = 5,488.40, p
< 0.001, adj η2p = 0.977. Relative to complex passages, they also
drove faster when there were interactions with other road users,
F(1, 126) = 1,369.34, p < 0.001, adj η2p = 0.915. The steering
angular velocity increased from simple to complex passages,
F(1, 126) = 5,919.92, p < 0.001, adj η2p = 0.979, and further from
complex to interactive passages, F(1, 126) = 169.92, p < 0.001, adj
η2p = 0.571.

Alpha and Theta Power Analysis
The track-based analysis of brain oscillatory power demonstrated
that both alpha and theta power fractions varied substantially
over the driving route (Figure 4): Phases of high alpha
fraction alternated with short sections in which alpha fraction
was strongly reduced. For example, the freeway passage was
characterized by high alpha fraction values, while these were
reduced at the beginning of the fog passage at kilometer 3, when
driving through the freeway parking area at kilometer 15, and
during city driving after kilometer 27. The theta values, on the
other hand, showed a rather inverse pattern.

The task-load related analysis indicated that raw alpha power
significantly increased from MP1 to MP2, F(1, 126) = 10.02, p
< 0.005, adj η2p = 0.066, while differences for raw theta power
and alpha and theta fraction power were not significant, all Fs
< 2.13, all ps > 0.14 (Figure 5). There were effects of driving
profile on raw theta power, F(2, 252) = 24.75, p < 0.001, adj η2p
= 0.158, as well as alpha fraction power, F(2, 252) = 11.89, p <

0.001, adj η2p = 0.079, and theta fraction power, F(2, 252) = 66.38,

p < 0.001, adj η2p = 0.340, but not raw alpha power, F(2, 252) =

0.15, p= 0.86, adj η2p = 0.007. Also, there were no interactions of
measurement time and driving profile, all Fs< 2.76, all ps> 0.06.
Further comparisons of the different driving profiles indicated
that alpha fraction decreased from simple to complex passages,
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FIGURE 2 | Track-based analyses of driving parameter. Mean driving speed (upper row) and steering wheel angular velocity (lower row) as function of driving route,

shown separately for MP1 (black), MP2 (red), and MP1 – MP2 differences (blue). Note that for each time point individual values of each participant were assigned to fix

waypoints and then averaged 10-meter wise. SR1, first state road; FW, freeway; SR2, second state road; CT, city traffic.

F(1, 126) = 14.36, p < 0.001, adj η2p = 0.095, but did not differ in
complex and interactive passages, F(1, 126) = 0.06, p = 0.82, adj
η2p = 0.007. Raw theta power increased from simple to complex

passages, F(1, 126) = 44.27, p < 0.001, adj η2p = 0.254, but did
not differ in complex and interactive passages, F(1, 126) = 0.04;
p = 0.85, adj η2p = 0.008. Theta fraction power also increased
from simple to complex passages, F(1, 126) = 52.53, p < 0.001,
adj η2p = 0.289, and was stronger in interactive than in complex

passages, F(1, 126) = 10.95, p < 0.005, adj η2p = 0.073.

Correlational Alpha and Theta Power
Analysis
In order to estimate the degree to which alpha and theta fraction
power remained stable between the two measurement points at
an intraindividual level, correlations have been computed across
the entire 30-km driving course (i.e., across the 3,000 10-meter
track segments) for each participant. Individual analyses revealed
that the correlation coefficients were quite evenly distributed and
ranged from low to medium (Figure 6). There were significant
positive correlations (p < 0.05) in 73.2% of the participants for
alpha fraction, r = 0.57–0.04, and in 80.3% for theta fraction,
r = 0.59–0.04. Of these significant positive correlations, 53.8%
(alpha fraction) and 68.6% (theta fraction) were in a low range,
r > 0.1, and 7.5% (alpha fraction) and 13.7% (theta fraction)
were in a medium range, r > 0.3. Also, significant negative

correlations were found in 6.3% of the participants for alpha
fraction, r = −0.10 to −0.04, and in 6.3% for theta fraction,
r =−0.13 to−0.04.

EEG-Based Estimation of Task Load
The EEG-based estimation of the track-specific task load revealed
a pronounced variance of load ratings along the driving course
(Figure 7). High load ratings were mainly found at the beginning
of the drive and of the fog passage (at kilometer 3), during the
state road sections (SR1 and SR2) as well as during the city traffic
drive (CT). Low load ratings were found during the freeway
section (FW), apart from passing through a freeway parking area
(at kilometer 15). This pattern was overall quite similar at MP1
and MP2, r = 0.729. There were, however, some differences in
task load ratings: Higher ratings were found at the beginning and
the end of the fog passage (at kilometer 3 and 5), while passing
through the freeway parking area (at kilometer 15), and at the
end of the freeway section. In contrast, lower ratings were found
during the fog passage, during the freeway section (FW), and the
second state road section (SR2). Overall, of the 3,000 (10-meter)
track segments assessed, 72.23% were rated the same in terms of
task load, 14.66 % were rated as easier and 13.11% were rated as
more difficult. Not a single road section that was rated as easy
(difficult) in one of the two measurements was rated as difficult
(easy) in the other measurement (Figure 8).
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FIGURE 3 | Task-load related analysis of driving parameters. Average driving speed (left) and steering angle velocity (right) as function of driving profile (simple,

complex, interactive), shown separately for MP1 (black) and MP2 (red). Error bars indicate standard errors.

Finally, in order to test to what extent the EEG-based
estimates of task load are consistent at the first and second
measurement time points at an intraindividual level, correlations
were computed across the 3,000 (10-meter) track segments for
each participant. There were significant positive correlations in
81.9% of the participants, r = 0.44–0.04, of which 61.5% were
in a low range, r > 0.1, and 4.8% in a medium range, r >

0.3. Significant negative correlations occurred in 7.1% of the
participants, r =−0.11 to−0.04 (all p < 0.05).

DISCUSSION

The aim of the present study was to evaluate the reliability of the
cEEGrid technology in a longitudinal investigation of the driving
abilities of older adults. Behavioral and electrophysiological
parameters of mental load measured while driving in a driving
simulator at two time points more than 1 year apart were
compared and related to characteristics of the driving course.
With a high reliability of the measurement, comparable effects
of task difficulty on the EEG parameters should appear
(independent of the time of measurement), which should
also be related to the behavioral measures. In addition, a
high correspondence of the oscillatory measures between the
first and the second measurement time should occur on an

intra-individual level. The analyses indicated a number of specific
effects of measurement time point and driving profile on
behavioral driving parameters and brain oscillatory activity that
are discussed in detail in the following.

Driving Parameters: Speed and Steering
Wheel Angular Velocity
Overall, the average speed increased while the steering wheel
angular velocity decreased from MP1 to MP2. Given that the
driving speed in our scenario could be freely chosen by the driver
within themaximum speed limits, the increase in driving speed at
the second measurement time point could indicate an increase in
perceived safety whenmanaging the driving task at a second time.
On the one hand, this could result from a higher familiarity with
the route. Especially in elderly drivers, a reduction of speed is a
frequently observed strategy when driving an unknown route or
when the driving situation becomes more complex so that drivers
feel unsafe (Trick et al., 2010). In extreme cases, this can lead to
dangerous driving situations, for example, if other road users are
hindered and forced to make unnecessary and risky overtaking
maneuvers. On the other hand, driving speed is usually increased
with decreasing workload (Harms, 1986; Verwey and Veltman,
1996), which would also suggest that the second drive was less
challenging to the participants than the first one.
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FIGURE 4 | Track-based analyses of EEG parameter. Mean z-transformed alpha (middle row) and theta (lower row) power fractions as function of driving route for

MP1 (black) and MP2 (red), shaded by their 95% confidence intervals. For comparison, mean driving speed (upper row) is also shown. Note that for each time point

individual alpha and theta values of each participant were assigned to fix waypoints and then averaged separately for 10-meter track segments. SR1, first state road;

FW, freeway; SR2, second state road; CT, city traffic.

This is also supported by the decrease in steering wheel
angular velocity as this measure is also considered to be an
indicator of task load while driving (e.g., Antin et al., 1990;
Verwey and Veltman, 1996). Here, high angular velocities are
associated with high load whereas low angular velocities are
associated with low load. Accordingly, repeatedly driving the
same route would be less stressful than maneuvering on a
completely unfamiliar route. It is remarkable that there was more
than 1 year between the measurements, which means that the
participants seem to have memorized the requirements of the
route very well. In addition, long-term learning effects could play
a role by which the participants benefit from a more and more
experienced anticipation of steering behavior of the car. In a
previous driving simulator study, in which younger and older
participants had to keep a virtual car on track on a curvy road,
we also observed learning effects in form of a decrease in steering
variability during the∼1-h drive (Getzmann et al., 2018).

With regard to the reliability of the measurements, it is
also remarkable that the influences of the driving profile on
driving speed and steering wheel angular velocity did not differ
at MP1 and MP2. The driving course was subdivided into
simple, complex, and interactive driving profiles, which were
related to different levels of task load, based on known factors
of mental load in driving situations (Pauzié, 2008; Engström
et al., 2017; Rahman et al., 2017). Thus, passages with an

undisturbed ride on a free route were rated as of low task
load, passages with junctions with turning, roundabouts, and
left turns as of medium task load, and interactions with other
traffic participants as of high task load (for a critical discussion,
see Wascher et al., 2019). The increase in steering angular
velocity with increasing task load corresponds well with the
assumption that this measure is associated with the demands
of driving, which, as expected, is lower for a simple driving
profile than for a complex one (involving intersections and
traffic lights) as well as interactions with other road users. A
limiting factor here could be that the driving profiles were
not evenly distributed over the route sections. For example,
complex driving profiles (with intersections and give way signs)
are more common in the city, while freeway sections are more
characterized by simple driving profiles. This might also explain
the (unexpectedly) higher driving speed with interactive than
complex driving profiles: Interactions with other road users are
also common on state roads and freeways (where driving speed
is on average higher than in the city), whereas complex driving
profiles (and lower driving speed) are more common in the city.
An interaction of driving profile and route section can therefore
not be completely ruled out. Nevertheless, the replication of this
general pattern suggests that overall demands decreased relative
to the first test drive, but did not depend on the route profiles
passed through.
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FIGURE 5 | Task-load related analysis of EEG parameters. Raw (upper row) and fractional (lower row) average power in the alpha (left) and theta (right) frequency

bands as function of driving profile (simple, complex, interactive), shown separately for MP1 (black) and MP2 (red). Error bars indicate standard errors.

EEG Parameters: Alpha and Theta Power
Comparable patterns to the behavioral data were also found in
the derived EEG measures: Overall, raw alpha activity increases
from the first to the second measurement time point. In addition,
and independently of the time of measurement, relative alpha
power (power fraction) varied with the driving profiles and was
higher at simple compared to complex and interactive passages.
In general, decreases in alpha power are usually associated
with the allocation of attention (Herrmann and Knight, 2001),
while increases in alpha power is assumed to reflect mental
fatigue, but also attentional withdrawal and disengagement
(Hanslmayr et al., 2012; Wascher et al., 2014, 2016) as typically
observed when tasks are perceived as monotonous and boring
(Borghini et al., 2014). In the driving context, increased alpha
power has thus been observed during monotonous driving
situations, probably reflecting periods of inattention and mind-
wandering (Lin et al., 2016). Assuming increases in alpha
activity to be associated with reduced attentional engagement,
the present findings would argue for a withdrawal of attentional
resources, both in longitudinal and route-related terms: The
participants seemed to pay less attention to the driving task
when they drove the same route for a second time. However,
they continued to flexibly adapt their mental resources to the
task demands and increased their attention when the traffic
situation became more complex. Interestingly, effects of driving

profile were only found on alpha fraction power, but not raw
alpha power. This discrepancy could be due to a relatively
high power in oscillatory activity in low frequency bands (as
has been observed in Wascher et al., 2019), which could have
masked experimental effects in the higher frequency alpha band.
In line with this assumption, it has been shown that weak
effects in higher frequency bands tend to become evident in
relative power measures rather than in absolute (raw) measures,
where low-frequency power is dominant (Labounek et al.,
2019).

Activity in theta power is generally associated with cognitive
control (Cavanagh and Frank, 2014; Cavanagh and Shackman,
2015) and typically increased with higher workload (Wilson
and Hankins, 1994; Gevins et al., 1997) and task demands (Lal
and Craig, 2001; Jensen and Tesche, 2002; Onton et al., 2005;
Borghini et al., 2014). Theta power also increases with higher
task engagement (Yamada, 1998; Onton et al., 2005) and with the
effort to keep task performance high (Wascher et al., 2014; Arnau
et al., 2017). In line with this assumption, both raw and relative
(fractional) theta power values were increased in the present
driving task at more complex route sections, such as at the
beginning of the fog passage and during city driving. However,
independently of these demand-related modulations, there was
rather an (albeit not significant) increase in raw theta power at the
second measurement time point (cf. Figure 4), suggesting that
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FIGURE 6 | Frequency distribution of individual (significant) Pearson’s correlation coefficients for alpha (upper row) and theta (lower row) fraction power measured at

MP1 and MP2.

the task demands and/or task engagement increased (or at least
did not differ) at MP2 compared to MP1.

One could argue that the theta power findings partly
contradict the interpretation of the alpha power, suggesting a
decrease in task engagement. Selection effects in the way that
drivers with low task engagement left the study after MP1
and did not participate in MP2 can be excluded, as the same
drivers were examined at both measurement time points. A
more plausible interpretation could be that the participants
had a higher motivation to perform well in the driving task,
perhaps even better than at the first time. Given that the
current study is designed to detect age-related deteriorations
in driving ability, the participants’ motivation to counteract
these by increasing effort may be particularly pronounced, as
reflected by undiminished theta activity. This interpretation
is supported by findings of a previous study on age-related
differences in pro-active driving behavior (Getzmann et al.,
2018): Better performance in proactive driving (i.e., more alert
steering behavior, better anticipation and active use of driving-
relevant information and more proactive planning of driving
manoeuvers) was associated with increased mental effort in the
older group, as reflected by higher theta power. Moreover, only
in the older group a relationship between steering variability and
theta power was found, with better steering performance being
associated with higher theta power. Taken together, the EEG

findings suggest that the drivers were more relaxed, but remained
motivated to perform the driving task well at the second time.

Another relevant aspect to be discussed here are task-specific
differences between alpha and theta activity, which are also
reflected in differences in the brain areas over which they are
usually derived. While alpha power is most prominent over
occipital-parietal areas of visual cortex, theta power is measured
over frontal areas associated with higher cognitive executive
functions (for review, Klimesch, 1999). In a realistic driving task,
in which complex and monotonous driving passages alternate,
and in which multiple subtasks such as visual information
uptaking and processing, attention allocation, spatial navigation
have to be performed, alpha and theta activity should therefore
be differently involved (Di Flumeri et al., 2018; Puma et al.,
2018; Wang et al., 2018). In particular, alpha activity (i.e., its
suppression) seems to be rather associated with task engagement,
while theta activity seems to be associated with task workload
(Berka et al., 2007; Wang et al., 2018). This could explain,
for example, differences in the dependence of alpha and
theta power on the driving profile. For example, the track-
based analysis indicated an increase in theta activity at the
beginning of the second state road section at kilometer 21
(which was characterized by demanding passages), which was not
accompanied by a suppression of alpha activity (cf. Figure 4).
Also, theta fraction power was higher in interactive than in
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FIGURE 7 | EEG-based estimation of task load. Task load (low, medium, high) as function of driving route for MP1 (black) and MP2 (red), and MP1 – MP2 differences

(blue). For each time point individual task load estimations of each participant were assigned to fix waypoints and then averaged separately for 10-meter track

segments. For comparison, mean driving speed (upper row) is also shown. SR1, first state road; FW, freeway; SR2, second state road; CT, city traffic.

FIGURE 8 | Heatmap of EEG-based estimation of task load at MP1 and MP2. The figure shows the number of road sections that were rated as equally difficult at

both measurement times, as well as the number of sections that were rated as easier (outlined in green) or more difficult (outlined in red) in MP2 than in MP1, averaged

across all participants. A total of 3,000 (10-meter) track segments were classified as of low, medium, or high task load.
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complex driving profiles, whereas alpha fraction power did not
differ in either condition. This could suggest that interaction with
other road users and driving on a demanding but empty route
account for differences in task load, while task engagement is
hardly affected.

A limiting factor which complicates the interpretation of
the results, and which has to be noted here is the reduced
spatial resolution of the cEEGrid technology. The electrodes are
located largely over temporal areas, making a clear differentiation
of oscillatory activity into frontal and parieto-occipital parts
difficult. Traditionally, theta activity is derived over frontal areas
and alpha activity over posterior areas, where the power in
these frequency bands is usually most prominent (for review,
Klimesch, 1999). Thus, only very few studies have considered
theta and alpha activity measured over temporal areas as
potential indices of mental workload and task engagement. In
studies on simulated driving (Diaz-Piedra et al., 2020) and multi-
tasking (Puma et al., 2018), workload-induced modulations of
theta activity (with higher workload being associated with higher
theta activity) were not only observed over frontal and occipital
regions, but also over temporal regions. A combined EEG-
fMRI study showed that workload-induced modulations of theta
activity were most pronounced over frontal and posterior areas
(Sammer et al., 2007). However, an additional EEG-constrained
fMRI analysis revealed that the generators of these effects were
not primarily localized frontally, but form a network including
temporal and hippocampal hemodynamic activation, cingulate
activation, frontal superior, and cerebellar activation. The authors
thus concluded that theta band activity reflects a binding process
of widely distributed cortical areas, which all contribute to the
EEG activity derived at the scalp. The same could be true for
alpha band activity, which appears to reflect a network-binding
mechanism, supporting the interplay within thalamo-cortical
networks relevant for sensory gating and the control of vigilance
and attention (Lopes da Silva, 2013; for review, Nishida et al.,
2015). Significant effects of task difficulty on alpha power (with
easier task conditions being associated with larger power) have
been observed over temporal areas (Brookings et al., 1996),
while other studies failed to find effects of performance (Çiçek
and Nalçaci, 2001) and relaxation (Scholz et al., 2018) on alpha
activity over temporal areas, which were observed over parietal
areas. Thus, it appears that theta effects could be more reliably
derived over temporal areas than alpha effects. This could also
explain why in the present study (as well as in our previous study,
Wascher et al., 2019) discrepancies between raw and fractional
power occurred in the alpha band, but not in the theta band:
Given that fractional power was corrected for total power in the
signal, alpha effects could be more pronounced (independent
of their topography) in fractional power. However, since no
conventional multi-channel EEG cap has been employed here
for a direct comparison of the signals measured with cEEGrids,
especially the interpretation of the alpha activity should be
treated with caution.

Test-Retest Reliability Considerations
Two different approaches have been chosen to determine the
retest reliability of the EEG results, first a task-load related

analysis, investigating whether the EEG measures at both
measurement points depended on the driving profile in the same
way, and second an (intra-individual) correlational analysis,
comparing the EEG measures along the route (subdivided
into 3,000 10-m track segments) at MP1 and MP2 separately
for each subject. The task-load related analysis showed a
high correspondence of the EEG patterns between the two
measurement times across all participants: That is, independent
of the measurement time, challenging traffic situations are
accompanied by a reduction of alpha and an increase of theta
(e.g., as can be seen at the beginning of the city drive), whereas
monotonous traffic situations (e.g., the foggy passage or the
undisturbed highway drive) showed the opposite pattern. Thus,
the effect of driving profile on alpha and theta activity was reliably
found at both measurement times, indicating a high reliability of
the measurement, especially for fraction values.

The same is true for the high correspondence in the estimation
of task load from the alpha and theta values between the two
measurement time points. The track-based analysis indicated
that passages that were estimated to be easy (or hard) at MP1
were also easy (or hard) at MP2. In particular, averaged across all
participants, the analysis showed that not a single road section
that was rated as easy (difficult) in MP1 or MP2 was rated
as difficult (easy) in the other measurement (cf. heatmap in
Figure 8), which indicates a reliable estimation of task load. On
the other hand, this also means that road sections overall were
not estimated to be easier at MP2. Thus, a higher familiarity
with the route (suggested by a higher average speed and lower
steering wheel angular velocity) was not associated with a
reduced difficulty (estimated from the alpha and theta ratio).
In other words: a difficult passage (associated with high theta
and low alpha activity) may well be passed more quickly due to
familiarity with the route, without it becoming less challenging.
Still, a few changes emerged that can be plausibly explained
(as can the driving parameters). For example, the patterns of
alpha/theta values at the secondmeasurement time point indicate
an increased task load at the beginning and end of the fog passage,
whereas during the fog passage the task load was estimated to be
lower. Both effects can be explained by an increasing familiarity
of the participants with the route. This interpretation is in line
with the so-called “route-familiarity effect,” in which greater
route familiarity can lead to increased inattention and mind-
wandering and, as a consequence, to driving impairments (e.g.,
Martens and Fox, 2007; Yanko and Spalek, 2013). The same
was true for undisturbed country road passages, which appeared
to be driven with a higher routine and lower task load. This
and the overall high correspondence of the EEG patterns with
the behavioral data suggest high content test-retest reliability of
the cEEGrids technology used for the sample of participants as
a whole.

On an intraindividual level, significant positive correlations
were found for most of the participants, both for alpha and theta
activity as well as for the derived EEG-based estimation of task
load. Participants who showed a high alpha or theta activity at
the first measurement time and a high mental workload did so
again at the second measurement time, which indicates a certain
degree of temporal stability of the measurements. However, it has
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to be noted that the vast majority of the individual correlations
were (although mostly highly significant) in a low range. Usually,
higher reliabilities are found in more structured EEG conditions
(McEvoy et al., 2000), i.e., in demanding cognitive tasks, since
fluctuations in cognitively engaging tasks are generally lower. At
least in complex road sections and in interaction with other road
users, an increased cognitive load can also be assumed.

Regarding an individual (possibly diagnostic) evaluation, the
small correlations make the interpretation in terms of a change
from MP 1 to MP 2 difficult. The same applies to the prediction
of future values based on previous values. In addition, it is
remarkable that some (few) participants also showed negative
correlations, suggesting that the pattern of oscillatory power over
the driving distance has (at least partly) reversed. This could
indicate a change in the mental resources that some subjects
invested in the driving task, with a high task engagement at MP1
changing to an attentional disengagement at MP2 (or vice versa).
In this context, it should be pointed out that the data come from
an ongoing study on the development of traffic safety parameters
in older drivers, and that changes in mental abilities are to be
expected in the age range considered.

In summary, however, it must be stated that the correlations
within the participants are rather low, i.e., that the alpha/theta
activity in track segments at MP1 is poorly associated with the
alpha/theta activity in the same segment at MP2. This suggests
high fluctuations in oscillatory activity between measurement
time points that are not related to the task load of the track
segments themselves. It is difficult to assess whether this is
due, for example, to transient fluctuations in mental states like
alertness and vigilance during the drive, or changes within
participants over the relatively long time period between MP1
and MP2, or demonstrates limitations of the EEG methodology
used. Further insights may be provided by the investigation
of possible correlations between changes in individual driving
performance (and its changes over time) and EEG parameters,
which are planned at a later stage of the still ongoing project. The
age range of the test group, which is clearly not representative for
the entire population of drivers, may also be a potentially limiting
factor with regard to the generalizability of the results. Age-
related decreases in cognitive performance as well as increases
in interindividual variation both can lead to a conflict with the
determination of the reliability of the EEG method. Another
problem specific to the cEEGrid technology is that the electrodes
on older skin, which is often drier and more wrinkled, may
have increased resistances, resulting in poorer and fluctuating
conduction of the EEG. Future comparative studies with younger
subjects therefore seem appropriate.

CONCLUSIONS

Taken together, the present test-retest analysis demonstrated
changes in behavioral and brain oscillatory parameters between
the first and second measurement time point across all
participants, which can be characterized by an increase in
driving speed and decrease in steering angular velocity as well
as an increase in alpha power, while theta power remained
rather stable. These changes suggest a reduced overall task load

which appears plausible with regards to learning and memory
effects. At both measurement points, the EEG parameters (like
the behavioral parameters) were similarly modulated by track
difficulty and—as a consequence—task demands, indicating a
high reliability and ecological validity of the EEG application
via cEEGrid technology. At the intra-individual level, positive
correlations of the oscillatory measures and its dependence on
track difficulty were found in the majority of the participants.
On the other hand, intra-individual correlations were (although
significant) rather low, raising the question of the individual-
diagnostic value of the chosen method. Further analysis of the
reasons why some participants showed significant differences
compared to the first measurement will be necessary to determine
if this was due to the EEG recording or if the causes may be
found in the participants themselves (e.g., cognitive decline).
However, in the context of task-related EEG parameters which
maps changes in cognitive states related to, for example, task
difficulty, the reliability and ecological validity of cEEGrid
electrodes appear satisfactory. Overall and in combination with
the findings of our previous study (Wascher et al., 2019), the
results provide further evidence for the usability of portable
low-density EEG methods like cEEGrids as an alternative to
conventional lab-based recording systems for mapping mental
processes in natural environments.
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Negative effects of inattention on task performance can be seen in many contexts of

society and human behavior, such as traffic, work, and sports. In traffic, inattention is

one of the most frequently cited causal factors in accidents. In order to identify inattention

and mitigate its negative effects, there is a need for quantifying attentional demands of

dynamic tasks, with a credible basis in cognitive modeling and neuroscience. Recent

developments in cognitive science have led to theories of cognition suggesting that

brains are an advanced prediction engine. The function of this prediction engine is to

support perception and action by continuously matching incoming sensory input with

top-down predictions of the input, generated by hierarchical models of the statistical

regularities and causal relationships in the world. Based on the capacity of this predictive

processing framework to explain various mental phenomena and neural data, we

suggest it also provides a plausible theoretical and neural basis for modeling attentional

demand and attentional capacity “in the wild” in terms of uncertainty and prediction

error. We outline a predictive processing approach to the study of attentional demand

and inattention in driving, based on neurologically-inspired theories of uncertainty

processing and experimental research combining brain imaging, visual occlusion and

computational modeling. A proper understanding of uncertainty processing would enable

comparison of driver’s uncertainty to a normative level of appropriate uncertainty, and

thereby improve definition and detection of inattentive driving. This is the necessary first

step toward applications such as attention monitoring systems for conventional and

semi-automated driving.

Keywords: driving, predictive processing, occlusion, computational modeling, appropriate uncertainty

INTRODUCTION

“The output of the system is easily measured, and easily understood, but it is extremely difficult to
specify what the input is that results in the observed output.”

– Senders et al., 1967
Appropriate allocation of attention is needed for successful performance in many contexts—

work, traffic, education, and sports, among others. In traffic, driver distraction is considered as
a contributing factor in many accidents (Née et al., 2019). Driver distraction is one form of
inattention, referring to insufficient attention allocation to activities critical for safe driving due to
diverting attention to unrelated activities (Regan et al., 2011). Inattention could be also caused by,
for instance, mind wandering or fatigue (Walker and Trick, 2018). Superficially, the phenomenon
seems straightforward: performance errors become more likely when attention is not allocated in
accordance to task demand at the right time (Fuller, 2005; Regan et al., 2011). Look more deeply,
and it’s a bit more complicated than that.
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First, after-the-fact explanations of accidents and errors being
“caused by inattention” leave many questions unanswered.
Kircher and Ahlström (2017) and Regan et al. (2011) raise
the issue of hindsight bias: the driver failed to give way to
a bicyclist when turning, a crash occurred, and therefore the
driver was “not paying enough attention.” A causal theory, in
contrast, requires that one be able to independently define (and
measure) if an operator is attentive, whether or not this leads to
a performance failure. Only then can one predict and causally
explain performance by (in)attention.

Second, being “fully attentive all the time” is not a realistic goal
for most people, and most of the time not necessary to achieve
a high level of safety. The crash risk of an experienced driver is
extremely small (e.g., 1.38 crashes/million km on urban collector
roads and 0.94 crashes/million km on rural arterial roads in USA
according to Forbes et al., 2012). Even if inattention is often found
to be involved in a crash, the occurrence of inattention often does
not lead to a crash: the vast majority of episodes of momentary
inattention on the road do not lead to accident (Victor et al.,
2015). Drivers are able to adapt attention between the driving task
and other tasks (e.g., operating the radio, talking on the phone;
Tivesten and Dozza, 2015) or adapt the driving task (e.g., speed,
following distance) according to their attention level (for review
see Young et al., 2007, see also Fuller, 2005; Pekkanen et al., 2017,
2018). Kircher and Ahlström (2017) call for a definition of the
minimum attentional requirements of safe driving.

To arrive at such a definition, the nature of attention in driving
performance (and other similar “real-world” tasks) needs to be
understood, at a theoretical level, in sufficiently precise terms.
Toward this end, we outline a predictive processing approach to
the study of attentional demand and inattention in driving, based
on neurologically-inspired theories of uncertainty processing in
the human brain and experimental research combining brain
imaging, visual occlusion, and computational modeling.

ATTENTION AS MANAGEMENT OF
COGNITIVE RESOURCES AND
UNCERTAINTY

There is a general consensus that human information processing
resources are limited. There are perceptual and structural
constraints in the human information processing architecture.
The field of view is limited, and gaze (overt attention) is
sequentially deployed to one object or location at a time (Land,
2006). Short-term or working memory capacity is limited to a
small number of items that can be kept in mind simultaneously
(Cowan, 2016). There are different psychological views on how
attention relates to these constraints, and if it is composed of a
single serial resource or multiple parallel resources (Meyer and
Kieras, 1997), but its limited capacity is not in serious dispute.We
consider here inattention as a form of inappropriate allocation of
this limited resource in space and time.

How much attention is appropriate, and when? How should
the “amount” of attention be defined in the first place? We
propose that this fundamental question can be most fruitfully
approached from the point of view of the unifying theory of

predictive processing (Clark, 2013, 2015; Friston, 2018). The key
conceptual connection is to consider the deployment of attention
as management of uncertainty (Feldman and Friston, 2010), and
(in)approriate attention as (in)appropriate uncertainty. In this
framework, complete certainty is an unattainable ideal, just as
being “fully attentive all the time” is—but there is a rational
way to optimally take into account uncertainty in observations
and in internal models in one’s beliefs and in one’s actions.
This (Bayesian inference) is the core of the predictive processing
theory (Clark, 2013, 2015).

Recent developments in cognitive science have led to
suggestions that human cognition is just such an advanced
prediction engine (Figures 1A,B; see Rao and Ballard, 1999;
Friston, 2005, 2009, 2010, 2018; Hohwy, 2013; Clark, 2015). The
function of this prediction engine is to support perception and
action by continuously matching incoming sensory input against
predictions of the input generated by a hierarchy of generative
internal models representing statistical and causal regularities
in the world. Prediction error is used as a learning signal to
update the models. The generative models evolve iteratively by
feedback (i.e., prediction error). The approach is based on well-
understood concepts from signal processing theory and machine
learning. Internal model update is Bayesian belief update for
which computationally tractable approximations are known (e.g.,
for linear systems, the Kalmán filter), and for which plausible
neurobiological implementations have been proposed (for review
see Friston, 2010, 2018).

Based on the predictive processing theory (Clark, 2015), we
will assume that the key cognitive functions of attention in this
framework are to:

1. control memory recall, that is, the generation of top-down
predictions to match against perceptual feedback, and

2. direct the active sampling of perceptual information, that is,
bottom-up prediction error that reduces uncertainty about the
situation (e.g., through eye-movements).

Attention may also affect, for example, how internal
models are updated (given that this requires cognitive
resources—an engaged driver will learn more and faster),
and have many other functions we do not consider
further here.

The core idea of predictive processing is that the brain
takes into account the uncertainties of its own models and the
incoming sensory information, and tries to strike an optimal
balance between these two sources of information, the top-down
and the bottom-up. Here, we propose that attention can be
understood in terms of this balancing process and inattention as
inappropriate balance, from some normative perspective, such
as over- or underconfidence in one’s predictions in relation
to environmental volatility in traffic. Accordingly, appropriate
attention can be recast as reflecting appropriate uncertainty about
the situation and its potential outcomes1.

1This concept is similar to Lee and See (2004) “appropriate trust’ or

“appropriate reliance.” However, uncertainty is more precise to define, and

development of uncertainty easier to model computationally than trust, which is a

phenomenological, much more subjective construct.
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FIGURE 1 | The predictive processing framework*. (A) Predictions are generated by a hierarchy of generative models. Information from sensory feedback is

propagated bottom-up through the hierarchy by predictive coding, and learning is based on prediction error. At each level the internal models are trying to predict their

own input (only), based on memory of past events and top-down context. At the bottom (sensory) level the predictions are directly about sensor observations. The a

priori prediction is compared against feedback-updated estimates, and prediction error (only) is passed forward to the higher level. The progressively higher levels

behave similarly, but more abstract features of the situation are predicted (complex perceptual features, objects, events, action outcomes). At each level, prediction

error is used for learning to update the internal models to determine the a priori prediction at the next time step and for similar situations in the future. Crucially, the

generative models and observations are always uncertain, but the system is assumed to know this and adapt to the uncertainty in an optimal (rational) way. (B)

Variable xt represents a world state x at time t, which is predicted, for example lateral road position in driving. At time t, a prediction of state x can be illustrated as a

probability density function, where E(x,t) is the expected value of x and U(x,t) is a dispersion measure reflecting uncertainty of the expectation, such as variance. Note

that the function does not have to be Gaussian or symmetric. (C) Illustration of car driving on a curved road under intermittent occlusion. While occluded (red line, e.g.,

during off-road glances, blinks, or saccades) the estimate of the state x is updated by top-down prediction only. Artificial occlusion methods allow the study of these

(Continued)
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FIGURE 1 | predictions and the associated uncertainty estimates under controlled conditions. *Driving task relevant brain regions and functions in (A) (Navarro et al.,

2018): PFC: prefrontal cortex (goals and task context; monitoring of task performance; also representation of uncertainty and connections to limbic reward system).

Motor: pyramidal and extrapyramidal motor systems, premotor and supplementary motor cortex (coordination of motor responses). HC+: hippocampus and related

structures like entorhinal cortex and parahippocampal gyrus (spatial context; also memory encoding and retrieval). PPC: (posterior) parietal cortex, precuneus

(multisensory spatial attention; eye movements). V1+: visual cortex and associated subcortical regions (visual perception; visual scene analysis in parahippocampal

and occipital place areas). RSC: retrosplenial cortex (connecting spatial, visual and multisensory attention systems).

Our empirical approach to appropriate uncertainty builds on
seminal work by Senders (1964), Senders et al. (1967), Sheridan’s
work (Sheridan, 1970) on supervisor’s optimal sampling models
and paradigms based on the visual occlusion technique (see esp.
Kujala et al., 2016; Pekkanen et al., 2017). In visual occlusion
experiments, the driver’s sight is intermittently blocked by an
occlusion visor, opaque glasses or screen on the windshield, or
simply by blanking a driving simulator display (see Figure 1C).
The driver can request a visual sample by pressing a button.
Occlusion time and/or distance are calculated as the driver’s
estimate of spare visual capacity in driving (Safford, 1971). There
is a lot of data on gross effects of various factors, such as road
environment, road curvature, traffic,manoeuvre, age, and driving
experience on spare visual capacity in driving (for review see
Kujala et al., 2021) but a lack of a detailed understanding of the
mechanisms behind these effects.

Occlusion scenarios admittedly lack some ecological face
validity (information sampling in real driving is not through
all or nothing occlusions), and perhaps for this reason have
been less used in driver attention research than eye tracking
(Kujala et al., 2021). But from the point of view of attentional
processes—and especially computational modeling—the benefit
is that it is not necessary to know how much and what kind
of information is perceived and processed from the visual
periphery (Pekkanen et al., 2017, 2018; Kircher et al., 2019; Kujala
et al., 2021). Self-paced occlusion methods, in combination with
other methods, allow more direct study of the predictions and
the associated uncertainty estimates of the brain in controlled
conditions. Note also that in natural driving, brief anticipated
“occlusions” of a up to hundreds of milliseconds do occur up
to several times a second (saccades, eye blinks, Land, 2006).
Further, occlusion could be seen as mimicking multitasking
while driving. The difference between true multitasking and
occlusion on a single task is in that one can still fully focus
(mentally) on the single task while occluded. Of interest could
be to study the effects of additional tasks on the mental processes
required for appropriate allocation of attention to the occluded
task (Kujala et al., 2021).

APPROPRIATE UNCERTAINTY IN
PREDICTIVE PROCESSING

Within the current framework, definition of appropriate
uncertainty can be approached from at least three perspectives,
each illustrated in Figure 2. In the example driving task (see
Figures 1C, 2), state x is car’s lateral position. The driver has two
goals: (1) D(x) is the steering goal (i.e., desired path of the car)
and (2) to keep the uncertainty of lateral position U(x) under

a preferred constant is the sampling “goal.” D(x) also includes
the implicit goal to stay on the road by remaining between
road edges. A road edge defines here a task-critical threshold
T(x) and (partly) a critical safety margin for the driver in
the task.

Figure 2A shows an imaginary example of how, at the end
of an occlusion, the driver’s brain updates a prior prediction
distribution about state x (car’s lateral position) to a posterior
distribution, based on observed feedback. It is assumed that
this update is based on Approximately Bayesian Computation
(the exact Bayesian distributions being intractable), that can be
modeled with existing techniques such as particle filters. Note
that for this reason estimation of the exact probability (or risk)
of a very rare adverse event at observation, that is, x exceeding
some task-critical threshold T(x) (e.g., road edge), can be highly
unreliable for the brain [Figure 2A, (0)].

Figure 2B shows the dynamic development of expectancy,
expected error, uncertainty accumulation and safety margin
depletion, during an occlusion (cf. Figure 1C), that is, during a
time interval while the driver is not observing state x. During
the occlusion, the brain generates predictions, that is, samples
hypotheses from the generative models, maintaining a dynamic
prediction distribution about the development of state x in time.

We assume that the more hypotheses (models) sampled, the
more attentive the driver is (cf. attention as control of memory
recall). Paradoxically, this can mean that the more attentive,
the faster the driver becomes uncertain of the development of
state x during occlusion. For example, suppose the driver wishes
to maintain occlusion until it is “possible” that a critical safety
margin is breached [diffusion to a barrier; Figure 2B, (2)]. The
more hypotheses, the faster the dispersion rate of the extreme
values in the distribution, and therefore, the sooner the possible
safety margin depletion under occlusion. This means that a more
“attentive” driver will sample more frequently.

Here, it is important to notice that the expected prediction
error [i.e., desired D(x) – predicted E(x,t)] can decrease in
time (e.g., due to steering toward desired position) during the
whole occlusion, but still uncertainty (e.g., the difference in
predicted x between the most extreme hypotheses) will increase.
Again, suppose the driver wishes to sample when some critical
dispersion is “possibly” reached [Figure 2B, (1)]: the attentive
driver will sample more frequently even if the driver “expects”
the error at the end of occlusion to be small.

Furthermore, based on observed feedback (prediction error),
attentional control of top-down processes (sampling the
generative models) should adapt the number of hypotheses
and their dispersion rate to be appropriately “calibrated” to
the volatility of the situation, for future occlusions in similar
situations. That is, a “big surprise” at the end of occlusion should
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FIGURE 2 | (Approximately) Bayesian inference in occluded driving, and three ways to understand appropriate uncertainty in the predictive processing framework

(AU1-3). (A) At the end of occlusion (t, see Figure 1C), state information about x is updated by combining the internal prediction (red probability density function) and

(Continued)
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FIGURE 2 | observed feedback (green) to yield the posterior (blue). E(x,t) is the expected value of the prediction, “expectancy,” and we refer to its difference from

O(x,t), PE, as prediction error. D(x), desired x at time t (goal state); EEt, expected error at time t (difference of expectancy and goal state); OEt, observed error at time t.

T(x), threshold × for subjective “failure” at time t (e.g., lane position where a wheel crosses a road edge), U(x,t) is a dispersion measure of the prediction distribution

(here, standard deviation). Note that the functions do not have to be Gaussian or symmetric. (B) Illustration of the dynamic development of expectancy, expected

error, uncertainty accumulation, and safety margin depletion, during an occlusion (see Figure 1C). This is conceived as trajectories of particles representing different

hypotheses about the state that can be considered as a sample from the prediction distribution. Note that at the beginning of the occlusion, particle trajectories begin

to diverge, corresponding to an increase of dispersion in the prediction distribution. 1MAX = difference in predicted x between the most extreme hypotheses (the most

extreme “subjectively possible” values of x). SM, safety margin, i.e., the distance from T(x) of the most extreme hypothesis. The occlusion ends (the driver requests a

sample) when some criterion is reached, such as some value of prediction distribution dispersion or the depletion of safety margin. (Note that a sample will be

requested even though the expectancy approaches the goal, i.e., expected error is reduced during the occlusion). (C) (Appropriate) uncertainty adjustment:

observation of a higher PE at the end of the previous occlusion (right) leads to higher dispersion rate in the following occlusion, and hence more frequent sampling

(AU3). This is an adaptive response to situational volatility signalled by PE.

lead to more frequent visual sampling [Figure 2C, (3)]. This is
yet another form of appropriate uncertainty. Higher volatility
(as signaled by prediction error) means more unpredictable
behaviour of the predicted state due to, for instance, increase
in speed, variable curvature or reduced friction on the road.
Higher volatility should increase uncertainty of the associated
predictions (i.e., higher number of possible hypotheses in our
approach). If the driver is not reactive to increased prediction
error (i.e., does not adjust the uncertainty appropriately), this
could lead to overconfidence in predictions, actions based on
highly inaccurate state estimates and overlong occlusions, with
possible negative consequences for task performance.

Figure 2 illustrates these three approaches for defining
appropriate uncertainty in the predictive processing framework.
First, it is rational and appropriate uncertainty (AU1), to sample
feedback of x at a subjective threshold of “maximum tolerated
uncertainty” U(x), provided that the threshold is appropriate
for the situation, and the accumulation of uncertainty itself is
appropriately calibrated. Second, it is appropriate uncertainty
(AU2) to sample at a personal safety margin threshold T(x),
when it is merely “subjectively possible” that the threshold is
breached—regardless of the expected E(x,t) or the probability
of the event (which for edge cases may be too small to
estimate reliably). Third, it is appropriate uncertainty (AU3)
to increase the number of hypotheses sampled from the
prediction distribution, and thereby increase the dispersion rate2

of the most extreme hypotheses and the uncertainty [U(x,t)]
growth rate for a following occlusion, if the prediction error
is large at the end of the previous occlusion. The driver is
adapting uncertainty and thereby visual sampling on the basis
of the size of the prediction error, which informs about the
volatility of the situation (i.e., “uncertainty in the world”).
This adjustment of dispersion rate of the hypotheses works
also in the other direction; with repeated low prediction error,
it is appropriate to decrease the number of the hypotheses
and thereby eliminate farthest hypotheses and increase the
occlusion time.

2Here, we assume that the brain adjusts the dispersion rate by increasing sampling

of hypotheses from the prediction distribution. Another possibility is that the

number of hypotheses and the dispersion rate stays at the same level but the brain

lowers the threshold of maximum tolerated uncertainty, i.e., samples feedback at

lower dispersion.

CONCLUSIONS

We have introduced a definition of attention as appropriate

uncertainty (and inattention as inappropriate uncertainty) in

predictive processing, with an application to driving under

conditions of intermittent visual sampling. The novelty here is

the emphasis on internal uncertainty as the basis of appropriate

attention (as opposed to the false ideal of “complete certainty”)

and the balance between uncertainty growth rate “in the world”
(i.e., volatility) and in the brain.

We have identified three criteria of appropriate uncertainty;
(1) sampling perceptual feedback of state x at a personal threshold
of maximum tolerated uncertainty (dispersion of predictions),
(2) sampling at a personal safety margin threshold (most extreme
prediction), and (3) increasing the uncertainty growth rate for a
following occlusion (and for similar future situations), when the
sampled prediction error is large. Violation against any of these
rational behaviours can be seen as inappropriate uncertainty, and
inattention (or excessive attention) toward state x.

Intuitively, the idea is that the uncertainty of, for instance, a
car driver, should rise at an appropriate time and it should either
grow or decrease appropriately based on changes in situational
factors, such as one’s own speed, relative speeds, and positions
and behaviours of surrounding vehicles. It is not irrational to
tolerate some uncertainty (or “risk”), which is unavoidable.

This definition suggests that “being attentive” does not
mean that you are constantly processing as much task-relevant
information as you possibly can, but that you are processing
it to a sufficient degree to succeed in the task, based on your
personal goals, previous experiences and while being sensitive
to changes in environmental volatility (signaled by prediction
error). Attentiveness is also not only about fixating something
foveally but about processing the information and making
appropriate adjustments to the uncertainty of predictions. In
this framework, both overconfidence (too little uncertainty) and
underconfidence (too much uncertainty) are suboptimal for the
performance of a human operator (cf. Engström et al., 2018).

If the brain is indeed “Bayesian,” then these sorts of processes
should be the core function of the brain (Clark, 2015; Friston,
2018). That is, if the predictive processing approach holds water,
then handling uncertainty and prediction error characterizes
operations at all levels of neural sensory and motor hierarchies.
Brain imaging research on decision making under risk and
uncertainty (often under the umbrella term “neuroeconomics”)
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has begun to reveal some specific brain structures that may
play a central role in the representation of uncertainty (risk,
volatility). These relate especially to the monoamine systems
(norepinephrine and dopamine) and limbic structures such
as the amygdala and the cingulate and orbitofrontal cortices
(e.g., Angela and Dayan, 2005: acetylcholine and norepinephrine
signals, Doya, 2008: norepinephrine and the orbitofrontal cortex,
Rushworth and Behrens, 2008: prefrontal and cingulate cortex,
Payzan-LeNestour et al., 2013: multiple distinct cortical areas
and the locus coeruleus, Gordon et al., 2017: signal-to-noise-
ratio in semantic wavelet induced frequency tagging, SWIFT).
How this research relates to the neural substrates of driving
(for review see Lappi, 2015; Navarro et al., 2018) remains an
open question beyond the scope of this paper. However, from
the predictive processing point of view the prediction would
be that the hierarchy of networks sketched in Figure 1A (as
identified in the meta-analysis of Navarro et al., 2018) would
be a hierarchy of (top-down) predictions and (bottom-up)
prediction errors. There are also uncertainty-based approaches to
modeling cognitive processes that are not based on the predictive
processing theories (e.g., Renninger et al., 2005; Vilares and
Kording, 2011; Meyniel and Dehaene, 2017) but which might be
compatible with the current approach.

Our approach introduces testable assumptions, hypotheses

and novel research questions. We assumed that following

prediction error the brain allocates attention (i.e., cognitive

capacity) during occlusion by increasing sampling of hypotheses
from the prediction distribution. Alternatively, the brain could
choose to sample feedback (i.e., remove occlusion) at lower
dispersion (i.e., at lower uncertainty threshold). Increased
number of hypotheses with decreased occlusion time should
become visible in neural correlates associated with processing
of the hypotheses (cf. N1: Näätänen, 1992; P3b: Polich,
2007). Experimental designs that utilize additional tasks during
occlusion could reveal how the additional tasks affect the
mental processes of, for instance, hypothesis generation for
the occluded task, and thereby, adjustments of uncertainty.
However, the question to what extent “cognitive load” from
secondary tasks relies on the same cognitive capacity as the
primary (driving) task is a problem that is not yet well-
understood. Besides multitasking, the effects of, for instance,
cumulating driving experience, mind wandering and fatigue
on uncertainty adjustment ability should be studied (and
modeled). The most fundamental prediction from the theoretical
approach is that when a driver is appropriately attentive
toward a task-relevant state x, the size of prediction error
at observation of x as detected from its neural correlates

(e.g., Angela and Dayan, 2005: norepinephrine signals, Payzan-
LeNestour et al., 2013: the locus coeruleus) should correlate with
the following change in the sampling rate of the state (e.g.,
glancing frequency).

We believe that this kind of approach—combining a
theoretical approach based on solid modeling concepts with
a plausible physiological basis with a careful and accurate
measurement and analysis of ecologically representative
situations—has the potential to take the study of cognition and
the brain out of the laboratory, and to address “real world”
problems. These include, but are not limited to, ergonomics,
human performance, attention monitoring, and safety in manual
and automated driving. The approach is applicable to tasks
and scenarios beyond lane keeping—and driving. For instance,
driver’s longitudinal control in a car following task (where x
= safety distance or time-to-collision) can be computationally
modeled, and has actually been modeled, as management of
uncertainty (Johnson et al., 2014; Pekkanen et al., 2018).

Potential future applications of the proposed research
approach include driver attention monitoring systems for
conventional and semi-automated driving (Lenné et al., 2020).
A proper understanding of uncertainty processing in the brain
could enable comparison of driver’s uncertainty to a normative
level of appropriate uncertainty, and thereby improve the
definition and detection of inattentive driving. However, the
normative criterion for appropriate uncertainty must make
theoretical sense, and it has to be well-defined. The outlined
approach holds promise for delivering such a definition.
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Driver distraction and drowsiness remain significant contributors to death and serious

injury on our roads and are long standing issues in road safety strategies around the

world. With developments in automotive technology, including driver monitoring, there

are now more options available for automotive manufactures to mitigate risks associated

with driver state. Such developments in Occupant Status Monitoring (OSM) are being

incorporated into the European New Car Assessment Programme (Euro NCAP) Safety

Assist protocols. The requirements for OSM technologies are discussed along two

dimensions: detection difficulty and behavioral complexity. More capable solutions will

be able to provide higher levels of system availability, being the proportion of time a

system could provide protection to the driver, and will be able to capture a greater

proportion of complex real-word driver behavior. The testing approach could initially

propose testing using both a dossier of evidence provided by the Original Equipment

Manufacturer (OEM) alongside selected use of track testing. More capable systems will

not rely only on warning strategies but will also include intervention strategies when a

driver is not attentive. The roadmap for future OSM protocol development could consider

a range of known and emerging safety risks including driving while intoxicated by alcohol

or drugs, cognitive distraction, and the driver engagement requirements for supervision

and take-over performance with assisted and automated driving features.

Keywords: distraction, drowsiness, driver monitoring, test protocols, consumer testing, NCAP, vehicle safety, road

safety

THE NEED FOR OCCUPANT STATUS MONITORING

Driver distraction and drowsiness remain significant contributors to death and serious injury on
roads around the world. Recent data from Europe and Australia confirm that approximately 25% of
crashes involve drowsiness, and that distraction and inattention are factors in 29–48% of fatal and
serious injury crashes (Sundfør et al., 2019; Fitzharris et al., 2020; European Commission, 2021a).
In 2019 in the United States nearly 4,000 fatalities (11% of the total) and over 400,000 injuries
were attributed to distraction or drowsiness (NHTSA, 2020, 2021). These numbers are likely to
be underestimates given the difficulty of identifying crash causation with these factors. Sudden
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sickness is also a common cause of fatal crashes. In around 10%
of fatal crashes in Sweden, and 6% of injury crashes in Australia,
the driver suddenly became severely ill and lost control of the car
(Fitzharris et al., 2020; Trafikanalys, 2021).

Road crashes attributed to distraction and drowsiness are
long-standing issues in road safety strategies around the world.
Road safety countermeasures have educated the public to the
dangers of impaired driving and improved road infrastructure
and occupant protection. Today there is even greater competition
for a driver’s attention. Competition for attention stems from
external influences such as an increasingly busy, urbanized traffic
environment and roadside (dynamic) advertising, alongside
the proliferation of personal mobile devices and the “always
on” society.

Managing risks in real time associated with distraction
and drowsiness, as is done by intelligent speed adaptation
for speeding behavior for example, has historically not been
technologically possible. There is much research available now
that supports the use of direct monitoring approaches, such as
camera-based OSM, and that has informed the development
of European Commission regulations mandating this type of
technology in future years (Hynd et al., 2015). Apart from the
obvious use of driver monitoring cameras to detect distraction
and drowsiness, indirect symptoms of sudden sickness and
driving under influence (DUI) can also be captured (e.g., head
falling down or drowsiness) by the same technology and create
an added benefit for these areas (Lenné, 2021).

EUROPEAN NCAP ROADMAP AND
OBJECTIVES

Each year the European New Car Assessment Programme (Euro
NCAP) tests all new high volume selling car models (>90%
of cars sold have a rating) to provide consumer information
regarding the overall safety of these cars. A total star rating is
based on four areas: Adult occupant, Child occupant, Vulnerable
road user and Safety assist. Protocols are typically updated every
2 years to increase the safety level. Major changes to these are
laid out in a roadmap every 5 years. Under the current Euro
NCAP roadmap (Euro NCAP, 2017) direct driver monitoring
will be required from 2023 onwards to get a full score in the
Occupant Status Monitoring (OSM) area as part of the Safety
Assist Protocol. Providing a warning to drivers is important,
however a stronger safety benefit will be seen if OSM is integrated
with ADAS such that ADAS can become more sensitive if the
driver is showing signs of inattention, drowsiness or sudden
sickness. It is an important complement to the already existing
areas of passive and active protection and driver support in areas
such as Speed Assist systems.

DIMENSIONS OF OSM CAPABILITY

Euro NCAP’s objective is to provide a strong safety outcome
without over trust and an acceptable user experience to support
consumer acceptance. This requires thinking about the behaviors
that will be captured under the Euro NCAP program and setting

definitions and test scenarios that support the stated objectives.
There are two key dimensions to understanding OSM capability:
detection difficulty and behavioral complexity.

The ability to detect and track the driver reliably in more
complex environments equates to system availability and the
proportion of time a system could provide protection to the
driver. A less capable technology might be able to track in
constant and less challenging environmental conditions seen
in a driving simulator laboratory, but performance would
degrade markedly in variable and bright lighting conditions
experienced regularly in on-road driving. Particular aspects of
driver appearance can also challenge performance that include
eye shape and skin texture along with the driver seating position
(typically indicated by driver height). Increased capability on this
dimension is evident by high levels of detection accuracy with a
wider range of “noise factors” that include sunglasses, hats, and
masks for example.

The more recent academic and industry focus has been
on defining the behaviors linked to increased risk and in
developing solutions to address them. The simplest and most
well-understood type of distraction behavior is a single long
glance away from the roadway and is associated with increased
crash risk (Victor et al., 2015). However, not all distraction meets
this simplistic behavioral definition. More complex distraction
behaviors are evident when drivers engage in secondary tasks
such as phone use while driving. Drivers often engage in visual
time sharing, where attention is split between driving and a
secondary task, often up to 20–30 s (Lenné et al., 2020). This
concept is recognized in several published distraction models
(Seppelt et al., 2017; Kircher et al., 2020), and is important to
capture to maximize safety outcomes.

The movement of a driver’s head and eyes is also important.
For glances that are a smaller visual angle from the forward
roadway drivers typically will engage in what is termed “lizard”
glance behavior. Here the drivers’ eyes are moving but the head
is relatively still (Fridman et al., 2016). In contrast, for glances
to areas that are larger visual angle from the forward roadway,
regions such as the side window and passenger seat, drivers
typically engage in an “owl” strategy, where the shifting of visual
attention is primarily achieved by head rotation followed by
the eyes. Figure 1 illustrates lizard visual behavior while using a
phone and presents both eye gaze and head pose orientation for
those sequences where the driver is looking at the phone (adapted
from Yang et al., 2021). The drivers head pose remains orientated
on-road. Only detection using eye gaze would detect this example
of phone use. Detecting cell phone distraction will be significantly
improved with approaches that measure visual behavior directly
through eye gaze metrics rather than relying on head pose alone
or indirect measures.

Drowsiness-related behaviors can also be characterized
through a similar lens of increasing complexity. Simplistic
measures of drowsiness may only capture eyelid behavior or
indirect measurements. PERCLOS is an example of an eyelid-
based metric used to establish a drowsy state (typically over 20
mins), however its performance is modest (Sommer and Golz,
2010; Jackson et al., 2016). Individual variability in drowsiness
progression and symptoms mean that systems that rely on single
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FIGURE 1 | Example of a driver using of a mobile phone with a driver

assistance feature. Indicative metrics are presented for eye gaze (red) and

head pose (green) when a driver uses a lizard glance strategy while looking at

mobile phone.

drowsiness metrics are insufficient to capture drowsiness reliably
(Ingre et al., 2006; Chua et al., 2014).Multiple signs of drowsiness,
including blink duration, amplitude-velocity ratio and frequency
and are likely to capture more patterns of drowsiness behavior
(Caffier et al., 2003; Lee et al., 2016; Liang et al., 2019). The lack of
defined objective drowsiness measures presents some additional
challenges to those faced in monitoring distraction.

Microsleeps are included in the protocol, where a
microsleep is a momentary period of sleep where the driver
is unconscious. Microsleeps have traditionally been defined
through Electroencephalography (EEG), with intrusions of
theta waves anywhere between 3 and 15 s (Liang et al., 2019;
Hertig-Godeschalk et al., 2020). EEG defined microsleeps have
been linked with driver impairment and crash risk (Boyle et al.,
2008; Golz et al., 2011). Microsleep identification through EEG is
currently both impractical in driving and limited by the temporal
capabilities and signal noise of the technology. Increasingly,
behavioral characteristics of microsleeps have been linked to
physiological and performance indicators of severe drowsiness,
with long eye closures being the primary visual indicator of
a microsleep (Buckley et al., 2016; Mulhall et al., 2020). In its
simplest form an OSM detected microsleep could be triggered
by a long eye closure, with eye closures >500ms linked to
measures of driver risk (Alvaro et al., 2016; Mulhall et al., 2020).
However, there are a range of behaviors such as yawning and
squinting that could be mis-interpreted as drowsiness-related
long eye closure events. A simplistic definition would therefore
produce a higher number of false alerts and would not provide
high levels of driver acceptance. More complex definitions
of microsleeps, such as those that accommodate additional
indicators of microsleep (e.g., head nodding) or evidence of prior
drowsiness, are needed to ensure that drivers are not receiving
an excessive level of false alarms and to provide the intended
safety benefits.

Recognizing sudden sickness is also part of the protocol and
presents a unique challenge to data collection and ecological
validity. Sudden sickness can be used as an umbrella term
covering a variety of conditions (e.g., diabetic shock, cardiac
events, seizures, etc.), where the common result is driver
incapacitation. These events are unpredictable by nature,
resulting in very sparse data, and therefore there is currently
no method or taxonomy to detail these categories and their
related behavior. It is reasonable to assume, however, that
the driver is neither performing driving tasks effectively
nor responding to vehicle alerts. In the early stages of
implementation it is therefore reasonable to regard sudden
sickness as a period of lack of response which can be implemented
as an escalation of either drowsiness or distraction which
goes uncorrected.

The behavior-detection matrix differentiates performance
based upon the projected level of protection to the driver
(Figure 2). A simpler detection technology (left end of x
axis) with simpler behavioral features (bottom end of y axis)
will only be able to reliably perform in the bottom left
corner of the matrix. A more sophisticated technology with
robust behavioral features will be able to perform toward
the top right of the matrix, therefore providing coverage
over a much greater range of scenarios and representing a
superior solution. This matrix provides the basis of the range
of noise variables and behaviors that are covered in the
proposed protocol.

TEST METHODOLOGY

It is important that the protocol finds a balance that provides
a safe and acceptable outcome for the community while
implementing processes that are manageable by OEMs. It
should incentivize widespread adoption while still affording
opportunities for differentiation. It should encourage the
implementation of systems that are not simply pure warning
systems to the driver, but go further to integrate the OSM
signal with other ADAS systems. Making ADAS systems such
as automatic emergency braking or lane keep systems more
sensitive when a driver is distracted, for example, is expected
to provide both a greater safety benefit and more acceptable
driver experience.

Protocol development considers a range of driver appearance
and noise factors to ensure acceptable levels of system availability
and thus system performance. The approach here is to test
systems across the extremes of driver appearance, for example tall
through to short drivers, and drivers of different ages, very young
through to very old. Collecting data across these factors ensures
good system availability with a wide range of seating positions
and skin textures (wrinkles, baggy eyes). These appearance
variables can be described very precisely, as is routinely done
in published research studies, to give clear guidance to OEMs
on the conditions being tested. The same philosophy holds with
introducing noise factors into the testing.

Testing behaviors are the second element of the matrix
presented in Figure 2. For distraction these behaviors include:
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FIGURE 2 | The behavior-technology matrix for distraction (top) and drowsiness (bottom) that describes different levels of camera-based OSM technology

performance. Within each figure the blue text represents the complexity of driver behavior, while the black text represents noise variables that could alter detection

difficulty.

single long glances to specified driving-related and non-driving-
related targets, and; visual time sharing behaviors (multiple
short glances) that address risks associated with engagement in
secondary activities including phone use. A test example for
visual time sharing tasks could include scripted glance sequences
from on-road to the console over a 10–15 s period. Testing
toward the extremes of the owl and lizard glance strategies
separately is a key element. This ensures that a range of individual
differences in glance strategies are accommodated while also
accommodating a key element that can differentiate the capability
of an OSM feature. Distraction scenarios will need to be tightly
prescribed and highly repeatable. Testing drowsiness-related
behaviors is somewhat more complex as no single behavior
or pattern is consistent across all individuals (Caffier et al.,
2003; Chua et al., 2014). This makes reproducing drowsiness
behaviors in a consistent manner problematic. Drowsy and
microsleep data should therefore be collected from drivers
that are genuinely drowsy and where this can be confirmed
by validated measures [e.g., the Karolinska Sleepiness Scale
(KSS) or EEG].

Ideally all testing would be conducted in test track conditions
as is done with existing Euro NCAP AEB/Lane Support
protocols. Track testing with a sufficient number of drivers,
with different appearance, incorporating different noise factors,
and testing across the range of distraction and drowsiness
behaviors is not practical. The approach initially proposes
testing using a dossier of evidence provided by the OEM
alongside selected use of track testing. The dossier approach
provides guidance to OEMs without being overly prescriptive
and limiting advancements in early stage technologies, and
may include recommendations of best practice guidelines for
testing drowsiness, such as number of subjects and methods of
inducing and validating drowsiness. Deviations from guidelines
will require supporting evidence justifying the method and
demonstrating comparable performance and safety benefits of
the alternate approach.

Performance assessment is a key part of any testing
methodology. The test philosophy of Euro NCAP is to assess
how well a safety system works when needed (true positives),
while the false alarm rate (false positives) is assigned to
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the vehicle manufacturer to address. Publicly available data
for distraction algorithms estimate sensitivity performance
exceeding 80% however false positives can exceed 20% (Lee
et al., 2013). For drowsiness, current General Safety Regulation
standards for legal acceptance are understood to place sensitivity
around 40%; this mark is achievable by several algorithms
but bears room for improvement at false-positive rates of 11–
24% (Friedrichs and Yang, 2010; Anderson and Horne, 2013).
Simply put, a vehicle with unacceptable false alarm rate will not
provide an acceptable customer experience. The requirements
for appropriate driver warning and vehicle intervention are
directly linked to both safety outcomes and driver experience
and should ensure an appropriate balance is struck between
sensitivity and specificity.

FUTURE DIRECTIONS IN SENSING AND
TESTING

The roadmap for future protocol development could consider
a broader spectrum of behaviors and states linked to driver
impairment. Alcohol and other drugs are examples given the
links to fatal crashes in Europe (25% of all fatalities are alcohol-
related; European Commission, 2021b), and the documented
potential for real-time OSM approaches (Lenné et al., 2020;
Hayley et al., 2021). We noted earlier the need for research efforts
to shed new light on related features such as sudden sickness to
further enhance their utility over time.

Insights from widespread implementation are likely to
provide new insights for warning and intervention strategies. For
drowsiness in particular combining performance and behavioral
indicators, such as steering and ocular inputs for example,
may improve prediction performance. From a warning and
intervention viewpoint there is acknowledgment that drowsiness
alerts alone will get us so far and that additional intervention
strategies are needed to improve safety outcomes in the long
term (Fitzharris et al., 2017). The full integration of OSM into
the suite of ADAS affords an expanded range of real-time vehicle
intervention strategies.

While risks associated with distraction and single long
glances away from the forward roadway are well-understood,
further research is needed on safety impacts of multiple glance
distraction. For example: at what point during a given sequence
does a driver become distracted; how is this influenced by the
driver’s engagement in driving and non-driving related tasks;
how does the external environment influence this; and what are
the links to probable crash types? Further, cognitive distraction
and inattention are emerging safety issues. While reasonably
well-understood in driving simulator studies, direct links to
real world safety are less well-documented. Crash types here
include “looked but failed to see” where a driver’s visual attention
can be directed on-road yet they are cognitively engaged in
another activity.

Current Safety Assist protocols are designed to support drivers
operating vehicles in manual driving, i.e., without assisted or
automated driving functions. Driver behavior will change with
increases in driver assistance and vehicle automation as drivers

increasingly have the opportunity to take hands off wheel and/or
eyes off road under defined conditions. It is critical to consider
what safety issues these changes might introduce and how
OSM can best support safe outcomes. Driver engagement is the
cognitive state that is increasingly important to understand and
measure here from a safety perspective (Lenné et al., 2020).
Drivers need to remain sufficiently engaged and attentive to the
driving task to ensure they are able to resume control should the
assistance feature not perform as expected. It its simplest form,
if a driver is known to be sufficiently attentive, this knowledge
could be used to allow ACC to proceed from a stand-still at a
red light, for example. Driver take-over readiness is key as it
informs take-over performance, a safety outcome included in the
planning for future Euro NCAP protocols.

There are several opportunities for researchers and industry
to pursue to close some knowledge gaps. For researchers,
perhaps it is about establishing the safety risks and safety
scenarios for driver states that are less understood, such as
cognitive distraction. Conducting in-depth crash studies to better
understand the crash types and associated driver behaviors and
system factors—helping to set the agenda for the problems
that both technology development and safety policy should
target. Continued research into the most effective warning and
intervention strategies is also key. For industry there is an
immediate opportunity to combine with other sensors such as
child presence detection, seat belt wearing detection (advanced
SBR), and occupant position and size for in-crash protection
systems. There is also the opportunity to continue to push the
boundaries on the safety cases that can be addressed, and the
underlying technologies used to achieve this, to ensure that even
greater injury reductions are realized.

CONCLUSION

Distracted and drowsy driving are highlighted as key sources
of road trauma in road safety strategies around the world.
These behaviors have historically been very difficult to identify
when they occur while driving. OSM technologies offer new
opportunities to manage driver distraction and drowsiness in
real-time and thus reduce fatal and serious injury. We believe
this is best achieved by combing warning and intervention
strategies such as, for example, increasing the sensitivity of
driver assistance systems when a driver is not attentive. The
European NCAP continues to evolve its OSM protocols to
recognize more advanced technologies such as driver monitoring
as an integral part of upcoming rating protocols that will
reward vehicle manufacturers who provide OSM features in
future vehicles.

Protocols have been developed that attempt to address
and mitigate the higher risk distraction and drowsiness
behaviors. These protocols are likely to become effective
for new vehicle models in Europe from 2023 and evolved
for a 2025 update. The European NCAP roadmap in the
future could include a number of known and emerging
safety issues that could include cognitive distraction and take-
over performance.
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Autonomous navigation becomes complex when it is performed in an environment that

lacks road signs and includes a variety of users, including vulnerable pedestrians. This

article deals with the perception of collision risk from the viewpoint of a passenger sitting

in the driver’s seat who has delegated the total control of their vehicle to an autonomous

system. The proposed study is based on an experiment that used a fixed-base driving

simulator. The study was conducted using a group of 20 volunteer participants. Scenarios

were developed to simulate avoidance manoeuvres that involved pedestrians walking

at 4.5 kph and an autonomous vehicle that was otherwise driving in a straight line at

30 kph. The main objective was to compare two systems of risk perception: These

included subjective risk assessments obtained with an analogue handset provided to the

participants and electrodermal activity (EDA) that was measured using skin conductance

sensors. The relationship between these two types of measures, which possibly relates

to the two systems of risk perception, is not unequivocally described in the literature. This

experiment addresses this relationship by manipulating two factors: The time-to-collision

(TTC) at the initiation of a pedestrian avoidance manoeuvre and the lateral offset

left between a vehicle and a pedestrian. These manipulations of vehicle dynamics

made it possible to simulate different safety margins regarding pedestrians during

avoidance manoeuvres. The conditional dependencies between the two systems and

the manipulated factors were studied using hybrid Bayesian networks. This relationship

was inferred by selecting the best Bayesian network structure based on the Bayesian

information criterion. The results demonstrate that the reduction of safety margins

increases risk perception according to both types of indicators. However, the increase in

subjective risk is more pronounced than the physiological response. While the indicators

cannot be considered redundant, data modeling suggests that the two risk perception

systems are not independent.

Keywords: autonomous driving, passenger perception, risk assessment, skin conductance, driving simulator,

Bayesian network
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1. INTRODUCTION

Traveling in autonomous vehicles changes the driver’s role when
they become a passenger after ceding control to an automated
system (Reilhac et al., 2016; Kyriakidis et al., 2019). Verberne
et al. (2012) suggested that individuals do not change their social
rules when interacting with an automated system. Basu et al.
(2017) supported this idea by revealing that most drivers prefer
a driving style that resembles their own. This consideration
is all the more important when traveling in a dense space
where different types of vulnerable road users (e.g., pedestrians
and cyclists) can circulate freely. Such spaces are beginning to
appear in Europe and are known as shared spaces (Hamilton-
Baillie, 2008). They are designed to eliminate any segregation
between road users (e.g., through a lack of signs and road
markings). As a result, the fluidity of mobility in these areas
essentially relies on social conventions, especially in crowded
situations. One of the objectives of this urban design is to
enable drivers to better integrate into multi-user environments
by reducing vehicle speeds and improving traffic flow (Hamilton-
Baillie, 2008; Kaparias et al., 2012; Moody and Melia, 2014).
However, such designs have also introduced a new challenge
for autonomous vehicles that must navigate among other users
in non-signalled areas (e.g., the problem of crowd navigation
as discussed by Bresson et al., 2019). The trajectories followed
by the vehicle to navigate within this type of environment
must remain acceptable to the users around the vehicle but
also to the driver-passenger inside. Many studies currently
investigate the communication between the autonomous vehicle
and pedestrians through external human-machine interfaces
(Faas et al., 2020; Métayer and Coeugnet, 2021), but it is also
important to ensure that the passenger does not fear a collision
risk (e.g., when the vehicle adopts proactive navigation, Kabtoul
et al., 2020). It is therefore essential to study what will determine
the acceptability of the vehicle’s trajectory relative to other
road users.

1.1. Vehicle Dynamics and Passenger Risk
Perception
Gibson and Crooks (1938) proposed the existence of a dynamic
space that the driver perceives as an area in which they can
navigate safely. The authors named it the “field of safe travel.”
This zone represents an envelope of acceptable trajectories for a
vehicle. It depends on the driver’s experience, the safety distances
they wish to respect and their perception of the size of the car,
among other factors. Based on these considerations, Kolekar
et al. (2020a,b) proposed the driving risk field to model the
importance that a driver ascribes to an obstacle that blocks
a straight trajectory. In their work, the authors built upon
Näätänen and Summala’s theory (Näätänen and Summala, 1976),
who defined perceived risk as a function of both the subjective
importance given to a hazard and the consequences that this
hazard could pose. Kolekar et al. (2020a,b) hypothesized that
the subjective importance that is given to a risk is proportional
to the driver’s reaction at the steering wheel when confronted
with an obstacle in their trajectory. Using this perspective, the
authors developed a measure proportional to the perceived risk

if a hazard’s consequences remain unchanged (e.g., collision with
the same obstacle). Other researchers have found that the values
of time-to-collision (TTC) or time headway when following a
vehicle or approaching a slower obstacle highly correlate with a
driver’s perception of a collision (Vogel, 2003; Chen et al., 2016;
Zhao et al., 2020). Researchers have particularly investigated
TTC in the literature and have demonstrated that it is directly
perceived through retinal expansion (Lee, 1976; Bootsma et al.,
1997; Bootsma and Craig, 2003). When approaching an obstacle,
an autonomous vehicle must initiate an avoidance manoeuvre
to avoid a collision. When the path of the vehicle deviates from
the obstacle, measures such as the TTC or time headway are
no longer relevant while the vehicle continues to approach. In
this case, new metrics must be used to study risk perception.
Ferrier-Barbut et al. (2018) revealed the existence of a comfort
zone that is perceived by the passenger of an autonomous vehicle
when the vehicle is passing close to a pedestrian. This suggests
that absolute distance is a factor in the passenger’s perception.
During an avoidance manoeuvre, this distance corresponds to
the lateral distance (which is also referred to as the offset)
between the vehicle and the obstacle. In summary, the study of a
passenger’s risk perception that involves an autonomous vehicle
must integrate vehicle-environment dynamics.

1.2. The Hypothesis of Two Risk Perception
Systems
Slovic et al. (2004) described two risk perception systems that
are involved in evaluation and decision-making processes when
an individual is faced with a potential hazard. “Risk as analysis,”
according to the authors, is a system of risk perception that
is based on conscious reasoning and uses formal logic. This
method for perceiving risk is a common conception in the
scientific literature. It assumes that individuals perceive risk by
estimating the product of the probability of a hazard and its
consequences. However, this type of risk perception, which is
slow and costly in cognitive resources, would not be solicited in
the event of an imminent threat. Slovic et al. (2004) suggested the
existence of a second system of perception that is predominant
in this type of situation, which they named “risk as feelings.”
This system comprises a quick and reactive way of perceiving
risk and is intuitive in nature as it is based on affects. This
duality of risk perception aligns with the vision of Loewenstein
et al. (2001), who suggested that decision-making results not
only from cognitive processing but also from an instinctive and
spontaneous emotional appraisal.

This vision of the dual process of risk perception is part of
the broader problem regarding the distinction between cognitive
processes that are fast, automatic and unconscious (type 1) and
those that are slow, laborious and conscious (type 2) (Evans,
2008; Evans and Stanovich, 2013). Risk as analysis would belong
to type 2 processes, which rely on working memory and involve
the mental simulation of future possibilities to formulate explicit
judgements. In contrast, risk as feeling would belong to type
1 processes, which are autonomous, do not require working
memory and underlie implicit information processing. However,
as Evans (2008) rightly pointed out, the nature of the distinction
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between the two types of processes and their mutual relations
are not univocal in the literature. This study addresses this issue
through the prism of risk perception in a specific context, that of
autonomous vehicles navigating shared spaces.

1.3. Risk Measurement
Herrero-Fernández et al. (2020) associated the concept of risk
as analysis with a subjective assessment (SA) and associated
the concept of risk as feelings with an objective evaluation
based on an individual’s physiological state. These two evaluation
systems are complementary. If an SA consists of measuring
the self-reflexive part of risk perception, then the physiological
variables provide information on the physical manifestations of
this same perception. From this perspective, Choi et al. (2019)
considered that, at a certain level, risk perception may require
the regulation of the autonomic nervous system, particularly
by the sympathetic nervous system. The latter ensures that
physiological adaptations occur in preparation for an escape
or a struggle when a person is confronted with a stressful
event. Such adaptations can manifest as increased cardiac and
respiratory rhythms and variations in electrodermal activity
(EDA). EDA corresponds to electrical variations in the skin
that occur in relation to the functioning of the sweat glands,
which are under the control of the sympathetic nervous system
(Morange-Majoux, 2017). The most studied property of EDA
is skin conductance, which is measured in micro-siemens and
consists of the superimposition of two distinct parts that are
called “tonic” and “phasic,” respectively. The tonic component is
associated with a global skin conductance level (SCL). It is relative
to an individual and can be recorded when and individual is at
rest. This component reveals slow variations, whereas the phasic
component generally reveals rapid changes in skin conductance,
which are often called “skin conductance responses (SCRs).”
Choi et al. (2019) considered that risk perception could lead to
substantial changes in EDA; therefore, EDA could be a good
indicator of risk perception. SCRs have already been used as
indicators of events that cause stress or discomfort in drivers. For
example, Distefano et al. (2020) conducted an experiment using
a driving simulator that revealed changes in the EDA of their
participants as they approached intersections or roundabouts.
Daviaux et al. (2020) observed similar effects when participants
in their study were confronted with different driving situations
(e.g., the insertion of another vehicle into the lane, crossing with
another vehicle going in the opposite direction and crossing
with a pedestrian). Skin conductance can be measured non-
invasively using two electrodes that are placed on the surface
of the skin (Fowles et al., 1981; Boucsein, 2012). In a detailed
review about EDA, Boucsein (2012, p. 104–109) presented two
preferable sites for placing the electrodes: The hand and the
foot. However, the Society for Psychophysiological Research
(Society for Psychophysiological Research Ad Hoc Committee
on Electrodermal Measures, 2012) recommended placing the
electrodes on the distal phalanges of the index and middle fingers
to obtain bipolar recordings.

To investigate risk perception, this study proposes coupling
this physiological measurement with a real-time subjective
assessment by using an analogue device that can be operated

using one hand. A similar method was used by Rossner and
Bullinger (2019, 2020a,b). In their study, the participants were
asked to assess their levels of comfort while they were on board
a simulated autonomous vehicle. The advantage of collecting an
online subjective measurement is that it provides access to the
dynamics of changes in perceived risk, unlike verbal or written
assessments that involve either an interruption in the task or
an a posteriori evaluation. The device developed for this study
resembles the slide potentiometer used by Walker et al. (2019a).
In their study, the authors proposed an experiment to validate
their measurement device by asking participants (pedestrians)
to assess their willingness to cross a road in real-time while
observing an approaching vehicle. The authors concluded that
such a continuous assessment device could be useful for assessing
human interactions with automated vehicles.

1.4. Theoretical Hypothesis
As mentioned previously, two factors that are related to vehicle-
environment dynamics were manipulated: The value of the TTC
at the moment the vehicle initiates an avoidance manoeuvre and
the offset distance left between the vehicle and the pedestrian. It
was postulated that the two factors would successively influence
passengers’ perceived risk. First, based on the results from
Bootsma and Craig’s study (Bootsma and Craig, 2003), it was
assumed that perceived risk increases when the TTC at the time
the manoeuvre is initiated decreases. Second, it was assumed that
the closer the vehicle passes to a pedestrian (that is, the lower
the offset distance), the greater the perceived risk becomes. Both
TTC and offset were manipulated to investigate the relationship
between the two types of risk perception measures (i.e., the
subjective assessment and skin conductance response). From a
statistical point of view, the objective was to determine whether
the independence of the two types of risk perception was
probable given the data and the effects of the independent
factors. It was assumed that the measures of SA and SCR
were continuous random variables. The purpose of this study
was to test whether the experimental data would support the
independence between those two variables given the levels of the
factors being manipulated. Two alternatives were considered:

• H0: SA and SCR are independent despite the measures and
levels of factors, which means that the two types of risk
perception are independent.

• H1: SA and SCR are not independent in at least one
combination of measures and factors, which means that there
is a relationship between the two types of risk perception.

To address these theoretical hypotheses, hybrid Bayesian
networks were implemented. This method, which is based on
stochastic distributions, aided in discovering the best structure
of relationships (i.e., the one that best fits the data) between
manipulated factors and dependant measures. Specifically,
Bayesian networks were used to determine whether a relationship
between the two risk perception systems could exist and be
relevant apart from the assumed influence of the independent
environmental factors. In other words, this method was used to
assess the significance of the relationship between measures from
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FIGURE 1 | Sample diagram of the vehicle trajectory among pedestrians. The combination of the two factors (TTC and offset) varied between pedestrians according

to the experimental plan, which was identical for all the participants. The pedestrians’ walking directions and the lateral directions of the avoidance manoeuvres are

also represented.

two types of risk perception given the effects of the TTC and the
lateral offset.

Finally, a network coefficient analysis was performed to
quantify the effects of the manipulated factors. This analysis was
conducted to test the extent to which the influence of the factors
was confirmed. That is, this analysis was conducted to validate
that a lower TTC at the beginning of an avoidance manoeuvre or
a lower offset distance between a vehicle and a pedestrian results
in a higher level of risk perception.

2. METHOD

2.1. Participants
For this experiment, 20 participants (13 men and 7 women) were
recruited. They were between 18 and 52 years old (M = 27.1,
SD = 8.9). Eighteen participants had held driving licenses for
9.8 years on average (SD = 9.5) and drove ∼11,400 km per year
(SD = 19,100). The two remaining participants did not possess
driving licenses, with the assumption that their perception of risk
depended on the same processes as ordinary drivers. In addition,
having a driver’s license was not considered a prerequisite to be a
passenger of a fully autonomous vehicle. Preliminary inspection
of the EDA recordings and subjective assessments confirmed that
the responses of the two unlicensed participants were not distinct
from those of the others.

2.2. Experimental Design
A within-subject design was used so that participants would
experience a series of 32 pedestrian avoidance maneuvers. The
order of presentation of the pedestrians was randomized. They
were divided into two blocks of ∼7 min presented in succession
with a short break in between. The autonomous vehicle was
programmed to drive at a constant speed of 30 kph on a
20-m-wide street. The vehicle followed a straight trajectory
except when it had to avoid pedestrians. In the real world,
the speed limit in shared space is generally lower. According
to the British Department of Transport (Great Britain and
Department of Transport, 2011), a speed of no more than
20 mph (∼32 kph) and preferably <15 mph (∼24 kph) is
desirable. However, some preliminary experiments revealed that
at low vehicle speeds, avoidance manoeuvres elicit very little

risk perception from participants. This phenomenon may be
explained by the relatively limited immersion of the driving
simulator and participants’ ability to predict the behavior of
the autonomous vehicle. Therefore, the speed of 30 kph was
chosen to increase the chances of eliciting risk perception from
the participants.

A sample of the vehicle’s trajectory is illustrated in Figure 1.
After passing a pedestrian, the vehicle did not return to its initial
position but maintained its position in the lane until the next
pedestrian was encountered. Each pedestrian walked at 4.5 kph
and was 25 s apart from the others.

2.3. Factors
Two factors acting successively were manipulated (cf. Figure 1).

First, the value of the TTCwhen the avoidancemanoeuvre was
initiated was manipulated. In a straight line, the TTC represented
the time remaining before the vehicle reached an obstacle. This
depended on both the distance and the relative speed between
the vehicle and the obstacle. During the experiment, four levels
of TTC were tested: 2.0, 2.5, 3.0, and 3.5 s.

Second, the lateral offset distance (simply denoted “the offset”)
was manipulated during ongoing avoidance manoeuvres when
the vehicle arrived next to a pedestrian. This parameter was
introduced to test whether the proximity between the vehicle
and the pedestrian affected the participant’s perceived risk. Three
levels of lateral offset were tested: 0.5, 1.0, and 1.5 m.

It was not possible to combine all the levels of the two factors.
Indeed, combining a time-to-collision of 2.0 s and an offset of 1.0
or 1.5 m gave rise to unrealistic vehicle behavior that was caused
by the driving simulation software. As a result, only 8 out of the
12 combinations were tested.

Two additional factors were introduced to make the
simulations more realistic and unpredictable. Half of the
pedestrians walked in the direction in which the vehicle was
moving, while the other half walked in the direction opposite
the vehicle. In a shared space, there are no rules regarding
the direction in which a vehicle should go to avoid other road
users. For this reason, the direction of the avoidance manoeuvres
varied between left and right. Preliminary statistical analyses,
which have not been reported here, demonstrated that these
two factors did not affect the results. Finally, the appearance of
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FIGURE 2 | Example of the participant’s 120◦ view during a left avoidance manoeuvre. (Top) The approaching phase of a pedestrian walking in the same direction as

the vehicle. (Middle) The vehicle’s position 2 s later when it had started its avoidance manoeuvre. (Bottom) The end of the manoeuvre. The avoided pedestrian is

visible in the left and center rear-view mirrors. The following pedestrian (circled in red) can hardly be distinguished. This is because each avoidance manoeuvre was

separated by 25 s to ensure the independence of the measurements.

each pedestrian was arbitrarily chosen from a list of a dozen
possibilities (a man or a woman in a t-shirt or a suit, a teenager in
shorts, etc.). Figure 2 illustrates what the participants saw during
a left avoidance manoeuvre in three screenshots.

2.4. Experimental Setup
The experiment took place using a fixed-base driving simulator
that was run using SCANeR StudioTM software (AVSimulation,
France). This driving simulator provides visibility of 120◦ thanks
to three screens (see Figure 3A). During the simulation, the
participants were informed that the vehicle was fully automated
and that they did not need to use the controls.

In order to record physiological responses during
the simulation, the participants’ skin conductance was
measured according to recommendations of the Society for
Psychophysiological Research (Society for Psychophysiological
Research Ad Hoc Committee on Electrodermal Measures, 2012,
p. 6-7). Two electrodes were placed on the distal phalanges of the
participants’ index and middle fingers on their non-dominant

hands. To improve the skin-electrode electrical conductivity
and the accuracy of the data collection, the electrodes were
covered with isotonic gel. No skin preparation was done before
the electrodes were placed. Data recording began at least 5 min
after establishing electrode-skin contact to create better electrical
contact and stabilize the baseline (that is, the skin conductance
level). The data were collected at 625 Hz on a dedicated computer
using the software AcqKnowledge 5.0 (BIOPAC Systems, Inc.,
USA), which was coupled with an acquisition module (16
bits analogue to digital converter; MP160 system, Systems,
Inc., USA).

To enable the participants to assess perceived risk throughout
the simulation, an analogue device (a potentiometer that was
connected to an ArduinoTM Uno board) was developed for one-
handed use, which is illustrated in Figure 3B. The device was
designed so that it did not cause visual distraction and could be
used without the participants having to look at it. The device was
placed on the participants’ laps in such a way that they could
manipulate it using their dominant hands (i.e., the hand that did
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FIGURE 3 | Experimental setup. (A) A fixed-base driving simulator. (B) Analogue device for subjective risk assessment.

not have the conductance measurement electrodes attached to
it). Data were collected and linked to the autonomous driving
scenarios with a sampling rate of 20 Hz.

2.5. Procedure
Participants were asked to fill out a form to provide information
about their ages, genders, and driving experience. They were then
informed of the purpose and the course of the experiment. At
the end of the introductory period, the electrodes were installed
according to the manual preferences of the participants. Each
participant was then invited to sit in the simulator; at this point,
the analogue device was presented and handed over to them.

Each participant was presented with a preliminary scenario
that consisted of autonomously driving on a road without
pedestrians. Each participant’s objective was to optimize the use
of the hand-held device by finding a good position for their hands
and exploring the rating scale available. Voluntarily, no scale or
reference value that was related to risk assessment was provided
to the participants. Therefore, they had no prior knowledge
of the lowest or highest levels of stimulation that they would
encounter. This approach was inspired by Stevens’ book about
psychophysics (Stevens, 2017, p. 28): This testing method gave
participants more freedom without distracting them as it did
not require them to do calculations to scale their responses
to a certain criterion. The participants were expected to pay
attention as much as possible to the driving scene and ignore
the assessment device. During this scenario, a horizontal gauge
indicating the cursor’s position in real-time was displayed on
the central monitor. The gauge represented the position of the
cursor in the usual way (that is, with the minimum value on
the left and the maximum value on the right). The participants
were initially invited to adjust their positions in the driver’s seat
and to familiarize themselves with the assessment device without
the researcher’s intervention. They were then asked to perform
a few exercises: Starting from either the cursor’s minimum or
maximum position, they had to reach the first third, the median
and then two-thirds of the gauge. During this training phase, the
participants were asked to close their eyes and reopen them when

they thought they had reached the required positions. In this way,
they could estimate their errors and readjust their positions if
necessary. An error of 5% around the target position was allowed.
This phase ended as soon as the participants managed to reach
all the required positions and felt confident enough to reach any
other position. This training period also made it possible to check
the quality of the physiological data collected (EDA) and to adjust
the electrodes’ placement if necessary.

Afterwards, the participants were instructed to experiment
“using the analogue device to assess their risk of collision with
pedestrians in real-time when moving in a shared space.”

2.6. Calculation of Dependent Variables
2.6.1. Subjective Risk
Two indicators were calculated to quantify the subjective risk
assessment (denoted as “SA”) for each avoidance manoeuvre:
The integrated risk assessed over time (iSA) and the maximum
amplitude of the assessed risk (mSA). The indicator iSA can be
considered a dynamic indicator as it accounts for both amplitude
and temporality. It corresponds to the area under the curve
for each maneuver filled with grey in Figure 4. The indicator
mSA was calculated to provide a simple quantification of the
participants’ SA. It corresponds to the maximum value at each
peak. As illustrated in Figure 4, the subjective assessment evolved
differently between the manoeuvres and always returned to 0
between each pedestrian.

2.6.2. Skin Conductance Response
The data were initially processed using the software program
AcqKnowledge 5.0 (BIOPAC Systems, Inc., USA); MATLAB
(MATLAB, 2018) and R (R Core Team, 2020) were then used to
extract the indicators. Several manipulations had to be conducted
to calculate the indicators. First, the raw data were pre-processed
using AcqKnowledge according to the recommendations made
by Braithwaite et al. (2013) and Findlay (2017). These included
resampling at 78 Hz, moving median smoothing at 1 s and
low-pass filtering at 1 Hz. The pre-processed data were then
analyzed using the Ledalab application, specifically Version 3.4.8
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FIGURE 4 | Sample of the collected data concerning seven avoidance manoeuvres. (A) The evolution of the subjective assessment during seven avoidance

manoeuvres. The subjective assessment always returned to 0 between the manoeuvres. Indicator mSA corresponds to the maximum value of each manoeuvre.

Indicator iSA corresponds to the area under each curve. (B) The skin conductance responses during the seven avoidance manoeuvres. Indicator mSCR corresponds

to the maximum amplitude of the responses. Indicator nSCR corresponds to the number of skin conductance responses.

from Benedek and Kaernbach (2010). This application is a
MATLAB toolbox that was designed for isolating the tonic and
phasic components of EDA. The method used was based on the
following two steps:

1. The identification of the phasic component using Continuous
Decomposition Analysis (CDA) with two parameters for the
optimization of the deconvolution algorithm. This method,
which is described in Benedek and Kaernbach’s article
(Benedek and Kaernbach, 2010), is based on a deconvolution
algorithm to detect SCR. This technique is particularly
effective for identifying and determining the characteristics of
so-called “superimposed” responses (Boucsein, 2012).

2. The detection of SCR > 0.05 µS (the extraction of their onset
and amplitude).

Finally, the indicators were calculated using the R software. For
each avoidance manoeuvre, relative SCRs were selected only
if their onset occurred no more than wstart seconds before
the moment when the vehicle was next to a pedestrian and
no more than wend seconds after that moment. An avoidance
manoeuvre could elicit an SCR only during the moment the
participants started to perceive (assess) a collision risk. Therefore,

the value wstart was computed for each participant, and two
distinct moments for each manoeuvre were considered:

• The moment when the participant started to assess a non-zero
value of collision risk;

• The moment when the vehicle was effectively level with a
pedestrian.

This process resulted in 32 values (which corresponded to
the total number of manoeuvres) per participant, which were
averaged to find wstart . The value of wend was based on results
from the literature (Boucsein, 2012; Droulers et al., 2013). SCR
could be related to an avoidance manoeuvre only if it occurred
in the 3 s following the moment when the vehicle was next to
a pedestrian.

As for the subjective assessment data, two indicators were
calculated to quantify EDA. These included the maximum
amplitude of skin conductance responses (mSCR) and the
number of skin conductance responses (nSCR). Figure 4

illustrates a sample of SCR data. The indicator nSCR
corresponds to the number of SCRs during each manoeuvre,
and mSCR corresponds to the maximum amplitude for all
concerned SCRs.
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TABLE 1 | Value’s frequencies for independent variables.

Offset (m) TTC (s) Total frequency

3.5 3 2.5 2

1.5 0.125 0.125 0.125 0.125 0.500

1 0.125 0.125 0 0 0.250

0.5 0.125 0.125 0 0 0.250

Total frequency 0.375 0.375 0.125 0.125 1.000

This table illustrates the combinations of independent variables used in the experiment.

The frequency for each value is given, and the totals for each row/column were added to

provide details on the distribution of each variable.

3. DATA ANALYSIS

The analysis was based on the modeling of hybrid Bayesian
(Denis and Scutari, 2015, Chapter 3) to study the relationship
that may exist between subjective risk assessment indicators and
the participants’ skin conductance response indicators and the
effects of the factors. Each Bayesian network proposed in this
study includes four variables, which are also called “nodes.” A
Bayesian network is represented by its directed acyclic graph
(DAG), which graphically illustrates the relationships between
its nodes. A node represents a variable that is associated with a
statistical distribution whose parameters possibly depend on the
other nodes. An arrow is used to specify that the distribution of
a node depends on the value of another node. In this study, all
directed acyclic graphs contain four nodes. Two nodes represent
the independent factors TTC and offset. They were both assigned
to discrete distributions whose probability mass functions were
determined by the frequency of their values in the design of the
experiment (cf. Table 1). Two other nodes, which were denoted
“SA” and “SCR,” were respectively assigned to the subjective
assessment and the skin conductance response indicators. Node
SA (resp. SCR) designated either the iSA indicator or the mSA
indicator (resp. nSCR andmSCR indicators).

After an analysis of the distributions of the two indicators
of subjective assessment was conducted, the original data was
transformed to correct a positive skewness. A power of 1

2

was applied to mSA values and a power of 1
3 to iSA values.

Moreover, to consider global distributions for all the participants,
the transformed SA values were then centered and scaled by
the participants. These transformations were performed to use
Gaussian distributions for the node SA in the Bayesian networks.
To ensure that this hypothesis on the distributions was relevant,
a Shapiro-Wilk test was performed. The results are presented
in Table 2. The transformations that were performed on the
indicators resulted in more symmetrical distributions that can be
assumed to be normal according to the statistics of the Shapiro-
Wilk test (p > 0.5 for both variables).

A preliminary analysis revealed that the SCR indicators
had 46% of exactly zero. That means that only a part of an
avoidance manoeuvre produced physiological responses. For
this reason, a Tweedie compound Poisson distribution (Dunn
and Smyth, 2005, 2008; Hasan and Dunn, 2012) was used for

TABLE 2 | Sample descriptive statistics and normality test of subjective

assessment variables.

Variable Descriptive statistics Shapiro Wilk test

n M SD Skewness W p

Raw

mSA 640 0.401 0.252 0.653 0.951 0.000

iSA 640 1.548 1.426 1.431 0.865 0.000

Transformed

(mSA)
1
2 640 0.000 0.985 −0.010 0.999 0.974

(iSA)
1
3 640 0.000 0.985 −0.016 0.998 0.701

The raw variables correspond to the original data. The transformed data correspond to

centered and scaled variables for each individual. These operations were performed after

the power transformations of the initial values were made (that is 1
2 for the indicator mSA

and 1
3 for the indicator iSA).

Node SCR in the Bayesian networks. This otherwise positive
and continuous distribution has a positive mass at zero. The
Tweedie compound Poisson distribution aided in estimating the
distribution of the SCR indicators, as well as the probability of
zero responses. To consider global distributions and homogenize
the fluctuations between the data of each participant, indicators
mSCR and nSCR were scaled per participant. As in the example
provided by Dunn and Smyth (2005), an initial diagnostic
(which has not been reported here) was performed to verify that
the Tweedie approach of modeling the zeros and the positive
observations together was adequate to estimate the parameters
of the distribution.

For all node distributions, the parameters were estimated
using the R software. More specifically, as in the method
presented by Denis and Scutari (2015), the parameters of
the factors TTC and offset were set as the actual frequency
in the experiment (cf. Table 1), and the parameters of the
Gaussian distribution were estimated by fitting linear models.
The parameters of the compound Poisson distribution were
estimated using the R package cplm (Zhang, 2013). Following
the method presented by Denis and Scutari (2015), when a
factor influenced a dependent node’s (SA or SCR) distribution,
the parameters were estimated for each value of the factor. For
instance, eight parameters were estimated for the distribution of a
Gaussian node that was influenced exclusively by the factor TTC
(i.e., a mean and a standard deviation for each of the four levels
of TTC). Concerning the graphs where both the factor TTC and
offset influenced an indicator, a distribution was fitted for each of
the eight combinations (cf. Table 1).

Forty-eight networks were computed regarding the four
indicators mentioned previously (iSA, mSA, nSCR, and mSCR;
see Figure 5). The consideration of four indicators rather than
two (i.e., one for the SA and one for the SCR) allowed
the amount of data that was used to analyze the effect
of the factors and the relationship between the two risk
perception types to be multiplied by four. To compare the
Bayesian networks and select the more plausible one given
the data, the Bayesian Information Criterion (BIC, Schwarz,
1978; Kass and Raftery, 1995; Raftery, 1995) was used. This
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is the criterion that is used for Bayesian network selection in
the greedy search algorithm mentioned by Denis and Scutari
(2015, p. 110). The procedure consists of favoring the network
that has the lowest BIC score. For a Bayesian network, the
Bayesian Information Criterion was calculated according to the
following formula:

BIC = −2LL+ p log(n), (1)

where LL is the joint log-likelihood of variables in the
Bayesian network, p is the number of estimated parameters
associated with the joint distribution of the variables in the
network and n is the number of samples. The BIC allows
non-nested Bayesian networks to be easily compared and
is conservative regarding relationships (Raftery, 1999). That
is, new relationships between nodes will only be significant
concerning the BIC if they provide sufficient benefits regarding
the overall likelihood. In the specific case of the Bayesian
network, the BIC calculation was decomposed as the sum
of the BIC at the four nodes (Denis and Scutari, 2015,
p. 19):

BIC = BICTTC + BICOffset + BICSA + BICSCR, (2)

where BICx is the value of the Bayesian information
criterion computed for a node x. This equation results
from the fact that the joint log-likelihood of a Bayesian
network can itself be decomposed as the sum of
the log-likelihood for each node when considering
the relationships between them while estimating
distribution parameters.

The grades of evidence from Kass and Raftery (Raftery, 1995,
p. 139) were used to discuss the BIC differences in the values
after the ranking process. Gaps larger than 2, 6, or 10 between
two BIC values were considered positive, strong or very strong,
respectively. Afterwards, the Hypothesis H0, which states the
independence between the subjective assessment and the skin
conductance responses, requires that the best Bayesian networks
(which were obtained for each combination of indicators) do not
contain a relationship between the node SA and the node SCR.
Conversely, it is sufficient for one of the best networks to contain
a relationship between the node SA and the node SCR to reject
HypothesisH0 in favor ofH1.

The best Bayesian networks were finally investigated to
analyse the estimated distribution of each indicator. For
indicators of subjective assessment, whose distributions were
assumed to be Gaussian, the conditional mean estimates with
confidence interval at 95% were represented. Additionally,
when the influence of both factors appeared in the best
Bayesian network, a cluster analysis was performed based on the
Bayesian information criterion (Binder, 1978; Franzén, 2008).
We considered all the conditions resulting from the interaction
of the TTC and offset factors, that is, eight possible levels. The
objective was then to find out if these eight levels gave rise
to different distributions of the indicator considered (mSA or
iSA) or if they could be grouped into a smaller number. For
this purpose, models were built for all possible groupings, that
is, 4140 possible partitions in accordance with the eighth Bell
number (Rota, 1964). The R package partitions was used for
this (Hankin, 2006; Hankin and West, 2007). Then the BIC
value was calculated for all the models. The best model was

FIGURE 5 | Directed acyclic graphs (DAG) compared in the experiment. (A) Illustrates the 16 DAGs that do not contain a relationship between SA and SCR nodes.

(B) Illustrates the DAG that contains a relationship between the node SCR and the node SA. (C) Illustrates the DAG that contains a relationship between the node SA

and the node SCR. The only DAG in (A) is consistent with the hypothesis of independence between the subjective assessment and the skin conductance response.
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selected by using the Raftery’s grades of evidence (Raftery, 1995,
p. 139).

For indicators of SCR, which were assumed to follow Tweedie
distributions, conditional mean estimates were represented, as
well as the probability of zeros. These two representations were
used to provide a more complete preview of the functioning
of an effect given this specific Tweedie distribution. Both
representations were useful for providing a more complete
picture of how an effect worked given this Tweedie distribution.
Since SCRs were quite rare in the data, it was interesting to
visualize the evolution of the mean of an indicator in parallel with
the probability of no response.

4. RESULTS

4.1. The Relationship Between the Two
Types of Risk Perception Measures
All the possible Bayesian networks were compared to address the
two theoretical hypotheses: H0, which states that the two types
of risk perception are independent, and H1, which states that
a relationship exists between the two types of risk perception.
The best Bayesian networks were selected for each of the
four combinations of indicators according to the BIC. Table 3
presents the three best Bayesian networks per combination
regarding their value of BIC. In this table, the structure of the
relationships between the Bayesian networks was represented
by the likelihood decomposition for node SA and node SCR.
This notation was adopted to succinctly reflect the dependence

TABLE 3 | Values of the BIC of the three best models by indicator combination.

Likelihood decomposition BIC

L(mSA, mSCR|TTC, Offset)

L(mSA|TTC) × L(mSCR|TTC) 6044.724*

L(mSA|TTC, Offset) × L(mSCR|TTC) 6045.361*

L(mSA|TTC, mSCR) × L(mSCR|TTC) 6050.928

L(mSA, nSCR|TTC, Offset)

L(mSA|TTC) × L(nSCR|mSA) 5979.376*

L(mSA|TTC, Offset) × L(nSCR|mSA) 5980.013*

L(mSA|TTC) × L(nSCR|TTC) 6009.594

L(iSA, mSCR|TTC, Offset)

L(iSA|TTC, Offset) × L(mSCR|TTC) 6038.815*

L(iSA|TTC) × L(mSCR|TTC) 6053.426

L(iSA|TTC, Offset) × L(mSCR|TTC,iSA) 6057.045

L(iSA, nSCR|TTC, Offset)

L(iSA|TTC, Offset) × L(nSCR|iSA) 5983.842*

L(iSA|TTC) × L(nSCR|iSA) 5998.453

L(iSA|TTC, Offset) × L(nSCR|TTC) 6003.685

For the sake of simplicity, the likelihood (denoted L) decompositions are only noted for

nodes SA and SCR. However, the values in the BIC column correspond with the total BIC

of the Bayesian network. The distribution parameters have not been specified here. The

indicators of subjective assessment were assumed to follow a Gaussian distribution. The

indicators of skin conductance response were assumed to follow a Tweedie distribution.

The asterisks indicate the best Bayesian networks according to Raftery’s degree of

evidence.

between the distributions of subjective assessment measures and
skin conductance responses given the factors TTC and offset.

Table 3 reveals that one unique Bayesian network was selected
for the indicator iSA. The results revealed that this indicator
was influenced by the combination between levels of TTC and
offset. Concerning the indicator mSA, the best Bayesian network
(i.e., the Bayesian network with the lowest BIC score) could not
be definitely distinguished from the Bayesian networks ranked
in second position. The BIC difference between those two best
Bayesian networks was not significant regarding the Raftery’s
grade of evidence (Raftery, 1995). Essentially, the difference
was lower than 2. The dependence structure of those two
best Bayesian networks were similar except for the dependence
between the indicatormSA and the factor offset, which appeared
only in the Bayesian network that was ranked in second
position. This result means that there is not enough evidence
to conclude with certainty that the factor offset influenced the
indicatormSA.

The directed acyclic graphs of the best Bayesian networks
revealed by Table 3 are illustrated in Figure 6. Details about
the estimated coefficients for each distribution are provided in
Figure A1. Since there was not enough evidence to conclude the
relationship between the factor offset and the indicator mSA,
a question mark was placed on the arrows between these two
nodes. Figure 6 illustrates two results.

• First, the subjective risk assessment depends on the two
factors: Indicator mSA definitely depends on the factor TTC
and possibly on the factor offset (see Figures 6A,C), and
indicator iSA depends on both factors TTC and offset (see
Figures 6B,D).

• Secondly, whereas the maximum amplitude of the skin
conductance responses (indicator mSCR) depends only on
the TTC (see Figures 6A,B), the number of skin conductance
responses depends only on the subjective risk assessment (see
Figures 6C,D). This result permitted the rejection of H0 in
favor ofH1.

Consequently, the results support the existence of a relationship
between the two types of risk perception.

4.2. The Analysis of Risk Perception
Variations According to the Factors
A coefficient analysis was performed for the subjective risk
assessment obtained for each observed combination of the
factors. Figure 7 presents the means of the subjective risk
assessment obtained for the indicators mSA (Figure 7A) and
iSA (Figure 7B). The means were typically represented by bars
that were proportional to their value, and 95% confidence
intervals were plotted to better visualize significant differences.
An inspection of this figure reveals that the patterns of the
results (as a function of the combinations of factor) were
similar for both indicators. A cluster analysis was performed
to better identify the similarities and differences between the
means of a given indicator. This procedure relied on the Bayesian
information criterion to find the optimal groupings of factor
level combinations based on the data. It resulted in three
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FIGURE 6 | Directed acyclic graphs of the best Bayesian networks by indicators combination. (A) The relationships between the factors and the indicators mSA and

mSCR. (B) The relationships between the factors and the indicators iSA and mSCR. (C) The relationships between the factors and the indicators mSA and nSCR. (D)

The relationships between the factors and the indicators iSA and nSCR. A question mark was introduced to the illustration of relationship between node Offset and

node mSA because the degree of evidence for this relationship is not sufficient regarding the BIC given the thresholds developed by Raftery (1995), which were

adopted in this study.

homogeneous categories that were characterized as functions of
the effect on risk perception: Low, mid, and high. These three
categories have been detailed in the following manner:

• When the values of the factors TTC and offset were both high
(superior or equal to 3.0 s for the TTC and superior or equal
to 1.0 m for the offset), the risk was perceived to be low; the
means of the subjective assessment indicators were lower than
the average.

• When the level of the TTC was median (2.5 s) or when the
offset was small (0.5 m), the risk was perceived to be moderate;
the means of the subjective assessment indicators were close to
the average.

• When the level of the TTC was small (2.0 s), the risk
was perceived to be high; the means of the subjective
assessment indicators were significantly greater than
the average.
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FIGURE 7 | Means for the SA variables for level combinations of TTC and offset. (A) The means of the indicator mSA in combination with the TTC and offset. (B) The

means of the indicator iSA in combination with the TTC and offset. To better distinguish differences, confidence intervals at 95% are represented for each mean.

FIGURE 8 | Conditional means of SCR indicators according to the best Bayesian networks. (A) The means of the indicator mSCR in combination with the TTC

values. (B) The means of the indicator nSCR as a function of the SA values. The probability of zeros was derived from the estimated parameters of each distribution

(Tweedie). The relationships between the parameters of such distributions were, for instance, presented by Zhang (2013, eq. 2.2).

Figure 8A presents the estimated means of the indicator mSCR
and the estimated probabilities of zeros according to the levels
of factor TTC. The examination of this figure revealed that
the probability of zeros (i.e., of not observing skin conductance
responses in the participants) decreased as the mean of the
indicator mSCR increased. Moreover, the maximum amplitude
was obtained when the level of the TTC was small (2.0
s). Consequently, the later the vehicle initiated its avoidance
manoeuvre, the greater the chance of observing skin conductance
responses in the participants became. Furthermore, it can be
noted that the lowest level of the TTC produced a similar impact
on the two risk perception systems. In this particular case, the risk
was perceived to be high based on the indicators of the two types
of risk perception.

The analysis of the directed acyclic graphs of the best
Bayesian networks (cf. Figure 6) revealed that the number of

skin conductance responses depended on the subjective risk
assessment indicators (i.e., mSA and iSA) rather than on the
TTC and offset levels. This result was considered an example of
the relationship between the two types of risk perception as it
refuted their independence. Figure 8B illustrates this relationship
(using estimated parameters of the Tweedie distribution assumed
for the indicator nSCR detailed in Figure A1). The mean of
the number of skin conductance responses was represented as a
function of the subjective risk assessment indicators. The mean
of the number of skin conductance responses varied similarly for
indicators mSA and iSA. Per the statistical model used to fit the
distribution, the link between the number of skin conductance
responses and the indicators of subjective risk assessment was
exponential. The higher the subjective assessment indicators
were, the higher the number of skin conductance responses
were. Additionally, the probability of having no skin conductance
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response (i.e., the probability of zeros) was high when the
indicators of subjective risk assessment were low. The probability
of not observing a skin conductance response in the participants
decreased as the subjective assessment indicators decreased.

5. DISCUSSION

This study sought to characterize the perception of risk made by
a passenger in an autonomous vehicle that was moving in a space
shared with pedestrians. For this purpose, the subjective risk
assessment and the skin conductance responses were collected
in parallel to better understand how the two perception systems
(“risk as feeling” and “risk as analysis”) act in such a situation.

The result of the Bayesian network modeling revealed that
the hypothesis concerning independence between the two risk
perception systems must be rejected under the TTC and offset
conditions that the study evaluated. Although the maximum
amplitude of the skin conductance responses is impacted by
small TTC values, the analysis demonstrated that the number
of skin conductance responses depends only on the subjective
risk assessment. These results, therefore, support the hypothesis
that claims that the two risk perception systems are not
completely interdependent as they may influence one another
independently of environmental factors (Loewenstein et al.,
2001; Slovic et al., 2004). Nevertheless, since the subjective
risk assessment was more sensitive to external conditions than
the skin conductance responses, it is more likely that the
subjective risk can induce skin conductance responses than
the opposite. This conclusion will have to be confirmed by
further studies.

The results revealed that there are three classes of situations.
When TTC and offset were simultaneously high, between 3.0
and 3.5 s and between 1.0 and 1.5 m respectively, the risk
was perceived as low. When the TTC was intermediate (2.5
s) or when the offset was low (0.5 m), the risk was perceived
as moderate. Finally, when the TTC was small (2.0 s), the
perceived risk was higher than in all other situations. Thus,
the results confirmed that the TTC strongly determines the
perception of a collision risk during an avoidance manoeuvre
(Lee, 1976; Bootsma and Craig, 2003). The 2.5 s threshold
appears to be consistent with the recommendations that were
made by the U.S. Department of Transportation (NHTSA,
2013). Indeed, the minimum warning thresholds recommended
in the test protocols for collision warning systems are 2.1,
2.4, and 2.0 s when the vehicle respectively approaches a
fixed, decelerating or low-speed obstacle. During an avoidance
manoeuvre, when the vehicle passed a pedestrian, the lateral
offset also influenced risk perception. The closer the vehicle
was to the pedestrian, the greater the subjective risk became.
However, the results demonstrate that the offset had a smaller
effect on the SA than the TTC did and may not have affected
the SCR. Hence, subjective risk perception has evolved in the
same way as EDA on average but not necessarily with the
same magnitude.

The subjective assessment of collision risk is influenced by
vehicle dynamics. The non-linearity of the effects observed
on the indicators reveals that risk perception does not result

from the simple relationship between the probability of a
hazard and its importance. Rather, the results evoke a threshold
effect as suggested by Boer (2006). Each passenger built up
safety margins and would only perceive a risk when the
vehicle approached a pedestrian and violated these margins.
The passenger’s risk perception would, therefore, result from a
continuous confrontation between the vehicle’s trajectory and
their safety margins. These findings are compatible with the
concept of the “safe field of travel” that was introduced by Gibson
and Crooks (1938), according to which an individual represents
a dynamic area in which their vehicle can navigate safely. In
comparison with the experiment conducted by Ferrier-Barbut
et al. (2018), who used a virtual-reality helmet to test the impact
of proximity between pedestrians and a vehicle, this experiment
utilized a driving simulator that lacked a physical vehicle cab,
which may have made it difficult to estimate the vehicle’s width
and its lateral distance from object (Mecheri and Lobjois, 2018).
Although Walker et al. (2019b) demonstrated that medium-
level driving simulators remain appropriate for the study of risk
perception, the lack of a physical cab simulator and the absence
of real danger may have limited the participants’ abilities to gauge
their proximity to the pedestrians.

The participants’ physiological responses to approaching
pedestrians reflect the activation of the sympathetic nervous
system that operates parallel to subjective evaluation. As Choi
et al. (2019) stated, the sympathetic nervous system can only
react to a certain level of danger, and this can cause variations
in certain physiological variables. The analysis of the EDA in
this experiment confirmed this idea by revealing an increase in
indicators mostly during high subjective risk assessment.

This study investigated how passengers perceive risk in
autonomous vehicles that are navigating areas that include
pedestrians. The aim was to better understand the fundamental
mechanisms of risk perception in the particular case of shared
spaces. Understanding how vehicle-environment dynamics
influence the perception of a vehicle’s passengers and pedestrians
could help researchers create and implement motion algorithms
that are compatible with the safety margins of all agents
in a system design approach. This could also condition the
acceptability of autonomous vehicles. This study presents
preliminary results regarding this topic. However, many
other parameters of vehicle-environment dynamics must be
studied to progress. The question regarding the variables
that were chosen to evaluate the passenger’s feelings based
on subjective evaluations or physiological measurements is
essential. These results demonstrate that the measurements
of the two types of indicators are not independent but are
instead complementary.

6. CONCLUSION

This study highlighted the relevance of declarative and
physiological measures of the real-time analysis of risks perceived
by those in an autonomous vehicle. The results obtained
are consistent with the literature concerning the effects of
the manipulated variables. The value of the TTC at the
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beginning of a pedestrian avoidance manoeuvre and the
lateral distance left between the vehicle and the pedestrian do
affect the subjective risk. This study has demonstrated that
physiological and subjective indicators are not independent but
do not always lead to the same results, which supports the
proposition made by Février et al. (2011). They stated that
declarative and physiological measures are not redundant but
complementary. This experience has demonstrated that one
must be careful to not make a universal conclusion based
on a single indicator in studies on risk perception. Subjective
evaluations (risk as analysis) may be more sensitive to low-
risk situations than physiological responses (risk as feeling) in
particular. This work and its conclusions would benefit from
being replicated in more realistic and complex environments.
The safety margins that were tested in the driving simulator
may not fully match those tolerated in a real autonomous
vehicle. In a simulator or vehicle, the relationship between
the two risk perception systems could be evaluated in a
more complex and realistically modeled space, for example
by varying pedestrian behaviors. As the environment becomes
more complex, new risk perception factors (in addition to
vehicle-environment dynamics) could be revealed. For example,
passenger perception could be affected by unpredictability or
lack of understanding of the autonomous vehicle state. The
modeling approach we adopted could also be implemented
to assess differences in risk perception between active drivers
and passengers. Indeed, Basu et al. (2017) have shown that
passengers prefer a more defensive driving style than when
they are themselves in control of the vehicle. Finally, other
works could be interested in the interaction modalities to
be considered for the communication of information to the
passenger-drivers so that they feel more secure (Bengler et al.,
2020).
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The complexity of concurrent cerebral processes underlying driving makes such

human behavior one of the most studied real-world activities in neuroergonomics.

Several attempts have been made to decode, both offline and online, cerebral activity

during car driving with the ultimate goal to develop brain-based systems for assistive

devices. Electroencephalography (EEG) is the cornerstone of these studies providing the

highest temporal resolution to track those cerebral processes underlying overt behavior.

Particularly when investigating real-world scenarios as driving, EEG is constrained by

factors such as robustness, comfortability, and high data variability affecting the decoding

performance. Hence, additional peripheral signals can be combined with EEG for

increasing replicability and the overall performance of the brain-based action decoder.

In this regard, hybrid systems have been proposed for the detection of braking and

steering actions in driving scenarios to improve the predictive power of the single

neurophysiological measurement. These recent results represent a proof of concept of

the level of technological maturity. They may pave the way for increasing the predictive

power of peripheral signals, such as electroculogram (EOG) and electromyography

(EMG), collected in real-world scenarios when informed by EEG measurements, even

if collected only offline in standard laboratory settings. The promising usability of such

hybrid systems should be further investigated in other domains of neuroergonomics.

Keywords: hybrid systems, action prediction, driving, EEG, EMG, EOG

INTRODUCTION

Today’s human at work is asked to continuously interact with objects and the environment to
perform a wide variety of tasks. In this regard, the research field of neuroergonomics aims to
unravel the neural bases of those neurophysiological processes involved in the interaction between
the user and a technical system during everyday life activities (Parasuraman, 2003; Dehais et al.,
2020; Gramann et al., 2021).

Because of its complexity, one of the main real-world activities targeted by neuroergonomics
is driving (Navarro et al., 2018). Studies demonstrated that driving behavior is the final result of
simultaneous mental processes such as attention, decision-making, vigilance, motor, and cognitive
control (Calhoun et al., 2002; Calhoun and Pearlson, 2012). Driving activity can cause drowsiness,
fatigue, and an increase in workload, and it is one of the primary causes of death worldwide
(Borghini et al., 2014). In order to assure road safety, it becomes fundamental to have a deep
understanding of those mental processes underlying the interactions existing among the driver,
the car, and the external environment to predict human behavior resulting in steering and braking
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actions. In recent years, driving scenarios have been enriched
by technological advancements in designing autonomous cars
(Badue et al., 2021). However, even if intelligent systems
can execute actions on behalf of the driver, the correctness
of these choices can only be evaluated once we understand
those mechanisms underlying the driver’s behavior in simulated
and real traffic scenarios. In this regard, expertise could be
an essential factor worth considering since evidence collected
among professional and non-expert drivers suggest that the
two populations share basic neurophysiological mechanisms,
whereas the expertise subtending exceptional driving abilities
may be associated with specific morphological and functional
cerebral architecture changes (Bernardi et al., 2013, 2014).

For this reason, several pieces of research have been
conducted to identify the neural basis of transportation and
car driving. A recent meta-analysis presents a neuroergonomic
framework according to which the neural bases of driving
behavior are categorized into strategical (i.e., navigation), tactical
(i.e., overtaking), and operational (steering and braking) tasks
(Navarro et al., 2018).

In this context, developing efficient brain-based systems
for the real-time decoding of brain processes underlying
driver’s behavior would be highly beneficial for the design of
assistive devices.

This perspective provides a succinct overview of the literature
about hybrid systems used for action prediction and the related
limitations. Then, it presents the results related to car driving
scenarios as proof of the level of technological maturity achieved
in the last years. In this context, driving actions are predicted
(i) exploiting secondary tasks eliciting cerebral activity related
to a higher level of motor control and (ii) by measuring neural
correlates of motor preparation as a marker of braking and
steering actions and. This methodological approach could benefit
additional ecological scenarios in neuroergonomics, such as
telerehabilitation and occupational safety.

FROM EEG-BASED ACTION DECODERS
TO HYBRID SYSTEMS

Electroencephalography (EEG) is one of the most used
techniques for monitoring brain signals in operational
environments. This measure provides the variation of electrical
potentials on the scalp surface, generated by the summation of
post-synaptic potentials within cortical layers (Biasiucci et al.,
2019). Electroencephalography has the critical advantage of
tracking brain dynamics with millisecond accuracy and is used
in real-world scenarios for neuroimaging studies outside the lab.
The evolution of technology allowed the removal of wires and
produced wearable and long-lasting recording devices, enabling
a wide range of experiments in real-world settings (Debener
et al., 2012; Mihajlović et al., 2015; Mullen et al., 2015; Casson,
2019).

The integration of EEG-based action predictions into the
control of an assistive technology device, such as a car, would
have the great advantage of detecting, as early as possible, the
movement preparation and execution, both in a laboratory and

in more natural environmental settings. However, despite the
noteworthy technological advancement of the last decade, there
are still several issues that limit the utilization of the EEG for
the real-time monitoring of actions in working environments.
For instance, there is the need to improve the EEG hardware to
obtain recordings more robust to artifacts and longer battery life
and produce smaller devices to be socially accepted by everyone.
Other psychophysiological and technological constraints make
this prediction hard to achieve in real-life scenarios. Factors
such as attention, memory load, fatigue, and competing cognitive
processes (Gonçalves et al., 2006; Käthner et al., 2014; Calhoun
and Adali, 2016), as well as user’s individual characteristics such
as lifestyle, gender, and age (Kasahara et al., 2015) influence
brain dynamics producing significant intra- and inter-subject
variability (Saha and Baumert, 2020; Saha et al., 2021). Common
EEG artifacts generated by muscles and eye movements,
impedance shifts, environmental noise are typically amplified in
real-world scenarios, sensibly affecting the quality of EEG signals
during real-time monitoring (Waard, 1996; Zander et al., 2017;
Lohani et al., 2019). Also, wearing an EEG device for users within
operational environments could be uncomfortable and lead to
the corruption of the underlying brain processes. Although the
technology provides researchers with high-impedance systems
equipped with active shielded electrodes for mobile applications,
these devices do not solve all the mentioned issues intrinsically
characterizing all ecological environments. This low signal-to-
noise ratio returned by raw EEG data requires the use of a range
of conceptually very different and computationally expensive
algorithms to extract significant temporal and frequency EEG
features (Müller et al., 2004; Lotte et al., 2007, 2018; Krusienski
et al., 2011; Bellotti et al., 2019). These algorithms often are
demanding in terms of calibration because requiring large
training sets and are not robust to real-life environmental
noise affecting EEG recordings. Other issues relate to the high-
dimensionality and non-stationarity of the EEG data, impacting
the classification performance (Lotte et al., 2018). In addition,
most of the classification methods used in the literature are
applied for offline EEG analyses, thus requiring the improvement
of this methodology for online applications to guarantee a
computational efficiency for the real-time decoding of the brain
activity. Hence, the computing hardware and software must
warrant a sufficiently high performance and low latency to
preserve the earliness of prediction (Wöhrle et al., 2017).

Hence, different physiological, behavioral, and technical data
can be combined to improve the reliability of EEG-based
predictions and their fully automated application for supporting
the user in self-paced movements in critical environments.
For example, the prediction of actions onset based on EEG
analysis can be improved by the design of hybrid systems
simultaneously monitoring additional peripheral signals, such
as electroculogram (EOG) and electromyographic (EMG) data,
depending on the context requirements (Kirchner et al., 2014).
The hybrid concept was introduced in the field of the Brain
Computer Interfaces (BCIs), exploiting advantages of different
physiological signals and computational approaches to finally
achieve specific goals better than a conventional EEG based
system, such as improving the overall classification rate or
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reducing the rate of false positives (Pfurtscheller et al., 2010;
Li et al., 2019). Hybrid systems should rely at least on one
brain signal in the form of electrical, magnetic, or hemodynamic
changes, and at the same time, they can incorporate peripheral or
external signals to improve the whole system’s performance. For
instance, combinations of eye movement signals with neuronal
signals usually are utilized for hybrid EEG–EOG BCIs (Usakli
et al., 2009, 2010; Ma et al., 2015; Hong and Khan, 2017). Hence,
the design of hybrid systems can improve the action prediction
performance depending on the particular application.

Electroencephalography and EMG signals can be used to
predict movements before the action onset reliably, showing
that multimodal machine learning approaches can be potentially
used to control an electronic device (Kirchner et al., 2014;
Wöhrle et al., 2017). Unimodal EEG-based predictions can be
achieved earlier with respect to unimodal EMG-based prediction,
thus suggesting that EEG is more suitable for providing
the user the feeling that a device delivers support on time
without significant delay. Also, EEG analysis leads to more
false positives than EMG due to the higher signal-to-noise ratio
characterizing such neural data. In addition, which signals are
relevant at which state of movement planning and execution
have been systematically investigated with machine learning
approaches to predict movement targets (Novak et al., 2013).
This study reports that each sensing modality has its peculiarities.
Electroencephalography is suitable for very early prediction or
if the user cannot perform the movement. Electromyography
and hand position are accurate after limb motion onset. Eye-
tracking is accurate at motion onset, but it is not able to predict
motion dynamics. Combining EEG and EOG results in higher
accuracy than using a unimodal approach and is convenient
since the two signals are often measured together. Augmenting
EMG with eye-tracking allows predictions to be made earlier
than with only EMG. However, this research field is not mature
yet to make precise comparisons of performance and calibration
times between machine learning approaches for unimodal and
multimodal measurements.

Several challenges also characterize these hybrid systems. One
of the significant issues in this research is identifying the best
combinations of signals to reach the best prediction performance
since the optimal combination could differ across users and
experimental scenarios. Variables including system complexity,
cost, user workload have to be evaluated when comparing hybrid
systems with unimodal predictions. From the user’s point of
view, the complexity of hybrid systems is usually higher than
that of conventional single modality recordings because they
are required to wear multiple brain and body sensors. User
acceptability is a crucial criterion that needs to be considered in
designing and implementing such systems (Pfurtscheller et al.,
2010; Li et al., 2019).

HYBRID SYSTEMS IN CAR DRIVING
SCENARIOS

In the field of driving research, several studies addressed the issue
of action detection and prediction based on the discrimination of

different EEG features in simulated (Haufe et al., 2011; Gheorghe
et al., 2013; Khaliliardali et al., 2015; Kim et al., 2015; Vecchiato
et al., 2018, 2020, 2021) and real driving scenarios (Haufe et al.,
2014; Zhang et al., 2015).

A few studies used secondary tasks to elicit neural features
predicting steering during simulated and real car driving. In
particular, the contingent negative variation (CNV) potential was
generated by a go/no-go task to investigate the decoding of drive
and brake events (Gheorghe et al., 2013; Khaliliardali et al., 2015).
Results suggested that these actions can be discriminated around
320ms before the movement with a classification performance of
0.77. In addition, Zhang et al. (2015) described an online event-
related negativity (ERN) classifier to predict steering events,
guided by a directional cue, both in a laboratory and real
car driving scenarios. In both experimental conditions, they
discriminated correct by error trials 480 and 700ms after the
directional cue. The classification performance is 0.70, but
the computational timing cost is not reported, so the time
interval between the directional cue and the classifier decision
is unknown, and therefore whether it comes before or after the
actual movement execution.

Other studies investigated the driver’s action without using
external cues with the advantage of limiting the additional
driver’s mental load. Haufe et al. (2011) explored pseudo-online
emergency braking detection and evaluated that such a system
in a simulation environment could eventually detect foot action
around 130ms before its onset. The possibility to decode self-
generated actions detecting steering was also assessed, and in
particular, whether the driver would perform a lane change
in a simulated highway was predicted about 800ms earlier
the action onset with a true positive rate of 74.6% (Gheorghe
et al., 2013). In addition, Vecchiato et al. (2018) identified an
EEG independent component associated with the fronto-central
electrodes exhibiting synchronization of theta EEG rhythm
around 800ms before the braking onset.

In line with the concept of hybrid systems, Kim et al.
(2015) proposed a combination of EEG features in the time
and frequency domains to distinguish three different kinds of
stimulus-driven brake situations (i.e., sharp, soft, no brake).
This study reported the highest EEG response-locked decoding
performance at−480 and−420ms distinguishing sharp and soft
braking from no braking, respectively. It was harder to classify
sharp and soft braking conditions with the same method (largest
difference at −160ms), which returned lower performance than
a classifier based on EMG features. There were also significant
results with hybrid decoding systems in a real car scenario where
participants were asked to drive on a non-public test track (Haufe
et al., 2014). They reported that a hybrid (EEG and behavioral
features) classifier detected emergency braking even earlier than
the laboratory setting (around 300ms before the braking onset)
(Haufe et al., 2011).

Moreover, in order to characterize the relative contribution
of the EEG associated with the preparation of natural and self-
initiated steering actions while driving to investigate its predictive
power, the EEG related to continuous steering during the
driving simulation was tested by means of canonical correlation
analysis (CCA) and a linear lagged regression approach (LLR) to
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FIGURE 1 | NON-ECO frame. Time-frequency EEG patterns collected during left (A) and right (B) non-ecological steering, as well as their statistical comparison (C).

The topography in the left part of the picture shows the average scalp map related to the cluster of independent components. ECO frame. ERSP for the EMG signals

(Continued)
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FIGURE 1 | collected during the non-ecological steering task (A–F), and cross-correlation results between EEG and EMG data (G–L). The first (second) row (from the

top) illustrates the EMG ERSP for the left (right) deltoid during left and right steering, as well as their statistical comparison. The third (fourth) row illustrates the

EEG-EMG cross-correlation values for the left (right) deltoid during left and right steering, and the statistical comparison of the two conditions. White lines depict the

left and right steering wheel angle profiles. Color bars indicate in blue (red) the decrease (increase) of EEG, EMG, and cross-correlation, as well as the statistical

differences corresponding to the decrease (increase) of such activity during the left (right) steering. White and black masks delimit the statistically significant portion of

the EEG, EMG, cross-correlation panels (adapted from Vecchiato et al., 2021).

identify the relative contribution of the EEG signals in steering
anticipation (Di Liberto, accepted). Results showed that the
combination of CCA-LLR analysis is valuable to disentangle
the relative contribution of behavioral and electrophysiological
components—within the EEG signals—for steering prediction in
a continuous driving simulation task. This result demonstrates
that brain-related EEG signals significantly improve the overall
decoding performance, showing that the significant contribution
in predicting steering comes from non-brain-related signals, such
as ocular and muscular components.

Brain and muscular activities underlying steering behavior
were also investigated with the final aim to increase the overall
ecology of the experimental setting (Vecchiato et al., 2021). In
particular, EEG feature predicting steering action and direction
elicited by responding to traffic signs displayed on a computer
screen was extracted and later exploited to increase the predictive
power of the EMG collected in a more ecological steering task,
such as a driving simulation. The desynchronization of the mu
rhythm during the motor preparation of non-ecological steering
cued by the traffic sign discriminated the muscular activity
of the deltoids, thus anticipating subject steering behavior of
1.5 s. In addition, the increase of EMG activity of the deltoids
anticipated the contralateral steering in both non-ecological
and ecological steering tasks of 200 and 500ms relative to
the action onset, making it possible to discriminate such a
driving behavior. Although these variations of EMG activity
appear before the action onset allowing for possible online
predictions, EEG data were used to increase the available time
to perform such a calculation. The identified non-ecological
EEG feature correlated with the ecological EMG activity of
the deltoids, providing an improvement of the discrimination
power of the steering side during driving simulation (Figure 1).
These findings show an approach to increase the ecology of
the experimental setting by limiting the invasiveness of the
neurophysiological measurements using surface EMG sensors
in the ecological scenario and combining neural data collected
in the non-ecological one. This approach provides a way to
monitor the user performance online through a simpler to
acquire muscular correlate when compared to neural data,
which could be recorded offline to increase the decoding
system’s performance without impacting the complexity of the
ecological setting.

CONCLUSIONS

The coupling between EEG, EMG, and ocular signals is
a valid mechanism for utilizing hybrid systems for the
detection and online prediction of driving actions, exemplifying
how it might be possible to complement information from

behavioral, physiological, and external sources to control the
level of assistance needed by the driver in that context
(Chavarriaga et al., 2018). This methodology could pave the
way for the utilization of hybrid systems based on neural
signals—collected in standard laboratory settings and processed
offline—having the role in improving the predictive power
of peripheral signals—collected in more ecological settings
and possibly processed online—correlated with the upcoming
action execution.

The predictive power returned by coupling the EEG with
peripheral signals demonstrated in car driving scenarios could
be further investigated in larger sets of actions to extend the
validity of this approach to other neuroergonomic areas. For
instance, this methodology could foster the spread of mobile
brain and body applications (Makeig et al., 2009; Gramann
et al., 2011) and BCI paradigms (Douibi et al., 2021; Saha
et al., 2021) onto several other contexts of our daily life.
The capability to remotely monitor in an ecological way an
individual’s action would have a tremendous impact in the
rehabilitation field (Nuara et al., 2021), with the possibility to
verify the compliance and adherence to treatment relieving the
patient and caregivers from a massive burden in terms of time
and costs. Applications could also extend beyond the clinical
realm, virtually to any fields where action surveillance would be
valuable for preventing harmful consequences. It is the case, for
instance, of the occupational safety of workers dealing in their
routine with unsafe practices, for whom the use of this ecological
methodology could reduce the likelihood of occupational
injuries during the performance of high-risk motor tasks
(Rizzolatti et al., 2021).
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Eye tracking (ET) has been used extensively in driver attention research. Amongst

other findings, ET data have increased our knowledge about what drivers look at in

different traffic environments and how they distribute their glances when interacting

with non-driving related tasks. Eye tracking is also the go-to method when determining

driver distraction via glance target classification. At the same time, eye trackers are

limited in the sense that they can only objectively measure the gaze direction. To learn

more about why drivers look where they do, what information they acquire foveally and

peripherally, how the road environment and traffic situation affect their behavior, and how

their own expertise influences their actions, it is necessary to go beyond counting the

targets that the driver foveates. In this perspective paper, we suggest a glance analysis

approach that classifies glances based on their purpose. The main idea is to consider

not only the intention behind each glance, but to also account for what is relevant in the

surrounding scene, regardless of whether the driver has looked there or not. In essence,

the old approaches, unaware as they are of the larger context or motivation behind eye

movements, have taken us as far as they can.We propose this more integrative approach

to gain a better understanding of the complexity of drivers’ informational needs and how

they satisfy them in the moment.

Keywords: eye tracking (ET), driving (veh), distraction and inattention, purpose-based analysis, coding scheme,

context, relevance

INTRODUCTION

A video with an overlaid fixation cross that shows where the driver’s gaze is focused relative to
the scenery is a powerful visualization. From such data, it is possible to derive objective and
quantitative results like gaze direction, dwell time, and glance frequency to objects and locations. In
driver attention research, eye movement analysis has been used to learn more about gaze behavior
associated with mobile phone use (Tivesten and Dozza, 2014), the distribution of eyes-off-road
durations (Liang et al., 2012), where drivers look at the road to maintain a smooth travel path
(Lappi et al., 2013), where drivers sample visual information when driving through intersections
(Kircher and Ahlström, 2020), etc.
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Despite everything that eye movement analysis has taught us
about driver behavior, one should be aware of some fundamental
limitations in using eye tracking (ET) to study driver attention
and behavior. First, eye trackers only measure where and for
how long we look in a certain direction or at a certain
target. It is not a direct overt measure of visual attention
(e.g., Deubel and Schneider, 1996), and information about the
purpose of the glance or what information the brain cognitively
processes during the glance can be very difficult to access (cf.
Viviani, 1990). Second, there is no method to directly measure
information acquisition via peripheral vision that works in real-
world applications, even though research indicates that drivers
are aware of muchmore than what is being foveated (Underwood
et al., 2003). Wolfe et al. (2020) even argue that peripheral
input provides much of the information the driver needs, both
at a global level (the gist of the scene, acquired in parallel)
and at a local level (providing information to guide search
processes and eye movements more generally). Third, it has been
shown that not all foveated information is processed (Simons,
2000; Mack, 2003). This is often referred to as looked but
failed to see or inattentional blindness. Finally, eye movement
data do not provide an easy way to determine whether the
sampled information was relevant, necessary, and sufficient for
the driver in the current situation (Kircher and Ahlström, 2018;
Wolfe et al., 2020). Considering these limitations, it is clear
that driver attention assessments cannot be based on single
foveations, without also considering glance history and the
present traffic situation.

An alternative to interpreting a driver’s visual information
sampling gaze by gaze, target by target, is to consider visual
information acquisition in driving as a task where many
different glance strategies can be equally appropriate. The basic
idea is that an attentive driver has a “good enough” mental
representation of the current situation, containing imperfect but
adequate information about the surrounding scene (Summala,
2007; Hancock et al., 2009). As suggested by Wolfe et al.
(2020), this mental representation is built from information
acquired via a series of context-guided glances in combination
with peripheral vision, using data from the attentive and pre-
attentive stages of information acquisition, and possibly from
other sources. The representation can only be sufficient if
enough relevant information is included. We would need to
know where and at what drivers look and for what reason
(including what they see with peripheral vision), their intended
travel path and other tasks they are doing, and preferably also
their familiarity and experience with the given situation. The
dilemma is that even with accurate ET, co-registered with a
recording of the driver’s environment, and an experimental
design that controls for travel path and tasks, we still would not
be able to measure (i) information sampled via peripheral vision
and (ii) the top-down processes that are known to influence
why and from where information is sampled (Kircher and
Ahlström, 2018). Note that from a driver attention perspective,
it is not even enough to investigate if the sampled information
is relevant and if it has been sampled sufficiently, it is also
necessary to check that no relevant information was missed. Still,
when combined with additional data and an innovative data

reduction approach, gaze data can still be an asset for monitoring
driver attention.

In this perspective paper, we compare different approaches to
encode and interpret ET data that has been used in the field of
driver attention research. For each approach we discuss the data
needed, the implicit or explicit definition of an attentive driver,
the typical results that can be obtained, and the conclusions
that are likely to be drawn (summarized in Table 1). In addition
to classifying gaze data based on direction and on the foveated
target, we also include an approach that classifies glances based
on their purpose. In this paper, we argue that the purpose-based
approach provides added value for understanding context-based
driver attention.

DIRECTION-, TARGET-, AND

PURPOSE-BASED EYE MOVEMENT

INTERPRETATIONS

To understand the differences between the direction-, target-, and
purpose-based approaches when studying driver attention with
ET, we start with the illustration in Figure 1. A driver intending
to continue straight ahead is approaching an intersection. At the
same time, a bicyclist is leaving the intersection on the main road.
The driver glances to the right, foveating the bicyclist.

Direction-Based Approach
In the direction-based approach, the gaze direction is registered,
typically as forward, up, down, left, and right. This approach
is typically used when the eye movements are recorded in a
coordinate system that is fixed relative to a vehicle-mounted
remote eye tracker. It is then easy to extract the gaze direction,
without the need for a scene camera. In Figure 1, the direction-
based approach would register a glance to the right.

The direction-based approach is often used to compute
indicators like “eyes off road” or “percent road center” (PRC;
Victor et al., 2005) and it can be employed in real-time with
automated data encoding. A driver is considered attentive when
directing a minimum percentage of glances within a sliding
window to the “road center,” which would be the relevant area. A
drawback with this approach is that the relevant area is typically
defined as “forward,” regardless of where relevant information is
positioned relative to the car. Data fusion makes it possible to
define more elaborate relevant areas that can be coupled to the
direction of the gaze. For example, if the eye tracker data are
associated with a world model of the vehicle’s cockpit, glances
to relevant areas representing the speedometer, and the mirrors
can be treated differently than other off-road glances (Ahlstrom
et al., 2013). To some extent, situational circumstances can also
be integrated via map data and proximity sensors, allowing
automated adjustments of the relevant area(s), for example by
taking road curvature (Ahlstrom et al., 2011) and intersections
(Ahlström et al., 2021) into account. Data fusion with other
data sources is still uncommon, and eye movements are to a
large extent interpreted without situational information in the
direction-based approach. It is thus unknown what the driver
glances at and why.
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TABLE 1 | Methodological aspects to consider when applying direction, target, and purpose-based approaches to eye tracking data.

Approach Direction Target Purpose

Strategy Identify the glance direction Identify the foveated glance target Identify the probable reason for the

glance

Actual coding To the right OR away from forward Bicyclist Checking for relevant traffic from right

External knowledge needed

for classification

Coordinate system determining

forward

View of outside world View of outside world, traffic rules that

apply, intended direction of travel

Coding method Real-time automated coding is

available

Manual or semi-automated Manual

Typical result Frequency and duration of

eyes-off-road

Frequency and duration of glances

toward (type of) target or area

Frequency and duration (or

neglection) of target or area in context

of relevance

Typical research questions How much do drivers look in certain

directions or away from the forward

roadway?

How much do drivers look at various

targets?

How often are relevant areas or

targets neglected?

FIGURE 1 | Illustrative example showing a driver who is approaching an

intersection with the intention to drive straight ahead. A bicyclist is leaving the

intersection. While in the zone with a good view of the intersection, before

entering it, the driver is looking right (thin arrow—foveal vision, shaded

sector—peripheral vision), checking for traffic potentially present in the target

area. A similar check for traffic from the left is required, too (but not illustrated

in the figure).

Target-Based Approach
The what-question is typically answered by manual coding of
scene videos with a gaze overlay, either from a remote or a head-
mounted eye tracker. Solutions based on deep learning are also
emerging where it is possible to automatically recognize objects
in the videos and denote when the point-of-gaze intersects these
objects (Panetta et al., 2020). To distinguish targets with similar
XY-coordinates it may also be possible to use depth information
from binocular eye trackers.

Glance targets are coded according to the target type, such
as “bicyclist,” “traffic sign,” or “mobile phone” (Kircher and
Ahlström, 2020). The glance to the right in Figure 1 would be
coded as “bicyclist.” Target types that have a connection to traffic
are often tacitly assumed to be relevant for driving, regardless of

whether they contribute any relevant information in the current
situation or not, like the bicyclist in Figure 1 who is not relevant
considering the driver’s upcoming travel path. Direction- and
target-based approaches commonly infer driver distraction when
glances are directed away from forward or toward target types
that are deemed irrelevant for driving (Halin et al., 2021). While
widely accepted, these approaches often miss the important
aspects of context, if relevant information is not foveated, and
whether enough information is sampled with respect to the task
at hand.

Purpose-Based Approach
For driver attention assessment, the purpose-based approach
specifically defines which areas a driver must acquire information
from to be considered attentive. This requires knowledge about
the traffic rules that apply, which, in combination with the
situation at hand, indicate where relevant information can be
expected given the driver’s intended maneuver. To assess the
likely reason for a glance (or the absence of a glance), one must
also consider the glance history, the infrastructure layout, other
road users and traffic regulations. For example, a first glance
down the crossing main road is likely meant to check for the
presence of traffic. A follow-up glance in the same direction
may help determining the available time gap for crossing the
road. Here, the speed of the approaching road user may be more
important than whether it is a car or a bicyclist. If all areas
identified as relevant in the situation have been sampled timely
and sufficiently, the driver will be considered attentive according
to the purpose-based approach.

The theory of Minimum Required Attention (MiRA; Kircher
and Ahlström, 2017) can be used as framework for an a priori
definition of relevant areas. In Figure 1, one relevant area would
be where traffic from the right can be expected (“target area”),
regardless of whether traffic is present or not, and the purpose
of the glance would thus be to check for traffic. Associated
with the target area is a MiRA “zone,” within which the driver
must sample information from the target area. This zone is
located on the driver’s path and its shape is determined by
situational circumstances like traffic regulations, line-of-sight,
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and intended direction of travel. This approach acknowledges
that not only the presence but also the absence of other road users
is relevant information.

The purpose-based approach explicitly includes the concept
of spare capacity (cf. Kujala et al., 2021) by accepting glances
to irrelevant areas/targets if all relevant targets are sampled
sufficiently. So far, there is no straightforward method to
determine when sampling is sufficient, and it appears as if foveal
glances are not even necessary in all cases (Wolfe et al., 2017;
Vater et al., 2020). Factors like presence, type, trajectory, and
speed of other road users are likely to influence sufficiency.

Taking purpose into account leads to a rather different
interpretation of the glance in Figure 1. Before crossing the
intersection, the driver must check for traffic on the main road.
The glance, especially if it is the first glance to the right in this
location, is likely intended to check for traffic with right-of-
way. With no such traffic present, the salient bicyclist happens
to be foveated, even though the bicyclist is not relevant for the
driver’s upcoming maneuver. A purpose-based interpretation of
the glance would be that the driver checked for traffic from the
right as required, regardless of the actual target. To determine
whether the driver was attentive in the given context, a glance
checking for traffic from the left is required too, before the
intersection is crossed.

DISCUSSION

Informative, useful, ET analyses rely on appropriate and reliable
gaze data encodings and as we have discussed, these are tools
that must be understood in a larger context. The automated
data encodings that can be used in direction-based analyses have
high objectivity, but they are not always appropriate, because
they ignore where in relation to the environment the driver
looked and why they looked where they did. For example,
coding a glance as “eyes off road” when the driver’s gaze is
directed to the left (instead of forward) in an upcoming curve
is incorrect, because it ignores this context. Opting for a target-
based approach, asking what specific object the driver looked
at, gives the impression of being more objective and accurate.
After all, the driver’s gaze either focused on a target or it did
not, but the situation is not that simple. A driver’s glance over
their shoulder may end up being coded as a glance to the
guardrail, because that is where foveation happened to occur,
even though the intention was to check for overtaking traffic with
peripheral vision, which renders the exact location of the fixation
irrelevant in the process of acquiring the sought information.
This clearly shows the dilemma of having to choose between an
almost certainly wrong, but highly reliable coding of the fixated
target, and a likely more correct purpose coding, which requires
task knowledge and interpretation by the analyst. At least from
research in sports there are indications, that in certain situations
people fall back on purposely using peripheral vision to save
energy and reduce suppression of visual input while the eyes are
moving (see also Kredel et al., 2017; Vater et al., 2020).

To ensure reliability in a setting where the analyst’s
interpretations affect the results, it is important to use data

encoding schemes that are well-founded in theoretical models
and that suit the research question. In this paper, we use the
MiRA theory (Kircher and Ahlström, 2017) to construct our
model, although this is not the only possible approach. For
example, the safety protocols suggested by Hirsch (1995) could
be similarly useful. We do not argue that this approach is the
one perfect solution to the problems we have pointed out in ET
analyses, merely that it solves some of them. For example, the
MiRA theory outlines how relevant areas can be defined, but
it does not specify how drivers acquire information from these
areas, if foveal vision is required, or if information acquisition
via peripheral vision or other sensor modalities is enough. It is
important to realize that the chosen theoretical model shapes
the coding scheme and dictates what the analyst must infer
from observed data. Both aspects have large consequences on the
results. As with any new approach, effort must be made to ensure
reliability and repeatability. Triangulation with other methods, as
well as inter-rater reliability assessments, are good sanity checks
for any approach with as many subjective elements as one which
includes questions of motivation and reason. That said, being
mindful of these limitations, a subjective purpose-based encoding
can be more informative than an allegedly objective encoding of
glance targets, and regardless of the approach chosen, a priori
decisions must be made about the data coding scheme.

A key concern underlying our work here, which is unlikely
to be alleviated in the near future, is the fact that eye trackers
can only measure the gaze direction. They cannot measure
information acquired via peripheral vision (Wolfe et al., 2020),
spare visual capacity and acquisition of redundant information
(Kujala et al., 2021), if fixated targets have been sampled
sufficiently (Kircher and Ahlström, 2017), and what is known
from past experience (Clark, 2015). In any model determining
driver attention, merely knowing where a driver looked is
neither sufficient nor adequate. Triangulating data, frommultiple
methods such as ET (including combinations of the direction-,
target-, and purpose based approaches), driving behavior, think
aloud (Ericsson and Simon, 1980), visual occlusion (Kujala
et al., 2021), and event-related brain potentials (Hopstaken
et al., 2016) with theoretical models of peripheral vision and
neurocognitive function are likely to be necessary to attain a
deeper understanding of driver attention (Kircher and Ahlström,
2018). As an example, by triangulating visual occlusion and
ET results, it has been shown that glancing away from the
forward roadway for driving purposes is not the same as glancing
away for other purposes, and neither is necessarily equivalent
to distraction (Kircher et al., 2019). This is, of course, not the
only path that could lead to these conclusions, merely one
among many.

On the whole, the data that eye trackers provide to driving
researchers is immensely valuable, but like any other tool at
the researcher’s disposal, cannot be viewed as the one arbiter of
truth. In this perspective paper, we have laid out ways in which
ET data can both be used to better explain the complexities
of driver behavior, and how particular ways in which they
have been used can be misleading. Future ET research should
consider the strengths and weaknesses we have detailed here,
with particular attention to why drivers look where they do,
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what information they acquire foveally and peripherally, how
the physical structure of the road environment dictates their
behavior, and how their own expertise influences their acquisitive
actions. The approach we advocate represents a significant shift
in how ET data are used and understood, but it promises to
provide key insights into what drivers need to know in a given
situation and how they set about gaining the knowledge they
require. In essence, the old approaches, unaware as they were
of the larger context or motivation behind eye movements, have
taken us as far as they can; we propose this complementary and
more integrative approach to help researchers understand the
complexity of drivers’ informational needs and how they satisfy
them in the moment.
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Background:The link between driving performance impairment and driver stress is

well-established. Identifying and understanding driver stress is therefore of major interest

in terms of safety. Although many studies have examined various physiological measures

to identify driver stress, none of these has as yet been definitively confirmed as offering

definitive all-round validity in practice.

Aims: Based on the data available in the literature, our main goal was to provide a

quantitative assessment of the sensitivity of the physiological measures used to identify

driver stress. The secondary goal was to assess the influence of individual factors (i.e.,

characteristics of the driver) and ambient factors (i.e., characteristics of the context) on

driver stress. Age and gender were investigated as individual factors. Ambient factors

were considered through the experimental apparatus (real-road vs. driving simulator),

automation driving (manual driving vs. fully autonomous driving) and stressor exposure

duration (short vs. long-term).

Method: Nine meta-analyses were conducted to quantify the changes in each

physiological measure during high-stress vs. low-stress driving. Meta-regressions and

subgroup analyses were performed to assess the moderating effect of individual and

ambient factors on driver stress.

Results: Changes in stress responses suggest that several measures are sensitive to

levels of driver stress, including heart rate, R-R intervals (RRI) and pupil diameter. No

influence of individual and ambient factors was observed for heart rate.

Applications and Perspective: These results provide an initial guide to researchers

and practitioners when selecting physiological measures for quantifying driver stress.

Based on the results, it is recommended that future research and practice use (i)

multiple physiological measures, (ii) a triangulation-based methodology (combination of

measurement modalities), and (iii) a multifactorial approach (analysis of the interaction of

stressors and moderators).

Keywords: driver, stress, physiological, measures, sensitivity, individual, ambient, meta-analysis
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INTRODUCTION

Identifying Driver Stress: A Safety and
Comfort Challenge
Driving is a complex activity that takes place in a dynamic
environment where safety critical situations abound. Therefore,
many driving situations can lead the driver to experience stress,
such as bad weather, low visibility, complex driver-environment
interactions, and particular driving routes (Hill and Boyle, 2007;
Rodrigues et al., 2015; Rastgoo et al., 2018). Although driver
stress can be experienced as positive (i.e., eustress), the focus
here is placed on its negative dimension (i.e., distress), which is
more critical for well-being and road safety (Chung et al., 2019).
Associated with negative emotions (e.g., anxiety, Kontogiannis,
2006, fear, Schmidt-Daffy, 2013, anger, Emo et al., 2016; Ooi
et al., 2018; Gotardi et al., 2019) and the subjective feeling
that the situation exceeds the individual’s coping abilities (Selye,
1976), distress can lead to poor driving performances and risky
behaviors (Matthews et al., 1998; Hancock and Desmond, 2001;
Ge et al., 2014; Rendon-Velez et al., 2016). Given the causal
relationship between distress and poor driving performance,
finding measures that are sensitive to the level of stress is crucial
if we are to gain a better understanding of this disturbed state and
develop future remediation and support strategies.

Driver stress has often been identified on the basis of
various subjective scales, including the Driver Stress Inventory
(Matthews et al., 1997) and Driver Behavior Inventory (Gulian
et al., 1989; Glendon et al., 1993). Although these scales have
proven useful for capturing the multifaceted nature of driver
stress, they may also be limited by individuals’ inaccuracy in
self-reporting stress levels. What is more, relationships with the
neuroticism dimension have been shown to account for some
of the inaccuracy of subjective stress ratings (McCrae, 1990;
Espejo et al., 2011). Driver stress has also been inferred to a
large extent from the analysis of driving behaviors, such as
steering wheel motion, speed, acceleration, braking, overtaking,
and lane keeping (Schießl, 2008; Rigas et al., 2012; Lanatà et al.,
2014; Miller and Boyle, 2015; Rendon-Velez et al., 2016; Lee
et al., 2017). Again, this method of identifying driver stress has
some disadvantages. In addition to being a discontinuous stress
measure, it can also be problematic in the context of automated
driving since the driver is intended to be replaced by automation,
leading to a decrease in driving behaviors (Lohani et al., 2019).
Unlike subjective assessments and analysis of specific driving
behaviors, physiological measures offer empirical evidence—
objective and continuous—of the stress response (Plarre et al.,
2011). Physiological measures thus offer a direct insight into
the psychological and physiological adaptability of individuals
dealing with stressful situations (Hancock and Warm, 1989).
Finally, physiological measures remain relevant for monitoring
driver stress during highly automated driving, during which
drivers are not continuously in physical control of the vehicle.

Historically, stress responses have been compared to alarm
states of the body, triggered by physical threats from the
environment and intended to prepare the body for action
(Selye, 1956). The alarm analogy provides a clear way of
understanding the role of the physiological mechanisms that

underlie stress responses and facilitate fast action-oriented
reactions. Functionally, these mechanisms reflect a coactivation
of autonomic components resulting in sympathetic autonomic
stimulation and parasympathetic autonomic withdrawal, thus
minimizing a vagal “braking” action on the motor system
(Roelofs, 2017). Among physiological responses, cardiac
measures are generally favored by researchers and practitioners
for quantifying stress states. The most commonly used measures
to explore cardiac activity are heart rate and Heart Rate
Variability (HRV) (Alberdi et al., 2016). While heart rate focuses
on contraction frequency, HRV is a measure of the time that
elapses between contractions. The analysis of the time series
of beat-to-beat intervals provides additional information since
it reflects the heart’s ability to adapt to changes by detecting
and responding to stimuli over time (Acharya et al., 2006;
Kim H. G. et al., 2018). The idea is that an individual with a
low variability between heartbeats in a stressful context would
have a low capacity to deal with stressful stimuli. In a driving
context, a cardiac response to stressful stimuli is usually observed
through an increase in heart rate (Healey and Picard, 2005;
Lee et al., 2007; Cottrell and Barton, 2012; Guo et al., 2013;
Zhao et al., 2014; Reimer et al., 2016; Rendon-Velez et al., 2016;
Magana and Munoz-Organero, 2017; Antoun et al., 2018; Haouij
et al., 2018; Khattak et al., 2018; Gotardi et al., 2019; Heikoop
et al., 2019; Meesit et al., 2020) and a decrease in HRV (Lee
et al., 2007; Yu et al., 2016; Heikoop et al., 2017; Magana and
Munoz-Organero, 2017; Antoun et al., 2018; Rastgoo et al., 2019;
Tavakoli et al., 2020; Zhao et al., 2020). Other physiological
responses have also been studied as indexes of driver stress
levels, such as changes in electrodermal activity (Healey and
Picard, 2005; Cottrell and Barton, 2012; Pedrotti et al., 2014;
Eisel et al., 2016; Morris et al., 2017; Ooi et al., 2018; Paredes
et al., 2018; Zontone et al., 2020, 2021), breathing (Healey and
Picard, 2005; Rendon-Velez et al., 2016; Balters et al., 2018;
Haouij et al., 2018; Napoletano and Rossi, 2018; Heikoop et al.,
2019; Zhao et al., 2020), blood pressure (Yamakoshi et al., 2008;
Antoun et al., 2018), skin temperature (Yamakoshi et al., 2007,
2008; Zhao et al., 2020), muscle activation (Healey and Picard,
2005; Morris et al., 2017), pupil diameter (Pedrotti et al., 2014;
Rendon-Velez et al., 2016; Zontone et al., 2021) and electrical
brain activity (Kim S. et al., 2018; Halim and Rehan, 2020).
Despite the numerous physiological responses studied, none of
them has been validated as a definitive measure for identifying
driver stress. Therefore, the use of a measure is often guided
by practical and experimental design constraints (for a review
of the advantages and disadvantages of physiological measures
for assessing cognitive states in lab and real-world driving, see
Lohani et al., 2019). Nevertheless, we believe that it is necessary
for researchers and practitioners to base their measure selection
decisions on both the practical constraints and the sensitivity to
identify driver stress. Measure sensitivity refers to a measure’s
ability to discriminate between two levels of a psychological
state (e.g., high and low stress) (Hughes et al., 2019). To date,
the sensitivity of the driver stress measure has not been directly
evaluated. Therefore, there is a need to specifically study the
sensitivity of each physiological measure to driver stress to assist
researchers and practitioners in measure selection.
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Identifying Moderators of Driver Stress: A
Theoretical Approach
Stress is a psycho-physiological state resulting from the influence
of a stressor moderated by individual and ambient factors
(Folkman and Lazarus, 1984; Matthews, 2002). In an automotive
context, individual factors refer to the intrinsic characteristics
of the driver (e.g., personality traits, demographic criteria),
while ambient factors refer to the contextual effects (i.e., the
circumstances in which a stressor operates).

Among the individual factors that may influence driver stress,
age has probably been the most studied, particularly from a
subjective perspective using self-report scales (Hartley and El
Hassani, 1994; Simon and Corbett, 1996; Kloimüller et al.,
2000). Despite these extensive investigations, the direction of
the relationship between age and driver stress remains unclear.
Indeed, some studies have found greater stress levels in older
populations (Hill and Boyle, 2007) and explained this in terms of
lower cognitive and physical abilities. Conversely, other studies
have found lower stress levels in older populations (Langford
and Glendon, 2002), which they have explained in part in terms
of lower aggressiveness (Matthews et al., 1991; Westerman and
Haigney, 2000) and more extensive driving experience (Gulian
et al., 1990). Given the discrepancies at the subjective level,
physiological measures provide objective ways of determining
both the existence of the relationship and its direction. To our
knowledge, only one study has found an effect of age on acute
driver stress using physiological measures (Zhao et al., 2020).
However, given the small number of participants included in this
study (3 younger and 3 older), this effect deserves to be further
explored. Like age, gender is an individual factor whose effect on
driver stress is also debated. While some studies have found no
effect of gender on driver stress using subjective scales (Wickens
et al., 2015), others have reported higher stress levels in female
drivers than male drivers based on cardiac (Guo et al., 2013) and
hormone dosage measurements (Seeman et al., 1995).

In line with Hancock and Warm (1989), who recommended
considering in stress studies both the demand imposed by the
task and the type of environment, we suggest that automation
(manual vs. autonomous) and stressor exposure duration (short
vs. long-term) might be relevant factors when considering the
driving task demand, while apparatus type (real vehicle vs.
driving simulator) would make it possible to take account of
the type of driving environment. We believe these three ambient
factors to be of interest because they are either often debated in
the literature (e.g., automation and apparatus), or have been the
object of little direct study (e.g., stressor exposure duration).

Driving Automation
Interest in automated driving systems has grown over the last
decade, in particular to compensate for the human errors in
driving. More specifically in an automotive context, it is unclear
whether a fully automated vehicle increases or reduces driver
stress. Some authors have found positive effects of driving
automation by reducing distress and enhancing driver attention
(Funke et al., 2007), others have reported reduced driver stress
coupled with a decrease in workload (Stanton and Young,
2005), while yet others have argued that autonomous driving

increases driver stress due, in particular, to a lack of trust in
the autonomous vehicle (Morris et al., 2017). Consequently,
investigating this question would contribute to the development
of automated driving systems adapted to the profiles of drivers
and to given road situations.

Stressor Exposure Duration
The question regarding the existence of physiological differences
between short and long periods of driving under acute stress has
been little studied to date. A review of the literature came close
to addressing this question by examining physiological responses
to driver stress over short and long time periods (Antoun et al.,
2017). However, due to the small number of studies collected,
evidence of stress over a short time period was not revealed, thus
reducing conclusions. The question therefore remains open.

Apparatus Type
With respect to the apparatus, the question of whether a
driving simulator vs. a real vehicle is a valid way of studying
internal driver states, such as stress, is unresolved. If the validity
of simulators is confirmed, it is expected that observations
made in a driving simulator will be equivalent to those made
under real driving conditions. However, previous studies have
reported contradictory results which make it difficult to draw
clear conclusions. Taking the example of using mean heart
rate to investigate validity, studies have shown a good level of
correspondence between the simulator and the real road (Li et al.,
2013). In contrast, other studies have found higher heart rates
on real vehicles (Engström et al., 2005; Johnson et al., 2011). The
fact that another study found both an absence of difference and a
difference between the simulator and the real road depending on
the driving situation, i.e., speed maintenance task and exposure
to road hazards, respectively (Gemonet et al., 2021), further
raises the question of the validity of the driving simulator for
identifying driver stress in any driving situation.

Aims
We undertook a meta-analysis of the existing literature
investigating driver stress, first to address, at a practical level,
the difficulty researchers and practitioners have in selecting
physiological measures for quantifying driver stress, and second,
to gain insights into the relationship between driver stress and
its moderators. The objectives were three-fold: (i) to investigate
the sensitivity of each physiological measure used to quantify
driver stress, (ii) to assess the moderating effect of the population
type on driver stress, and (iii) to identify whether driver stress is
influenced by ambient effects in the environment in which the
driving task takes place.

METHODS

Search Strategy
This meta-analytical review was conducted in accordance with
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (Moher et al., 2009).

Two investigators searched for articles in the electronic
database, Google Scholar. The only limitation in terms of
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date was publication prior to February 2021. The following
search terms were used: “{[(driver OR driving) AND (stress OR
distress)] OR [(car) AND (stress OR distress)]}.” These were then
combined with additional terms related, first, to fields of research
in which driver stress has been addressed: “psychological,”
“physiological,” “behavior,” “detection,” “recognition” and,
second, to the response of interest: “acute,” “response,” “change.”
In addition, a snowballing approach (Wohlin, 2014) was
used to retrieve additional references. Duplicate records were
systematically removed.

Each record was then screened (title, abstract and keywords)
by the investigators in order to apply the eligibility criteria. The
same procedure was carried out for the full-text articles. Any
discrepancy between the investigators was resolved by discussion
with a third investigator. The study selection process is described
in Figure 1 (PRISMA diagram).

Eligibility Criteria
We used the PICOS approach (Moher et al., 2015) to
define the characteristics of studies eligible for inclusion in
terms of population, interventions, comparators, outcomes and
study design.

Population
Non-professional car drivers of all ages and genders, with
no evidence of psychological or neurological disorders,
were included.

Interventions
Stress interventions included driving tasks performed under high
stress. Although the definition of “stress” or “high stress” is
presumably a reflection of each author’s particular standpoint,
and the term has thus certainly been interpreted in many
different ways, we decided to use Matthews’ (2002) definition of
driver stress to study similar stress interventions. Driver stress is
thus interpreted as a psychological construct resulting from the
stressful situation (involving stressors and ambient factors) and
individual factors. Therefore, interventions in which driver stress
was not a psychological construct but the product of physical
action on the body were excluded. This was the case for stress
interventions involving cold temperatures, pain, chronic illness,
driving for long periods and monotonous driving periods.

Comparators
Comparators for the stress interventions were driving tasks
performed under low stress.

Outcomes
All the included studies estimated driver stress based on
physiological measures. All physiological outcomes were
quantitatively reported as raw data or as means and standard
deviations to allow the calculation of effect sizes. All physiological
outcomes had been observed in at least three drivers.

Study Design
Only peer-reviewed quantitative physiological studies written
in English were included in the analyses. All included studies
contained a physiological measure also found in at least one

other study to make it possible to compile the data required for
a meta-analysis.

Data Extraction
For each included study, two investigators independently
extracted the following data: demographic variables (sample
size, mean age and gender ratio), ambient variables (apparatus,
driving automation and stressor exposure duration), stress
interventions and comparators (i.e., pairwise comparisons
including a high stress intervention vs. a low stress intervention),
statistical indices for the stress interventions and comparators
(means and standard deviations) and type of physiological
measure used.

When data was missing, the corresponding authors were
contacted and asked for additional data. The WebPlotDigitizer
software (Rohatgi, 2014) was also used to extract numerical
values from the plot when numerical means and/or standard
deviations were not reported.

For each included scientific paper in which driver stress was
assessed in multiple population groups (e.g., older and younger
participants), each pairwise comparison belonging to a given
group was treated as a separate and independent study. As a
result, and for the sake of clarity, we will use the term “study”
in the following sections to refer to a pairwise comparison
into a given group and not to the scientific paper from which
it was derived. In addition, in studies that reported multiple
stress interventions in the same population, the various stress
interventions were averaged when raw data was available. This
precaution was taken to avoid introducing an error due to
the non-processed correlation between the condition effects
estimated from multiple comparisons (Higgins et al., 2011). If
raw data was not available, the highest-stress intervention was
retained and the others were excluded. Although the strategy
for selecting interventions is less recommended than combining
interventions, it is generally difficult to obtain the raw data from
each study, as would be required in order to compute the overall
mean and standard deviation.

Meta-Analyses
Nine meta-analyses were conducted separately, one for each
physiological measure. All analyses were carried out using JASP
software (version 0.14.0.0). Due to different experimental designs
and sample characteristics across included studies, we used
random-effects models in an attempt to generalize our results
beyond the studies included in our meta-analyses (Borenstein
et al., 2010).

In keeping with previous studies that have tackled the issue
of the sensitivity of physiological measures (Matthews et al.,
2015; Hughes et al., 2019), we used effect size to determine
the sensitivity of each measure of driver stress. Cohen’s d
effect size with 95% confidence intervals (95% CI) were first
calculated for each study (i.e., for each pairwise comparison)
based on the means, standard deviations and sample sizes
(Cohen, 1988). Given the small sample sizes, Hedges’ g was
subsequently preferred to Cohen’s d (Durlak, 2009). Hedges’ g
uses pooled weighted standard deviations instead of the pooled
standard deviations used by Cohen’s d. Mathematical equations
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FIGURE 1 | PRISMA flowchart describing the methodology and search results. LF/HF, ratio of low frequency to high frequency; RMSSD, root mean square of

successive differences among successive R-R normal intervals; RRI, means of R-R intervals; SDNN, standard deviation of normal R-R intervals.

used to compute effect size for each study are presented in the
Supplementary Material 1. All effect sizes calculated for each
study and corresponding to the same physiological measure were
then aggregated to derive an overall summary effect size. A
positive summary effect size indicated a positive effect of the
stress intervention on all physiological measures except for HRV
time-domain features (RRI, RMSSD and SDNN), for which a
negative summary effect size suggested a positive effect of the
stress intervention. Using Cohen’s interpretation guidelines, the
magnitude of the overall summary effect size was considered as
small up to 0.2, medium up to 0.5, and large up to 0.8 (Cohen,
1988). The α level for significance was set at p < 0.05.

To quantify heterogeneity of the overall summary effect size,
i.e., the inconsistency of effect sizes across a set of studies (Del
Re, 2015),Q-statistic, I²-statistic and τ ² were explored.Q-statistic
indicated the statistically significant presence of heterogeneity
between effect sizes, I²-statistic estimated the proportion of
heterogeneity (low if I² = 25%, moderate if I² = 50%, large if
I² = 75%), and τ ² referred to the absolute value of true variance
across studies.

Publication bias was first assessed by visually inspecting the
funnel plots. If an asymmetry was detected, a rank correlation
test and an Egger’s regression test (Egger et al., 1997) were run
to assess the significance of the publication bias. Finally, the file
drawer issue was assessed by Rosenthal’s fail-safe N (Rosenthal,
1979). Fail-safe N refers to the number of studies that would have
to be included in order to indicate that the stress intervention
had no effect and that would be necessary for the meta-analysis to

become non-significant. The file drawer problem was considered
to be minor when the observed significance of fail-safe N was
lower than the target significance level (p= 0.05), thus suggesting
that the outcome of the meta-analysis was not affected by
potential bias.

Moderator Analyses
Moderator analyses were undertaken if each measure met
the three eligibility criteria: (1) significant summary effect
size, (2) significant heterogeneity in summary effect size and
(3) sufficient number of available studies (k ≥ 5) to allow
comparisons (Hughes et al., 2019). Meta-regressions were used
when the factors studied were continuous variables, while
subgroup analyses were conducted when the factors examined
were categorical variables.

Individual Factors
Age and gender—two individual factors—were investigated by
running meta-regressions to assess their moderating effect on
driver stress.

Ambient Factors
The influence of three ambient factors on driver stress was
studied by proceeding to subgroup analyses. These factors were:
apparatus, driving automation and stressor exposure duration.
In order to study the effect of apparatus type, a first subgroup
was formed by pooling studies performed in a real vehicle while
a second subgroup included studies performed in a driving
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simulator. Two independent analyses were then run to compute
a summary effect for each subgroup. Finally, we analyzed
whether the two summary effect sizes differed significantly,
first by looking for overlaps between their confidence intervals
and second by using a Wald-type test. The same procedure
was repeated to explore driving automation and thus compare
studies conducted in manual driving (first subgroup) and in
fully autonomous driving (second subgroup). Again, the same
procedure was used to investigate stressor exposure duration
by comparing studies involving short-term exposure (first
subgroup) and long-term exposure (second subgroup). The
subgroups were formed by arbitrarily setting a threshold at 10
mins so that exposure times below the threshold comprised the
first subgroup and exposure times above the threshold comprised
the second subgroup.

RESULTS

Search Results
The primary search yielded 474 records. After screening each
record, 332 abstracts were excluded in line with the eligibility
criteria. The remaining 142 studies were then assessed for
eligibility based on full-length articles. Finally, 26 references
were included and distributed across 9 meta-analyses to permit
independent exploration of 9 physiological measures (Healey and
Picard, 2005; Schießl, 2008; Cottrell and Barton, 2012; Miller
and Boyle, 2013; Manseer and Riener, 2014; Pedrotti et al., 2014;
Zhao et al., 2014, 2020; Chen, 2015; Rendon-Velez et al., 2016;
Yu et al., 2016; Heikoop et al., 2017, 2019; Magana and Munoz-
Organero, 2017; Morris et al., 2017; Haouij et al., 2018; Khattak
et al., 2018; Napoletano and Rossi, 2018; Ooi et al., 2018; Paredes
et al., 2018; Gotardi et al., 2019; Rastgoo et al., 2019; Meesit et al.,
2020; Tavakoli et al., 2020; Zontone et al., 2020, 2021) (Figure 1).

Characteristics of Studies
A qualitative review of the literature indicated that driver
stress was indexed by breathing rate in 7 studies (156 drivers),
electrodermal activity in 7 studies (187 drivers), heart rate
in 25 studies (501 drivers), the ratio of Low-Frequency
to High-Frequency heart rate variability (LF/HF) in 10
studies (140 drivers), the root mean square of successive
differences among successive R-R normal intervals (RMSSD)
in 6 studies (101 drivers), means of R-R intervals (RRI)
in 5 studies (46 drivers), the standard deviation of normal
R-R intervals (SDNN) in 6 studies (95 drivers), pupil
diameter in 3 studies (83 drivers), and trapezius muscle
tension in 2 studies (38 drivers). The characteristics of
the studies included in the meta-analyses are detailed in
Supplementary Material 2.

Meta-Analyses
The analyses indicated that several physiological measures
changed significantly with stress interventions, thereby
suggesting a change in drivers’ stress state (Table 1). Indeed,
heart rate [g = 0.42 (0.14 to 0.69), p < 0.001] and pupil diameter
[g = 0.46 (0.02 to 0.90), p < 0.05] revealed significant moderate
increases, while RRI, a time-domain feature of HRV, indicated

a significant moderate decrease [g = −0.42 (−0.84 to 0.01), p
= 0.05] when performing a high-stress driving task compared
to a low-stress driving task. In contrast, no significant effects
were observed between high-stress and low-stress driving for
other measures, including breathing rate [g = −0.27 (−0.76
to 0.22), p = 0.29], electrodermal activity [g = 0.96 (−0.05 to
1.98), p = 0.062], LF/HF [g = 0.60 (−0.22 to 1.43), p = 0.15],
RMSSD [g = −0.06 (−0.34 to 0.22), p = 0.67], SDNN [g =

−0.19 (−0.47 to 0.10), p = 0.20] and trapezius muscle tension
[g = 0.04 (−0.42 to 0.49), p = 0.87]. Among the measures that
were found to be significantly sensitive to driver stress, i.e.,
heart rate, pupil diameter and RRI, none of them showed a real
advantage over the others, as indicated by the overlap in their
confidence intervals.

The Q-statistics indicated a significant heterogeneity between
effect sizes for breathing rate [Q= 20.3, p < 0.01], electrodermal
activity [Q = 67.7, p < 0.001], heart rate [Q = 127.7, p
value < 0.001] and LF/HF ratio [Q = 71.7, p value < 0.001].
The degrees of heterogeneity for these measures, subsequently
quantified using the I²-statistic, were found to be moderate to
large [Breathing rate: I² = 66.0% (16.1 to 94.8); Electrodermal
activity: I² = 94.0% (84.4 to 98.9); Heart rate: I² = 75.3%
(61.3 to 90.6); LF/HF: I² = 89.6% (77.0 to 96.9)]. Considering,
first, the moderate to large degrees of uncertainty of I²-statistics
and, second, the amount of true variance between studies for
these measures [Breathing rate: τ ²= 0.23; Electrodermal activity:
τ ² = 1.69; Heart rate: τ ² = 0.34; LF/HF: τ ² = 1.52], we
suspect that a large proportion of the observed variance reflected
true heterogeneity.

Publication bias investigated by visually inspecting funnel
plots for significant measures revealed no asymmetries
(Figure 2). The absence of bias was then confirmed by standard
rank correlation tests, Egger’s regression tests, and fail-safe N
analyses [Heart rate: Kendall’s τ = 0.25, p = 0.10, Egger: z =

0.99, p = 0.32, Fail-safe N = 350, p < 0.001; RRI: Kendall’s τ =

−0.32, p = 0.45, Egger: z = −1.26, p = 0.21, Fail-safe N = 4, p
< 0.05; Pupil diameter: Kendall’s τ = 0.33, p = 1.00, Egger: z =
1.05, p= 0.29, Fail-safe N= 5, p < 0.01].

Moderator Analyses
To determine the extent to which physiological measures are
sensitive to individual and ambient factors, we carried out a series
of moderator analyses using subgroups and meta-regressions.
Only heart rate met the three eligibility criteria required to
conduct moderator analyses: significant summary effect size [g
= 0.42 (0.14 to 0.69), p < 0.001], significant heterogeneity in
summary effect size (Q= 127.7, p< 0.001), and sufficient number
of available studies (k= 25 ≥ 5).

Individual Factors
The moderating effects of age and gender on driver stress were
explored (Table 2). Meta-regressions revealed no effect of age (β
=−0.015, p= 0.22) or gender (β =−0.003, p= 0.48).

Ambient Factors
We assessed the moderating effects on driver stress of three
ambient factors: apparatus, driving automation and stressor
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TABLE 1 | Outcomes of the meta-analyses.

Physiological measure Sample size Heterogeneity Global effect size

k N Q-statistic I²-statistc (%) t² Hedges’ g 95%CI p-value

Breathing rate 7 156 20.3** 66.0 0.23 −0.27 [−0.76; 0.22] 0.29

Electrodermal activity 7 187 67.7*** 94.0 1.69 0.96 [−0.05, 1.98] 0.062

Heart rate 25 501 127.7*** 75.3 0.34 0.42 [0.14; 0.69] <0.001***

LF/HF 10 140 71.7*** 89.6 1.52 0.60 [−0.22; 1.43] 0.15

RMSSD 6 101 0.60 0.00 0.00 −0.06 [−0.34; 0.22] 0.67

RRI 5 46 6.51 0.00 0.00 −0.42 [−0.84; 0.01] 0.05*

SDNN 6 95 0.99 0.00 0.00 −0.19 [−0.47; 0.10] 0.20

Pupil diameter 3 83 1.85 20.4 0.038 0.46 [0.02; 0.90] <0.05*

Trapezius muscle tension 2 38 0.11 0.00 0.00 0.04 [−0.42; 0.49] 0.87

LF/HF, ratio of low frequency to high frequency; RMSSD, root mean square of successive differences among successive R-R normal intervals; RRI, means of R-R intervals; SDNN,

standard deviation of normal R-R intervals; k, number of studies; N, number of drivers; Q, I² and τ ², statistics used to evaluate heterogeneity of variance; Hedges’ g, statistic used to

calculate effect size for small sample size; CI, confidence interval; p-value, level of significance. *p< 0.05, **p< 0.01, ***p< 0.001.

FIGURE 2 | Visualization of funnel plots.

exposure duration (Table 3). The first ambient factor tested was
the apparatus. No significant change in heart rate was observed
between driving tasks performed in the real-vehicle and driving
tasks performed in a driving simulator [gReal = 0.37 (0.00 to 0.74),
gSimulator = 0.41 (0.11 to 0.71)], as revealed by the overlapping
of their confidence intervals. These observations were reinforced
by the Wald-type test, which did not indicate any significant
difference between the two summary effect sizes (zApparatus =

0.44, p= 0.66).
The second ambient factor we assessed was driving

automation. Although heart rate showed a greater overall
effect size when stress intervention was performed in manual
driving [gManual = 0.47 (0.16 to 0.77)] compared to fully
autonomous driving [gFullyautonomous = 0.09 (−0.33 to 0.51)], the
overlap in the confidence intervals suggested that the difference
was not statistically significant. In addition, the results of the
Wald-type test indicated similar summary effect sizes between
manual and autonomous driving (zAutomation = 0.87, p= 0.38).

The third ambient factor assessed was the stressor exposure
duration. No significant cardiac difference was noticed between

short and long-term stress exposure [gshort = 0.44 (0.10 to 0.79,
gLong = 0.22 (−0.05 to 0.49)]. The lack of significance was indeed
supported by the Wald test result (zDuration = 0.31, p= 0.76).

DISCUSSION

To our knowledge, these are the first meta-analyses to investigate
(i) the sensitivity of each physiological measure in quantifying
driver stress, and the moderating effect of (ii) population type
and (iii) driving ambient on driver stress. The main finding
is that moderate physiological changes were initiated by stress
interventions, suggesting that heart rate, RRI—a time-domain
HRV feature—and pupil diameter are sensitive measures for
quantifying driver stress. Driver stress indexed by heart rate
showed no moderating effect of age, gender, apparatus, driving
automation or stressor exposure duration. Below, we provide a
summary and interpretations of the results, discuss implications
for future research and present the main limitations of the
reported work.
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TABLE 2 | Outcomes of individual factors.

Individual factor physiological measure Sample Size Heterogeneity Global effect size

k N Q-statistic I²-statistc (%) t² Hedges’ g β SE p-value

Age

Heart Rate 24 491 114.2** 75.1 0.34 0.91 −0.015 0.45 0.22

Women

Heart Rate 24 491 124.4** 76.9 0.36 0.55 −0.003 0.24 0.48

k, number of studies; N, number of drivers; I², τ ² and Q, statistics used to evaluate heterogeneity of variance. Hedges’ g, statistic used to calculate effect size for small sample size; β,

non-standardized beta coefficient; SE, standard error; p-value, level of significance. **p< 0.01.

TABLE 3 | Outcomes of ambient factors.

Ambient factor Physiological measure Sample size Heterogeneity Global effect size

k N Q-statistic I²-statistc (%) t² Hedges’ g 95%CI SE p-value

Apparatus

Real vehicle Heart Rate 16 256 97.6** 73.4 0.41 0.37 [0.00, 0.74] 0.19 0.053

Driving simulator Heart Rate 9 245 24.4** 57.4 0.11 0.41 [0.11, 0.71] 0.15 <0.01**

Automation

Manual Heart Rate 22 457 124.0** 78.0 0.39 0.47 [0.16, 0.77] 0.16 <0.01**

Fully autonomous Heart Rate 3 44 0.2 0.0 0.00 0.09 [−0.33, 0.51] 0.21 0.67

Duration

Short-term Heart Rate 17 391 108.3** 79.9 0.40 0.44 [0.10, 0.79] 0.18 <0.05*

Long-term Heart Rate 8 110 15.1* 0.0 7.57e-6 0.22 [−0.05, 0.49] 0.14 0.115

k, number of studies; N, number of drivers; I², τ ² and Q, statistics used to evaluate heterogeneity of variance; Hedges’ g, statistic used to calculate effect size for small sample size; CI,

confidence interval; SE, standard error; Apparatus, real vehicle vs. driving simulator; Automation, manual vs. autonomous driving; Duration, short-term vs. long-term exposure to the

stressor; p-value, level of significance. *p< 0.05, **p < 0.01.

Summary and Interpretation of the Results
Considering the overall effect sizes and their confidence intervals
in order to judge the significance of an effect, and thus
the sensitivity of a measure, we identified three physiological
measures that are sensitive enough to quantify driver stress,
namely heart rate, RRI and pupil diameter. The fact that both
heart rate and RRI are both sensitive is consistent since heart

rate is derived from RRI. It should be noted that of the three
sensitive physiological measures (i.e., heart rate, RRI and pupil

diameter), none was found to have a significant advantage

over any other in identifying driver stress. While these three
measures showed sensitivity to driver stress, the other measures
did not (i.e., breathing rate, electrodermal activity, LF/HF,

RMSSD, SDNN and trapezius muscle tension). However, this
does not mean that they are not sensitive. At this stage, we
cannot conclude about the lack of sensitivity of these measures.
It is indeed possible that the sample size for each of these
measures is too small and/or presents too much heterogeneity
across studies, which would prevent revealing a sensitivity to
driver stress.

Only heart rate warranted moderator analysis because it
was the only measure that met all the eligibility criteria.
However, individual moderators (age, gender) and ambient
moderators (apparatus, driving automation, stressor exposure

duration) did not reveal any significant change in heart rate.
Despite this, it is very likely that there are moderators of the
stress response given the considerable heterogeneity (i.e., high
values of Q, I² and τ ²) observed in the effect sizes. Possible
explanations regarding the lack of physiological change are
provided below.

Individual Modulators
Age and Gender
Although it is well established that individual factors have an
impact on stress appraisal (Matthews, 2002), the results regarding
the direction of the relationship between individual factors and
driver stress have often been contradictory. For example, studies
have shown greater stress levels in older populations (Hill and
Boyle, 2007), while others have observed lower stress levels in
older populations (Langford and Glendon, 2002). Therefore, the
aggregation of studies with opposite results in the same meta-
analysis could explain our findings about the lack of an age effect
on driver stress. Nonetheless, this does not mean that there is
no real moderating effect of age. Indeed, the driving experience,
closely linked to age (Gulian et al., 1990), can influence the driver
stress response, as observed through the stronger correlations
between age and all dimensions of driver stress (DBI scales) when
driving experience is statistically controlled (Westerman and
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Haigney, 2000). Also, cognitive decline has been mentioned as a
possible explanation for greater stress levels in older populations,
which is highlighted, in particular, by a drop in “alertness
and anticipation” and an increase in “driving dislike” with age
(Westerman and Haigney, 2000). Therefore, the unifactorial
approach (i.e., investigating factors one by one) might mask
the true effect of moderating factors (e.g., age and gender, lack
of experience or negative experiences, awareness of cognitive
decline) by not taking account of their interdependence. This is
in line withMatthews’ (2002) transactional theory of driver stress,
according to which driver stress is the result of transactional
relationships between several factors.

Ambient Modulators
Apparatus
Although stress studies conducted in a driving simulator offer a
more controlled and safe approach, they might nevertheless be
poorly representative of the stress experienced under real and
ecological conditions. Our results a priori seem to contradict
this criticism since they suggest that stress induced in a driving
simulator and measured by heart rate is indeed representative
of stress experienced in real conditions. Indeed, the lack of
change in heart rate between driving simulator studies and real
vehicle driving studies was observed through similar overall
effect sizes, similar standard errors and a non-significant Wald-
type test. However, the significant heterogeneity in effect sizes,
observed in both simulator and real-road studies, indicates that
additional factors explain the overall effect size. We believe that
these factors are related to differences in experimental designs,
and in particular in the stressful stimuli used. In addition, it
cannot be excluded that the nature of the stimuli used and the
experimental designs also differ between studies conducted on
driving simulators and in real-vehicles. Thus, we can legitimately
ask whether the internal driver states we measure in driving
simulators and in real road conditions are the same, and if
the response to stressful stimuli in real car driving is not
shaped by additional safety concerns, among other factors.
This is why Milleville-Pennel and Charron (2015) raised the
question: “Can we consider that the same cognitive functions
are involved in simulated driving and in real car driving?.”
Furthermore, previous studies have compared internal driver
states (not exclusively stress) in simulated and real-world driving
using the same stimuli and have measured these states using
heart rate (Engström et al., 2005; Johnson et al., 2011; Li et al.,
2013; Gemonet et al., 2021). However, no consensus has been
reached due to conflicting results. Given both our results and
the discrepancy between results in the literature, we recommend
further investigating driver stress in both simulated and real
vehicle driving using experimental designs that are as similar as
possible, i.e., including the same hazardous or stressful stimuli,
same driving environment and same participants when doing
driving simulator validation studies.

Automation
The lack of difference in measures of heart rate between manual
and autonomous driving—indicated by a non-significant Wald-
type test—indicates a priori that driver stress is not influenced

by driving automation. Nonetheless, the effect size of stress
interventions was significant in manual driving (g = 0.47, p <

0.01∗∗), while it was non-significant in autonomous driving (g =
0.09, p = 0.67). Taken together, the lack of difference observed
between manual and autonomous driving may be due to the
small number of included studies that investigated autonomous
driving (k = 3). Although no reliable conclusion concerning the
possible influence of driving automation on driver stress can
be provided at this stage, further investigations of driver stress
in autonomous driving are strongly recommended to confirm
or refute this lack of effect. In cases where additional studies
confirm this lack of effect, it would be interesting to explore the
sources. Below, we put forward potential explanations for the
lack of an effect of autonomous driving that can be considered
as avenues of investigation. First, such a lack of effect may be
due to the different nature of the stressors, i.e., more arousing
and demanding in terms of cognitive and motor skills for manual
driving than for automated driving. Second, it may also be
explained by a reduction in driver stress during autonomous
driving. This explanation would be consistent with the hypothesis
of reduced vulnerability to stress during autonomous driving and
related to the decrease in workload (Stanton and Young, 1998,
2005). Third, the lack of effect of stress interventions may also
be due to drivers’ level of experience with automated driving
systems and their trust. As evidence of this, a relationship has
previously been found between reported trust in autonomous
driving and physiological stress (Morris et al., 2017). Fourth,
heart rate may not be a suitable indicator for detecting stress
in autonomous driving. Therefore, it would be interesting to
consider alternative measures, such as LF/HF ratio (Heikoop
et al., 2017) and electrodermal activity (Zontone et al., 2020), both
of which have already been used for stress detection purposes
during autonomous driving.

Duration
The lack of change in heart rate between short-term and long-
term driving—highlighted by a non-significant Wald-type test—
suggests that the sensitivity of heart rate is not modulated
by the stressor exposure duration. However, the effect size of
stress interventions was significant in short-term driving (g =

0.44, p < 0.05∗), whereas it was non-significant in long-term
driving (g = 0.22, p = 0.115). Although additional studies
would be necessary to draw definitive conclusions concerning
the existence of cardiac differences depending on the duration
of driving under stress conditions, the disparity of the results
nevertheless enables us to put forward a first hypothesis. Indeed,
it is likely that our findings reflect the effect of the nature of
the stressors manipulated within each subgroup (short-term and-
long-term) and not the effect of the stressor exposure duration
and therefore the measurement time. We believe that event-
related and intense stressors are more likely to be studied over
short time periods than more diffuse and moderate stressors,
which would require longer measures in order to be detected
by cardiac sensors. Consequently, in the future, it would be
interesting to study the same stressors (i.e., same nature and
intensity) while varying only the cardiac measurement time. This
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would also address the question raised by Antoun et al. (2017)
about the existence of a threshold effect beyond which driving
in a given context would become significantly more stressful.
For exploratory purposes, a driving time cut-off of 10 mins was
arbitrarily set when forming the subgroups and it is possible
that other values might be more appropriate for highlighting
a potential moderating effect of stressor exposure duration on
driver stress.

Implications for Future Research and
Practice
Our results aim to shed light on driver stress-sensitive
measures in order to assist researchers and practitioners in
their measurement decisions. Based on our findings, three
physiological measures were found to be sensitive to driver
stress, namely heart rate, RRI and pupil diameter. Nonetheless,
we recommend that readers interpret our results (i.e., the
magnitude of the effects) in the context in which driver stress
was manipulated in the included studies. Indeed, as Mehler
et al. (2012) suggested, the sensitivity of measures may vary
depending on the specific tasks and individual states considered.
In addition, we encourage further investigation of the other
measures used, which may not have been able to reveal their
potential sensitivity in our study, in part because of the
limited number of studies and/or failure of studies to meet
eligibility criteria.

Considerations for future research and practice arise mainly
from the results of sensitivity and moderator analyses. We
found, first, that some measures did not exhibit sensitivity
to stress and that the studied factors did not highlight a
moderating effect on stress despite the large heterogeneity
in effect sizes. As a result, we recommend that researchers
and practitioners interested in exploring driver stress adopt
a 3-step approach in order to optimize the observation
of both physiological change reflecting sensitivity and
of moderating effects, and, more generally, to improve
the understanding of driver stress. The 3-step approach
consists of: (1) using multiple measures, (2) combining
measurement modalities (triangulation approach), and (3)
analyzing how factors (stressors and moderators) interact
(multifactorial approach). Below, we advocate these principles
for driver stress investigations, although they can also be
applied to the exploration of other psycho-physiological and
cognitive states.

Using Multiple Measures
First, researchers and practitioners should use multiple measures
to ensure that the physiological changes induced by stressors
are also actually observed. This approach would compensate for
the failure of some measures in some individuals or in some
study contexts. For example, Healey and Picard (2005) pointed
out that the electrodermal response may differ among drivers
due to variations in the number of sweat glands on the palms.
The question of the reliability of pupil diameter to index driver
stress also arises in real road contexts, where the measure can be
disturbed by many uncontrollable factors, such as light variation
and driver’s verbal output (Recarte and Nunes, 2003). According

to Mehler et al. (2012), no single physiological measure would
provide optimal sensitivity for capturing a given state in all
types of tasks. Second, using multiple measures in combination
would permit a more reliable identification of driver stress.
Indeed, Bernardi et al. (2000) supported the analysis of combined
measures after observing the influence of breathing on HRV
during simplemental and verbal activities. More specifically in an
automotive context, the influence of driver stress resulting from a
combination of physiological measures has also been investigated
(Ollander et al., 2016). The authors found that combining
cardiac, electrodermal and respiratory signals made it possible to
distinguish between resting and driving, while combining cardiac
and respiratory signals helped distinguish between low-stress
driving and high-stress driving (Ollander et al., 2016). Third,
the use of multiple measures and features would also provide
information about the sympathovagal balance, thus improving
knowledge of the psychophysiological mechanisms underlying
stress states. Some measures and features reflect the activity
of both autonomic components, while others mainly reflect
the activity of one of the two components. This knowledge
is also particularly interesting for remediation strategies, given
that Respiratory Sinus Arrhythmia (RSA) mainly reflects the
parasympathetic component (Berntson et al., 1993), that a low
RSA and anxiety are related (Thayer et al., 1996) and that it has
proved possible to progressively increase RSA using breathing
and biofeedback techniques (Climov et al., 2014).

Triangulation Approach
In the same way as other works which have previously reviewed
studies of stress (Alberdi et al., 2016), and driver stress in
particular (Rastgoo et al., 2018; Chung et al., 2019), we
advocate the joint use of physiological, subjective, and behavioral
measures to explore stress in driving. This approach, also called
triangulation (Denzin, 1978), permits the accurate observation
of a common phenomenon and enriches its explanation (Jick,
1979). Since such an approach captures the multidimensional
responses to stress (Matthews, 2002) at the physiological,
behavioral, emotional and cognitive levels, it will help us
differentiate between the various stress states experienced by
drivers. This will then make it possible to derive stress-sensitive
driver profiles (Pesle et al., 2018) and design driver stress
detection systems (Rastgoo et al., 2018).

Multifactorial Approach
Our results showed no modulating effect of the studied
factors (age, gender, apparatus, driving automation, and stressor
exposure duration). As suggested above, these findings may
be partly due to our univariate approach, which considered
each factor independently. This statement is supported by a
recent study in which an effect of age on driver stress was
found using a multivariate approach (i.e., Principal Component
Analysis of physiological measures) (Zhao et al., 2020). This
type of approach has been supported by a number of different
studies which have observed dependencies between driver stress
and various individual and ambient factors, such as personality,
mood, coping strategies, age, gender, driving experience, time
of day in relation to the circadian rhythms (Langford and
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Glendon, 2002; Pesle et al., 2018). Our findings, alongside
those of previous studies, support the idea that the multivariate
approach advocated by Matthews et al. (2017) if we are to
achieve a holistic understanding of the moderators (individual
and ambient), stressors and outcomes of driving. Nonetheless,
this type of approach remains difficult to implement. In this
context, the multivariate approach should systematically call on
theoretical support, such as the T²SO (Time-Trait-Stressors-
Outcome) framework proposed by Matthews et al. (2017), to
facilitate understanding and test multivariate theories of driver
stress. In addition, the use of computational techniques would
facilitate the implementation of a multifactorial approach.

LIMITATIONS

Several Limitations Should Be
Acknowledged
Small Number of Studies
Although the random-effects models used for our meta-analyses
were designed to permit us to generalize our results beyond
the included studies (Borenstein et al., 2010), the small number
of studies nevertheless limits the scope of our interpretations.
Given the small number of studies, moderator analyses could be
performed for only one stress-sensitive physiological measure;
namely, heart rate. Therefore, it cannot be excluded that
the results and interpretations of the moderator analyses are
dependent on the physiological measure used, in this case heart
rate. Interpretations of each moderator are also limited by the
small number of studies within some moderator subgroups.
This reflects the fact that driver stress has not been sufficiently
investigated under specific driving conditions (e.g., autonomous
driving). One reason for the small number of studies included
in meta-analyses is the exclusion of driver stress studies that
used various algorithms to combine physiological signals (Singh
et al., 2011; Lanatà et al., 2014; Dobbins and Fairclough, 2018;
Bitkina et al., 2019; Hadi et al., 2019). Indeed, we focused on a
univariate approach to examine the sensitivity of independent
physiological measures. Another major reason is the lack of
information about the stress interventions in the studies (e.g.,
mean and/or standard deviation).

Use of Different Stressors
As driver stress has been interpreted in different ways by authors,
many stress interventions have been collected across studies (e.g.,
heavy traffic, complex driving maneuvers, surprising events).
Therefore, the effect sizes could be identified more precisely if
comparison groups included only highly similar stressors. The
wide variety of experimental designs found in the studies did not
allow us to achieve such granularity.

Highlight Sensitivity of Physiological Measures to

Driver Stress, but Not Selectivity (or Specificity)
The current study demonstrated the sensitivity—and not the
selectivity—of various physiological measures to driver stress.
Sensitivity refers to the capacity of an instrument to detect
changes in a given task or situation, whereas selectivity refers
to the sensitivity of an instrument only to differences in one

state (e.g., stress state) and not changes in other states (e.g.,
mental workload) (O’Donnell and Eggemeier, 1986; Matthews
et al., 2015). It is therefore entirely possible that the physiological
measures found to be sensitive to driver stress in this study
are also sensitive to other psycho-physiological and cognitive
states of the driver. Several factors (i.e., not only stressors)
would thus influence the autonomic nervous system responses.
Such observations would suggest a lack of selectivity of the
physiological measures to driver stress when the measures are
used alone and independently, i.e., without combining measures.
In favor of this assumption, let’s take the example of driver stress-
sensitive heart rate. Zontone et al. (2020) noted a systematic
difference in heart rate between manual and autonomous driving
under all conditions (stress and control), leading them to believe
that additional factors, unrelated to stress, were responsible for
the changes in heart rate. One of the most likely explanations for
these changes in heart rate is the significant influence of motor
activity during manual driving. Another possible explanation is
that mental workload influences cardiac response, which would
consequently be reduced with automation (Stanton and Young,
1998; Young and Stanton, 2002). In addition, Parent et al. (2019)
suggested that stress and mental workload would have similar
sources and effects. Given these common characteristics, the
use of a single physiological measure, in this case heart rate,
might be limited in its ability to infer a specific state (e.g.,
stress state) when several factors interplay (e.g., stress, mental
workload, motor activity). The current study investigated the
physiological measures alone and independently, therefore it
meets the criterion of sensitivity of the physiological measures to
driver stress but not selectivity. We believe that the investigation
of the selectivity of physiological measures to driver stress can
only be done by considering multiple driver states, including
multiple measures, combiningmultiple measurement modalities,
and performing an analysis of multiple explanatory factors.
Although this approach is highly challenging to implement, we
have good reason to believe that the multivariate approach is
the key to distinguishing each driver state, including driver
stress. In this sense, previous research has shown the specificity
of autonomic nervous system responses to basic emotions
when these emotions were examined using multivariate analyses
(Stephens et al., 2010). Given the importance of emotions
(e.g., anger, fear) in the driver’s stress response, multivariate
analyses might be a powerful tool to enable isolating stress from
other psychophysiological and cognitive states. Computational
techniques (e.g., preprocessing, feature selection, machine
learning) and neuroimaging techniques, which have recently
been shown to differentiate stress from workload (Parent et al.,
2019), might also contribute to distinguishing all these states.

CONCLUSION

This research relied on an empirical approach that aggregates
results from the literature to quantify the sensitivity of
physiological measures to driver stress. The results showed that
heart rate, RRI and pupil diameter were sensitive enough to
permit this. We believe that these findings could provide initial

Frontiers in Neuroergonomics | www.frontiersin.org 11 December 2021 | Volume 2 | Article 756473105

https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroergonomics#articles


Kerautret et al. Physiological Measures of Driver Stress

support for researchers and practitioners when deciding which
physiological measures to use to quantify stress while driving.

Future studies involving these measures, as well as HRV
features, electrodermal activity, breathing rate and trapezius
muscle tension, are necessary to draw conclusions about their
(lack of) sensitivity for quantifying driver stress. Given the
growing interest in achieving early detection, we recommend
using multiple physiological measures in order to ensure
and enhance the observation of stressor-induced physiological
changes. Indeed, the design of corrective or assistance solutions
that specifically target driver stress and that would be activated
as soon as stress emerges would be of interest in terms
of safety and comfort. In addition, in order to promote
a broad understanding of driver stress involving stressors,
modulators and outcomes, we recommend a triangulation-based
methodology (using subjective, behavioral and physiological
measures) combined with a multifactorial approach (studying
several factors simultaneously and jointly). Finally, functional
neuroimaging studies should be performed to explore the
neurophysiological correlates underlying driver stress states and
thus provide additional insights into these states.
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Driving is a safety-critical task that requires an alert and vigilant driver. Most research

on the topic of vigilance has focused on its proximate causes, namely low arousal and

resource expenditure. The present article aims to build upon previous work by discussing

the ultimate causes, or the processes that tend to precede low arousal and resource

expenditure. The authors review different aspects of fatigue that contribute to a loss of

vigilance and how they tend to occur; specifically, the neurochemistry of passive fatigue,

the electrophysiology of active fatigue, and the chronobiology of sleep-related fatigue.

Keywords: fatigue, arousal, circadian rhythm, vigilance, driving, automation, attention, vigilance decrement

INTRODUCTION

According to the Centers for Disease Control Prevention (2020), motor vehicle crashes are the
second leading cause of accidental or unintentional death in the United States. Driver distraction
and drowsiness are thought to be the most common causes for roadside crashes (AAA Foundation
for Traffic Safety, 2018). Driving automation systems (DASs; e.g., adaptive cruise control and active
lane keeping) have been introduced tomitigate these crash rates by reducing workload on the driver
(Wickens et al., 2010; Wickens, 2018). They may, however, inadvertently introduce new problems
to the driver (Mueller et al., 2021), such as increasing the prevalence of driver distraction (Young,
2012; Greenlee et al., 2018), drowsiness (Gimeno et al., 2006; Gaspar et al., 2017; Sikander and
Anwar, 2018; Kundinger et al., 2020), engagement in non-driving related tasks (Seppelt and Victor,
2016; Cabrall et al., 2019; Mueller et al., 2021), and loss of situational awareness (Berberian et al.,
2017; Brandenburg and Chuang, 2019; Lohani et al., 2019). Overestimating the capabilities of DASs
can also lead to overreliance and complacency in the system as well, which may further exacerbate
the aforementioned consequences (Parasuraman et al., 2000; Schaefer et al., 2016; Seppelt and
Victor, 2016; Hecht et al., 2018). Detailed examination into the processes underlying distraction
and sleepiness—or fatigue, more broadly—will be critical to maintaining roadway safety in this
time of increasing prevalence of DASs. Here, the authors define fatigue as an adaptive state of
stress that occurs due to the interaction between an individual and their environment (Hancock
and Warm, 1989). The goal of the present article is to build upon the work of May and Baldwin
(2009) by providing more in-depth information on the causality of fatigue, given the findings of
newer research. We begin our examination by first discussing a common indicator of fatigue, the
vigilance decrement. Then, the remainder of the article will discuss the underlying mechanisms of
three dimensions of fatigue: passive, active, and sleep-related fatigue.

The authors want to quickly note that driving using automation will be the primary example
used throughout the present paper, however the underlying mechanisms discussed below may also
be applicable to other tasks and domains that involve vigilance as well, such as radar operators,
anesthesia monitors, air traffic controllers, and cockpit pilots (Donald, 2008; Wiggins, 2011).
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THE VIGILANCE DECREMENT

Berberian et al. (2017) identified the vigilance decrement as one
of the critical factors that impacts a driver’s situational awareness
when using automation technologies. The vigilance decrement
can be defined as “[t]he deterioration in human performance
resulting from adverse working conditions. . . ” (Mackworth,
1948, p. 6). Researchers have studied various aspects that
contribute to the aforementioned “adverse working conditions,”
such as prolonged time-on-task (Mackworth, 1948; Langner
and Eickhoff, 2013; Thomson et al., 2015), under-stimulating
task features (Scerbo, 1998; Greenlee et al., 2018; Luna et al.,
2021), degrading goal maintenance (Hockey, 2011; Braver, 2012;
Grahn and Manly, 2012), low critical-event rate (Parasuraman
et al., 1987; Langner and Eickhoff, 2013), poor display usability
(Hancock, 2013, 2017), and the need to maintain high workload
(Helton and Russell, 2017). During a vigilance decrement, one’s
cognitive state tends to be vulnerable to both distraction (Aston-
Jones and Cohen, 2005; Greenlee et al., 2018) and drowsiness
(Dinges, 1995; Thiffault and Bergeron, 2003; de Naurois et al.,
2019). In this compromised state, a driver is likely to disengage
from attentive driving, ormonitoring, and instead engage in non-
driving related tasks (Randall et al., 2014; Körber et al., 2015;
Greenlee et al., 2018).

Most research on vigilance, at least within the Human Factors
domain, has focused on the variables and conditions that tend
to correlate or precede the vigilance decrement, such as low
arousal (Scerbo, 1998), resource depletion (Warm et al., 1996),
and neural activity (Smallwood et al., 2012b). Based on this
research, two fundamental theories have emerged: the underload,
or mindlessness, theory (Sawin and Scerbo, 1995; Scerbo, 1998;
Manly et al., 1999) and the overload, or resource depletion,
theory (Warm et al., 1996). The underload theory posits
that vigilance tasks induce boredom due to their intrinsically
monotonous, under-stimulating, and infrequently responding
nature. Individuals may, therefore, engage in other activities,
such asmind-wandering, in order to elevate their arousal, thereby
alleviating boredom (Seli et al., 2015).

The overload theory, on the other hand, suggests that vigilance
tasks are inherently difficult due to the high workload associated
with having to maintain attention over a prolonged period of
time. Specifically, cognitive resources are thought to be allocated
toward maintaining proper executive control during a vigil,
and once those resources have been exhausted, performance
detriments ensue (Randall et al., 2014). Although some have
suggested that the under- and overload theories are antithetical
to each other, they may describe different dimensions of fatigue.

This has led researchers to adopt an altered perspective
regarding the claims made by both underload and overload
theories. For instance, some (e.g., Pattyn et al., 2008; Langner
and Eickhoff, 2013) view the former as describing the vigilance
decrement from an exogenous, “bottom-up” perspective (e.g.,
monotonous and understimulating task characteristics) and the
latter from an endogenous, “top-down” perspective (e.g., subpar
executive functioning due to depleted cognitive resources).
Similarly, others (e.g., Gimeno et al., 2006; May and Baldwin,
2009; Di Stasi et al., 2012) suggest that these theories

describe different aspects of fatigue, passive and active fatigue,
respectively. Both underload and overload theories alone,
however, only describe the proximate causes of the vigilance
decrement, not the underlying, ultimate causes. In other words,
low arousal and resource depletion both tend to precede the
occurrence of fatigue, but this leads to the question, what
precedes low arousal and resource depletion?

PROCESSES UNDERLYING PASSIVE
FATIGUE

In the following section, the role of the locus coeruleus and
norepinephrine (LC-NE) system will be discussed as it relates
to arousal: specifically, the way in which it modulates its firing
rate to either broaden or narrow our attentional filter, how it
recruits different brain regions to assess the costs and benefits
of performing a goal-directed task, and how it works with other
brain networks to facilitate exploitative or explorative behavior.

The LC-NE system is one of the primary brainstem
neuromodulatory systems that influences arousal (Sara and
Bouret, 2012). The locus coeruleus (LC), having broad afferent
and efferent connections, is responsible for almost all of the
norepinephrine (NE) activity in the neocortex, which regulates
the excitatory and inhibitory effects of postsynaptic neurons
associated with information selection and processing (Aston-
Jones and Cohen, 2005; Bouret and Sara, 2005; Sara and Bouret,
2012). Aston-Jones and Cohen (2005) argued that the LC-NE
optimizes reward-contingent behavior by modulating arousal
levels such that it either broadens or narrows our attentional
filter. The LC-NE either broadens attention in search for a more
rewarding task, or it narrows attention to prevent distractions.
The LC has two aspects to its firing rate, tonic and phasic.
Tonic firing refers to the baseline firing rate and is thought to
be indicative of one’s current arousal state, while phasic firing
refers to the changes in firing in response to task-relevant stimuli
presentation and is thought to reflect the degree of cognitive
processing (Murphy et al., 2011; Joshi and Gold, 2020). Tonic
firing rate, as it relates to performance on a task, resembles the
Yerkes-Dodson curve (Yerkes and Dodson, 1908). When the LC
exhibits a non-optimal tonic firing rate that is either too high or
too low, there are broader neuronal responses to sensory stimuli,
which in turn promotes distractibility as it blends the saliency
of task-relevant and task-irrelevant stimuli (Mittner et al., 2014,
2016). When the LC exhibits a moderate tonic firing rate, the
signal-to noise ratio of phasic responses become salient, which in
turn facilitates the discrimination between relevant and irrelevant
stimuli, thus promoting sustained attention toward the primary
task (Bouret and Sara, 2005).

The firing rate of the LC-NE system has been commonly
studied by observing changes in pupillometry due to the strong
correlations among LC-NE activity, pupillary dynamics, and
arousal state (Mittner et al., 2014, 2016; Hopstaken et al., 2015;
Lohani et al., 2019; McWilliams and Ward, 2021). For instance,
in a series of experiments, Unsworth and Robison (2018) found
that smaller pretrial pupil sizes (as an index of tonic firing) and
smaller task-evoked pupillary responses (as an index of phasic
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firing) were related to lower arousal, poorer performance, and
more task-unrelated thoughts. Similarly, Körber et al. (2015)
found that passive fatigue was induced when participants were
monitoring a driving simulator with automation capabilities that
controlled longitudinal and lateral steering, as indexed by a
continual overall decrease in pupil diameter, greater reports of
mind-wandering at the end of the monitoring task, and a general
trend of slower reaction times on an auditory oddball task.
Although the functional and anatomical mechanisms are not yet
fully understood [but see Joshi and Gold (2020), Murphy et al.
(2014)], previous research suggests that a task’s utility—or the
costs and benefits associated with performance on a task—may
dictate the firing rate of the LC.

The anterior cingulate cortex (ACC) and the orbitofrontal
cortex (OFC) project information regarding a task’s utility to
the LC-NE system (Aston-Jones and Cohen, 2005). As the costs
associated with a task increase—as evaluated by the ACC—the
LC exhibits high tonic firing for the search of alternative forms of
reward, and it promotes engagement in other tasks (e.g., mind-
wandering). On the other hand, as the benefits outweigh the
costs—as evaluated by the OFC—the LC exhibits moderate tonic
firing, which in turn helps prevent attention from being oriented
to task-irrelevant stimuli. The ACC and OFC, receiving inputs
from various somatosensory and limbic structures, evaluate a
task’s utility both in the short- and long-term.

During initial engagement of a goal-directed task,
reinforcement learning occurs to favor reward-contingent
behavior, and when the ACC detects non-conducive behavioral
deviations (e.g., lapses in attention) the prefrontal cortex is
recruited to exercise top-down control to calibrate behavior,
by way of increasing LC phasic activity, to maintain optimal
performance (Aston-Jones and Cohen, 2005; Sara and Bouret,
2012; Massar et al., 2016; Bier et al., 2019). As engagement in the
task continues, the costs associated with optimal performance
tend to increase, while the rewards associated with the task tend
to decrease due to increased satiety, exposure, or predictability of
the rewards, eventually resulting in increased LC tonic activity.

For instance, Massar et al. (2016) found that performance-
contingent rewards fostered better performance and longer
engagement in a vigilance task. Moreover, pretrial pupil size was
also greater for those who received rewards as well, suggesting
greater engagement in the task. Similarly, when drivers interacted
with a system that gamified driving and rewarded drivers for
good performance (e.g., degree of lateral steering control, hazard
avoidance, etc.) during a manual drive, subjective fatigue was
delayed, standard deviation of lane position and unintentional
lane crossings were reduced, drivers were less prone to accidents,
and there was better compliance with driving at the speed limit
(Bier et al., 2019). Rewards may be introduced to help rebalance a
task’s utility by fostering motivation and optimizing one’s arousal
state for the task at hand (Aston-Jones and Cohen, 2005; Boksem
and Tops, 2008). Some have even suggested that NE acts as a
“network resetting” (Bouret and Sara, 2005) or “circuit-breaking”
(Corbetta and Shulman, 2002) signal that reconfigures network
connectivity for the purpose of maximizing rewarding outcomes.

The LC-NE systemmay influence broad network connectivity
possibly due to its connections to the frontoparietal control

network (FPCN; Sara and Bouret, 2012). According to the global
workspace theory, the integration of various neural submodules
forms conscious experience and underlies the engagement in
various cognitive processes (Baars et al., 2003; Smallwood et al.,
2012a). The FPCN is thought to be responsible for housing a
“global workspace” that consolidates all cortical communication
and facilitates the activity of the most salient submodule. Because
of this, the FPCN plays a critical role in not only directing
attention, for instance, based on the most dominant submodule,
but also maintaining attention as well, be it externally or
internally oriented.

Within a vigilance context, two key networks that contribute
to the global workspace of the FPCN are the dorsal attention
network (DAN) and the default mode network (DMN; Dang
et al., 2012). When attention is oriented externally, the FPCN
couples with the DAN, while coupling with the DMN when
attention is directed internally (Spreng, 2012). The LC-NE may
be one of the primary neuromodulatory systems, alongside the
ventral tegmental area-dopamine system (VTA-DA), that dictates
which network the FPCN couples with by adjusting the gain of
neuronal activity (Dang et al., 2012; Ranjbar-Slamloo and Fazlali,
2020).

Neural gain signifies the specificity of functional connectivity
and a greater signal-to-noise ratio of strong neuronal
communication (Mittner et al., 2016). For instance, when
neural gain is low, broad functional connectivity can be
observed, with weaker connections becoming more active and
therefore competitive with stronger connections. This would
translate to greater distractibility and engagement in other tasks
(e.g., mind wandering). Conversely, during high neural gain,
functional connectivity becomes precise by suppressing weaker
connections, while stronger, task-relevant connections remain
dominant. While in a state of low arousal, tonic LC activity
tends to be high, which in turn reduces neural gain and allows
task-unrelated cortical activity (e.g., DMN) to influence the
global workspace of the FPCN to facilitate explorative behavior.
In contrast, while in a state of optimal arousal, phasic LC activity
tends to be high, which increases neural gain, and promotes
exploitative behavior by facilitating the coupling of the FPCN
and the DAN (Aston-Jones and Cohen, 2005; Bouret and Sara,
2005; Sara and Bouret, 2012; Mittner et al., 2016).

In sum, the LC-NE system is implicated in a wide range
of cognitive processes, such as attention, memory, mood,
motivation, perception, and arousal. This is likely due to its
broad afferent and efferent connections and the fact that it is the
primary source of NE in the neocortex (Aston-Jones and Cohen,
2005; Bouret and Sara, 2005; Sara and Bouret, 2012). The LC-NE,
receiving input from the ACC and OFC, plays a critical role in
optimizing task performance bymodulating arousal levels, which
in turn broadens or narrows our attentional filter for rewarding
outcomes. Within a vigilance context, it can also influence the
FPCN by adjusting the neural gain associated with environmental
stimuli, thereby facilitating the coupling between the DAN (task-
related) or the DMN (task-unrelated). When a driver is tasked
with monitoring the automation system, the understimulating
nature of the task may induce hypo-arousal by influencing the
firing rate of the LC-NE due to an imbalance of the costs for
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having to maintain vigilance (Körber et al., 2015). Additionally,
this imbalance may foster the activity of task-unrelated brain
networks and promote engagement in non-driving related tasks
such as mind-wandering (Bier et al., 2019). The LC-NE system is
a critical component in understanding the cause of low arousal,
or passive fatigue. Passive fatigue, however, only addresses one
aspect of fatigue; depleted cognitive resources, or active fatigue,
can address another.

PROCESSES UNDERLYING ACTIVE
FATIGUE

Active fatigue differentiates itself from passive fatigue by
examining fatigue as a function of cognitive load and time on
task (Warm et al., 1996; Grier et al., 2003; Szalma and Claypoole,
2019), as opposed to arousal (e.g., Scerbo, 1998; Hockey, 2011;
Langner and Eickhoff, 2013). Most of the explanation regarding
the link between active fatigue and its two components are
based upon “cognitive resources;” however, despite decades of
research it has yet to be objectively, or even collectively, defined
(Dehais et al., 2020). Below, the present authors build upon those
previous works by describing active fatigue from amore objective
perspective—as a function of long-term neuronal potentiation.

It is generally thought that the act of maintaining vigilance
over a prolonged period of time is very taxing on cognitive
resources (Warm et al., 1996). This idea intuitively makes sense,
given that some sort of “cost” is always associated with some
sort of activity in the real world (e.g., time, attention, money,
etc.). However, “cognitive resources” have remained obtuse and
no clear definition has been presented (Dehais et al., 2020). The
notion of some “cost” or resource requirement for any cognitive
activity, however, should not wholly be discarded. Specifically,
in the context of vigilance, a decrement could occur not due to
an over-expenditure of cognitive resources per se, but rather an
overaccumulation of synaptic load. First, however, it is important
to clarify the meaning of resource depletion by disentangling
correlates of brain activity from indicators of brain metabolism.

Brain activation refers to the changes in blood flow,
specifically the arterial oxygen concentration, as reflected by the
oxygen extraction fraction (OEF) when using positron emission
tomography (PET) or the blood-oxygen-level-dependent
(BOLD) signal when using functional magnetic resonance
imaging (fMRI). Brain metabolism, on the other hand, refers
to the oxidation of glucose, through aerobic glycolysis and
oxidative phosphorylation, to create adenosine triphosphate
(ATP; Raichle and Gusnard, 2002; Raichle and Mintun, 2006).
Simply put, the former refers to oxygen delivery, while the
latter refers to oxygen consumption. When researchers observe
“brain activity,” oxygen delivery is increased in a local region
of the brain, under the assumption that greater neuronal
activity occurred in that region; oxygen consumption. However,
although it does increase slightly, it does not increase to
the same degree (Raichle and Gusnard, 2002). Changes in
oxygen delivery in a specific region of the brain does not
necessarily entail meaningful changes in oxygen consumption,
or energy expenditure. In other words, brain activation and

brain metabolism are two distinct processes. They are related,
yet independent.

One of the assumptions underlying BOLD signals, for
instance, is that local blood-flow changes supply the necessary
ingredients (oxygen and glucose) to create ATP to fuel task-
induced brain activity. Raichle and Mintun (2006), however,
argued that this assumption is somewhat misguided, if not
wholly incorrect. They note that the genesis of this assumption
stems from research showing the relatively strong correlations
of single-unit recordings, multiunit recordings, and local field
potentials with changes in fMRI BOLD signals. However,
this only demonstrates a correlational relationship between
local blood-flow changes and neuronal activity - it does not
demonstrate a causal relationship. Moreover, single-unit and
multiunit recordings represent different aspects of neuronal
activity compared to local field potentials. Specifically, the former
refers to the spiking activity of neurons, or the output, while the
latter refers to the membrane currents of neurons, or the input.
Therefore, it is unclear why and how changes in local blood-
flow are related to neuronal activity. In addition, there is usually
a lag time of 4–6 s regarding task-induced changes in BOLD
signals. The brain, as Raichle and Mintun argued, would not
depend on such a slow process to provide the necessary moment-
to-moment prerequisites for brain activity. Instead, it would be
more efficient to extract more of the oxygen that is already
circulating in the blood and to use the glucose that is already
stored in the glycogen of astrocytes, suggesting that the brain does
not necessarily depend on increases in local blood-flow to fuel
brain activity.

Interestingly, there are no significant changes in whole-
brain blood flow due to the engagement of a goal-directed
task, with only negligible (≤5%) differences in local blood-flow
(Raichle and Gusnard, 2002). Moreover, the brain’s metabolism,
or energy budget, also remains strikingly constant as well, again
irrespective of engaging in a task or passively at rest, suggesting
that the traditional paradigm of resource depletion may not
be the most appropriate conceptualization of active fatigue.
When taking into account that the vast majority of the brain’s
metabolism is allocated toward maintaining proper excitatory
and inhibitory synaptic activity (Raichle and Mintun, 2006),
investigating synaptic processes, specifically its homeostasis,
could help illuminate the fatiguing nature of vigilance tasks.

Every animal—be it terrestrial, oceanic, or avian—engages
in sleep to regulate synaptic activity that took place during
wakefulness (Vyazovskiy and Harris, 2013). With prolonged
wakefulness, cognitive and physical deficits, and even death,
inevitably occur (Wang et al., 2011). The synaptic homeostasis
hypothesis (Tononi and Cirelli, 2006) can help explain the
rebalancing that takes place as a function of both wakefulness and
sleep, and it makes four claims regarding how the brain achieves
equilibrium: (1) synaptic potentiation occurs predominantly
during active wakefulness. During wakefulness, plastic changes,
specifically long-term potentiation, occur due to the presynaptic
firing and postsynaptic depolarization associated with a broad
range of neuronal activity. Evidence comes from the increases in
synaptic density, due to long-term potentiation, that are typically
found when animals are in stimulus-enriched environments.
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(2) Slow wave activity (SWA) regulates the homeostasis of
synaptic potentiation. Predominantly observed in non-rapid eye
movement (NREM) sleep, SWA are spontaneous oscillations
consisting of low frequency (<1Hz), high amplitude (>140 µv)
sequences of synchronized depolarized up-phases (On-periods)
and hyperpolarized down-phases (Off-periods; Van Someren
et al., 2011). Delta waves (1–4Hz) with amplitudes ranging
from 75 to 140 µv have also been thought to reflect slow wave
activity as well but with less cortical synchronization. A localized
concentration of SWA is commonly observed in a location-
dependentmanner based on the area of synaptic potentiation that
occurred during wake in both cortical and subcortical regions
(Vyazovskiy and Harris, 2013; Bernardi et al., 2015; Quercia et al.,
2018; Andrillon et al., 2019). (3) Slow wave activity facilitates
homeostasis primarily through synaptic downscaling. Synaptic
weight, or load, is accumulated onto neurons as a function of
use-dependent, long-term potentiation. Slow wave activity acts
to proportionally downscale, or decrease, the synaptic weight of
neurons engaged in long-term potentiation, thereby resetting the
net load accumulated during wake. Specifically, the magnitude of
SWA tends to correlate with how long one prolongs wakefulness
and exponentially decreases as one remains asleep (Vyazovskiy
et al., 2011). Finally, (4) synaptic downscaling is one of the
ultimate causes of cognitive restoration. Evidence for this claim
comes from the uncompromising, and intrusive, occurrences
of SWA during prolonged wakefulness, such as micro-sleeps
(Dinges, 1995). Moreover, irregularities in SWA have been
connected to various mental disorders, such as depression, and
sleep-related disorders, such as insomnia (Tononi and Cirelli,
2006). In fact, Vyazovskiy and Harris (2013) suggest not only
does the resetting of neuronal firing rates plays a critical role
in cognitive restoration, but that SWA may be a self-defense
countermeasure that acts as cellular maintenance to prevent
unnecessary, long-term damage (e.g., excessive oxidative stress
and damage to DNA, proteins, and lipids). For instance, in
the face of cognitively demanding tasks, neurons will maintain
high synaptic activity for optimal performance until neuronal
fatigue sets in, as indicated by periods of neuronal silencing. As
neurons continue to fatigue, SWA becomes more intrusive in
terms of frequency and spatial location, translating into greater
decrements in performance (Van Someren et al., 2011; Andrillon
et al., 2019).

To summarize, active fatigue may not be best described as
an expenditure of finite cognitive resources per se, because the
brain’s energy budget remains relatively constant, irrespective
of task engagement (Raichle and Gusnard, 2002; Raichle and
Mintun, 2006). Instead, we propose that active fatigue may
be more accurately thought of as long-term potentiation of
neurons inducing a high synaptic load (Tononi and Cirelli,
2006). Evidence for this stems from the observation that the
vast majority of the brain’s energy budget is allocated toward
regulating excitatory and inhibitory synaptic activity. When
neuronal fatigue occurs, the brain will engage in sleep-related
processes, such as SWA, to compensate for high synaptic load
(Vyazovskiy and Harris, 2013). For instance, Bernardi et al.
(2015) demonstrated indicators of SWA in visuomotor and
executive functioning areas when participants were controlling

a driving simulator for a prolonged time, and the presence
of SWA was associated with poorer performance. Sleep-related
processes during cognitively demanding tasks could result in
not only poorer performance but also promote engagement in
unrelated tasks, such as mind-wandering (Andrillon et al., 2019).
Alternating SWA in different neural locations (e.g., DAN vs.
DMN), for example, may represent a major source of naturally
occurring cognitive restoration and homeostasis.

CIRCADIAN PROCESSES SUBSERVE
PASSIVE AND ACTIVE FATIGUE

Independent of task characteristics, arousal can also fluctuate
based on our circadian rhythm (Carrier and Monk, 2000; Aston-
Jones et al., 2001). Our circadian rhythm, or clock system, is
primarily controlled by a central clock—the suprachiasmatic
nucleus of the hypothalamus (SCN)—with influences coming
from a myriad of peripheral clocks found in all our tissue
(Nicolaides et al., 2014). The SCN plays a significant role in
our sleep-wake cycle by increasing alertness through arousal
regulation (Aston-Jones et al., 2001). Specifically, circadian
variations in arousal are influenced by a circuit consisting of the
SCN, the dorsomedial nucleus of the hypothalamus (DMH), and
the locus coeruleus (LC). Light/dark cues from the environment
modulate SCN activity. The SCN sends projections to the DMH,
which acts a relay for the LC, and the LC, in turn, elicits a
NE response, thereby influencing arousal. The SCN-DMH-LC
circuit may partially explain the ultradian time-of-day variations
found in a variety of cognitive processes, such as fatigue,
alertness, and memory (Carrier and Monk, 2000; Van Dongen
and Dinges, 2000; Aston-Jones et al., 2007). Moreover, NE in
blood plasma also exhibits a circadian rhythm with numerous
ultradian peaks throughout wakefulness (Sowers and Vlachakis,
1984). Interestingly, these NE rhythms also closely align with
time-of-day variations found in mind-wandering rates (Smith
et al., 2018), subjective alertness, arousal ratings, and driving
performance (Lenné et al., 1997). Not only do circadian processes
independently influence passive fatigue (Carrier andMonk, 2000;
Aston-Jones et al., 2001), they can also independently influence
active fatigue as well (Bernardi et al., 2015). Before describing
these influences, it is important to acknowledge the blurred
boundaries between wakefulness and sleep.

Wakefulness and sleep are generally thought of as two distinct
states, but electrophysiological evidence indicates they can occur
simultaneously. Wakefulness can generally be thought of as a
state in which most of the brain is active, while in a sleep state,
most of the brain is quiescent. But, cortical and subcortical
regions can briefly engage in sleep-related processes while other
regions remain “awake,” referred to as local sleep (Vyazovskiy
and Harris, 2013). Local sleep is defined as the “transient,
regional neurophysiological state showing a mixture of features
characteristic of (i) wakefulness and sleep, (ii) different sleep
stages (NREM and REM sleep), or (iii) different sleep depths
(light or deep sleep)” (Andrillon et al., 2019, p. 2). One indicator
of local sleep is the presence of high-amplitude, slow oscillations
(i.e., SWA). As previously described, slow oscillations are a series
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of synchronized neuronal activity (On-periods) and neuronal
silencing (Off-periods) among different cortical areas that can
occur locally in terms of both time and space (Vyazovskiy et al.,
2011).

The occurrence of local sleep, as indexed by SWA, is
dependent on two factors: time spent awake and use-dependent
activity (Vyazovskiy et al., 2011; Bernardi et al., 2015; Quercia
et al., 2018; Andrillon et al., 2019). In terms of time, local
sleep tends to be more frequent as sleep pressure, or the
need to sleep, builds. Conversely, local sleep tends to be
less frequent the longer one remains in sleep (Van Someren
et al., 2011). For instance, local sleep rarely occurs in the first
few hours after wake, but gradually appears as one remains
awake (Vyazovskiy et al., 2011). Microsleeps are an extreme
example of local sleep occurring during wakefulness (Dinges,
1995; Andrillon et al., 2019) and have been associated with
poorer driving (Boyle et al., 2008) and increased accident rates
(Sirois et al., 2009). In NREM sleep, SWA tends to be most
prominent in frontal and parietal regions (Vyazovskiy et al.,
2011). Though both areas generally tend to exhibit synchronized
SWA concurrently (global), they can occasionally—particularly
during wakefulness—occur independently (local) as well. As the
number of occurrences of SWA increases, more areas of the
brain engage in SWA (Andrillon et al., 2019). Drastic changes in
various neuromodulators could also be indicators of local sleep
as well.

From a circadian perspective, we exhibit three vigilance states:
wakefulness, NREM sleep, and REM sleep (Aston-Jones et al.,
2001, 2007). These three states are distinguishable based on
various electrophysiological, physiological, and neurochemical
metrics. During wakefulness, high-frequency, low-amplitude
activities are common, specifically in the gamma (30–60Hz) and
beta (20–30Hz) frequencies. We also generally have higher heart
rates and heart rate variability compared to the other vigilance
states. During NREM sleep, low-frequency, high-amplitude
activities become common, such as frequent occurrences of
sleep spindles (12–15Hz), delta waves (1–4Hz), and slow
waves (<1Hz). Heart rate and brain temperature also decrease
during this NREM state as well, compared to wakefulness.
Finally, in REM sleep, we exhibit similar brain patterns as
wakefulness (high-frequency, low-amplitude signals). In fact,
REM sleep is also referred to as paradoxical sleep due to
its striking resemblance to wakefulness. It is impossible to
distinguish REM sleep from wakefulness when only observing
one’s electrophysiology. The differences between REM sleep and
wakefulness can be found when examining one’s physiology,
specifically transient paralysis in the muscles accompanied by
rapid changes in body temperature during REM sleep. There
are neurochemical differences between the three vigilance states.
Significant changes in tonic firing of NE occur such that
the firing rate tends to be highest during wakefulness, then
decreases dramatically during NREM sleep, and becomes almost
completely dormant during REM sleep. Specifically, changes in
NE occur prior to the transitions between vigilance states (Aston-
Jones et al., 2007).

To summarize, passive and active fatigue are distinct
constructs, yet they are related in that they independently operate

under a circadian rhythm (Carrier and Monk, 2000; Aston-Jones
et al., 2001). The SCN-DMH-LC circuit regulates our arousal
based on light/dark cues from the environment, and because
of this, arousal fluctuates throughout the day due to our sleep-
wake cycle (Aston-Jones et al., 2001). Sleep and wakefulness,
however, are not mutually exclusive states. Specifically, cortical
regions engage in sleep-related processes (i.e., local sleep) based
on the degree of neuronal activity that has occurred in that region
during wakefulness (Quercia et al., 2018; Andrillon et al., 2019).
In this way, circadian processes sit at the junction between passive
and active fatigue, and this triumvirate could explain how and
why fatigue occurs.

CONCLUSION

Driver distraction and drowsiness, or fatigue more broadly, have
continued to be some of the leading causes for motor vehicle
crashes, and these crashes have continued to be one of the
leading causes of death in the United States. Understanding
the mechanisms of cause-and-effects for why fatigue occurs is
critical to improving road safety. Fatigue is a multidimensional
construct that may have at least three components: passive,
active, and sleep-related fatigue. Although these components
have different causes, they are interrelated in that they influence
each other. Passive fatigue tends to occur due to various
exogenous characteristics inducing hypo-arousal and it can
promote engagement in non-driving related tasks to alleviate
boredom. Active fatigue occurs as a function of long-term
neuronal potentiation in which specific brain regions will
engage in sleep-related processes to avoid unnecessary long-
term damage due to prolonged activity. Despite these disparate
processes, they are both influenced by our circadian rhythm.
In other words, time-of-day moderates how passive and active
fatigue occurs.

Finally, we would be remiss for not also mentioning
alternative theories, outside of the under- and overload theories
described above, whose shoulders’ this article stands upon. Two,
in particular, warrant specific mentioning. First is Hockey’s
(2011) motivational control theory that provides a compelling
case for the dynamic interplay between fatigue and recovery, and
second are the works of Hancock (2013, 2017) who elegantly
described the weaknesses of previous theories and discusses
the impact those weaknesses have had in our understanding of
vigilance. The interested reader is highly encouraged to read
these original works to challenge their assumptions regarding the
latent-variable construct of fatigue.

It is our hope that this review increases general understanding
of the specific processes that subserve different aspects of fatigue.
And further, that understanding the mechanisms underlying
passive and active fatigue, and the influence of circadian rhythms
on each will facilitate the development of effective driver fatigue
countermeasures for each type.
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The effects of cognitive load on driver behavior and traffic safety are unclear and in

need of further investigation. Reliable measures of cognitive load for use in research

and, subsequently, in the development and implementation of driver monitoring systems

are therefore sought. Physiological measures are of interest since they can provide

continuous recordings of driver state. Currently, however, a few issues related to their

use in this context are not usually taken into consideration, despite being well-known.

First, cognitive load is a multidimensional construct consisting of many mental responses

(cognitive load components) to added task demand. Yet, researchers treat it as

unidimensional. Second, cognitive load does not occur in isolation; rather, it is part of a

complex response to task demands in a specific operational setting. Third, physiological

measures typically correlate with more than one mental state, limiting the inferences

that can be made from them individually. We suggest that acknowledging these issues

and studying multiple mental responses using multiple physiological measures and

independent variables will lead to greatly improved measurability of cognitive load. To

demonstrate the potential of this approach, we used data from a driving simulator study

in which a number of physiological measures (heart rate, heart rate variability, breathing

rate, skin conductance, pupil diameter, eye blink rate, eye blink duration, EEG alpha

power, and EEG theta power) were analyzed. Participants performed a cognitively loading

n-back task at two levels of difficulty while driving through three different traffic scenarios,

each repeated four times. Cognitive load components and other coinciding mental

responses were assessed by considering response patterns of multiple physiological

measures in relation to multiple independent variables. With this approach, the construct

validity of cognitive load is improved, which is important for interpreting results accurately.

Also, the use of multiple measures and independent variables makes the measurements

(when analyzed jointly) more diagnostic—that is, better able to distinguish between

different cognitive load components. This in turn improves the overall external validity.

With more detailed, diagnostic, and valid measures of cognitive load, the effects of

cognitive load on traffic safety can be better understood, and hence possibly mitigated.

Keywords: physiological measures, cognitive load, driver distraction, psychophysiology, construct validity,

measurability
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INTRODUCTION

There are many driver states that can affect driving performance,
and their contribution to risk increase will remain a central
traffic safety study topic until all vehicles are fully automated.
For some of these states, such as visual distraction (eyes off
road) and drowsiness, the increase in risk is well-documented
(Horne and Reyner, 1999; Caird et al., 2014; Victor et al., 2015).
For some other states, the contribution to risk increase is less
clear. One such state where the effects on driving performance
are debated and further studies are needed is high cognitive
load, when drivers perform non-visual, cognitively demanding
activities while driving (Wijayaratna et al., 2019). (Note the
difference between cognitive demand, which is something that is
posed on the driver, and cognitive load, which is the resulting
mental response.) It is well-established that, during increased
cognitive load, response times to repeated stimuli and artificial
tasks increase (Engström et al., 2010; Stojmenova and Sodnik,
2018). In addition, processing of visual information decreases

(Strayer et al., 2006) and the gaze becomes more concentrated
on the road ahead (Reimer et al., 2012). These findings have
led to concerns about missed information and increased brake
response times in critical situations (Strayer and Fisher, 2016).
However, response times in unexpected critical lead-vehicle
braking scenarios appear unaffected by cognitive load (Nilsson
et al., 2018) and, in fact, a number of naturalistic driving studies
have not found increased crash or near-crash risks for drivers
talking on the phone (e.g., Fitch et al., 2013; Victor et al., 2015). It
thus still remains to be sorted out when and how cognitive load
poses a safety risk (see Engström et al., 2017, and Wijayaratna
et al., 2019, for recent reviews and theories).

In order to study the safety impact of cognitive load, we need
reliable measures that make it possible to conduct research in
more naturalistic settings. The level of cognitive load can then

be assessed from the measures instead of being strictly controlled
by experimental manipulations. Furthermore, if future studies
determine that cognitive load does indeed contribute to elevated
risk in certain traffic situations, reliable measures will also be

needed so that, for example, Advanced Driver Assistance Systems
can detect cognitive load during driving andmitigate its effects by
adapting accordingly.

A large number of studies have explored the feasibility of
using physiological measures to assess cognitive load (Tao et al.,
2019). Advantages of physiological measures are that they can
provide continuous recordings of driver states without altering
or disrupting the driving task. They can thus complement
subjective and behavioral measures (which can also be very
informative, but are not the focus of this article) to improve
driver state assessments, or be used in situations where subjective
or behavioral measures are not sensitive or appropriate (Lohani
et al., 2019).

In empirical driving studies today, the level of cognitive
load is usually varied systematically by having the participants
perform cognitively demanding tasks (from here on referred to
as cognitive tasks) while driving. It can, for example, be working
memory loading tasks (Heine et al., 2017) or mental arithmetic
tasks (Faure et al., 2016). The outcome (i.e., the physiological

response) is then typically interpreted as reflecting the level of
cognitive load. These studies might conclude, for example, that
cognitive load increases the heart rate (Mehler et al., 2012) or the
pupil diameter (Niezgoda et al., 2015).

This line of research has provided a great deal of
knowledge regarding physiological responses to cognitive
tasks. Nevertheless, there are a few well-known, yet commonly
disregarded, issues that risk leading to incorrect inferences and
generalizations if overlooked. In this article, we wish to bring
forward these “elephants in the room,” as we believe that the
state of knowledge today allows greater consideration to be given
to them.

Cognitive load (also often referred to as mental workload)
is commonly defined as the amount of cognitive resources
used to meet task demands (Engström et al., 2013; but see
Van Acker et al., 2018, for a review and concept analysis).
Cognitive resources enable cognitive control, which comprises
neurocognitive functions resulting in effortful, conscious,
and non-automatized actions (Engström et al., 2013). These
functions include, for example, attention, workingmemory, error
monitoring, and inhibitory control (Helfrich and Knight, 2016).
Further, cognitive control requires cortical arousal (Grueschow
et al., 2020), and can be enhanced (or degraded) by emotional
responses (Critchley et al., 2013).

The first issue is thus that cognitive load consists of numerous
cognitive and emotional responses that enable cognitive control
during increased cognitive demand. (Cognitive and emotional
responses will hereafter be jointly referred to as mental
responses.) This means that cognitive load is a multidimensional
construct and can take many different forms (Matthews et al.,
2015). Yet, researchers almost always treat it as unidimensional
when attempting to measure it.

The second issue is that task-induced cognitive load does not
occur in isolation. Rather, it is part of a complex adaptation to
task demands within a specific operational setting (Young et al.,
2015). This issue can be best explained in two parts. First, factors
other than cognitive task demand may also cause cognitive
load and other mental responses, or alter the mental responses
caused by the task demand (Van Acker et al., 2018). Such
factors can be situation- or human-specific. Situation-specific
factors characterize the context in which the task occurs and
can, for example, depend on the traffic environment complexity
(Törnros and Bolling, 2006; Di Flumeri et al., 2018), time pressure
(Loeches De La Fuente et al., 2019), and how many times the
task has been repeated (Belyusar et al., 2015). Human-specific
factors include the driver’s personality (Grassmann et al., 2017),
experience (Paxion et al., 2014), and current mental state, such as
his/her emotional state (Schoofs et al., 2008) and level of fatigue
(Tanaka et al., 2009). The cognitive task and the other influencing
factors together affect the driver’s mental state and, consequently,
his/her physiological responses and behaviors (Faure et al.,
2016; Dehais et al., 2020). Second, not all mental responses to
changes in cognitive demand are cognitive load components
(i.e., mental responses included in the cognitive load construct).
Unfortunately, it is often difficult to draw a line between those
mental responses that contribute to cognitive control—and are
thus to be considered cognitive load components—and those that
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do not. Mental fatigue is an example of a mental response to
(prolonged) cognitive demand that is not part of cognitive load.
Stress, on the other hand, is an example of a mental response that
is difficult to categorize, since it is beneficial for cognitive control
up to a certain limit, after which it has the opposite effect (Dehais
et al., 2020).

Lastly, the third issue is that all physiological measures (to the
best of our knowledge) correlate with multiple mental responses.
These one-to-many relationships limit the inferences that can be
made from the individual measures (Richter and Slade, 2017).
That is, although many physiological measures correlate with
cognitive load, they cannot always be considered measures of
cognitive load.

Also, correlation analyses show that physiological measures
that correlate with cognitive load are mostly independent of
each other, implying that different physiological measures reflect
different dimensions in the response to altered cognitive demand
(Matthews et al., 2015). There is thus not one physiological
response to cognitive load; instead, the physiological responses
depend on the mental responses occurring in the specific
situation at hand. Multiple physiological measures together can
therefore provide us with a more comprehensive idea of the
multidimensional cognitive load.

In summary, cognitive load is a complex response to cognitive
demands, consisting of multiple mental responses that enable
cognitive control. In empirical studies where the level of cognitive
demand is altered, many different mental responses occur,
depending on the cognitive task, the situation, and the individual.
The different mental responses (including the different cognitive
load components) have different physiological correlates, as
evidenced by the lack of correlation between the physiological
measures. Cognitive load can thus be neither measured, nor
understood, as a unidimensional and isolated construct, and
treating it as unidimensional entails a clear risk of making
incorrect inferences and generalizations.

We will suggest that acknowledging these three issues is
key to improving the measurability of cognitive load. Here
we consider three aspects of measurability: construct validity,
external validity, and diagnosticity, because of their relevance
in regard to the frequently overlooked issues described above.
Construct validity refers to how well a measure actually measures
what it claims to measure and encompasses both the measures
and the theory behind the construct (Strauss and Smith, 2009).
As noted by Strauss and Smith (2009), unidimensional measures
of multidimensional constructs are empirically and theoretically
imprecise if the construct’s components can vary independently,
as is the case with cognitive load. External validity addresses
the extent to which results from a study apply to other settings
(Campbell and Stanley, 1963). Since traffic safety is only relevant
in real life, while research on cognitive load is most often
conducted in artificial environments, understanding the external
validity of measures of cognitive load is highly relevant and
deserves more attention than it is usually given (Jiménez-Buedo
and Russo, 2021). Diagnosticity addresses a measure’s ability
to differentiate between different dimensions in the construct
it measures (O’Donnell and Eggemeier, 1986), in this case the
cognitive load components.

When designing experiments to look for physiological
measures of cognitive load, one should bear in mind that
the measures are typically sensitive to variations in cognitive
load only within certain levels and compositions of load (de
Waard, 1996), which vary for different measures and contexts.
To improve the chances of finding useful measures, it is thus
appropriate to look for physiological measures of cognitive load
in settings where there is also an interest in understanding, and
possibly mitigating, effects of cognitive load.

The cognitive control hypothesis by Engström et al. (2017)
offers a plausible explanation as to how cognitive load affects
driver behavior and traffic safety. It states that “[cognitive load]
selectively impairs driving subtasks that rely on cognitive control
but leaves automatic performance unaffected” (Engström et al.,
2017, p. 736). Effects of cognitive load are thus relevant when
exploring situations where cognitive control is required for a safe
outcome; that is, in situations where drivers cannot rely solely
on automated behaviors, but need to adapt their behavior using
cognitive control (Engström et al., 2017). For example, cognitive
load has been found to impair drivers’ ability to adapt their
behavior to traffic signs (Baumann et al., 2008) and downstream
traffic events (Muttart et al., 2007).

On the other hand, automatized driver behaviors should
not deteriorate under cognitive load, according to the cognitive
control hypothesis (Engström et al., 2017). These behaviors
are consistently mapped (i.e., a certain stimulus is consistently
followed by the same response) and extensively practiced;
one example is normal lane-keeping (Engström et al., 2017).
However, if lane-keeping is made more difficult, it can be
expected to require cognitive control and thus deteriorate under
cognitive load (Engström et al., 2017). In line with this theory,
Medeiros-Ward et al. (2014) found that when driving is made
less predictable by adding wind gusts, cognitive load led to
deteriorated lane-keeping. In contrast, He et al. (2014) found that
cognitive load improved lane-keeping also during unpredictable
wind gusts. These conflicting results call for further investigation.

As previously mentioned, a driver’s mental state, including
the loading on different cognitive load components, depends not
only on the cognitive task but also on situation- and human-
specific factors, one of which is duration. Drivers’ physiological
responses, behaviors, and mental states may be altered both by
prolonged periods of high cognitive demand, and by underload
during long-lasting tasks posing only a very low level of
cognitive demand, such as simple driving (Saxby et al., 2013;
Matthews et al., 2019). Desmond and Hancock (2001) named
the two conditions active fatigue and passive fatigue, respectively.
Although both fatigue conditions can have negative effects
on task performance (Saxby et al., 2013), these effects result
from different (and yet not well-understood) neurocognitive
mechanisms (Berberian et al., 2017; Hu and Lodewijks, 2020)
and thus require different countermeasures (Dehais et al.,
2020).

Another situational factor is repetition. In experimental
driving studies, tasks, and traffic scenarios are typically repeated,
to increase the number of data points to improve statistical
stability (Engström et al., 2010). But repeating the same cognitive
tasks and traffic scenarios can lead to learning effects, which
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reduce the level of cognitive load and may alter its composition
(Borghini et al., 2016).

Aim and Approach
The aim of this study is to demonstrate and exemplify how the
measurability of cognitive load can be improved by studying
multiplemental responses, usingmultiple physiologicalmeasures
and independent variables. Changes in mental state are to be
assessed based on drivers’ physiological responses in relation
to three independent variables, namely cognitive task demand,
repetition, and traffic scenario. Five analysis questions have
been defined:

Q1) How does cognitive task demand affect
physiological measures?

Q2) How does repetition affect physiological measures?
Q3) Do the effects of repetition differ when the participant

is just driving (baseline) compared to when also doing a
cognitive task?

Q4) How do different traffic scenarios affect
physiological measures?

Q5) Do the effects of traffic scenario differ when the participant
is just driving (baseline) compared to when also doing a
cognitive task?

Interpretations about the drivers’ mental responses are to be
made from answers to these questions in light of the three
issues described; (1) cognitive load consists of multiple mental
responses, (2) cognitive load does not occur in isolation, and (3)
physiological measures correlate with multiple mental responses.
The interpretations are to be based on state-of-the-art literature
on physiological measures, their mental state correlations, and
their neurological underpinnings. While some mental responses
are clear cognitive load components, others are relevant because
they affect the same physiological measures and could possibly
affect the responses to the cognitive demand (e.g., Do et al., 2021).

To pursue this aim, a driving simulator study was conducted
in which physiological measures were collected while cognitive
task demand was manipulated with a working-memory loading
n-back task at two levels of difficulty. The simulated drive
consisted of a rural road with three traffic scenarios repeated
four times each.When driving through these traffic scenarios, the
participants were either just driving (baseline condition), or were
concurrently performing the n-back task.

The following section is an overview of the physiological
measures that were studied, to facilitate a nuanced discussion on
the physiological responses observed in this study.

THEORY

Our bodily functions, and thus physiological responses, are
controlled by the endocrine (i.e., hormonal) system and the
more rapid nervous system (Tortora and Derrickson, 2007).
The nervous system is divided into the central nervous system
(CNS), consisting of the brain and spinal cord, and the peripheral
nervous system (PNS), which connects the CNS to the rest
of the body. Within the PNS, the somatic nervous system
controls voluntary movements, while the autonomic nervous

system (ANS) exerts involuntary, and often unconscious, control
over smooth muscles, cardiac muscles, and glands (Tortora and
Derrickson, 2007). The ANS is divided into the sympathetic
and parasympathetic nervous systems. In general, sympathetic
activation supports emergency reactions (the “fight-or-flight”
response), while parasympathetic activation supports activities
that occur when the body is at rest (“rest-and-digest” activities)
(Tortora and Derrickson, 2007). The two systems can be co-
active, reciprocally active, or independently active (Billman,
2013), and different parts of them can be activated separately
(Benarroch, 2011). Several interconnected areas in the CNS
integrate sensory information with emotional and cognitive
processing, control the sympathetic and parasympathetic activity
to maintain homeostasis, and facilitate cognitive functions and
behavioral responses (Benarroch, 2011). Activity in different
parts of the CNS and PNS can be observed through a variety of
physiological measures.

EEG Alpha and Theta Power
Electroencephalography (EEG) is the recording of the electrical
activity in the brain’s outer cortex. With spectral analysis, the
amount of activity (power) of different frequencies within the
EEG can be studied. Increased power can be caused by repeated
cycles of activation or an accumulation of transient activations
(Jones, 2016). The power spectrum is typically split into the
frequency bands delta (1–3Hz), theta (4–7Hz), alpha (8–12Hz),
beta (15–30Hz), and gamma (30–100Hz), although the precise
frequency ranges differ between studies (Choi and Kim, 2018).
The power in a certain frequency band can be studied either as
absolute power or as relative power (absolute power divided by
total power) (Choi and Kim, 2018). The two bands most clearly
associated with cognitive load are theta and alpha.

Increases in theta power over mid-frontal cortex are
frequently related to an increase in cognitive load (Cavanagh
and Frank, 2014). But theta power increases also during fatigue
caused by either prolonged cognitive performance (Clayton et al.,
2015; Tran et al., 2020) or sleepiness (Marzano et al., 2007). In
addition, surprising events give rise to transient responses within
the theta frequencies (Cavanagh and Frank, 2014). The function
of theta activity is not known with certainty, but it seems to
reflect a need for cognitive control (Cavanagh and Frank, 2014;
Cavanagh and Shackman, 2015). The need can be caused by, for
example, a cognitively demanding task or a mismatch between
the intended and actual level of attention—due to depleted
cognitive resources, as in the case of fatigue (Clayton et al., 2015).

During task execution, alpha power generally increases in
task-irrelevant sensory areas in the brain and decreases in
task-relevant sensory areas (Pfurtscheller et al., 1996). During
cognitive tasks, decrements in alpha power can be spread over
several scalp areas (Borghini et al., 2014). Alpha power increase
during mind wandering (Compton et al., 2019) and mental
fatigue (Borghini et al., 2014). Previously, alpha activity was
thought to represent an “idling” of the brain (Pfurtscheller et al.,
1996), but theories today attribute it more functions (Halgren
et al., 2019). For example, Sadaghiani and Kleinschmidt (2016)
suggest that spatially widespread alpha activity contributes to
tonic (i.e., slow-changing) alertness, while locally suppressed
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alpha activity contributes to selective attention by increasing
activity and information processing in the area. The alpha
band actually consists of several sub-bands, with overlapping
frequencies, which respond differently to different tasks and
activities (Barzegaran et al., 2017; Benwell et al., 2019).

In driving studies, cognitive task execution have led to both
increased theta (frontal) and alpha (frontal, as well as more
widespread) power (Sonnleitner et al., 2012; Almahasneh et al.,
2014; Wang et al., 2018; Zokaei et al., 2020). During increased
driving demand, alpha power has been found to decrease
(Wascher et al., 2018; Abd Rahman et al., 2020), while results on
theta are mixed (Wascher et al., 2018; Abd Rahman et al., 2020;
Diaz-Piedra et al., 2020). Alpha and theta power both tend to
increase with driver sleepiness (Simon et al., 2011; Perrier et al.,
2016), although not always significantly (Ahlström et al., 2021).
The effects of driving time on both bands are mixed (Perrier et al.,
2016; Wascher et al., 2018; Ahlström et al., 2021). Noteworthy
is that the effects of various activities or conditions can differ,
depending on whether absolute or relative power measures are
used (Wascher et al., 2018).

Pupil Diameter
The pupil reacts to the amount of light entering the eye by
changing its size (Joshi and Gold, 2020). Additionally, cognitive
and emotional states modulate the pupil size (Joshi and Gold,
2020). The pupil diameter (PD) is regulated by the sphincter
muscle, which is under parasympathetic control and causes
pupil constriction, and the weaker dilatory pupillary muscle,
which is under sympathetic control and causes pupil dilation
(Larsen and Waters, 2018). A brain area highly involved in the
control the pupil size is the locus coeruleus (LC) (Joshi and
Gold, 2020); the brain’s primary source of the arousal-promoting
neurotransmitter norepinephrine (NE) (Samuels and Szabadi,
2008). The LC-NE system plays a crucial role in cognitive
processes and task performance and its activity is closely reflected
by the PD (Aston-Jones and Cohen, 2005).

Pupillary responses can be studied as phasic responses and
tonic levels. Phasic responses are rapid transient dilations which
occur spontaneously or in response to an external stimulus (or to
the lack of an expected stimulus) (Joshi and Gold, 2020). Tonic
levels are studied by measuring averaged PDs, during either
baseline or task conditions. A small PD indicates low vigilance
or sleepiness (Zénon, 2019), while a large PD reflects high arousal
(Aston-Jones and Cohen, 2005) or high levels of cognitive activity
(Zénon, 2019). During task execution, a large PD indicates
greater effort and often correlates with good performance (van
der Wel and van Steenbergen, 2018).

Numerous driving simulator studies have shown increased PD
during cognitively (Hammel et al., 2002; Niezgoda et al., 2015;
Cegovnik et al., 2018; He et al., 2019; Peruzzini et al., 2019)
and visually (Benedetto et al., 2011) demanding secondary tasks,
psychological stress (Pedrotti et al., 2014), and time pressure
(Rendon-Velez et al., 2016), as well as during increased driving
demand (Peruzzini et al., 2019; Xie et al., 2020). As task demands
increase, the PD typically shows a stepwise increase before it
plateaus or decreases again at high load levels when performance
can no longer be maintained (van der Wel and van Steenbergen,

2018). The plateau and decrease are likely due to a decrement in
motivation and effort (van der Wel and van Steenbergen, 2018).

Few studies have explored the effects of secondary tasks on
pupil diameter in real driving. Because the pupil is very sensitive
to lighting variations, task effects risk being masked in real-life
environments with fluctuating light levels. Nonetheless, Nunes
and Recarte (2002) and Recarte and Nunes (2000) found that
the PD increased during the execution of cognitive tasks on
real roads, except during simple conversation tasks (Nunes and
Recarte, 2002). Further, Ahlström et al. (2021) found a decrease
in PD with increased distance driven by sleep-deprived drivers
at nighttime.

Eye Blink Rate and Duration
Eye blinks are essential for lubricating the eyes, but characteristics
such as their frequency and timing depend on cognitive and
emotional factors as well (Cruz et al., 2011). The eye blink rate
(EBR) is positively related to the level of the neurotransmitter
dopamine in the brain (Eckstein et al., 2017), although the
precise relationship is unknown (Jongkees and Colzato, 2016;
Sescousse et al., 2018). Dopamine affects several brain functions,
including cognitive control, motivation, and learning (Jongkees
and Colzato, 2016). Levels of dopamine that are too low or
too high, reflected in low or high EBR, typically mean worse
performance (Jongkees and Colzato, 2016; Eckstein et al., 2017)
due to depressed prefrontal cortex activation (Dehais et al., 2020).

Brain activity studies have suggested that spontaneous eye
blinks provide brief moments of attentional disengagement from
an external stimulus in favor of internal processing (Nakano et al.,
2013). Blinks occur less frequently during visually demanding
tasks, probably to reduce the risk of missing relevant information
(Recarte et al., 2008). This reduction in frequency has been
demonstrated in laboratory studies (Recarte et al., 2008; Cardona
et al., 2011) and in driving studies investigating increased driving
demand (Wiberg et al., 2015; Faure et al., 2016; Lobjois et al.,
2021). In driving studies applying visually demanding secondary
tasks, the effect has not reached significance (Liang and Lee, 2010;
Benedetto et al., 2011). Unfortunately, because large saccades
(quick movements of both eyes) are often accompanied by blinks
(Fogarty and Stern, 1989), comparing EBR between different
traffic environments or tasks with different glance behaviors can
be problematic (Cardona and Quevedo, 2014).

During cognitive tasks, the EBR increases both in laboratory
(Recarte et al., 2008; Magliacano et al., 2020) and driving studies
(Nunes and Recarte, 2002; Liang and Lee, 2010; Niezgoda et al.,
2015; Faure et al., 2016; Cegovnik et al., 2018; He et al., 2019;
Chihara et al., 2020). Although these results are highly consistent,
EBR differences between levels of cognitive load are typically
small and rarely significant.

The effects of increased visual and cognitive demands on
eye blink duration (EBD) are less explored and less consistent.
Simulator studies have not found significant effects of either
traffic complexity (Faure et al., 2016) or cognitively (Faure et al.,
2016) or visually (Benedetto et al., 2011) demanding secondary
tasks on EBD. However, studies in real traffic have demonstrated
shorter EBDs in drivers compared to their passengers (Takeda
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et al., 2016), as well as during driving in more demanding traffic
situations (Wiberg et al., 2015).

During increased driver sleepiness, EBD increase consistently
(Ahlström et al., 2018; Cori et al., 2019). The studies are fewer
and results ambiguous regarding the effects of driver sleepiness
on EBR (Cori et al., 2019). On the contrary, during increased
fatigue due to prolonged task execution, the pattern is reversed:
studies consistently show increased EBR while the effects on EBD
are mixed (Bafna and Hansen, 2021).

Heart Rate and Heart Rate Variability
The heart is regulated through both the sympathetic and the
parasympathetic nervous systems. Sympathetic activity causes
the heart to beat faster and stronger, while parasympathetic
activity decelerates the heart rate (HR) (Tortora and
Derrickson, 2007). The systems can be activated individually
or simultaneously and in the same or opposite directions, but
parasympathetic activity is faster and stronger than sympathetic
activity (Billman, 2013). A healthy heart has a constantly
fluctuating HR (Park and Thayer, 2014), measured as heart rate
variability (HRV). The respiratory cycle has a major influence on
HRV, as inhalations accelerate the heart and exhalations slow it
down (Quintana and Heathers, 2014).

Cardiac activity is most often described by HR andHRV. HRV
is an umbrella term for different measures of the fluctuations
in the time intervals between adjacent heart beats (for an
overview, see Shaffer and Ginsberg, 2017). One common HRV
measure (used in this study) is the root mean square of
successive differences (RMSSD), which is supposed to reflect
parasympathetic activity without much respiratory influence
(Laborde et al., 2017).

Cognitive tasks lead to increased HR and decreased HRV
in laboratory environments (Hughes et al., 2019), as well as in
driving studies in simulators (Belyusar et al., 2015; Hidalgo-
Muñoz et al., 2019; Tejero and Roca, 2021) and on real roads
(Reimer and Mehler, 2011; Mehler et al., 2012). The effects of
driving demand on HR and HRV are however varying. For
example, simulator studies by Foy and Chapman (2018) and
Stuiver et al. (2014) didn’t find any effect of varying driving
demands onHR, whileWiberg et al. (2015) did find such an effect
in real city driving—but the result was less consistent in highway
driving. Further, Dussault et al. (2004) found increased HR in
pilots during active flight segments compared to in-flight rest
segments, but only during actual (not simulated) flights (Dussault
et al., 2005). In a driving simulator study by Beggiato et al.
(2019), participants’ HR typically decreased when approaching
traffic scenarios designed to evoke unease. This could be a
sign of attentional focusing and preparation for action as HR
decelerations are known to occur in aiming sports before an
athlete throws a dart or makes a golf putt, for example (Cooke,
2013).

The effects of prolonged task execution and increased mental
fatigue on HR and HRV are inconclusive; in fact, both increased
(Matuz et al., 2021) and decreased (Li et al., 2002; Mizuno et al.,
2011) parasympathetic activity has been suggested. In driving
studies, sleepiness due to sleep deprivation causes HR to decrease
and HRV to increase on a group level, but individual variation is

large (Buendia et al., 2019; Persson et al., 2020; Ahlström et al.,
2021).

In general, emotions characterized by passivity, such as
sadness, contentment, and suspense, cause a decrease in HR,
whereas the opposite is true for emotions characterized by
active coping responses, such as anger, embarrassment, and fear
(Kreibig, 2010). As an example, HR increases during emotional
stress caused by having one’s performance judged (Kelsey et al.,
2004). The effects of emotions on HRV are less consistent
(Kreibig, 2010). Responses to novel stimuli cause a temporary HR
deceleration (Bradley, 2009), due to co-activation of the slower
sympathetic and faster parasympathetic systems (Silvani et al.,
2016).

Breathing Rate
Breathing, which is under both voluntary and involuntary control
(Homma and Masaoka, 2008) both affects, and is affected by,
emotions and cognition (Homma and Masaoka, 2008; Del Negro
et al., 2018). Roughly every fifth minute, rhythmic breathing is
interrupted by a sigh (Del Negro et al., 2018). Sighs open up
collapsed alveoli (Del Negro et al., 2018) and reset the breathing
rhythm (Vlemincx et al., 2012). Sighs also occur in response to
emotions such as grief and happiness (Del Negro et al., 2018),
and cause emotional relief (Vlemincx et al., 2013).

The most frequently studied breathing measure in studies
of cognitive load is breathing rate (BrR), which consistently
increases during cognitive task execution (Grassmann et al.,
2016). In single task studies, BrR has also been successful in
discriminating between different levels of cognitive load (Backs
and Seljos, 1994; Brouwer et al., 2014; Hogervorst et al., 2014;
Hidalgo-Muñoz et al., 2019), but this load level sensitivity seems
to disappear in driving studies (Mehler et al., 2009; He et al., 2019;
Hidalgo-Muñoz et al., 2019). The effects of traffic complexity
on BrR appear inconsistent: Wiberg et al. (2015) found BrR
to increase during increased traffic complexity in real driving,
while Foy and Chapman (2018) found no such effect in a
simulator study.

When drivers are sleepy, BrR has been shown to decrease
(Kiashari et al., 2020) and become less regular (Rodrígue-Ibáñez
et al., 2011). The few studies that have looked at the effects of
prolonged execution of cognitive tasks on BrR show inconsistent
results (see Grassmann et al., 2016, for a review). BrR also
increases during time pressure (Rendon-Velez et al., 2016) and
as a result of emotions such as anxiety (Homma and Masaoka,
2008), fear (Stephens et al., 2010), and amusement (Stephens
et al., 2010), while it decreases as a result of calm and positive
emotions (Balters and Steinert, 2015).

Skin Conductance
Electrodermal activity is the change in the electrical properties of
the skin, typically measured as skin conductance (SC). As sweat
ducts fill with sweat, the resistance of the outer layer of the skin
decreases and the conductance increases (Dawson et al., 2016).
The sweat glands on the palms and soles are densely distributed
and primarily respond to emotional arousal in what is known as
psychological or emotional sweating (Baker, 2019). The function
of emotional sweating is likely to improve grasping as part of the
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body’s preparation to act or flee (Dawson et al., 2016). Sweating is
regulated by the sympathetic nervous system alone, making SC a
popular measure of general arousal (Posada-Quintero and Chon,
2020).

The SC is most often quantified as tonic changes of skin
conductance level (SCL) and phasic sweat bursts called skin
conductance responses (SCRs). SCRs occur as part of the
orienting response when attention is directed toward a novel,
significant stimulus (Bradley, 2009), and also follow deep breaths
and body movement (Dawson et al., 2016). In addition, they
occur spontaneously approximately one to three times per
minute during rest (Dawson et al., 2016).

In principle, the anticipation and performance of practically
any task invoke increased SC (in both SCL and SCRs) (Dawson
et al., 2016). Cognitive tasks cause increased SC in laboratory
settings (Brouwer et al., 2014; Visnovcova et al., 2016) as well
as in driving studies in simulators (He et al., 2019) and real cars
(Reimer and Mehler, 2011; Mehler et al., 2012, 2016). The effect
of performing a task (compared to a baseline condition) is often
greater than the differences between task load levels (Reimer
and Mehler, 2011; Mehler et al., 2016), and recovery to baseline
levels is rather slow (Mehler et al., 2012; Visnovcova et al., 2016).
Studies of driving demand demonstrate that increased traffic
complexity leads to increased SC in real (Wiberg et al., 2015) and
simulated driving (Foy and Chapman, 2018).

Few studies have been conducted on the effects of sleepiness
on SC. Although a decrease in SCR frequency (Michael et al.,
2012) and SCL (Miró et al., 2002) has been demonstrated due to
sleep deprivation, the effects are rather small and inconsistent—
and accompanied by stronger circadian oscillations. As for the
effects of emotions, SC typically increases in response to those
emotions high in arousal (Kreibig, 2010; Gomez et al., 2016).
It has been suggested that the increase in SC reflects motor
preparation, as many emotions call for action (Kreibig, 2010).
This interpretation explains why emotions related to passivity,
such as contentment, relief, and sadness, show decreased SC
(Kreibig, 2010).

METHOD

The study consisted of two similar test series, Test Series 1
and Test Series 2. Differences consisted of the cognitive tasks
employed, and in the design of one of the traffic scenarios
(see descriptions in Sections Cognitive Task and Driving
Scenarios). Otherwise, the test series were the same. Data
were collected at the Swedish National Road and Transport
Research Institute (VTI) in Linköping, Sweden. The experiment
was approved by the regional ethics vetting board (Regionala
etikprövningsnämnden) in Linköping.

Participants
Participants were recruited from a random selection of the
vehicle register over people living in the Linköping area. A total
of 70 males participated in the study, 36 in Test Series 1 and 34
in Test Series 2. They ranged in age from 35 to 51 years (M= 43,
SD = 4), drove between 50 and 1,200 km/week (M = 309, SD =

205), and had held a driver’s license for between 8 and 32 years

(M = 23, SD = 5). Additional requirements for participating in
the study were to: have normal hearing; have a BMI < 30; not
rate oneself as extreme in extraversion or introversion, stress-
sensitivity, and morning- or evening-type; not have bad health
or use medication regularly; not have sleep disorders; and be able
to abstain from nicotine for 3 h without withdrawal symptoms.
The requirements were there to create a fairly homogenous
group of participants to reduce the variance in both mental and
physiological responses to the experimental manipulations.

All participants were paid 1500 SEK for their participation.

Equipment
The experiments were carried out in an advanced moving-base
driving simulator. The car body consisted of the front part of
a SAAB 9-3 with automatic transmission mounted on a cradle
which allowed movement with four degrees of freedom. The
field of vision was 120◦, and three LCD displays were used to
simulate rear-view mirrors. A sound system simulated sounds
from the tires and engine. The test leader could communicate
with the participants through speakers, which were also used for
the cognitive tasks.

Electrooculography (EOG), electroencephalography (EEG),
electrocardiography (ECG), electromyography (EMG), skin
conductance (SC), and respiratory inductance plethysmography
(RIP) signals were recorded using a multi-channel amplifier
(g.HIamp, g.tec Medical Engineering GmbH, Austria). Thirty-
two EEG channels (Fp1, FpZ, Fp2, F7, F3, FZ, F4, F8, FC5, FC1,
FC2, FC6, T7, C3, CZ, C4, T8, CP5, CP1, CP2, CP6, P7, P3, PZ,
P4, P8, POZ, O1, OZ, O2, A1, A2) and four EOG channels were
recorded using active electrodes on a cap (g.tec g.GAMMAcap),
referenced to the right earlobe (A2), and with a ground electrode
at AFZ. The EEG electrodes were positioned according to the 10–
20 system. Two EOG electrodes were placed horizontally outside
the outer canthus of each eye, and two were placed vertically
across the left eye. The ECG was recorded with electrodes placed
on the right collarbone and a lower left rib. The SC was recorded
from the distal phalanges at the index and middle fingers at
the left hand, and the RIP with an elastic strap placed around
the participant’s chest, just below the armpits. The EMG was
recorded with electrodes placed on the trapezius (shoulder) and
masseter (jaw) muscles. The EMG data was collected for the
purpose of EEG artifact handling, but because it was not found to
be useful for that purpose, EMG was not included in the analysis
and will not be described further. All physiological signals were
recorded with a sampling rate of 256Hz. The EEG, EOG, and
ECG signals were band-pass filtered between 0.5 and 60Hz using
an 8th order Butterworth filter and notch filtered between 48 and
52Hz using a 4th order Butterworth filter. The SC and RIP signals
were band-pass filtered between 0 and 30Hz using an 8th order
Butterworth filter.

The pupil diameter was measured with a Smart Eye four-
camera system in Test Series 1, and with eye tracker glasses from
SensoMotoric Instuments (SMI) in Test Series 2.

Cognitive Task
The cognitive task was an auditory, non-verbal version of the n-
back task (see Mehler et al., 2011, for a similar verbal version).

Frontiers in Neuroergonomics | www.frontiersin.org 7 February 2022 | Volume 3 | Article 787295125

https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroergonomics#articles


Nilsson et al. Let Complexity Bring Clarity

It is well-established that n-back tasks cause increased levels
of cognitive load (Jaeggi et al., 2010). A number between zero
and nine was orally presented to the participants every other
second. If the number just presented was the same as the number
presented n numbers ago, it was considered a target number.
All number series were unique, consisting of 30 numbers, with
six target numbers. The participants were instructed to press a
button mounted on their right index finger against the steering
wheel as soon as they detected a target number. In Test Series 1,
that task was only presented at the 1-back (n = 1) level, while in
Test Series 2, the task was presented at both the 1-back and 2-
back (n = 2) levels. Right before the task began, the participants
were informed through the speakers that the task would begin,
and which level it would be.

Driving Scenarios
The simulated driving environment consisted of a two-lane rural
road with a speed limit of 80 km/h. There was occasional traffic,
both oncoming and overtaking.

Measurements were collected during three traffic scenarios
(Hidden Exit, Intersection, and Wind), each repeated four times
during the drive: see Figure 1. In the Hidden Exit scenario, a
warning sign for a hidden exit was placed before a sharp right
curve with a high hedge on the right (inner) side. After the
curve was the exit on the right side. There was no other traffic
in the scenario. In the Intersection scenario, the participants
approached and drove through a four-way intersection, in
which they had the right of way. Another car approached the
intersection from the right, becoming visible as it drove past a
house when the participants were 180m from the intersection,
and came to a stop at the intersection 2 s before the participants
reached the intersection. A bus in the oncoming lane passed

the participant’s car 70m before the intersection. In the Wind
scenario, the otherwise present forest surroundings opened up
into a field with very limited road curvature. While driving
through the field, the participants were occasionally exposed to
crosswinds from the right. Wind speed was determined by three
overlaid sinusoidal winds with different frequencies, resulting in
a, for the participants, unpredictable crosswind.

During the measurement scenarios, the participants were
either engaged in the 1-back task or the 2-back task or they were
just driving (the baseline condition). In the Hidden Exit and
Intersection scenarios, the n-back task started ∼45 s before the
participants reached the hidden exit or intersection. In the Wind
scenario, the crosswinds started 30 s before the task onset and
blew for 1min and 40 s.

The two test series differed somewhat in their design. In
Test Series 1, the crosswinds were always active in the Wind
scenario. For two repetitions of each scenario the participants
were engaged in the 1-back task, and for the other two repetitions,
there was no task besides driving (baseline). In Test Series 2, the
crosswinds were only active in two of the four Wind scenario
repetitions. In each crosswind condition (Wind On and Wind
Off), the participants performed the 2-back task once and the
baseline condition once. In the Hidden Exit and Intersection
scenarios, the participants were engaged in the 1-back task once,
the 2-back task twice, and baseline once. The order of the tasks
was counterbalanced across participants in both series.

In addition to the measurement scenarios, there were some
other scenarios that only differed from the measurement
scenarios in terms of traffic, for the sake of variation. There were
two more hidden exits with a car standing still at the exit with
indicators on, two four-way intersections with a car approaching
from the left, and two four-way intersections with no other traffic.

FIGURE 1 | Illustration of the experimental drive. The rectangle in the middle of the figure represents the sequence of events. Each square is ∼1min of driving

(depending on vehicle speed). Measurement scenarios are colored in gray. HE, Hidden Exit; Int, Intersection; W, Wind. The final scenario, x, was an unexpected lead

vehicle braking scenario which is not included in this study (but see Nilsson et al., 2018). The five images show scenery examples from one of the positions where the

hidden exit warning sign became visible for the driver (A); the hidden exit became visible (B); 500m before the 4-way intersection (C); 80m before the 4-way

intersection (D); and the open field in the Wind scenario (E). Images are blurry due to poor camera resolution, but the participants experienced them in high resolution

in the driving simulator.
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Procedure
Prior to their participation in the study, participants were sent
a background questionnaire and a written description of the
study. They were asked to abstain from alcohol for 72 h and
nicotine and caffein for 1 h before the experiment. On arrival
at the laboratory, they handed in the questionnaire, and the
study was once again explained. After the participants gave their
written consent to participating in the study, the physiological
monitoring equipment was attached. They were then taken to
the simulator, the equipment was connected to the measurement
devices, and the eye tracker was calibrated.

The participants practiced the 1-back and 2-back (Test Series
2 only) tasks until they felt comfortable performing them. After
being informed about the simulator, the participants drove for
∼10min to practice driving. In Test Series 1, the practice drive
included two 1-back tasks. In Test Series 2, it included one 1-
back and two 2-back tasks. In both series, the practice drive also
included one hidden exit scenario with a car standing still at the
exit with its indicator on, and one four-way intersection scenario
identical to the Intersection scenario.

During the practice session, the participants were allowed to
speak to the test leader. Then followed the actual experiment,
which lasted ∼40min, during which the participants were asked
not to talk to the test leader unless it was urgent. After the drive,
participants filled out a questionnaire about their test experience.
The overall time, from when participants arrived until they left,
was∼3.5 h.

Physiological Measures
In each measurement scenario, each physiological measure was
derived as one averaged value and one continuous vector. The
averaged values were computed over 50 s, starting 10 s after task
onset. The first 10 s were excluded to reduce the effects of the
surprise reaction at task onset. The continuous vectors were
initially derived with constant time steps (described for each
measure below). The vectors were then transformed to having
constant distance steps instead, so that they could be visualized
in relation to the traffic environment. The data processing was
done in MATLAB R2015b and MATLAB R2019b.

All signals and derived measures in each analyzed segment
were visually inspected to ensure adequate data quality before
being included in the analysis (a slightly different procedure for
the EEG measures is described below). For each measure and
scenario, participants were included in the analysis only if they
had a complete dataset of all four repetitions.

For EEG data processing, the MATLAB toolbox EEGLAB vs
2020.0 (Delorme and Makeig, 2004) was used. Ninety-second
EEG segments, starting 10 s before task onset and ending 20 s
after task end (or corresponding segments in the baseline
conditions), were extracted. For each segment, all EEG channels
were visually inspected. Channels with poor signal quality (either
high levels of high frequency noise throughout the recording, or
that contained large or frequent signal deviations) were removed.
The average number of remaining channels was 27.7 (std 1.5).
Also, epochs that contained large movement or muscle artifacts
were removed (Tatum, 2014). The remaining channels were then
re-referenced to linked ears. To suppress remaining artifacts,

which were primarily caused by eye blinks and eye movements,
independent component analysis (ICA) was performed on the
data, using Infomax ICA (runica, Makeig et al., 1996). The
resultant independent components (ICs) were classified into
seven categories, including “brain activity” and “eye activity,”
using the default classifier in ICLabel (Pion-Tonachini et al.,
2019). ICs that were classified as having <20% brain activity
or >70% eye activity were removed. The average number of
removed ICs was 12.4 (std 3.4). After testing different thresholds
on a randomly selected subset of EEG segments, we chose values
that led to the exclusion of evident artifacts while retaining as
much data as possible. The remaining ICs were subsequently
transformed back to the EEG channels. For the averaged values,
power spectra were then calculated using Welch’s power spectral
density estimate with a 2-s window, 50% overlap, and windowing
using a Hamming window. The average power was derived
for channels F3, FZ, and F4 in the 4–7.5Hz theta frequency
range and for channels P3, PZ, and P4 in the 8–13Hz alpha
frequency range. These averaged power values were then divided
by the sum of the total power in the 4–25Hz frequency range
in the same channels, resulting in a relative frontal-midline theta
power (Theta) value, and a relative parietal-midline alpha power
(Alpha) value. Because artifacts were handled for each segment
separately, what ICs were derived and which ones were removed
differed between segments. This caused some added variation in
absolute power in the processed channels between the segments.
Relative, rather than absolute, measures were therefore used as
they were less affected by these segment variations. Continuous
Theta and Alpha were derived using the same method, but
for one 2-s segment at a time, moving in 1/8-s steps, to
make continuous vectors. The Alpha vectors were transformed
with the natural logarithm to achieve an approximately normal
distribution. Alpha and Theta were only derived for the segments
in Test Series 2 due to lack of time.

R-peaks were detected in the ECG signals using the qrsdetect
function in the Biosig toolbox (Vidaurre et al., 2011), and the
R-R-intervals (RRIs) were derived as the time between adjacent
heart beats. To remove abnormal or artifactual heart beats, RRIs
that differed more than 30% from the surrounding six RRIs were
removed (Karlsson et al., 2012). The RRIs were then converted
to heart rate (HR; beats/min). The continuous HR vectors were
derived by linearly interpolating the discrete HR values. Finally,
the continuous HR vectors were normalized by subtracting
the entire drive’s median HR value to reduce between-subject
variance in the continuous plots.

The HRV was computed as the root mean square of the
successive differences in RRIs after artifact removal (RMSSD)
for each 50-s analysis segment (Shaffer and Ginsberg, 2017).
The RMSSD values were then log transformed using the natural
logarithm to make the distribution more normal (Laborde et al.,
2017). No continuous HRV vector was made.

Breaths were detected in the RIP signal using an in-house
algorithm based on local peaks and thresholds, and the mean
breathing rate (BrR; breaths/min) was derived by counting the
number of breaths in the segment. For the continuous BrR
vectors, the time between adjacent breaths was derived and
converted to breaths per minute. The discrete BrR values were
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interpolated with next-neighbor interpolation and the vector
was normalized by subtracting the entire recording’s median
BrR value.

In driving studies, SC is commonly studied by averaging of
the signal (sometimes after artifact removal or normalization)
over relevant segments in time (Mehler et al., 2010; e.g., Loeches
De La Fuente et al., 2019). Here, the SC data required some
additional signal processing to achieve normal distributions and
remove effects of signal drift (which was evident from visual
inspection of the signals, as advised by Braithwaite et al., 2015).
The following processing steps were conducted. The SC signals
were first smoothed with a function, wsmooth, based on the
Whittaker’s smoother (Eilers, 2003), and then filtered using
a 2nd order Butterworth lowpass filter with cutoff frequency
0.001Hz. By subtracting the filtered signal from the SC vector,
an SCR vector was derived. The SC vector was then divided by the
SCR vector’s 99th percentile value (representing that participant’s
SCR amplitude). The 99th percentile and not the maximum value
was used to avoid influence of any rare extreme values or artifacts.
This individual response amplitude normalization was necessary
to achieve normal distributions. Finally, to compensate for the
drift, the vector’s average value in the interval 70–10 s before
task onset was subtracted from the analysis segment (principle
described in Geršak, 2020).

Eye blinks were detected in the vertical EOG signal with an
algorithm based on derivatives and thresholds (Jammes et al.,
2008). The mean eye blink rate (EBR; blinks/min) was derived
by counting the number of eye blinks in the segment. For the
continuous EBR vectors, the time between adjacent eye blinks
was derived and converted to blinks per minute. The entire
recording’s median EBR was then subtracted from all EBR data
points to reduce interindividual differences. Next, a constant
was added to all the data points to make them ≥1, after which
they were transformed using the natural logarithm to make
them more normally distributed (as suggested by Cruz et al.,
2011). Finally, the discrete EBR values were interpolated using
next-neighbor interpolation.

Eye blink duration (EBD; ms) was defined as the time
between the eye blink’s half rise amplitude and half fall
amplitude to reduce the problem with otherwise hard-to-
define start and end times (as e.g., Ahlström et al., 2018).
Eye closures with a duration >500ms (considered non-blink
closures in International Organization of Standardization, 2014)
were excluded from the analysis to avoid extreme outliers. The
continuous EBD vectors were derived with the same procedure
as the continuous EBR vectors.

The pupil diameter (PD; mm) was obtained from the
eye trackers. Sudden drops in the PD vector were removed
through linear interpolation, to reduce the effects of eye blinks
and other tracking issues (Klingner, 2010). In Test Series 2,
one PD vector was obtained for each eye and the one with
the best signal quality, assessed through visual inspection,
was used in the analysis (unless they were both excluded
due to poor signal quality). In Test Series 1, only one PD
vector was obtained for each subject. The absolute PD values
differed between the series, due to the different eye trackers.
Both the averaged PD values and the continuous PD vectors

were thus normalized by subtracting the entire recording’s
median PD value. After this normalization, there were no
longer any statistically significant differences in absolute PD
values between the two series for the same scenarios and
task conditions.

Statistical Analysis
Each physiological measure was analyzed using a mixed
model ANOVA with task (baseline, 1-back, and 2-back)
and traffic scenario (Hidden Exit, Intersection, and Wind)
as categorical fixed-effect variables, scenario repetition (1–
4) as a quantitative fixed-effect variable, and test participant
as a categorical random-effect variable. Two-way interactions
between task and traffic scenario and between task and
repetition were included in the model. The significance level
was set to 0.05 and Bonferroni correction was used to
compensate for the multiple tests. The normality assumption
of each ANOVA was confirmed by controlling that its
residuals followed an approximately normal distribution (see
Supplementary Material; Appendix 1).

In addition, using data from the Wind scenario in Test
Series 2, the effects of the crosswinds were tested separately
for the task conditions baseline and 2-back (recall that
there was no 1-back condition in the Wind scenario in
Test Series 2). A mixed model ANOVA was used, with
crosswind (Wind on, Wind off) as a categorical fixed-
effect variable and test participant as a categorical random-
effect variable.

Effects of traffic scenarios were further explored with
continuous plots of mean values and their corresponding 95%
confidence intervals (CIs), similar to Beggiato et al. (2019). The
distributions of the data samples were approximately normally
distributed around the means. Note, however, that because the
data samples in a continuous plot are not independent from each
other, non-overlapping confidence intervals does not necessarily
imply a statistically significant difference between two points
(Cumming and Finch, 2005). Therefore, paired t-tests were
made between two points in time (Wind scenario), or position
(Hidden Exit and Intersection scenario), for each task condition.
The points were chosen so that the level of demand from the
traffic scenario was assumed to differ between them, and so
that most of the related responses that were visible in the plots
took place between them. In the Wind scenario, two tests were
made between the point in time where the two greatest wind
bursts occurred, compared to 7 s earlier, where the wind was
low. In the Hidden Exit scenario, one test was made between
the position where the warning sign first became visible to the
participant, and the position where the hidden exit first became
visible. In the Intersection scenario, one test was made between
the position 80m before the intersection, where the approaching
car had slowed down and was approximately one car length
from the stopping point, and the position 500m before the
intersection. The position 500m before the intersection was
chosen because it was not clear at what position the participants
recognized the scenario, and so a rather large distance to the
more demanding part of the scenario was chosen. Examples
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of what these analysis positions could look like can be seen
in Figure 1.

At these points, the average value for each of the
physiological measures’ continuous vectors in a 2.1 s (Wind
scenario), or 42m (Hidden Exit and Intersection scenario),
interval, centered around the analysis point, was derived
for each participant and repetition. These averaged values
were then used in the paired t-tests. Because multiple t-
tests were made, and the points for testing were selected
after the data had been visualized, results need to be
interpreted with caution as the risk of type 1 errors is
inflated (Forstmeier et al., 2017). Because we want to
avoid inflating the risk of type 2 errors and missing actual
effects, correction for multiple testing has not been made
(Forstmeier et al., 2017). Instead, consistency and effect sizes of
visualized and statistically tested effects are considered in the
result interpretations.

The mixed model ANOVAs were performed using SAS
Enterprise Guide 8.2 and continuous plots and t-test with
MATLAB R2019b.

RESULTS

Four of the 70 participants aborted the experiment due to
simulator sickness and 3 were excluded from the analysis due to
data loss in the logging system. A total of 63 participants were
hence included in the analysis. Of these, 9 lacked a complete PD
dataset due to logging issues. For one participant in Test Series 2,
the n-back task did not start as intended in one Wind scenario,

so this participant has three occasions of baseline and only one
occasion of 2-back in the four Wind scenarios.

Crosswind
The mixed model ANOVAs revealed no significant effect
of crosswinds in any of the physiological measures,
either in the baseline condition or in the 2-back
condition: see Table 1. The two crosswind conditions
(Wind On and Wind Off) were therefore merged in the
remaining analyses.

Q1) How Does Cognitive Task Demand
Affect Physiological Measures?
The mean values, standard deviations, and the number of
samples included are presented for each measure in each
task condition (all repetitions and scenarios are merged)
in Table 2.

Detailed results from the mixed model ANOVAs of the effects
of task, repetition, and scenario are presented in Table 3. The
task had a significant effect on HR, RMSSD, BrR, SC, PD,
and EBR in the form of a stepwise increase (or decrease) with
increasing level of cognitive demand in all measures. Only in
EBR was the difference between 1-back and 2-back tasks not
significant. There was no significant effect of task in EBD, Alpha,
or Theta.

Q2) How Does Repetition Affect
Physiological Measures?
Repetition had a significant effect on HR, BrR, PD, EBR, EBD,
and Alpha, but not on RMSSD, SC, and Theta (see Table 3).

TABLE 1 | Effects of crosswinds on each physiological measure and task condition.

Baseline 2-back

Wind On

m (sd)

Wind Off

m (sd)

Main effect Wind On

m (sd)

Wind Off

m (sd)

Main effect

HR (beats/min) 65.18

(9.34)

65.69

(9.47)

F (1, 30) = 1.47,

p = 0.23

68.79

(9.61)

68.55

(10.01)

F (1, 28) = 0.68,

p = 0.42

RMSSD (-) 3.57

(0.51)

3.53

(0.48)

F (1, 30) = 0.40,

p = 0.53

3.18

(0.48)

3.19

(0.46)

F (1, 28) = 0.03,

p = 0.87

BrR (breaths/min) 15.41

(3.35)

15.60

(3.83)

F (1, 19) = 0.15,

p = 0.70

19.14

(3.45)

19.27

(4.36)

F (1, 17) = 0.02,

p = 0.90

SC (–) −0.119

(0.143)

−0.011

(0.221)

F (1, 22) = 3.81,

p = 0.06

0.105

(0.314)

0.089

(0.355)

F (1, 20) = 0.01,

p = 0.91

PD (mm) −0.343

(0.123)

−0.410

(0.171)

F (1, 18) = 3.26,

p = 0.09

0.090

(0.193)

0.036

(0.245)

F (1, 18) = 1.84,

p = 0.19

EBR (blinks/min) 32.66

(13.97)

34.85

(13.02)

F (1, 22) = 2.97,

p = 0.10

36.26

(19.01)

38.19

(19.35)

F (1, 22) = 1.44,

p = 0.24

EBD (ms) 123.9

(23.4)

130.6

(25.2)

F (1, 22) = 3.50,

p = 0.07

123.7

(33.3)

125.4

(35.7)

F (1, 22) = 0.15,

p = 0.70

Alpha (–) 0.0325

(0.0096)

0.0321

(0.0087)

F (1, 23) = 0.07,

p = 0.79

0.0324

(0.0117)

0.0320

(0.0095)

F (1, 21) = 0.22,

p = 0.65

Theta (–) 0.0510

(0.0121)

0.0491

(0.0116)

F (1, 23) = 1.30,

p = 0.26

0.0559

(0.0130)

0.0554

(0.0129)

F (1, 21) = 0.07,

p = 0.79

No correction has been done to compensate for multiple tests to reduce the risk of type 2 errors. HR, heart rate; RMSSD, root mean square of successive differences between heart

beats; BrR, breathing rate; SC, skin conductance; PD, pupil diameter; EBR, eye blink rate; EBD, eye blink duration; Alpha, relative EEG alpha power; Theta, relative EEG theta power;

m, mean; sd, standard deviation.
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TABLE 2 | Measure statistics.

Baseline 1-back 2-back

HR (beats/min) m = 64.87

sd = 9.37

n = 312

m = 67.30

sd = 10.22

n = 251

m = 69.04

sd = 10.31

n = 177

RMSSD (–) m = 3.56

sd = 0.48

n = 312

m = 3.39

sd = 0.51

n = 251

m = 3.20

sd = 0.49

n = 177

BrR (breaths/min) m = 16.96

sd = 3.71

n = 219

m = 19.06

sd = 3.06

n = 180

m = 19.16

sd = 3.42

n = 117

SC (–) m = −0.030

sd = 0.241

n = 270

m = 0.068

sd = 0.249

n = 225

m = 0.176

sd = 0.302

n = 133

PD (mm) m = −0.141

sd = 0.246

n = 188

m = 0.147

sd = 0.272

n = 150

m = 0.334

sd = 0.293

n = 114

EBR (blinks/min) m = 29.21

sd = 12.41

n = 244

m = 31.97

sd = 14.27

n = 198

m = 35.35

sd = 18.54

n = 142

EBD (ms) m = 122.0

sd = 26.5

n = 244

m = 123.9

sd = 32.9

n = 198

m = 117.2

sd = 30.0

n = 141

Alpha (–) m = 0.0317

sd = 0.0091

n = 92

m = 0.0302

sd = 0.0082

n = 45

m = 0.0308

sd = 0.0093

n = 135

Theta (–) m = 0.0515

sd = 0.0121

n = 92

m = 0.0549

sd = 0.0117

n = 45

m = 0.0556

sd = 0.0121

n = 135

HR, heart rate; RMSSD, root mean square of successive differences between heart beats;

BrR, breathing rate; SC, skin conductance; PD, pupil diameter; EBR, eye blink rate; EBD,

eye blink duration; Alpha, relative EEG alpha power; Theta, relative EEG theta power; m,

mean; sd, standard deviation; n, number of samples.

Q3) Do the Effects of Repetition Differ
When the Participant Is Just Driving
Compared to When Also Doing a Cognitive
Task?
BrR and PD decreased significantly with increasing repetition
in all task conditions, and the size of the decrease differed
slightly between the task conditions for PD (demonstrated by
the significant interaction effect between task and repetition;
see Table 3). EBR, EBD, and Alpha showed an increasing trend
with repetition in all task conditions, but only in EBD did
these effects reach significance level in all task conditions.
There were no significant interaction effects between task
and repetition in EBR, EBD, or Alpha. For HR, the effect
of repetition differed between task conditions. While HR
decreased significantly with increasing repetition in the 1-back
and 2-back tasks, there was no effect of repetition in the
baseline condition.

Q4) How Do the Different Traffic Scenarios
Affect Physiological Measures?
The mixed model ANOVAs revealed a significant effect of
scenario on PD, EBR, and EBD (see Table 3). Their values
for the Wind scenario consistently differed from those of

the Intersection and Hidden Exit scenarios (except for EBR
which did not differ significantly between Hidden Exit and
Wind), while the latter two scenarios did not differ from
each other.

Figure 2 shows the measures’ continuous vectors for each
scenario and task condition. For theHidden Exit and Intersection
scenarios, the measures are plotted in relation to the traffic
environment: the x-axes represent distance driven. The plots
are marked where the cognitive task begins and where the
participants reach the hidden exit or intersection (depending
on the scenario). There is no common position where the tasks
end, since that depends on the vehicle speed. The average time
between the task onset and the vehicle passing the hidden exit or
intersection was ∼47 s. In the Wind scenario, the measures are
plotted in relation to time, since the wind bursts were controlled
by time, not position. Since the tasks’ start and end depended
on the vehicle speed (both the crosswind and the tasks began
at a certain location in the simulated environment), there is
neither a common task onset nor end in the plots. On average,
the tasks began ∼10 s before the first large crosswind (first
vertical line).

When the participants approached the hidden exit and
intersection, EBR and EBD decreased consistently (except that
the EBD decrease in the 2-back condition in the Intersection
scenario did not reach significance), while SC and PD
increased consistently. Some statistically significant results were
found in HR, BrR, and Alpha, but they were inconsistent
and small in relation to the signals’ overall variability in
the segments and are thus less likely to be actual and/or
relevant effects.

Q5) Do the Effects of Traffic Scenario Differ
When the Participant Is Just Driving
Compared to When Also Doing a Cognitive
Task?
The mixed model ANOVAs revealed no significant interaction
effects between task and scenario in any measure (see Table 3).
However, effect sizes appear to differ between task conditions
when approaching and passing the hidden exit and intersection.
The increase and decrease in the PD and EBD, respectively, were
greater in the baseline and 1-back conditions compared to the 2-
back condition. Note that to avoid excessive testing, no statistical
testing has been done to compare these effect sizes.

DISCUSSION

The aim of this simulator study was to demonstrate and
exemplify how the measurability of cognitive load can be
improved by studying multiple mental responses, using multiple
physiological measures and independent variables. We will refer
to this as the multidimensional approach as it incorporates
more than one mental response, measure, and independent
variable. With this approach, the three aforementioned issues—
(1) cognitive load consists of multiple mental responses, (2)
cognitive load does not occur in isolation, and (3) physiological
measures respond to multiple mental states—can be taken into
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TABLE 3 | Results from Mixed Model ANOVAs of effects of task, repetition, and scenario for each measure.

Main effect task Post-hoc test: Bonferroni corrected p Main effect

repetition

Solution: estimate (se), p Interaction

effect

repetition*task

Main effect

scenario

Post-hoc test: Bonferroni corrected p Interaction

effect

task*scenarioBaseline vs.

1-back

Baseline vs.

2-back

1-back vs.

2-back

Repetition*

baseline

Repetition*

1-back

Repetition*

2-back

Hidden exit vs.

Intersection

Intersection

vs. Wind

Hidden exit

vs. Wind

HR

(beats/min)

F (2, 666) = 51.48,

p < 0.0001

<0.0001 <0.0001 0.0002 F (1, 666) = 36.84,

p < 0.0001

0.06 (0.15),

p = 0.71

−0.97 (0.17),

p < 0.0001

−0.92 (0.20),

p < 0.0001

F (2, 666) = 12.26,

p < 0.0001

F (2, 666) = 1.57,

p = 0.21

0.34 1.0 0.41 F (4, 666) = 1.69,

p = 0.15

RMSSD (–) F (2, 666) = 20.60,

p < 0.0001

<0.0001 <0.0001 <0.0001 F (1, 666) = 4.63,

p = 0.03

0.0184 (0.0109),

p = 0.09

0.0124 (0.0121),

p = 0.31

0.0155 (0.0144),

p = 0.28

F (2, 666) = 0.07,

p = 0.94

F (2, 666) = 0.08,

p = 0.92

1.0 1.0 1.0 F (4, 666) = 1.33,

p = 0.26

BrR

(breaths/min)

F (2, 454) = 13.74,

p < 0.0001

<0.0001 <0.0001 0.0001 F (1, 454) = 37.45,

p < 0.0001

−0.56 (0.11),

p < 0.0001

−0.39 (0.12),

p = 0.002

−0.42 (0.15),

p = 0.006

F (2, 454) = 0.56,

p = 0.57

F (2, 454) = 2.56,

p = 0.08

0.78 0.81 0.07 F (4, 454) = 0.57,

p = 0.69

SC (–) F (2, 564) = 13.46,

p < 0.0001

<0.0001 <0.0001 0.004 F (1, 564) = 0.07,

p = 0.79

0.026 (0.013),

p = 0.05

0.012 (0.015),

p = 0.40

−0.031 (0.019),

p = 0.10

F (2, 564) = 3.07,

p = 0.05

F (2, 564) = 4.07,

p = 0.02

1.0 0.10 0.02 F (4, 564) = 2.57,

p = 0.04

PD (mm) F (2, 398) = 36.77,

p < 0.0001

<0.0001 <0.0001 <0.0001 F (1, 398) = 124.78,

p < 0.0001

−0.081 (0.011),

p < 0.0001

−0.112 (0.012),

p < 0.0001

−0.046 (0.014),

p = 0.001

F (2, 398) = 6.29,

p = 0.002

F (2, 398) =

238.19,

p < 0.0001

0.27 <0.0001 <0.0001 F (4, 398) = 1.69,

p = 0.15

EBR

(blinks/min)

F (2, 514) = 11.61,

p < 0.0001

<0.0001 <0.0001 0.09 F (1, 514) = 12.75,

p = 0.0004

1.32 (0.36),

p = 0.0003

0.55 (0.40),

p = 0.16

0.63 (0.47),

p = 0.18

F (2, 514) = 1.19,

p = 0.30

F (2, 514) = 9.78,

p < 0.0001

0.13 <0.0001 0.04 F (4, 514) = 0.94,

p = 0.44

EBD (ms) F (2, 513) = 1.42,

p = 0.24

0.12 0.10 0.002 F (1, 513) = 118.13,

p < 0.0001

4.68 (0.84),

p < 0.0001

7.68 (0.93),

p < 0.0001

5.47 (1.09),

p < 0.0001

F (2, 513) = 2.89,

p = 0.06

F (2, 513) = 13.45,

p < 0.0001

1.0 <0.0001 <0.0001 F (4, 513) = 1.27,

p = 0.28

Alpha (–) F (2, 239) = 0.25,

p = 0.78

0.09 F (1, 239) = 10.45,

p = 0.001

0.0008 (0.0004),

p = 0.02

0.0005 (0.0005),

p = 0.35

0.0008 (0.0003),

p = 0.004

F (2, 239) = 0.19,

p = 0.82

F (2, 239) = 3.16,

p = 0.04

0.74 F (3, 239) = 0.88,

p = 0.45

Theta (–) F (2, 239) = 0.62,

p = 0.54

<0.0001 F (1, 239) = 6.14,

p = 0.01

−0.0011

(0.0006),

p = 0.04

−0.0011

(0.0008),

p = 0.18

−0.0004

(0.0005),

p = 0.40

F (2, 239) = 0.67,

p = 0.51

F (2, 239) = 1.11,

p = 0.33

0.70 F (3, 239) = 1.57,

p = 0.20

p-values are reported before Bonferroni correction for multiple tests. A significance level of 0.05 corresponds to 0.006 after Bonferroni correction. Green cells demark a p < 0.006. For consistency, results from post-hoc tests of

differences between tasks and scenarios are included even where there is no significant main effect, although these effects are not color-coded. Since Alpha and Theta were only derived in Test Series 2, they lack the condition with the

1-back task in the Wind scenario. Thus, it was not possible to derive post-hoc results for all conditions for them. HR, heart rate; RMSSD, root mean square of successive differences between heart beats; BrR, breathing rate; SC, skin

conductance; PD, pupil diameter; EBR, eye blink rate; EBD, eye blink duration; Alpha, relative EEG alpha power, and Theta, relative EEG theta power.
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account. In this discussion section, the results from the five
analysis questions will be interpreted using this multidimensional
approach. Some alternative interpretations that overlook the
issues will also be provided for the purpose of comparison.
This alternative approach will be referred to as a unidimensional
approach, since it views cognitive load as a unidimensional
mental response.

Effects of Cognitive Tasks
The cognitive tasks had a significant effect on most physiological
measures, namely HR, RMSSD, BrR, SC, PD, and EBR, in line
with previous research (e.g., Mehler et al., 2009; Faure et al., 2016;
Cegovnik et al., 2018). With a unidimensional approach that
overlooks the three issues, one could stop the analysis here and
conclude that these measures can therefore serve as indicators of
cognitive load. We will, off course, not do that.

Note that contrary to what was expected, we saw no effect
of the cognitive tasks on the EEG measures Theta and Alpha.
One reason could be that we studied relative power instead
of the more commonly used absolute power, which (as noted)
sometimes show different effects (Wascher et al., 2018). The use
of individually adapted frequency bands, instead of fixed bands
as was used here, might also improve results (Klimesch, 1999).
In addition, the equipment and methods used when deriving
alpha and theta power differ a great deal between driving studies,
making it difficult to compare results (Choi and Kim, 2018).
Thus, the measures’ limitations and possibilities in a driving
context are still to be determined.

Including Effects of Repetition
When including the effects of repetition in the mental state
assessment through a joint interpretation of HR, PD and RMSSD,
the multidimensionality of cognitive load becomes evident.
Recall that HR is a frequently used measure of cognitive load
(Mehler et al., 2016; Hughes et al., 2019). In line with previous
studies, increased cognitive task demand caused a stepwise
increase in HR (e.g., Mehler et al., 2010). However, while the HR
remained constant in the baseline condition, it decreased with
repetition in both task conditions. In other words, the increase in
HR caused by the cognitive tasks became smaller over time.

With a unidimensional approach in which cognitive load is
viewed as a unidimensional construct whose level is reflected
by HR, the decrease in HR would indicate that the level of
cognitive load decreased over time. One could then assume, for
example, that participants learned the tasks or gradually put
less effort into doing them. However, the effects of repetition
on PD and RMSSD speak against that interpretation. Increased
cognitive task demand caused a stepwise increase in PD and
a stepwise decrease in RMSSD, and, importantly, these effects
were not attenuated with repetition. (To be precise, there was a
significant interaction effect between task and repetition in PD,
where the effect of 1-back attenuated slightly and the effect of 2-
back increased slightly with increasing repetition. But for the sake
of reasonable article length, we will not discuss this further.)

As explained, PD has a close neurological relation to cortical
arousal and effort (van der Wel and van Steenbergen, 2018; Joshi
and Gold, 2020), whereas the effect of cognitive demand on HR

is more complex (Billman, 2013). In studies of mental workload,
HR appears more driven by stress and negative emotion than
cortical arousal, as the mentioned research on pilots have shown
HR to be sensitive to workload alterations in real flying (Dussault
et al., 2004) but not in simulated environments, where there is no
physical risk involved (Dussault et al., 2005). Furthermore, it has
been suggested that HRV has a closer relation to workload than
HR (de Waard, 1996).

With the multidimensional approach that acknowledges that
cognitive load has multiple components, the combined effects of
the cognitive tasks and repetition suggest that different cognitive
load components were differently affected by repetition. While
the task-induced psychological stress decreased, the increase
in cortical arousal and effort remained high throughout the
experiment. This indicates that there was no learning or decrease
in engagement effects after all.

Effects of repetition are not only seen as changes over
time in the mental responses to the cognitive tasks, but also
as changes in the participants’ baseline state. As the baseline
condition was repeated, EBR and EBD increased and BrR and
PD decreased. With a unidimensional approach where only the
level of cognitive load is of interest, effects of repetition (or time-
on-task) are typically rendered insignificant as they are dealt with
by employing a randomized or balanced test design. However,
employing a multidimensional approach suggests incorporating
these effects into the mental state interpretations rather than
balancing them out.

The effects of repetition strongly suggest a decline in
baseline level of arousal and attention. It seems that the drivers
became less engaged with the driving task over time and
became more fatigued. Also, HR and RMSSD in the baseline
condition remained at relatively low and high levels, respectively,
throughout the drive. It thus appears that the level of stress and
effort related to the driving task was already relatively low at
the first scenario repetition (recall that the participants had first
practiced driving before the experimental session began), and
that HR and RMSSD are not sensitive to further reductions in
driving effort.

The participant’s mental state can affect his/her physiological
(Conway et al., 2013; Do et al., 2021), behavioral (Schoofs
et al., 2008), and mental (Jimmieson et al., 2017; Hidalgo-Muñoz
et al., 2018) responses to cognitive demand, so incorporating
the baseline mental state when interpreting results improves the
external validity and enables better comparisons between studies
and environments.

Including Effects of Traffic Scenario
Here, effects on SC, PD, EBR, and EBD from the cognitive
tasks and traffic scenarios are interpreted together. As the
drivers approached the intersections and hidden exits, the SC
and PD increased and the EBR and EBD decreased. With
a unidimensional approach where only the level of cognitive
load is assessed, these results appear conflicting. With a
multidimensional approach that acknowledges multiple mental
responses, these differences are instead informative. Remember
that, unlike PD, which increases with increased attention
regardless of attention modality, the eye blink measures decrease
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FIGURE 2 | Physiological measures plotted against the specific traffic events for each scenario and task condition. The thick colored lines are the means, and the

shaded areas are the 95% confidence intervals. All measures, except Alpha and Theta, are normalized to reduce differences in absolute levels between participants.

(Continued)
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FIGURE 2 | Curves are slightly smoothed to improve visibility. In the Hidden Exit scenario, the vertical lines show where the task begins (a); the hidden exit warning

sign becomes visible (b); the warning sign is (c); the hidden exit becomes visible (d); and the exit is (e). In the Intersection scenario, vertical lines show where the task

begins (f); the car approaching the intersection from the right becomes visible (g); the participant’s car passes the oncoming bus (h); and the intersection is (i). In the

Wind scenario, the three vertical lines mark the peaks of the three strongest crosswinds (the first and third are stronger than the second). Vertical gray lines show

between which two points t-tests have been done, and the stars above the lines represent the results from the t-tests; ***p < 0.001, **p < 0.01, *p < 0.05.

with increased visual attention, while non-visual attention (such
as cognitive tasks) causes an increase in EBR (and sometimes
also in EBD) (Recarte et al., 2008). It thus appears that when
the participants approached the hidden exits and intersections,
their cortical arousal increased due to increased visual attention,
together with an increase in general arousal (as reflected in SC;
Posada-Quintero and Chon, 2020).

In the case of the wind scenario, any effects of the
crosswinds were less pronounced compared with the effects of
the environmental demands in the other two scenarios. As noted,
previous research employing crosswinds has suggested that the
wind poses an additional cognitive demand (Medeiros-Ward
et al., 2014), supported by physiological findings: a decrease
in Alpha and an increase in Theta (Wascher et al., 2018). In
contrast to Wascher et al.’s (2018) findings, there was no effect
of crosswind on Alpha or Theta in our study. Recall, though, that
there was no effect of the cognitive tasks (which we know cause an
increase in cognitive load) on Alpha or Theta in our study, either.
These EEG measures do thus not appear sensitive to cognitive
load variations in this setting. However, the other physiological
measures (which have proven sensitive to variations in several
cognitive load components) improve our chances of registering
a mental response, if there is one. The mixed model ANOVAs
revealed no statistically significant effect of the crosswind on
any of the measures, while the effects of individual wind bursts,
visualized and statistically tested in Figure 2, showed mixed
results. Since no correction for multiple testing has been done on
these tests, they should be interpreted with extra consideration
of response consistency to avoid type 1 errors. Only PD showed
a fairly consistent effect of crosswinds with a significant effect
in four out of six tests. It is thus plausible that the participants
had brief increases in cortical arousal following the unpredictable
crosswinds. But the combined results suggest that the crosswind
posed only a very small cognitive load on the participants. Rather,
the challenge of driving in a crosswind appears to have been
dealt with quite automatically, without the driver having to assert
much cognitive control (Schneider and Shiffrin, 1977). Although
we employed similar crosswinds to those in Wascher et al.’s
(2018) work, our study thus seems to have induced different
mental responses. Although the reason is not known at this
time, such differences in mental responses between studies could
explain observed differences in behaviors between studies (see,
e.g,. the different results in He et al., 2014, and Medeiros-Ward
et al., 2014).

Implications of a Multidimensional
Approach to Measuring Cognitive Load
The examples above demonstrate how the measurability
of cognitive load can be improved by studying multiple

mental responses using multiple physiological measures and
independent variables. First, acknowledging that cognitive load
is a multidimensional construct and measuring (some of) its
components individually improves the construct validity of
the study, compared to performing a unidimensional analysis
(Strauss and Smith, 2009). It is clear from the examples above
that several different mental responses occurred during the
course of the experiment. For example, the psychological stress
that the cognitive tasks gave rise to diminished over time,
and visual attention increased with traffic complexity. Until we
know how to weight different cognitive load components, it
is thus not possible to assess the level of cognitive load on a
unidimensional scale.

Having acknowledged that cognitive load is multidimensional
and that its components need to be measured individually,
the concurrent analysis of multiple physiological measures
in relation to multiple independent variables improves the
measures’ diagnosticity. Making use of the different measures’
similarities and differences makes it possible to look at multi-
measure response patterns rather than single-measure responses.
For example, changes in visual and non-visual attention could be
distinguished from each other when PD and EBR or EBD were
analyzed together.

At the same time, considering multi-measure response
patterns instead of single-measure responses reduces the number
of correlations to different mental states. The measurements’
context dependence is thus reduced as fewer factors affect the
same measurements. This means that the external validity is
improved and the risk of making incorrect inferences from
observed responses is reduced.

Most research seeking physiological indicators of cognitive
load, especially if it employs machine learning, does indeed
include multiple measures in the analyses (e.g., Putze et al.,
2010; Murphey et al., 2019; Chihara et al., 2020). The use of
multiple measures has also been encouraged for a long time (de
Waard, 1996). Sometimes, the multiple measures are regarded as
“backups” for each other (Tran et al., 2020) to mitigate issues
with recording failures (Halverson et al., 2012) or individual
response variability (Mehler et al., 2012), but often, multiple
measure are indeed combined to improve classification accuracy
(i.e., measurability) (e.g., Hogervorst et al., 2014; Prabhakar et al.,
2020). However, if cognitive load is not acknowledged as a
multidimensional construct, the issue of construct validity and
the risk of making inaccurate inferences remain.

One could end up with measures that correlate only with
certain cognitive load components that frequently occur in
experiments (if that is where the training data are collected)—
for example, measures reflecting psychological stress. There
is a risk then that these cognitive load components do
not occur as frequently in less controlled settings, such as
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self-initiated cognitive tasks in real-life driving (deWaard, 1996).
Consequently, such a measure might fail to detect cognitive load
under less stressful circumstances, even if the loading on other
cognitive load components is significant.

By measuring and studying cognitive load components
separately, researchers can assess the components’ individual and
combined effects. They can, for example, explore the effects of
cognitive effort and psychological stress, separately and together,
on driver behavior and traffic safety. Car manufacturers can then
use the information gained to prioritize thosemental states which
are most relevant to detect in Driver Monitoring Systems (DMS),
for example. However, there are several challenges when going
from group-level studies to continuous monitoring of drivers’
mental states.

One great challenge for DMS systems is that between-
subject variance in physiological responses to cognitive load
(and other mental states) is large (Mehler et al., 2012).
Individualized algorithms have therefore been suggested for
accurate tracking (Noh et al., 2021). One advantage of tracking
multiple mental responses is that the between-subject differences
in the physiological responses to changes in individual cognitive
load components should be smaller than the differences in
physiological responses to cognitive load as a whole (i.e., when
it is studied as a unidimensional construct). This is due to
the fact that not all drivers have the same mental responses,
such as increased psychological stress, during increased cognitive
demands (Szalma, 2008). DMS development might thus be
somewhat less complicated if cognitive load assessment is
made multidimensional.

Still, variability will remain an issue since not all drivers
have the same physiological responses to the same mental state
changes (e.g., not all individuals display frontal-midline theta
activity; Mitchell et al., 2008). While some of this variability
could possibly be reduced by breaking down mental responses
further, that may render the analysis overly complex. Also, not
all cognitive functions can be continuously measured in car
drivers. In the end, the appropriate level of detail is one that
enables researchers and car manufacturers to understand and,
when needed, mitigate any negative effects of cognitive tasks
on traffic safety, without making the mental state assessment
overly complicated.

It should also be noted that effects seen on a group-level
are not necessarily detectable at an individual level because of
the multiple factors concurrently influencing the physiological
measures. This is especially true where effect sizes are small.
For example, the size of mentally driven changes in the PD
are typically below 0.5mm (Beatty, 1982), while alterations in
lightening can change the PD several millimeters (Winn et al.,
1994).

Study Limitations
This experiment was designed for many purposes (Nilsson et al.,
2018; see also Nilsson et al., 2020), which limited the design
possibilities somewhat. Priority was given to achieving a realistic
driving task with a low level of interference, which prevented the
use of subjective estimates while driving.

The aim of this study was to use multiple physiological
measures and independent variables to assess multiple mental
responses and, by that, improve the cognitive load measurability.
However, only a limited set of physiological measures was
included. The measurability can likely be improved using more,
and/or other, physiological signals and measures. It may also
be that some of the measures are less sensitive in other
environments, such as real driving.

The physiological data came from a fairly homogenous group
of participants. The variability in responses to the experimental
manipulations may therefore be smaller than would have been
the case in a more heterogenous group.

Finally, multiple statistical tests were conducted (which is hard
to avoid when interpreting multiple measures and independent
variables). Bonferroni corrections were made on the ANOVA
results to decrease the risk of type 1 errors, while no correction
for multiple tests were made for the t-test results to avoid
inflating the risk of type 2 errors and disregarding actual effects
(Forstmeier et al., 2017). To deal with the increased risk of type
1 errors, consistency in results and effect sizes were considered
in the interpretations. Still, effects seen in the continuous plots
and t-tests should be considered exploratory and in need of
verification in future studies.

Overall, as the complex relationships between coexisting
mental states and physiological responses are still largely
unknown, the inferences we made from the physiological
measures are, to some extent, speculative. There are also no
established “ground truth” measures of mental states to validate
our interpretations. Using non-physiological measures, such as
questionnaires and performance metrics, could improve the
validity of the interpretations (Hancock and Matthews, 2019),
although all measures have their own limitations. For example,
questionnaires can interfere with the driving task andmake it less
realistic (O’Donnell and Eggemeier, 1986); people are sometimes
not very good at self-assessing their mental state (Schmidt et al.,
2009); and performance measures typically have a limited range
of sensitivity, since performance can be modulated with effort
(Reimer et al., 2012).

CONCLUSIONS

In conclusion, when cognitive load is understood as a
multidimensional construct, and (some of) its components are
assessed separately usingmultiple physiological measures studied
in relation to multiple independent variables, its measurability
can be improved in several ways. For one, the construct validity
of cognitive load is improved, which facilitates more accurate and
useful result interpretations. Also, studied together and related
to multiple mental states, the measures are more diagnostic,
in that they are better able to distinguish between changes in
different cognitive load components. With multiple measures,
multi-measure response patterns can be analyzed instead of
single-measure responses. Since the patterns correlate with fewer
mental responses, the measurements’ external validity is also
improved, and the risk of making incorrect inferences from
observed responses is reduced.
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Improved measurability of cognitive load has the potential
to enable more detailed and accurate inferences regarding the
effects of cognitive task execution in less controlled settings. As
a result, the effects of cognitive load on traffic safety can be better
understood and more effectively mitigated.
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Some studies provide evidence that humans could actively exploit the alleged

technological advantages of autonomous vehicles (AVs). This implies that humans may

tend to interact differently with AVs as compared to human driven vehicles (HVs) with

the knowledge that AVs are programmed to be risk-averse. Hence, it is important

to investigate how humans interact with AVs in complex traffic situations. Here, we

investigated whether participants would value interactions with AVs differently compared

to HVs, and if these differences can be characterized on the behavioral and brain-level.

We presented participants with a cover story while recording whole-head brain activity

using fNIRS that they were driving under time pressure through urban traffic in the

presence of other HVs and AVs. Moreover, the AVs were programmed defensively to

avoid collisions and had faster braking reaction times than HVs. Participants would

receive a monetary reward if they managed to finish the driving block within a given

time-limit without risky driving maneuvers. During the drive, participants were repeatedly

confronted with left-lane turning situations at unsignalized intersections. They had to stop

and find a gap to turn in front of an oncoming stream of vehicles consisting of HVs and

AVs. While the behavioral results did not show any significant difference between the

safety margin used during the turning maneuvers with respect to AVs or HVs, participants

tended to be more certain in their decision-making process while turning in front of AVs

as reflected by the smaller variance in the gap size acceptance as compared to HVs.

Importantly, using a multivariate logistic regression approach, we were able to predict

whether the participants decided to turn in front of HVs or AVs from whole-head fNIRS

in the decision-making phase for every participant (mean accuracy = 67.2%, SD = 5%).

Channel-wise univariate fNIRS analysis revealed increased brain activation differences

for turning in front of AVs compared to HVs in brain areas that represent the valuation
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of actions taken during decision-making. The insights provided here may be useful

for the development of control systems to assess interactions in future mixed traffic

environments involving AVs and HVs.

Keywords: human-autonomous vehicle interaction, whole-head fNIRS, multivariate logistic ridge regression,

valuation of actions, decision-making

INTRODUCTION

A majority of vehicle accidents are caused by human errors
(Singh, 2018). A long-held belief is that the introduction
of autonomous vehicles (AVs) in driving will reduce human
errors, leading to an overall improvement in terms of
driving performance and safety for all traffic participants.
However, until a time comes when only AVs travel on
roads, human driven vehicles (HVs) and AVs will co-exist in
traffic environments. In such mixed traffic environments, the
interaction between humans and autonomous agents remains
extremely important. This is of concern regarding not only the
humans using AVs, but also regarding the interaction between
HVs and AVs.

A key aspect for a safe and seamless interaction between
HVs and AVs is how human’s actions are influenced by AVs in
mixed traffic environments. In fact, some studies have shown that
pedestrians and human drivers could actively exploit the alleged
technological advantages of AVs. For example, the pedestrian or
the human driver knows that AVs are programmed to be risk-
averse and stop immediately if it detects an obstacle in its path.
Armed with this knowledge, drivers and pedestrians may act
with impunity while interacting with AVs. Several studies have
reported a shift in behavior when humans are interacting with
autonomous agents compared to other human agents suggesting
that humans might evaluate their own actions differently
depending on the type of traffic agent involved. For example,
Trende et al. (2019) showed that in time-critical situations,
drivers had a significantly higher gap acceptance probability for
turning in front of an AV as compared to HV.Moreover, Millard-
Ball (2018) showed that pedestrians took advantage of a mildly-
mannered AV knowing that the AV will yield at crosswalks, and
they can hence cross the road with impunity. Similar results
were reported by Liu et al. (2020) where drivers revealed greater
intentions to drive aggressively while interacting with AVs as
compared to HVs. Such actions of the driver could be constituted
as “misuse of automation,” a term coined by Parasuraman and
Riley (1997). One such type of automation misuse potentially
leading to dangerous situations when interacting with AVs is
an “overreliance” on the automation system (Parasuraman and
Manzey, 2010). Overreliance occurs when a driver tends to rely
uncritically on the automationwithout recognizing its limitations
or fails to monitor the automation system’s behavior (Saffarian
et al., 2012; Cunningham and Regan, 2015).

The assessment of safety-critical situations in complex traffic
requires significant cognitive resources to form a mental
representation of the situation, to identify potentially critical
interaction partners and to predict their behavior. The correct
estimation and expectation of other’s behavior plays a crucial

role for safe interaction. In situations where the HV and AV
need to interact directly, the driver may tend to underestimate
the reaction time of an AV leading to a risky maneuver. The
prediction of the AV’s behavior in complex traffic situations
is based on the driver’s mental model of the AV. Mental
models are internal representations of a system concerning its
characteristics, potentials and limitations that are mainly formed
by interacting with the system (Kurpiers et al., 2020). Suchmental
models can influence information processing, valuation of
actions and the resulting decision to act in human-autonomous
vehicle interactions. However, it is hard to evaluate such mental
models due to their implicit nature and more objective measures
are required.

Neurophysiological measurements allow for an objective
tracking of cognitive processes such as decision-making. Spatially
resolved brain activation measures can be more specific to
decision-making processes as they are recorded at the location
where these cognitive processes are manifested. This allows us
to unravel what goes on in a driver’s brain while performing
decision-making interactions with technical systems such as
AV. Until now, a solid number of neuroimaging studies have
been conducted that revealed human brain areas involved in
decision-making and characterized their responses in game
theoretic frameworks. Much progress has been made in defining
game-theoretic building blocks of human decision-making
models and implementing these blocks in executable cognitive
architectures such as ACT-R (Taatgen et al., 2005). Moreover,
neurophysiological research has revealed neural correlates for
action-based value signals for reward related decision-making
tasks. Some of these brain areas include the prefrontal cortices
such as the dorsolateral prefrontal cortex (dlPFC), ventromedial
prefrontal cortex (vmPFC), frontal cingulate, anterior orbito-
and mediofrontal cortices (Sanfey, 2007; Lee, 2008; Rangel et al.,
2008; Gläscher et al., 2009; Ruff and Fehr, 2014). However,
very few studies in this field have actually attempted to predict
human decision-making interactions from brain activation in
realistic situations. Hollmann et al. (2011) employed real-
time functional MRI to predict online decisions during social
interactions in the ultimatum game from brain activation and
to reveal brain areas that signal whether offers were subjectively
perceived as unfair. These approaches have been extended
from relatively simple operant conditioning in laboratory
environments (Schultz, 2002) to decision-making in social
context (Sanfey et al., 2003; Sanfey, 2007). However, to the best
of our knowledge, no neurophysiological study has compared
how interactions with other humans or technical systems
such as AVs are reflected in characterizing neural correlates
for decision-making in realistic scenarios such as driving
using fNIRS.
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In this study, we use turning at an intersection as a safety-
critical traffic situation, where the driver must directly interact
with other traffic participants. Previous studies have reported that
between 30 and 40% of crashes are located at or near intersections
even though these situations represent only a small percentage
of the entire road infrastructure (Tay and Rifaat, 2007; Choi,
2010; Gerstenberger, 2015). A lacking consideration for other
road users is the primary reason for accidents when turning
according to a report by the German Federal Highway Research
Institute (BASt) on intersection-related crash factors (Vollrath
et al., 2006; Biebl and Bengler, 2021). When a vehicle stops at
an intersection, the driver must observe the oncoming traffic
stream before accepting a gap and turning into the desired lane.
The gap acceptance problem is one of the main causes for stop-
controlled intersection accidents (Yan et al., 2007). Several studies
have conducted field observations or driving simulator studies
to investigate gap acceptance in these situations (Ragland et al.,
2006; Yan et al., 2007; Lord-Attivor and Jha, 2012), leading some
of them to predict gap acceptance using statistical models. Lord-
Attivor and Jha (2012) collected data from Nigerian intersections
and proposed a binary logit model to model gap acceptance
behavior. Furthermore, Ragland et al. (2006) analyzed video
recordings of five intersections to determine gap acceptance
statistics and proposed a logit model predicting gap acceptance
probability. Such models can help to design and develop driving
assistance decision support systems, which can potentially reduce
the number of traffic accidents at the intersections.

The objective of this study is to investigate if there is a
difference between a human driver’s valuation of actions when an
interaction involves technical systems such as AVs as compared
to similar interactions with other human beings. In a second step,
this paper aims to examine whether these potential differences
in human-human and human-autonomous vehicle interactions
can be characterized from behavior and neurophysiological
whole-head fNIRS brain activation measurements. For this
purpose, we conducted an fNIRS-driving simulator study. We
measured whole-head brain activation using high density fNIRS
throughout the entire driving time to identify neural correlates
associated with the valuation of actions during decision-
making in the turning situations in human-human and human-
autonomous vehicle interactions. We presented the participants
with a cover story that they were driving under time pressure
through urban traffic in the presence of other HVs and AVs,
that the AVs were programmed defensively to avoid collisions
and that they had faster braking reaction times than HVs.
Participants would receive a monetary reward if they managed
to finish the driving block by avoiding risky driving maneuvers
within a given time limit. The participants were repeatedly
confronted with a left-lane turning situation at unsignalized
intersections where they had to decide to turn in front of
a HV or an AV. We hypothesize that under time pressure,
there is more considerate behavior while interacting with HVs
than with AVs as for the latter, there is no safety-critical
consequence of one’s own actions due to the driver’s expectation
that AVs drive more cautiously making them more predictable
in their driving behavior as compared to HVs. This would be
reflected in reduced safety margins (e.g., gap sizes) and increased

certainty during the decision-making process while interacting
with AVs as compared to HVs. Based on previous research
(Sanfey, 2007; Rangel et al., 2008; Ruff and Fehr, 2014), we
hypothesize that human-autonomous vehicle interactions cause
increased activation modulations in the prefrontal areas such
as the dorsolateral and ventrolateral prefrontal, ventromedial
prefrontal, frontal midline brain areas and the anterior cingulate
cortex, since these brain areas are thought to represent the
consideration of values of actions taken during decision-making.

MATERIALS AND METHODS

Participants
Thirteen volunteers (7 females) aged 21–29 years (Mean ±

SD = 23.8 ± 2.61) participated in the study. The participants
had a mean driving experience of 5.8 years (SD = 2.5). All
participants possessed a valid German driving license and gave
written informed consent to participate prior to the experiment
in accordance with the Declaration of Helsinki. The Ethics
Committee of the Carl von Ossietzky University, Oldenburg
approved the experimental procedure. Participants received a
financial reimbursement of 10 e per hour.

Experimental Set-Up
The experiment was performed in a full-scale fixed-base driving
simulator, which offered a 150◦ field of view (Figure 1). The
driving simulator contained a realistic vehicle mock-up. The
driving simulator software SILAB (Krueger et al., 2005) was
used to simulate the driving scenario. The participants controlled
the mock-up car in the driving simulation via a standard
interface consisting of a throttle, brake pedal and steering wheel.
Behavioral data, such as acceleration, velocity and steering wheel
angle were recorded via SILAB.

Participants’ brain activation was measured using a high
density, whole-head fNIRS system throughout the entire driving
time. fNIRS uses the principle of neurovascular coupling where
the neuronal activity is linked to related absorption changes
in the sub-surface tissues in localized cerebral blood flow

FIGURE 1 | Virtual reality lab driving simulator at OFFIS Institute of Information

Technology, Oldenburg—photograph of experimental setup. The participant’s

brain activity is measured with whole-head fNIRS system while they are driving

in the urban traffic.

Frontiers in Neuroergonomics | www.frontiersin.org 3 February 2022 | Volume 3 | Article 836518144

https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroergonomics#articles


Unni et al. Decision-Making in Human-Autonomous Vehicle Interaction

FIGURE 2 | FNIRS probe placement. Topologic layout of the emitters (red disks), detectors (green disks) and the fNIRS channels (purple lines) on a standard 10–20

EEG system. Figure reproduced from NIRStar 15.0 data acquisition software with permission from NIRx Medical Technologies, USA.

by measuring local concentration changes of oxyhaemoglobin
(HbO) and deoxyhaemoglobin (HbR) as correlates of functional
brain activity using the modified Beer-Lambert law (Villringer
et al., 1993; Sassaroli and Fantini, 2004). We used the NIRScout
Extended system (NIRx Medical Technologies) to acquire fNIRS
data. The system uses twowavelengths of 760 nm and 850 nm and
outputs relative concentration changes of HbO and HbR. Thirty-
two optical emitters and detectors were used to obtain close to
whole-head coverage. In total, 107 channels (combinations of
emitters and receivers) were used to acquire fNIRS data at a
sampling frequency of 1.955Hz (Figure 2). The average distance
between an emitter and detector was∼3.5 cm.

Both the fNIRS and driving simulator data were trigger-
synchronized during the driving task.

Experimental Design
The driving simulation featured multiple left-turn maneuvers
with oncoming traffic in an urban environment. The oncoming
vehicles drove at a speed of 50.4 km/h (equivalent to 14 m/s), the
speed limit for most urban roads in Germany. Due to a STOP

sign, the subject vehicle had to stop at the intersection before
accepting a gap and turning into the desired lane (Figure 3). A
“gap” represents the opportunity to turn left before an oncoming
vehicle. Every gap has an associated gap size that represents
the time in seconds that passes after the first of two successive,
oncoming vehicles passes the intersection until the second vehicle
passed the intersection. The driver faces a series of gaps of
different sizes while waiting at the intersection and has the choice
to either accept or reject a given gap. Accepting a gap means that
the driver completes a left-turn maneuver.

The lane of oncoming traffic was bent slightly to the right
(Figure 3). This makes the estimation of the gap sizes between
oncoming vehicles easier. The simulated traffic consisted of
human driven vehicles (HVs) and autonomous vehicles (AVs)
(Trende et al., 2019). The AVs were always yellow cars without
a virtual human model visible inside the car. The HVs were
represented by cars of other colors (except yellow) where the
virtual human model was clearly visible. Before the experiment,
the participants were instructed how the AVs will look in
the simulation. The participants were told that the AVs are
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FIGURE 3 | Sketch of intersection. The gap size between two oncoming

vehicles defined as the time that passes after the first oncoming vehicle has

crossed the intersection until the second vehicle has crossed the intersection.

programmed to use a defensive, risk-avoiding driving style
(Millard-Ball, 2018). However, in reality, both HV and AV
followed the same driving behavior. The number of AVs in the
simulation was lower than the number of HVs since automated
driving is a novel technique and only a few AVs are available on
the market. AVs represented 15% of the simulated cars. While
waiting at the intersection in front of the STOP sign, between
eight and 10 cars approached the intersection.

We followed Ragland et al. (2006) to design realistic traffic
situations. The authors used video data from five intersections
in the USA to find the distributions of gaps smaller than 12 s
between subsequent cars at intersections. They found that most
gaps were 4 s or shorter with the most frequent gap being
2 s. Overall, the gap size distribution could be modeled as a
lognormal distribution. We designed the distribution of gaps in
our study according to these findings. We decided to present gap
sizes between 1 and 6 s during the experiment. As suggested in
Yan et al. (2007), we designed the traffic in such a way that the
first oncoming vehicles have lower gap sizes. This helps to find
minimal gap size acceptances for participants and assures that a
suitable gap size for each participant’s preferences was presented.
We split the oncoming traffic in two groups: The first 4–6 cars
have a gap size from a range of 1–3 s. A larger gap in the range
of 3.5–6 s was placed after fifth to tenth car, respectively. No
vehicles appeared after the tenth car. The sequence of the type
of involved traffic agent (i.e., HV or AV) among the stream of
oncoming traffic encountered at the intersection varied during
one experiment but remained the same for all participants. We
performed a training session before the experiment in which the
participants drove a short scenario consisting of rural roads and
11 intersections, which took around 10min. The purpose of the
training scenario was to get accustomed to the virtual reality
environment and simulator dynamics.

In the experimental session, participants drove 100
intersections consisting of 10 driving blocks with 10 intersections
per block. The whole session lasted around 70min. The
participants were asked to stop after 10 intersections and had a
break of 1–1.5min. Time pressure was applied during each block
of the experiment. If the participants managed to reach the end
of the 10th intersection in a block within 5:30min, they received
a bonus of 1e per block. The timer and intersection counter were
displayed as a Heads-up-Display (HUD) in the simulation. To
reach the end of the scenario within the block in the given time
limit, the participants had to take at least some of the gaps while
waiting at intersections. In principle, participants could have
waited until the end of the oncoming stream of vehicles before
deciding to turn. However, the time constraints introduced by
the bonus discouraged participants to employ such a strategy.
Across all participants, only 2 out of the 1,200 turning maneuvers
were performed after the last car when the oncoming traffic had
already passed.

After the experimental session, the participants were asked to
fill out a questionnaire with 4 qualitative questions about trust
in AV. The participants choose a score between 1 and 6 for the
quantitative items. They rated 4 items related to trust in AV: “I
accept AVs on the roads”; “AVs are safer than HVs”; “I trust AVs
more than HVs” and “I behaved differently in my interactions
with AVs compared to HVs.”

Data Analysis
The data analysis section consists of three parts: analysis of the
driving behavior, analysis of the neurophysiological data and
analysis of the questionnaire.

Behavior Parameters
As presented in other studies (Fitzpatrick, 1991; Ragland et al.,
2006), we calculate the gap acceptance probability for each
gap size over all participants. The gap acceptance data was
extracted based on the positional data of the subject vehicle
and oncoming vehicles. We fitted a logistic model to the gap
acceptance probability of the participants. The gap acceptance
probability was calculated for gap sizes in 0.35 s steps. The logistic
model had the following form and two regression parameters
to fit.

P (X, m, w) =
1

(

1 + exp
(

−2 log
(

1
0.05 − 1

)

X − m
w

)) (1)

Here, “X” represents the gap size, “m” is the threshold indicating a
50% gap acceptance and “w” is the width describing the difference
between 5 and 95% point of the model. MATLAB 2020 and the
psignifit 4 toolbox (Schütt et al., 2015) were used for fitting the
logistic model to the data.

fNIRS Data Pre-processing
The raw fNIRS data are influenced not only by cortical brain
activity but also by other systemic physiological artifacts (cardiac
artifacts, respiration rate, and Mayer waves) and movement
artifacts causing the signal to be noisy. We pre-processed the
raw fNIRS data using the nirsLAB analysis package to reduce the
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influence of these artifacts (Xu et al., 2014). First, a “coefficient
of variation” (CV) was computed which is a measure for the
signal-to-noise ratio (SNR) from the unfiltered raw data. The
CV was calculated as the ratio between the standard deviation
and the mean of each NIRS channel over the entire duration of
the experiment (Schmitz et al., 2005; Schneider et al., 2011). All
channels with a CV >20% were excluded from further analysis.
Moreover, we performed band pass filtering of the raw fNIRS data
with a high cut-off frequency at 0.1Hz to attenuate the effects
of the above-mentioned physiological artifacts and instrument
noise and a low cut-off frequency of 0.01Hz to reduce the
effects of very low frequency and gradual drift in the fNIRS
data. Additionally, we visually inspected all channels and deleted
those, which were excessively noisy with various spikes. Using
these methods, on average, 99 fNIRS channels per participant
were included in the subsequent analysis (SD = 8.7). Further,
the modified Beer-Lambert’s law was applied to convert the raw
data from voltage (µV) to relative concentration change (mmol/l)
(Sassaroli and Fantini, 2004).

The following fNIRS analysis was based on HbR signal, as
HbR signals are considered to be less influenced by systemic
physiological artifacts like cardiac pulsation, respiration, or
Mayer wave fluctuations than HbO (Obrig et al., 2000; Zhang
et al., 2005, 2009; Huppert et al., 2009; Suzuki, 2017). Moreover,
other studies reported that HbR tends to correlate stronger with
the blood oxygenated level dependent (BOLD) response than
HbO (MacIntosh et al., 2003; Huppert et al., 2006; Schroeter et al.,
2006; Foy et al., 2016).

We performed two types of analyses in order to better
understand the neurophysiological activation differences as an
index for differences in decision-making while turning in front
of HV or AV and to characterize the contribution of these
differences on a functional brain-level. The first type was a
multivariate decoding modeling framework where our goal was
to decode from the whole-head fNIRS activity whether the
participant currently decided to turn in front of an HV or AV.
The decision-making phase was defined as the decision to turn
either in front of a HV or an AV along with the action to execute
the decision. This phase corresponded to the timing 2 s before
pressing the accelerator and initiating the decision to turn up
to 2 s after beginning the turning maneuver for each trial. We
selected this 4 s interval for the decision-making phase to account
for the hemodynamic delay in the BOLD response measured
by fNIRS. In the second type of analysis, we investigated the
contribution of the brain activation features to such a decoding
model that predicts human-human (turning in front of HVs) or
human-autonomous (turning in front of AVs) interactions in the
decision-making phase in a group-level by reporting the effect
sizes for each fNIRS channel. The following sections provide
further details about the methods to implement these analyses.

Multivariate Cross-Validated Prediction of
Turning in Front of HV or AV
The goal of this analysis was to predict whether the participant
decided to turn in front of a HV or AV from the pre-processed
z-score normalized fNIRS data. First, since there were always

more HV trials than AV trials, we balanced the trials by randomly
selecting a sample of HV trials matching the number of AV
trials available for each participant. Each timepoint (sampling
frequency 1.955Hz) in the 4 s time window during the decision-
making phase while turning in front of a HV or an AV was
considered as a single sample for the following classification.

The normalized fNIRS data was separated into train and
test data. We calculated a multivariate binary logistic ridge
regression model implemented in the Glmnet toolbox (Qian
et al., 2013) within a 5-fold nested cross-validation on the
samples to predict whether a particular timepoint in the fNIRS
test data corresponded to human-human or human-autonomous
interaction. The optimization of the hyperparameters (number
of principal components (PCs) and regularization parameter λ)
of the model was carried out in the training phase of the inner
cross-validation loop. The outer cross-validation loop tested
the generalization the logistic ridge regression model with the
optimized hyperparameters to new data. This approach avoids
overfitting of the model to the data and provides an estimate of
how well the chosen decoding model would predict data that has
not been seen previously by the model; for instance, in an online
analysis (Hastie et al., 2009; Reichert et al., 2014).

The λ parameter, which determines the overall intensity
of regularization of the logistic ridge regression model, was
optimized by Glmnet using the training data within the cross-
validation (Qian et al., 2013). We first performed a principal
component analysis (PCA) on the training set. In this way,
the fNIRS training data was transformed into a set of linearly
uncorrelated variables called principal components (PCs). By this
method, the first PC accounted for the largest variance in the data,
and each successive component had the largest possible variance
while maintaining orthogonality to the preceding components.
The first PC has been shown to be linked to motion artifacts
(Brigadoi et al., 2014), and was removed from further analysis.
To increase the signal-to-noise ratio (SNR) and limit further
analyses to the data explaining the most possible variance, all
PCs with eigen values <0.7 were removed as recommended by
Jolliffe (1972) on the Kaiser’s rule (Kaiser, 1958). This resulted in
an average of 13 PCs (SD = 2.4) per participant. The PCA eigen
vectors of the training set was used to transform the test dataset
in PC space.

Since the output of logistic regression can be interpreted as a
class probability, all samples with a model output of p≥ 0.5 were
assigned to the class “AV.” This allowed us to calculate the rates
at which the model correctly classified the two conditions. In this
study, we report model accuracy, which indicates the proportion
of correctly classified samples as either turning in front of an AV
or a HV. The model accuracy was calculated as follows:

Accuracy (%) =
TPAV + TPHV

TPAV + TPHV + FPAV + FPHV
∗100 (2)

Here, TP refers to the number of true positives (number of
samples correctly classified) and FP refers to the false positives
(number of samples incorrectly classified) for the two conditions
AV and HV. Further, we also calculated the F1-score, which is a
combined harmonic average of the precision and recall measures
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of the model. The F1-score for AV condition was calculated
as follows:

F1-score =
2∗TPAV

2∗TPAV + FPAV + FPHV
(3)

The F1-score for HV condition was also calculated accordingly.
We report the final mean model accuracy and F1-score for
all participants.

Characterization of Brain Areas Predictive
to Decision-Making Phase in
Human-Human and Human-Autonomous
Interactions
We aimed to characterize the separability of human-human or
human-autonomous vehicle interactions from the channel-wise
brain activation features used in the above described multivariate
logistic ridge regressionmodel. For this, we performed a channel-
wise paired t-test from the preprocessed fNIRS data for the two
conditions AV and HV on a single-subject level. To generalize
the individual t-statistics brain maps to our test sample, the
channel-wise single-subject t-statistics (t) were weighted with
the participant’s average model accuracy from the multivariate
logistic ridge regression (Accuracymvr) to compute a weighted
average t-statistics (tavg) across the test sample (Unni et al., 2017)
as shown below.

tavg (i) =

∑i, n
i, n = 1 t (i) ∗ Accuracymvr (n)

∑n
1 Accuracymvr (n)

(4)

Here, i refers to the total number of fNIRS channels and n
indicates the total number of participants. We calculated Cohen’s
d for each channel from tavg to indicate the effect sizes in
sensor space.

Cohen′s d (i) =
(tavg (i))2

√

df
(5)

Here, df refers to the degrees of freedom.We report these Cohen’s
d brain maps for the group-level analyses.

RESULTS

Data from one participant was excluded due to simulator sickness
during the experiment. Thus, data from 12 participants are
reported in the following sections.

Questionnaire Results
The results of the trust-related items from the questionnaire are
shown in Table 1. The mean score for the overall trust-related
items in the questionnaire was 3.8 (out of 6) indicating a high
trust in AVs. The Cronbach alpha for the trust-related items was
0.78, indicating that these items have an acceptable reliability
or internal consistency. Furthermore, 7 out of 12 participants

TABLE 1 | Results from the trust-related items of the post-experiment

questionnaire.

Item Mean score ±

SD

I accept AVs on the roads. 4.2 ± 1.3

AVs are safer than HVs. 4.0 ± 1.5

I trust AVs more than HVs. 3.9 ± 1.4

I behaved differently in my interactions

with AVs compared to HVs.

3.2 ± 1.2

Overall 3.8 ± 0.9

FIGURE 4 | Gap acceptance vs. gap size over all participants for HV (blue)

and AV (red). The marker size represents the total number of events for the

corresponding gap size. A logistic model was fit to each condition.

stated that they turned in front of an AV preferably, when
asked about a specific strategy for AVs. It is possible that these
participants may feel that the interaction with a programmed
vehicle is more controllable than with a human driver due to the
AVs’ perceived predictability. Another possible explanation could
be that the participants potentially tried to exploit the defensive
programming behavior and driving performance of AVs solely
based on the cover story to gain a temporal advantage during the
drive and achieve the bonus.

Behavioral Results
Figure 4 shows the gap acceptance probability in relation to the
gap sizes by fitting the logistic model for HVs and AVs. Gap
sizes were grouped in 0.35 second steps. The gap acceptance
events were pooled over all participants. The models’ widths (w)
describing the difference between the 5 and 95% point of the
model for AVs and HVs were wAV = 0.65 s (0.59–1.25 s) and wHV

= 4.17 s (2.87–5.04 s), respectively. This is indicated by a steeper
slope for AV as compared to HV in Figure 4.

The models’ threshold values indicating the 50% gap
acceptance for AVs and HVs were mAV = 3.09 s (2.96–3.20 s) and
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mHV = 3.08 s (2.75–3.30 s), respectively. The difference in the
threshold values is 0.04m. Themodels’ threshold values and their
corresponding confidence intervals show an overlap, suggesting
that these distributions do not differ significantly.

Prediction of Human-Human or
Human-Autonomous Interaction From the
Decoding Model
Using the multivariate logistic ridge regression model, we were
able to predict the type of traffic agent (AV or HV) in the
decision-making phase from whole-head fNIRS brain activation
measurements with an average prediction accuracy and F1-score
of 67.2% (SD = 3%) and 0.67 (SD = 0.05) respectively, across
all participants. Prediction accuracies obtained in line with the
measured dataset exceeded the 95% confidence interval (CI)
for guessing for all participants. Table 2 reports the individual
prediction results for all participants along with the CI for
the empirical chance level. All multivariate predictions reported
in Table 2 were determined on a 5-fold cross-validation to
evaluate the model’s generalization to new data to approximate
an online analysis.

This is to our knowledge the first evidence that brain
processes may differ in the interactions between human driven
and autonomous cars. Together with the behavioral results, this
suggests that human driver may assess the interactions with AV
differently from interactions with HV.

Effect Sizes Discriminating Turning in Front
of AV vs. HV From fNIRS Brain Activation
Figure 5 shows the Cohen’s d brain maps for the group-level
analysis. We visualized the averaged brain map on the MNI 152
brain in Neurosynth1 and used MRIcron2 to determine MNI
coordinates and the corresponding Brodmann areas (BA) for the
brain areas with increased activation differences during the left-
lane turning decision-making phases for AVs as compared to
HVs.

Table 3 lists the brain areas, the MNI-coordinates of the
difference maxima and the Cohen’s d values as indicators of the
effect sizes from the group-level analyses (n= 12).

The results showed the largest effect sizes of brain activation
in the prefrontal cortex (PFC), reflecting activation changes in
the left and right dorsolateral areas (dlPFC; putative BA 46) and
the left ventrolateral prefrontal (vlPFC; putative BA 45) areas
(Cohen’s d ∼ 0.9–1.2). Additionally, the ventromedial prefrontal
areas (vmPFC; putative BA 10) also indicate increased activation
differences while turning in front of AV as compared to HV
(Cohen’s d ∼ 0.9). These prefrontal areas have been previously
implicated in the valuation of actions during decision-making
(Sanfey, 2007; Lee, 2008; Rangel et al., 2008; Hollmann et al.,
2011; Ruff and Fehr, 2014). Furthermore, the superior frontal
gyrus (SFG) and parts of the motor cortices (putative BA 6) also
show increased activation differences between the turning phases
of AV and HV.Moreover, some informative channels can be seen
in the left superior parietal areas (putative BA 7). Overall, our

1http://neurosynth.org
2https://www.nitrc.org/projects/mricron T
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FIGURE 5 | Cohen’s d brain maps representing effect sizes computed from channel-wise weighted averaged t-statistics (tavg) for the group-level analysis. Moderate to

high Cohen’s d values (0.8–1.2) show medium to large effect sizes indicating increased activation differences for the decision-making phase during turning in front of

AV as compared to HV.

TABLE 3 | Brain areas showing increased activation differences in the decision-making phase during turning in front of AVs compared to HVs.

Brain areas Putative Brodmann area (BA) X Y Z Cohen’s d

Left dorsolateral prefrontal 46 −26 62 26 1.20

Right dorsolateral prefrontal 46 24 60 32 0.81

Ventromedial prefrontal 10 4 58 28 0.93

Left ventrolateral prefrontal 45 −48 42 28 1.10

Left superior frontal gyrus 6 −34 10 60 0.87

Right superior frontal gyrus 6 16 4 76 0.93

Left superior parietal 7 −28 −62 68 0.86

The approximate MNI coordinates of activation differences along with the putative Brodmann areas and their Cohen’s d values are shown.

results demonstrate a consistent difference in activation at the
brain-level and these activation differences occur in brain areas
that have been previously related to decision-making.

DISCUSSION

The main promise of autonomous driving is that AVs will
reduce traffic accidents caused by human errors and hence be
safer than HVs. The aim of this study was to investigate if
there is a difference between the valuation of actions when an
interaction involves technical systems such as AVs as compared
to similar interactions with other HVs. Moreover, we wanted to
investigate if these potential differences in human-human and
human-autonomous vehicle interactions can be characterized
from behavior and neurophysiological whole-head fNIRS brain
activation measurements. We believe that this research goal is
extremely relevant in the present situation since some studies
have shown that humans could actively exploit the predictable
and safe behavior of AVs. With the knowledge that AVs are
programmed to be risk-averse, humans tend to act with impunity
while interacting with AVs (Millard-Ball, 2018; Trende et al.,
2019; Liu et al., 2020). Our results provide evidence that humans
show a difference in the valuation of actions in the decisions they
make in such situations depending on whether they interact with
an AV or a HV and this is expressed in fNIRS brain activation
and partly in the behavioral tendencies.

We investigated differences in human-human and human-
autonomous interactions using a full-scale fixed base driving. In
our cover story, we mentioned that the AVs were defensively

programmed in an interaction and drove conservatively to avoid
collisions and had faster braking reaction times than HVs as
this is the expected programming of AVs (Zhan et al., 2016; Li
and Sun, 2018). However, both, AVs and HVs were simulated
according to the same driving behavior.

Results of our gap acceptance model showed that the
confidence intervals of the threshold parameter (m) of the
gap acceptance models overlapped, indicating that there is no
significant difference between the safety margin used during the
turning maneuvers with respect to AVs or HVs. Furthermore,
we observed differences in the model widths, which describes
the 5–95% point of the AV and HV models. The models’ width
parameters indicated that the AV distribution is steeper than the
HV distribution. The steeper slope for AV could be interpreted as
participants tended to be more certain in their decision-making
process while turning in front of AV as reflected by the smaller
variance in gap size acceptance as compared to HV. Similarly,
the shallower slope for HV could indicate that participants
have larger uncertainty in their decision-making process while
interacting with HV during the lane-turning maneuver. We
assume that the participants may have felt more certain while
interacting with AVs due to their perceived predictability and
potentially tried to exploit the defensive strategy of AVs. The
participants may have overestimated the AVs’ alleged defensive
behavior despite the fact that AVs showed the same driving
behavior as HVs in order to gain a temporal advantage in the
experiment. This assumption is further supported by the results
of a trust questionnaire. The mean score for the item “I trust
AVs more than HVs” was 3.9 (on a scale of 1–6) supporting
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the claim that the participants may have overestimated the AVs’
alleged driving behavior and underestimated the technological
limitations of AVs. This automation complacency regarding the
AVs’ safe functioning in the simulation could potentially lead to
dangerous situations (Parasuraman and Riley, 1997).

The neurophysiological results indicate that our approach of
using whole-head fNIRS in combination with a cross-validated
multivariate logistic ridge regression is suitable to predict the type
of involved traffic agent (AV or HV) while making a decision to
turn. This approach allowed us to exploit the spatial specificity of
whole-head fNIRS, in order to predict the traffic agent involved
at the crossing with an average accuracy of approximately 67%
(SD = 3%) across all participants and up to a maximum of
almost 76% on a single-subject level. It is important to note that
these cross-validated predictions are obtained from just 4 s of
fNIRS data in the decision-making phase demonstrating that our
approach of combining multivariate logistic ridge regression and
cross-validation and exploiting the spatial specificity of whole-
head fNIRS has the potential to predict the interaction partner in
time-critical situations. While the predictions might not be very
high, we have previously shown that even imperfect predictions
regarding the driver’s intent can be useful to develop driver
models which can lead to increased safety during interactions
between AVs and HVs in mixed traffic environments (Damm
et al., 2019).

To characterize the neural correlates for the decision-making
phase in human-human and human-autonomous interactions,
we computed the channel-wise Cohen’s d measures as effect sizes
for the fNIRS brain activation over the AV and HV turning
conditions in a group-level analysis. Our initial hypothesis was
that human-autonomous vehicle interaction would result in
increased modulations in the prefrontal areas such as the dorsal
and ventral frontal areas, frontal midline brain areas such as the
ventromedial prefrontal areas and the anterior cingulate cortex,
since these brain areas are thought to represent the values of
actions taken (Sanfey, 2007; Rangel et al., 2008; Ruff and Fehr,
2014). Due to the limited spatial depth of fNIRS, we could not
observe the activity in the anterior cingulate cortex. However,
the group-level analysis revealed increased fNIRS activation in
the prefrontal areas such as the dorsolateral (putative BA 46),
left ventrolateral (putative BA 45), ventromedial prefrontal areas
(putative BA 10), the superior frontal gyrus and parts of the
motor cortices (putative BA 6) when participants turned in front
of the AV as compared to HV. The activation in these brain
areas could potentially reflect the differences in valuation of
actions when turning in front of an AV as compared to HV. The
prefrontal cortex is an important brain area that subserves higher
order executive functions necessary for the cognitive control
of behavior and decision-making. The dorsolateral prefrontal
areas (putative BA 46) show increased activation during risky
decision-making where costs and benefits are weighed (Duncan
et al., 1996). BA 45 has been associated with reasoning and goal-
intensive processing (Goel et al., 1998; Fincham et al., 2002).
The ventromedial prefrontal cortex (putative BA 10) has been
shown to be a part of the reward-processing mechanism elicited
by emotional processes, which plays a vital role in determining
value-based decision-making (Sanfey, 2007). Moreover, some

studies have shown the role of the dorsolateral and ventromedial
prefrontal areas to be involved in uncertainty during the
decision-making processes (Schienle et al., 2010; Stern et al.,
2010; Wever et al., 2015; Tomov et al., 2020). This can be linked
to our interpretation of our behavioral results which show a
difference in the certainty of the driver during the planning and
execution of the turning maneuver in the decision-making phase
while interacting with AVs or HVs.

Previous studies have shown the role of the superior
frontal gyrus in processing emotions and self-reflections in
decision-making (Deppe et al., 2005; Goldberg et al., 2006).
Additionally, the involvement of the BA 6 in motor functioning
such as planning and execution of motor activities is well-
known (Catalan et al., 1998; Hanakawa et al., 2008) suggesting
differences in the underlying brain processes during interactions
with AVs and HVs.

In our study, some participants (7 out of 12) mentioned
that they deliberately took the gap in front of the AVs
because they assumed it would brake due to the alleged
defensive behavior. This is a dangerous assumption since
all the vehicles in the simulation including HVs and AVs
were simulated according to the same driving behavior. The
participants overestimated the behavior and driving performance
of the vehicles solely based on the cover story about the
defensive programming of the vehicles and ignored the visual
evidence based on the similar driving behavior of AVs and
HVs. This is a classic example of “misuse of automation” as
defined by Parasuraman and Riley (1997) as an overreliance
of automation. This automation complacency may lead to
dangerous traffic situations or even accidents in case of
excessive overestimation of the reaction time of the AV or
sensor failure (Parasuraman and Manzey, 2010). Most of the
participants in this study believed that AVs are safer. The
findings of this study may be important in mixed traffic
environments where both HVs and AVs are participating in
the traffic. The software controlling AVs should be able to
account for the fact that humans may behave riskier during
interactions. Furthermore, it would be interesting to investigate
how human drivers would behave if the AVs were able to retaliate
uncooperative or risky driving behavior by providing clearly
visible cues. Future studies could investigate if the behavior
of the human driver changes and if this is reflected in a
change of the action valuation signals in the brain activation
becomingmore similar to the activations observed in interactions
with HVs.

The current study has a few limitations. The experimental
design of the gap sizes did not feature sufficient samples with gap
sizes in the range of 3–6 s. This leads to fewer events within this
range. Furthermore, it should be mentioned that the experiment
was conducted with a rather homogenous participant pool. The
participants were mainly between 21 and 29 years and from an
academic background. This group is generally associated to have
high trust in technology (Kennedy et al., 2008) whichmay have an
impact on the results from the subjective questionnaire regarding
high trust in AV. We suspect that participants with low trust in
technology in general and less trust in the safe functioning of
AVs in particular will behave differently in such an experiment
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leading to a shallower slope in gap acceptance function for AVs.
In this study, the only relevant factors for the gap acceptance
model were the gap size and traffic agent involved, i.e., HVs or
AVs. Several studies argue that the gap acceptance also depends
on personal characteristics such as age, gender, or intersection
characteristics (Darzentas et al., 1980; Bottom and Ashworth,
2007; Yan et al., 2007) which have not been considered in
this study.

The brain areas characterized in this study have been
shown to be involved in determining the valuation of actions
during social interactions in lab-based settings. These neural
correlates could be used to develop control systems for
interactions with AVs at intersections based on the behavioral
tendencies of the driver. Moreover, neurophysiological measures
could be used as an indicator to predict the intent of the
driver in such human-autonomous interactions. Furthermore,
integrating such neurophysiological sensors in control systems
could potentially optimize the performance of the AVs
under safety constraints in mixed traffic environments in
the future.
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