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Editorial on the Research Topic

Loss of Epithelial Barrier Integrity in Inflammatory Diseases: Cellular Mediators and

Therapeutic Targets

IMPAIRED INTESTINAL BARRIER INTEGRITY IN IBD

About 0.75% of the inhabitants of the industrialized countries of the Western world were affected
by one of the two main entities of inflammatory bowel diseases (IBD), Crohn’s disease or ulcerative
colitis, in 2020 (1). This means that a significant part of the general population is affected by
chronically remitting gastroenterological symptoms, such as bloody diarrhea, abdominal pain, and
anemia. Importantly, besides its high incidence, IBD mainly affects the younger population, who
are often significantly hindered in their social and professional lives by the disease. Despite the
successful clinical establishment of new hallmark therapies during the last three decades, about 40%
of IBD patients do not satisfactorily respond to current treatment strategies or suffer a secondary
loss of response (2). Together, this promotes a scientific and clinical interest in identifying
innovative therapeutic targets (3), and in this course, there is a steadily growing improvement in
knowledge regarding the exact molecular and cellular processes of IBD pathogenesis. Although in
the past, many pioneering studies focused on intestinal immune cells (4–6), as their overwhelmingly
enhanced activation status and cytokine release were long assumed as predominant drivers of IBD,
nowadays, there is growing awareness that the entire mucosal barrier and its function decisively
determines the development and resolution of chronic intestinal inflammation (7–9). Addressing
this aspect in our Research Topic, we present a diverse collection of original and review articles
focusing on the pathological dysregulation and clinical relevance of the mucosal barrier integrity
and its cellular key players in IBD.

Besides absorptive and secretory intestinal epithelial cells (IECs) forming the tightly closed
epithelial monolayer, a broad spectrum of locally accumulating immune cells including also innate
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lymphoid cells as a rather newly described immune cell
population (reviewed by Schulz-Kuhnt et al.), as well as non-
hematopoietic cells, such as endothelial cells, enteric neurons,
adipocytes, and fibroblasts, contribute to the protection of the
intestinal lamina propria against potentially invading luminal
pathogens or foreign antigens (9–16). Furthermore, numerous
intestinal blood vessels are located in direct proximity to
the epithelial layer and are influenced by local inflammatory
processes (e.g., IFNγ-induced disruption of endothelial barrier
integrity) (17), while, vice versa, the inflammation-triggered
increased blood flow supports recruitment of pro-inflammatory
immune cells from the circulation (comprehensively summarized
by Stürzl et al.). In addition, the enteric nervous system
represents another factor of impact on intestinal homeostasis
that has been neglected in the past and whose potential
contribution in intestinal inflammation and impaired gut barrier
is discussed by Drobny et al. While we are constantly getting
better understanding of how the dysregulated function of
individual cell populations in the gut contributes to the loss
of intestinal homeostasis and the initiation or maintenance of
chronic inflammatory processes, it is also becoming increasingly
clear that the real challenge is deciphering the communication
between the different components of this cellular network
and to identify central molecular switches driving the loss of
mucosal barrier integrity, as well as the counteracting process
of mucosal wound healing in IBD (summarized by Sommer
et al.). For sure, immune cell-derived cytokines represent central
signaling molecules within this and a study by Delbue et al.
provides new mechanistic insights into IL-22-mediated effects
on epithelial integrity and wound healing. Moreover, implying
even higher complexity, the interplay between different cellular
compartments of the gut may further be influenced by external
factors derived from the lumen, as very well-established for
intestinal microbiota (an overview is provided by Jergens et al.)
and of clear relevance also for defined nutritional components
(18, 19). For example, Yeung et al. observed that reduced uptake
of vitamin D resulted in impaired mucosal barrier properties.

IMPLICATIONS FOR IBD THERAPY

Most of the clinically applied strategies in IBD therapy,
including classic immunosuppressive drugs (e.g., azathioprine
and 6-mercaptopurine), but also more specific approaches
like anti-cytokine antibodies (e.g., anti-TNF therapy and IL-
12/IL-23-neutralizing ustekinumab) and anti-adhesion therapy
(e.g., vedolizumab) primarily target the pathologically increased
activation and/or accumulation of pro-inflammatory immune
cells in the intestinal mucosa (3, 6). Lately, the maintenance

and restoration of the intestinal barrier function and mucosal
healing emerged as relatively new therapeutic goal in the
clinical management of IBD (8, 20) and this also resulted
in a better consideration of the epithelial-protective effects of
established therapeutics. For example, the recognized capacity
of anti-TNF therapy to restore the pathologically increased
rate of apoptotic IECs and the subsequent loss of epithelial
resistance in IBD patients (21), as well as the counteracting
influence of azathioprine and 5-aminosalicylic acid on the
inflammation-triggered downregulation and rearrangement of
junctional proteins in in vitro cultured IECs and intestinal
organoids (22). In addition, defined molecular mediators and
intracellular signaling pathways involved in the maintenance of
the epithelial tightness (e.g., STAT6, angulin-1, leptin, RhoA, and
IL13Rα2) (23–26), in IEC survival (e.g., Caspase-8) (27), in the
production of antimicrobial peptides (e.g., human β-defensin 2)
(28) and in wound healing (e.g., STAT1, STAT3) (29, 30) have also
been suggested as innovative therapeutic targets. As exemplarily
demonstrated by Gerbeth et al. summarizing the multiple effects
of histone deacetylase inhibitors on gut homeostasis, it will in
general be essential to always consider the above outlined cellular
complexity of the protective mucosal barrier and carefully
validate the role of potential innovative target structures for
the entire panel of involved cell types. Moreover, the fact that
pathological conditions significantly differ dependent on the
phase of disease (nicely described by Semin et al.) and its site
of manifestation (emphasized by the study of Stolzer et al.
describing a different impact of STAT1 signaling on IEC cell
death in the context of inflammation in ileum and colon, and by
comparative transcriptomic results reported by Gonzalez Acera
et al.), makes it important to also develop diagnostic strategies
allowing a careful clinical and molecular characterization of the
individual disease status prior to the selection and initiation
of therapy. In this context, Bojarski et al. provide a valuable
overview of innovative advanced gastrointestinal endoscopic
technologies and their potential future contribution in paving the
way for personalized medicine in IBD.
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The intestinal epithelial barrier is carrying out two major functions: restricting the entry of

potentially harmful substances while on the other hand allowing the selective passage

of nutrients. Thus, an intact epithelial barrier is vital to preserve the integrity of the host

and to prevent development of disease. Vice versa, an impaired intestinal epithelial barrier

function is a hallmark in the development and perpetuation of inflammatory bowel disease

(IBD). Besides a multitude of genetic, molecular and cellular alterations predisposing for

or driving barrier dysintegrity in IBD, the appearance of intestinal mucosal wounds is

a characteristic event of intestinal inflammation apparently inducing breakdown of the

intestinal epithelial barrier. Upon injury, the intestinal mucosa undergoes a wound healing

process counteracting this breakdown, which is controlled by complex mechanisms

such as epithelial restitution, proliferation and differentiation, but also immune cells

like macrophages, granulocytes and lymphocytes. Consequently, the repair of mucosal

wounds is dependent on a series of events including coordinated trafficking of immune

cells to dedicated sites and complex interactions among the cellular players and other

mediators involved. Therefore, a better understanding of the crosstalk between epithelial

and immune cells as well as cell trafficking during intestinal wound repair is necessary

for the development of improved future therapies. In this review, we summarize current

concepts on intestinal mucosal wound healing introducing the main cellular mediators

and their interplay as well as their trafficking characteristics, before finally discussing the

clinical relevance and translational approaches to therapeutically target this process in a

clinical setting.

Keywords: wound healing, intestinal epithelial cells, mucosal healing, IBD, intestinal epithelial barrier function

INTRODUCTION

The intestinal mucosa forms a tight barrier with two opposing functions. While it is selectively
permeable allowing the absorption of nutrients, it also separates the host from luminal toxins,
antigens and microbes that potentially promote disease [reviewed in (1)]. Upon mucosal damage,
the epithelial barrier gets leaky facilitating the translocation and therefore excessive exposure of
deeper layers of the mucosa to intestinal microbial antigens. This may lead to the recruitment
of immune cells releasing different cytokines and may result in disturbed homeostasis [further
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reviewed in (2, 3)]. Therefore, the regulation of the epithelial
barrier function is essential to maintain mucosal homeostasis.

A variety of factors may potentially contribute to mucosal
damage, including environmental factors, medication, diet,
the host microbiota, infections like HIV as well as genetic
factors such as polymorphisms in the CDH1 gene encoding E-
Cadherin, which is associated with increased risk to develop
ulcerative colitis (UC) [reviewed in (4, 5)]. In general, the
pathogenesis of several chronic inflammatory diseases including
the inflammatory bowel diseases (IBD) UC and Crohn’s disease
(CD) is associated with a dysfunctional intestinal epithelial
barrier as well as insufficient and delayed mucosal wound
healing (6–9). Particularly, wound repair as a pre-requisite
to re-establish the mucosal epithelial barrier and intestinal
homeostasis is crucial for efficient resolution of inflammation.
Hence, mucosal healing (MH) is an increasingly acknowledged
goal in IBD therapy in order to achieve and maintain long-
term remission. However, mucosal repair and wound healing
are complex processes coordinated by the dynamic crosstalk of
different cellular players including epithelial cells and infiltrating
immune cells as well as their mediators [reviewed in (10)]
that are still incompletely understood. A better understanding
of these interactions might therefore help to develop tissue-
specific approaches to promote wound healing and to treat
intestinal inflammation.

In the following paragraphs, we will review the current
concepts of intestinal mucosal wound healing, shedding light on
the contribution of infiltrating immune cells and their interaction
with epithelial cells. Finally, we highlight the clinical relevance
of MH and translational approaches to therapeutically target
this process.

INTESTINAL EPITHELIAL WOUND

HEALING

Intestinal epithelial wound healing is a complex process
modulated by various regulatory peptides, including growth
factors (GF), and cytokines. Three different phases can be
distinguished: Restitution, proliferation, and differentiation and
maturation. However, in vivo, these processes merge into each
other and overlap [reviewed in (11)].

First, epithelial cells surrounding the wound migrate rapidly
into the denuded area, form pseudopodia-like structures, re-
organize themselves in order to extend into the wound and then
re-differentiate after closing the wound defect. This process is
termed epithelial restitution and occurs within minutes to hours
[reviewed in (12)]. Interestingly, restitution is independent of
cell proliferation and one of the most important stimulators
of intestinal epithelial cell (IEC) restitution is transforming
growth factor β (TGF-β) (13–15). Within the intestinal mucosa,
TGF-β is produced by different cell types including epithelial
cells, stromal cells, regulatory T cells (Tregs), dendritic cells
(DC) and macrophages [reviewed in (16)]. Once TGF-β is
activated, it enhances restitution by upregulating the expression
of matrix metalloproteinase-1 (MMP-1), MMP-10 and a set of
genes, including Slc28a2, Tubb2a, and Cpe that are preferentially

expressed in fetal IECs (17, 18). Furthermore, mediators, such as
vascular endothelial growth factor (VEGF), which are released
from the inflamed mucosa, are involved in epithelial cell
migration in a TGF-β-dependent manner (19). In addition, it
was shown that amino acids like histidine and arginine play
an important role in TGF-β-mediated IEC restitution probably
via interaction with Smad signaling (20). Furthermore, Lopetuso
et al. (21) showed that during acute resolving colitis, IL-
33/ST2 promote epithelial repair and restitution by inducing
miR-320. It had earlier been demonstrated that miR-320 is
decreased in the context of intestinal inflammation, suggesting
that this might lead to an inherent defect of epithelial repair
(22). Recently, Desmocollin-2 (Dsc2), a desmosomal cadherin
exclusively expressed on IECs, was identified as a further key
contributor to IEC migration and restitution in vivo (23).

In order to increase the number of cells able to resurface the
wound area, proliferation is necessary and occurs within hours or
days [reviewed in (12)]. This phase is pre-dominantly promoted
by various GFs, such as epidermal growth factor (EGF),
keratinocyte growth factor (KGF), and fibroblast growth factor
(FGF) (24–27), as well as different cytokines including IL-28,
which was shown to control proliferation of IECs by activating
STAT1 (28), and IL-22, which induces STAT3 signaling, an
important regulator of immune homeostasis andmucosal wound
healing in the gut (29). Moreover, TLR2 was shown to suppress
apoptosis of IECs in vivo by selectively regulating trefoil factor
3 (TFF) expression and controlling intestinal epithelial wound
repair by modulating epithelial connexin-43 (30, 31).

Finally, differentiation and maturation is needed to re-
establish and maintain the mucosal barrier function. Under
normal conditions, Lgr5+ intestinal stem cells (ISCs),
which are located at the base of the crypts, differentiate
into short-lived proliferating transit-amplifying progenitors,
which further differentiate into absorptive (enterocyte) and
secretory progenitors under the control of Wnt/Notch signaling
[reviewed in (32, 33)]. Secretory precursors then develop into
enteroendocrine cells in a Neurog3-dependent manner or
into Goblet or Paneth cells following activation of Atoh1 also
known as Math1. Later on, the different cell types acquire their
lineage-specific expression of transcription factors (TFs), such as
Sox9 for Paneth cells and Klf4 for Goblet cells (34–36). It is also
worth mentioning, that there are two distinct ISC populations:
Crypt base columnar (CBC) cells, which are actively proliferating
and reserve intestinal stem cells (rISC) that are quiescent stem
cells until activated upon injury. In line with this, Gonzalez et al.
(37) showed that Hopx+ cells (rISC) are resistant to injury and
are the likely source of epithelial renewal following prolonged
ischemic injury (37).

Furthermore, host-microbiota interactions may substantially
affect proliferation of epithelial cells and are implicated in
intestinal barrier function. E.g., short chain fatty acids (SCFAs)
produced by commensal bacteria promote proliferation and
differentiation of cells along the crypt-villus axis and, thus,
contribute to epithelial restitution (38). Moreover, they are also
directly implicated in upholding epithelial integrity to counteract
tissue damage (39). In addition to these direct effects on epithelial
cells, SCFAs also profoundly impact on the differentiation of
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mucosal T cells and induce Tregs (40), which are involved in
mucosal wound healing as described below. Further details on
this emerging field are reviewed elsewhere [reviewed in (41, 42)].

Another important cellular mechanism that should be
considered in the context of intestinal epithelial wound healing
is epithelial-mesenchymal transition (EMT). During this process
epithelial cells lose some of their epithelial characteristics, such
as polarity and adhesiveness and acquire migratory functions
and properties of mesenchymal cells. This transformation is
characterized by the interplay of different mediators like TFs,
RNAs, and TGF-β family proteins [reviewed in (43)]. In IBD
patients, Leeb et al. (44) reported a reduced migratory ability of
fibroblasts, which are normally essential in wound contraction
during the initial phase of wound healing (44, 45). Based
on these findings it is conceivable that epithelial cells are
forced to undergo EMT in order to compensate fibroblast
dysfunction and to rapidly restore the intestinal barrier function,
which, in turn, might predispose for CD-associated fistulae
formation (46).

CONTRIBUTION OF VARIOUS IMMUNE

CELL TYPES IN INTESTINAL REPAIR AND

THEIR INTERACTION WITH EPITHELIAL

CELLS

Lymphocytes and Innate Lymphoid Cells
Cytokines and other mediators secreted by different T cell subsets
play essential roles in wound healing (see Figure 1). Diverse
injury models in mice (including models focusing on other
organs than the gut, for which evidence is limited) show that
depletion of Tregs during different phases of wound healing
leads to a worse clinical outcome suggesting that they play an
important role in the regulation of wound healing probably
by counteracting pro-inflammatory stimuli (47–52). Nosbaum
et al. (53) showed that Tregs in cutaneous wounds attenuated
Interferon-γ (IFN-γ) production and reduced the accumulation
of pro-inflammatory macrophages. Their elimination resulted in
delayed wound re-epithelialization and wound closure. IFN-γ
had previously been shown to affect epithelial intercellular
junctions and to attenuate intestinal epithelial wound closure by
inhibiting epithelial cell migration in a β1 integrin-dependent
mechanism (54, 55). Nosbaum et al. (53) were also able to
show that, mechanistically, Tregs induced the expression of EGFR
early after wounding, and lineage-specific deletion of EGFR in
Tregs resulted in a reduced accumulation and activation as well
as increased accumulation of pro-inflammatory macrophages.
Furthermore, there is evidence that FGF2 produced by Tregs

together with IL-17 is involved in gene regulation to repair
damaged cutaneous and intestinal epithelium (53, 56). Moreover,
CD4+CD25+Foxp3+ Tregs isolated from peripheral blood of
healthy individuals were reported to induce a phenotypical
switch of human monocytes/macrophages to wound healing
macrophages (57). Following IL-33 release from damaged
epithelia, the GF amphiregulin is another mediator produced by
Tregs, which is involved in limiting inflammation and promoting
epithelial repair (47, 58).

Other important cell types involved in intestinal mucosal
wound healing are T helper cells (TH) and innate lymphoid
cells (ILCs). IL-22 is produced by TH17 and TH22 cells as well
as by group 3 ILCs (ILC3) at mucosal surfaces and is a key
mediator of this process [reviewed in (59)]. By activating STAT3,
IL-22 can not only accelerate proliferation of IECs, but also
induce the expression of mucus-associated molecules and the
restitution of mucus-producing cells (29, 60). Specifically, IL-
22 produced by ILC3s after intestinal injury has been shown
to activate intestinal stem cells to promote regeneration (61).
Upstream, upon tissue damage, IL-23 may be released leading
to the production of IL-22 by ILC3s (62). In line with this, mice
deficient for IL-36γ, a potent inducer of IL-23, showed reduced
levels of IL-22 and failed to recover from acute intestinal damage.
This impaired recovery could be rescued by exogenous IL-23
application (63).

ILC1 show a similar cytokine expression pattern as TH1 cells
and mainly exhibit their function by secreting tumor necrosis
factor α (TNF-α) and IFN-γ to recruit and activate other
inflammatory cells (64). As mentioned above, IFN-γ is also
involved in the regulation of epithelial barrier integrity (54, 55).
Thus, it is not surprising that depletion of intraepithelial ILC1s
was associated with reduced proximal colon inflammation in a
mouse model of colitis (65).

By contrast, ILC2s produce TH2-cell-associated cytokines
including IL-4, IL-5, IL-9, and IL-13 [reviewed in (66, 67)].
Upon stimulation by IL-33 and similar to Tregs, ILC2s produce
amphiregulin, which was shown to promote intestinal epithelial
cell regeneration in dextran sodium sulfate (DSS)-treated
mice (58).

Furthermore, γδ T cells need to be considered when talking
about intestinal wound healing as they are the major source of
KGF in the mucosa. KGF released from intraepithelial γδ T cells
is important formaintaining intestinal epithelial cell proliferation
and villus growth, for promoting the repair of epithelial lesions
and is also involved in epithelial cell differentiation (68). It was
shown that mice lacking γδ T cells have increased susceptibility
to DSS-induced colitis and reduced ability to repair damaged
epithelia (69). In line with this, Chen et al. (70) found that
intraepithelial γδ T cells preserve the integrity of damaged
epithelial surfaces by localized delivery of KGF (70, 71).

Neutrophils
Neutrophils play a crucial role in the first line of defense
against microbes. Their antimicrobial machineries include the
formation of neutrophil extracellular traps called “NETs” (72)
and the elimination of invading microbes through phagocytosis,
degranulation and production of reactive oxygen species (ROS)
[reviewed in (73)]. These mechanisms are essential for wound
healing by on the one hand preventing infection through
pathogen translocation, and on the other hand by mediating
the early so-called inflammatory phase of wound healing. The
recruitment of murine neutrophils to the site of cutaneous
injury begins 4 h after the initial injury and peaks after 18 h
(74). Depletion of neutrophils in damaged mucosa was shown
to lead to a severer colitis as well as impaired recovery
and restoration of epithelial integrity (75–77). Furthermore,
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FIGURE 1 | Contribution of some of the most important immune cells to intestinal wound healing. Circulating immune cells are recruited to the wound area by cell

trafficking processes. After entering the tissue these cells may undergo differentiation processes and secrete various mediators, which promote or repress mucosal

wound healing (for details cf. main text).

it was shown that neutrophils enhance the production of
amphiregulin by IECs promoting epithelial barrier function
and tissue repair (75). Another mechanism contributing to
the wound healing properties of neutrophils is their ability to
generate a hypoxic microenvironment within the wounded tissue
by producing ROS, which in turn leads to the stabilization
of HIF-1α in the intestinal mucosa (78). HIF-1α was shown
to enhance the epithelial expression of TFF3, which has a
barrier-protective function (79). In addition, HIF-1α as a TF
promotes the upregulation of genes involved in wound healing
including adhesion proteins, different GFs and extracellular
matrix components [reviewed in (80)]. Moreover, neutrophils
produce IL-22 and IL-23, which are both essential mediators of
wound healing as mentioned above (77, 81, 82).

However, neutrophils may also have a negative impact on
wound healing. For instance, it was shown that counteracting
the alarmin HMGB1 leads to reduced NET formation
resulting in improved wound healing and inhibition of
NETosis improves wound healing in diabetic mice (83).
Furthermore, the accumulation of double strand breaks
in the mucosa induced by neutrophils led to impaired
wound healing and genomic instability (84). In summary,
the effects of neutrophil in this process can be seen as a
double-edged sword.

Monocytes and Macrophages
Circulating monocytes are rapidly recruited to sites of tissue
damage or infection, where they further differentiate into
inflammatory M1-like macrophages or wound healing M2-
like macrophages. Although this classification has been used
to explain many experimental observations, it is meanwhile
regarded as oversimplification (85).

While the level of CD16 and CD14 expression can be used
to differentiate three different monocyte subsets in humans,
they are divided into two subpopulations based on their surface
expression of Ly6C and/or CX3CR1 in mice (86, 87). Ly6Chi

monocytes were shown to be more dominant in the early
inflammatory phase exhibiting phagocytic and inflammatory
functions, whereas Ly6Clow monocytes dominate the later phase
displaying anti-inflammatory properties and promoting healing
(88). The supportive role of macrophages for barrier function
was shown by their ability to increase transepithelial electric
resistance and cell height of enteroid monolayers (89). Depletion
of macrophages in different mouse models led to severely
altered wound morphology, delayed re-epithelialization, reduced
collagen deposition, impaired angiogenesis, and decreased
cell proliferation in the healing wounds (90, 91). Due to
their heterogeneity, macrophages play essential roles in all
phases of wound repair. More specifically, depletion after the
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inflammatory phase increased injury and delayed regeneration
while depletion in the early inflammatory phase significantly
reduced the formation of vascularized granulation tissue,
impaired epithelialization, but also resulted in reduced scar
formation in kidneys and skin (92, 93). As mentioned
above, IL-23 is an important mediator of wound healing and
macrophages were identified as a major source of this cytokine
(94). Furthermore, the release of IL-10 by macrophages leads
to endothelial cell proliferation and activation of epithelial
pro-proliferative pathways in the intestine (95). Interestingly,
monocytes and macrophages express virtually all known
collagen and collagen-related mRNAs, which is essential for
the remodeling phase of wound healing (96). Macrophages also
have an impact on other immune cells, e.g., by inducing the
differentiation of Foxp3+ Tregs in the lamina propria (97).

The polarization of macrophages to a wound healing
phenotype is essential for repair processes and is regulated by
different mediators. Blockade of IL-1β was shown to prime the
generation of M2-like macrophages in diabetic mice and IL-33
significantly enhanced intestinal wound healing by promoting
the M2 phenotype (98, 99). Moreover, STAT6-mediated M2
polarization promoted repair in 2,4,6-trinitrobenzenesulfonic
acid (TNBS) treated mice through activation of the Wnt
signaling pathway (100). In addition, IL-4 or IL-13 in
combination with apoptotic cells are capable of activating wound
healing macrophages. In the absence of apoptotic signals, the
proliferation of tissue-resident macrophages, the induction of
anti-inflammatory and tissue repair genes are impaired after
induction of colitis (101). Recently, Fpr2/3, which is expressed by
epithelial cells was shown to regulate the migration of monocytes
to sites of mucosal injury, and CX3CR1 was important for the
accumulation of macrophages in the wound (102).

However, monocytes andmacrophagesmay also have negative
effects on the epithelial barrier. Mononuclear phagocytes
interact with IECs by E-Cadherin leading to dysregulated
epithelial cell differentiation and intestinal inflammation by
disrupting mucosal homeostasis (103, 104). In line with this,
a combination of paracrine and hetero-cellular communication
between IECs and macrophages was suggested to play a pivotal
role in regulating epithelial cell function and dysregulation of
intestinal epithelial barrier (105). Sablet et al. demonstrated that
inflammatory monocytes contribute to the loss of intestinal
barrier function during cryptosporidiosis by producing TNF-α
and IL-1β (106).

Taken together, macrophages are crucially involved in many
aspects of intestinal wound healing. Depending on their
polarization and the phase of wound healing, they may either
promote wound closure or predispose for dysregulation of MH.

CELL TRAFFICKING IN THE CONTEXT OF

INTESTINAL MUCOSAL WOUND HEALING

As all of the immune cells discussed in the scope of this review
are circulating cells or descendants from such cells, there is
an obvious need of trafficking for these effectors to reach the
site of insult. Thus, cell trafficking should be considered as an

integral part of wound healing processes and will shortly be
reviewed here.

Described in greater detail elsewhere, cell trafficking describes
all processes that are involved in the localization of cells and
therefore comprises cellular influx to, retention in and egress
from effector tissues [as reviewed in (3, 107)]. Influx from
the circulation is regulated by a tightly controlled multistep
adhesion cascade. As a prerequisite for transmigration through
the endothelium, interaction of selectins and their respective
ligands on endothelial cells recruit circulating cells to the
vessel walls of high endothelial venules (HEVs) leading to
rolling and reduced velocity (108). This slow-down increases
the availability of circulating cells to chemotactic stimuli,
especially to chemokines, thereby enabling chemokine-induced
conformational changes of heterodimeric integrins. Activated
integrins are able to firmly bind to endothelial cell adhesion
molecules, leading to the arrest of circulating cells on the vessel
wall and subsequent para- or intracellular transmigration and
target tissue invasion (109).

With regard to gut homing, the α4β7 integrin-mucosal
vascular addressin cell adhesion molecule 1 (MAdCAM-1)
axis was identified as important due to the virtually exclusive
expression of MAdCAM-1 on HEVs of the intestinal tract
(110). The relevance of this axis in intestinal wound healing
was recently demonstrated, as anti-α4β7 antibody treatment
of mice in a colon wound model led to impaired intestinal
wound closure, most likely due to reduced homing of non-
classical monocytes (NCMs) and a reduction of NCM-derived
wound healing macrophages (111). Further, gut specificity in
trafficking processes may be provided by the exclusive expression
of chemokines in the intestine, as for instance of the CCR9 ligand
CCL25 and the GPR15 ligand in the small and large intestine,
respectively (112, 113). Their participation in cell recruitment
to intestinal wounds has not been studied so far and needs
to be further elucidated. Interestingly, both α4β7 and CCR9
are induced on gut-homing T cells through retinoic acid (RA)
produced by dendritic cells in the gut-associated lymphoid tissue.
With regard to ILCs, it has been shown that this is the case
only for ILC1s and ILC3s, while α4β7 expression on ILC2s
occurs independent of RA and is already induced in the bone
marrow (114). In connection with the above-mentioned roles
of ILCs in wound healing, it is tempting to speculate that this
might lead to continuous gut homing of amphiregulin-secreting
ILC2s promoting homeostasis, while ILC3 recruitment might
be regulated by the level of inflammation present. However,
it is difficult to envision the consequences for wound healing,
since ILC3s not only promote mucosal repair through IL-22,
but may also promote inflammation and, thus, secondary tissue
injury (115).

Retention of homed cells within the target tissues is either
controlled indirectly by the regulation of egress signal receptors
or by direct anchoring to tissue structures. A key example of
indirect retention is the interaction of CD69 with sphingosine
1-phosophate receptor-1 (S1PR1), leading to degradation of the
latter and inhibition of extravasation along the S1P gradient
into the bloodstream (116, 117). Further extravasation signals
might be provided by the interaction of CCR7 and CCL19 or
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CCL21, facilitating the recruitment of receptor-bearing cells to
the lymphatic system (118, 119). Direct anchoring of recruited
cells can be provided by the interaction of integrins with cell
adhesion molecules in the tissue. E.g., αE-integrin (CD103)
dimerizes with β7-integrin andmediates tissue retention through
interaction with E-Cadherin (120, 121). Although the retention
of cells in the wound area or their recirculation to the
blood will certainly be of relevance in the spatiotemporal
orchestration of the wound healing process, since it might
lead to the accumulation or reduction of repair-promoting or
-impeding cell populations, these mechanisms have not been
specifically investigated in this context in the gut. However, and
interestingly, there is evidence from skin models, that tissue
resident memory T cells (TRM cells), which play important roles
in the pathogenesis of IBD (122), promote epithelial wound
healing (123, 124).

It is also worth mentioning that mucosal cytokine profiles
differ between CD and UC. While UC is dominated by TH2-
associated cytokines like IL-5, IL-13, IL-9, and IL-4 (125–129),
CD is marked by cytokines, such as IFN-γ and IL-2, associated
with a TH1 phenotype (125, 130). TH17 cells and cytokines
seem to be involved in both entities (131). At the same time,
macroscopic differences in ulcerations between CD and UC exist
(132) and inflammation patterns between CD and UC differ
with immune cell infiltration restricted to the mucosa of the
colon in UC, but being transmural and potentially occurring
in the whole gastrointestinal tract in CD [reviewed in (133)].
This strongly suggests that different homing mechanisms apply
for immune cells in CD and UC that might also impact wound
healing. Interestingly, differences in the expression of gut homing
markers on different T cell subsets and differential usage of
gut homing pathways in ileal CD as compared to colonic
UC have been observed [reviewed in (134, 135)]. However,
further dedicated studies are needed to explore this assumption
in depth.

Taken together, the implications of immune trafficking for
intestinal wound healing are obvious. Particularly, they need to
be considered in a therapeutic context, especially when trafficking
mechanisms are directly manipulated by antibodies. This also
highlights the need for further investigation of the trafficking
mechanisms participating in intestinal wound healing.

CLINICAL RELEVANCE OF MUCOSAL

HEALING AND THERAPEUTIC

APPROACHES

Mucosal healing (MH), a term coined by Truelove and Witts in
1955 (136), is nowadays considered an important study endpoint
and increasingly important treatment goal in IBD. Several clinical
trials showed the importance and improved clinical outcomes
after achieving MH, defined as absent or low signs of mucosal
injury on endoscopy (137–141). In UC and CD, it is associated
with long-term remission and reduced need for surgery (142,
143). On tissue level and mechanistically, it is obvious that
wound healing and restitution of the intestinal epithelial barrier
function are major steps in achieving MH. Consequently, the

promotion of wound healing has been suggested as a potential
therapeutic tool (144). Calprotectin is a soluble protein in the
cytosol of neutrophils and known to be elevated in both the
intestinal mucosa and feces of IBD patients (145). Several studies
have shown a correlation between low fecal calprotectin (FC)
concentration and histological remission as well as MH in
UC and CD patients. Therefore, low calprotectin levels might
be an early predictor of therapeutic success in terms of MH
(146, 147).

One experimental approach to achieve wound healing that
was addressed by several studies, but not in the gut, was
the promotion of recruitment and polarization of monocytes
and wound healing macrophages (148, 149). Maruyama and
colleagues (150) showed that upon injection of IL-1β-activated
macrophages in mice, the production of VEGF-C was increased
and cutaneous wound healing improved. Interestingly, one
mechanism of action of corticosteroids is M1 macrophage
suppression in response to LPS stimulation, which involves the
miR-155 (151). Moreover, neutrophils as cellular mediators can
be targeted. In the context of peritonitis, Norling et al. (152)
showed that nanoparticles containing aspirin-triggered resolvin
D1 or a lipoxin A4 analog reduced polymorphonuclear cell influx
and enhanced wound healing. As different GFs like EGF, VEGF,
and KGF mediate epithelial repair, they might also be interesting
candidates [reviewed in (153)]. Another promising therapeutic
approach is targeting IL-22, which is considered to promote
epithelial integrity via STAT3. Consequently, an IL-22 IgG4 Fc
fusion protein (UTTR1147A) is currently tested in patients with
moderate-to-severe UC and CD (ClinicalTrials.gov Identifier:
NCT03558152, NCT03650413).

In addition to these experimental concepts, several current
IBD treatments were shown to have a protective or regenerative
effect on the damaged epithelium and to promote MH
[reviewed in (154)]. Aminosalicylates not only affect intestinal
inflammation via various signaling pathways such as NF-κB, but
also directly stimulate epithelial wound healing by enhancing
epithelial cell restitution and proliferation (155–157). Anti-
TNF-α antibodies such as infliximab and adalimumab are able
to induce and maintain MH (144, 158–160) by restricting
the inflammatory infiltrate and T cell proliferation within
the lamina propria and by downregulating the expression of
metalloproteinases and pro-inflammatory molecules (161). For
infliximab, a single nucleotide polymorphism in the TRAP1 gene
has been described to be associated with MH in CD patients
(162). Moreover, anti-TNF-α antibodies support regenerative
processes by reducing inflammation, restoring gut barrier
function, mucosal secretion and by activating fibroblasts (163).
In addition, it has been suggested that these antibodies mediate
Fc region-dependent induction of wound healing macrophages.
It was shown that infliximab as well as adalimumab can induce
wound healing macrophages in vitro and in vivo (164, 165).
Similarly, ustekinumab, a monoclonal antibody directed against
IL-12 and IL-23, successfully induced MH in CD patients (166).

As the JAK/STAT pathway seems to play an important role
in the interaction of lymphocytes and IECs through a variety of
cytokines, it is not surprising that tofacitinib, a JAK inhibitor
routinely used in UC treatment, is able to induce and maintain
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MH (167). Lechner et al. (168) recently demonstrated that
tofacitinib specifically reduces pro-inflammatory cytokines that
are produced by lamina propria T cells and affects their homing
potential by suppressing the surface integrin expression on T
cells. However, in an experimental model of intestinal mucosal
wounding, high concentrations of tofacitinib rather prolonged
wound healing (168), an observation that requires further
translational studies to reconcile it with the clinical outcomes.

Another important class of IBD therapeutics are anti-
trafficking agents [reviewed in (3)]. Vedolizumab, a humanized
monoclonal anti-α4β7 antibody, inhibits the binding and
subsequent migration of lymphocytes into the gut (169).
The GEMINI I trial showed that significantly more UC
patients treated with vedolizumab than with placebo achieved
MH (140, 170). However, mechanistic data explaining the
impact of vedolizumab on trafficking of cells implicated in
wound healing in inflammation are so far missing. Thus, it
is not clear, whether this is a direct effect or secondarily
resulting from reduced inflammation and associated changes
in the balance of cells promoting and counteracting mucosal
repair. In seeming contrast to data on MH as a study
endpoint assessing control of inflammation, several (but not
all) studies reported that patients treated with vedolizumab
are more vulnerable to post-operative complications (171–176).
A potential explanation might be that, according to a recent
study from our group, blocking α4β7 impaired gut homing of
NCMs, which was associated with delayed wound healing and
reduced perilesional presence of wound healing macrophages
(111). It is important to mention that this is not necessarily
contradicting the mentioned MH data, since this study
exclusively addressed exogenous tissue injury in the absence
of inflammation and it is likely that ongoing inflammation
will substantially modulate trafficking, communication and
signaling pathways.

Collectively, almost all available therapies for the treatment of
IBD have demonstrated their potential to induce MH, although
it is not clear to what extent this is a result from direct impact on
wound healing processes or a secondary effect of the reduction
of inflammation. Thus, further mechanistic data and additional

efforts to directly promote wound healing and barrier integrity in
the context of IBD are necessary.

CONCLUDING REMARKS

Intestinal mucosal wound repair are key steps for achieving
and maintaining MH, which is associated with beneficial clinical
outcomes. However, the interplay as well as the trafficking
characteristics of the most important cellular mediators like
lymphocytes, neutrophils and monocytes/macrophages are not
sufficiently characterized. Further research is necessary in
order to better understand the contribution of cell trafficking
to mucosal wound repair and to base targeted therapeutic
approaches on this process.
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The intestinal epithelium is a complex, dynamic barrier that separates luminal contents

from the immune compartment while mediating nutrient absorption and controlled

passage of antigens to convey oral tolerance. A compromised epithelial barrier often

leads to inflammation because immune cells in the lamina propria come into direct

contact with luminal antigens. Defects in epithelial cell function were also shown to be

involved in the etiology of inflammatory bowel diseases. These are severe, chronically

relapsing inflammatory conditions of the gastrointestinal tract that also increase the risk

of developing colorectal cancer. Despite major efforts of the scientific community, the

precise causes and drivers of these conditions still remain largely obscured impeding

the development of a permanent cure. Current therapeutic approaches mostly focus on

alleviating symptoms by targeting immune cell signaling. The protein family of histone

deacetylases (HDACs) has gained increasing attention over the last years, as HDAC

inhibitors were shown to be potent tumor cell suppressors and also alleviate morbid

inflammatory responses. Recent research continuously identifies new roles for specific

HDACs suggesting that HDACs influence the cell signaling network from many different

angles. This makes HDACs very interesting targets for therapeutic approaches but

predicting effects after system manipulations can be difficult. In this review, we want

to provide a comprehensive overview of current knowledge about the individual roles of

HDACs in the intestinal epithelium to evaluate their therapeutic potential for inflammatory

conditions of the gut.

Keywords: histone deacetylase, HDAC, inflammatory bowel disease, intestinal epithelium, HDAC inhibitor,

inflammation

INTRODUCTION

The intestinal epithelium is a highly dynamic tissue whose functional integrity is indispensable
for proper gut homeostasis. Lining the inner walls of the gastrointestinal tract, it establishes the
first line of defense from potential pathogens contained in ingested material but simultaneously
allows controlled passage of nutrients and selected antigens. Functional defects of the intestinal
epithelium can lead to severe dysregulations of gut homeostasis and are a hallmark of
many chronic gastrointestinal conditions such as inflammatory bowel diseases (IBD) (1).
IBD, with Crohn’s disease (CD) and ulcerative colitis (UC) being the most frequent forms,
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is characterized by chronically relapsing, exaggerated
inflammation that involves drastic alterations in the microbiome
and epithelial barrier function (2, 3). Despite rising incidence
rates worldwide and extensive research, the precise etiology
and drivers of IBD are still not clear with only few therapeutic
options and no permanent cure available (4).

The promise of a new therapeutic approach arose when we
could show that SAHA (Vorinostat), an inhibitor of histone
deacetylases (HDACs), has the potential to alleviate intestinal
inflammation in an IBD mouse model (5). Previously, HDAC
inhibitors were mainly appreciated for their anticancer activity
(6). At the time, most small molecules used in these studies
were pan-HDAC inhibitors, meaning they inhibit all members of
the classical HDAC family (7). In the mammalian genome, this
protein family comprises 11 HDACs, that, are subdivided into
three classes depending on their structure, enzymatic function,
subcellular localization, and expression patterns (Table 1) (22).
The eponymous function of epigenetic control via histone
deacetylation is mainly implemented by class I HDACs while
members of the other classes have either mainly non-histone
targets or display a strongly reduced catalytic activity in their
deacetylation domain and are considered to function rather
via sequestering their targets than deacetylating them (22).
HDACs are a phylogenetically very old protein family and are
deeply rooted into the cellular signaling network. Therapeutic
strategies that base on inhibiting all members of this family could
therefore bear a certain disruptive potential, which might not be
directly evident.

The environment of the intestinal mucosa adds an additional
level of complexity to this issue, as different cell types are
involved whose signaling networkmight rely on different HDACs
with different functions. Many studies have looked into the
role of HDACs in immune cells as the obvious mediators
of inflammation (23). As increasing evidence over the last
years also ascribed crucial immune regulatory functions to
the intestinal epithelium, many recent studies also reported
on the role of HDACs in the intestinal epithelium during
inflammation. Here, we want to condense their results to provide
a bigger picture about currently known inflammation-associated
signaling pathways that involve HDAC signaling in intestinal
epithelial cells (IECs) to help improve our understanding of
the effects of HDAC inhibitor treatment on the intestinal
epithelium. Additionally, to explore possibilities of a more
targeted treatment, we outline the current knowledge about the
roles of specific single HDACs in this context.

Pan-HDAC Inhibition
In the gut, HDAC inhibition is a naturally occurring mechanism
that constitutes an integral part of homeostasis. Short chain
fatty acids (SCFAs), such as butyrate, propionate, and acetate,
produced by various bacterial communities of the microbiome
mostly via anaerobic fermentation of dietary fibers, act as natural
HDAC inhibitors (24, 25). In particular, besides serving as energy
source for colonocytes, butyrate elicits a wide array of beneficial
effects for gut homeostasis including suppression of pathological
inflammation (26).

Considerable advances in understanding the importance of
HDACs for inflammatory response pathways in IECs have
been made by investigating the anti-inflammatory properties of
butyrate and other SCFAs. The influence of butyrate on cell
signaling can often be traced back to its ability to act as an
HDAC inhibitor. For example, butyrate was found to support
barrier function by increasing expression of IL-10 receptor α

subunit (IL-10RA) via activation of STAT3 in human colon-
derived cell lines Caco-2 and T84. In turn, IL-10RA increases
tightness of the epithelial barrier by mediating downregulation of
the pore-forming claudin-2. This mechanism depends on HDAC
activity, as it can be reproduced by other pan-HDAC inhibitors,
such as Trichostatin A (TSA) (27). Similarly, using cell lines
and enteroids from mouse and human, the conductive effects
of butyrate on the production of retinoic acid, an important
immune regulator, could be ascribed to HDAC inhibition in
IECs (17).

HDACs are most likely also the main mediators for conveying
the effects of butyrate and propionate on nuclear factor kappa
light-chain-enhancer of activated B-cells (NF-κB) signaling in
response to Toll-like receptor (TLR) or TNFα stimulation. In
cell culture models of human colon IECs, HDAC inhibition
by butyrate and propionate increase TNFα and decrease IL-8
and MCP-1 expression in response to TLR5 stimulation (28).
By contrast, during steady state, phenyl butyrate increases IL-
8 and IL-18 production as well as TLR2-dependent expression
of host defense peptides pEP2C, pBD-1, and pBD-3 in porcine
IECs (29). HDAC inhibition by TSA dramatically increases
the production of antimicrobial peptides, such as β-defensins,
upon bacterial challenge in cell lines and organoids of human
colon epithelium (30). TSA induces phosphorylation of the IκB
kinase complex, which in turn phosphorylates inhibitor of NF-
κB alpha (IκBα) and serine 10 of histone H3 activating NF-
κB signaling and expression of target genes, respectively (30).
Silencing of TLR2 or TLR4 increases overall HDAC activity and
considerably mitigates the effects of phenyl butyrate on host
defense peptide expression (29). Interestingly, TLR2 and TLR4
are two of the main receptors for recognizing extracellular high-
mobility group box 1 (HMGB1), which plays an important role
in the pathogenesis of IBD and whose secretion is also controlled
by HDAC activity (31, 32). HMGB1 is typically localized in the
nucleus but can be released into the extracellular space upon
stress or tissue damage acting as a damage-associated molecular
pattern (DAMP) that induces pro-inflammatory responses by
binding its receptors (33). In a study investigating the anti-
inflammatory effects of flavonoid isoliquirtigenin using HT-29
cells (human colon IECs), isoliquirtigenin prevented HMGB1
acetylation, leading to subsequent cytosolic translocation and
secretion, by increasing HDAC activity (32). While HDACs
appear to be negative regulators of TLR2 and TLR4, signal
transduction of the intracellular virus-sensing receptor TLR3
heavily depends on HDAC activity. The HDAC inhibitor SAHA
causes strong downregulation of TLR3 supposedly through
upregulation of interferon response factor 8, which suppresses
TLR3 transcription (34). Consequently, SAHA-treated IECs do
not react to TLR3 stimulants with upregulation of TLR3-
responsive target genes, such as IL-6, TNFα, and IFNβ, or
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TABLE 1 | Superfamily of Zn2+-dependent histone deacetylases (HDACs) of the mammalian genome with subcellular localization and reported role in intestinal epithelial

cells (IECs) during inflammation.

HDAC Subcellular localization Reported role in IECs during inflammation References

Class I HDAC1 Nuclear Negative regulator of STAT signaling, NF-κB signaling and acute phase

response; involved in IL-1β-dependent cytokine production; positive

regulator of the p38/MAPK pathway; downregulation of tight-junction

proteins

(8–11)

HDAC2 Nuclear Positive regulator of inflammatory response and serotonin transporter;

negative regulator of STAT signaling and expression of antibacterial lectins

(10, 12, 13)

HDAC3 Nuclear and cytoplasmic Negative regulator of retinoic acid metabolism and NF-κB signaling,

deacetylation of p65; downregulation of tight-junction proteins; crosstalk

with microbiome; activation of intraepithelial lymphocytes during infection

(11, 14–17)

HDAC8 Nuclear and cytoplasmic NA

Class IIa HDAC4 Nuclear and cytoplasmic Invovled in acute phase response, interacts with C/EBPδ (18)

HDAC5 Nuclear and cytoplasmic NA

HDAC7 Nuclear and cytoplasmic NA

HDAC9 Nuclear and cytoplasmic NA

Class IIb HDAC6 Nuclear and cytoplasmic Positive regulator of NF-κB signaling; downregulation of tight-junction

proteins

(19, 20)

HDAC10 Nuclear and cytoplasmic NA

Class IV HDAC11 Nuclear and cytoplasmic Downregulation of tight-junction proteins in response to LPS (21)

phosphorylation and activation of NF-κB and MAP kinases
ERK and JNK (34). In contrast, antiviral defense mechanisms
involving IFN-responsive gene induction in response to type
III interferons are significantly increased in murine IECs when
HDAC activity is hampered (35). The differential influence of
HDAC activity on TLR signaling demonstrates the complexity by
which HDACs affect certain cellular responses.

We showed recently that the pan-HDAC inhibitors SAHA and
ITF2357 (Givinostat) protect the epithelial barrier integrity from
TNFα-induced disruption by upregulating expression of tight
junction proteins occludin and claudin-1 while downregulating
claudin-2 in in vitro monolayer models of T84 and CMT93
(murine IECs) cells. HDAC inhibition further supports wound
healing by upregulation of IL-8 and TGFβ during inflammation
in cell lines and primary murine enteroids. Oral administration
of ITF2357 significantly improves regeneration after acute DSS-
colitis and alleviates symptoms of inflammation in mice (36).
Another recent study linked the beneficial effects of HDAC
inhibition in the intestinal epithelium during inflammation
to expression changes of the IL-12 cytokine family (37). The
heterodimeric members of this protein family can convey
inflammatory or anti-inflammatory effects depending on their
subunits and play important roles in intestinal inflammation
(38). One of these subunits, Epstein-Barr virus-induced gene 3
(EBI3), becomes highly upregulated in human colon epithelial
cells when TNFα treatment is combined with HDAC inhibition
via Trichostatin A (TSA). Considering expression levels of
other IL-12 subunits and activated signaling pathways in the
cell, the authors suggest that the anti-inflammatory properties
of HDAC inhibition in the intestinal epithelium are mainly
conveyed through increased formation of the anti-inflammatory
IL-35, which is also upregulated in acute phases of ulcerative
colitis (37, 39). Strikingly, the anti-inflammatory effects of HDAC

inhibition in a DSS-colitis mouse model are completely abolished
and even reversed into exacerbation of the disease phenotype
when Ebi3 is silenced indicating a crucial role of EBI3 in
mediating the beneficial effects of HDAC inhibition in intestinal
inflammation (37).

Research with SCFAs and chemical pan-HDAC inhibitors
demonstrates that HDACs play an important role in multiple
inflammation-associated pathways in the intestinal epithelium.
Yet, potentially distinct roles of single HDACs can only be
inferred to a very limited degree from this data. However,
considering HDACs as therapeutic targets, pan-inhibition might
be neither a necessary nor the safest option. Targeting only single
HDACs is likely more efficient and limits undesired off-target
effects. The field of HDAC research is still relatively young and
the tissue specific expression patterns and functions make their
study even more challenging. Nevertheless, many recent studies
provided new insights into the functions of single HDACs in
the IECs.

Class I HDACs
Class I HDACs are the most intensively studied group of this
protein family and are often considered the “true” HDACs
since they exert epigenetic control through deacetylation activity
toward histones. In rat IEC-6 cells, the class I HDAC HDAC1
was shown to control global acetylation levels (40). Alterations
in activity of class I HDACs often lead to profound, global
changes of histone acetylation patterns and associated gene
expression. In active sites of UC or CD, IECs exhibit significantly
decreased levels of histone H3 acetylation compared to healthy
controls suggesting increased HDAC activity (11, 41). Indeed,
HDAC activity also increases measurably in the inflamed colonic
epithelium of mice treated with DSS (41). Paradoxically, most
HDAC transcripts, including the class I HDACs HDAC2,
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HDAC3, and HDAC8, are downregulated in the epithelium of
active IBD patients (36). HDAC1 mRNA levels do not change
during inflammation indicating a special role (36).

Indeed, HDAC1 was reported to be an important regulator
of inflammatory responses in IECs but also to be involved in
certain aspects of homeostasis. Silencing of HDAC1 impairs
cell proliferation and alters cell morphology of rat IECs
(8). These effects are most likely an indirect consequence
of metabolic reprogramming including downregulation of
homeostatic processes and upregulation of survival pathways
(40). The cells produce less ATP but aremore resistant to nutrient
deficiency and oxidative stress (40). In terms of inflammation,
HDAC1 depletion causes prolonged activity of the acute phase
response and NF-κB signaling by retention of phosphorylated
C/EBPβ and phosphorylated p65 in the nucleus upon IL-1β
stimulation (8). Interestingly, HDAC1 silencing causes elevated
levels of certain inflammatory cytokines in response to IL-1β,
such as Cx3cl1, Timp1, and Cxcl2, while others are decreased,
such as Cxcl5 and β-NGF (8). In vitro, HDAC1 becomes
upregulated in human IECs when stimulated with IL-4, IL-5,
IL-13, MCP-1, or TNFα, all being activators of the p38/MAPK
pathway (9).

HDAC2 is in many ways closely associated to HDAC1
signaling. Certain DNA-binding multiprotein complexes, such
as Sin3A, NuRD, or CoREST, require incorporation of HDAC1
and HDAC2 as heterodimer to exert their biological activity and
HDAC2 protein levels increase after Hdac1 silencing suggesting
some form of substitution (8, 42). Epithelial HDAC1 and
HDAC2 are of critical importance for intestinal homeostasis
as simultaneous deletion of both genes in IECs of adult mice
leads to profound dysregulations across multiple cell signaling
pathways (43). This involves altered tissue architecture caused
by an increased proliferative and migratory activity of IECs,
differentiation defects affecting especially secretory lineages
leading to decreased numbers of goblet cells and Paneth cells, and
increased expression of inflammation-associated genes inflicting
weight loss and colon shortening (43). Mechanistically, these
effects were traced back to changes in the expression levels
of certain key regulators. Increased expression of Cyclin D
and targets of the mTOR pathway affect cell proliferation and
division while elevated levels of activated Notch shift cell fate
determination from a secretory to an absorptive phenotype
(43). In addition, IEC-specific Hdac1/2 deletion decreases
expression levels of tight junction protein claudin-3 thereby
weakening the intestinal barrier and leading to activation of
inflammatory regulators, such as Stat3 (43). Combined with
reduced microbial protection due to decreased secretion of
mucus and antimicrobial products from a diminished number
of secretory cells, the tissue exhibits a phenotype of basal
chronic inflammation with increased immune cell infiltration
(43). Accordingly, IEC-specific Hdac1/2 knockout mice suffer
considerably aggravated symptoms when subjected to DSS-
induced colitis (12). Interestingly, IEC-specific deletion ofHdac2
alone appears to protect mutant mice from DSS colitis as they
lose less weight and retain a higher epithelial barrier integrity
compared to wild type mice (12). Immune programs are strongly
downregulated in these mice while antibacterial lectins, such

as Reg3b and Reg3g are strongly increased (12). Silencing of
HDAC2 in Caco-2 cells additionally decreases expression of
the transporter of serotonin, whose expression is commonly
dysregulated in inflammatory bowel disease (13). Comprehensive
analysis of murine intestinal organoids with a Hdac1 or Hdac2
deletion suggests that HDAC2 influences the intestinal immune
response and regulation of the intestinal barrier function
through its involvement in xenobiotic signaling and the aryl
hydrocarbon receptor-mediated response to endogenous and
exogenous ligands (10). STAT signaling is increased after Hdac1
or Hdac2 knockout suggesting them as negative regulators for
this pathway (10).

HDAC3 is important for a variety of epithelial cell functions
particularly concerning cross-talk with the microbiome. Mice
with an IEC-specific Hdac3 knockout are more susceptible to
DSS-induced inflammation and intestinal damage (14). This
phenotype may in part be caused by increased activation of NF-
κB. HDAC3 was previously shown to restrict NF-κB activity
by deacetylating p65 promoting its nuclear export and binding
to IκBα (15). Therefore, HDAC3 might be the main mediator
for the reported activating effect of phenyl butyrate on NF-κB
signaling (29). IEC-specific Hdac3 knockout mice also display
loss of Paneth cells, impaired IEC function, decreased expression
of antimicrobial peptides, and altered composition of commensal
bacteria (14). Interestingly, this phenotype can be rescued by
transferring the animals to germ-free conditions suggesting that
HDAC3 is necessary for integrating signals from the microbiome
during homeostasis (14). IEC-intrinsic HDAC3 has also been
shown to regulate activation of IFNγ-producing intraepithelial
lymphocytes by inducing IL-18 expression in the epithelium
upon bacterial infection (16).

The class I HDACs HDAC1, HDAC2, and HDAC3 are
evidently involved in the regulation of the inflammatory response
in IECs. However, describing a precise mechanism of action
is still challenging. The available data raise the possibility
that the anti-inflammatory properties of pan-HDAC inhibitors
are mostly mediated through inhibition of class I HDACs.
Inhibition of additional members of the HDAC family might
not add to the desired result unnecessarily increasing the risk
of off-target effects. For example, the effects of butyrate on
STAT signaling and retinoic acid metabolism (see above) might
mainly be due to decreased HDAC1 and HDAC2 activity as
silencing either is sufficient to reproduce this effect (10, 17).
Indeed, symptoms of intestinal inflammation in a DSS-colitis
model can also be alleviated with more specific inhibitors,
such as MS-275 (Entinostat) that inhibits mainly HDAC1 and
HDAC3 activity (11, 44). Inflammation-induced reduction of
acetylation, activation of NF-κB, and downregulation of tight-
junction proteins zonula occludens 1 (ZO-1) and occludin are all
reversed by MS-275 treatment (11). The enhancing effect of pan-
HDAC inhibition on IFN-responsive gene induction in response
to type III interferons in murine IECs can also be reproduced
by inhibiting HDAC1 and HDAC3 alone via MS-275 (35). Class
I HDACs could drive inflammation by controlling expression
of certain key regulators, such as the vitamin D receptor (11),
but also by deacetylating proteins of the inflammation signaling
chain, such as p65, thereby affecting their activity (15).
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Class II HDACs
HDACs of class II are further subdivided into class IIa, containing
HDAC4, HDAC5, HDAC7, and HDAC9, and class IIb,
containing HDAC6 and HDAC10. Class IIa HDACs influence
gene expression by interacting with various transcription factors
mostly suppressing their activity. Conserved residues in the
protein sequence of class IIa HDACs can be phosphorylated
triggering nuclear export (22). To date, the roles of most class II
HDACs in the intestinal epithelium are only scarcely investigated.
Class IIa HDACs were described as crucial components of
protein kinase D1 (PKD1)-dependent mitogenic signaling (45).
HDAC4 might play a role in the acute phase response during
inflammation as it interacts with C/EBPδ, a key regulator of
haptoglobin expression, in cultured IEC models (18). Epithelial
HDAC7 was found to be positively associated with development
of colorectal cancer (46).

HDAC6 represents a very interesting therapeutic target in
intestinal inflammation, as it was recently shown to be important
for NF-κB signaling. In a human colonic cell line, the HDAC6-
specific inhibitor CKD-506 blocks phosphorylation of IκBα,
suppresses IL-8 secretion, and inhibits DNA binding of the NF-
κB complex (20). In mouse models of experimental colitis, oral
administration of CKD-506 significantly improves symptoms
of intestinal inflammation (20). A similarly beneficial effect of
HDAC6 inhibition has been found in the context of reperfusion
damage of the intestine after hemorrhagic shock (HS). Inhibition
of HDAC6 via Tubastatin-A prevents loss of tight junction
proteins claudin-3 and ZO-1 and attenuates injury-induced
tissue alterations, such as villous blunting, epithelial necrosis, and
immune cell infiltration in a murine HS model (19).

Class IV HDAC
The only class IV HDAC, HDAC11, has been suggested to
play a role in LPS-induced downregulation of tight-junction
proteins and subsequent loss of barrier integrity. In human
intestinal epithelial cells, Vitamin D protects LPS-induced loss
of barrier integrity by upregulation of its receptor, which
sequesters HDAC11 and prevents its recruitment to the DNA
(21). Chromatin immunoprecipitation revealed ZO-1, claudin-
5, and occludin as targets of HDAC11, which binds to their
promoters and impairs gene transcription in response to LPS
stimulation (21).

CONCLUDING REMARKS

An increasing number of independent studies show that
HDACs influence inflammation and barrier function in the

intestinal epithelium. Therefore, epithelial HDACs definitely
represent promising therapeutic targets that could help to
control inflammation and protect barrier integrity in diseases
like IBD. HDACs are involved in many inflammatory signaling
pathways via direct interaction with key regulators or influencing
their gene expression. Although many mechanisms of action
have already been identified for single HDACs, drawing a
comprehensive picture still proves challenging. Especially class I
HDACs affect a large number of cellular responses due to their
epigenetic activity and extensive effects on gene expression. Data
on the role of class II and IV HDACs in IECs is still very limited
but they could represent more specific therapeutic targets since
they do not affect global histone acetylation levels to the same
extend as class I HDACs. This, however, remains to be clarified
by future studies.

A major weak point of current HDAC research is that many
studies that report a certain role for HDACs in IECs rarely
focus on single HDACs or even have the function of HDACs
as a primary study goal. HDACs often appear as a side note, a
secondary finding that happened to be connected to the initial
point of interest. Further elaborations on the precise underlying
modes of action that integrate specific HDACs into the signaling
pathway under investigation are often missing. However, the fact
that HDACs appear in so many different contexts, especially
with a focus on inflammation, shows the enormous potential
that lies within detailed knowledge of their individual roles.
Future studies, which aim directly at deciphering the role of
specific HDACs in distinct cell types, are necessary to build on
current knowledge and enable novel therapeutic strategies for
IBD and other inflammatory diseases by precise modulation of
HDAC activity.
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The occurrence of epithelial defects in the gut relevantly contributes to the pathogenesis

of inflammatory bowel diseases (IBD), whereby the impairment of intestinal epithelial

barrier integrity seems to represent a primary trigger as well as a disease amplifying

consequence of the chronic inflammatory process. Besides epithelial cell intrinsic factors,

accumulated and overwhelmingly activated immune cells and their secretome have been

identified as critical modulators of the pathologically altered intestinal epithelial cell (IEC)

function in IBD. In this context, over the last 10 years increasing levels of attention

have been paid to the group of innate lymphoid cells (ILCs). This is in particular due

to a preferential location of these rather newly described innate immune cells in close

proximity to mucosal barriers, their profound capacity to secrete effector cytokines and

their numerical and functional alteration under chronic inflammatory conditions. Aiming on

a comprehensive and updated summary of our current understanding of the bidirectional

mucosal crosstalk between ILCs and IECs, this review article will in particular focus on the

potential capacity of gut infiltrating type-1, type-2, and type-3 helper ILCs (ILC1s, ILC2s,

and ILC3s, respectively) to impact on the survival, differentiation, and barrier function of

IECs. Based on data acquired in IBD patients or in experimental models of colitis, we will

discuss whether the different ILC subgroups could serve as potential therapeutic targets

for maintenance of epithelial integrity and/or mucosal healing in IBD.

Keywords: innate lymphoid cells, intestinal epithelium, inflammatory bowel diseases, cytokines, ILC plasticity,

colitis

INTRODUCTION

Worldwide, approximately seven million patients are diagnosed with inflammatory bowel diseases
(IBD) (1), a chronically remitting inflammatory disease of the gastrointestinal tract. Both entities
of IBD, Crohn’s disease (CD) and ulcerative colitis (UC), commonly lead to severe intestinal
symptoms like chronic diarrhea, abdominal pain, rectal bleeding, and anemia, thus significantly
limiting the physical fitness, work ability, and overall quality of life of the affected and often young
patients (2–4). Due to a complex and multifactorial pathogenesis, which is crucially influenced by
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genetic, environmental, microflora-related, and immunological
components, there still exists no causal therapy for IBD (5, 6).
Instead, established treatment strategies focus on the control of
clinical symptoms, mainly by either inhibiting the overwhelming
accumulation and activation of intestinal immune cells or by
promoting mucosal healing (7, 8). During the last two decades,
the spectrum of available therapeutic regimens underwent a
significant shift from a predominance of rather unspecific
immunosuppressive drugs, like glucocorticoids, thiopurines, and
methotrexate, toward an increasing and often preferential use
of biological agents, like anti-TNF antibodies, the anti-IL-12/IL-
23 antibody ustekinumab or anti-adhesion strategies, which
in principle allow to specifically interfere with disease-driving
signaling cascades (8). However, still approximately 40% of IBD
patients do not show a satisfactory primary response even to
these optimized therapeutic regimens or develop a secondary
loss of response (5, 9), emphasizing the urgent need to further
fine-tune the definition of therapeutic target structures, and/or
to better take into account the full spectrum of interacting
cellular players involved in the pathogenesis of IBD. In this
context, it will be of particular importance to better elucidate
the complex crosstalk between intestinal epithelial cells (IECs)
and subepithelial innate immune cells, which together form
an early and tightly regulated line of host defense against
invading luminal pathogens. Consequently, achieving improved
insights into the capacity of lamina propria innate immune
cells to interfere with the maintenance of epithelial integrity
or the resolution of epithelial defects might subsequently pave
the way for therapeutic approaches that pursue a two-pronged
strategy: Epithelial restoration and suppression of overwhelming
immune activation.

Within the mucosal immune cell compartment, the group
of innate lymphoid cells (ILCs) can be characterized by their
typical localization in direct spatial proximity to the epithelial
surface (10, 11) and by their exceptional capability to initiate an
early and rapid response to invading pathogens and epithelial
damage (12–14). Although resembling T cells morphologically
and in several functional aspects, ILCs are classic representatives
of the innate immune system and can thus be distinguished
by the lack of rearranged antigen-specific receptor expression
and their ability to achieve a full activation status independent
from the antigen-presentation and -recognition machinery. This
predisposes ILCs for promoting and regulating early defense
mechanisms (13). In analogy to T helper (Th) cells and mainly
based on their cytokine and transcription factor profile, mature
helper ILCs can be categorized into type-1 (ILC1s), type-2
(ILC2s), and type-3 ILCs (ILC3s) (15). Accordingly, ILC1s are
associated with type-1 immune responses classically directed
against intracellular pathogens and tumor cells, functionally
depend on the transcription factor T-bet and preferentially
secrete the pro-inflammatory cytokines IFN-γ and TNF-α (16,
17). Besides helper ILC1s, NK cells represent another ILC1
subset, which is characterized by a potent cytotoxic effector
function (16) and whose impact on the maintenance of mucosal
homoeostasis has been reviewed elsewhere (18). As an important
cellular source of the effector cytokines IL-4, IL-5, IL-9, and
IL-13 and, hereby, as an integral cellular component of mucosal

type-2 immune responses, ILC2s are crucially involved in the
immunological control of parasitic worm infections and in
allergic diseases. Like in Th2 cells, GATA-3 and RORα represent
important signature transcription factors in ILC2s (19–21).
Finally, ILC3s depend on the transcription factor RORγt and can
be subdivided into lymphoid tissue inducer (LTi) cells, which
play a significant role during lymphoid organogenesis, as well
as NCR+ and NCR− ILC3s as relevant producers of IL-17A,
IL-22, and GM-CSF at mucosal sites, appearing accordingly in
many functional aspects like innate counterparts of Th17 cells
(22, 23). An important functional attribute, which is common
to all local helper ILC pools in mucosal organs, is their early
activation in response to pathological tissue damage and their
subsequent capacity to support, amplify, and modulate local
adaptive immune responses (24, 25). While this sequential
cascade of primary or externally triggered epithelial damage,
subsequent ILC activation via epithelial cell-released factors
and, finally, the ILC-mediated modulation of adaptive immune
responses has drawn a lot of scientific attention during the last
decade (15, 24, 26, 27), the opposite direction, meaning the ILC-
to-epithelium communication, often seemed to fade a bit into
the background. However, several studies described a significant
influence of the ILC compartment on tissue regeneration,
resolution of inflammatory tissue damage, and mucosal barrier
integrity (28–32), although several details of the underlying
mechanisms and the particular contribution of the different
types of epithelial cells still remain incompletely understood.
Due to the implicated high significance of the bidirectional
crosstalk between locally accumulating ILCs and epithelial cells
for maintenance of mucosal homeostasis in the gastrointestinal
tract and its potential therapeutic targetability in IBD, we will
here summarize the insights in the capacity of helper ILCs to
influence the fate of different epithelial cell types in the gut
under physiological and inflammatory conditions and discuss
potentially resulting therapeutic perspectives.

INTESTINAL ILCS IN HEALTHY AND

CHRONIC INFLAMMATORY CONDITIONS

The distinct distribution of the three classical helper ILC subtypes
observed at different anatomical sites upon homeostasis implies
a specific function of each local subset in non-diseased tissues
(Figure 1). In the human gastrointestinal tract NKp44+ ILC3s
represent the main helper ILC population in the caecum,
ileum, and colon, while ILC1s predominantly populate the
upper gastrointestinal tract, including esophagus, stomach, and
duodenum (33, 34). In contrast, ILC2s constitute only a small
ILC population throughout the whole healthy intestine (33–
36). However, when differentiating between lamina propria and
intraepithelial ILCs more precisely, a distinct ILC2 population
could be observed in the intraepithelial compartment of the
colon together with a large ILC1 pool and only a minor
fraction of ILC3s (35), suggesting a distinct function of each
helper ILC subset in the gut under homeostatic conditions. In
addition to the three classical helper ILC subsets, regulatory
ILCs (ILCregs), which resemble regulatory T cells in several key
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FIGURE 1 | Distribution of murine and human ILCs along the intestine in steady-state and IBD patients. Heatmap summarizing the distribution of the classical helper

ILC subsets in the lamina propria of the small and large intestine in both mice and humans. The frequency of ILCs is color-coded with the light green color indicating

low frequencies and the dark green color representing high ILC percentages. Changes in local ILC frequencies in patients with ulcerative colitis (UC) and Crohn’s

disease (CD) are indicated by blue and orange arrows, respectively.

features, were suggested to exist in both human and murine
intestines. ILCregs were initially defined by their constitutive
expression of IL-10 and were found to primarily accumulate in
the lamina propria of the small intestine (37). Their existence,
however, is still a matter of controversial discussion, given
the inability of Bando and colleagues to detect ILCregs in
the murine gut based on the expression of IL-10 in their
study. Furthermore, they could not identify a helper ILC subset
distinct from ILC1s, ILC2s, and ILC3s using mice from different
breeding facilities in both steady-state and under inflammatory
conditions (38). Instead, the authors described ILC2s as inducible
source of intestinal IL-10 production (38), which is in line
with the findings from other groups (39), raising the idea of
IL-10-producing ILC2s rather than the existence of a distinct
ILCreg subset.

Importantly, the murine intestine is populated by differently
distributed ILC classes compared to human intestines (Figure 1).
Unlike in humans, ILC2s make up a clear intestinal cell
population in naive mice, which even outnumbers ILC3s or
ILC1s in the lamina propria of the large intestine (35, 40).
In the intraepithelial compartment and the small intestine, in
contrast, murine ILC3s turned out as dominant ILC subtype
(35, 41, 42). In total, murine ILCs were specifically enriched
in the lamina propria of the large intestine (35). Keeping
the species-specific differences in mind is important when
assessing the translational relevance of results obtained in the
murine organism. Additionally, the use of immunodeficient
Rag1−/− mice and, thus, the absence of functional adaptive
immune cells in many murine in vivo ILC studies might
bias the obtained results (13), emphasizing the need for
confirmatory human studies. Nevertheless, the ability of highly
controlled breeding, housing, and the availability of elegant
genetic knockout mouse models, makes murine studies in the
field of intestinal ILCs inevitable. The intensified consideration

of humanized mouse models, in which the function of
primary human ILCs can be analyzed under experimentally
defined in vivo conditions, might even allow for better
transferability of acquired data to the clinical context of human
diseases (43).

Significant alterations in local ILC pools were observed in
inflamed areas in IBD patients compared to unaffected control
tissue (Figure 1), indicating a functional role of ILCs in chronic
inflammation of the gut. While NKp44+ ILC3s constitute the
dominant helper ILC population in the lower gastrointestinal
tract in homeostasis (33, 34), their frequency was markedly
reduced at sites of active inflammation in patients suffering
from IBD, including both UC and CD (17, 34, 44). This
ILC3 decrease further correlated with severe disease cases (34),
highly suggesting a regulatory or protective function of ILC3s
in intestinal inflammation. Contrary to NKp44+ ILC3s, the
percentage of ILC1s, ILC2s, and NKp44− ILC3 was found to
be increased in IBD patients (34, 44–46). Especially in CD
patients an enhanced percentage of intestinal ILC1s has been
described in multiple studies (17, 34, 44) and was obviously
associated with an advanced disease severity (34). Regarding
the underlying mechanism for the accumulation of ILC1s in
the inflamed intestine of CD patients, transdifferentiation of
other ILC subtypes into ILC1s was suggested to take place
in the IL-12-enriched microenvironment of the inflamed gut
of CD patients (25). In in vitro experiments, ILC2s, ILC3s
as well as c-Kit+NKp44− immature ILCs were described to
transdifferentiate into IFN-γ-secreting ILC1-like cells in the
presence of IL-12 (17, 36, 47–50). And indeed, an increased
local secretion of IL-12 was reported in CD patients (51, 52).
Moreover, the biological relevance of this in vitro induced ILC3-
to-ILC1 transition could be reinforced by an inverse link of
ILC3 and ILC1 frequencies in the inflamed mucosa of CD
patients (17, 34, 44) and the presence of an ILC subgroup

Frontiers in Medicine | www.frontiersin.org 3 March 2021 | Volume 8 | Article 65674529

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Schulz-Kuhnt et al. ILC-Driven IEC Regulation in IBD

harboring both ILC3 and ILC1 characteristics in human ileal
LPMCs (53). Similarly, IL-13+IFN-γ+ ex-ILC2s were detected
in the intestine of CD patients (48), hinting at ILC2-to-
ILC1 transitions in vivo. In contrast to patients with CD,
the intestinal tissue of UC patients was associated with an
accumulation of NKp44− ILC3s, which correlated with severe
illness (34), making ILC1s and NKp44− ILC3s specifically
important in CD and UC, respectively. Although the scientific
debate on the existence of ILCregs is still ongoing (37, 38),
experimental models of innate colitis revealed an enhanced
frequency of IL-10-producing ILCs, which the authors defined
as ILCregs, upon intestinal inflammation, temporally following
an increase of ILC3s and ILC1s. Accordingly, the transfer of
ILCregs into Rag1−/−Il10−/− mice resulted in reduced signs
of innate colitis, thus claiming the importance of ILCreg
expansion for the resolution of intestinal inflammation (37).
Focusing on the intraepithelial compartment, intraepithelial
ILC1s were described to be increased in CD patients (54),
which, however, could not be confirmed in a later study
(34), making further research on intraepithelial ILCs necessary,
especially since their prime location in direct proximity to the
intestinal epithelium might predispose them for impacting on
the integrity of the epithelial layer. Given that altered ILC
frequencies were predominantly observed at inflamed intestinal
sites but were absent in non-inflamed areas (34), suggests an
active role of intestinal ILCs in inflammatory processes but argues
against a primary and disease-predisposing alteration of the ILC
compartment in IBD patients.

Based on these numerical ILC alterations observed
in the inflamed gut of patients suffering from IBD, the
next section will discuss our current knowledge on the
functional role of local ILCs in intestinal inflammation with
a particular focus on their capacity to interact and regulate
IEC functions.

ILC–IEC INTERACTIONS

Enterocytes represent the most frequent cell type in the intestinal
epithelium and as such build the fundament for a tight barrier
between gut lumen and tissue. This is achieved by tight
junctions, which connect the enterocytes to form a robust
but selectively permeable wall, allowing a targeted paracellular
transport. Together with the transcellular transport through
enterocytes, this enables them to absorb nutrients and antigens
from the gut lumen in a highly controlled fashion (55), while
simultaneously forming an effective first line of defense for
pathogens. When disrupted, however, overwhelming invasion
of pathogens can cause severe inflammatory immune responses
within the intestinal mucosa (56), making a tightly controlled
regulation inevitable.

Several studies have described a crucial involvement of ILC3s
in the regulation of epithelial integrity in the gut, which has been
attributed mainly to their capacity to secrete the effector cytokine
IL-22 (57–60). Based on the well-known protective functions of
IL-22 in IBD (61) and the fact that ILC3s are thought to be
the main producers of IL-22 in the homeostatic and inflamed

murine gut (58, 60), the favorable functions described for IL-
22 on IECs might be largely assigned to ILC3s. Indeed, ILC3-
derived IL-22 could be demonstrated to play a protective role
on dextran sulfate sodium (DSS)-induced tissue disruption (57–
60). DSS-induced colitis represents a widely used model for
UC, that is initiated by the chemical disruption of the intestinal
epithelium, resulting in colonic inflammation (62), and thereby
makes up an ideal model system to study the influence of ILCs
on gut barrier integrity. Whereas, under homeostatic conditions
ILC3 activity is largely repressed by IL-25 and adaptive immune
responses, this repression is downregulated upon DSS-induced
tissue disruption and inflammation, allowing the secretion of
the protective cytokine IL-22 by intestinal ILC3s (60). In IBD
patients an increased IL-22 expression was observed exclusively
in ILC3s rather than T cells (63), fortifying the relevance of
ILC3-derived IL-22 on gut barrier integrity in humans (Figure 2).
Interestingly, the murine norovirus has been shown to take
advantage of this ILC3-IL22-IEC-axis in order to protect IECs
against tissue disruption (64). Besides the beneficial effect of
ILC3s on the barrier function of the intestinal epithelium, they
were additionally described to directly foster the glycosylation of
eptihelial cells via their effector cytokines IL-22 and lymphotoxin
(32) (Figure 2). In general, the colonic glycocalyx functions as
additional barrier for pathogens, but also enables communication
and adherence of specific bacteria (65). In mice, ILC3s were
detected to mediate epithelial fucosylation via the induction of
the responsible enzyme fucosyltransferase 2, which turned out to
be important for host protection against Salmonella typhimurium
infection (32).

In IBD patients, decreased frequencies of NKp44+ ILC3s
were detected at inflamed intestinal sites compared to samples
from non-inflamed IBD and non-IBD subjects (17, 34) which
was significantly associated with an increased endoscopic disease
severity score in both CD and UC patients (34). Since NKp44+

ILC3s represent themain producers of IL-22 in the adult intestine
(66), the lack of the protective IL-22 effect on the epithelial
barrier in IBD patients might at least partially explain the gut
barrier disruption. However, in another study, increased IL-22
expression levels have been observed in colonic tissue samples
derived from CD and UC patients which could be shown to
result from NKp44+ ILC3s (63). Interestingly, the presence of
fecal microbiota clearly triggered IL-22 production in human
LPMCs (63) and potential differences in the composition of the
gut microbiota might thus explain, at least partly, the controversy
of published data on the intestinal IL-22 levels in IBD patients.
Based on findings acquired in innate experimental colitis models
(e.g., a model of anti-CD40-induced colitis), ILC3-derived IL-
22 could be demonstrated to even have a pathogenic effect
(67), indicating a double-edged role of ILC3-derived IL-22 in
IBD (Figure 2) that might depend on the local micromilieu
and microbiota.

Although less abundant in the gut compared to ILC3s
(34), ILC2s can significantly contribute to the preservation and
restoration of the intestinal integrity as well (Figure 2). Findings
in other organs with a barrier function, like the lung and
skin, support this idea. ILC2s could for example be shown to
facilitate wound healing of the skin (68), and ILC2-derived
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FIGURE 2 | ILC-driven regulation of IECs in intestinal inflammation. Schematic depiction of the intestinal epithelium, consisting of goblet cells, tuft cells,

enteroendocrine cells, and M cells dispersed throughout the enterocytes as well as transit-amplifying progenitor cells, paneth cells, and stem cells localized toward the

crypt bottom. ILC1s, ILC2s, and ILC3s reside in the mucosa in close proximity to the epithelium or can be directly positioned in between IECs as intraepithelial ILCs,

giving them prime positions to interact with IECs. While IECs are important activators of ILCs via the release of selective alarmins, ILCs can in return control the

(Continued)
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FIGURE 2 | different IEC subtypes via the release of effector cytokines. With the secretion of IL-22 and lymphotoxin, ILC3s can drive stem and progenitor cell

proliferation and differentiation. ILC3s can additionally drive mucus production by goblet cells and promote fucosylation of enterocytes. The effect of ILC3-derived

IL-22, however, is largely dependent on the microenvironment. ILC2-driven IEC regulation is mainly based on their ability to release IL-13 and AREG, which can trigger

stem and progenitor cells, goblet cells as well as robust tight junctions interconnecting enterocytes. Moreover, ILC1-derived TGF-β1, although not a classical type-1

cytokine, can drive stem cell proliferation and differentiation, while IFN-γ secreting ILC1s can weaken the epithelial stability.

amphiregulin (AREG) was suggested as effective player in the
epithelial restoration of influenza virus-infected lungs (30).
Indeed, first data acquired in the gut could underpin this,
showing a tissue-protective role of ILC2s in a mouse model
of acute DSS colitis via the secretion of the epidermal growth
factor AREG (69). Here the authors suggest a circuit of damaged
epithelial cells, releasing the alarmin IL-33 and thereby activating
AREG production in ILC2s, which ameliorates DSS-induced
tissue disruption, likely via the upregulation of Claudin-1 and
Mucin 2 (Muc2) (see section Goblet cells—ILCs for further
details on Muc2). Claudin-1 represents a well-known tight
junction protein (70), whose increased expression favors tightly
connected enterocytes forming an efficient barrier in the gut. The
observation of a protective function of ILC2-derived AREG was
further confirmed in a mouse model of acute gastrointestinal
graft-vs.-host disease, in which the intravenous injection of
ILC2s could significantly reduce intestinal leakiness in an AREG-
dependent manner (71). In contrast to these results, one research
group observed detrimental effects of both murine and human
ILC2s on the tight junctions of bronchial epithelial cells and
epidermal keratinocytes via the secretion of IL-13 (72, 73). These
opposing results might indicate the presence of polyfunctional
ILC2s (69) which can adapt to local requirement based on
the specific microenvironment to gain either protective or
destructive functions on epithelial barriers. In the inflamed gut,
however, current knowledge indicates a beneficial effect of ILC2s
on the intestinal barrier integrity (69, 71). This was additionally
indirectly supported by the finding, that the increased intestinal
permeability observed in Itk−/− mice compared to wildtype
mice upon acute DSS colitis was associated with a gut-specific
reduction of ILC2s. Injection of IL-2 complexes, however, could
both, restore gut ILC2 frequencies and diminish disease severity
(74). In IBD patients an increased ILC2 frequency was observed
at inflamed intestinal sites (34), suggesting a certain clinical
relevance. Just recently, a regulatory subset of IL-10 producing
ILC2s was described to have a protective effect in the context
of grass-pollen allergy and lung inflammation (75, 76). This was
not only mediated by their ability to dampen disease-driving
type-2 immune responses (75, 76), but additionally relied on the
restoration of the epithelial barrier (75). Whether this regulatory
ILC subset is relevant in the inflamed gut as well, has to be
determined in future studies, though. First hints, however, imply
the potential formation of IL-10 producing ILCs in the inflamed
gut mucosa: The transdifferentiation of ILC2s into IL-10+ ILC2s
or ILCregs interestingly turned out to depend on the vitamin A
metabolite retinoic acid (75, 77), elevated levels of which have
been reported in patients with active UC (78).

Likewise, ILC1s turned out to accumulate in the inflamed
ileum of CD patients (17), pointing toward a functional role in
IBD-associated tissue disruption as well. In line with this, the

frequency of intraepithelial ILC1s was shown to be increased in
the small intestine of CD patients (54). Based on their prime
position in immediate proximity to IECs, it can be assumed that
intraepithelial ILC1s might play a special role in the regulation
of the intestinal epithelial barrier. Further evidence derived from
a mouse model of experimental colitis, showing a marked IFN-
γ production by intraepithelial ILC1s and to a lesser extent
also by plastic ILC3s. Deletion of intraepithelial ILC1s with
an anti-NK1.1 antibody was associated with reduced epithelial
disruption and a diminished accumulation of inflammatory cells
(54), proposing a negative influence of ILC1s on colitis-associated
barrier destruction. In the context of celiac disease, increased
percentages of intraepithelial NKp44− cytotoxic ILC1s have
been reported in the human small intestine, which significantly
correlated with an increased IFN-γ production as well as an
increased disease severity and epithelial breakdown (79). In
addition, enhanced levels of ILC1- and ILC3-derived IFN-γ
and TNF-α upon simian immunodeficiency virus infection in
rhesus macaques associated with an increased loss of colonic
tight junctions, resulting in epithelial instability and increased
microbial translocation (80), supporting a detrimental functional
role of ILC1s on the maintenance of an intact epithelial gut
barrier (Figure 2). A clear proof of ILC1s directly interacting
with IECs, however, is still lacking to date, making further
research interesting.

Next to enterocytes, the intestinal epithelium consists of
highly specialized cell types, including goblet cells, tuft cells, stem
cells, paneth cells, enteroendocrine cells, microfold cells, and cup
cells (81, 82). While each cell type contributes to the integrity of
the epithelium by its unique function, the following section takes
a closer look on the direct impact of ILCs on the differentiation
and functions of these cell types.

Goblet Cells—ILCs
Goblet cells represent the secretory cell type of the intestinal
epithelium specialized for the production and secretion of mucus
components. By the release of mucus, goblet cells form a
protective layer over the gut epithelium and thereby relevantly
contribute to the intestinal barrier function and the maintenance
of mucosal homeostasis (83).

Most prominently, ILC2s could be shown to regulate mucin
responses by goblet cells and to thereby protect mice from colonic
inflammation. First evidence came from a study by Monticelli
and colleagues: Using an acute model of DSS-induced colitis,
they could show AREG-derived from IL-33-activated ILC2s to
be sufficient for the induction of goblet cell hyperplasia and
expression of the mucin Muc2. Since this goblet cell activation
was accompanied by a decreased overall disease severity of
DSS-treated mice (69), this indicates that the protective effect
of ILC2s on experimental colitis could be partially mediated
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by AREG-induced mucus production by goblet cells. This
might additionally be supported by ILC2-derived IL-13, which
was shown to promote goblet cell differentiation. Applying a
coculture system of mesenteric lymph node cells and enteroids,
representing a stem cell-derived 3D model system of the small
intestinal epithelium, a direct effect of IL-33-induced IL-13
on goblet cell differentiation has been indicated by increased
Muc2 and Atoh1 expression levels. In this setting, ILC2s were
identified as primary source of IL-13 upon IL-33 induction
(84), pointing toward a combined action of the ILC2 effector
cytokines AREG and IL-13 on goblet cell activation and thus
epithelium protection (Figure 2). While a direct effect of IL-
13 on goblet cells was demonstrated in vitro, no direct impact
of AREG could be detected (84), indicating ILC2s to activate
goblet cells via both direct and indirect mechanisms. Regarding
reported variations in the strength and quality of the impact of
ILC2-derived IL-13 and AREG on goblet cell activation (85), it
might be important to take into account the potential influence of
the local micromilieu, mirrored in different experimental model
systems. Another study even expanded these local findings on
distal mucosal sites (84). In the context of experimental helminth
infection of the gut, it was demonstrated that ILC2s activated by
gastrointestinal infection with the helminth Trichinella spiralis,
do not only activate local goblet cell hyperplasia (86), but could
also induce expression of the mucin Muc5 in the uninfected
lung. This phenomenon has been discussed as potential priming
mechanism to protect distal sites from secondary helminth
infections (84) and strongly implied a systemic relevance of
ILC2-triggered goblet cell activation.

During intestinal Listeria monocytogenes infection, ILC3s
appeared as important inducers of goblet cell differentiation
and function, enabling efficient bacteria control. Making use
of an in vitro coculture transwell assay, the necessity of a
direct interaction of lymphotoxin-secreting RORγt+ cells and
lymphotoxin-β receptor (LTβR) expressing IECs for efficient
Muc2 induction was shown, with ILC3s being suggested as
lymphotoxin-expressing interaction partner (87). Though the
role of direct ILC3-goblet cell interactions have not been
described in IBD yet, a prominent function of IL-22 has been
confirmed in the inflamed gut (Figure 2). Using a mouse
model of Th2-mediated colitis, IL-22 gene delivery could
induce expression of mucus components and goblet cells in a
STAT3-dependent manner, which resulted in increased mucus
production and thus less severe colitis (88).

In case of Salmonella typhimurium infection, IFN-γ-
production by an intermediate ILC subtype characterized by
NKp46, T-bet, and RORγt expression was claimed to be critical
for successful mucus secretion by goblet cells (89). Whether this
interaction might play a role in IBD as well, has to be clarified in
future studies.

Collectively, ILC2- and ILC3-derived effector cytokines as well
as the type-1 cytokine IFN-γ have been shown to strongly impact
on goblet cell-driven mucus production and secretion. This
allows ILCs to directly regulate the production and composition
of the protective mucus layer and to thereby effectively shield
IECs from intestinal pathogens.

Stem and Progenitor Cells—ILCs
The impressive capacity of the intestinal epithelium to renew
itself every 3–7 days is driven by a rare cell population
positioned at the crypt bottom of the ileum and colon: the
intestinal stem cells. Intestinal stem cells can give rise to
enterocytes, goblet cells, enteroendocrine cells, and tuft cells
throughout life, while simultaneously renewing themselves.
Therefore, dividing stem cells partially differentiate into highly
proliferative transit-amplifying cells, which successively form
terminally differentiated IEC types upon upward migration (90).
With their ability to interact with and orchestrate intestinal
stem and progenitor cells, ILCs are able to greatly influence
overall epithelial functionality despite their rareness, once again
demonstrating the direct link between innate immune responses
and epithelial restoration.

Most prominently, a positive role of the ILC3-associated
cytokine IL-22 on intestinal stem cells has been repeatedly shown
(31, 91–95). While a regulatory role of ILC3s on the intestinal
epithelium has been proposed shortly after their identification
as unique cell population (60), their influence on intestinal
stem cells was described only 1 year later. In the context of
allogeneic hematopoietic transplantation, Hanash and colleagues
identified IL-22 derived from radio-resistant host ILCs in the
gut as critical protective factor against epithelial damage during
graft-vs.-host disease. With the development of graft-vs.-host
reactions, IL-22-secreting ILC frequencies markedly decreased,
which was associated with a reduction of IL-22R-expressing
intestinal stem cells. Indeed, Il-22−/− transplant recipient mice
showed an increased loss of intestinal stem cells compared to
wildtype mice, which was accompanied by severe disruption
of the epithelial barrier integrity. Based on these findings,
the authors suggested intestinal ILCs to maintain stem and
progenitor cells during tissue damage via the secretion of IL-
22, while Paneth cells were proposed to be responsible for basal
stem cell maintenance (91). Using an ex vivo organoid culture
system, they could later translate the importance of IL-22 on
stem cell-driven epithelial regeneration to the human system.
Moreover, they deciphered the underlying mechanism, showing
the dependency of IL-22-mediated intestinal Lgr5+ stem cell
preservation and resulting organoid growth on STAT3 signaling,
while the classical signaling pathways involved in intestinal stem
cell maintenance, including Wnt/β-catenin and Notch signaling,
were not affected by IL-22. A gene set enrichment analysis
of the intestinal stem cell gene signature in STAT3-deficient
and -sufficient mice with DSS colitis, reinforced these results
under in vivo tissue-destructive conditions. Furthermore, the
capacity of IL-22 to induce epithelial regeneration appeared to
be restricted to intestinal stem and progenitor cells, since the
inability of IL-22 to affect Paneth cells could be demonstrated
in organoid culture experiments (92). A far-reaching importance
of IL-22-secreting ILC3s on stem cell-driven intestinal barrier
maintenance by the interaction with crypt stem cells could be
further established in a setting of chemotherapy-induced small
intestinal tissue disruption (31). Beyond that, ILC3-derived IL-
22 turned out to contribute to the initiation of the DNA damage
response in intestinal stem cells, preventing them from the
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acquisition of potential mutations that might cause intestinal
cancer development. This was mediated via aryl hydrocarbon
receptor (AhR) signaling in ILC3s as well as γδ T cells in
response to genotoxic stress triggered by dietary compounds
(93). A recent study differentiated more explicitly between the
maintenance and proliferation of intestinal stem cells, showing
that upon acute damage of the small intestine by methotrexate,
ILC3-derived IL-22 was primarily relevant in protecting and
preserving stem cells in a STAT3-dependent manner, while
ILC3-driven, but IL-22-independent amplification of the Hippo-
Yap1 pathway in stem cells turned out to mediate crypt cell
proliferation in a SFK-dependent fashion. The authors thus
proposed that ILC3s might not only interact with Lgr5+ stem
cells for their maintenance, but might also directly or indirectly
trigger proliferation of damage-linked progenitor cells to restore
an intact epithelial barrier after tissue disruption (94). The exact
mechanisms through which ILC3s drive epithelial restoration
independently of IL-22, however, still need to be evaluated.
Somehow in contrast, another study proposed a role of high
IL-22 concentrations primarily for the amplification of transit-
amplifying progenitor cells rather than intestinal stem cells
based on findings in an in vitro ileal organoid culture model.
There the authors observed a negative effect of 500 pmol/l IL-
22 on organoid survival, whereas remaining organoids showed
an increase in size, which was suggested to results from highly
proliferating transit-amplifying progenitor cells. The principle
idea for analyzing IL-22 concentrations as high as 500 pmol/l
was derived from a computational modeling of the local ILC3-
secreted IL-22 concentration in the stem cell niche (95). To date,
however, absolute IL-22 concentrations in themicroenvironment
of intestinal stem cells have not been experimentally confirmed
yet. Thus, more research is necessary to determine the functional
role of ILC3-derived IL-22 on distinct stem and progenitor cell
subsets under defined inflammatory conditions. Taken together,
multiple studies were able to identify ILC3s as key players
in preserving and rebuilding an intact epithelial barrier in
the gut after tissue damage (Figure 2). This can be mediated
by a direct interaction of IL-22-secreting ILC3s and IL-22R-
expressing intestinal stem cells and by ILC3-driven activation
of Yap1 signaling in stem cells. ILC3s are obviously able to
rapidly rebuild an efficient gut barrier upon various kinds of
tissue disruptions and, in addition, can prevent intestinal cancer
development originating from DNA damage in stem cells.

Besides a fundamental role of ILC3s on intestinal stem
and progenitor cells, ILC2s were suggested to interact with
intestinal progenitor cells as well. In helminth infection models
withNippostrongylus brasiliensis andHeligmosomoides polygyrus,
they have been demonstrated to induce goblet and tuft cell
differentiation via the secretion of IL-13 (96). In general, the latter
represent a chemosensory IEC subset with striking similarities
to our taste buds. Thus, tuft cells are suggested to “taste”
luminal signals unable to cross the intestinal barrier to trigger a
specific response in the intestinal tissue (97), though their exact
function has long been undetermined and is still insufficiently
clarified. However, a pivotal role of intestinal tuft cells has been
suggested during helminth infections, during which their rare
number literally explodes (96, 98). Since tuft cells turned out

to be the major source of IL-25 in the intestinal epithelium,
the functional relevance of ILC2-driven tuft cell hyperplasia
upon helminth infection was suggested to lie in the activation
of ILC2s themselves via the secretion of IL-25, in order to
mount an efficient anti-helminth immune response. Indeed, in
systemic and epithelium-specific Il-25 knockout mice helminth
infections were only inefficiently cleared (96, 98). Similarly,
Trpm5−/− mice, which are unable to transduce taste signals in
tuft cells, are characterized by an increased worm burden after
helminth infection compared to wildtype mice. This could be
restored upon intraperitoneal injection of IL-25 (98). Thus, a
regulatory circuit was suggested with IL-25-secreting tuft cells
stimulating IL-13 release by local ILC2s, which in turn triggers
tuft cell proliferation from progenitor cells via a positive feedback
mechanism, finally resulting in successful worm clearance (96).
Next to this pathologic context, this circuit was suggested to
be important even under homeostatic conditions, showing in
uninfected Il-25−/− and Il-4ra−/− mice that constitutive IL-
25 secretion by tuft cells as well as ILC2-derived IL-13 were
important to maintain intestinal tuft cell numbers in naive mice
(96). Collectively, intestinal tuft cells can be positively regulated
by ILC2-derived IL-13 (Figure 2), leading to tuft cell expansion
via activating crypt progenitor cells and thus directly regulating
anti-helminth responses, raising the question whether this tuft
cell-ILC2 circuit might play a role in IBD as well. Indeed,
decreased tuft cell counts were recently described in CD patients
at inflamed ileal tissue sites (99). Moreover, using a model of
acute DSS colitis, a beneficial role of Dclk+ tuft cells on intestinal
barrier integrity was observed (100). In line with this, reduced
IL-25 levels were found in the inflamed gut mucosa of IBD
patients with active disease, which correlated with an increased
disease severity (101), suggesting the loss of intestinal tuft cells
and their IL-25 secretion as disease-driving factor in IBD. In
the murine ileum, tuft cells could be reconstituted together with
local ILC2 frequencies and classical type-2 cytokines by the
administration of the microbiota-derived metabolite succinate,
finally resolving ileal inflammation (99). This implies an in vivo
relevance of the ILC2-driven tuft cell regulation upon intestinal
inflammation in CD patients and might additionally explain the
recently described protective role of helminth infections in the
development of IBD (99).

Also for ILC1s a regulatory role on intestinal stem cells
has been described lately (Figure 2). Though not representing
a classical ILC1-associated cytokine, ILC1-derived TGF-β1 was
able to specifically induce the expression of the variant 6
of the stem cell marker CD44 (Cd44v6) in the intestinal
epithelium. This resulted in enhanced crypt budding of small
intestinal organoids in vitro via p38γ-induced proliferation.
Having observed an enhanced expression of CD44v6 in
enlarged intestinal crypts in the inflamed tissue of IBD
patients as well (45), a positive regulatory role of ILC1s on
epithelial expansion upon inflammation might be of significance
in vivo.

Collectively, ILC1s, ILC2s, and ILC3s are described to have
a beneficial impact on epithelial restoration and growth upon
inflammation, resulting from direct interactions with intestinal
crypt stem and progenitor cells.
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Further IEC Subtypes—ILCs
Next to enterocytes, goblet, progenitor and stem cells as
well as tuft cells, the IEC fraction additionally consists of
enteroendocrine, paneth, and M cells, each of these subtypes
contributing to the diverse functions of the intestinal epithelium.
Enteroendocrine and paneth cells for instance are known for the
secretion of hormones and antimicrobial peptides, respectively,
while M cells can transport antigens from the gut lumen into the
intestinal tissue and thus serve the intestinal immune system (81).

To date, no interaction of ILCs with these IEC subtypes
has been shown but might be implicated by the presence
of potential interaction sites between IECs and ILCs. In
case of enterochromaffine cells for example, which constitute
a subset of enteroendocrine cells and are critical for the
production of serotonin, expression of the IL-13 receptor α1-
chain could be demonstrated (102), implicating a potential signal
induction in enterochromaffine cells by ILC2-derived IL-13.
Enteroendocrine cells might in addition be positively regulated
by IL-22 released from ILC3s. As suggested in a mouse model
of Citrobacer rodentium infection, secretion of antimicrobial
peptides, primarily of the Reg family, from epithelial cells turned
out to depend on IL-22 production from IL-23 responsive cells of
the innate immune system (103), providing a direct link between
ILC3s and the bacterial defense mechanisms of the intestinal
epithelium. Moreover, the localization of paneth cells at the crypt
bottom exposes them to an environment that was suggested by
computational modeling to be characterized by particularly high
ILC3-derived IL-22 levels (95). Together with the recently shown
importance of IL-22 signaling for paneth cell differentiation
and effector functions (104), this predisposes ILC3s as potential
regulators of paneth cells. Future research will help to clarify
the biological relevance of these suggested ILC-IEC interactions
in IBD.

ILC–IEC INTERACTIONS AS

THERAPEUTIC TARGET

Given the preferential accumulation of ILCs at mucosal surfaces
in close proximity to the epithelium (10, 11) as well as their rapid
and early activation as part of the innate immune system (12–
14), makes them ideal interaction partners of IECs. Moreover,
the ILC-driven regulation of IECs is of particular importance
as the integrity of the epithelial barrier is critical to preserve a
stable and efficient control of bacterial translocation, whichmight
otherwise trigger the initiation of mucosal inflammation. Based
on our current knowledge, ILC3s represent the main helper ILC
population in the healthy human gut (33, 34) (Figure 1) with an
incredible ability to secrete large amounts of the effector cytokine
IL-22 (58, 60). Together with the release of lymphotoxin, ILC3-
derived IL-22 was ascribed a predominantly protective effect on
enterocytes, goblet cells and even crypt stem and progenitor
cells (57–60, 87, 91, 92). Therefore, the observed decrease of
intestinal ILC3s (17, 34, 44) in the inflamed mucosa of IBD
patients might contribute to local inflammatory responses in
IBD. However, the effect of ILC3-derived IL-22 on IECs appeared
to highly depend on the surrounding micromilieu (67) and

thus has to be treated with care. With an increasing number
of intestinal ILC1s in CD (17, 44), their TGF-β1-mediated
beneficial effect on crypt stem cells (45) might contribute to
the resolution of intestinal inflammation by promoting the
reconstruction of an intact epithelial barrier. In contrast, via
the secretion of IFN-γ, ILC1s were suggested to additionally
have a negative influence on tight junctions (54, 79, 80),
implying functional subgroups of ILC1s. Despite their overall
low number in the healthy and inflamed intestine, ILC2s could
be demonstrated to favor mucosal healing and disease control
on the level of enterocytes, goblet cells, tuft cells and crypt
stem cells by secreting AREG and IL-13 (69, 71, 84). Overall,
the described ILC-IEC interactions prove once again, that a
rare cell population like ILCs can have an extensive impact
on disease induction, progression, and resolution irrespective
of their small cell number (Figure 2), making the interference
with ILC-driven IEC regulation an interesting new therapeutic
option. Targeting ILCs appears to be particularly elegant
regarding the ability of intestinal ILCs to regulate both, epithelial
integrity as well as mucosal immune responses. However, this
also makes clear that the development of ILC-modulating
therapeutic strategies will require a careful fine-tuning to prevent
accidental ILC-mediated immune cell activation upon boosting
protective ILC-IEC interactions. Notably, no fully ILC-specific
target structures exist these days, which is mainly due to
the shared key features of ILCs and Th cells. This makes it
currently impossible to clearly differentiate between ILC- and
T cell-targeting therapeutic approaches. A broad overview of
ILC-related therapeutic strategies was given by Goldberg and
colleagues, postulating the following points of potential attack:
targeting ILC effector functions by therapeutically modulating
their activity, intracellular signaling, and effector cytokine
production or targeting local ILC numbers by interfering with
their survival and trafficking (105). To date, most of the
postulated therapies involving ILC targeting aim at the inhibition
of pro-inflammatory ILC functions. However, these strategies
need to be critically revised, since inhibition of total ILC
functions might not only favor resolution of inflammation
but might additionally abolish their mainly positive influence
on the intestinal epithelium upon inflammation. Thus, novel
therapeutic approachesmight focus on the controlled stimulation
of specific and defined aspects of ILC functions, rather than
mediating a broad or complete blockade of ILC activation. The
following section will therefore focus on potential therapeutic
options, which might allow to directly and specifically interfere
with defined ILC-IEC interactions.

Given the great ability of ILC3-derived IL-22 to preserve
the intestinal epithelium (57–60) and the fact that the IL-22
receptor (IL-22R) is absent on hematopoietic cells (106), ILC3-
derived IL-22 appears as an attractive therapeutic target, since
this might enable to support the protective effect of IL-22 on
epithelial cells without triggering pro-inflammatory immune
responses in parallel. Accordingly, different strategies to boost IL-
22-mediated epithelial regeneration and preservation have been
discussed. On the one hand, IL-22 can be supplemented directly
and, on the other hand, therapeutic activation of endogenous
IL-22 production and signaling can be targeted. In the latter
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category, a site-specific Il-22 gene delivery system was suggested
and proven to improve signs of intestinal inflammation in a
preclinical mouse model of Th2-driven colitis (88). However,
there is still plenty of safety issues to be addressed carefully
until this local gene-delivery strategy might be translated to the
human system. Alternatively, therapeutic activation of the IL-22
pathway might represent an interesting strategy. To date, most
promising approaches involve AhR-mediated IL-22 induction,
which is of functional relevance in ILC3s as well (107, 108).
Activation of the AhR pathway can be achieved, for instance, by
dietary compounds (107) or microbiota-driven metabolization
of tryptophan to the AhR ligand indole-3-aldehyde (109, 110),
the latter of which was demonstrated to augment intestinal
inflammation in murine models (109, 110). Similarly, indigo
naturalis, which has been traditionally used in Chinese medicine,
turned out to mediate its protective effect via AhR-mediated
IL-22 production in ILC3s as well, resulting in reduced disease
severity in several murine models of colitis (111). Moreover,
especially a short-term treatment with indigo naturalis has
been identified as effective treatment in patients with UC
(112), whereas 8 weeks of administration cannot yet be fully
excluded to potentially be associated with severe adverse events
(113). Importantly, reduced AhR activation was observed in
fecal samples from IBD compared to healthy subjects (110).
Therefore, together with other AhR ligand candidates, including
FICZ (114) and ABX464 (115), tryptophan and indigo naturalis
might be promising therapeutic strategies in IBD patients by
activating endogenous IL-22 production from intestinal ILC3s
in order to protect and restore the intestinal epithelium. Since,
however, AhR activation can trigger multiple signaling pathways
dependent on its ligand (116), potential therapeutic interference
with AhR signaling would have to be carefully controlled and
monitored. Another strategy to target IL-22 signaling might
involve blocking of the soluble IL-22 receptor IL-22 binding
protein (IL-22BP), which functions as endogenous inhibitor of
IL-22 by capturing IL-22 with high affinity and thus suppressing
IL-22 signaling through its membrane-bound receptor (117). A
beneficial effect of blocking IL-22BP in intestinal inflammation
has been implicated by experimental colitis models, showing a
detrimental role of local IL-22BP. Local gene delivery of IL-22bp,
for instance, hindered IL-22-mediated goblet cell proliferation
in a mouse model of acute DSS colitis (88). Moreover, CD4+

T cell-derived IL-22BP could be shown as driver of intestinal
inflammation in the model of adaptive transfer colitis using Il-
22bp-sufficient and -deficient donor T cells (118). The other way
around, IL-22bp-deficient rats recovered significantly faster from
first signs of colitis upon DSS treatment compared to wildtype
control animals, which could be traced back to the protective
effects of efficient IL-22 signaling on the epithelial barrier (119).
Since inflamed areas in IBD patients are characterized by an
increased expression of IL-22BP (118, 119), blocking IL-22BP
might potentially have therapeutic potential in humans as well.
Alternatively, recombinant human IL-22 fusion proteins, like F-
652 or UTTR1147A, allow direct IL-22 supplementation with the
advantage of increased IL-22 stability and thus extension of the
IL-22-induced beneficial effects. In case of UTTR1147A, efficient
STAT3 activation via the IL-22 receptor could be demonstrated
in vitro, resulting in protective in vivo effects in a murine colitis

model (120). Moreover, the therapeutic efficacy of F-652 has been
shown in a mouse model of graft-vs.-host disease (92) and its
safety profile has even been validated successfully in a clinical
trial (121), paving the way for further clinical development.
Irrespective of the afore mentioned strategies, fine-balancing of
any therapeutic interference with ILC3-driven IL-22 secretion
and individual patient selection will be of critical importance,
since next to its protective effects on IECs, a detrimental potential
of IL-22 on the epithelial barrier has been observed in selected
mouse models, as for instance in the anti-CD40-induced innate
colitis model (67). Likewise, uncontrolled IL-22 was suggested to
favor formation of colitis-associated colon cancer (122), allowing
IL-22 modulations only in a highly controlled fashion.

Boosting the ILC2-progenitor cell-tuft cell circuit might
represent another innovative, yet currently still hypothetical
therapeutic option in IBD patients. Indeed, data from a murine
study indicated that succinate supplementation resulted in
the amelioration of intestinal disease, which was attributed
to an activation of the tuft cell-ILC2 circuit (99). Even
though expansion of the helminth-sensing tuft cells by defined
microbiota-derived metabolites has not directly been targeted
in IBD patients yet, helminth infections themselves have been
discussed to prevent intestinal inflammation, though to date with
controversial outcomes (123–126). Thus, it appears promising
to pursue strategies that aim on a more specific therapeutic
activation of the tuft cell-ILC2 circuit by specific microbial
metabolites, like succinate.

Hypothetically, a direct transfer of ex vivo expanded and
specifically activated human ILCs might represent another future
therapeutic strategy, aiming at the restoration of a functional
epithelial barrier. Motivated by the first promising results
achieved by the adoptive transfer of regulatory T cells (127,
128) with a phase I clinical trial currently running in UC
patients (NCT04691232) (129), the transfer of other protective
immune cell populations might also be of advantage for IBD
patients. While there already exist established protocols for
the ex vivo expansion and differentiation of human ILCs (48,
130, 131), a targeted ex vivo generation of specific ILC subsets
with distinct effector functions is certainly still an unsolved
challenge that needs to be addressed as a first step on the
way to a potential clinical translation. However, pursuing this
idea, the therapeutic use of ex vivo expanded primarily AREG-
producing ILC2s might, for instance, be desirable, based on
their beneficial effect observed in a mouse model of intestinal
inflammation (69). Nevertheless, many more questions need
to be answered, until adoptive ILC transfer might be further
discussed as therapeutic strategy in IBD. For example, it will
be important to define the in vivo stability of the intended ILC
phenotype, the capacity of transferred ILCs to accumulate at the
site of epithelial tissue damage as well as their potential risk
to drive inflammation rather than epithelial healing under in
vivo conditions.

In summary, the here described insights into the capacity
of helper ILCs to impact on the fate of IECs clearly point to
these innate mucosal immune cells as key regulators of the gut
barrier integrity and as an interesting and still largely unexplored
research topic with great therapeutic potential in the clinical
context of IBD.
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Background: Interleukin-22 (IL-22) impacts the integrity of intestinal epithelia and has

been associated with the development of colitis-associated cancer and inflammatory

bowel diseases (IBD). Previous data suggest that IL-22 protects the mucosal barrier

and promotes wound healing and barrier defect. We hypothesized, that IL-22 modulates

cell polarity of intestinal epithelial cells (IECs) acting on tight junction assembly. The aim

of the study was to investigate IL-22-dependent mechanisms in the reprogramming of

intestinal epithelia.

Methods: IECs were exposed to IL-22 at various concentrations. IECs in Matrigel®

were grown to 3-dimensional cysts in the presence or absence of IL-22 and morphology

and expression of polarity proteins were analyzed by confocal microscopy. Epithelial

cell barrier (TER and sandwich assay) and TJ assembly analysis (calcium-switch assay)

were performed. TJ and cell polarity protein expression were assessed by western

blotting and confocal microscopy. Cell migration and invasion assays were performed.

Induction of epithelial-mesenchymal transition (EMT) was assessed by RT-qPCR analysis

and western blotting. Signaling pathway analyses were performed by phosphoblotting

and functional assays after blocking STAT3 and ERK signaling pathways. Using

the toxoplasma-model of terminal ileitis, IL-22-knock-out mice were compared to

wild-type littermates, analyzed for barrier function using one-path-impedance-analysis

and macromolecular flux (H3-mannitol, Ussing-chambers).

Results: IECs exhibited a barrier defect after IL-22 exposure. TJ protein distribution

and expression were severely impaired. Delayed recovery in the calcium-switch assay

was observed suggesting a defect in TJ assembly. Analyzing the 3D-cyst model, IL-22

induced multi-lumen and aberrant cysts, and altered the localization of cell polarity

proteins. Cell migration and invasion was caused by IL-22 as well as induction of EMT.

Interestingly, only inhibition of the MAPK pathway, rescued the TJal barrier defect, while
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blocking STAT3 was relevant for cell survival. In addition, ileal mucosa of IL-22 deficient

mice was protected from the barrier defect seen in Toxoplasma gondii-induced ileitis

in wild type mice shown by significantly higher Re values and correspondingly lower

macromolecule fluxes.

Conclusion: IL-22 impairs intestinal epithelial cell barrier by inducing EMT, causing

defects in epithelial cell polarity and increasing cell motility and cell invasion. IL-22

modulates TJ protein expression and mediates tight junctional (TJal) barrier defects via

ERK pathway.

Keywords: intestinal epithelial cells, barrier function, cell polarity, IL-22, tight junctions, MAPK, stat3

INTRODUCTION

Interleukin-22 (IL-22) is a member of the interleukin-10 cytokine
family that is primarily acting on epithelial cells, which is
secondary to the expressional restriction of the IL-22-receptor-
1 chain to epithelia (1–3). IL-22 is upregulated in inflammatory
bowel diseases (IBD) as Crohn’s disease but also in coeliac disease
(4–6). Although there aremany reports on IL-22-mediated effects
on epithelial cells, the overall outcomes described so far appear
to be very heterogeneous. Dependent on the cell type involved
or the type of inflammatory trigger, IL-22 was reported to result
either in protection of epithelia/wound healing or to induce
epithelial damage (1, 7). Specifically, IL-22 protected from colitis
in infectious or chronic inflammatorymodels or induced ileitis in
the Toxoplasma gondiimodel (8–12). However, previous analyses
of epithelial cell responses to IL-22 are mostly limited to wound
closure assays or examination of epithelial proliferation and
apoptosis (7).

Epithelial polarity describes a cellular program ensuring
proper localization of distinct polarity-relevant molecular
constituents (i.e., phospholipids and proteins) to the apical
or the basolateral epithelial compartments as well as the
coordinated assembly of intercellular junctional structures,
including tight junctions (TJ) and adherens junctions (13). It
is regulated through a complex network of proteins that are
strongly conserved throughout evolution and is described to be
dysregulated in inflammation and carcinogenesis (14). However,
it is unknown how epithelial polarity and barrier function are
regulated during chronic inflammation of the gut. Previously,
dysregulation of the polarity protein Pard3 was found in celiac
disease and was connected to celiac epithelial barrier defects (15).

Furthermore, the proinflammatory cytokines, such as
TNF-α and interferon-γ, have been shown to disturb
regular lumen formation in intestinal epithelial cysts as
well as alter the epithelial polarity and barrier function
(16). In this context, activation of the IL-22 receptor
triggers signaling via various pathways including STAT3,
AKT and MAPK/ERK, that are crucial for cell survival,
proliferation, barrier integrity and establishment of cell polarity
(17–20). Therefore, we hypothesized that IL-22 exposure
directly modulates the epithelial apical complex and also
the establishment of cell polarity, thereby regulating the
barrier function.

In this study, we show that IL-22 impairs the intestinal
cell barrier integrity by inducing a complex reprogramming of
intestinal epithelial cell functions. Within this regulation, IL-
22 induces EMT, modulates TJ, and polarity protein expression
and mediates TJal barrier defects via ERK- but not STAT3-
or AKT-pathway.

MATERIALS AND METHODS

Cell Culture and TER Measurement
Caco-2, HT29/B6, and T84 were maintained in Minimum
Essential Medium Eagle’s (MEM, Gibco/Thermo Fisher,
Waltham, MA, USA), RPMI-1640 and DMEM/Ham’s F-12
(Corning, Wiesbaden, Germany) supplemented with 10% fetal
bovine serum (FBS, Gibco/Thermo Fisher), 1% penicillin and
streptomycin (Corning), respectively. IECs were seeded on
PCF filters (0.4µm; 0.6 cm2, Merck Millipore, Darmstadt,
Germany) and grown to confluence for 7, 10 and 12 to 14 days
in culture at 37◦C in a 5% CO2 environment, respectively.
IL-22 (Biolegend, San Diego, CA, USA) was added to both,
the apical and basolateral compartments of transwell filters
for times indicated and transepithelial resistance (TER) was
measured using chopstick electrodes. The IEC filters were
basolaterally exposed to additional proinflammatory cytokines
as TNF-α (1,000 U/ml); IFN-γ (100 U/ml); IL-13 (10 ng/ml);
TGF-β1 (20 ng/ml). These cytokines were from Prepotech
(Hamburg, Germany).

Impedance Spectroscopy
The experiment was performed as previously described (21). In
brief, an electric circuit model was used describing the epithelial
properties: Epithelial resistance (Repi) consists of two parallel
resistors, transcellular resistance (Rtrans) being further divided
into resistors and capacitors, and the paracellular resistance
reflecting the TJ formed resistance (Rpara). Repi is in series to
the subepithelial resistance (Rsub), the latter caused by the filter
support. IECs were grown on filter support and were mounted
into a modified Ussing chamber setup and after application
of alternating current (35 µA/cm2, frequency range 1.3Hz
to 65 kHz), voltage changes were detected by phase-sensitive
amplifiers (402 frequency response analyzer, Beran Instruments,
Glen Allen, VA, USA; 1,286 electrochemical interface; Solartron
Schlumberger, Atlanta, GA, USA) and the resulting complex
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impedance values were calculated and plotted in a Nyquist
diagram, which allowed to evaluate Rsub and Repi (One-path
impedance spectroscopy). Rtrans and Rpara (Two-path impedance
spectroscopy) were determined from experiments in which the
impedance spectra and fluxes of a paracellular marker substance,
fluorescein, were obtained before and after chelating extracellular
Ca2+ with EGTA. This caused TJs to open and to increase
paracellular flux inversely proportional to Repi changes.

Sandwich Assay
The sandwich assay was done as previously described (22) and
was performed at RT with cells growing on transwells (0.6 cm2,
0.4µm pore size). IECs were washed in FBS-free medium and
were incubated basolaterally with avidin (15µM, 10min). After
washing with PBS+, cells were exposed to 140 µl of biotinylated
dextran-3000-TexasRed (10µM, 10min, MolProbes) from the
apical side. Cells were then fixed (2% PFA, 30min, RT) and
mounted for confocal microscopy.

Calcium Switch Experiment
Experiments were done as previously described (23). Seven
days after seeding them on PCF filters (0.4µm), T84 cells
were switched to a low calcium medium (DMEM calcium-free,
Gibco) supplemented with 5% of FBS and 1% penicillin and
streptomycin (Corning). To disrupt cell adhesion, cells were
kept 16 h in low calcium medium after 4 times PBS washing
in the presence or absence of IL-22 (10 ng/ml). Then, filters
were mounted to Ussing chambers, where TER was monitored
in 10 s-intervals throughout the experiment. After 30min of
equilibration, calcium chloride was added to both chamber sides
at a final concentration of 1.6mM for 6 h.

Immunostaining and Confocal Laser
Scanning Microscopy
Epithelial cell layers were washed 3× with PBS, then fixed with
PFA 4% pH 7,5 and kept in 4◦C with PBS for maximally 7
days prior to immunostaining. Cells were washed and stained
following the protocol published previously (13) using the
following primary antibodies: ZO-1 (1:100; BD Biosciences),
JAM-A (1:100; Thermo Fisher). The secondary antibodies used
were Alexa Fluor 488 goat anti-mouse or rabbit IgG, and Alexa
Fluor 594 goat anti-mouse or rabbit IgG (1:500; Thermo Fisher).
To determine occludin expression and cellular distribution, an
occludin mouse monoclonal antibody (OC-3F10) was used as
an Alexa Fluor R© 594 Conjugate (Thermo Fisher). Nuclei were

stained using DAPI (4
′

,6-Diamidin-2-phenylindol, conc. 1:2000).
Immunofluorescence staining was analyzed by confocal laser
scanning microscopy (LSM 780, Carl Zeiss, Jena).

Migration and Invasion Assay
HT29/B6 cells were kept on at 37◦C in a 5% CO2 environment
until reach confluence. Subsequently, a defined scratch (diameter
100µm) was introduced to filter-grown HT29/B6 cells and kept
with medium with 1% of fetal bovine serum (Gibco) to avoid
cell proliferation. Cells were exposed to IL-22 (10 ng/ml) and
migration was evaluated by measuring the distance at 24 and
48 h after scratching. To perform invasion assay, Matrigel R© was

diluted (1 mg/ml), placed 100 µl into upper chamber of 24-well
transwell and incubated at 37◦C for 4–5 h. Subsequently, 2 ×

105 CaCo-2 cells in 100 µl plus 100 µl of media (MEM Eagle
Medium, Gibco + 1% penicillin and streptomycin, Corning)
without FBS were placed into the transwell chamber with
Matrigel R©; cells were treated with or without IL-22 (100 ng/ml).
In transwell lower chamber was added 600 µl of culture media
and then, incubated for 24 h. The transwell chamber was removed
and cells presented in the lower chamber were washed 2× with
PBS+, fixed (PFA 2%) at room temperature for 30min and
stained with DAPI (1:2000 for 30min). Number of colonies were
counted and analyzed by confocal laser scanning microscopy
(LSM 780, Carl Zeiss, Jena).

Culturing 3D-Cysts, Immunostaining
For seeding CaCo-2 cells in Matrigel R©, all materials were kept at
4◦C under the cell culture bench. 1× 104 cells CaCo-2 cells were
embedded in 150 µl of fluidic Matrigel R© (Corning, Wiesbaden,
Germany) prior to homogeneously seeding them to Lab-tek
slides (Thermo Fisher). To allow the Matrigel R© to consolidate,
Lab-teks were incubated at 37◦C for 30min. Subsequently,
500 µl of Eagle’s MEM, supplemented with 10% FBS (both
Gibco/Thermo Fisher) was added. 3D-cysts evolved within 3 to
5 days (37◦C, 5% CO2). Lab-teks were incubated at 4◦C (PBS+)
until immunostaining was performed. For immunostaining, cells
were washed with PBS+ and then incubated with prewarmed
collagenase (Sigma, Darmstadt, Germany; 8–10min, 37◦C),
washed again and fixed using PFA (4%, pH 7.5) for 30min
at RT. Extensive PBS+ washes, then permeabilization/blocking
using PBL-solution (0.7% fish skin gelatin and 0.025% saponin,
in PBS+; 2 h, RT), followed by PBS-washes and quenching using
75mM NH4Cl and 20mM glycine in PBS+ (10min, RT). Now,
one wash using PBL and incubation with first antibody (PAR3
1:100; Sigma-Aldrich/ DLG1 1:100; Santa Cruz Biotechnology)
in PBL was performed in a wet chamber overnight at 4◦C. On
the next day, samples were extensively washed using PBS+ at
RT. Then incubation with the secondary antibody (in PBL, wet
chamber, overnight, 4◦C; Alexa594-Fab-fragment donkey anti-
rabbit IgG, 1:200; Alexa488-Fab-fragment donkey anti-mouse
IgG, 1:200, additionally phalloidin-Atto647, 1:200). Alternatively,
antibody stainings with fluorescently tagged first antibodies
were performed using a less complex protocol with overnight
incubation of PFA-fixed 3D-cysts at 4◦C with E-cadherin
antibody (1:100; Alexa Fluor647-conjugate, BD Biosciences, San
Jose, CA, USA) and DY-594-phalloidin (1:100; Dyomics, Jena,

Germany) to stain actin. Nuclei were stained using DAPI (4
′

,6-
Diamidin-2-phenylindol, 1:2000) for 1.5 h at RT.Microscopy was
performed using a confocal laser scanning microscopy (LSM 780,
Carl Zeiss, Jena).

Treatment With Inhibitors
To inhibit STAT3 phosphorylation, different inhibitors were
used. Stattic and STAT3 Inhibitor IV (S31-201) are cell-
permeable molecules that inhibit by selectively binding the
STAT3-SH2 domain impairing STAT3 activation, dimerization
and nuclear translocation (24–26). Furthermore, it was used a
cell-permeable peptide analog, which is also a selective blocker
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of STAT3 activation (27). As an indirect inhibitor, WP1066 was
used that blocks STAT3 phosphorylation by binding to JAK2,
a kinase upstream of STAT3 (28, 29). To inhibit the MAPK
signaling, the inhibitor U0196 was used. It acts as a selective
inhibitor of MEK1 and MEK2 preventing activation of MAP
kinases p42 and p44 (ERK1/2) (30). Specifically, after 7 days
in culture, HT29/B6 cells growing on transwell filters were
exposed to the aforementioned STAT3 and MAPK inhibitors
(Supplementary Table 1) for 2 h. Subsequently, IL-22 (10 ng/ml)
was added for either 1 h after which cells were lysed, or for a
maximum of 72 h for measuring TER (48 72 h) and cells were
lysate to performWestern blotting experiments.

RT-qPCR
Total RNA was extracted using the mirVanaTM mRNA
Isolation Kit (Thermo Fisher) according to the manufacturer’s
instructions. To quantify the extracted RNA, NanoDrop
1000 (Thermo Fisher Waltham, MA, USA) was used. 800
to 1,000 ng of total RNA was applied to synthetize cDNA
using the High Capacity cDNA Reverse Transcription
Kit (Applied Biosystems/Thermo Fisher) according to the
manufacturer’s instructions. Real time-qPCR reactions
were performed using 1 µl of cDNA template, 1 µl of the
desired probe, 10 µL of RT-qPCR Master Mix (Applied
Biosystems/Thermo Fisher) and nuclease-free water to
a final volume of 20 µl. Comparative CT reactions were
performed in triplicates using the StepOnePlusTM instrument
(Applied Biosystems/Thermo Fisher). Calculations for gene
expression changes were performed using the 2−11CT

method. The human probes used were all from Applied
Biosystems/Thermo Fisher and were SNAI1 (Hs00195591_m1),
SNAI2 (Hs00161904_m1), MMP −2 (Hs01548727_m1),
−7 (Hs01042796_m1), and −9 (Hs00957562_m1).
ACTB (Hs01060665_g1) was used as control of the
reaction amplification.

Western Blotting
For protein quantification, epithelial cells were washed twice
with ice-cold PBS+. Protein extraction was done using ice-
cold lysis buffer (150mM NaCl, 10mM Tris buffer pH of
7.5, 0.5% Triton X-100, and 1% SDS). A volume of 10ml
lysis buffer was supplemented with one Complete Protease
Inhibitor Cocktail tablet; Roche AG, Basel, Switzerland).
Cells were scraped from the filters, incubated for 60min
on ice, and vortexed every 10min. The supernatant was
collected after centrifugation (30min, 15,000 g, 4◦C). To
determine the protein content, Pierce BCA assay (Thermo
Fisher, Waltham, MA, USA) was performed according to
the product instructions using a Tecan plate reader (Tecan
GmbH, Maennedorf, Switzerland) at an absorbance of 562 nm.
Protein samples (20 µg) were mixed with 5× Laemmli
buffer and loaded on premade SDS polyacrylamide gels (Bio-
Rad, Feldkirchen, Germany). After electrophoretic separation,
proteins were transferred to a PVDF membrane (Thermo
Fisher) using the Trans-Blot system (Bio-Rad) at 25V for
7 to 10min and membranes were blocked for 2 h at RT
with 1% PVP-40 (Polyvinylpyrrolidone; Sigma, Darmstadt,

Germany) in TBST/0.05% Tween-20 buffer. Primary antibodies
(Supplementary Table 2) were incubated overnight at 4◦C. A
peroxidase-conjugated secondary antibody was incubated (2 h,
RT). Detection of proteins on the membrane was performed
using SuperSignal West Pico Plus Stable Peroxide Solution
(Thermo Fisher). Luminescent signals were detected with the
Fusion FX7 imaging system (Vilber Lourmat Deutschland
GmbH, Eberhardzell, Germany).

Mice
Female WT and IL-22−/− (on a C57BL/6 background),
and NMRI mice were 8 to 12 weeks of age and bred and
maintained in the Forschungsinstitut für Experimentelle
Medizin (Charité—University Medicine, Berlin). Clinical
conditions and body weights were determined daily, and
all experiments were conducted according to the German
animal protection laws. Animal protocols were approved by
the Landesamt für Gesundheit und Soziales (Lageso, Berlin;
TVV-No G0258/04).

Toxoplasma gondii-Induced Ileitis In vivo

Murine Model
Cysts of the T. gondii ME49 strain were obtained from brains
of NMRI mice infected with 10 cysts for 2–3 months. Mice
were infected with 100 cysts in 0.3ml of PBS by gavage.
All animal experiments were conducted according to the
German animal protection laws. Histological scores and parasite
loads were determined in formalin-fixed and paraffin-embedded
tissue sections taken from the terminal ileum as described
previously (31).

Statistical Analysis
Statistical analysis was performed using GraphPad Prism
software (GraphPad Software, La Jolla, CA) by the non-
parametric Mann Whitney U test. All data are expressed as
mean values ± standard error of the mean (SEM). p < 0.05 was
considered significant.

RESULTS

IL-22 Impairs Paracellular Intestinal
Epithelial Barrier Integrity
To investigate the role of IL-22 on barrier integrity, intestinal
epithelial cells (IECs) seeded on transwell filters were exposed to
IL-22 (apical and basolateral compartment). A stable epithelial
barrier was established in CaCo-2 cells on day 10, in HT-29/B6
cells on day 7 and in T84 cells on day 14. Subsequently, apical and
basolateral cell surfaces were exposed to IL-22. Transepithelial
electrical resistance (TER) was monitored throughout the
experiment (Figure 1). IL-22 induced a significant decrease in
TER in a dose-dependent (Figure 1A) and time dependent
manner (Figures 1B,C) with reductions in TER as much as 60%
of control level at 10 and 100 ng/ml of IL-22 (72 h exposure).
Furthermore, IL-22-induced TER decrease was similar to that
after 48 hours of exposure to other proinflammatory cytokines
(Figure 1D). Interestingly, the IL-22-induced barrier leak also
allowed the passage of macromolecules like TMR-dextran3000
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FIGURE 1 | Barrier integrity is affected by IL-22. (A) Transepithelial resistance (TER) was determined in HT-29/B6 cells grown on transwell filters. Cells were exposed

to IL-22 at different concentrations (0.1, 1, 10, and 100 ng/ml). TERs after 72 h of IL-22 exposure are shown n = 25. Mann–Whitney U test; ***p < 0.001. (B) TER time

course in HT29/B6 cells exposed to IL-22 (10 ng/ml); n = 32. Mann–Whitney U test; **p < 0.01; ***p < 0.001. (C) TER measured in CaCo-2 cells exposed to IL-22

(10 ng/ml) for a longer time course (up to 8 days); n = 3. (D) Comparative analysis of TER in T84 cells (grown on transwell filters) after a 48 h-exposure to various

cytokines (TNFα: 1,000 U/ml, IFNγ: 100 U/ml, IL-22: 10 ng/ml; IL-13: 10 ng/ml; TGF-b1: 20 ng/ml); n = 8. (E) Sandwich assay revealing transepithelial passage of

macromolecules, specifically TexasRed-dextran3000 (red fluorescence) in control and IL-22-treated CaCo-2 cells. E-cadherin, green; nuclei, blue; n = 3. (F) Two-path

impedance analysis: HT-29/B6 cells grown on transwell filters were exposed to IL-22 (10 ng/ml) for 48 h. After mounting filters to Ussing chambers paracellular and

transcellular components of TER were determined by two-path impedance; n = 6. Mann Whitney U test; *p < 0.05 (G) Calcium switch experiment: T84 cells growing

on transwell filters were exposed to IL-22 (10 ng/ml, 48 h) and mounted to Ussing chambers, where TER was monitored in 10 s-intervals throughout the experiment.

Transepithelial resistance was measured every 60min for 6 h; n = 3. Mann–Whitney U-test; *p < 0.05; **p < 0.01; ***p < 0.001.
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as shown by the sandwich assay (Figure 1E). Furthermore, a 2-
path-impedance analysis showed that the barrier leak occurred
exclusively paracellular (Figure 1F). In addition, we observed
an IL-22-associated delay of TER-recovery after switching the
media from calcium-free to normal calcium concentrations in
CaCo-2 cell layers in filter transwells that had been mounted
to Ussing chambers. This finding is frequently found with a
disturbed TJ assembly (Figure 1G). Altogether, these results
show that IL-22 impairs the paracellular barrier function of
IECs and promotes an increased permeability of small ions
(measured by TER) and macromolecules (as measured by the
sandwich assay).

IL-22 Induces Defective Epithelial Polarity
Next, CaCo-2 cells seeded in Matrigel R© were allowed to evolve
to 3-dimensional cysts. Formation of cyst lumen was analyzed
as this is known to reflect the integrity of the polarization
process. Cells were then immunostained and analyzed by
confocal laser scanning microscopy. Untreated CaCo-2 3D
cysts most often exhibited a single lumen, lined with a
single epithelial layer with the apical cell surface pointing
to the lumen and the basolateral surface pointing to the
Matrigel R©-containing matrix. In untreated cysts, phalloidin
staining showed a strongly stained subapical network of
actin fibers, while the basolateral membrane was E-cadherin
as well as β-catenin-positive as expected in polarized IECs
(Figure 2A, Supplementary Figure 1). Interestingly, exposing
cysts to IL-22 resulted in an increase of cysts with multiple
lumens and a consecutive decrease of hollow cysts, i.e. cysts
displaying a single, “ball-shaped” lumen (Figures 2B,C). In this
regard, IL-22-treated cysts frequently revealed dystopic lumen
formation, e.g., in between neighboring IECs of the single cell
lining of the cysts (Figure 2A, Supplementary Figures 1E, 2C).
Nevertheless, the number of cysts with mitotic spindles was
not significantly changed upon IL-22 treatment (Figure 2D).
Furthermore, we immunostained key cell polarity proteins,
including Par-3, that has been described to orchestrate the
assembly of apical junctions in epithelial cells and was thus
expected to localize to TJs in polarized IECs, ZO-1 as a
protein localizing to TJs, Ezrin as a component of the apical
membrane and Dlg-1, demarcating the basolateral membrane.
In general, we confirmed the expected protein localizations
in established cysts 5 days after seeding (Figures 3A–C). Par-
3 was localized to the most apical part of the lateral cell
membrane in control cysts revealing the same localization as ZO-
1 (Figure 3A, arrows; Supplementary Figures 2A,B). Ezrin was
associated with the apical membrane and Dlg1 was restricted
to the basolateral membrane. In contrast to that, in IL-22-
treated cysts Par-3 was dislocated as it was found diffusely along
the entire lateral membrane and also in intracellular vesicles
(Figure 3D). Furthermore, membranous Dlg-1 staining was
reduced compared to controls and was shifted to an intracellular
compartment (Figure 3D). Ezrin staining was focally enriched at
the basal membrane (instead of the apical membrane, Figure 3E,
arrows), suggesting opposite polarization. In other cysts it
demarcated aberrant lumens (Figure 3F, arrows). Taken together,

these results suggest that IL-22 impairs intestinal epithelial
polarity and lumen formation.

IL-22 Increases Cell Motility, Cell Invasion,
and Induces EMT
As we had observed IEC polarity defects after IL-22 exposure,
we next asked, whether IL-22 might also impact migratory
and invasive properties of IECs. Thus, we carried out a CaCo-
2 wound healing assay by performing uniform scratches into
a single CaCo-2 layer that stably expressed Actin-GFP and
monitored live by confocal LSM. Exposure to IL-22 (10 ng/ml)
resulted in a statistically significant increased IEC migration,
thereby nearly doubling IEC migratory speed (Figures 4A,B).
Similarly, IL-22 had the capacity to induce invasion of cells in
a combined Matrigel R©/filter-based assay. After IL-22 exposure,
the number of invaded colonies was ∼3-fold higher compared
to control cells (Figure 4C). To us, these results appeared to be
plausible findings in the context of epithelial-to-mesenchymal
transition (EMT). Thus, the following experiments were designed
to assess whether IL-22 induces EMT in IECs. Firstly, levels for
proteins that are regulated within the EMTprocess, specifically E-
cadherin and matrix metalloprotease-7 (MMP7), were quantified
by western blotting in the course of exposing IECs to IL-22.While
E-cadherin levels declined starting between 4 and 8 h of IL-22
exposure continuously,MMP7 expression peaked 24 h after IL-22
addition (Figures 4D,E). To further support the hypothesis that
an EMT program is induced by IL-22, mRNA levels of classical
EMT transcription factors, SNAI1 (Snail) and SNAI2 (Slug), were
assessed after exposing the cells for 3 and 24 h to IL-22 (10 and
100 ng/ml). IL-22 significantly increased SNAI1 and SNAI2 gene
expression at 24 h even higher than at 3 h of IL-22 exposure at
both IL-22 concentrations (Figures 4F,G). In addition, MMP7-
RNA levels were strongly upregulated after 3 and 24 h of IL-
22 exposure (Figure 4H), in accordance to our previous data
showed on protein levels by western blotting. In summary, these
data indicate that IL-22 induces an EMT-like cell program, which
might contribute to migratory as well as invasive properties of
IL-22-treated IECs.

IL-22 Modulates Tight Junction Protein
Expression
As we had shown that IL-22 induces a paracellular barrier defect
in IECs and modulates the expression of genes that regulate
junctional proteins, we next investigated the impact of IL-22 on
expression and subcellular localization of TJ proteins. In a first
step, we monitored the expression of various TJal claudins in
the course of IL-22-exposure by western blotting (Figure 5A).
As early as 4 h after exposing the cells to IL-22, claudin-1, a
barrier-forming claudin, decreased on the protein level, whereas
protein levels of the pore-forming claudin-2 and claudin-4, which
was previously linked to EMT were increased (Figure 5A). Using
confocal LSM we moreover found, that the PDZ-containing
TJ-associated protein ZO-1 as well as the junctional adhesion
molecule-A (JAM-A) were reduced in their junctional expression
(Figure 5B). Similarly, TJal localization of occludin was shifted
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FIGURE 2 | IL-22 exposure causes atypical cysts formation. (A) CaCo-2 cells were seeded in Matrigelr and grown for 5–7 days to form 3D cysts. Subsequently, they

were fixed and immunostained. Blue, nuclei; red, actin; green, E-cadherin. Representative images n = 6. (B–D) Quantification of the 3D-cyst experiments: CaCo-2

cysts growing in Matrigelr were analyzed by confocal LSM. Multilumen, hollow cysts and cysts revealing mitoses were microscopically quantified; n = 6.

Mann–Whitney U-test; *p < 0.05; **p < 0.01.

to an intracellular and a lateral membrane localization in the 2D
transwell and the 3D cyst model, respectively (Figures 5C,D).

IL-22 Mediates TJal Barrier Defects via
ERK Pathway
Next, we aimed to dissect the intracellular signaling pathways
after activation of the IL-22 receptor in IECs. All three IEC
cell lines involved in this study equally expressed the two IL-22
receptor subunits (IL-22Ra1 and IL-10Rb), but did not express
the endogenous IL-22 antagonist, the IL-22 binding protein, IL-
22BP (Supplementary Figure 3). As shown in various previous
studies, upon IL-22 receptor activation the STAT3 pathway as
well as the MAPK/ERK pathway were activated. However, this
occurred non-simultaneously (STAT3 at 15min, ERK between
30min and 4 h, Figure 6A). Interestingly, we did not detect any

phosphorylation of AKT in our model system. Since activation
of STAT3 signaling was previously reported to play a role in
epithelial protection, we next determined the effect of various
strategies to inhibit STAT3 signaling on STAT3 activation and
epithelial barrier function (Figures 6B,C). While the STAT3
inhibitor WP1066 reduced the pSTAT3 signal, it also reduced
total STAT3 levels which was explained by a strong induction
of programmed cell death (as revealed by cleaved caspase-
3, Figure 6B). Consecutively, STAT3 inhibition did not rescue
the IL-22-induced barrier defect (Figure 6C). In line with this
finding other STAT3 inhibitors were not capable of reversing
epithelial barrier defects by IL-22 (Supplementary Figure 4).
On the other hand, inhibition of ERK/MAPK was successful
regarding signaling as well as rescue of barrier function
(Figures 7A–D). Using the MEK inhibitor U0126, we achieved
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FIGURE 3 | IL-22 induces development of dyspolar 3dimensional cysts. CaCo-2 cells were seeded in Matrigel and 3D-cysts were allowed to develop within 5–7 days.

Then cysts were fixed and immunostained according to the Methods section. (A–C) control 3D-cysts. (D–F) cysts treated with IL-22 (10 ng/ml) starting at the day after

seeding. Proteins detected by immunostaining are depicted in each image. The composite image (right column) additionally includes staining for nuclei using DAPI.

Structures identified by arrows are explained in the text of the Results chapter; n = 4 independent experiments.
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FIGURE 4 | IL-22 increases cell motility and induces EMT on IECs. (A–C) HT29/B6 cells exposed to IL-22 (10 ng/ml) growing on transwell filters were scratched

(diameter 100µm). Migration was evaluated by measuring the remaining scratch width at 24 and 48 h after scratching by fluorescence microscopy; n = 3 (B) For

invasion, CaCo-2 cells were seeded on Matrigelr-coated filters and then exposed to IL-22 (100 ng/ml). The invasion of CaCo-2 cells through the Matrigelr-coated

filter was quantified by counting colonies that formed on the basal side of the filter n = 3. (D,E) CaCo-2 cells were exposed to IL-22 (10 ng/ml) and lysed. E-cadherin

and MMP-7 protein levels were investigated through western blotting. Representative Western blots of three and two independent experiments, respectively. (F–H)

CaCo-2 cells were exposed to IL-22 (10 or 100 ng/ml) for 3 and 24 h. RNA was extracted and RT-qPCR was performed to quantify expression of Snail (SNAI1), Slug

(SNAI2), and MMP-7. Expression levels were calculated using the 2−11CT method. Mann–Whitney U-test; n = 3; *p < 0.05; **p < 0.01; ***p < 0.001.

close to total inhibition of ERK phosphorylation, thereby
rescuing the IL-22-induced TER-reduction (Figures 7A,B). In

accordance with the signaling study, IL-22-induced dislocation

of occludin was reversed by MAPK inhibition (Figure 7C).

Similarly, reduction of E-cadherin and claudin-1 protein levels

as well as increases in claudin-2,−4 and MMP7 were normalized
by U0126 treatment (Figure 7D). Altogether, our results indicate
that MAPK/ERK signaling is central in mediating IL-22-
dependent barrier and EMT signaling in IECs.

IL-22 Induces Barrier Defect in a Mouse
Model of Terminal Ileitis
In addition to the IEC in vitro experiments, barrier function
was examined using the Toxoplasma gondii (T. gondii) mouse
model of terminal ileitis in mice lacking IL-22 (8). T. gondii has
previously been described to induce IL18 expression in IECs in
an IL22-dependent manner. However, the detailed consequences
on the structural and functional intestinal barrier mediated by
the presence or absence of IL22 have not been investigated. In
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FIGURE 5 | IL-22 affects tight junction proteins. (A) Expression of TJ proteins: IECs were treated with IL-22 (10 ng/ml) for the indicated times. Subsequently, cells

were lysed. TJ protein levels were determined by Western blotting as explained in the Methods section. Representative blots of three independent experiments. (B–D)

Confocal LSM after immunostaining of CaCo-2 cells. (B) Reduction of JAM-A junctional levels by IL-22. Red, JAM-A; green, ZO-1; blue, nuclei n = 3. IECs cartoon

represents the confocal microscopy analysis (C,D) Dislocation of occludin by IL-22. Green, occludin; red, actin; blue, nuclei; n = 3.

FIGURE 6 | IL-22 induces STAT3 and ERK phosphorylation. (A) HT-29/B6 cells were exposed to IL-22 (10 ng/ml) for the indicated times. Subsequently, cells were

lysed and protein levels of STAT3, ERK and AKT and their phospho-levels were investigated by Western blotting. Representative blots of three independent

experiments are shown. (B) HT-29/B6 cells were incubated in the presence of the STAT3 inhibitor WP1066 (50µM) for 2 h and IL-22 (10 ng/ml) for 1 h as indicated.

Western blotting of cell lysates was performed to quantify protein levels of STAT3 total, phospho-STAT3 (pSTAT3), cleaved caspase-3, and b-actin as loading control.

(C) TER was determined after 24 h of IL-22 exposure of HT-29/B6 cells growing on transwell filters treated with IL-22 (10 ng/ml), WP1066 (50µM) as indicated.

Mann–Whitney U test; n = 3; *p < 0.05; **p < 0.01; ***p < 0.001.

line with previously published data, T. gondii induced a severe
terminal ileitis in C57Bl/6 mice after seven days of infection
as seen in H&E stainings of formalin-fixed, paraffin-embedded

sections (Figure 8A). Mucosae from the terminal ileum of IL-
22 deficient and wild type control mice were mounted to Ussing
chambers and analyzed by one-path impedance spectroscopy to
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FIGURE 7 | MAPK/ERK signaling pathway is pivotal for IL-22 barrier signaling in IECs. HT-29/B6 cells were exposed to U0196 (2 h) in the presence or absence of

IL-22 (1 h). (A) Protein levels of ERK and phospho-ERK were assessed by Western blotting. Representative blots of three independent experiments are shown.

(B) TER of HT-29/B6 cells were measured after treatment with U0126 and IL-22 (10 ng/ml), as depicted; n = 9, ***p < 0.001. (C) Confocal LSM after immunostaining

of occludin was performed. Green, occludin; blue, nuclei. Scale bar: 20µm. Representative images of three independent experiments. (D) Western blotting was

performed to quantify protein levels of E-cadherin, claudin-1,−2,−4, and MMP-7. Representative blots of two independent experiments are shown; ***p < 0.001.

examine not only the total intestinal wall resistance, but also its
epithelial portion [Re, (15), Figure 8B]. As expected, the terminal
ileal mucosa of T. gondii-infected wild type mice displayed a
significant defect of the epithelial barrier and an increase in
macromolecular permeability when compared to wildtype mice
(3H-mannitol, Figures 8B,C). Interestingly, in line with our cell

culture findings, mice lacking IL-22 expression were protected
from this barrier defect and exhibited a significantly higher
Re and a statistically non-significant tendency toward a higher
mannitol permeability (Figures 8B,C). In summary, these results
give in vivo and ex vivo evidence showing that IL-22 plays an
important role in the intestinal barrier function.
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FIGURE 8 | IL-22 induces an epithelial barrier defect in murine mucosa. For induction of a murine T. gondii terminal ileitis, IL-22-deficient and wildtype control mice

were orally infected with T. gondii cysts. The terminal ileum was explanted at day 7. (A) Histological examinations were done in formalin-fixed and paraffin-embedded

tissue following H&E staining. (B,C) Explanted mucosae from the murine terminal ileum were mounted to Ussing chambers and analyzed by one-path impedance

spectroscopy to examine total intestinal wall resistance (Rt), the epithelial resistance (Re) and the subepithelial resistance [Rs, (B)]. Macromolecular permeability was

determined by measuring the flux of 3H-mannitol (C); n = 9, *p < 0.05.

DISCUSSION

IL-22 has a central role in type 3 mucosal immunity, which

is directed against extracellular bacteria and fungi. IL-22 is
tonically secreted by ILC3 cells sedentary to the gut mucosa and,

additionally, “on demand” by TH17 cells (10, 32). The fact, that

the IL-22 receptor is exclusively expressed on non-hematopoietic
epithelial and stromal cells, has prompted the idea of an ILC3-
IL-22-IEC axis (32). Current understanding implies that IL-22
is contributing to type 3 immunity by (ex vivo) the production

of antimicrobial peptides (AMPs) including β-defensins, the C-
type lectins RegIIIβ and RegIIIγ, lipocalin-2, and calprotectin as
well as amplifying IEC turnover to disturb colonization of the
gut epithelial lining by bacteria (10, 12, 33–35). Furthermore,
it has been described that IL-22 supports “epithelial integrity,”
which however, is incompletely analyzed so far, since studies have
mostly focused on AMP expression and wound healing assays
and missed out classical barrier function as well as analysis of
the apical junctional complex (7, 17). Thus, our study aimed
to functionally analyze the IL-22-exposed epithelial barrier and
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to characterize IL-22-altered epithelial polarity as this might be
fundamental to orchestrating barrier function (36, 37).

Our first finding—IL-22 inducing a profound reduction
of IEC transepithelial resistance corresponding to a relevant
increase in small ion flux—came unexpected as it is common
knowledge that IL-22 rather stabilizes but destroys epithelial
barrier function (7, 17). Since it was unexpected, we validated this
finding in three different intestinal epithelial cell lines, established
its dose- and time-dependence and presented evidence that
these findings correspond to the IL-22-related epithelial barrier
function in murine intestines as ex vivo one-path impedance
analyses of mucosae from IL-22 knock-out mice revealed an IL-
22-dependent epithelial barrier defect. Importantly this defect (i)
is clearly localized to the paracellular junction as evaluated by
two-path impedance analysis and (ii) is not limited to small ion
flux as shown by sandwich assay studies and by a tendency to
higher mannitol fluxes in the Ussing studies on murine intestinal
epithelia. Nevertheless, two studies, specifically those by Tsai
et al. (38) and by Wang et al. (39) are in full accordance to
our findings, since both uncovered an IL-22- and claudin-2-
dependent mechanism for triggering a leak-flux diarrhea in the
murine Citrobacter rodentium and an epithelial barrier defect for
small solutes in the CaCo-2BBE model.

After having confirmed that the previously described wound
healing potential of IL-22 holds also true in our model, we
questioned, whether IL-22 might reprogram epithelia in a way
that would explain likewise the induction of transient increases
in solute permeability and the potential to support the healing
of mucosal wounds. Our working hypothesis was that this
would be compatible with epithelial-to-mesenchymal transition
(EMT). Hence, we established an IL-22-induced expression of
transcription factors (Snail, Slug) characteristic for EMT, as well
as decreased expression of epithelial markers (E-cadherin) as
well as induction of a protein that points to a reorganization of
mucosal architecture and allows for epithelial invasion (MMP7).
IL-22’s potential to induce EMT can be compared to that
of IL13 as this TH2 cytokine had been previously shown to
induce EMT in a similar fashion (40). However, if an EMT-like
program orchestrates the reorganization of TJs aiming to release
junctional tightness and thereby facilitating IEC migration into a
wound, epithelial polarity is likely altered beforehand (41). Thus,
we investigated the status of epithelial polarity after exposing
intestinal epithelial cysts with IL-22. Indeed, IL-22 significantly
disturbed epithelial polarity including the establishment of a
single lumen in Caco-2-cysts as well as the dislocation of polarity
complex proteins that (like Par3) are pivotal to the assembly
of primordial apical junctions. Accordingly, TER monitoring
of IL-22-exposed IECs after calcium switch provided functional
evidence for a defective assembly of TJs.

In terms of intracellular signaling the study was in
contradiction to a number of previous studies as it did not
confirm the prominent role of JAK/STAT signaling, especially
STAT3, in our model system (7, 17, 38, 39). In fact, STAT3
was activated by IL-22 exposure but could only be related to
survival signaling and not to TJal and polarity reprogramming.
Instead, we found a mostly unprecedented function for IL-22-
induced activation of MAPK, since inhibitor studies revealed

evidence for ERK signaling to be causative for signaling to TJs.
Our experiences, that epithelial cell death occurs as soon as
STAT3 is inhibited goes in line with results from several previous
publications (17, 42). One should emphasize the limitation that
our study was performed using cell lines and that a consecutive
study using primary cells, e.g., a 2D organoid model, might help
to solve this controversy.

Moreover, our data suggest that the potential of IL-22 to
reprogram epithelia in order to close mucosal wounds comes
with the expense of acquiring dyspolar epithelia and to induce
cellular features as MMP7 expression and actin filaments-driven
invadopodes that finally contribute to epithelial invasiveness.
This goes in line with data on murine colitis-associated cancer,
which, however, reveal some complexity (42). On the one hand,
IL-22-knock-out mice develop a higher tumor burden, which was
related to a substantially increased inflammatory activity after
colitis induction by dextrane sulfate sodium. On the other hand,
mice, in which the endogenous IL-22 opponent, IL-22-BP, was
knocked out also developed more tumors, which was interpreted
as a long-term effect of the increased IL-22-availability and
secondary to that prolonged epithelial proliferation during the
recovery phase of inflammation (43, 44).

In summary, we have used model systems including three IEC
lines, functional as well as subcellular structural experimental
setups and a murine terminal ileitis model to describe the
epithelial response to the TH17 cytokine IL-22. From these data
we propose that IL-22 induces an EMT-like program that induces
intestinal epithelia to reduce their epithelial-specific polarity.
Secondary to that, a loosening of intercellular junctions occurs,
that allows IECs to migrate into wounds but also to become
more invasive. It is so-far speculative, that the latter process
might contribute to colitis-associated carcinogenesis once the
IL-22:IL-22BP ratio becomes too high. Interestingly, we found
rather MAPK/ERK to be responsible for these actions than the
JAK/STAT pathway.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

ETHICS STATEMENT

The animal study was reviewed and approved by Landesamt für
Gesundheit und Soziales (Lageso, Berlin; TVV-No G0258/04).

AUTHOR CONTRIBUTIONS

DD: plan and carry out the signaling studies and barrier
experiments, confocal LSM, and writing the paper. LL: plan and
carry out the 3D cyst studies and barrier studies, and confocal
LSM. DC-S: carry out the EMT studies and western blotting.
VD: western blotting of STAT3 inhibitor studies. SK: plan and
carry out 2-path impedance analysis and revision of manuscript.
JR: design of the 3D cyst assay and the sandwich assay. CH:

Frontiers in Medicine | www.frontiersin.org 13 April 2021 | Volume 8 | Article 65604753

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Delbue et al. Reprogramming IECs by IL-22

immunostaining and cell culture. KW and RS: planning and
carrying out of IL22 and IL22 receptor RT-PCR. SM: paper
writing and statistics. MM and MH: establish and generate the
terminal ileitis mouse model. BS: experimental strategy and
writing the paper. MS: defining the experimental strategy, barrier
studies on mouse mucosa, 3D cyst assays, immunostaining and
confocal LSM, and writing the paper. All authors contributed to
the article and approved the submitted version.

FUNDING

DD, DC-S, VD, and SM: funded by the the Deutsche
Forschungsgemeinschaft (DFG) as Ph.D., students within the
graduate school GRK 2318 TJ Train (within the projects
C03, B02, C03, and B02 respectively). SK: funding by DFG,
specifically graduate school GRK 2318 TJ Train (project C02)
and collaborative research center TRR 241 (project B06). BS:

funding by DFG, specifically graduate school GRK 2318 TJ Train
(project B02 and C03) and collaborative research center TRR
241 (project B01) and collaborative research center CRC 1449.
MS: funding by DFG, specifically graduate school GRK 2318 TJ
Train (project B02 and C03) and collaborative research center
TRR 241 (project C03). Funding by the gluten-free company
Dr. Schär for polarity research. MM and MS participated in
the BIH-Charité Clinician Scientist Program funded by the
Charité–Universitätsmedizin Berlin and the Berlin Institute
of Health.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2021.656047/full#supplementary-material

REFERENCES

1. Mizoguchi A. Healing of intestinal inflammation by IL-22. InflammBowel Dis.

(2012) 18:1777–84. doi: 10.1002/ibd.22929

2. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-

22 increases the innate immunity of tissues. Immunity. (2004) 21:241–

54. doi: 10.1016/j.immuni.2004.07.007

3. Sabat R. IL-10 family of cytokines. Cytokine Growth Factor Rev. (2010)

21:315–24. doi: 10.1016/j.cytogfr.2010.11.001

4. Fernández S, Molina IJ, Romero P, González R, Pẽa J, Sánchez
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Blocking interferon-function by therapeutic intervention of the JAK-STAT-axis is a novel

promising treatment option for inflammatory bowel disease (IBD). Although JAK inhibitors

have proven efficacy in patients with active ulcerative colitis (UC), they failed to induce

clinical remission in patients with Crohn’s disease (CD). This finding strongly implicates

a differential contribution of JAK signaling in both entities. Here, we dissected the

contribution of different STAT members downstream of JAK to inflammation and barrier

dysfunction in a mouse model of Crohn’s disease like ileitis and colitis (Casp81IEC mice).

Deletion of STAT1 in Casp81IEC mice was associated with reduced cell death and a

partial rescue of Paneth cell function in the small intestine. Likewise, organoids derived

from the small intestine of these mice were less sensitive to cell death triggered by

IBD-key cytokines such as TNFα or IFNs. Further functional in vitro and in vivo analyses

revealed the impairment of MLKL-mediated necrosis as a result of deficient STAT1

function, which was in turn associated with improved cell survival. However, a decrease

in inflammatory cell death was still associated with mild inflammation in the small

intestine. The impact of STAT1 signaling on gastrointestinal inflammation dependent on

the localization of inflammation, as STAT1 is essential for intestinal epithelial cell death

regulation in the small intestine, whereas it is not the key factor for intestinal epithelial cell

death in the context of colitis. Of note, additional deletion of STAT2 was not sufficient

to restore Paneth cell function but strongly ameliorated ileitis. In summary, we provide

here compelling molecular evidence that STAT1 and STAT2, both contribute to intestinal

homeostasis, but have non-redundant functions. Our results further demonstrate that

STATs individually affect the distinct pathophysiology of inflammation in the ileum and

colon, respectively, which might explain the diverse outcome of JAK inhibitors on

inflammatory bowel diseases.

Keywords: inflammatory bowel disease, STAT signaling, inflammation, cell death, Paneth cells

INTRODUCTION

Based on similarity in their structure and function as well as sharing of downstream signaling
pathways, interferons (IFNs) are grouped into three families: Type I with IFNα, IFNβ, and several
minor subtypes; Type II with IFNγ and Type III with IFNλs. Their expression can be induced in
response to diverse viral and bacterial stimuli in an autocrine or paracrine fashion (1–3). Ligation
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of IFNs to their corresponding receptors activates the Janus
kinase (JAK)-signaling transducer and activator of transcription
(STAT) signaling pathway. Activated JAKs induces STAT dimer
formation, homo- or heterodimer depending on the context,
and subsequently expression of different target genes involved in
various biological processes (2, 4, 5). The canonical JAK-STAT
signaling includes STAT1-STAT2 heterodimers, with associated
complex formation, in response to type-I and type-III interferons
and STAT1-homodimers following IFNγ ligation. However,
non-canonical JAK-STAT signaling in response to all types
of IFNs can provoke homodimer formation (all STATs 1–6)
as well as different combinations of heterodimers with other
members. Beside this, type-I IFNs can also induce gene activation
independently of STATs. This manifold setting, with various
dimer and complex formations, enables the modulation of gene
transcription of several hundred different genes by IFNs (2–
6). Accordingly, IFNs are currently considered as key cytokines
in autoimmune diseases such as inflammatory bowel disease
(IBD), rheumatoid arthritis or autoimmune hepatitis (7–12).
Inflammatory bowel diseases are prototypic immune-mediated
inflammatory diseases with a globally increasing prevalence,
affecting the gastrointestinal tract. IBD includes the major forms
ulcerative colitis and Crohn’s disease. The main differences of
these both forms is the localization of inflammation: While
ulcerative colitis only affects the colon, Crohn’s disease can
cause inflammatory lesions along the whole gastrointestinal tract
predominantly in the terminal ileum. In this context, it has
just recently been shown that IFNλ is a key factor for small
intestinal inflammation that can trigger mucosal inflammation
by influencing host cell death pathways in the context of
IBD (13). Crohn’s diseases patients displayed increased IFNλ

serum and tissue levels associated with severe inflammation,
and increased cell death accompanied by a dramatic reduction
of Paneth cell numbers in the small intestine. The same study
depicted that interferons were able to alter Caspase-8 as well
as Mlkl gene expression in intestinal epithelial cells (IECs) to
induce apoptosis and necroptosis (13). In contrast to this, IFNλ

promotes tissue regeneration and mucosal healing in the colonic
tissue, highlighting a specific regulation of downstream signaling
mechanisms depending on the cellular and spatial context (14).

Caspase-8 is a central cell death regulator that is involved
in various cellular processes. Translational studies have
demonstrated that humans with Caspase-8 mutations display
an early onset IBD associated with massive epithelial cell
death and severe inflammation (15, 16). In line with these
studies it has been previously shown that mice lacking this
central cell death regulator (Casp81IEC) in intestinal epithelial
cells spontaneously develop intestinal inflammation with
histomorphological alterations similar to the classical features
of Crohn’s disease. Accordingly, Casp81IEC mice mimic several
important characteristics including Paneth cell depletion
accompanied by microbial dysbiosis, the culprit of inflammation
in the ileum, as well as the immune cell signature (Th1 driven)
association with elevated IFN levels (17–19). Inflammation in
these mice is primarily located in the distal part of the small
intestine (ileum), and depending on the microbial composition
can vary in extent and localization to cause colitis or extensive

enteritis (17, 18). Colonic inflammation is dependent on TNFα
signaling, whereas TNFα deficiency is able to ameliorate colonic
inflammation, but is not sufficient to prevent Paneth cell loss
or enteritis in the small intestine (19, 20). Hence, intestinal
epithelial cell death seems to have shared general mechanism but
requires a tissue specific regulation.

Emerging evidence have indicated IFNs and their immune-
modulatory function, as well as their impact on cell death
mechanisms, as important factors in the pathogenesis of IBD
and as a central point for therapeutic intervention (13, 21).
Current strategies focus on blocking the JAK-STAT signaling
downstream of IFNs. Tofacitinib, a small molecule JAK inhibitor,
can attenuate disease activity in patients with active ulcerative
colitis accompanied by improved clinical response and mucosal
healing (22, 23). While these data are promising, tofacitinib was
insufficient to induce a clinical benefit for patients with Crohn’s
disease (24–26). Phase II trials reported biological activity of
tofacitinib in Crohn’s disease patients, but without a significant
clinical benefit (24–26) and even indicated disease worsening
(25). In line with this, recent data derived from preclinical
studies, demonstrated that intestinal inflammation in CD and
UC models displayed different disease mechanisms associated to
IFN-coordinated cell death (13, 14). In contrast to the broad JAK
inhibitor tofacitinib (JAK1 and JAK3 inhibitor), more selective
inhibitors like filgotinib and upadacitinib (JAK1 inhibitor) seem
to havemore therapeutic benefit in both diseases but clinical trials
are currently ongoing. For Crohn’s disease patients, filgotinib
reduced fecal calprotectin and C-reactive protein levels, and
was associated with mucosal healing and clinical remission (27).
However, broad JAK inhibitors such as tofacitinib not only
block IFN-signaling. Depending on the cellular context, various
cytokines can activate the JAK-STAT signaling pathway, e.g., IL-
6, IL-10, which can result in the activation of various STAT
pathways (28). Clinical trials using either specific or broad JAK-
inhibitors, reported differences in clinical benefit and treatment
success which might be explained with the differential role and
relevance of the underlying signaling cascade depending on
JAK-STAT pathway. Accordingly, detailed mechanisms are still
missing and further knowledge is required.

Here we provide molecular evidence that STAT1 and STAT2
both contribute to intestinal inflammation but have non-
redundant functions. Of note, the impact of STAT1 signaling on
intestinal inflammation seems to be strongly dependent on the
localization of inflammation as STAT1 is involved in cell death
regulation in the small intestine associated with Paneth cell death,
whereas it is not the key factor for epithelial death in the context
of colitis.

MATERIALS AND METHODS

Mice
Casp81IEC (17), Casp81IECxMlkl−/− (13), Stat1−/−

(29), Stat2−/− (30) mice were described earlier.
Casp81IECxStat1−/− were generated by crossing Casp81IEC

mice to Stat1−/− mice, Casp81IECxStat1+/−xStat2−/− and
Casp81IECxStat1−/−xStat2−/− mice were generated by crossing
Casp81IEC mice to Stat1−/−xStat2−/− mice. As controls we used
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littermates or C57BL/6 mice. At the end of the experiments,
mice were sacrificed by cervical dislocation. Mice were routinely
screened for pathogens according to FELASA guidelines. Animal
procedures were approved by the Institutional Animal Care
and Use Committee of the Regierung von Unterfranken and
conducted by qualified personnel.

DSS-Colitis
Experimental colitis was induced in mice by the administration
of 2% dextran sodium sulfate (DSS) in the drinking water
for 5 days. The development of colitis was monitored with
a high-resolution video mini-endoscopic system. Endoscopic
scores for intestinal inflammation were assigned based on
the criteria described for the assessment of the murine
endoscopic index of colitis severity, which scores the following
parameters: translucency, granularity, fibrin, vascularity, and
stool consistency, as previously described (31).

Organ Collection and Storage
Tissue for histology and immunohistochemistry were collected
and fixed in 4.5% PFA. Tissue was embedded in paraffin in a
water-free procedure and stored at room temperature for further
analysis. Samples for RNA and protein analyses were instantly
frozen in liquid nitrogen and stored at−80 ◦C until further use.

Histology and Immunohistochemistry
Histopathological analyses were performed on formalin-
fixed paraffin-embedded tissue cross sections after Mayer’s
haematoxylin and eosin (H&E) staining or a combined staining
with periodic acid–Schiff reaction and alcian blue (PAS).
Immunofluorescence of tissue sections was performed using
Streptavidin Protein DyLight (Thermo). Primary antibodies
(for detailed information see Supplementary Table 1) were
incubated overnight. Nuclei were counterstained with Hoechst
33,342 (Invitrogen). Cell death (TUNEL) was analyzed using
the In-Situ Cell Death Detection Kit (Roche). Images were
obtained using the microscope LEICA DMI 4000B together
with the LEICA DFC360 FX or LEICA DFC420C camera
or the microscope Leica DMi1 with the corresponding
imaging software.

Gene Expression Analysis
Total RNA was extracted from intestinal tissue using the
peqGOLD Total RNA Kit or Total peqGOLD Microspin Total
RNA Kit for organoids (peqLab/VWR). cDNA was synthesized
by reverse transcription using the SCRIPT cDNA Synthesis
Kit (Jena Bioscience) and analyzed by real-time qPCR using
SYBRGreen reagent (Roche), the LightCycler 480 (Roche)
and specific QuantiTect Primer Assays (Qiagen) (for detailed
information see Supplementary Table 2). Experimental values
were normalized to levels of the housekeeping gene hypoxanthine
guanine phosphoribosyl transferase (Hprt) or Glyceraldehyde 3-
phosphate dehydrogenase (Gapdh). For fold change calculation,
the average mean of the relative expression of control mice were
set as 1.

Organoid Culture
Small intestinal organoids were isolated from the mouse
small intestine and cultured with ENR medium (organoid
medium with epidermal growth factor/Noggin/R-spondin) for
a minimum of 7 days according to Sato et al. (32). Organoid
growth was monitored by light microscopy. Organoids were
stimulated with TNFα (25 ng/ml) and IFNβ (100 ng/ml) and
stained with Propidium Iodide Staining Solution (BD Pharming).
Images were obtained using the microscope LEICA DMI 4,000
B together with the LEICA DFC360 FX or LEICA DFC420C
camera or the microscope Leica DMi1 with the corresponding
imaging software.

Statistical Analyses
Comparisons of two groups were performed using an unpaired
two-tailed t-test. Comparisons among multiple groups were
performed using ANOVA followed by multiple comparison and
statistical significance was accepted with p < 0.05 (NS p ≥

0.05; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001).
Statistical calculations were performed using GraphPad Prism 8
(GraphPad Software).

RESULTS

STAT1 signaling attenuates MLKL mediated necroptosis in the
ileum and partially restores Paneth cell function.

Previously, we have demonstrated that IFNs can trigger
programmed necrosis by regulating Mlkl gene transcription via
activation of the transcription factor STAT1 in hepatocytes (33).
Furthermore, STAT1 alters the gene expression of Caspase-8
and Mlkl in the small intestine and interferon-induced cell
death seems to plays a crucial role during Crohn’s disease like
ileitis (13). To study the impact of STAT1 on gastrointestinal
inflammation with features of Crohn’s disease, we deleted this
transcription factor in the Caspase-8 mouse model (Casp81IEC).
Generation of double deficientmice strain (Casp81IECxStat1−/−)
was not trivial, as both genes are closely located on chromosome
1 (Caspase-8: 1 C1.3; 1 29.19 cM, Stat1: 1 C1.1; 1 26.81 cM),
suggesting that STAT1 might be relevant upstream of Caspase-8.

Casp81IEC mice are characterized by MLKL mediated
epithelial necroptosis, Paneth cell depletion and ileitis (17). In
line with these observations, gene deletion of Mlkl in Casp81IEC

mice (Casp81IECxMlkl−/− mice) was sufficient to block Paneth
cell death and inflammation (17) (Supplementary Figure 1).
These data clearly demonstrate that indeed Caspase-8 is a
negative regulator of MLKL mediated cell death in the intestinal
epithelium. In line with our previous observation, mice lacking
Caspase-8 displayed rare to no Paneth cells as visualized by PAS
staining or specific Lysozyme detection (Figure 1A). However,
deletion of Stat1 in Casp81IEC mice partially restored Paneth
cell numbers as visualized by quantification of crypts containing
Lysozyme+ cells (Figure 1B). Accordingly, restriction of IFN-
STAT1 pathway increase the ratio from around 5 % Paneth cells
in Casp81IEC mice up to 25 % in Casp81IECxStat1−/− mice
(Figures 1A,B). This could be confirmed by quantification of
Lysozyme production by Western Blot (Figure 1C). Previously,
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FIGURE 1 | STAT1 signaling attenuates necroptosis and partially restores Paneth cell depletion. (A) Representative images of small intestinal tissue cross sections of

wild type control, Casp81IEC, and Casp81IECxStat1−/− mice stained with standard H&E, PAS (scale bar: 100µm) or immunohistochemically stained (scale bar:

50µm) with antibody against Lysozyme (green) or stained with TUNEL assay (red). Nuclei were counterstained with Hoechst 33,342 (blue). (B) Quantification of

Lysozyme positive crypts. (C) Western blot analysis Lysozyme in murine ileal tissue. β-Actin was used as loading control. Densitometry analysis for quantification (n =

2). Error bars i1ndicate +SD. (D) Gene transcription analysis of Mlkl mRNA expression in small intestinal tissue. Hprt was used as housekeeping gene. Error bars

indicate +/−SD Statistical analyses: One-way ANOVA with Tukey’s multiple comparisons test; NS p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

we have demonstrated that Paneth cell depletion in a Caspase-
8 proficient context is associated with IFN-induced cell death
and STAT1 mediated transcriptional control of Mlkl gene

expression (13). In line with these previous data, STAT1
deletion in Casp81IEC mice was associated with decreased Mlkl
gene expression and a reduced number of TUNEL (terminal

Frontiers in Medicine | www.frontiersin.org 4 May 2021 | Volume 8 | Article 64424459

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Stolzer et al. IFN-STAT Axis Augments Tissue Damage

deoxynucleotidyl transferase dUTP nick end labeling) positive
dying cells (Figures 1A,D). However, Paneth cell function
could not be restored to normal. Furthermore, staining of the
Leukocyte Common Antigen (LCA, CD45), displayed higher
leucocyte infiltration, especially at the crypt button in Casp81IEC

mice but also in Casp81IECxStat1−/− mice compared to control
mice (Supplementary Figure 2A). Hence, STAT1 seems to
modulate cell death and not inflammation.

To further investigate the molecular mechanism underlying
epithelial cell death, we took advantage of organoids derived
from the small intestine of control, Stat1−/−, Casp81IEC and
Casp81IECxStat1−/− double deficient mice. Surprisingly, in
contrast to the reduced number of Paneth cells observed in vivo,
organoids derived from small intestinal tissue of Casp81IEC and
Casp81IECxStat1−/− mice displayed Paneth cells in an equal
number and morphology as in control organoids (Figure 2A,
marked by asterisk). In addition, expression of the Paneth
cell marker Lysozyme (Lyz) was similar between all organoid
cultures (Figure 2A). Interestingly, in contrast to our in vivo
data, Mlkl expression was not elevated in any analyzed group,
suggesting that activation of Mlkl gene transcription via STAT1
requires IFNs derived from non-epithelial cells or that factors,
triggering autocrine IFN production by intestinal epithelial cells,
are missing in vitro.

In vivo, cell death in intestinal epithelial cells can be induced
by TNFα or IFNs (13, 17, 34). Interferons are able to induce
the expression of Mlkl, whereas TNFα act as cell death trigger
(13). To simplify the complex in vivo situation, we stimulated
organoids with IFNβ, an interferon that can induce canonical
and non-canonical STAT pathways (4), alone and in combination
with TNFα. In line with previous studies, intestinal organoids
lacking only Caspase-8 were highly susceptible in response to
TNFα and INFβ (Figure 2B). Additional deletion of Stat1 was
sufficient to block cell death with enhanced viability compared
to control organoids (Figure 2B). These results highlight that
beside factors that activate cell death, also the expression of
cell death mediators such as MLKL, are relevant for cell death
induction. However, when organoids were stimulated with
TNFα in combination with IFNβ, to mimic a more complex
in vivo situation, also double deficient organoids started to die,
suggesting that the synergistic action of these two cytokines can
trigger alternative cell death pathways which are independent of
Caspase-8 or MLKL.

In summary these data suggest, that STAT1 is a key
transcription factor for Mlkl gene expression in intestinal
epithelial cells that orchestrate cell death in response to either
TNF or IFNs.

STAT1 Does Not Modulate Cell Death

During Experimental Colitis
Emerging evidence suggests that enterocyte death in the small
and the large intestine is mediated by distinct molecular
mechanism. Therefore, in a next set of experiments, we
aimed to delineate the impact of STAT1 signaling during
inflammation-induced cell death in the colon (Figure 3). As
previously demonstrated, Casp81IEC mice only develop colonic

inflammation under specific microbial settings or in response
to experimental colitis (18). Accordingly, histological analysis
of caecal and colonic tissue revealed no signs of inflammation
or cell death in all analyzed mouse strains under steady
state conditions (control, Casp81IEC, and Casp81IECxStat1−/−

mice) (Supplementary Figure 2). Hence, we decided to trigger
colonic inflammation by administration of low-dose DSS in
the drinking water. Surprisingly, in sharp contrast to our
in vitro observation and in vivo data derived from the small
intestine, STAT1 was not essential to orchestrate necrotic cell
death during chemically induced colitis (Figure 3). Casp81IEC

as well as Casp81IECxStat1−/− mice displayed body weight
loss and increased inflammation after DSS administration
(Figure 3). Interestingly, body weight loss was most pronounced
in Casp81IECxStat1−/− mice (Figure 3A), while endoscopic
analysis and scoring revealed that both groups (Casp81IEC

as well as Casp81IECxStat1−/− mice) developed equal colonic
inflammation (Figures 3A,B). Furthermore, both genotypes
display severe tissue destruction, increased cell death and
loss of epithelial integrity as demonstrated by H&E- and
E-Cadherin staining (Figure 3B). In contrast to the minor
contribution of Stat1 to inflammation induced cell death in
the colon, deletion of Mlkl was sufficient to rescue Casp81IEC

mice from massive epithelial cell death and associated tissue
destruction. Accordingly, Casp81IECxMlkl−/− mice displayed a
similar disease activity and tissue damage compared to wild
type littermates (Figure 3). These results suggest that STAT1
acts upstream of MLKL during small intestinal inflammation,
but seems to have differential regulatory functions in the large
intestine during DSS-induced colitis.

STAT2 Does Not Prevent Paneth Cell Death
IFNs are able to signal through various combination of
STATs in response to canonical and non-canonical JAK-
STAT signaling (4). To investigate if an additional pathway,
mediated by STAT2, might influence cell death in the
intestinal epithelium, we generated Caspase-8 and Stat2
double deficient mice (Casp81IECx Stat1+/−Stat2−/− mice)
as well as triple knockout animals lacking both STAT1 and
STAT2 members (Casp81IECx Stat1−/−xStat2−/−). Similar to
organoids derived from Casp81IECxStat1−/− mice, Paneth cell
numbers and expression of antimicrobial peptides was not
influenced by additional deletion of Stat2 in Casp81IEC mice
in vitro (Supplementary Figure 3). However, in contrast to
Casp81IECxStat1−/− mice, Stat2 deficiency did not improve
Paneth cell viability in vivo as we observed only rare numbers
of these secretory cells at the crypt bottom (Figure 4A).
These histological features were supported by quantification
of Lysozyme by Western Blot, which revealed similar levels
between Casp81IEC and double deficient mice (Casp81IECx
Stat1+/−Stat2−/− mice) (Figure 4B). In line with these
data, we identified high numbers of TUNEL positive cell
along the crypt-villus axis of Stat2 deficient Casp81IEC

mice (Supplementary Figure 4A). In contrast to this, Mlkl
gene expression was downregulated in all groups lacking a
single STAT member or both compared to Casp81IEC mice
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FIGURE 2 | STAT1 coordinates interferon induced cell death in vitro. (A) Representative pictures of organoids derived from of control, Casp81IEC, Stat1−/− and

Casp81IECxStat1−/− mice. (Scale bar: 50µm, Paneth cells marked with asterisks). Gene transcription analysis of organoid mRNA expression. Gapdh was used as

housekeeping gene. Gene expression levels are shown as fold changes. Error bars indicate +/-SD. (B) Organoids derived from of control, Casp81IEC, Stat1−/− and

Casp81IECxStat1−/− mice. Stimulated with TNFα (25 ng/ml) and IFNβ (100 ng/ml) were stained with propidium iodide (red, dead cells) and live cells visualized by

autofluorescence (green; scale bar: 100µm).

(Supplementary Figure 4B), suggesting that alternative cell
death pathways are activated.

STAT2 Signaling Contributes to Small

Intestinal Inflammation
While our data suggested a neglectable function of STAT2
in coordinating cell death in this mouse model of ileitis, we
surprisingly observed that STAT2 influences small intestinal
inflammation. Accordingly, as previously described Casp81IEC

mice display severe inflammation including bowel wall
thickening and an increased cellularity in the lamina propria of
the terminal ileum. By contrast, deletion of STAT2 in these mice
decreased these histo-morphological features (Figure 4A). In
line with these results, gene expression of S100a9 as well as Nos2,
both associated with intestinal inflammation and upregulated
in Casp81IEC mice, were downregulated in Casp81IECx
Stat1−/−Stat2−/− mice triple deficient mice and reduced in
Casp81IECx Stat1+/−Stat2−/− double deficient mice (Figure 4C,
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FIGURE 3 | Deletion of STAT1 does not ameliorate inflammation of Casp81IEC mice during DSS colitis. (A) Relative body weight of control, Casp81IEC,

Casp81IECxStat1−/−, Casp81IECxMlkl−/− mice after administration of 2% DSS in drinking water. Mice were sacrificed at day 5. (B) Representative endoscopic pictures

at day 5. Representative images of colonic cross sections stained with H&E (scale bar: 200µm) or immunohistochemically stained (scale bar: 75µm) with antibody

against E-Cahderin (green). Nuclei were counterstained with Hoechst 33,342 (blue). (C) Endoscopic score. Error bars indicate +/-SD. Statistical analyses: One-way

ANOVA with Tukey’s multiple comparisons test; NS p ≥ 0.05; * p< 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Pooled data of two individual experiments.

Supplementary Figure 4C). Moreover, Irf1, a downstream
target of IFNγ-STAT1 signaling was significantly reduced in
Casp81IECx Stat1+/−Stat2−/− mice (Figure 4C).

In summary, we provide molecular evidence that STAT2
alone or in combination with STAT1 contributes to small
intestinal inflammation. Our results further demonstrate that
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FIGURE 4 | STAT2 signaling fails to restore Paneth cell viability but alters inflammation. (A) Representative images of small intestinal tissue cross sections of control,

Casp81IEC, Casp81IECxStat1+/−Stat2−/− and Casp81IECxStat1−/−Stat2−/− mice stained with H&E and PAS (scale bar: 100µm). (B) Western blot analysis and

normalization of ileal tissue with antibodies against STAT1 and Lysozyme. β-Actin was used as loading control. Densitometry analysis for quantification (n ≥ 2). Error

bars indicate +SD. (C) Gene transcription analysis of Mlkl mRNA expression in the small intestine. Gapdh was used as housekeeping gene. Gene expression levels

are shown as fold changes. Error bars indicate +/-SD. Statistical analyses: One-way ANOVA with Tukey’s multiple comparisons test; NS p ≥ 0.05; *p < 0.05; **p <

0.01; ***p < 0.001; ****p < 0.0001.

STATs individually affect the distinct pathophysiology of IBD
in the ileum and colon, respectively, which might explain the
diverse outcome of JAK inhibitors in IBD patients with different
localization of the inflammation site.

DISCUSSION

The pathogenic mechanisms involved in IBD contain a complex
network of several key factors including immune cells, cytokines
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and the intestinal epithelial barrier. Breakdown of the intestinal
epithelial barrier, caused by massive cell death or missing
mucosal healing is a crucial step during IBD pathology, which
consequently also influences immune responses and microbial
composition by missing antimicrobial defense (35). Moreover,
clinical research and studies in experimental disease models
have delineated the ambivalent role of IFNs and STAT1 in
orchestrating epithelial cell homeostasis including induction
of death as a key aspect of chronic inflammation as well
as conducting mucosal healing during colonic inflammation
(13, 14). Accordingly, blocking IFN signaling is a promising
novel therapy for patients suffering from IBD. However, the
underlying molecular mechanism and targeted cells are still
controversially discussed.

Here, we provided novel evidence that STAT1 and STAT2
might independently influence intestinal inflammation in a
highly spatial-dependent process. Blocking STAT1 signaling by
genetic deletion of this transcription factor in Casp81IEC mice,
was sufficient to partially rescue Paneth cell depletion and to
reduce cell death frequency the intestinal epithelium (Figure 1).
These data are in line with the observation that the IFNλ-STAT1
signaling axis is a key factor in small intestinal inflammation
(13). Accordingly, two groups independently demonstrated that
IFNs can either directly, or indirectly through IL-22, trigger
non-apoptotic cell death (13, 36). Moreover, in a translational
approach it has been described that IFNλ might support
ileal inflammation by mediating necrotic Paneth cell death
coordinated by STAT1 and MLKL (13). Here, we uncovered
the fact that STAT1 was not able to fully restore Paneth cell
viability in vivo, suggesting that further factors, triggering cell
death, or additional pathways are present in the context of CD
manifestations like ileitis. In vitro experiments using organoids,
demonstrated that epithelial cells lacking Caspase-8 and STAT1
were protected from TNF or IFN induced toxicity, while single
knock-out organoids displayed excessive cell death. These
data demonstrate that both factors are sufficient to trigger cell
death, but that in vivo additional factors are present that might
activate Paneth cell necroptosis. Interestingly a recent paper
identified the Z-DNA-binding protein 1 (ZBP1) as potential
novel player in the pathogenesis of intestinal inflammation.
ZBP1, also known as DAI, was initially identified to induce
IFN-mediated MLKL-dependent necroptosis in the context of
viral infection (37, 38). However, recent studies in mice and
humans, further unveiled its contribution to gastrointestinal
inflammation (19, 39). Interestingly, genome instability in
IBD patients could trigger ZBP1 activation associated with
necroptosis. Murine genomic instability, mimicking the
human situation, was associated with ZBP1 activation, MLKL-
mediated necroptosis and followed disruption of the epithelial
barrier (39).

Beside their impact on cell death regulation, IFNs are
primarily known for their immune-modulatory function.
Accordingly, while STAT1 was sufficient to block TNFα or IFN
triggered cell death in vitro and partially rescued Paneth cell
death in vivo, it was surprisingly not involved in inflammation
in the small intestine. Moreover, we identified that STAT1

signaling might be associated with tissue injury processes
in the colon as Casp81IECx Stat1−/− mice exhibited severe
tissue injury and inflammation in response to experimental
colitis. These data are in line with a previous publication by
Chiriac et al., highlighting that the activation of IFNλ-STAT1
signaling specifically in the IECs is responsible for mucosal
healing and epithelial regeneration during colitis (14). Our
results highlights differential mechanisms and upstream
regulatory components underlying cell death pathways in the
small and large intestine. In sharp contrast to these results,
deletion of STAT2 in Casp81IEC mice, was associated with
mucosal healing and reduction of disease activity in the small
intestine, while Paneth cell homeostasis was not influenced
by STAT2. STAT2 is linked to type I interferon signaling
and only little is known about its role during IBD (28). In
humans, downregulation of STAT2 gene expression has been
observed in LPMCs (lamina propria mononuclear cells) derived
from IBD patients (28, 40). Further studies are required to
address the role of STAT2 in the context of human and murine
intestinal inflammation.

Our findings on the differential role of STAT signaling
molecules in the context on ileitis and colitis are in line with
previous studies, supporting the concept that the pathogenic
mechanism underlying ileal and colonic Crohn’s disease are
distinct and thus require individual therapies. Our data now
provide further mechanistic insights in the role and contribution
of the JAK-STAT signaling in the intestinal tract, which is
currently in clinical focus. Accordingly, blocking JAK-STAT
signaling is a promising therapeutic intervention, but current
studies uncovered differential therapeutic success between
ulcerative colitis and Crohn’s disease (22–26). The broad
JAK inhibitor tofacitinib (JAK1 and JAK3 inhibitor) showed
promising results for patients with ulcerative colitis but not
for Crohn’s disease. Beside this, more selective inhibitors like
filgotinib and upadacitinib (JAK1 inhibitors) seem to have more
therapeutic benefit in both diseases (27). In this context, a
recent study investigated the impact of both, selective and
broad JAK-inhibitors, on ileitis and uncovered that blocking
JAK-STAT signaling inhibited Paneth cell dysfunction and
inflammation in vitro and in vivo (13). In line with these
previous results, our data also suggest a major contribution of
STAT signaling to small intestinal inflammation but not colitis.
The fact that STAT signaling influences homeostasis of the
intestinal epithelium, as a key component in the pathogenesis
of inflammation, in a highly regional manner, indicates that
further studies are required to fully define the contribution of
STAT1 and STAT2 to inflammatory processes in the small and
large intestine.

In summary, we provide molecular evidence that STAT1
and STAT2 both contribute to intestinal inflammation but
have differential functions. Our results demonstrate that STAT1
coordinates cell death in the ileum but not during experimental
colitis. Furthermore, STAT2 was able to modulate mucosal
inflammation, independent of STAT1. Thus, our data provide
further evidence for a differential pathological mechanism
responsible for ileal and colonic inflammation.
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The intestinal tract is densely populated by microbiota consisting of various commensal

microorganisms that are instrumental for the healthy state of the living organism. Such

commensals generate variousmolecules that can be recognized by the Toll-like receptors

of the immune system leading to the inflammation marked by strong upregulation of

various proinflammatory cytokines, such as TNF, IL-6, and IL-1β. To prevent excessive

inflammation, a single layer of constantly renewing, highly proliferating epithelial cells

(IEC) provides proper segregation of such microorganisms from the body cavities. There

are various triggers which facilitate the disturbance of the epithelial barrier which often

leads to inflammation. However, the nature and duration of the stress may determine the

state of the epithelial cells and their responses to cytokines. Here we discuss the role of

the microbiota-TLR-cytokine axis in the maintenance of the epithelial tissue integrity. In

particular, we highlight discrepancies in the function of TLR and cytokines in IEC barrier

during acute or chronic inflammation and we suggest that intervention strategies should

be applied based on the type of inflammation.

Keywords: TNF, TLR4, cytokine, intestinal barrier, inflammation

INTRODUCTION

The intestinal barrier represents a complex system of epithelial cells, Paneth cells, goblet cells,
infiltrating immune cells, mucus, immunoglobulin A (IgA) antibodies and antimicrobial peptides
(1). Underneath the epithelial cells multiple immune cell subsets are localized, which contribute to
the maintenance of the border between the host and the microbiota. Disturbance of this barrier
by extrinsic and intrinsic factors may result in the influx of various bacterial products inside of the
host body leading to chronic inflammatory reactions. Such stimuli include dietary components,
commensal microflora or invading pathobionts from the environmental side. Moreover, genetic
variability of the host and adaptive immune response toward these stimuli may also influence
barrier integrity.

The main component of the intestinal barrier is a layer of epithelial cells that forms the very
first physical border between the host organism and its external surroundings, which could be
potentially detrimental for the host cells. These epithelial cells are tightly connected with each
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other to ensure proper control of the molecules that enter
the body from the intestinal fluids. The junctional complex
of intestinal epithelial cells is composed of the three main
different types of connections—tight junction (TJ), adherence
junction and desmosome. Tight junctions between epithelial
cells are facilitated by a set of proteins [Claudin, ZO1,
Occludin, F-actin, Myosin, Myosin light chain kinase (MLCK)],
which form together an apical junctional complex in order
to seal the paracellular space between epithelial cells. There
are two additional zones of cell-to-cell contacts beneath
TJ named “Adherence junction” and “Desmosome.” They
consist of E-cadherin, α-catenin 1, β-catenin, catenin- δ1
and desmoglein, desmocollin, desmoplakin, respectively (2).
Together they provide cell-to-cell and cell-to-matrix connections
and create a paracellular space. Normal gut permeability
facilitates paracellular transport of nutrients, water and essential
solutes. Disruption of such TJ may result in the penetration of
various molecules and microorganisms, leading to inflammation.

The whole spectrum of cell types within the gut epithelium
develops from the epithelial stem cells located at the base of
the crypts. Stem cells give rise to distinct cell types of the
intestinal epithelium: absorptive cells (enterocytes) and secretory
cells (goblet, Paneth, enteroendocrine, and tuft cells). Fate
decision toward the absorptive phenotype is critically dependent
on the NOTCH pathway (3). Genetic and pharmacological
manipulation of NOTCH signaling also revealed its crucial role
in the maintenance of the epithelial stem cell niche (4–6).
Apart from NOTCH, wingless and Int-1 (WNT) signaling plays
an essential role in epithelial stem cell functions influencing
functioning of different transcription factors including Ascl2,
sox9, Lgr5 (7–9).

REGULATION OF THE EPITHELIAL CELL
FUNCTIONS DURING HOMEOSTASIS

In steady state, a delicate balance is maintained between bacterial
composition, the mucosal immune system and the intact
epithelial barrier. Commensal microbiota is transported in a
highly controlledmanner to be recognized by the immune system
in the gut-associated lymphoid tissues (2). Due to the non-
pathogenic nature of such microorganisms, the immune system
responds with the production of non-inflammatory cytokines,
such as TGF-β1, IL-10 and cytokines which are important for
the IEC barrier, like IL-22 (Figure 1). Both mutation of IL-10
pathway in humans and the genetic ablation of Il10 resulted
in development of intestinal inflammation demonstrating a
crucial role for IL-10 in the tolerance maintenance and barrier
integrity (10). Although Il10−/− mice are not defective in mucin
production, but have its defective loose quality that makes mice
suffer from spontaneous colitis (11). Similarly, TGF-β1 directly
modulates TJ protein expression (12, 13), significantly decreasing
JNK-pathway activation and protects cells from TNF-mediated
downregulation of occludin and ZO-1 (14). IL-22 controls not
only the expression of TJ proteins (15), but also the expression of
various antimicrobial proteins. IL-22 deficient animals exhibited
defects in IEC barrier (15) and failed to repair IEC functions in

multiple inflammatory models linked to the disruption of the
IEC barrier. IL-22 was further reported as a necessary cytokine
for TJ formation and mucin production (16). Patients with
HIV infections have decreased IL-22 levels and concomitantly
impaired IEC barrier and increased bacterial translocation (16).
Interestingly, the natural antagonist of IL-22 (IL-22BP; IL-22Ra2)
which regulates the biological actions of IL-22 was found to be
expressed by various immune cells (17). Recent data suggested
that type III innate lymphoid cells (ILC3) instruct a special subset
of dendritic cells in the isolated lymphoid follicles to produce IL-
22BP via lymphotoxin (LTα1β2)–lymphotoxin β receptor (LTβR)
interaction (18), revealing a novel mechanism of the epithelial
barrier control in steady state and during inflammation.

Commensal microbiota produces multiple “non-self ” ligands
and IECs recognize suchmolecules and tune their transcriptional
program to keep the barrier tight. There are several families of
receptors sensing various microbial products: Toll-like receptors
(TLR), NOD-like receptors (NLR), RIG-like receptors (RLR),
and others (19). TLRs are widely expressed on the epithelial
cells in the small and large intestine and their expression
is tightly regulated in order to ensure the proper innate
immune recognition. Mostly, TLRs are expressed among the
whole IEC lineage: absorptive enterocytes (20, 21), stem cells
(22), enteroendocrine cells (23), goblet cells (24, 25), Paneth
cells (26–28), and micro-fold cells (29, 30). The distribution
pattern of TLR expression on epithelial cells varies among
the intestinal tract. Price et al. recently provided an elegant
analysis of TLRs expression in the large and small intestine
of mice (27). It was shown that TLR2, TLR5, and TLR9 are
more restricted to the small intestine when TLR2, TLR4, and
TLR5 are upregulated in the colonic epithelial cells. In addition,
TLR signaling is controlled by the polarized expression on the
cell surface. For instance, TLR2 and TLR4 are expressed at
low levels on basolateral sides of IEC in the small intestine,
while TLR5 is expressed mainly on basolateral sides of the
colon (31). Furthermore, apical TLR9 recognition of CpG
oligonucleotides prevents NFkB translocation into the nucleus
and limits inflammatory response.

The tuning of the immune responses via IEC-derived TLRs
is achieved by several mechanisms. Epithelial cells modulate
TLR receptor-ligand interactions by the downregulation of the
receptor expression (32) or by translocating receptors from apical
to basolateral sides or to lysosomes (33–36) to avoid excessive
sensing of bacterial products. Indeed, overexpression of Tlr4 on
epithelial cells resulted in the overactivation of TLR4 pathway
in IECs that lead to the increased production of IgA by plasma
B cells (37). This loop potentially demonstrates a regulatory
mechanism where IgA antibodies after being induced neutralize
excessive bacteria-TLR4 interaction (20). Next, expression
of molecules downstream of TLRs is modulated in IEC
via various posttranslational modifications like glycosylation,
phosphorylation, and ubiquitination (38, 39). Finally, IECs
were reported to bind and modify immunogenic parts of
MAMPs in order to diminish ligands property to induce
signals (40, 41).

Apart from this, TLRs are involved in crypt dynamics
control. For instance the depletion of MyD88 or TLR2 was
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FIGURE 1 | Role of the TLR induced cytokines in acute and chronic intestinal inflammation. The intestinal mucosa is separated from the body immune environment by

a single layer of the intestinal epithelial cells (IECs) that provides a physical and functional barrier. Beneath the IECs immune cells reside in the lamina propria,

maintaining the intestinal tissue at the hyporesponsive state. Intestinal immune homeostasis: Constant recognition of microbiota by TLR4 and TLR1/2 leads to IL- 6,

IL−10, TGF-β1 production within IECs. Autocrine recognition of these cytokines maintains IEC barrier integrity by promoting expression of the TJ proteins (ZO-1,

claudin-1, occludin). Moreover, action of the IL-10 induce Wnt signaling within IECs, which maintains their proliferation. A20 and Tollip are the main inhibitors of the

TLR1/2 signaling facilitating the avoidance of undesired response toward microbiota. Rorgt+ cells during homeostasis produce IL-17A to maintain constant

production of claudin-1 and occluding within IECs. Acute inflammation: Sensing microbiota within the lamina propria induces production of pro-inflammatory

cytokines and cytoprotective factors via NFkB dependent mechanism. Basolateral TLR5 mediated recognition of bacteria leads to MUC2 production in IECs. IL-6,

TNF production by M?s and DCs during acute inflammation enables barrier repair program within IECs. TNF induced production of the glucocorticoids and ErbB4

receptor tyrosine kinase in IECs induce tissue repair functions and resolve late stages of the acute inflammation. Pro-inflammatory cytokines IL-18, IL-12 involved in

IEC barrier dysfunction by downregulating TJ proteins (ZO-1, occludin). TLR1/2 basolateral recognition of bacteria promotes ZO-1/occluding expression in IECs.

Chronic inflammation: Chronic TNF sensing by IECs reduces their ability to migrate toward crypts villi, modulates MLCK which decreases claudin-1, ZO-1, and ZO-2

expression and decreases glucocorticoids synthesis, which is indispensable for later inflammation resolution. IFN-γ activates the expression of ICAM-1 which resulted

in increased IEC barrier permeability caused by neutrophil migration into subepithelial layers and paracellular space via modulation of MLCK. TLR4 dependent

recognition of the HSPs, HMGB1 and S100A8/S100A9 by IECs leads to downregulation of the expression of ZO-1.

associated with an abrogation of trefoil factor 3 (TFF3)
expression, which is required for goblet cells maturation
(24). Furthermore, TLR4 was shown to mediate NOTCH
expression implying that TLRs may interfere with processes
of stemness and differentiation in the stem cell niche (1).
However, the role of TLR4 on stem cell differentiation remains
controversial (42, 43). Deletion of TLR1 or TLR5 in mice
induced the loss of the mucus layer integrity via impaired MUC2
production in goblet cells (1). Moreover, ablation of the TLR
recognition by MyD88 deletion abrogated the production of
antimicrobial peptides RegIIIβ and RegIIIγ by goblet cells inmice
(20). Thus, sensing of bacterial products via TLRs modulates
mucus layer permeability that limits the direct interaction of
commensals with the epithelium and induction of spontaneous
inflammation (33, 44).

Altogether, IEC barrier exerts multiple strategies to avoid
activation of inflammatory pathways in normal conditions via
cytokine production and regulation of TLR signaling to maintain
its integrity.

REGULATION OF THE EPITHELIAL CELL
FUNCTIONS DURING ACUTE
INFLAMMATION

Disruption of the cell-to-cell contacts at the epithelial layer
leads to increased bacterial products penetration, which triggers
inflammatory immune responses. The nature of the damage may
further define the type of immune response and subsequent
immune reactions driving IEC repair (Figure 1). Epithelial
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barrier disruption may be induced by acute stimuli, such as
ingestion of toxic substances (oxazolone, dextran sodium sulfate
etc.) (45), by physical force or by the invasion of various
pathogens, such as Clostridium difficles, Citrobacter rodentium,
Salmonella enterica etc. These acute stimuli result in IEC layer
erosion, the influx of commensal bacteria and activation of
the innate arm of the immune system (46), while the chronic
reduction of the barrier leads to the mobilization of both arms
of the immune system as well as the genomic instability of
epithelial cells (47). In case of the acute damage of the epithelium
caused by pathogens, the immune system should eliminate the
causing agent or pathogen, while ensuring the proper restoration
of the barrier. Thus, the gut immune system is determined to
restore the barrier functions in both acute and chronic settings,
but triggers are different and, thereby, advocate for different
intervention strategies.

Eliciting a protective immune response is required for
the successful restoration of the barrier during bacteria-
induced colitis. Here TLR-proinflammatory cytokine module is
instrumental for the clearance of the inflammatory triggers and
it is also involved in further tissue repair processes. Indeed,
there are multiple examples of protective functions of TLR
receptors in this setting. For instance, TLR1 is found to be
crucial for the protection during acute intestinal inflammation
induced by Yersinia enterocolitica in mice and the maintenance
of the increased IEC barrier permeability (48). TLR5 was
reported to limit intestinal colonization with vancomycin-
resistant Enterococcus (VRE) by the induction of RegIIIγ
expression (49) and IEC-derived TLR5 mediates production
of IL-6 and IL-12 by CD11c+ in response to Salmonella
enterica infection (50). The significance of TLR/MyD88 signaling
pathway for the recovery of IECs was also shown during
acute colitis induced by Helicobacter hepaticus or Citrobacter
rodentium (51). Furthermore, Myd88−/−, Tlr1−/−, Tlr2−/−

mice were characterized by the early loss of tight junctions
and diminished transepithelial resistance during acute intestinal
inflammation (52).

Apart from IEC barrier disruption by pathogens, there is a
significant amount of the research directed toward the dissection
of the pathways which are crucial for IEC barrier restoration
during injury caused by chemical agents, such as DSS, oxazolone
and others. Herein the inflammation is caused by the influx
of commensal microbiota in the intestinal tissue. Thus, TLR
signaling pathways and pro-inflammatory cytokines facilitate the
inflammation that is needed for the clearance of the bacteria
andmay possess protective functions. Consistently, seminal work
from Medzhitov’s lab showed the crucial role of TLR4/MyD88
signaling for the maintenance of the intestinal homeostasis and
barrier repair during acute DSS colitis in microbiota dependent
manner (53). Activation of TLR4 signaling pathways was crucial
for the clearance of commensal bacteria by infiltrating innate
immune cells (54). In contrast, several other studies highlighted
the pathogenic function of TLR4 signaling in DSS colitis. In
particular, an increase of E. Coli in the microbiota was associated
with less severe colitis in TLR4 deficient mice (55). LPS, main
TLR4 agonist, also may induce epithelial damage in vitro and in
vivo via excessive phosphorylation of the focal actin kinase (FAK)
in TLR4/MyD88 dependent pathway in epithelial cells (56). Using

an ileal cell line, LPS was further reported to be instrumental
in the induction of paracellular permeability via ZO-1 and
occludin downregulation via TLR4 (57). Interestingly, LPS
serotypes differentially affect inflammatory cytokines expression
in vitro. Among others, LPS from S. marcescens has the
most pronounced effect on the reduction of transepithelial
electrical resistance. That correlated with an increase in NFkB
activation, IL-8 production as well as TNF (58). Furthermore,
E. coli LPS, but not LPS from B. dorei, influenced the
incidence of autoimmune diabetes in non-obese diabetic mice
and correlated with the development of autoimmunity in
humans (59). Therefore, the role of TLR4 during acute IEC
disruption is determined by the microbiota composition and
therapeutic strategies targeting TLR4 should be considered given
the prevalence of various microorganisms and pathogens in
individual contexts.

TLR signaling mediates the production of multiple pro-
inflammatory cytokines, among them TNF, IL-6, and IL-1β.
TNF a cytokine with pleiotropic functions in the body is of
particular significance in this context. On the one hand, TNF
is crucial for the host defense against intracellular pathogens
(60) but on the other hand it drives multiple autoimmune
pathologies associated with a reduction of the epithelial barrier,
such as inflammatory bowel disease (IBD), ankylosing spondylitis
and rheumatoid arthritis. Importantly, anti-TNF therapy is
highly effective in the treatment aforementioned autoimmune
pathologies (61). Despite the tremendous success of the TNF
blockade, a significant proportion of patients do not respond
to this type of biological interventions further highlighting the
heterogeneity of given autoimmune conditions and pleiotropy of
TNF itself. It is worth mentioning that TNF exerts its functions
via two receptors, TNFR1 and TNFR2 (62) inducing distinct
transcriptional programs. TNF plays a protective role during
acute colitis induced by DSS, as TNF deficient mice and anti-
TNF therapy in wild type mice during colitis resulted in severe
inflammation (63). Short acute IEC exposure to TNF induced
glucocorticoid synthesis and, thereby, ameliorated the late stages
of DSS colitis (64). Furthermore, TNFR1 mediated protective
functions, while TNFR2 was deleterious upon acute disruption of
epithelium (65). Apart from the induction of anti-inflammatory
mediators that are crucial for the barrier restoration, TNF
also contributes to the restoration of the epithelial barrier via
modulation of Wnt (66). TNF administration during acute DSS
colitis promoted the intestinal cell survival and restitution via
elevating expression the ErbB4 receptor tyrosine kinase (67). In
addition, another study conducted on the IL-10 deficient mice
colitis model suggested that the binding of TNF by TNFR1 and
following Il1b upregulation is essential for the early defensive
response within colonic epithelial cells (68, 69). Kuhn et al.
showed that Bacteroidales spp. induced IL-6 secretion by IECs
in a MyD88-dependent manner, while Il6−/− mice were more
susceptible to Citrobacter rodentium infection and had a thinner
mucus layer, as well as decreased claudin-1 expression (70).
Finally, IL-6 also activated NOTCH dependent program of IEC
barrier restoration during acute DSS colitis (71).

Thus, proinflammatory cytokines exert its protective
functions during acute barrier injury to facilitate efficient
clearance of invading microorganisms.

Frontiers in Medicine | www.frontiersin.org 4 May 2021 | Volume 8 | Article 64433370

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Semin et al. Inflammation and Intestinal Barrier

REGULATION OF THE EPITHELIAL CELL
FUNCTIONS DURING CHRONIC
INFLAMMATION

Various extrinsic factors, such as the environment, particular diet,
and exposure to hazardous chemicals, may result in the chronic
elevation of pro-inflammatory cytokines and the reduction of
the gut permeability for a long period of time (Figure 1). The
state of an increased gut permeability and the perturbation of
local immunity in the gut is called “leaky gut.” This phenomenon
has been described not only in IBD patients, but also in many
metabolic and autoimmune disorders. “Leaky gut” syndrome
is characterized by an impaired mucin synthesis, a decreased
expression of junctional proteins and epithelial cell death.
Importantly, increased permeability of the epithelium is often
found before the development of clinical symptoms (72).

Taking into account the fundamentally different nature of
IEC barrier reduction during acute and chronic stress, it is
plausible that TLR and cytokines may have distinct, and even
opposing functions depending on the duration of inflammation.
Consistently, deep analysis of the mutational landscape from
inflamed IBD tissue and corresponding non-inflamed parts
revealed mutations in several genes, such as NFKBIZ, ZC3H12A
(Regnase-1) and PIGR. Interestingly, Regnase-1 is activated in
response to TLR stimulation and degrades mRNA of many
downstream immune signaling genes (47), including PIGR
(73), NFKBIZ (74), and members of the IL-17 pathway (75).
Furthermore, DNA methylation patterns and transcriptional
program in IECs differed between healthy and IBD patients
(76). Chronic exposure of IECs to TNF exclusively affected their
migration from the crypt to the villus (77). In addition, chronic
inflammationmodeled by long-term culture of colonic organoids
in the presence of TLR agonists and pro-inflammatory cytokines
resulted in chronic NFkB activation and the transformation of
epithelial cells. Finally, organoid cultures from IBD patients
showed an inflammatory phenotype with decreased size and
budding capacity and inverted polarization (78). Altogether,
these data suggested that chronic inflammation might transform
the genetic program and the functions of IECs and their ability to
maintain the epithelial barrier.

Chronic subclinical inflammation is characterized by an
increase in cytokine production and in release of endogenous
TLR4 ligands. In particular, high mobility group box 1 (HMGB1)
protein, the heat shock proteins and calcium binding protein
A8 and A9 (S100A8/S100A9) (79) are released during an
inflammation and chronic conditions, like metabolic disorders
(80). Their binding to TLR4 leads to the secretion of the pro-
inflammatory cytokines IL-1β, TNF, IL-6, IL-17A, IL-18, and IL-
12 in the intestine (31, 81). Furthermore, TLR4 activation within
the gut epithelium is associated with the activation of myosin
light chain kinase (MLCK), which reduces the tight junction of
IEC barrier and may lead to the development of “leaky gut”
(82–84).

As mentioned earlier, increased gut permeability may be
induced by extrinsic factors, like diet, environmental factors
but also by intrinsic factors, such as elevated levels of
pro-inflammatory cytokines (85, 86). In particular, TNF, IL-6

and IFN-γ are associated with the epithelial barrier impairment
and increased gut permeability (31, 87–89). These cytokines
once produced chronically may significantly reduce IEC barrier.
So IFN-γ was found to modulate the expression of the
neutrophil adhesion molecule ICAM-1, which resulted in
increased permeability and the migration of neutrophils into
the subepithelial layers and paracellular space (90). Apart from
this, IFN-γ enhanced Th1 immune responses and also increased
CD14 and TLR4 expression, as well as LPS uptake by IECs
(86). For instance, IL-6 increased permeability-promoting tight
junction protein (claudin-2) in colonic cell culture via activation
of c-Jun N-terminal kinase (JNK) pathway (91). IEC stimulation
with TNF lead to the upregulation of theMLCK, phosphorylation
of myosin II light chain (MLC) and the subsequent decrease
in barrier integrity. Furthermore, TNF induced the loss of
ZO-1 and occludin expression and decreased trans-epithelial
electrical resistance (92). In immune-mediated colitis model,
it was further shown that TNFR2 pathway, but not TNFR1
signaling, increases MLCK expression resulting in tight junction
dysregulation, barrier loss, and more severe disease (93). Chronic
exposure to TNF, in contrast to acute stimuli, actually decreased
glucocorticosteroid production and perpetuated inflammation
(94). Given multiple effects of TNF on the intestinal biology, it
is predicted that anti-TNF therapy restores the intestinal barrier
in many autoimmune diseases (95). It has been shown in several
reports that anti-TNF therapy directly influenced tight junction
protein expression (96), while others showed the restoration of
EC survival rate (97). In vitro experiments also indicated that
sera from IBD patients directly regulates ZO-1 and occludin
expression in IECs via TNF. Moreover, TNF was further shown
to downregulate claudin-1, claudin-2, claudin-4, and occludin
expression in IECs layer (95). Interestingly, IL-6 promoted crypt
organoid proliferation stem cell numbers (98). Furthermore,
anti-IL-6 therapy in IBD patients ameliorated the disease, but
increased the risk of developing GI abscesses and perforation
(99), suggesting that IL-6 contribute to inflammatory processes,
but also may maintain epithelial barrier. Thus, upon chronic
inflammatory stimuli epithelial cells modify their transcriptional
program, expression patterns of receptors and, thereby, may
respond differently toward pro-inflammatory cytokines.

CONCLUSIONS

IEC barrier integrity is maintained not only by a complex
system of tight junction proteins and strict compartment-
dependent distribution of TLRs on apical and basolateral sides
of IECs but also by a network of immune cells that mediate
cell proliferation and epithelial permeability via cytokines. In
a healthy state IECs exhibit multiple mechanisms that dampen
TLR-dependent recognition of the microbiota. During acute
injury of IEC barrier by chemical agents or pathogens the
TLR-TNF axis is triggered toward the clearance of the pro-
inflammatory stimuli and further drives IEC layer restoration
via activation of the glucocorticosteroid synthesis, WNT pathway
and ErbB4 kinase. In contrast to acute damage, chronic
inflammation induces genetic instability, changes of methylome,
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transcriptome and the polarity of TLRs expression in IECs.
This results in their modified response toward TLR agonists
and TNF. Thus, the character and duration of inflammation
should be considered for the modeling of studies aiming
to dissect the mechanisms of IEC barrier integrity during
various injury.
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Inflammatory cytokines initiate and sustain the perpetuation of processes leading to

chronic inflammatory conditions such as inflammatory bowel diseases (IBD). The nature

of the trigger causing an inflammatory reaction decides whether type 1, type 17, or type 2

immune responses, typically characterized by the respective T- helper cell subsets, come

into effect. In the intestine, Type 2 responses have been linked with mucosal healing

and resolution upon an immune challenge involving parasitic infections. However, type

2 cytokines are frequently elevated in certain types of IBD in particular ulcerative colitis

(UC) leading to the assumption that Th2 cells might critically support the pathogenesis of

UC raising the question of whether such elevated type 2 responses in IBD are beneficial

or detrimental. In line with this, previous studies showed that suppression of IL-13 and

other type 2 related molecules in murine models could improve the outcomes of intestinal

inflammation. However, therapeutic attempts of neutralizing IL-13 in ulcerative colitis

patients have yielded no benefits. Thus, a better understanding of the role of type 2

cytokines in regulating intestinal inflammation is required. Here, we took a comparative

transcriptomic approach to address how Th2 responses evolve in different mouse

models of colitis and human IBD datasets. Our data show that type 2 immune-related

transcripts are induced in the inflamed gut of IBD patients in both Crohn’s disease and

UC and across widely used mouse models of IBD. Collectively our data implicate that

the presence of a type 2 signature rather defines a distinct state of intestinal inflammation

than a disease-specific pathomechanism.

Keywords: IBD, type 2 immunity, intestine, chronic inflammation, ulcerative colitis

INTRODUCTION

Immune responses that detect and eliminate multicellular metazoan parasites and allergic reactions
have evolved fundamentally differently than those that tackle other immune challenges. The tissue
destruction caused by such parasitic infections and allergic reactions, signals an “eliminate and
repair” type of innate immune response, characterized by the emergence of the type 2 helper T
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cells (Th2) (1). The “type 2” nomenclature was initially
coined after Th2 lymphocytes, thought of as being the sole
cellular sources capable of producing the core type 2 cytokines
interleukin (IL)-4, IL-5, and IL-13 (2). However, key discoveries
in the field of innate immunity revealed the presence of new
cellular sources of type 2 cytokines (3). For e.g., the type 2 innate
lymphoid cells, which also express the polarizing transcription
factor GATA3 are rich sources of IL-4 and express IL-5 and IL-13
(4). The effector cells of type 2 responses are epithelia, myeloid
cells and granulocytes including dendritic cells, macrophages,
neutrophils, basophils, eosinophils, and mast cells and the
various secretory and absorptive lineages of epithelial cells.
Multiple, differentially polarized subsets of T cells are involved
in disease pathogenesis in inflammatory conditions, for e.g., Th1,
Th2, Th9, and Th17 (5, 6).

It has been speculated that a breakdown in type 2-mediated
processes is the underlying cause of the failure of tissue
repair and healing in chronic debilitating conditions affecting
mucosal tissues (1). However, our understanding of whether
this hypothesis holds true is limited. Studies on chronic diseases
affecting the gut such as inflammatory bowel diseases (IBD)
show a dichotomous relationship between type 2 responses and
the two predominant types of IBD, namely Crohn’s disease
(CD) and ulcerative colitis (UC). Both CD and UC are
chronic mucosal inflammatory diseases, an elevated expression
of type 2 cytokines may be detected in the tissues and serum
of UC, but not of CD patients, however, this concept has
recently been challenged (7, 8). Therefore, elevation in type
2 cytokines does not establish a causal connection between
UC and type 2 immune responses and crucial questions on
when and why such an elevation may be observed remain
poorly addressed. Administration of neutralizing antibodies
against IL-13 failed to induce any clinical response in UC
patients, which begs the question whether defective signaling
via respective receptors could cause a compensatory elevation
in the expression of the type 2 cytokines in UC (9–11). Indeed
some of the well-documented downstream effects of type 2
cytokines such as increased smooth muscle proliferation and
cholinergic activation, and elevated mucin production are not
uniquely seen to occur in UC, indicating that there is, at least,
a partial functional blockade in the mediation of type 2 responses
despite the elevation in their levels. By contrast, some studies
indicate that elevated type 2 responses in CD patients during
parasite infections can in fact prove therapeutically beneficial
(12). It is therefore complicated to dissect how type 2 cytokines
influence IBD.

Strong type 2 responses are elicited in mucosal tissues
during allergic conditions or helminth infections. Therefore,
the most common mouse models to study type 2 immune
responses are based on infecting mice with parasitic helminths.
Some of the most common nematode worms used to provoke
mucosal type 2 responses in mice are Nippostrongylus brasiliensis
and Heligmosomoides polygyrus (13). Another mouse model,
which is reported to show a predominant type 2 response, is
the oxazolone colitis model (14, 15). Other common mouse
models of colitis such as the chemically induced dextran

sulfate sodium (DSS) colitis and tri-nitrobenzidium sulfate
(TNBS) colitis are described to have a more mixed Th 1,
Th 17 response (16). Whereas, the chronic DSS colitis model
is described to involve more of a type 2 immune response
(16). One of the most commonly employed models to study
the contribution of T cells to the pathogenicity of colitis is
the transfer colitis mouse model, which is more of a type
1 model (17). Although these generalized distinctions hold
out, there has also been evidence that indicates the contrary.
Therefore, the dogmatic view of UC as a predominantly type
2 and CD a type 1 immune disease has been challenged.
This is important given that both therapeutic and diagnostic
attempts in IBD have evolved around our understanding of the
immune homeostasis.

In order to improve our understanding of the type 2 response
in IBD, we present here a comparative transcriptomic analysis
of various mouse models and human cohorts of IBD using a
well-defined list of markers of type 2 immune responses. Our
data show that an elevation in type 2 responses is a generalized
phenomenon seen intestinal inflammation and identifies a core
network of type 2 associated genes that is shared between
preclinical models and patients of IBD.

MATERIALS AND METHODS

Mouse Models of Colitis
The C57Bl6 strain has been widely used in colitis research and
was purchased from Charles river laboratories GmbH (Sulzfeld,
Germany). All mice included in this study were of both genders
and aged between 8 and 18 weeks. Acute and chronic DSS,
Oxazolone, and T-cell transfer colitis were induced as previously
described (18, 19). At the end of the colitis induction period,
animals were euthanized and tissues were harvested for further
analysis. The housing, animal care and experimentation was
performed according to the institutional guidelines that were
preapproved by the ethics commission of Lower Franconia
and Rhineland.

RNA Extraction and mRNA Sequencing
The RNA from the tissue samples were harvested using the
peqGold total tissue RNA kit (peqlab GmbH) according
to the manufacturer’s instructions. The RNA degradation,
contamination and quantification were checked using
a combination of 1% agarose gels checked using the
NanoPhotometer R© spectrophotometer (IMPLEN, CA, USA),
the Nanodrop (thermofischer), the Qbit (Thermo) and the RNA
Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent
Technologies, CA, USA).

For library preparation for transcriptome, sequencing a
total amount of 1 µg RNA per sample was used as input
material per sample. Sequencing libraries were generated using
NEBNext R© UltraTM RNA Library Prep Kit for Illumina R©

(NEB, USA) following manufacturer’s recommendations and
index codes were added to attribute sequences to each sample.
Briefly, mRNA was purified from total RNA using poly-
T oligo-attached magnetic beads. Fragmentation was carried
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out using divalent cations under elevated temperature in
NEBNext First Strand Synthesis Reaction Buffer (5X). First
strand cDNA was synthesized using random hexamer primer
and M-MuLV Reverse Transcriptase (RNase H-). Second
strand cDNA synthesis was subsequently performed using
DNA Polymerase I and RNase H. Remaining overhangs
were converted into blunt ends via exonuclease/polymerase
activities. After adenylation of 3’ ends of DNA fragments,
NEBNext Adaptor with hairpin loop structure were ligated
to prepare for hybridization. In order to select cDNA
fragments of preferentially 150–200 bp in length, the library
fragments were purified with AMPure XP system (Beckman
Coulter, Beverly, USA). Then 3 µl USER Enzyme (NEB,
USA) was used with size-selected, adaptorligated cDNA at
37◦C for 15min followed by 5min at 95◦C before PCR.
Then PCR was performed with Phusion High-Fidelity DNA
polymerase, Universal PCR primers and Index (X) Primer.
At last, PCR products were purified (AMPure XP system)
and library quality was assessed on the Agilent Bioanalyzer
2100 system.

The clustering of the index-coded samples was performed
on a cBot Cluster Generation System using PE Cluster Kit
cBot-HS (Illumina) according to the manufacturer’s instructions.
After cluster generation, the library preparations were sequenced
on an Illumina platform and paired-end reads were generated.
Raw data (raw reads) of FASTQ format were firstly processed
through in-house scripts. In this step, clean data (clean reads)
were obtained by removing reads containing adapter and poly-
N sequences and reads with low quality from raw data. At
the same time, Q20, Q30, and GC content of the clean data
were calculated. All the downstream analyses were based on
the clean data with high quality. Reference genome and gene
model annotation files were downloaded from NCBI, UCSC and
Ensembl directly. Paired-end clean reads were mapped to the
reference mouse genome (GRCm38.p6) using STAR software
(20) (2.7.0d).

Meta-Analyses of Publicly Available
Datasets
Mouse Models for Helminth Infection
Transcriptomic data from the duodenal samples of mice infected
with the parasite H. polygyrus that has been previously published
was obtained from NCBI’s Gene Expression Omnibus (GEO)
https://www.ncbi.nlm.nih.gov/gds (GSE102789). Raw RNAseq
data was mapped against the mouse genome and processed and
analyzed using the same procedures and tools described above for
the mouse colitis models.

Human Inflammatory Bowel Disease Cohorts
Transcriptomic data from the respective intestinal tissues from
IBD patients from the previously published studies were obtained
from –

a) NCBI’s Gene Expression Omnibus (GEO) https://www.ncbi.
nlm.nih.gov/gds and from

b) EBI’s Array Express https://www.ebi.ac.uk/arrayexpress/.

The specifics of the cohorts and the respective accession numbers
are provided here:

Cohort Accession No. of

Samples

Tissue References

WashU E-MTAB-

5783

36CD, 32

Control

Ileum (21)

RISK_I GSE57945 202CD, 60

UC, 39

Control

Ileum (22)

PSC E-MTAB-

7915

10 UC, 10

PSC, 10

Control

Colon (23)

PROTECT GSE109142 206 UC,

20 Control

Rectum (24)

RISK_R GSE117993 92CD, 43

UC, 55

Control

Rectum (24)

CD, Crohn’s disease; UC, ulcerative colitis; PSC, primary sclerosing cholangitis.

Where applicable, microarray data and its annotation was
downloaded and processed using the limma R package [3.42.2]
(25). Raw RNAseq data was mapped against the human
genome [GRCh38.p13], processed and analyzed using the
same procedures and tools described above for the mouse
colitis models.

Network extension for detection of pathways and physical
interactors for a subset type 2 identifier genes that were
commonly regulated between mouse and human samples was
determined using the freely available tool Genemania for
Cytoscape 3.7 (26, 27).

Statistical Analysis of Differential Gene
Expression
FeatureCounts (v2.0.1) was used to count the read numbers
mapped of each gene included in the Ensembl database 21.
Then the median of ratios of each gene were calculated,
based on the sequencing depth and the RNA composition.
Although the Reads Per Kilobase of exon model per Million
(RPKM) is currently one of the most commonly used
methods for normalization of RNA seq data, the median of
ratios used by DESeq2 is more accurate for the differential
expression analysis22.

Differential expression analysis between two
conditions/groups (three biological replicates per condition)
was performed using DESeq2 (v 1.26.0) R package22. DESeq2
provides statistical routines for determining differential
expression in digital gene expression data using a model based
on the negative binomial distribution22. The resulting P-values
were adjusted using the Benjamini and Hochberg’s approach
for controlling the False Discovery Rate (FDR). Genes with
an adjusted P < 0.05 found by DESeq2 were assigned as
differentially expressed.
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TABLE 1 | Identifier gene set for type 2 immunity.

Symbol Full name Description References

Il33 Interleukin 33 Cytokine that drives production of Th2 associated cytokines.

Expressed in a wide range of cells

(29)

Il25 Interleukin 25 Cytokine that drives production of Th2 associated cytokines.

Expressed in a wide range of cells

(2)

Il4 Interleukin 4 Cytokine that induces differentiation of naive Th cells to Th2 (30)

Il5 Interleukin 5 Cytokine that stimulates IgA secretion and activates eosinophils (31)

Il9 Interleukin 9 Cytokine that regulates hematopoietic cells activating several STAT

signaling pathways, stimulating cell proliferation, and preventing

apoptosis

(32, 33)

Il10 Interleukin 10 Anti-inflammatory cytokine that down regulates the expression of

Th1 cytokines

(34, 35)

Il13 Interleukin 13 Cytokine with similar effects in immune cells than those caused by

IL-4

(36, 37)

Il31 Interleukin 31 Pruritic cytokine expressed by Th2 cells in response to stimulation

with type 2 cytokines

(38, 39)

TLSP Thymic stromal lymphoproietin Cytokine that plays a role on activating Dendritic Cells (40)

AREG Amphiregulin Epidermal growth factor secreted by ILC2 after tissue damage. (41, 42)

GATA3 GATA binding protein 3 Transcription factor that stimulates the producion of IL-4, IL-5 and

IL-13.

(43)

MAF Avian musculoaponeurotic fibrosarcoma

oncogene

Transcription factor that regulates the expression of IL-4 and

attenuates type 1 response.

(44)

STAT6 Signal transducer and activator of

transcription 6

Transcription factor that acts as the intracellular effector of IL-4 in

Th2 cells

(45)

CCL1 Chemokine (C-C motif) ligand 1 Chemokine that acts as a chemoattractant for multiple immune

cells.

(46, 47)

CCL8 Chemokine (C-C motif) ligand 8 Chemokine that acts as a chemoattractant for multiple immune

cells.

(48)

CCL17 Chemokine (C-C motif) ligand 17 Chemokine that induces chemotaxis in T cells. (49)

CCL22 Chemokine (C-C motif) ligand 22 Chemokine that induces chemotaxis in T cells. (49)

IL1RL1 Interleukin 1 Receptor like protein 1 Receptor for IL-33 (50)

PTGDR2 Prostaglandin D2 receptor 2, Interleukin

52 (CRTH2)

Prostaglandin receptor that mediates in the chemotaxis of Th2

cells

(51)

IL17RB Interleukin 17 Receptor B Receptor for IL25 (52)

CRLF2 Cytokine receptor-like factor 2 Receptor for TSLP (53)

CCR4 C-C chemokine receptor type 4 Receptor for multiple chemokines, including CCL17 and CCL22. (54)

CCR8 C-C chemokine receptor 8 Receptor for CCL1 (55)

IL4R Interleukin 4 Receptor subunit alpha Receptor for IL-4 and IL-13, forms a complex with IL-13RA1 (56)

IL13RA1 Interleukin 13 Receptor alpha 1 Receptor for IL-4 and IL-13, forms a complex with IL-4R (57)

IL31RA Interleukin 31 receptor A Receptor for IL-31 (58)

IL9R Interleukin 9 Receptor Receptor for IL-9 (59)

DENND1B DENN domain-containing protein 1A Protein containing a DENN domain, which interacts with Rab

family GTPases

(60)

ITK IL-2-inducible T-cell kinase Tyrosine kinase that plays a role on the differentiation and

proliferation of Th2 cells

(61)

ARG1 Arginase 1 Metabolic enzyme and marker of activated ILCs (62)

ARG2 Arginase 2 Paralog of ARG1 and marker of activated T cells (63)

ECM1 Extracellular matrix protein 1 Extracellular protein that contributes in the manteinance of the

epithelium

(64)

PRKCZ Protein kinase C zeta Protein kinase C that regulates differentiation of T cells (65)

RETNLA Resistin like molecule alpha (FIZZ) Molecule increased in inflammatory and allergic responses (66)

RETNLB Resistin like molecule beta Molecule increased in inflammatory and allergic responses (67)

CHIL3 Chitinase-like protein 3 Pseudo chitinase expressed in IECs and macrophages in

inflammation

(68)

MUC5AC Mucin 5AC Gene involved in the production of mucus (69)

MRC1 Mannose receptor C-type 1 Protein expressed by intestinal macrophages (70)
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RESULTS

Selection of an Identifier Gene Set
Representing Type 2 Responses
To generate a discovery gene set for type 2 immunity that would
then be used to query transcriptomic datasets, we surveyed
gene sets in the molecular signatures database (MSigDB, https://
www.gsea-msigdb.org/gsea/msigdb) (28). The MSigDB database
serves as a standard resource for gene sets used in gene set
enrichment analyses. A list of all MSigDB gene sets used for
this analysis is available as Supplemental Table 1. Surprisingly,
an integrated list of the 15 gene sets that we investigated,
failed to show the necessary attributes of a canonical type 2
signature. Therefore, based on reliable literature resources, we
compiled a list of 39 genes, which are known to be classical
markers for type 2 immune responses (Table 1). This list includes
genes categorized into five major groups: cytokines, transcription
factors, chemokines, receptors, and other genes, which served as
a molecular identifier to interrogate transcriptomic datasets and
associate a specific type 2 signature (Table 1).

The genes included in the cytokines group are involved in
multiple types of signaling for the activation of the type 2
response. These include the classical type 2 cytokines Il4, Il5, IL9,
and IL13 that are involved in the activation of the effector cells
(30–33, 36, 37). The cytokines Il33, Il25, and TLSP are primarily
produced by parenchymal cells in response to damage, thereby
rapidly activating type 2 ILCs (ILC2s) and other immune cells
in an early activation stage (2, 29, 40). The ILC2s and Treg cells
secrete AREG in order to help repair the damaged epithelium (41,
42). Finally, IL10 is produced by macrophages and lymphocytes,
and has an anti-inflammatory function, in order to maintain
intestinal homeostasis (34, 35).

Among the key transcription factors (TF) that regulates type
2 polarization and expression of multiple cytokines is GATA3
(43). Another key regulatory TF assigned to type 2 responses is
MAF, which controls the production of Il4, and attenuates type
1 signaling (44). The IL4 signaling is crucial in dictating type 2
responses and its actions are mediated by the activation of the
TF STAT6, which regulates a plethora of type 2 related effects
including polarization and recruitment of Th2 cells (45).

Among the chemokines that represent the type 2 signature
were CCL1 and CCL8 that promote migration and activation of
ILC2s and Treg cells. CCL17 and CCL22 have similar effects,
dendritic cells (DC) produce both and they interact with T helper
cells (46–49).

Key cytokine receptors, which influence the type 2
polarization and function are IL4R1 (lymphocytes, ILC,
fibroblasts, and epithelium), IL9R (eosinophils, mast cells,
ILC2s), IL13RA1 (ILC, granulocytes, epithelial cells, fibroblasts),
and IL31RA (monocytes, epithelium) (56, 57, 59). Other cytokine
receptors which influence type 2 behaviors include the IL-33
receptor subunit IL1RL1 (hematopoietic), which has been seen
involved in allergic responses and IL17RB (ILC2s, monocyte,
Tuft cells), which is receptor of IL25 (50, 52). The receptors
for type 2-related chemokines are also included in this group,
with the genes CCR4 (Th2) and CCR8 (ILCs, T cells) (54, 55).
PTGDR2 is a prostaglandin D receptor expressed in Th2 cells,

mediating allergic responses (51). The receptor of TSLP, CRLF2
(DC, hematopoietic) is also a key component determining the
activation and initiation of Th2 responses (40, 53).

Finally, we identified 12 additional genes that are known to
control type 2 responses, but do not fall into any of the above
categories. Among these were DENND1B which is involved in
the down-modulation of the T cell receptor, and its absence,
malfunction or delay has been associated with asthma and allergic
response (60). The Tec family tyrosine kinase ITK, also included
in this group, is required for the production of type 2 cytokines
and the differentiation of ILC2s and T cells (61). ARG1 and
ARG2 are paralogues, both encoding for the metabolic enzyme
arginase, whichmetabolizes L-arginine, and has been identified as
a marker of ILC2s and alternatively activated macrophages; and
an upstream regulator of these metabolic genes is ECM1 (62–64).
PRKCZ encodes an atypical protein kinase C, which is involved
in immune surveillance (65). Next, we included RETNLA and
RETNLB that encode proteins of the Resistin family that are
generally elevated upon type 2 immune activation via the actions
of IL-13 (66, 67). During nematode driven intestinal type 2
responses, the upregulation of the chitinase CHIL3 is detectable
(68). This enzyme controls the degradation of chitin, and is
produced and released by intestinal epithelial cells promoting
host cell survival and proliferation. Various scenarios of type 2
activation in the intestine have shown that MUC5AC is induced
in the epithelium and is responsible for the elevated mucus
production, characteristic of these models (69). MRC1 is a
receptor induced by the type 2 cytokine IL4 and can bind high-
mannose structures on parasite walls, aiding their neutralization
and engulfment (70).

Transcriptomic Comparison Across
Multiple Mouse Models of IBD Reveals a
Non-discriminatory Regulation of Type 2
Response
In an initial attempt to find discernable patterns of the
involvement of type 2 immune responses in different mouse
models of IBD, we screened colonic transcriptomes against
the type 2 immune response identifier gene set. The mouse
models included for this were a time course of dextran sulfate
sodium (DSS) colitis representing mild inflammation at day
3, high inflammation at day 8, moderate recovery at day 12
and full recovery from colitis at day 19 of the experimental
protocol, characterized by distinct changes in body weights
during and after DSS challenge (Figures 1A,B). Apart from
these 4 stages of DSS colitis we also included samples of acute
DSS colitis, chronic DSS colitis, Oxazolone colitis, and adoptive
T-cell transfer colitis, where inflammation was ascertained by
histochemical staining (Figures 1C,D). Colonic transcriptomes
from unchallenged Rag1 knockout mice and unchallenged
C57BL/6 mice were used as control datasets for the T-cell
transfer colitis and the rest of the mouse models, respectively.
Our exploration yielded 25 genes representing 64% of the
identifier gene set which met all requisite criteria for technical
thresholds across all the mouse model datasets (Figures 1C,D).
Intriguingly, while a type 2 immune signature was evident
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FIGURE 1 | Transcriptomic analyses of type 2 identifiers in multiple mouse models of colitis. (A) percent change in body weight from baseline and DSS treatment

paradigm. Time points representing inflammation are represented in red (B) Heatmap depicting the normalized expression of the indicated genes from four different

time-points of dextran sulfate sodium (DSS) induced colitis D3 = day 3, D8 = day 8, D12 = day 12, and D19 = day 19. The text boxes below represent the treatment

(Continued)
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FIGURE 1 | type and duration. Hierarchical clustering shows clear segregation of two distinct groups of genes. (C) Representative photomicrographs of H&E-stained

tissue sections from the indicated colitis mouse models. DSS, acute dextran sulfate sodium colitis; cDSS, chronic dextran sulfate sodium colitis; OxC, Oxazolone

induced colitis; TC, T-cell adoptive transfer colitis. (D) Heatmap showing normalized expression levels of the indicated genes the type of regimen used to induce colitis

is depicted below. Numbers in each quadrant represent the p-value and the legend denotes the fold changes in expression ratios.

throughout the course of DSS-induced colitis, we failed to
identify a clear type 2 discriminatory signature in specific mouse
models and observed that surprisingly, DSS colitis had the most
dynamic Th2 response followed by T-cell transfer colitis and
lastly oxazolone colitis (Figure 1D). Oxazolone colitis showed
the mildest regulatory shift to a type 2 response with only 5
genes of the identifier gene set being significantly regulated.
These included Itk, Ccl17, Retnla, Areg, and Ccl8 (Figure 1D).
Interestingly, oxazolone colitis was the only dataset in which
Ccl17 was significantly regulated. There was an overall tendency
toward upregulation of most of the transcripts that we assessed
barring 3 transcripts, Dennd1b, Prkcz, and Il17rb which showed
an overall downregulation and clustered together across all the
datasets that we tested (Figure 1D). The protein products of these
three genes functionally cooperate downstream of IL-17 signaling
to modulate cellular stress response (71). Among all the genes
and across all the datasets, the expression of Tslp showed the
least significant variation in expression making it the only gene
in the identifier that failed to show significant expression changes
in at least one of the datasets (Figures 1C,D). The gene that
showed high similarity across all the datasets was Ccl8, which was
significantly upregulated in all the tested datasets (Figures 1C,D).

Several genes such as Gata3, Itk, Ccl8, Ccl22, Ccr4, Crlf2, Il9r,
Il1rl1, and Arg2 are regulated concordantly in T-cell transfer
colitis, acute DSS colitis and the time point representing high
inflammation in the DSS time course (Figures 1C,D). Finally,
some genes tended to show a greater proportion of upregulation
only in the DSS colitis models. These included Il33, Ecm1, Arg1
and Mrc1, and Maf (Figures 1C,D). No gene was exclusively
upregulated in the Transfer or Oxazolone colitis models. Thus,
our analysis fails to identify a discriminatory type 2 signature in
mouse models of IBD, which are known to have distinct immune
phenotypes (14–17).

Publicly Available Transcriptomic Datasets
Show a Non-discriminatory Regulation of
Type 2 Identifier Gene Set Between
Different IBD Subtypes
Classically, UC has been classified as having a dominant type
2 immune signature. This view has always been controversial
and there is evidence in support of and against this view (72,
73). To address whether the type 2 gene set identifier may
discriminate between human IBD subtypes, we screened five
publicly available transcriptomic datasets representing 22 distinct
comparisons against respective control samples from intestinal
biopsies of human IBD patients. The datasets represented ileum
(Figure 2A) as well as the colon and rectum (Figure 2B) at
various degrees of inflammation from CD and UC patients
of both genders. After applying the appropriate abundance
thresholds our analysis yielded 22 genes representing 56% of

the identifier gene set that were analyzed across all the cohorts
(Figures 2A,B). A comparison of the overall magnitude of the
most upregulated genes, showed that the rectal tissues of UC
patients, on an average, had 11 out of the 22 genes upregulated
(Figure 2B). These included ARG2,MAF, EVM1,MRC1, CCL22,
GATA3, IL33, ITK, CCR4, and IL1RL1. However, their regulatory
behavior was non-discriminatory when comparing disease subset
or tissue of origin because several of them were also upregulated
in CD patients and in inflamed ileal tissues (Figures 2A,B).
The least informative genes vis à vis their significance across
all the datasets were TNFSF4, DENND1B, STAT6, and TSLP
with significant changes in expression detectable in just 1, 3, 3,
and 4 comparisons, respectively (Figures 2A,B). Whereas, genes
IL1RL1, IL33, ECM1, and PRKCZ were the most informative
with significance reached in 15, 12, 12, 12, and 12 comparisons,
respectively (Figures 2A,B).

In the analysis of the more severe cases of disease across
all the cohorts, the gene IL1RL1 showed the most significant
upregulation in all tissues including ileum, colon and rectum
(Figures 2A,B). Remarkably, the upregulation in CCL22 and
GATA3 was restricted to the colonic and rectal samples with no
regulation detected in any of the ileal samples irrespective of
IBD subtype and gender (Figures 2A,B). Among these, CCL22
afforded the most discriminatory power against ileal tissues, with
none of the ileal datasets showing changes in regulation and
only the rectal and colonic datasets showing an upregulation.
We also detected a discordant expression pattern for two genes
ARG2 and MAF between the ileum and the rectum with an
overall tendency of being downregulated in the inflamed ilea and
upregulated in the inflamed rectum (Figures 2A,B). Among the
comparisons involving inflamed vs. control ileal tissues, the genes
CCL8, ARG1 and AREG were upregulated in patients of both
genders with endoscopic evidence of macroinflammation with
deep ulcers (Figures 2A,B).

A generalized trend toward downregulation was observed
for a cluster of 3 genes that included IL13RA1, PRKCZ, and
DENND1B (Figures 2A,B). Among this cluster, IL13RA1 and
PRKCZ were significantly downregulated across all the cohorts
representing rectal tissues, whereas in ileal cohorts, significance
was only reached for the most inflamed ileal tissues with evidence
of macroinflammation and deep ulceration (Figures 2A,B).

Comparative Transcriptomics Reveals
Conserved Regulation of a Type
2-Associated Module Shared Between
Human IBD and Mouse Models of IBD
By comparing the genes that showed significant regulation (up
or down) in the mouse models and the human cohorts, we
identified two clusters of genes the regulatory behavior of which
was conserved. For both, up as well as down regulated genes
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FIGURE 2 | Analysis of multiple IBD cohorts using the type 2 identifier gene set. (A) Heatmap of the normalized ileal gene expression profiles from the indicated

cohorts of CD patients. Where available, gender, inflammation type and ulceration status are depicted below. (B) Heatmap of the normalized gene expression profiles

of the indicated genes in the colonic and rectal tissues from IBD patients. Where available, gender, disease diagnosis (UC, Ulcerative Colitis; iCD, ileal Crohn’s disease;

and cCD, colonic Crohn’s disease) and treatments (5-ASA, 5-aminosalicylic acid; CSIV, Cyclosporin intravenous; and CSOral, Cyclosporin oral) are indicated below.

Numbers in each quadrant represent the p-value and the legend denotes the fold changes in expression ratios.
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FIGURE 3 | Network analysis of the six type 2 associated genes similarly regulated in human IBD and mouse models of colitis. Radial interaction map of type 2

associated marker genes common to both human IBD and mouse models of colitis (the six central circles, shaded gray). Each non-shaded gray circle represents a

predicted pathway interactor (aqua lines) or physical interactor (mauve lines) of the six core factors. Size of each circle represents the rank generated by an

automatically selected weighting method in Cytoscape.

that were commonly regulated, the greatest overlap was observed
between the mouse models showing acute inflammation and
human cohorts that were highly inflamed. The seven genes
encoding for ITK, GATA3, CCL22, IL1RL1, CCR4, and ARG2

were upregulated in DSS and T-cell transfer colitis, and in the
human colon and rectum cohorts (Figures 1C,D, 2A,B). An
analysis of pathways and physical interactors of these genes
yielded an extended network (Figure 3). Some of the members

Frontiers in Medicine | www.frontiersin.org 9 May 2021 | Volume 8 | Article 66404583

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Gonzalez Acera et al. Transcriptomics - Type 2 Immunity in IBD

of this extended network such as IL33, CCL17, and MAF were
among our type 2 identifier gene set; the others are downstream
components, which may participate in regulating type 2 immune
response (Figure 3).

Interestingly, and contrary to our expectation, except for
ITK, the regulatory behavior of none of these seven shared
genes was significantly altered in the Oxazolone colitis mouse
model, a model previously associated with Th2-driven pathology
(Figure 1D). We also identified another module of genes,
including MRC1, ARG2, ECM1, MAF, and IL33 that was
upregulated in the DSS models as well as in the human rectum
cohorts with some degree of overlap with the most inflamed
of the ileal cohorts (Figures 1C,D, 2A,B). Among these, the
upregulation of only ARG2 and MAF was truly restricted solely
to the rectal datasets (Figures 1C,D, 2A,B). Among the DSS
mouse models, Maf expression was restricted to the mild, high
and acute inflammation stages, returned to normal levels during
the resolution stage, and remained unaltered in the chronic DSS
model (Figures 1C,D).

Interestingly, a cognate behavior for the regulation of STAT6
and TSLP was identified among the mouse models and human
cohorts that showed a lack of any significant regulation
(Figures 1C,D, 2A,B). The upregulation of AREG was observed
across all the mouse models except for controls and recovery
cohorts and was shared predominantly among in the human
ileal but not colonic and rectal ones (Figures 1C,D, 2A,B).
Interestingly, the downregulation of the genes PRKCZ and
DENND1B was common among the mouse models and the
human cohorts (Figures 1C,D, 2A,B).

DISCUSSION

Research into the cytokine biology of IBD has nurtured the
dogmatic view that different IBD subtypes are characterized
by distinct immunotypes (6). This classical view has been
repeatedly challenged and recent evidence calls for a revision
of this point of view. Although several studies have identified
an upregulation in type 2 markers in ulcerative colitis, there
is no conclusive evidence that a diagnostic discrimination of
UC vs. CD can be attained by measuring the markers of type
1 and type 2 immune responses (8, 74, 75). Thus, the type
of mucosal immune response on its own cannot explain the
differences in the clinical pathogenesis of CD vs. UC. Preclinical
mouse models, which resemble these classical human IBD
immunotypes, have been widely employed for gaining a better
understanding of disease biology as well as for drug discovery
purposes. However, due to a lack of consensus on whether certain
archetypal immune responses are associated with a certainmouse
model that reflects a specific human IBD subtype, we took
advantage of a comparative transcriptomic approach. To our
knowledge, such an approach has not been applied so far in
gaining an understanding of type 2 immunity in preclinical and
clinical IBD.

Classically, colitis induced using the adoptive transfer of
CD4+CD45RBhigh T cells into Rag 1, 2 knockout mice that
lack T and B cells has been considered to be Th1 -mediated

(76). More recently, both Th1 and Th17 cells were broadly
implicated in colitogenic disease mechanisms in this model.
Another commonly used mouse model for IBD, DSS colitis,
is also considered to be predominantly a Th1/Th17 type of
colitis, although colitis can develop even in the absence of
T cells (77). Conversely, the models of chronic DSS colitis
and Oxazolone colitis are considered to be Th2-driven forms
of colitis (78). Interestingly, our analysis showed a significant
overlap in the expression of cognate type 2 gene set in the
DSS as well as the T cell transfer colitis models, which as
stated earlier are classically considered type 1-driven models.
Interestingly, and contrary to our expectation, chronic DSS colitis
and Oxazolone colitis showed the least regulation of the type
2 identifier gene set. Using a single cell sequencing approach,
Kiner et al. recently also failed to identify classical T helper
cell subsets and could not define distinct Th1, Th17, or Th2
restricted clusters but rather identified phenotypically flexible
clusters that depended on the overarching microbial milieu
(79). Notably, the lack of Th stereotypes in the gut mucosa
was not only observed at steady state, but also when mice
were infected with different pathogens including the metazoan
parasite H. polygurus and N. brasiliensi (79). In line with this,
we analyzed two transcriptomic datasets, one from the lung and
the other from the small intestine of mice that were infected
with the helminth parasites Nippostrongylus brasiliensis and
Heligmosomoides polygyrus, respectively (80, 81). Similar to the
findings of Kiner et al., we also failed to identify a significant
proportion of canonical type 2 response signatures, which were
shared between the two tissues.

One technical caveat of transcriptome sequencing methods
used in our study is the cutoff for minimum sequence length that
guarantees a good sequence read. In our method, this cutoff was
150 base pairs for a paired end sequencing, which inadvertently
causes a loss of short length transcripts, which we were unable to
include in our analysis. Nonetheless, our analysis contributes to
the growing body of evidence that points to a reassessment of the
classical immune subtyping in IBD.

In addition, our data reveal a conserved group of type 2
associated genes, which are regulated similarly in the commonly
used mouse models of IBD and in human IBD. The analyses
presented in our work shows that most of the classical
markers of type 2 immune response do not behave in a
presumed categorical pattern. We also show that the conception
that in preclinical studies of IBD, specific types of immune
responses can be modeled using specific mouse models needs to
be revised.
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High-definition endoscopy is one essential step in the initial diagnosis of inflammatory

bowel disease (IBD) characterizing the extent and severity of inflammation, as well

as discriminating ulcerative colitis (UC) from Crohn’s disease (CD). Following general

recommendations and national guidelines, individual risk stratification should define

the appropriate surveillance strategy, biopsy protocol and frequency of endoscopies.

Beside high-definition videoendoscopy the application of dyes applied via a spraying

catheter is of additional diagnostic value with a higher detection rate of intraepithelial

neoplasia (IEN). Virtual chromoendoscopy techniques (NBI, FICE, I-scan, BLI) should not

be recommended as a single surveillance strategy in IBD, although newer data suggest

a higher comparability to dye-based chromoendoscopy than previously assumed. First

results of oral methylene blue formulation are promising for improving the acceptance

rate of classical chromoendoscopy. Confocal laser endomicroscopy (CLE) is still

an experimental but highly innovative endoscopic procedure with the potential to

contribute to the detection of dysplastic lesions. Molecular endoscopy in IBD has

taken application of CLE to a higher level and allows topical application of labeled

probes, mainly antibodies, against specific target structures expressed in the tissue to

predict response or failure to biological therapies. First pre-clinical and in vivo data from

label-free multiphoton microscopy (MPM) are now available to characterize mucosal

and submucosal inflammation on endoscopy in more detail. These new techniques

now have opened the door to individualized and highly specific molecular imaging in

IBD in the future and pave the path to personalized medicine approaches. The quality

of evidence was stated according to the Oxford Center of evidence-based medicine

(March 2009). For this review a Medline search up to January 2021 was performed

using the words “inflammatory bowel disease,” “ulcerative colitis,” “crohn’s disease,”

“chromoendoscopy,” “high-definition endoscopy,” “confocal laser endomicroscopy,”

“confocal laser microscopy,” “molecular imaging,” “multiphoton microscopy.”

Keywords: high-definition endoscopy, confocal laser microscopy, chromoendoscopy, molecular endoscopy,

multiphoton microscopy
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INTRODUCTION

Gastrointestinal endoscopy plays a crucial role in patients with
inflammatory bowel disease (IBD; Crohn’s disease CD; ulcerative
colitis UC). The initial diagnosis, the determination of disease
activity and surveillance are the key steps of rational disease
management and include primarily an endoscopic approach to
visualize and characterize the extent and severity of mucosal
inflammation and to take targeted biopsies of inflamed and
non-inflamed tissue areas. High-resolution or high-definition
endoscopy should be the gold standard when examining IBD
patients. In surveillance colonoscopy, a combination of high-
definition endoscopy with classical dye-based chromoendoscopy
(e.g., indigocarmine solution 0.1–0.5%) is of additional value to
detect flat polypoid neoplastic mucosal lesions and discriminate
these areas from colitis-associated pseudopolyps or other benign
lesions (level 1, grade of recommendation A). The exclusion
or detection of intraepithelial neoplasia (IEN) is the aim of
all surveillance colonoscopies in IBD to reduce the risk of
malignant transformation to colorectal cancer. Although many
study data showed different results this risk seems to be lower
than previously assumed (1) and is in the range of 1–7% after 10
and 30 years of UC, respectively (2), (level 2, grade B). In patients
with CD the risk of developing colorectal cancer is lower than
in UC, but still heightened with an incidence rate of 2% after
30 years (2), (level 2, grade B). The detection rate of IEN can be
further improved by using in-vivo histology techniques. Confocal
laser endomicroscopy (CLE) was introduced in 2006 and gave
exclusive insight into the gastrointestinal tract on a cellular and
subcellular level in a variety of gastrointestinal diseases. Initially,
there were two independent in-vivo histology systems available
on the market, the endoscope-based CLE (eCLE) by Pentax,
Tokyo, Japan, and a probe-based CLE (pCLE) by Mauna Kea
Technologies, Paris, France. A couple of years ago the technical
support for eCLE was permanently discontinued and research
activities with that specific system were restricted to a very
small number of research centers with active running systems.
In IBD, CLE was used for characterization and classification
of inflammatory activity and mucosal healing in active disease
as well as for the detection of IEN during surveillance. For
example, a combination of chromoendoscopy with CLE can
detect 5-fold higher rates of IEN compared with random
biopsy protocols (3), (level 4 grade C). After evaluation of
CLE as a unique tool for the characterization of normal,
inflamed and pre-malignant or malignant intestinal mucosa,
some research groups focused on the analysis of the intestinal
barrier function for predicting clinical relapse (4), (level 3, grade
C).Mucosal healing can predict response to therapy or, vice versa,
ongoing mucosal or submucosal inflammation may indicate
treatment failure. Kiesslich et al. published a study investigating
epithelial barrier function by CLE and described leakage of
fluorescein due to epithelial gaps during cell shedding (5), (level
3, grade C). Based on these and other data, highly specific
fluorescein-labeled probes binding to their molecular targets
on the surface of the gastrointestinal epithelium established a
fascinating new era of molecular imaging studies. Molecular
endoscopy allows a more specific and individual treatment by

predicting the response to anti-inflammatory therapy (6), (level
3, grade C). Recently label-freemultiphotonmicroscopy based on
endogenous autofluorescence visualized mucosal inflammation
in human biopsies of CD patients (7, 8).

HIGH-DEFINITION ENDOSCOPY AND

CHROMOENDOSCOPY IN IBD

Lower optical resolution of previous endoscope generations and
random biopsy protocols in all patients were central elements in
the surveillance of IBD during the first decade of this century. The
lower image quality might be one reason for the increased rate
of colorectal cancers described earlier in UC patients (1). High-
definition endoscopes have an average diameter of 9–13mm,
a field of view between 140 and 170◦, an optical resolution
up to 2 million pixels and a 4-way angulation and the newest
generation of endoscopes is mostly equipped with bright LEDs
(9). Over the last 10 years a more specific and, moreover,
individual endoscopic strategy was implemented in national
IBD guidelines focusing on defined risk factors. In Germany,
surveillance colonoscopy in UC starts 6–8 years after initial
diagnosis and should be performed between each year in high-
risk patients and every 4 year in patients with low-risk conditions
(10), (level 1, grade A). Recently patients with primary sclerosing
cholangitis (PSC), a tubular colon and those with a history of
neoplasia were identified as having a higher risk for developing
colorectal cancer and in these patients targeted and additional
random biopsies were recommended during chromoendoscopy
(11), (level 1, grade A). For classical chromoendoscopy in
the colon, either indigo carmine as a contrast enhanced dye
or methylene blue as an absorptive dye can be used, for
both agents a 0.1–0.5% working solution is recommended
and should be applied with slight pressure via a spraying
catheter to the mucosal surface to ensure optimal distribution
throughout the entire colon. An adequate withdrawal time
and sufficient bowel preparation (Boston Preparation Scale ≥

6) is mandatory for an optimal view of the complete colonic
mucosal surface. Huge efforts were made to investigate if
virtual chromoendoscopy techniques (NBI, FICE, I-scan) are
able to replace classical dye-based chromoendoscopy. NBI can
characterize histological inflammation by the determination of
mucosal vascular pattern (12), (level 4, grade C). This was
recently confirmed and prediction of mucosal proliferation can
be helpful in the diagnosis of IEN (13), (level 4, grade C).
However, the inconsistent results of various studies currently
do not justify the application of virtual chromoendoscopy as a
single surveillance strategy (14, 15), (level 3, grade D). Studies
favoring virtual chromoendoscopy found that the examination
time and the technical efforts were significantly lower and
therefore more user-friendly compared to the application of
classical dyes via spraying catheter (16), (level 1, grade A). A
new meta-analysis identified 11 randomized-controlled trials
with a total of 1328 patients and concluded that virtual
chromoendoscopy is as good as high-definition endoscopy with
dye-based chromoendoscopy (17). This indicates that probably
in a couple of years both techniques can be applied equally
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depending on the local expertise of the respective endoscopy
unit. As we already know from our daily practice, the acceptance
rate of classical chromoendoscopy among physicians is low.
Therefore, a promising future perspective for any screening
colonoscopy might be the pre-interventional intake of oral
chromoendoscopy dye. Recently, the results of a phase 3 trial
found an increase in the adenoma detection rate of 8.5% when
peroral methylene blue tablets (MMX R©) were administered
together with bowel preparation (18), (level 1, grade A). Further
studies will evaluate oral chromoendoscopy in patients with the
need for recurring endoscopic surveillance colonoscopies.

CONFOCAL LASER ENDOMICROSCOPY

(eCLE, pCLE)

Today we can look back on 15 years of confocal laser
endomicroscopy (CLE). This exciting technique was originally
designed to allow virtual histology on a cellular and subcellular
level with the potential to at least partially replace classical
histology. The procedure, however, is time-consuming,
technically challenging and intravenous applied fluorescein
is necessary for each procedure to generate high-resolution
images. This and the fact that no reimbursement was provided
by health care authorities restricted the running CLE systems
to large research units in University centers. The acquisition
of targeted biopsies became reality and a large number of
clinical studies investigating a variety of gastrointestinal diseases
were published between 2005 and 2012. Most of these studies
characterized pre-malignant or inflammatory lesions in Barrett’s
esophagus (19), gastric cancer (20), celiac disease (21), IBD
(22), graft-vs. host disease (23) or adenomatous polyps (24)
in the upper and lower gastrointestinal tract (level 3, grade
C). A fascinating overview of different cellular and subcellular
pathologies was provided and after an initial characterization
period the next level of CLE research was reached by explaining
functional dynamic changes within the intestinal mucosa. The
identification of epithelial gaps during cell shedding and the
increase in gaps after stimulation with tumor necrosis factor
(TNF) alpha caused loss of barrier function and integrity (5),
(level 3, grade C). In IBD patients in clinical remission, increased
cell shedding with fluorescein leakage was observed and
associated with subsequent relapse 12 months after initial CLE
(22) indicating that CLE is able to relapse or can define a stable
disease when the barrier function is intact (level C, grade C).
These observations were in accordance with electrophysiological
measurements in human biopsies of patients with CD as
described earlier. After anti-TNF treatment the upregulation of
epithelial apoptotic cells in active disease restored to normal and
barrier dysfunction completely recovered (25). In vivo histology
was also able to contribute to the diagnosis and detection of
IEN during surveillance colonoscopy. For CLE a meta-analysis
revealed a pooled sensitivity and specificity of 91 and 97% for the
differentiation of neoplastic from non-neoplastic lesions (26).
Data of chromoendoscopy-guided CLE showed inconsistent
results (level 4, grade C).Whereas, some studies describe a higher
detection rate of IEN (3) in UC patients, other working groups

did not observe a benefit over chromoendoscopy alone (27).
However, the general use of this approach for surveillance cannot
be recommended. Ongoing study activities with eCLE were
hampered by the missing combination of the initial confocal
microscope device with a newer high-definition endoscope
technology due to several, unfortunately also economic reasons.
Currently there is only pCLE available on the market and
although there are technical and optical differences between the
two systems, the usefulness of pCLE in predicting postoperative
recurrence in patients with CD was shown recently (28), (level
4, grade C). Now there is a possibility to apply pCLE with nearly
any commercial endoscope independent of the manufacturer.
For further characterization of intestinal barrier function in IBD
in vivo by pCLE, reliable and reproducible diagnostic criteria
should be defined. The quantification of gaps, fluorescein leakage
and cell shedding (5, 29) (level 3–4, grade C) are encouraging
first candidates for the measurement of barrier function in vivo
and may act as main criteria. Crypt tortuosity, distortion of
crypt openings and decreased crypt density were additional
observations in UC patients (30) and could potentially act as
minor criteria (level 3, grade C). A number of CLE-based rating
systems and scores have been published so far taking into account
the degree of inflammation and the prediction of relapse (31).
For the assessment of clinical outcomes or the determination of
relapse rates in IBD patients under immunosuppressive therapy
further research is necessary. The number of research projects
investigating CLE in IBD is currently decreasing. One reason for
this may be the introduction of emerging artificial intelligence
systems (32) on the market, which will be part of future detection
of IEN. However, for the determination of disease activity to
predict relapse or therapy response in IBD there is an ongoing
need for further CLE evaluation.

MOLECULAR IMAGING

Fluorescence endoscopy (33), near-infrared fluorescence
endoscopy (34) and autofluorescence endoscopy were often
subsumed under molecular imaging devices. These techniques
can be combined with virtual chromoendoscopy (35). However,
these technologies were rather classical “red flag” technologies
than real molecular imaging techniques. The years of research
of the newer in-vivo histology techniques deliver the basis for
a more detailed analysis of the underlying molecular pathways.
More specific and distinct molecular imaging in advanced
gastrointestinal endoscopy is the real-time visualization and
binding of labeled-molecules to targeted structures on the
surface of epithelial cells and the detection of this conjunction
by in vivo histology. Probes usable for molecular imaging
could be labeled antibodies, peptides, enzymes, affibodies
or lectins, respectively (36). Molecular imaging is far away
from widespread clinical use. However, it potentially allows a
highly-individualized and specific characterization of mucosal
inflammatory diseases in the future. In vivo studies with
labeled antibodies imply a long-lasting and extensive process of
approval and fulfillment of strict requirements before the use
in humans is approved by regulatory authorities. The first in
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FIGURE 1 | Surveillance colonoscopy in a female patient (64y) with a history of UC for 15 years (a–i). (a,b) High-resolution video endoscopy shows a flat polypoid

lesion in the sigmoid colon, size 4 × 2 cm, Paris Classification IIa+c. (c) Probe-based confocal laser endomicroscopy of the surrounding mucosa revealed mild

inflammation and normal crypts. (d–f) Dye-based chromoendoscopy with indigocarmine (d), narrow-band imaging [NBI, (e)], and pCLE (f) of the distal border of the

polyp. A tubular structure and distorted mucosal epithelial cells become visible. (g–i) Dye-based chromoendoscopy with indigocarmine (g), NBI (h), and pCLE (i) of

the proximal part of the polyp. (i) Shows high-grade intraepithelial neoplasia. Final histology of this lesion after proctocolectomy revealed well-differentiated

intramucosal cancer without invasion.

vivo application of fluorescein-labeled heptapeptides during a
colonoscopy detecting colonic dysplasia was in 2008 (37). Two
years later, targeting of epidermal growth factor receptor (EGFR)
in colorectal cancer allowed the discrimination of neoplastic and
non-neoplastic tissue areas in living animals and human tissue
samples (38). One underlying signaling pathway identified a link
between inflammation and tumorigenesis and was described in
colitis-associated cancer (39). After demonstrating the feasibility
and safety of molecular imaging in pre-malignant or malignant
disease in vivo, further research focused on inflammatory disease
with the goal to predict therapy response or relapse. The first
molecular target of interest in IBD was TNF. A landmark study

detecting the binding of membrane-bound TNF (mTNF) by
a fluorescent-labeled adalimumab anti-TNF antibody showed
that high numbers of mTNF-positive cells correlated with
higher short-term response rates to treatment with the TNF-
neutralizing antibody adalimumab. Patients with high numbers
of mTNF-expressing cells demonstrated a higher probability of
clinical response than patients with low numbers of mTNF+
cells (92 vs. 15%). The sensitivity, specificity and accuracy for
the prediction of therapeutic responses were 92, 85, and 88%,
respectively. Positive and negative predictive values were 85 and
92% (40). Recently, first data presented the detection of mucosal
α4β7 integrin ex vivo with a fluorescent labeled anti-adhesion

Frontiers in Medicine | www.frontiersin.org 4 July 2021 | Volume 8 | Article 65540491

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Bojarski et al. Innovative Endoscopy in IBD

antibody vedolizumab in CD (41). In the clinical management of
IBD patients, early prediction of response or failure of a planned
therapy would be of utmost clinical importance. Consequently,
a prompt adjustment of planned immunosuppressive therapy
would be possible (42).

MULTIPHOTON MICROSCOPY

Multiphoton microscopy (MPM) is one of the emerging
innovative imaging technologies with the potential to visualize
intestinal epithelial cells under normal and inflamed conditions
without the addition of exogenous fluorescent dyes (43). The
first data with MPM as a promising imaging technology in
IBD revealed a clear discrimination of epithelial and immune
cells and the amount of extracellular matrix (7). This label-free
imaging of intestinal cellular and subcellular structures based on
autofluorescence and second harmonic generation signals has
therefore some advantages compared to CLE and was further
developed for in vivo use. Recently, the first experiments in
normal and inflamedmurine colonic mucosa in a dextran-sulfate
sodium-induced colitis model showed feasibility and a gradually
deformation of the crypt architecture depending on the activity of
the colitis (8). A future perspective would be the combination of
MPM with a high-definition endoscope to enable the use during
routine gastrointestinal endoscopy without the requirement of
any exogenous labeling.

FUTURE PERSPECTIVES

On the way to an individualized endoscopic approach, a large
number of technical improvements are nowadays available

for patients with IBD. These include mainly high-definition
endoscopy with nearly comparable efficiency compared to dye-
based and virtual chromoendoscopy techniques. If upcoming
clinical studies with oral intake of methylene blue prior to
surveillance colonoscopy become available and confirm the
additional benefit, the reservations against classical dye spraying
would finally come to an end. Although CLE as the most
widely used in vivo histology method brought extensive insight
and understanding of gastrointestinal mucosal pathology, its
widespread use in routine endoscopy is hampered by the lack
of reimbursement and additional examination time (Figure 1).
However, CLE opened the field for molecular endoscopy
allowing specific targeting of surfacemolecules. The prediction of
therapeutic response followed by prompt adjustment of targeted
therapeutic strategies improve clinical decisions in complex IBD
courses. MPM is an emerging new technology and the first data
are now available showing in vivo use in an animal model.
Label-free high-resolution endomicroscopy would be the logical
consequence and a perfect long-term perspective for the use in
patients with IBD.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work was supported by the Deutsche
Forschungsgemeinschaft (INST 335/534-1 FUGG) and is
part of the Transregio TRR241.

REFERENCES

1. Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative

colitis: a meta-analysis. Gut. (2001) 48:526–35. doi: 10.1136/gut.48.4.526

2. Selinger CP, Andrews JM, Titman A, Norton I, Jones DB, McDonald

C, et al. Long-term follow-up reveals low incidence of colorectal

cancer, but frequent need for resection, among Australian patients

with inflammatory bowel disease. Clin Gastroenterol Hepatol. (2014)

12:644–50. doi: 10.1016/j.cgh.2013.05.017

3. Gunther U, Kusch D, Heller F, Burgel N, Leonhardt S, Daum S, et al.

Surveillance colonoscopy in patients with inflammatory bowel disease:

comparison of random biopsy vs. targeted biopsy protocols. Int J Colorectal

Dis. (2011) 26:667–72. doi: 10.1007/s00384-011-1130-y

4. Karstensen JG, Saftoiu A, Brynskov J, Hendel J, Klausen P, Cartana T, et al.

Confocal laser endomicroscopy: a novel method for prediction of relapse

in Crohn’s disease. Endoscopy. (2016) 48:364–72. doi: 10.1055/s-0034-13

93314

5. Kiesslich R, Goetz M, Angus EM, Hu Q, Guan Y, Potten C,

et al. Identification of epithelial gaps in human small and large

intestine by confocal endomicroscopy. Gastroenterology. (2007)

133:1769–78. doi: 10.1053/j.gastro.2007.09.011

6. Atreya R, Goetz M. Molecular imaging in gastroenterology. Nat Rev

Gastroenterol Hepatol. (2013) 10:704–12. doi: 10.1038/nrgastro.2013.125

7. Schurmann S, Foersch S, Atreya R, Neumann H, Friedrich O,

Neurath MF, et al. Label-free imaging of inflammatory bowel

disease using multiphoton microscopy. Gastroenterology. (2013)

145:514–6. doi: 10.1053/j.gastro.2013.06.054

8. Dilipkumar A, Al-Shemmary A, Kreiss L, Cvecek K, Carle B, Knieling F, et

al. Label-Free multiphoton endomicroscopy for minimally invasive in vivo

imaging. Adv Sci (Weinh). (2019) 6:1801735. doi: 10.1002/advs.201801735

9. Tang Y, Anandasabapathy S, Richards-Kortum R. Advances in optical

gastrointestinal endoscopy: a technical review. Mol Oncol. (2020).

doi: 10.1002/1878-0261.12792. [Epub ahead of print].

10. Kucharzik T, Dignass AU, Atreya R, Bokemeyer B, Esters P, Herrlinger K, et

al. Aktualisierte S3-leitlinie colitis ulcerosa – living guideline. Z Gastroenterol.

(2020) 58:e241–326. doi: 10.1055/a-1296-3444

11. Moussata D, Allez M, Cazals-Hatem D, Treton X, Laharie D, Reimund JM, et

al. Are random biopsies still useful for the detection of neoplasia in patients

with IBD undergoing surveillance colonoscopy with chromoendoscopy? Gut.

(2018) 67:616–24. doi: 10.1136/gutjnl-2016-311892

12. Kudo T, Matsumoto T, Esaki M, Yao T, Iida M. Mucosal vascular pattern

in ulcerative colitis: observations using narrow band imaging colonoscopy

with special reference to histologic inflammation. Int J Colorectal Dis. (2009)

24:495–501. doi: 10.1007/s00384-008-0631-9

13. Guo T, Qian JM, Yang AM, Li Y, Zhou WX. Predicting mucosal

proliferation in ulcerative colitis by assessing mucosal vascular pattern under

narrow band imaging colonoscopy. Turk J Gastroenterol. (2021) 32:203–

8. doi: 10.5152/tjg.2021.20256

14. Bisschops R, Bessissow T, Joseph JA, Baert F, Ferrante M,

Ballet V, et al. Chromoendoscopy versus narrow band imaging

in UC: a prospective randomised controlled trial. Gut. (2018)

67:1087–94. doi: 10.1136/gutjnl-2016-313213

15. Leifeld L, Rogler G, Stallmach A, Schmidt C, Zuber-Jerger I, Hartmann F,

et al. White-Light or narrow-band imaging colonoscopy in surveillance of

Frontiers in Medicine | www.frontiersin.org 5 July 2021 | Volume 8 | Article 65540492

https://doi.org/10.1136/gut.48.4.526
https://doi.org/10.1016/j.cgh.2013.05.017
https://doi.org/10.1007/s00384-011-1130-y
https://doi.org/10.1055/s-0034-1393314
https://doi.org/10.1053/j.gastro.2007.09.011
https://doi.org/10.1038/nrgastro.2013.125
https://doi.org/10.1053/j.gastro.2013.06.054
https://doi.org/10.1002/advs.201801735
https://doi.org/10.1002/1878-0261.12792
https://doi.org/10.1055/a-1296-3444
https://doi.org/10.1136/gutjnl-2016-311892
https://doi.org/10.1007/s00384-008-0631-9
https://doi.org/10.5152/tjg.2021.20256
https://doi.org/10.1136/gutjnl-2016-313213
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Bojarski et al. Innovative Endoscopy in IBD

ulcerative colitis: a prospective multicenter study. Clin Gastroenterol Hepatol.

(2015) 13:1776–81.e1. doi: 10.1016/j.cgh.2015.04.172

16. Gonzalez-Bernardo O, Riestra S, Vivas S, de Francisco R, Perez-Martinez

I, Castano-Garcia A, et al. Chromoendoscopy with indigo carmine vs

virtual chromoendoscopy (iSCAN 1) for neoplasia screening in patients with

inflammatory bowel disease: a prospective randomized study. Inflamm Bowel

Dis. (2020). doi: 10.1093/ibd/izaa291. [Epub ahead of print].

17. El-Dallal M, Chen Y, Lin Q, Rakowsky S, Sattler L, Foromera J, et al. Meta-

analysis of virtual-based chromoendoscopy compared with dye-spraying

chromoendoscopy standard and high-definition white light endoscopy in

patients with inflammatory bowel disease at increased risk of colon cancer.

Inflamm Bowel Dis. (2020) 26:1319–29. doi: 10.1093/ibd/izaa011

18. Repici A, Wallace MB, East JE, Sharma P, Ramirez FC, Bruining DH, et al.

Efficacy of per-oral methylene blue formulation for screening colonoscopy.

Gastroenterology. (2019) 156:2198–207.e1. doi: 10.1053/j.gastro.2019.02.001

19. Dunbar KB, Okolo P, 3rd, Montgomery E, Canto MI. Confocal

laser endomicroscopy in barrett’s esophagus and endoscopically

inapparent barrett’s neoplasia: a prospective, randomized, double-

blind, controlled, crossover trial. Gastrointest Endosc. (2009)

70:645–54. doi: 10.1016/j.gie.2009.02.009

20. Kitabatake S, Niwa Y, Miyahara R, Ohashi A, Matsuura T, Iguchi Y, et

al. Confocal endomicroscopy for the diagnosis of gastric cancer in vivo.

Endoscopy. (2006) 38:1110–4. doi: 10.1055/s-2006-944855

21. Gunther U, Daum S, Heller F, Schumann M, Loddenkemper C, Grunbaum

M, et al. Diagnostic value of confocal endomicroscopy in celiac disease.

Endoscopy. (2010) 42:197–202. doi: 10.1055/s-0029-1243937

22. Kiesslich R, Duckworth CA, Moussata D, Gloeckner A, Lim LG, Goetz M,

et al. Local barrier dysfunction identified by confocal laser endomicroscopy

predicts relapse in inflammatory bowel disease. Gut. (2012) 61:1146–

53. doi: 10.1136/gutjnl-2011-300695

23. Bojarski C, Gunther U, Rieger K, Heller F, Loddenkemper C, Grunbaum M,

et al. In vivo diagnosis of acute intestinal graft-versus-host disease by confocal

endomicroscopy. Endoscopy. (2009) 41:433–8. doi: 10.1055/s-0029-1214604

24. Sanduleanu S, Driessen A, Gomez-Garcia E, Hameeteman W, de Bruine A,

Masclee A. In vivo diagnosis and classification of colorectal neoplasia by

chromoendoscopy-guided confocal laser endomicroscopy. Clin Gastroenterol

Hepatol. (2010) 8:371–8. doi: 10.1016/j.cgh.2009.08.006

25. Zeissig S, Bojarski C, Buergel N, Mankertz J, Zeitz M, Fromm M, et al.

Downregulation of epithelial apoptosis and barrier repair in active Crohn’s

disease by tumour necrosis factor alpha antibody treatment. Gut. (2004)

53:1295–302. doi: 10.1136/gut.2003.036632

26. Lord R, Burr NE, Mohammed N, Subramanian V. Colonic lesion

characterization in inflammatory bowel disease: a systematic

review and meta-analysis. World J Gastroenterol. (2018) 24:1167–

80. doi: 10.3748/wjg.v24.i10.1167

27. Freire P, Figueiredo P, Cardoso R, Donato MM, Ferreira M, Mendes

S, et al. Surveillance in ulcerative colitis: is chromoendoscopy-

guided endomicroscopy always better than conventional

colonoscopy? A randomized trial. Inflamm Bowel Dis. (2014)

20:2038–45. doi: 10.1097/MIB.0000000000000176

28. Auzoux J, Boschetti G, Anon B, Aubourg A, Caulet M, Poisson L, et al.

Usefulness of confocal laser endomicroscopy for predicting postoperative

recurrence in patients with Crohn’s disease: a pilot study. Gastrointest Endosc.

(2019) 90:151–7. doi: 10.1016/j.gie.2019.02.030

29. Lim LG, Neumann J, Hansen T, Goetz M, Hoffman A, Neurath MF, et

al. Confocal endomicroscopy identifies loss of local barrier function in the

duodenum of patients with Crohn’s disease and ulcerative colitis. Inflamm

Bowel Dis. (2014) 20:892–900. doi: 10.1097/MIB.0000000000000027

30. Karstensen JG, Saftoiu A, Brynskov J, Hendel J, Ciocalteu A, Klausen P, et

al. Confocal laser endomicroscopy in ulcerative colitis: a longitudinal study

of endomicroscopic changes and response to medical therapy (with videos).

Gastrointest Endosc. (2016) 84:279–86.e1. doi: 10.1016/j.gie.2016.01.069

31. Buchner AM. Confocal laser endomicroscopy in the evaluation

of inflammatory bowel disease. Inflamm Bowel Dis. (2019)

25:1302–12. doi: 10.1093/ibd/izz021

32. Le Berre C, Sandborn WJ, Aridhi S, Devignes MD, Fournier L, Smail-

Tabbone M, et al. Application of artificial intelligence to gastroenterology and

hepatology.Gastroenterology. (2020) 158:76–94.e2. doi: 10.1053/j.gastro.2019.

08.058

33. Tjalma JJ, Garcia-Allende PB, Hartmans E, Terwisscha van Scheltinga

AG, Boersma-van Ek W, Glatz J, et al. Molecular fluorescence endoscopy

targeting vascular endothelial growth factor a for improved colorectal

polyp detection. J Nucl Med. (2016) 57:480–5. doi: 10.2967/jnumed.115.1

66975

34. Gounaris E, Ishihara Y, Shrivastrav M, Bentrem D, Barrett TA. Near-Infrared

fluorescence endoscopy to detect dysplastic lesions in the mouse colon.

Methods Mol Biol. (2016) 1422:137–47. doi: 10.1007/978-1-4939-3603-8_13

35. van den Broek FJ, Fockens P, van Eeden S, Reitsma JB, Hardwick JC, Stokkers

PC, et al. Endoscopic tri-modal imaging for surveillance in ulcerative colitis:

randomised comparison of high-resolution endoscopy and autofluorescence

imaging for neoplasia detection; and evaluation of narrow-band imaging

for classification of lesions. Gut. (2008) 57:1083–9. doi: 10.1136/gut.2007.1

44097

36. Rath T, Kiesslich R, Neurath MF, Atreya R. Molecular imaging within the

lower gastrointestinal tract: from feasibility to future. Dig Endosc. (2018)

30:730–8. doi: 10.1111/den.13251

37. Hsiung PL, Hardy J, Friedland S, Soetikno R, Du CB, Wu AP, et al.

Detection of colonic dysplasia in vivo using a targeted heptapeptide

and confocal microendoscopy. Nat Med. (2008) 14:454–8. doi: 10.1038/

nm1692

38. Goetz M, Ziebart A, Foersch S, Vieth M, Waldner MJ, Delaney P, et al. In

vivomolecular imaging of colorectal cancer with confocal endomicroscopy by

targeting epidermal growth factor receptor.Gastroenterology. (2010) 138:435–

46. doi: 10.1053/j.gastro.2009.10.032

39. Waldner MJ, Wirtz S, Jefremow A, Warntjen M, Neufert C, Atreya R, et al.

VEGF receptor signaling links inflammation and tumorigenesis in colitis-

associated cancer. J Exp Med. (2010) 207:2855–68. doi: 10.1084/jem.201

00438

40. Atreya R, Neumann H, Neufert C, Waldner MJ, Billmeier U, Zopf Y, et

al. In vivo imaging using fluorescent antibodies to tumor necrosis factor

predicts therapeutic response in Crohn’s disease. Nat Med. (2014) 20:313–

8. doi: 10.1038/nm.3462

41. Rath T, Bojarski C, Neurath MF, Atreya R. Molecular imaging of mucosal

alpha4beta7 integrin expression with the fluorescent anti-adhesion antibody

vedolizumab in Crohn’s disease. Gastrointest Endosc. (2017) 86:406–

8. doi: 10.1016/j.gie.2017.01.012

42. Digby-Bell JL, Atreya R, Monteleone G, Powell N. Interrogating host

immunity to predict treatment response in inflammatory bowel disease. Nat

Rev Gastroenterol Hepatol. (2020) 17:9–20. doi: 10.1038/s41575-019-0228-5

43. Zipfel WR, Williams RM, Webb WW. Nonlinear magic:

multiphoton microscopy in the biosciences. Nat Biotechnol. (2003)

21:1369–77. doi: 10.1038/nbt899

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Bojarski, Waldner, Rath, Schürmann, Neurath, Atreya and

Siegmund. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Medicine | www.frontiersin.org 6 July 2021 | Volume 8 | Article 65540493

https://doi.org/10.1016/j.cgh.2015.04.172
https://doi.org/10.1093/ibd/izaa291
https://doi.org/10.1093/ibd/izaa011
https://doi.org/10.1053/j.gastro.2019.02.001
https://doi.org/10.1016/j.gie.2009.02.009
https://doi.org/10.1055/s-2006-944855
https://doi.org/10.1055/s-0029-1243937
https://doi.org/10.1136/gutjnl-2011-300695
https://doi.org/10.1055/s-0029-1214604
https://doi.org/10.1016/j.cgh.2009.08.006
https://doi.org/10.1136/gut.2003.036632
https://doi.org/10.3748/wjg.v24.i10.1167
https://doi.org/10.1097/MIB.0000000000000176
https://doi.org/10.1016/j.gie.2019.02.030
https://doi.org/10.1097/MIB.0000000000000027
https://doi.org/10.1016/j.gie.2016.01.069
https://doi.org/10.1093/ibd/izz021
https://doi.org/10.1053/j.gastro.2019.08.058
https://doi.org/10.2967/jnumed.115.166975
https://doi.org/10.1007/978-1-4939-3603-8_13
https://doi.org/10.1136/gut.2007.144097
https://doi.org/10.1111/den.13251
https://doi.org/10.1038/nm1692
https://doi.org/10.1053/j.gastro.2009.10.032
https://doi.org/10.1084/jem.20100438
https://doi.org/10.1038/nm.3462
https://doi.org/10.1016/j.gie.2017.01.012
https://doi.org/10.1038/s41575-019-0228-5
https://doi.org/10.1038/nbt899~
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


REVIEW
published: 22 July 2021

doi: 10.3389/fmed.2021.655123

Frontiers in Medicine | www.frontiersin.org 1 July 2021 | Volume 8 | Article 655123

Edited by:

Xingshun Qi,

General Hospital of Shenyang Military

Command, China

Reviewed by:

Pandu R. Gangula,

Meharry Medical College,

United States

Marta Castro,

University of Zaragoza, Spain

Ling Yang,

Huazhong University of Science and

Technology, China

*Correspondence:

Rocío López-Posadas

Rocio.lopez-posadas@uk-erlangen.de

Friederike Zunke

friederike.zunke@fau.de

†These authors share first authorship

Specialty section:

This article was submitted to

Gastroenterology,

a section of the journal

Frontiers in Medicine

Received: 18 January 2021

Accepted: 14 June 2021

Published: 22 July 2021

Citation:

Drobny A, Ngo PA, Neurath MF,

Zunke F and López-Posadas R (2021)

Molecular Communication Between

Neuronal Networks and Intestinal

Epithelial Cells in Gut Inflammation

and Parkinson’s Disease.

Front. Med. 8:655123.

doi: 10.3389/fmed.2021.655123

Molecular Communication Between
Neuronal Networks and Intestinal
Epithelial Cells in Gut Inflammation
and Parkinson’s Disease

Alice Drobny 1†, Phuong A. Ngo 2†, Markus F. Neurath 2,3, Friederike Zunke 1* and

Rocío López-Posadas 2*

1Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg,

Erlangen, Germany, 2Medicine 1, University Hospital Erlangen, Erlangen, Germany, 3Deutsches Zentrum Immuntherapie,

Erlangen, Germany

Intestinal symptoms, such as nausea, vomiting, and constipation, are common in

Parkinson’s disease patients. These clinical signs normally appear years before the

diagnosis of the neurodegenerative disease, preceding the occurrence of motor

manifestations. Moreover, it is postulated that Parkinson’s disease might originate in the

gut, due to a response against the intestinal microbiota leading to alterations in alpha-

synuclein in the intestinal autonomic nervous system. Transmission of this protein to the

central nervous system is mediated potentially via the vagus nerve. Thus, deposition

of aggregated alpha-synuclein in the gastrointestinal tract has been suggested as a

potential prodromal diagnostic marker for Parkinson’s disease. Interestingly, hallmarks

of chronic intestinal inflammation in inflammatory bowel disease, such as dysbiosis

and increased intestinal permeability, are also observed in Parkinson’s disease patients.

Additionally, alpha-synuclein accumulations were detected in the gut of Crohn’s disease

patients. Despite a solid association between neurodegenerative diseases and gut

inflammation, it is not clear whether intestinal alterations represent cause or consequence

of neuroinflammation in the central nervous system. In this review, we summarize

the bidirectional communication between the brain and the gut in the context of

Parkinson’s disease and intestinal dysfunction/inflammation as present in inflammatory

bowel disease. Further, we focus on the contribution of intestinal epithelium, the

communication between intestinal epithelial cells, microbiota, immune and neuronal cells,

as well as mechanisms causing alterations of epithelial integrity.

Keywords: Parkinson’s disease, gut-brain axis, enteroendocrine cells, alpha-synuclein, intestinal inflammation,

inflammatory bowel diseases
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INTRODUCTION

Parkinson’s Disease
Parkinson’s disease (PD) is the second most common
neurological disorder characterized by movement disabilities
(1), but also by non-motor symptoms, including gastrointestinal
dysfunction that often appears years before diagnosis of disease
(2, 3). A neuropathological hallmark of PD is the aggregation of
the synaptic protein alpha-synuclein (aSyn) within the central
nervous system (CNS), leading to degeneration of dopaminergic
neurons within the substantia nigra pars compacta (SNpc) of the
midbrain (1). Moreover, research suggests that inflammatory
responses within the CNS contribute to PD pathology. Hence,
glial cell reactions and T cell infiltration result in increased levels
of inflammatory cytokines within the CNS and are currently
recognized as prominent features of PD (4, 5).

Intestinal Dysfunction and Inflammation

Within PD
Interestingly, recent data indicate that intestinal inflammation
contributes to the pathogenesis of PD (6), and increasing
numbers of studies imply that PDmay start in the gastrointestinal
system years before any motor symptoms develop (7–9). An
acute and chronic intestinal inflammation is a prominent
feature of Inflammatory bowel disease (IBD) comprising the
diseases Ulcerative colitis (UC) and Crohn’s disease (CD).
While UC mainly affects the colon and rectum, CD injures the
entire GI tract (10). IBD is understood to be a result of gut
microbiota dysbiosis and mucosal immune dysregulation (11).
Also, intestinal inflammation in IBD is associated with intestinal
epithelial cell (IEC) alterations and maintaining epithelial
homeostasis helps in protecting against inflammation (12).
Remarkably, PD and IBD share overlapping genetic factors found
within a recent genome-wide-association study (GWAS) (13).
The leucin-rich repeat kinase 2 (LRRK2) gene appears to be the
most susceptibility-factor for both diseases (14, 15). Interestingly,
LRRK2 is one of the genes most commonly associated with
familial and sporadic PD (16). Recent studies show, that patients
with IBD have a higher risk of developing PD as compared
to non-IBD individuals (17, 18). It is well-established that IBD
is characterized by chronic pro-inflammatory immune activity
(11), which is now suggested to be a fundamental element of
neurodegenerative disorders as well (5, 6). Furthermore, animal
studies demonstrate that gut inflammation, similar to IBD,
induces loss of dopaminergic neurons (19, 20). Additionally,
chronic GI inflammation is likely to induce anxiety-like behavior
and alter CNS biochemistry in mice (21). Interestingly, CD
patients have been shown to accumulate aSyn in the gut (22).

Moreover, aSyn and its aggregated forms were also found in
the enteric nervous system (ENS) of PD patients and symptoms
outside the CNS were described including GI impairments (2,
23, 24). This gave rise to the hypothesis that PD pathology can
spread from the gut to the brain and vice versa (23, 25, 26).
This hypothesis is supported by recent animal studies, which
recapitulated the transmission of aSyn pathology via the vagal
nerve, connecting the central with the peripheral nervous system
(27, 28). In this context, the discovery of aSyn expression in

enteroendocrine cells (EECs) within the intestinal epithelium
suggests these cells as sensors of luminal signals triggering the
gut-neural circuit behind aSyn alteration (29, 30). This signal
is then transmitted to the CNS, potentially via the vagus nerve.
Thus, deposition of aggregated aSyn in the GI tract has been
inferred as a potential diagnostic marker for prodromal PD.

This review focuses on overlapping disease pathologies
and the molecular communication between the brain and
the gut in the context of PD and gut inflammation, as
present in IBD (Figure 1). We emphasis on the contribution
of neurodegeneration and neuroinflammation in PD, gut-
brain spreading of PD pathology, intestinal epithelium and
the communication between IECs, microbiota and immune
cells (Figure 2). Moreover, we discuss the mechanisms causing
alterations of epithelial integrity and gastrointestinal (GI)
dysfunction in PD.

NEUROPATHOLOGY IN PD

Motor and Non-motor Manifestations of PD
PD is clinically characterized by classical motor symptoms
including muscular rigidity, bradykinesia, rest tremor, and
postural instability (1). Among several putative factors that
may contribute to PD pathology, the most crucial indication
of PD is the degeneration of neurons in the CNS. The loss of
dopaminergic neurons within the SNpc is the most predominant
feature during disease progression (31) and leads to excessive
dopamine depletion within the basal ganglia, which results in
the above mentioned parkinsonian motor characteristics (1).
The administration of the amino acid precursor of dopamine,
L-DOPA (L-3,4-dihydroxy-L-phenylalanine), has shown to be
the most effective symptomatic treatment. However, if the
motor symptoms occur in PD patients the continuous loss of
neurons is already inexorable (32). Interestingly, PD manifests
already >20 years before the motoric problems occur. This
premotor or prodromal period of disease is defined by e.g.,
constipation, olfactory dysfunction, sleep disorder, cognitive
impairment, autonomic dysfunction, pain and fatigue (1, 3).
Altogether, this leads to the assumption that PD is a complex,
multisystem disorder with both neurologic and systemic non-
motor manifestations.

Lewy Body Pathology in the CNS
A neuropathological hallmark of PD is the formation of
intracellular amyloid inclusions in neuronal bodies and neurites,
known as Lewy bodies (LB) and Lewy neuritis (LN), respectively,
consisting of aggregated aSyn (33). The appearance of these
aSyn-carrying inclusions in patients is also collectively known as
synucleinopathies, referring to PD, dementia with Lewy bodies
(DLB) and multiple system atrophy (MSA) (33–35).

Physiologically, aSyn is natively unfolded and soluble with an
amphipathic N-terminus, a hydrophobic central domain known
as non-amyloid-β component (NAC) region, and an acidic C-
terminus (36). Under pathological conditions, aSyn aggregates
have been shown to exert cell toxic properties (37, 38). The
aggregation mechanisms, by which soluble aSyn changes its
structure to oligomers and ultimately to insoluble β-sheet rich
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fibrils, are still under debate (39–41). However, several factors
have been described to induce structural changes of monomeric
aSyn, involving the interactions with specific lipids (42, 43)
and membranes (44). Further, posttranslational modifications
such as phosphorylation (45), nitration and oxidation (46),
ubiquitination (47), and sumoylation (48) have been shown to
accelerate aSyn pathology. Multiple copies (e.g., duplications
and triplications) (49, 50) and missense mutations (e.g., A53T,
A30P, E46K, and H50Q) (51–53) of the gene encoding for
aSyn (SNCA) foster protein aggregation. In addition, the cellular
microenvironment of aSyn has been reported to play a role in
aSyn conformation and solubility. For instance, aSyn aggregation
behavior differs between neutral pH7.4 (e.g., cytosol) and acidic
pH5 (e.g., lysosome) and aSyn purified from lysosomes was
able to seed aggregation in a concentration-dependent manner
(54, 55). Interestingly, dysfunction in lysosomal pathways have
been linked to PD (56, 57). For degradation, aSyn is processed
within lysosomes by specialized lysosomal enzymes (cathepsins)
(58–60). Hence, deficiency within these lysosomal enzymes,
important for lysosomal function and aSyn degradation, lead
to its aggregation and pathology (61–64). Targeting lysosomal
enzymes by boosting their activity has become a promising
therapeutic approach, which might lower aSyn burden within
neuronal cells and thus decrease the risk of pathological aSyn
aggregation and neurotoxicity (65, 66). In a nutshell, intracellular
accumulation of aSyn, due to inefficient clearance mechanisms,
might drive further aggregation of the protein (67). In this
regard, it was shown that toxic aSyn species can be released
to the periphery from stressed and/or dying neurons and are
subsequently taken up by surrounding cells, leading to spreading
of pathology (68–70). Especially, aggregation intermediates, such
as aSyn oligomers, exhibit highly cell toxic properties (43, 71, 72).

Neuroinflammation in PD
In recent years, evidence evolved that aSyn and inflammatory
processes are extraordinarily connected. In that sense, chronic
neuroinflammation is another characteristic indicator of PD
pathophysiology and is considered to promote the progression of
dopaminergic cell death (73, 74). In general, neuroinflammation
is defined as the immune response of cells within the brain
and plays an important role in maintenance of nervous tissue
homeostasis (4). On the one hand, a moderate inflammation
can protect neurons from damage (75); on the other hand,
inflammatory factors do also affect neurons directly and convey
neurodegeneration. In addition, neuronal cell death induces
inflammatory mechanisms, and contributes to a vicious cycle
of inflammation and progressive loss of neurons in the brain
(76). The neuroinflammatory response is mediated by resident
immune cells (microglia and astrocytes), which release cytokines
and chemokines (4, 77).

Many neuroinflammatory circumstances at post-mortem stage
have also been identified on a molecular basis in PD. For
example, numerous proinflammatory cytokines and factors such
as tumor necrosis factor (TNF)-α, β2-microglobulin, epidermal
growth factor (EGF), transforming growth factor α (TGFα),
TGFβ1, and interleukin (IL)-1β, IL-6, and IL-2 were found in the
striatum of PD patients (78). Furthermore, TNF-α, IL-1β, and

interferon (IF)-γ were also detected in the SNpc of PD patients
(79). Interestingly, dopaminergic neurons express the receptors
of these cytokines (80), that might explain the vulnerability
of DA neurons to inflammatory processes inside the brain. In
addition, increased levels of proinflammatory mediators, such
as IL-1β, IL-2, TNF-α, and IL-6 are present in the serum and
the cerebrospinal fluid (CSF) of PD patients (81–84). These
results suggest the direct migration of immune cells from the
periphery (blood stream) to the brain (or vice versa) during
neurodegenerative process.

Microglia, the resident macrophages in the brain, and
astrocytes, the most abundant glial subtype in the CNS, are
considered to drive the inflammatory response in PD (85). Of
relevance, microglia initiate the innate immune response in the
brain, therefore representing key players upon inflammatory
stimulus (86, 87). Under pathological conditions, activated
microglia release proinflammatory cytokines and reactive oxygen
species (ROS), which affect dopaminergic neuron viability (73,
88). Reactive microglia were found in various brain regions
(89, 90) including the SNpc of PD patients (91). Besides microglia
activation, reactive astrogliosis contributes to PD pathogenesis
and progression (85). Astroglial cells secret the glial cell-line
derived neurotrophic factor (GDNF), which promotes survival
of dopaminergic neurons (92), and regulates the permeability
of the blood-brain-barrier (BBB) (93, 94). Interestingly, in this
regard the BBB is found to be defective in PD patients (95–
97). The mechanism of an altered BBB function is still elusive,
however, the increased levels of proinflammatory cytokines IL-6,
IL-1β, and TNF-α have been associated with a disruption of trans-
endothelial electrical resistance, indicating an increased BBB
permeability (98). Recently, a study showed that aSyn-mediated
release of proinflammatory cytokines and chemokines by
pericytes induces disruption of BBB (99). Further, accumulations
of aSyn in astrocytes are found in post-mortem analysis of PD
patients (100). Reactive astrocytes manifest with PD progression
by increased proinflammatory cytokine secretion such as IL-1β,
TNF-α, and IFN-γ (101–103). A recent study indicates the close
interplay between microglia and astrocytes showing induction of
neurotoxic A1 astrocytes by microglial secretion of IL-1α, TNF-
α and complement component 1q (C1q) (104). In this regard, it
was shown that pathological aSyn inoculation in vitro and in vivo
induces microglia to secrete cytokines and chemokines followed
by astrocyte A1 activation that caused neuronal cell death in
culture and neurodegeneration in mice (105).

Moreover, is has been reported that aSyn itself has an
important role in the initiation andmaintenance of inflammation
in PD. Recent reports have suggested that aSyn acts as
a damage-associated molecular pattern (DAMP), capable of
modulating inflammatory cytokine production in microglia and
inducing intracellular signaling cascades (106, 107). It has been
demonstrated that extracellular oligomeric aSyn is a putative
activator of toll-like receptor (TLR) 2 and promotes microglia-
mediated inflammatory cytokine and ROS production (108,
109). The exact contribution of different aSyn conformations
to TLR activation is currently unclear, however, there are
strong indications that the activation seems to be conformation
dependent. Specifically, TLR4 appears to be involved in the
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uptake of fibrillary aSyn (110). While the presence of monomeric
aSyn seems to enhance phagocytic function, aggregated forms
seem to inhibit this process (111).

Furthermore, lymphocyte infiltration might also play a role
in inflammation processes inside the brain of PD patients. It
was reported that cytotoxic T lymphocytes (CD8+) as well as
CD4+ T helper (Th) cells were more abundant in the brains
of PD patients compared to healthy individuals (112). In this
regard, T cells, in particular Th17 cells, were increased in number
in PD brain and blood. Furthermore, Th17 cells induced cell
death in co-cultures autologous induced pluripotent stem cells
(iPSC)-derived neurons from PD patients (113). Interestingly,
aSyn is able to activate helper and cytotoxic T cell responses
in PD patients, which suggests a possible role of autoimmune
inflammation in PD (114).

Taken together, these current data implicate that PD is an
extraordinary complex disease with many pathophysiological
processes driving disease progression. It becomes evident, that
PD is rather a systemic disorder with a variety of pathological
facets than ‘just’ neurological degeneration.

GUT-BRAIN AXIS IN PD

Approximately 80% of PD patients suffer from GI manifestations
(115), including constipation, which seems to be an important
risk factor for PD (116). As mentioned above, intestinal
symptoms may precede motor manifestations by several years,
suggesting that PD might originate in the gut. This is in line
with the estimation that 90% of idiopathic PD cases are due to
oral ingestion of substances causing cell toxicity (oxidative stress,
mitochondrial dysfunction), such as herbicides and pesticides
(117). According to the hypothesis that PD originates from the
gut (118), aggregates of aSyn were detected in the intestine
of PD samples (119). Despite the evidence of gut to brain
communication in the context of PD, there are still open
questions regarding (A) the exact localization in the gut where
PD might originate, (B) the dissemination pathways within the
gut and to the brain, (C) the declutching event of proteinopathy
in the gut, and (D) the role of the intestinal microbiota, as well as
microbiota-epithelial-immune communication. All this lacking
information is indispensable in order to develop potential PD
diagnosis strategies based on GI premotor symptoms.

aSyn in the Gut and Its Propagation to the

CNS
As already mentioned, LBs and different aSyn conformers were
observed in variety of organs despite the brain. aSyn was reported
to be present in the spinal cord and the peripheral nervous
system (PNS) including the paravertebral sympathetic ganglia,
vagus nerve, the GI tract and among others (120, 121). Indeed,
phosphorylated aSyn, a pathological form of aSyn, has been
detected in the GI tract up to 20 years before onset of PD motor
symptoms (9). Also, Braak and colleagues hypothesized that
synucleinopathy begins in the anterior olfactory nucleus and the
dorsal motor nucleus of the vagus nerve (DMV) (dual-hit theory)
(8, 23), favoring the idea that PD pathology invades the brain

via retrograde axonal transport (25, 26). Braak and colleagues
even suggest that a pathogen, a pathogen-derived component or
other exposures are entering the nervous system through axons
of the myenteric (Auerbach’s) plexus and/or the submucosal
(Meissner’s) plexus via postganglionic neurons and may trigger
aSyn conformation to aggregates and fibrils (8, 122). Thus, the
microbiota has been suggested as a key player, since local immune
activation can lead to systemic inflammation affecting the BBB,
finally causing neuroinflammation and neurodegeneration (123)
(Figure 2). Although it is still not clear whether microbiota
changes are cause or consequence, dysbiosis is considered as a
risk factors for PD development.

Detection of aSyn in the Gastrointestinal Tract
In the context of the ENS, aSyn was first identified in the
esophagus and the colon (124), but it is still not clear where
the deposition under pathological conditions initiates. Current
literature demonstrates that aSyn can also be detected in salivary
glands (125), pharyngeal sensory nerves (126), the esophagus
(120), the stomach and the small intestine (127), the colon (123),
and the appendix (128). Colonic aSyn has been detected even in
premotor PD (119, 129). These observations postulate detection
of intestinal aSyn as a diagnostic tool in PD, even in early phases
of the disease. However, inconsistencies in the detection of aSyn
conformers imply the need of alternative and more accurate
methods for its detection (granular staining in the lamina propia,
perivascular/vascular wall mucosa staining, lacy-granular pattern
in the submucosa, or epithelial cell nuclear staining, 2D/3D
electrophoresis) (24).

Monomeric aSyn expressed in gut neurons can be released
in form of free protein or exosomes, which can be taken
up by neighboring neurons via endocytosis (130). Most
commonly, aSyn is transported directly from neuron to neuron
(131, 132), which requires close cellular contacts and intact
synaptic connections (133). In the gut, this is possible via
the connection between submucosal/myenteric neurons to the
preganglional vagal nerves, which allows aSyn propagation (134).
Proteinopathy within the GI innervation might be due to a
neurotropic pathogen/agent, which initiates Lewy pathology
in the gut (8). Therefore, a connection between the ENS
and the mentioned agent is necessary, since neurons/nerves
do not reach the intestinal lumen. An attractive candidate
in this context would be the intestinal epithelium, which is
in direct contact with luminal content, and therefore acts
as a physical and immunological barrier in the gut. On
the other hand, disturbances of intestinal sealing in chronic
intestinal inflammation leading to leaky gut might allow direct
contact of the initiating factor and the ENS (Figure 2) (135–
137).

Propagation of aSyn Between the Gut and the CNS
The next important question is how aSyn propagates from the
ENS to the CNS. The connection between the ENS and the
CNS, so called gut-brain axis, permits a mutual effect from the
ENS to the CNS, and vice versa. This communication mainly
occurs via the sympathetic system and the vagus nerve of the
autonomic nervous system, and the spinal cord. Four levels of
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control have been defined (138): (1) ENS, including myenteric
and submucosal ganglia, and enteroglial cells; (2) prevertebral
ganglia (visceral reflex responses); (3) spinal tract the through
tractus solitaires in the brain stem and the dorsal motor nucleus
of the vagus nerve; and (4) cortical and basal ganglia neurons.
Healthy individuals maintain intestinal functions, and patients
with neurodegenerative disease suffer from GI problems, not
only PD, but also Alzheimer’s disease, transmissible spongiform
encephalopathies, or amyotrophic lateral sclerosis; while GI
disorders leads to CNS-related symptoms. The connection
between the vagus nerve and the luminal content has been
suggested to be mediated via EECs (139), which might produce
metabolites acting on the vagus nerve, transmitting information
from the nutrients toward the brain, in a glutamatergic
neurotransmission (140) (Figure 2).

The vagus nerve, one of the largest nerves connecting the
gut and brain, is considered to be the direct link between
these two organs (141). Recent data from rodent models could
evaluate a direct propagation of aSyn pathology from the gut
to the brain via the vagal nerve (28, 142–144) (see section
Animal Models of PD and GI Symptoms). Moreover, there has
also been also research in alternative hypothesis of a brain-to-
gut spread of aSyn pathology, showing that a vector-mediated
overexpression of aSyn in the midbrain lead to accumulations
of aSyn in enteric nerves and stomach walls (145). Further, a
more recent study presents that a nigral overexpression of aSyn
exerts significant alteration on the ENS followed by changes in
the microbiome (146). Subsequently, loss of neuronal plexus
and activation of glial cells in the gut impact on intestinal
permeability, barrier function, inflammation, and GI motor
functions. Taken together, this data suggests a bidirectional
potential of aSyn to move both anterogradely and retrogradely
within neurons (Figure 2). If the vagus nerve is the main route
of bidirectional aSyn transmission, vagotomy could be protective
against developing PD. Studies questioning whether a vagotomy
leads to a reduced risk to develop PD could not find a strong
association (147, 148). Only when the cases of a full truncal
vagatomy were restricted >20 years after surgery a decreased
risk for subsequent PD was observed (149). Overall, many
studies support the idea of aSyn gut to brain and inversely
brain to gut spread, however, there are still clinical studies
missing that investigate the start and/or early development of PD
progression, respectively.

Another way of aSyn transmission from the gut to the
brain and vice-versa is thought to be possible through
extracellular vesicles called exosomes, which are found in the
blood serum and CSF of PD patients (Figure 2) (150–152). In
fact, it was shown that exosomes derived from PD patients
incorporate oligomeric aSyn and spread oligomerization of aSyn
in a dose-dependent manner (130, 153, 154). An alternative
gut-brain communication via the circulation has been also
suggested in primates, where the damage of the CNS could
be observed upon intestinal injection of aSyn without affecting
the vagus nerve, but elevated aSyn levels in the circulation
(155). Overall, this indicates that exosomes may function as
intracellular cargo distributing aSyn pathology throughout the
body (Figure 2).

Enteric Nervous System (ENS)
Being the largest and most complex part of the peripheral
nervous system (PNS), the ENS controls crucial functions within
the gastrointestinal tract, such as peristalsis, substance transport,
or local blood supplies. The ENS innervates the whole GI tract,
from the mouth to the rectum, including the salivary glands.
Neuron networks in the gut wall formed ganglia, which are
interconnected by dense fiber bundles. The nerve plexuses are
organized in myenteric and submucosal plexuses, which are, in
turn, interconnected. The myenteric plexus is localized between
the longitudinal and circular muscle layers throughout the GI
tract, and controls smooth muscle activity and motility. The
submucosal plexus is located mainly in the small and large
intestine, also in the stomach, but not in the esophagus (156).

ENS-mediated control of the GI function is independent
from the CNS; therefore, the ENS allows complete sensory-
motor reflexes, based on the existence of primary afferent
neurons, interneurons and motor neurons. However, apart
from this intrinsic innervation within the ENS, the gut is also
innervated via the sympathetic and parasympathetic nervous
system. More than 100 million entities from 20 different neuron
subtypes (depending on the expression of neuropeptides) coexist
with enteroglial cells (EGCs) in the ENS. EGCs express glial
fibrillary acidic protein (GFAP), vimentin and S-100, but also
receptors for cytokines, neuropeptides and neurotrophins, and
therefore, have a dual function on the ENS. As astrocyte-
like cells they also contribute to the function of the intestinal
immune system. Moreover, ECGs participate in the structure of
the ENS and contribute to the maintenance of mucosal barrier
and tissue homeostasis (157). Interestingly, EGCs also serve
as a communication tool between IECs and the ENS (158).
Among ENS neurons, dopaminergic neurons are present in
both plexus (159), and are more frequent in the proximal part
of the GI tract; although the association between the loss of
dopaminergic neurons and PD has been only demonstrated in
the colon (160).

Microbiota
Seeing it as a super-organism, the human body is not only
composed of human cells but also numerous microorganisms
colonizing at mucosal surfaces, allowing various important
body’s functions such as maturation, education of host
immune responses, protection against pathogen proliferation,
and induction of responses to specific drugs. The human gut-
microbiome carries millions of microorganisms and indeed, has
been defined as the most complex ecosystem ever. It contributes
greatly to intestinal immune function as a consequence of
the continuous contact with gut lumen commensals and
potentially harmful agents. A symbiotic relationship between
the human body and these microorganisms permits the
digestion of nutrients and pathogen colonization resistance.
Thus, the intestinal microbiota modulates several functions of
the gastrointestinal tract, such as permeability (161), mucosal
immune function, motility (162), sensory nerve function and
ENS activity (163). Interestingly, it is also associated with brain
functions (164), such as response to stress (165), emotions (138),
pain, digestive behavior (166), and brain biochemistry (167).
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The balance between the human body and the microbiota
(eubiosis) is challenged by several external factors, such as
antibiotic treatment, various diseases, highly processed foods or
lack of sleep. This can lead to microbiota alterations or dysbiosis,
which in most cases is shown by variations in the composition
and reduced diversity between different species. Dysbiosis has
been associated with several pathological situations, including
IBD (168) and PD (169) (Figure 1); although in many cases it is
not clear whether its alteration represents cause or consequence
of the subjacent pathology. The most accepted hypothesis for the
pathogenesis of IBD claims that chronic intestinal inflammation
occurs as an exacerbated immune response against components
of the microbiota in genetically predisposed individuals. The first
hint pointing to the association between the intestinal microbiota
and IBD came from animal studies showing that experimental
inflammation in a number of well-established animal models was
abolished in germ-free mice (170). In addition, inflammation
could be challenged upon colonization with caecal bacteria, while
specific species were able to protect upon recolonization. Despite
numerous efforts in order to identify a single specie capable of
triggering chronic intestinal inflammation (171), nowadays IBD
is considered as a polymicrobial disease, where dysregulation
in the composition of the microbiota affects several species. In
addition to activation of signals upon detection of the microbiota
or derived-antigens, another important aspect is the release
of metabolites derived from the microbiota. This has been
identified using next-generation sequencing, metagenomics and
metabolomics, allowing the description of the microbiome and
its potential alterations (172, 173).

Based on the relevance of the intestinal microbiota, its
modulation in order to restore eubiosis, appears as an
attractive strategy for therapy purposes. In this context, fecal
transplantation implies the transfer of microbiota from healthy
donors to IBD patients. Fecal microbiota transplantation (FMT)
has been tested in various pathological conditions, such as
IBD, diabetes type 2 and even neurodegenerative disease. A
recent study demonstrates the efficacy of this strategy in an
experimental colitis model induced by adoptive transfer of naïve
T cells, since transfer of healthy vs. IBD patient fecal content
permits restoration of T cell responses (decreased Th17/Th2);
and increased Treg/IFNγ and ameliorates thereby colitis (174).
Despite limitations based on the donor testing, the limited
duration of the treatment and the potential alterations upon
antibiotic treatment, FMT it is approved for the treatment
of other intestinal conditions, such as Clostridium difficile
infections (175, 176). In addition to fecal transplantation, a
recent review collects other therapy strategies based on the
modulation of the microbiota via direct or indirect mechanisms,
such as enteral nutrition; pre-, pro-, and post-biotics; inhibition
of Adherent-invasive Escherichia coli (AIEC) adhesion and
tungstate treatment (168). All these strategies to restore
eubiosis are potentially valuable in diverse pathologies coursing
with dysbiosis.

Microbiota in PD
Compared to GI homeostasis, more surprising is the association
between microbiota and brain function, and the fact that

the intestinal flora modulates immune, endocrine, and
neuroendocrine maturation in nervous system sprouting.
Colonization of the human gut upon birth is important for
neonatal brain development, since it allows the synthesis of
vitamins and fatty acids, regulation of BDNF (Brain-derived
neurotrophic factor), synaptophysin and PSD-95 (177).
Experimentally, sterile mice elicit decreased expression of BDNF
in the cerebral cortex and hippocampus, and they show signs
of anxiety and less activity performance (178); while another
study shows that recolonization with healthy flora permitted
production of different neurotransmitters (NTs) and the
abolition of anxiety symptoms (179). An additional important
aspect to be considered is the ability of the microbiota to directly
produce inhibitory NT (GABA) or regulate their synthesis by
the host (180, 181). Moreover, GABA signaling system (GAD
and GABAAR) was detected in IECs and GABAAR stimulation
played important role in regulating intestinal fluid secretion
in rat (182). On the other hand, preventing the reuptake of
NTs (for example, inhibiting 5-HT reuptake by fluoxetine) can
regulate colonization in the gut (183). In addition, important to
mention here is the production of short-chain fatty acids (SCFA)
as microbiota-derived factors, which can affect the CNS thank
to their passaging through the BBB via specific transporters.
SCFAs in the brain regulated microglia homeostasis (184), have
impact on G-protein coupled receptors (GPCRs) (185, 186) and
maintain to the GPR41-mediated SNS activity (187). According
to an association between brain function/development and
colonization of the intestinal tract, the microbiota impacts
then on social behavior, sleep cycle, mood disorders, and
neurodegenerative disease including Alzheimer’s disease and
PD (188).

In the context of the gut-brain axis, components of
the microbiota and its metabolites can act directly on
neurons at the ENS, or signal through IECs (Figure 2)
(189). Nowadays, several pieces of evidence demonstrate a
correlation between dysbiosis and prodromal signs in PD
(190–192). Importantly, changes affecting Firmicutes, Prevotella,
Helicobater pylori (193), Bacteroides, or Bifidobacterium
(194) as well as the imbalance between pro- and anti-
inflammatory species, and the increased release of LPS
should be mentioned (195). Based on a recent Metabolome
wide association studies (MWAS) (196), the dysbiosis in
PD patients is characterized by: increase of opportunistic
pathogens (Porphyromonas, Corynebacterium, Prevotella,
Porphyromonas, and Corynebacterium); reduction of SCFA-
producing bacteria (Oscillospira, Lachnospiraceae_UCG-04,
Lachnospiraceae_ND3007_group, Agathobacter, Butyricicoccus,
Blautia, Faecalibacterium, Lachnospira, Fusicatenibacter,
Roseburia); and elevated carbohydrate-metabolizing probiotics
becoming immunogenic (Lactobacillus or Biffidoacerium). An
independent meta-analysis of 223 PD vs. 137 control patients
from America and Europe suggests elevation of Akkermansia,
Catabacter genera, and Akkermansiaceae family together with
reduction of general Roseburia and Faecalibacterium (197).
Beyond alterations of the microbiota composition, related
metabolic changes have also been observed in PD patients,
such as reduced carbohydrates fermentation, butyrate synthesis,
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FIGURE 1 | Shared molecular disease pathways of the brain and gut pathologies, as found in PD and IBD. Affected molecular features within PD (red) and gut

inflammation (light orange) as well as in both disease (dark orange). Molecular pathways of PD include neuroinflammation, aSyn aggregation in the central nervous

system (CNS), dopaminergic neurons (DA) degeneration, and the disruption of blood-brain barrier (BBB). In IBD an acute and chronic intestinal inflammation is

described. Both diseases can comprise intestinal inflammation, aSyn aggregation in the gastrointestinal tract (GIT), intestinal dysbiosis and a “leaky gut.” The figure

contains modified components of Servier Medical Art, licensed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0) https://smart.servier.com.

increased proteolytic fermentation, and amino acid metabolism
(198). Interestingly, some of these metabolites play crucial roles
for nervous system-related intestinal functions; for instance,
SCFA contribute to 5-HT release and colon motility, proving
again the gut-brain connection (199).

Interestingly, many of the PD-related microbiota alterations
can also be linked to dysbiosis in IBD. Akkermansia muciniphila
is a well-known actor in the context of IBD, since it can
degrade the mucus layer and thereby impair the barrier
function (200), which might favor the contact between the
luminal content and the ENS. On the other hand, Roseburia
and Faecalibacterium (197) possess an anti-inflammatory effect
in IBD, due to their ability to produce SCFAs (201, 202);
while decreased Prevotellaceae is associated with alterations
of intestinal permeability via a similar mechanism (203). On
its part, accumulation of Enterobacteriaceae leads to increased
levels of LPS, explaining its correlation with disease progression
and motor symptoms. Increased LPS levels can contribute
to GI alterations by several mechanisms, such as causing
epithelial leakage (204), inducing the production of cytokines
and inflammation. Moreover, it can pass through the BBB
(205), triggering direct destruction of the substantia nigra (206).
Based on the neuroprotective effect of SCFA and ghrelin,
reduced Lactobacillaceae can also affect intestinal inflammation,
correlating with disease severity (207). Jointly, overlaps between
dysbiosis profiles in IBD and PD might contribute to the
associated barrier function alterations.

Changes in the gut microbiota composition might lead
to aSyn accumulation in the gut, originating oxidative
stress and mucosal inflammation. However, it is not clear
whether changes in the microbiota composition, PD associated

symptoms (constipation) or PD pharmacological treatment are
a consequence of aSyn proteinopathy. Supporting a causative
role of microbiota and/or microbiota-derived factors, a recent
study shows induction of motor symptoms in mice upon
fecal transplantation from human PD patients, due to aSyn
pathology and neuroinflammation engendered by microbiota
metabolites, such as SCFA. Furthermore, aSyn overexpressing
mice (under the Thy1-promoter) show less motor symptoms in
germ-free conditions, as well as upon antibiotic-treatment; while
colonization with healthy or, in particular, PD patient-derived
microbiota, lead to worsening of motor symptoms (192).

Beyond commensal bacteria, also pathogens in the lumen
interact with the ENS, mostly via non-neuronal cells, such
as EECs within the intestinal epithelium. On the other
hand, local gut infections can impact on affective state and
emotional responsiveness. This communication occurs via toxins
promoting secretion and therefore, diarrhea, as observed in
the case of Vibrio cholera, Clostriiodes difficile; or toxins
promoting emesis, including Staphyloccoccus aureus or Bacillus
cereus. However, not only bacteria, also viruses and parasites
demonstrate an interplay with the ENS and CNS. The viremic
hit hypothesis defends that PD occurs upon Influenza and HSV1
infections (dual-hit theory), leading to the aSyn aggregation
in peripheral nervous tissues, and subsequently propagation
to the brain (208–210). Interestingly, HIV targets the ENS,
since it activates glial cells, which can then be propagated
to the CNS. Furthermore, HIV Tat peptide can synergize
with LPS by interfering with TLR4, inducing the release of
cytokines, and promoting the proinflamamtory effect of LPS
(211). ENS infection by HSV-1 leads to macrophage recruitment,
releasing ROS and causing ENS neuroplasticity and destruction
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FIGURE 2 | Mechanisms, molecules, and cell types involved in PD/IBD pathology and gut-brain communication. In the gastrointestinal tract (GIT) the intestinal

epithelium functions as barrier and separates the GIT lumen from the surrounding enteric nervous system (ENS), which not only contains enteric neurons, but also

enteroglial cells. Within the GIT lumen microbiota and microbiota-derived factors like polysaccharides, short chain fatty acids, and curli (bacterial amyloid protein) can

be found, but also nutritions, possible pathogens and toxins. When integrity of the intestinal epithelium consisting of epithelial cells including enteroendocrine cells

(IECs and EECs) is disturbed, molecules within the GIT lumen get in contact with cells of the ENS. Tight junctions and Piezo channels have been shown to play an

important role in mechanosensation, peristalsis, and intestinal barrier function. Within the brain, the blood-brain barrier (BBB) separates the CNS (including neurons

and glial cells) from the blood vessel lumen. Potential gut-brain axis routes on which aSyn and molecules like cytokines could be transferred are for instance the vagus

nerve or exosomes [via the blood stream or cerebrospinal fluid (CSF)]. The figure contains modified components of Servier Medical Art, licensed under the Creative

Commons Attribution 3.0 Unported License (CC BY 3.0) https://smart.servier.com.

of enteric ganglia as well as GI dysmotility (212). Finally, parasites
modulate 5-HT secretion, the release of enzymes degrading NTs,
such as acetylcholinesterases (Anisakis or Schistosome), and NT
secretion, while they are tightly linked to the immune system
function (213).

Intestinal Epithelium and “Leaky Gut”
The intestine is in charge of nutrition and water/ion absorption,
but represents also a fundamental immunological organ,
harboring the most extended immune cell population in the
body. On its part, the intestinal epithelium together with the
attached mucus constitute a physical and immunological barrier

segregating the environment (intestinal lumen) and the human
body. The gut epithelium consists of a monolayer of columnar
epithelial cells allowing trans- and para-cellular transport
required for nutrition, however, simultaneously impairing the
invasion of potentially harmful pathogens. Thus, sealing of the
epithelium has to be tightly maintained, in order to prevent
transmucosal passage of microbiota-derived factors, which can
then get in contact with the plethora of immune cells present
in the sub-epithelial space. This is achieved via intercellular
junctions (tight junctions, adherens junctions, and desmosomes)
(214), as well as a tight regulation of cell architecture and polarity,
mostly regulated by the function of the actin-myosin cytoskeleton
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(12, 215). Together, the intestinal epithelium accounts for the
intestinal barrier function, which has been critically involved
in the pathogenesis of intestinal disorders, such as chronic
intestinal inflammation (including IBD) (216). This barrier
function is challenged during the renewal or turnover of the
epithelial layer. Lgr5+ stem cells located at the crypt bottom
proliferate and give rise to pluripotent daughter cells located in
the transient-amplifying area, which, in turn, differentiate into
five IEC subtypes [enterocytes, goblet cells, paneth cells, EECs,
and tuft cells (217)]. All differentiated IECs, except paneth cells
which remain at the crypt, migrate upwards to the villus tip
(small intestine) or the crypt surface (colon), where aged cells
will be extruded to the lumen (cell shedding) and finally die.
Temporary leakage occurring at the villus tip is tightly regulated
by rearrangement of tight junctions and the so-called zipper
effect of neighboring cells (218, 219), which allows resealing of
the epithelium.

As mentioned above, the maintenance of epithelial integrity
plays a fundamental role to keep tissue homeostasis in the gut,
and therefore, avoid inflammation (220). Loss of epithelial sealing
and leakage of the intestinal layer has been associated with
chronic inflammatory disorders, such as IBD (221). Indeed, some
observations claim that epithelial-intrinsic alterations can play
a causative role in the disease. For instance, increased intestinal
permeability appears in non-diagnosed relatives of IBD patients
(222), and precedes flares in patients with an IBD diagnosis (223),
suggesting that epithelial leakage heads the activation of the
inflammatory response. Moreover, based on immune-epithelial
communication in the gut, epithelial architecture and function
can also be modified due to the effect of pro-inflammatory
mediators present in the gut mucosa upon activation of an
immune response, such as immune-cell derived cytokines (TNF,
IL-6, IL-1β , IL-13, etc.). These cytokines affect mainly tight
junction assembly (224), activation of different cell death
pathways or cell shedding (225), as well as IEC damage (226).
Altogether, via epithelial intrinsic and extrinsic mechanisms,
epithelial barrier function is challenged in the context of IBD, and
this correlates with pathogenesis of the disease. A proof of this
association are recently introduced epithelial restoration therapy
strategies, which indeed show promising results in the context of
IBD pharmacological management (227, 228).

Beyond being a pure physical fence against components
present in the lumen, the intestinal epithelium displays
innate immune responses based on the expression of pattern-
recognition receptors (PRRs), allowing them to recognize
pathogen-associated molecular patterns (PAMPs) from diverse
microorganisms in the lumen, amplify the initial immune
response, and finally prime the adaptive immune system.
PRRs also recognize endogenous molecules produced in stress
conditions, so called DAMPs. Membrane-bound [TLRs and
C-type lectin receptors (CLRs)] and cytoplasmic Nucleotide-
binding oligomerization domain-like receptors or NOD-like
receptors (NLRs), retinoic acid-inducible gene-I-like receptor
(RLRs), absent-in-melanoma 2 (AIM2)-like receptors, and cyclic
GMP-AMP synthase (cGAS) receptors act together in order to
detect pathogens in multiple cellular compartments. Although
TLRs are the best characterized PRRs, they are not unique in

the context of IECs and IBD; others relevant receptors comprise
CLRs (229) and NLRs (NOD2) (230, 231).

Focusing on the well-studied TLRs, deficiency of TLR2 is
associated with aggravated colitis in DSS-treated mice (232)
and multidrug resistance colitis (233). Similarly, poly(I:C)-
mediated TLR3 activation protects epithelial barrier function and
ameliorate DSS-induced colitis (234, 235). In contrast, several
strategies based on TLR4 blocking show promising results in
the context of epithelial restoration in IBD (not in the case of
necrotizing enterocolitis), while constitutively activated TLR4
predisposes for DSS-colitis and colitis-induced neoplasia (236–
238). Mechanistically, this is based on impaired NF-kB-mediated
cytokine production and migration of epithelial cells. Although
TLR5 was identified as one of the first IBD loci and its deletion
triggers spontaneous colitis (239), controversial results regarding
flagellin-mediated activation implies the need of future studies in
this context (240). Another important candidate is TLR7, since its
activation leads to production of antimicrobial peptides (AMPs)
and protects against DSS (241) or TNBS colitis. Interestingly,
as already mentioned in section Neuroinflammation in PD,
recent studies suggest aSyn as a DAMP-activating TLRs on
the surface of microglia (108, 109). This opens the hypothesis
of a TLR-mediated recognition of aSyn in the gut, even via
specific stimulation of intestinal epithelium or IEC subtypes. As
mentioned above, it is important to consider potential specificity
of TLR activation based on the conformation of the different aSyn
aggregates in this context (242).

Intestinal Permeability in PD
PD pathogenesis is associated with “leaky gut” (Figure 1) and
increased intestinal permeability (243), correlating with aSyn and
LPS levels in the mucosa (190). Elevated intestinal permeability
in turn promotes subsequent inflammation, and therefore, aSyn
accumulation and aggregation in the ENS (192). In fact, increased
expression of pro-inflammatory cytokines and glial markers, also
in the gut, positively correlated with disease progression and
severity. Mechanistically, recent studies have suggested that PD
patients (123) and animal models of PD show altered expression
and distribution of tight junction proteins, such as ZO-1, E-
cadherin (244), and claudin-1 (245).

aSyn and Intestinal Epithelial Cells
Beyond the association between PD and decreased expression
of tight junction proteins within the intestinal epithelium
(123), the current knowledge about a potential interaction
between aSyn and the intestinal epithelium is still scarce. The
fact that EECs express aSyn make them attractive candidate
players in this context [see chapter Enteroendocrine Cells
(EECs)]. aSyn can be transmitted in a prion-like manner from
epithelial cells to enteric neurons (30). Enteric glia is a crucial
communication tool between the intestinal epithelium and the
ENS. Thus, intestinal pathological conditions associated with
alterations of epithelial permeability might trigger alterations
of the EGCs as the declutching event for a local immune
response and neuroinflammation affecting the ENS (see chapter
Neuroinflammation in PD). In order to get in contact with IECs,
aSyn should translocate across the mucus barrier protecting the
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monolayer of epithelial cells. A recent study has shown that,
despite mucoadhesive properties, aSyn penetrates the mucus by
inducing rearrangement of the mucinmatrix (246). Other studies
suggest that rather than aSyn itself, other phenomena associated
with alterations of the microbiota, such as increased levels of LPS
are responsible for epithelial alterations, including redistribution
of ZO1 and E-cadherin (244). Enteric biofilms are produced by
bacteria in the gut in order to promote their survival, and can
in turn, activate local immune response, since some of their
components act as DAMPs activating TLRs, for instance. Curli-
containing biofilms in several experimental infection models
caused alterations of the epithelial layer; the mechanism behind
includes the fibrillization of aSyn (247). Undoubtedly, further
research on the impact of aSyn on IECs, as well as other
mechanisms explaining epithelial alterations in the context of PD
pathogenesis are required.

The use of brain organoids derived from PD patient iPSCs has
been extended in the last years. Recently, technical development
in the field, such as co-culture of neuronal cells with astrocytes
(248) and the use of assembloids have permitted modeling of
cellular crosstalk between different areas of the brain (249).
However, controversial opinions about the ability of these in
vitro models to mimic complexity of the human brain still
exist. In the context of PD, midbrain organoids containing
dopamine-related neurons, astrocytes and oligodendrocytes
(250) have demonstrated to recapitulate pathological hallmarks
upon appropriate conditions (e.g., LRRK2 mutations), such
as neurotoxic damage, endosomal phosphorylated aSyn, and
increased mitophagy (27). Future advances regarding midbrain
organoids may be the inclusion of other cell types, such as
microglia, which enables to study the relevance of innate
immunity in PD. Therefore, two strategies have been proposed:
on one hand, the development of brain organoids including
microglia (251); and on the other hand, exogenously add
iPSC-derived microglia to brain organoids (252). Moreover,
in order to model the BBB and the potential immune cell
trafficking, neurovascular communication has been developed
and implemented via organ-on-chip technology (endothelial-like
cells, astrocytes, and neurons) (253).

The relevance of the gut-brain axis in PD opens the
path for exploiting intestinal organoids as in vitro models of
PD. Described in 2009, intestinal organoids or enteroids are
3D structures developed from intestinal stem cells cultures
allowing the intricate differentiation of IECs, and mimicking
the complex architecture of the intestinal epithelium (254).
Although extremely useful in the context of of epithelial-intrinsic
phenomenon, two aspects of intestinal organoids limit their use
in studies dealing with microbial-epithelial communication. On
one hand, the apical side of the polarized epithelium is projected
toward the inside of the organoid (lumen) and makes microbial
stimulation highly challenging; and on the other hand, culture
conditions with high oxygen concentrations are not optimal for
the growth of a vast majority of anaerobic intestinal microbiota.
Moreover, some limitations also accounted in the case of co-
culture settings with immune cells, for instance, the lack of
nutrient support and mechanical constrains to immune cells
mediated by blood flow and circulation. Thus, organ on a chip

cultures mimicking the inter-organ communication and allowing
the interaction with the microbiota as well, appear as suitable
alternative. Highly challenging tissue engineering approaches
combined with transplantation intomice have tried to implement
in vitro systems including the ENS to co-cultures of intestinal
organoids and smooth muscle cells; however, these strategies
have not been successful until now, based on the lack of maturity
of neuronal cells (255). More advances have been achieved
in the context of immune-epithelial and microbiota-epithelial
communication in organoid cultures. Addition of macrophages
affected epithelial barrier function and maturity (256); while
neutrophils in combination with pathological bacteria cause loss
of epithelial integrity (257) and epithelial development and/or
maturation is promoted by TNF-producing CD4+ T cells (258).

A step further in the field of PD research will be the
combination of gut and brain organoids. Recent advances
have focused on “patient-on-chip” models, such as the
combination of separately developed multiorgan organoids
(259); or the use of gut organ-chip models fluidically coupled to
vascular endothelium lined channels (260), such as MINERVA
(MIcroboita-Gut-BraiN EngineeRed platform to eVAluate
intestinal microflora impact on brain functionality) (261).
Experimental setups based on intestinal organoids and
multiorgan organoids might provide important knowledge
of the communication between the gut and the brain.

Enteroendocrine Cells (EECs)
Considered sensory cells within the secretory lineage of IECs,
EECs represent the largest source of hormones in the body and
play vital roles in many physiological processes like appetite
control, sensing of gut microbiota, GI immunity, motility, barrier
function, insulin and growth hormone secretion (262). Upon
sensing of nutrients, EECs produce neuropeptides and hormones
to the basal space. In the gut epithelium, enterochromaffin cells
(ECs)—a subtype of EECs, react to mechanical forces during
gut peristalsis by secreting 5-HT, accounting for 95% of body
5-HT (263). For decades, 5-HT is known as an important
neurotransmitter signaling molecule, holding a key role in gut
motility, secretion and pain sensation. Many studies indeed
showed the link between abnormal regulation of 5-HT and GI
disorders, such as IBD and irritable bowel syndrome (IBS) as well
as in many CNS disorders (264, 265), suggesting a significant
role of 5-HT in gut-brain-gut communication. Recently, EECs
have been proposed as an alternative source for Notch ligands,
supporting the stem cell population in Paneth-deficient mice
(266). Therefore, it is predictable that many gut dysfunction
diseases, including IBD, are associated with EECs alterations.

EECs possess a tightly organized apical brush border, and basal
membrane projections (neuropods) allowing the intercellular
communication with nerves and neurons (267). Interestingly,
EECs show a certain overlapping expression profile with
neuronal cells, such as neurotrophin receptors, pre- and post-
synaptic proteins including aSyn, neurofilaments mimicking
axons and their functions (neuropods), and dopamine synthesis
machinery (268). Indeed, EECs not only synapse with enteric
nerves (29) but also establish a direct contact with enteric
glia (269). Thus, EECs can serve as a connection between the
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intestinal lumen and the ENS, and represents a key population
in the context of gut-brain axis in neurodegenerative diseases
(267). Besides direct cellular contact, EECs communicate with
the ENS via the release of NT and hormones; or even act as the
entry pathway for pathogens, which can then act on neurons in
the gut. Most importantly, based on their neuron-like features,
they can serve as niche for proteinopathy upon luminal signals,
which is further supported by the expression of aSyn from these
cells (30). Hence, the question arises, whether EECs may be the
starting point or declutching event for aSyn pathology in the gut,
which is then further transmitted to the CNS.

The fact that EECs express aSyn opens the path for the study
of proteinopathy specifically in these cells. An important aspect
in this context is the exposure of EECs to the lumen, which make
them accessible via endoscopy, as a future early diagnostic tool
of premotor PD (270). Interestingly, different TLRs (TLR1, 2,
and 4) are expressed in EEC cell lines (271); while TLR4, -5, and
-9 ligands induced secretion of EECs hormones in mice (272).
On the other hand, Bacteroides thetaiotaomicron contributes
to neurogenic colon activity via a TLR2- and EEC-dependent
mechanism (273). Interestingly, TLR overstimulation has also
been suggested in PD pathology (274). Another mechanism
by which EECs contribute to the barrier function might be
mediated by the expression of SCFA receptors, such as FFAR2
and FFAR3 (275–277).

Interestingly, qualitative and quantitative alterations of EECs
have been associated with GI dysfunctions also observed in PD,
such as constipation or alterations of transit times. Rotavirus
infection courses with EEC-mediated 5-HT secretion, which
activates the ENS and the extrinsic vagal afferent to the brain
causing nausea, vomiting, and diarrhea (278). In contrast,
increased 5-HT secretion protects intestinal barrier function due
to the production of neutropic factors (279). Similar EECs-5-
HT-dependent mechanisms operate also in diarrhea upon viral
infections, such as Adenovirus infection (280) and even COVID-
19 patients (281).

Mechanosensations in the Gut
Mechanosensation is vital for proper function of electrically
excitable organs, those constantly exposed to and/or generating
mechanical forces (heart, bladder, and GI). Physiologically, all
cells in the gut epithelial layer are mechanosensitive, they need
to sense the static forces (e.g., stretching, crowding) to adjust
cell numbers and maintain epithelial integrity. Among them, so-
called mechanosensitive cells, develop specific ion channels to
sense acute mechanical forces (e.g., pressure from luminal food
content); these cells are important to maintain gut functions
like food digestion and peristalsis. Beyond peristalsis, mechanical
issues are also crucial for maintenance of epithelial architecture.
It is well-known that stem cell proliferation is important to
maintain tissue homeostasis and avoid pathological conditions.
Interestingly, in Drosophila, the strict regulation of stem cells
is indeed associated with food digestion via gut epithelial
stretching. Changes in mechanical properties upon ingestion
(gut distension), lead to the decrease of misshapen (a Hippo
pathway regulator) membrane association and phosphorylation,
which then stimulates stem cell activity and contributes to control

intestine adaptive growth (282). During epithelial turnover,
aged or damaged cells are shed into the lumen in order to
leave space for newly generated cells. This process must be
tightly governed to maintain epithelial integrity, and therefore
requires intercellular sensing communication between shedding
and neighboring cells to finally extrude the dying cell. In general,
little is known about biochemical pathways governing sensing
and responses to mechanical forces.

Although several membrane ion channels have been
revealed as important players in this context, the recently
identified Piezo channels show their notable roles in many
cellular mechanosensitive processes, from light-touch sensing,
controlling red blood cell volume to muscular shear stress
(283). In Drosophila midgut, the unique Piezo isoform is
expressed in low division precursor cells differentiating into
EECs. Adult Piezo mutant fly showed decreased number of
EECs compared to WT fly. Moreover, Piezo overexpression or
increasing Ca2+ level in fly intestinal stem cells induced both
cell proliferation and EEC differentiation (284). In zebrafish,
Piezo1 ion channel is reported to participate in live cell extrusion
(285) and cell division (286), in response to crowding and
stretching, respectively. Disturbing cell extrusion via Piezo1
channel lead to formation of cell masses, which hypothetically
can lead to tumorigenesis. Gudipaty et al. have proposed a model
on how Piezo1 acts as a regulator of epithelial cell number by
shifting its localization between nuclear envelope and cytoplasm/
plasma membrane in order to control cell division and extrusion
(286). Altogether, these studies suggested that investigating
Piezo-mediated mechanosensations will give us insights into
intracellular pathways regulating cell numbers and epithelial
integrity, and therefore, be relevant in the context of intestinal
inflammation and tumorigenesis.

Peristalsis
Peristalsis, or the impulsion of food based on muscle contraction
and relaxation, is regulated by sensation of mechanical forces,
but the molecular mechanism behind remains elusive. Generally,
peristaltic waves in small intestine consist of weak and infrequent
contractions around the bolus, while they continuous and
gradually increased toward the anus in the colon. Under specific
circumstances, for example diarrhea, an intense and powerful
peristaltic wave is triggered in the whole small intestine, which
quickly relieves mucosa irritation or unusual gut distension. In
the small intestine, peristalsis helps driving food against intestinal
wall for nutrient absorption and persistently push it toward the
large intestine. In the large intestine, peristalsis is important for
feces elimination and mechanical removal of gas and bacteria.
At a cellular level, when food particles are formed, EECs are
stimulated to secrete 5-HT, while mechanosensory neurons in
circular and longitudinal muscles are activated to declutch gut
motility (287).

The muscle contraction depends on signals received from
ENS or CNS, such as substance P, neuropeptide Y or inhibitory
neurotransmitters including nitric oxide (NO) and vasoactive
intestinal polypeptide (VIP) (288). How the excitatory and
inhibitory motor neurons are activated is still a controversy,
however, a population of sensory neurons in the distal colon of
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guinea-pig are believed to be stretch-sensitive rather than muscle
tone or contraction sensitive (289).

In order to respond to mechanical stimulations, the intestinal
tract contains various mechanosensitive cell types carrying
membrane mechanically gated ion channels such as ECs within
the epithelial layer, smooth muscles, interstitial cells of Cajal or
different types of sensory neurons in the lamina propria. They
sense and respond to mechanical changes in different ways; for
instance, by 5-HT secretion in the case of ECs. Even though
the molecular mechanism behind mechanically induced 5-HT-
release in ECs is unknown, recent evidence revealed that Piezo2
ion channel is specifically expressed in human and mouse 5-
HT positive ECs, and Piezo2 activation by mechanical forces is
necessary for 5-HT release and mucosal secretion (290). Another
study suggests that Piezo2 is selectively expressed in a large
number of NeuroD1+ cells—a subset of EC cell, and mechanical
stimulation of NeuroD1+ cells leads to Piezo2-dependent, but
not Piezo1-dependent Ca2+ increase inducing 5-HT production
(291). Paradoxically, a newly published study showed that 5-HT
release is crucially regulated upon detection of bacterial derived
single-stranded RNA by Piezo1 channel in the gut epithelium,
indicative of a new potential pathway for gut and bone disorder
therapies. Even though the function of the Piezo family in EECs is
not clear, Piezo1 was found to regulate gut peristalsis positively in
vivo and the lack of Piezo1 in epithelial caused whole gut transit
time delay (292). Considering mentioned evidences, Piezo1 and
Piezo2 channels in gut epithelium could be possible key elements
to uncover the mechanism behind EECs-related mechanisms
operating behind constipation and altering transit time in PD
(Figure 2). This knowledge might even elucidate the phenomena
explaining misfolded aSyn-EECs and reveal the initiation of
PD origin.

Constipation and PD
The abnormal defecation and reduced peristalsis can lead
to constipation. Physically, constipation occurs when there is
a decrease of bowel movement frequency, due to primary
(idiopathic or functional) or secondary reasons (diet or
medication). Approximately 52.48% PD patients experience
constipation (293), making it the most common and distressing
PD gastrointestinal symptoms (Figure 1). Indeed, a study with
551.324 volunteers in Taiwan showed that participants with mild
to severe constipation symptoms tended to develop PD within
5.5 years and the constipation severity correlated with the risk of
having PD (294).

Targeting the Gut for PD Treatment
Current pharmacological treatment for PD patients is based
on the principle of escalating DA brain concentration, by (1)
increasing/replacing DA levels; or (2) impairing its degradation.
Since DA does not cross the BBB, the most commonly
used drug is based on the action of Carbidopa/levodopa,
a precursor of DA, which crosses the BBB and is believed
to convert to DA in the brain. Other available medicines
include DA agonists, monoamine oxidase type B (MAO B)
inhibitors, catechol-O-methyltransferase (COMT) inhibitors,
anticholinergics, Amantadine or Creatine (295). Pharmacological

treatment can be also combined with surgery (deep brain
stimulation) (296), gene therapy (297), immunotherapy (e.g.,
antibodies against aSyn) (298), or cell transplantation (299).
However, none of the available therapeutic options is actually
curative, nor able to stop disease progression (300, 301).
Together, the need of alternative therapy strategies in PD
is patent, which opens avenues for the identification of
innovative strategies.

Considering gut-brain axis in the context of PD, nowadays
it is suggested that PD can be, not only diagnosed based
on GI manifestations, but even treated “from the gut.” This
principle has been also exploited in the context of innovative
strategies for levopoda therapy (302). For instance, currently
used duopa therapy is based on the application of gels enabling
the release of carbidopa/levodopa directly in the gut, allowing
slow absorption and, therefore, impairing motion fluctuations
and movement disorders. Tightly linked to intestinal function
and microbiota, increasing attention has been paid to PD clinical
management based on the diet, especially dietary fat. However,
conflicting results do not permit drawing conclusive remarks in
this context (303, 304); except for the fact that polyunsaturated
fatty acid consumption has been associated with lower risk
of PD (305). In accordance with the role of the microbiota
in the pathogenesis of PD, several strategies modulating the
microbiota demonstrated the potential in the context of PD.
Antibiotics treatment ameliorate signs of PD, such as IL-1β
and, TNF-α at the CNS and dopamine neuron loss (306, 307).
Both pre- and pro-biotics have an effect on aSyn proteinopathy.
Thus, butyrate activates aSyn autophagy and promotes barrier
function of the intestinal epithelium (308). On the other hand,
Bifidobacterium and Lactobacillus are able to reverse PD and
PD-related constipation (309); while Lactobacillus promotes
production of L-DOPA from L-tyrosine (310). The use of
probiotics has been found to be beneficial in PD patients (311,
312) and experimental PD models (313, 314). Regarding fecal
transplantation, there are controversial results; it is suggested
that FMT not only improves GI symptoms (constipation) but
also neuroinflammation in PD patients (315, 316); however,
safety and efficacy are not clear. Experimentally, FMT lead to
further decreased of Lachnospiraceae and Ruminococcaceae, and
worsening of dyskinesia (191); while FMT from PD patients lead
to worsening on motor symptoms in a PD model (192), but
motor impairment was also observed in normal mice. FMT can
impair TLR4 activation, improve gut dysbiosis, reduce activation
of microglia, change NT secretion and the destruction of the
substantia nigra (315). FMT can also ameliorate comorbidity
in PD patients related to the GI tract, including ulcerative
colitis (317).

ANIMAL MODELS OF PD AND GI

SYMPTOMS

As mentioned above, the interplay between neurological and
GI symptoms in PD is also nicely demonstrated in animal
models. Thus, here we provide a summary of currently used
experimental in vivomodels of Parkinsonism, and the occurrence

Frontiers in Medicine | www.frontiersin.org 12 July 2021 | Volume 8 | Article 655123105

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Drobny et al. Gut-Brain Communication in Disease

of GI pathological features, as well as aSyn propagation
mechanisms supported by experimental observations using
corresponding models.

Classical PD models are based on toxin-induced motor
manifestations. Intragastric injection of rotenone causes
Parkinsonism in mice, without increased systemic rotenone
levels (133). The presence of aSyn in the GI tract or ENS
depends on factors such as the administration route, dose
or length of exposure. Thus, chronic exposure of rotenone
involves non-motor GI symptoms (318), however, did not
delay gastric emptying (319). Interestingly, rotenone toxicity is
associated with changes in the microbiota composition, such
as decreased Bifidobacterium and increased Rikenellaceae or
Allobaculum (320); while severity of the symptoms is associated
with decreased Lactobacillus and increased reactivity to LPS
(245). In addition, cell toxicity is induced by the prodrug
MPTP and the neurotoxin MPP+, causing dopaminergic
neurons/tyrosine hydroxylase + (TH) neuron destruction
in the brain and in the colonic ENS (321, 322). However,
controversial data exists about the outcome of this GI affectation,
and it is not clear if this is associated with increased intestinal
motility (323) or constipation (322, 324). Strikingly, recent
publications support a MPTP-mediated intestinal immune
response, which might be provoked by activation of monocytes
(325). Furthermore, direct brain injection of 6-OHDA induces
PD-like constipation, delayed gastric emptying, and enteric
inflammation (326, 327). Last but not least, paraquat injection
into rats also demonstrated the relevance of the gut-brain axis,
since it evokes reduced gastric motility tone and increased aSyn
immunoreactivity in the DMV, which is blocked upon vagotomy
(328, 329).

Most experimental genetic models are based on the induced
expression of aSyn or mutations on the gene encoding for
aSyn. These models recapitulate aSyn aggregation, similar to
PD patients, however, require more time for pathological
manifestations. In accordance with the gut-brain axis hypothesis,
these models confirm that GI dysfunction and non-motor
symptoms might represent early pathological features. The
most commonly used model is the Thy1-aSyn overexpression
model, which presents GI manifestations, delayed colon transit
time and defecation accompanied by aSyn accumulation
in colonic myenteric plexus (330, 331). CNS pathology in
Thy1-aSyn mice is reduced upon microbial depletion, while
FMT from PD causes worsening of the phenotype (192).
However, a recent study claims that levels of LPS rather
than microbiota alterations in Thy1-aSyn mice are responsible
for colon intestinal permeability dysfunction and early motor
manifestations (244). Other genetic models taking advantage
of mutations on the aSyn gene, show aSyn accumulation
in the olfactory bulb, myenteric plexus and adrenal neurons
(aSyn-A53T) or accumulation of phospho-aSyn, slower transit
time, abnormal stool and neuroinflammation at the ENS
(PrP-A53T-aSyn) (332, 333). Even unique GI affectations,
without motor dysfunction can be observed (BAC-A53T-
aSyn) (334).

Mutations in PINK1 and PARK2 are associated with
PD and activation of immune responses via modulation of

mitophagy/autophagy (335). Interestingly, immune response
in the context of PINK1 knockout mice is regulated by the
microbiota, since colonization with bacteria leads to T cell
mediated destruction of dopaminergic neurons in the periphery
and the brain (336). On the other hand, the MitoPark model
represents a noticeable example of experimental recapitulation
of GI dysfunction and dysbiosis in PD Non-motor symptoms in
this model include decreased motility and gradual progression of
colon transit times, reduced fecal water content and activation
of glial cells in the myenteric plexus. Disease progression in this
model goes along with loss of TH+ neurons, reduction of central
and intestinal DA levels, as well as changes in the microbiota
composition (337).

As mentioned above, another important aspect within the
gut-brain axis concept is the propagation route for aSyn. Thus,
researchers in the field have concentrated on the development
of experimental models based on the injection of aSyn.
Therefore, pathological aSyn can be isolated from post-mortem
human tissue; or recombinant aSyn preformed fibrils (PFF)
are experimentally prepared. It has been demonstrated that
the injection of patient-derived pathological aSyn directly into
the gut leads to deposition of aSyn in myenteric neurons
and intestinal inflammation in A53T transgenic mice (338).
Intragastric aSyn can be transmitted to the brain in rats (142).
Moreover, the injection of recombinant PFF in the olfactory
bulb in WT mice caused the spread of aSyn to distant areas
of the brain (339). While spreading of aSyn occurred only
in aSyn transgenic mice upon injection into gastric wall and
not in WT mice (340). Inoculation of PFFs in the duodenum
of mice led to GI deficits and physiological changes of the
ENS in addition to changes of aSyn histopathology in the
midbrain and subsequent motor defects in elder, but not in young
mice (28).

CONCLUSION

As outlined in our review, the disease mechanisms of PD
are complex and exhibit a variety of pathological facets.
GI manifestations are the most significant symptoms in
the prodromal phase of PD (115), suggesting the direct
communication of gut and brain. Recent studies have shown
that pathogenic aSyn found within the GI system are able to
spread and reach the CNS (28, 142, 339). In addition, the
role of constipation in PD seems to support the hypothesis
that the pathological pathway of PD spreads from the intestine
to the brain. Besides, EECs were found to express aSyn and
link directly to aSyn-containing nerves, creating neural circuit
between the gut and nervous system. This raised an interesting
hypothesis that the root of PD might start from misfolded
aSyn in EECs, which is transmitted to the nervous system
(30). Moreover, constipation is the most troublesome PD-
gastrointestinal symptom and likely regulated by abnormal gut
peristalsis (293). Accordingly, investigating the roles of EEC-
mechanosensitive ion channels, which indeed was proven to be
associated to peristalsis, could explain the reasonwhy aSyn in ECs
is misfolded, and reveal the mechanism behind PD origin.
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Correspondingly, gut inflammation is a main pathological
feature occurring in PD and IBD. Inflammatory processes and
aSyn pathology appear to be extraordinarily linked to each other.
In connection with inflammation, aSyn and its aggregated forms
seem to mediate inflammatory responses by TLR activation (108,
109). This indicates the possibility of TLR-mediated release of
proinflammatory cytokines in the gut by specific stimulation of
IEC. Furthermore, IECs appear as key factor in inflammatory
response, as they create a protective barrier against luminal
antigens and microbes, helping to preserve gut homeostasis.
IEC alterations, for example cytoskeletal rearrangement (12) or
cell-to-cell adherens junction reorganization (341) could disturb
the epithelial integrity and lead to intestinal permeability as
seen in CD patients (342). In addition, PD pathogenesis is
also associated with an increased intestinal permeability (243)
along with impaired BBB function (97), promoting bidirectional
inflammation cascades between the gut and the brain.

Many different routes for transmission between neuronal
networks and intestinal cells are described to propagate aSyn
pathology. Of interest, extracellular exosomes found in blood
and CSF of PD patients have been described to spread pathology
(151). Moreover, the vagus nerve is considered to be the most
important bidirectional connection between these two organs

(141). However, within this context, clinical studies investigating
the origin of PD progression are still elusive.

Lastly, it is interesting that dysbiosis is a common feature
in PD and IBD (168, 169). In order to affect ENS-specific
pathways and spreading to the CNS, a connection between
the GI lumen and the neurons/enteroglia is necessary. The
intestinal epithelium is in direct contact with luminal content
and therefore, acts as a physical and immunological barrier in
the gut. Hence, a disturbance of the intestinal sealing allows
direct contact of pathological factors and cells of the ENS.
Interestingly, IBD (221) as well as PD (243) patients can suffer
from intestinal inflammation concomitantly exhibiting a leaky
gut. The disturbance of intestinal barrier function has been

suggested to promote aSyn aggregation in the ENS, which is
further able to spread to the CNS (30, 304), along the so-called
gut-brain axis.

In recent years, numerous studies have been addressing
the role of the gut-brain axis in neurodegenerative disorders,
like PD. However, there are still open questions regarding
the understanding about its impact in disease progression
and regulation. Further studies and comparisons of disease
mechanisms of PD and IBD, as presented in this review, might
help to connect missing dots and shed light into the role of aSyn
aggregation within the intestine as well as intestinal inflammation
in PD. A detailed comprehension of the mechanisms and
regulation of the gut-brain axis is essential to establish novel
disease biomarkers, clinical read-outs and identify novel targets
for (early) treatment strategies.
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6-OHDA, 6-Hydroxydopamine; AIEC, Adherent invasive
Escherichia coli; AMPs, Antimicrobial peptides; aSyn, alpha-
Synuclein; BBB, Blood-brain barrier; BDNF, Brain-derived
neurotrophic factor; CD, Crohn’s disease; cGAS, cyclic GMP-
AMP synthase; CLR, C-type lectin receptor; CNS, Central
nervous system; COMT, Catechol-O-methyltransferase; CSF,
Cerebrospinal fluid; CXCL, Chemokine C-X-X- motif ligand;
DA, Dopamine; DAMP, Damage-associated molecular pattern;
DLB, Dementia with Lewy Bodies; DMV, Dorsal motor
nucleus of the vagus nerve; DSS, Dextran sodium sulfate; EC,
Enterochromaffin cells; EEC, Enteroendocrine cells; EGC,
Enteroglial cells; EGF, Epidermal growth factor; ENS, Enteric
nervous system; FFAR, Free fatty acid receptor; FMT, Fecal
Microbiota Transplantation; GABA, γ-Amicobutyric acid;
GDNF, Glial cell-line derived neurotrophic factor; GFAP,
Glial fibrillary acidic protein; GI, gastrointestinal; GMP-
AMP, Guanosin monophosphate-adenosine monophosphate;
GPCRS, G-Protein coupled receptors; GWAS, Genome-Wide-
Association studies; HSV1, Herpes simplex virus type 1; IBD,
Inflammatory bowel disease; IEC, Intestinal epithelial cells; IF,
Interferon; IL, Interleukin; iPSC, Induced pluripotent stem cells;
LB, Lewy Bodies; L-DOPA, L-3,4-dihydroxy-L-phenylalanine;
LN, Lewy neuritis; LRRK2, Leucin-rich repeat kinase 2; LP,
Lamina propria; LPS, Lipopolysaccharide; MAO-B, Monoamine
oxidase type B; MINERVA, MIcroboita-gut-braiN EngineeRed
platform to eVAluate intestinal microflora impact on brain
functionality; MPP, 1-Methyl-4-phenylpyridinium; MPTP,
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridin; MSA, Multiple
system atrophy; MWAS, Metagenome-wide association studies;
NAC, Non-amyloid-β component; NF-kB, Nuclear factor
“kappa-light-chain-enhancer” of activated B-cells; NLR, NOD-
like receptor; NO, Nitric oxide; NOD, Nucleotide-binding
oligomerization domain; NT, Neurotransmitter; PAMPs,
Pathogen-associated molecular patterns; PD, Parkinson’s disease;
PFF, Preformed fibrils; PNS, Peripheral nervous system; PRRs,
Pattern-recognition receptors; PSD-95, postsynaptic density
protein 95; RLR, Retinoic acid-inducible gene-like receptor;
SCFA, Short-chain fatty acids; SNpc, Substantia nigra pars
compacta; TGFα, Transforming growth factor α; TH, Tyrosine
hydroxylase; Th, T helper cells; TLR, Toll-like receptor; TNBS,
Trinitrobenzene sulfate; TNF, Tumor necrosis factor; UC,
Ulcerative colitis; VIP, Vasoactive intestinal polypeptide; ZO,
Zonula occludens.
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Inflammatory bowel disease describes chronic inflammatory disorders. The incidence

of the disease is rising. A major step in disease development is the breakdown of the

epithelial cell barrier. Numerous blood vessels are directly located underneath this barrier.

Diseased tissues are heavily vascularized and blood vessels significantly contribute to

disease progression. The gut-vascular barrier (GVB) is an additional barrier controlling

the entry of substances into the portal circulation and to the liver after passing the

first epithelial barrier. The presence of the GVB rises the question, whether the vascular

and endothelial barriers may communicate bi-directionally in the regulation of selective

barrier permeability. Communication from epithelial to endothelial cells is well-accepted.

In contrast, little is known on the respective backwards communication. Only recently,

perfusion-independent angiocrine functions of endothelial cells were recognized in a

way that endothelial cells release specific soluble factors that may directly act on the

epithelial barrier. This review discusses the putative involvement of angiocrine inter-barrier

communication in the pathogenesis of IBD.

Keywords: endothelial, angiocrine, barrier, inflammatory bowel disease, inflammation, angiogenesis, epithelial

CLINICAL PRESENTATION AND EPIDEMIOLOGY OF
INFLAMMATORY BOWEL DISEASE

Inflammatory bowel disease (IBD) includes inflammatory diseases of the colon and small intestine
with Crohn’s disease and ulcerative colitis being themajor clinical presentations (1). Crohn’s disease
affects the small intestine and large intestine, as well as the mouth, esophagus, stomach and the
anus, whereas ulcerative colitis primarily affects the colon and the rectum (2). Crohn’s disease and
ulcerative colitis are different diseases, but commonly present with any of the following symptoms:
abdominal pain, diarrhea, rectal bleeding, severe internal cramps/muscle spasms in the region of
the pelvis and weight loss. In addition, anemia is a common extra-intestinal complication of IBD.

IBD is classically considered as a disease of Westernized countries but has started to rise
worldwide in the beginning of the twenty first century (3). The rise is population-dependent and
categorized into four different epidemiological stages: first, the Emergence Stage with sporadic cases
of IBD observed in developing countries, second, the Acceleration in Incidence Stage with rising
incidence and relatively low prevalence in newly industrialized countries, third, the Compounding
Prevalence Stage with stable incidence and steeply rising prevalence in countries of the Western
world, and forth, the Prevalence Equilibrium Stage, which represents the opposing forces between
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an aging IBD population and the incidence of IBD. InGermany at
present 620,085 persons are suffering from IBD with a predicted
rise up to 815,200 patients in 2030. In the U.S. presently 2,489,362
patients are registered and a rise up to 3,544,480 is expected
within the next 10 years (4).

IBD is characterized by a chronically relapsing intestinal
inflammation that is thought to result from an exaggerated
immune response to the commensal microbiota. However, the
specific molecular mechanisms driving IBD pathogenesis are still
unclear. Many different putative susceptibility genes for IBD
are reported but all of these are associated with only low risk
and differ in different countries of the world. At present, it
is commonly accepted, that cytokines, such as, tumor necrosis
factor (TNF), interleukin (IL)-10, transforming growth factor
(TGF)-β, IL-6, IL-12, IL-13, IL-17, IL-21, IL-23, interferon
(IFN)-γ and C-X-C motif chemokine ligand (CXCL)10, are
drivers of the excessive immune response, leading to leukocyte
infiltration and mucosal damage. In addition, there is agreement
that IBD pathogenesis is closely associated with a loss of
intestinal epithelial barrier functions associated with bacterial
translocation, likely representing an initiating or early event in
the disease (5–10).

Recently, it became evident that the intestinal barrier involves
two sequential physical barriers. The first being the epithelial
barrier consisting of a single cell layer of epithelial cells and
a mucus layer which physically separates the microbiota in
the gut lumen and epithelial cells (11). Directly below the
epithelial barrier an additional barrier was identified, the gut-
vascular barrier (GVB) controlling the entry of substances
into the portal circulation and their access to the liver after
passage of the first epithelial barrier (12, 13). The discriminative
control of nutrient uptake and tight sealing towards potentially
pathological microorganisms requires a profound regulation of
the barrier permeability.

STRUCTURE AND FUNCTION OF THE
EPITHELIAL BARRIER IN IBD

The epithelial barrier allows the co-existence of commensal
microbiota and mucosal immune cells in the gut. It consists
of a physical barrier established by the epithelial cells situated
on a basement membrane. Collagen type IV and laminins are
the predominant components of the basement membrane (14).
The basement membrane is subject of continuous remodeling.
Increased remodeling was observed under inflammatory
conditions in association with decreased barrier functions
(14). At the cellular level barrier functions are established by (i)
densely packedmicrovilli on the apical side of intestinal epithelial
cells termed the brush border (15), (ii) tight cell-cell interactions
between the epithelial cells, (iii) the cellular resistance to
bacterial transcytosis (16), and (iv) specialized epithelial cells,
such as mucus-producing goblet cells and anti-microbial
peptide secreting Paneth cells (12). Altogether, the epithelium
exerts manifold functions, establishing a physical barrier
against pathogen invasion and also performing innate immune
functions and nutrient uptake (17). Thereby, the preservation

of the epithelial integrity is a major aspect in order to preserve
homeostasis and to avoid the progress of inflammation in
mucosal tissues (18) [for review see: Lopez-Posadas et al. (11)].

At the molecular level the intercellular barrier of the intestinal
epithelium is established by apical junction complexes comprised
of tight and adherens junctions. Adherens junctions consist of
cadherins and nectins and are mainly important for the cell-cell-
adhesion (19, 20). Tight junctions are multiprotein-complexes
consisting of several transmembrane proteins: tight junction
associated MARVEL proteins (TAMP) like occludin, marvelD3
and tricellulin, junctional adhesion molecules (JAM), angulins
and the family of claudins, which has in mammalia 27 members
that either possess barrier- or channel-forming properties
affecting the overall permeability characteristics of the epithelia
[for review see Günzel and Fromm (21)]. Adherens junctions
as well as tight junctions establish zipper-like structures, sealing
the paracellular space within the epithelial cell layer (22). These
intercellular junctions are connected to the actin cytoskeleton
via cytoplasmic adaptors, such as zonula occludens proteins, and
catenins supporting the mechanical strength of the junctions
(23–25). Cell activation with molecules that induce permeability
causes actin reorganization into stress fibers. This is associated
with increasing traction forces, which lead to the detachment
of adherens junctions from the cytoskeleton followed by the
formation of gaps between adjacent cells (26, 27). Further
mechanisms such as the removal of cell-cell interactionmolecules
from the cell surface by internalization and/or by proteolytic
cleavage can regulate the intestinal barrier permeability (11, 28).

The epithelium is constantly renewed without an effect
on its tightness. Within this process stem cells at the crypt
bottom proliferate and differentiate into the different intestinal
epithelial cell subtypes with specialized biological functions (29).
Subsequently, most of the differentiated epithelial cells migrate
upwards to the villus tip, where aged cells die and are shed
into the lumen (30, 31). The tightness of the epithelial layer
is maintained by the intercellular junctions during this process
(23). During cell shedding, epithelial integrity is maintained
in cytoskeleton and membrane trafficking-dependent processes
regulating the redistribution of junctional proteins along lateral
membranes (32, 33).

Increased epithelial tight junction permeability is a hallmark
in the gut of IBD patients (34–38). It is believed that
the disruption of intercellular junctions and cytoskeleton
rearrangements in the context of infection or inflammation
lead to a breakdown of epithelial integrity (39–41). Although a
correlation between epithelial barrier permeability and disease
activity has been observed in patients with Crohn’s disease, the
cause of this barrier collapse is still a matter of controversy
(42, 43). Experimental animal studies demonstrated that a
deficiency of single tight junction proteins is not sufficient to
cause pathology due to compensatory mechanisms (44, 45) with
the exception of claudin-15 (46). However, agreement exists that
inflammation-derived soluble mediators such as IL-6 (47), IL-
13 (48, 49), TNF (50), and IFN-γ (51, 52) affect tight junctions
and may increase intestinal permeability in experimental colitis
models and IBD (53–55). These observations suggested that
the epithelial barrier breakdown occurs as a consequence of
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proinflammatory cytokine stimulation. In contrast, recent studies
in IBD patients demonstrated that an increase of epithelial
permeability precedes flares of inflammatory bowel pointing
towards a causative role of epithelial barrier breakdown in the
development of intestinal inflammation (35, 56–58). The latter
is supported by reports that a decrease of epithelial permeability
by application of vitamin D (59, 60), probiotics (61–63), IL-22-
triggered mucus production (64), butyrate (65, 66), or an anti-
TNF antibody caused clinical amelioration of chronic colitis (67,
68). Moreover, alternative portals for gut leakiness such as brush
border functions and intestinal bacterial endocytosis by epithelial
cells have to be considered and may play important pathogenic
roles providing putative targets for therapy of inflammatory
bowel disease (15). Altogether, these results suggest that the
epithelial barrier function is important and its maintenance can
counteract the development of inflammatory bowel disease.

THE IMPACT OF BLOOD VESSELS ON IBD
PATHOGENESIS

Capillaries are located in close proximity to the intestinal
epithelial cell barrier (Figure 1A). Blood vessels in adult tissues
evolve through sprouting from preexisting vessels, a process
termed angiogenesis (69). Angiogenic activity correlates with
disease severity in IBD suggesting that blood vessels may
contribute to pathogenesis (70–73). Moreover, elevated levels of
angiogenic growth factors including vascular endothelial growth
factor (VEGF)-A and basic fibroblast growth factor (bFGF),
that synergize in angiogenesis activation, have been detected in
the inflamed mucosa and in the blood during active IBD (74,
75). However, experimental colitis models provided conflicting

results on the contribution of angiogenesis to disease activity.
Neutralization of VEGF-A resulted in a decreased vessel density
and improvement of the disease in dextran sulfate sodium (DSS)–
induced and 2,4,6-trinitrobenzenesulfonic acid (TNBS)–induced
colitis (73, 76). In contrast, reduced angiogenic activity induced
by deficiency of placental growth factor failed to ameliorate colitis
in the same experimental models (77). These results indicated
that besides vessel density additional parameters such as vessel
quality are of relevance in IBD pathogenesis. In fact, newly
formed vessels in IBD tissues are strongly disorganized and leaky
as evident by associated edema (78).

The difficulties in determining the precise role of blood vessel
function in IBD may be due to the fact that the intestinal
endothelial cells are both, targets and regulators of inflammation
(78). In this framework, IBD-associated inflammatory cytokines
such as TNF-α, IL-1β and IFN-γ can activate endothelial cells
by inducing the expression of adhesion molecules for leukocytes
such as E-selectin, intercellular adhesion molecule (ICAM)-1 or
vascular cell adhesion molecule (VCAM)-1 (79). Macrophages
are important drivers of IBD and are characteristically expressing
high amounts of TNF-α and IL-1β, which may amplify the
extravasation of these cells being responsible for the high
numbers of macrophages present in IBD tissues (80). In
addition, inflammation is associated with increased angiogenesis
supporting immune cell recruitment by increase of blood flow
and endothelial surface (81). As mentioned above the intestinal
endothelium also establishes an additional barrier in the gut,
the GVB (12, 13). The GVB constitutes a semipermeable
barrier between the blood stream and the interstitium regulating
the transport of nutrients, tissue fluid homeostasis and the
transmigration of immune cells but is non-permissive to bacterial
penetration (13, 28, 78, 82). The latter is in agreement with

FIGURE 1 | (A) Colonic crypt (intestinal gland, asterisk) with vessels (red, arrow) in the lamina propria. Epithelial cells (1st barrier) and endothelial cells (2nd barrier) are

directly adjacent, indicating active inter-barrier communication. Vascular endothelial cells were stained immunohistochemically using an anti-CD31 antibody. Cell nuclei

(blue) were stained by haematoxylin. (B) Graphic presentation of (A) indicating possible factors that may be involved in angiocrine regulation of epithelial barrier

functions in IBD [von Willebrand factor A domain containing 1 (VWA1), von Willebrand factor (VWF), matrix metalloproteinase (MMP)-14, tissue inhibitor of

metalloproteinases (TIMP)-1, C-X-C motif chemokine ligand (CXCL) 10, secreted protein, acidic and rich in cysteine–like 1 (SPARCL1)].
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the observation that bacterial lipopolysaccharides (LPS) in
low concentrations are stabilizing the vascular barrier (83).
In contrast, high concentrations of LPS (>10µg/ml) inhibit
endothelial cell migration, down-regulate intercellular junction
molecules and increase the permeability of the vascular barrier
(83). Paracellular (i.e., in between the cells) or transcellular (i.e.,
across the cells) routes are available to cross the endothelial cell
monolayer. Transcellular exchange is accomplished via either
solute transporters, or transcytosis via vesicular carriers (e.g.,
caveolae), or pore-like subcellular structures (i.e., fenestrae and
transendothelial channels) (84, 85). The paracellular route is
controlled by adherens junctions and tight junction proteins
similar as in the epithelial barrier. In intestinal endothelial cells,
tight junctions are composed mainly of occludin, junctional
adhesion molecule (JAM)-A, zonula occludens (ZO)-1, and
cingulin (13). Claudin-3, -5, and -12 from the claudin family are
known to be mainly expressed in endothelia (86, 87).

Adherens junctions are formed by vascular endothelial (VE)-
cadherin and β-catenin (13). Of note, the same cytokines
regulating immune cell extravasation can also deregulate
adherens and tight junction formation in endothelial cells
supporting translocation of bacteria thereby further amplifying
the inflammatory process [for review see: Lopez-Posadas
et al. (11)].

The impact of the GVB in intestinal inflammation is
substantiated by mouse models of acute and chronic DSS-
colitis. In these models intestinal vessel perfusion remained
constant during colitis whereas vessel permeability strongly
increased (5). Using experimental animal models with an
endothelial cell specific knockout of the interferon-γ-receptor
2 (IFNγR2) it was shown that the IBD-associated cytokine
IFN-γ induces a breakdown of the vascular barrier based
on the disruption of the adherens junction protein VE-
cadherin and this was significantly increasing DSS-induced
experimental colitis. Importantly, the disease-associated vascular
barrier dysfunction could be confirmed in human IBD patients
indicating the clinical relevance of the findings. Imatinib
(brand name Gleevec) is a kinase inhibitor acting against
Abelson tyrosine kinase BCR–ABL, the KIT and PDGF
receptors and is used for therapy of chronic myeloid leukemia
(CML), gastrointestinal stromal tumors (GIST) and several
other malignancies (88). Interestingly, treatment with imatinib
restored adherens junctions, inhibited vascular permeability,
and significantly reduced colonic inflammation in experimental
colitis. Altogether, these results highlighted the pathogenic
impact of inflammation–associated vascular barrier defects in
IBD and opens new avenues for vascular-directed treatment of
the disease (81).

The detection of an additional intestinal barrier rises the
question whether the epithelial and the vascular barriers may
communicate in prevention or progression of the disease.
Epithelial to endothelial cell communication is commonly
accepted. For example, the nutrient composition of the chyme
(partially digested food) and not simply gut distension modulates
blood flow. Specialized subsets of intestinal epithelial cells
transport nutrients through the epithelial monolayer into the
lamina propria from where they are transported through the

fenestrated blood endothelium to be distributed systemically
(89, 90). Moreover, in response to pathogen invasion or
loss of barrier integrity, both intestinal epithelial cells and
tissue-resident leukocytes secrete cytokines, chemokines, reactive
oxygen species, and lipid mediators that activate endothelial cells
to modulate the number and structure of vessels and to promote
immune cell extravasation. For example, intestinal epithelial cells
in IBD were shown to secret the chemokines CXCL8/IL-8 and
CCL20 (91, 92), both of which can activate angiogenesis (93, 94).
In addition, these cells secrete the cytokine TNF-α (91), which
regulates vessel remodeling and by directly acting on endothelial
cells may inhibit angiogenesis (95, 96). In addition, vascular
permeability is increased by inflammatory mediators released
from epithelial cells fostering both, inter- and trans-cellular
diapedesis (90, 97).

ANGIOCRINE FUNCTIONS OF BLOOD
VESSELS IN ORGAN DEVELOPMENT AND
DISEASES

The endothelium is not a passive response organ for nutrient
supply, tissue entry of immune cells, and metabolite removal,
but actively regulates the tissue microenvironment in organ
development and diseases as indicated by novel results.
These perfusion-independent functions of endothelial cells were
recognized in experimental tumor models in mice for the first
time, where the inhibition of angiogenesis in certain instances
did not abrogate tumor growth but instead enhanced tumor
invasiveness (98). Based on this the hypothesis arose that
endothelial cells release specific soluble factors that may directly
regulate tumor growth in a perfusion-independent manner. This
respective mechanism was termed as “angiocrine” regulation of
tumorigenesis (98).

Subsequent studies confirmed that endothelial cells may
activate tumorigenesis by secreted factors (98, 99). For example,
angiocrine factors were reported to stimulate growth and
migration of lymphoma tumor cells (100), to maintain stem cell
like properties in colorectal carcinoma and glioblastoma cells
(101–103), to inhibit anoikis in head and neck cancer stem cells
(104) and, to activate proliferation, survival and epithelial to
mesenchymal transition of lung carcinoma cells (103) [for review
see: Lee et al. (105)].

Vice versa, it was noted that endothelial cells can also suppress
cancer growth through angiocrine signaling. In this framework
contact-dependent interactions between the endothelial cell
surface receptor duffy antigen/receptor for chemokines and the
carcinoma cell surface receptor kang ai-1 were shown to suppress
metastasis (106). In addition, in breast cancer endothelial cell-
released slit homolog 2 protein (Slit 2), perlecan and additional
as yet unknown factors were reported to inhibit proliferation,
invasion and pro-tumorigenic signaling of the cancer cells (107,
108). In addition, thrombospondin is regarded as a putative anti-
angiogenic factor secreted from endothelial cells (98). Angiocrine
factors also exert key functions in physiologic condition
such as kidney development (109, 110), liver bud (111) and
pancreatic bud formation (112), in neuronal development (113),
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lung regeneration (114), osteogenesis (115) and hematopoiesis
(113).

Of note, a specific impact of angiocrine signaling on epithelial
barrier functions was observed in retina development (116).
Endothelial cells secrete factors that remodel the retinal pigment
epithelium (RPE) basement membrane and integrin receptors
sense these changes by triggering GTPase signals that modulate
RPE tight junctions and enhance RPE barrier function (116).
Similar parenchymal cell barrier regulatory mechanisms may be
active in other organs.

Altogether, angiocrine factors are involved in tumorigenic,
homeostatic, regenerative and morphogenetic processes in a
paracrine or juxtacrine manner. The term “angiocrine” factors
meanwhile includes secreted andmembrane-bound inhibitory or
stimulatory growth factors, trophogens, chemokines, cytokines,
extracellular matrix components, exosomes and other cellular
products (117). The angiocrine profile of endothelial cells can
differ between tissues, reflecting the diversity of cell types found
adjacent to endothelial cells in organs (113, 117).

THE IMPACT OF ANGIOCRINE SIGNALING
ON EPITHELIAL BARRIER FUNCTION IN
IBD

Angiocrine functions in IBD have not been investigated
extensively as yet, despite the manifold effects of angiocrine
signaling on epithelial cell functions in cancer, organ
development and tissue regeneration. However, first results
indicating angiocrine activities in the colon have emerged.
For example, endothelial cells release jagged 1, generated by
proteolytic activity of ADAM metallopeptidase domain 17
(ADAM17) activating Notch in human colorectal cancer cells
and thereby promoting a cancer stem cell phenotype and
chemo-resistance (103, 118). Moreover, it was shown that
selectively endothelial cells isolated from colorectal carcinomas
with a prognostically favorable Th-1-like immune environment
released the matricellular protein secreted protein, acidic
and rich in cysteine–like 1 (SPARCL1), which autocrinely
and paracrinely inhibited angiogenesis and proliferation of
different cancer cell lines (119, 120). The latter indicated that
angiocrine activities in the colon may trigger the course of
diseases in a microenvironment–dependent manner. A recent
single cell RNAseq approach of intestinal cells and subsequent
bioinformatics interaction analyses supported the molecular
interaction between endothelial cells and epithelial cells in the
colon (121).

Specific support for angiocrine functions in IBD was obtained
from a recent report on an increased susceptibility for acute and
chronic DSS-induced colonic inflammation in mice lacking the
angiocrinely active SPARCL1 protein (122). SPARCL1 is almost
exclusively expressed in vascular cells in the colon (119, 123,
124). In SPARCL1 (Sc1) KO animals colonic inflammation and
colon vessel permeability were significantly increased and colon
length was shorter as compared to wildtype animals. Exaggerated
inflammation in Sc1 KO animals was further supported by
an increased detection of fibrosis and the presence of tertiary

lymphoid structures similar to the human chronic disease.
Altogether, these results indicated that intestinal angiocrine
functions may establish a chemical barrier affecting both,
epithelial and endothelial cell barrier functions in IBD (122).

In a next step, we applied a meta-analysis to further
investigate whether angiocrine signaling may impact barrier
functions. To this goal, an in silico secretome screening
against the human proteome was performed using the VerSeDa
database [Vertebrate Secretome Database (125)]. Transcripts
with a prediction cut-off value > 0.8 (SignalP 4.1, TargetP
1.1, SecretomeP) were considered as secreted proteins. The
resulting 1,050 genes (1,959 proteins; 1,959 gene transcripts)
were used for a functional gene and phenotype annotation using
the Ensembl BioMart database (http://www.ensembl.org/index.
html). Next, candidates were selected based on data mining
(inflammatory, angiocrine, epithel, extracellular, endothelial,
barrier, cytokine, bowel, secreted). Subsequently, the resulting
257 genes were mapped to profiles from human endothelial cells
of different origin, including human umbilical vein endothelial
cells (HUVEC) exposed to shear stress (126), under LPS-
stimulation (127), overexpressing γ-interferon-inducible protein
(IFI) 16 (128) and unstimulated (129), as well as endothelial
cells from brain, lung, heart (130) and colorectal carcinoma
(119, 131). This analysis identified in total 28 genes (Table 1). Six
of these may be of specific interest as candidates of angiocrine
barrier effects in IBD (Figure 1B). This includes components of
the von Willebrand factor domain superfamily (VWA1, VWF)
and tissue inhibitor of metalloproteinases (TIMP)-1, which were
retrieved from three different studies, respectively. vWF is a
classical endothelial cell marker protein, that promotes adhesion
of platelets to the sites of vascular injury by forming a molecular
bridge between sub-endothelial collagen matrix and the platelet-
surface receptor complex (132). Its impact on the epithelial
barrier warrants further investigation. TIMP-1 is an inhibitor
of the matrix metalloproteinases (MMPs). It is able to promote
cell proliferation in a wide range of cell types, has an anti-
apoptotic function and can modulate the vascular barrier (133,
134). TIMP-1 may impact the epithelial cell barrier activity
in the gut through these activities. In this framework, it is
interesting thatMMP-14 was also identified by our meta-analyses
as angiocrine mediator. MMP-14 was reported as an angiocrine
factor in lung regeneration and as a member of the membrane-
type matrix metalloproteinases that are not inhibited by TIMP-1
(114, 135). In addition, CXCL10, regarded as a major driver in
IBD pathogenesis (6), was also identified as angiocrine mediator
in our meta analyses. In the DSS-model blockade of CXCL10
enhanced crypt cell survival (136) and mice with a knock out
of the CXCL10 receptor CXCR3 showed considerably lower
crypt damage (137). Based on these findings it was suggested
that CXCL10 may exert direct effects on epithelial cells in the
gut (138).

The bioinformatical analysis showed that the overlap of
genes retrieved from the different studies was low. This
is well in agreement with the high variation of activation
and organ-dependent plasticity of endothelial cells. In this
framework, the six genes identified in endothelial cells from
colorectal carcinoma may exhibit the highest relevance for IBD
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TABLE 1 | Angiocrine barrier-modulating candidate genes in inflammatory bowel disease.

Gene Full name

(according to

GeneBank)

Alias

(GeneBank)

GeneID

(GeneBank)

Burghoff

et al. (126)

Tunica

et al. (129)

Kwon

et al. (127)

Jambusaria

et al. (130)

Baggetta

et al. (128)

Naschberger

et al. (119)

CLU Clusterin AAG4, APO-J, APOJ, CLI, CLU1, CLU2,

KUB1, NA1/NA2, SGP-2, SGP2, SP-40,

TRPM-2, TRPM2

1191 x

CST3 Cystatin C ARMD11, HEL-S-2 1471 x

FBN2 Fibrillin 2 CCA, DA9, EOMD 2201 x

GDF15 Growth differentiation factor 15 GDF-15, MIC-1, MIC1, NAG-1, PDF, PLAB,

PTGFB

9518 x

MGP Matrix Gla protein GIG36, MGLAP, NTI 4256 x x

EDN1 Endothelin 1 ARCND3, ET1, HDLCQ7, PPET1, QME 1906 x

IGF2 Insulin like growth factor 2 C11orf43, GRDF, IGF-II, PP9974, SRS3 3481 x x

TIMP1 TIMP metallopeptidase inhibitor 1 CLGI, EPA, EPO, HCI, TIMP, TIMP-1 7076 x x x

LOXL2 Lysyl oxidase like 2 LOR, LOR2, WS9-14 4017 x x

CST1 Cystatin SN - 1469 x

A2M Alpha-2-macroglobulin A2MD, CPAMD5, FWP007, S863-7 2 x

MMP14 Matrix metallopeptidase 14 MMP-14, MMP-X1, MT-MMP, MT-MMP 1,

MT1-MMP, MT1MMP, MTMMP1, WNCHRS

4323 x

FBLN1 Fibulin 1 FBLN, FIBL1 2192 x

VWF Von Willebrand factor F8VWF, VWD 7450 x x

PDIA3 Protein disulfide isomerase family A

member 3

ER60, ERp57, ERp60, ERp61, GRP57,

GRP58, HEL-S-269, HEL-S-93n, HsT17083,

P58, PI-PLC

2923 x

WFDC2 WAP four-disulfide core domain 2 EDDM4, HE4, WAP5, dJ461P17.6 10406 x

BSG Basigin (Ok blood group) 5F7, CD147, EMMPRIN, EMPRIN, HAb18G,

OK, SLC7A11, TCSF

682 x

CXCL10 C-X-C motif chemokine ligand 10 C7, IFI10, INP10, IP-10, SCYB10, crg-2,

gIP-10, mob-1

3627 x

PTGDS Prostaglandin D2 synthase L-PGDS, LPGDS, PDS, PGD2, PGDS,

PGDS2

5730 x

SAA2 Serum amyloid A2 SAA, SAA1 6289 x

SAA1 Serum amyloid A1 PIG4, SAA, SAA2, TP53I4 6288 x

ICAM1 Intercellular adhesion molecule 1 BB2, CD54, P3.58 3383 x x

SPARCL1 SPARC like 1 MAST 9, MAST9, PIG33, SC1, hevin 8404 x x

VWA1 Von Willebrand factor A domain

containing 1

WARP 64856 x x

FGFR1 Fibroblast growth factor receptor 1 BFGFR, CD331, CEK, ECCL, FGFBR,

FGFR-1, FLG, FLT-2, FLT2, HBGFR, HH2,

HRTFDS, KAL2, N-SAM, OGD, bFGF-R-1

2260 x

PTGS1 Prostaglandin-endoperoxide

synthase 1

COX1, COX3, PCOX1, PES-1, PGG/HS,

PGHS-1, PGHS1, PHS1, PTGHS

5742 x

CTSH Cathepsin H ACC-4, ACC-5, ACC4, ACC5, CPSB 1512 x

TNFRSF1B TNF receptor superfamily member

1B

CD120b, TBPII, TNF-R-II, TNF-R75, TNFBR,

TNFR1B, TNFR2, TNFR80, p75, p75TNFR

7133 x
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(see Table 1). Interestingly, SPARCL1, which has been shown
to affect susceptibility to experimental colitis in mice was part
of this group (122). In summary, this analysis identified several
interesting candidates, which may participate in the angiocrine
inter-barrier communication in IBD. These factors may provide
putative new targets for treatment of the disease. The specific
impact of most of these factors on the epithelial barrier functions
has to be determined in future studies.

CONCLUSION

First evidence exists that the gut-vascular barrier (GVB)
communicates via angiocrine signals with the epithelial barrier
during IBD. The molecules involved in this communication may
provide new targets for clinical monitoring and treatment of the
disease. In-depth elucidation of the underlying effects and the
specific mechanisms warrants further studies.
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Background and Aims: Vitamin D (VD) plays an important role not only in mineral

balance and skeletal maintenance but also in immune modulation. VD status was found

correlated with the pathophysiology and severity of inflammatory bowel diseases and

other autoimmune disorders. Epithelial barrier function is primarily regulated by the

tight-junction (TJ) proteins. In this study, we try to establish an animal model by raising

mice fed VD-deficient diet and to investigate the effects of VD-deficient diet on gut

integrity and zonulin expression.

Methods: Male C57BL/6 mice were administered either VD-deficient [VDD group,

25(OH)2D3 0 IU/per mouse] or VD-sufficient [VDS group, 25(OH)2D3 37.8 IU/per mouse]

special diets for 7 weeks. Body weight and diet intake were recorded weekly. Serum VD

levels were detected. After sacrifice, jejunum and colon specimens were collected. The

villus length and crypt depth of the jejunum as well as mucosa thickness of the colon

were measured. Various serum pro-inflammatory cytokines and intestinal TJ proteins

were assessed. The serum level of zonulin and the mRNA expression of jejunum zonulin

were also investigated.

Results: We found that mice fed a VDD diet had a lower serum level of VD after

7 weeks (p < 0.001). VDD mice gained significant less weight (p = 0.022) and took

a similar amount of diet (p = 0.398) when compared to mice raised on a VDS diet.

Significantly decreased colon mucosa thickness was found in VDD mice compared

with the VDS group (p = 0.022). A marked increase in serum pro-inflammatory

cytokine levels was demonstrated in VDD mice. All relative levels of claudin (CLD)-1

(p = 0.007), CLD-3 (p < 0.001), CLD-7 (p < 0.001), and zonulin-1 (ZO-1, p = 0.038)

protein expressions were significantly decreased in the VDD group when compared

to the VDS group. A significant upregulation of mRNA expression of jejunum zonulin

(p = 0.043) and elevated serum zonulin (p = 0.001) were found in the VDD group.
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Conclusions: We successfully demonstrated that VDD could lead to impaired barrier

properties. We assume that sufficient VD could maintain intestinal epithelial integrity

and prevent mucosal barrier dysfunction. VD supplementation may serve as part of

a therapeutic strategy for human autoimmune and infectious diseases with intestinal

barrier dysfunction (leaky gut) in the future. To our knowledge, this is the first study to

demonstrate that VDD could lead to a significant upregulation in mRNA expression of the

jejunum zonulin level and also a marked elevation of serum zonulin in a mouse model.

Keywords: vitamin D, gut integrity, tight junction, zonulin, leaky gut

INTRODUCTION

In addition to its principal function as a calcium regulator in
facilitating the absorption and metabolism of calcium and bone
health, vitamin D (VD) can affect cell and tissue morphology.
VD also has immune regulatory functions and contributes to
the homeostasis in the body (1). VD protects the gut barrier by
regulating tight-junction (TJ) proteins and inhibiting intestinal
apoptosis. VD deficiency (VDD) is associated with a number of
diseases, such as allergic diseases, inflammatory bowel disease
(IBD), and autoimmune disorders (2–4). In addition, serum VD
levels are inversely correlated with the degree of non-alcoholic
steatohepatitis and fibrosis in children with non-alcoholic fatty
liver disease (5, 6). We have also demonstrated that VD levels are
inversely associated with the severity of fibrosis of the native liver
in patients after Kasai’s portoenterostomy for biliary atresia (7).

The gastrointestinal tract is the largest immunological organ
in the body and has a central role in immune homeostasis
(8, 9). Epithelial barrier function is primarily regulated by the
TJ proteins. VD is involved in the regulation of the epithelial
barrier functions (10, 11). VD is an important mediator of
intestinal epithelial defenses against infectious agents, and VDD
predisposes to severe intestinal injury (12, 13). Mice with simple
VDD are susceptible to colitis because of impaired colonic
antimicrobial activity and homeostasis of enteric bacteria (14).
VDD is related to the high incidence of colorectal cancer,
and VD supplementation may inhibit the development of
colorectal cancer (15). VDmay reverse colorectal cancer through
regulating intestinal flora, especially Akkermansia muciniphila,
and maintaining colon barrier integrity (15).

Mice fed a high-fat and VDD diet have an increased amount
of pathogens (Helicobacter hepaticus) in the gnawer ileum, but
the amount of symbiotic bacteria (Akkermansia muciniphila)
markedly decreased (16). Epithelial barrier function is primarily
regulated by the TJ proteins. We can foresee the translocation
of pathogens to intestine once dysfunction of TJ occurs. These
functions require a highly organized TJ morphology which may
be modified by VD supplementation. Besides, zonulin is the
eukaryotic counterpart of the Vibrio cholerae zonula occludens
toxin (17). Human zonulin is identical to prehaptoglobin-2 and
binds to the epidermal growth factor receptor and protease-
activated receptor 2 in the intestinal epithelium. This complex
initiates the phosphorylation of zonula occludens proteins and
leads to the small intestine’s TJ disassembling (18). According to

previous research studies, zonulin is the only measurable blood
protein that reflects the intestinal permeability, and increased
zonulin level is considered to be a marker of impaired intestinal
barrier (19, 20).

Investigators in most studies look at the effect of VD on the
recovery of intestinal injury in infected mouse models (21–23).
They seldom investigate the roles of VD on the integrity of
gut morphology and function of TJ proteins. We hypothesized
that VD was involved in the regulation of the epithelial barrier
functions and VDD might predispose mice to intestinal injury,
since zonulin is the only measurable blood protein that reflects
the intestinal permeability and increased zonulin level should be
observed in mice fed with a VDD diet. In this study, we try to
establish an animal model by raising mice fed a VDD diet in
order to elucidate the roles of VD in gut morphology and barrier
functions. We also investigate the enterocyte microstructures,
inflammatory cytokines, and TJ protein expressions in thismouse
model. The serum level of zonulin and the mRNA expression of
jejunum zonulin were also investigated.

MATERIALS AND METHODS

Animals’ Experiment and Ethics Statement
Male C57BL/6 mice (3–4 weeks of age) were used in all
experiments and were approved by the Institutional Animal
Care and Use Committee (IACUC) of MacKay Memorial
Hospital (IACUC number: MMH-A-S-107-026). IACUC has
been accredited, approved, and authorized by the government
office, Agriculture and Food Agency Council of Agriculture,
Executive Yuan, Taiwan. All methods were performed in
accordance with the relevant guidelines and regulations in this
animal study.

To produce standard VD-3 [25(OH)2D3] concentrations
(1,500 IU/kg diet) in the circulation, mice were fed a ssniff R/M-
H diet (E15312-24; VD deficient, normal vitamin D&P, ssniff
Spezialdiäten GmbH, Soest, Germany) containing either 37.8
IU supplement/per week based on the consumption of 25.2 g
diet/per mouse weekly at the age of 6 weeks (adult mouse) or
saline solution by oral gavages once a week (24).

We used cholecalciferol VD-3 [25(OH)2D3] as the VD diet
source in this mouse model study. Body weight and diet
intake were recorded weekly. After 7 weeks, the serum 25-
hydroxyvitamin D3 [25(OH)2D3] concentrations were measured
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in the mice using the ELISA kit. Blood samples were obtained via
cardiac puncture and were centrifuged to yield serum.

Cytokine Analysis
The serum (50 µl) was analyzed by the Bio-Plex ProTM

Mouse Cytokine Multiplex Panel kit (Bio-Rad Laboratories Inc.,
Hercules, CA, USA). Targets of cytokines included IL-1β, IL-
6, IL-10, IL-12, IFN-γ, MCP-1, and TNF-α. Extracted serum
utilized the Bio-Plex 200 system (Luminex Co., Austin, TX,
USA). The tissues lysates were extracted from the jejunum.

Immunofluorescent Localization of TJ

Proteins
The location of TJ proteins was studied using
immunohistochemistry. Samples of jejunum were embedded in
paraffin, cut into 3-µm sections, mounted on slides glasses, and
deparaffinized by standard protocols. For antigen retrieval, the
tissues were treated with Tris/EDTA solution buffer (10mMTris,
pH 9; 1mM EDTA). Incubation with primary rabbit anti-ZO-1
antibody, anti-claudin (CLD)-1, anti-CLD-3 (Sigma, Merck,
Germany), anti-CLD-7 (Abcam, Cambridge, UK), and mouse
anti-occludin (OCDN) (Life Technologies, Carlsbad, CA, USA)
was conducted at 4◦C overnight followed by PBS washing.
DyLight 488-conjugated anti-rabbit antibody and DyLight
549-conjugated anti-mouse antibody (Jackson, Bar Harbor, ME,
USA) were used as secondary antibodies. Then, three more
washes were performed. The fluorescence of the TJ proteins
(ZO-1 and CLD-1) was examined using a confocal microscope
(MRC 600; Olympus, Tokyo, Japan) with a krypton argon laser.
The fluorescence of the TJ proteins (CLD-3, CLD-7, and OCDN)
was examined using a fluorescence microscope (AX10, Zeiss,
Jena, Germany). The images collected had an optical thickness
of 3 microns for the jejunum. The images shown represented a
projection of the sections made for each villus.

Histological Analysis
Histological analysis was performed according to the standard
protocol that was published in the literatures (25, 26). Briefly,
the tissues of jejunum and colon were processed and fixed
in 10% buffered neutral formalin. The tissues of jejunum
and colon were processed and fixed in 10% buffered neutral
formalin. Then, the tissues were further processed and embedded
into paraffin. The samples were cut into 3-mm-thick sections.
All sections were deparaffinized and stained with hematoxylin
and eosin (H&E) according to standard procedures. The
sections were photographed by using a TissueFAXS automatic
scanning system, captured by a digital camera, and analyzed
by HistoQuest software (TissueGnostics, Vienna, Austria). Four
mice in each group were sacrificed for parameter determination.
Measurements of villus height and crypt depth of the small
intestine were determined for whole well-orientated villi and
crypts per small intestinal tissue section per mouse, and the
values were averaged. We also assessed the colonic specimens
for histological changes and mucosa thickness measurements.
The villus height, crypt depth, villus height/crypt depth ratio of
each jejunal tissue section and the muscular layer and mucosa

thickness of each colon tissue were measured to determine if gut
integrity was whole and well-oriented.

Western Blot of TJ Proteins
Jejunum tissues were lysed in an ice-cold lysis buffer including
Tris–HCl, NaCl, MgCl2, glycerol, NP-40, SDS, aprotinin,
leupeptin, PMSF, and pepstatin A and placed on ice for 10min
as described in our previous study (27). The supernatant
of lysed samples was collected after centrifugation. The total
protein concentration was quantified by BCA protein assay kit
(Thermo, USA). The protein was added to an equal volume
of 2× Laemmli sample buffer and boiled for 10min and then
run at 8% polyacrylamide gel at 100V for 1.5 h. The treated
protein was transferred to Immunoblot PVDF membranes (Bio-
Rad). After overnight blocking (PBS/Tween supplemented with
0.05% non-fat dry milk), blots were incubated with rabbit
polyclonal antibodies to CLD-1, CLD-3, CLD-7, OCDN, ZO-1,
and GAPDH in 0.05% Tween 20/TBS for 4 h. GAPDH was used
as a loading control. The secondary antibodies were horseradish
peroxidase conjugated anti-mouse IgG. Immunoreactive bands
were visualized by chemiluminescence reagents and exposed to
an X-OMAT film. Band densities were determined using XnView
software. A ratio of variety TJ proteins to GAPDH in the control
band was calculated for each sample.

Measurement of Serum Zonulin Level and

Intestinal Zonulin mRNA Expression
Serum zonulin as a marker of leaky gut was measured by the
zonulin competitive ELISA kit (MyBioSource, San Diego, CA,
USA). The assay sensitivity was 0.1µg/ml according to the
manufacturer’s instructions. Quantitative real time PCR (qRT-
PCR) was used to determine the expression of zonulin at the level
of mRNA. Pairs of oligonucleotide primers specific to zonulin
used in our study included the following (28):

forward primer, 5′-TCATCACGGCGCGCCAGG-3′

reverse primer, 5′-GGAGGTCTAGAATCTGCCCGAT-3′.
As mentioned in our previous study, total RNA was isolated

from jejunum specimens using the TRIzol reagent (Invitrogen)
and was then used for cDNA synthesis with random hexamers.
DNA detection and amplification were also detected by qPCR
using an ABI 7500 Fast System v1.4.0 (Applied Biosystems). Gene
expression was normalized to the GAPDH expression levels (29).

Statistical Analysis
The quantitative data were expressed as mean ± standard
error (SE) for triplicate measurements. Statistical analyses were
performed with an independent t-test using SPSS 12.0. Statistical
significance was defined as a p < 0.05.

RESULTS

Effects of VDD on Weight Gain and Diet

Intake
After completion of the experiment, all mice tolerated well and no
animal exhibited signs of marked adverse effects such as bloody
stool passage or cachexia. Nomortality was noted. The mice were
weighed daily, and the results of the two groups were compared.
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FIGURE 1 | Weight gain and diet intake. The average weight gain and diet

intake in both VDD and VDS groups were shown. (A) Average body weight

gain. VDD mice gained less weight, and a significant difference was found

between the two groups (p = 0.022 at the 7th week). (B) Average amount of

diet intake. VDD mice had a similar amount of diet intake compared to the

VDS mice during the experiment (p = 0.398). The statistical analysis was

performed by the independent t-test. Five mice in each group for parameter

determination.

In the beginning of the study, we used male C57BL/6 mice (3–4
weeks of age) in all experiments, so the initial average diet intake
amount (2.19 g) was lower than the standard adult level; however,
it increased gradually to 2.9 g at the end of the experiment. VDD
mice gained significantly less weight (VDD 147.14 ± 2.96% vs.
VDS 161.24± 4.91%, p= 0.022) (Figure 1A) when compared to
mice raised on a VDS diet after 7 weeks. The average amounts of
diet intake of both groups are shown in Figure 1B. The difference
on feed intake did not affect the study result since VDDmice took
a similar amount of diet during the experiments when compared
to mice raised on VDS diet after 7 weeks.

VDD Affects the Serum Vitamin D3 Level
The serum levels of VD [25(OH)2D3] in the VDD and VDS
groups are shown in Figure 2. In the VDD group, the serum
level of 25(OH)2D3 was 10.45± 0.61 ng/ml after 7 weeks. On the
contrary, the serum level of 25(OH)2D3 in the VDS group was

FIGURE 2 | Serum levels of 1,25(OH)2D3. Serum levels of 25(OH)2D3 in the

VDD and VDS groups are shown. The serum level of 25(OH)2D3 was 10.45 ±

0.61 ng/ml after 7 weeks in the VDD group while the serum level of 25(OH)2D3

was 40.62 ± 3.24 ng/ml during the study period in the VDS group (p < 0.001).

The statistical analysis was performed by the independent t-test. Five mice in

each group for parameter determination.

significantly higher (40.62 ± 3.24 ng/ml) than the VDD group
during the studied period (p < 0.001).

VDD Causes Intestine Histology and

Damage
The effect of the VDD diet on the intestine histology is shown
in Figure 3. The HE stain shows a typical irregular edge and
lining of the jejunalmucosa, distorted enterocytes, and significant
inflammatory cell infiltration in VDD mouse. However, the
intestinal villi of the mouse in the VDS group were more uniform
and inflammatory cell infiltration was absent (Figure 3A). We
found no significant differences in the villus height level, crypt
depth level, and villus height/crypt depth ratio of the jejunum
between the two groups (Figure 3B). Besides, we found that the
muscular layer thickness of both groups was similar. VDD mice
had slightly higher jejunal mucosa thickness compared with VDS
mice but did not reach significant difference (data not shown).
Similar histological damages were found in the colonic histology
in the VDD group, including decreased mucosa thickness,
crypt hyperplasia, loss of epithelial integrity, and inflammatory
cell infiltration (Figure 4A). Both groups had similar thickness
of the muscular layer (Figure 4B). However, VDD mice had
significantly decreased colonic mucosa thickness compared with
mice raised on VD-sufficient diet (VDD 165.09 ± 3.69µm vs.
VDS 187.03± 5.80µm, p= 0.022) (Figure 4C).

VDD Affects Intestine TJ Protein Structure
The effects of VDD on the jejunal TJ proteins’ (ZO-1, CLD-
1, CLD-3, CLD-7, and OCDN) structure and distribution are
shown in Figures 5, 6. Immunofluorescence studies can provide
general information on specific proteins (in this case ZO-1, CLD-
1, CLD-3, CLD-7, and OCDN) concerning their overall pool
(thickness of the signal) and distribution. A sharp signal means
accumulation in specific cellular sites like the cell boundaries,
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FIGURE 3 | Effect of vitamin D deficiency on the intestinal histology. (A)

Representative histological images (HE stains) of the jejunum in both groups.

VDD mice showed worsened histologic damage with typical irregular edge

lining of the jejunal mucosa, distorted enterocytes, and significant inflammatory

cell infiltration. Intestinal villi of the mice in the VDS group were more uniform,

and inflammatory cell infiltration was absent. Lower photo: magnification

750%. Segments of the jejunum were taken for measurement of the villus

height (B), crypt depth (C), and villus height/crypt depth ratio (D) per mouse.

The levels in villus height, crypt depth, and villus height/crypt depth ratio of the

jejunum were compared, and no significant changes were demonstrated

between the two groups. Values were represented as mean ± SEM and were

analyzed using the independent t-test. Four mice in each group sacrificed for

parameter determination. More than 15 villi and crypts in each staining of the

slice in both groups.

FIGURE 4 | Effect of vitamin D deficiency on the colonic histology. (A)

Representative histology of colonic specimens with H&E stains in mice.

Marked histological damages were found in the colonic specimens in the VDD

group. Lower photo: magnification 750%. Segments of colon were taken for

measurement of the muscular layer (B) and mucosa thickness (C). Both

groups had similar thickness of muscular layer (p = 0.395). However, VDD

mice had significantly decreased colonic mucosa thickness compared to mice

raised on VDS diet (p = 0.024). Values were represented as mean ± SEM and

were analyzed using the independent t-test. Four mice in each group

sacrificed for parameter determination. More than 15 fields for each staining of

the slice in both groups.

suggesting that the structure of TJ is maintained, while a
blurry signal suggests a more diffuse distribution within the cell
cytoplasm and implies a dysfunction of TJ. In our study, the
fluorescence lines for ZO-1, CLD-3, and OCDN proteins staining
were clear and sharp in the VDS group but blurry, cloudy, and
irregular in the VDD group (Figures 5A, 6A). Cell nuclei were
found located at the baseline of enterocytes in the VDS group,
but irregular arrangements of cell nuclei were observed in the
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FIGURE 5 | Vitamin D maintains intestinal tight junction expressions in VDD mice by both en face view MPM and reflectance confocal microscopy (RCM) of the

jejunum. DAPI was used for nucleus labeling (blue). Front, side face, and simulated surface were displayed. The distribution of tight junctions was visualized by the

zonula occludens-1 (ZO-1) fusion protein (DyLight 488, green) (A) and claudin-1 (CLD-1) (DyLight 488, green) (B). The fluorescence line was clear and sharp in the

VDS group but blurry, cloudy, and irregular in the VDD group at ZO-1 and CLD-1 distributions. Cell nuclei (blue dot) were found located at the baseline of enterocytes

in the VDS group but irregular arrangement in the VDD group.

VDDgroup. Similar findings were observed in CLD-1 andCLD-7
staining (Figures 5B, 6B). The surface of villi was straight and
smooth in the VDS group but winding and irregular in the VDD
group. OCDN was demonstrated rich in the apical villi in the
VDS group as shown in the merged figure (Figure 6). However,
we noticed that the colonic specimen texture in the VDD group
was less elastic when compared with the VDS group while mice
were sacrificed in this study. We compared the morphology of
the colon to the jejunum and noticed that there were no obvious
typical irregular edge and lining of the colon mucosa as we
demonstrated in jejunal tissue.

VDD Affects Intestine TJ Protein

Expression
The effects of VDD on the jejunal TJ protein expression are
shown in Figure 6. All relative levels of CLD-1 (VDD 0.10± 0.01
vs. VDS 1.00 ± 0.23, p = 0.007), CLD-3 (VDD 0.18 ± 0.05 vs.
VDS 1.00 ± 0.05, p < 0.001), CLD-7 (VDD 0.04 ± 0.02 vs. VDS

1.00 ± 0.02, p < 0.001), and ZO-1 (VDD 0.55 ± 0.07 vs. VDS
1.00 ± 0.17, p = 0.038) protein expressions were significantly
decreased in the VDD group when compared to the VDS group.
However, we found no significant difference in the relative level
of OCDN between the two groups (Figures 7A,B).

VDD Upregulates Serum Inflammatory

Cytokine Expressions
The effects of VDD on the serum inflammatory cytokine
expressions are shown in Figure 8. Upregulations of IL-1β (VDD
20.55 ± 1.96 pg/ml vs. VDS 6.31 ± 2.17 pg/ml, p < 0.001), IL-6
(VDD 5.93 ± 1.00 pg/ml vs. VDS 1.75 ± 0.36 pg/ml, p = 0.005),
IL-10 (VDD 26.84± 4.42 pg/ml vs. VDS 25.36± 4.10 pg/ml, p=
0.037), IL-12 (VDD 281.43± 40.94 pg/ml vs. VDS 143.23± 44.98
pg/ml, p= 0.038), and TNF-α (VDD 82.53± 8.05 pg/ml vs. VDS
64.91 ± 12.58 pg/ml, p = 0.007) were found in VDD mice. All
these serum inflammatory cytokines were significantly higher in
the VDD group when compared to the VDS group. However, we
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FIGURE 6 | Vitamin D maintains intestinal tight junction expressions in VDD mice by fluorescence microscopy of the jejunum. DAPI was used for nucleus labeling

(blue). Distribution of tight junctions was visualized by the claudin (CLD)-3 (DyLight 488, green) and occludin (OCDN) (DyLight 549, red) fusion proteins. CLD-3, OCDN,

and DAPI were merged. (A) CLD-7 (DyLight 488, green), OCDN, and DAPI were merged. (B) The fluorescence line was clear and sharp in the VDS group but blurry,

cloudy, and irregular in the VDD group at CLD-3, CLD-7, and OCDN distributions.

found no significant differences in IFN-γ andMCP-1 between the
two groups.

VDD Affects the Serum and Intestinal

Zonulin Levels
The effects of VDD on the serum zonulin level and intestinal
zonulin expression are shown in Figure 9. A significant difference
in serum zonulin levels was found between the two groups
(VDD 2.20 ± 0.09µg/ml vs. VDS 1.53 ± 0.12µg/ml, p = 0.001)
(Figure 9A). Similarly, a significantly higher relative level of
mRNA expression of jejunum zonulin was observed in the VDD
group (VDD 1.44 ± 0.11 vs. VDS 1.03 ± 0.13, p = 0.043)
(Figure 9B).

DISCUSSION

VD has demonstrated multifaceted effects on gut health and
has been shown to target three major components of the
gastrointestinal tract: intestinal epithelial barrier, gut immunity,
and gut microbiota (30). Previous studies had shown that VDD
was strongly correlated with gut integrity and immune response

(12, 31). However, the mechanisms underlying the protective
effects of VD on intestinal barrier function remain essentially
unclear. In this study, we successfully established an animal
model by raising C57BL/6 wild-type mice fed the VDD diet
and elucidated the roles of VD on gut morphology and barrier
functions. C57BL/6 wild-type mice were useful and popular
mouse strains in gastrointestinal tract studies (32, 33). In our
study, the serum level of VD was significantly reduced in the
VDD group when compared with the VDS group and showed a
deficient level according to human criteria. We also investigated
the enterocyte microstructures, inflammatory cytokines, and TJ
protein expressions with promising results. For the first time,
we successfully demonstrated that VDD diet could lead to a
significant upregulation in the mRNA expression of the jejunum
zonulin level in a mouse model.

Effects of VDD on Jejunum and Colon

Histology
In this mouse model, we demonstrated that VD did have a
protective effect in the development of intestinal epithelial and
colonic cells. We found that a typical irregular edge and lining
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FIGURE 7 | Effects of vitamin D deficiency on the jejunum tight-junction protein (CLD1, CLD3, CLD7, OCDN, and ZO-1) expressions. (A) Representative tight-junction

protein levels by Western blot analysis. (A) The lines indicated the positions of CLD1, CLD3, CLD7, OCDN, and ZO-1, respectively. GAPDH served as a control of

protein lysate loading. (B) The band densities of various tight-junction proteins were quantified by Image LabTM software. All relative levels of CLD1, CLD3, CLD7, and

ZO-1 protein expressions were significantly decreased in the VDD group when compared to the VDS group. No significant difference in relative level of OCDN was

found between the two groups (p = 0.200). Values were analyzed using the independent t-test. (*p < 0.05, **p < 0.001). Four mice in each group for parameter

determination.

FIGURE 8 | Effects of vitamin D deficiency on the plasma inflammatory cytokine expression. Upregulations of IL-1β, IL-6, IL-10, IL-12, and TNF-α were found in VDD

mice. All these plasma inflammatory cytokines were significantly higher in the VDD group when compared to the VDS group. p-values were shown inside the figure.

No significant differences in IFN-γ (p = 0.116) and MCP-1 (p = 0.119) were found between the two groups. Statistical analysis was performed by the independent

t-test. Four mice in each group for parameter determination.

of the jejunal mucosa and distorted enterocytes with significant
inflammatory cell infiltration causing mucositis were revealed in
VDD mice. However, the intestinal villi of the mouse in the VDS
group were much uniform and no inflammatory cell infiltrations
were found. We noticed that villus height, crypt depth, and
villus height/crypt depth ratio of the jejunum were similar in
both groups and no significant differences were found. Similarly,

histological damages were found in the colonic histology in
the VDD group, including crypt hyperplasia, loss of epithelial
integrity, and inflammatory cell infiltration. VDD mice had
significantly decreased colonic mucosa thickness compared to
mice raised on VDS diet after 7 weeks.

Besides distorted morphology, VDD caused significant
intestinal inflammation compared to the control group in
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FIGURE 9 | Effects of VDD on the serum and intestinal zonulin levels. (A)

Serum zonulin levels between the VDD and VDS groups. A significant

difference in the serum zonulin level was found (p = 0.001). (B) A significantly

higher level of mRNA expression of jejunum zonulin was observed in the VDD

group (p = 0.043). Statistical analysis by independent t-test. Four mice in each

group for parameter determination.

our study. Ryz et al. observed that VDD mice showed more
infiltrating macrophages and neutrophils in the cecal tissues,
particularly in the submucosal regions when compared
with VDS mice (21). In a previous mouse model study,
Assa et al. demonstrated a hyperplastic response in sham-
infected VDD mice when compared with sham-infected
VDS mice (12). Wang et al. also found that proliferation
and apoptosis of intestinal epithelial cells played critical
roles in cirrhosis-associated intestinal mucosal barrier
dysfunction (34). Their results showed that VD restored
the proliferative ability of crypt cells in the intestines,
inhibited enterocyte apoptosis, maintained the normal intestinal
epithelial turnover, and improved the integrity and function
of the intestinal epithelial barrier in CCl4-induced liver
cirrhotic rats.

Effects of VDD on Intestine TJ Proteins

Structure and Expression
We showed that the fluorescence lines for ZO-1, CLD-1, CLD-
3, CLD-7, and OCDN protein staining were clear and sharp
in the VDS group but blurry, cloudy, and irregular in the
VDD group. Cell nuclei were found located at the baseline of
enterocytes in VDS mice, but irregular arrangements of cell
nuclei were observed in the VDD group. Besides, levels of
CLD-1, CLD-3, CLD-7, and ZO-1 proteins were significantly
decreased in the VDD group when compared to the VDS
group. Zhao et al. demonstrated that when compared to TJ
expressions in the control group, there were significantly reduced
expressions in ZO-1, OCDN, and CLD-1 in the VDD group (13).
They also found that TJ marker expressions in the VD-treated
group were also significantly higher than those in the VDD
group, which suggested the importance of VD to maintain the
integrity of the TJ complex. Consistent with previous studies, our
findings demonstrated that significant intestinal morphological
alterations and TJ protein loss occurred in VDD mice. We also
showed that ZO-1, CLD-1, CLD-3, CLD-7, and OCDN were
highly expressed in jejunum tissues in the VDS group.

However, not all the research studies demonstrated beneficial
effects of VD on intestinal barrier function, Mandle et al. in
their randomized controlled trial concluded that no evidence was
found for incremental effects of supplemental VD on CLD-1,
OCDN, and MUC12 levels in the normal colorectal mucosa of
patients at increased risk for colorectal cancer (35). Their findings
do not support that VD alone substantially affects the expression
of the three biomarkers.

Effects of VDD on the Serum Inflammatory

Cytokine Expressions
One of the most significant impacts of VD in our study
was its effect on the host inflammatory response within the
intestine. Even under uninfected conditions, VDDmice showed a
higher intestinal inflammatory condition with elevated intestinal
expressions of various pro-inflammatory cytokines. Soares et al.
suggested two principles of mucositis development including
firstly the generation of reactive oxygen species which directly
damaged cells, tissue, and blood vessels and secondly the
upregulation of pro-inflammatory cytokines including TNF-α,
IL-1β, and IL-6 which caused further mucosal injuries (36). In
our mouse model, all measured serum cytokines except IFN-
γ and MCP-1 were significantly higher in the VDD group
when compared to the VDS group. We showed that VD played
important roles in the immune modulation and processed anti-
inflammatory effects. VD has been shown to modulate a wide
variety of immune responses. Assa et al. found that VD exerted
its effect on the host inflammatory response within the intestine.
VDD mice had elevated expressions of IL-17A and IL-17F in the
distal colon compared with VDS mice (12). Uninfected VDD
mice expressed higher mRNA transcripts for both pro- and
anti- inflammatory cytokines in colonic homogenates. Blaschitz
et al. reviewed that local immune responses serve to contain
infections by pathogens to the gut while preventing pathogen
dissemination to systemic sites. Several subsets of T cells in
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the gut contribute to the mucosal response to pathogens by
secreting a subset of cytokines including IL-17A, IL-17F, IL-22,
and IL-26. These cytokines induce the secretion of chemokines
and antimicrobial proteins, thereby orchestrating the mucosal
barrier against gastrointestinal pathogens (37). Additionally, IL-
1β also plays a crucial role in the activation of the NF-kB
pathway, even working with TNF for a synergistic effect in
kickstarting the inflammatory response of endothelial adhesion
molecules (38). Proinflammatory cytokines including TNF-α, IL-
1β, and IL-6 were shown to play important roles in amplifying
the severity of chemotherapy-induced intestinal mucositis (39).
In our previous study, we demonstrated that those mice in
the 5-FU-induced intestinal mucositis group had significantly
higher levels of circulating pro-inflammatory cytokines which
decreased significantly after probiotic administration (26). We
found similar results in using SCID/NOD mice as animal
model, suggesting that innate immunity plays a role in the
pathogenesis of intestinal mucositis (40). It seems that VD also
exerts similar anti-inflammatory effects through the inhibition of
pro-inflammatory cytokine expressions according to the results
of this mouse model study.

Effects of VDD on the Serum and Intestinal

Zonulin Levels
In the recent decade, Fasano et al.’s serial studies led to
the discovery and characterization of zonulin as the only
human protein discovered to date that is known to reversibly
regulate intestinal permeability by modulating intercellular tight
junctions (41–43). They have generated evidence that the small
intestine exposed to enteric bacteria secreted zonulin (44).
Following the release of zonulin, the intestine showed increased
permeability (leaky gut) and disassembly of ZO-1 from the TJ
complex (45). A systematic review of the literature revealed that
zonulin has been reported as a biomarker of several pathological
conditions, including autoimmune diseases, diseases of the
nervous system, and neoplastic conditions (44, 45).

Emerging data have led to the hypothesis that VD plays
a role in promoting epithelial barrier function. However, the
relationship of VD and serum and intestine zonulin levels
was seldom discussed. In a prospective study to document the
relationship between the admission vitamin D deficiency and
markers of intestinal permeability in hospitalized patients who
were critically ill, Eslamian et al. showed that median plasma
endotoxin and zonulin decreased with increasing serum levels of
VD categories in the overall study population (46). Their finding
suggested a relationship between VDD and early alterations in
intestinal permeability. Increased intestinal permeability causing
a leaky gut phenomenon has been shown to play a crucial role
in the pathogenesis of IBDs. In humans, serum and fecal zonulin
were found to be elevated in patients with active Crohn’s disease
but not with ulcerative colitis (47). In a recent study, serum
zonulin concentration was found to be higher in both diseases,
and an inverse correlation was observed between serum zonulin
concentration and disease duration (48).

In this study, we looked at the effects of VDD on the serum
and intestine zonulin levels. We observed that there was a

significantly higher level of mRNA expression of jejunum zonulin
in the VDD group. Similarly, a marked increase in serum zonulin
level was found in the VDD group. Our findings suggested that
VDD diet did induce mucosal barrier dysfunction and initiate
the release of zonulin in the jejunum. Mucosal injury thus
caused a significant rise in serum zonulin level in this mouse
model. Asmar et al. stated that zonulin is usually triggered to
release when the small intestine is exposed to enteric pathogens
and gluten (42). Our findings suggested that zonulin could be
released whenever there was mucosa barrier injury or leaky
gut conditions even in a non-infected VDD mouse model. We
also demonstrated that serum zonulin could reflect the level
of zonulin in the intestinal tract and assessment of the serum
zonulin level is desirable and clinically more feasible. Whether
the fecal zonulin level correlates with the severity of intestinal
mucosa injury was not studied in our study but warrants
further investigation.

However, we recognize that zonulin is secreted not only
from enterocytes; it has been found in several extra-intestinal
tissues, e.g., adipose tissue, brain, heart, immune cells, liver, lungs,
kidney, and skin (49, 50). Thus, the levels of zonulin in serum
reflect not only intestinal secretion but also secretion from other
organs. Nevertheless, to date it is impossible to elucidate the exact
origin of the serum zonulin level and the studies on the roles
of zonulin in extra-intestinal tissues are limited. Serum zonulin
levels are supposed to reflect mainly the intestinal permeability
and act as a marker of gut integrity.

Studies on the association of intestinal zonulin expression and
TJ composition are few in the literature. Feng et al. demonstrated
that dietary bisphenol A (BPA) uptake destroys the morphology
of the colonic epithelium and increases the pathology score
(51). The levels of endotoxin, diamine peroxidase, D-lactate, and
zonulin are significantly elevated in both plasma and colonic
mucosa. The expression of TJ proteins (ZO-1, occludin, and
claudin-1) in the colonic epithelium of BPA mice decreased
significantly, and their gene abundance was also inhibited.

Roles and Mechanisms of VD on TJ

Proteins and Gut Integrity
TJ are the most apical junctional complex connecting both
neighboring epithelial and endothelial cells. They comprised
various transmembrane proteins. VD plays a crucial role in
protecting the integrity of the intestinal epithelial barrier
against infectious and inflammatory insults. Gubatan et al. have
suggested that VD can enhance innate immunity by inducing
antimicrobial peptides and regulate adaptive immunity by
promoting anti-inflammatory T cells and cytokines (30). Besides,
Kong et al. have proved that VDD may compromise the mucosal
barrier, leading to increased susceptibility tomucosal damage and
increased risk of IBD (11). An increased permeability in the TJ
may provide a major site for both infection and establishment
of inflammation in the gut (52–54). Bacterial translocation
is believed to occur via a paracellular pathway through the
epithelial cells causing a leaky gut phenomenon.

VD was found to be able to protect the intestinal barrier
from injuries induced by multiple reagents (13, 39, 55).
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Several mechanisms by which VD exerts anti-inflammatory
effects have been suggested. Using Caco-2 monolayers as in
vitro models and a gluten-sensitized mouse model as an in
vivo model, Dong et al. recently investigated the protective
effect of 1,25-dihydroxyvitamin D3 on pepsin–trypsin-resistant
gliadin-induced tight-junction injuries (56). They successfully
demonstrated that, both in vitro and in vivo, VD3 significantly
attenuated the TJ injury-related increase in intestinal mucosa
barrier permeability. VD3 treatment upregulated the TJ protein
expression levels and significantly decreased the MyD88
expression and zonulin release signaling pathway.

Zhao et al. showed that VD might have a protective effect on
barrier integrity by maintaining the expression of TJ proteins,
thereby reducing the severity of gut inflammation (13). Using
the VDD mouse model, Zhang et al. successfully demonstrated
that both the differentiation of Th1 cells and the production of
relative cell cytokines (IL-2, IFN-γ, and TNF-β) were inhibited
by 1,25(OH)2D3. The addition of 1,25(OH)2D3 has direct effects
on CD4+ T cells and supports its potent immunosuppressive
benefits in the treatment of a number of other autoimmune
diseases (57). Other studies have shown that VD protects the
gut epithelial barrier by suppressing gut epithelial cell apoptosis
(58, 59). In this mouse model, our data showed that VD might
have a protective effect on barrier integrity by maintaining
the expression of TJ proteins, thereby reducing the severity of
gut inflammation.

This study adds to previous reports that the bioavailability
of VD is an important contributing factor for determining
the epithelial integrity. Once the mucosal barrier is breached,
the submucosa is exposed to a vast pool of luminal antigens,
including food and bacteria, thereby engaging the innate immune
responses including increased production in proinflammatory
cytokines TNF-α and IFN-γ. We demonstrated that VDD caused
a significant destruction of the intestinal morphology and an
increase in the circulating pro-inflammatory cytokines such as
IL-1, IL-6, TNF-α, and IFN-γ. The reduction in these cytokines
by VD may be either due to its direct suppressive effect on the
expression of these pro-inflammatory cytokines or due to the
effect on maintenance of epithelial barrier function, leading to a
reduction in foreign luminal antigenic load, and a full activation
of the innate immune system.

In summary, our data suggest that VD may be effective
in the maintenance of gut integrity, decreasing histological
inflammation, enhancing epithelial cell resistance to injury, and
suppressing pro-inflammation responses to luminal antigens.
Previous studies seldom emphasized and investigated the role
of VD on gut morphology and TJ proteins. In this study, we
successfully established an animal model by raising mice fed a
VDD diet to elucidate the roles of VD on gut morphology and
barrier function. To our knowledge, this is the first study to
demonstrate that VDD could lead to a significant upregulation
in mRNA expression of jejunum zonulin in a mouse model.

There are several limitations in our study. One limitation
is that the study period was indeed short and the observation
of possible pathological changes might be inadequate. Various
doses of VD supplementation were not assessed to determine
their possible contributions to the observed effects. Another
limitation is that we did not address the possible mechanisms

by which VD exert their beneficial outcomes such as the effects
on intestinal permeability and transepithelial electrical resistance
and the influence on the composition and diversity of the
intestinal microbiota. These areas should be investigated in future
experiments. Besides, we only assess the TJ proteins ZO-1, CLD-
1, CLD-3, CLD-7, and OCDN in this study. The expressions and
roles of other TJ proteins such as pore-forming CLD-2 and−15
warrant further investigation. In this study, we do not investigate
the roles of microbiota and the consequences of dysbiosis that
may probably occur in VDD mice. It would be also helpful to
complement our study with the gene expression of the same
TJ proteins to establish whether VDD causes a decreased gene
expression of these proteins or an increased degradation of their
protein pool. Nevertheless, the greatest challenge for an animal
model is the difficulty in translating results obtained from the
current model to the wide range of human patient groups with
varying ages and diagnoses. More clinical works are needed to
demonstrate the beneficial effects of VD and to elucidate the
correct dosing regimens for the management of various human
disorders with intestinal barrier dysfunction.

CONCLUSIONS

We successfully demonstrated that VDD could lead to impaired
barrier properties. We assume that sufficient VD could
maintain intestinal epithelial integrity and prevent mucosal
barrier dysfunction. Thus, VD supplementation may serve
as part of therapeutic strategy for human autoimmune or
infectious diseases with intestinal barrier dysfunction (leaky gut
phenomenon) in the future. To our knowledge, this is the first
study to demonstrate that VDD could lead to a significant
upregulation in mRNA expression of jejunum zonulin level and
also a marked elevation of serum zonulin in a mouse model.
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Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis

(UC), are complex, multifactorial disorders that lead to chronic and relapsing intestinal

inflammation. The exact etiology remains unknown, however multiple factors including

the environment, genetic, dietary, mucosal immunity, and altered microbiome structure

and function play important roles in disease onset and progression. Supporting this

notion that the gut microbiota plays a pivotal role in IBD pathogenesis, studies in

gnotobiotic mice have shown that mouse models of intestinal inflammation require

a microbial community to develop colitis. Additionally, antimicrobial therapy in some

IBD patients will temporarily induce remission further demonstrating an association

between gut microbes and intestinal inflammation. Finally, a dysfunctional intestinal

epithelial barrier is also recognized as a key pathogenic factor in IBD. The intestinal

epithelium serves as a barrier between the luminal environment and the mucosal

immune system and guards against harmful molecules and microorganisms while being

permeable to essential nutrients and solutes. Beneficial (i.e., mutualists) bacteria promote

mucosal health by strengthening barrier integrity, increasing local defenses (mucin

and IgA production) and inhibiting pro-inflammatory immune responses and apoptosis

to promote mucosal homeostasis. In contrast, pathogenic bacteria and pathobionts

suppress expression and localization of tight junction proteins, cause dysregulation of

apoptosis/proliferation and increase pro-inflammatory signaling that directly damages

the intestinal mucosa. This review article will focus on the role of intestinal epithelial cells

(IECs) and the luminal environment acting as mediators of barrier function in IBD. We will

also share some of our translational observations of interactions between IECs, immune

cells, and environmental factors contributing to maintenance of mucosal homeostasis,

as it relates to GI inflammation and IBD in different animal models.

Keywords: IBD, microbiota, dog, mouse, intestinal permeability, epithelial barrier

INTRODUCTION

The inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC),
are complex, multifactorial inflammatory diseases affecting the gastrointestinal (GI) tract (1, 2).
IBD is an immune-mediated disorder comprising two distinct phenotypes having varying clinical,
endoscopic, immunologic and histopathologic features (3, 4). Crohn’s disease is characterized by
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patchy, transmural inflammation that primarily affects the
terminal ileum but can also involve the small intestine. Ulcerative
colitis causes diffuse superficial mucosal ulcerative inflammation
restricted to the rectum and colon. The cause for IBD remains
unknown but it is likely that genetically susceptible individuals
develop an aberrant immune response to their microbiota,
leading to chronic inflammation and repetitive injury to the
intestines (2). The onset of IBD typically occurs in the second
or third decade of life but rising incidence worldwide suggest a
prominent role for environmental factors (5).

The intestinal epithelium is composed of a monolayer of
columnar epithelial cells that communicate continually with the
luminal microbiota and an underlying network of innate and
adaptive immune cells. This mucosal barrier normally prevents
the entry of pathogenic microbes and toxins while regulating the
absorption of nutrients, electrolytes, and water from the lumen
into the systemic circulation (6). There is a growing body of data
indicating that dysfunction of the intestinal barrier is a causative
factor in the pathogenesis of IBD. For example, numerous IBD
genetic risk loci affect pathways active in epithelial cells involved
in essential functions such as innate immunity, autophagy and
endoplasmic stress (7). Moreover, epithelial barrier dysfunction
secondary to chronic inflammation and recurring “flares” is
characteristic of IBD (8). During active disease, inflammatory
mediators (cytokines/bacterial products) released in the intestinal
mucosa progressively damage the epithelium and exposemucosal
immune cells to luminal antigens that amplify the inflammatory
response (3, 9). Finally, the intestinal epithelium is actively
involved in repair mechanisms that promote mucosal healing
through re-epithelialization to patch defects and maintain
mucosal homeostasis (10, 11). Also contributing to maintenance
of the mucosal barrier is the controlled replenishment of
intestinal epithelial cell (IEC) subtypes (e.g., columnar cells,
goblet cells, enteroendocrine cells and Paneth cells) from LGR5
intestinal stem cells (12). In this review, we will focus on the role
of IECs and the luminal environment (including the microbiota)
to act as mediators of barrier function in IBD. We will also share
some of our translational observations of interactions between
IECs, immune cells, and environmental factors (including the
gut microbiota) contributing to loss of mucosal homeostasis as
it relates to GI inflammation and IBD in different animal models.

Intestinal Barrier and Mucosal

Homeostasis
Structural Components of the Epithelial Barrier
The term mucosal barrier was first proposed by Cummings in
2004 and describes the complex structure that separates the
luminal environment from the internal milieu (13). The intestinal
mucosal barrier is a functional entity consisting of separate
but interlinked components, including physical elements (e.g.,
the underlying vascular endothelium, epithelial cells, and the
mucus layer), along with a chemical layer composed of digestive
secretions, immune molecules, and cellular products (cytokines,
inflammatory mediators, and antimicrobial peptides). Apart
from these layers, the microbiota also contributes to barrier
integrity along with immune functions and GI motility. The

intestinal epithelium is composed of a single layer of columnar
cells and different specialized cell subtypes: enterocytes, goblet
cells, Paneth cells, enteroendocrine cells and immune cells,
including intraepithelial lymphocytes (IELs) and dendritic cells
(Table 1; Figure 1) (15). Three types of junctional complexes
[tight junctions (TJ), adherens junctions (AJ) and desmosomes]
provide mechanical cohesion to these columnar cells and seal the
paracellular space to regulate the movement of water ions and
small molecules across the intestinal mucosa (16–18).

Tight junctions form the most apical adhesive (JP) and
are continuous around the IEC at the border between apical
and lateral membrane regions (16–18). They function as a
semi-permeable paracellular barrier that move ions and solutes
through the intercellular space while excluding luminal antigens,
bacteria and their toxins. Within TJ complexes are integral
transmembrane proteins, occludin and members of the claudin
family, that link adjacent cells to the actin cytoskeleton to
regulate paracellular permeability (16). Claudins represent a
family of TJ proteins that regulate the movement of water and
electrolytes through sealing molecules and pores. Experimental

TABLE 1 | Components of the intestinal epithelial barrier and their perturbation in

IBD.

Components Function Known defects

Physical Barrier

Mucus layer Adherent and loose layers,

contain AMPs and microbiota

(loose layer)

Reduced thickness to mucus

layer, bacterial biofilm with

CD, altered composition to

mucus layer

Enterocytes Digestion, macromolecule

transport, secrete β-defensins

Defective defensin production,

mucosal ulceration/erosions

Goblet cells Secrete mucin and trefoil

factors

Decreased number of goblet

cells

Paneth cells Secrete α-defensins, Reg3

proteins, lysozyme, BMPs for

ISC niche

Reduced antimicrobial activity

Enteroendocrine

cells

Produce serotonin and 5-HT;

sense microbial metabolites

Altered enteroendocrine

secretion

Intercellular

junctions

Intercellular transport, regulate

barrier function

Altered expression and

localization

Intra-epithelial

lymphocytes (IELs)

Immune surveillance,

cytotoxic activity

Imbalance in IEL cytolytic and

regulatory functions

Dendritic cells Antigen sampling Increased activation

promoting inflammation

Plasma cells Produce secretory IgA (sIgA),

help maintain ISC niche

Increased in number,

increased granzyme B and

cytotoxic activities

Chemical Barrier

Digestive

secretions

Degrade nutrients and

bacteria

Altered secretions

Anti-microbial

peptides (AMPs)

Bacterial degradation and

exclusion

Reduced antimicrobial activity

Cytokines,

inflammatory

mediators

Promote inflammation Increased production

contributing to repetitive

mucosal injury

BMPs, bone morphogenic proteins; 5-HT, 5 hydroxytryptamin; ISC, intestinal stem cell;

CD, Crohn’s disease.
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FIGURE 1 | Physical and chemical components of the intestinal epithelial barrier. See text for component specifics. With epithelial barrier dysfunction (insert), intestinal

permeability increases which allows for antigens and macromolecules (bacteria) to pass into the lamina propria where innate and acquired immune cells reside. From:

(14) with permission.

studies indicate that differential claudin expression (either
up- or down-regulation) is associated with impaired barrier
function (19, 20). The important TJ adapter proteins, zonulin
occludens (ZO) -1, -2 and -3, connect the cytoskeleton to the
transmembrane TJ proteins. Underneath the TJs are the AJs that
are important for cell-to-cell signaling and epithelial restitution,
while desmosomes provide structural stability between the IECs
(16, 21). Summarizing, the intestinal epithelium maintains its
selective barrier function through the formation of complex
protein-protein networks that mechanically link adjacent IECs to
selectively seal the intercellular space.

The expression pattern of JPs is tightly regulated and
varies by intestinal compartment (small vs. large intestines),
villus/crypt location, and cell membrane location (apical, lateral
or basolateral). The expression of AJ and TJ proteins is a dynamic
process that is steadfastly regulated by phosphorylation causing
both beneficial and harmful consequences (22–24). For example,
phosphorylation can either promote TJ protein formation to
enhance barrier function or alternatively it can disrupt and
redistribute TJ and AJ proteins to increase intestinal permeability
(25, 26).

The human intestinal epithelium constantly renews itself
every 4–5 days under normal homeostasis, with the pace of

renewal increasing following damage. Regulating this process are
pluri-potential stem cells that give rise to all GI epithelial cell
lineages and can generate whole intestinal crypts (12). At the tips
of villi and along the epithelia of the colon, mature cells undergo
apoptosis and are normally shed into the GI lumen. Intestinal
stem cells (ISCs that express LGR5) can differentiate into four
specialized cell types, including columnar cells (enterocytes and
colonocytes), goblet cells, enteroendocrine cells and Paneth cells
(the latter cell type found only in the small intestine) (15).
Columnar cells are the most abundant epithelial cell found in
the small and large intestines and are involved in absorption.
Goblet cells produce and secrete mucin (e.g., mucin-2) which
covers the surface of the intestinal epithelium. Antimicrobial
peptides and lysozyme further fortify the antimicrobial properties
of the mucus compartment to promote antigen elimination.
Paneth cells produce lysozyme and several antimicrobial peptides
to protect against microbial infection including α-defensins
and Reg3 proteins (27, 28). They also reside adjacent to ISCs
and provide the necessary growth factor (e.g., Wnt, EGF or
Notch) signals to the ISCs and constitutes the stem cell’s
niche (12). Epithelial cells secrete β-defensins in response to
sensing of microbes by their pattern recognition as either
commensal bacteria or pathogens. Secretory immunoglobulin
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A (sIgA) is produced by plasma cells to mediate protection at
mucosal surfaces by binding bacteria and viruses to prevent their
attachment to or invasion of IECs (i.e., immune exclusion) (29).
Finally, the resident bacteria provide a deterrent to microbial
invasion and maintenance of mucosal homeostasis through
competitive exclusion, nutrient utilization, niche localization and
their production of bacteriocins (30).

Intestinal Barrier Permeability Pathways
The intestinal epithelium serves as the primary compartment of
the mucosal barrier and uses both transcellular and paracellular
mechanisms to transport substances from the lumen into the
lamina propria. The transcellular pathway primarily transports
nutrients and compounds having high molecular weight (>600
Da) by means of endocytosis or carrier-dependent transport
systems. The protein complexes interconnecting enterocytes (i.e.,
TJ, AJ, and desmosomes) are dynamic key modulators that
allow for the paracellular transport of water, small solutes and
electrolytes between enterocytes while restricting the passage
of microbes and large molecules (31, 32). Since paracellular
transportation occurs through the space between cells, it is
less selective as compared to the transcellular pathway which
is regulated by membrane channels. Taken together, these two
pathways selectively regulate the degree of permeability for
substances having different physiochemical properties, such as
variable size and ionic charge, into the lamina propria. Any
impairment in the integrity or function of these transporting
routes increases intestinal permeability which is implicated in the
pathogenesis of several GI and extra-GI diseases (i.e., having local
or systemic manifestations) such as IBD, celiac disease, type I
diabetes, and emotional stress (33, 34).

The gut microbiome, which contains 1014 bacteria and
100-fold more genes than the entire human genome, has a
pivotal role in development of the host immune system and
metabolism (35). Awell-balanced symbiotic relationship between
the gut microbiota and the host is required for maintenance of
mucosal homeostasis. There are approximately 1,000 different
bacterial species within five dominant phyla (i.e., Bacteroidetes,
Firmicutes, Actinobacteria, Proteobacteria, and Verrucomicrobia)
that comprise the healthy human fecal microbiota (36). In
contrast, the core gut bacteria in the feces of specific pathogen
free (SPF) mice contains 37 genera (37). In this group,
Anaerostipes spp were present in all mice and are an important
butyrate producing bacterial species contributing to mucosal
barrier integrity. Another murine microbe with high prevalence
is Parabacteroides spp which are important in stimulating
host immunity. The other dominant murine bacteria include
carbohydrate-utilizing and lactate and/or acetate-producing
microbes such as Bifidobacterium spp and Lactobacillus spp.
These observations suggest that the composition of a core
microbiome within a species is essential for maintaining gut
homeostasis and are reflective of overall host health to a
variable extent.

Methods to Investigate the Intestinal Epithelial Barrier
The intestinal epithelial barrier remains selectively permeable
if its integrity is not compromised. Following mucosal barrier

disruption, intestinal permeability increases and delivers
phlogistic dietary and/or microbial products to the mucosal
immune system which provoke host responses. Therefore,
the normally tolerogenic crosstalk between the host and the
microbiota becomes perturbed resulting in the generation of an
overactive immune response. Overtime, this continuous immune
stimulation gives rise to intestinal inflammation which triggers
the onset of chronic GI disease, such as IBD. Longitudinal
studies in patients with IBD indicate that altered intestinal
permeability precedes relapse of CD, suggesting a pathogenic
role for barrier dysfunction in IBD as well as an indicator
of impending symptoms (38). There are several methods for
assessment of intestinal permeability via administration of oral
probes, in vitro or tissue measures, and endoscopic evaluation
of the intestinal epithelial barrier (mucosa) in humans (Table 2)
(14, 21).

Our own work using a defined microbiota [colonized with the
altered Schaedler flora (ASF)] mouse model shows that healthy
ASF mice have increased intestinal permeability as compared
to conventionally reared (CONV) mice. Using RNA in situ
hybridization, we provide evidence that greater concentrations
of bacteria (EUB probe) and/or their products translocate into
the cecal lamina propria vs. bacterial products that translocate in
CONV mice (Figure 2). Furthermore, ASF mice demonstrated
greater IgG antibody response against members of their resident
microbiota when compared to the antibody response directed
against these same bacteria in CONV mice (unpublished
observations). Our findings are in accordance with previously
published data confirming that mice harboring a less diverse
gut microbiota have an altered mucosal barrier and increased
intestinal permeability (40).

Microbiota Alterations in IBD
Observations in Human IBD
Abundant clinical studies indicate a dysfunctional interaction
between the gut microbiota and the host response in the onset
and pathogenesis of IBD. Increased risk of IBD is associated with
changes in composition/structure of the intestinal microbiota or
genetic predisposition that impairs normal microbial sensing,
both of which can cause altered host-microbe interactions (2, 3,
41–48). CD and UC are not considered single gene disorders,
as over 240 susceptibility and IBD risk loci have now been
identified (49, 50). Twin studies showed that while there is a
genetic basis for IBD, it is not inherited in a simple Mendelian
fashion (51). Genetic linkage analysis studies have identified
nine disease loci, five of which meet the most stringent linkage
analysis criteria, the remaining of which were at least suggestive
(49). Mutations in several genes responsible for innate immune
sensing of the intestinal microbiota, including NOD2/CARD15,
IL-23R and ATG16L1, can also lead to increased risk for IBD
(52–54). CARD15/NOD2 was the first IBD susceptibility gene
that was identified emphasizing the importance of mucosal-
microbial disturbances in the pathogenesis of IBD (53). CARD15
encodes an intracellular protein expressed in multiple immune
system components including Paneth cells, monocytes, tissue
macrophages and intestinal epithelial cells (52, 55–57). In Paneth
cells, NOD2 mediates activation of NF-κB that leads to the
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induction of defensins. With NOD2 mutations in CD, selective
α-defensin production is attenuated which predisposes intestinal
epithelial cells to microbial infection (58). Additionally, two
autophagy genes, ATG16L1 and IRGM—both of which have roles
in the processing of microbial antigens as part of the innate
immune system—were identified as susceptibility genes (54, 59).
Polymorphisms in these genes promote deranged innate immune
responses leading to persistent intracellular bacterial infection
that promote the development of IBD. IBD has also been linked
to IL-10 deficiencies in humans. In the study by Glocker et al.,
investigators found that mutations in either IL10RA or IL10RB
are associated with severe early onset enterocolitis in children
(60). In a separate study, investigators reported NOD2mutations
in patients with IBD that were linked to inhibition of IL-10 in
human monocytes (61).

The host microbiota plays an important role in the
pathogenesis of IBD as evidenced by numerous clinical studies.
Antibiotic use, both in early childhood and in adults, has
been associated with increased risk for development of IBD
(62). Moreover, the risk for IBD increases following an episode
of infectious gastroenteritis (63). There are other observations
implicating the microbiota including reports that mucosal
inflammation is localized to gut segments with the greatest
bacterial loads (2, 42). Furthermore, antibiotic treatment may
be effective in a subset of IBD patients (post-surgical, CD and
in pouchitis patients). Antibiotics have been used with varying
degrees of success and longevity of response in patients with CD
having luminal disease, fistulizing disease, and secondary septic
complications such as post-operative infections (64). Results
from large scale clinical trials and meta-analyses have been
mixed with some analyses finding mild to moderate benefits
in disease activity scores (65, 66) and others finding no benefit
(67). Furthermore, probiotics and fecal microbiota transplant (in

UC patients) may induce or maintain remission in some IBD
patients (68–70).

Importantly, many studies have shown consistent alterations
in microbial communities characterized by reduced microbial
diversity in patients with IBD compared to controls (41, 71). The
fecal microbiota of both CD andUC patients contains a depletion
of Bacteroidetes and Firmicutes phyla (in particular Clostridium
spp), which are the dominant normal fecal microbiota, and an
increased abundance in Proteobacteria (42, 45, 72). Moreover, a
metagenomic analysis of microbiomes demonstrated 25% fewer
mucosal microbial genes from IBD patients compared with the
microbiomes of healthy controls, suggesting that lower microbial
diversity is present and contributing to disease (73). Several
studies have found decreased abundance of Faecalibacterium
prausnitzii (74), a major butyrate producing bacteria in the gut,
and an increase in sulfate-reducing bacteria (SRB) which cause
decreased expression of epithelial TJPs to increase intestinal
permeability in IBD (75).

Still other studies have focused on the role of the mucosal
microbiota that is different than the fecal microbiota between
controls and patients with IBD. Using fluorescence in situ
hybridization, high concentrations of bacteria were shown
adherent to the epithelium of IBD patients as a thick biofilm,
mainly composed of Bacteroides fragilis (43). In one seminal
study, a depletion of Lactospiraceae and Bacteroidetes but
increased abundance of Proteobacteria and Actinobacter
were present in colonic biopsy specimens from both CD
and UC patients, relative to control tissue samples (45).
The distribution of operational taxonomic units (OTUs)
was associated with disease state but not anatomy (small
vs. large intestine) or gross pathology. Furthermore, the
microbiome collected in multiple GI locations from a large
cohort of treatment naïve patients with new-onset CD found

FIGURE 2 | RNA in situ hybridization for total bacteria (EUB probe) in murine cecal tissue specimens. Red staining indicates the presence of bacteria and/or their

products within the cecal lamina propria of ASF colonized mice (A) and conventional mice (B). From: Parvinroo et al. (39) with permission.
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an increased abundance of Enterobacteriaceae, Pasteurellacaea,
Veillonellaceae and Fusobacteriaceae and a reciprocal decrease
of Erysipelotrichales, Bacteroidales and Clostridiales in pediatric
IBD samples as compared to controls (45). These changes
also correlated with disease status, that is, inflammation
had a significant impact on microbial composition. Since
several of the underrepresented bacterial phyla in IBD
patients are butyrate-producing microbes, depletion of
these organisms might reduce butyrate production, which
is an important energy source for colonic epithelial cells
and may enhance epithelial barrier integrity and mediate
GI immune responses (42). Loss of significant quantities of
these bacteria that provide key metabolic products (i.e., short
chain fatty acids) to the host could exacerbate some forms of
IBD (76–78).

TABLE 2 | General means for assessment of intestinal permeability in humans

and animals.

Method Human Animal Material

needed

Comments

Orally administered probes

Lactulose/mannitol X X Urine Time consuming

FITC-dextran X Serum Time consuming

51Cr-EDTA X X Urine Time consuming; radiation

hazard

In vitro/tissue measures

Ussing chamber X X Biopsies Invasive; requires

specialized equipment

TEER X X Biopsies Invasive; requires

specialized equipment

Histology X X Biopsies Invasive; permits specialized

testing (IHC, confocal

microscopy) for TJP

expression

Scanning electron

microscopy

X X Biopsies Invasive; specialized fixative;

expensive

DNA/RNA

extraction

X X Biopsies Invasive; permits qPCR for

TJP expression

Biomarkers

LAL assay (LPS) X X Plasma May have technical

limitations

Citrulline X X Plasma Reliability in the dog is

questioned

FABP X X Plasma ELISA performed on plasma

or urine

Endoscopic measures

Confocal

endomicroscopy

X X* *As performed in dogs;

specialized equipment;

expensive

Endoscopic

mucosal

impedance

X Directly measures duodenal

impedance; specialized

equipment; expensive

Modified from references 20 and 38; TEER, trans-epithelial electrical resistance; LPS,

lipopolysaccharide; FABP, fatty acid binding protein; IHC, immunohistochemistry; TJP,

tight junction protein.

*denote that this intervention is only used in dogs.

Pathobionts, such as adherent-invasive Escherichia coli
(AIEC), are present within themucosa in 21–62% of patients with
ileal CD and 0–19% of healthy individuals (79, 80). Dysbiosis
is associated with increased levels of oxygen in the intestinal
lumen (81), possibly due to increased intestinal permeability
and/ormucosal inflammation (82). In the inflamed gut, increased
colonic oxygen levels restrict obligate anaerobic populations
(e.g., Firmicutes) and increase the abundance of facultative
anaerobes, including members of the family Enterobacteriaceae
(83). Patients with CD have specific NOD2 variants that
lead to defective innate sensing, autophagy, and immune
responsiveness to CD-associated AIEC (7, 84). The adhesion
molecule CEACAM6 is over expressed in ileal CD patients
which also makes individuals more susceptible to mucosal
colonization by AIEC (85). AIEC pathobionts strongly adhere
to and invade IECs inducing robust pro-inflammatory cytokine
secretion (e.g., IFN-γ, TNF-α) which causes direct damage to the
intestinal barrier and promotes inflammation. Once within the
ileal mucosa, AIECs can reside and replicate withinmacrophages,
leading to an increased pro-inflammatory response (86). In
contrast, AIEC colonization does not occur in colonic CD and the
lack of AIECmucosal translocation in UC patients would suggest
that E. coli does not play a primary role in UC pathogenesis (87).

Observations in Murine Models of Intestinal

Inflammation
Most different mouse models support a role for the microbiota
in experimental intestinal inflammation. Early studies in mice
treated with dextran sodium sulfate (DSS), a chemical irritant
that disrupts the colonic intestinal epithelial barrier to contribute
to the development of colitis, reported significant increases
in intestinal Bacteroidaceae and Clostridium spp, in particular
Bacteroides distasonis and Clostridium ramosum, in both acute
and chronic colitis DSS models (88). In another study, increased
numbers of colonic mucin-degrading Akkermansia muciniphila
and Enterobacteriaceae were correlated to disease activity in
DSS-treated mice resembling UC (89). Interleukin-10 knockout
(IL-10−/−) mice develop spontaneous colitis that is entirely
dependent on gut bacteria (90), and where colonic inflammation
is attenuated when treated with antibiotics before disease onset
(91) or is eliminated altogether in mice housed in a germ free
environment (92). Animal models have also shown that intestinal
inflammation is transferable through the intestinal microbiota.
Germ-free IL-10−/− mice colonized by the intestinal microbiota
of IBD patients exhibit increased colitis as compared to mice
colonized with the intestinal microbiota derived from healthy
human controls (93). In IL-10−/− mice, loss of regulatory IL-
10 secretion results in intolerance to their intestinal microbiota,
unbalanced pro-inflammatory responses contributing tomucosal
barrier disruption, and the development of spontaneous colitis.

The administration of broad or narrow spectrum antibiotics
shows different therapeutic activities in various regions of
the colon in SPF colonized IL-10−/− mice. Narrow spectrum
antibiotics, such as ciprofloxacin or metronidazole, prevented
cecal and colonic inflammation in IL-10−/− mice following SPF
colonization. Ciprofloxacin was most effective in treating cecal
inflammation by reducing aerobic bacteria, including, E. coli
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and E. faecalis; whereasmetronidazole was superior in reducing
colitis and eliminated anaerobic bacteria (e.g., Bacteroides spp) in
both the cecum and colon (94). Importantly, while ciprofloxacin
and metronidazole prevented the induction of typhlocolitis in
IL-10−/− SPF-colonized mice, these antibiotics had little effect
after the onset of intestinal inflammation. In contrast, the
broad-spectrum combination antibiotic vancomycin-imipenem
decreased total luminal bacteria and prevented and treated both
cecal and colonic inflammation. Taken together, these studies
demonstrate that gut bacteria have differing inflammatory roles
with some species initiating onset of intestinal inflammation
while other microbe subsets drive chronic colitis (95).

Additional evidence supporting the role of the microbiota in
colitis development is provided by studies using transfer animal
models of colitis induced by deficiency of T-bet in innate immune
cells. T-bet is a transcription factor that plays a crucial role in
development of Th1 cells and in the regulation of innate and
adaptive immunity (96). In certain murine models, loss of T-bet
in mice lacking B and T cells (T-bet−/−/RAG-1−/−) results in
transmissible colitis in conventionally raised wild-type mice by
co-housing, presumably caused by microbiota transmission (97).
In similar fashion, Casp3/11-deficient mice, which are normally
protected against DSS-induced colitis, lose this protection and
becomemore sensitive to DSS on co-housing withWTmice (98).

Specific pathogenic bacteria have been associated with the
development of intestinal inflammation in murine models.
Proteus mirabilis and Klebsiella pneumoniae correlate with
colitis in T-bet−/−/Rag2−/− mice, a mouse model resembling
UC (97). Different Helicobacter spp, including infection with
H. hepaticus and H. bilis or exposure to their antigens,
trigger IBD-like disease in susceptible mice. For example,
H. hepaticus induces chronic colitis in SPF-housed IL-10−/−

mice accompanied by increased expression of pro-inflammatory
biomarkers IFN-γ, TNF-α and nitric oxide (99). In a separate
study, the combination of H. hepaticus infection and CD45RB
high CD41 T-cell reconstitution resulted in marked disease
expression in severe combined immunodeficiency (SCID) mice
similar to that observed in human IBD (100). Still other
experiments employing targeted infection with H. hepaticus
were able to produce colitis and sometimes colonic tumors
in different mouse strains having defects in immune function
and/or regulation (101). Our group has previously shown that
defined microbiota [i.e., altered Schaedler flora (ASF)] mice
are a useful tool to investigate the impact of specific members
of the Proteobacteria (e.g., E. coli, Helicobacter spp) on the
development of colitis. The induction of typhlocolitis in ASF
mice colonized with either H. bilis or Brachyspira hyodysenteriae
was accompanied by induction of ASF-specific antibody (102).
Using a “multiple-hit” mouse model of colitis, we have shown
that colonization of ASF mice with H. bilis increased host
susceptibility to onset of severe colitis following low dose
(1.5%) DSS administration (i.e., inflammatory trigger) (103). An
analysis of the molecular/cellular mechanisms revealed increases
in mucosal gene expression involving lymphocyte activation
and inflammatory cell chemotaxis, with infiltration of more
mucosal immune cells in H. bilis-colonized mice prior to
DSS treatment vs. DSS treatment alone. A subsequent study

with a similar experimental design used microarray analysis
to demonstrate differential mucosal gene expression associated
with alterations in fatty acid metabolism and detoxification in
a time course following H. bilis colonization (104). This latter
study provided preliminary evidence as to the types of factors or
changes in the intestinal mucosa (i.e., alterations in housekeeper
genes) that potentially predispose the host to the development
of typhlocolitis.

Citrobacter rodentium is an attaching and effacing (non-
invasive) bacterial pathogen that primarily causes acute
typhlocolitis in mice, except when barrier function is impaired
or in animals that are genetically susceptible to inflammation
where infection can trigger chronic disease (105). The C.
rodentium infection model was one of the first mouse models to
show that composition of the intestinal microbiota influences
susceptibility to infection (106), and that infection can alter the
composition and spatial distribution of the resident microbiota
post-infection (107). Finally, Fusobacterium varium isolated
from the colonic mucosa of patients with UC was shown to
induce experimental ulcerative colitis in mice (108). Collectively,
these experimental studies provide compelling evidence that
individual resident species are capable of inducing colitis in
susceptible mouse models.

Novel Animal Model Observations

Implicating Epithelial Barrier Dysfunction

in IBD
Here we relate some of our own work utilizing different animal
models to investigate host-microbe interactions mediating
chronic intestinal inflammation and the role of the mucosal
barrier in these different model systems.

The Dog as a Naturally Occurring Model of Chronic

Inflammatory Enteropathy
Dogs represent a well-recognized large animal model that
naturally develops CIE (also referred to as idiopathic IBD in the
veterinary literature), sharing remarkable similarities in etiology,
clinical course, histologic lesions and interventional strategies to
human IBD (Table 3) (109–116). The obvious advantages of the
dog in relation to other common animal models (e.g., rodents,
zebra fish) include their large body size, longer life span, and
they possess a GI tract of similar size, structure and function
to that of humans. Of key importance for translational studies,
pet dogs are exposed to the same environmental conditions
and even share similar microbiota composition with their
owners (117, 118). Clostridialis, Fusobacteria, Bacteroides and
Proteobacteria are the dominant bacteria comprising the healthy
canine fecal microbiota (119, 120). Metagenomic analyses in a
small cohort of healthy dogs indicate that diet induced changes
in microbial composition are not associated with changes in
function, and that the fecal microbiota of dogs, mice and humans
exhibit a high degree of metabolic and phylogenetic similarity
(121). Considering the common microbiota and environmental
exposures with humans, there is growing interest in whether
similar mechanisms of CIE pathogenesis are shared between
species (122).
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Certain dog breeds show a predisposition to the development
of CIE suggesting a role for host genetics in this disorder.

TABLE 3 | Comparative features of IBD in different animal models.

Feature Human Dog Rodent

Genetic basis Yes Yes Engineered

Etiology Multifactorial and

complex

Multifactorial and

complex

+/- Multifactorial

Intact immune

system

Yes Yes +/-

Resident

microbiota role

Yes Yes Yes

Blood in stool Yes Yes Yes

Diarrhea Yes Yes Yes

Disease activity

measures

Clinical indices,

biomarkers

Clinical indices,

biomarkers

Laboratory

markers

Definitive

diagnosis

GI mucosal biopsy GI mucosal biopsy GI mucosal biopsy

Longitudinal

studies

Yes: endoscopy +

histology

Yes: endoscopy +

histology

Difficult to perform

Primary therapy Anti-inflammatory

drugs

Diet +

anti-inflammatory

drugs

Anti-inflammatory

drugs

Disease

heterogeneity

Yes Yes Variable

Spontaneous GI

flares

Yes Yes +/-

GI, gastrointestinal.

The German shepherd dog, Soft-coated wheaten terrier and
Boxer dog/French bulldog have an increased incidence of
CIE clinically that has been linked to mutations in innate
immune genes, including TLR5, NOD2, and autophagy gene
NCF2 (123, 124). Importantly, several of the same breeds
(i.e., German shepherds, Boxer/French bulldog) show positive
clinical response to administration of antimicrobials, indicating
a potential interaction of host susceptibility with the intestinal
microbiota in affected dogs. Intestinal biopsies are required
to confirm histopathologic inflammation of CIE, with GI
endoscopy being the preferred modality to visually inspect the
GI mucosa and to acquire targeted biopsy samples. Mucosal
lesions of erosions, friability and increased granularity are
observed most frequently during endoscopy and correlate
best to histopathologic inflammation (Figure 3) (113, 126).
Lympho-plasmacytic enteritis of varying severity is the most
common type of inflammation often accompanied by changes in
mucosal architecture, including villous atrophy/fusion, erosions,
ulceration, cryptal changes and/or depletion of colonic goblet
cells (Figure 4) (127). Mixed cellular infiltrates are also observed
in dogs with epithelial disruption (neutrophils) or in response
to invasive mucosal bacteria (macrophages) as occurs with
granulomatous colitis.

Like experimental models and human IBD, the intestinal
microenvironment is implicated in the development of CIE in
dogs. Numerous studies have shown that intestinal inflammation
in dogs is accompanied by dysbiosis, where the proportions
of Clostridiales, Fusobacteria, Bacteroidetes and Prevotellaceae
are decreased, but the proportion of Proteobacteria, including

FIGURE 3 | Endoscopic evidence of intestinal barrier disruption in dogs with CIE. Multifocal erosions are evident within the ileal (A) and colonic (B) mucosae of

different dogs with moderate-to-severe CIE. From: Jergens et al. (125), with permission.
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FIGURE 4 | Histopathologic evidence of intestinal barrier disruption. Duodenal biopsy showing focally extensive villus erosions covered by neutrophils and cell debris

in a dog with CIE. Hematoxylin and eosin (HE) stain. From: (110), with permission.

Enterobacteriaceae, is significantly increased compared to
healthy dogs (128–130). Mucosal associated E. coli are
significantly increased with intestinal inflammation of CIE,
granulomatous colitis and colorectal cancer (adenocarcinoma) in
dogs (114, 131). Granulomatous colitis (GC) is a unique variant
of CIE, causing chronic colitis with small volume diarrhea,
straining, hematochezia and mucoid feces in predominantly
young Boxer dogs. Here, a possible genetic defect in innate
immune sensing confers increased susceptibility to E. coli
invasion of colonic tissues (124). With this immune defect,
ineffective respiratory burst impairs the host’s ability to eliminate
intracellular pathogens, including catalase-positive bacteria. A
diagnosis of canine GC is confirmed by mucosal culture and/or
fluorescence in situ hybridization that identify invasive E. coli
within the colonic mucosa of affected dogs (Figure 5). In Boxers
with GC, long-term remission is observed with antimicrobial
eradication of mucosally invasive E. coli, suggesting a causal
relationship between this bacterial strain and clinical disease
(131). Of interest, the observed phylotype of E. coli isolated from
Boxer dogs with GC bears strong phylogenetic resemblance to
the pathobiont E. coli strain isolated from CD patients (132).

The intestinal barrier of dogs with CIE has been investigated
to a limited extent. Using duodenal biopsy samples obtained
endoscopically from healthy dogs and dogs with CIE, the

mucosal expression of claudin-1, -2, -3, -4, -5, -7, and -8; E-
cadherin; and β-catenin was determined by immunoblotting
and compared between dog groups (133). Results showed no
difference in expression of each claudin and β-catenin between
healthy dogs and dogs with CIE; while the expression of E-
cadherin was reduced in dogs with CIE. Immunofluorescence
microscopy (in a subset of CIE dogs) showed decreased intensity
of E-cadherin labeling in the apical villi of dogs with CIE.
In humans with IBD, a significant correlation between low E-
cadherin expression and disease activity has been previously
demonstrated (134). In another study, the ratio of IL-1β to IL-
1 receptor antagonist (Ra), and the effect of IL-1β on occludin
mRNA expression in the duodenal and colonic mucosa were
investigated in healthy dogs and dogs with CIE (135). The ratio
of IL-1β to IL-1Ra in the colonic mucosa was higher in dogs
with CIE vs. healthy dogs. Ex vivo cultures of duodenal and
colonic biopsies incubated with IL-1β showed reduced expression
of occludin mRNA in colonic, but not duodenal, cultures of
dogs with CIE. These findings are similar to observations in
humans where both occludin mRNA and protein concentrations
are reduced in the intestines of CD and UC patients (136).
Finally, another study investigated intestinal pro- and active
metalloproteinase (MMP) -2 and -9 activities in healthy dogs and
dogs with chronic enteropathy (CE) using gelatin zymography.
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In dogs with CE, there was a greater number of samples
positive for pro- and active MMP2 and -9 in the duodenal,
ileal and colonic mucosa as compared to healthy dogs (137).
Similar findings of elevated matrix metalloproteinases have been
reported in dogs with CIE and in humans with IBD (138,
139).

Clinical trials evaluating drug or probiotic therapy have
provided indirect evidence on the role of the intestinal barrier
in canine CIE. In one trial, the effects of a hydrolyzed diet
and oral prednisone on the spatial distribution of mucosal
bacteria in dogs with CIE was investigated using FISH
(140). Medical therapy was associated with beneficial changes
in microbial community structure and enhanced mucosal
junctional protein expression in dogs with CIE. The spatial
distribution of mucosal bacteria differed with increased numbers
of Bifidobacteria, Faecalibacteria and Streptococci found within
adherent mucus of dogs with CIE post-treatment compared
to healthy dogs. Using immunohistochemistry (IHC), the
expressions of occludin and E-cadherin were increased but
zonulin decreased in dogs with CIE following prednisone
therapy. Still other studies using multi-strain probiotics for
the treatment of canine CIE have shown potential beneficial
alterations in junctional proteins that are associated with
remission. In one trial, probiotic therapy with VSL#3 was
investigated in comparison to combination treatment with
prednisone and metronidazole administered continuously to
dogs with CIE for 90 days (115). Dogs treated with probiotic
showed remission accompanied by changes in beneficial mucosal

responses (i.e., increased numbers of FoxP3+ and TGF-
β+ cells) and increased mucosal expression of occludin.
Another probiotic trial using FISH to investigate the mucosal
microbiota showed that remission of dogs with CIE was
associated with changes in beneficial bacterial species and
up-regulated expression of junctional proteins following 6
weeks of probiotic therapy (141). Both probiotic and standard
therapy for CIE (e.g., hydrolyzed diet + oral prednisone)
were associated with rapid remission without improvement in
histopathologic inflammation. Probiotic therapy was associated
with increased expression (IHC) of junction proteins E-cadherin,
occludin and zonulin vs. dogs with CIE that received standard
therapy (Table 4; Figure 6). Collectively, these observations of
increased barrier integrity in dogs receiving glucocorticoid
or probiotic therapy for CIE are in broad agreement with
studies in UC patients and experimental models of intestinal
inflammation (142–145).

TABLE 4 | Probiotic therapy modulates TJP expression in dogs with IBD.

Colon Claudin-2 E-cadherin Occludin Zonulin

Healthy dogs 91* 1,031* 1,119* 371*

Pre-VSL #3 IBD 1,212∧ 575 131 61

Post-VSL #3 IBD 82 902∧ 859∧ 326∧

*P < 0.05 for healthy dogs vs. Pre-VSL #3 IBD dogs; ∧P < 0.05 for Pre-VSL #3 IBD dogs

vs. Post-VSL #3 IBD dogs; TJP, tight junction protein. From reference 129.

FIGURE 5 | Granulomatous colitis in a 2-year-old English bulldog. (A) Endoscopic image of severe colonic granularity (increased texture) involving the descending

colon. (B) Colonic biopsy from this dog shows clusters (yellow fluorescence) of mucosal associated E. coli following fluorescence in situ hybridization. From: Jergens

et al. (125), with permission.
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FIGURE 6 | Immunohistochemistry for expression of tight junction proteins in colonic biopsies of healthy dogs and dogs with CIE before and after probiotic VSL #3

therapy. Healthy dogs generally express increased TJPs as compared to dogs with CIE at diagnosis (pre-VSL #3). A reciprocal increase in TJP expression is observed

in dogs with CIE following probiotic treatment (post-VSL #3). (A) Claudin expression; (B) E-cadherin expression; (C) Occludin expression. All images at 20X

magnification. From: White et al. (141), with permission.

Other Murine Model Observations
Brachyspira hyodysenteriae is a Gram-negative anaerobic
spirochete and is the causative agent of swine dysentery. The
pathogenesis of disease has been studied in mice and pigs
and has been shown to rely on the presence of a resident
microbiota (146, 147), production of a ß-hemolysin (148), local
inflammatory response of the host (149, 150), and recruitment
of host inflammatory cells (151). With respect to the need for
other resident bacteria, our own research has shown that the
colonization of GF mice with B. hyodysenteriae failed to induce
typhlocolitis in mice, even when mice were observed for 110
days post-colonization. The need for at least one member of
the resident microbiota was demonstrated by administering
Bacteroides vulgatus to GF mice previously colonized with B.
hyodysenteriae (i.e., no disease) and typhlocolitis developed
within 5 days. This result suggested that the presence of B.
vulgatus either enhanced the virulence of B. hyodysenteriae or
induced host innate immune responses that contributed to the
resultant inflammatory response. Furthermore, treatment of
mice with an antibiotic cocktail to which the spirochete was
resistant in their drinking water for 7 days, prior to colonization
with B. hyodysenteriae, prevented the onset of disease even
though the numbers of spirochetes colonizing the cecum and
colon were like that of untreated mice with typhlocolitis. In these
conventionally reared mice, the role of the resident microbiota
was further shown by replacing the antibiotic-containing
drinking with normal drinking water and the severe typhlocolitis
developed within 15 days. It was shown that the antibiotics
significantly reduced the numbers of bacteria in the feces and
cecal contents by six to seven log10 with the dominant bacterial
types remaining being Gram-negative facultative anaerobes
and strict anaerobes. One conclusion to be drawn from these
results would suggest that the crosstalk between the host and the
resident microbiota contributes to disease susceptibility and the
severity of the inflammatory response (152, 153).

It has also been shown that disease caused by B. hyodysenteriae
can be inhibited by treating mice orally with an extract (i.e.,
hypoxoside) from Hypoxis hemerocallidea corm (also known as
Hypoxis rooperi, African Potato). Beginning seven days prior

to challenge, the oral administration of hypoxoside did not
prevent the colonization of B. hyodysenteriae, but prevented the
onset of typhlocolitis as evidenced by the lack of inflammatory
cell infiltration, absence of crypt hyperplasia, and reduction
in the expression of cytokine-specific genes regulated by NF-
kB activation (149). As with the administration of antibiotics
mentioned above, the administration of hypoxoside prevented
disease and expression of TNF-α-specific mRNA when treatment
began at least 7 days prior to colonization with B. byodysenteriae.
The need to initiate treatment 7 days prior to colonization with B.
hyodysenteriae coincides with the turnover of colonic epithelial
cells and suggests that the host inflammatory set-point can be
altered in the new epithelial cells by affecting which bacteria are
present (i.e., antibiotic use) or by changing the responsiveness
of the epithelial cells to phlogistic stimuli (i.e., hypoxoside).
In this regard, administration of hypoxoside also inhibited
crypt epithelial cell hyperplasia following colonization with B.
hyodysenteriae (Figure 7). The ability to affect epithelial cell
responsiveness was further demonstrated by adding conjugated
linoleic acid (CLA) to the diet of pigs prior to colonization
with B. hyodysenteriae. It has been shown that CLA is a ligand
for peroxisome proliferator-activated receptor gamma (PPAR-g)
and that the activation of PPAR-g promotes mucosal epithelial
health by suppression of inflammation and facilitating metabolic
reprogramming (i.e., oxidative phosphorylation) of colonic
epithelial cells associated with the use of SCFAs derived from
microbial metabolism (150, 154). To further demonstrate that
the interaction of B. hyodysenteriae with the colonic epithelium-
induced inflammatory cell recruitment, mice that were treated
with anti-CD18 or anti-CD29 to prevent extravasation of
neutrophils from blood failed to develop typhocolitis (151).
Using B. hyodysenteriae as a model of bacterial induced colitis,
these studies have demonstrated that the colonic epithelium in
association with the resident microbiota is a key contributor of
mucosal health or disease.

In the context of IBD, epithelial barrier function is a critical
component of maintaining mucosal homeostasis and tissue
health. It has been shown that mice (i.e., mdr1a−/−) lacking
the multiple drug resistance gene P-glycoprotein 170 (Pg-170)
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FIGURE 7 | Immunohistochemical detection of proliferating epithelial cells in mice treated with hypoxoside. Mice were either sham treated orally with sterile drinking

water (Control) or hypoxoside (Colonized and treated). The mice treated daily with either saline or hypoxoside (15mg) beginning 8 days prior to colonization with

Brachyspira hyodysenteriae (B. hyo). Mice were necropsied 3 days after colonization. One h prior to necropsy, mice received an IP injection of BrDU. Proliferating

epithelial cells were identified by labeling their DNA with anti-BrDU using immunohistochemistry. From: (149), with permission.

develop spontaneous colitis between 8 and 30 weeks of age
associated with epithelial barrier dysfunction. As an efflux
pump, Pg-170 is highly expressed in colonic epithelial cells
and contributes to the removal of xenobiotics and phlogistic
compounds from the cytosol (155). As with many murine
models of colitis, GF mdr1a−/− mice do not develop colitis
and administration of metronidazole in the drinking water
ameliorates the colitis, indicating a role for the resident
microbiota in the disease process (156, 157). Like the studies
performed using hypoxoside, we have shown that treating
mdr1a−/− mice with botanical extracts from either Prunella
vulgaris or Hypericum gentianoides prevented or significantly
attenuated colitis in mdr1a−/− mice (158, 159). The reduction
in colonic inflammation was consistent with the reduction
of NF-kB regulated cytokines and chemokines (e.g., CXCL1,
CXCL9, CCL2, CCL20, and TNF-α). In companion studies,
we demonstrated that administration of caffeic acid to mice
increased the expression to Cyp4b1 (i.e., cytochrome P450)
in the colonic mucosal and ameliorated DSS-induce colitis
(160). Analogous to Pg-170, CYP4B1 controls the metabolism
of proinflammatory compounds in the GI epithelium and
contributes to maintenance of the mucosal barrier. Again, this
demonstrates the central role colonic epithelial cells have in
the attenuation of mucosal inflammation induced by microbial
compounds and in the maintenance of mucosal homeostasis and
GI health.

As IECs are also able to take up antigen and PRR
ligands, they contribute to the maintenance of mucosal
immunity and intestinal health. The importance of the epithelial
response to luminal antigens was elegantly demonstrated by
examining the inflammatory response in MyD88−/− mice

(161). Initially, the authors had reasoned that since much of
the mucosal inflammation associated with IBD was associated
with production of pro-inflammatory cytokines; the absence of
MyD88 should reduce the severity of disease due to impaired
recognition of MAMPs derived from the microbiota. However,
these authors demonstrated that the MyD88−/− mice developed
more severe colitis than the wild-type counterparts. These
observations indicated that there is a cytoprotective aspect to the
local inflammatory response that is key to mucosal homeostasis.
As mentioned above, we had reported that the administration
of anti-CD18 or anti-CD29 attenuated lesion severity in mice
colonized with B. hyodysenteriae. However, if mice were
administered a cocktail containing both anti-CD18 and anti-
CD29 or neutrophils were depleted, lesions were more severe
than in sham treatedmice colonized with B. hyodysenteriae (151).
Like the MyD88−/− mice, the inability to recruit inflammatory
cells resulted in a more severe lesion supporting the importance
of epithelial cell responses to inflammatory stimuli, at least in
moderation. Similarly, the administration of hypoxoside likely
had a beneficial effect in inhibiting the typhlocolitis associated
with B. hyodysenteriae colonization because it attenuated the
local inflammatory responses as opposed to inhibiting that
response, thus, retaining the cytoprotective benefit of the residual
inflammatory response.

The role of the epithelial cells to support antigen uptake and
maintenance of mucosal tolerance is partially mediated by the
induction of regulatory T cells (Tregs) and the secretion of IgA
(sIgA) in the the GI lumen. Functionally, one of the features
of the sIgA is to provide for immune exclusion which would
reduce, but not eliminate, microbial antigen interactions with
epithelial cells and underlying immune cells (162). To this end,
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we evaluated the ability of orally administered serum-derived
bovine immunoglobulin (SBI) to inhibit DSS-induced murine
colitis (163). The SBI would function to bind to bacterial antigens
and reduce the innate and/or adaptive immune activation
contributing to colitis. Results demonstrated that mucosal
inflammation was significantly reduced, there was a decrease
in secretion of pro-inflammatory cytokines and a reduction in
intestinal fatty acid binding protein and serum amyloid A. As
with the use of botanical extracts, dietary CLA and attenuation
of neutrophil recruitment, the use of SBI to reduce mucosal
inflammation by lessening the phlogistic potential of luminal
content on the mucosa while allowing for the beneficial (i.e.,
cytoprotective) expression of host inflammatory responsiveness.

CONCLUSIONS

Host-microbe interactions play important roles in maintaining
homeostasis of the mucosal epithelial barrier as well as
contributing to the development of IBD. The concept that
the intestinal epithelium serves as a “translator” between the
intestinal microbiota and the immune system seems both logical
and plausible (164). Here, the epithelium is responsive to
signals from the microbiota by means of pathogen recognition
receptors and translates these messages into signals that
direct mucosal immune cells. Conversely, IECs receive signals
from the underlying immune system and translate them into
signals that shape intestinal barrier function and the structure
and function of the gut microbiota. Dysregulation of the
intestinal barrier is a salient feature of IBD in humans and
animal models of inflammation, regardless of species. As

such, treatment approaches that aim to support gut barrier
function have been identified and are currently under review,
including nutritional approaches (avoidance of Western-style
diet, precision (FODMAP) diet, prebiotics/fibers]; probiotic
approaches (select probiotics, multi-strain probiotics, symbiotic
preparations); and drug/other approaches (short chain fatty
acids, metformin, fecal microbiota transplantation) (14, 21, 165,
166).
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