133.8K
views
39
articles
Editors
8
Impact
Loading...
2,533 views
7 citations
2,147 views
5 citations
Original Research
06 August 2021

Warning and evacuation are among the most effective ways for saving human lives and properties from landslide dam hazards. A new warning decision model for landslide dam break is developed using Influence Diagrams to minimize the total losses. An Influence Diagram is a simple visual representation of a decision problem. It analyzes the qualitative (causal) relationships between the variables via a logic diagram and determines the quantitative relationships via conditional probability and Bayes’ theorem. The model is applied for the warning decision-making of the 2008 Tangjiashan landslide dam. The new model unifies the dam failure probability, evacuation, life loss, and flood damage in an Influence Diagram. Besides, a warning criterion is proposed for efficient decision-making. The model is more advanced than the decision tree since the inter-relationships of influence factors are qualitatively analyzed with causality connections and quantitatively analyzed with conditional probabilities. It is more efficient than a dynamic decision-making model (DYDEM) as it can directly calculate the three types of flood loss (i.e., evacuation cost, flood damage, and monetized life loss) and the expected total loss. Moreover, the probabilities of the influence factors leading to known results can be obtained through inversion analysis based on Bayesian theory. The new warning decision model offers an efficient way to save lives from landslide dam breaking and avoid unnecessary expenses from premature warning and evacuation.

2,907 views
4 citations
Original Research
30 July 2021

Conceptualisation of geo-hydrological characteristic of erosive runoff are of particular importance and has been required in recent soil erosion control. This study aimed to explore the feasibility of applying hydrological attributes to characterize surface runoff pathways in the process of hillslope soil erosion due to rainfall. Combined with sub-millimeter high-resolution laser scanning and computer digital image processing method, three hydrological indicators (i.e., sinuosity, gradient and orientation) were used to investigate the changes of the surface runoff pathways on the slope of three typical southern red soils (i.e., shale (HS), and Quaternary red clay soils (HQ1 and HQ2) under simulated rainfall conditions). The results indicated no significant changes of sinuosity with a mean value of 1.19. After the rainfall with the intensity of 1 mm/min and 2 mm/min, the orientation and gradient changed dramatically. The greatest changes appeared at the first rainfall, which showed that the biggest increase of gradient was 26.78% and it tended to be close to the original slope of the test plot, while the orientation dropped by 5.60–31.44%. Compared with HS and HQ1, the runoff pathway characteristics of HQ2 changed more consistent. The rainfall intensities had a significant impact on the correlation between indicators. The determination coefficients sorting with surface roughness were orientation > graient > sinuosity. And they were significantly linearly related to runoff under 1 mm/min rainfall intensity, while had positive correlation with sediment under 2 mm/min rainfall intensity (p < 0.05). In conclusion, there were more remarkable relationships between orientation, gradient and slope erosion under 1 mm/min rainfall intensity. This provided an innovative idea, that is applying the orientation and gradient to the simulation and prediction model of the rainfall erosion process in the sloping farmland in the southern red soil area.

3,534 views
8 citations
Original Research
30 July 2021

Mass movements in mountainous areas are capable of damming rivers and can have a lasting effect on the river longitudinal profile. The long profile is commonly used to retrieve regional tectonic information, but how much dams may compromise geomorphometry-based tectonic analysis has not been systematically researched. In this study, we investigate the relationship between river dams and the longitudinal profile of the upper Indus River basin, based on interpretation and analysis of remote sensing imagery and digital elevation models (DEMs) and local field work. We identified 178 landslide, glacier and debris flow dams. Using TopoToolbox, we automatically extracted the river longitudinal profile from the 30 m SRTM DEM, determined the location of convex knickpoints and calculated the channel steepness index. One hundred and two knickpoints were detected with heights above 148 m, of which 55 were related to dams. There is good spatial correspondence between dams, convexities in the river longitudinal profile and relatively high steepness index. Different dam types have different impacts on the river profile; on the upper Indus, debris flow dams have a greater impact than landslide and glacier dams and can form knickpoints of up to 900 m. Therefore, dams may have a significant influence on the river longitudinal profile, knickpoints and steepness index, and should be considered when extracting information on regional tectonics using these indices.

3,801 views
8 citations

In recent years, landslide lake disasters occur frequently in southwest mountainous areas of China. Considering the influence of dam size and discharge channel location, three large-scale field tests were carried out in a natural river to study the failure process and mechanism of non-cohesive soil landslide dam, and the process and mechanism of non-cohesive landslide dam breach were analyzed. The results show that the dam size and discharge channel location have a significant influence on the breach mechanism of the landslide dam. The dam failure process can be divided into three stages: the initiation stage, the development stage and the failure stage. When the discharge channel is located close to the bank, the width of the breach is smaller, and the volume of the residual dam body is larger. The more stable the dam body is, the longer the breach process time is, and the smaller the peak discharge is. This study can provide a scientific reference for the emergency disposal and risk assessment of landslide dam.

2,281 views
6 citations
3,361 views
7 citations
1,966 views
5 citations
Fetching...
Open for submission
Frontiers Logo

Frontiers in Microbiology

Reviews in Molecular Evolution of Infectious Agents and Diseases
Edited by Axel Cloeckaert, Antonio Battisti, Jens Andre Hammerl
Deadline
14 February 2025
Submit a paper
Recommended Research Topics
Frontiers Logo

Frontiers in Microbiology

Reviews in Molecular Evolution of Infectious Agents and Diseases
Edited by Axel Cloeckaert, Antonio Battisti, Jens Andre Hammerl
Deadline
14 February 2025
Submit a paper