About this Research Topic
Some of the challenges that converters for renewable applications currently face are intended to be addressed. Regulations impose power supply quality requirements regarding harmonics, grid fault response and LVRT, which have been addressed by incorporating multilevel topologies, classic vector controllers, resonant controllers, etc. New converter topologies and controllers, better suited to the characteristics of renewable sources and transmission and distribution networks, are welcome. The progress of distributed generation presents challenges to converters such as island mode operation, voltage and frequency regulation of microgrids, simulation, etc. New collaborative solutions for “more smart” microgrids must be included to improve power quality, reliability, service quality and duty.
Areas of interest to this Research Topic include, but are not limited to, the following:
• Topologies and control;
• Converters for offshore wind farms (HVDC, MMC, etc);
• Control of converters in case of grid faults, unbalances and harmonics;
• Converters for microgrids;
• Simulation models;
• New architectural solutions for collaborative distributed generation;
• New solutions for more reliable power converters in smart grids;
• Smart transformers and power electronics for smart grids;
• Microgrid measurement processes;
• IoT and smart metering for microgrids;
• Control and estimation of the state of a microgrid.
Keywords: distributed power generation, microgrids, power grids, PWM invertors, renewable energy sources
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.