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Editorial on the Research Topic

Multiplex Immunohistochemistry/Immunofluorescence Technique: The Potential and Promise
for Clinical Application

Conventional immunohistochemistry (IHC) has long been regarded as the “gold standard” for
the diagnosis of tissue pathology. However, the diagnostic-prognostic value of this technique
is limited by factors such as high inter-observer variability, restricted labeling potential
and insufficient availability of samples for testing (Tan et al., 2020). However, the emergence
of multiplex immunohistochemistry/immunofluorescence (mIHC/IF) techniques has
provided an opportunity to overcome many of these challenges. These techniques facilitate
investigation of multiple biomarkers on a single slide as well as exploration of tissue-level
biology, classification of cell-cell interactions, and identification of rare cellular phenotypes.
mIHC/IF is also a powerful supplement to technologies such as next generation sequencing.
As such, mIHC/IF holds the potential to revolutionize cancer therapies and diagnostic
pathology (Tan et al., 2020; Hernandez et al.; Lazcano et al.; Parra). In this special edition of
Frontiers in Molecular Biosciences we review the importance and clinical translational potential of
mIHC/IF.

The COVID-19 pandemic has resulted in an urgent need to understand the implications of
myocardial involvement in disease mortality, necessitating detection of viral components within
tissue samples. Chong et al., used a combination of mIHC/IF and molecular techniques to examine
cardiac autopsy specimens from 12 intensive care unit (ICU) naïve, SARS-CoV-2 PCR-positive
patients. These novel findings revealed histopathologic changes in coronary vessels, as well as
inflammation of the myocardium in these patients. This study provided crucial insights into the
characteristics of COVID-19 patients at risk of sudden death, and suggested the possibility of long-
term complications in patients with persistent virus (Chong et al.).

As well as detecting viral particles within tissue samples, mIHC/IF can be used to explore the
tumour immune microenvironment (TIME). Through the development of a multiplex panel for
the identification of proliferating B cells, follicular helper T cells, and follicular regulatory T cells,
Boisson et al., demonstrated the power of mIHC/IF for studying marker co-localization in
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individual tissue sections and highlighted the potential application
of this technique in clinical practice (Boisson et al.).

To exploit the translational potential of mIHC/IF, Wharton
et al., proposed that, until greater levels of standardization across
mIHC/IF protocols and pipelines are established, diagnostic
laboratories will play a critical role in driving the adoption of
multiplex tissue diagnostics through retrospective analysis of
clinical trial samples and development of reproducible
diagnostic assays (Wharton et al.). In addition, Hoyt provided
a discussion of the requirements for the use of mIHC/IF in
medical applications and offered suggestions on assay
development/improvement. In light of growing health
economic concerns in the field of immuno-oncology and the
need for tests that precisely predict responses to costly
immunotherapies/cell therapies, the translation of mIHC/IF
into clinical practice is of paramount importance (Hoyt).

Analysis of the spatial distribution of cells within the tumor
microenvironment by mIHC/IF provides important, clinically
relevant information; however, with the availability of
multiple spatial analysis tools, choosing the correct
algorithm remains a challenge. As such, development of
robust, standardized analysis pipelines and consensus on
their application is necessary to fully exploit the benefits
of this technique (Lazcano et al.). In this regard, Parra
discussed the analysis of mIHC/IF, with a particular focus
on interrogating spatial cellular distribution and concluded
that assessment of cell phenotype compartmentalisation and
nearest neighbour analysis is the simplest approach to
identification of patterns of distribution and cellular
interaction (Parra). Similarly, Hernandez et al., noted that
in-depth spatial analysis of formalin-fixed, paraffin-
embedded patient samples using mIHC/IF facilitates
patient stratification for immunotherapy, as well as
identification of prognostic and predictive immune
biomarkers. Despite these obvious benefits, several
limitations were also revealed, including tyramide signal
over-reactions, fluorophore constraints and the challenges
associated with accurate data interpretation. Thus, a
thorough understanding of both the technique and cellular
biology are necessary to achieve optimum high-quality data
with mIHC/IF (Hernandez et al.).

Apaolaza et al., also highlighted the need for standardized,
reproducible image analysis tools for understanding disease
pathology and combating the propensity for bias associated
with manual analysis. Implementation of such tools may be
informative for the improvement and design of novel
therapeutic strategies (Apaolaza et al.).

The importance of standardization and quality control is
further emphasized by Laberiano-Fernández et al., who

highlighted the importance of refining, standardizing and
validating the mIHC/IF workflow at the pre-analytical,
analytical and post-analytical stages. Laberiano-Fernández
et al. also emphasized the importance of antibody
selection, optimization and validation as well as the need for
the extensive review of panel design and multiplex staining.
Similarly, through retrospective assessment, Lazcona et al.,
demonstrate the importance of assessing tumor content,
sample size, and percentages of necrosis and fibrosis for
pathology quality control (PQC) in mIHC/IF image
analysis (Lazcano et al.). Through workflow standardization
and robust PQC, it is hoped that mIHC/IF will become
a cornerstone of diagnosis and prognosis in the clinical
setting through its incorporation in Clinical Laboratory
Improvement Amendments (CLIA) (Laberiano-Fernández
et al.).

In conclusion, this special edition encompasses the whole
spectrum of current mIHC/IF work, from discovery findings
(Boisson et al.; Chong et al.) to translational research
(Apaolaza et al.; Hernandez et al.; Hoyt), to guidelines for
actual clinical implementation (Laberiano-Fernández et al.;
Lazcano et al.). The majority of articles included in this
research topic demonstrate the desire of both
researchers and clinicians to implement this revolutionary
technique into daily clinical practice to ultimately
benefit patients. Currently, multiple taskforces and
working groups including the Society for Immunotherapy
of Cancer (SITC) (Taube et al., 2020) and the Joint Effort
to Develop multiplex Immunofluorescence standards (JEDI)
council (Nelson et al., 2021; Surace et al., 2021) are
working to pave the way for clinical mIHC/IF
implementation. Their work includes the writing of expert
consensus guidelines and assay checklists; extensive
investigation of potential technique errors and generation
of technical solutions; standardisation of analysis and
evaluation tools; and continued communication with
regulatory agents and authorities to understand the gaps
and challenges faced in meeting the requirements for
clinical application.

With all these efforts, we anticipate that the clinical
implementation of mIHC/IF, under proper guidelines and
quality assurance/control programs, will come to fruition
within the next couple of years.
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Multiplex Immunofluorescence
Tyramide Signal Amplification for
Immune Cell Profiling of
Paraffin-Embedded Tumor Tissues
Sharia Hernandez, Frank Rojas, Caddie Laberiano, Rossana Lazcano, Ignacio Wistuba
and Edwin Roger Parra*

Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX,
United States

Every day, more evidence is revealed regarding the importance of the relationship
between the response to cancer immunotherapy and the cancer immune
microenvironment. It is well established that a profound characterization of the immune
microenvironment is needed to identify prognostic and predictive immune biomarkers.
To this end, we find phenotyping cells by multiplex immunofluorescence (mIF) a powerful
and useful tool to identify cell types in biopsy specimens. Here, we describe the
use of mIF tyramide signal amplification for labeling up to eight markers on a single
slide of formalin-fixed, paraffin-embedded tumor tissue to phenotype immune cells in
tumor tissues. Different panels show different markers, and the different panels can
be used to characterize immune cells and relevant checkpoint proteins. The panel
design depends on the research hypothesis, the cell population of interest, or the
treatment under investigation. To phenotype the cells, image analysis software is used
to identify individual marker expression or specific co-expression markers, which can
differentiate already selected phenotypes. The individual-markers approach identifies a
broad number of cell phenotypes, including rare cells, which may be helpful in a tumor
microenvironment study. To accurately interpret results, it is important to recognize
which receptors are expressed on different cell types and their typical location (i.e.,
nuclear, membrane, and/or cytoplasm). Furthermore, the amplification system of mIF
may allow us to see weak marker signals, such as programmed cell death ligand
1, more easily than they are seen with single-marker immunohistochemistry (IHC)
labeling. Finally, mIF technologies are promising resources for discovery of novel cancer
immunotherapies and related biomarkers. In contrast with conventional IHC, which
permits only the labeling of one single marker per tissue sample, mIF can detect multiple
markers from a single tissue sample, and at the same time, deliver extensive information
about the cell phenotypes composition and their spatial localization. In this matter, the
phenotyping process is critical and must be done accurately by a highly trained personal
with knowledge of immune cell protein expression and tumor pathology.

Keywords: immune microenvironment, multiplex immunofluorescence, immune profiling, cell phenotyping,
immunotherapy
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INTRODUCTION

Recently, crucial developments in cellular immunology helped
facilitate the translation of immunologic concepts into new
immunotherapies. In cancer immunotherapies, the immune
system is activated to strike tumor cells through natural
mechanisms that were lost or evaded during disease progression
(Riley et al., 2019). Instead of directly killing cancer cells, these
therapies aim to improve antitumor immune responses, with
fewer off-target effects than are observed with chemotherapy
agents, shifting the cancer treatment paradigm (Mitchison, 1955;
Rosenberg, 2014; Parra et al., 2018; Riley et al., 2019).

The tumor microenvironment consists of tumor cells,
immune cells, fibroblasts, tumor vasculature, and the
extracellular matrix. Their interactions can promote tumor
transformation, tumor protection from host immunity, tumor
growth, and tumor invasion and can foster therapeutic resistance
(Yu and Cui, 2018). To determine the effect of the host immune
response to tumor formation and invasion, researchers can
analyze immune components and their organization within
human tumors. Because immune infiltrates differ between tumor
types and even between patients, an analysis of the location,
density, and spatial orientation of the different immune cell
populations in large annotated collections of human tumors
allows for the identification of beneficial immune components,
as well as those that might indicate a poor prognosis (Fridman
et al., 2012; Pilla and Maccalli, 2018).

An increasing number of studies have characterized immune
infiltrates for T-cell subsets, B cells, macrophages, etc., and
some studies have also included activation and functional
markers (Bethmann et al., 2017). Immune profiling can be
achieved through various technologies, such as conventional
technologies [e.g., single immunohistochemistry (IHC) and
early-generation fluorescence-based flow cytometry] and
multiplex technologies (Parra et al., 2016; Taube et al., 2020;
Wang et al., 2020). Conventional technologies, such as single
IHC, have many limitations, including fewer available analysis
parameters, a greater sample quantity requirement, and
sometimes overlapping detection signals. The newer and
higher-dimensional technologies avoid many of these limitations
(Chuah and Chew, 2020).

Over the last years, multiplex techniques are widely defined
as technologies used to identify multiple biological markers
in different tissue samples (Dixon et al., 2015; Taube et al.,
2020). Using these technologies, individual cells can be assessed
with extraordinary fidelity, and rare cell populations can be
studied, providing unique biological information that, in many
cases, cannot be obtained by conventional techniques (Parra
et al., 2019a). Multiplex technologies are based on the analysis
of the expression of proteins of interest, which correspond
to specific cell types and biological processes, providing an
insight about cell characteristics and their biological interactions.
Additionally, the resulting single-cell data can be analyzed
using qualitative and quantitative approaches in the context
of the original spatial arrangement of the tissue cells (Rashid
et al., 2019). The spatial cell distributions can be analyzed
to link their biological interactions with the morphological

characteristics of tumoral tissues (Barua et al., 2018). Compared
to previous tissue analysis methods, multiplex technologies
provide a more comprehensive view of tissue composition and
marker distribution (Bodenmiller, 2016).

In this setting, we find multiplex immunofluorescence (mIF)
a powerful and useful tool to identify different cell phenotypes
in biopsy specimens. In this article, we describe the use of mIF
tyramide signal amplification to for immune cell profiling of
formalin-fixed, paraffin-embedded tumor tissues.

PANEL DESIGN AND SELECTION

Designing a mIF panel for a specific project requires selecting and
validating appropriate antibodies chosen by a multidisciplinary
team of experts in oncology, pathology, and immunology, to
ensure that the panel will appropriately address the aims of the
project and be able to comprehensively and coherently identify
the specific cell phenotypes of interest (Parra et al., 2017, 2020b).
Researchers can create panels with groups of markers to study
different immune cell populations [using programmed cell death
ligand 1 (PD-L1) and programmed cell death 1 (PD-1)], T-cell
behavior (using stimulatory and regulatory T-cell markers), and
myeloid cell populations (using more targeted panels). Besides,
every panel can be customized depending on the type of tumor.
For example, cytokeratin antibody can be used as an epithelial
tumoral marker (Krishna, 2010), glial fibrillar acidic protein as
a glioblastoma marker (Guichet et al., 2016), SOX10/S100 as
a melanoma marker (Mohamed et al., 2013), and vimentin as
a marker for some sarcomas (Figure 1). We can use different
immune markers in the mIF panels to identify more specific
phenotypes, such as using TMEM119 to identify microglia in
brain tissues (Satoh et al., 2016).

TISSUE SELECTION

Ideally, formalin-fixed, paraffin-embedded tumor samples should
be at least 10 mm × 2 mm, with tumor cells accounting for at
least 10% of the biopsy specimen. Furthermore, a threshold of
100 malignant cells identified by markers is considered necessary
to minimize the risk of errors in the analysis and interpretation of
the samples, as is the case of PD-L1 expression (Tsao et al., 2018).
During the analysis, necrotic areas, such as those observed in
tumors treated with neoadjuvant therapies, should be excluded,
as should material secreted by tumors, such as mucus, that can
limit the quality of the analysis, and the results containing these
characteristics should be excluded. Thus, a pathology quality
assessment is a very important and necessary step for the selection
of oncology samples (Parra et al., 2017).

TISSUE AND CELL SEGMENTATION FOR
CELL PHENOTYPING

Overall, the image analysis software, Inform software (Akoya
Biosciences), needs to have tools for different purposes, such as
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FIGURE 1 | Composites of tumor samples stained with different tumor and epithelium antibodies. (A) Intraductal papillary mucinous neoplasm epithelium with
cytokeratin (CK). (B) Glioblastoma glial cells with glial fibrillar acidic protein (GFAP). (C) Melanoma with nuclear SOX10. (D) Sarcoma with vimentin.

tumor compartmentalization. Tumor compartmentalization will
depend on the markers included in a panel. For this purpose,
and based on the expression or absence of tumor markers (e.g.,
cytokeratin and SOX10/S100), we can divide the image into
tumor cell nests and the stromal compartment (Parra et al.,
2020b). The tools need to be flexible enough to identify other
compartments, such as vessel areas, necrotic areas, and empty
space as glass areas (areas without tissue).

Training a software to individualize the cells is crucial
and one of the key steps to obtain accurate data. For
this purpose, 4’,6-diamidino-2-phenylindole is useful, and
it is used for nuclear quantitation to visualize nuclear
DNA in formalin-fixed, paraffin-embedded tissues (Tarnowski
et al., 1991). It can be used alone or in combination with
membrane markers, such as CD3, or cytoplasmic markers,
such as cytokeratin, to better identify and individualize
the cells. Modifying parameters, such as nuclear size and
nuclear staining thresholds, or using tools that combine such
parameters is essential to better identify and individualize cells.
Because every tumor and sample are different, adjusting these

parameters based on tumor type will probably be necessary
(Supplementary Figure 1).

IMPORTANCE OF MARKER
IDENTIFICATION

Correct understanding of the individual markers in a mIF
panel is crucial to identify different cell phenotypes in tumor
tissues. Identifying individual markers and identification of the
combination of different markers at different levels are distinct
approaches that have a similar goal: cell phenotyping, or the
final identification of the marker’s co-expression by the same
cells. Individual markers, such as the ones used in mIF panels,
are complex and can be co-expressed in multiple cells. The
image analysis tools can facilitate the creation of thresholds for
individual markers, based on the pathology visualization and
multiple rounds of software training (Figure 2). To create such
thresholds, both the morphology of the stained cells and the
subcellular compartment that is stained must be considered.
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FIGURE 2 | Developing a phenotyping algorithm for an intraductal papillary mucinous neoplasm image. (A) Composite image. (B) Cell segmentation with red lines
surrounding the cells. (C) Phenotyping examples. (D) Phenotype result of the software after training. White-framed rectangles on the images identify the same area in
the four images, and this area has been amplified in the white-framed rectangles on the upper right of each panel.

FIGURE 3 | Multiplex immunofluorescence panel showing different cell phenotype co-localizations in tumor and immune cells from a non-small cell lung cancer
sample. (A) Marker expression of malignant cells with cytokeratin (CK) and co-localization with PD-L1 + and Ki67 +. (B) Marker expression of CD3 + on immune
T-cells, expression of CD8 + cells, expression of PD-1 + cells, and co-localization with CD3 + CD8 + for cytotoxic T-cells, Ki67 + CD3 + CD8 + for cytotoxic
proliferative T-cells, and CD3 + Ki67 + PD-1 + for activated proliferative T-cells. The composite image with all the markers is localized in the upper center of the image.
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FIGURE 4 | Marker expression in a hepatocellular carcinoma sample. (A) Low-magnification image with white-framed rectangles showing two CD3 + cells (indicated
by yellow arrows) seen with high magnification at the bottom right of the panel. (B) Low-magnification image with white-framed rectangles showing the same two
CD3 + cells with co-localizations: CD3 + Foxp3 + CD45Ro (indicated by a red arrow) and CD3 + CD45Ro (indicated by a yellow arrow) seen with high magnification
at the bottom right of the panel.

As an example, PD-L1 is expressed by the membrane of
tumor cells and macrophages, but because lymphocytes are
small cells with very scarce cytoplasm that cannot always be
distinguished from the cell membrane, we consider strong
lymphocyte cytoplasmic and/or membrane expression to be
positive expression. As another example, some cells, such as
hepatocytes, can constitutionally express arginase-1 (Yan et al.,
2010). However, myeloid cells also express arginase-1 (Grzywa
et al., 2020), so co-localization of arginase-1 with cytokeratin in
hepatocytes or with CD68 in macrophages helps us to identify
the cell phenotype of interest. Also, co-localization can help to
distinguish between real staining and artifacts or background.
If we have doubts in a subset of cells (e.g., some that express
CD8, Foxp3, or PD-1, which can all also be expressed by T-cells),
we can always visualize the CD3 co-expression to be sure of
the marker expression of that specific cell. Nevertheless, negative
controls always need to be included to avoid the autofluorescence
that certain tissues emit during the preparation of the image
and to obtain a clearer signal, taking off any interference of the
autofluorescence.

MARKER CONSOLIDATION AND
ASSESSMENT OF CELL PHENOTYPES

Because a single cell can express many immune markers,
individual marker analysis is usually a very efficient approach and
can result in a large variety of cell phenotypes in the consolidation
step, which uses consolidation software, such as R-studio (Ye,
2016) and SAS (Dembe et al., 2011). The data need to be placed
in a comprehensive table categorizing immune cell phenotype
(co-expression of markers) densities or percentages. The data
also need to be reviewed and pass a quality control to ensure
their accuracy. For example, the total number of cells should
be similar to the quantity of cells observed while processing
the image samples. We have also found that processing images,

while qualitative, allows a pathologist to become familiar with
the images and detect “odd” numbers that do not correlate
with the nature of cases. When using multiple mIF panels
to study samples, it is important to incorporate a common
marker as an internal control in each panel. For example, CD3
is usually used in different mIF panels to study lymphocyte
subpopulations. Although different levels of the formalin-fixed,
paraffin-embedded biopsy specimens are used, we always try to
obtain close cut levels during the staining process of the sample
to achieve similar cellularity between panels. This goal makes it
possible to compare immune cell phenotypes or total tumor cell
numbers to detect a consolidation or processing error. Granted,
there is always the possibility of finding differences between
similar levels of the same biopsy specimen related to the natural
geographic changes of the cells. Pathology comments added to
the different samples are very important not only to explain those
changes but also to have a retrospective record of what happened
with a specific image analysis sample.

To assess cell phenotypes according to the markers in a
panel, we use the information given by the image analysis
software about the marker expression of each individual cell
according to their X and Y coordinates on the image. In this way,
with the data consolidation, we can determine all the markers
expressed by a single cell and, with this information, identify
specific cell phenotypes. Commonly, many cell phenotypes
can be identified according to markers in a mIF panel.
Panels aimed to study lymphocytes can identify specific cell
phenotypes (Figure 3), such as cytotoxic T-cells (CD3+ CD8+),
regulatory T-cells (CD3 + CD4 + FOXP3 +), memory T-cells
(CD3 + CD45RO +), or T-cells expressing immune checkpoint
markers, such as CD3 + PD-1 + or CD3 + PD-L1 + (Figure 4).
The marker combinations are unlimited and, depending on the
panel and markers, are able to show activation of markers, such
as OX40 in tumor cells (CK + OX40 +) and rare cells, such as
cytotoxic T-cells that express immune checkpoints (e.g., CD3,
CD8, PD-1, and PD-L1; Figure 5).
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FIGURE 5 | OX40 expression in tumor cells in a non-small cell lung cancer sample. (A) Composite with all the markers. White rectangle shows tumor cells with
co-localization of cytokeratin (CK, cyan) and OX40 (yellow). (B) Composite with all markers except cytokeratin. The white-framed rectangle is the same area as in (A).

FIGURE 6 | Same areas of a glioblastoma sample with different stainings. The glioblastoma sample stained with (A) hematoxylin and eosin and with (B) PD-L1
immunohistochemistry. It is important to note the challenge to differentiate immune cells from tumoral cells. (C) The glioblastoma sample stained using multiplex
immunofluorescence (mIF). Using mIF allows us to differentiate lymphocytes from tumor cells (as seen in 3 CD3 + lymphocytes staining red and glial fibrillar acidic
protein staining cyan). (D) mIF with only PD-L1-positive cells. White-framed rectangles in all the images highlight the same area of the sample, which is augmented in
the rectangles on the upper right of each panel.

The availability of unlimited combinations of markers opened
new ways to study tumor tissues, making the study of multiple
markers possible. Additionally, while being a challenge when

using standard methods, such as single IHC, differentiating
the cell types that express these markers (e.g., tumor cells
from immune cells) has also been made possible (Parra, 2018;
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FIGURE 7 | Examples of multiplex immunofluorescence capabilities for tissue immune cell phenotyping spatial analysis.

Parra et al., 2019b). We have found this ability to differentiate
the cells very useful in the study of PD-L1 in glioblastoma
samples, because PD-L1 can be expressed by tumor cells,
microglia, macrophages, and lymphocytes, with a wide range
of patterns of tumoral morphology, making it very challenging
to discriminate a cell with only single IHC (Figure 6)
(Chen et al., 2018).

When we perform data consolidation, we can study not only
the density of cell phenotypes but also the spatial placement
of those cells in the tumor, allowing for the study of possible
excitatory or inhibitory signals related by their proximity with
the tumor cells or their neighbors. Phenotyping of cells in situ
allows to establish those cells located close enough to interact
with each other in immune activity. This approach is achieved
using a different software, such as R-studio or SAS with the X and
Y coordinates of each cell given by the image analysis software
(Nagl et al., 2016; Lazarus et al., 2018). Other methods can be
used, such as spatial metrics from the G-function (Barua et al.,
2018) or infiltration analysis, to determine the number of objects
or cells within a set range of an annotated region of interest
(Kather et al., 2018) (Figure 7).

TUMOR IMMUNE PROFILING

In recent years, many studies have demonstrated the significance
of tumor immune infiltrate densities, cell phenotypes, and
spatial localization for the prediction of clinical outcomes,
survival, and response to treatment (Pilla and Maccalli,
2018; Parra et al., 2020a). The direct simultaneous evaluation of
immune tumor-related interactions and their spatial localization
in a single tissue sample using multiplex techniques may
allow a more accurate patient stratification for immunotherapy
(Cascone et al., 2020; Provencio et al., 2020). A study that used
multiplex IHC in head and neck squamous cell carcinomas
showed a high infiltration of CD8 + T-cells and other T-helper
type 1-associated immune infiltrates, indicating the presence

of anti-tumor immunoreactivity. Furthermore, portion of these
tumors exhibited the high myeloid cell infiltration profiles, and
these tumors were associated with a poor prognosis. In the same
study, the authors revealed that the response of pancreatic ductal
adenocarcinomas to neoadjuvant vaccination therapy correlated
with the grade of mono-myelocytic cell density and percentages
of CD8+ T-cell exhaustion markers (Tsujikawa et al., 2017).

In the study of rare tumors, such as sarcomas, which in
some cases may exhibit poor prognosis and adverse clinical
outcomes (Dangoor et al., 2016), immune profiling has become a
powerful tool in the characterization and understanding of tumor
behavior. For example, immune profiling of Ewing sarcomas
has demonstrated an association between higher densities of
immunosuppressive M2 macrophages and a shorter event-free
survival. Moreover, high frequency of T-cells and activated
natural killer cells correlated with prolonged overall survival.
Targeting macrophages, alone or in combination with other
treatments, could be an interesting novel strategy for personalized
medicine (Stahl et al., 2019). The rationale for immunotherapy
in sarcomas is also explained by the presence of possible
treatment targets, such as chromosomal alterations, or the cancer
antigens resulting from genetic mutations. The presence of
lymphoid tertiary structures and the rest of a naturally occurring
immune infiltrate in sarcomas suggest that immunotherapy,
such as cancer vaccines, adoptive cell therapy, and immune
checkpoint blockade, may be feasible (Tseng et al., 2014). Because
of this, we have found that analysis of the immune tumor
microenvironment provides profound understanding of tumor
behavior and novel treatment options.

Multiplex technologies provide unique sample-sparing
analytical tools to characterize limited clinical tissue samples by
allowing for in situ profiling and for the simultaneous profiling
of multiple targets of interest (Hofman et al., 2019; Cascone et al.,
2020; Provencio et al., 2020). We find the ability to study multiple
markers in one specific cell especially useful in the study of cell
densities, cell distribution, immune pathway marker expression
in tumor cells, and recognition of new cell phenotypes, which
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can help explain the biological behavior of the immune system
in relation to certain cancers. To accomplish this, we have
created many mIF panels using six to eight markers to study
cells according to their biological lineage (e.g., lymphoid or
myeloid), immune activity (e.g., activated, pro-inflammatory,
and regulatory), and presence of immune checkpoints (e.g.,
PD-1, PD-L1, B7-H3, B7-H4, and IDO-1). It is important to
acknowledge that every mIF panel can and must be adapted to
the purpose of the study and the type of sample being profiled.

One of the biggest advantages of mIF platforms is the ability
to get a great deal of data from one slide, without the necessity
of multiple sections as in IHC (Tan et al., 2020) or multiple
staining followed by denaturalization steps as in sequential
immunofluorescence staining (Wahlby et al., 2002). However, we
do face certain challenges because tyramide signal amplification
does not recognize the intensity of the antibody expression,
which is conventionally used in the qualitative study of certain
markers (Fedchenko and Reifenrath, 2014). Nevertheless, this
same amplification has helped us to recognize weak signals
that are difficult to evaluate in conventional IHC, such as
arginase-1 in macrophages. Furthermore, the cell phenotyping
(co-localization) tool is very handy to evaluate the immune
score of PD-L1 in certain challenging malignancies, such as
glioblastoma multiforme, in which differentiating tumor cells,
lymphocytes, and macrophages is difficult. In cases like these,
the combination of co-expression markers, such as glial fibrillar
acidic protein, CD3, and CD68, can help to obtain very accurate
results compared to single IHC.

CONCLUSION

The advantages of mIF technologies are notable. The detection of
multiple markers from a single tissue sample is both useful and
necessary to provide comprehensive information about the cell
nature, expression of prognostic markers, and even interactions
between cells in the context of the tumor microenvironment.
For imaging mIF with TSA, the ideal system is a scanner able
to discriminate the different spectrums of the fluorophores used
in a panel, giving us high-resolution images. As an example, the
VectraPolaris scanner that combines the multispectral camera,
the fluorescence cubes, and a resolution of 20 and 40x is able
to capture high-quality images. Of course, other scanner systems
can be used but probably those systems will be limited according
to their assay-based specifications.

This technology is not exempt from limitations. For
mIF, which currently uses tyramide signal amplification-based
reagents, there is always the risk of tyramide overaction causing
an umbrella effect. For this reason, it is important to evaluate
the individual staining of each marker to recognize this possible
effect during the optimization process. mIF methodology is
also considerably more time consuming than a single bright
field staining and subsequent imaging and digital pathology-
related analysis. Also, there is the limitation of the number
of antibodies in a panel which is basically the limitation in
the spectrum of the fluorophores used. Eight markers per
panel is the secure number of antibodies recommended in the

workflow of the vendor in order to avoid any challenges in the
optimization of new fluorophores and that can be discriminated
easily by the scanner. However, new fluorophores can be tested
and incorporated into the system. Nevertheless, a panel with
less markers is more accurate and easily evaluated during the
pathology image analysis compared with high plex technologies
as imaging mass spectrometry or barcoding system that are used
for exploratory purposes. In conclusion, the phenotyping process
is complex, but mIF gives us tools to overcome many of the
challenges that may arise. These tools and a deep understanding
of immune cell protein expression and tumoral pathology are
the key factors in the contribution of phenotyping and immune
profiling to the study of tumor behavior and the development of
new immunotherapies.
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Multiplex Immunofluorescence and
Multispectral Imaging: Forming the
Basis of a Clinical Test Platform for
Immuno-Oncology
Clifford C. Hoyt1*

1Akoya Biosciences Inc., Malborough, MA, United States

As immuno-oncology (I/O) emerges as an effective approach in the fight against cancer,
multispectral imaging of multiplex immunofluorescence (mIF) is maturing as an analytical
platform. The timing is fortuitous. Due to health economic considerations surrounding the
use of I/O, there is an urgent need for tests that accurately predict response to the growing
list of available therapies. Multispectral mIF provides several advantages over other
biomarker modalities by enabling deeper interrogation of the intricate biology within the
tumor microenvironment, including detection of cell-to-cell spatial interactions that
correlate with clinical outcomes. It also provides a practical path for generating reliable
and reproducible results in a clinically suitable, high-throughput workflow. In this article, we
(1) describe the principles behind multispectral mIF; (2) provide advice and
recommendations on assay development and optimization and highlight characteristics
of a well-performing assay; and (3) discuss the requirements for translating this approach
into clinical practice.

Keywords: Predictive biomarkers, multiplex immunofluorescence, multispectral imaging, immuno-oncology,
clinical workflow, image analysis, automated staining, spatial biology

INTRODUCTION

Tissue biopsies and surgical resections offer a critical insight into a patient’s cancer and are the basis
of prognostic evaluations and therapy selection. Yet a wealth of information remains largely
inaccessible due to the limitations of established tools and methods for evaluating formalin-
fixed, paraffin-embedded (FFPE) tissue sections. For example, immunohistochemistry (IHC), the
established tool for characterizing the biology present in the tumor and its microenvironment, lacks
the capability to capture the complexity of cell-to-cell biology because it reveals only one or two
proteins at a time. Pathologist assessment of tissues is done primarily by visual inspection and
includes review of the tissue morphology, and positivity of one or two proteins, or of two to three
genes targeting DNA or RNA molecules. Its application to assessments of expression in cellular
subgroups is also inconsistent because it relies solely on visual interpretation which may vary greatly
between individuals (Hirsch et al., 2017; Ilie and Hofman, 2017; Rimm et al., 2017).

Recent advances in tissue image analysis are helping address the variability and limitations of
human perception. Measuring biologically significant parameters that are substantially out of reach
of human perception, such as cellular co-expression, cellular spatial relationships, tissue
heterogeneity, and expression of low abundance molecules, is now possible. However, progress
to date with the application of quantitative image analysis, including deep learning and artificial
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intelligence approaches, has focused mainly on conventional IHC
and hematoxylin and eosin (H&E)–stained slides, which does not
leverage the wealth of data that can be captured through
multiplex immunofluorescence (mIF) (Effner et al., 2019; Niazi
et al., 2019).

Understanding the cellular composition and spatial
distribution in tissue sections, termed “spatial biology,” is
particularly valuable in the age of immunotherapy. Immune
checkpoint inhibitors have revolutionized cancer treatment,
especially for metastatic disease, for which patients have little
recourse. Immune checkpoint inhibitors reduce T-cell inhibition,
allowing them to attack cancers unhindered. In instances where a
patient positively responds to the therapy, the benefits often last
for years rather than months, which has led to excitement for
potential cures for cancer (Wilky, 2019).

While lifesaving for some, current I/O treatments offer little
benefit to more than 80% of patients (Haslam and Prasad, 2019;
Wilky, 2019). With costs typically twice that of other types of
cancer treatments, with frequent and impactful side effects, and
with often precious little time for metastatic patients to try
different approaches, there is an urgent need for better
predictive assays that can be used to determine which drug or
combination of treatments is most likely to help (Mehnert et al.,
2017). This is particularly important with the rapid increase in the
number of trials involving combination therapy approaches.
Combination therapies target multiple proteins and/or cellular
signaling cascades to provide more impactful treatment. Clinical
trials have not only shown that patients can have significantly
higher response rates but have also shown higher frequency of
severe side effects. Predictive tests to help oncologists identify
likelihood of response for monotherapy vs. combination therapy
will have significant health economic benefits.

However, predicting whether a patient will respond or not to
immunotherapies has proven difficult. This is probably due to
how complex cancer is and how it uses multiple mechanisms to
evade the immune system and survive. Currently, few approved
diagnostic approaches exist that can accurately determine the
likelihood of response to the ever-expanding list of FDA-
approved immunotherapy drugs.

There is mounting evidence that the spatial biology occurring
within the tumor microenvironment (TME) holds the answers as
to why some patients respond to immunotherapy and others do
not. Early in the I/O era, Tumeh et al. used quantitative IHC and
mIF to investigate advanced melanoma patient responsiveness to
pembrolizumab. They found that the presence of CD8+ cytotoxic
T-cells present along the invasive margin of the tumor, as well as
the close proximity of programmed death receptor 1 (PD-1,
located on CD8+ T-cells) to programmed death ligand 1 (PD-
L1), predicted the therapeutic response to anti–PD-1 blockade
and subsequent tumor regression (Tumeh et al., 2014). In another
study, Johnson et al. demonstrated a similar finding in melanoma
based on PD-1 and PD-L1 proximity to other cell types within the
TME (Johnson et al., 2016). Since then, there have been several
biomarker studies performed that highlight the performance of
mIF and the value of spatial biology (Gettinger et al., 2018;
Giraldo et al., 2018; Mazzaschi et al., 2018; Wong et al., 2018;
Althammer et al., 2019).

An interdisciplinary team led by Johns Hopkins University
recently conducted a meta-analysis on data pooled from more
than 50 studies, spanning more than 10 cancer types and over
8,000 patients (Lu et al., 2019). Each study assessed the predictive
value of one or more biomarker assays intended to determine the
likelihood of response to anti–PD-1/PD-L1 therapy, the leading
class of immunotherapy. The meta-analysis revealed that three of
the four assays most commonly utilized in I/O research, PD-L1
IHC, tumor mutation burden (TMB), and gene expression
profiling (GEP), had moderate, comparable performance when
predicting response to anti–PD-1/PD-L1 therapy. Interestingly, it
revealed that the category of multiplex IHC or
immunofluorescence (IF), which includes multispectral mIF,
performed significantly better than the other three assay types.

The researchers concluded that the spatial biology revealed by
mIHC or mIF, including cellular protein co-expression,
localization, and arrangement, correlated better with patient
response than information gathered with the other approaches.
These findings support the premise that determining or
predicting a patient’s likelihood to respond to a specific
therapy will be aided by detailed cell-level evaluation of the
TME-specific cell presence, their functional status, and how
they interact within the TME.

Ideally, to satisfy the urgent need for predictive I/O
biomarkers, one would want to leverage the well-established
attributes and benefits of conventional IHC and IF while
taking advantage of new technologies for multiplex staining,
high-throughput slide imaging, and computer vision, to
provide an automated, reliable, and practical analysis
workflow. To that end, we developed the multispectral mIF
platform described here using a range of technologies to
achieve an assay that is rapid, reproducible, and customizable
to support research, clinical trials, and eventually standard of
care. The platform consists of automated mIF staining using
tyramide signal amplification (TSA), high-throughput
multispectral slide image acquisition, and advanced machine
learning–based image analysis algorithms for segmenting and
characterizing the cell-level immuno-biology occurring in the
TME (Stack et al., 2014). Example imagery is shown in Figure 1.

The goal of this article was to provide (1) the principles behind
multispectral mIF; (2) high-level guidance on assay optimization
to achieve sensitive reproducible multiplex assays; (3)
performance metrics that typify well-optimized assays; and (4)
a list of considerations for translating this method and methods
like it into clinical standard of care. The perspectives and
recommendations provided within this article are based on
our experience with the Akoya mIF platform. We are sharing
with the expectation that they might be useful generally for
anyone developing mIF assays for translational work and
eventual clinical use.

PRINCIPLES OF MULTISPECTRAL MIF

Before discussing the principles behind multispectral mIF, we will
discuss assay performance goals as they drive the selection of the
necessary technologies to perform the assay.
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Assay Performance Goals
Multiplex immunofluorescence methods have become a standard
in I/O research, to understand cell-level biology occurring in the
TME. However, little standardization has occurred. Up until now,
IF and in situ hybridization approaches have been generally used
to create imagery for qualitative visual assessment or to be
analyzed ad hoc in the research setting with image analysis
software packages designed to be open and flexible to suite
individual project goals.

To advance quantitative mIF forward to support translational
research and eventual clinical use, analytical performance
standards are required at a level suitable for cancer diagnostic
testing where accurate detection of cell types and biology depends
on reliable detection of multiple proteins. The goal, effectively, is
to create a quantitative multiplex imaging enzyme-linked
immunosorbent assay (ELISA). Each pixel in an image of
multiplex-stained samples should hold calibrated and precise
data that indicate relative abundance of the multiple proteins
of interest. If ELISAs are the analytical gold standard of protein
measurement, the goal is to have percent co-efficient of variation
(CV) of approximately 10% for detecting truly positive cells for
one or more markers (Gupta et al., 2017). Analytical performance
at this level is needed to support the following: (1) discovery of
biomarkers that are real and reproducible; (2) the quality,
regulatory, and analytical requirements for research studies
and clinical trials; and (3) practical and reliable clinical
deployment.

Principles
The first of three guiding principles of current multispectral mIF,
thanks to valuable insights provided by collaborators at leading
academic medical institutions, is that the mIF assay matches the

sensitivity of highly optimized conventional chromogenic IHC
staining (Kim et al., 2016; Parra et al., 2017). Conventional IHC is
the prevailing clinical standard and has served the medical
community well. One might think initially that replicating
conventional DAB staining sensitivity with a fluorescence
assay would be straightforward; however, it poses technical
challenges. Conventional IHC is often saturated to reveal weak
expressing cells, driven by clinical evidence that low-level
expression correlates with response (Caruana et al., 2020).
Saturated DAB staining supports how a pathologist would
visually assess a sample because it reveals both high- and low-
level expressing cells, which is what the pathologist cares about.
Visual acuity is also adept at distinguishing specific staining in the
presence of diffuse nonspecific background staining. Visual
analysis combined with IHC presents a very sensitive method
for detecting positive cells, wherein positivity is determined using
visual acuity to detect specific staining above background
staining.

However, as mentioned earlier, visual assessment of
conventional IHC is predominantly limited by multiplexing
level and the subjectivity of human perception (Sapino et al.,
2013; Troncone and Gridelli, 2017; Santana MFCdLF, 2018).
When transitioning to a quantitative mIF assay, analytical
performance needs to support all of the attributes of
fluorescence detection compared to chromogenic, including
quantitative measure of expression through linear dynamic
range, and independent staining of each marker to support
accurate and reproducible machine vision–based assessments
of cellular co-expression, arrangement, and localization within
the TME architecture and across whole sections.

The second guiding principle is that multispectral mIF
staining needs to support consistent and accurate image

FIGURE 1 | An 8-plex, 9-color tonsil composite image with respective channel monoplex images: Opal Polaris 480 �CD20 (purple), Opal 520 �CD8 (yellow), Opal
540 � PD-L1 (red), Opal 570 � FoxP3 (orange), Opal 620 � CD68 (blue), Opal 650 � PD-1 (green), Opal 690 � Ki67 (white), Opal Polaris 780 � PanCK (teal), and DAPI
counterstain.
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analysis along with practical and fast process workflows.
Analytical performance of a multispectral mIF assay depends
on the integration of panel design and image analysis algorithms.
While imagery can be visually enticing because of the biology it
reveals, reliable and specific biomarker signatures are needed for
translation. They form the basis of scores that will be used to
make critical drug trial, and eventual clinical, decisions once
appropriate regulatory certifications are obtained.

To this end, it is advantageous to include markers in multiplex
assay panels that support image analysis functions to segment
tissues and cellular compartments. This is critical given the
variability of human tissues. For example, a tumor-specific
marker or cocktail is essential to segment tumor regions and
separate them from stroma. Also, if multiplexing bandwidth
affords, including a cocktail of markers to serve as a
“membrane counterstain” supports more robust cell
segmentation by revealing cell surfaces to assist with assigning
measured signals accurately to individual cells and with cell
splitting, which can be challenging in tertiary lymphoid
structures.

Another important attribute of robust assays is that they have
strong and stable fluorescence signals to support rapid slide
scanning and subsequent rescanning if needed, which may be
needed months later. Stability includes two
considerations—photostability to avoid bleaching from strong
excitation light and stability of slides in storage. Two other
attributes of robust assays are low background and
independence of individual stains. These support accurate
identification of cells-of-interest, frequency of colocalized
markers, percent positivity, determination specific cell types
within tissue microenvironments, proximities between certain
cells, and other cellular distribution measures.

The third guiding principle is that the assay workflow needs to
be practical, economical, and aligned with study and research
laboratory standards so that this method is accessible to the entire
research community, to accelerate and increase the likelihood of
finding the most effective biomarkers. Furthermore, having a
workflow that fits into clinical laboratory standards and
workflows supports (1) pathologists who will continue to play
a critical quality control and data review role, (2) laboratory and
clinical personnel who will run the assays, and (3) physicians who
need reliable and actionable information with rapid
turnaround times.

TECHNICAL APPROACH

To achieve these goals, we developed an end-to-end workflow
based on the Akoya mIF platform that includes reagents for
automated and manual staining (antibodies and detection
reagents), image acquisition instruments capable of both field-
of-view and multispectral whole-slide imaging, software
applications for image analysis, data reduction, and a cloud-
based image storage, sharing, and viewing solution. In the
workflow described here, we used the Leica BOND RX
autostainer for automated staining. Additional R-script
packages help consolidate field-of-view datasets and investigate

whole-slide parameters that support the research and clinical trial
objectives of today (Stack et al., 2014). Developing an effective
workflow requires careful and seamless integration of each
individual component. Assay panels are designed and
optimized to work with the image acquisition instruments and
image analysis programs. The imaging instrument is configured
to isolate and measure signals, which are spatially and spectrally
overlapping. Lastly, the image analysis software is built from the
ground up to support multispectral unmixing and tissue and cell
segmentation based on specific staining patterns, with algorithms
for cell phenotyping and expression thresholding, that are robust
across the variability of human diseased tissue types.

This approach was selected as a focus for translational, and
eventual clinical, work rather than other higher-plex options,
including Akoya’s CODEX platform, other cycled mIF
technologies, and approaches based on imaging mass
spectrometry, because these platforms have attributes that
would make it challenging to advance discovered biomarkers
into a suitable clinical workflow. Contributing attributes that
would make other approaches challenging are throughput, cost,
and, in most cases, sensitivity which is needed to capture the
intricate biology occurring in the TME related to therapy
response.

Other mIF staining technologies, such as those from Ultivue,
offer a single component of an end-to-end solution that could
support translational work and eventual clinical application. The
approach we describe in this review offers integration of a
complete workflow which is important for assay
reproducibility, accuracy, and standardization as each
component of the workflow is optimized to support the other
components. It also offers flexibility to discover and validate
signatures among an almost infinite array of biological
mechanisms to explore.

The multispectral mIF platform described here utilizes TSA
to support biomarker detection. TSA is a technology invented
more than 20 years ago that amplifies IF detection through the
use of horse radish peroxidase (HRP) to enzymatically convert
TSA molecules into free radicals that then covalently bind to
tyrosine residues on and in the immediate vicinity of the protein
epitope targeted by the primary antibody (Figure 2) (Bobrow
et al., 2001). Today, TSA technology has been optimized for
integration into the multispectral mIF platform and is available
under the Opal trademark (www.akoyabio.com). This
technology enables the detection of low-level expression by
elevating signal above background tissue autofluorescence.
TSA is also very photostable relative to conventional IF
methods, enabling the storage and re-scanning of slides a
year after slides are stained without appreciable loss of signal.
As each color is amplified individually, signals can be balanced
for measurement with negligible spectral channel-to-channel
bleed-through.

The fluorophores selected for Opal detection support up to 8-
plex staining (9-colors including DAPI counterstain) and have
been carefully selected to provide optimum spectral separation
across the visible wavelength range. Fluorophore selection was
based on detailed models of total system spectral response
covering the entire optical train of the imaging system.
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Amplified detection signals enable rapid slide scanning rates,
typically with camera exposure times in the millisecond range for
each fluorophore. This signal level translates to slide scan times of
approximately 15 min per 7-color assay at 20× performed on a
typical resection biopsy with an area of 1.5 × 1.5 cm (0.5 × 0.5
micron pixel size).

Having adjustable amplification gives researchers the
flexibility to tailor assays to characterize biological mechanisms
of interest, which may be best assessed by either high
amplification to detect weak expressing cells or optimization
to measure a large dynamic of expression if different
expression levels have biological meaning. For example, if
detecting very low expression is important, one can amplify
aggressively. On the contrary, if a user wanted to capture as
many gray-scale levels as possible, including at the high end of
expression, one could amplify less aggressively.

There is a common belief that TSA-based amplification leads
to variability in measured signals. This may be due, in part, to
users not fully understanding all of the important parameters that
need to be optimized to assure consistent, reproducible results.
Careful assay development and optimization leads to
reproducible measured signals, as evidenced by over 200 peer-
reviewed articles that utilize the AQUA technology (McCabe
et al., 2005), one of the first demonstrations of quantitative mIF,
and by the rapidly growing number of more than 100 peer-
reviewed articles describing results using the Opal technology.
Just recently, a six-center inter-site comparison study, termed the
multi-institutional TSA-amplified mIF reproducibility evaluation
(MITRE) study, was undertaken to demonstrate the
reproducibility of this integrated workflow system. The results
revealed that multispectral mIF is not only transferable among
different sites, but it is also reproducible at a level comparable to
that of quantitative ELISAs, with CVs of <15% (Hoyt et al., 2019).

The MITRE study utilized the multispectral mIF workflow
described in this article, including staining automation using the
Leica BOND RX autostainer. The BOND RX autostainer is

capable of staining 30 slides in a single run. Each run takes
approximately 12–13 h, which fits into a daily schedule that
includes sample and instrument preparation during the day
and slide staining at night.

Once the slides are stained, they are scanned on amultispectral
digital slide imaging system, the Vectra Polaris. The Vectra
Polaris uses patented multispectral imaging technology to
compensate for optical spectral bleed-through among channels
and to isolate signal from background autofluorescence, which is
particularly important for fluorophores at the blue-to-green end
of the visible spectrum (Figure 3). In an internal quantitative

FIGURE 2 | Whole-slide MOTiF image of lung cancer FFPE tissue. (A) Markers stained for this 6-plex, 7-color assay include CD8 (yellow), PD-L1 (red), FoxP3
(orange), PD-1 (magenta), cytokeratin (cyan), and CD68 (green). White box indicates (B) selected area from whole tissue section image at 20×magnification highlighting
the interactions between the immune system and the tumor (i.e., “hotspot”). The cellular composition and distribution reveal immune engagement with the tumor,
evidenced by tumor-infiltrating lymphocytes (TILs), PD-L1+ macrophages, PD-L1− tumor cells, and an abundance of para-tumoral regulator T-cells and cytotoxic
T-cells, including several that are PD-1+. Elucidating the interplay between these different cell types is key to understanding the variance in patient responsiveness to
therapeutic treatments.

FIGURE 3 | Mechanism of tyramide signal amplification (TSA) staining.
Opal dyes allow for the use of any standard unlabeled primary antibody,
including multiple antibodies raised in the same species. After introduction of
the primary antibody, the Opal polymer HRP is applied. The Opal system
uses TSA to amplify IHC detection by covalently depositing multiple
fluorophores near that targeted antigen. After labeling is complete, antibodies
are removed in a manner that does not disrupt the Opal fluorescence signal,
allowing for the next target to be detected without antibody cross-reactivity.
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assessment investigating the ability of multispectral unmixing to
compensate for spectral bleed-through, we found that the average
optical bleed-through was 8.7% for an optimized 6-plex assay and
13% for an optimized 8-plex assay. With multispectral unmixing,
residual bleed-through was reduced to <1% in both cases. If a
signal is 10 times its spectral neighbor, a 10% bleed-through from
the stronger channel into the weaker channel would be equivalent
to the signal in the weaker channel, leading to significant false-
positive cell classifications.

The Vectra Polaris was designed from the ground up to be an
IF quantification system. Recent advances have been
incorporated into the instrument to further support
translational workflows, including a whole-slide multispectral
imaging capability called MOTiF™, enabling the rapid 15-min
scanning of 1.5 cm2 tissue areas for 6-plex, 7-color assays
(Figure 4).

Following whole-slide image acquisition, images are analyzed
with inForm image analysis software to quantify the cell-level
biological features. The inForm software program was developed
to integrate multispectral capabilities with image analysis to (1)
spectrally unmix and isolate multiple Opal signals and
background autofluorescence; (2) detect different tissue
architecture (e.g., tumor, stroma, vessels, and necrosis) using a
machine learning–based neural network pattern recognition
function; (3) segment individual cells starting with nuclei,
based on DAPI, and using other markers to detect
membranous and cytoplasmic regions of cells; and (4) identify
cell types of interest based on marker signal levels and cellular
staining pattern using user-trained multinomial logistic
regression algorithms.

To assist with image storage, sharing, and whole-slide image
processing, a cloud-based platform called Proxima has been
developed. Proxima is a hybrid solution consisting of a
network-attached server (NAS) connected locally to the Vectra
Polaris. Images generated on the Vectra Polaris are automatically
transferred to the NAS and then uploaded to the cloud for remote
viewing and data processing. The NAS can be used for rapid
algorithm development and analysis of smaller projects, avoiding

time delays associated with downloading images from cloud
storage. Once image analysis algorithms are developed and
validated locally, they can then be uploaded to Proxima for
rapid batch whole-slide analysis, leveraging the computational
power and speed of the cloud.

Analyzing whole-slide imagery generates very large data tables
of single cell data, consisting of each individual cell’s classification
according to the cell phenotyping function; all measured
attributes, including signal levels in cellular compartments,
staining pattern statistics, spatial coordinates, and tissue region
designations; and any other spatial parameter established in the
image analysis protocol. To reduce and consolidate these datasets
into per-sample or per-slide statistics that can be used as bases for
sample scoring, we have developed a library of open-source
R-script packages, including phenoptr and phenoptrReports
(akoyabio.github.io/phenoptr/; akoyabio. github.io/
phenoptrReports/). These scores are often selected and
optimized to quantitate the specific biological attributes,
including spatial measurements, which correlate best with
clinical parameters such as response to therapy.

Assay Development Recommendations
In this section, we provide recommendations for assay
development and optimization. Much of these insights were
gained while developing and refining a rigorous assay
optimization process and high-throughput slide analysis
workflow in Akoya’s contract services laboratory. Additional
detailed guidance can be found here: www.akoyabio.com/
support/reagents/.

First, we suggest starting with validated IHC chromogenic
assays for each of the markers. A validated assay, to us, refers to
antibodies that have been tested using multiple titers and antigen
retrieval conditions on control tissues to screen for markers
which produce the best staining patterns. This usually includes
cross-validation with other clones targeting the same epitope,
with Western blots, and with a pathologist who is familiar with
the target and can confirm the associated biology and staining
pattern. It is also important that IHC assay be amplified to the

FIGURE 4 | Fundamentals of MOTiF imaging and spectral unmixing. With the MOTiF workflow, a tissue is stained with Opal fluorophores using a Leica BOND RX
autostainer. The 6-plex, 7-color assay is then imaged using the Vectra Polaris slide scan protocol, wherein whole-slide scan images can be acquired in 10 min. Using
inForm, designated library slides are used to isolate the exact spectral signature of each fluorophore to properly unmix each whole-slide composite image, as well as
isolate and remove tissue autofluorescence. Spectral unmixing of signals is key to the Phenoptics technology and critical to ensuring accurate data for analysis.
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point where the nonspecific background is on the verge of
becoming apparent and interfering with the weakest specific
staining. It is believed that at this point, the maximum
sensitivity of the assay is achieved.

The next step in assay panel development is to design the
multiplex panel by pairing Opal fluorophores with markers. It is
recommended to pair the brightest Opal fluorophores with the
weaker expressing proteins, and vice versa. More detailed
information is available about Opal-marker pairing
recommendations using the Assay Development Guide: www.
akoyabio.com/support/reagents/.

While manual staining can achieve excellent results, it is
recommended that autostainers be used to achieve quicker,
consistent results. If using a BOND RX to perform the
staining, double-dispensing primary antibodies, secondary
antibody-HRPs, and Opal fluorophores are recommended.
Double dispensing provides a more complete and uniform
distribution of reagents across the tissue section, delivering
uniform staining across large samples, regardless of where the
section is mounted on the slide. Double dispensing of these
reagents also appears to substantially eliminate “umbrella
effect,” which is a term commonly used to describe when a

previously applied marker impedes the application of an
additional marker that co-localizes with the first. This is
particularly important in instances where a user is interested
in studying more than three markers of interest on the same
cellular compartment. To demonstrate the effectiveness of the
BONDRX double-dispense approach, an experiment was devised
using CD3, CD8, CD45RO, and CD45LcA, membrane markers
known to have significant co-localization with one another, to
assess staining interference (Figure 5A). Results indicate
negligible interference between the four markers,
demonstrating reliable and clean detection of quad-positive
cells, confirming that the “umbrella effect” is not an inherent
limitation of TSA-based biomarker detection (Figure 5B).

It is recommended that one start with converting each IHC
protocol to a monoplex IF (monoIF) protocol using the same
primary antibody concentration established in the IHC assay and
adjusting Opal TSA concentration to achieve fluorescence
intensity signals at levels within suggested ranges. Reducing
the primary antibody concentration should only be done in
instances of where fluorescent signals continually remain high
despite reducing the TSA concentrations, or if background
staining becomes an issue.

FIGURE 5 | Assessment of TSA staining interference in detection of multiple markers within the same cellular compartment. Four membrane markers were chosen
for this experiment which are known to have significant co-localization with one another: CD8 (Opal 520), CD3 (Opal 620), CD45RO (Opal 570), and CD45LcA (Opal 690).
All reagents were double dispensed using the BOND RX and scanned using the Vectra Polaris. (A) Image with arrows indicates cells that display all four markers. (B)
Additional representative images of cells displaying all four markers without any reduction in signal intensity demonstrating that TSA does not interfere with
detection of three or more markers co-localized to the cell membrane.
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To assess equivalence between chromogenic IHC andmonoIF,
we suggest rigorous image analysis to count positive cells and to
confirm that the number of cells revealed with IF is equivalent to
the number revealed by IHC, within a range of 10%–20%. Since
one image type is of brightfield chromogenic staining and the
other IF, each requires very different image analysis approaches.

If measured cell counts with the chromogenic IHC are
significantly higher than that detected with IF, despite the fact
that the fluorescent signals are within the recommended range, it
may be helpful to try other secondary-HRP systems that come in
a more concentrated form than the current Akoya commercially
available secondary HRP system. Opal users find that products
such as Powervision from Leica increase the signal from lower
expressing cells while not overly amplifying signal from stronger
expressing cells. If the signals for higher expressing cells become
too bright beyond recommended levels, reducing the primary
antibody concentration can return the fluorescent signals back
into the recommended ranges.

Increasing the signal of lower expressing cells while not
significantly increasing the signal from higher expressing cells
suggests that there is some level of saturation occurring. The
tradeoff between dynamic range and sensitivity should be
considered when optimizing an assay. Is it more important to
see every low expression cell or to maximize dynamic range? In
our experience, using a more sensitive secondary detection
system to reveal low expressors retains at least two orders of
magnitude of signal to resolve low, medium, or high expression
levels when important to the biomarker assay.

Once equivalence between chromogenic IHC and monoIF is
achieved, the monoIF protocols are then combined into a
multiplex IF (mIF) protocol. The equivalency test, illustrated
in Figure 6A, consists of a 15-slide serialization as described and
is an efficient approach for evaluating IHC/monoIF/mIF
equivalence (Figure 6B).

Lastly, routine maintenance and regular performance testing
of the BOND RX is critical for obtaining consistent and reliable
data. A basic challenge of any IHC or IF assay is distinguishing
true negative staining from staining failures. In Akoya’s Contract
Research Services division, we perform monthly performance
tests on every BOND RX instrument, consisting of one batch of
30 tonsil serial sections stained with a monoIF protocol labeling
CD20 (Figure 7A) and a second batch of 10 tonsil serial sections
that are stained with a standard PD-1/PD-L1 6-plex, 7-color mIF
protocol (Figure 7B).

To gauge staining performance, we carefully select a minimum
of five fields of view that are aligned across serial sections to
reduce the impact of tissue heterogeneity on the staining
reproducibility measurement. The stain intensity for each slide
is then determined as the average of the top 20 brightest cells.
When instruments are well maintained and a high-quality tissue
control is used, such as healthy tonsil, percent CVs should be in
the 5%–15% range. When using this methodology, it is important
to always inspect the imagery as well because either approach
cannot detect issues related to staining artifacts such as folds or
other staining errors.

Characteristics of an Optimized Assay
The key performance parameters of a well-optimized assay are
signal strength, signal balance, marker independence, staining
uniformity, reproducibility over time, and most importantly from
a translational perspective, the ability to transfer assays across
sites with equivalent results.

Signal Intensity
As measured by inForm or Phenochart software, the target range
for positively stained pixels is in the 10–30 normalized count
range for all Opal fluorophores, with the exception of Opal
Polaris 780, where the recommended range is from 1 to 10

FIGURE 6 | Quantitative assessment of equivalence to chromogenic IHC staining. Staining parameters for each antibody are first optimized using single stain,
chromogenic IHC on tonsil sections. Next, each primary antibody was paired to a select TSA fluorophore and a single-stain, monoplex IF (monoIF) was performed. Lastly,
all of the monoplex conditions are combined into a multiplex IF (mIF) panel. (A) Representative image showing serial sections with each marker for IHC, monoIF, and mIF
staining. (B) Quantitative assessment of each image demonstrating the equivalence of staining for each marker across the three staining parameters, wherein
monoIF and mIF are consistent with DAB.
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cell counts. These ranges support reliable and accurate data
analysis. It is worth noting that viable data can still be
obtained when signals are as low as a few counts or as high as
50 or more counts, but risks are higher for crosstalk issues.

Dynamic Range
Our standard approach assessing dynamic range is to calculate a
signal-to-background (SNR) ratio by dividing the average of the
top 20 brightest cells by the average intensity of the weakest 10%
of cells. An SNR of 10 or more supports reliable image analysis,
including accurate counting of positive cells and quantifying
expression levels. While we recommend an SNR of 10 or
greater, typical ratios are well in the 100s with high-
performing antibodies, or as low as 3-to-1 that still provide
analytical value.

Signal Balance
With the classic Opal line-up (Opals 520, 540, 570, 620, 650, and
690), the rule of thumb was to aim for ratios of signals between
neighboring channels of 3:1 or less. This rule was particularly
useful for the 520, 540, and 570 channels. This was just a guide.
Most of the time when ratios exceeded 3, the assays performed
very well with negligible crosstalk.

With the introduction of MOTiF 6-plex, 7-color capability,
which replaces Opal 540 with Opal Polaris 480 and Opal 650 with

Opal Polaris 780, the rule of thumb substantially goes away
because the six fluorophores are more spectrally distinct. As a
result, there is little residual crosstalk after unmixing, even if
neighboring signals are significantly imbalanced. As discussed in
the signal intensity section, normalized counts within the 10–30
range for all Opals except Opal Polaris 780 are key to achieving
optimal signal balance and an SNR of 10 or more. In the end, the
goal of signal balancing is to achieve negligible crosstalk.

Crosstalk
Crosstalk should be minimized or eliminated because it can
cause false positives and can limit dynamic range for important
expression markers when crosstalk inaccurately contributes to a
neighboring signal channel. There are two main sources of
crosstalk: (1) instrumental crosstalk occurring when
fluorescence signals leak from one channel to another due to
imperfect filter optics or from inadequate crosstalk
compensation algorithms and (2) staining crosstalk from
actual fluorophore inaccurately labeling proteins on the
sample, resulting in residual fluorophores inadvertently
binding to epitopes intended to be labeled by other
fluorophore. It is very important to distinguish the two
causes because resolving each is a very different process.

When optimizing a multiplex assay, visual assessment for
spectral bleed-through should always be part of the evaluation

FIGURE 7 | Measurement of the BOND RX performance is captured by (A) running a CD20-Opal 520 monoplex assay across 30 serial sections. The percent
coefficient of variation (%CV) is calculated by determining the mean expression of the top 20 brightest expressing cells across five matching annotations on all the serial
sections. (B) Similarly, an optimized 6-plex, 7-color assay is also run on 15 serial sections, and the mean IF counts of the top 20 cells per marker are measured and the
mean, standard deviation, and %CV are calculated.
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process because trained human perception is very good at
distinguishing actual signal from crosstalk.

Crosstalk can be assessed with a set of monoIF slides, one for
each Opal fluor. It is then determined by dividing the signal in its
respective channel from an image of the monoIF sample
corresponding to that channel by the signal in that channel
from an image of a sample that is only stained with the
neighboring fluorophore. For a robust assay, residual crosstalk
of less than 1% is recommended to ensure minimal interference
with image analysis. More often than not, there is no measurable
crosstalk.

Specific guidance on this topic is provided in our guide
available on the Akoya website: https://www.akoyabio.com/
support/reagents/.

Reproducibility
Reproducibility of approximately 10% CV or better is typical of
well-optimized panels and run on the Leica BOND RX that is well
maintained. To assess the analytical performance of multispectral
mIF and its suitability to support future clinical applications, the
MITRE study was conducted, as previously discussed (Hoyt et al.,
2019). Serial sections of tonsil and tissue microarrays and reagent
kits were distributed to six sites, each equipped with a Leica
BOND RX and a Vectra Polaris. Slides were stained with an
optimized assay panel for PD-1, PD-L1, CD8, CD68, Foxp3, and
CK using the recommendations described. Intra- and inter-site
concordance analysis of signal intensities was assessed (Figure 8).

Comparison of the multispectral mIF and IHC cell counts
showed equivalence of 90% on average. Intra-site equivalence

assessment showed an average slope of 0.93 and R-squared value
of 0.86. Inter-site assessment showed a slope of 0.98 and
R-squared value of 0.76, confirming analytical robustness.

Beyond demonstrating that the staining was reproducible
across sites, we were able to establish that image analysis
substantially addresses the inconsistencies of human visual
assessments. Agreement among sites for assessing percent
positivity of PD-L1 in immune cells, using the TMA samples,
was demonstrated by an R-squared value of 0.81 and slope of
0.82. In contrast, ICC values of <0.3 were demonstrated for a
similar assessment of reproducibility in the NCCN and Blueprint
2 PD-L1 IHC harmonization studies (Hirsch et al., 2017; Rimm
et al., 2017).

Photostability
To assure analytical robustness and support eventual clinical
applications, it is important that fluorescence signals are not
only photostable to allow for repeated scanning but also
temporally stable so that slides can be stored for months
without appreciable loss of signal. Multiplex assays using Opal
TSA detection can be scanned repeatedly over the course of
6 months while being stored at room temperature with <10% loss
of signal. In an internal assessment, we determined that signal
intensity across repeated scanning decreased linearly by <6% over
30 scans. This consistent level of photostability is due to the
nature of TSA-based labeling that involves covalent binding of
fluorophores to tyrosine residues, in addition to the pulsed LED
excitation in the Vectra Polaris imaging instrument, which
illuminates the sample only during imaging, reducing total

FIGURE 8 | Intra- and inter-site concordance assessment of cell densities. Average intra- and inter-site concordance plots comparing Run 1 vs. Run 2 (intra-site)
and Site 1 vs. Site 3 (inter-site) cell densities for CD68+, CD8+, FoxP3+, and CK+. Data shown as R2 (slope and standard deviation (SD) of slope). Graphs depict data
presented as part of a study investigating multiplex IF reproducibility across multiple institutions (Hoyt et al., 2019).
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light exposer by many factors of magnitude compared to
conventional fluorescence microscope excitation systems.

TRANSLATING MULTISPECTRAL MIF INTO
THE CLINIC

With well over 100 peer-reviewed publications that utilize
multispectral mIF, the I/O research community has embraced
mIF as a primary tool to uncover and characterize cell-level
biological interactions in the TME, to help understand how
cancer survives and grows, and to uncover its potential
biological mechanisms to target with new therapies. Moreover,
multispectral mIF has become the leading candidate to support
identification of urgently needed predictive biomarkers to make
I/O more efficient and precise. As the predictive power of
biomarkers based on the spatial biology is revealed by mIF
methods, we fully expect mIF to translate into clinical practice
as an essential tool in a physician’s diagnostic toolkit.

The purpose of this final section is to suggest remaining steps
to translate multispectral mIF into a fully validated clinical
platform. Requirements can be summarized into five
categories: (1) flexibility to fully explore co-expression and
spatial information; (2) analytical performance providing
reproducibility and robustness; (3) workflow and
standardization to support laboratory needs; (4) demonstrated
clinical validation and utility; and (5) reimbursement from payers
to support laboratory economics and clinical adoption.

Flexibility to Fully Explore Co-Expression
and Spatial Information
The academic and medical research setting where oncologists,
pathologists, immunologists, cancer biologists, and image
analysis scientists work together to solve challenging life
science problems is ideal for exploring the full dimensionality
of spatial biology. Supporting these interdisciplinary teams in
their pursuit of effective biomarkers requires a research platform
that is open and flexible and that fits into research budgets and
laboratory workflows. Open and flexible in this context refer to
the ability to freely select antibodies, design multiplex panels,
adjust amplification to capture expression levels that correlate
best with clinical parameters, and follow the data to explore the
intricate biology behind I/O responsiveness.

The objective of I/O research is to quickly converge on
optimum biomarker signatures, which typically means
integrating (1) hypothesis-driven sets of markers; (2) staining
protocols, including optimized antigen retrieval and
amplification to observe the range of expression related to
response; (3) image analysis measurements of co-expressions
and spatial parameters; and (4) calculations or algorithms to
reduce large cellular datasets to operator-independent and
actionable scores, which we define as scores based on
measurements of TME cell-level biology that have sufficient
utility to justify use in making therapeutic decisions. The
platform should have the flexibility to freely adjust parameters
for each of these steps, allowing researchers to effectively integrate

a translational workflow into their daily routine and fully explore
the spatial biology to identify optimum predictive biomarkers.

Analytical Performance Providing
Reproducibility and Robustness
Analytical performance provides confidence that assay results are
accurate, regardless of when, where, or by whom the assay is
performed. Performance standards need to be at a level typified
by, at a minimum, the regulatory analytical standards of a
laboratory in compliance with the US Clinical Laboratory
Improvement Amendments (CLIA) and, ideally, the analytical
component of a Food and Drug Administration In Vitro
Diagnostic (IVD) Class III Medical Device Pre-Market
Approval submission. Components of these standards include
(1) precision and reproducibility (e.g., CV) of the test readout
over time, across instruments, across operators, across sites, and
so on; (2) shelf life and stability; and (3) robustness, which is a
measure of a platform’s capacity to remain unaffected by small
but deliberate variations in method parameters.

Analytical performance applies to image analysis as well, but
in a different way. Image analysis algorithms will provide the
same answer every time for a given sample, but it can be
challenging to provide accurate data due to the variability of
staining, tissue morphology, and tissue conditions. Accuracy
across sample variability needs to be assessed, preferably using
a pathologist’s manual assessments and/or annotations as a gold
standard.

Although there has yet to be an IVD-level validation of an mIF
assay, results from the MITRE study described above suggest that
multispectral mIF has the performance attributes suitable to
support the analytical requirements of an FDA-approved IVD.

Workflow and Standardization to Support
Laboratory Needs
As mIF matures and moves toward the clinic, there is a push to
define standards for developing and validating predictive
biomarkers, including multispectral mIF. In 2017, the National
Institutes of Health launched a $220 million initiative called the
Partnership for Accelerating Cancer Therapies (PACT) in which
drug companies facilitated systematic and uniform clinical testing
of biomarker assays (https://fnih.org/what-we-do/programs/
partnership-for-accelerating-cancer-therapies). The Society for
Immunotherapy of Cancer (SITC) launched a benchmark
effort of its own in 2019, establishing a 21-member task force
to develop best practices surrounding the use of multiplex IHC
and additional multiplex imaging tools (https://www.sitcancer.
org/membership/volunteer/task-forces/pathology).

Platform providers meanwhile will need to design assays that
are robust across the variability of human tissue specimens,
incorporate suitable controls to compensate for staining
variations, automate and integrate components of the assay to
reduce the likelihood of errors, and create levels of access to
assure platform configurations are controlled and locked down.

Once these items are accomplished, the next critical step is to
provide the platform with a configuration that satisfies the needs
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of the clinical laboratory setting. Processing a sample must be
reduced to a simple, streamlined workflow that resembles, as
much as possible, an automated sample-in, score-out process.
Given the complexity of mIF or IHC, the measurement, and the
variability of tissues, there will be a few points during the process
that will need pathologist input, including quality assessment,
tumor annotation, and results review. Since the platform
performance depends on the proper execution of each step
and as the success of subsequent steps depends heavily on the
performance of previous steps, the entire end-to-end workflow
needs to be automated and locked down to prevent operator
dependencies. Some recommendations to improve performance
and reduce assay variability at each step include full integration
into a laboratory information management system to automate
information management and avoid errors by using a database to
indicate autostainer protocol, confirm appropriate reagents,
select image acquisition protocols (exposures, colors, sequence,
etc.), and develop image analysis and reporting algorithms.

This workflow also needs to support laboratory staff who
operate the instruments and pathologists who provide valuable
quality control and oversight function to confirm the sample is
sufficient for testing, and to review and approve results in the
form of a report.

Providing an H&E view of the sample will be critical for the
pathologist’s tissue quality inspection, annotation of tumor, and
results review. mIF imagery, while visually stunning, is foreign
to most classically trained pathologists and does not present the
anatomical and morphological features in a format that most
pathologists are accustomed to. Ideally, the H&E view will be of
the exact same section that is analyzed with multispectral mIF,
rather than of another section from the biopsy sample. Although
there will probably be a representative H&E-stained section
from each sample tissue block, the representative H&E section
may be from a very different depth into the block and may
contain significantly different tissue morphology, thus not
providing sufficient visual guidance about the makeup and
quality of the section being characterized with mIF.
Additionally, as the reference H&E slide is a different
section, it may have different sectioning artifacts such as
tears, folds, and lost areas. To address this issue, we have
incorporated into our workflow a method to capture an H&E
whole-slide image of the section to be stained and analyzed with
multispectral mIF. The H&E view and the appropriate
representations of the multispectral mIF views will be used
by the overseeing pathologist as part of his or her review of the
results and final sign-off of a report.

Other basic requirements for translation are that (a)
instruments, reagents, and software are designed and
manufactured within an ISO13485-certified quality system and
according to good manufacturing principles, typically audited by
the FDA for Class-III medical devices; (2) the platform workflow
is compatible with common and custom laboratory information
management systems; and (3) data processing workflows support
remote viewing and annotation and are capable of handling the
scale and size of images and datasets, probably requiring a cloud-
based platform that is HIPAA compliant. A key attribute of a
cloud-based solution is that the computational power supports

rapid automated whole-slide image analysis taking on average
10 min per slide, which will be needed to provide sufficient
turnaround time and reduce the massive amount of raw data
for each tissue section to an operator-independent and
actionable score.

Clinical Validation and Utility
Potentially, the most important element of translating these
methods to clinical practice is demonstrating analytical
validation, clinical validation, and clinical utility in the clinical
trial setting. Having a platform and assays that support the rigors
and quality and regulatory requirements of clinical trials, coupled
with clinical-grade analytical performance, are critical.
Additionally, laboratories running the trials need to have
appropriate documentation and controls in place, as well as be
CLIA/GCP/GCLP certified or compliant. They also need to have
daily slide analysis throughput to support trial timelines.

Clinical Test Reimbursement to Support Laboratory
Economics and Clinical Adoption
Reimbursement is also a key milestone in the path to clinical
adoption, as important as demonstrating clinical validation and
utility. Despite significant attention being paid to personalized
(i.e., precision) medicine, there is still significant pressure to
reduce testing costs. Obtaining reimbursement is a
complicated process and requires significant time and
resources to demonstrate rigorously real value. Regulatory and
reimbursement bodies, such as CMS and NCCN, have made the
hurdles higher because of the lack of performance of many over-
sold testing platforms. On the other hand, there are several
examples of tests, such as next-gen sequencing–based tests for
microsatellite instability and tumor mutation burden, that are
garnering healthy reimbursement and that have predictive power
at levels that will be potentially superseded by assays based on
mIF assessments.

Obtaining approvals and support for reimbursement from
regulatory agencies requires clinical utility studies that
demonstrate significant statistical evidence that patients and
the health system benefit from taking the test. An example of
a clinical utility study that effectively demonstrates the clinical
utility of a multispectral mIF was performed by Peabody et al. for
a prostate cancer prognostic test (Peabody et al., 2017).

Lastly, the cost of performing the test must fit within the
economic imperatives of academic and commercial reference
laboratories. Simply put, the initial investment, per-test cost,
and volume need to support healthy business for the
laboratory, certainly enough to cover costs, but optimally to
support healthy gross and profit margins.

CONCLUSION–MULTIPLEX
IMMUNOFLUORESCENCE HAS A BRIGHT
FUTURE
In the ongoing battle against cancer, there are two major
developments that give us reason to be optimistic about
improving the lives of cancer patients. First, I/O has drastically
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changed the game and created an extensive list of new efficacious
avenues of attack by harnessing the immune system and enabling
new drug combinations that work synergistically together.
Second, thanks to new detection and imaging technologies,
our understanding of the TME and cancer immunology is
advancing at a rapid pace, revealing driver biology behind
progression and responses to therapy.

In addition to the multispectral mIF approach described
here, there are many other new and higher-plex discovery
platforms taking root in cancer research (Tan et al., 2020;
Taube et al., 2020). These platforms leverage novel detection
approaches to multiplex tens of proteins in single tissue section,
such as cycled steps of staining and imaging, faster scanning of
laser or ion beams coupled to mass spectrometers to analyze
antibody-metal atom conjugates, spatially indexed beads for
imaging “trans-scriptomics,” and spatially resolved oligo-
barcoded snipping technologies to look at proteins and RNA
in optically masked areas. These approaches give researchers a
comprehensive tool kit to explore and understand the intricate
details of how cells behave in the TME.

Fortunately, biomarker discoveries made with these higher-
plex approaches, which have workflows and economics that are
not well suited to translation into the clinic, can be reduced to the

most informative markers in a multispectral mIF workflow
providing rapid, whole-slide analysis that is automated and
operator-independent for trials and clinical deployment. They
provide a rich pipeline of new biomarker signatures that can be
converted to a multispectral mIF assay which is suitable for
clinical trials and translation into eventual standard of care.
The new frontier of biomarker discovery based on spatial
biology has a practical path toward the clinic, based on
practically, economically, and analytically robust workflows,
which promises to have material benefit for cancer patients.
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Whole-Slide Image Analysis of Human
Pancreas Samples to Elucidate the
Immunopathogenesis of Type 1
Diabetes Using the QuPath Software
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Type 1 diabetes is a chronic disease of the pancreas characterized by the loss of insulin-
producing beta cells. Access to human pancreas samples for research purposes has been
historically limited, restricting pathological analyses to animal models. However, intrinsic
differences between animals and humans have made clinical translation very challenging.
Recently, human pancreas samples have become available through several biobanks
worldwide, and this has opened numerous opportunities for scientific discovery. In
addition, the use of new imaging technologies has unraveled many mysteries of the
human pancreas not merely in the presence of disease, but also in physiological
conditions. Nowadays, multiplex immunofluorescence protocols as well as
sophisticated image analysis tools can be employed. Here, we described the use of
QuPath—an open-source platform for image analysis—for the investigation of human
pancreas samples. We demonstrate that QuPath can be adequately used to analyze
whole-slide images with the aim of identifying the islets of Langerhans and define their
cellular composition as well as other basic morphological characteristics. In addition, we
show that QuPath can identify immune cell populations in the exocrine tissue and islets of
Langerhans, accurately localizing and quantifying immune infiltrates in the pancreas.
Therefore, we present a tool and analysis pipeline that allows for the accurate
characterization of the human pancreas, enabling the study of the anatomical and
physiological changes underlying pancreatic diseases such as type 1 diabetes. The
standardization and implementation of these analysis tools is of critical importance to
understand disease pathogenesis, and may be informative for the design of new therapies
aimed at preserving beta cell function and halting the inflammation caused by the immune
attack.

Keywords: pancreas, type 1 diabetes, pathology, multiplex immunofluorescence, whole-slide image analysis,
QuPath
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INTRODUCTION

The pancreas is mainly divided into exocrine and endocrine
tissue. The islets of Langerhans, which account for 1–4% of
the total pancreatic volume, form the endocrine portion and
contain several cell populations (secreting distinct proteins):
alpha cells (glucagon), beta cells (insulin), delta cells
(somatostatin), epsilon cells (ghrelin), and pancreatic
polypeptide cells (PP) (Dolenšek et al., 2015; Noguchi and
Huising, 2019). In physiological conditions, beta cells
constitute approximately 50–70% of the total endocrine cells,
followed by alpha cells (20–40%), delta cells (<10%), and a few
epsilon and PP cells (Steiner et al., 2010); however these
proportions vary from region to region (e.g., PP cells can
reach 80% in the pancreatic head, whereas beta cells are <20%
in the same region) or with disease stage (Rahier et al., 1983;
Steiner et al., 2010). The exocrine pancreas accounts for 96–99%
of the total volume and is organized into lobes, lobules, and acini
(dome-like structures consisting of acinar cells); single endocrine
cells can be found throughout the acinar and ductal tissue
(Dolenšek et al., 2015). Both endocrine and exocrine tissue are
affected in type 1 diabetes (T1D) (Rodriguez-Calvo et al., 2014;
Campbell-Thompson et al., 2015; Alexandre-Heymann et al.,
2019; Bender et al., 2020), but the disease is characterized by a
chronic autoimmune destruction of insulin-producing beta cells
(Rowe et al., 2011). Recently, in individuals with recent onset
T1D, a decrease in pancreatic volume has been observed
compared to healthy controls (Williams et al., 2012),
indicating that pancreatic atrophy might be an important
contributing factor to disease pathogenesis and bringing the
often-neglected study of the pancreas as a whole to T1D research.

Beta cells are the main source of insulin biosynthesis, storage,
and secretion (Vasiljević et al., 2020). Insulin is a peptide hormone
of 51 amino acids consisting of two chains (A and B chain, linked
by two disulfide bonds), which is initially synthesized from a
single-chain precursor—preproinsulin. After synthesis in the
ribosomes, preproinsulin is transferred to the endoplasmic
reticulum (ER), where proinsulin is created by cleavage of the
signal peptide. When folding and disulfide bonds are completed,
proinsulin is transferred to the Golgi, where it is packaged in
clathrin-coated vesicles (Steiner et al., 2009; Vasiljević et al., 2020).
In these granules, proinsulin is cleaved sequentially by 1)
prohormone convertase 1/3 (PC1/3), which shows preference
for the C-peptide/A-chain junction, but cleaves also at the
C-peptide/B-chain junction, 2) prohormone convertase 2
(PC2), which cleaves at the C-peptide/B-chain junction, and 3)
carboxypeptidase E (CPE), which cleaves away the connecting
segment and removes any remaining C-terminal basic residues
from both insulin and C-peptide (Steiner et al., 2009; Vasiljević
et al., 2020). In T1D and other pancreatic diseases, alterations at
the level of these enzymes in beta cells have a major impact in
proinsulin processing, proinsulin and insulin secretion (Sims et al.,
2019), and overall beta cell function.

Infiltrating immune cells can be found scattered in the exocrine
and endocrine pancreas in physiological conditions and their
numbers increase prior to, at the time of diagnosis, and after T1D
onset (Willcox et al., 2009; Rodriguez-Calvo et al., 2014; Bender et al.,

2020). Insulitis, which is a hallmark of T1D, has been defined over the
years as infiltration by ≥15 CD45+ cells (Campbell-Thompson et al.,
2013) or ≥6 CD3+ cells (Campbell-Thompson et al., 2016) located
immediately adjacent to or within the islet, in a minimum of three
islets of standard size (150 μm of diameter). In addition,
pseudoatrophic islets (insulin deficient) should be present in the
tissue section (Campbell-Thompson et al., 2013). T cells are themajor
cell type found in insulitis, and their presence is significantly higher in
T1D subjects, not only in the islets, but also in the exocrine
compartment (Rodriguez-Calvo et al., 2014). Up to this date, the
events leading to the autoimmune attack and the consequent beta cell
destruction are not well elucidated. However, increasing evidence
suggests a potential self-involvement of beta cells in their own demise
(Mallone and Eizirik, 2020; Roep et al., 2020). In individuals with
genetic predisposition, intrinsic properties of beta cells such as high
ER stress, vascularization, and hormone secretion,might intensify the
presentation of self-antigens on beta cells, which could increase the
recruitment of immune cells to the islets.

Early research in T1D was originally based on limited human
pancreatic specimens (Foulis and Stewart, 1984; Foulis et al.,
1986), experimental mouse models [mainly the non-obese
diabetic (NOD) mouse (Anderson and Bluestone, 2005)], or
on beta cell lines (Scharfmann et al., 2019). During the last
decades, the scientific community realized the importance of
systematic organ collection and distribution for research and
founded several biobanks, such as the Exeter Archival Diabetes
Biobank (EADB) (Foulis et al., 1986), the Dutch Pancreas
Biobank (Strijker et al., 2018), and the IMIDIA Biobank
(Solimena et al., 2018). The National Institutes of Health
established the Human Pancreas Analysis Program (HPAP),
which aims to distribute high quality molecular data derived
from human pancreata in order to enable scientific discovery
(Kaestner et al., 2019). The biggest and well-known biobank in
the T1D field is the Network for Pancreatic Organ Donors with
Diabetes (nPOD), founded by the Juvenile Diabetes Research
Foundation (JDRF) in 2007, and based in the United States
(Campbell-Thompson et al., 2012). nPOD’s main goals are to
obtain and distribute pancreatic or disease-relevant tissue
samples from organ donors to affiliated researchers around the
globe, as well as to foster and promote collaboration between
research teams, leading ultimately to a quicker elucidation of the
disease pathogenesis (Pugliese et al., 2014).

One of the biggest challenges in the study and analysis of
pancreas pathology is the heterogeneity of the human pancreas,
which is evident at the beta cell, the islet, and the organ level
(Dybala and Hara, 2019). Manual analysis of multiple regions of
interest (ROIs) has been traditionally performed, which faced a
lack of robustness and reproducibility. This type of analysis is
prone to bias and cannot capture the variability in size, endocrine
composition, architecture, vasculature and immune cell
infiltration in islets, and exocrine tissue (Dybala and Hara,
2019). Several algorithms and workflows for the analysis of 2D
(Wang et al., 2013; Kilimnik et al., 2012) and 3D (Poudel et al.,
2016; Fowler et al., 2018) images of the pancreas have been
proposed using specific Fiji plugins and MATLAB. However,
most of these algorithms are not intuitive and require a
considerable amount of computer proficiency. Nowadays,
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whole-slide image analysis of tissue sections, provided by the
biobanks mentioned above, is becoming increasingly accessible to
researchers. To date, analysis of such images required either
specialized commercial software (Tang et al., 2020) or was
limited to a small ROI, due to the inability of existing open-
source software to handle large 2D images (Aeffner et al., 2019).
QuPath (http://qupath.github.io) is an open-source, user-friendly
software developed by Bankhead et al. (2017) in 2016 in order to
enable whole-slide image analysis and digital pathology, by
addressing the unique requirements in the visualization and
analysis of such data.

Here, we show that QuPath can automatically and accurately
detect, quantify and distinguish cell populations in the endocrine
and the exocrine compartments of the pancreas using a series of
detection algorithms based on intensity thresholding, pixel
classification, and machine learning. We provide the
groundwork for a standardized, semi-automated analysis of
the human pancreas using QuPath, which can lead to a more
efficient and reproducible analysis of tissue images, reducing
inter-observer variability, and bringing researchers closer to
elucidating the etiology of T1D.

MATERIALS AND EQUIPMENT

QuPath Software
Multiplexed fluorescence images from tissue sections were analyzed
with QuPath version 0.2.3, an open-source software for digital
pathology and whole-slide image analysis described by Bankhead
et al. (2017). Briefly, the software was developed using Java 8, with a
JavaFX interface for annotation and visualization, built-in algorithms
for common tasks, including cell and tissue detection, and interactive
machine learning for object and pixel classification. It is compatible
with ImageJ, OpenCV, Java Topology Suite, and OMERO. The
software supports several image formats through Bio-Formats and
OpenSlide, including whole-slide images and multiplexed data.

Pancreatic Specimens
Six 4-µm-thick pancreatic formalin-fixed paraffin-embedded
(FFPE) sections from the tail of the pancreas of a female non-
diabetic donor, were obtained through nPOD. All the sections
were obtained from the same tissue block. Slides #1, #2, #3, #4,
and #6 were consecutive, while section #5 was not. Briefly, the
donor was 64 years old, Caucasian, with a BMI of 31.2 and an
HLA-A*02/03, B*07/60, DR*13/15, DQ*06 phenotype, who was
hospitalized for 2.67 days due to a cerebrovascular accident. The
histopathology record showed insulin and glucagon positive
normal islets. All experimental procedures were approved by
the ethics committee at the Technical University of Munich
(protocol #215/17 S) and the Helmholtz Center Munich,
Institute of Diabetes Research.

Immunofluorescence and Imaging
FFPE sections were stained for insulin, proinsulin, glucagon, CD3,
CD8, CD45, chromogranin A (CHGA), PC1/3, PC2, and CPE by
immunofluorescence (Supplementary Figure S1). Tissue sections
were deparaffinized with an alternative to xylene clearing agent

(H2779, Sigma-Aldrich, MO, United States) and rehydrated in
ethanol baths of decreasing ethanol content. Antigen retrieval
and multiplexing of primary antibodies of the same species was
performed using the Opal kit according to the manufacturer’s
instructions (NEL811001KT, Akoya Biosciences, CA,
United States). Specifically, a 2-step microwave antigen retrieval
process preceded the primary antibody incubations and was the
same for all the stainings. Slides were first microwaved at 900W for
45–65 s (until retrieval buffer reached the boiling point), followed
by a second step, where the sections were microwaved for 15 min at
160W. The following primary antibodies were incubated for 1 h at
room temperature or overnight at 4°C depending on the protocol:
mouse anti-proinsulin (1:200, GS-9A8 supernatant, DSHB, IA,
United States), mouse anti-CD45 (1:100, M070101, Agilent
Technologies, CA, United States), rabbit anti-CD3 (1:200,
A045229, Agilent Technologies), rabbit anti-CD8 (1:900, ATA-
HPA037756, Atlas Antibodies, Bromma, Sweden), mouse anti-
insulin (1:300, 5-1108, Merck, Darmstadt, Germany), guinea pig
anti-insulin (1:500; A056401-2, Agilent Technologies), rabbit anti-
glucagon (1:1200; ab92517, Abcam, Cambridge, United Kingdom),
rabbit anti-CHGA (1:500; ab15160, Abcam), mouse anti-PCSK1N
(1:500, ATA-HPA064734, Atlas Antibodies), rabbit anti-PC2 (1:
800, Merck), and rabbit anti-CPE (1:100, ATA-HPA003819, Atlas
Antibodies). Detection was performed by 1 h incubation at room
temperature with the following secondary antibodies at 1:1,000
dilution (all from Life technologies, Darmstadt, Germany): Goat
Anti-Guinea Pig IgG Alexa Fluor 488 (A11073), Goat Anti-Rabbit
IgG Alexa Fluor 750 (A21039), Goat Anti-Mouse IgG Alexa Fluor
750 (A21037), F(ab’)2-Goat anti-Rabbit IgG Alexa Fluor 488
(A11070), Goat Anti-Mouse IgG1 Alexa Fluor 555 (A21127),
F(ab’)2-Goat anti-Rabbit IgG Alexa Fluor 555 (A21430), and
Goat Anti-Mouse IgG1 Alexa Fluor 647 (A21240). Sections were
counterstained with Hoechst 33342 (1:5,000; Invitrogen, CA,
United States) and mounted with Prolong Gold Antifade reagent
(Invitrogen). Whole tissue sections were scanned by an Axio
Scan.Z1 slide scanner (Zeiss, Jena, Germany) using a 20x/0.8NA
Plan-Apochromat (a � 0.55mm) objective.

Statistics
All the graphs show the median and 95% confidence interval of
the median. Analyses were performed using GraphPad Prism
version 9, GraphPad Software, La Jolla, CA, United States, www.
graphpad.com.

Standard Operating Procedure for Whole
Slide Image Analysis
A step by step guide and detailed information on how to analyze
whole-slide pancreatic tissue sections is provided as a
supplementary document (Supplementary Data S1).

METHODS

Tissue, Islet and Cell Detection
First, tissue area and islets were automatically identified based on
average values of all channels for the labeled proteins (antibody
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FIGURE 1 | Schematic illustration of the whole-slide image analysis workflow using QuPath. (A) Experimental method and image analysis. Multiple
immunofluorescence protocols were employed for the staining of tissue sections from the pancreatic tail of a single non-diabetic donor. Whole-slide image analysis was
carried out with QuPath, version 0.2.3 1); tissue was detected using an intensity thresholder based on average values of all channels for the labeled proteins 2), Objects
(islets) were then created using the pixel classifier, and 3) cells were detected and smoothed features were added. (B) The Single measurement classifier tool was
employed to detect positive cells for the marker of interest. Cells were identified as areas of staining above the background level by applying optimizedCell mean intensity
thresholds. Combination of single classifiers was necessary for the accurate detection of beta and alpha cells. Annotation measurements were exported as CSV files and
were subsequently processed in Excel spreadsheets.
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combinations are shown in Supplementary Table S1) using
thresholding detection and machine learning. Information on
the whole tissue section, exocrine and endocrine areas, number of
islets per section, as well as the total number of alpha and beta
cells was obtained. Independent workflows and settings for 1)
tissue, 2) islet, and 3) cell detection are shown in Figure 1A and
Supplementary Figure S2. Only islets formed by ≥10 cells were
included in the analysis in order to avoid scattered single
endocrine cells present in the exocrine tissue and possible
detection errors derived from small artefacts. First, for tissue
detection, the command Pixel classification→ Create thresholder
was used (Figure 1A). After applying the fill holes function, the
tissue was manually checked for the presence of artifacts. Then, a
small ROI was created, and islets were recognized as a new class
by Pixel classification. For this purpose, the command Train pixel
classifier was used and new objects (islets) were created. Once the
new islet classifier was saved, Cell detection was performed in the
entire tissue section. Cells were identified as areas of staining
above the background level, by applying optimized nucleus
threshold, segmentation parameters (Median filter radius and
Sigma), and cell expansion (Figure 1A and Supplementary
Figure S2). Last, smoothed features were added in order to
obtain new measurements considering the cell features within
a 25 µm range. After cells were detected, the islet pixel classifier,
initially applied to a small ROI, was applied to the whole tissue
area, and the newly created islet areas, defined as objects, were
filled automatically following the path Objects→ Annotations→
Fill holes.

Endocrine Cell Detection
Thresholding detection was applied to create unique classifiers for
every staining combination due to fluorescence channel
dependency. After islet detection, the path Classify → Object
classification → Create single measurement classifier tool was
applied to detect cells positive for insulin, proinsulin,
glucagon, PC1/3, PC2 or CPE (Figure 1B). Cells were
identified as areas of staining above the background level by
applying optimized Cell mean intensity thresholds. To identify
beta cells, the new classifiers were combined to obtain the number
of cells positive for both insulin and proinsulin together with
different proteins of interest like PC1/3, PC2 or CPE. Data on
alpha cells were obtained by using glucagon positive cells as

reference. Chromogranin A was used for complete islet cell
detection for slide #6. Annotation measurements were exported
and information on islet size, cell composition and number of
positive cells was obtained (Table 1 and Supplementary
Table S2).

Immune Cell Detection and Spatial Analysis
of Immune Infiltration
Different image analysis protocols were generated for the study of
CD45+ (leucocyte marker), CD3+ (T cell marker) and CD8+ cells
(CD8+ T cell marker) and their localization in the islets and
exocrine tissue. CD4+ T cells were calculated as the total number
of CD3+ cells minus the number of CD8+ cells (CD3+
CD8−cells). The use of thresholding vs. machine learning was
compared (Figure 2A). First, the membranemarker CD45, which
is expressed in all leucocytes, was detected. For thresholding, a
single measurement classifier for the cell mean intensity value of
the CD45marker was used. Using this method, an overestimation
in the number of islet-infiltrating cells was observed, and manual
correction was applied. For machine learning, the following path
was used: Classify→Object classification→ Train object classifier.
For the classifier training, the option Points only was selected.
Then, the Points tool was used to assign two different classes to
the corresponding cells, one for the marker of interest (CD45+),
and one for unclassified objects (ignore*). For each class, negative
(ignore*) and positive (CD45+), three different ranges of training
points were tested (≥50, ≥80, and over 100). Overall, classifying
between 50 and 80 points and using machine learning was
comparable to applying the best threshold and subsequent
manual correction. Moreover, when the whole section was
analyzed, the total number of CD45+ cells detected by
thresholding was lower than the one obtained by machine
learning using 100 training points (8,078 vs. 17,116 cells),
indicating that immune cells with low intensity values were
not properly detected when thresholding was used (Table 2).
Machine learning using ≥100 points showed higher accuracy than
thresholding and was subsequently used for the detection of
CD3+ and CD8+ cells. However, the most suitable number of
training points should be defined by the user based on staining,
intrinsic characteristics of the tissue and quality of the specimen.
Last, measurements were exported and the number, proportion of

TABLE 1 | Characterization of the endocrine and the exocrine pancreas of a non-diabetic donor according to different staining combinations.

Slide ID Tissue
area (mm2)

Exocrine
area (mm2)

Endocrine
area (mm2)

No. islets No. islet cells No. beta cells No. alpha cells

1-PI/CD45/INS/GCG 80.9 79.8 1.2 260 13,625 9,571 4,537
2-INS/PI/GCG 71.8 70.6 1.3 262 13,129 7,581 4,163
3-INS/PC1/PI 84.6 83.4 1.1 234 12,441 9,040 3,401
4-INS/CPE/PI 92.9 91.7 1.2 273 14,616 11,682 2,934
5-INS/PC2/PI 130.6 128.3 2.3 432 26,655 17,579 9,076
6-CD3/CD8/CHGA 75.0 74.14 0.9 241 13,203 NA NA
Total mean ± SD 89.3 ± 19.7 87.9 ± 19.2 1.3 ± 0.5 283.7 ± 67.6 15,611.5 ± 4,981.8 11,090.6 ± 3,500.9 4,822.2 ± 2,199.8
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FIGURE 2 | Schematic illustration of the immune cell detection workflow using QuPath. (A) Comparison of the thresholding (single measurement classifier) and the
machine learning (train object classifier) option for the detection of CD45+ cells. (B)Workflow for the detection and distance analysis of CD3+ and CD8+ cells detected
with thresholding and machine learning. Heatmaps were created to depict the relative distance of CD3+ and CD8+ cells (either individually or combined as one class) to
the annotated islets.

TABLE 2 | Comparison of the number of CD45+ cells in the whole tissue, the exocrine and endocrine area of slide #1, depending on the detection method (thresholding vs.
machine learning).

QuPath method Total no. CD45+ No. CD45+ in exocrine No. CD45+ in endocrine

Thresholding 8,107 8,069 38
Thresholding manually corrected 8,078 8,067 11
Machine learning (≥50 points) 6,801 6,800 1
Machine learning (≥80 points) 12,874 12,870 4
Machine learning (≥100 points) 17,116 17,098 18
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infiltrated islets and density of CD45+ cells (expressed as number
of positive cells per mm2) were calculated in the whole tissue, and
the exocrine and endocrine compartments (Table 3 and
Figure 6).

In order to characterize T cell infiltration, a modified version
for cell detection was applied as follows (Figure 2B): After islets
were detected, the option Positive cell detection was used to
identify by thresholding all CD3+ cells. However, as cell
detection by thresholding was not completely accurate, a
second classifier for CD3+ or CD8+ membrane markers was
created using machine learning. As explained above, the object
classifier was trained with a minimum of 100 training points for
CD3+ and CD8+ cell detection, and was applied over the CD3+
cells detected by thresholding, creating a single machine
learning classifier for CD3+ and CD8+ cells. Then, once
T cells were identified, their localization with respect to the
islets was analyzed (Figure 2B). Distance analysis was
performed using the command Spatial analysis. This tool was
applied as follows: Analyze→ Spatial analysis→ Distance to
annotations 2D. Next, we generated individual heatmaps for
CD3+ and CD8+ cells based on the distance of the cells to the
islets. Finally, both single machine learning classifiers were
combined and different classes were automatically created;
the first one corresponding to all CD3+ cells, the second
class for cells positive for both markers (CD3+CD8+),
representing CD8+ cells, and the third one representing
CD4+ cells (CD3+CD8−). Last, annotation and detection
measurements were exported. Data on T cell numbers,
endocrine and exocrine T cell density, proportion of
infiltrated islets, as well as the distance of T cells to the islets
were obtained (Table 3 and Figures 6, 7).

RESULTS

Characterization of the Endocrine and
Exocrine Pancreas in a Non-diabetic Donor
To characterize pancreas tissue sections, thresholding detection
and machine learning were used as described above (Tissue, Islet
and Cell Detection) and applied to define the whole tissue as well
as the exocrine and endocrine areas. For this purpose, six tissue
sections from a non-diabetic donor were analyzed as shown in
Table 1. Data regarding islet density, the number of cells per islet
as well as their cellular composition (beta and alpha cells) were
obtained (Figure 3 and Table 1). There were minimal differences
in endocrine cell density, expressed as number of endocrine cells
per islet area (mm2), between the sections (Figure 3A). Analysis

of the cellular composition showed that the majority of islets
contain between 10 and 100 endocrine cells (Figure 3B). As
observed in Table 1, the mean area value of whole tissue, exocrine
and endocrine compartments (including all slides) was 89.3 ±
19.7, 87.9 ± 19.2, and 1.3 ± 0.5 mm2 respectively. A similar
number of islets was detected in the majority of tissue
sections, even when individual pixel classifiers for each section
were applied (283.7 ± 67.6 islets, Table 1). Only section #5, which
had a bigger area, contained more islets than slide #1 to 4 and
slide #6 (Figure 3B, Supplementary Figure S3 and
Supplementary Table S3). There was a large variability in the
proportion of alpha and beta cells per islet which ranged from 0 to
100% (Figures 3C, E and Supplementary Figure S4), as well as in
endocrine cell density per islet (Figure 3D and Supplementary
Figure S4). A mean of 70.1% of beta cells (range 57.7–79.9%)
were present in the whole section versus a mean of 28.1% of alpha
cells (range 20.1–33.3%) (Figure 3F). Cell density profiles showed
a similar distribution for alpha and beta cells in different sections
(Supplementary Figure S4).

Assessment of the Reproducibility and
Accuracy of Insulin (INS) and Proinsulin (PI)
Positive Cell Detection
As shown above, insulin-producing beta cells are the
predominant islet cell population. To further characterize
them, the total number of cells positive for insulin (INS+) and
proinsulin (PI+) was first measured in the whole tissue area of
slides #1, #2, #3, #4, and #5 (Supplementary Table S2). The
proportion of INS + cells was lower for sections #1, #2, and #5
(64.8, 56.2, and 53.5% respectively) compared to sections #3
(71.5%) and #4 (77.8%) (Supplementary Table S2). Slight
differences between sections were expected: sections #1 and #2
were stained with a different insulin antibody and section #5
belonged to the same tissue block, but was not consecutive to the
other slides (Supplementary Tables S2, S3). Conversely, the
proportion of PI+ cells was comparable between sections, as
the same antibody was used for all the slides (Supplementary
Table S2). Then, the proportion and density of INS+ and PI+
cells per islet were calculated (Figure 4). Overall, there were mild
differences in INS+ and PI+ cell distribution per islet between
tissue sections.

As intraindividual differences could also be observed, the ratio
PI/INS was calculated for each section (Figure 4F). Comparable
results were obtained with median ratios that ranged from 0.79 to
1.02. In two sections (#2 and #3) the ratios were close to 1,
indicating an equal detection of INS and PI in beta cells, whereas

TABLE 3 | Number, proportion and density of immune cells in the whole tissue, the exocrine and endocrine area. CD45+ cell values correspond to the analysis of slide #1,
and CD3+, CD8+, and CD4+ cell analysis to slide #6.

No.
CD45+

No.
CD3+

No.
CD8+

No.
CD4+

%
CD45+

%
CD3+

%
CD8+

%
CD4+

CD45+/
mm2

CD3+/
mm2

CD8+/
mm2

CD4+/
mm2

Tissue 17,116 8,643 3,911 4,732 100 100 100 100 211.5 115.2 52.1 63.1
Exocrine 17,098 8,639 3,909 4,730 99.9 99.95 99.95 99.96 214.3 116.7 52.8 63.9
Endocrine 18 4 2 2 0.1 0.05 0.05 0.04 15.5 4.1 2 2
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FIGURE 3 | Characterization of the endocrine and exocrine pancreas in a non-diabetic donor. (A) Comparison of islet density expressed as number of endocrine
cells per islet area in mm2 among the different staining combinations. Each dot represents an islet. (B) Histograms showing the cellular content of islets in pancreatic
sections stained with different antibody combinations. The different staining IDs are shown as #1–6. Each bar represents a different slide. More details can be found in
Supplementary Table S1. (C) Violin plots showing the percentage of endocrine cells (beta and alpha cells) per islet analyzed in the whole pancreatic section,
stained with antibody combination #1. Each dot colored represents an islet. (D) Violin plots showing the density of beta and alpha cells in the same section, expressed as
number of endocrine cells per mm2 of islet area. Each dot represents an islet. (E) Representative image showing two islets, one containing mainly beta cells (green) and
one containing mainly alpha cells (magenta). (F) Boxplots showing the mean percentage of beta or alpha cells per islet. Each dot represents the mean from a single slide.
Scale bar: 100 μm.
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in other sections, lower ratios were observed. Therefore, mild
variations in INS and PI expression from islet to islet and cell to
cell are expected, even within the same individual.

Analysis of the Proinsulin Processing
Enzymes Prohormone Convertase 1/3,
Prohormone Convertase 2 and
Carboxypeptidase E
As shown above, interindividual, inter-islet (among different
islets of the same donor) and intra-islet (between cells within
the same islet) differences in protein expression are expected.
Therefore, establishment of reference expression levels for
proteins like insulin, proinsulin, and their processing enzymes
in non-diabetic individuals is of great interest. Thus, the
expression of the enzymes PC1/3, PC2, and CPE was
evaluated. The proportion of PC1/3+, PC2+, and CPE+ cells
per islet was calculated in beta and alpha cells (Figure 5). Overall,
the three prohormone enzymes were expressed in a higher
percentage of beta cells compared to alpha cells, although
there was high inter-islet variability (Figure 5B). CPE was
expressed in a higher proportion of beta cells compared to
PC1/3 and PC2 (mean CPE+ 78.5 ± 21.9%, mean PC1/3+
68.2 ± 20.1%, and mean PC2+ 62.4 ± 24.1%). CPE and PC2

were expressed in a higher proportion of alpha cells compared to
PC1/3 (mean PC1/3+ 49.3 ± 33.4%, mean PC2+ 58.4 ± 33.4%,
and mean CPE+ 63.9 ± 35.9%).

Analysis of the Proportion and Density of
Immune Infiltration in the Exocrine and
Endocrine Pancreas
To investigate immune cell infiltration in the pancreas, cells were
detected using the machine learning protocol described above
(Immune Cell Detection and Spatial Analysis of Immune
Infiltration). A minimum of 100 training points for each class
of interest were assigned, and the proportion of CD45+, CD3+,
CD8+, and CD4+ (CD3+CD8−) cells was calculated in the
exocrine and the endocrine compartments using different
sections from the same donor. As expected in a non-diabetic
pancreas, there were no signs of insulitis, as currently defined.
However, as observed in Figure 6, a few immune cells could be
found close to, or infiltrating some islets. To evaluate immune
infiltration in both compartments (exocrine and endocrine), the
proportion of infiltrated islets, the proportion of immune cells,
and immune cell density in the whole section were calculated
(Figure 6 and Table 3). First, CD45+ cells were analyzed. In a
total of 260 islets, only 18 CD45+ cells could be found within or

FIGURE 4 | Assessment of the reproducibility and accuracy of insulin (INS) and proinsulin (PI) positive cell detection. (A) Representative images showing insulin
(INS) and proinsulin (PI) staining in islets from different pancreatic sections stained with different antibody combinations (slides #1–5). (B) Dot plots showing the
proportion of insulin and (C) proinsulin positive cells per islet in slides #1–5. Each dot represents an islet. (D) Dot plots showing the density of insulin and (E) proinsulin
positive cells expressed as number of positive cells per islet area in mm2. Each dot represents an islet. (F) Comparison of the proinsulin to insulin ratio (PI/INS)
among the different samples. Each dot represents an islet. Scale bar: 50 μm.
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immediately adjacent to islets (1% of the total number of CD45+
cells). Then, the proportion of CD3+, CD8+, and CD4+ cells per
islet was calculated. In a total of 241 islets, 4 CD3+ cells (0.05%)
could be found, of which two cells were CD8+ (0.05%) and two
cells were CD8− (considered CD4+, 0.04%) (Table 3). The
majority of immune cells were found in the exocrine tissue or
in close proximity to blood vessels. Next, the proportion of islets
that were infiltrated by at least one cell was calculated
(Figure 6B). Only a few infiltrated islets were found in the
whole section (5% by CD45+, 1.7% by CD3+, 0.8% by CD8+,
and 0.8% by CD4+ cells).

Last, to evaluate the magnitude of the infiltration, T cell
density was calculated as the number of infiltrating cells
divided by the total exocrine or endocrine area (Table 3
and Figure 6C). As expected, density values were higher
for CD45+ and CD3+ cells in both the exocrine and
endocrine compartments (214.3 and 15.5 cells/mm2 for
CD45+ cells; 116.7 and 4.1 cells/mm2 for CD3+ cells,
respectively) while CD8+ (52.8 cells/mm2 in the exocrine
and 2 cells/mm2 in the endocrine tissue) and CD4+ cell
density (63.9 cells/mm2 in the exocrine and 2 cells/mm2 in
the endocrine tissue) were lower.

Two-Dimensional Spatial Analysis of the
Localization and Distance of Immune Cells
to the Islets
The current definition of insulitis takes into account both peri-
islet (peri-insulitis), as well as intra-islet infiltration (intra-
insulitis). Therefore, the location and distance of immune cells
to the islets is an interesting feature for the analysis of immune
infiltration in the context of T1D. As explained above (Immune
Cell Detection and Spatial Analysis of Immune Infiltration),
heatmaps were generated for CD3+ and CD8+ cells, which

were color coded based on their distance to the closest islet.
The majority of T cells were located far from islets while just a few
cells were located close to islets (Figures 7A,B). Subsequently, the
total number of CD3+CD8+ and CD3+CD8− (CD4+) T cells
were grouped based on their distance to the islets (Figure 7). Five
categories were defined: 1) between 0 and 1 μm; 2) between 1 and
50 μm; 3) between 50 and 200 μm; 4) between 200 and 500 μm,
and 5) higher than 500 µm to the closest islet. The majority of
T cells were found at a distance of 200–500 µm (4029 CD3+, 1728
CD8+, and 2301 CD4+ T cells). The distance range 1–50 µm
represented the diameter of 3–5 acinar cells and it was considered
the peri-islet area. For all T cell populations, a low number of cells
was found in the periphery of the islets (619 CD3+, 315 CD8+,
and 304 CD4+ T cells). As observed in Figures 7F–H, the number
was low for cells infiltrating the islet parenchyma (distance of
0–1 µm: 5 CD3+, 3 CD8+, and 2 CD4+ T cells). This analysis
revealed that under physiological conditions, immune cells can be
found predominantly in the exocrine tissue at distances over
50 µm from the islets, whereas a low number of cells is located
within and around the islet parenchyma.

DISCUSSION

The histological analysis of tissue sections has been historically
challenging for pathologists due to time requirements, inter-
observer variability, and the risk of biased interpretation
(Aeffner et al., 2019). In T1D research, there is still a lot of
ground to cover in deciphering the immunopathogenic
mechanisms of the disease. In the last decade, the nPOD
repository addressed the need for high quality human
pancreatic specimens. Around the globe, researchers can now
perform sophisticated multiplexed immunostainings, and
acquire high-resolution whole-slide digitized images. This

FIGURE 5 | Analysis of the prohormone processing enzymes PC1/3, CPE and PC2 in the endocrine pancreas. (A) Representative images showing the distribution
and localization of the proinsulin processing enzymes PC1/3 (slide #3, upper row), CPE (slide #4, middle row) and PC2 (slide #5, lower row) in the islets. (B) Violin plots
showing the proportion of PC1/3+, PC2+, and CPE+ cells in beta (green) and alpha cells (violet). Each dot represents an islet. Scale bar: 100 μm.
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automatically creates a need for a quick, standardized and
reproducible image analysis method. QuPath is an open-
source software that enables whole-slide image analysis with
time-saving and variability-reducing, semi-automated
workflows (Bankhead et al., 2017). Interestingly, whole-slide
image analysis is widely used in pancreatic malignancies for the
detection of infiltrating immune cells or for annotation of tumor
areas (Carstens et al., 2021; Zacarías-Fluck et al., 2021; Bulle
et al., 2020), yet in the T1D research field this is still not a
common practice. To date, out of the 552 publications citing
QuPath (Bankhead, 2021), 27 used it for analysis of images from
the pancreas or from isolated pancreatic islets (human or
rodent): 24 were found related to pancreatic cancer, 3 to
diabetes (Rajendran et al., 2020; Rubey et al., 2020; Apaolaza
et al., 2021) and, to our knowledge, only 2 of them describe

results from whole-image analysis of donors with T1D
(Rajendran et al., 2020; Apaolaza et al., 2021).

Besides QuPath, whole-slide image analysis can be achieved
with other open-source software, such as ImageJ [using the SlideJ
plugin (Della Mea et al., 2017)], Orbit (Stritt et al., 2020), and Icy
(de Chaumont et al., 2012). However, we are not aware of any
studies comparing the reproducibility of the results, the time
requirements for analysis or the ease of use among the three
aforementioned software. HALO image analysis platform is a
proprietary software from Indica Labs that can also handle
whole-slide images; recently, scientists from the nPOD
network analyzed whole-slide images from pancreata of non-
diabetic, autoantibody-positive and T1D donors using the
HALO platform, and reported alterations in the number and
density of the acinar cells in donors with T1D (Tang et al., 2020).

FIGURE 6 | Analysis of the proportion and density of immune infiltration in the exocrine and endocrine pancreas. (A) Representative images of slide #1 showing
CD45+ cells in the vicinity of an insulin-containing islet (upper row) and representative images of slide #6 showing CD3+ (lower row left) and CD8+ (lower rowmiddle) cells
close to a chromogranin A positive (CHGA+) islet. (B) Bar graphs show the proportion of infiltrated islets by CD3+, CD8+, CD4+, and CD45+ positive cells expressed as
percentage of total islets. (C) Bar graphs show the density of CD3+, CD8+, CD4+, and CD45+ cells expressed as number of cells per islet area (mm2). Scale
bar: 50 μm.
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In a recent study, the reproducibility of the Ki67 measurement
and the subsequent predictability of cancer prognosis were
compared among three image analysis platforms: HALO,
QuantCenter (from 3D Histech), and QuPath. While Ki67
scoring can prove useful for the prediction of cancer
prognosis, the variability in pre-analytical, analytical
(experimental), and especially in manual scoring protocols
has discouraged pathologists from implementing it in the
clinical practice. Conversely, using the mentioned Image
analysis platforms yielded excellent results. Ki67 scoring and

prognosis predictability were “indistinguishable” among the
three platforms even when different operators were
employed, thus urging scientists to opt for automated
analysis solutions, in order to avoid the variability of manual
analysis and thus accelerate the implementation of digital Ki67
scoring in the clinic (Acs et al., 2019).

In this study, we used intensity thresholding, pixel
classification and machine learning algorithms in QuPath to
precisely and automatically detect different structures in the
pancreas from multiplexed immunofluorescence images

FIGURE 7 | Two-dimensional spatial analysis of the localization and distance of immune cells to the islets. Heatmaps showing the distance of (A) CD3+ and (B)
CD8+ cells to the closest islet. Scale: 0 (black-blue)—>250 (red) μm. (C) Bar graph showing the distribution of CD3+, (D) CD8+, and (E) CD4+ cells in five different
distance categories to the closest islet: [0, 1), (1, 50], (50, 200], (200, 500], and >500 μm. (F) Violin plots showing the number of CD3+, (G) CD8+, and (H) CD4+ cells in
the intra-islet [0, 1) and peri-islet (1, 50 μm]. Each dot represents a cell.
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regardless the staining protocols. We were able to run an accurate
anatomical (tissue size, islet areas, etc.) and physiological
characterization (insulin, proinsulin, and prohormone enzyme
profiles) of whole pancreas sections from a non-diabetic donor,
establishing an image analysis pipeline that can be applied not
only to the study of T1D but also to other diseases of the pancreas.
Importantly, we found similar islet numbers and densities, as well
as similar distribution for alpha and beta cells between sections,
demonstrating the validity of the parameters implemented in our
protocols. In line with previous studies (Steiner et al., 2010;
Dolenšek et al., 2015; Da Silva Xavier, 2018; Noguchi and
Huising, 2019), we confirmed that insulin-producing beta cells
constitute 60–70% of the islet cell population, whereas around
30–40% are alpha cells. In addition, we showed that in a non-
diabetic condition the majority of the islets contain between 10
and 100 endocrine cells. This parameter is worth to be
considered, as differences in the number of endocrine cells
forming the islets can also indicate beta cell decay.
Independently of the antibody combination used, the median
values for INS+ and PI+ cells, as well as the PI/INS ratio were
comparable, with few exceptions.

Furthermore, changes in the expression and distribution of the
proinsulin processing enzymes can indicate failure of these
specific prohormone conversion mechanisms. Differences may
exist even in non-diabetic individuals, which can be extended to
high intra-individual or even intra- and inter-islet heterogeneity
under pathogenic conditions (Teitelman, 2019). Proteomic
analysis of islets obtained by laser capture microdissection
(LCM) indicated that PC1/3 and CPE are reduced in islets
from donors with T1D with long disease duration (Wasserfall
et al., 2017; Sims et al., 2019). Impaired proinsulin conversion
accompanied by elevated proinsulin secretion is characteristic of
T2D and T1D, and defects in proinsulin processing result in
alteration of the PI/C-peptide and PI/INS ratios (Sims et al., 2019;
Sims et al., 2019). Of note, there has been some controversy
regarding the role of PC2 in proinsulin processing in humans; a
recent paper, Ramzy and colleagues (Ramzy et al., 2020) provide
evidence that PC2 is neither abundant nor plays a significant role
in the processing of proinsulin in human beta cells, whereas other
groups have reported the abundancy of PC2 in human pancreata
(Scopsi et al., 1995; Teitelman, 2019). However, a limitation of
these analyses is that they were not performed in whole pancreas
sections, thus capturing the majority of islet types in an
individual, but in isolated islets and beta cell lines. Here, we
provide an analysis pipeline to estimate the proportion and
density of beta and alpha cells, as well as of the processing
enzymes PC1/3, PC2, and CPE in the islets or endocrine
compartment, which could uncover important alterations in
insulin production under inflammatory or stressful conditions
and provide comprehensive evidence to fundamental mechanistic
questions of proinsulin processing.

Modern lifestyle and diet have placed an enormous amount of
metabolic pressure on beta cells, which are constantly hyper-
functioning to produce and secrete insulin. This metabolic stress
could lead to mistakes in the translational and post-translational
processing of insulin and other beta cell proteins, which could in
turn lead to the generation of neoantigens and to the ultimate

recruitment of the immune cells to the pancreas (Rodriguez-
Calvo et al., 2021). Insulitis is a hallmark of T1D; CD8+ T cells are
the most abundant cell population in an insulitic lesion, followed
by CD68+ macrophages, CD20+ B cells, and CD4+ T cells
(Willcox et al., 2009). Even though insulitis seems to matter
most because of the consequent destruction of beta cells and the
loss of insulin, it has been shown that the exocrine compartment
is also infiltrated by CD8+, CD4+, and CD11c+ cells (Rodriguez-
Calvo et al., 2014; Campbell-Thompson et al., 2015). Despite
these observations, the immunopathological course from health
to disease, as well as the importance of the crosstalk between the
endocrine and the exocrine tissue are still unclear. The detection
of T cells around or within the islets, as well as their dynamic
distribution in the endocrine and the exocrine pancreas are of
great interest. Here, we described two ways of detecting immune
cells using QuPath: 1) using the single measurement classifier
based on thresholding or 2) by machine learning. Our results
show that the machine learning option is quicker and more
accurate and we recommend its use for the detection of
infiltrating immune cells in the pancreas. In this study, we
have evaluated their number, density and distance to the islets.
Distance-wise, the majority of the T cells are found between 50
and 500 µm away from the closest islet in a non-diabetic pancreas.
However, as disease progresses, a higher number of immune cells
might be found closer to or inside the islets. This type of analysis
can help to understand the dynamics of immune infiltration in
the pancreas in individuals with prediabetes, as well as after onset
of disease, and could inform clinical trials aiming to halt the
autoimmune attack in T1D (Herold et al., 2019). As reported
recently (Berben et al., 2020), the semi-automated methods
offered by QuPath are equally reliable and considerably
quicker than manual counting of immune infiltrating cells—a
method that is still considered the gold standard in the clinical
setting.

From a practical point of view, the working time with QuPath
ranges between 1.5 and 2 h per slide, depending on computer
processing power, memory and user’s experience level. Most of
this time is devoted to finding the correct settings in cell
detection and intensity thresholds for each channel that will
work for different sections. In our experience, these two
parameters can strongly influence cell segmentation and
subsequent positive or negative identification of cells for
markers of interest. Thus, we advise researchers to test these
parameters in small areas, and in different types of donor
sections (control, disease, etc), in order to find which ones
will work for most, if not all, types of samples. Despite
slowing the process at the beginning of the analysis, the
aforementioned preliminary testing will save time during the
actual analysis, and prevent the occurrence of segmentation or
detection issues among the different types of samples. Besides the
actual working time with QuPath, the user should plan time for
data-processing, grouping, and analysis, which depending on the
number of desired readouts, may range from 2 to 5 h per slide.
Overall, the time invested in whole-slide image analysis yields
high quality data and we hope that, together with the step-wise
guide provided here, it will encourage the performance of large-
scale image analysis studies.
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We believe that researchers should take advantage of the
increasingly available digitized whole-slide pancreatic images
and of the numerous open-source tools offered by QuPath.
Taken together, we established several image analysis
workflows that provide a basic guide to improve the
characterization of the exocrine and endocrine compartments,
islet cell populations, and immune infiltration. We acknowledge
that other methods and analytical tools within QuPath could be
used to obtain similar datasets, and that these should be
customized based on quality of the sample, staining
parameters and analytical goals. In addition, intra-individual
variability should be assessed, as there are several factors that
could contribute to it: 1) the use of different antibody
combinations and/or protocols on different sections; 2) even
though some sections might be consecutive, it does not
necessarily mean that all the sections contain the same islets
or cells; 3) stainings might not be performed on the same day, and
this could add inter-staining variability. The fact that we were able
to detect and quantify the extent of this variability through the use
of QuPath makes us more confident that we provide an objective
workflow for large-scale studies. Moreover, samples from
different donor groups and disease status need to be included
in the first steps of the image analysis workflow to assess inter-
donor variability and to ensure that all the parameters are
applicable to the different experimental conditions. Therefore,
we invite other scientists to share their image analysis pipelines
with the scientific community to maximize the impact of open-
access tools. Here, we provide an analysis pipeline customized for
the analysis of pancreas specimens with the aim of improving the
accuracy, reproducibility and objectivity of image analysis while
shortening the analysis time. These tools should help to gain new
insights into the pathogenesis of diabetes and other pancreatic
diseases, and could accelerate research on biomarker discovery
and pharmacological interventions aimed at the diagnosis and
cure of T1D.
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Methods to Determine andAnalyze the
Cellular Spatial Distribution Extracted
From Multiplex Immunofluorescence
Data to Understand the Tumor
Microenvironment
Edwin Roger Parra*

Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX,
United States

Image analysis using multiplex immunofluorescence (mIF) to detect different proteins in a
single tissue section has revolutionized immunohistochemical methods in recent years.
With mIF, individual cell phenotypes, as well as different cell subpopulations and even rare
cell populations, can be identified with extraordinary fidelity according to the expression of
antibodies in an mIF panel. This technology therefore has an important role in translational
oncology studies and probably will be incorporated in the clinic. The expression of different
biomarkers of interest can be examined at the tissue or individual cell level using mIF,
providing information about cell phenotypes, distribution of cells, and cell biological
processes in tumor samples. At present, the main challenge in spatial analysis is
choosing the most appropriate method for extracting meaningful information about cell
distribution from mIF images for analysis. Thus, knowing how the spatial interaction
between cells in the tumor encodes clinical information is important. Exploratory
analysis of the location of the cell phenotypes using point patterns of distribution is
used to calculate metrics summarizing the distances at which cells are processed and the
interpretation of those distances. Various methods can be used to analyze cellular
distribution in an mIF image, and several mathematical functions can be applied to
identify the most elemental relationships between the spatial analysis of cells in the
image and established patterns of cellular distribution in tumor samples. The aim of
this review is to describe the characteristics of mIF image analysis at different levels,
including spatial distribution of cell populations and cellular distribution patterns, that can
increase understanding of the tumor microenvironment.

Keywords: multiplex immunofluorescence, matrix construction, cellular spatial distribution, nearest neighbor,
correlation functions

INTRODUCTION

Multiplex immunofluorescence (mIF) facilitates detection of cell phenotypes (Parra et al., 2020) and
quantification of spatial relationships among cells within the tumor microenvironment (Barua et al.,
2018). Studying the spatial distribution of tumor cells and infiltrating immune cells in tumor samples
using data obtained via mIF-based digital image analysis allows for detailed characterization of cell-
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cell associations and the geographic distribution of cell
phenotypes, which may help in predicting clinical responses
and mechanisms of resistance of cancer to immunotherapies
(Yu et al., 2020). With increases in the volume and complexity
of this type of data, integration of computational analysis with
image analysis has become more important and relevant to better
understanding the tumor microenvironment. Analysis of spatial
data requires specific tools and techniques to look at these data
from different angles. Over the past few years, my group has
applied computational analysis tools in an exploratory way to
measure the intensity of expression of cell phenotypes in cancer
and the spatial distribution of cells in images obtained using mIF
(Barua et al., 2018). We have also applied careful inferential
methods to validate the results of cell distance analysis. In essence,
we attempted to extract features from many mIF images and
captured the most relevant features that can answer our
questions. Once these features are extracted and checked for
anomalies, hypothesis tests and mathematical models can be
designed to assess the effect of certain features or patterns of
cell distribution on cancer (Robinson et al., 2020). This analysis of
spatial cell distribution can be used to determine whether a strong
association exists between cell distribution patterns and
clinicopathologic information or outcome.

Feature extraction frommIF digital image analysis begins with
computing maps for individual markers using the center of the
cells, which then creates a point process object. A point process
from the image analysis is a collection of points that can be
structured using two-dimensional coordinates in the x- and
y-planes using identified cell markers (Parra et al., 2020).
Creating this point process object allows us to superimpose
point patterns of different markers for combined co-
localization analysis, which identifies specific cell phenotypes
that correspond to a unique image identifier, and each image
has a corresponding case. Lastly, each cell has a binary entry for
each marker that the cell expresses. This enables efficient
assignment of a phenotype to each cell.

When we explore image analysis data, the cell phenotype
frequencies on each mIF digital image must be counted to
determine the number of pairwise phenotype incidences. We
count the interaction of protein markers in every cell in the
data and organize by image and case. For each cell phenotype,
we estimate the intensity of another phenotype by counting the
cells in a neighborhood and also increasing the radius (Illian et al.,
2008). This measure of intensity is very important when adjusting
for the effect of other features and computing the space between
cells. Using the coordinates that the images provide after image
analysis, for any image and cell phenotype, we can calculate the
distance to every other cell in the image. Thus, we can construct a
distance matrix that encodes the distances for all pairs of cells,
giving us the opportunity to map cell pathways in every image
(Illian et al., 2008). The spatial distribution of the cell phenotypes
can be used to calculate several characteristics of the cells using a
mathematical function that is most appropriate for the research
question. Using the data provided by this method, we can model
features of cellular spatial distribution to determinewhether certain
phenotypes differ in their patterns of distribution. For instance, we
can study patterns of distribution of and distances between cells

across images and cases and correlate this information with clinical
data to see if the spatial distribution of these cells plays an
important role in driving different responses to treatments and
outcomes in the tumor microenvironment.

Herein, I describe strategies and mathematical models and
functions used to study the spatial distribution of cell phenotypes
in tumor tissues, demonstrating a practical approach to study the
tumor microenvironment. I also discuss the integration of these
analyses with their biological interpretation to answer research
questions.

SPATIAL CELLULAR DISTRIBUTION

The tumor microenvironment is a complicated machinery that
includes several groups of cells, such as epithelial and endothelial
cells and a large variety of infiltrating immune cells, including
cells involved in both the innate and adaptive immune responses
to the tumor. The location and organization of these different
immune cell phenotypes have emerged as important pieces of
information for determining the function of these cells across
tumor compartments and recognizing the possible impact of the
cells on clinical outcomes in cancer patients (Masugi et al., 2019).
Knowing the location of different cell populations in a tumor and
the spatial distribution of the cells with other cell groups allows us
to characterize a tumor to predict its response to treatment and
the potential for progression and relapse. The spatial distribution
of different cell phenotypes is known to be important in
characterizing the tumor microenvironment, which influences
recruitment of immune cells, and the microenvironment can be
characterized in different regions within a tumor or studied to
determine whether specific cell phenotypes are present
(Tsujikawa et al., 2020). Therefore, data obtained from mIF-
based digital image analysis are particularly useful for calculating
functional spatial distribution metrics.

Geographic Cell Distribution in Tumors
As shown in Figure 1, studying different cell phenotypes
according to their distribution in tumors, such as in the tumor
and stromal compartments, normal tissue and tertiary lymphoid
structures, vessels, or tumor periphery, can provide important
information about the specific role of that cell phenotype
(Bremnes et al., 2011; Dieu-Nosjean et al., 2014), and cellular
distribution can be associated with outcomes in various tumor
types. For example, T-cell populations in the tumor
compartment, but not in the stromal compartment, are
associated with favorable prognoses in colorectal cancer
(Galon et al., 2006; Nazemalhosseini-Mojarad et al., 2019),
ovarian cancer (Zhang et al., 2003), urothelial carcinoma
(Wang et al., 2015), head and neck squamous cell carcinoma
(Zhou et al., 2019), esophageal adenocarcinomas (Stein et al.,
2017), triple-negative breast cancer (Sugie et al., 2020), pancreatic
ductal adenocarcinoma (Masugi et al., 2019), and non-small cell
lung carcinoma (Parra et al., 2016; Tuminello et al., 2019).
Research has also shown that cytotoxic T-cells in the tumoral
compartment are potential negative prognostic factors in invasive
breast cancer (Catacchio et al., 2019). Furthermore, larger
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populations of specific cell phenotypes, such as FOXP3+
T-regulatory cells, in the tumoral compartment than in the
peripheral compartment can correlate with aggressive tumor
behavior, as observed with some papillary thyroid cancers
(French et al., 2010). The distribution of T-cell phenotype
populations across different geographic compartments can
have therapeutic implications (Cooper et al., 2016; Feldmeyer

et al., 2016; Parra et al., 2018) and drive the improvement and
discovery of new treatments based on T-cell tumor tissue
distribution.

Spatial Distribution at the Single-Cell Level
In spatial cellular image analysis, images show a collection of
various cell phenotypes that are identified by staining for a

FIGURE 1 | Microphotographs of a representative whole tumor section of lung squamous cell carcinoma obtained using multiplex immunofluorescence staining.
(A) Geographic distribution of cells in different tissue compartments. (B) The geographic compartments were delineated using HALO image analysis software (Indica
Labs, Albuquerque, NM) to analyze cells in different compartments. Original magnification, ×4.

FIGURE 2 | Microphotographs of a representative section of lung squamous cell carcinoma obtained using multiplex immunofluorescence staining with a panel
containing cytokeratin, CD3+ T-cells, CD68 + macrophages, and DAPI. (A) A region of interest with basic marker staining. (B) Colored dots representing the individual
cells shown in A, showing the location of each cell in the image. Original magnification, ×20, from VectraPolaris scanner and processed by Inform software (Akoya
Biosciences).
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combination of markers in an mIF panel (Figure 2A), and these
markers are translated as colored dots with x and y coordinates
(Figure 2B). This analysis is not limited to single images but rather
uses groups of images that are related to several tumor samples in a
study. In our analysis, we consider the point pattern from our mIF
image a non-parametric process, which assumes a stationary or
homogeneous point pattern configuration independent of a
specific location. Although only small or a few areas of
observation can be considered non-stationary processes showing
only a few groups of phenotypes, these areas, given the
heterogenicity of the sample across images, ultimately generate
dynamic ecologic patterns that may influence tumor progression
and response to treatment (Gentles et al., 2015). Furthermore,
study of spatial cell distribution has demonstrated its relationship
with outcomes in cancer patients. For example, in non-small lung
cancer, the proximity of macrophages to malignant cells was
inversely correlated with prognosis; those with tumors in which
macrophages were close to malignant cells had worse outcomes
than those with tumors in which macrophages were far from the
malignant cells (Zheng et al., 2020). Similarly, in a gastric cancer
study, the proximity of FOXP3+ T-regulatory cells to CD8+

cytotoxic T-cells was inversely correlated with prognosis (Wang
et al., 2020).

FUNCTIONAL SPATIAL DISTRIBUTION
METRICS

The existing methods used in spatial analysis are many and varied.
Researchers have ample opportunity to explore different
techniques of cellular spatial analysis for tumor tissues and

implement them using mathematical models to extract mIF
image data.

In spatial image analysis, consideration of intensity and
density is needed. Intensity is the absolute number of cells or
their abundance in an image when looking directly into it, and
density is the number of cells per unit area (cells/mm2).

After intensity and density are defined, the distribution of the
cells overall is the first aspect in an image that can be studied. The
cells can be distributed homogeneously or not, and a simple way to
consider this variable is to divide the images into quadrants of
equal size and count the cells in each quadrant. Naturally, if the
number of cells varies greatly among the quadrants, the
distribution of the cells is not homogeneous (Figure 3A). The
distribution of cells in an image is very unlikely to be
homogeneous, and overall, a good assumption is that patterns
of cells will never be homogeneous. One obvious drawback to this
approach to analyzing the distribution of cells across an image is
the dependence on quadrant size or application of other geometric
shapes of the partitions. If the quantification or application of the
quadrants is not done carefully, no useful information will be
drawn. Nonparametric approaches, such as kernel smoothing
(Baddeley et al., 2015), are other popular methods of graphically
determining whether cellular distribution is homogeneous, and
these methods are useful for observing cell proliferation patterns or
hot spots in an image (Figure 3B).

SPATIAL DESCRIPTIVE FUNCTIONS

In studying the spatial relationships among different cells and
their patterns of distribution in an image, several spatial

FIGURE 3 | Characterization of the distribution of cells from a sample of lung adenocarcinoma in a multiplex immunofluorescence image. (A) Results of quadrant
analysis, with each quadrant containing the exact number of cells in a square, represented by dots. (B) Heat map of Kernel smoothing from the same area of the image,
showing areas of high and low proliferation of cells, identified by colored regions (see color scale at right). The images were generated using R studio software
version 3.6.0.
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descriptive functions can be applied. Basically, two groups of
mathematical or computational functions can be used to analyze
the data obtained in digital image analysis. One group is used to
describe the measured distances between cell populations; this
group includes the G-function, F-function, and J-function. The
other group is used to describe the relative intensity of the cells in
terms of distance measured, and this group includes the
K-function, L-function, and pair correlation function. Similar
principles are used to construct both function groups (Baddeley
et al., 2015; Illian et al., 2008), and because these functions
examine the relationship between two cell populations (i-to-j),
all functions are cross-functional or mark-independent.

To apply these functions to spatial image analysis data from
mIF images, users are encouraged to employ the well-known
spatstats package in the R computing language (Baddeley and
Turner, 2005) because it has correction tools such as edge
correction, which are important for any spatial image analysis
(Figure 4).

DISTANCE MATRIX

Construction of a distance matrix is the first step in developing
any tool to reveal spatial properties of cells in an image. To
maintain the simplicity of the analysis, we can assume that
distances between cells are always measured in a two-
dimensional Euclidean space on images that are flat. Only the
cell coordinates are needed to build a distance matrix; this allows
extraction of spatial information regarding the interaction

between two distinct types of cells by applying various
mathematical formulas on the matrix itself (Figure 5A).

Depending on the specific formula applied, various features of
the spatial interaction between cells can be studied. In
constructing a distance matrix, the coordinates of the cell
phenotypes are first ordered in rows and columns, where the
rows in the matrix correspond to the number of cells from one
specified cell phenotype and the columns correspond to the
number of cells from another specified cell phenotype. A good
visual representation of the connection between cell markers in
the matrix can be obtained using a chord diagram (Figure 6).

Each matrix entry is the distance between one cell phenotype
and another cell phenotype; in this way, all entries between two
groups of cell phenotypes are displayed in the distance matrix. As
mentioned above, the distance is measured for every pair of cells,
i.e., from one cell phenotype of interest to another cell phenotype
of interest, or, in a more simplistic way, from point A (i) to point
B (j) in a given radius (r; Figure 5B). The maximum distance
between two cells is the farthest distance between A and B in the
image; this distance is limited by the region of interest analyzed. A
meaningful measure must be constructed by determining the
distance between each entry in column (i) from one cell
phenotype and each entry in row (j) from the other cell
phenotype, for example malignant cells and CD3+ T-cells
(Figure 7). This is important when constructing other metrics
for other cell phenotypes to observe the distribution of cells and to
obtain a vector of distances from each cell phenotype to its nearest
neighbor of another cell phenotype.

NEAREST NEIGHBOR

The nearest neighbor distance is used to determine the
probability (P) of encountering a cell (point, X) of a specific
phenotype (j; e.g., cell phenotype B, CD3+) within a certain
radius (r) centered on another cell phenotype (i; e.g., cell
phenotype A, malignant cells; Figure 8A) (Barua et al.,
2018). This approach allows you to determine the minimum
distance between each cell of phenotype A and the nearest
neighbor cell of phenotype B. Of note, this distance will be
completely different if measured in the opposite direction (from
cell phenotype B to cell phenotype A). The direction to be
evaluated (from cell phenotype A to B or vice versa) depends on
the research question and is based on biological knowledge of
the tumor. For instance, a researcher may wish to measure the
distance from malignant cells to the nearest neighbor T
lymphocytes in a certain radius, assuming that the T
lymphocytes are there because of the malignant cells.

The most common way to study the random process of cell
placement, given certain intensity patterns of spatial
distribution between two groups of cell phenotypes (i-to-j),
is to compare the theoretical curve with the empirical nearest
neighbor cross-G-function, Gi,j(r) � P{d(u,X_j)|u ∈Xi}
(Baddeley and Turner, 2005). Overall, there are theoretically
three possible patterns of distribution when the empirical curve
is above, close, or below the theoretical curve: regular, random,
and cluster, respectively. However, the regular pattern does not

FIGURE 4 |Distribution of dots representing the cell distribution patterns
in an image with edge correction, showing a square marked by a red line
constructed using spatstats software in the R computing language. Only the
dots inside the red line were considered in the analysis of the spatial
distribution pattern. The image was generated using R studio software
version 3.6.0.
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tend to occur in nature, and hence a situation in which the
empirical curve is very far above the theoretical curve should be
used with caution. Empirical curves that occur only slightly
above the theoretical curve are more accurately interpreted as
close to a random pattern than as a potential regular pattern.
When studying the distribution of two different cell
phenotypes, such as cell phenotype A (malignant cells) and
cell phenotype B (lymphocytes), a researcher should typically
recognize only two patterns—random or mixed (when the
empirical curve is close to the theoretical curve, either above
or below) and cluster or unmixed (when the empirical curve is
below the theoretical curve)—related to cell phenotype A.
These two patterns of distribution can be represented
graphically (Figure 9). Specifically, when the empirical
cross-G-function is plotted against the theoretical
expectation or Poisson curve, the shape of the function

indicates how the events are spaced in a point pattern of
two cell phenotypes. If the events of cellular distribution are
random or mixed (e.g., cell phenotype B and cell phenotype A
are mixed together in the plot, Figures 9A,C), then the nearest
neighbor cross-G-function is very close to the Poisson curve
because the probability of a neighbor being close is high. In
contrast, as the distance increases between the empirical cross-
G-function and the Poisson curve, the events are more spaced
and a cluster or unmixed pattern can be identified in the plot, as
shown in Figures 9B,D, where cell phenotype B is in separate
clusters from cell phenotype A. To determine the probability
that cell phenotypes have a random or cluster pattern related to
the theoretical curve, the researcher must process several
images from the project to ensure that a clear threshold is
present to eliminate the possibility of a random pattern (Parra
et al., 2021).

FIGURE 5 |Distancematrices. (A) Identified cell coordinates and distance measurements from one cell phenotype (red dots) to another cell phenotype (black dots)
in a lung adenocarcinoma image. (B) The intensity of one cell phenotype (black dots) was calculated at a given radius (red circle, 300 μm) from the other cell phenotype
(red dots). The images were generated using R studio software version 3.6.0.
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CORRELATION FUNCTIONS

Correlation functions basically provide information about how
many specific cells of a certain phenotype (e.g., intensity of cell
phenotype B) are within a certain radius (r) from another cell
phenotype (e.g., cell phenotype A) and can give a good sense of
the different levels of interaction between two cell populations
in terms of point intensity level (λ) or number of cells
(Figure 8B). A commonly used correlation function for
spatial analysis is the K-function: Ki,j(r)�(E{n[Xj∩b(u,r)]|
u∈Xi})/λj (Baddeley and Turner, 2005; Lagache et al., 2013).
The K-function essentially normalizes the spatial distribution

from one cell phenotype to another cell phenotype by the
intensity of the cells present in the radius. As in the cross-G-
function, to determine if cell phenotype B has a distinct pattern
of distribution related to cell phenotype A, one can calculate the
theoretical correlation function for a random process using the
same principle, and observed graphical changes can indicate
that cells of phenotype B are displaced in random patterns
(Figures 10A,C) or cluster patterns related to cells of phenotype
A (Figures 10B,D). This function determines the consistency of
the observed distribution of distances among all cells located in
spatial images, using the theoretical distribution for the Poisson
model as a benchmark.

FIGURE 6 | Graphic representation of a distance matrix using a chord diagram showing the flows or connections between the markers included in a multiplex
immunofluorescence panel. The chord diagram shows various connections betweenmarkers that generate cell phenotypes from amultiplex immunofluorescence panel;
these markers include cytokeratin (CK), CD3, CD8, FOXP3, PD-1, PD-L1, KI67, and CD68. The graphic was generated using R studio software version 3.6.1.
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COMPLEMENTARY FUNCTIONS

Thus far, I have described two spatial functions, the G- and
K-functions, which are the most common functions used for
spatial image analysis. These two functions combined can provide
valuable characterization of the distribution of different cell types
in an image. In the learning theory literature, this is known as
feature construction or extraction. The G-function provides
information about the distribution of the closest cells to
another cell type, and the K-function provides the context for
the density of these neighbors. In some scenarios, the G-function
demonstrates that cells of phenotype B are likely to be within a
certain radius of cells of phenotype A, but the K-function
demonstrates the intensity of the cell phenotype B distribution
from cell phenotype A at the same ratio. Combined, these two
distance functions can generate a compressive analysis about the
tumor microenvironment, characterizing the proximity and level
of interaction between one cell phenotype and another (Parra
et al., 2021; Parra, Ferrufino-Schmidt, et al., 2021).

Understanding of the data provided by these two basic
functions, in terms of spatial analysis of cell distribution in an

image, may be improved by using a complementary function.
Complementary functions are derived from the cross-G- and
K-function to provide more information about cell distribution
patterns and correct transformation that can occur in the image
to better reflect the features observed visually.

One transformation correction that can be incorporated into
the basic functions described above is the J-function: Ji,j(r) � [1 −
Gi,j(r)]/[1 Fj(r)] (Baddeley and Turner, 2005). This function is
used to compare distances from an arbitrary point to the nearest
neighbor (empty-space F-function: [Fj(r) � P{d(u,Xj)≤r}])
(Baddeley and Turner, 2005) and distances from a typical
point in the pattern measured using the nearest neighbor
distance cross-G-function (Figure 8C). If the distance in the
J-function distribution follows the Poisson process, deviation of
the J-function by more than 1 indicates spatial randomness and
deviation by less than 1 indicates clustering (Figure 11). One can
then estimate the empty-space F-function, which is identical to
the G-function when the pattern is random but different from it
when the probability of not observing another cell fluctuates
(Kather et al., 2015; Zheng et al., 2020). Hence, this J-function
aids in identifying any pockets of empty space around cells.

FIGURE 7 | Bar graph showing the distribution of CD3+ T-cell distances from malignant cells across different radii, from representative data extracted from a lung
adenocarcinoma sample. The graphic was generated using R studio software version 3.6.1.
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In addition, the L-function—Li,j(r) � √[(Ki,j(r)]/π) (Baddeley
and Turner, 2005)—can complement a spatial imaging study.
Mathematically, this function is simply the square root of
K-function divided by pi, and it helps visualize the K-function
as a linear shape when it is graphically represented and can
identify small differences in cell pattern distributions that are
sometimes difficult to identify with the K-function. When the
L-function is represented graphically, one should observe a
seemingly straight line whenever the pattern is random
(Figure 12).

Lastly, the pair correlation function—gi,j(r) � [Ki,j’(r)]/2πr
(Baddeley and Turner, 2005)—is easy to understand but more
complicated to estimate than the other functions (Gavagnin et al.,
2018). The pair correlation function is related to the K- and
L-functions; it is a modified version of the K-function where
instead of summing all points (cell phenotypes) within a given
radius, points falling within a narrow distance band are summed,
and the result is the dependence between two different points or
two different cell populations. If the g(r) is more than 1, then the
points or the correlation between the two cell groups at or around
a certain radius are more clustered and the g curve is far below the
Poisson curve process. If the g(r) is less than 1, then the points or
the correlation between the two cell groups are more dispersed
and the g curve is just below the Poisson curve process
(Figure 13). The g(r) can never be less than 0.

STATISTICAL ANALYSIS MODELING

As with any other statistical analysis, the data obtained from
spatial analysis can be used to perform univariate or multivariate
analysis with several metrics, and data may be associated with
clinicopathologic information in some meaningful way. A simple

mathematical model can be applied to investigate the effect of
different patterns of distribution for different cell phenotypes in
the images on clinical information. Researchers would like to
determine if the spatial distribution of certain cell phenotypes can
be influenced by the type of tumor and, moreover, as the ultimate
goal, if the cellular distribution pattern can predict response to
treatment. Several statistical methods, including some of the more
common methods such as generalized linear models, form the
basis of most supervised machine learning methods,
nonparametric testing, clustering methods, Bayesian methods,
penalized regression models, survival analysis, dimensionality
reduction, and others that can be applied to interpret the data
(Baddeley and Turner, 2005; Illian et al., 2008; Demidenko 2020).

Cluster Analysis Methods
To characterize the tumor microenvironment data obtained from
mIF imaging, researchers must identify different cell
subpopulations, and this can be achieved via cluster analysis.
Although cluster methods are not a measurement of distance and
are not frequently used to interpret the type of data presented in
this paper, cluster methods can be used for exploratory analysis of
the data, in which observations are divided into different groups
with standard features to ensure that the groups meaningfully
differ as much as possible.

The two main types of classification are K-means clustering
and hierarchical clustering. K-means clustering can be used when
the number of classes is fixed; this method is infrequently used in
mIF data. In contrast, hierarchical clustering can be used for an
unknown number of classes and is probably more appropriate for
classifying cell phenotypes.

K-means clustering comprises unsupervized learning methods
of vector quantization that have an iterative process in which data
are grouped into k predefined non-overlapping clusters or

FIGURE 8 |Graphics of nearest neighbor distance, K-function and empty-space F-function. (A)Distancematrix showing the concept of nearest neighbor distance,
used to determine the probability of encountering a cell of a specific phenotype [Xi, inflammatory cell (phenotype B)] within a certain radius (r) centered on another cell
phenotype [Xj, malignant cell (cell phenotype A)]. (B) Distance matrix showing the concept of the K-function to determine the intensity level (λ) of cells of a certain
phenotype within a certain radius (r) of another cell phenotype. In this example, the function is calculating the λ of cell phenotype B (Xj) from cell phenotype A (Xi) in a
point pattern. (C) Graphic representation of the empty-space F-function, which compares distances from an arbitrary point (x) to the nearest neighbor cell or point. The
graphics were generated using R studio software version 3.6.1.
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subgroups, making the inner points of the cluster as similar as
possible (Figure 14A). To maintain different clusters in distinct
spaces, K-means clustering allocates the data points to a cluster in
such a way that each observation belongs to the cluster with the
nearest mean (cluster center or centroid), so that the sum of the
squared distance between the cluster centroid and the data point
is minimized; at this position, the centroid of the cluster is the
arithmetic mean of the data points that are in the clusters
(Figure 14B). This results in a partitioning of the data space
into Voronoi cells (Schuffler et al., 2015). Less variation in the

cluster results in similar or homogeneous data points within the
cluster.

To identify the number of clusters in determinate data, we use the
elbow or the purpose method. In the elbow method, the sum of
squares and the number of clusters are plotted into a curve resembling
a human elbow; the point of the elbow in the curve indicates the
optimum number of clusters and the point after the elbow point
indicates the final value of the number of clusters (Figure 14C).

Although the K-means clustering algorithm can be used in
image segmentation, image compression, vector quantization,

FIGURE 9 | Representative graphs showing the G-function [G(r)] curve of point pattern distributions for cell phenotype A (malignant cells) to cell phenotype B
(T-cells) in a representative multiplex immunofluorescence image of lung adenocarcinoma. (A) Random point pattern distribution of cell phenotype A and B. (C) Graphic
representation of the image shown in A using the cross-G-function, showing the proximity of the G(r) curve to the theoretical estimate curve (Poisson curve),
characterizing a random or mixed cell distribution pattern of one cell population in relation to another cell population. (B) Unmixed point pattern distribution of cell
phenotype A and B. (D)Graphic representation of the image shown in B using the cross-G-function, showing the increased distance of the G(r) curve from the theoretical
estimate curve (Poisson curve), characterizing a clustering or unmixed cell distribution pattern of one cell population in relation to another cell population. The graphics
were generated using R studio software version 3.6.1.
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clustering analysis, machine learning, and other methods, the
algorithm requires prior specification of the number of cluster
centers, and if there are overlapping data the algorithm cannot
distinguish clusters very well. Depending on how the data are
presented, the results generated can be different every time the
algorithm is run, and the Euclidean distance can unequally weight
factors and can be used only if the meaning is defined. In contrast,
hierarchical clustering can be agglomerative when similar objects
are grouped into clusters and into a set of clusters, where each
cluster is distinct from the others and the objects within each
cluster are broadly similar to each other (Comin et al., 2014; Lin

et al., 2015) (Figure 15A). Divisive hierarchical clustering is done
by initially grouping all observations into one cluster and then
successively splitting these clusters, typically by sequentially
merging similar clusters (Figure 15A). The similarity here is
the distance among points, which can be computed inmany ways,
and this distance is the crucial element of discrimination.
However, in practice, divisive hierarchical clustering is rarely
done. Unfortunately, it is not possible to undo the previous steps
after applying the algorithm, and when the clusters have been
assigned, they can no longer be moved around. In addition, this
method is not suitable for large datasets, the order of the data

FIGURE 10 | Representative graphs showing the K-function [K(r)] curve of cellular distributions between two groups of cells from a representative point pattern of
multiplex immunofluorescence images of lung adenocarcinoma. (A)Random point pattern distribution of cell phenotype A and B. (C) K(r) curve extracted from the image
shown in A, showing the proximity of the curve to the theoretical estimate curve (Poisson curve), characterizing a random or mixed distribution pattern of the two cell
phenotypes. (B) Unmixed point pattern distribution of cell phenotype A and B. (D) K(r) curve extracted from the image shown in B, showing the increased distance
of the curve from the theoretical estimate curve (Poisson curve), characterizing a clustering or unmixed distribution pattern of cell phenotype A and B. The graphics were
generated using R studio software version 3.6.1.
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affects the results, and the method is very sensitive to data
outliers.

With any data, the efficiency of multivariate parameter
estimation and prediction must be increased by exploring
variation of the data, which is done using envelope methods.
Envelopes achieve efficiency gains by basing estimation on the
variation of the data. The Monte Carlo method (Figure 14D) is
a type of computational envelope algorithm that uses the
random repletion of the sampling to obtain numeric results
that optimize, integrate, and generate draws from a probability
distribution of the data (Sanchez et al., 2021). Monte Carlo tests

are related to the randomization tests commonly used in
nonparametric statistics.

Dimensional Reduction Methods for Data
Visualization
Because we generate highly multiparametric single-cell data using
mIF, statistical methods can be used for better visualization and
dimensional reduction, providing a location for each data point
on a two- or three-dimensional map. This type of visualization
through dimensional reduction algorithms tends to fall into one

FIGURE 11 | Representative graphs showing the J-function [J(r)] for two different cell populations, illustrating the cellular distribution between the two groups of
cells using a representative point pattern in multiplex immunofluorescence images of lung adenocarcinoma. (A) Random point pattern distribution of cell phenotype A
and B. (C) Graphic representation of the J(r) curve showing its lineup with the theoretical estimate (Poisson line), characterizing a random or mixed pattern of one cell
population in relation to another cell population. (B) Unmixed point pattern distribution of cell phenotype A and B. (D) Graphic representation of the J(r) curve
showing highly increased distance above the theoretical estimate (Poisson line), characterizing a clustering or unmixed pattern of one cell population in relation to another
cell population. The graphics were generated using R studio software version 3.6.1.
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of two overall categories, algorithms that seek to preserve the
distance structure within the data and algorithms that favor the
preservation of local distances over global distance; these
algorithms are applied for cell phenotype data visualization.
Algorithms such as principal component analysis (PCA),
multidimensional scaling, and Sammon mapping fall into the
first category, and t-distributed stochastic neighbor embedding
(t-SNE) and uniform manifold approximation and projection
(UMAP), as well as others, fall into the second category (Tsogo
et al., 2000).

PCA is an unsupervized algorithm that can create linear
combinations of the original features, and then the new

features are orthogonal, which means that they are
uncorrelated (Rohde, 2002). Because the reduction of the data
is dependent on scale, the dataset must be normalized before this
technique can be performed (Rohde, 2002). Several algorithm
variations, such as kernel PCA or sparse PCA, can be applied to
compare the performance of the data, but an important
disadvantage is the necessity of manually setting or tuning the
threshold for cumulative explained variance.

Multidimensional scaling is another reduction method
frequently used to translate information about pairwise
distances obtained from data among a set number of points
mapped into an abstract Cartesian space (Jackle et al., 2016). This

FIGURE 12 | Representative graphs showing the L-function [L(r)] for two different cellular distribution patterns between two group of cells from a representative
point pattern in multiplex immunofluorescence images of lung adenocarcinoma. (A) Random point pattern distribution of cell phenotype A and B. (C) Graphic
representation of the L(r) line showing its proximity to the theoretical estimate (Poisson line), characterizing a random or mixed pattern of one cell phenotype in relation to
another cell phenotype. (B)Unmixed point pattern distribution of cell phenotype A and B. (D)Graphic representation of the L(r) line showing that it is located far from
the theoretical estimate (Poisson line), characterizing a clustering or unmixed pattern of one cell phenotype in relation to another cell phenotype. The graphics were
generated using R studio software version 3.6.1.
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method allows construction of a distance matrix with the
distances between each pair of objects in a set placing each
object into a dimensional space, providing a point pattern to
be visualized on a scatter plot.

Sammon mapping is another algorithm used in exploratory
analysis. This method translates a map with a high-dimensional
space to a space of lower dimensionality by trying to preserve the
structure of inter-point distances from the high-dimensional
space in the lower-dimension projection. Sammon mapping is
considered a nonlinear approach because the mapping cannot be
represented as a linear combination of the original variables, as is

possible in techniques such as PCA, and this also makes Sammon
mapping more difficult to use for classification applications.

For high-dimensional data such as that obtained by image
analysis, a reduction and visualization can be made through t-SNE
or UMAP reduction analysis (Wu et al., 2019). t-SNE is a statistical
method for visualizing high-dimensional data by giving each data
point a location in a two- or three-dimensional map. It is based on
SNE, originally developed by Sam Roweis and Geoffrey Hinton
(Van der Maaten and Rey Hinton, 2008). t-SNE constructs a
probability distribution over pairs of high-dimensional objects
in such a way that similar objects are assigned a higher

FIGURE 13 | Representative graphs showing the pair correlation function [g(r)] for two different cellular distribution patterns between two group of cells from a
representative point pattern in multiplex immunofluorescence images of lung adenocarcinoma. (A) Random point pattern distribution of cell phenotype A and B. (C)
Graphic representation of the g(r) curve showing a line forming downward from the theoretical estimate (Poisson line), characterizing a random or mixed pattern of one
cell phenotype in relation to another cell phenotype. (B) Unmixed point pattern distribution of cell phenotype A and B. (D) Graphic representation of the g(r) curve
showing increased distance below the theoretical estimate (Poisson line), characterizing a clustering or unmixed pattern of one cell phenotype in relation to another cell
phenotype. The graphics were generated using R studio software version 3.6.1.
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probability while dissimilar points are assigned a lower probability
using the Euclidian distance between objects (Figures 15C,D). The
visual clusters often require good understanding because they can
be influenced by the parameterization, forcing exploration of
different parameters to validate the results. Although t-SNE is
incredibly flexible and can often find structure where other
dimensionality-reduction algorithms cannot, that very flexibility
makes t-SNE tricky to interpret.

UMAP is another dimension reduction technique that can
be used for data visualization similar to that described for
t-SNE, but UMAP can be applied for general nonlinear
dimension reduction (Becht et al., 2018). UMAP is based on
distances between the observations obtained by the data rather
than the source features, and it does not have an equivalent of
the factor loadings that are required for linear techniques such
as PCA. Importantly, as a way to improve the computational

FIGURE 14 | K-means unsupervized clustering, elbow, and envelope applied in multiplex immunofluorescence image data. (A) K-means unsupervized clustering
showing ten groups (represented by the colored points) of non-overlapping clusters in which the inner points of the cluster are as similar as possible within the image. (B)
Different clusters are maintained in different spaces, and the center (+) of each cluster is located such that it is the arithmetic mean of the data points in the cluster. (C)
Graphic representation of the elbow method, showing the sum of squares and the number of clusters plotted into a curve. The point of the elbow in the curve
indicates the optimum number of clusters. (D) Graphic representation of an envelope to estimate the variation of data to achieve efficiency gains, showing the minimal
variation of the envelope related to the random process curve from a representative sample of multiplex immunofluorescence data points. The graphics were generated
using R studio software version 3.6.1.
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efficiency of the UMAP algorithm, several approximations can
be made and small data sizes (less than 500 samples) can be
analyzed (Wu et al., 2019).

In summary, spatial distance analysis methods can be applied
to analyze the spatial distribution of cells determined by mIF
data. There are several methods to analyze the distribution of
different cell phenotypes, but the most simple approach is a
combination of cell phenotype compartmentalization at a tissue
level with nearest neighbor distance measurement through the
cross-G- and K-function at a cellular level to identify patterns of
distribution and interaction between cell phenotypes. Although

cluster analysis and visualization methods are important in
exploring mIF data, overall no single cluster or visualization
method described here outperforms another in terms of
identifying the characteristics of the data, and for this reason
researchers can choose the most convenient method for
interpreting their results. Given this situation, approaches for
cellular cluster identification should allow subsequent in-depth
analysis to identify new clusters of special cell phenotypes and
permit interpretation of features that contribute to the analysis,
thus effectively answering the research question or providing a
potential clinical application.

FIGURE 15 | Representative schema of hierarchical and divisive clustering to agglomerate similar objects into groups (A). Uniform manifold approximation and
projection (UMAP) showing different cell population distribution patterns extracted from two different lung adenocarcinoma cases analyzed with multiplex
immunofluorescence against malignant cells [cytokeratin (CK)+] and CD3+, CD4+, CD8+, PD-1+, PD-L1+, and CD68+ antibodies (B, C). The graphics B and C were
generated using R studio software version 3.6.1.
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Tissue Multiplex Analyte Detection in
Anatomic Pathology – Pathways to
Clinical Implementation
Keith A. Wharton Jr. *, Douglas Wood, Mael Manesse, Kirsteen H. Maclean, Florian Leiss and
Aleksandra Zuraw

Ultivue, Inc., Cambridge, MA, United States

Background: Multiplex tissue analysis has revolutionized our understanding of the tumor
microenvironment (TME) with implications for biomarker development and diagnostic
testing. Multiplex labeling is used for specific clinical situations, but there remain
barriers to expanded use in anatomic pathology practice.

Methods: We review immunohistochemistry (IHC) and related assays used to localize
molecules in tissues, with reference to United States regulatory and practice landscapes.
We review multiplex methods and strategies used in clinical diagnosis and in research,
particularly in immuno-oncology. Within the framework of assay design and testing
phases, we examine the suitability of multiplex immunofluorescence (mIF) for clinical
diagnostic workflows, considering its advantages and challenges to implementation.

Results:Multiplex labeling is poised to radically transform pathologic diagnosis because it
can answer questions about tissue-level biology and single-cell phenotypes that cannot be
addressed with traditional IHC biomarker panels. Widespread implementation will require
improved detection chemistry, illustrated by InSituPlex technology (Ultivue, Inc.,
Cambridge, MA) that allows coregistration of hematoxylin and eosin (H&E) and mIF
images, greater standardization and interoperability of workflow and data pipelines to
facilitate consistent interpretation by pathologists, and integration of multichannel images
into digital pathology whole slide imaging (WSI) systems, including interpretation aided by
artificial intelligence (AI). Adoption will also be facilitated by evidence that justifies
incorporation into clinical practice, an ability to navigate regulatory pathways, and
adequate health care budgets and reimbursement. We expand the brightfield WSI
system “pixel pathway” concept to multiplex workflows, suggesting that adoption
might be accelerated by data standardization centered on cell phenotypes defined by
coexpression of multiple molecules.

Conclusion: Multiplex labeling has the potential to complement next generation
sequencing in cancer diagnosis by allowing pathologists to visualize and understand
every cell in a tissue biopsy slide. Until mIF reagents, digital pathology systems including
fluorescence scanners, and data pipelines are standardized, we propose that diagnostic
labs will play a crucial role in driving adoption of multiplex tissue diagnostics by using
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retrospective data from tissue collections as a foundation for laboratory-developed test
(LDT) implementation and use in prospective trials as companion diagnostics (CDx).

Keywords: multiplex, digital pathology, whole slide image, tumor microenvironment, immunohistochemistry,
immunofluorescence, pixel pathway, laboratory developed test

INTRODUCTION

In diverse human cultures, knowledge is disseminated by an
esteemed individual who has achieved wisdom through discipline
and sacrifice. Visualize the archetype: a wise sage, sitting on a
mountain, legs folded, in meditative gaze. Advice seekers climb
the mountain to pose their question or dilemma. Magic happens,
wisdom is dispensed, and the seeker descends the mountain.
From its origins in the mid-19th century to today, diagnostic
anatomic pathology follows a similar construct. The foundation
of knowledge is histopathology – examination of changes in cells
and tissues viewed by microscopy to diagnose disease. The sage is
the pathologist, who, through years of observation and
discernment dispenses wisdom. Tissue samples and data
workflows converge on the mountaintop, where the
pathologist’s gaze is directed in a microscope. The “magic” is
the pathologist’s integration, interpretation and judgment of data
to establish a diagnosis that is reported in the medical record,
codified in journals and textbooks, or simply Tweeted.

Rudolf Virchow, known as the father of histopathology, wrote
that the body is like a state “. . .in which every cell is a citizen.
Disease is merely the conflict of citizens of the state. . .” (Virchow,
1858). Diagnosis of disease, in particular cancer, is based on
examination of cells by microscopy and on detection of specific
molecules in cells. Proteins and nucleic acids are routinely
identified in biopsy tissues by antibody-binding or nucleic
hybridization technologies such as IHC and in situ
hybridization (ISH). Nucleic acid amplification and sequencing
technologies such as polymerase chain reaction (PCR) are
routinely used in clinical practice to identify molecular
alterations such as point mutations, chromosome
translocations, and gene amplification/transcript
overexpression. In the past decade, next generation sequencing
(NGS) of hundreds to thousands of genes in parallel has entered
clinical practice, increasing the efficiency of detection of
abnormal genes that drive disease and impact treatment
choices. Bulk transcript profiling of tissue samples over the
past 2 decades has provided critical molecular insights into
various cancers including lymphoma (Scott, 2015) and breast
cancer (Perou et al., 2010), that have served as the basis of
prognostic and predictive transcript signature tests such as
OncotypeDX (Exact Sciences) (Siow et al., 2018). More
recently, by deeply profiling each “citizen” involved in the
conflict, single-cell profiling (transcriptomics, proteomics, etc.)
has advanced understanding of cell phenotypes that drive disease,
with implications for clinical practice (Marx, 2019; Aldridge and
Teichmann, 2020). These data-rich sequencing and profiling
techniques are powerful discovery tools, but for diagnostic use,
the vast majority of data generated is extraneous and lacks the
spatial context of histopathology. Nature’s 2020 Method of the

year, spatially resolved transcriptomics, captures spatial context,
but most of the methods do not have the cellular resolution of
histopathology, the size and complexity of data remains largely
beyond diagnostic comprehension, and the majority of the data
produced will ultimately lack clinical utility (Marx, 2021). We
hypothesize that multiplex immunofluorescence (mIF) will
emerge as a leading technique that allows each pathologist,
within their lab and scope of practice, to answer critical
questions about disease diagnosis, prognosis, and prediction of
response to the next generation of targeted therapies and their
combinations, particularly in immuno-oncology (Tan et al.,
2020).

IHC and the Clinical Diagnostic Landscape
Despite increases in molecular diagnostic testing in recent years,
IHC remains critical for histopathology diagnosis by revealing
various molecular species in situ in a tissue sample. In IHC,
antibodies against epitope(s) of a specific target (also referred to
as a “marker” - most often proteins but also carbohydrates or
nucleic acids – because they are used to mark cells) are applied to
thin, formalin-fixed and paraffin embedded (FFPE) tissue
sections mounted on glass slides. Slide pretreatment (“antigen
retrieval”) breaks formalin cross links, allowing the antibody to
diffuse into the tissue and bind mostly linear peptide (as opposed
to conformational) epitopes (Sompuram et al., 2006). Bound
antibodies are then detected with visualization reagents, most
commonly secondary antibodies conjugated to the enzyme
horseradish peroxidase (HRP). With peroxide, HRP converts
soluble 3,3′-diaminobenzidine (DAB) into an insoluble brown
precipitate that reflects antigen abundance and distribution in
otherwise colorless tissue. Tissue structure is then visualized with
a counterstain, typically hematoxylin, which labels,
predominantly nuclei, a bluish-purple color. Robotic
autostainers and optimized, prediluted reagents have improved
speed and reproducibility of IHC in disease diagnosis (Grogan,
1992; Prichard, 2014). ISH to detect DNA is used to identify
chromosomal translocations and gene copy number changes, and
RNAscope (Advanced Cell Diagnostics, BioTechne Inc.) has
emerged as a sensitive ISH technique to visualize RNA in
FFPE tissue, offering advantages over traditional RNA ISH
techniques to detect low abundance transcripts, and over
antibodies in detecting some targets such as soluble cytokines
or infectious agents (Wang et al., 2012; Carossino et al., 2020;
Stein et al., 2021). The DAB/hematoxylin-stained slide is
interpreted by a pathologist using a microscope, or
increasingly, by viewing a scanner-generated whole slide image
(WSI) on a computer monitor (Gurcan et al., 2009; Dimitriou
et al., 2019).

How is IHC used in clinical diagnosis? Early IHC applications
in the 1970s and 80s distinguished between major categories of
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neoplasia through demonstration, for example, that carcinomas
express cytokeratins and lymphomas express leukocytic antigens,
but not vice versa (Taylor, 1980; Debus et al., 1984). Over several
decades the diagnostic roles for IHC have expanded to include:
aiding in distinction between benign and malignant processes
[e.g., p53 upregulation associated with malignancy (Yemelyanova
et al., 2011), or p16 expression with HPV-positive squamous
carcinomas (Shelton et al., 2017)], identification of specific cell
types (e.g., CD68-positive macrophages, CD31-positive
endothelial cells, Foxp3-positive regulatory T lymphocytes),
subclassifying and refining diagnoses [e.g., association of
marker positivity or negativity with histopathology-based
differential diagnosis or molecular lesion, such as DNA
mismatch repair deficient carcinomas (Wong et al., 2018) or
BAP1-subtype melanomas (Shah et al., 2013)], providing
information about disease drivers [e.g., C-myc translocated
Burkitt’s lymphoma (Nwanze et al., 2017), N-myc amplified
neuroblastoma (Santiago et al., 2019), EGFR-amplified cancers
(Atkins et al., 2004)], allowing inference of various cell states and
behaviors (e.g., Ki67 positivity and cell proliferation, Granzyme B
positivity and activated cytotoxic T lymphocytes), activity of
various growth stimulating and inhibiting pathways (Ras/
MAPK, Hippo, Wnt/β-catenin, Hedgehog, Notch, TGF-β, and
others), and assessment of predictive biomarkers associated with
response to targeted therapies (Her2, ER/PR, PD-L1). While IHC
may be capable of revealing a molecule of importance within
tissue, whether it is the favored diagnostic modality is dependent
on clinical context and test performance relative to other options
such as FISH or NGS, such as is the case with detection of NTRK-
family gene translocations that occur with low frequency in a
wide variety of malignancies (Solomon et al., 2020).

Diagnostic IHC tests evolve. Pathologists refine IHC tests by
testing new antibody clones, platforms, and detection reagents,
and create new IHC tests based on markers discovered through
research, diagnostic surveys, or to recapitulate other tests such as
DNA mutation sequencing [e.g., mutation-specific antibodies
such as BRAF V600E (Tetzlaff et al., 2015)] or transcript
profiling [IHC panels to recapitulate subtypes of diffuse large
B cell lymphomas (Yan et al., 2020a)]. Candidate IHC markers
start in research laboratories—and most markers stay in research
applications. A new marker can enter diagnostic practice through
retrospective studies that demonstrate the marker’s improved
utility over existing markers in defining a diagnosis or prognosis
in a particular lesion type. Alternatively, the marker can enter
diagnostic practice as the basis of a new standard of care through
prospective investigations as a companion diagnostic (CDx)
assay, as was the case with Her2 and PD-L1 IHC tests (Roach
et al., 2016).

Because IHC tests are interpreted visually by a pathologist,
marker choice and assay optimization is part science, part art –
the intersection of truth and beauty. “Beauty” is ultimately
subjective, assessed by signal strength, staining pattern, and
signal to noise, whereas “truth” is assessed by biological
plausibility, comparison of staining to reference standards (if
they exist), and eliminating artifacts (Tsutsumi, 2021). Each IHC
slide is typically scored for positivity or negativity of the tested
marker in specific cell types; for cancer, whether the marker is

present in cancer cells or the tumor microenvironment (TME) or
both is assessed, always with reference to the location and
appearance of different cell populations in the corresponding
section stained with H&E. IHC CDx’s are usually scored in a
semiquantitative fashion, based on marker distribution, percent
of positive cells and/or stain intensity. However, it is important to
note that IHC marker panels only aid in establishing a diagnosis
of cancer; rather, it is the appearance of individual cells and
overall tissue by H&E that forms the basis of a cancer diagnosis,
with interpretation of a specific set of IHC stains helping to
confirm, refine, or subclassify a diagnosis. For example, a lung
cancer biopsy showing “carcinoma” on the H&E section is
typically stained for a set of markers to determine whether it
is best classified as adenocarcinoma or squamous carcinoma, as
most adenocarcinomas will be positive for TTF1 and NapsinA,
but negative for p63, and vice versa (Inamura, 2018). For
carcinomas with unambiguous squamous, ductular, or other
type of differentiation, IHC stains usually confirm the
histological impression, but for the not uncommon tumor that
displays few or paradoxical features of differentiation (e.g.,
epithelioid sarcomas, which display epithelial differentiation
but express mesenchymal markers, or sarcomatoid carcinomas,
which display mesenchymal differentiation but express epithelial
markers), IHC marker panels are crucial for accurate, state of the
art histopathology diagnosis (Huey et al., 2019; Czarnecka et al.,
2020).

Today, most IHCs are used as an adjunctive to diagnosis,
with specific markers chosen in groups or panels based on
algorithms that aim to subclassify the lesion and answer
diagnostic questions relevant to the specific clinical scenario
(patient age, anatomic location), specimen type (skin, soft
tissue), and histologic features of the H&E-stained tissue. In
the United States, IHC of adjunctive markers poses a relatively
low risk to patients because they are often used redundantly, as
part of a panel or suggested diagnostic algorithm. Such
algorithms are typically not standardized, with variation in
algorithms across institutions and geographies attributed to
variation in medical practice. Thus, a testing error - a false
positive or false negative result - of a single IHC assay is unlikely
to impact the final diagnosis. Accordingly, adjunctive IHC tests
are classified by the United States Food and Drug
Administration (FDA) in the lowest risk class (Class I) of
in vitro diagnostics (IVD) (Medical Devices, 1998). A small
but critical and growing set of markers, such as Her2, ER, PR,
and PD-L1, predict (or, at best enrich for) response to specific
therapies and are classified as companion diagnostics (CDx)
(Scheerens et al., 2017). A related category of test, a
complementary diagnostic, is similar to a CDx by providing
useful predictive information, but is not required to administer a
particular therapy (Scheerens et al., 2017). Predictive IHC
markers are often single “high stakes” tests, errors in which
entail a greater risk to patient safety, and are thus classified by
FDA in the highest risk class (class III) of IVD (Jørgensen,
2016). While some benign and a few malignant diagnoses do not
require any IHC, the current standard of diagnosis in 2021 for
most malignant diagnoses, in particular a patient’s initial
diagnosis, requires some IHC tests.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 6725313

Wharton et al. Multiplex in Anatomic Pathology

67

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


IHC used for patient diagnosis as a basis of medical decision
making is regulated in the United States at a variety of levels.
Assays must be validated and performed in a Clinical Laboratory
Improvement Amendments (CLIA)-certified diagnostic
laboratory, and be interpreted by qualified personnel such as a
pathologist licensed to practice medicine in the state where the
sample originates (Fetsch and Abati, 2010). Further lab
certification by the College of American Pathologists (CAP)
covers CLIA standards as well as assay performance
assessment, proficiency testing, and adherence to specific
practice guidelines such as processing and interpretation of
breast cancer specimens (College of American Pathologists
LEP, 2017). States such as New York have more rigorous
laboratory standards and certification, enforced by the New
York State Department of Health (NYSDOH) (New York State
CLEP, 2021). A largely comparable but distinct international
standard for diagnostic medical laboratories is ISO 15189
(Schneider et al., 2017). Laboratory tests are generally of two
types: IVDs and Laboratory Developed Tests (LDT). While both
test types require in-laboratory assay validation, IVDs are
components and/or systems manufactured and distributed to
laboratories for a specific purpose defined by an intended use
statement, whereas LDTs are custom “single site” tests that may
not be performed in laboratories other than where the test was
developed. FDA regulates both IVDs and LDTs, but exercises
enforcement discretion over most LDTs as constituting a part of
medical practice, which is not regulated by FDA (Genzen, 2019).
LDT and related regulation in the United States has been subject
to attention and neglect over decades, and is not yet settled
(Genzen et al., 2017). Recently, the United States VALID
(Verifying Accurate, Leading-edge IVCT Development) Act,
which proposes to classify all assays performed in diagnostic
laboratories as In VitroClinical Tests (IVCT) and would allow the
FDA to exert greater oversight of testing based on patient risk, has
undergone several cycles of stakeholder feedback and revision
(Konnick, 2020). In Europe, new legislation (IVDR) that applies
to IVDs takes effect in May 2022, with implications for LDT
development and practice (Bank et al., 2020; Stenzinger and
Weichert, 2020). The language, interpretation, and
enforcement of these regulations will impact global test
development and deployment, particularly new tests based on
innovative technologies, for decades to come (Huang et al., 2021).

Not all LDTs are equivalent, generally falling into two
categories. A de novo or traditional LDT is a novel test
“system” made from individual components, often sourced
separately, each piece of equipment, input reagent, or other
part of the assay system which may be labeled as an IVDs or
for Research Use Only (RUO). A derived LDT is when a
laboratory alters system components, instrument settings, or
reaction conditions of an approved or cleared IVD, such that
system definition and/or laboratory use deviates from the original
product design and/or intended use statement of the parent IVD.
If an LDT uses an IVD-labeled component, either type of LDT is
considered an “off label” use of the IVD component. With IVDs,
responsibility for test performance and thus risk of test failure is
shared between the device manufacturer and the laboratory: the
manufacturer is responsible for design, manufacturing, and

performance of the IVD under defined conditions, and the
laboratory is responsible for using the assay/device according
to those conditions—only for its defined and specific purpose. In
contrast, LDTs are the primary responsibility of the laboratory
offering the test. Many IVD assays were first introduced to clinical
practice as LDTs, so one key advantage of LDTs is the ability to
quickly bring novel diagnostic technology to clinical practice.
However, accompanying the lower barrier of LDTs to market
entry is the possibility that poorly designed, developed, or
performing tests may be used in patient care. Typically, the
strict design, manufacturing, and testing requirements of IVDs
are associated with more robust real-world product performance
(such as accuracy, precision, multisite/multi-operator
consistency, known failure modes with risk mitigation
strategies in place) as well as market exclusivity that justifies a
premium price or level of reimbursement. However, established
IVDs can act as a barrier to rapid technological innovation by
blocking competing technologies or companies who may offer
superior technology or aspects of performance (e.g., lower cost,
faster turn-around time, greater analytical sensitivity) but lack
adequate clinical evidence to gain regulatory approval that drives
adoption.

Visualizing Multiple Markers
Cells of the immune system and the majority of hematolymphoid
neoplasms are defined by coexpression of multiple cell surface
markers, commonly assessed by flow cytometry. However, the
vast majority of IHCs used in clinical diagnosis of solid tumors
interrogate a single marker per tissue section (termed
“singleplex”) and are thus unsuited to characterize cell
phenotypes defined by coexpression of multiple markers when
those markers are in the same subcellular compartment. In
current diagnostic practice, many cases require multiple IHC
markers, and the pathologist examines one marker at a time, one
slide at a time, noting which cell populations on the slide are
positive vs. negative for each marker then integrating the results
to establish a final diagnosis. Occasional cases, particularly
undifferentiated solid tumors and lymphomas, require more
than two dozen different markers to arrive at a proper
diagnosis, making the task of tallying and interpreting IHC
results challenging. For such tumors, molecular profiling is
playing an increasingly important diagnostic role (Yan et al.,
2020b). For tumors in which sampling may be restricted to fine
needle aspirates (FNA) or core needle biopsies (CNB) that yield
limiting tissue, using multiple consecutive sections for singleplex
IHC as well as possibly splitting the biopsy for diagnostic
molecular testing such as PCR or NGS can compromise
accurate diagnosis. For example, the majority of lung cancer
patients present with advanced disease that is not amenable to
surgical intervention, so diagnostic, prognostic, and predictive
factors must be obtained from FNA or CNB of a mediastinal
lymph node, or even a “liquid biopsy” (NGS to detect circulating
tumor DNA in a peripheral blood sample) (Chen and Zhao,
2019). For such cases, multiplex staining allows visualization of all
markers of interest using a minimal number of tissue sections.

By performing sequential or simultaneous chromogenic IHC
staining reactions on a single slide, it is possible to generate
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multiplex chromogenic stained slides (Morrison et al., 2020).
However, there are only limited diagnostic scenarios where
chromogenic multiplex staining is currently used. These are
situations in which the pathologist has greater confidence in a
diagnosis when two markers labeling different cell populations or
tissue compartments are present in the same slide than when the
same two markers are present in different slides of the same tissue
block. Given the availability of >1 enzyme to detect antibodies in
chromogenic IHC [in addition to HRP, alkaline phosphatase
(AP) is commonly used], and various enzyme substrates with
distinct absorption spectra, two or more staining reactions can be
performed sequentially, creating two or more different colors
(plus a counterstain), each color representing a different marker
or cocktail (mixture) of markers. Such assays typically require
more complex test development and validation to ensure the
multiplex staining reactions recapitulate the performance of each
singleplex marker. For labs requiring fast assay turn-around time,
duplex assays take longer to develop, cost per slide is typically
higher than an equivalent number of singleplex reactions, and, at
least in the United States, reimbursement mechanisms to
incentivize use do not exist. One widely used stain is “PIN4,”
which labels, in different colors, benign and malignant cell
populations on the same slide to help the pathologist
distinguish in situ from invasive cancer (Tacha and Miller,
2004). Most chromogenic multiplex assays are developed to
label separate cell populations (e.g., cancer vs. non-cancer
cells) or cell structures (plasma membrane vs. nucleus of same
cell), without the intention of assessing marker colocalization,
and, like adjunctive singleplex IHCs, are also interpreted in a
qualitative fashion by a pathologist using light microscopy. There
are many multiplex marker combinations commercially available
(see e.g., BioCare Medical, Cell Marque, Mosaic Laboratory
websites), and for ease of application to a wide variety of
clinical scenarios most currently available kits consist of
adjunctive diagnostic markers (United States FDA risk class I).

Assessment of marker coexpression (within cells) and
colocalization (by x-y pixel value coordinates) with current
chromogenic IHC methods can be challenging. For singleplex
DAB/IHC stains, it is usually straightforward to discern whether
specific populations of cells (e.g., cancer cells, mononuclear
inflammatory cells, vascular cells) are positive or negative for
each marker. However, due to the requirement for IHC of one
section per marker and the size of most cells (∼10 μm) relative to
typical section thickness (4–5 μm), it is difficult to discern
whether specific cells seen in an adjacent H&E-stained section
are positive or negative for a given marker, and impossible to tell
whether such cells viewed in the original H&E section are positive
for more than two IHC markers. For current multiplex IHC
assays that precipitate chromogens in tissue, when two different
markers colocalize to the same subcellular compartment in the
same cells, most commonly with brown and red chromogens,
marker colocalization is easily overlooked. This is because mixing
light-absorbing chromogens generates dark signals that to the
human eye can mimic dark staining of individual chromogens,
and overlapping absorption spectra of many chromogens can
confound digital image collection and analysis. Another challenge
is determination whether lack of marker colocalization is genuine

or due to technical interference based on assay technology or
design. Moreover, in triplex or higher-plex chromogenic assays,
even when markers localize to completely different cell
populations, it is difficult for the human brain to comprehend
the multicolored patterns and to accurately quantify cell
intensities and proportions of positive cells for each marker.
Confidence in visual recognition of marker colocalization may be
further compromised by microscope setup as well as the limited
sensitivity and dynamic range of chromogenic assays. Thus,
current singleplex and multiplex chromogenic IHC
technologies offer only a limited capability to assess multiple
marker colocalization in specific cells. Moreover, as the need to
define newly recognized cell phenotypes characterized by
simultaneous expression of multiple markers increases,
comprehension of stained tissue sections will require
automated image acquisition (slide scanning) and software-
assisted marker visualization and interpretation.

Immunotherapy, the Tumor
Microenvironment and Multiplex Staining
In the past decade, immunotherapies have transformed oncology
research and clinical practice while revealing the importance of
endogenous immune “checkpoints” such as PD-L1 and CTLA4
that prevent cytotoxic T lymphocytes in the tumor
microenvironment (TME) from targeting a variety of
hematological and solid malignancies (Couzin-Frankel, 2013).
Despite widespread use of predictive singleplex PD-L1 IHC tests
to enrich for likelihood of response to PD-1/PD-L1 axis blockade,
the majority of patients do not benefit, and effectiveness is limited
in several cancer types likely due to a highly immunosuppressive
TME or lack of tumor-specific antigens (Xu-Monette et al., 2017;
Hack et al., 2020). By contrast, ipilimumab, targeting CTLA4,
does not have an accompanying predictive IHC CDx, although
expression of MHC class I has been associated with response to
ipilimumab in melanoma (Rodig et al., 2018). Immunoscore®
(HalioDx) is an image analysis-based IHC assessment of CD3 and
CD8 positive T lymphocytes in defined regions of a tumor biopsy
sample, which has shown clinical utility in colon cancer (Angell
et al., 2020; Bruni et al., 2020). In recognition of this and other
work, tumor immune microenvironment has been added as a
prognostic factor by the WHO tumor classification of colon
cancer (Digestive System Tumours, 2019). It is important to
note that development of Immunoscore preceded successful
blockade of immune checkpoint targets in human (Galon
et al., 2006), so these and other immune checkpoints as well
as other TME immune cell phenotypes of known importance are
not assessed by Immunoscore. A better understanding of the
interactions among tumor, immune cell subsets, immune
checkpoint pathways and other cell types in the TME,
including response and resistance mechanisms, will be crucial
to develop effective cancer therapies.

The TME is a complex ecosystem consisting of tumor cells,
endogenous and tumor-induced stromal cells, vasculature
(including vascular endothelia, pericytes, and perivascular
cells), nerves and other sensory structures, and various
organ/tissue-resident and recruited immune cell types as well
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as non-cellular components of the extracellular matrix such as
collagen, fibronectins, and proteoglycans (Li et al., 2021;
Rameshbabu et al., 2021; Vitale et al., 2021). The TME
promotes tumor stem cell renewal, proliferation, invasion,
and angiogenesis while creating an immunosuppressive
environment (Nicholas et al., 2016; Najafi et al., 2019). In
solid tumors, dense stromal collagen (desmoplasia) creates a
physical barrier that supports cancer growth, in part by
promoting hypoxia and precluding entry of immune cells
into the tumor mass while maintaining blood vessels that
allow tumor cells to metastasize (Mortezaee, 2021), a
particularly common feature of pancreatic cancer (Bulle and
Lim, 2020). Other components of the TME, such as tumor-
associated macrophages (TAMs) (Vitale et al., 2019) and
intercellular signals such as IL10 (Ouyang and O’Garra,
2019) and TGF-β (Ganesh and Massagué, 2018) represent
therapeutic targets responsible for primary resistance to
immune checkpoint blockade (Bulle and Lim, 2020).

Recent advances in cell profiling technologies, data analysis,
and visualization tools have unveiled a hitherto unappreciated
complexity of the TME and its constituent cell phenotypes (Galon
et al., 2006; Digestive System Tumours, 2019; Angell et al., 2020;
Bruni et al., 2020). As many TME cell phenotypes most relevant
to immuno-oncology are defined by simultaneous detection of
more than two markers, singleplex IHC panels will be inadequate
to unambiguously identify these cell types in a single tissue
section. Several technologies have recently been employed to
characterize the TME in research investigations, including
multiplexed immunohistochemistry (mIHC) and
immunofluorescence (mIF) (Hofman et al., 2019; Parra et al.,
2019), mass spectrometry (IMC/CyTOF, MIBI) (Baharlou et al.,
2019), single-cell RNA sequencing (scRNAseq) (de Vries et al.,
2020), and spatial transcriptomics (Ji et al., 2020).

Several recent studies have employed multiplex methods to
investigate the relationship between TME and treatment efficacy
as part of exploratory or retrospective analyses of tissue biopsies
from clinical trial cohorts. Chaudhary et al. evaluated both short-
and long-term effects of prexasertib, a CHEK1 checkpoint kinase
inhibitor, on TME of head and neck squamous cell carcinoma,
coupling transcriptomics withmultiplex mIHC (Chaudhary et al.,
2021). Acutely, treated tumors demonstrated increased
expression of T-cell activation and immune cell trafficking
transcripts and decreased expression of immunosuppression-
related transcripts, but over the longer time points there was
an increase in immunosuppression-related transcripts suggesting
evasion of immune surveillance that correlated with acquired
prexasertib resistance. Schwarze et al. used IHC and mIF on
cancer biopsies from a phase IB trial of immune checkpoint
inhibition combined with administration of myeloid dendritic
cells, revealing treatment-related immune cell infiltration into
tumor (Schwarze et al., 2020). Sathe et al. integrated scRNAseq
with mIHC to demonstrate dramatic increases in exhausted and
regulatory T lymphocytes in gastic carcinoma compared to
normal mucosa (Sathe et al., 2020). Gundle et al., in reporting
microdosing of drug combinations in soft tissue sarcoma (STS),
used mIHC and GeoMx Digital Spatial Profiling (Nanostring) to
reveal putative mechanisms of tumor resistance to drug treatment

(Gundle et al., 2020). These studies highlight the power of
multiplex analysis to reveal a variety of immune cell
phenotypes and their spatial arrangements in the TME from a
single cancer biopsy, and based on these reports we anticipate
growing use of multiplex technologies to probe patient tumor
biopsies.

Multiplex Technologies and the Path From
Research to the Clinic
We hypothesize that multiplex technologies most likely to reach
clinical application, at least initially, will need to fit in existing
histopathology sample workflow with results able to be viewed
and interpreted on computer monitors. Many multiplex
technologies use fluorescence emission as a means of marker
visualization, with some combination of simultaneous and/or
cyclic sequential labeling and detection (Lin et al., 2018; Tan et al.,
2020). Because fluorescence microscopy is a mature research
technique that is already used for a limited number of clinical
applications, we believe fluorescence detection will be best suited
for initial clinical use.

Diagnostic fluorescence microscopy in use today
The use of fluorescence microscopy in routine diagnostic
anatomic pathology is currently limited to DNA ISH to detect
chromosomal abnormalities (translocations, gene amplifications)
and to antibody-based investigations of specific immune and
genetic diseases in dermatopathology and nephropathology. A
fluorescence microscope and its accompanying viewing monitor
are typically located in a darkroom, outside of the main lab, in
order for users’ eyes to accommodate viewing images with a dark
background. In contrast, the background of the H&E or DAB-
stained image viewed in a brightfield microscope is usually white,
and such images can be comfortably viewed for hours in a
brightly lit room. Typically, dedicated technicians gather
images from fluorescent diagnostic assays (e.g., DNA FISH)
for the pathologist to review for case sign-out, freeing the
pathologist from the dark room. One solution to the “dark
room” problem is for the pathologist to review and interpret
fluorescent WSI, possibly with false coloring or color inversion to
create an artificial white background on a computer screen. Such
images can be obtained from whole slide fluorescence scanners,
that, unlike the fluorescent microscope, are not required to sit in a
darkroom, but rather feature automated workflows and high
throughput for enhanced viewing and analysis on computer
monitors.

Differences between brightfield and fluorescence
microscopy
In addition to these practical differences between fluorescence
microscopy and brightfield microscopy, there are important
differences in the relevant laws of physics that underlie
viewing stained tissue by each type of microscopy. To the
detector, whether a camera or the human eye, brightfield
microscopy measures an absorption process (subtraction of
light), while fluorescence microscopy measures an emissions
process (addition of light). Radiative transfer, which accounts
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for the emission and transport of electromagnetic radiation
(light) through a medium, confers significant advantages for
fluorescence over brightfield imaging in terms of dynamic
range, sensitivity, and the ability to measure multiple signals at
once (multiplexing):

Dynamic range
With chromogenic staining and brightfield microscopy,
transmitted light passes through the sample, and light
intensity in each “column” of absorption [i.e., tissue thickness
(z) at each x-y coordinate of the tissue plane] is inversely
proportional to the abundance of deposited chromogen. Once
the absorption column has become optically thick (e−τ where the
optical depth, τ > 1), the ability to detect additional chromogen in
a heavily stained column becomes exponentially more difficult
(i.e., the stain “shadows” itself). Consequently, with heavy
staining, section thickness and enzyme reaction time can
dramatically impact perceived stain intensity and can create
challenges in consistently distinguishing between moderate vs.
strong staining in semiquantitative IHC assays. In addition,
chromogen diffusion can leave a lightly stained “diffusion
halo” of several hundred nanometers or more around
intensely stained structures (more prominent with fast-red
based detection by alkaline phosphatase). In areas with low
levels of chromogenic staining, focal plane, objective lens
magnification and numerical aperture, and other features of
the optical system can impact detection sensitivity. A recent
study on focus standardization of H&E-stained WSI, obtained
from different scanners, revealed that a substantial amount of out
of focus information is retained by an “in focus” brightfield image
(Kohlberger et al., 2019). Fluorescence imaging uses a completely
different method to detect marker abundance, with the intensity
of the emission column at each x-y position in the sample being
directly proportional to amount of the fluorophore in the column.
Because a thin tissue section is nearly optically transparent,
essentially all emitted light from fluorophores passes easily
through the column and is detected by the camera. As
discussed above, colocalization of chromogenic dyes increases
the darkness of tissue when viewed by brightfield microscopy,
whereas with fluorescence based detection overlapping signals
become brighter with increased marker abundance. These
differences in the physics of brightfield vs. fluorescence
imaging contribute to the fact that, in practice, HRP/DAB is
limited to ∼2 orders of magnitude of dynamic range while
fluorescence can detect ∼5–6 orders of magnitude,
approaching the intrinsic dynamic range of the protein
concentration in biological specimens of ∼7 orders of
magnitude or more (Rimm, 2006; Zimak et al., 2012; Vani
et al., 2017).

Sensitivity
In fluorescence imaging, to achieve higher sensitivity one can
increase the excitation light intensity to further increase the flux
of emitted light and/or increase camera exposure time to collect
additional signal. Autofluorescence of some FFPE tissues can
limit sensitivity by increasing background emissions at different
wavelengths (Lazarus et al., 2019). With chromogenic imaging,

above a certain level of absorption there is little sensitivity
gained with brighter illumination. The fluorescent signal can
also be amplified by introducing more fluorophores per
antibody in the staining assay (Zimak et al., 2012), while for
chromogenic staining, adding more absorbing molecules has a
fast-diminishing effect once the optical depth of the stain
column is above a certain amount.

Higher-order marker multiplexing
Higher order multiplexing is possible for fluorescence imaging
because the absorption and emission spectra of fluorescent probes
are generally narrower than those of chromogenic stains. Given
the finite bandwidth of the optical spectrum, this property allows
for a greater number of multiplexed signals to be simultaneously
detected—typically five fluorescent channels with conventional
filter sets and up eight or nine channels with special filter sets and
“spectral unmixing” (defined below) as compared with two or
three simultaneous colocalized colors in a chromogenic image.
DAB, the most commonly used chromogen, has a broad
transmission spectrum overlapping with red and yellow
(Gordon, 1988), making it difficult to accurately quantify DAB
when other chromogens are present. Spectral unmixing is a
mathematical operation, a nonlinear least-squares fit, that
estimates the proportion of each fluorophore’s contribution
(and any tissue autofluorescence) to the overall spectrum at
each wavelength when there is spectral overlap (spectral bleed-
through) (Dickinson et al., 2001). But, when considering potential
diagnostic uses of fluorescence, a requirement for spectral
unmixing in the detection system may compromise consistent
tracing of information through the so-called “pixel pathway” - the
framework, described below, that governs how regulatory bodies
view WSI systems for diagnostic use (Abels and Pantanowitz,
2017).

Standardization of multiplex immunofluorescence workflows.
Fluorescence microscopy as a technique is far less standardized
than brightfield microscopy, with each microscope manufacturer
offering distinct lens materials, light sources, optical paths, filter
and mirror sets, detection cameras, and viewing software. With
mIF, microscopists can generate images that maximize signal to
noise ratios for the given marker, antibody clone, fluorophore,
tissue/sample type, preparation method, strength of emission
light, camera exposure time, and experimental aim—all too
frequently with only the goal of generating a beautiful and
visually striking image for a publication, journal cover, or
marketing material. However, these parameters require
simultaneous optimization to achieve an optimal result—which
might be very different for the next experimental condition, set of
tissue samples, equipment setup, or laboratory. There are
increasing options for whole slide fluorescence scanners that
create multiplex WSIs, but these are not yet standardized with
respect to how images are generated or how the output files are
formatted. A critical aspect of diagnostic development and
validation, even in a single laboratory, is defining the
diagnostic system, locking it down, and then testing
performance on scaled sample sets in relation to the assay’s
expected use. Thus, one major challenge of implementing
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fluorescence-based tissue marker detection in clinical practice is
defining the best system parameters from a wide variety of system
components and configurations so that the fluorescent images
can be compared to ground truth, typically “gold standard”
brightfield IHC images.

Thus, for diagnostic use mIF has numerous potential
advantages over enzyme-based chromogenic staining, allowing
simultaneous detection of multiple markers in individual cells
and reducing the number of tissue sections necessary for
complete assessment of markers currently tested with IHC. As
noted, this may be advantageous in situations where diagnostic
tissue is limiting, such as lung cancer. Most importantly, as deep
profiling methods (transcriptomics, proteomics) are used to
probe individual cells in normal and diseased tissues, most
notably as part of the Human Cell Atlas (Regev et al., 2017), it
should be possible to specify a standard, minimal set of markers
to unambiguously identify specific and well-defined pathogenic
cell types and their locations using mIF on tissue biopsies.

Phases of multiplex immunofluorescence testing. A useful
framework to consider mIF assays is the preanatlytic, analytic,
and postanalytic phases of testing. For DAB/IHC assays, the
analytic phase is staining itself, either manually by a technician or
by an autostainer. Preanalytic factors include all steps from
sample procurement to staining, including fixation, processing,
embedding, slide preparation, and any manual tissue
pretreatment. It is estimated there are over 100 discrete steps
in the preanalytic phase, and beyond formalin fixation past a
certain time (e.g., 8 h for ER/PR IHC of breast biopsies per CAP
recommendations), practices are not standardized and thus vary
widely (Agrawal et al., 2018; Compton et al., 2019). Importantly,
antigen retrieval steps that lyse formalin cross links and expose
epitopes prior to staining allow many singleplex IHC assays to
retain robust assay performance, at least for qualitative
interpretation, despite variation in preanalytics (Bogen et al.,
2009). The analytic phase on the autostainer includes any
automated pretreatments, antibody blocking and incubation
steps, washes, and enzyme-based signal detection. The
postanalytic phase includes applying the slide coverslip, any
post-run slide labeling, and interpretation by the pathologist.
Variation in any of these test phases can cause variation in results,
as well as false positive or false negative results. Over 4 decades of
practice experience with DAB-based IHCs has led to improved
diagnostic assay standardization that—considering disparate
reagent sources and automation platforms – allows for some
degree of comparability between assays across antibody clones,
platforms, and laboratories. Such inter-assay comparability is
emphasized by FDA in IHC guidance documents and IHC-
based product approvals (Guidance for Industry, 1998) as well
as CAP-recommended updates in assay interpretation [e.g., for
the Her2 IHC and FISH assays (Wolff et al., 2018)]. mIF
workflows are far less standardized, and quantitation of images
requires additional analytic and post-analytic steps such as
fluorescent slide scanning and image capture, image processing
and analysis, and viewing on a computer monitor. Thus, for mIF
the diagnostic workflow is expanded relative to traditional IHC,
such that the postanalytic steps of staining become the preanalytic
steps for slide scanning and analysis. Tissue and slide quality

impacts scan quality, which can vary widely between vendors,
models, and laboratories; scan quality in turn influences image
analysis (Dunstan et al., 2011; Webster and Dunstan, 2014) as
well as performance of AI algorithms (Cui and Zhang, 2021).

Multiplex fluorescence technologies. Several multiplex assay
platforms, technologies, and protocols have been recently
reviewed (Lin et al., 2018; Hofman et al., 2019; Francisco-Cruz
et al., 2020; Tan et al., 2020; McGinnis et al., 2021). Traditional
mIF assays use fluorophores directly conjugated to primary or
secondary antibodies. With traditional IHC, sensitivity is
enhanced by increasing the number of HRP molecules per
primary antibody, such as by avidin/biotin complexes or HRP-
polymers. The same principle holds for mIF, with sensitivity
enhanced by increasing the number of fluorophores per primary
antibody molecule, allowing generation of quantitative data
across analyte concentration ranges that reflect relevant
physiologic or pathological states in tissue (Zimak et al., 2012).
In newer mIF methods, application and detection of antibodies
can be sequential, simultaneous, or some combination thereof.
Some methods can be performed manually, but recent data
suggests automation improves precision and reproducibility
(Surace et al., 2019; Taube et al., 2020), performance attributes
that will be essential to build confidence in diagnostic use. In each
method, specific fluorophores need to be matched to antibody/
target molecule, emissions spectra, filter sets, camera settings,
tissue type, and proposed data analysis pipeline. A variety of mIF
methods, including hapten-based, cyclic tyramide-based
amplification and DNA barcode-based detection allow higher
sensitivity and higher order multiplexing beyond the traditional
species barriers imposed by secondary antibody-based
detection. Emerging methods such as CODEX (Akoya, Inc.)
(Goltsev et al., 2018), MACsima (Miltenyi Biotec), Orion
(Rarecyte, Inc.), GeoMx Digital Spatial Profiling (Nanostring,
Inc.) (Toki et al., 2019), and Visium FFPE (10x Genomics)
generate higher-plex spatial analysis (20–40 or more markers on
a single section), but we speculate these techniques are better
suited for discovery rather than immediate clinical applications
until challenges associated with long turnaround times, high
cost per sample, sample destruction, and stringent validation
requirements are overcome.

Among the most widely used mIF method, especially in
immuno-oncology, is Tyramide Signal Amplification (TSA)
(Opal, Akoya, Inc.), a cyclic staining protocol using tyramide-
conjugated fluorophores (Stack et al., 2014). Briefly, the TSA
method amplifies fluorescent signals through a polymer-HRP
detection system similar to traditional IHC, but instead of using
DAB to deposit chromogen, HRP activates tyramide to covalently
bind multiple tyrosine residues near the epitope of interest. Non-
covalently bound antibodies are then stripped using heat, while
tyramide-linked fluorophores accumulate on the tissue with each
cycle of staining. This staining/amplification cycle is then
repeated up to 7 more times (generating up to an 8-plex
image) with different antibody/fluorophore combinations, with
consideration to order of target detection as well as rigorous
controls required during assay development and with each
experiment to ensure accurate detection of each marker. Once
an assay is developed, the advantages of this technique are its
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simplicity, enhanced sensitivity relative to fluorophore-linked
secondary antibodies, high specificity, and compatibility with
most fluorescent microscopy systems. Spectral unmixing,
discussed above, is an obligate requirement in the Opal
workflow. With multiple rounds of epitope retrieval, tissue
integrity may become compromised, limiting assay plexy and
precluding use of the mIF slide for additional assays such as H&E
staining. A recent improvement in the TSA method using a
stripping buffer instead of heat underscores the importance of
maintaining tissue integrity for any mIF analysis (Willemsen
et al., 2021).

One recently developed method with several advantages over
cyclic TSA-amplification is Ultivue’s InSituPlex (ISP) technology
(Figure 1). Antibodies against four different targets are each
conjugated to a unique DNA barcode sequence. After a single
antigen retrieval step, all antibody-DNA conjugates are applied to
the slide. The barcodes on each antibody are then amplified in
situ, avoiding secondary antibodies that can exhibit unwanted
cross-reactivity. Next, fluorescent probes complementary to each
barcode label each target, enhancing sensitivity. ISP has been
automated on autostainers (BOND RX, Leica Biosystems), and
slides can be imaged on a variety of fluorescent scanners and
analyzed using any image analysis software. ISP can be performed
inmultiples of 4-plex (e.g., 8, 12, 16 plex) by applying all barcoded
antibodies simultaneously and then detecting four fluorophores
(plus nuclear counterstain to detect DNA and mark cells) per
cycle. ISP features a rapid, low-complexity, easily automated
workflow with pre-optimized, highly sensitive assays that can
deliver reproducible results comparable to other methods
(Humphries et al., 2020), but with high throughput and faster
assay development times than TSA-based assays. Because ISP
uses standard, gentle antigen retrieval, following mIF staining the
slide can then be stained for H&E and the resulting WSI precisely
merged with mIF data, allowing association of every cell in the
H&E section with its marker profile (Figure 2).

Quantitative analysis of multiplex fluorescence images. Image
analysis software is required to analyze the massive datasets
created by whole slide mIF. A subdiscipline of computer
vision, image analysis can be applied to WSI to quantify
marker pixel counts or structures in regions of interest (such
as tumor vs. nontumor) selected manually or in an automated
fashion using marker status or AI. Various cell types, defined by
the presence or absence of one or more markers, can be quantified
in the tissue section by number, location, density, proximity to
other cell types or structures, or any other metric of interest.
Tissue image analysis using rules-based machine learning
algorithms has been used for decades in research, yet the few
FDA-cleared clinical applications for image analysis of IHC are
mostly restricted to algorithms that quantify CDx markers such
as Her2 and ER/PR (Abels et al., 2019; Aeffner et al., 2019; Zuraw
et al., 2020; Digital Pathology Association, 2021). Recently, deep
learning-based AI algorithms have been employed to analyze
large collections of H&E tissue slides to identify tissue features
such as various types of cancer and to predict molecular lesions
such as specific gene mutations (Couture, 2019; Chen et al., 2020;
Rana et al., 2020; Echle et al., 2021; van der Laak et al., 2021),
providing proofs of concept that image analysis can detect

information in WSIs that are not detectable by a trained
human observer. We hypothesize that unambiguous
assignment of multi-marker cell phenotype to every cell in the
tissue section, achieved by precise coregistration of H&E and mIF
images, will augment interpretation of the H&E section, whether
read by a human pathologist or an AI algorithm.

Regions of interest. One major area of relevance to cancer
diagnostics concerns specification of regions of interest (ROI) in
each tissue sample. Pathologists use (and are legally required to
view) representative sections of all stained tissue blocks, typically
by H&E and IHCs, to render a diagnosis; to do otherwise, by
intentional or unintentional omission of tissues for review,
increases likelihood of misdiagnosis and constitutes grounds
for malpractice. For TME assessment in immuno-oncology,
how many and which areas of the slide to analyze remains
largely undefined. Beyond the categories of hot, warm, and
cold tumors based on location and density of inflammatory
infiltrates (Bonaventura et al., 2019) - more recently referred
to as inflamed, immune excluded, and immune desert,
respectively (Hegde and Chen, 2020) - many tumors exhibit
heterogeneity and intermediate attributes between these
categories, and even tumors classified as “hot” exhibit
heterogeneity unrecognized by traditional IHC analysis
(Shembrey et al., 2019). To accommodate such heterogeneity
and estimate critical parameters, pathologists have historically
relied on identification of relevant random or defined “fields of
view” (FOVs), such as when estimating mitotic rates to grade
sarcomas (Neuville et al., 2014). Should TME analysis be based on
the whole slide or on specific FOVs? If the latter, how many
FOVs, and how should they be selected: randomly, with
consideration paid to tumor architecture, or by specific
criteria? For example, since the invasive front is a region
where tumor cells can be visualized interacting with adjacent
non-neoplastic tissue, it seems intuitive that invasive front FOVs
should be analyzed to estimate risk of metastasis (Eiro et al.,
2012). However, different driver mechanisms and intercellular
interactions may be operative within the tumor mass and its
invasive front, and different mechanisms may be dominant in
different areas of the invasive front (Lawson et al., 2018), so either
the entire invasive front should be analyzed, or FOV selection
should be guided by criteria linked to the pathogenic mechanism
being evaluated or by less biased image analysis or AI techniques.
In either case, we believeWSIs will need to serve as input for FOV
selection, whether chosen by a human pathologist or by computer
software.

Whole slide imaging systems for diagnostic use and the “pixel
pathway.” When considering how mIF might enter diagnostic
practice it is important to consider how health authorities such as
the FDA have approached regulation of WSI systems using
brightfield microscopy. Over 2 decades ago, whole slide
scanners that create high resolution images from standard
pathology tissue slides were marketed for research and
educational purposes, with the perceived promise (and among
some, fear) that they would someday augment or even replace
manual microscopy in diagnostic practice. Such was born, as an
extension of efforts around telepathology for remote diagnosis in
the 1980s and 1990s, the field of “digital pathology” (Soenksen,
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2009; Weinstein et al., 2019). Slide digitization enabled
quantitation of tissue parameters by image analysis, described
above. However, at that time there were no digital pathology
systems approved as IVDs for primary diagnosis by FDA. Several
years of negotiations between the Digital Pathology Association
(DPA), College of American Pathologists (CAP), various scanner
manufacturers, and the FDA eventually led to WSI system

definition and performance standards that could be used as a
basis of FDA approval (Abels and Pantanowitz, 2017). For a WSI
system to achieve FDA clearance for diagnostic use, it was agreed
that over 2000 cases of the variety seen in a typical surgical
pathology clinical practice needed to be assessed by over a dozen
pathologists using many, physically separate (but identically
specified) WSI systems. A WSI system consists of three

FIGURE 1 | Ultivue InSituPlex (ISP) assay workflow. (A,B): Four different DNA-barcoded antibodies are applied to a FFPE tissue section. (B,C): Barcode
amplification. (D): Targets are labeled through hybridization of fluorescent probes to their respective barcodes. Higher plex staining (greater than 4-plex) is possible by
initial application of all antibodies, each with a unique barcode, to the tissue and then detecting 4 markers per cycle, separated by gentle DNA exchange steps (not
shown).

FIGURE 2 | Ultivue InSituPlex workflow enables coregistration of multiplex IF and H&E tissue images. Left panel shows image of non-small cell lung cancer stained
with four-marker panel including CD3+ T cells (red), CD45RO+memory T cells (green), PD-1+ exhausted T cells (yellow), and Cytokeratin positive carcinoma cells (cyan)
obtained by fluorescent (FL) scan. H&E stain on same section (middle panel) obtained by brightfield (BF) scan. Right panel is coregistered overlay of multiplex and H&E
images, which allows assignment of marker phenotype to every cell in the H&E section, which may be used for integrated image analytics and training of deep
learning networks.
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separate but connected devices including the slide scanner,
viewing software, and computer monitor (Figure 3) (Abels
and Pantanowitz, 2017). At the heart of defining a WSI
system for manufacture, distribution, and promotion was its
“pixel pathway,” the path of each image pixel as it transited
through the WSI system—from the tissue slide to the
pathologist’s eye. The pixel pathway concept served several
purposes: 1) as an initial step toward WSI system
standardization, 2) generation of diagnostic accuracy data to
show that diagnoses made using different WSI systems were
noninferior to diagnoses made by manual microscopy, and 3)
identification of various system failure modes and the potential to
attribute system failures (e.g., a false positive or false negative
diagnosis) to a root cause such as a specific component of theWSI
system itself, the pathologist, or to an intrinsically challenging
differential diagnosis such as dysplasia vs. carcinoma in situ. To
date, only two such WSI systems have been cleared for primary
diagnosis by the FDA, the first by Philips in 2017 and the second
by Leica Biosystems in 2019 (Mukhopadhyay et al., 2018; Bauer
et al., 2020; Borowsky et al., 2020). These and other studies have
engendered confidence among pathologists that using WSI is as
safe as using their microscope for primary diagnosis. There
remain widespread barriers to uptake of digital pathology
systems, which will need to be addressed before mIF is
accepted as a diagnostic tool. Primary among these is a lack of
standardization and interoperability between different WSI
components and systems (Marble et al., 2020), meaning that
each WSI system has a distinct pixel pathway design. Moreover,
for WSI systems to fulfill current standards requires device
manufacturers to invest multiple years and millions of dollars
in system development, specification, and validation - a long-time

frame and large investment compared to the rapid technological
advancements and decreasing costs of digital imaging technology
and deployment options in individual labs under LDT
enforcement discretion. Additional factors that need to be
addressed include lack of incentives for digital pathology
infrastructure investments and reimbursements (Lasiter et al.,
2020), mouse-driven and ergonomically unfriendly “point and
click” viewing software (Molin et al., 2015), creation of viable
business cases for implementation (Lujan et al., 2021a), and a
pathologist’s fear of being tethered to a potentially unreliable
computer system as opposed to a trusted manual microscope.
Recognition of these issues was accelerated in 2020 by the COVID-
19 pandemic, which prompted some institutions to rapidly validate
their digital pathology systems for diagnostic use in order to
maintain continuity of care (Hanna et al., 2020; Stathonikos
et al., 2020; Samuelson et al., 2021; Lujan et al., 2021b), whereas
other institutions relied on less rigorous system validation guided
by the pathologist’s ability to judge when images are of insufficient
quality to make a diagnosis. A notable parallel concerns the
application of telecytology (remote microscopic viewing of
cytology specimens) for rapid onsite evaluation (ROSE) of
adequacy of biopsy specimens, which is recommended to follow
CAP guidelines for validation of diagnostic WSI systems
(Pantanowitz et al., 2013; Lin et al., 2019; Evans et al., 2021).

Standardize cell phenotypes before pixel pathways. It has been
proposed that widespread adoption of digital pathology in health
care will require ecosystem-wide implementation of standards
akin to those that enabled the field of diagnostic radiology to
convert from film-based to digital platforms over a decade ago
(Herrmann et al., 2018; Clunie, 2021). A pivotal element of
radiology’s digital conversion was establishing data format

FIGURE 3 | Pixel pathways for diagnostic whole slide imaging (WSI) and multiplex immunofluorescence (mIF) systems. In the current FDA WSI system paradigm
(top row), image pixels are traced sequentially through a three-component system that includes brightfield scanner, viewing software, and computer monitor to be
interpreted by the Pathologist. In a proposed cell-phenotype centric mIF system (bottom row), the pixel pathway originates with scanning of mIF and then H&E stains on
the same slide, a capability of Ultivue’s ISP technology. In model A (top), mIF and H&E images are separately analyzed using the indicated tools, and then images
are merged after analysis. In model B (bottom), merged mIF and H&E images are subject to a novel data pipeline such as cell-based annotation of H&E sections for
analysis by deep learning, allowing earlier definition of each cell’s phenotype in the system’s pixel pathway. Both models converge so the Pathologist can visualize the
merged image with analyses, followed by judgment of the diagnostic (Dx), prognostic (Px), and predictive (Rx) explanations and interpretations when issuing the patient’s
diagnostic report.
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standards and component interoperability standards that serve as
a basis of device regulatory approval, such that unique system
configurations and workflows can be established at each facility
from interchangeable components that will perform in a
predictable fashion when combined in a system. While some
digital pathology standards exist, particularly around the
emerging use of DICOM file formats, regulators and
manufacturers have not yet agreed upon standards that can
serve as basis of product development, testing, approvals, and
marketing (Herrmann et al., 2018). As a result, many digital
pathology systems used for primary diagnosis throughout the
United States are distinct, classified as LDTs, because each system
consists of a unique mix of components that may or may not be
approved by the FDA for specific uses.

Given the myriad potential mIF system configurations and
potential diagnostic uses, coupled with lack of standards in mIF
and in digital pathology in general, we do not foresee all relevant
stakeholders agreeing to a standardized “pixel pathway” for
diagnostic mIF-based WSI systems any time soon. Instead of
focusing on image pixels, since mIF is most commonly used to
identify cell phenotypes defined by coexpression of multiple
markers, one potential step towards standardization of mIF data
would be to first standardize data formats at the level of
identification and characterization of each individual cell in the
sample, perhaps in a manner analogous to how flow cytometry
manufacturers created the Flow Cytometry Standard (FCS) data
format (Spidlen et al., 2021), with addition of a cell position
coordinate in the x-y tissue plane (including the relevant image
patch) specifying the location of each cell in the tissue. Such “tissue
cytometry” is not a new concept (Ecker and Steiner, 2004; Blenman
and Bosenberg, 2019), but advances in multiplex technology,
understanding of single cell biology and the role of pathogenic
cell types in disease, increased computational power and AI, and a
requirement to better characterize the TME are creating urgency
around diagnostic use of multiplex staining. Irrespective of efforts
to standardize mIF and digital pathology, each diagnostic mIF
system used as a LDT will have a unique “pixel pathway” and data
pipeline to identify cell phenotypes that could serve as a basis of in-
laboratory verification and validation testing, as well as to identify
failure modes and their root causes. Similarly, by analogy to
brightfield WSI systems, stringent validation of single-site mIF
systems used as LDTs should be far easier than the multisite/
multisystem validation required of candidate mIF IVD systems.
Nearly all FDA-approved CDx IVD tests, including those based on
IHC or ISH, are class III risk class devices requiring premarket
approval (PMA); however, an increasing number of FDA-
approved CDx assays are classified as LDTs, but only one assay
(PDGFRB FISH for imatinib eligibility) is tissue-based, the
remainder being PCR or NGS-based (Jørgensen, 2021).

Use of immunofluorescence data in diagnostics. How might
mIF data be analyzed in future diagnostics? At least two cell
phenotype-centric models for mIF WSI system “pixel pathways”
can be proposed (Figure 3). In one model (“A” in Figure 3), the
H&E section and mIF data are subject to separate analysis
pipelines and then merged after analysis. In line with many
recent applications of AI to pathology, H&E image pixels and
features are linked by supervised training of convolutional neural

networks (CNNs) to data such as pathologist-annotated image
features, specialist-rendered diagnosis, presence or absence of
molecular lesions, prognosis, or treatment outcomes. In parallel,
mIF is used to identify and quantify specific cell phenotypes and
their locations in the biopsy (Wilson et al., 2021). This model is
analogous to the current addition of non-histology-based
biomarkers such as NGS panels to pathology diagnosis, with
results integrated at interpretation and reporting stages. An
alternative model (‘B” in Figure 3) exploits ISP’s ability to
generate a merged H&E and mIF image (Figure 2) as input data
to generate cell-level annotations of H&E slide images for training
CNNs. We envision at least two advantages of model B. First, it
eliminates the need for manual pathologist annotations of H&E
images for algorithm training, widely viewed as a key limiting factor
in global deployment of AI in pathology (van der Laak et al., 2021).
Second, identifying the multi-marker profile of every cell in the
H&E-stained tissue biopsy results in earlier identification of cell
phenotypes in relation to their interpretation appearances and tissue
distributions in the system’s pixel pathway. There are a few examples
using singleplex IHC to augment annotation of H&E sections for
training AI [reviewed by van der Laak et al. (2021)], including use of
cytokeratin IHC to aid identification of breast (Litjens et al., 2018) or
prostate (Bulten et al., 2019) cancer cells, detection of mitoses using
phosphohistone H3 (Tellez et al., 2018), and detection of breast
cancer cells using cytokeratin and Ki67 IHC (Valkonen et al., 2020),
and one recent example using mIF of tumor infiltrating lymphocyte
(TIL) markers to predict driver mutations in colon cancer (Bian
et al., 2021). In either model, mIF and H&E data could be merged by
the scanner or by analysis software after scanning to be rendered for
viewing and interpretation.

As mentioned, in addition to using H&E-stained tissues to train
AI to assist with histopathology diagnoses, recent reports have
shown that AI can predict a tumor’s mutational status normally
revealed by molecular diagnostic tests such as PCR or NGS
(Burlutskiy et al., 2020). This has in turned raised the question –
heretical to molecular pathologists - of whether molecular tests are
necessary for diagnosis. We speculate that given the substantial cost
of molecular testing, initial diagnostic uses of H&E interpretation by
AI may serve to increase the diagnostic yield of molecular testing by
screening out cases likely to yield a negative result (high sensitivity
with 100% specificity). Similarly, it is unknown whether mIF will
ultimately be necessary for diagnosis, i.e., whether specific cell
phenotypes such as pathogenic macrophage subtypes or
regulatory T cell subtypes currently identified only by multiplex
methods can be recognized in H&E sections alone by properly
trained AI, or whether multiplex staining will be required to identify
such cells in every biopsy. Since H&E-based interpretation is so
critical to diagnostic pathology, we anticipate that irrespective of the
pixel pathway model of the mIF system, the pathologist will require
direct coregistration of the H&E with the multiplex images so they
can visualize complex cell phenotypes on the same tissue section they
use to make the primary diagnosis.

Preparing for multiplex in clinical practice. Given the
established use of IHC to detect markers in routine anatomic
pathology, the promise of multiplex tissue analysis as a basis of
new diagnostics, and the current regulatory landscape of digital
pathology, we offer the following conjectures:
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1) Unlike singleplex IHC, the complexity and diagnostic
significance of multiplex data used to identify multi-marker
cell phenotypes cannot be grasped by the pathologist without
computational assistance. Therefore, pathologists must be
trained on digital pathology software to visualize, quantify,
and interpret multiplex tissue data.

2) Multiplex data needs to seamlessly integrate into the digital
pathology work environment used for primary diagnosis,
including integration with H&E-stained slide images,
molecular studies, and other patient and slide metadata.

3) Manual fluorescence microscopy is not a preferred diagnostic
modality for pathologists, meaning that expanded use of
fluorescence detection in clinical practice will require a
scanner to generate WSIs that can be viewed, manipulated,
and analyzed by digital pathology software.

4) Interpretation of mIF data will require image analysis,
augmented by explainable AI algorithms, to understand
and interpret data and report diagnoses (Huss and
Coupland, 2020; van der Laak et al., 2021).

5) Until Pathology adopts data formatting and component
interoperability standards akin to Radiology, including
integration of multiplex tissue data, end-to-end WSI
systems used in a diagnostic capacity will likely be custom
applications operating as LDTs in each laboratory site.

6) By analogy to brightfield WSI systems, health authorities such
as FDA will require mIF WSI IVD systems to have a defined
pixel pathway, from slide staining to stain visualization and
interpretation. Fundamental differences in brightfield vs.
fluorescent microscopy, the lack of standards around mIF
systems, protocols, data collection and software analysis
pipelines (especially if the WSI system provides decision
support as a medical device), and a requirement for similar
clinical interpretation across platforms and practice
environments, implies that establishing standards to
achieve clearances for a mIF WSI system (or even a for a
stand-alone scanner) will be challenging.

7) Since a major goal of mIF analysis is to assess multiple marker
colocalization in cells to identify and score specific cell
phenotypes, we propose that efforts to standardize data
should first focus, by analogy to flow cytometry, on
standardizing definitions of specific cell phenotypes rather
than on striving to create a standardized mIF pixel pathway.

8) Precisemulti-marker annotation of every cell in theH&E slide by
mIF data will augment training and performance of AI on H&E-
stained tissue samples for some but not all relevant elements of
tissue diagnosis. Optimal uses of AI on mIF data in diagnostic
workflows have yet to be defined (Mungenast et al., 2021).

9) Pathologists must have greater access to digital pathology
systems and software including image analysis/computational
pathology tools in order to begin to integrate multiplex
analysis of any kind into primary diagnosis.

Imagining the Pathologist’s Future
As WSI scanners and viewing software gained a dedicated user base,
the concept of the “pathologist cockpit” emerged as a model for digital
pathology-based case sign out of the future (Soenksen, 2009). Just like
an airplane cockpit, it was imagined that all the controls, dials and

knobs, sticks and gadgets necessary for the pathologist to navigate from
point A (tissue intake) to point B (the diagnostic report) would be laid
out on multiple screens. A decade later, many centers have created
multiscreen pathologist cockpits that bring pathology data and
relevant software to the pathologist’s fingertips. We can now
imagine, in outline and with some detail, the pathologist’s
cockpit of the future: multiplex profiling will identify the
phenotype of every cell in H&E tissue section; vast
computational power will enable access to knowledge databases
such as cell and tumor atlases; and AI will help the pathologist
make sense of it all to better help clinicians select the best therapy
for their patients. We expect that the next generation of
pathologists, like sages on mountaintops, will be ever the wiser
with an expanded ability to navigate disease.

CONCLUSION

Rules and regulations governing creation and deployment of
diagnostic tests are of necessity geared to ensure patient safety
and preserve equipoise in clinical investigations (Rabinstein et al.,
2016; O’Neill et al., 2019), but regulations can also oppose
innovation, thereby denying patient benefit. The potential of
digital pathology to transform anatomic pathology practice is not
limited to remote case sign-out or training AI to interpret H&E
slides; its potential will be realized when knowledge about single cell
phenotypes and disease driver pathways, unique to each patient and
their disease and revealed by multiplex marker labeling methods, is
available for every pathologist to interpret every patient’s tissue
biopsy. IHC has been amajor contributor to understanding the roles
of single cells and cell populations in diagnostic biopsies, but as
currently practiced only allows interrogation of one marker, one
molecular species at a time, and is incapable of identifying emerging
cell types of importance defined by coexpression ofmultiplemarkers
in the same subcellular compartment. Given the current regulatory
landscape of diagnostic anatomic and digital pathology, the technical
demands ofmultiplex assays, and lack of standardizedmIFmethods,
we propose that retrospective analysis of clinical trial cohorts and
development of diagnostic assays as LDTs in individual laboratories
will increase assay confidence and generate real world evidence of
clinical validity and, by inference clinical utility, which in turn will
inform the optimal design, performance and testing of standardized
diagnostic multiplex systems of the future.
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PathologyQuality Control forMultiplex
Immunofluorescence and Image
Analysis Assessment in Longitudinal
Studies
Rossana Lazcano, Frank Rojas, Caddie Laberiano, Sharia Hernandez and
Edwin Roger Parra*

Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX,
United States

Immune profiling of formalin-fixed, paraffin-embedded tissues using multiplex
immunofluorescence (mIF) staining and image analysis methodology allows for the
study of several biomarkers on a single slide. The pathology quality control (PQC) for
tumor tissue immune profiling using digital image analysis of core needle biopsies is an
important step in any laboratory to avoid wasting time and materials. Although there are
currently no established inclusion and exclusion criteria for samples used in this type of
assay, a PQC is necessary to achieve accurate and reproducible data. We retrospectively
reviewed PQC data from hematoxylin and eosin (H&E) slides and from mIF image analysis
samples obtained during 2019.We reviewed a total of 931 reports from core needle biopsy
samples; 123 (13.21%) were excluded during the mIF PQC. The most common causes of
exclusion were the absence of malignant cells or fewer than 100 malignant cells in the
entire section (n � 42, 34.15%), tissue size smaller than 4 × 1 mm (n � 16, 13.01%), fibrotic
tissue without inflammatory cells (n � 12, 9.76%), and necrotic tissue (n � 11, 8.94%).
Baseline excluded samples had more fibrosis (90 vs 10%) and less necrosis (5 vs 90%)
compared with post-treatment excluded samples. The most common excluded organ site
of the biopsy was the liver (n � 19, 15.45%), followed by soft tissue (n � 17, 13.82%) and
the abdominal region (n � 15, 12.20%). We showed that the PQC is an important step for
image analysis and that the absence of malignant cells is the most limiting sample
characteristic for mIF image analysis. We also discuss other challenges that
pathologists need to consider to report reliable and reproducible image analysis data.

Keywords: digital image analysis, biopsy, quality control, pathology, multiplex immunofluorescence

INTRODUCTION

Pathology quality control (PQC) consists of multiple technical steps that evaluate and measure the
quality of a sampling process (Adyanthaya and Jose, 2013). PQC also provides consistent checks to
identify and address errors and obtain accurate, precise, and reproducible data (Mangino, 2006;
Greig, 2019). A retrospective analysis at the National Cancer Institute Developmental Therapeutics
Clinic found that 74% of the core needle biopsies performed in pharmacodynamic studies that
included fluorescence and mass spectrometry analyses passed their quality control criteria (Ferry-
Galow et al., 2016; Parchment and Doroshow, 2016). The study used hematoxylin and eosin (H&E)

Edited by:
Joe Yeong,

Institute of Molecular and Cell Biology
(ApSTAR), Singapore

Reviewed by:
Lixue Cao,

Guangdong Provincial People’s
Hospital, China

Sizun Jiang,
Harvard Medical School,

United States

*Correspondence:
Edwin Roger Parra

erparra@mdanderson.org

Specialty section:
This article was submitted to

Molecular Diagnostics and
Therapeutics,

a section of the journal
Frontiers in Molecular Biosciences

Received: 30 January 2021
Accepted: 19 July 2021
Published: 30 July 2021

Citation:
Lazcano R, Rojas F, Laberiano C,
Hernandez S and Parra ER (2021)

Pathology Quality Control for Multiplex
Immunofluorescence and Image

Analysis Assessment in
Longitudinal Studies.

Front. Mol. Biosci. 8:661222.
doi: 10.3389/fmolb.2021.661222

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 6612221

ORIGINAL RESEARCH
published: 30 July 2021

doi: 10.3389/fmolb.2021.661222

82

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.661222&domain=pdf&date_stamp=2021-07-30
https://www.frontiersin.org/articles/10.3389/fmolb.2021.661222/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.661222/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.661222/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.661222/full
http://creativecommons.org/licenses/by/4.0/
mailto:erparra@mdanderson.org
https://doi.org/10.3389/fmolb.2021.661222
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.661222


slide-based analyses as the first PQC step and found that the lack
of malignant cells (MCs) excluded the largest number of samples.

In the last 5 years, the immune profiling of formalin-fixed,
paraffin-embedded (FFPE) tissues using multiplex
immunofluorescence (mIF) staining and digital image analysis
methodologies has arisen as a new technology to study several
biomarkers on a single slide in longitudinal studies (Francisco-
Cruz et al., 2020). However, an efficient PQC process developed
by pathologists with experience in digital image analysis is
needed. This type of PQC for image analysis and mIF is
necessary to avoid expending unnecessary resources and
laboratory personnel time (Parra et al., 2020) and to obtain
high-quality and reproducible results.

The success of any research study that uses FFPE tissues
depends on the quality of the samples. Therefore, it is
important to establish minimum parameters for biopsy sample
quality that should be met before the staining process begins
(Ferry-Galow et al., 2018). Core needle biopsy samples are
generally around 1.58 mm in diameter and 12.7 mm long,
although their size can vary. The small size of these samples
makes them the most challenging for digital image analysis
because it is more likely for a significant proportion of the
sample to be damaged during cutting, staining, and scanning,
especially when sensitive staining methodologies such as mIF are
used. Yet, these tissues are invaluable material for longitudinal
studies, so efforts to obtain quality data, which is important for
translational studies, should be maximized.

The goal of this manuscript is to maximize the workflow of the
PQC for digital image analysis. Thus, we retrospectively studied
this assessment to standardize the process, to minimize time and
cost expenditures, and to guarantee high-quality and
reproducible results using mIF and digital image analysis.

MATERIALS AND METHODS

From 4,371 biopsies collected by the Adaptive patient-oriented
longitudinal learning and optimization program from different
research programs at The University of Texas MD Anderson
Cancer Center from January through December of 2019, we
retrospectively reviewed the PQC reports based on the H&E
slides of 931 core needle biopsies from longitudinal studies.
Biopsies from different time points were included in this study
(608 baseline biopsies and 323 post-treatment biopsies), and all
the samples had been processed for mIF and digital image
analysis to study the tumor microenvironment, including the
presence of cytokeratins, SOX10, and GFAP to characterize
malignant cells in different organs; immune checkpoint
markers (i.e., PD-L1, B7-H3, B7-H4, IDO-1, VISTA, LAG3,
ICOS, TIM3, and OX40); tumor-infiltrating lymphocyte
markers (i.e., CD3, CD8, CD45RO, granzyme B, PD-1, and
FOXP3); and markers to characterize myeloid-derived
suppressor cells (i.e., CD68, CD66b, CD14, CD33, Arg-1, and
CD11b), and these samples were placed in panels similar to those
previously published (Parra et al., 2021).

Five principal characteristics as annotated in the H&E PQC
reports of the biopsies were analyzed: 1) tissue size (length and

width), 2) percentage of tumor area with respect to the total size
of the sample, 3) percentage of MCs in the tumor area of the
sample, 4) percentage of necrotic area, and 5) percentage of
fibrosis. In parallel, the PQC of the digital image analysis was
retrieved from the final data reports of the mIF panels and
reviewed. Similar characteristics were analyzed on the mIF
slides. For the cases in which image analysis could not be
performed, the comments containing the criterion of exclusion
were retrieved instead. All the data from the H&E and digital
image analysis PQCs were tabulated, and the results are
shown below.

RESULTS

None of the 931 core needle biopsies evaluated were excluded
during the H&E PQC, while 123 biopsies (13.21%) were excluded
during the digital image analysis PQC at low magnification (10x)
(Figures 1, 2). The range of excluded samples per project was
3.45–24.17%. Post-treatment samples were more frequently
excluded (62 of 323, 19.20%) compared to the baseline
samples (61 of 608, 10.03%). An important characteristic of
the samples was their size. The median length was 12 mm
(range, 1–24 mm), and the median width was around 1 mm
(range, 0.8–1.2 mm). However, we observed that the median
length of the samples excluded due to small size was 1.25 mm
(range, 0.5–4 mm), and the median width was similar for
included and excluded samples.

After we retrieved the annotated characteristics of the samples
from the H&E PQC reports, we compared the baseline and post-
treatment characteristics of the excluded and included samples.
(See examples on Figure 3). In the excluded baseline biopsies, the
median percentages of tumor area and MCs in the tumor area
were both 0% (range, 0–60%). For the included baseline biopsies,
the median tumor content area was 95% (range, 30–100%), and
the median percentage of MCs in the tumor area was 60% (range,
5–100%). Interestingly, we observed that the excluded baseline
samples had tumor areas with a median of 90% fibrotic areas
compared to only 20% fibrotic areas in the included baseline
samples. The percentage of necrosis was similar in the excluded
and included samples. Furthermore, in the excluded post-
treatment biopsies, the median tumor area was 10% and the
percentage of MCs in the tumor area was 5%. In the included
post-treatment samples, the median tumor area was 20% and the
percentage of MCs in the tumor area was 50%. We also found a
higher percentage of necrotic area in the excluded samples than in
the included samples (median, 90 versus 25%, respectively).
However, the percentage of fibrotic area was lower in the
excluded post-treatment biopsies as shown in (Table 1).

When we reviewed the digital image analysis PQC reports for
the excluded samples, the most common causes of exclusion were
absence of MCs or fewer than 100 MCs (n � 42, 34.15%), small
tissue sample size (n � 16, 13.01%), mostly fibrotic tissue without
inflammatory cells (n � 12, 9.76%), and mostly necrotic tissue (n
� 11, 8.94%). The less common reasons for exclusion were
fragmentation conditions (n � 2, 1.63%); crushed cell artifact
(n � 2, 1.63%); staining artifact, apparently for oxidation and
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desiccation of the sample (n � 2, 1.63%) and hemorrhagic tissue
(n � 1, 0.81%); (Table 2 and Figure 4). Although most of the
samples showed one of the previously mentioned predominant
causes for exclusion, some samples showed more than one cause
for exclusion. For these samples, the most frequent combinatory
factors were few or no MCs and mostly fibrotic tissue without
inflammatory cells (n � 7, 5.69%) as well as mostly necrotic and
fibrotic tissue without inflammatory cells (n � 4, 3.25%)
(Table 2).

With respect to the site of the biopsy, the liver had the most
samples excluded (19 of 123, 15.45%), followed by soft tissues (17
of 123, 13.82%) and the abdominal region (15 of 123, 12.20%).
The remaining excluded samples came from a wide range of
anatomic locations, such as the breast, cervix, gastrointestinal
tract, lung, and lymph node, and none of these sites alone
accounted for more than 10% of the total excluded samples
(Table 3). It was possible to identify differences in the causes
of exclusion in the context of the biopsy location. For example,
liver biopsies were excluded more frequently due to fibrotic areas
without inflammation, whereas soft tissue samples were excluded
more frequently for having few or no MCs (Figure 5).

DISCUSSION

This study shows that different characteristics of core needle
biopsies can impede digital image analysis, and PQC specific to
digital image analysis can help guarantee high-quality and
reproducible data. In this study, we observed that sample size,
tumor content, percentage of necrosis, and percentage of fibrosis
are important in quality control of physical and scanned H&E
slides as well as scanned mIF slides. We also showed that a
systematic PQC assessment of core needle biopsies is important
to maintain the quality of the biopsies for image analysis.

According to our study, tissue size and tumor content were the
most challenging and important characteristics for determining
which samples could undergo digital image analysis to study the
phenotypes expressed by the tumor immune microenvironment
and MCs. We showed that 34.15% of the samples were excluded
owing to the absence of MCs or low tumor content, and 13.01% of
the samples were excluded owing to small sample size. These
excluded samples had a median size of 1.25 x 1 mm. Similar to a
previous study in which themost important exclusion criteria was
the absence ofMCs, 44% of the biopsy specimens evaluated in this
study contained less than 25% viable MCs (Pisano et al., 2001). As
we expected, in these core needle biopsy samples the most
important measure that differentiated excluded and included
biopsies was sample length, given that sample widths were
determined by the different needle diameters as well as the
fixation process.

As previously published (Parra et al., 2020), we noted that a
tumor content of at least 10% in a biopsy sample that is at least 2 ×
1 mm is enough to perform image analysis; however, we can
successfully stain samples as small as 0.5 mm2. The idea that these
samples are representative of the entire tumor microenvironment
is still controversial due to intratumoral heterogeneity in
biomarker expression (Nicoś et al., 2020). Thus, we
recommend an area of analysis at least 1 mm2 to obtain
reliable data from this type of sample, but this minimum area
will vary depending on the tumor content of the sample
(Padmanabhan et al., 2017). For example, in the literature
there are publications that considered samples 10 mm in
length to be adequate for the diagnosis of prostate cancer
(Cicione et al., 2012) and 15 mm in length adequate for the
diagnosis of liver disease (Palmer et al., 2014). Another study
using mIF on pre-treatment biopsies and post-treatment tumor
resections of breast carcinoma found that adequate tissue
sampling, with at least 15 regions of interest, was necessary to

FIGURE 1 |Workflow of pathology quality control (PQC) for core needle biopsy sample assessment for multiplex immunofluorescence and digital image analysis.
Showing the overall three steps of PQC, including assessment of the hematoxylin and eosin (H&E) slides for PQC, image analysis PQC at 10x magnification, and image
analysis PQC of region of interest (ROI) images at 20x/40x magnification. The numbers of cases evaluated and excluded at each step are indicated.
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have a strong correlation between the tumor-infiltrating
lymphocytes and PD-L1 markers included in an mIF panel
and the H&E/PD-L1 clone SP142 clinical assays (Sanchez
et al., 2021). However, there are not standardized image
analysis PQC protocols to determine the minimum sample
size needed for immunoprofiling, and more studies are

warranted to address this need. We believe that each sample
should be evaluated separately, according to its type (whole
section or core needle biopsy) and the study aims.

When comparing baseline and post-treatment biopsies, the
median tumor content was 90 vs 20%, respectively. While an
adequate tumor presence is required in baseline biopsy samples,

FIGURE 2 | Decision tree for pathology quality control (PQC) of core needle biopsy sample assessment for multiplex immunofluorescence and digital image
analysis. The tree shows the detailed protocol with corresponding decisions for the pathologist to make during the three PQC steps. H&E, hematoxylin and eosin; MCs,
malignant cells; mIF, multiplex immunofluorescence.
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fewer MCs or an absence of tumor cells in cases with complete
pathological response after treatment is appropriate in post-
treatment biopsy samples. Regarding the minimum number of

MCs needed to analyze specific marker clones that are
expressed by MCs, such as PD-L1, at least 100 MCs are
recommended to obtain consistent and reliable data (Tsao

FIGURE 3 |Microphotographs of representative examples of excluded and included core needle biopsies using hematoxylin and eosin slides for pathology quality
control. Excluded examples (left column) compared with samples considered appropriate for image analysis (right column). Small sample size (A) compared with a large,
adequate sample (B). Sample without malignant cells and only with normal tissue (C) compared with a sample with adequate amount of malignant cells (D). Sample with
extensive fragmentation (E) compared with another fragmented sample that could be included in the analysis (F). Small sample with extensive hemorrhagic area (G)
compared with another large sample with extensive hemorrhagic area but also with enough tumor content (H). Sample with extensive necrotic area (I) compared with
another similarly sized sample with enough tumor content for analysis (J). Sample with mucinous and scattered malignant cells (K) compared with a sample considered
appropriate for image analysis (L). Sample with predominant fibrosis and calcification (M) compared with an adequate tumor-containing sample (N). A biopsy with
artifact of desiccation (O) compared with a well-preserved biopsy (P).
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et al., 2018; Francisco-Cruz et al., 2020). However, there is not a
consensus regarding the minimum number of MCs needed for
image analysis of different markers expressed by MCs. According
to our experience, we believe that a minimum of 100 MCs is
needed to consider a sample as representative for digital image
analysis. If the sample has fewer than 100 MCs, then we consider
it to be inadequate to perform image analysis to study markers
expressed by those cells. It is important to consider that when
performing immune profiling for longitudinal studies, we work
not only with baseline biopsies that need to contain enough MCs
but also with post-treatment biopsies that many times lack
enough MCs because of the effects of treatment. In these cases
and when the study is not related to a specific marker expressed
by MCs, exclusion of the sample shoud also be based on criteria
other than the number of MCs, including the proportion of
inflammatory cells, especially T-cells that play an important role
in the tumor immune response, and other components such as
fibrosis, edema, or necrosis (Hellmann et al., 2014).

The presence of inflammation in the tumor and stroma
compartment is required when the aim of the study is to quantify
the immunemicroenvironment (Parra et al., 2020). However, there is a

lack of consensus on the areas that adequately show the inflammatory
microenvironment. Thus, the pathologist must subjectively define an
adequate area. After the mIF slides are scanned, the pathologist should
always try to select the entire tumor area in the sample. However, they
must capture at least 1mm2 of the regions of interest (Parra et al., 2020)
to obtain reliable data

In our daily routine, we always look for characteristics such as
inflammatory cells forming aggregates, as tertiary lymphoid
structures (Sautès-Fridman et al., 2019) or in a diffuse
distribution, as these can direct the analysis toward a reliable
minimum quantity of cell phenotypes to obtain comprehensive
data to be correlated with the clinicopathologic component.
However, there is not a universal minimum number of cell
phenotypes considered to be an adequate representation of the
sample, partly because this number depends on the biological
characteristics of the tumor and because we are often limited by
software, which requires a minimum of five cells expressing a
marker per sample to start the image analysis process.

Fibrotic samples without inflammatory cells are another
important cause of exclusion. In our cohort, we excluded 9.76%
of our samples because of this criterion in both baseline and post-

TABLE 1 | General overview of pathology quality control characteristics in our cohort (N � 931) divided by baseline (N � 608) and post-treatment (N � 323) core needle
biopsies.

Biopsy timepoint Status N Characteristic of the sample, median percentage

Tumor area Malignant cells Fibrosis Necrosis

Baseline Included 547 95 60 20 10
Excluded 61 0 0 90 5

Post-treatment Included 261 20 50 25 25
Excluded 62 10 5 10 90

TABLE 2 | Characteristics of exclusion criteria observed during digital image analysis PQC (N � 123).

One exclusion criterion Extent N (%)

No or fewer than 100 MCs Entire sample 42 (34.15)
Small biopsy size (< 1 mm2) Entire sample 16 (13.01)
Tissue availability after staining Entire sample 14 (11.38)
Fibrotic tissue without inflammatory cells More than 80% 12 (9.76)
Necrotic tissue More than 80% 11 (8.94)
Fragmented biopsy Entire sample 2 (1.63)
Staining artifact of oxidation/desiccation Entire sample 2 (1.63)
Crushed cells artifact Entire sample 2 (1.63)
Mostly hemorrhagic tissue Entire sample 1 (0.81)

Two exclusion criteria

No MCs or fewer than 100 MCs and fibrotic tissue without inflammatory cells More than 80% 7 (5.69)
Necrotic tissue and fibrotic tissue without inflammatory cells Entire sample 4 (3.25)
Fragmented biopsy and staining artifact of oxidation/desiccation Entire sample 3 (2.44)
Small biopsy size and necrotic tissue More than 80% 2 (1.63)
Necrotic tissue and crushed cells artifact Entire sample 2 (1.63)
Small biopsy size and fibrotic tissue without inflammatory cells More than 80% 1 (0.81)
No MCs or fewer than 100 MCs and necrotic tissue More than 80% 1 (0.81)
Staining artifact of oxidation/desiccation and crushed cells artifact Entire tissue 1 (0.81)

Total 123 123 (100)

PQC, pathology quality control; MC, malignant cell.
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treatment samples. However, we found that our baseline and post-
treatment samples had similar fibrotic content (20–25%).
Curiously, we found that excluded baseline samples had more

fibrotic content than excluded post-treatment samples (90 versus
10%, respectively). As expected, one of the important exclusion
factors for post-treatment samples was necrosis, which was often a

FIGURE 4 | Microphotographs of representative examples of excluded and included core needle biopsies in multiplex immunofluorescence slides using digital
image analysis assessment for pathology quality control. Excluded examples (Left column) compared with samples considered appropriate for image analysis (right
column). A small sample (A) compared with a large sample with adequate amount of tumor content in yellow (B). Sample without malignant cells and with only normal
tissue in yellow (C) compared with nets of malignant cells in yellow (D). Nets of malignant cells in yellow in the middle of extensive fibrotic areas with lack of
inflammatory cells (E) compared with a sample with a large amount of inflammatory cells (F). Sample with extensive necrotic area in grayish green (G) compared with a
sample without necrotic areas (H). Sample with staining artifact showing the lack of marker expression (I) compared with another sample with adequate staining (J).
Sample with crushed cells artifact (K) compared with a sample with clear individualization of the different cells (L). A hemorrhagic sample (M) compared with a sample
with adequate tumor tissue (N). A sample with mostly mucinous material and few tumor cells (O) compared with another sample with a regular amount of tumor cells (P).
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result of the treatments’ effects on tumors. Although this
characteristic is often evaluated as a positive sign of treatment

response, it is a limiting factor for digital image analysis (Parra
et al., 2020).

Tissue artifact-related sample exclusion was less frequent
(1.63%). When the H&E PQC is performed properly, these
tissue artifacts could be related to the effects of surgical
trauma, tissue ischemia, poor fixation, cutting procedures, or
scanning problems (Flamminio et al., 2011). Even subtle artifacts
can have large implications for the algorithms used to recognize
positive biomarkers, resulting in inaccuracies. For this reason,
there have been many attempts to create digital pathology tools
for automated PQC (Ameisen et al., 2013; Senaras et al., 2018;
Bengtsson and Ranefall, 2019). Software for automated PQC that
employs image metrics and identifies H&E scanned slides with
gross technical artifacts exists, but it is not suitable for use on
mIF-stained slides (Janowczyk et al., 2019).

We also observed that some specific organ site characteristics
can interfere with the image analysis and thus are extremely
important in digital imaging analysis PQC. The most often
excluded biopsy site was the liver, with extensive fibrosis as
the most common exclusion criterion. Soft tissue samples were
excluded the second most often, mainly for absence of or few
MCs. Nevertheless, these high rates of exclusion could be related
to the high numbers of liver and soft tissue projects included in
our study. Each location or organ has its own technical
specifications for obtaining an adequate sample. For example,
for breast cancers, some authors have described that the use of the
semi-automated needle yielded a 23% rate of inadequate results
compared to 9% when using an automated needle to obtain breast
samples (Sridharan et al., 2015). Different needle sizes are

TABLE 3 | Location of excluded core needle biopsies.

Location N (%)

Connective tissue, head and neck 7 (5.69)
Ovary 2 (1.63)
Abdomen 15 (12.20)
Soft tissue 17 (13.82)
Brain 6 (4.88)
Breast 2 (1.63)
Cervix 3 (2.44)
Esophagus 1 (0.81)
Gastroesophageal junction 1 (0.81)
Kidney 6 (4.88)
Liver 19 (15.45)
Lung 8 (6.50)
Lymph node 7 (5.69)
Omentum 1 (0.81)
Bone 2 (1.63)
Pancreas 1 (0.81)
Parotid gland 1 (0.81)
Pelvis 1 (0.81)
Peritoneum 7 (5.69)
Pleura 3 (2.44)
Retroperitoneum 8 (6.50)
Sternum 1 (0.81)
Stomach 1 (0.81)
Thyroid gland 3 (2.44)
Total 123 (100)

FIGURE 5 | Bar graph showing localization and exclusion criteria of the samples. Inset box containing the exclusion criteria divided in one or two criteria.
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recommended depending on the organ and its vascularization
status to avoid the risk of hemorrhage, especially in liver samples
(Hall et al., 2017; Hoang et al., 2018). However, the use of
different needle sizes did not to affect the quality of the biopsy
of breast tissue (Huang et al., 2017). For these reasons, each
specialist must analyze the risks and benefits of the selected
biopsy technique and its effect on the quality of samples.

Finally, other tissue characteristics that should be avoided for
the mIF analysis but were not found to be exclusion criteria in the
current study are the presence of noncellular materials, e.g.,
glandular secretions; intra-alveolar material, which may
contain inflammatory cells and debris; cartilage; bone tissue, in
which decalcification may affect tissue staining; and adipose
tissue, which can lead to tissue detachment during the staining
process (Parra et al., 2021).

In conclusion, PQC for digital image analysis for mIF is
extremely important to obtain reliable results. However,
consensus and guidelines are necessary to produce reliable data
in multi-institutional longitudinal studies. Evaluation of H&E
slides at the beginning of any process as well as evaluation of
mIF image slides for digital image analysis is fundamental and
should consider the study design and material received, including
the markers included in the mIF panels.
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Best Practices for Technical
Reproducibility Assessment of
Multiplex Immunofluorescence
Caddie Laberiano-Fernández, Sharia Hernández-Ruiz, Frank Rojas and Edwin Roger Parra*

Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX,
United States

Multiplex immunofluorescence (mIF) tyramide signal amplification is a new and useful tool
for the study of cancer that combines the staining of multiple markers in a single slide.
Several technical requirements are important to performing high-quality staining and
analysis and to obtaining high internal and external reproducibility of the results. This
review manuscript aimed to describe the mIF panel workflow and discuss the challenges
and solutions for ensuring that mIF panels have the highest reproducibility possible.
Although this platform has shown high flexibility in cancer studies, it presents several
challenges in pre-analytic, analytic, and post-analytic evaluation, as well as with external
comparisons. Adequate antibody selection, antibody optimization and validation, panel
design, staining optimization and validation, analysis strategies, and correct data
generation are important for reproducibility and to minimize or identify possible issues
during the mIF staining process that sometimes are not completely under our control, such
as the tissue fixation process, storage, and cutting procedures.

Keywords: reproducibility, standardization, analytical evaluation, clinical application, multiplex
immunofluorescence

INTRODUCTION

Multiplex immunofluorescence (mIF) tyramide signal amplification (TSA) is a new and useful tool
for the study of cancer that combines the staining with multispectral imaging analysis technology,
allows the design of mIF panels for up to six biomarkers, characterizes the co-expression of markers
(cell phenotypes), and quantifies these markers overall with the use of a nuclear counterstain (DAPI)
in a single slide (Parra et al., 2019; Francisco-Cruz et al., 2020b). Different mIF panels can be created
using this technology to study the tissue microenvironment. The multispectral fluorescence
microscope, along with the combined markers and individual fluorophores, is used to create a
multispectral image that facilitates the analysis. By incorporating image analysis software, the images
generated by the scanners can be easily analyzed and the cellular populations quantified (Parra et al.,
2021a). mIF facilitates assessments at the cellular level of different proteins, as well as their spatial
arrangement, and thus enables precision medicine in immuno-oncology, translational research, and
clinical practice by elucidating the immune response of the human body to diverse tumors and
showing differences in the pre- and post-treatment tissue.

Using mIF, it is possible to study the co-expression between markers to identify distinct cell
populations and pathways and their relationships in different tissues and in turn to determine their
roles in clinical outcomes (Parra, 2021). In that way, targetable biomarker pathways, such as PD-1/
PD-L1, can be studied to verify the effect of immune therapies in the tumor microenvironment and
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their clinical benefit (Velcheti et al., 2014; Schalper et al., 2015;
Parra et al., 2018a; Barua et al., 2018). This technology therefore
has an important role in translational oncology research (Stauber
et al., 2010; Steiner et al., 2014; Sood et al., 2016; Rost et al., 2017;
Gorris et al., 2018) and facilitating our understanding of the
disease (Blom et al., 2017; Hofman et al., 2019). mIF also has
applicability for diseases other than cancer, and it is well suited for
prognostication at early stages of pathogenesis, when key
signaling protein levels and activities are perturbed (Dejima
et al., 2021). On the clinical side, there is high demand to
incorporate mIF in a Clinical Laboratory Improvement
Amendments (CLIA) certified as an innovative tool for
diagnosis and prognosis.

The mIF-TSA workflow starts with antibody selection,
optimization, and validation and ends with a digital image
analysis (Parra et al., 2020). It is important to refine,
standardize, optimize, and validate the end-to-end workflow in
mIF to obtain reproducible results to support large-scale multi-
site trials and individual principal investigator projects and to
enable their possible clinical application.

The reproducibility of results remains the cornerstone of
modern science (Hewitt, 2016). Given reproducible results,
considering possible technical and human problems, with
adequate protocols, each laboratory or institution can proceed
in the same direction, using published experiences as a reference.
Pre-analytic, analytic, and post-analytic variables that may
influence reproducibility, quality, and staining procedure
should be considered (Rojo et al., 2009; Okoye and
Nnatuanya, 2015; Rudbeck, 2015; Meyerholz and Beck, 2018).
Most of the descriptions related to these variables are focused on
immunohistochemistry (IHC) on the basis of a study by Engel
and others, who recognized more than 60 variables in the pre-
analytic stage alone (Engel and Moore, 2011) and some variables
which can be considered are pre-fixation, reagent conditions, and
slide preparation, but those same variables can also be applied for
IF and mIF.

It was recognized over a decade ago that standardization is
vital for reproducible and reliable results in IHC (Goldstein et al.,
2007). Agencies such as the Biological Stain Commission, Clinical
and Laboratory Standards Institute, The U.S. Food and Drug
Administration, and the manufacturing sector have established
guidelines, standards, and recommendations for reagents and
package inserts (Taylor, 1992; Taylor, 1998; Taylor, 1999;
Goldstein et al., 2007). Although all of this effort has
improved the quality of IHC, most of the causative
responsibility rests with the individual laboratory performing
the analysis, specifically the lack of standardization and attention
to quality assurance programs (Rhodes, 2003; Varma et al., 2004;
Goldstein et al., 2007).

CLIA requirements for determining test performance
specifications apply to all laboratory tests. All the
improvements related to reproducibility can positively affect
the CLIA evaluation. For IHC assays, accuracy, analytic
sensitivity, and specificity are determined by analytic assay
validation, which is theoretically achieved by testing a
validation tissue set against a gold standard (Fitzgibbons et al.,
2014). In the last year, we saw an increase in the use of this

technique but the requirement aspects to be reproducible are not
well established between the different centers and research
groups. There are also few manuscripts about mIF
reproducibility (Akturk et al., 2021; Taube et al., 2021) which
have been published; thus, it is important to compare the results
directly.

In the present article, we review and describe the difficulties in
the reproducibility of the main workflow-related steps of the mIF
technique and how to optimize the process.

PRE-ANALYTIC EVALUATION

To develop a reproducible mIF imaging platform, several
technical requirements must be met: 1) rigorous tissue quality
controls, 2) a balanced multiplex assay staining format, 3) the
ability to quantitate multiple markers in a defined region of
interest (considering a minimum number of areas selected),
and 4) experimental reproducibility, both internally and across
different laboratories (Shipitsin et al., 2014).

For all these considerations, the IHC and mIF staining and
imaging protocols must be standardized, automated, and
validated. Being able to adapt IHC workflows in mIF without
extensive re-optimization saves time and avoids human error,
making it useful for translational research and future clinical
applications (Tumeh et al., 2014; Giraldo et al., 2018; Tan et al.,
2020).

ANTIBODY SELECTION, OPTIMIZATION,
AND CONTROLS GUIDING
REPRODUCIBILITY
The staining protocol for mIF can begin with the selection of the
antibodies and their optimization by IHC or IF according to the
experience and confidence of the pathologist, especially when
starting with IF instead of IHC (Carvajal-Hausdorf et al., 2015).
In that way, the antibody selection for mIF panel design can be
considered the first step for developing a panel and needs to be
done by a multidisciplinary team, including pathologists,
oncologists, and immunologists. Some antibodies can be
selected because of their clinical implications, while other
antibodies, such as those targeting immune checkpoint
markers (Francisco-Cruz et al., 2020a) may be selected to
answer specific scientific or research questions. Then, choosing
the correct antibody’s clones and their optimization by IHC or IF
is crucial to detect specific epitopes. In parallel, the selection of
correct controls, negative or positive, is essential to the valid
interpretation of the staining (Engel and Moore, 2011), and it is
one aspect by which methods can be systematically assessed in
consecutive multiplexed assays to confirm reproducibility
(Canadian Association of Pathologists-Association canadienne
des pathologistes National Standards Committee et al., 2010;
Stack et al., 2014). For antibody selection, each antibody’s
clonality must be considered regarding its advantages and
disadvantages (Table 1). Monoclonal antibodies are often
preferred for IHC and IF because of their higher specificity

Frontiers in Molecular Biosciences | www.frontiersin.org August 2021 | Volume 8 | Article 6602022

Laberiano-Fernández et al. Technical Reproducibility Assessment

93

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


and reproducibility and lower background and lot-to-lot
variability. They are usually generated against unique peptides
of the target antigen, located in regions that are less affected by
formalin fixation. In contrast, polyclonal antibodies bind to
different epitopes on the same protein and are obtained from
experimental animals through repetitive stimulation of the
antigen. Finally, recombinant antibodies, produced by
recombinant DNA technology, should also be considered.

Another aspect to evaluate is the potential impact of antibody
sensitivity and specificity during the optimization process
considering the antibodies must be verified by the user
(Taylor, 1999). Besides, in the optimization process, staining
intensity can be modified according to the results of a pre-
analytic study, which may be affected by methodological
variables such as tissue fixation, antibody specificity and
dilution, antigen retrieval duration and type, and detection
systems (Ng et al., 2018). For this reason, it is crucial to
compare samples using external or internal control. While cell
lines are useful for testing individual markers and defining their
expression level, they are not completely appropriate to use as
positive controls; the most rigorous are tissue controls (Hewitt
et al., 2014), which can contain multiple proteins, unlike pure cell
line preparations. In addition, negative controls are used to
demonstrate that the reaction visualized is a result of the
interaction of the epitope of the target molecule and the
paratope of the antibody or affinity reagent, demonstrating the
specificity of the antibody (Hewitt et al., 2014) during the run
staining. Although antibodies must be prepared according to the
vendors’ instructions, the experience of laboratory members,
under pathologist supervision, is important to determine
optimal staining conditions and correct marker expression as
part of quality control Figure 1). In this regard, the primary
antibody should be titrated to an appropriate concentration that
retains the specificity of the stain while removing any background
signal or non-specific staining of the tissue. Antibodies that are
prepared at a too high concentration can result in off-target
staining (Anagnostou et al., 2010; Toki et al., 2017); an optimal

concentration results in better accuracy and reproducibility (Toki
et al., 2017; Taube et al., 2020). The adequate expression must be
tested because some markers are able to stain more than one
compartment of cells or other types of cells (e.g., PD-L1 could
have cytoplasmic expression, but only membrane expression is
considered positive staining, and it could be expressed in
inflammatory cells besides the malignant cells) (Parra and
Hernández Ruiz, 2021a) (Figure 2).

STRATEGIES FOR ANTIBODY VALIDATION

One of the key factors for mIF panel reproducibility is to use
antibodies that have been thoroughly optimized and validated for
their application in research studies or for clinical applications.
After antibody optimization by IHC or IF in control tissues, a
good practice is applying those antibodies in a set of different
tissues and organs including different common cancer types
contained in tissue microarrays (TMAs) for quantitative
measurement and antibody testing and validation. Although
the construction of TMAs is often expensive for some
laboratories (Taube et al., 2020), it is highly recommended to
test the antibodies that will be integrated with an mIF panel in at
least a set of cases for validation purposes, as a minimum
requirement (Parra et al., 2017). The International Working
Group for Antibody Validation proposed in total five different
“pillars” to use for antibody validation with 1) genetic, 2)
orthogonal, 3) independent antibody strategies, 4) expression
of tagged proteins, and 5) immunocapture followed by mass
spectrometry. It is recommended to consider at least one of these
pillars as a minimum criterion for claiming that a selected protein
has been adequately valid for a particular application (Uhlen
et al., 2016). The most common and mainstay strategies are the
orthogonal and the independent antibody strategy (Sivertsson
et al., 2020). In the case of orthogonal validation (the most
common), for an mIF panel validation, we use a non-
antibody-based method to identify any effects or artifacts that

TABLE 1 | Advantage and disadvantages of polyclonal and monoclonal antibodies.

Antibody’s type

— Polyclonal Monoclonal Recombinant

Advantage Low cost to produce Homogeneity is conserved between batches to ensure
reproducible results

Improved reproducibility and control

Quick turnaround time from antigen preparation to
antibody harvesting

High specificity for single epitope Antibodies can be produced rapidly

Ability to detect multiple epitopes on an antigen Less background No host animals are need
High affinity and sensitivity to detect low quantity
proteins

Specificity of monoclonal antibodies make them
efficient

Easier isotype conversion

Preferred for detection of denatured proteins Cross-reactivity with other molecules is reduced

Disadvantage Higher tolerance for differences in antigen Significantly more expensive to produce High cost to develop and produce
Variability in each batch Require more specialized training to create and have a

much longer turnaround time
High degree of technical skills of the
professionals is required

Non-specific antibody Cover only one epitope
Multiple epitopes cause high chance of cross-
reactivity resulting in higher background

More sensitive to buffer conditions
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are directly related to the antibody or panel in question
(Sivertsson et al., 2020). Depending on the antibodies targeted
in a panel, non-antibody-based methods can include mining

previously published results. Overall, it is possible studying
expression analysis via genomics, transcriptomics, and
proteomics techniques; or employing other established

FIGURE 1 | One of the most important steps in obtaining reproducibility in mIF is evaluating antibodies in IHC. Different factors must be considered to provide the
best results; studies of tissue controls, TMAs, or cell lines are needed to analyze the staining of each marker using vendors’ instructions or via corroboration by other
methods, such as Western blot analysis. The pre-analytical process can also affect the marker expression results; all of these factors together are part of IHC
reproducibility.

FIGURE 2 | Picture (A) shows a positive membrane staining in PD-L1 in clear renal cell carcinoma. Picture (B) expresses cytoplasmic staining that is not considered
positive in the evaluation. C and D are false positive because both are expressing the marker in inflammatory cells or macrophages.
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antibody-independent methods such as in situ hybridization or
RNA sequencing. This strategy can also be used to ensure that any
antibody validation performed in-house uses the most relevant
biological models for the targets of interest. Although
immunostaining techniques that are established in a lab, such
as Western blot (Parra et al., 2018b), in positive and negative cell
lines (Bordeaux et al., 2010) for research antibodies, can help
provide a quick visual indication of antibody specificity (Parra
et al., 2020; Parra and Hernández Ruiz, 2021b), it is always
important and recommended that the antibody’s data
generated be supported by orthogonal testing. One way of
achieving this is to mine publicly available databases (e.g.,
CCLE, BioGPS, Human Protein Atlas, DepMap Portal,
COSMIC) for genomic and transcriptomic profiling
information to clarify whether observed immunostaining
results are relevant or are instead due to antibody-related
artifacts (Cell Signaling, 2019; Ghandi et al., 2019; Broad
Institute, 2021; COSMIC, 2021; The Human Protein Atlas, 2021).

About the independent antibody strategy, this is characterized
by the use of independent antibodies, defined as a similar
expression pattern determined by an independent antibody
targeting a non-overlapping region of the similar protein
(Sivertsson et al., 2020). Two or more independent antibodies

that acknowledge a similar target may be used to assess antibody
specificity in a range of assays. This approach requires that the
expression patterns generated by the two antibodies correlate
within a given application environment, which means that the
two antibodies are able to bind to totally different regions of the
protein and thus have different epitopes, minimizing the
likelihood of off-target binding to a similar unrelated protein
(Uhlen et al., 2016). Although diverse techniques can be used for
antibody validation according to the necessities of the studies as
described above, it is important to consider, when choosing one,
its advantages and disadvantages, which are described in Table 2

MIF OPTIMIZATION AND CONTROL
SELECTION

mIF panel development is essentially the consolidation of a single
IF protocol in a multiplex protocol (Taube et al., 2020); it should
ideally be performed using tissues with a full range of known
expression patterns for the targets of interest, using the same
positive and negative controls as described above for antibody
optimization and validation. Careful project design is mandatory,
as well as choosing correct, reliable, and very well optimized

TABLE 2 | Strategies and methods for antibody/multiplex immunofluorescence panel validation.

Strategy Method Advantage Disadvantage

Genetic In situ hybridization (ISH), CRISPR/CAS9
or siRNA/shRNA, Western blot

- Novel genes in spatial contest - Limited co-expression
- The use of genome editing techniques
is preferred

- Need functional knockdown reagents

- Provide a direct link between the gene,
the target protein, and its detection by
the antibody

- Cannot be used for human tissue samples and body
fluids (plasma and serum)

- Useful for examining antibody
specificity for proteins that come from
related genes

- Time-consuming

Orthogonal Fluorescent in situ hybridization (FISH),
quantitative PCR, RNA-seq, Western blot

- Expression of the target protein is
compared with an antibody-independent
method

- Limited probes and parameters

- Co-expression in spatial context - Need differential expression of target protein

Independent antibody Immunofluorescence imaging,
Immunohistochemistry, Western blot

- Co-expression can be in spatial context - Limited parameters
- The data generated using several
antibodies (different epitopes) in the
same protein is compared

- Need antibodies with different epitopes

Tagged protein expression Immunohistochemistry, Western blot - Novel target in spatial context - Limited co-expression
- Tagged proteins should be expressed
at endogenous levels

- Overexpression of the target protein might mask the
detection of off-target binding events
- Limitations of this method are similar to those of the
genetic approaches
- Avoid potential artifacts introduced by the tag itself

Immunocapture followed
by mass spectrometry

Immunoprecipitation, chromatin
immunoprecipitation

- Fast, easily co-expression - Many proteins have similar size
-This is one of the best methods for
identifying off-target protein binding

- Difficulty in distinguishing direct interactors with the
antibody versus proteins that form relevant
complexes with the target protein
- Some of the antibodies validated still do not perform
in immunofluorescence assays
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antibodies to create a panel; other important variables for optimizing
results include fresh tissue sections and regular or thin tissue slices
(maximum, 4 µm) and adequately charged slides to avoid tissue
detachment. It is important to use very well-known control tissues
during each run of staining to detect possible errors in themIF panel;
for example, human reactive tonsil is frequently used during mIF
optimization because we know the exact distribution of its different
cell populations (Parra et al., 2017). Although it has been
demonstrated that we can design panels containing up to eight
antibody targets (Parra et al., 2021b), the complexity of handling will
increase with the number of markers introduced in a panel. For the
pre-analytical step, it is also necessary to consider individual marker
signals; the subcellular location of the targets’ expression (nuclear,
membrane, and cytoplasmic); optimization of antigen retrieval
conditions (pH and temperature); reagent titration (e.g., primary
antibody, secondary antibody, and fluorophores); incubation
conditions (time and temperature); and blocking of non-specific
binding, following similar rigor to that described in the antibody
validation.

Besides the factors mentioned before, two important aspects
remain. First, because TSA reagents covalently bind to sites
surrounding the antigen, they can potentially inhibit the
binding of a subsequent primary antibody through steric
hindrance. This phenomenon is considered an umbrella effect
and tends to occur in situations where multiple markers reside in
a single cell compartment, such as a CD3+ CD8+ PD-1+ T cell,
where all three markers are expressed on the cell membrane. It is
conceivable that if CD3 and/or CD8 comes before PD-1 in the
panel, sufficient tyramide could be deposited to block the PD-1
antigen. If present, this phenomenon might also be diagnosed
when the evaluation to singleplex IHC/IF is performed. A useful
strategy to determine antibody/fluorophore interference or
blocking is the drop controls method to find which one is
causing the interference (Surace et al., 2019). To correct this
situation, we can increase the primary antibody concentration(s),
reduce TSA fluorophore concentration(s), and/or change the
order of targets in the panel (Taube et al., 2020).

The second aspect to consider is crosstalk, which is an
additional signal from the non-target fluorophore captured by
the microscopic system (60, (Arppe et al., 2017). There are
commonly recommended practices to cut back this effect; for
example, crosstalk is often considerably reduced by choosing
fluorophores whose excitation and emission spectra match those
of the corresponding channels but minimally overlap those of
non-corresponding ones. Alternatively, optimizing the filters of
imaging channels, such as the adoption of excitation and
emission filters with narrower bandwidths, can very effectively
alleviate the crosstalk, although the signal strength might be
sacrificed (Tie and Lu, 2020).

MULTISPECTRAL LIBRARY AND OPTICAL
DETECTION

Multispectral libraries and their optical detection play an
important role in determining the correct extraction of the
photophore’s signal according to their fluorescence

wavelength. Exposure times need to be set up carefully to
maintain a balance of the signal intensity across markers in
the panel (Parra et al., 2020). Because we are working with
multispectral imaging, additional considerations required for
capturing the images include the generation of a spectral
library, which will facilitate the discrimination and capture of
the individual fluorescence signal using the correct spectra from
each fluorophore (Francisco-Cruz et al., 2020b; Parra et al.,
2021b; Viratham Pulsawatdi et al., 2020). The creation of the
spectral library with a single stained sample for each individual
fluorophore corresponding primary antibody will be important
for the signal extraction (Figure 3). Also recommended for signal
extraction is a marker with a highly prevalent antigen such as
CD20, anti-sodium potassium ATPase, or vimentin, as well as
rechecking this spectral library regularly depending on whether
the scanner system uses a fluorescence bulb or LED light sources
for the excitation. Finally, it is important that the signal extraction
is from exogenous and endogenous autofluorescence in this
methodology (Francisco-Cruz et al., 2020b). Other
components in the scanner systems used for acquiring the
images that must be considered when choosing the scanner
system are multispectral range, fluorescence throughput,
automation, and multiplexing capability, among others, to
obtain high-quality images (Table 3).

PANEL VALIDATION

The final validation of the mIF panel requires the performance of
intra-site and inter-site reproducibility studies prior to clinical use
(Taube et al., 2020). At this point, the same TMA as used in the
antibody validation is an optimal material for validation
purposes. The experience with IHC is diverse, according to the
marker, without a universal consensus, because each marker is
different; in mIF, this knowledge is still being developed.
Although automated staining can give us high reproducibility
and is recommended for mIF staining, manual staining can be
considered to process small quantities of slides at the same time to
avoid errors and antibody variability caused by manual
manipulation (Parra et al., 2017). Finally, similar strategies as
mentioned for antibody validation can be applied for panel
validation.

ANALYTIC EVALUATION

Diverse factors could affect the pre-analytical step, as mentioned
previously; reagents, autostainer performance, section thickness
variation, scanner performance, and change in quality and
quantity of the cells between serial sections can influence
the mIF analysis (Lee et al., 2020). For an IHC or mIF assay
to be considered validated, at a minimum, it must be
demonstrated to be accurate and precise, as well as
reproducible from an analytic perspective and on pathologist
interpretation (Taube et al., 2020).

Marker evaluation is a key aspect of reproducibility.
Markers with abundant and specific cell expression, such as
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TABLE 3 | Differences scanners used for multiplex analysis.

Company Scanner
type

Image acquisition
and scanning
instrument

Corporate
location/notes

Resolution Image
extraction

File type Automatization

Leica
Biosystems

BF and FL Aperio Versa Illinois,
United States

0.468 μm per pixel
with ×20 objective.
0.2um at 40x

WS TIFF, JPEG Semi-auto and auto

3DHistech BF and FL Pannoramic 250
FLASH III

Budapest,
Hungary

0.172 and 0.087/
0.325 and 0.162 pixels

WS --- Auto

Ventana/
Roche

BF and FL iScan United States,
International

24-bit true color WS TIFF/BIF Auto and manual

PerkinElmer MSI (BF
and FL)

Vectra/Vectra Polaris Boston,
United States

10× (1.0 μm/pixel),
20× (0.5 μm/pixel) and
40× (0.25 um/pixel)

ROI QPTIFF, IM3, JPEG,
single-layer TIFF,
BMP, PNG

Touchless automation
with walk-away image
acquisition

Olympus
America

BF and FL VS110, Nanozoomer
(United States)

Japan,
International

0.32 µm/pixel (20×/NA
0.75) - 0.16 µm/pixel
(40×/NA 0.95)

WS Compress images and
save images in different
file formats

Auto

Zeiss BF and FL AxioVision MosaiX United States,
Germany

5× (2.11 µm/pixel),
10× (1.05 µm/pixel),
and 20× (0.53 µm/
pixel)

WS AVI, BMP, J2K, JP2,
JPG, LSM, MOV. PCT,
PCX, PNG, PSD, TGA,
TIF, WMF

Auto/manual

BF: bright field; FL: fluorescence: MALDI: matrix-assisted laser desorption/ionization; FOV: field of view; WS: whole section; ROI: region of interest.

FIGURE 3 | Spectral library creation with the different fluorophores from the Opal-9 kit. Opal 480, Opal 520, Opal 540, Opal 570, Opal 620, Opal 650, and Opal
690, Opal 780, and DAPI were stained, optimized, and validated until we obtained similar dynamic ranges and specific wave peaks as is possible to see in this picture.
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CD3, are easy to evaluate and will probably be consistent
across serial sections when the expression is evaluated. For
markers with variable geographic distribution across tissues
and variable tumoral expression, such as PD-L1,
reproducibility will be more challenging across serial
sections (Parra et al., 2018b). To determine the
reproducibility of markers in the mIF panel, we must
consider that a group of markers is being evaluated and
that those markers have specific cell phenotypes (marker
co-expression) across different sections, according to the
abundance of specific cell phenotypes (Lee et al., 2020).
Marker reproducibility studies are easier in IHC compared
with mIF because the evaluation is performed one by one; in
mIF, it is harder to evaluate an entire panel using only one
method, so the variability is related to the number of markers
and their expression is extensive when specific phenotypes are
evaluated.

Another drawback for mIF is high inter-observer variability
for the same marker (Gerdes et al., 1984; Vincent-Salomon et al.,
2007; Mohammed et al., 2012; Munzone et al., 2012; Cheng et al.,
2015; Matsumoto et al., 2015). For instance, Ki-67 is a widely
endorsed marker for a range of cancers Tumeh et al. (2014), but
an issue has been raised concerning the reproducibility of IHC for
Ki-67 and the implications of variability in clinical decision-
making (Curigliano et al., 2017). Multiple research groups have
demonstrated that inter-observer variability can be negated using
digital analysis (Tan et al., 2020). There are different ideas as to
the causes of between-pathologist variation; it may be the result of
differences in each pathologist’s clinical experience and
technological competence (Barnes et al., 2017). In this case,
the best approach may be to create a protocol of
interpretation, with a consensus across all the groups. It will
be useful to perform an objective analysis of each marker, or at

least most markers. Having clear examples of false positives or
false negatives can also be fundamental.

The selection of representative regions (hot spots) to score,
cellular expression or intensity thresholding, binning, overall
positive and negative slide rating, and cut-offs are additional
challenges to consider in the post-analytic study.

While training and various quality systems have increased
pathologists’ scoring repeatability, reproducibility, and accuracy,
there is still significant room for improvement (Terrenato et al.,
2013; Lin and Chen, 2014; Nielsen, 2015), and the same challenges
can arise even in image analysis (Barnes et al., 2017), especially when
different laboratories use different image analysis systems. Although
computational quantitation using digital image analysis algorithms
may improve reader precision performance (Rexhepaj et al., 2008;
Ghaznavi et al., 2013; Barnes et al., 2017), it is important to
harmonize those systems between laboratories and create
protocols to make the data more reproducible.

In digital analyses, the pathologist evaluates a digital image of
the glass slide on a computer monitor and uses a computational
algorithm to provide a result. The reader selects representative
fields of view or regions of interest (ROIs) of the tumor that the
algorithm analyzes to yield a score that is intended to represent
the whole tumor (Barnes et al., 2017).

As tumors often harbor substantial cellular and spatial
heterogeneity, it is essential to perform high-resolution
multiplexed analysis across entire tumor sections. Other
factors must also be considered when determining whether to
select representative ROIs or the entire tissue. Analyzing the
entire tumor can be time- and resource-consuming, so it is best is
to select areas that are representative of the tumor’s heterogeneity.
The analysis of small ROIs or small tissue areas generates
important variations and errors in the assessment of tumor
and immune markers in cancer (Hofman et al., 2019). Other

FIGURE 4 | Post-analytic reproducibility study. It is possible to address the flow of post-analytic studies that compare results between two or more sites. Each site
can have different observers, and each can analyze slides or projects more than one time using image analysis. This algorithmmakes it possible to find variability between
laboratories. This workflow is useful for IHC/mIF and other techniques, improving the quality of the final results. It is highly recommended to publish the results and
findings.
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tumor types may have a higher degree of molecular heterogeneity,
which may contribute to outcome (Rizzardi et al., 2016);
analyzing a minimum area according to the complexity of
each case is the most reasonable solution, but it is also
important to have consensus between groups.

Given all of these challenges, laboratories that use mIF should
standardize a minimumROI or tissue area for analysis to generate
accurate and reproducible results, considering the bibliographic
data already available. The criteria to select areas of analysis
should be compared in select representative areas, using the same
method for evaluating each marker. In addition, although the
algorithm can be locked, it will not always fit all the tumors; thus,
it is possible to use an algorithm model as a base and make small
changes according to the heterogeneity or type of tumor.

As each sample is complex, it is necessary to determine what
factors should be excluded from the analysis (such as necrotic
areas, hemorrhagic areas, non-preserved areas, unsatisfactory
samples) and to standardize the reasons for exclusion to
identify those that are unsatisfactory for mIF; in this way, only
the cases without these considerations will be analyzed. The fewer
the confusing factors are involved in the results, the easier it will
be to standardize the workflow; each analysis could have less
interobserver variability.

POST-ANALYTIC EVALUATION

After the pre-analytic and analytic evaluations, it is important to
consider inside and outside evaluations. On the basis of our
experience with IHC, although internal quality control
procedures address daily reproducibility and are fundamental
for monitoring performance in individual laboratories, external
quality assessment is necessary to compare results from many
laboratories by means of an external agency. This step allows the

identification of insufficient stains and inappropriate protocols,
as well as the identification of possible issues with interpretation
(Vyberg et al., 2005; Copete et al., 2011). An external evaluation
can provide an objective evaluation of staining results from many
laboratories for a given epitope or biomarker, identify the best
practice protocols to obtain optimal results, and systematically
identify causes of insufficient results (Nielsen, 2015). A similar
evaluation is expected to be performed for mIF panels.

Some of the challenges in the pre-analytical and analytical
steps have included standardizing the post-analytic component of
mIF quantitation, including the interpretation approach,
representative region (hot spot) selection, cellular expression,
intensity thresholding, and cut-offs. While training and quality
systems have increased pathologists’ scoring repeatability,
reproducibility, and accuracy, there is still significant room for
improvement (Barnes et al., 2017). The experiences of different
institutions should be combined in a common effort to
standardize tissue scoring.

The final device design and configuration should be verified,
including accuracy, technical sensitivity, and specificity and
precision (i.e., intra-assay run, inter-assay run, inter-lot
variability, inter-reader variability, and inter-instrumentation
variability). External analytical validation studies should then
be performed to document reproducibility (Figure 4).

Several published reports have described mIF optimization
panel methods for solid tumors, but few are fully automated or
reproducible for large numbers of samples (Lee et al., 2020) or
between multiple institutions. One study described a
collaboration between six institutions to develop an automated
six-plex assay that is focused on the PD-1/PD-L1 axis and assesses
inter- and intra-site reproducibility, on the basis of the percentage
of expression by immune cells, in serial sections of tonsils and a
lung cancer TMA. This approach improved the reproducibility of
PD-L1 and immune cells (Hoyt et al., 2019).

TABLE 4 | Stages, challenge, and possible solutions for the best reproducibility of multiplex immunofluorescence panel.

Stage Problem Solution Advantages of solutions Disadvantages of solutions

Pre-
analytical

Antibody specificity and
staining

Use of positive and negative controls. Review
of publications and experiences related to
the Ab

Comparison with standardized
process and other experiences

If the Ab does not have a previous protocol, it
could result not reproducible

Type of antibody and
preparation

Preference by monoclonal antibody. Use
specification of the vendor to prepare it

Better results Not always is possible to monoclonal
antibodies

Optimization of panels
in mIF

Test and work all the markers previously
with IHC.

Comparison between IHC and
mIF results

Some markers could not stain as the IHC

Analytical Interpretation of markers Standardized the interpretation of the most
common markers

Interpretation well established Some markers do not have protocols

Consideration of areas
of analysis and hotspots

Decide the number of representative areas of
analysis and avoid select hotspots

Better representativeness To have the right representative areas not
always is possible. Number of ROIs could
change depending on the type of tumor

Type of image analysis Do not expect to have the same result in all the
different types of analysis technique. Consider
the differences between software. Each one
has its advantage and disadvantages

Experience-dependent

Post-
analytical

Variability of intra- and
inter-observer

Create protocols. If still persisting some
variability, identify the problem

Standardization Time-consuming and requires additional effort
of the collaborators

External and internal
variability

Publish the results of each project. Take the
experience of other laboratories to improve

Share knowledge The new technologies do not have other
experiences in other laboratories because they
can be expensive
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It is necessary to create groups or committees that include
experts in mIF from different institutions to generate guidelines
and recommendations for staining, optimization, and validation
procedures for mIF technology that can help to harmonize this
assay across different research laboratories and standardize its
clinical application (Table 4). Finally, the goal is to establish only
one protocol for all of the institutions that use this technology,
making it possible to identify issues even when each lab has its
own differences in the items related to pre-analytical and
analytical evaluation; however, these differences must not be
an excuse to not improve internal protocols or to justify
incorrect results.

CONCLUSIONS

Reproducibility must be evaluated at each step of the process. Small
mistakes could have a large impact on the final results and on
reproducibility within and between laboratories. The use of
standardized protocols is a good approach to avoid wrong results,
poor workflow, or whatever issue could affect the quality and results.
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Our expanding knowledge of the interactions between tumor cells and their
microenvironment has helped to revolutionize cancer treatments, including the more
recent development of immunotherapies. Immune cells are an important component of
the tumor microenvironment that influence progression and treatment responses,
particularly to the new immunotherapies. Technological advances that help to decipher
the complexity and diversity of the tumor immune microenvironment (TIME) are
increasingly used in translational research and biomarker studies. Current techniques
that facilitate TIME evaluation include flow cytometry, multiplex bead-based
immunoassays, chromogenic immunohistochemistry (IHC), fluorescent multiplex IHC,
immunofluorescence, and spatial transcriptomics. This article offers an overview of our
representative data, discusses the application of each approach to studies of the TIME,
including their advantages and challenges, and reviews the potential clinical applications.
Flow cytometry and chromogenic and fluorescent multiplex IHC were used to immune
profile a HER2+ breast cancer, illustrating some points. Spatial transcriptomic analysis of a
luminal B breast tumor demonstrated that important additional insight can be gained from
this new technique. Finally, the development of a multiplex panel to identify proliferating
B cells, TFH, and TFR cells on the same tissue section demonstrates their co-localization in
tertiary lymphoid structures.
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INTRODUCTION

The tumor immune microenvironment (TIME) plays a critical
role in cancer development, progression, and treatment
responses. It is defined by the immune cells, antigens, and
soluble factors (including cytokines, chemokines, and
immunoglobulins) that surround and influence tumor cells.
The molecular and cellular composition of the TIME
influences disease outcome via the balance between pro- and
anti-tumor innate and adaptive immune responses. Human
tumor-infiltrating lymphocytes (TILs) such as CD8+ cytotoxic
T cells, conventional CD4+ T cells, T follicular helper cells (TFH)
(van der Leun et al., 2020), B cells (Wouters and Nelson, 2018),
and natural killer cells (Stabile et al., 2017) are generally
associated with favorable (anti-tumor) immune responses,
together with γδ T cells (Lo Presti et al., 2020) and
eosinophils (Grisaru-Tal et al., 2020). Many studies also show
that tumor-associated macrophages and neutrophils, myeloid-
derived suppressor cells, and regulatory T (Treg) cells are key
drivers of cancer progression via their ability to promote tumor
cell functions such as proliferation, aggressiveness, and
dissemination in parallel with suppression of T cell-mediated
anti-tumor immunity (Lecot et al., 2019; Ohue and Nishikawa,
2019; Davidov et al., 2020). A caveat is that immune cells are
functionally heterogeneous and plastic with most capable of
divergent behavior based on their activation status and the
surrounding microenvironment.

Beyond the TIME composition, studying the location and
spatial distribution of immune cells can provide a framework for
understanding tumor biology and identifying potential predictive
biomarkers. Spatial characteristics of tumors can be initially
stratified based on tissue architecture such as intratumoral,
peritumoral (or stromal) areas, and the invasive margin. In
human breast cancer (BC), both intratumoral and stromal TIL
have been consistently and significantly associated with overall
survival (OS) in the HER2+ and triple-negative subgroups (Dieci
et al., 2015; Hendry et al., 2017). Recent studies of TIL subsets in
BC revealed stromal CD3+ T cells and FOXP3+ Treg were
associated with disease-free survival (DFS) but not their
intratumoral counterpart while both intratumoral and stromal
CD8+ cytotoxic T cells predict longer DFS (Koletsa et al., 2020).
Recent studies of tumor and immune spatial distribution at the
single-cell level demonstrated a significant correlation with
disease outcomes. For example, T cells and proliferating tumor
cells were found in close proximity in immunoedited colorectal
cancer metastases whereas short distances were seen between
T cells and PD-L1+ cells in non-immunoedited metastases
(Angelova et al., 2018). Analysis of matched primary and
recurrent head and neck squamous cell carcinoma detected
CD8+ T cell exclusion from tumor nests and close proximity
between Treg or myeloid cells with tumor cells at relapse (Banik
et al., 2020). TIL in the invasive margin or stroma can form
tertiary lymphoid structure (TLS), which are similar to secondary
lymphoid organs with a T cell zone adjacent to a B cell follicle that
contains germinal center B cells, TFH cells (Garaud et al., 2019),
and mature dendritic cells (Dieu-Nosjean et al., 2008). A TLS
presence is associated with favorable clinical outcomes

(Dieu-Nosjean et al., 2008; Silina et al., 2018) and responses to
immune checkpoint blockade (Cabrita et al., 2020; Helmink et al.,
2020; Petitprez et al., 2020). The TLS maturation stage also
harbors important prognostic information on the risk of
disease recurrence (Posch et al., 2018; Silina et al., 2018). This
means that deeper compositional and spatial analysis of immune
cells infiltrating the tumor is needed to achieve a better
understanding of effective anti-tumor immunity and discover
new potential biomarkers.

Recent technological advances for phenotypic and
transcriptional analysis of individual cells in the context of
their spatial distribution are new, powerful tools for studying
the TIME and identifying potential biomarkers. Fluorescent
multiplex immunohistochemistry (mIHC) can simultaneously
evaluate multiple biological markers on a single formalin-fixed,
paraffin-embedded (FFPE) section. The objective of this review is
to comparatively evaluate mIHC relative to more established
TIME analytical techniques. We will consider their relative
strengths and limitations as well as use our laboratory’s
studies of the BC immune microenvironment (as an example
for other solid tumors) to showcase how mIHC can help to
generate a more complete picture.

Tumor Immune Microenvironment
Evaluation Using Fresh Specimens
Archival FFPE blocks are the most readily available source of
tissue samples for translational research but fresh and frozen
samples, including biopsies and surgical tissue specimens, are
increasingly being collected for tumor microenvironment
analysis. Our laboratory developed a methodology for the
rapid isolation of intact lymphoid cells from normal and
abnormal tissues in an effort to evaluate them proximate to
their native state (Garaud et al., 2014). Briefly, the tissue is
mechanically dissociated without enzymatic digestion to
prepare single-cell suspensions. Lymphoid cells can be easily
used for cell sorting, isolation, cryopreservation, and/or
phenotypic analysis. Additionally, because this is an enzyme-
free method, the primary tissue supernatant from the
homogenates can be used to characterize and compare
cytokines, chemokines, immunoglobulins, and antigens present
in normal and malignant tissues (Garaud et al., 2018; Garaud
et al., 2019).

Flow Cytometry
Flow cytometry is a broadly applied, reliable technique for
quantitative and qualitative multi-parametric analysis of single
cells in solution. Traditional flow cytometers can detect up to 20
parameters (size, granularity, and 18 fluorescent detectors);
however, advances in fluorochromes and instrumentation now
make it possible to perform experiments with 30 + parameters. In
oncoimmunology, flow cytometry has been used for years to
routinely classify hematological malignancies via the analysis of
immune subpopulations using lineage markers, including T cell
markers (CD3, CD4, CD8), B cell markers (CD19, CD20),
monocyte markers (CD14, CD11b), and NK cell markers
(CD56, CD161) in parallel. Flow cytometry using these and
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other markers including those related to immune cell differentiation,
maturation, activation, functionality, and antigen specificity are now
also used to characterize the TIME. Our laboratory has established
>30 panels, each with up to 10 fluorescent markers, specifically
designed for flow cytometric analysis of immune subpopulations in
blood and tissues from cancer patients. In addition, we use flow
cytometry to identify the most reliable markers to be tested for
mIHC. A recent example is our addition of CXCR5, the CXCL13
receptor, which is an important TLS chemokine, to classical lineage
markers for the characterization of TLS-associated lymphoid cells
(Noël G., in press). Figure 1 shows a representative strategy for flow
cytometric immunophenotyping of CD3+CD4+CXCR5+CD25− TFH
and CD3+CD4+CXCR5+CD25+ follicular regulatory T (TFR) TIL in
fresh BC tissue. Furthermore, the active state of these specialized
CD4+ T cell subpopulations can be achieved using PD-1 and ICOS
expression levels to identify functional PD-1hiICOSint TFH and
functional PD-1intICOShi TFR TIL (Shi et al., 2018; Xing et al.,
2020; Noël G., in press). These flow cytometry data will be used to
build our chromogenic and fluorescent mIHC panels.

Multiplexed Bead-Based Immunoassays
Immune cells and their soluble mediators, including cytokines,
chemokines, and immunoglobulins, are key players in human

tumor progression and can be numerically and functionally
altered both in the periphery and in the tumor
microenvironment. Immunoassays are exemplified by the
widely used ELISA, one of the most commonly used
techniques for detecting soluble mediators. The development
of multiplexed bead-based immunoassays has led to their
emergence as a new standard for detecting and quantifying a
broad variety of immune mediators using small amounts of blood
or bodily fluid samples. This approach is based on fluorescent
microspheres (beads) in a sandwich immunoassay, which can
simultaneously detection up to 500 markers (depending on
system design) using a dual-laser analytical flow cytometer.
Soluble mediators in the TIME can be effectively analyzed
using multiplex bead-based immunoassays to examine primary
tumor tissue supernatants from the homogenates (Garaud et al.,
2014; Garaud et al., 2018; Garaud et al., 2019; Ray et al., 2020;
Autenshlyus et al., 2021).

Challenges
The greatest challenge in examining TIL in fresh tumor samples is
access to sufficient quantities of tissue for flow cytometric
analysis. Additionally, these analyses can yield inconsistencies
depending upon how the tissues are handled during the

FIGURE 1 | Immunophenotyping of TFH and TFR cells by flow cytometry using fresh breast cancer tissues. Representative dot plots show the percentage of CD19+

B cells, CD4+ T cells, CD25−CXCR5−CD4+ helper T cells (Th), CD25+CXCR5−CD4+ regulatory T (Treg), CD25+CXCR5+CD4+ TFR, and CD25−CXCR5+CD4+ TFH cells.
The functionality of TFH and TFR cells has been demonstrated to be linked with PD-1 and ICOS expression levels.
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pre-analytical phase, which can be affected by a variety of
parameters including the length of time from biopsy/surgery
to sample preparation, ischemia, temperature, and storage.

Preparation of fresh tissues can also be limited by the
availability of specialized equipment, including a vertical
laminar flow hood, a tissue dissociator, and/or a flow
cytometer. Thus, at the present time, this approach remains a
research tool that needs to evolve further before it can be
considered for routine clinical practice, as currently done for
hematological malignancies.

Although multiplexed flow cytometry can facilitate detailed
characterization of TIME complexity, this approach does not
provide information on spatial relationships. This can be
achieved by using complementary approaches in parallel such
as conventional or mIHC to examine TIL organization and
distribution within the TIME.

Tumor Immune Microenvironment
Evaluation Using Formalin-Fixed,
Paraffin-Embedded Tissue Specimens
FFPE tissue blocks are widely prepared in the routine pathology
lab for chromogenic IHC (cIHC) staining as a part of diagnostic
testing. Pathology departments archive vast numbers of FFPE
blocks, but currently comparatively few frozen tissues, making
the former a readily available resource for studying biomarkers.

Chromogenic Immunohistochemistry
Assessment of the immune infiltrate in diverse solid tumor types
on hematoxylin and eosin- (H&E-) stained tissue sections is
widely used for diagnosis and to provide prognostic and
predictive information. TIL evaluation for early BC was the
first to be recommended for routine characterization and
reporting at the St. Gallen Consensus Conference 2019 (Balic
et al., 2019). This analysis is based on a standardized method
established by the International Immuno-Oncology Biomarkers
Working Group (Hendry et al., 2017). While H&E staining is
suitably reproducible and accurate for global TIL scoring
(Figure 2A), our previous data revealed its lack of accuracy
and reproducibility for TLS assessment (Buisseret et al.,
2017a). Additionally, H&E-stained tissues do not provide any
information on immune subsets in TIME.

CIHC is a relatively easy, inexpensive, and established
technique based on antibody-mediated target antigen
recognition that is detected using enzymes, such as
horseradish peroxidase (HRP) or alkaline phosphatase (AP) to
catalyze a color-producing reaction. Most frequently, detection is
done using the 3, 3′-diaminobenzidine (DAB) chromogen, which
precipitates in brown. Single detection methods are most
commonly used to identify a particular biomarker of interest;
however, the availability of new chromogens has led to the
development of dual, triplex, and multiplex staining when the
target antigens are not on the same cells or subcellular localization
(i.e., cell membrane and nucleus). Studies of the BC TIME in our
lab were facilitated through the development of numerous single
and dual cIHC panels (Gu-Trantien et al., 2013; Buisseret et al.,
2017b; Solinas et al., 2017). Dual cIHC is based on two
consecutive stains of a single tissue section using DAB
followed by AP Red detection on the BenchMark XT
autostainer (Ventana Medical Systems) (Buisseret et al.,

FIGURE 2 | Immuneprofiling of breast cancer. (A–D)Representative images
of tumor-infiltrating lymphocyte (TIL) and tertiary lymphoid structure (TLS) in FFPE
breast cancer sections detected by (A) hematoxylin and eosin staining (H&E), (B)
chromogenic IHC (cIHC), and (C,D)multiplex IHC (mIHC). (E)Quantification of
immunecells in stromal, tumoral, andTLSareas using InFormandPhenoptrReports.
(F)Spatial distribution of immune cells includingCD8+ T cells closest to individual
CK+ tumor cells and TFH cells touching proliferating B cells in a TLS. H&E and
cIHC slides were scanned at ×40magnification and the images are displayed at
×5 and ×40 magnification. mIHC slides were scanned at ×20 magnification.
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2017b). An example of a BC immune infiltrate, previously
analyzed as fresh tissue by flow cytometry and stained by
various single and dual cIHC markers, is shown in Figure 2B.
These images reveal the ready global detection using dual IHC for
the majority of TIL with CD3 and CD20 or CD4+ and CD8+ T cell
distribution as well as the location of CD20+ B cells and CD68+

macrophages and the organization of TIL in TLS. The advantages
of using various cIHC panels include the preservation of tissue
antigenicity, the automated process, and the ready visualization of
DAB and Red precipitates using a brightfield microscope. The
main limitations of this approach are the limited number of
targets evaluated and the depletion of multiple tissue sections for
single or dual marker analysis. More recently, multiplexed
methodologies have gained popularity because they identify
many biomarkers on the same tissue section simultaneously.
These approaches include sequential immunoperoxidase
labeling and erasing (SIMPLE) using alcohol-soluble
peroxidase substrate 3-amino-9-ethylcarbazole combined with
an antibody-antigen dissociation (Glass et al., 2009) and
multiplexed consecutive IHC-staining on a single slide
(MICSSS) that employs iterative cycles of tagging, image
scanning, and destaining of the chromogenic substrate on a
tissue section (Remark et al., 2016), which can visualize up to
five or ten markers, respectively.

Immunofluorescence
Immunofluorescent (IF) techniques rely on antibodies tagged
with a fluorescent dye to label antigens via their recognition and
binding to specific epitopes. Direct and indirect IF are routinely
employed, with direct detection done via a fluorophore-primary
antibody conjugate and indirect detection requiring first
recognition by the primary antibody followed by a
fluorophore-conjugated secondary antibody directed to it.
The advantage of direct IF is the rapidity of a single step that
permits simultaneous staining with numerous antibodies from
the same species. Indirect IF on the other hand has the
advantage of higher sensitivity via the signal amplification
generated by using secondary antibodies but is limited by the
necessity to use antibodies from different species. Direct and
indirect IF can be combined to amplify the signal for weaker
targets and stain multiple primary antibodies from the same
species concurrently.

Fluorescent Multiplex Immunohistochemistry
Fluorescent mIHC has developed into a feasible approach as a result
of technological advances and cIHC/IF limitations. The
simultaneous detection of multiple markers on a single section
provides a comprehensive view of tissue composition, cellular
functionality, subpopulation densities, and cell-cell interactions, to
name a few, and is helping to drive mIHC development. Among
different mIHC approaches, the Perkin Elmer/Akoya Biosciences
Phenoptics™ system is currently capable of detecting up to eight
biomarkers plus DAPI (nuclear cell counterstain). This system is
based on sequential staining using tyramide signal amplification
(TSA) to increase the signal 10-times more than conventional IHC
(Faget and Hnasko, 2015). Further, the fluorescent deposit is
covalently bound to tyrosine residues on or immediately

surrounding the target epitope via activation of the tyramide
by the HRP conjugated secondary antibody. This covalent bond
enables both primary and secondary antibodies to be stripped
from the tissue section via successive rounds of heat treatment
(microwave, water bath, steamer, HIER platform, etc.), which
has the added benefit of limiting antibody cross-reactivity and
non-specific staining. The advantages of fluorescent mIHC
include detection of low abundant proteins and using
antibodies from the same species.

Our lab currently uses the Vectra® Polaris™ Automated
Quantitative Pathology Imaging System for acquisition, which
allows the visualization, analysis, quantification, and phenotyping
of immune and other cells in situ via the integrated inForm and
phenoptr/phenoptrReports tissue analysis software packages (Akoya
Biosciences®). Multispectral acquisition can also be performed using
a Zeiss LSM confocal microscope equipped with a PMT spectral 34-
channel QUASAR (Carl Zeiss). The advantages of Akoya’s platform
include the unmixing of overlapping fluorophore emission spectra
when using the spectral library containing each fluorophore
employed, subtraction of tissue auto-fluorescence, and a fully
integrated workflow. Furthermore, phenoptrReports provides the
quality of the unmixing spectral library, signal strength, and
crosstalk, which enables researchers to more readily optimize
their multiplexed staining assays for best-in-class quantitative
analysis. Additional stand-alone image analysis software packages
are also available that can analyzemultispectral images, including the
HALO® Image Analysis Platform (Indica Labs), Visiopharm’s AI-
powered Phenotyping module (VISIOPHARM®), QuPath
(Bankhead et al., 2017), and ImageJ. We developed our own
mIHC panels to better characterize the BC TIME by testing
various commercially available antibodies for optimal labeling of
immune cell subpopulations. The first panel is used to locate the
major T cell subpopulations, B cells, and macrophages (Figure 2C).
Consecutive FFPE BC tissue sections from tumors previously
analyzed using flow cytometry (fresh tissue) and cIHC (FFPE)
are stained manually. The multispectral images for major
immune subpopulations show massive stromal infiltration by
CD4+ and CD8+ TIL together with CD20+ TIL-B and CD68+

macrophages in association with a TLS (Figures 2C,E). Another
panel was designed to detect CD4+ follicular helper subpopulations
in TLS, which includes functional TFH TIL (PD-1hiICOS+, non-
functional TFH TIL are PD-1lo/intICOSlo), functional TFR TIL
(ICOS+FOXP3+), and non-functional TFR TIL (ICOS−FOXP3+)
together with Ki67+CD20+ proliferating TIL-B (Figures 2D,E)
(Noël G., in press). Proliferating B cells and TFH were not
observed in TIL outside of a TLS. The spatial distribution of
these immune cells was analyzed using phenoptrReports to
identify CD8+ TIL nearest to CK+ tumor cells and TFH TIL
touching proliferating B cells in the TLS (Figure 2F). All of the
mIHC data we generated were consistent and complementary with
our FACS and cIHC data for the same tumor in terms of immune
cell detection, activation status, and localization within the
BC TIME.

Challenges
While tissue imaging is widely used to investigate immune cell
phenotypes and their spatial relationships, its principal

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 6730425

Boisson et al. mIHC Characterization of Tumor Immunity

108

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


limitations are the restricted number of targets analyzed on a
single slide and the dynamic range of marker intensity. For the
latter, protein must be expressed above a minimal threshold and
then scoring is based on the presence or absence of markers or a
semi-quantitative H-score. TSA-based reagents for mIHC are
more advantageous in this regard because they amplify the signal
intensity and covalently bind the fluorophore to the target;
however, there is still a risk of interference. TSA interference
can derive from overactive tyramide deposits leading to a
reduction or inhibition of antigen recognition via steric
hindrance (umbrella effect) and/or tyrosine depletion,
particularly when two or more markers are at the same
cellular site [26]. Spectral bleeding, an artifact where the signal
from one channel interferes with the channel being imaged, leads
to false-positive staining and occurs between spectrally proximate
fluorophores if the signal intensity is not well balanced [26]. In
addition, the acquisition and characterization of mIHC images
require both a multispectral imaging system and image analysis
software. Research efforts to overcome these limitations include
using DNA-barcoded antibodies such as the InSituPlex®
Technology (ULTIVUE), the CODEX® system (AKOYA
Biosciences®), and Digital Spatial Profiling (DSP) technologies
(NanoString®). Tissue management, fixation procedures, storage
conditions, and sectioning can also affect staining. Multiplex
panel development thus requires optimization and validation
(detailed below) to produce reproducible, reliable, and high-
quality stained tissues.

Beyond technical limitations, image acquisition and
analysis need to be standardized to reduce the likelihood of
misinterpretation. First, whole-slide analysis, excluding
necrotic areas, normal tissues, or vessels, should be favored
whenever possible. The region of interest should be confirmed
by a trained pathologist and fully cover individual fields for
analysis. For larger tissues, the size of data tables can be
reduced by randomly placing individual fields on a grid
covering 50% or 25% of the region of interest using the
phenochart viewer. Second, image analysis using mIHC
provides information about the spatial organization
including proximity between different types of cells;
however, these analyses can be affected by the density of
cells. Recent studies of the immune microenvironment
during metastatic progression revealed shorter distances
between T cells and proliferating tumor cells in
immunoedited metastasis compared to unedited metastasis
(Angelova et al., 2018). In addition, the tumor compartment
should be taken into account in analysis such as the invasive
margin or the center of the tumor as immune infiltration varies
between these areas. To overcome this limitation, proximity
analysis should be performed in tissues/areas with similar cell
densities.

DEVELOPMENT OF A MULTIPLEXED
PANEL FORTFOLLICULARHELPERCELLS

Our active development of mIHC panels for our studies has
highlighted the essential factors one needs to consider when

optimizing and validating a panel that includes three markers
expressed at the membrane on the same cellular subpopulation.
As an example, we describe our panel for characterizing follicular
cells in TLS, which includes proliferating B cells, TFH, and TFR

cells stained manually with antibodies to CD4, PD-1, ICOS,
FOXP3, CD20, Ki67, and DAPI on FFPE sections.
Multispectral images were acquired on a Vectra® Polaris™,
analyzed with InForm software, and the quality report and
marker quantification were generated with the
phenoptrReports package.

Monoplex Assay Development
The first step in the development of an mIHC panel is to
define the proper staining parameters for a single antibody
and Opal pair using monoplex slides. Library slide
development and primary antibody optimizations for
antigen retrieval, titration, epitope sensitivity, and
antibody stripping efficiency will be not addressed here as
they are detailed in Akoya Biosciences® development guide
and common for mIHC panel development. Human tonsil
and BC FFPE tissue sections were used in the monoplex
assays while multiplex assays were performed only on BC
tissue sections.

Pairing Opal Fluorophores With Primary Antibodies
Following Akoya’s recommendation, the pairing of an Opal
fluorophore with an individual marker necessitates accounting
for the Opal’s brightness on the Vectra Polaris scanner (Table 1).
Low marker expression should be assigned a brighter
fluorophore, while more abundant markers work with dimmer
fluorophores. We paired three membrane markers, CD4, PD-1,
and ICOS, with high and medium fluorophores without spectral
bleeding in the panel. This design allows us to minimize the
quantity of Opal deposition while maintaining balanced signals
and thereby maximally reducing tyrosine depletion or a potential
umbrella effect. Misinterpretation due to spectral bleeding
between Opal 540/570 and Opal 650/690, which are frequently
observed with the Vectra Polaris scanner, can be avoided by
selecting markers that are not expressed in the same cellular
compartment such as CD20-Opal 540 and Ki67-Opal 570 or
FOXP3-Opal 570. To fix the Opal pairing, we determined the
Opal intensity count (OIC) for each combination using the
InForm software count tool and plotting the autoexposure

TABLE 1 | Antibody-Opal pairing strategy.

Opal Opal brightness rankings Spectral bleed Initial pairing

Opal 520 Highest PD1/CD4/ICOS
Opal 540 Medium CD20
Opal 570 Medium Ki67/FOXP3
Opal 620 Medium PD1/CD4/ICOS
Opal 650 Highest PD1/CD4/ICOS
Opal 690 Lowest Ki67/FOXP3

The table shows the strategy used for antibody-Opal pairing. The co-localized surface
markers (PD-1, CD4 and ICOS) were associated with the brightest Opals using the
rankings on the Vectra Polaris scanner. The markers not expressed in the same cellular
compartment were associated with Opals that are more subject to spectral bleed with
the Vectra Polaris scanner (black boxes).
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time and signal-to-noise ratio (Figure 3A). The lowest
autoexposure time and highest signal-to-noise ratio are highly
recommended, which is why we decided to pair ICOS with Opal
520 and PD-1 with Opal 650. Alternatively, the pairing of CD4
with Opal 620 was not optimal at a low OIC, high autoexposure
time and low signal-to-noise ratio; therefore, we used a secondary
HRP antibody from Dako (EnVision+ System-HRP Labelled
Polymer Anti-Rabbit) to address this issue. Finally, to adjust
Opal intensity levels, Akoya recommends a signal-to-noise ratio
>10 with an OIC between 5 and 20 and an autoexposure time
<150 m s. Based on Akoya’s recommendations, a first monoplex
adjustment was performed by testing dilutions of Opal 520 and
650. Optimized monoplex stainings visualized as simulated DAB
IHC images within the same InForm project detected no spectral
bleeding (no false staining) in the other Opal channels for all
markers tested (Figure 3B).

Staining Order
Once the Opal pairing and preliminary signal balancing are
completed, a staining sequence based on the epitope sensitivity

and stripping efficiency of each primary antibody must be
defined. When a given mIHC panel targets co-localized
markers (i.e., in the same cellular compartment), the order of
staining also must be defined by evaluating TSA interference. The
optimization for three markers that can be co-expressed on the
cell membrane, ICOS, PD-1, and CD4, is used here as an example.
The impact of TSA interference (umbrella effect and/or tyrosine
depletion) on multiplex staining was evaluated for monoplex and
multiplex slides using sequential tonsil sections stained in
different orders, visualized, and then analyzed using InForm
and phenoptrReports. The number of detectable cells was
determined for the same germinal center (GC) on both
monoplex and multiplex slides. For each multispectral image,
tissue segmentation, cell segmentation, and cell phenotyping were
used to identify and quantify the cell density (positive cells/mm2)
and the Opal mean expression (OME) for each GC marker
(Figure 4A). GCs, transient structures that form in secondary
and tertiary lymphoid structures (tonsils and BC, respectively),
were selected for quantification because TFH cells (PD-
1+ICOS+CD4+) principally reside there and variation in cell

FIGURE 3 | Antibody-Opal pairing and signal balance of three markers co-localized on the cell surface. (A)Composite images of consecutivemonoplex FFPE tonsil
sections stained with PD-1, CD4, or ICOS with Opal 520, 620, or 650. The graph shows the autoexposure times (blue bars) and the signal-to-noise ratio (black curve) for
each pairing. The signal-to-noise ratio was calculated via dividing the Opal intensity count (OIC) by the Opal background obtained in InForm. (B) Simulated DAB IHC
images of optimized monoplex staining in (A). The graphic shows the autoexposure times (blue bars) and the signal-to-noise ratio (black curve) of optimized
monoplex staining determined by InForm. The slides were scanned at ×20 magnification with the Vectra Polaris and the composite images were analyzed with InForm
software (v.2.4.8) and PhenoptrReports (Kent S Johnson (2020). phenoptr: inForm Helper Functions. R package v.0.2.6. https://akoyabio.github.io/phenoptr/).
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FIGURE 4 | Staining order optimization of three markers co-localized on the cell surface. (A) Workflow used to segment tissue regions, segment cells, and
phenotype cells with the InForm software before quantifying cell density (positive cells/mm2) and Opal mean expression (OME) using PhenoptrReports on a germinal
center (black line). (B) Simulated DAB IHC images of monoplex and 2-plex slides staining of consecutive FFPE tonsil sections alternating the position of CD4 and ICOS.
The cell densities of CD4+ICOS− (magenta), CD4−ICOS+ (grey), and CD4+ICOS+ (cyan) were quantified in the monoplex and 2-plex slides. (C) Simulated DAB IHC
images of monoplex and 3-plex slides stained on consecutive FFPE tonsil sections, including PD-1 in first, second, or third position in the ICOS >CD4 staining order. The
cell densities of total CD4+ (magenta), total ICOS+ (grey), total PD1+ (yellow), and CD4+ICOS+PD-1+ (green) were quantified in the monoplex and 3-plex slides. The slides
were scanned at ×20 magnification with the Vectra Polaris and the composite images were analyzed with InForm software (v.2.4.8) and PhenoptrReports (Kent S
Johnson (2020). phenoptr: inForm Helper Functions. R package v.0.2.6. https://akoyabio.github.io/phenoptr/).

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 6730428

Boisson et al. mIHC Characterization of Tumor Immunity

111

https://akoyabio.github.io/phenoptr/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


density or OME from TSA interference was more easily detected
at this site.

Potential interference between co-localized CD4 and ICOS
was first analyzed in consecutive FFPE tonsil sections
(Figure 4B). Cell density quantification on the 2-plex slides
revealed a reduction of ICOS+CD4+ cell densities associated
with increased CD4+ cell density when CD4 was stained
before ICOS (CD4>ICOS) compared with the inverse (ICOS >
CD4). The density of total ICOS+ cells in the 2-plex ICOS > CD4
slide was similar to the monoplex slide, but this was not true for
the 2-plex CD4>ICOS slide, while the densities of total CD4+ cells
in both 2-plex slides were similar to the monoplex slides. Even if
ICOS+CD4+ cells are detectable on the 2-plex slides independent
of the staining order, this result suggests that Opal 620 deposition
on the CD4 epitope partially masks the recognition site of the
ICOS epitope when CD4 and ICOS are on the membrane of the
same cell. Moreover, in the 2-plex slides, there is a greater
reduction in OME 520 when CD4 is stained first, confirming
that TSA interference occurs due to CD4-Opal 620 (Figure 4B).
Reduction of OME 520 can be fixed by the increasing Opal 520
concentration but the ICOS+ CD4+ cell density reduction can be
only resolved by staining ICOS before CD4 in the multiplex
sequence.

Slides were next stained in 3-plex to optimize the staining
order for PD-1 in the ICOS > CD4 sequence (Figure 4C).
Multiplexed slides reveal that staining PD-1 in the first position
increases PD-1+ cell density and decreases OME 520 and 620

(ICOS and CD4, respectively) compared to other staining
orders. Based on these data we chose ICOS > CD4 > PD-1
for the staining order.

Signal Balance Assessment and Crosstalk
Interference
Signal levels should be within a factor of three between one another to
minimize interference, particularly for spectrally adjacent
fluorophores. Evaluation of signal balance is achieved by starting
with tonsil monoplex slides, the OIC tool in InForm, and the
unmixing quality report in phenoptrReports. Akoya recommends
starting the optimization with an Opal concentration of 100X and
then adjusting fluorescent intensity signals by increasing or decreasing
Opal concentrations. If signals are still too weak, different primary or
secondary antibodies can be used or the Opal pairing, additional or
more aggressive antigen retrieval methods, and longer primary or
secondary antibody incubation times can also be tested. Tumor tissues
show variable and heterogeneous target expression compared with
tonsils (or other secondary lymphoid tissues) so it is important to
evaluate the staining procedure in the target tissue. Monoplex BC
slides were subjected to cycles of microwave treatment to simulate
multiplex staining and then analyzed by InForm to determine the
OIC for each Opal and phenoptrReports to determine crosstalk using
the unmixing quality report tool (Figure 5). In contrast to tonsil
tissue, ICOS and PD-1 are expressed at lower levels in tumor tissues.
Opal 520 and 650 therefore needed to be increased to 100X and 150X,
respectively, to restore signal balancing between all of the Opals.

FIGURE 5 | Evaluation of signal balance and crosstalk interference. Simulated DAB IHC images of monoplex stained slides of FFPE breast cancer sections
to look like an mIHC slide by replacing the other primary antibodies with diluent. The unmixing quality report table shows the crosstalk from non-signal Opals for
each component. The crosstalk values for a component are acceptable for phenotype classification and expression level assessment if all percentages in the
component’s column are <5%. The slides were scanned at ×20 magnification with the Vectra Polaris and the composite images were analyzed with InForm
software (v.2.4.8) and PhenoptrReports (Kent S Johnson (2020). phenoptr: inForm Helper Functions. R package v.0.2.6. https://akoyabio.github.io/
phenoptr/).
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Increasing the Opal concentrations for co-localized markers can
produce new TSA interference; therefore, it is better to optimize
directly using the tissue of interest unless there are limited amounts
of these tissues available. The development and validation of an
mIHC panel with six markers plus DAPI require a minimum of 70
(4 µm) tissue sections so it is best to use a surrogate tissue if possible
when the target tissue is a valuable resource. The Opal dilutions
were also adjusted for Opal 540 and Opal 690 so that they were
within the target brightness range required. The table of
crosstalk by component revealed 2.6% crosstalk for CD20-
Opal 540 in ICOS-Opal 520 and 3.4% crosstalk for Ki67-Opal
570 in CD4-Opal 620, both due to spectral bleeding or an
unmixing error. 2.4% crosstalk for ICOS-Opal 520 in CD4-
Opal 620 was also detected, which was not due to spectral
bleeding because Opal 520 and 620 are spectrally distinct.
CD4-Opal 620 follows ICOS-Opal 520 staining in the
multiplex sequence suggesting that this crosstalk results
from inadequate stripping of the ICOS antibody. However,
crosstalk values below 5% are acceptable for phenotypic
classification and expression level assessment.

Multiplex Assay Development
Once the monoplex slides were optimized, we looked for potential
artifacts in the multiplex staining, such as spectral bleeding and

TSA interference. Themonoplex and drop controls were compared
with the full multiplex panel (Figures 6, 7). The drop controls were
identical to the full multiplex except for the absence of one primary
antibody in each control slide (Surace et al., 2019). Ideally, each
drop control should generate no signal in the dropped channel and
no changes in intensity and cell densities. We validated the absence
of a signal in all dropped channels (Figure 6). To validate the
staining on TFH cells co-expressing CD4, PD-1, and ICOS, cell
density and OME were determined within the TLS GC (black line)
using the InForm and phenoptrReports software (Figures 7A,B).
We observed no significant changes in cell density in the drop
controls compared to the full multiplex panel. Alternatively, for
TFH cells in the GC of a TLS, the absence of CD4 increased the
OME 520 and 650 (ICOS and PD-1, respectively) while the
absence of PD-1 increased the OME 620 (CD4) and
consequently decreased the OME 520 (ICOS). These data
show an absence of spectral bleed in all Opal channels and
weak TSA interference on TFH cells due to Opal 620 and Opal
650 deposition, which impacts the Opal intensities without
affecting TFH cell density quantification. As an example, Opal
620 intensity levels on CD4+ cells and PD-1+CD4+ cells should
not be compared because PD-1-Opal 650 staining leads to
reduced CD4-Opal 620 intensities from TSA interference,
even if CD4 was stained prior to PD-1 in the mIHC panel

FIGURE 6 | Evaluation of the mIHC using drop controls. Simulated DAB IHC images of monoplex, mIHC, and drop control slides stained on consecutive FFPE
breast tumor sections.
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sequence. As illustrated in Figure 2D, CD4 intensity is higher at
the TLS border than in the GC due to the absence of PD-1 co-
expression on these CD4+ T cells. This OME variation is due to
TSA interference and highlights the fact that marker intensity
level quantification on different cell phenotypes requires robust
validation.

TIME Evaluation From Frozen Specimens
While FFPE blocks remain the most readily available source for
investigating the TIME, frozen specimens are increasingly being
archived to use for staining, spatial transcriptomics (ST), or other
approaches where the fixation process destroys or masks some
epitopes. Frozen tissues can therefore be used to examine more
labile factors and their spatial relationships within the TIME as
well as identifying new biomarkers. The main advantages of
frozen tissue sections include the preservation of proteins in
their native state, which permits a faster staining protocol without
the retrieval step and their reliability for molecular analyses such
as DNA and RNA sequencing.

Immunofluorescence/Immunohistochemistry
Using frozen tissue sections does not require any pre-
treatment including deparaffinization, hydration, and
antigen retrieval; however, an additional step of fixation
should be added before staining. The optimal fixative for

the selected target tissue should be determined from a
group that includes cold acetone, methanol, or 4%
formaldehyde. mIHC using TSA amplification is not
recommended for frozen tissue sections because microwave
treatments will destroy tissue morphology. Using HRP
blocking reagents to quash peroxidase can be an alternative
to microwave treatment.

Spatial Transcriptomics
Despite recent technological advances in mIHC/IF, the number
of markers that can be simultaneously detected is limited,
particularly when compared with genomic techniques. Next-
generation sequencing enables high throughput whole-genome
or whole-transcriptome sequencing; however, these approaches
do not provide spatial information. These limitations are being
circumvented by ST, an emerging approach designed to
transcriptionally profile spatial relationships in gene
expression patterns using cancer tissues, with one example
being the recent Visium platform introduced by 10X
Genomics. This technique provides quantitative visualization
and transcriptome analysis using intact fresh-frozen tissues
sections and spatially barcoded oligo-deoxythymidine
microarrays (Stahl et al., 2016; Vickovic et al., 2019).
Following cDNA synthesis, the resulting barcoded cDNA
libraries are sequenced using standard RNA-seq technologies.
Unique barcodes (UMIs) are used to assign expression data to
specific positions on the slide.

An initial examination of the spatial relationship for
immune genes in human BC was achieved using the ST
technology on a fresh-frozen section from an invasive
lobular carcinoma (Figure 8). Using the Seurat algorithm,
an open-source R toolkit for single-cell genomics, five clusters
were drawn using non-linear dimension reduction (UMAP) in
BC (Figures 8A,B) (Butler et al., 2018; Stuart et al., 2019).
Interestingly, by superimposing the clusters onto the
histological tissue image, an overlap between cluster four
and an annotated TLS (based on H&E staining) was
observed (Figure 8C). Spatial heatmaps confirmed the
expression of immune markers previously identified by flow
cytometry and mIHC within TLS such as MS4A1 encoding
CD20, CD4, and CD8A, as well as their immune activity with
the expression of FOXP3, PDCD1 encoding PD-1, and ICOS
(Figure 8D). Next, we performed a heatmap of the top ten
differentially expressed genes in TLS, defined by manual
annotation, versus the remaining tumor tissue (Figure 8E).
These data identify common gene expression profiles between
TLS that differ from the expression profiles of the remaining
tumor tissue. Finally, we selected two different immune cell
signatures; the TFH and Th1 signatures previously described by
our group (Gu-Trantien et al., 2013), to portray the relative
enrichment of TFH and Th1 cells within the tumor
microenvironment (Figure 8F). The TFH signature was
found to be intermediately expressed in two of the four
annotated TLS and highly expressed in one, while the Th1
signature was expressed highly in all TLS. These results
corroborate previous data from flow cytometry and mIHC,
while giving new insights on the spatial distribution.

FIGURE 7 | Cell density and Opal expression quantification of drop
control slides. (A) Cell density quantification of CD4+, ICOS+, PD-1+, and TFH
subpopulations (ICOS+CD4+PD-1+, CD4+PD-1+, ICOS+PD-1+, CD4+ICOS+)
on monoplex slides, the mIHC slide and drop control slides without (w/o)
ICOS, CD4, or PD-1. Each condition was quantified following the workflow
shown in Figure 4A in a TLS GC (black dotted line in Figure 6). (B)
Quantification of 520, 620, and 650 Opal mean expression (OME) on TFH cells
from an mIHC slide and drop control slides without (w/o) ICOS, CD4, PD-1
staining. Each condition was quantified followed the workflow as described
above. The slides were scanned at ×20 magnification with the Vectra Polaris
and the composite images were analyzed with InForm software (v.2.4.8).
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FIGURE 8 | Spatial gene expression in breast cancer. (A) UMAP representation of global gene expression in individual spots from a fresh-frozen section of an
invasive lobular carcinoma created five distinct clusters with unbiased Seurat clustering. (B) The features were placed back onto the H&E staining. (C) Four TLS were
histologically annotated on brightfield images of H&E-stained tissue sections (white line). (D) Visualization of eight selected genes as spatial heatmaps. (E) A heatmap of
the top ten differentially expressed genes in the annotated TLS compared with the remaining tumor tissue. (F) Spatial heatmaps of TFH and Th1 signatures.
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Challenges
Some of the disadvantages of frozen tissue samples are the pre-
analytical variables such as time of collection, preservation, and
storage in the −80 °C freezer. Tissues need to be frozen as fast as
possible once the sample is collected. Moreover, frozen tissue
samples rapidly deteriorate at room temperature. The tissue
histological quality is lower compared with FFPE samples, and
tissues that are frozen incorrectly can form vacuoles. For these
reasons, frozen tissue collections remain a smaller component of
tumor banks compared to FFPE samples. Coupled with sampling
restrictions, one of the major limitations of ST technology is its
50–100 µm resolution, even though the Visium platform expands
the spatial resolution 5-fold beyond the first-generation of ST.
The recent development of Slide-seq, a method for transferring
RNA from tissue sections onto a surface covered in 10 µm DNA-
barcoded beads with known positions, overcomes this limitation
with a single-cell resolution and holds great promise for the future
(Rodriques et al., 2019).

DISCUSSION

Overall, there are a variety of methodologies that can be used to
explore the TIME for discovering the important cellular
relationships or identifying relevant biomarkers, but each has
distinct advantages and disadvantages. Many of these approaches
are considered complementary to one another. In this manuscript,
we detailed a number of experimental approaches that are
particularly apt for investigating tumor tissues, focusing on TILs
and TLS including TFH and TFR cells resident in BC-associated TLS.
We further demonstrated it is possible to validate an mIHC panel
that includes three co-localized surfacemarkers. Using our rapid and
simple non-enzymatic tissue dissociation protocol (Garaud et al.,
2014), fresh tissue specimens can be used for TIL phenotyping,
analysis of immune soluble mediators, and other characteristics of
the TIME (Table 2). Flow cytometry, designed for the analysis of co-
expressed markers on single cells, can be standardized for routine
analysis and is relatively inexpensive. Because flow cytometric

analyses do not provide spatial data, complementary approaches
such as IHC/IF must be performed in parallel to obtain this
information. cIHC is a useful tool, well established in routine
clinical practice, and useful for characterizing individual markers
and gaining spatial information on their location in the TIME. The
main advantage of cIHC is its use to stain sections from FFPE blocks
and their ready visualization with a brightfield microscope,
something that is practicable in most pathology labs. In contrast
to flow cytometry, cIHC is not capable of staining multiple markers
to examine their co-localization. Two markers, usually on distinct
cellular subpopulations or different subcellular locations, can be
labeled on the same section in experienced labs while three markers
are quite rare, which is why cIHC is not recommendedwhen tissue is
limited. The development of mIHC, using the TSA technology, has
been driven by the need to circumvent sample limitation and the
demand for spatial relationship information in a single tissue section.
mIHC can presently detect up to eight markers on the same FFPE
section. Image analysis software, designed to analyze these
fluorescently labeled tissues, is an excellent tool to help scientists
and pathologists examine complex cellular phenotypes in a spatial
context. The downside of multiplex panel development is that it is
time-consuming and requires a dedicated scientist to oversee the
efforts and the detection of marker co-expression can be challenging.
Despite that caveat, mIHC has emerged as a powerful tool for
biomarker discovery and its continued evolution is likely to take it
into routine clinical practice in the not-so-distant future. This will
require careful assay optimization and validation to ensure robust
and reproducible data across laboratories. Moreover, the specificity
and sensitivity of mIHC still need to be validated along with
consistency between those analyzing the images and need to have
experienced pathologists, immunologists, and image analysis experts
working together. Finally, while ST technology is a look into a future
with full transcriptome analysis in whole tissue sections, major
technical limitations do not accommodate its current use in
clinical practice. These include the need for fresh-frozen tissues,
single-cell spatial resolution that is not yet achieved, lower sensitivity
compared with classical in situ hybridization analysis, high costs, and
the required bio-informatics expertise.

TABLE 2 | Summary of technologies to investigate the TIME.

Method Flow cytometry Chromogenic IHC Multiplex IHC Spatial transcriptomics

Sample type Fresh/frozen cells FFPE/frozen tissue FFPE tissue Frozen tissue

Number of markers 18+ 2+ Up to 8 Whole transcriptome

Detection system Antibody Enzymatic reaction Enzymatic reaction Barcoded primers

Read out Fluorescent Chromogenic Fluorescent Sequencing

Co-expression Yes No 2+ Not applicable

Soluble mediators Yes No No No

Cost $ $ $$ $$$

Spatial information No Yes Yes Yes

Observer Scientist/biologist Scientist/pathologist Scientist/pathologist Bio-informatician

Clinical relevant No Yes Yes No

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 67304213

Boisson et al. mIHC Characterization of Tumor Immunity

116

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Institut Jules Bordet. The patients/participants
provided their written informed consent to participate in
this study.

AUTHOR CONTRIBUTIONS

AB, SG, and GN conceived the research and designed
experiments with support from KW-G; AB, MS, and SG
performed the majority of experiments with specialized help
from CN and HD; AB, SG, and KW-G analyzed and
interpreted the data; AB, GN, NT, MLF, DS, JRV, VD, KWG,
and SG discussed the data; JR-V and VD analyzed ST data; LC
and DL recruited and sampled patients; AA proposed important
concepts; AB, KW-G, and SG wrote and revised the manuscript
with all authors subsequently providing advice and approving the
final manuscript.

REFERENCES

Angelova, M., Mlecnik, B., Vasaturo, A., Bindea, G., Fredriksen, T., Lafontaine, L.,
et al. (2018). Evolution of Metastases in Space and Time under Immune
Selection. Cell 175 (3), 751–765 e716. doi:10.1016/j.cell.2018.09.018

Autenshlyus, A., Arkhipov, S., Mikhaylova, E., Marinkin, I., Arkhipova, V.,
Varaksin, N., et al. (2021). Analyzing the Relationship between the Cytokine
Profile of Invasive Breast Carcinoma, its Histopathological Characteristics and
Metastasis to Regional Lymph Nodes. Sci. Rep. 11 (1), 11359. doi:10.1038/
s41598-021-90930-z

Balic, M., Thomssen, C., Würstlein, R., Gnant, M., and Harbeck, N. (2019). St.
Gallen/Vienna 2019: A Brief Summary of the Consensus Discussion on the
Optimal Primary Breast Cancer Treatment 2019: A Brief Summary of the
Consensus Discussion on the Optimal Primary Breast Cancer Treatment.
Breast Care 14 (2), 103–110. doi:10.1159/000499931

Banik, G., Betts, C. B., Liudahl, S. M., Sivagnanam, S., Kawashima, R., Cotechini, T.,
et al. (2020). High-dimensional Multiplexed Immunohistochemical
Characterization of Immune Contexture in Human Cancers. Methods
Enzymol. 635, 1–20. doi:10.1016/bs.mie.2019.05.039

Bankhead, P., Loughrey, M. B., Fernández, J. A., Dombrowski, Y., McArt, D. G.,
Dunne, P. D., et al. (2017). QuPath: Open Source Software for Digital Pathology
Image Analysis. Sci. Rep. 7 (1), 16878. doi:10.1038/s41598-017-17204-5

Buisseret, L., Desmedt, C., Garaud, S., Fornili, M., Wang, X., Van den Eyden, G.,
et al. (2017a). Reliability of Tumor-Infiltrating Lymphocyte and Tertiary
Lymphoid Structure Assessment in Human Breast Cancer. Mod. Pathol. 30
(9), 1204–1212. doi:10.1038/modpathol.2017.43

Buisseret, L., Garaud, S., de Wind, A., Van den Eynden, G., Boisson, A., Solinas, C.,
et al. (2017b). Tumor-infiltrating Lymphocyte Composition, Organization and
PD-1/PD-L1 Expression Are Linked in Breast Cancer. Oncoimmunology 6 (1),
e1257452. doi:10.1080/2162402X.2016.1257452

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating
Single-Cell Transcriptomic Data across Different Conditions, Technologies,
and Species. Nat. Biotechnol. 36 (5), 411–420. doi:10.1038/nbt.4096

Cabrita, R., Lauss, M., Sanna, A., Donia, M., Skaarup Larsen, M., Mitra, S., et al.
(2020). Tertiary Lymphoid Structures Improve Immunotherapy and
Survival in Melanoma. Nature 577 (7791), 561–565. doi:10.1038/s41586-
019-1914-8

Davidov, V., Jensen, G., Mai, S., Chen, S.-H., and Pan, P.-Y. (2020). Analyzing One
Cell at a TIME: Analysis of Myeloid Cell Contributions in the Tumor Immune
Microenvironment. Front. Immunol. 11, 1842. doi:10.3389/fimmu.2020.01842

Dieci, M. V., Mathieu, M. C., Guarneri, V., Conte, P., Delaloge, S., Andre, F., et al.
(2015). Prognostic and Predictive Value of Tumor-Infiltrating Lymphocytes in
Two Phase III Randomized Adjuvant Breast Cancer Trials. Ann. Oncol. 26 (8),
1698–1704. doi:10.1093/annonc/mdv239

Dieu-Nosjean, M.-C., Antoine, M., Danel, C., Heudes, D., Wislez, M., Poulot, V.,
et al. (2008). Long-term Survival for Patients with Non-small-cell Lung Cancer
with Intratumoral Lymphoid Structures. Jco 26 (27), 4410–4417. doi:10.1200/
JCO.2007.15.0284

Faget, L., and Hnasko, T. S. (2015). Tyramide Signal Amplification for
Immunofluorescent Enhancement. Methods Mol. Biol. 1318, 161–172.
doi:10.1007/978-1-4939-2742-5_16

Garaud, S., Buisseret, L., Solinas, C., Gu-Trantien, C., de Wind, A., Van den Eynden,
G., et al. (2019). Tumor-infiltrating B Cells Signal Functional Humoral Immune
Responses in Breast Cancer. JCI Insight 4. doi:10.1172/jci.insight.129641

Garaud, S., Gu-Trantien, C., Lodewyckx, J.-N., Boisson, A., De Silva, P., Buisseret,
L., et al. (2014). A Simple and Rapid Protocol to Non-enzymatically Dissociate
Fresh Human Tissues for the Analysis of Infiltrating Lymphocytes. JoVE 6,
52392. doi:10.3791/52392

Garaud, S., Zayakin, P., Buisseret, L., Rulle, U., Silina, K., de Wind, A., et al. (2018).
Antigen Specificity and Clinical Significance of IgG and IgA Autoantibodies
Produced In Situ by Tumor-Infiltrating B Cells in Breast Cancer. Front.
Immunol. 9, 2660. doi:10.3389/fimmu.2018.02660

Glass, G., Papin, J. A., and Mandell, J. W. (2009). SIMPLE: a Sequential
Immunoperoxidase Labeling and Erasing Method. J. Histochem. Cytochem.
57 (10), 899–905. doi:10.1369/jhc.2009.953612

Grisaru-Tal, S., Itan, M., Klion, A. D., and Munitz, A. (2020). A New Dawn for
Eosinophils in the Tumour Microenvironment. Nat. Rev. Cancer 20 (10),
594–607. doi:10.1038/s41568-020-0283-9

Gu-Trantien, C., Loi, S., Garaud, S., Equeter, C., Libin, M., de Wind, A., et al.
(2013). CD4+ Follicular Helper T Cell Infiltration Predicts Breast Cancer
Survival. J. Clin. Invest. 123 (7), 2873–2892. doi:10.1172/JCI67428

Helmink, B. A., Reddy, S. M., Gao, J., Zhang, S., Basar, R., Thakur, R., et al. (2020).
B Cells and Tertiary Lymphoid Structures Promote Immunotherapy Response.
Nature 577 (7791), 549–555. doi:10.1038/s41586-019-1922-8

Hendry, S., Salgado, R., Gevaert, T., Russell, P. A., John, T., Thapa, B., et al. (2017).
Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical
Review for Pathologists and Proposal for a Standardized Method from the
International Immunooncology Biomarkers Working Group: Part 1: Assessing
the Host Immune Response, TILs in Invasive Breast Carcinoma and Ductal
Carcinoma In Situ, Metastatic Tumor Deposits and Areas for Further Research.
Adv. Anat. Pathol. 24 (5), 235–251. doi:10.1097/PAP.0000000000000162

Koletsa, T., Kotoula, V., Koliou, G.-A., Manousou, K., Chrisafi, S., Zagouri, F., et al.
(2020). Prognostic Impact of Stromal and Intratumoral CD3, CD8 and FOXP3
in Adjuvantly Treated Breast Cancer: Do They Add Information over Stromal
Tumor-Infiltrating Lymphocyte Density? Cancer Immunol. Immunother. 69
(8), 1549–1564. doi:10.1007/s00262-020-02557-0

Lecot, P., Sarabi, M., Pereira Abrantes, M., Mussard, J., Koenderman, L., Caux, C.,
et al. (2019). Neutrophil Heterogeneity in Cancer: From Biology to Therapies.
Front. Immunol. 10, 2155. doi:10.3389/fimmu.2019.02155

Lo Presti, E., Dieli, F., Fourniè, J. J., and Meraviglia, S. (2020). Deciphering Human
γδ T Cell Response in Cancer: Lessons from Tumor-infiltrating γδ T Cells.
Immunol. Rev. 298 (1), 153–164. doi:10.1111/imr.12904

Noël, G., Garaud, S., De Silva, P., de Wind, A., Van den Eynden, G., Salgado, R.,
et al. (in press). Functional Th1-Oriented Tfh Cells Infiltrating Human Breast
Cancer Promote Effective Adaptive Immunity. J. Clin. Invest., 139905.
doi:10.1172/JCI139905

Ohue, Y., and Nishikawa, H. (2019). Regulatory T (Treg) Cells in Cancer: Can Treg
Cells Be a New Therapeutic Target? Cancer Sci. 110 (7), 2080–2089.
doi:10.1111/cas.14069

Petitprez, F., de Reyniès, A., Keung, E. Z., Chen, T. W.-W., Sun, C.-M., Calderaro,
J., et al. (2020). B Cells Are Associated with Survival and Immunotherapy
Response in Sarcoma. Nature 577 (7791), 556–560. doi:10.1038/s41586-019-
1906-8

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 67304214

Boisson et al. mIHC Characterization of Tumor Immunity

117

https://doi.org/10.1016/j.cell.2018.09.018
https://doi.org/10.1038/s41598-021-90930-z
https://doi.org/10.1038/s41598-021-90930-z
https://doi.org/10.1159/000499931
https://doi.org/10.1016/bs.mie.2019.05.039
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1038/modpathol.2017.43
https://doi.org/10.1080/2162402X.2016.1257452
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/s41586-019-1914-8
https://doi.org/10.1038/s41586-019-1914-8
https://doi.org/10.3389/fimmu.2020.01842
https://doi.org/10.1093/annonc/mdv239
https://doi.org/10.1200/JCO.2007.15.0284
https://doi.org/10.1200/JCO.2007.15.0284
https://doi.org/10.1007/978-1-4939-2742-5_16
https://doi.org/10.1172/jci.insight.129641
https://doi.org/10.3791/52392
https://doi.org/10.3389/fimmu.2018.02660
https://doi.org/10.1369/jhc.2009.953612
https://doi.org/10.1038/s41568-020-0283-9
https://doi.org/10.1172/JCI67428
https://doi.org/10.1038/s41586-019-1922-8
https://doi.org/10.1097/PAP.0000000000000162
https://doi.org/10.1007/s00262-020-02557-0
https://doi.org/10.3389/fimmu.2019.02155
https://doi.org/10.1111/imr.12904
https://doi.org/10.1172/JCI139905
https://doi.org/10.1111/cas.14069
https://doi.org/10.1038/s41586-019-1906-8
https://doi.org/10.1038/s41586-019-1906-8
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Posch, F., Silina,K., Leibl, S.,Mündlein,A.,Moch,H., Siebenhüner,A., et al. (2018).Maturation
of Tertiary Lymphoid Structures and Recurrence of Stage II and III Colorectal Cancer.
Oncoimmunology 7 (2), e1378844. doi:10.1080/2162402X.2017.1378844

Ray, A. L., Nofchissey, R. A., Khan,M. A., Reidy, M. A., Lerner, M. R.,Wu, X., et al. (2020).
The Role of Sex in the Innate and Adaptive Immune Environment of Metastatic
Colorectal Cancer. Br. J. Cancer 123 (4), 624–632. doi:10.1038/s41416-020-0913-8

Remark, R., Merghoub, T., Grabe, N., Litjens, G., Damotte, D., Wolchok, J. D., et al.
(2016). In-depth Tissue Profiling Using Multiplexed Immunohistochemical
Consecutive Staining on Single Slide. Sci. Immunol. 1 (1), aaf6925. doi:10.1126/
sciimmunol.aaf6925

Rodriques, S. G., Stickels, R. R., Goeva, A., Martin, C. A., Murray, E., Vanderburg,
C. R., et al. (2019). Slide-seq: A Scalable Technology for Measuring Genome-
wide Expression at High Spatial Resolution. Science 363 (6434), 1463–1467.
doi:10.1126/science.aaw1219

Shi, J., Hou, S., Fang, Q., Liu, X., Liu, X., and Qi, H. (2018). PD-1 Controls Follicular
T Helper Cell Positioning and Function. Immunity 49 (2), 264–274 e264.
doi:10.1016/j.immuni.2018.06.012

Siliņa, K., Soltermann, A., Attar, F. M., Casanova, R., Uckeley, Z. M., Thut, H., et al.
(2018). Germinal Centers Determine the Prognostic Relevance of Tertiary Lymphoid
Structures and Are Impaired by Corticosteroids in Lung Squamous Cell Carcinoma.
Cancer Res. 78 (5), 1308–1320. doi:10.1158/0008-5472.CAN-17-1987

Solinas, C., Garaud, S., De Silva, P., Boisson, A., Van den Eynden, G., de Wind, A., et al.
(2017). Immune Checkpoint Molecules on Tumor-Infiltrating Lymphocytes and
Their Association with Tertiary Lymphoid Structures in Human Breast Cancer.
Front. Immunol. 8, 1412. doi:10.3389/fimmu.2017.01412

Stabile, H., Fionda, C., Gismondi, A., and Santoni, A. (2017). Role of Distinct
Natural Killer Cell Subsets in Anticancer Response. Front. Immunol. 8, 293.
doi:10.3389/fimmu.2017.00293

Ståhl, P. L., Salmén, F., Vickovic, S., Lundmark, A., Navarro, J. F., Magnusson, J.,
et al. (2016). Visualization and Analysis of Gene Expression in Tissue Sections
by Spatial Transcriptomics. Science 353 (6294), 78–82. doi:10.1126/
science.aaf2403

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd,
et al. (2019). Comprehensive Integration of Single-Cell Data. Cell 177 (7),
1888–1902 e1821. doi:10.1016/j.cell.2019.05.031

Surace, M., DaCosta, K., Huntley, A., Zhao, W., Bagnall, C., Brown, C., et al. (2019).
AutomatedMultiplex Immunofluorescence Panel for Immuno-Oncology Studies
on Formalin-Fixed Carcinoma Tissue Specimens. JoVE 143. doi:10.3791/58390

van der Leun, A. M., Thommen, D. S., and Schumacher, T. N. (2020). CD8+ T Cell
States in Human Cancer: Insights from Single-Cell Analysis. Nat. Rev. Cancer
20 (4), 218–232. doi:10.1038/s41568-019-0235-4

Vickovic, S., Eraslan, G., Salmén, F., Klughammer, J., Stenbeck, L., Schapiro, D.,
et al. (2019). High-definition Spatial Transcriptomics for In Situ Tissue
Profiling. Nat. Methods 16 (10), 987–990. doi:10.1038/s41592-019-0548-y

Wouters, M. C. A., and Nelson, B. H. (2018). Prognostic Significance of Tumor-
Infiltrating B Cells and Plasma Cells in Human Cancer. Clin. Cancer Res. 24
(24), 6125–6135. doi:10.1158/1078-0432.CCR-18-1481

Xing, M., Feng, Y., Yao, J., Lv, H., Chen, Y., He, H., et al. (2020). Induction of
Peripheral Blood T Follicular Helper Cells Expressing ICOS Correlates with
Antibody Response to Hepatitis B Vaccination. J. Med. Virol. 92 (1), 62–70.
doi:10.1002/jmv.25585

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Boisson, Noël, Saiselet, Rodrigues-Vitória, Thomas, Fontsa,
Sofronii, Naveaux, Duvillier, Craciun, Larsimont, Awada, Detours, Willard-
Gallo and Garaud. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 67304215

Boisson et al. mIHC Characterization of Tumor Immunity

118

https://doi.org/10.1080/2162402X.2017.1378844
https://doi.org/10.1038/s41416-020-0913-8
https://doi.org/10.1126/sciimmunol.aaf6925
https://doi.org/10.1126/sciimmunol.aaf6925
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1016/j.immuni.2018.06.012
https://doi.org/10.1158/0008-5472.CAN-17-1987
https://doi.org/10.3389/fimmu.2017.01412
https://doi.org/10.3389/fimmu.2017.00293
https://doi.org/10.1126/science.aaf2403
https://doi.org/10.1126/science.aaf2403
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.3791/58390
https://doi.org/10.1038/s41568-019-0235-4
https://doi.org/10.1038/s41592-019-0548-y
https://doi.org/10.1158/1078-0432.CCR-18-1481
https://doi.org/10.1002/jmv.25585
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Immune Response in Myocardial
Injury: In Situ Hybridization and
Immunohistochemistry Techniques
for SARS-CoV-2 Detection in
COVID-19 Autopsies
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Paul Chui5
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Molecular Pathology, Singapore General Hospital, Singapore, Singapore, 5Health Science Authority, Singapore, Singapore

Coronavirus disease-19 (COVID-19) is caused by the newly discovered coronavirus,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While the lung
remains the primary target site of COVID-19 injury, damage to myocardium, and other
organs also contribute to the morbidity and mortality of this disease. There is also
increasing demand to visualize viral components within tissue specimens. Here we
discuss the cardiac autopsy findings of 12 intensive care unit (ICU) naïve and PCR-
positive COVID-19 cases using a combination of histological, Immunohistochemical/
immunofluorescent and molecular techniques. We performed SARS-CoV-2 qRT-PCR
on fresh tissue from all cases; RNA-ISH and IHC for SARS-CoV-2 were performed on
selected cases using FFPE tissue from heart. Eight of these patients also had positive post-
mortem serology for SARS-CoV-2. Histopathologic changes in the coronary vessels and
inflammation of the myocardium as well as in the endocardium were documented which
support the reports of a cardiac component to the viral infection. As in the pulmonary
reports, widespread platelet and fibrin thrombi were also identified in the cardiac tissue. In
keeping with vaccine-induced activation of virus-specific CD4+ and CD8+ T cells, and
release of cytokines such as interferon-gamma (IFNγ), we observed similar immune cellular
distribution and cytokines in these patients. Immunohistochemical and immunofluorescent
localisation for the viral Spike (S-protein) protein and the nucleocapsid protein (NP) were
performed; presence of these aggregates may possibly contribute to cardiac ischemia and
even remodelling.

Keywords: PCR, COVID-19, autopsy, multiplex, serology

INTRODUCTION

SARS-CoV-2 (Covid 19), a novel corona virus was first implicated as the cause of a rapidly spreading
infectious upper respiratory illness in late 2019 (Zhu et al., 2020) resulting in an exponential increase
in global infections (WHO, 2020). There is much to be done as thenatural history of this disease has
yet to be elucidated and whilst there has been an emphasis on pulmonary findings, there are now
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TABLE 1 | Patient characteristics and autopsy findings.

case No. 1 2 3 4 5 6 7 8 9 10 11 12

Gender M M M M M M M M M M M M

AGE 32 46 47 53 30 41 41 48 27 42 69 59
BMI 25.28 19.05 20.62 26.67 16.11 27.1 21.87 18.94 22.41 18.31 21.48 31.7
Ante mortem
test (PCR)

YES YES NA NA NA YES NEG YES YES YES YES YES

TEST TO DEATH
INTERVAL (DAYS)

6 HRS 4 DAYS NA NA NA 42 DAYS NA 38 DAYS 19 DAYS 47–48 DAYS 1 DAY 41 DAYS

PRIOR MEDICAL
CONDITIONS

NIL NIL NIL NIL NIL Not known Not known Not known NIL Not known DM TYPE 2.
HYPT.
HYPOTHYROID.
OBESE. CKD

Nil

CIRCUMSTANCES
OF DEATH

SUDDEN
DEATH

Fell from
Height

SUDDEN DEATH SUDDEN DEATH SUDDEN
DEATH

SUDDEN DEATH SUDDEN
DEATH

SUDDEN
DEATH

Fell from
height

SUDDEN
DEATH,
DECOMPOSED

ARI; SUDDEN
DEATH

SUDDEN
DEATH

HEART WT (gm) 345 235 419 410 245 404 245 340 222 244 463 398
HEART GENERAL
DESCRIPTION

SOFT AND
FLABBY.

SOFT AND
FLABBY.

SOFT AND FLABBY TRANSMURAL
RUPTURE,
ANTERIOR-
ANTEROSEPTAL
WALL, JUNCTION
OF UPPER 2/3
AND DISTAL 1/
3 LV.

SOFT AND
FLABBY

SOFT AND FLABBY,
FIBRINOUS
ADHESIONS OVER
RA, RV
ENDOCARDIUM

GROSSLY
NORMAL

GROSSLY
NORMAL

GROSSLY
NORMAL

DECOMPOSED HEART
ENLARGED

HEART
ENLARGED

CORONARY
arteries

LCA:
PINPOINT
RESIDUAL
LUMEN

NORMAL. LCA
ATHEROSCLEROTIC
WITH 50%
OCCLUSION OF LAD.

LAD 10–25%.
DARK RED
THROMBUS,
TOTAL
OCCLUSION

LAD-
ORGANISING
THROMBUS.

MILD
ATHEROSCLEROSIS

LAD 10–25% PROX
LAD 75%-

LCA 25/
LAD 90/
LCX 75/
RCA
PINPOINT

NAD LAD 10–25 LCA 10 LAD 90-
FIRST
DIAGONAL
PINPOINT

LCA 50 LAD25

SEROLOGY (IgM
+ IgG)

CLOTTED CLOTTED POSITIVE; COI 2.22 POSITIVE;
COI 2.38

CLOTTED POSITIVE; COI 89.8 POSITIVE;
COI 9.91

POSITIVE;
COI 114

POSITIVE;
COI21.5

UNSUITABLE
FOR ANALYSIS

NO; COI 0.534 POSITIVE;
COI:8.73

Swab (Nasal) DETECTED DETECTED PRESUMPTIVE
POSITIVE

NOT DETECTED DETECTED NOT DETECTED NEGATIVE NEGATIVE NEGATIVE DETECTED DETECTED NEGATIVE

Swab (PNS) DETECTED DETECTED DETECTED DETECTED PRESUMPTIVE
POSITIVE

NOT DETECTED DETECTED DETECTED DETECTED DETECTED DETECTED NEGATIVE

Swab (Tracheal) DETECTED DETECTED PRESUMPTIVE
POSITIVE

NOT DETECTED DETECTED NOT DETECTED NEGATIVE NEGATIVE DETECTED NEGATIVE DETECTED NEGATIVE

Swab (Ileal) DETECTED DETECTED NOT DETECTED INCONCLUSIVE DETECTED DETECTED NEGATIVE NEGATIVE NEGATIVE DETECTED.
STRONG
POSITIVE

PRESUMPTIVE
POSITIVE

NEGATIVE

Swab (CNS) DETECTED DETECTED NOT DETECTED NOT DETECTED NOT
DETECTED

NOT DETECTED NEGATIVE NEGATIVE NEGATIVE NEGATIVE DETECTED NEGATIVE

LCA; Left coronary artery, LAD: Left anterior descending artery, PROX LAD: Proximal Left anterior descending artery, LCX: Left circumflex artery, RCA: right coronary artery.
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increasing reports that Covid-19 may also affect the
cardiovascular and other organ systems (Babapoor-Farrokhran
et al., 2020; Barton et al., 2020). In fact, Yang et al. reported death
of a small number of patients who died within a short period of
time after admission, in other words, sudden death (Yang et al.,
2021). Moreover, sudden cardiac arrest and death had been
reported as early as 2020 despite improvement of general
condition and constitutional symptoms (Shirazi et al., 2021).

Much about the pathogenesis of SARS-CoV-2 and the heart
remains unknown (Siripanthong et al., 2020). Angiotensin (AT)
converting enzyme 2 (ACE2), known as the cellular receptor for
SARS-CoV-2 is ubiquitously expressed with the highest levels
detected in the cardiovascular system (cardiomyocytes, cardiac
fibroblasts, vascular smooth muscle cells and endothelial cells) as
well as intestine, kidneys and lungs (Grifoni et al., 2020; Le Bert
et al., 2020). We discuss the cardiac (and vascular) pathology seen
in twelve cases of sudden death in patients who were also Covid-
19 positive. We document possible evolution of the disease with
little or no medical intervention in a study of these autopsy cases.
We also aim to document the cellular immune response observed
in the COVID-19 patients.

METHODS

In our series of twelve male autopsy cases, ten cases were sudden
unexplained deaths. Case 1 had presented to his physician with
anosmia, had a swab taken and was sent home where he was
found collapsed the next day before the test results were known.
The remaining 9 cases had a variety of complains including chest
pain, epigastric pain or discomfort. Case 10 was last heard
complaining of chest pain but was found dead 2 days later. Of
these only two cases had known premorbid illnesses on record.
Case 8 had a history of hypertension whilst case 11, who was
unemployed, is the only case with documented premorbid
conditions of poorly controlled diabetes and hypertension. He
was being managed by his physician for 2 weeks of fever and
cough before being tested positive for Covid-19. He collapsed at
home a day later.

Two cases were unnatural deaths, having fallen from height
(case 2 was admitted to hospital for

observation after 5 days of fever and a positive test, whilst case
9 was admitted in a facility for

well and asymptomatic Covid-19 patients.
All subjects, except for case 11, worked in the construction

industry. None of the 12 cases.
Presented with severe respiratory symptoms nor required

supplemental oxygen. In cases where clinical history was not
available, we have taken the date of the first positive PCR test as
the most probable start point of COVID-19 infection and have
stratified the patients accordingly.

All twelve cases were referred to Health Sciences Authority for
autopsy (mean age � 44.1 year range:27–69 years) (Table 1)
under the Second Schedule of the Coroners Act Cap 63A
(Revised Edition 2012 Singapore Statutes). All autopsies were
carried out either in biosafety level (BL)-BSL3 or BSL4 autopsy
facilities. All subjects were male.

FIGURE 1 | (A) Coronary vessel with fresh fibrin thrombus, moderate
inflammation, mild fibrosis (H&E, x200). (B) apposition of vascular endothelium
(H&E, x200). (C) Perivascular inflammation around epicardial vessel (H&E,
x200). (D) CD4-positive T-cells in perivascular tissue, 200x. (E)
Perivascular inflammation extending to adipose tissue and involving peripheral
nerve (H&E, x200).
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RESULTS

Vasculature
The findings are stratified with respect to known or estimated
duration of symptoms. The earlier group comprised 5 cases with
symptom duration ranging between <12 h and 5 days. In 4 of
these, we observed complete occlusion of the coronary artery by
fresh fibrin thrombi; the epicardial coronary vessels showed pre-
existing mild atherosclerosis (Figure 1A). In a fifth patient (case
2), we observed that the patency of the arterial lumen was
compromised by apposition of the endothelium (Figure 1B).

An inflammatory infiltrate was seen around epicardial vessels
of varying diameter, predominantly in a perivascular location,
extending into the outer layers of the vessel wall and outwards
into the pericardial adipose tissue (Figure 1C, patient 3, Table 2).
On cross sections, the interface of the more intense inflammatory
infiltrates imbued a stellate appearance. The inflammatory
cells were predominantly lymphoid in nature, particularlyT

A
B
LE

2
|M

ic
ro
sc
op

ic
fin
di
ng

s;
ke

y:
Li
gh

t
ye
llo
w

<7
da

ys
;
P
in
k
>7

da
ys
.

ca
se

no
1

2
3

4
5

7
11

9
6

8
10

12

In
te
rv
al

fro
m

an
te
-m

or
te
m

P
C
R

to
au

to
ps

y

6
h

4
da

ys
N
A

N
A

N
A

N
A

1
da

y
19

42
da

ys
38

da
ys

47
–
48

da
ys

41
da

ys

Ep
ic
ar
di
al

ve
ss
el

lu
m
en

oc
cl
ud

ed
oc

cl
ud

ed
(lu
m
en

cl
os

ed
by

ap
po

si
tio

n)

oc
cl
ud

ed
oc

cl
ud

ed
oc

cl
ud

ed
80

%
oc

cl
ud

ed
at
he

ro
sc
le
ro
tic

w
ith

in
fla
m
m
at
or
y

in
fil
tr
at
es

m
yo

in
tim

al
th
ic
ke

ni
ng

m
yo

in
tim

al
th
ic
ke

ni
ng

m
yo

in
tim

al
th
ic
ke

ni
ng

m
yo

in
tim

al
th
ic
ke

ni
ng

m
yo

in
tim

al
th
ic
ke

ni
ng

Fr
es
h

th
ro
m
bu

s
ye
s

no
ye
s

ye
s

ye
s

no
no

no
no

no
no

no

Fi
br
in

th
ro
m
bi

ye
s

ye
s

ye
s

ye
s

ye
s

Y
es

ye
s

ye
s

Y
es

ye
s

A
ut
ol
yt
ic

ch
an

ge
s

ye
s

P
er
iv
as
cu

la
r

in
fla
m
m
at
io
n

Y
es

3
+
m
ix
ed

in
fla
m
m
at
or
y

ce
lls

ye
s
1
+

ly
m
ph

oc
yt
ic

in
fil
tr
at
io
n

ye
s
2
+

ly
m
ph

oc
yt
ic

in
fil
tr
at
io
n

Y
es

1
+

ly
m
ph

oc
yt
ic

in
fil
tr
at
io
n

Y
es

2
+
m
ix
ed

in
fla
m
m
at
or
y

ce
lls

ye
s

Ly
m
ph

oi
d

ag
gr
eg

at
es

1
+
ly
m
ph

oc
yt
ic

in
fil
tr
at
io
n

1
+

ly
m
ph

oc
yt
ic

in
fil
tr
at
io
n

Ly
m
ph

oi
d

ag
gr
eg

at
es

A
ut
ol
yt
ic

ch
an

ge
s

Ly
m
ph

oi
d

ag
gr
eg

at
es

M
yo

ca
rd
iu
m

in
fla
m
m
at
or
y

in
fil
tr
at
e

2
+

ly
m
ph

oc
yt
ic

no
3
+

ly
m
ph

oc
yt
es

an
d

eo
si
no

ph
ils

1
+

Ly
m
ph

oc
yt
es

3
+

ly
m
ph

oc
yt
es

an
d

eo
si
no

ph
ils

2
+

ly
m
ph

oc
yt
es

sc
an

ty
ly
m
ph

oc
yt
es

1
+

LY
M
P
H
O
C
Y
TE

S
2
+

ly
m
ph

oc
yt
es

1
+

ly
m
ph

oc
yt
es

A
ut
ol
yt
ic

ch
an

ge
s

1
+

ly
m
ph

oc
yt
es
,

eo
si
no

ph
ils

FIGURE 2 | (A) Remodeling of myocardial vesels showing myointimal
hypertrophy/thickening with perivascular lymphoid aggregates (H&E, x200).
(B) Perivascular inflammation involving epicardial vessel (H&E, x200).
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CD4-positive (IHC) with scanty CD8-positive T-cells and CD20-
positive B cells (Figure 1D). In some cases, the latter two subtypes
of lymphocytes were virtually absent. Except for two cases where
the eosinophilic infiltrate was heavy, eosinophils and monocytes
were also noted in smaller amounts. Involvement of nerves by
chronic inflammation were also seen Figure 1E.

In cases where symptoms persisted for more than 14 days, the
inflammatory infiltrate was less prominent. The coronary vessels
showed medial and intimal hypertrophy with focal dilatation,
outpouching or tortuosity of vessels giving an irregular
appearance (Figure 2A, case 5 A fine perivascular fibrosis was
seen around both thin and thick-walled vessels of varying
diameters including capillary vessels. The pericardial adipose
tissue was involved in the inflammation in all cases,
irrespective of duration of symptoms (Figure 2B).

Myocardium
The perivascular inflammatory infiltrate described previously was
observed to follow the vessels into the myocardium and could be
seen extending along the longitudinal axis of the vessels. In some
cases, the inflammatory infiltrates were seen around the

FIGURE 3 | (A) Occlusion of coronary artery lumen by proliferation of
spindled cells (H&E, x200). (B) Fibrin thrombi. MSB stain (200x). (C) Platelet
thrombi, CD61 immunohistochemical stain (200x).

FIGURE 4 | (A) Myocarditis with myocyte necrosis (H&E, x200). (B)
Stellate myocardial fibrosis (H&E, 200x). (C) Masson trichrome stain
confirming fibrosis (200x).
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perivascular spaces, within the wall and lumen. Again, the lymphoid
cells were predominantly of CD4 lineage with virtually no CD8-
positive T-cells or CD20-positive B-cells. Obliteration of the vascular
lumen by a proliferation of spindled myofibroblasts was seen in one
case (Figure 3A, case 5).

Extensive fibrin and platelet thrombiwere noted in themyocardial
vessels as well as in the myocardial microvasculature. Mature fibrin
thrombi were observed with MSB stains (Figure 3B); intravascular
platelet aggregates were demonstrated by CD61 antibody (Figure 3C).

Myocarditis as evidenced by chronic inflammation and
myocyte necrosiswas marked in 4 of the 5 earlier cases but
could be seen in patchy fashion even in the later cases
(Figure 4A, case 3) The inflammatory cells comprised a mixed
population of lymphoid cells, neutrophils, eosinophils and

monocytes; eosinophils were prominent in case 3,. Granulation
tissue reaction with presence of reactive stromal cells was
demonstrated in 2 of the earlier cases whilst a patchy stellate
myocardial fibrosis was noted in the later cases (more than
7 days) (Figure 4B,C, case 8). This fibrosis could also be seen
sweeping along the long axis of the myocardial vessels appearing
to mirror the inflammatory infiltrate in the earlier cases. Within
the fibrous tissue, thin-walled vessels were noted. It is unclear if
these vessels represent residual vasculature or neovascularization.
(Figure 4D, case 8).

Endocardium
Focal infiltration of the endocardial lining by mononuclear cells
was noted in the earlier cases (Figure 5A–C, case 5).

RNAscope in-Situ Hybridization
RNAscope assay following the manufacturer’s protocols was applied
to five cases. Weak positive signals were detected within myocytes in
three cases (cases 2,3 and 5). Co-localization of SARS-CoV-2 with its
entry receptor ACE2 and serine protease TMPRSS2 (type II
transmembrane serine protease) in different cell types, using
RNAscope in situ hybridization, was found in various
compartments of the heart, such as endothelial smooth muscle,
myocardium, fibroblastic and inflammatory cells (Figure 6).

Immunohistochemistry
Detection of viral NP in myocardium was attempted using
immunohistochemistry and identified in two cases including one
case with coexisting myocardial viral S protein on RNAscope assay.
The second case was 38 days post-covid-19 infection and viral NP-
protein was detected within the vascular lumen as well as the
immediate perivascular space (Figure 7, case 8).

mIHC/IF
We investigated the presence of the SARS-COV2 NP protein
(Shirazi et al., 2021; Siripanthong et al., 2020; Le Bert et al., 2020;
Grifoni et al., 2020) and the associated immune
microenvironment by using multiplex IHC/IF technique (Ni
et al., 2020; Thieme et al., 2020; Stack et al., 2014; Abel et al.,
2014; Lovisa et al., 2015; Garnelo et al., 2015; Yeong et al., 2017;
Garnelo et al., 2017; Esbona et al., 2016; Mlecnik et al., 2016;
Nghiem et al., 2016; Feng et al., 2016; Lim et al., 2018). The SARS-
COV2 NP protein was found predominantly near the perivascular
regions colocalizing with receptors of SARS-COV2, ie ACE2 and
TMPRSS2 (Yeong et al., 2019; Lam et al., 2019) (Figure 3).
Interestingly, the pathogenic cytokines such as IL-6 (Xu et al.,
2020a; Hoffmann et al., 2020; Qin et al., 2020; Wang et al., 2020)
and IL-1β (Huang et al., 2020a; Xu et al., 2020a; Diao et al., 2020;
Shi et al., 2020) were also detected in close proximity in the
background of fibrosis highlighted by the expression of
Collagen I and III (Liao et al., 2020; Wen et al., 2020).. (Figure 8)

We further demonstrated that some of the ACE2+ cells were
macrophages which are in line with previous reports (Delpino
and Quarleri, 2020; George et al., 2020). Colocalization of the
pathogenic cytokine GM-CSF (Diao et al., 2020) as well as
surrounding T-cells were also observed in the proximity
(Figure 9, case 8).

FIGURE 5 | (A) Endocardial fresh blood clot (H&E, 200x). (B)
Endocardial organizing thrombus (H&E, 200x). (C) Endocarditis (H&E, 200x).
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Furthermore, we interrogated the immune phenotype of the
T-cells present in the peri-vascular regions whereby Th2 cells,
highlighted by absence of GATA3 nuclear stain, were virtually
absent (Robinson et al., 2020). However, few T-cells
demonstrated a Th-1 cell-like phenotype which expressed
pathogenic cytokines such as interferon-gamma (Zheng and
Flavell, 1997; Xu et al., 2020a; Diao et al., 2020; Weiskopf
et al., 2020; Yao et al., 2020). Some of the T-cells expressed

granzme-B signifying the effector function of cytotoxic T cells
(Thevarajan et al., 2020; WHO, 2020; Zheng et al., 2020), as well
as CD38 which has been widely reported as one of the SARS-
COV2-specific T-cell marker (Huang et al., 2020a; Xu et al.,
2020b; Craver et al., 2020; Thevarajan et al., 2020; Wang et al.,
2020) (Figure 10, case 8).

SARS-CoV-Ab Serology
COI values for 7 of the 8 patients were clearly positive ranging
from 2.22 to 114; it was 0.534 in the remaining patient. The range
in 362 prepandemic male (age: mean, SD - 43.3, 14.5 years) sera
on this assay was 0.066–0.373 (data not shown).

DISCUSSION

We document 12 autopsy cases with cardiac changes. Four of
these cases had histologic evidence of myocarditis with marked
predominantly lymphocytic and some eosinophilic infiltrates.
The presence of SARS NP protein in a perivascular location,
the proximity of T-cells and cytokine GM-CSF bum IHC/IF
appears to corroborate changes observed at the light
miscroscopy. Whether these changes were purely due to an
underlying ischemic heart disease or whether the process was
exacerbated by the viral infection is unclear.

Myocardial cells are a potential target of SARS-CoV-2, and
myocarditis has been reported in a limited series in China, where
7% of deaths were attributed to myocardial damage with
circulatory failure without a clear, definite diagnosis of
myocarditis (Cheung et al., 2020). Others have described
fulminant myocarditis in the setting of high viral load, with
autopsy findings of myocardial inflammatory infiltrate, but
without evidence of myocardial COVID-19 disease (Robinson
et al., 2020). Although much of the published literature has
focussed on the pulmonary changes, findings from our autopsy

FIGURE 7 | Immunohistochemical analysis in myocardium from the
autopsy of patient who died secondary to COVID-19 infection (A) SARS-CoV-
2 is positive (arrow) in the myocardial tissue, original magnifications ×400.

FIGURE 6 | SARS-CoV-2 ISH in myocardium from the autopsy of
patients who died secondary to COVID-19 infection. (A–C) Positive reactions
for the probes directed against SARS-CoV-2 S-protein (red dot) original
magnifications ×400).
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series demonstrate that significant cardiac pathology may be
associated with COVID-19 infection. It has already been
postulated that in addition to coronary plaque destabilization
and hypoxia, the possible mechanisms of COVID-19-related

myocardial injury could be direct damage to the
cardiomyocytes, chronic inflammation, myocardial interstitial
fibrosis, interferon-mediated immune response and exaggerated
cytokine response by T-cells (Babapoor-Farrokhran et al., 2020).

FIGURE 8 | Representative images of heart tissue stained using multiplex immunohistochemistry/immunofluorescence (mIHC/IF) [CD3 (green), ACE2/TMPRSS2
(yellow), Virus NP (red), IL6 (magenta), Collagen1+3 (orange), IL1B (cyan), DAPI (blue)] (Magnification, 400X).

FIGURE 9 | Representative images of heart tissue stained using multiplex immunohistochemistry/immunofluorescence (mIHC/IF) [CD68 (green), GM-CSF (yellow),
ACE2 (red), CD4 (cyan), DAPI (blue)] (Magnification, 200X).
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The records of the Forensic Department, Singapore show that
in 2018, a total of 1,414 cases were autopsied and 18 were certified
as myocarditis. In 2019 there were 1,262 cases of which 23 were
certified as myocarditis. 131 cases were certified as Coronary
heart disease in 2018 and 108 in 2019. A small autopsy series of
four non-COVID-19 deceased patients during the same period
did not reveal any significant myocardial inflammation
(Supplementary Table S2).

In SARS autopsies (Chong et al., 2004) we reported pulmonary
thromboembolic, deep vein thrombosis, and marantic valvular
vegetations with widespread intravascular fibrin thrombi. As the
SARS patients had a history of admission to intensive care units
(ICU), it could be argued that these changes were related to ICU
support and therapy. However, our current cases are all ICU-
naïve.

SARS-CoV-2 is known to use the ACE2 receptor as a channel
for entrance into the cell as receptors have been reported to be
present in cardiac smooth muscle, vascular smooth muscle and
endothelial cells as well as pneumocytes and enterocytes
(Dandekar and Perlman, 2005; Yajima and Knowlton, 2009).
It is possible that the virus enters these cells including the cardiac
myocytes and that the immediate innate cytokine response may
cause the initial myocardial damage early in the infection and that
the arrival of the T-lymphocytes would further intensify this. Our
studies have been able to demonstrate viral signals within the
cardiac myocytes using both ISH and mIF assays. The latter has
also demonstrated increased cytokine and interferon activity
within the myocardium in perivascular locations co-locating
with SARS-CoV-2specific T cells as well as macrophages. We
note that in staining for the ACE2 receptor, the distribution of
these receptors is not uniform throughout the cardiac and
vascular samples. This underlying variation may underscore
the heterogenous distribution of cardiac injury seen in our cases.

Yajima and Knowlton (2009); Wick et al. (2004)
Immunohistochemical findings in our cases suggest the

presence of virus within the vessel lumen and wall as well as
within immediate perivascular space together with the presence
of activated lymphocytes and cytokine activity (Figure 4).
Macrophage/monocytes are known to be able to transport
Corona viruses and studies have also suggested that
T-lymphocytes may be similarly infected (Wick et al., 2004;
Yajima and Knowlton, 2009). Hence whether this vascular
inflammation is a direct reaction to the existence of the virus
within the endothelium or a combination of dysregulated T cell,
cytokine and humoral response remains to be seen.
Consequently, it is tempting to propose that the observed
perivascular and intravascular inflammation modulates the
vascular integrity leading to vascular remodelling in the long-
term.

The cytokine and inflammatory cell activity within the lumen
are interesting as this suggests injury to the endothelial lining.
Our cases show widespread platelet and fibrin thrombi within
myocardial vessels and the myocardial microvasculature which
appears to persist even in cases with a prolonged disease. The
presence of possible NP protein signals within the lumen of the
vessel may also suggest persistence of viral presence in circulating
monocytes as another stimulus for the microembolic phenomena
(Figure 4).

One of our cases also showed marked fibroblastic activity
within intramyocardial vessels, suggesting possibly immune-
mediated injury to endothelial lining possibly contributing to a
stenosing lesion (Thieme et al., 2020). In recent years, pro-fibrotic
role of the innate immune system has become apparent. Early
events of fibrosis comprise inflammatory changes (Wick et al.,
2010), including recruitment of mononuclear inflammatory
infiltrates. Although, the initial events in activation of host
defence mechanisms are still largely unknown, It has been
proposed that viral myocarditis may have several phases from
predisposition or susceptibility of the cardiac myocyte to
infection, entry and active viral replication in the myocyte,

FIGURE 10 | Representative images of heart tissue stained using multiplex immunohistochemistry/immunofluorescence (mIHC/IF) Interferon gamma (red), GATA3
(orange), CD3 (magenta), CD38 (green), Granzyme B (yellow) (Magnification, 200X).
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persistence of the viral genome without detectable replication
and remodelling without detectable viral genome (Varga et al.,
2020).

Using mIF methods, we have demonstrated presence of IL-1B
and IL6 activity within collagen fibers in the regions of
myocardial fibrosis, both of which have been known to play a
profibrotic role (Huang et al., 2020a; Patil et al., 2020). It is
possible that profibrotic cytokines and mediators released during
myocarditis phase in susceptible individuals activate fibroblasts
and stimulate fibroblast differentiation leading to subsequent
cardiac remodelling. One further interesting point is the
persistent epicardial adipose tissue injury seen in all cases
manifested by small aggregates of CD4+ T-lymphocytes
around small thin-walled vessels and edematous tissue in the
early cases to patchy aggregates of lymphocytes and contraction
of the epicardial layer. As this epicardial adipose tissue has been
postulated to be active in secretion of endocrine and paracrine
substances, this persistent inflammation at this location may
further compound vascular injury (Huang et al., 2020b).

Interestingly, use for SARS-CoV2 antibody titer has not been
reported before for forensic purposes. The Roche assay detects
total antibodies to the nucleocapsid protein. The results are
reported as a cut-off index (COI); COI >1.4 are considered
positive. This suggests that the COI of 0.534 may represent a
subclinical antibody titer. Our findings suggest a possible forensic
application for the Roche serology test.

Although direct SARS-CoV-2-induced myocardial is a
consideration, COVID-19-associated cardiac damage is widely
attributed to exaggerated immune response. One of the early
reports describing myocardial inflammation in SARS-CoV-2
infection reported fulminant myocarditis with elevated IL-6
levels along with other cardiac injury markers (Wong et al.,
2004). Various cohort-based studies also showed an increased
cytokine production during COVID-19 infection, and cytokine
storm in these patients was found to be associated with the disease
severity and patient survival (Molenkamp et al., 2020). The
immune response in SARS patients is mainly mediated
through the Th1-cell activity as opposed to SARS-CoV-2
infection, where an imbalance between both Th1 and Th2
activity was found to support the inflammatory surge (Peiris
et al., 2003; Corman et al., 2021). Overall, evidence from the
published studies and ours implies that the SARS-CoV-2-induced
inflammatory response may be a possible cause of cardiac damage
in patients and could be targeted for therapeutic interventions.
The robust elicitation of IFNγ-producing CD4+ T cells in our
studies indicates that a cellular immune response with potential
anti-viral properties mirrors the strong neutralizing antibody and
cytokine response seen in vaccine trials (Sahin et al., 2020). More
recently, Bearse et al demonstrated that cardiac infection with
SARS-CoV-2 was common among patients succumbing to
COVID-19 infection. This study also showed that SARS-CoV-
2-associated cardiac infection was associated with more cardiac
inflammation and electrocardiographic changes (Bearse et al.,
2021). Nonbiologic immunosuppression is associated with lower
incidences of myocarditis and cardiac infection by SARS-CoV-2.
In our series none of the patients received COVID-19 specific
treatment.

Decrease of eosinophils was a critical event described in
sudden deaths, which is consistent with previous report that
eosinophils may predict the outcome of COVID-19 progression
(Babapoor-Farrokhran et al., 2020). Patients with high percentage
of neutrophils or neutrophils count had an increased risk of
sudden death, probably due to cytokine storm activated by
neutrophils (Wu et al., 2020). Unfortunately we did not have
corroborating evidence to monitor immune cell counts or
inflammatory biomarkers.

Exposure and susceptibility to COVID-19 are partly
influenced by occupation and working environment. Migrant
workers as in our cohort constituted a significant proportion of
the workforce in sectors that have remained active throughout the
crisis, such as construction work, logistics and deliveries. Several
confounding factors such as inability to work in isolation, lack of
access to private transportation, close physical proximity with
coworkers and in some instances lack of adequate protective
equipment render these workers particularly susceptible.

Although our study only examined male patients, the observed
myocarditis is still concordant with other studies. In one study,
the overall risk of patients with COVID-19 was nearly 16 times
the risk for myocarditis compared with patients who did not have
COVID-19. Patients with myocarditis were more commonly
male (59.3 versus 41.7%). Despite the limitations, the observed
myocardial lesions in our cohort may still be concordant with
other studies (Boehmer et al., 2021).

Despite limited existing evidence, our study may provide
relevant clues to associate sudden death of COVID-19 patients
and potential risk factors. However, several limitations should be
considered in our study: 1) it was a retrospective, single-center
study and we were not able to conduct all radiographic or
laboratory examinations in our subjects 2) interpretation of
our findings might be limited by the small sample size 3) data
collected for each patient may not be uniform as they represented
different disease stages, which might lead to bias in clinical
characteristics. Finally, as this is a descriptive/observational
study, further mechanistic explanation needs to be clarified.
Despite these limitations, our study demonstrated some
insights into the characteristics of COVID-19 patients
potentially at risk of sudden death. This would help physicians
to effectively triage patients with particularly poor prognosis on
admission to reduce the fatality rate.

CONCLUSION

Understanding the pathogenesis of COVID-19 infection is vital to
the proper management of this disease. Conventional autopsy
studies combined with state-of-the art molecular techniques are
an integral part of this process. Here we highlight the incidence of
increased cardiac and vascular events in COVID-19-infection
which may underlie inflammatory syndromes (Wong et al., 2004)
and raise the possibility for long term complications of potentially
cardiotropic and persistent virus. Either persistent viraemia or
migration of infected immune cells from the extracardiac
locations likely occurs in COVID-19 patients which may
exacerbate underlying ischemic myocardial injury. The
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association of COVID19 NP protein with endothelial cells,
cardiac smooth muscle cells warrants further investigation
particularly in COVID19 recovering patients. The possible
contribution to susceptibility of cardiac complications by
gender, nutrition, genetics or viral mutation should also be
considered.

METHODOLOGY

Real-Time Polymerase Chain Reaction
The inoculated swabs were tested at Singapore General Hospital
Molecular Laboratory either using the automated Roche Cobas
6,800 System (Roche Molecular Systems, Inc., Branchburg, NJ)
cobas SARS CoV-2 test, a dual-target (E gene and ORF1)
qualitative real-time RT-PCR assay, or using our in-house
developed SARS CoV-2 RT-PCR assay targeting the SARS-
CoV-2 E-gene region (modified from the protocol published
by Corman et al. (2021).

Multiplex Immunohistochemistry/
Immunofluorescence
mIHC/IF was performed using an Opal Multiplex fIHC kit
(Akoya Bioscience, Menlo Park, California, USA), as
previously described by our group and in other studies (Abel
et al., 2014; Stack et al., 2014; Garnelo et al., 2015; Lovisa et al.,
2015; Esbona et al., 2016; Garnelo et al., 2017; Yeong et al., 2017;
Grifoni et al., 2020; Le Bert et al., 2020; Ni et al., 2020;
Siripanthong et al., 2020; Thieme et al., 2020; Shirazi et al.,
2021). Slides were labelled with primary antibodies, followed
by appropriate secondary antibodies (see Supplementary Table
S1). Particularly for this panel, we followed the detailed protocol
that our group previous reported as protocol manuscript
(Nghiem et al., 2016) and hereby briefly described.

FFPE tissue sections were cut onto Bond Plus slides (Leica
Biosystems Richmond) and heated at 60°C for 20 min (Feng
et al., 2016). Tissue slides were then subjected to
deparaffinisation, rehydration and heat-induced epitope
retrieval (HIER) using a Leica Bond Max autostainer (Leica
Biosystems Melbourne), prior to endogenous peroxidase
blocking (Leica Biosystems Newcastle). Slides were
incubated with primary antibodies followed by application
of polymeric HRP-conjugated secondary antibodies (Leica
Biosystems Newcastle). An appropriate Opal fluorophore-
conjugated Tyramide signal amplification (TSA) (Akoya
Bioscience, Menlo Park, California, United States) was then
added at 1:100 dilution. Slides were rinsed with washing buffer
after each step. Following TSA deposition, slides were again
subjected to HIER to strip the tissue-bound primary/
secondary antibody complexes and ready for labelling of the
next marker. These steps were repeated until all six markers
were labelled and finally added with spectral DAPI (Akoya
Bioscience, Menlo Park, California, United States) at 1:10
dilution. Slides were mounted in ProLong Diamond Anti-
fade Mountant (Molecular Probes, Life Technologies,
United States) and cured in the dark at room temperature

for 24 h. Images (viable tumour regions were selected by
pathologists) were acquired for each case using a Vectra
three pathology imaging system microscope (Akoya
Bioscience, Menlo Park, California, United States) then
analysed and scored by pathologist with inForm software
(version 2.4.2; Akoya Bioscience, Menlo Park, California,
United States) (Zheng and Flavell, 1997; Weiskopf et al.,
2020) as well as HALO TM (Indica Labs) (Xu et al., 2020a;
Hoffmann et al., 2020).

RNA in-Situ Hybridization
For RNAscope RNA-ISH (Advanced Cell Diagnostics) analysis of
EBNA1, standard RNAscope manufacturer’s protocols were
followed using the RNAscope H2O2 and protease
pretreatment kit (ACD, reference# 322,381), RNAscope Target
retrieval buffer (ACD, reference# 322,000), and appropriate
positive and negative RNA probes for controls.

Immunohistochemistry
IHC was performed on the FFPE tissue samples as previously
described (Mlecnik et al., 2016; Qin et al., 2020; Wang et al.,
2020). Tissue sections (4 μm thick) were labelled with antibodies
targeting SARS-CoV-2 NP, as listed in Supplementary Table
S1. Appropriate controls were included. To evaluate the
antibody-labelled sections, images were captured using an
IntelliSite Ultra-Fast Scanner (Philips, Eindhoven,
Netherlands).

SARS-CoV-Ab Serology
Post-mortem arterial blood from all 8 COVID19 RT-PCR
positive patients was tested SARS-CoV-Ab was measured on
the Cobas e801 immunoassay analyzer (Roche). This assay
measures total antibodies directed against the nucleocapsid
protein. The assay has a specificity of 99.9% (714/715) and a
sensitivity of 48.2% within the first week after positive RT-PCR
results (n � 189) rising to 97.1% 14 days post-PCR diagnosis
(n � 70). COI>1.0 are considered positive. for SARS-CoV-2
antibodies on the Roche Cobas e801 analyzer as per the
manufacturer’s instructions. The performance of this Roche
assay has been evaluated and verified recently (Lau et al.,
2020).
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