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Editorial on the Research Topic

Ubiquitin-Modifying Enzymes as Drug Targets and Biomarkers in Cancer

E3 ubiquitin ligases are critical to the regulatory control of a vast array of substrates and binding
partners. The E3 ligases comprise the HECT, RING-finger, U-box, and PHD-finger protein families.
The RING-finger family has the most members and contain ligases such as the anaphase-promoting
complex (APC) and the SCF complex (Skp1-Cullin-F-box protein complex), as well as many TRIM
proteins. These proteins are key regulators of cell fate in both non-malignant cells and cancer cells
by adding ubiquitin to proteins and are increasingly targets for pharmaceutical modulation. They
are opposed to another class of enzymes referred to as deubiquitinating enzymes (or DUBs) from
protein families such as USP, UCH, OTU, JAMM, MCPIP, which also have become drug targets.
The objective of this special issue was to discuss and advance the current knowledge regarding the
roles and targetability of the ubiquitination machinery, in cancer. Review and research papers were
accepted focusing on cancer related ubiquitin-modifying enzymes as; biomarkers, therapeutic
targets, as an interacting partner of a clinically significant protein in cancer/cancer models and
cancer cell phenotypes. In this Research Topic, we eventually accepted nine articles for publication
(four research reviews and five research articles), which discuss the roles of ubiquitination enzymes
and provide novel insights into how they impact cancer progression.

Ubiquitination plays a critical role in protein stability, MYC and p53 are probably the most
reported proteins concerning their stability, being two transcription factors that are highly dynamic
in expression and relatively unstable at the protein level. Although their transcriptional regulation is
important, post-translational regulators of these proteins have been put forward as drug targets in
cancer because direct targeting of the MYC protein or direct activation of p53 has been historically
difficult. MYC, an oncoprotein, is often overexpressed and activated in tumours, and contributes to
tumour aggressiveness and poor patient outcomes. Deregulation of the ubiquitination/
deubiquitination balance in cancers enables MYC stabilization. In addition, SUMOylation
crosstalks with the ubiquitination pathway and also controls MYC protein stability and activity.
Sun et al. provided a mini-review discussing post-translation regulation of MYC which includes
perspectives about MYC regulators as potential therapeutic targets in cancer. The majority of
therapeutic strategies discussed by Sun et al. exploit the idea of targeting E3 ligases that promote
September 2021 | Volume 11 | Article 75898314

https://www.frontiersin.org/articles/10.3389/fonc.2021.758983/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.758983/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.758983/full
https://www.frontiersin.org/research-topics/14913/ubiquitin-modifying-enzymes-as-drug-targets-and-biomarkers-in-cancer
https://doi.org/10.3389/fonc.2021.679445
https://doi.org/10.3389/fonc.2021.679445
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jbell@ccia.org.au
https://doi.org/10.3389/fonc.2021.758983
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.758983
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.758983&domain=pdf&date_stamp=2021-09-15


Bell et al. Editorial: Ubiquitin-Modifying Enzymes and Cancer
MYC function, such as SKP2 and HUWE1 or inhibiting DUBs
that antagonize MYC ubiquitination. Another promising idea
presented in the review is to utilize synthetic lethality in MYC-
high cancers by targeting Fbxw7 or UBR5.

p53 is a tumor suppressor protein with roles in most cancer
types. It can undergo more than 300 posttranslational
modifications and is principally involved in DNA damage
response, apoptosis and DNA repair. Mathieu et al. present a
review for this special issue on p53 and focus on the molecular
mechanisms and interactions that occur between p53 and
ubiquitin regulating enzymes, including irregular HECT-p53
interactions which can induce tumorigenesis. Interestingly,
inhibitors developed to inhibit this interaction did not show
efficacy indicating more research is needed to understand the
role of HECT-p53 binding.

In this special issue there are three original research papers
investigating the hepatocellular carcinoma context. One of the
articles is by Li et al. and shows a new role for CISD2 in sorafenib
resistance. Sorafenib is a multi-kinase inhibitor that is a standard
treatment for advanced hepatocellular carcinoma, and it has
previously been shown to influence protein ubiquitination.
CISD2 expression is related to the progression and poor
prognosis of hepatocellular carcinoma. Another aspect of
hepatocellular carcinoma is initiation of the disease by viruses
such as hepatitis B. Wan et al. investigated NEDD4 function in
hepatitis B-induced liver cancer. They confirmed that NEDD4
induced the degradation of HBV X protein in a ubiquitin/
proteasome-dependent manner via K48-linked ubiquitination
and provided other results that together suggest NEDD4 acts as a
tumor-suppressor in HBV-associated hepatocellular carcinoma.
Another manuscript in the special issue investigates ubiquitin-
specific proteases (USPs), which are a sub-family of DUBs.
Expression of USPs are correlated with various malignancies.
Ni et al. systematically investigated USPs expression in
hepatocellular carcinoma. Notably, USP39 was correlated with
poor prognosis in liver tumour cohorts.

DUBs are of increasing interest in cancer research and Rong
et al. reviewed this class of protein, specifically the Ubiquitin C-
terminal hydrolases (UCHs), a subfamily of deubiquitinating
enzymes (DUBs). Their cancer context of interest is head and
neck cancer, a heterogeneous disease where the long-term
survival rates remain low and new drug targets are needed.
They provide potential mechanisms of the UCH protein family
in head and neck cancer pathogenesis and potential drug targets.

Siah2 is an E3 ubiquitin ligase that targets the androgen receptor
and plays an important role in prostate cancer. Yan et al. found that
the androgen receptor itself stabilizes Siah2 protein by attenuating
its self-ubiquitination, likely by blocking its E3 ubiquitin ligase
activity. They performed in vivo studies showing androgen
deprivation therapy in combination with vitamin K3 delayed the
development of castration-resistant prostate cancer.

Another research group made use of TCGA datasets to
analyze the prognostic value of KLK8 a protein that acts as
serine protease. Hua et al. showed that this protease has
Frontiers in Oncology | www.frontiersin.org 25
prognostic value in pancreatic cancer and also exerts pro-
proliferation and anti-apoptotic functions in pancreatic cancer
cells via PI3K/Akt/mTOR pathway.

Recently, a novel strategy named proteolysis-targeting
chimeras (PROTACs) has been developed as a designed and
targeted method of protein degradation exploiting the cancer
cell’s own ubiquitin-proteasome system. This provides an
additional method of drug discovery. Zhang et al. discuss and
summarize the exciting advances in this field.

In summary, the collection of papers within this Research
Topic offers insights into the current and emerging knowledge of
the multifaceted importance of enzymes of the ubiquitin system
in the context of cancer, including their biological functions and
potential utility in patient care as prognostic markers, drug
targets, and therapeutic tools.
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Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs),
have been found in a variety of tumor entities and play distinct roles in the pathogenesis
and development of various cancers including head and neck cancer (HNC). HNC is a
heterogeneous disease arising from the mucosal epithelia of the upper aerodigestive tract,
including different anatomic sites, distinct histopathologic types, as well as human
papillomavirus (HPV)-positive and negative subgroups. Despite advances in multi-
disciplinary treatment for HNC, the long-term survival rate of patients with HNC remains
low. Emerging evidence has revealed the members of UCHs are associated with the
pathogenesis and clinical prognosis of HNC, which highlights the prognostic and
therapeutic implications of UCHs for patients with HNC. In this review, we summarize
the physiological and pathological functions of the UCHs family, which provides
enlightenment of potential mechanisms of UCHs family in HNC pathogenesis and
highlights the potential consideration of UCHs as attractive drug targets.

Keywords: head and neck cancer, ubiquitin C-terminal hydrolases, deubiquitinating enzymes, genomic alteration,
clinical relevance
Abbreviations:MDM2, murine double minute 2; NOX4, NADPH oxidase 4; EGFR, Epidermal growth factor receptor; HIF-1,
Hypoxia-inducible factor 1; PHLPP1, PH Domain and Leucine Rich Repeat Protein Phosphatase 1; MITF, Melanocyte
Inducing Transcription Factor; CTTN, Cortactin; mTORC1, mTOR complex 1; eIF4F, Eukaryotic initiation factor 4F; TRAF2,
TNF Receptor Associated Factor 2; PRDX1, Peroxiredoxin 1; SNRPF, Small Nuclear Ribonucleoprotein Polypeptide F; Smad2,
SMAD Family Member 2; GRP78, 78-kDa glucose-regulated protein; E2F1, E2F Transcription Factor 1; HCF-1, Host cell
factor C1; ASXL1/2, ASXL Transcriptional Regulator 1/2; MCRS1, Microspherule Protein 1; IP3R3, type-3 inositol-1,4,5-
trisphosphate-receptor; ATF3, Activating Transcription Factor 3; 14-3-3 protein; SLC7A11, Solute Carrier Family 7
Member 11.
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INTRODUCTION

Head and neck cancer (HNC) represents the seventh most
prevalent human malignancies with an annual incidence of
890,000 new cases worldwide, including 76,000 cases in China
and 18,260 cases in Germany (1, 2). Anatomically, HNC occurs
at distinct sites including lip, oral cavity, nasal cavity, sinonasal
cavity, nasopharynx, oropharynx, hypopharynx, larynx, and
salivary glands, and etiologic risk factors, epidemiology,
treatment strategies as well as clinical outcome differ among
individual subsites (3). Over 90% of cases are diagnosed as head
and neck squamous cell carcinoma (HNSCC), which arises from
the mucosal epithelia of the upper aerodigestive tract. High
incidence areas for oral cavity cancer include Middle and
South Asia, Western and Southern Europe as well as South
Africa. The incidence of oropharyngeal SCC (OPSCC) is elevated
in Europe and North America. Nasopharyngeal cancer (NPC) is
most common in East and Southeast Asia, especially in South
China (4). Tobacco smoking and heavy alcohol consumption
have been identified as the most important risk factors in
developed countries (5). In developing countries, risk factors
also include EpsteinBarr virus (EBV) infection for NPC, areca
nut chewing, consumption of preserved foods, and oral hygiene
(6–8). During the past two decades, the overall incidence of
HNSCC has gradually decreased in western developed countries.
However, a subgroup of HNSCC, particularly OPSCC, has been
becoming more prevalent in young adults, which is attributed to
high-r i sk human papi l lomavirus (HPV) infect ion ,
predominantly HPV16 (9). High-risk HPV types comprise two
oncogenes, E6 and E7, which inactivate the tumor suppressors
p53 and retinoblastoma (RB), respectively. As a result, cell cycle
progression and cell death in infected cells are disrupted, as
initial steps for HPV-related carcinogenesis (10–13). Besides the
viral oncogenes E6/E7, HPV E2, E4, and E5 have been shown to
facilitate the synergistic effects of viral oncogenesis, which
represents an alternat ive manner to HPV-induced
carcinogenesis (14). It has been well-established that HPV-
positive and HPV-negative OPSCC have distinct differences in
gene expression profiles, genomic alterations, immune
landscape, as well as clinical outcomes (15–18). Due to the
more favorable prognosis of HPV-positive OPSCC, clinical
trials have been launched to investigate HPV-stratified de-
escalation treatment based on currently established protocols.
However, final results and definitive conclusions are pending,
which might improve the post-treatment quality of HPV-related
OPSCC patients (19–22).

Despite advances in multi-disciplinary treatment for HNSCC,
including surgical approaches, radiotherapy, chemotherapy,
molecular-targeted therapy, and immunotherapy, the overall
survival of advanced HNSCC has only improved slightly, and
appropriate therapy remains a major challenge. Over the past
decade, large-scale genomic profiling and proteomic studies,
including The Cancer Genome Atlas (TCGA) projects, have
highlighted a comprehensive molecular landscape of changes
in DNA copy number, somatic mutations, promoter
methylation, and protein and gene expression, indicating the
Frontiers in Oncology | www.frontiersin.org
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critical components and signal pathway in HNSCC pathogenesis
(23–25). A better understanding of these molecular
underpinnings may inspire novel drug targets as well as
molecular biomarkers for personalized treatment.

The proteome is exceedingly complex and has been regarded
as the major driver or actuator of fundamental cellular processes.
Protein ubiquitination is a post-translational modification
process that plays critical roles in numerous biological
processes, including cell growth and differentiation, signal
transduction, DNA repair, and oncogenesis (26). The
conjugation of ubiquitin (Ub) to target proteins is catalyzed by
a cascade of ubiquitinating enzymes, including Ub-activating
enzymes (E1s), Ub-conjugating enzymes (E2s), and Ub ligases
(E3s). Conjugation of Ub to a substrate lysine, its lysines or its N-
terminus, results in the generation of different substrate
ubiquitin structures, which can be either a mono- or poly-
ubiquitylation process and allows targeted proteins to fulfill a
diverse range of functions. However, protein ubiquitination is
highly reversible. Deubiquitinases or deubiquitinating enzymes
(DUBs) catalyze the removal of ubiquitin from target proteins to
generate free monomeric Ub (27). The human genome encodes
approximately 100 DUBs categorized into six subfamilies: the
ubiquitin C-terminal hydrolases (UCHs), the ubiquitin-specific
proteases (USPs), the ovarian tumor proteases (OTUs), the
Josephin or Machado-Joseph disease protein domain proteases
(MJDs), the Jab1/MPN domain-associated metalloisopeptidase
(JAMM), and the monocyte chemotactic protein-induced
protein family (MCPIP) (27). Among these families, UBPs are
mostly described to date, with 60 proteases in humans, which
have been well-reviewed by a range of publications (28–31).
Recent studies have revealed the emerging functions of UCHs in
the pathogenesis and progression of human malignancies.
However, few studies on UCHs in HNC are available. One
member of UCHs family, BRCA1-associated protein-1 (BAP1),
was identified to be associated with poor outcome following
radiation in HPV-negative HNSCC clinical sample by proteomic
and transcriptomic analysis (32). Moreover, another member of
UCHs family, UCHL1 was demonstrated as a tumor suppressor
gene in nasopharyngeal carcinoma (NPC) (33). In this review, we
systematically summarize the physiological and pathological
functions of the UCHs family in human malignancies,
providing enlightenment on potential mechanisms of UCHs
family in HNC pathogenesis and the potential consideration of
UCHs as novel promising drug targets.
STRUCTURES AND FUNCTIONS OF UCHS

Among DUBs family, molecular structures of UCHs were the
first to be characterized. Four UCHs in humans have been
identified: UCHL1/PGP9.5 (protein gene product 9.5), UCHL3,
UCHL5/UCH37, and BAP1. All UCHs share a core catalytic
domain with 230 amino acids and close homology among family
members. They comprise a confined loop that cleaves short
ubiquitylated peptides (up to 20–30 amino acids) from the C-
terminal glycine residue (Figure 1).
January 2021 | Volume 10 | Article 592501

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Rong et al. UCHs and Human Malignancies
UCHL1
First identified as a member of UCHs family in the 1980s,
UCHL1 is an abundant neuronal protein containing only one
UCH domain with very short N- and C- terminal extensions. It
possesses one of the most complicated protein knotted structure,
which is regarded to protect UCHs from degradation in the
proteasome as well as to maintain proper proteasomal function.
Besides its DUB function in the recycling of free Ub, UCHL1 is
also known to have a ubiquitin ligase activity as a mono-Ub
stabilizer by preventing its degradation (34). It was reported that
the generation rate of monomeric Ub by UCHL1 in vitro is
enhanced by the catalytic residues C90 and H161 (35). Analysis
of the crystal structure suggests that UCHL1 preferentially binds
monomeric or small adducts of Ub, but does not act on large
polymers of Ub (36). Therefore, UCHL1 has the potential for
numerous ubiquitination-dependent biological processes.

UCHL1 is predominantly expressed in the brain, where it
comprises up to 5% of total neuronal proteins. Although the
precise function of UCHL1 is not fully clarified in many
pathological processes, better understandings of functional
UCHL1 has been largely reported in neuronal dysfunction and
neurodegenerative disorders (34, 37–39). For instance, the
specific distribution and activity of UCHL1 in human tissues
has the potential clinical significance for Parkinson’s disease
(PD) and Alzheimer’s disease (AD), might be a major target of
reactive oxygen species (ROS) damage (40). Although most cases
of PD are sporadic, a small subgroup of PD has been linked to
specific genomic mutations (41). Interestingly, The I93M point
mutation in UCHL1 has been reported to be associated with PD
susceptibility by decreasing hydrolytic activity (42). By contrast,
an S18Y variation in UCHL1 shows a protective enzyme with
a reduced risk of PD by a reduction of a-synuclein (43). A
study has shown that modification of the UCHL1 C152 site
decreases injury to gray and white matter, resulting in the
recovery of motor function after middle cerebral artery
occlusion (44). Another potential feature of UCHL1 is an
ATP-independent E3 ligase activity, which promotes Lys63
(K63) polyubiquitination of a-synuclein (34). Moreover,
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UCHL1 was demonstrated as a novel interactor and substrate
of PD linked E3 ubiquitin-protein ligase parkin by the
autophagy-lysosome pathway (45).

It has also been reported at much lower levels in kidney, breast
epithelium, and reproductive tissues (46, 47), and to be expressed
context-dependent in individual cells, such as human fibroblasts
during wound healing (48). Uniform cytoplasmic staining of
UCHL1 was observed in neurons, but UCHL1 can translocate
into the nucleus and regulate microtubule dynamics (49).
Although it is absent in most other normal tissues, UCHL1
appears to be aberrantly expressed in many non-neuronal
tumors, including breast, prostate, colorectal, gastric, head and
neck, and pancreatic ductal carcinomas (33, 50–55). The functions
and potential mechanisms of UCHL1 in tumorigenesis have been
reviewed by several excellent publications (56, 57). The interactive
proteins with UCHL1 as well as other UCH family members in
human malignancies are summarized in Table 1. In addition,
altered expression levels of UCHs in various cancers have also
been reviewed in Table 2.

Recent findings have revealed significant functions for UCHL1
in immune response and regulation. UCHL1 was found in mouse
kidney, spleen, and bone marrow-derived dendritic cells, and its
expression and activity were strongly regulated by the immune
stimuli LPS and IFN-g (113). UCHL1 modulates antigen
processing by affecting the colocalization of intracellular MHC I
with late endosomal/lysosomal compartments necessary for cross
priming of CD8 T cells (113). Interestingly, an induced UCHL1
expression was also demonstrated in multipotent mesenchymal
stromal cells (MSCs) upon stimulation with proinflammatory
cytokines IFN-g plus TNF-a, and negatively regulated the
immunosuppressive capacity and survival of MSC. This discovery
may provide potential MSC-based immunotherapy for
inflammatory diseases by modulation of UCHL1 (114).

UCHL3
UCHL3 andUCHL1 have significant structural similarity. However,
the biological characteristics of UCHL3 are quite distinct
concerning expression patterns and ligase activity. Unlike
FIGURE 1 | Simplified structure of the UCH family proteins. All UCH members share close homology in their catalytic domains and have a core catalytic domain with
230 amino acids. UCHL3 contains a KEKE motif in the C-terminal tail. BAP1 consists of a long C-terminal extension illustrating numerous functional domains and
binding sites for interacting proteins. UCH, ubiquitin C-terminal hydrolase; Ba, BARD1 binding domain; H, HCF-binding motif; BR, BRCA1 binding domain; NLS,
nuclear localization signal; YY1, Ying Yang 1 binding region. Inspired by (26).
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UCHL1, which is mainly restricted to neuronal and neurosecretory
tissues, UCHL3 is more widely expressed throughout mammalian
tissues. Interestingly, UCHL3 hardly exhibits ligase activity, while its
hydrolytic activity is two-hundred-fold higher than UCHL1 toward
a fluorogenic ubiquitin C-terminal amide (34). It was reported that
UCHL3 enables to cleave the C-terminus of NEDD8, which is a
ubiquitin-like protein that exerts the function of Ub to be
conjugated to a lysine residue of the substrate (115). Next,
UCHL3 has also been demonstrated to alleviate cryptorchid-
induced germ cell apoptosis in gad mice. UCHL3 appears to have
dual affinities for ubiquitin and Nedd8, and function as a
deNEDDylating enzyme in vivo, suggesting that UCHL3 plays a
critical role in germ cell apoptosis (116). Several studies using
similar UCHL3 knockout mouse models revealed the significant
functions in photoreceptor cell degeneration, neurodegeneration,
fertilization and embryogenesis, stress responses in skeletal muscle,
diet-induced obesity, and osteoblast differentiation (117–122). It is
worth mentioning that level of UCHL3 protein in several
neurodegenerative diseases is unchanged, while it hydrolyzes the
C-terminal extension of a mutant ubiquitin (UBB+1), contributing
to the role in neurodegenerative disorders (123).

An increasing number of studies have demonstrated vital
functions of UCHL3 on tumorigenesis, including breast, prostate,
Frontiers in Oncology | www.frontiersin.org 49
ovarian, and non-small cell lung cancer (Table 2) (50, 74, 101, 102).
Luo et al. found that UCHL3 deubiquitinates RAD51 and
subsequently facilitates RAD51-BRCA2 interaction, which is
critical for homologous recombination (HR) and contributes to
therapeutic resistance in breast cancer (75). By contrast, UCHL3 is
reduced in metastatic prostate cancer cell lines, and knockdown of
UCHL3 promotes epithelial-to-mesenchymal transition (EMT),
contributing to cancer cell invasion and metastasis (102). In
contrast, high UCHL3 expression was reported in ovarian cancer
and predicted a worse clinical outcome. The elevated UCHL3
facilitates carcinogenesis and enhances inflammation by
deubiquitinating and stabilizing TNF Receptor Associated Factor
2 (TRAF2) (74). Taken together, the UCHL3 function in cancer
remains controversial, suggesting the roles of UCHL3 is
complicated and context-dependent in individual tumor types.

UCH37
UCH37 (also known as UCHL5) was identified first as a 19S-
associated deubiquitinating enzyme in the 1990s, which comprises a
C-terminal extension (residues 227-329) in addition to an N-
terminal UCH domain (residues 1–226) (124). It is specific for
the distal subunit of Lys48-linked poly-Ub chains. Isolated full-
length UCH37 displays weak catalytic activity due to autonomic
TABLE 1 | Overview of interacting proteins with UCHs family in various human malignancies.

UCHs family Interacting protein Human malignancies References

UCHL1 P53 Breast cancer, metastatic colon adenocarcinoma, nasopharyngeal carcinoma, hepatocellular carcinoma (33, 58–60)
MDM2 Colorectal cancer, prostate cancer, nasopharyngeal carcinoma (33, 61)
b-catenin Colorectal cancer, pediatric high-grade glioma (62, 63)
NOX4 Cervical cancer (64)
EGFR Breast cancer (65)
HIF-1 Breast, lung cancer (66, 67)
cyclin B1 Uterine serous cancer (68)
PHLPP1 Lymphoma, lung tumor (69)
MITF Melanoma (70)
SMAD2 Breast cancer (53)
TGFb type I receptor Breast cancer (53)
CTTN Nasopharyngeal carcinoma (71)
mTORC1 B-cell lymphoma (72)
eIF4F B-cell lymphoma (73)

UCHL3 TRAF2 Ovarian cancer (74)
BRCA2 Breast cancer (75)
RAD51 Breast cancer (75)

UCH37/UCHL5 PRP19 Hepatocellular carcinoma (76)
PRDX1 Hepatocellular carcinoma (77)
SNRPF Glioma (78)
Smad2 Ovarian cancer (79)
GRP78 Hepatocellular carcinoma (80)
E2F1 Liver cancer (81)
Rpn13 Cervical cancer (82)

BAP1 BRCA1/BARD1 Breast cancer, chronic myeloid leukemia, meningioma (83–85)
HCF-1 Breast cancer, renal cell carcinoma (86, 87)
Ino80 Mesothelioma (88)
Gamma-tubulin Breast cancer (89)
ASXL1/2 Mesothelioma (90)
MCRS1 Renal cell carcinoma (91)
Histone H2A Head and neck cancer (32)
IP3R3 Prostate cancer (92)
ATF3 Multiple carcinomas (93)
14-3-3 protein Neuroblastoma (94)
SLC7A11 Multiple carcinomas (95, 96)
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inhibition by the C-terminal extension (125). The proteolytic
activity requires a Ub receptor called ADRM1 (named hRpn13 in
humans) binding to UCH37 via its C-terminal 46 residues (also
called the KEKE motif) (125). In addition, hRpn13 was found to
directly enhance the de-ubiquitination activity of UCH37 in vitro
(125–127). The hRpn13-UCH37 complex hydrolyzes large Ub
conjugates with incorporation into the 19S complex. By contrast,
UCH37 is inhibited by the chromatin remodeling complex
component INO80G mediated by the N-terminal domain of
NFRKB (nuclear factor related to kB, NFRKB) (128). Rpn13 and
INO80G share a conserved deubiquitinase adaptor (DEUBAD)
domain that interacts with the C-terminal of UCH37, revealing
conformational plasticity to regulate deubiquitinating activity on or
off, respectively (128). Functionally, UCH37 is reported to perform a
crucial role in certain protein-protein interactions involving several
physiological and pathological processes, including development,
cell proliferation, and apoptosis, hippocampal synaptic plasticity,
Alzheimer’s disease, pulmonary fibrosis, as well as human
malignancies (26, 129–133).

Wicks and colleagues reported UCH37 interacts with Smad7
to control TGF-b/Smad signaling activity, suggesting that
UCH37-mediated deubiquitination might contribute to
tumorigenesis (134). The first direct evidence of UCH37 in
cancer study was described by a chemistry-based functional
proteomics approach in cervical carcinoma. Activity profiling
showed UCH37 is induced in the majority of carcinoma tissues
and HPV E6/E7 immortalized human keratinocytes, indicating a
significant role of UCH37 in tumor transformation (103).
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Subsequently, an increasing number of studies reported the
potential functions in tumor cell proliferation, apoptosis,
migration, and invasion, as well as clinical implications (Table
2) (76–78, 135–138).

BAP1
The BAP1 protein consists of 729 amino acids that are encoded by
the BAP1 gene located on human chromosome 3p21.1. BAP1
protein was identified as a nuclear-localized DUB. In addition to
the N-terminal UCH domain, BAP1 comprises a long C-terminal
extension (Figure 1). BAP1 was originally found to interact with the
RING finger domain of BRCA1 and to perform the cell growth-
suppressive function. BAP1 is also involved in chromatin
modification and transcription by deubiquitinating lysine residues
in HCF1 and YY1. Both recruit histone-modifying complexes and
regulate expression of numerous genes involved in multiple
physiological processes (139). Moreover, BAP1 interacts with the
transcription factor FOXK1/K2 in a phosphorylation-dependent
manner, which represses FOXK2-target genes forming a ternary
protein complex in which BAP1 bridges FoxK2 and HCF-1. Loss of
BAP1 causes the increase of FoxK2 target genes, which is dependent
on the Ring1B-Bmi1 complex (140).

Polycomb group proteins exert critical roles in transcriptional
regulation, which contributes to a variety of physiological
processes, including embryonic development, differentiation,
and self-renewal. Polycomb repressive complexes (PRCs) are
responsible for histone ubiquitination and methylation (139).
BAP1 interacts with additional sex combs like 1 (ASXL1),
TABLE 2 | Expression regulation of UCHs family in human malignancies.

UCHs family Human malignances Possible variations (References)

UCHL1 Breast cancer Down-regulation (58)
Hepatocellular carcinoma Down-regulation (59)
Invasive and metastatic breast cancer Up-regulation (53, 97)
Metastatic colon adenocarcinoma Up-regulation (62)
Nasopharyngeal carcinoma Down-regulation (33, 71)
Prostate cancer Down-regulation (61)
Pediatric high-grade glioma Up-regulation (63)
Ovarian cancer Down-regulation (98)
Non-small cell lung cancer Up-regulation (99)
Uterine serous cancer Up-regulation (68)
B-cell lymphoma Up-regulation (100)

UCHL3 Breast cancer Up-regulation (50)
Ovarian cancer Up-regulation (74)
Non-small cell lung cancer Up-regulation (101)
Metastatic prostate cancer Down-regulation (102)
Cervical cancer Up-regulation (103)

UCH37/UCHL5 Hepatocellular carcinoma Up-regulation (76)
Glioma Down-regulation (78)
Cervical cancer Up-regulation (103)
Esophageal squamous cell carcinoma Up-regulation (104, 105)

BAP1 Breast cancer Down-regulation (83, 89)
Chronic myeloid leukemia Down-regulation (84)
Mesothelioma Down-regulation (85, 106, 107)
Non-small cell lung cancer Down-regulation (83)
Renal cell carcinoma Down-regulation (87, 108)
Uveal melanoma Down-regulation (109, 110)
Basal cell carcinomas Down-regulation (111)
Neuroblastoma Down-regulation (94)
Esophageal squamous cell carcinoma Down-regulation (112)
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forming a polycomb group repressive deubiquitinase complex
(PR-DUB). The transcriptional function is regulated through
histones modification via ubiquitination by PRCs and
deubiquitination by PR-DUB. Thus BAP1 deficiency
significantly alters ubiquitination level of histone 2A, leading to
the dysregulation of cell cycle and cellular senescence (141). A
recent study found cytoplasm BAP1 localizes at the ER, where it
regulates type 3 inositol-1,4,5-trisphosphate receptor (IP3R3),
modulating calcium (Ca2+) release from the endoplasmic
reticulum into the cytosol and mitochondria, promoting
apoptosis, which plays a critical role in cellular transformation
(92). Another study has identified cystine transporter SLC7A11
as a critical BAP1 target gene in human malignancies, which was
repressed by BAP1, causing increasing lipid peroxidation and
ferroptosis (95).

BAP1 functions as a tumor suppressor through chromatin
modulation, transcriptional regulation, cell cycle control, cellular
differentiation, and DNA damage repair (142). Loss or mutation
of BAP1 gene is a common event in cancer and serves as a
potential pathogenetic mechanism in various human
malignancies, including uveal melanoma, mesothelioma, small
cell and non-small cell lung carcinomas, renal cell carcinoma
(RCC), breast cancer, and hepatocellular carcinoma (Table 2)
(107, 143–148). Tumors associated with BAP1 somatic
mutations have already been discussed in recent reviews (139,
149). Other alterations in the BAP1 gene have been reported,
such as large deletions of exons causing premature protein
termination, frameshift mutation, splice site mutations, and
base substitutions-induced nonsense and missense mutations
(143, 149). BAP1 acts as a tumor suppressor depending on
both deubiquitination activity interfered by missense mutations
and loss of nuclear localization signal by truncating mutations.
Furthermore, several studies showed that BAP1 loss or
modification is associated with different tumor phenotypes and
clinical outcomes (108, 110, 150–152). For example, BAP1-
mutated mesothelioma is significantly correlated with female
predominance, younger age at onset, epithelioid differentiation,
and better prognosis (153). At the same time, BAP1 mutation is
strongly associated with a more aggressive, metastatic phenotype
in uveal melanomas (143). BAP1 is frequently mutated in
sporadic clear cell RCC with an incidence rate of 6–17%,
which is associated with high tumor grade, rhabdoid/
sarcomatoid transformation, and poor clinical outcome (154,
155). From a therapeutic standpoint in renal cell carcinoma,
inactivation of BAP1 sensitizes tumor cells to irradiation and
PARP-inhibitors, which might be due to the impaired ability of
double-stranded DNA breaks (87).
UCHS MEMBERS IN HNC

Although UCHs members have been well investigated in a
variety of human malignancies, the exact function of these
enzymes in HNSCC pathogenesis and progression remain
elusive. Each member of the UCHs family exerts distinct roles
depending on the various tumor types. For example, UCHL1 has
Frontiers in Oncology | www.frontiersin.org 611
been controversially considered as a tumor suppressor or tumor
promoter in specific tumor types. It was reported that UCHL1 is
silenced by promoter CpG hypermethylation in a large panel of
primary tumors including HNSCC cell lines and primary
tumors, suggesting a tumor-suppressive function (33, 156). The
methylation of the CpG locus associated with the UCHL1 gene is
dependent on the anatomic site of HNSCC primary tumors, with
most hypermethylation of UCHL1 specifically in oral cavity SCC
(157). Restored UCHL1 expression significantly suppressed
tumor cell proliferation and induced cellular apoptosis through
activation of the p14ARF-p53 signaling pathway (33). A more
recent study in nasopharyngeal carcinoma revealed a similar
conclusion that UCHL1 promoter hypermethylation was
validated in nasopharyngeal carcinoma tissues. In addition,
restoration of UCHL1 inhibits tumor invasion and metastasis
in vitro and in vivo. UCHL1 exerts tumor suppressor function by
inducing K48-linked ubiquitination of CTTN (71). Currently, it
is widely accepted that high-risk HPV infection is a risk factor for
HNSCC, particularly in the oropharynx. High-risk HPV infects
the oropharyngeal epithelium causing host immune suppression
and evasion (11). UCHL1 does not assist HPV genome
replication and viral propagation, but suppresses keratinocyte-
mediated production of inflammatory cytokines and
chemokines, thereby contributing to immune evasion and
HPV persistent infection (158). UCHL1 interacts with tumor
necrosis factor receptor-associated factor 3 (TRAF3), which acts
as a negative regulator of the alternative NF-kB pathway and
antiviral type I IFN activation. TRAF3 has been shown as a
tumor suppressor that regulates the malignant phenotype of
HPV-positive HNSCC (158).

As a tumor suppressor, BAP1 is critical for promoting DNA
repair and cellular recovery from DSB via modulation of H2A
ubiquitination (159). BAP1 was found to mediate radioresistance
in an in vivo xenograft model and HNSCC cell lines via the
deubiquitination of H2A and modulation of HR. Moreover, up-
regulation of BAP1 was associated with worse clinical outcome in
HNSCC, which indicates BAP1 might serve as a potential
therapeutic target in HNSCC (32). In summary, it seems that
loss of BAP1 foster genomic instability in tumor pathogenesis,
however, the activity of BAP1 promotes tumor cell survival and
contributes to therapeutic resistance during irradiation.

Induced activity of UCHL1 and UCHL3 were observed in E6/
E7 immortalized primary keratinocytes, indicating the potential
function of UCHL1 and UCHL3 in HPV-related HNSCC (103).
However, few direct evidences concerning the function of
UCHL3 and UCH37 in HNSCC have been reported.

Recently, comprehensive epigenetic and genomic profiling
studies have highlighted the most frequently altered genes and
signaling pathways in HNSCC. The genomic characterization of
279 HNSCCs including HPV-positive and HPV-negative
tumors, has been published (23). Moreover, the molecular
profiling data from over 500 HNSCC patients are available at
the cBioPortal for Cancer Genomics, which provides interactive
exploration and analysis of genetic alterations (160, 161). In
addition, the GTEx project provides RNA sequencing data from
more than 8,000 normal tissues. Currently, several web-based
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tools deliver interface-friendly and personalized functions based
on TCGA and GTEx data (161, 162). cBioPortal provides
visualization for the genomic alteration data. Clinical and
genomic analysis of multicohort HNSCC has demonstrated
that HPV-positive and HPV-negative tumors present
heterogeneity in anatomical regions, mutation profiles,
molecular characteristics, immune landscapes, and clinical
prognosis. Many evidence revealed the diversity and
heterogeneity of HNSCC clinicopathology and therapeutic
responses depending on HPV status (163). To better
understand the UCHs family mutational landscape in HNSCC,
the cBioPortal tool was used to display the types of mutations
and their positions in the domain structure of proteins (Figures
2A, B). UCHs member genes are altered in 22 (8%) of queried
patients. Of these, 20 cases are HPV-negative, and 2 cases are
HPV-positive.

UCHL1 alterations accounted for 0.4% in HPV-negative
subgroup and no genetic alteration in HPV-positive patients,
UCHL3 for 3.3% in HPV-negative and 2.7% in HPV-positive,
UCHL5 for 2% in HPV-negative and 2.7% in HPV-positive, and
BAP1 for 2.4% in HPV-negative and 0 in HPV-positive.
Interestingly, there is no samples overlapped. Concerning the
mutation type, one missense mutation in UCH-domain of
UCHL3, two missense mutations in UCHL5, two missense
mutations and one truncating mutation in BAP1. A web-based
tool GEPIA (164) analysis revealed UCHL1 gene expression in
Frontiers in Oncology | www.frontiersin.org 712
HNSCC tissues is significantly elevated as compared to normal
tissues, which is different from the previous studies in
nasopharyngeal carcinoma (71) (Figure 3A). Survival analyses
based on gene expression levels was also applied to evaluate the
clinical relevance of UCHs family genes (Figures 3B, C). The quartile
cut-off method was determined depending on the optimization and
visualization of the online web tool. However, numerous problems
remain unsolved. We were not able to divide the cohort into two
subtypes due to the incompleteness of the HPV status information.
More specific subgroups of HNSCC patients for certain phenotypes
need to be discovered depending on the protein expression patterns
of UCHs family, which may contribute to illuminate the clinical
relevance of UCHs family for HNSCC patients. Moreover, the gene
networks regulated by UCHs family genes should be identified by
analyzing the RNA-sequencing profiling data. Novel signaling
pathways and biological processes related to UCHs family in
HNSCC are urgent to be clarified. Functional proteomics
represents a useful approach to investigate the UCHs family
activity-related biological processes in different subtypes of HNSCC.
Only BAP1 protein expression data by reverse-phase protein arrays
(RPPAs) are available in the TCPA dataset, where BAP1 serves as a
strong prognostic predictor for female-related cancer cohorts
including samples of invasive breast carcinoma, Ovarian serous
cystadenocarcinoma, Uterine Corpus Endometrial Carcinoma (25).
More large-scale proteomic profiling data on the other UCHs
members are urgent to be produced.
A

B

FIGURE 2 | Overview of genetic changes of UCHs family in TCGA HNSCC patients. (A) Oncoprint shows altered UCHs family genes. The colors are associated
with one class of variants, and the percentage (%) of patients affected is shown on the graph. (B) cBioPortal predicted mutation maps showing the positions of
mutations on the functional domains of UCHL3, UCHL5, and BAP1 proteins.
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Therapeutic Implications for HNC
Targeting UCHs members
Research on targeting UCHs members in HNSCC therapy is still
in the initial period. To our knowledge, there are no studies
focusing on UCHs family molecular inhibitors or drugs for
clinical trials, which reflects the lack of theoretical and
preclinical research. Encouragingly, UCHs family has been
shown to predict therapeutic sensitivity and clinical outcomes
for various tumors. For example, UCHL1 strengthens tumor cells
chemosensitivity in melanoma and colorectal cancer by
stabilizing NOXA (165). BAP1 was also reported to modulate
cancer cell sensitivity to radiotherapy and the molecular
inhibitors including PARP (olaparib) or histone deacetylase
inhibitors (panobinostat), which may become potential
therapeutic strategies (87, 166). The small molecule b-AP15 as
a previously unidentified class of proteasome inhibitor abrogates
the activity of two 19S regulatory-particle-associated
deubiquitinases, UCH37/UCHL5, and USP14 (167). In vivo b-
AP15 prevents tumor progression in four different solid tumor
models, including HNSCC, indicating deubiquitinating activity
of UCH37/UCHL5 represents a novel therapeutic target for
cancer (167).

Over the last decade, the high-risk HPV infection in HNC
plays a critical role in staging and prognosis, which promotes
personalized therapy and the de-intensification of currently
established treatment protocols based on HPV status (168).
Frontiers in Oncology | www.frontiersin.org 813
The underlying mechanisms of UCHs family in HPV-related
carcinogenesis remains an enigma. It is worth mentioning that
UCHL1 was specifically up-regulated by high-risk HPV in
primary keratinocytes to escape innate immunity. Therefore,
the precious functions of UCHL1 and other UCHs family
members in HPV-related HNSCC need to be disclosed. One of
the current therapeutic challenges is to find more suitable
biomarkers or surrogate markers for the identity and selection
of subpopulation, which would benefit from personalized and
therapy. Response rates of HNSCC patients to cetuximab, the
only FDA-approved molecularly target-EGFR monoclonal
antibody, are only 10% (169). UCHs members have been
described to interact with EGFR (170), suggesting the potential
of combination therapy with UCHs members for cetuximab
treatment in HNSCC.

HNSCC, l ike other human mal ignancies , i s an
immunosuppressive disease. Therefore, immunomodulatory
treatment to overcome immune suppressive phenotypes in
HNSCC patients has emerged as novel and effective strategies,
which include cancer vaccines (e.g., HPV vaccines, tumor
peptide antigens), cytokines (e.g., IL2, IFNg, TNFa), specific
monoclonal antibodies (e.g., anti-PD1/PD-L1, CTLA-4
antibodies) (171). Over the past 10 years, the most remarkable
therapeutic advances have been achieved in immune checkpoint
blockade in HNSCC. FDA approved several target immune
checkpoint agents for the treatment of patients with HNSCC.
A

B

C

FIGURE 3 | Differential expression analysis of UCH family genes between tumor tissues and normal tissues in the TCGA-HNSC cohort (A). Kaplan-Meier plots
analyses show overall (B) and disease-free (C) survival compared by log-rank test. The Cox proportional hazard ratio (HR) is shown in the survival plots.
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However, the patients revealed different responses to these
agents, with only less than 20% of the responder (172, 173).
There are many challenges for the immunotherapy of HNC in
the future, such as the selection of responding patients,
integration into the spectrum of conventional treatment,
reduction of immunosuppression in non-responding patients
(174). The DUBs are involved in the regulation of innate and
adaptive immune response, which sheds light on the
immunoregulatory of UCHs family for combination
immunotherapy in HNSCC (114, 175). In addition, a variety of
patented compounds targeting UCHs members have been
developed, which would prepare a path toward the outstanding
achievement of genuinely personalized medicine for the
treatment of cancers (176–179).
CONCLUSION AND PERSPECTIVE

In summary, an increasing number of studies suggest that
members of UCHs family exert distinct functions in a variety
of human malignancies. However, available studies on UCHs in
head and neck cancer are limited. It is an exciting time for
HNSCC research based on the comprehensive genomic data, as
the molecular landscape and altered signaling pathways has been
synthetically described. But there are no genetic and proteomic
screening tests routinely incorporated into the HNSCC clinically.
Emerging evidence has revealed the members of UCHs are
associated with the pathogenesis and clinical prognosis of
HNSCC, which highlights the prognostic and therapeutic
implications of UCHs for patients with HNC. Based on the
available data, we have launched a joint project on the expression
and function of UCHs in HNSCC, which aims to provide more
evidence that UCHs might be the novel prognostic marker and
therapeutic target. There are some emerging unresolved issues in
HNSCC, such as: what are the precise substrates and regulators
of the UCHs family? What are genetic or epigenetic events, and
signaling pathways relevant to the UCHs family? Are UCHs
family members able to serve as biomarkers for identifying a
subset of patients to receive the optimal treatment? Can the
Frontiers in Oncology | www.frontiersin.org 914
agents targeting UCHs family become one of the novel treatment
regimens? Optimization of combination regimens of immune
checkpoint inhibitors and the agents targeting UCHs family may
be a remarkable challenge for immunotherapy of HNSCC.
Finally, whether and how the UCHs family members can be
translated into the clinical management of HNC remains a
formidable mission for the future.
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Ubiquitination, a crucial post-translation modification, regulates the localization and
stability of the substrate proteins including nonhistone proteins. The ubiquitin-
proteasome system (UPS) on nonhistone proteins plays a critical role in many cellular
processes such as DNA repair, transcription, signal transduction, and apoptosis. Its
dysregulation induces various diseases including cancer, and the identification of this
process may provide potential therapeutic targets for cancer treatment. In this review, we
summarize the regulatory roles of key UPS members on major nonhistone substrates in
cancer-related processes, such as cell cycle, cell proliferation, apoptosis, DNA damage
repair, inflammation, and T cell dysfunction in cancer. In addition, we also highlight novel
therapeutic interventions targeting the UPS members (E1s, E2s, E3s, proteasomes, and
deubiquitinating enzymes). Furthermore, we discuss the application of proteolysis-
targeting chimeras (PROTACs) technology as a novel anticancer therapeutic strategy in
modulating protein target levels with the aid of UPS.

Keywords: ubiquitination, E3 ligase, deubiquitinase, nonhistone protein, cancer, proteolysis-targeting chimeras
INTRODUCTION

Post-translational modification with ubiquitin plays an important role in the regulation of protein
degradation and turnover. Ubiquitin, a small protein of 76 amino acids, can be covalently attached
to target proteins to form mono- or polyubiquitinated types. This process occurs by a cascade of
enzymatic reactions including E1-activating enzymes, E2-conjugating enzymes, and E3 ubiquitin
ligases. Polyubinquitin with different chain topologies on specific lysine residues on substrates is
related to different functional consequences (1). Generally, polyubiquitin chains linked at the 48
lysine site (K48) or K11 site lead to 26S proteasome-mediated proteolysis, which plays an essential
role in maintaining protein homeostasis, regulating cell cycle, and apoptosis. On the other hand,
chains with K63 site, as well as monoubiquitination, representing non-proteolytic ubiquitination,
participate in diverse cellular processes, such as signal transduction, autophagy, and DNA damage
repair (2, 3). As for most substrates, they are first covalently modified by ubiquitin and then directed
to the proteasome to be degraded. Also, the function of ubiquitin ligases can be reversed by
deubiquitinating enzymes (DUBs), which remove ubiquitin from substrate proteins and participate
in the regulation of various cellular pathways (4).
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Ubiquitination is ubiquitous, and second only to
phosphorylation in abundance (5). Some reports have shown
that histone ubiquitination regulating DNA-driven processes
such as gene transcription and DNA damage repair (6, 7), and
aberrant histone ubiquitination frequently occurs in cancers (8).
Accumulating evidences indicate that ubiquitylation of
nonhistone proteins plays an important role in many cellular
processes, including DNA repair, transcription, signal
transduction, autophagy, apoptosis, and so on (9). Nonhistone
protein substrates for ubiquitination include general transcription
factors, transcriptional activators or repressors, nonhistone
chromatin-associated protein, and nuclear receptor coactivators.
Dysregulation of nonhistone lysine ubiquitination is closely
associated with various human cancers (10). Therefore, it is
more important to study the role of nonhistone ubiquitination
in tumorigenesis and tumor treatment. Moreover, interrogating
the regulatory networks of UPS can offer a strategy for delineating
the mechanism of cancer development and facilitate the
identification of therapeutic targets. Meanwhile, the UPS
exhibits high substrate specificity, which makes targeting it a
promising strategy for cancer treatment. Nowadays, many UPS
inhibitors such as bortezomib, carfilzomib and ixazomib, have
been well applied in cancer treatment (11, 12). In this review, we
summarize the regulatory roles of key UPS members on major
nonhistone substrates in cancer-related processes.

Recently, a novel strategy named proteolysis-targeting
chimeras (PROTACs) has been developed. PROTAC is a
strategy that utilizes a hybrid molecule (a short peptide or a
small molecule) to link a specific protein to an E3 ubiquitin ligase
and induces the targeted protein degradation by the UPS in the cell
(13). PROTACs link the target protein to an E3 ubiquitin ligase by
a designed hybrid molecule, providing a path for ubiquitinating
undruggable proteins such as transcription factors, scaffolding
proteins and nonenzymatic proteins. Due to their high
selectivities, low working concentrations, and less off-target
toxicities, PROTACs may boost the development of drug
discovery (14).

Considering the importance of UPS in the regulation of
cancer development and treatment, we focus on the regulatory
roles of key UPS members on nonhistone proteins in cancer
development and highlight the novel therapeutic options
targeting them. In addition, we also discuss and summarize the
applications and recent advances of PROTAC technology
focusing on nonhistone proteins.
THE UBIQUITINATION CASCADE
AND DEUBIQUITINATION

The enzymes of Ubiquitination
and Deubiquitination
The UPS contains a series of essential components: ubiquitin,
E1s, E2s, E3s, DUBs, and the 26S proteasome. Until now, two E1s
and about 40 E2s have been discovered, with more than 600 E3s
conferring the diversity of protein substrates (15). Generally, E3
ligases are structurally classified into three subtypes: really
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interesting new gene (RING), homologous to E6-associated
protein C-terminus (HECT) and RING-in-between-RING
(RBR) E3s. RING E3 ligases are most abundant with more
than 600 members in humans. About 30 HECT E3 ligases
have been found in humans, including the NEDD4 family, the
HERC family and other HECTs. RBR E3s have 14 members and
work as hybrids of RING E3s and HECT E3s (16). In addition,
there are approximate 100 DUBs and they are subdivided into 6
families based on sequence and structural similarity namely
ubiquitin-specific proteases (USPs), ubiquitin carboxy-terminal
hydrolases (UCHs), ovarian-tumor proteases (OTUs), Machado-
Joseph disease protein proteases (MJD), JAB1/MPN/MOV34
metalloenzymes (JAMMs), and monocyte chemotactic protein-
induced proteases (MCPIPs) (17). To date, more than 40 DUBs
have been implicated in tumorigenesis (4).

The Process of Ubiquitination
and Deubiquitination
The process of ubiquitylation contains three steps (Figure 1).
Initially, the a-carboxyl group of the C-terminal glycine residue of
ubiquitin links to a cysteine residue on E1 in an ATP-dependent
manner, and a thioester bond is formed. Subsequently, E2 binds to
the activated ubiquitin, and the complex of E1 and ubiquitin is
transferred to the catalytic cysteine of E2 via a trans(thio)
esterification reaction. Finally, E3 recognizes the substrate and
catalyzes the linking of ubiquitin to a specific lysine residue on the
substrate. The function of E3 ligases can be reversed by DUBs,
which mediate the removal and processing of ubiquitin. DUBs
regulate multiple biological processes including the cell cycle,
DNA repair, apoptosis, inflammation, and signaling pathways.
THE ROLES OF E3 LIGASES AND DUBS IN
REGULATING CANCER DEVELOPMENT

The UPS regulates diverse important cellular processes including
cell cycle arrest, cell proliferation, and apoptosis. Thus,
dysregulation of its key members and their regulatory network
is often associated with human diseases, particularly cancer.
Increasing studies have revealed that E3 ligases and DUBs are
involved in cancer development through various biological
processes, such as cell cycle, cell proliferation, apoptosis, DNA
damage repair, inflammation, and T cell dysfunction in cancer
and some of them are shown in Tables 1 and 2 (15).

E3 ligases and DUBs Regulate Cell Cycle
Cell cycle progression and arrest are commonly deregulated in
cancer (73). Increasing evidence indicates that multiple E3s
participate in regulating cell cycle progression (Figure 2). Thus,
the deregulation of E3s leads to the sustained proliferation and
genomic instability of cancer cells. The anaphase-promoting
complex named the cyclosome (APC/C) is the most
sophisticated RING E3 ligase. It precisely governs cell cycle
progression by recruiting cell division cycle 20 (CDC20) and
CDC20-like protein 1 (CDH1) in turns. APC/C-CDC20
regulates cell cycle transition from metaphase to anaphase, while
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APC/C-CDH1 mediates mitotic exit and early G1 entry. Many
studies indicate that Cdh1 functions as a tumor suppressor,
whereas CDC20 may function as an oncoprotein to promote the
development and progression of cancers (18, 74).

Another representativeexample isSCFE3 ligases,whichconsistof
four components: S-phase kinase-associated protein 1 (SKP1), cullin
1, Roc1/Rbx1/Hrt1 and an F-box protein (FBP). Commonly, FBPs
serve for substrate recognition in the complexes and selectively
regulate diverse biological processes (19). FBXW7, F-box/WD
repeat-containing protein 7 (FBXW7), S-phase kinase associated
protein2 (SKP2), and b-transducin repeat containing proteins (b-
TrCPs) arewell-studiedFBPs. FBXW7a tumor suppressor,works on
manyoncogenes includingMyc, c-Jun, cyclinE,mTOR,Notch-1and
Mcl-1. It is often mutated or deleted in lots of cancers such as
metastatic colorectal adenocarcinoma, T-cell acute lymphoblastic
leukemia, and cholangiocarcinomas (20–22, 75). SKP2plays a critical
role during S and G2/M phases through regulating some cell cycle
proteins, such as p21, p57, cyclin A, cyclin E, cyclin D1, and CDK
inhibitors (e.g. p27). SKP2 is an important oncogene and is widely
overexpressed in various cancers, such as breast cancer (23) and
hepatocellular carcinoma (26). b-TrCPs-containing SCF complexes
play a dual role in cell cycle checkpoint control: mediating and
relieving cell cycle arrest via bonding different substrates (28, 76).
Thus, the SCF complexes work on a subset of cyclins and CDK
inhibitors to regulate the progression fromG1 to the onset ofmitosis.
In addition, Parkin, a well-known RBR E3 ligase, controls the cell
cycle by downregulating some G1/S kinases such as cyclin D and
cyclin E (29, 30).

DUBs also participate in the regulation of cell-cycle
progression (Figure 2) (31). For instance, E2F transcription
Frontiers in Oncology | www.frontiersin.org 322
factors play a key role in cell-cycle progression through G1 and
into S-phase (77). The tumor suppressor retinoblastoma protein
(Rb) maintains the cell in G1 through inhibiting E2F (78).
However, hyperphosphorylated Rb dissociates from E2F, leading
to the transcription of S-phase genes. The E3 ligase MDM2
promotes Rb degradation via ubiquitylation (79). On the
contrary, the DUB USP7 directly reverses MDM2-mediated
polyubiquitylation of Rb, stalling the cell cycle in G1 and
inhibiting cell proliferation (32). Tumor suppressor BRCA1-
associated protein 1 (BAP1), whose mutations can be seen in
many cancers (62), has been found that it also could promote cell
proliferation through deubiquitylating host cell factor 1 (HCF-1).
HCF-1, an important transcriptional co-regulator of E2F,
promotes cell cycle progression at the G1/S boundary by
activating the E2F1 transcription factor. Therefore, BAP1
regulates cell proliferation at G1/S by co-regulating transcription
from HCF-1/E2F-governed promoters. Moreover, BAP1
knockdown leads to G1 arrest and decreases the expression of S
phase genes in OCM1 cells and NCI-H226 lung carcinoma cell
line (47, 48, 80). It is well known that APC/C plays a crucial role in
the completion of mitosis and maintenance of G1. Recently,
OTUD7B/Cezanne has been reported to deubiquitinate and
stabilize the APC/C substrates, as well as promote mitotic
progression and cell proliferation. Cezanne is upregulated in
multiple tumors, suggesting a potential role in cancer cell
proliferation (49). Besides, the transcription factor FOXM1
participates in cell cycle progression and is upregulated in basal-
like breast cancer. Arceci et al. reveal that USP21 directly binds to
FOXM1, makes it deubiquitinate, and increases its expression level
in vitro and in vivo. Suppression of USP21 causes a mitotic entry
FIGURE 1 | Overview of the ubiquitin-proteasome system (UPS) and targeting strategies for the UPS. The ubiquitin is activated with E1 in an ATP dependent
manner, transferred to E2, and then transferred to the substrate through E3 ligase recognization, forming a mono- or polyubiquitinated protein. K48 or K11
polyubiquitin chains lead to 26S proteasome-mediated degradation. Monoubiquitination or K63 polyubiquitin chains are nonproteolytic ubiquitination signals and
participate in many biological processes. DUBs remove or edit ubiquitins from substrate proteins. The targeting of E1s, E2s, E3s, proteasome and DUBs is a
promising strategy for cancer treatment.
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delay to slow proliferation and sensitivity to paclitaxel in cell
culture and animal xenografts (50). The deubiquitinating enzyme
USP5 is overexpressed in numerous malignancies, promoting
tumor growth via modulating cell cycle regulators such as
FoxM1. USP5 deficiency also induces DNA damage, cell cycle
arrest and apoptosis in pancreatic ductal adenocarcinoma cells
(51, 53). Besides, USP2 and USP14 regulate the cancer cell cycle
via deubiquitinating cyclin D1 (54) and Cyclin B1 (55),
respectively. Knocking down USP14 arrests cell cycle at the G2/
M phase and inhibits the proliferation and migration of breast
cancer cells (55), USP44 deubiquitinates the APC-inhibitory
Mad2-Cdc20 complex, thereby preventing anaphase onset (57,
58). USP37 deubiquitinates and stabilizes Cyclin A and promotes
S phase entry (59).

E3 Ligases and DUBs Regulate
Cell Proliferation
Many oncogenes can induce cancer cell proliferation, and UPS
mediates their transcription by modulating general transcription
Frontiers in Oncology | www.frontiersin.org 423
factors, transcriptional activators and transcriptional coactivators
via proteolytic and nonproteolytic ubiquitination (60). Here, we
take the oncogene c-Myc as an example to show how
ubiquitination regulates the transcription of oncogenes in cancer.

The overexpression of c-Myc is widely found in many cancers
and is related to cell growth, proliferation, apoptosis and
metabolic pathways (81). Its accumulation is also associated
with poor cancer outcomes (82). Myc levels are controlled
through targeted degradation by UPS (83). Multiple E3s are
involved in modulating c-Myc activity in a tissue-specific
manner. For instance, the ubiquitin ligase SCF-FBXW7 directly
catalyzes c-Myc ubiquitination in a glycogen synthase kinase 3
phosphorylation-3-dependent manner and leads to c-Myc
degradation in vitro (84). Furthermore, FBXW7 regulates the
ubiquitylation of c-Myc protein and mediates leukemia-
initiating cell activity (24). TRPC4AP (transient receptor
potential cation channel, subfamily C, member 4-associated
protein)/TRUSS (tumor necrosis factor receptor-associated
ubiquitous scaffolding and signaling protein) binds to c-Myc
TABLE 1 | Some E3s involved in cancers.

E3 Substrate Category Associated cancer or cancer line Biological
functions

Model Alteration in
tumors

Reference

APC/C-
CDC20

Cyclin A, cycin B1,
securin,

Oncogene Colorectal cancer Cell cycle
regulation

In vivo Overexpression (18)

APC/C-
CDH1

CDC20, CDC25A Tumor
suppressor

Breast cancer Cell cycle
regulation

In vivo (19)

SCFFBXW7 c-Myc, c-Jun, cyclin E,
mTOR, Notch-1, Mcl-1,

Tumor
suppressor

Metastatic colorectal denocarcinoma, T-cell acute
lymphoblastic leukemia, and cholangiocarcinomas

Cell cycle
regulation,

In vivo Mutation (20–23)

c-Myc Tumor
suppressor

Leukemia-initiating cell Cell
proliferation

In vitro Mutation (24, 25)

SCFSKP2 p27, p21, p57, cyclin A,
cyclin E, cyclin D1

Oncogene Breast cancer
lung cancer

Cell cycle
regulation

In vivo Overexpression (26)

c-Myc, Cell
proliferation

In vivo Overexpression (27)

SCFbTrCPs Mcl-1, BimEL, PDCD4,
STAT1

depends on
substrates

Colorectal cancer, pancreatic cancer Cell cycle
regulation

In vivo Overexpression (28, 29)

Parkin cyclin D, cyclin E Tumor
suppressor

Glioma,
colorectal cancer

Cell cycle
regulation

In vivo Mutation (30, 31)

MDM2 Retinoblastoma protein,
p53

Oncogene Lung cancer, colorectal cancer, cutaneous
melanoma, breast cancer

Cell cycle
control,
Apoptosis

In vivo Overexpression,
Mutation

(32, 33)
(34),

TRPC4AP/
TRUSS

c-Myc IMR5 neuroblastoma cells, U2OS, HeLa cells Cell
proliferation

In vitro (35)

KCTD2 c-Myc Glioma stem cells Cell
proliferation

In vitro Suppression (36)

CHIP c-Myc Glioma Cell
proliferation

(37)

HectH9 c-Myc Oncogene HeLa, T47D, MCF7, MRC5 cells Cell
proliferation

In vivo,
In vitro

Overexpression (38)

hUTP14a c-Myc Oncogene Colorectal cancer Cell
proliferation

In vivo Upregulation (39)

p53, retinoblastoma
protein

Oncogene U2OS cell, H1299, HCT116 cell Apoptosis In vitro,
In vivo

Upregulation (40, 41)

TRAF6 TAB2 Inflammation (42)
Fbxo38 PD-1 Tumor

suppressor
T cell
dysfunction in
cancer

In vivo Downregulation (43)

Stub1,Cbl-
b

Foxp3 Tumor
suppressor

Colitis Inflammation In vivo Downregulation (44, 45)

VHL HIF-1a Tumor
suppressor

Pancreatic cancer Inflammation (46)
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and promotes its ubiquitination and degradation in multiple
cancer cells (25). CRL3-potassium channel tetramerization
domain-containing 2 (KCTD2) mediates c-Myc protein
degradation by ubiquitination and suppresses gliomagenesis
(35). E3 ligase CHIP interacts and degrades c-Myc by
ubiquitination in glioma cells (36). In addition, 11S proteasomal
activator REGg has been reported to induce the degradation of c-
Myc in cancer cells (37). On the other hand, SCF-SKP2 enhances
c-Myc transcriptional activity by enabling the formation of c-Myc
activator complexes (85). The E3 ligase HectH9 regulates the
transcriptional activation of Myc through forming a lysine 63-
linked polyubiquitin chain and promotes tumor cell proliferation
in vivo and in vitro (27).

The deubiquitinating enzymes can prevent c-Myc degradation,
maintain its stability, and then promote cancer progression. USP28
was the first DUB shown to regulate c-Myc stability. It is highly
expressed in colon and breast carcinomas and binds toMyc through
interacting with FBW7alpha to stabilize Myc in the nucleus (38).
USP22 increased c-Myc stability via deubiquitination in breast
cancer cells (68). We previously found that USP37 was
significantly upregulated in human lung cancer tissues, and
directly deubiquitinated and stabilized c-Myc independent of
Frontiers in Oncology | www.frontiersin.org 524
Fbw7 (67). USP36, a highly expressed USP in a subset of human
breast and lung cancers, could interact with the nucleolar Fbw7g
andmaintain c-Myc stability in the nucleolus (61). Recently, a novel
E3 ligase, human U three protein 14a (hUTP14a) is upregulated in
human colorectal cancer tissues, and it stabilizes c-Myc through
forming a complex with USP36/Fbw7g in the nucleolus and
promote cancer progression (69).

E3 Ligases and DUBs Regulate Apoptosis
Apoptosis could inhibit aberrant cell cycle progression and
prevent tumorigenesis (39). If apoptotic pathways are
abrogated, the cells may not appropriately induce apoptosis,
which may lead to tumorigenesis. As a tumor suppressor protein,
p53 is frequently mutated in most cancers and plays a pivotal role
in apoptosis, genome instability and mutation. Ubiquitination
has been found to play a key role in regulating p53 degradation as
well as its activity and localization. For instance, MDM2 (murine
double minute 2) has been found to negatively regulate p53 with
diverse mechanisms. It can interact directly and degrade p53 via
ubiquitination. Besides, it can connect p53 and pRb to form an
Rb-Mdm2-p53 trimeric complex for the regulation of p53-
induced apoptosis (86). Mdm2 can also form a heterodimer
TABLE 2 | Some DUBs involved in cancers.

DUB Substrate Category Associated cancer or cancer line Biological functions Model Alteration in
tumors

Reference

BAP1 HCF-1 Tumor
suppressor

OCM1 cell, NCI-H226 lung carcinoma cell
line

Cell proliferation In vitro Loss, mutation (47–49)

OTUD7B/
Cezanne

APC/C Oncogene HCT116, RPE1, HeLaS3, U2OS cells Cell proliferation In vitro Overexpression (50)

USP21 FOXM1, p53 Oncogene Breast cancer Cell cycle progression,
NF-kB signing

In vitro,
In vivo

Overexpression (51)

BRCA2 Oncogene Hepatocellular carcinoma DNA damage repair, NF-kB
signaling

In vivo Overexpression (52)

USP5 FoxM1 Oncogene Pancreatic cancer Cell cycle regulation Overexpression (53, 54)
USP2 Cyclin D1, MDM2 Oncogene Hepatoma and breast cancer cells Cell cycle regulation,

apoptosis
In vitro Overexpression (55, 56)

USP14 Cyclin B1 Breast cancer, colorectal cancer, non-small
cell lung cancer

Cell cycle regulation In vitro (57)

USP44 Cdc20 Oncogene HeLa cell, T-cell leukemias Cell cycle regulation In vitro,
In vivo

Overexpression (58, 59)

USP37 Cyclin A, U2OS cells, HeLa cells, lung cancer Cell cycle regulation,
apoptosis

In vitro,
In vivo

Overexpression (60, 61)

USP7 Retinoblastoma
protein,
p53, MDM2,
FOXO4

Tumor
suppressor

HEK293, prostate cancer,
colon cancer, non-small cell lung cancer

Cell cycle arrest, apoptosis,
Cell proliferation

In vitro,
In vivo

Downregulation (62, 63) (32,
34),

USP11 BRCA2 Oncogene U2OS cell, breast cancer DNA damage repair, In vitro,
In vivo

Upregulation (64, 65)

USP13 RAP80 Oncogene Ovarian cancer DNA damage response In vivo Overexpression (66)
USP22 c-Myc Tumor

promoter
Breast cancer apoptosis In vivo Overexpression (67)

USP28 c-Myc Oncogene Colon cancer, breast cancer Cell cycle regulation,
apoptosis,
DNA damage repair

In vivo Overexpression (68)

USP36 c-Myc Oncogene Breast cancer, lung cancer Apoptosis In vivo Overexpression (69)
USP10 p53 Tumor

suppressor
HCT116 cell DNA damage repair In vitro Downregulation (70)

A20 TRAF2, TRAF6,
RIP1

Tumor
suppressor

B-cell lymphomas inflammation, apoptosis
inflammation

In vivo Downregulation (71)

CYLD IkK Tumor
suppressor

Cylindromatosis inflammation In vivo Downregulation (72)
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with MdmX (Mdm4) and participate in ubiquitin-mediated p53
degradation (33). Moreover, Mdm2 is upregulated in multiple
cancers such as colorectal cancer, cutaneous melanoma and
breast cancer (63). Therefore, the inhibition of p53-MDM2
interaction facilitates p53-mediated cell-cycle arrest or
apoptosis in cancer cells.

Up to now, many DUBs are involved in the regulation of p53.
For example, USP7 modulates the stability of both p53 and
MDM2, and maintains the level of p53 ubiquitylation (34, 87);
USP2 affects the stability of MDM2 (88); Otub1 inhibits p53
ubiquitination and activates p53 in cells (56); USP10 regulates
the location and stability of p53, and stabilize both mutated and
wild-type p53, thereby having a dual role in tumorigenesis (89).

Several E3s target anti-apoptotic protein myeloid cell
leukemia 1 (MCL1) and sensitize cells to apoptosis. For
example, DNA damage promotes HUWE1 bind to MCL1 and
marks MCL1 for proteasomal degradation; the cell cycle
regulators APC/C-CDC20 and SCF-FBXW7 degrade MCL1
and link apoptosis to prolonged mitotic arrest. Human
UTP14a is upregulated in several types of tumors and involved
in tumor progression via multiple mechanisms. It also exhibits
an anti-apoptotic activity through the intrinsic apoptotic
pathway, and protects tumor cells from chemotherapeutic
drug-induced apoptosis (70). It binds p53 and induces p53
degradation through a ubiquitin-independent manner (40).
Moreover, hUTP14a can also bind tumor suppressor pRb, and
promote the polyubiquitination and degradation of pRb in vitro
and in vivo (90). Thus hUTP14a might possess the potential as a
target for anti-tumor therapy.
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E3 ligases and DUBs Regulate DNA
Damage Repair
Errors in DNA replication and repair often cause genomic
instability (73). DNA damage repair is critical to maintain
genome integrity and prevent cancer. Many E3s including
MDM2 and BRCA1 participate in regulating the DNA damage
response and cell cycle checkpoints to cancer development. In
brief, DNA double-strand breaks (DSBs) induce the activation of
DNA damage sensors, which leads to the inactivation of MDM2,
maintenance of p53 stability, promotion of SCF-b-TrCP mediated
degradation of CDK phosphatase, and decrease of CDK activity.
In the meantime, DNA repair machines are recruited to DNA
damage sites under the control of ubiquitination. The inhibition of
homologous recombination (HR) during G1 is also dependent on
ubiquitylation mediated by APC/C-CDH1 and cullin 3-RING-E3
ligase (CRL3)-kelch-like ECH-associated protein 1 (KEAP1).
USP11 is also involved in the regulation of DNA double-strand
break repair, which is often up-regulated in cancer, resulting in
resistance to poly ADP ribose polymerase 1 (PARP) inhibitors (41,
64). USP21 deubiquitinates and stabilizes BRCA2, promotes HR
efficiency, and enhances homologous recombination efficiency
and tumor cell growth (65). USP13 deubiquitinates receptor-
associated protein 80 (RAP80) and promotes DNA damage
response. Therefore, inhibiting USP13 makes ovarian cancer
cells sensitive to cisplatin and olaparib (a PARP inhibitor) (52).

E3 ligases and DUBs Regulate Inflammation
Cancer-related inflammation plays an important role in tumor
development and progression. The transcription factor NF−kB
FIGURE 2 | Ubiquitin ligases and DUBs coordinate to regulate cell cycle progression. E3 ligase APC/C (anaphase-promoting complex; also named as the
cyclosome) recruits cell division cycle 20 (cdc20) and CDC20-like protein 1 (CDH1). APC/C-CDC20 promotes cell cycle transition from metaphase to anaphase,
while APC/C-CDH1 mediates mitotic exit and early G1 entry. E3 ligases SCF (S-phase kinase-associated protein 1-cullin 1-F-box protein) complexes work on a
subset of cyclins and CDK inhibitors and regulate progression from G1 to the onset of mitosis. FBXW7, SKP2, and b-TrCPs are well-studied F-box proteins. E3
Parkin downregulates some G1/S kinases. Several DUBs play crucial roles in cell-cycle progression in cancers. Some example substrates of E3 and DUBs are
shown in the gray boxes. The E3 and DUBs in green are tumor promoters and the ones in blue are tumor suppressors.
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regulates multiple biological processes including inflammation,
immunity, cell proliferation and apoptosis. Abnormal activation of
NF-kB has been involved in tumorigenesis. Ubiquitination regulates
NF-kB pathways in proteasome-dependent and independent
mechanisms (Figure 3) (66). For example, NF-kB is activated by the
inflammatory cytokine interleukin-1 (IL-1). Without simulation, NF-
kB is inactive in the cytoplasmbinding to the inhibitory proteins of the
kB family (IkB). IL-1b activates the ubiquitin E3 ligase tumor necrosis
factor receptor-associated factor 6 (TRAF6). TRAF6 cooperates with
the E2 enzyme Ubc13-Uev1A to synthesize K63 polyubiquitin chains
and adds them to the TAB2 (TGFb-activated kinase 1 binding protein
2) subunit of the TGF-b activated kinase 1 (TAK1) kinase complex,
resulting in TAK1 activation. TAK1 then phosphorylates the IkB
kinaseb (IkKb).PhosphorylatedIkBissubsequentlyubiquitinatedand
degradedby26Sproteasome, thereby allowingNF-kB to translocate to
the nucleus and activate gene expression.

InappropriateactivationofNF-kBhasbeen linked tocancers.NF-
kBactivationcouldbe tightly controlledbydeubiquitinatingenzymes
as negative regulators of IkK. For example, DUB A20 inhibits IkK
activation via threemechanisms, replacing K63 polyubiquitin chains
from receptor-interacting protein 1(RIP1) with K48 polyubiquitin
chains, blocking the interaction between Ubc13 and TRAFs, and
inhibiting IkK phosphorylation by TAK1 (42). Another well-known
DUB is the tumor suppressor CYLD, which inhibits NF-kB
activation by cleaving K63 as well as linear polyubiquitin chains to
inhibit IkK (71). Lack of CYLD in cells would elevate NF-kB
activation, which likely contributes to tumor development.

E3 ligases and DUBs Regulate T Cell
Dysfunction in Cancer
T cell activation is critical for the initiation and regulation of the
immune response in cancer immunotherapy. It requires at least two
Frontiers in Oncology | www.frontiersin.org 726
signals to become fully activated. One occurs after the engagement
of the T cell receptor (TCR) andmajor histocompatibility complex
(MHC). Another is provided when co-stimulator CD28 binds to
CD80 and CD86 that are expressed on antigen-presenting cells
(APCs). However, the multifaceted suppressive signals that existed
in the tumor microenvironment make intratumoral T cells
dysfunctional. The main traits of T cell dysfunction include some
inhibitory receptors (e.g., PD-1), inhibitory cells (e.g., Treg cells),
suppressive soluble mediators (e.g., TGFb), transcriptional factors
(e.g., T-bet), etc (72). UPS has been found to play a key regulatory
role in maintaining T cell dysfunction with diverse
mechanisms (91).

Dysfunctional T cells usually have abnormally high expression
of multiple inhibitory receptors such as PD-1. Inhibitory receptors
binding to their ligands negatively regulate an immune response.
A recent study has identified that E3 ligase Fbxo38 ubiquitinates
and degrades PD-1 in activated intratumoral T cells, which proves
a novel mechanism for cancer immunotherapy. Fbxo38 can be
activated by IL-2-induced STAT5 in activated T cells. In the
dysfunctional T cells, Fbxo38 is downregulated, leading to an
increased PD-1 abundance and impressive tumor immune
response (92).

Regulatory T (Treg) cells are a subpopulation of CD4+ T cells
that are crucial for maintaining immune tolerance. Treg cells
usually produce immunosuppressive molecules such as TGFb
and inhibit the function of effector T cells. Treg cell development
and function are determined by the transcription factor forkhead
box protein 3 (Foxp3) and several E3s are involved in the
process. For example, Stub1 and casitas B cell lymphoma
protein b (Cbl-b) ubiquitinate Foxp3 and negatively regulate
Treg cell development (43, 44). E3 ligase von Hippel-Lindau
(VHL), Itchy homolog (Itch) and gene related to anergy in
FIGURE 3 | Schematic diagram of the regulation of NF-kB activation by ubiquitin ligases and DUBs. IL-1b activates the ubiquitin E3 ligase TRAF6, TRAF6 cooperated with
the E2 enzyme Ubc13-Uev1A to synthesize K63 polyubiquitin chains and add them to the TAB2 subunit of the TGF-b activated kinase 1 (TAK1) kinase complex, which results
in TAK1 activation. TAK1 then phosphorylates IkKb. Phosphorylated IkB is subsequently ubiquitinated and degraded by 26S proteasome, thus allowing NF-kB to translocate
to the nucleus, and the NF-kB pathway is activated. Deubiquitinases such as A20 and CYLD inhibit the activation of the NF-kB pathway.
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lymphocytes (Grail) participate in maintaining Treg cell
repressive function (45, 46). Loss of VHL in Tregs leads to
type 1 T helper (Th1)-like cell conversion and interferon-gamma
(IFN-g) production (45). Itch deficiency in Treg cells results in
severe airway inflammation in mice, increasing TH2 cytokine
production (46). Also, GRAIL-deficient Treg cells induce
decreased suppressive function and increased Th17 cell-related
gene expressions (93). Cbl-b and Grail have been found to play
crucial roles in tumor immunosurveillance. Their loss inhibits
tumor formation in mice. Cbl-b-/- and Grail-/- CD8+ T cells can
be fully activated in the absence of costimulatory factors in vitro.
They could promote tumor rejection and inhibit tumor
formation when they are transferred into tumor-bearing mice
(94, 95). These studies suggest that Cbl-b and Grail may serve as
therapeutic targets to antitumor immunity.

TGFb, a well-known immunosuppressor factor, plays an
important role in immune tolerance (96). It not only promotes
thymic Treg cell development by repressing T cell clonal deletion
but also regulates peripheral Treg cell differentiation andmaintains
Treg cell function by inducing Foxp3 expression (96). Moreover,
TGFb inhibits T cell proliferation by decreasing IL-2 production
andupregulating cell cycle inhibitors (97). It also blocksCD4+T cell
differentiation by modulating T-bet or GATA expression (97).
Besides, TGFb downregulates the expressions of cytolytic genes in
cytotoxic T lymphocytes (98), costimulatory factors and MHC II
molecules in dendritic cells and macrophages, reducing antigen
resenting ability and regulating T cell function indirectly (99). In
fact, as a versatile cytokine, TGFb exerts pivotal functions in diverse
processes of cancer development, such as proliferation,
differentiation, apoptosis, and migration, depending on the target
cells (100). Thus, TGFb signaling has been regarded as a potential
therapeutic target for the treatment of cancers.

Dynamic ubiquitination/deubiquitination plays a key role in the
regulation of the TGFb signaling pathway (Figure 4) (101). The
TGFb1-induced TGFb pathway activation consists of receptors
(TGF receptor I and II), receptor-SMADs (SMAD2 and SMAD3),
co-SMAD (SMAD4), and inhibitor adaptor SMAD (SMAD7).
TGFb1 binding induces TGFRII to phosphate TGFRI, and then
the activated-TGFRI phosphorylates SMAD2 and SMAD3.
Subsequently, the phosphorylated SMAD2/3 dissociates from the
receptor andoligomerizeswithSMAD4.Following that, SMAD2/3/
4 translocates to the nucleus and recruits other gene regulatory
proteins and transcript specific genes. Many E3s and DUBs are
reported to be involved in turning off the TGFb pathway. For
example, AIP4/Itch brings SMAD7 to TGFbRI and prevents the
activation of SMAD2 (102). SMAD7 also serves as a scaffold to
recruit E3 ligases SMURF1, SMURF2,Tuil1/WWP1andNEDD4-2
to ubiquitinate and degrade the receptor complex (103–106). On
the contrary, USP26 stabilizes SMAD7 via deubiquitination (107).
As for SMADs, SMURF2 and NEDD4-2 target SMAD2 for
degradation (106, 108) whereas SMAD3 is targeted by E3 ligases
CHIP and ROC1-SCFFbw1a (109, 110). SMAD4 is indirectly
regulated by E3 ligases SMURF1, SMURF2, Tuil1/WWP1, and
NEDD4-2 through forming a complex with SMAD7, SMAD6 or
activated SMAD2 (111). SMAD4 has a point mutation in many
cancers. In this case, these protein variants are degraded by E3 ligases
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SCF-Skp2 and SCF-b-TrCP1 (112, 113) In addition, the R-SMAD/
SMAD4 complex can be dissociated by SMURF2monoubiquitinates
SMAD3 or Ectodermin/Tif1gmonoubiquitinates SMAD4. Once the
R-SMAD/SMAD4 complex enters the nucleus, the DNA-binding
proteins SnoN and TGIF direct NEDD4-2 and Tiul/WWP1 to
degrade SMAD2 and inhibit the signaling.

On the other hand, lots of E3s and DUBs participate in turning
on the TGFb pathway. At the receptor level, USP4 interacts directly
with TGFbRI to maintain its stability (114). DUBs such as USP11
andUSP15, stabilize the receptor complex by being associated with
the scaffold protein SMAD7 (115, 116). SMAD7 can bedegraded by
E3 ligases Arkadia, AIP4/Itch and RNF12 mediated ubiquitination
(117). OTUB1maintains the stability of SMAD2/3 by reversing the
ubiquitination of SMAD2 and USP9X, and also promotes the R-
SMAD/SMAD4 complex formation by preventing ubiquitination
on R-SMAD (118). In the nucleus, transcriptional repressor SnoN
can be degraded by E3s Arkadia, SMURF2 and CDH1-APC
mediated ubiquitination (119, 120). Monoubiquitination of R-
SMADs prevents the R-SMAD/SMAD4 complex binding with
the DNA, while USP15 reverses the modification and promotes
TGFb dependent transcription.

The T-box family transcription factor T-bet regulates the Th1
cell differentiation and induces the production of IFN-g. Recently, it
has been shown that it is expressed in Treg and participates in
relevant immunosuppressive function (121). It has been suggested
that T-bet is required in T cell dysfunction (72). Although the
underlyingmechanism of T-bet ubiquitination is unknown,USP10
has been found to stabilize T-bet via deubiquitination and enhance
the secretion of IFN-g (122).

Furthermore, UPS could regulate TCR activation. For
instance, E3 ligases Cbl, Itch, and Grail degrade the TCR
complex and inhibit T cell activation through proteolysis-
dependent mechanisms (91, 123). In contrast, USP12 has been
found to stabilize the TCR complex and promote TCR signaling
through deubiquitylating TCR adaptor proteins LAT and Trat1
in primary mouse T lymphocytes (124). Naik et al. found that
USP9X regulated TCR signaling and tolerance induction, and
also the USP9X-deficient T cells were hyperproliferative (125).
Therefore, E3 ligases and deubiquitinases keep the delicate
balance between immunity and tolerance.
THE THERAPEUTIC TARGETS OF UPS
AND DUBS

Numerous evidence indicates that every component of UPS can be
regarded as valuable therapeutic targets in the development of
anti-cancer drugs. Several drugs such as bortezomib (a proteasome
inhibitor), have been approved by the FDA in cancer, and many
other inhibitors are in development (Table 3) (138).
Targeting the E1 Enzyme
The E1 enzyme is responsible for activating ubiquitin molecules
in the UPS, and several compounds have been identified to target
E1. For example, adenosine sulfamate analogs, such as MLN7243
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(126) and MLN4924, function as the ubiquitin-activating
enzyme and NEDD8-activating enzyme inhibitors, respectively.
They are currently undergoing Phase I/II and Phase I clinical
trials (127, 139). Recently, TAK-243 was reported to induce
leukemic cell death in preclinical models of acute myeloid
leukemia cells through inhibition of the ubiquitin-like
modifier-activating enzyme 1 (128). Experimental inhibitors of
E1 have also been reported. For example, PYR-41, an irreversible
inhibitor of ubiquitin E1, can inhibit the ubiquitylation of
TRAF6 and decrease nuclear factor-kappa B activation. PYR-
41 can also inhibit the degradation of p53 and activate its
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transcriptional activity (140). Due to lacking specificity,
inhibition of E1 would cause remarkable side effects.

Targeting the E2 Enzyme
The E2 enzyme binds to E1, and then the activated ubiquitin is
transferred to a cysteine of the E2 enzyme from the E1 enzyme.
Thus, E2 enzymes mediate the conjugation of ubiquitin to
substrates. Nowadays, several E2 inhibitors have been found to
interfere with the process. For instance, Leucettamol A and
manadosterols A and B, which are isolated from the sea
sponges, inhibit the Ubc13-Uev1A interaction and block the
A

B

FIGURE 4 | Schematic overview of the regulation of TGFb pathway by ubiquitin ligases and DUBs. (A) factors that turn off the TGFb pathway. AIP4/Itch brings
SMAD7 to TGFbRI and prevents the activation of SMAD2. SMAD7 recruits E3 ligases SMURF1, SMURF2, Tuil1/WWP1, and NEDD4-2 to ubiquitinate and degrade
the receptor complex. On the contrary, USP26 stabilizes SMAD7 via deubiquitination. As for SMADs, SMURF2, and NEDD4-2 target SMAD2 for degradation
whereas SMAD3 is targeted by E3 ligases CHIP and ROC1-SCFFbw1a. SMAD4 is regulated by E3 ligases SMURF1, SMURF2, Tuil1/WWP1, and NEDD4-2 through
forming a complex with SMAD7, SMAD6 or activated SMAD2. The R-SMAD/SMAD4 complex can be dissociated by SMURF2 monoubiquitinates SMAD3 or
Ectodermin/Tif1g monoubiquitinates SMAD4. Once the R-SMAD/SMAD4 complex enters the nucleus, the DNA-binding proteins SnoN and TGIF direct NEDD4-2 and
Tiul/WWP1 to degrade SMAD2 and inhibit the signaling. (B) factors that turn on the TGFb pathway. At the receptor level, USP4, USP11, and USP15 stabilize the
receptor complex. E3s Arkadia, AIP4/Itch and RNF12 induce SMAD7 degradation. OTUB1 maintains the stability of SMAD2/3 and also promotes the R-SMAD/
SMAD4 complex formation by preventing ubiquitination on R-SMAD. In the nucleus, transcriptional repressor SnoN can be degraded induced by E3s Arkadia,
SMURF2 and CDH1-APC. Monoubiquitination of R-SMADs prevents the R-SMAD/SMAD4 complex binding with the DNA, while USP15 reverses the modification
and promotes TGFb-dependent transcription.
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TABLE 3 | Anti-cancer compounds in clinical trials targeting the ubiquitin-proteasome system and DUBs.

Classification Compound Target Cancer/cancer cell line Status References

E1 inhibitor MLN7243 Ubiquitin-activating enzyme Acute myeloid leukemia Phase I/II (65)
MLN4924 NEDD8-activating enzyme Malignant melanoma Phase I (52)
TAK-243 Ubiquitin-like modifier-activating

enzyme 1
Acute myeloid leukemia PreClinical (42)

PYR-41 Ubiquitin-activating enzyme HCT116 cells, H522 cells PreClinical (71)
E2 inhibitor Leucettamol A Ubc13-Uev1A Research (72)

manadosterols A
and B

Ubc13-Uev1A Research (91)

CC0651 Human Cdc34 PC-3 prostate cancer cells,
HCT116 cells

PreClinical (92)

E3 inhibitor RG7112 MDM2/HDM2 Liposarcoma, acute Leukemia Clinical (43)
RG7388 MDM2 Human osteosarcoma SJSA cells Clinical (44)
SAR405838 MDM2/HDM2 Liposarcoma, gastrointestinal,

Melanoma, non-small cell lung cancer
Phase I (45, 46)

MK-8242 MDM2/HDM2 Acute myeloid leukemia,
Advanced solid tumors

Phase I (93, 94)

NVP-CG097 MDM2 SJSA-1 cells Phase I (95)
HDM201 MDM2 Acute myeloid leukemia Phase I (96)
AMG232 MDM2 Solid tumors and lymphomas Phase I (97)
RITA MDM2 HCT116 cells Research (98)
PRIMA1 MDM2 SW480 tumor, Saos-2 osteosarcoma cells Research (99)
HLI373 HDM2 RPE cells, U2OS cells,

MDA-MB-468 breast cancer cell
Research (100)

HLI98 MDM2 RPE cells, U2OS cells, LOX-IMVI cells,
A549 cells,
HT1080 cells

Research (101)

MEL23/MEL24 MDM2 U2OS cells,
HCT116 cells,
RKO cells,
HT-1080 cells,
H1299 cells,
MCF7 cells

Research (102)

RO8994 MDM2 SJSA-1 cells, RKO cells, HCT116 cells Research (103)
NSC207895 MDMX MCF7 cells Research (105)
ATSP-7041 MDM2 & MDMX SJSA-1 cells, RKO cells, HCT116 cells, MCF7 cell, Research (106)
ALRN-6924 MDM2 & MDMX Solid tumors and lymphomas Phase I (107)
oridonin c-Myc Leukemia and lymphoma cells Research (109)
compound ZL25 SKP2 Prostate cancer cell PC-3 & LNCaP cell,

H3255 cells,
H1299 cells,
Hep3B cells & U2OS cells

Research (106)

compound A SKP2 Hematologic malignancies Research (111)
Erioflorin Pdcd4 RKO cells,

HeLa cells,
MCF7 cells

Research (112)

GS143 b-TrCP1 Research (113)
TAME Cdh1 and Cdc20 HeLa cells Research (114)
apcin Cdc20 RPE1 cells Research (115)
Clomipramine Itch Breast, prostate and bladder cancer cells Approved (118)

Proteasome
inhibitor

Bortezomib Proteasome Multiple meloma,
nonsmall cell lung cancer,
pancreatic cancer, mantle cell lymphoma

Approved (119, 120, 123,
124)

Carfilzomib Proteasome Multiple meloma,
Waldenstrom’s Macroglobulinemia

Approved (7)

Ixazomib Proteasome Multiple meloma Approved (8)
Oprozomib Proteasome Multiple meloma, solid tumors,

Waldenstrom Macroglobulinemia
Phase Ib/
II

(126)

Delanzomib Proteasome Multiple Myeloma, solid tumors,
Lymphoma, Non-Hodgkin

Phase I/II (127)

Marizomib Proteasome Refractory and relapsed multiple myeloma, malignant
glioblastoma

Phase III (126, 128, 129)

DUB inhibitor WP1130 USP9X HCT116 cells Research (129)

(Continued)
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E1-E2 complex formation (141, 142). Another example is
CC0651, a small molecule inhibitor of the E2 enzyme hCdc34
(130). The E2 enzyme hCdc34 can ubiquitylate SCF (Skp2)
substrate p27, and CC0651 decreases tumor cell growth by
inhibiting p27 ubiquitylation and degradation.

Targeting the E3 Enzyme
E3 ligase recognizes substrate proteins and catalyzes the transfer
of ubiquitin from E2 to target protein lysine. Therefore, E3 ligase
has high substrate specificity which makes targeting E3 ligase
become a promising tumor treatment strategy. So far, many
studies have identified some compounds that could target
specific E3 ligases and disturb UPS.

MDM2/p53
Due to the critical roles of p53 in regulating the genome, many
efforts have been made to find the antagonists of E3 ligase MDM2/
HDM2 to restore the function of p53. To date, a large number of
inhibitors have been discovered based on MDM2-p53 interaction.
Some of them are undergoing clinical assessment with different
stages, such as RG7112 (129), RG7388 (131), SAR405838 (132,
143), MK-8242 (144, 145), NVP-CG097 (133), HDM201 (146),
and AMG232 (147). Besides, more MDM2 inhibitors, such as
RITA (134), PRIMA1 (135) HLI373 (148), HLI98 (149), MEL23
and MEL24 (150), and RO8994 (136) have been discovered to
target MDM2 directly, thereby enhancing p53 activity and
exhibiting anti-cancer ability.

MDMX/HDMX (murine/humans double minute X) shares
significant homology with MDM2 and is also a negative
regulator of p53. Though nutlin-3 has been found to inhibit
MDM2-p53 but not MDMX-p53 interaction (151), NSC207895
targets MDMX specifically and acts addictively with nutlin-3a to
activate p53 and induce apoptosis (137). Moreover, ATSP-7041
(152) and ALRN-6924 (153) decrease p53-dependent tumor
growth as dual inhibitors of MDM2 and MDMX.

SCF E3 Ligases
SCF (Skp1/cullin/F-box) E3 ligases are the largest family of E3
ubiquitin ligases. Their substrates play important roles in regulating
the cell cycle, DNA replication, and signal transduction. Therefore,
the dysregulation of these E3s often leads to cancer (154). Since
FBPs are responsible for the specificity of SCFs, many small
molecules are designed to target them. For instance, the natural
compound oridonin enhances the ubiquitination and degradation
Frontiers in Oncology | www.frontiersin.org 1130
of c-Myc mediated by FBW7, inducing apoptosis in leukemia and
lymphoma cells (155). Furthermore, compound ZL25 inhibits SKP2
directly, resulting in the p53-independent cellular senescence in
cancer cells (156). Another SKP2 inhibitor, compound A, induces
p27-dependent cell cycle arrest and cell death by inhibition of SCF-
SKP2 complexes formation (157). Erioflorin stabilizes the tumor
suppressor Pdcd4 by blocking its interaction with b-TrCP1,
suppresses the activity of AP-1 and NF-kB, and decelerates cancer
cell proliferation (158). Another inhibitor, GS143, was shown to
markedly decrease IkB ubiquitination by targeting b-TrCP1 and
suppress the NF-kB signaling pathway (159).

Since Cdc20 is an oncogenic cofactor in the APC/C complex,
many efforts have been made to find Cdc20 inhibitors to anti-
cancer. TAME (tosyl-L-arginine methyl ester) was reported to
bind to the APC complex. It could inhibit its activation by
targeting both Cdh1 and Cdc20 and arrest cells in metaphase
(160). Moreover, Apcin was found to bind directly to Cdc20,
inhibiting the ubiquitylation of D-box-containing substrates, and
subsequently inducing tumor cell death (161).

E3 ligase Cbl-b has been identified as a negative regulator of
TCR signaling. When Cbl-b is inhibited, the T cell-mediated
antitumor activity will be enhanced. Autologous peripheral
blood mononuclear cells (PBMCs) from patients were collected
and transfected with Cbl-b-siRNA, which were called APN401.
The results of the Phase I clinical trial for APN401 revealed that
its intravenous infusion in patients with refractory solid tumors
was feasible and safe (162). Several small-molecule Cbl-b inhibitors
have been discovered to decrease the ubiquitylation of TAM
receptors and promote the activation of T cells as well as natural
killer cells. They are expected to be utilized in combination with
other approved agents in immunotherapy (163).

Itch, a HECT domain-containing E3 ligase, promotes the
ubiquitylation of several proteins (e.g. p70, p63, c-Jun, JunB, Notch,
and c-FLIP) and shows a potential target for cancer therapy. Rossi
et al. identified that antidepressant drug clomipramine and its
homologs could inhibit Itch auto-ubiquitylation and p73
ubiquitylation to reduce breast, prostate and bladder cancer cell
growth by blocking autophagy (164).

Targeting Proteasome Activity
Among all the UPS components, the proteasome has been
successfully used as a target for cancer treatment. The proteasome
is a largemulti-protein complex containingmulticatalytic proteases
(e.g., chymotrypsin- and caspase-like enzyme) and is responsible
TABLE 3 | Continued

Classification Compound Target Cancer/cancer cell line Status References

WP1130 UCH37 Multiple myeloma MM1.S &
Mantle cell lymphoma Z138 cells

Research (130)

HBX 41,108 USP7 Prostatic adenocarcinoma PC3 cells,
Colon carcinoma HCT116 cells

Research (131)

P5091 USP7 Multiple myeloma cells Research (132)
b-AP15 USP14 & UCHL5 Multiple myeloma cells Research (133)
Protac-1 MetAP-2 Research (134)
ARV-825 BRD4 Multiple myeloma cells Research (135)
ARV-771 pan-BET Castration-resistant prostate cancer Research (136)
QCA570 BET Human acute leukemia cells Research (137)
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for the degradation or processing of intracellular proteins. As such,
it regulates the levels of some important mediators for cell-cycle
progression and apoptosis in normal and malignant cells, such as
cyclins, caspases, BCL2 and nuclear factor of kB (165). Bortezomib
is the first proteasome inhibitor approved for recurrent refractory
multiplemeloma (MM) in 2003 (166, 167). It reversibly inhibits the
activities of chymotrypsin- and caspase-like enzymes, leads to the
apoptosis of MM cells, and suppresses the activation of NF-kB,
production of cytokines (e.g., IL-6, IGF-1, and VEGF) in the tumor
microenvironment, and adherence of myeloma cells to bone
marrow stromal cells (165, 168). Later, it was extended to patients
with non-small cell lung cancer, pancreatic cancer, and mantle cell
lymphoma (169, 170).Althoughbortezomibhas antitumoractivity,
it can cause side effects such as neuropathy and autophagy in some
cases (171, 172). Besides, bortezomib resistance often occurred in
about one year (173, 174). Carfilzomib, a second-in-class
proteasome inhibitor drug, was approved in 2012 for MM by the
USFDA(11). It irreversibly inhibits the chymotrypsin-like activities
and shows improved safety inmaintaining its cytotoxic potential in
the bortezomib resistant cell lines (12). Carfilzomib treatment also
causes adverse effects such as cardiovascular complications,
hypertension, and heart failure, but they are reversible and
manageable with careful monitoring. Both bortezomib and
carfilzomib are not suitable for oral administration. Ixazomib is
thefirst oral bioavailable proteasome inhibitor andwas approvedby
the FDA in 2015. It reversibly inhibits the chymotrypsin-like
activities and shows improved safety profiles over bortezomib,
but its therapeutic advantages still need further investigation by
randomized clinical trials (12).

The clinical successes of existing proteasome inhibitors
encourage great efforts to discover more proteasome inhibitors
with improved efficacy and safety. Thus, a lot of proteasome
inhibitors have been identified including oprozomib, delanzomib
and marizomib. Oprozomib is an orally available inhibitor with a
homologous structure to carfilzomib. It is currently being studied
in several clinical trials including a multicenter phase Ib/II trial
for MM patients. Oprozomib can effectively decrease the viability
of MM cells both in vitro and in vivo (175). Delanzomib, a
reversible oral bioavailability of bortezomib analog, overcomes
bortezomib’s resistance to peripheral neuropathy. But it causes
severe skin toxicity to many patients (176). Marizomib, a novel
proteasome inhibitor with a better therapeutic ratio, overcomes
bortezomib resistance and exhibits broader anti-cancer activities
(177). Moreover, marizomib has synergistic effects on refractory
and recurrent MM patients with BTZ, linedoxamine,
bormadoxamine and low dose dexamethasone (175, 178). In
addition, marizomib can penetrate the blood-brain barrier and
induces apoptosis in glioma cells with low toxicity on normal
cells (179). Marizomib is currently being assessed in a phase III
trial for the treatment of malignant glioblastoma in combination
with temozolomide and radiotherapy.

Targeting DUBs Activity
Ubiquitination is a dynamic and reversible process and DUBs
catalyze the removal of ubiquitin or polyubiquitin chains from
the target protein. DUBs are actively involved in regulating
tumorigenesis. Thus, DUB inhibitors are regarded as potential
Frontiers in Oncology | www.frontiersin.org 1231
anti-cancer agents (180) To date, a number of DUB inhibitors
have been identified to inhibit tumorigenesis (4, 10, 181).

WP1130, an inhibitor of DUBs, can suppress the activities of
USP9X, USP5, USP14 and UCH37, deregulate anti-apoptotic
protein MCL-1 and upregulate pro-apoptotic protein p53. It
exhibits high anti-tumor activity (182). For example, the
transcription factor E-twenty-six related gene (ERG) is
overexpressed and promotes prostate carcinogenesis. Inhibition
ofUSP9XbyWP1130 leads toERGdegradation and inhibits tumor
growth (183).

Recently, HBX 41,108, a small-molecule inhibitor of USP7,
was reported to inhibit USP7-mediated p53 deubiquitination,
stabilizing p53 and inducing p53-dependent apoptosis in cancer
cells (184). Besides, P5091, a selective USP7 inhibitor, was found
to induce apoptosis and overcome bortezomib resistance in MM
cells. What’s more, it can inhibit tumor growth and exhibit
synergistic anti-MM activity in combination with lenalidomide,
HDAC inhibitor SAHA, or dexamethasone (185). A class of dual
small molecule inhibitors of USP7 and USP47 has been identified
to promote p53 activity and apoptosis in MM and B-cell
leukemia cells in vitro and xenograft models (186).

Moreover, USP14 can inhibit the degradation of ubiquitin-
protein conjugates in vitro and in vivo (187). The inhibitors of
USP14 have been found to stimulate the proteasomal degradation
of oxidized proteins, causing resistance to oxidative stress (188).
Consistently, b-AP15 was shown to inhibit cell growth and
overcome bortezomib resistance in MM cells by selectively
blocking the deubiquitylating activity of USP14 and UCHL5
(189). These studies indicate that inhibiting specific oncogenic
DUBs may be an effective anti-cancer approach.
PROTACs TECHNOLOGY

Recently, emerging technologies based on PROTACs attract
increasing attention in the pharmaceutical industry (190).
PROTACs are heterobifunctional molecules that simultaneously
bind a target protein and an E3 ubiquitin ligase, enabling
ubiquitination and degradation of the target by the UPS in the
cell (Figure 5) (13). PROTACs link the target protein to an E3
ubiquitin ligase by a designed hybridmolecule, providing a path for
ubiquitinating undruggable proteins such as transcription factors,
scaffolding proteins and nonenzymatic proteins. The first
PROTACs were reported in 2001 by the Crews group and Ray
Deshaies (191). They artificially synthesized a chimeric compound
named Protac-1. Protac-1 has two domains: one domain contains
the IkBa phosphopeptide that could recruit the F-box protein b-
TrCP, and the other domain contains ovalicin which could bind to
the target protein methionine aminopeptidase-2 (MetAP-2). As a
result, MetAP-2 was ubiquitinated and degraded in a Protac-1-
induced proteolysis manner.

Due to the excellent permeability and low working
concentrations, small molecule-based PROTACs, which utilize
small molecules to recruit E3 ubiquitin ligases, have more
potential to be developed into drugs than peptide-based
PROTACs (13). The PROTAC technology broadens the range
of target proteins degraded by the UPS.
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Recently, some transcriptional regulators (such as BRD4,
TRIM24 and Smad3) have been reported to be targeted by
PROTAC technologies (13). BRD4, a bromodomain and
extraterminal domain (BET) family member, usually resides
upstream of important oncogenes such as c-Myc, BCL-xL and
BCL-6, and regulates their expressions. Therefore, BRD4 has
become a promising therapeutic target in multiple cancer types.
Preclinical studies of BRD4 inhibitors, JQ1 and OTX015,
demonstrate their value in suppressing c-Myc expression and BL
cell proliferation. However, owing to the reversible binding of
inhibitors, the suppression is incomplete and requires high drug
concentrations. Crews groups developed a bifunctional molecule,
ARV-825, connecting the BRD4 inhibitor OTX015 to an E3 ligase
cereblon binding moiety (pomalidomide) using PROTAC
technology. As a result, ARV-825 actively recruits BRD4 to
cereblon, leading to BRD4 efficient degradation via the
proteasome in Burkitt’s Lymphoma cells. Moreover, ARV-825
treatment produces a more pronounced effect on the inhibition of
c-Myc than that of the BRD4 inhibitors in five MM cell lines
[SKO-007(J3), U266, RPMI-8226, ARP-1, JJN3] and an MM
patient-derived CD138+ MM cells (192). In addition, Zengerle
et al. designed another PROTAC, connecting JQ1 for BET family
proteins and a ligand for VHL. Interestingly, the PROTAC not
only triggered the degradation of BET family proteins particularly
BRD4, but also regulated the transcription of BRD4 downstream
genes such as Myc, p21 and AREG (193). In this way, it can also
dampen the pro-inflammatory response inmicroglia, because BET
proteins control the transcription of NF-kB-depended genes
(194). These findings demonstrate that BRD4 PROTACs is a
promising novel strategy to efficiently target BRD4 (195).

Raina and his colleagues reported that ARV-771 (another pan-
BET inhibitor)-based PROTAC, dramatically suppressed
androgen receptor (AR) protein level and AR signaling. It could
lead to tumor regression in castration-resistant prostate cancer
Frontiers in Oncology | www.frontiersin.org 1332
(CRPC) mouse xenograft model with more efficiency than BET
inhibitors. This study provides evidence that small molecule-based
PROTAC functions in a solid-tumor malignancy of CRPC (196).
The results of BET-PROTACs ARV-825 and ARV-771 in the
treatment of MCL cells demonstrate that they induce more
apoptosis than BET inhibitors. Also, the results show that they
can overcome the resistance of ibrutinib and exert a synergistic
effect on apoptosis induction in the combination of other drugs
such as ibrutinib, venetoclax (a BCL2-antagonist) and palbociclib
(a CDK4/6 inhibitor) (197).

Recently, more BET-PROTACs have been designed. For
instance, Qin et al. synthesized a BET-PROTAC called QCA570,
utilizing a new class of BET inhibitors Oxazepines to recruit BET
proteins. It could inhibit human acute leukemia cell proliferation
at low picomolar concentrations, and abolish tumor growth in
leukemia xenograft models in mice (198). Zhang and his
colleagues demonstrated that BET-specific PROTACs were
active against preclinical models of MM (199). Interestingly, the
activity of BRD4-specific PROTACs can be improved over 100-
fold through modification of hydroxylation of proline (200). In
addition to the BET family, a functional PROTAC against
TRIM24, another bromodomain-containing transcriptional
regulator, has been designed and provides a path to find new
undruggable targets (201). Wang et al. designed new PROTACs to
prevent renal fibrosis by targeting SMAD3. They used hypoxia-
inducible factor-1a to recruit VHL and screened compounds to
bind SMAD3 from the Enamine library using the GLIDE
molecular docking program. SMAD3 was degraded by PROTAC
mediated ubiquitination (202). Thus, transcription factors can be
targeted via PROTAC technology.

In addition, the undruggable transcription factors also can be
degraded via alteration of the activity of an E3 ubiquitin ligase.
For instance, Thalidomide and its derivatives Lenalidomide and
Pomalidomide are effective drugs for the treatment of multiple
FIGURE 5 | Schematic diagram of the PROTAC technology. The PROTC is a chimeric molecule that consists of two ligands, one is to interact with E3 ligase and the other is
to bind the target protein. The target protein is polyubiquitinated and degraded by the proteasome and the PROTC molecule can be recycled.
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myeloma and other B cell lymphomas. Thalidomide analogs
bind Cereblon (CRBN), the substrate receptor of the CUL4-
RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase and alter
its substrate selectivity to recruit, ubiquitinate and degrade
unrelated transcription factors, such as Ikaros (IKZF1), Aiolos
(IKZF3) and Casein kinase 1 alpha (CK1a) (203, 204). These
findings provide a novel way to selective degrade specific targets
through modulating the activity of an E3 ubiquitin ligase.
CONCLUSIONS

Ubiquitination of nonhistone proteins plays an important role in
many cellular processes, including cell cycle, cell proliferation, DNA
repair, apoptosis, inflammation, immune response, etc.
Dysregulation of nonhistone lysine ubiquitylation is closely
associated with the development of various human cancers.
Therefore, UPS has been evolved as promising therapeutic targets
for novel anti-cancer drugs. Nowadays, many proteasome inhibitors
and E3 ligase modulators have been approved for anticancer
treatment, whereas small-molecule inhibitor therapeutic strategies
usually need high drug exposures and potentially increase the risk of
off-target adverse effects. Fortunately, PROTACtechnologies provide
a path to target many undruggable proteins with UPS such as
transcription factors.
Frontiers in Oncology | www.frontiersin.org 1433
To date, it remains an obstacle for the discovery of small
molecule moiety to different targets. Another obstacle is
specificity, how to get tissue-specific or disease-specific induced
protein degradation? How to realize conditional triggered
induced protein degradation? A deeper understanding of the
tissue expression of E3 ligase and tumor microenvironment may
provide a larger therapeutic window for appropriate PROTAC.
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Purpose: Ubiquitin-specific proteases (USPs), as a sub-family of deubiquitinating
enzymes (DUBs), are responsible for the elimination of ubiquitin-triggered modification.
USPs are recently correlated with various malignancies. However, the expression features
and clinical significance of USPs have not been systematically investigated in
hepatocellular carcinoma (HCC).

Methods: Genomic alterations and expression profiles of USPs were investigated in
CbioPortal and The Cancer Genome Atlas (TCGA) Liver hepatocellular carcinoma (LIHC)
dataset. Cox regression and least absolute shrinkage and selection operator (LASSO)
analyses were conducted to establish a risk signature for HCC prognosis in TCGA LIHC
cohort. Subsequently, Kaplan-Meier analysis, receiver operating characteristic (ROC)
curves and univariate/multivariate analyses were performed to evaluate the prognostic
significance of the risk signature in TCGA LIHC and international cancer genome
consortium (ICGC) cohorts. Furthermore, we explored the alterations of the signature
genes during hepatocarcinogenesis and HCC progression in GSE89377. In addition, the
expression feature of USP39 was further explored in HCC tissues by performing western
blotting and immunohistochemistry.

Results: Genomic alterations and overexpression of USPs were observed in HCC
tissues. The consensus analysis indicated that the USPs-overexpressed sub-Cluster
was correlated with aggressive characteristics and poor prognosis. Cox regression with
LASSO algorithm identified a risk signature formed by eight USPs for HCC prognosis.
High-risk group stratified by the signature score was correlated with advanced tumor
stage and poor survival HCC patients in TCGA LIHC cohort. In addition, the 8-USPs
based signature could also robustly predict overall survival of HCC patients in ICGC(LIRI-
JP) cohort. Furthermore, gene sets enrichment analysis (GSEA) showed that the high-risk
score was associated with tumor-related pathways. According to the observation in
GSE89377, USP39 expression was dynamically increased with hepatocarcinogenesis
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and HCC progression. The overexpression of USP39 was further determined in a local
HCC cohort and correlated with poor prognosis. The co-concurrence analysis suggested
that USP39 might promote HCC by regulating cell-cycle- and proliferation- related genes.

Conclusion: The current study provided a USPs-based signature, highlighting its robust
prognostic significance and targeted value for HCC treatment.
Keywords: ubiquitin-specific proteases, hepatocellular carcinoma, prognosis, risk signature, molecular target
INTRODUCTION

Hepatocellular carcinoma is one of the most common
malignancies worldwide with significant clinical, economic,
and psychological burdens (1). Liver resection, ablation, and
liver transplantation are potentially curative strategies for HCC
patients at early stage, while a major proportion of HCC patients
are diagnosed with intermediate and advanced stages with
limited approaches (2). Currently, systemic therapy remains
essential for advanced-stage HCC, including targeted agents
and immune checkpoint inhibitors (3). However, HCC
patients are generally inclined to poor prognosis with
recurrence and chemoresistance. With the advancements in
multi-omics profiling, recent studies have provided prognostic
candidates for potential application of clinic. For the current
status, it is of great significant to identifying robust molecular
biomarkers to predict HCC patients’ outcome.

Ubiquitination (Ub) is one of the most common post-
translational protein modifications that has been implicated in
multiple biological processes, including embryonic development,
cell cycle, and even oncogenesis (4). The dominant forms of Ub
are recognized as mono-ubiquitination and Lys48/Lys63-linked
polyubiquitination (5). The Ub processes are commonly
mediated by E1-ubiquitin-activating enzymes, E2-ubiquitin-
binding enzymes, E3-ubiquitin ligases, and deubiquitinating
enzymes (DUBs) (6). DUBs, as proteolytic enzymes, are
responsible for the elimination of ubiquitin-triggered
modification, which could be further classified into eight sub-
families such as ubiquitin-specific proteases (USPs), ubiquitin
COOH terminal hydrolases (UCHs), Machado-Josephine
domain-containing proteases (MJDs), ovarian tumor-associated
proteases (OTUs), zinc finger–containing ubiquitin peptidases
(ZUFSPs), and motif interacting with ubiquitin-containing novel
DUB family (MINDY), Jab1/MPN domain-associated
metallopeptidase (JAMM) domain proteins, and monocyte
chemotactic protein-induced protein (MCPIP) (7). Of them,
through deubiquitinating a wide range of substrates, USPs
family members are involved in various physiological and
pathological processes. Our previous study has suggested USP7
as a drug-able target that promoted chemoresistance of HCC (8).
Recently, increasing studies indicate that USPs are implicated in
the progression of HCC. USP22 could facilitate the hypoxia-
induced stemness of HCC cells by regulating HIF1a/P53
signaling (9). USP5 enhanced epithelial-mesenchymal
transition (EMT)-induced metastasis by stabilizing SLUG (10).
Moreover, USP21 could promote the malignant transformation
240
of the normal human hepatocytes and increased the
tumorigenicity of the HCC cells by activating the ERK
signaling through the stabilization of MEK2 (11). In contrast,
USPs may also act as tumor suppressors in HCC progression.
USP10 was reported to inhibit tumor growth and inactivate
mTORC1/AKT signaling by stabilizing AMPKa and PTEN in
HCC cells (12). Besides of regulating malignant behaviors, USPs
were also considered as prognostic markers. Previous studies
suggested that USP4, USP7, USP11, and USP33 were correlated
with poor survival of HCC patients (13–16).

However, none integrated analysis of USPs has been
performed for HCC till now. The current study systematically
investigated the expression features and clinical significance of
USP family members in HCC. Additionally, we established a
USP family-based prognostic model from TCGA datasets and
further validated it in ICGC (LIRI-JP) cohort. Considering the
specific role of the USP family in HCC, we further explored the
relationship between the signature genes and the landscape of
HCC progression in GSE89377. Moreover, the expression
features and clinical implications of USP39 were explored in a
local HCC cohort.
METHODS AND MATERIALS

Patients Information
HCC and adjacent tissues were obtained from 16 HCC patients
who received hepatectomy at Affiliated Hospital of Nantong
University (Nantong, Jiangsu, China) in 2018, which were frozen
for western blotting. Liver specimens were collected from 106
patients with HCC underwent surgery at Affiliated Hospital of
Nantong University betweenMarch 2012 and June 2017. Clinical
information was recorded in detail, including each patient’
clinical parameters and post-surgery follow-up. All sections
were pre-checked histologically. Written informed consent was
obtained from each patient. This study was approved by the
Ethics Committee of Affiliated Hospital of Nantong University.

Data Acquisition and Preprocessing
The expression profiles of the 57 USPs in 374 HCC patients with
clinical information was downloaded from TCGA LIHC datasets
(https://cancergenome.nih.gov/) through the R package “TCGA-
Assembler”. Heatmap was performed to visualize the expression
levels of the USPs in HCC and normal tissues in TCGA LIHC
cohort. The RNA-seq data of 232 HCC cases was also extracted
from ICGC cohort (https://dcc.icgc.org/projects/LIRI-JP). The
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clinical parameters of the TCGA and ICGC cohort were shown
in Table 1. The mRNA profiles of USPs in HCC-related stratified
groups were extracted from GSE89377 and multiple
GSE datasets.

PPI Network Construction, Correlation
Analysis, and Consensus Clustering
Analysis
An interaction network of 57 USPs was recapitulated by STRING
(http://string-db.org). NetworkAnalyst (networkanalyst.ca) was
used to predict the liver-specific protein-protein interaction
(PPI) of the USPs. In addition, the Pearson correlation analysis
was performed to calculate the associations among the 57 USPs.
The LIHC cohort was stratified into sub-groups by consensus
expression of USPs with “ConsensusClusterPlus” R package.
Principal component analysis (PCA) was carried out with the
“prcomp” function of the “stats” R package.
Frontiers in Oncology | www.frontiersin.org 341
Construction of Prognostic Signature
The correlation of USPs with clinical outcome of HCC patients
was evaluated by Univariate Cox regression test. USPs with
P<0.05 were further enrolled into Univariate Cox regression
test by using the least absolute shrinkage and selection operator
(LASSO) algorithm with the “glmnet” R package. An 8-gene
prognostic signature was screened based on the minimum
criteria. The risk score of each patient was calculated according
to the normalized expression level of each gene and its
coefficients. The formula was listed as follows: The coefficient
(genei) was derived from the Cox proportional hazards
regression analysis. The TCGA LIHC cohort was divided into
two sub-groups based on the median value of the risk score. t-
SNE were performed to explore the distribution of different risk
groups by using the “Rtsne” R package. In addition, to explore
the potential function, gene ontology (GO) was performed based
on the differential gene profiles of the two groups (|log2FC| ≥ 1,
FDR <0.05).

Evaluating the Prognostic Value
of the Gene Signature
The correlation of risk score with clinicopathological features
(age, gender, grade, stage, T, N, and M status) was evaluated by
Chi-square test and visualized with heatmap. Kaplan-Meier
analysis with log-rank test was conducted to compare the
difference of overall survival between patients at high- or low-
risk group. Stratified analysis was performed to evaluate the
prognostic significance of the risk score in cases at different
stages and grades. Receiver operating characteristic (ROC) curve
was conducted to assess the predictive performance of the
signature model. Univariate and Multivariate Cox regression
analyses were performed to define the risk score as an
independent prognosis predictor for HCC patients in the
TCGA cohort. To validate the prognostic value of the USPs-
based signature, the Kaplan-Meier analysis, ROC analysis,
Univariate and Multivariate Cox regression analyses were also
performed in ICGC cohort.

Gene Sets Enrichment Analysis
To identify enriched pathways associated with the signature,
gene set enrichment analysis (GSEA) was performed on the
high-risk sub-groups of the TCGA and ICGC cohorts,
respectively. The analysis was based on GSEA v.3.0. Molecular
Signatures Database v.7.0. Gene sets with P value < 0.05 and FDR
< 25% were considered significantly enriched.

Expression Profiles and Functional
Prediction for USP39
The mRNA profiles of USP39 in Pan-cancers and the correlation
of USP39 with proliferation and cell cycle-related genes was
analyzed by TIMER database (cistrome.shinyapps.io/timer). The
significantly correlated genes with USP39 in TCGA LIHC dataset
and corresponding GSEA were analyzed by LinkedOmics (www.
linkedomics.org). The mRNA profiles of USP39 in HCC cases at
different stages and grades were obtained from Ualcan (ualcan.
path.uab.edu).
TABLE 1 | The clinical characteristic information of the HCC patients in TCGA
and ICGC.

Characteristics TCGA(%) ICGC (%)

Number of Patients 374 232
Age
<60 177 (47.32) 64(27.59)
≥60 196(52.41) 168(72.41)
NA 1(0.27) NA
Gender
Male 253(67.65) 171 (73.71)
Female 121(32.35) 61 (26.29)
Survival status
Alive 238(63.64) 189(81.47)
Dead 130(34.76) 43 (18.53)
NA 6(1.60) NA
Stage
I 173(46.26) 36(15.52)
II 87(23.26) 106(45.69)
III 85(22.73) 71(30.60)
IV 5(1.34) 19(8.19)
NA 24(6.42) NA
Histological grade
G1 55(14.71) NA
G2 178(47.59) NA
G3 124(33.16) NA
G4 12(3.21) NA
NA 5(1.34) NA
T classification
T1 183(48.93) NA
T2 95(25.40) NA
T3 80(21.39) NA
T4 13(3.48) NA
NA 3(0.80) NA
N classification
N0 254(67.91) NA
N1 4(1.07) NA
NX 115(30.75) NA
NA 1(0.27) NA
M classification
M0 268(71.66) NA
M1 4(1.07) NA
MX 102(27.27) NA
NA, not available.
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Immunohistochemistry (IHC)
and Evaluation
The sections of HCC tissues were deparaffinized in xylene,
dehydrated in gradient concentrations of ethanol. After
incubated in sodium citrate buffer for antigen retrieval, the
slides were blocked in BSA for 1 h at room temperature. Then
the samples were sequentially incubated with the indicated
primary antibody (USP39, 1:200, Santa Cruz, USA) and
secondary antibody. At last, the sections were visualized by
3,3′-diaminobenzidine (DAB, Kem-En-Tec Diagnostics,
Denmark). Staining of USP39 was independently scored by
two pathologists. The statistical analysis of the IHC results
were performed as previously described (17). The IHC score
was calculated by combining staining intensity and positive
percentages. The positive percentages were scored as follows: 0
(0%); 1(1–10%), 2 (11–50%), 3 (51–80%), and 4 (≥81%). The
staining intensity was scored as 0 (negative), 1 (weak), 2
(moderate), and 3 (strong). The final score was calculated by
multiplying the percentage score with the intensity score. Score
of 4-12 was considered high expression of USP39, while score
less than 4 was defined as low expression.

Western Blotting
The total protein of each sample was extracted by using
radioimmunoprecipitation assay buffer (RIPA) and separated
by a sodium dodecyl sulfate (SDS) gel. Following transferred
onto polyvinylidene difluoride (PVDF) membranes, the samples
were subsequently blocked in 5% BSA for 2 h and incubated in
primary antibody (USP39, Santa, USA; GAPDH, Abcam, USA)
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at a concentration of 1:1,000 overnight. Then the membranes
were rinsed in TBST for three times, followed by exposing to
horseradish peroxidase (HPR) -conjugated secondary antibodies
(Abcam, USA) for 2 h at room temperature. Ultimately, the
intensity of the membranes was detected by using the enhanced
chemiluminescence (ECL) kit (Millipore, USA).

Statistical Analyses
The statistics in this study were performed by using R software
(Version 3.5), GraphPad Prism software (Version 7.0), and SPSS
(Version 23.0). The survival difference of overall survival
between two groups was compared by Kaplan-Meier analysis
with a log-rank test. Univariate and multivariate analyses were
conducted by using the Cox proportional hazards regression
model. The chi-square test was used to evaluate the relationship
between the risk score and clinicopathological variables. One-
way ANOVA and multiple comparison were used to determine
the differential expression of USPs among sub-groups in
GSE89377. P < 0.05 was considered as statistically significant.
RESULTS

Genomic Alterations of the USP Family in
TCGA LIHC Cohort
The genomic alterations of USPs are presented in Figure 1. A
total of 57 USPs were involved in this study. According to the
OncoPrint analyzed by CbioPortal, USP36 (15%), USP7 (14%),
and USP32(14%) were three top-altered genes (Figure 1A).
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FIGURE 1 | The genomic alterations of ubiquitin-specific proteases in HCC tissues. (A) The Oncoprint of 57 ubiquitin-specific proteases (USPs) in TCGA LIHC
dataset by CbioPortal. (B) Integrated analysis of the USPs genomic alteration proportion in LIHC dataset. (C) The top mutated genes in the USPs-altered group and
USPs-unaltered groups. (D, E) The Kaplan-Meier curves of the overall survival and disease-free survival for the HCC patients in USPs-altered group and USPs-
unaltered groups.
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Generally, USP family members altered in 91.8% of the whole
HCC cases (Figure 1B). Of them, the frequency of mutation,
amplification, deep deletion, mRNA high, mRNA low, and
multiple alteration was 3.44%, 0.57%, 1.72%, 25.78%, 7.74%,
and 52.72%, respectively. As shown in Figure 1C, five well-
known HCC-related genes had higher alteration frequency in the
USPs-altered group. Furthermore, the altered group showed
poorer disease-free survival (DFS, P=0.0287), though the
difference of the overall survival was not statistically significant
(Figure 1D, E).

The Expression Features of USPs in HCC
The expression profiles of USPs in 374 HCC tissues and 50
normal liver tissue were extracted from TCGA LIHC cohort.
Compared with normal liver tissues, a majority of USPs (45/57)
presented higher expression in HCC tissues (Figure 2A). As
shown in Figure 2B, the correlation analysis showed that the
most relevance among all the USPs was observed in USP34/
USP37 (r = 0.79) and USP1/USP24 (r = 0.79). Furthermore, we
used STRING to establish the interactive network among the 57
USPs, in which USP1, USP39, USP5, USP13, and USP25 seemed
to be the hub genes (Figure 2C). In addition, NetworkAnalyst
(networkanalyst.ca) was used to predict the liver-specific
protein-protein interaction (PPI) of the 57 USPs (Figure 2D).
GO and KEGG analyses further indicated that the nodules in this
PPI network were enriched in biological processes like cellular
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protein catabolic process, and protein ubiquitination, as well as
pathways like cell cycle, necroptosis, viral carcinogenesis, Hippo
signaling pathway, and NF-kappa B signaling pathway (Table 2).

Consensus Clustering of the USPs in
TCGA LIHC Cohort
Based on the expression features of USPs and CDF value, 374
HCC samples of TCGA cohort were stratified into two clusters
by using the Consensus ClusterPlus package (k = 2, Figures
3A–C). Furthermore, the PCA showed that the two clusters
could be well- distinguished in the whole TCGA LIHC cohort
(Figure 3D). Then, we further explored the association between
the USPs-based clusters and the clinicopathological parameters
of HCC patients in LIHC cohort. As the heatmap illustrated in
Figure 3E, USPs-overexpressed cluster 2 was significantly
correlated with age, neoplasm stage, tumor growth, and
survival status. Consistently, the patients at cluster 2 with USPs
overexpression had poorer overall survival than cases of cluster 1
(Figure 3F, P<0.001), suggesting the prognostic potential of USP
family for HCC patients.

Construction of the USPs-Based Signature
in TCGA LIHC Cohort
With the implications in HCC prognosis, we further conducted
the univariate Cox regression analyses to evaluate the prognostic
significance of USPs. As listed in Supplementary Table 1, 21
A B

DC

FIGURE 2 | The expression features and interactions of ubiquitin-specific proteases family in HCC. (A) The expression levels of 57 USPs in HCC tissues and normal
liver tissues evaluated in TCGA datasets. (B) Spearman correlation analyses of the 57 USPs in LIHC cohort. (C) The interactions among the 57 USPs was analyzed
by STRING. (D) Liver specific interaction of the 57 USPs was predicted by Networkanalyst. ***P < 0.001; **P < 0.01; *P < 0.05.
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USPs were significantly correlated with poor overall survival of
the HCC patients, including USP1, USP10, USP11, USP13,
USP14, USP15, USP19, USP21, USP22, USP24, USP28, USP29,
USP32, USP33, USP36, USP37, USP39, USP42, USP46, USP48,
and USP54. Next, the 21 USPs were enrolled into the Cox
proportional hazards regression analysis with LASSO
algorithm (Figure 4A). Eight genes, including USP1, USP13,
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USP22, USP24, USP29, USP39, USP48, and USP54, were
ultimately screened to establish the signature based on the
minimum criteria. According to the expression level of the
USPs and coefficients, we stratified the TCGA LIHC cohort
into a high-risk group and a low-risk group based on the median
risk score. t-SNE analysis indicated the efficiency to distinguish
different risk group (Figure 4B). As shown in Figure 4C, patients
TABLE 2 | GO_BP and KEGG analyses of the liver-specific interaction of USPs.

Pathway Total Expected Hits P Value FDR

GO_BP analysis
Cellular protein catabolic process 518 25.6 114 5.77E-44 4.73E-41
Protein catabolic process 644 31.8 121 3.12E-39 1.28E-36
Cellular macromolecule catabolic process 849 42 138 1.44E-37 3.92E-35
Macromolecule catabolic process 1070 52.9 148 4.12E-32 6.76E-30
Proteolysis 1100 54.1 133 3.10E-23 4.24E-21
Protein modification 713 35.2 96 8.08E-20 9.47E-18
Protein ubiquitination 658 32.5 88 5.17E-18 5.30E-16
Cellular catabolic process 2140 106 189 7.86E-17 7.16E-15
Catabolic process 2560 127 205 8.42E-14 6.90E-12
Interphase of mitotic cell cycle 435 21.5 61 1.14E-13 8.47E-12
KEGG analysis
Ubiquitin mediated proteolysis 137 8.02 32 7.18E-12 2.28E-09
Cell cycle 124 7.26 29 6.92E-11 1.10E-08
Necroptosis 162 9.49 31 3.13E-09 3.32E-07
Endocytosis 244 14.3 39 6.46E-09 5.14E-07
Epstein-Barr virus infection 201 11.8 32 1.71E-07 9.76E-06
Oocyte meiosis 125 7.32 24 1.84E-07 9.76E-06
Viral carcinogenesis 201 11.8 30 1.72E-06 7.80E-05
Hippo signaling pathway 154 9.02 25 2.74E-06 0.000109
Pathways in cancer 530 31 57 3.97E-06 0.000133
NF-kappa B signaling pathway 100 5.85 19 4.17E-06 0.000133
February
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FIGURE 3 | Consensus clusters of the USPs. (A, B) Consensus clustering model with cumulative distribution function (CDF) with k from 2 to 9; (C) The LIHC cohort
stratified into two clusters (k = 2); (D) principal component analysis (PCA) of the total mRNA profiles of the two clusters; (E) Heatmap indicated the correlation of cluster 2
with clinicopathologic parameters. (F) The Kaplan-Meier curves of the overall survival of HCC patients in the two clusters. ***P < 0.001; **P < 0.01; *P < 0.05.
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at high-risk group had a probability of poor survival than that in
low-risk group. Next, the ROC analysis suggested that the risk
signature could robustly predict OS for HCC patients in TCGA
LIHC cohort (AUC = 0.69, Figure 4D). In addition, Kaplan-
Meier analysis demonstrated that HCC patients with high-risk
score had shorter overall survival compared to the cases with
low-risk score (P<0.001, Figure 4E). Then we analyzed the
correlation of the risk signature with clinical parameters in
TCGA cohort. High-risk group was significantly correlated
with aggressive phenotypes such as tumor size, neoplasm stage,
and survival status (Figure 4F). Additionally, we conducted
stratified analysis in the sub-groups of TCGA LIHC cohort.
For HCC patients at stage I and II, high-risk score led to a poorer
overall survival (Supplementary Figure 1A, P<0.001). However,
though the general survival time was obviously shorter in high-
risk group, the difference was not statistically significant for
patients at stage III and IV (Supplementary Figure 1B,
P=0.103). In contrast, patients at high-risk score displayed a
significantly poorer OS in sub-groups of grade I&II
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(Supplementary Figure 1C, P<0.001) or grade III &IV
(Supplementary Figure 1D, P=0.026).

Validating the Signature in ICGC Cohort
To confirm the robustness of the signature, we further evaluated
the risk model in ICGC cohort (LIRI-JP). The patients from the
ICGC cohort were also categorized into two groups according to
the median risk score calculated by the formula established in the
TCGA cohort. The t-SNE analysis demonstrated that patients in
two high- and low-groups were distributed in discrete dots
(Figure 5A). In consistent with the results of TCGA, the cases
in the high-risk group had a probability of poorer survival
(Figure 5B). The ROC analysis also confirmed the predictive
performance of the risk model in ICGC cohort (Figure 5C,
AUC=0.674). In addition, Kaplan-Meier analyses indicated that
HCC patients with high-risk score had reduced overall survival
time (Figure 5D, P<0.001). As shown in Figures 5E, F, the
stratified analysis showed that high-risk score was correlated
with shorter OS in cases both of I&II stages (Figure 5E,
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FIGURE 4 | Construction of the USPs-based signature in TCGA LIHC cohort. (A) The coefficients of the 8-gene signature were calculated by multivariate Cox
analysis with LASSO. (B) The distribution and median value of the risk scores in the TCGA LIHC cohort. (C) The distributions of OS status and risk score in the
TCGA LIHC cohort. (D) The ROC curve was calculated to evaluate the predictive efficiency of the USPs-based signature in TCGA. (E) The Kaplan–Meier curves of
overall survival for HCC patients at high-risk group and low-risk group in TCGA. (F) The correlation of the high or low risk score with clinicopathologic parameters in
the TCGA LIHC cohort. ROC, receiver operator curve. ***P < 0.001; **P < 0.01.
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P=0.0308) and III&IV stages (Figure 5F, P=0.0209) in the
ICGC cohort.

Identify the USPs-Based Signature as an
Independent Prognostic Factor of HCC
Furthermore, the univariate and multivariate Cox regression
analyses were conducted to evaluate the risk signature as an
Frontiers in Oncology | www.frontiersin.org 846
independent prognostic factor in the two cohorts. For TCGA
cohort, the univariate Cox analysis demonstrated that the risk
score (P<0.001, HR = 1.157, 95% CI = 1.112–1.205), neoplasm
stage, T status, and M status were potential hazard factors
(Figure 6A). Further multivariate Cox regression analysis
elucidated that the risk score was an independent factor
(P<0.001, HR = 1.152, 95% CI = 1.101–1.205) of HCC
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FIGURE 5 | Validating the prognostic value of the USPs-based signature in ICGC cohort. (A) The distribution and median value of the risk scores in the ICGC
cohort. (B) The distributions of OS status and risk score in the ICGC cohort. (C) The ROC curve was calculated to evaluate the predictive efficiency of the USPs-
based signature in ICGC cohort. (D) The Kaplan–Meier curves of overall survival for HCC patients at high-risk group and low-risk group in ICGC cohort. (E, F) The
Kaplan–Meier curves of HCC patients at stage I&II and stage III&IV in ICGC cohort. ICGC, International Cancer Genome Consortium.
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(Figure 6B). For ICGC cohort, the univariate Cox analysis the
risk score (P=0.006, HR = 1.439, 95% CI = 1.110–1.866) and
neoplasm stage were candidate factors (Figure 6C). In
accordance with the observation in TCGA cohort, the risk
score was also recommended as an independent predictor for
OS by the multivariate Cox regression analysis in the ICGC
cohort (Figure 6D, P=0.018, HR = 1.460, 95% CI = 1.066–2.000).
Functions and Pathways Correlated With
the USPs-Based Signature
To predict the biological functions, we conducted GO analyses
in differential expression genes (DEGs) between high-risk and
low-risk groups in both of TCGA cohort and ICGC cohort. the
DEGs were enriched in biological process like DNA replication,
nuclear division, ECM constituent, small molecule catabolic
process, collagen-containing ECM, and peptidase inhibitor
activity (Supplementary Figures 2A, B). Furthermore, we
conducted GSEA with KEGG and Hallmarks to unravel the
molecular mechanisms underlying the USPs-based signature
(Supplementary Table 2). As shown in Figure 7A, the
ubiquitin mediated proteolysis, cell cycle, DNA replication,
ERBB signaling, MYC targets, G2/M checkpoints, PI3K/AKT/
mTOR signaling, and Wnt/b-catenin pathway were enriched in
the high-risk group of the TCGA cohort. For the ICGC cohort,
in addition to the pathways mentioned above, the significantly
Frontiers in Oncology | www.frontiersin.org 947
enriched pathways also included regulation of autophagy and
E2F targets (Figure 7B).
Expression Features of the Risk Genes
in HCC Progression
Then, we extracted the mRNA profiles from GSE89377 to
analyze the expression of the 8 USPs in the HCC progression.
At first, we compared the expression of the USPs in HCC staging,
in which only USP39 presented the dynamically increasing
characteristics (Figure 8A). It was consistent with the
observation in Ualcan databases, by which USP39 expression
was significantly upregulated in advanced stages and grades of
HCC patients (Supplementary Figures 3A, B). Interestingly,
among the eight signature genes, USP39 was found elevated from
normal control, dysplastic nodules with low grade, dysplastic
nodules with high grade, to HCC cases, suggesting an enhanced
expression tendency in hepatocarcinogenesis (Figure 8B). The
observation above suggested the potential role of USP39 in HCC
progression and hepatocarcinogenesis.
The Expression Feature of USP39 in HCC
Based on the observation in GSE89377 dataset, we further
explored the potential functions and mechanisms regulated by
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FIGURE 6 | Identifying the USPs-based signature as an independent factor for HCC prognosis. (A) Univariate Cox analyses of the clinicopathological factors
(including the risk score) and overall survival in the TCGA LIHC cohort. (B) Multivariate Cox analyses of the clinicopathological factors (including the risk score) and
overall survival in the TCGA LIHC cohort. (C) Univariate Cox analyses in the ICGC cohort. (D) Multivariate Cox analyses in the ICGC cohort. ICGC, International
Cancer Genome Consortium.
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USP39 (Supplementary Table 3). According to the pan-cancers
analysis in TIMER dataset, the most significant difference of
USP39 between pan-cancers and normal tissues was observed in
HCC (Supplementary Figure 4A). In a serials of mRNA
expression datasets, most of them (10/11) confirmed the
overexpression of USP39 in HCC tissues (Supplementary
Figure 4B). In protein level, as shown in Figure 9A,
significantly elevated expression of USP39 was determined in
15/16 HCC tissues compared with the self-paired adjacent tissues
analyzed by western blotting. Then we further explored the
expression feature of USP39 in a local cohort including 106
HCC tissues by performing immunohistochemistry. USP39 was
mainly distributed in the nucleus of HCC tissues. HCC cases
with metastasis presented higher staining intensity of USP39
than the cases without metastasis (Figure 9B). Additionally,
higher expression of USP39 was detected in poorly differentiated
tissues than well differentiated HCC cases (Figure 9C).
Furthermore, Kaplan-Meier analyses suggested that HCC
Frontiers in Oncology | www.frontiersin.org 1048
patients with higher USP39 expression might have shorter
overall survival (Figure 9D).
The Clinical Implications and Mechanisms
of USP39 in HCC
For the clinical investigation, USP39 overexpression was
correlated with neoplasm stage, histological grade, and tumor
size of HCC patients in LIHC cohort (Table 3). To further
explore the biological functions mediated by USP39, we used
LinkedOmics to examine USP39 co-expression mode in TCGA
LIHC cohort (Figure 10A). The top 50 genes significantly
correlated with USP39 in TCGA were elucidated in the
heatmap (Figure 10B). GO term annotation by GSEA
indicated that USP39 co-expressed genes were enriched in
processes like cell cycle checkpoint, G0/G1 and G2/M
transition, DNA replication, and cytokines (Figure 10C). The
KEGG analysis showed the enrichment in cell cycle, DNA
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FIGURE 7 | The pathways correlated with the high-risk score. The gene set enrichment analysis (GSEA) was performed in the TCGA and ICGC cohorts to explore
mechanisms underlying the 8-USPs based signature. (A) Four representative KGEE pathways and hallmarks in the high–risk group of TCGA cohort; (B) Four
representative KGEE pathways and hallmarks in the high–risk group of ICGC cohort. NES, Normalized enrichment score.
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replication, and ubiquitin mediated proteolysis. Based on these,
we analyzed the correlation of USP39 with cell cycle and
proliferation-related genes in TCGA LIHC cohort (Figure
10D). As elucidated in Figure 10E, USP39 was significantly
correlated with PCNA, FEN1, MKI67, CDK1/2, Cyclin B1/2,
CHEK1/2, and BUB1/1B/3.
DISCUSSION

Ubiquitination is a critical post-translational mechanism that
plays multifaceted roles in multiple biological processes like
apoptosis, cell-cycle progression, inflammatory responses, and
transcriptional activities (18, 19). DUBs can inactivate the Ub
signal from target proteins by trimming Ub chains (20).
However, dysregulation of the DUBs may induce the
Frontiers in Oncology | www.frontiersin.org 1149
malfunction of the ubiquitin system, which could subsequently
regulate a serial of oncogenes or tumor suppressor genes (21, 22).
A growing body of evidence suggests that USP sub-family is
implicated in various malignancies (23). In the current study, we
focused on the expression features and prognostic value of USPs
for HCC. According to the hepatic expression levels in TCGA
cohort, most of the USPs were overexpressed in HCC tissues. As
elucidated in the liver-specific PPI, the nodules in this network
were enriched in tumor or inflammation-related processes and
pathways. Of them, Hippo signaling pathway and NF-kappa B
signaling pathway have been frequently implicated in the genesis
and progression of HCC.

Furthermore, the Consensus cluster analysis further indicated
the correlation of USPs-enriched sub-cluster with neoplasm
stage, tumor growth, and overall survival, suggesting the
prognostic potential of the USP family for HCC patients. Then
A

B

FIGURE 8 | The expression features of the 8 risk genes in hepatocarcinogenesis and HCC cases at different grades in GSE89377 cohort. (A) The expression
features of the eight USPs in cases at different tumor grades in GSE89377 cohort. (B) The expression features of the eight USPs in patients with dysplastic nodules
and HCC in GSE89377 cohort. *P < 0.05; ***P < 0.001; ns, non-significance.
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we screened the USPs with prognostic value evaluated in TCGA
LIHC cohort, which were subsequently enrolled into multivariate
analysis with LASSO algorithm. Ultimately, USP1, USP13,
USP22, USP24, USP29, USP39, USP48, and USP54 were used
to establish the risk signature. As shown in the survival analyses,
the signature-derived risk score could robustly predict the overall
survival in the entire TCGA LIHC cohort and sub-groups
stratified by different stages and grades. To further confirm the
prognostic value of the signature, we chose another HCC cohort
ICGC (LIRI-JP). In consistence with the observation in TCGA
cohort, it also had excellent performance in predicting the overall
survival of HCC patients in the ICGC cohort. Remarkably, the
univariate and multivariate Cox analyses in the two cohorts draw
a consistent result that the USPs-based signature-derived risk
score was an independent factor for the prognosis of HCC
Frontiers in Oncology | www.frontiersin.org 1250
patients. For the potential mechanisms modulated by the
USPs-based signature, we conducted the GO analysis on the
DEGs and GSEA in the two cohorts. Interestingly, some well-
known HCC-related pathways were correlated with the high-risk
score, including cell cycle, DNA replication, ERBB signaling,
MYC signaling, G2/M checkpoints, PI3K/AKT/mTOR signaling,
Wnt/b-catenin pathway, autophagy, and E2F signaling. It was
speculated that the activation in these tumorigenesis pathways
might contribute to the poor survival of the patients with high-
risk score.

Hepatocarcinogenesis is known as a multi-center and multi-
step process, in which USPs played crucial roles (24, 25). Then
GSE89377, a dataset with different HCC- related sub-groups, was
used to investigate the expression characteristics of the USPs in
HCC staging and hepatocarcinogenesis. For the eight signature
USPs, only USP39 presented significantly enhanced expression
with the advancing of histological grade. Subsequently, we also
explored the expression levels of the eight genes in normal,
dysplastic nodes (low and high grade), and HCC tissues. In
accordance with the data in cases at different grades, USP39
displayed a dynamic increasing from pre-HCC status to HCC.
However, USP13, USP22, and USP39, previously correlated with
the malignant phenotypes of HCC cells (26–28), showed less
differences among the sub-groups. It could be speculated that
these USPs might be not key driver genes for HCC progression
though they enhance aggressive behaviors of HCC cells. Instead,
based on the observation in this GSE dataset, USP39 might serve
as a hub gene that participates in tumorigenesis and
HCC progression.
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FIGURE 9 | The protein expression features and prognostic significance of USP39 in HCC tissues. (A) The expression of USP39 in 16 pairs of HCC and adjacent
tissues analyzed by western blotting. (B) Representative immunostaining images of USP39 in HCC cases with or without metastasis. (C) Representative
immunostaining images of USP39 in HCC cases with high, moderate, or poor differentiation. (D) The Kaplan–Meier curves of HCC patients with high or low USP39
expression identified by immunohistochemistry. T, tumor tissues; N, adjacent tissues; ns, non-significance. ***P < 0.001; **P < 0.01; *P < 0.05.
TABLE 3 | Correlation of USP39 expression with clinical parameters of HCC
patients in TCGA.

Clinical characteristics Total(N) Odds ratio in USP39 P value

Age (≥65 vs.<65) 370 1.54 (1.01,2.33) 0.044
Gender (female vs. male) 371 0.72 (0.47,1.11) 0.14
Stage (I/II vs. III/IV) 347 1.88 (1.15,3.07) 1.10E-02
Histological grade (G1/G2 vs.
G3/G4)

366 1.8 (1.17,2.77) 7.00E-03

T (T1/T2 vs. T3/T4) 368 1.71 (1.06,2.76) 2.60E-02
N (N0 vs. N1) 256 2.73 (0.28,26.57) 0.356
M (M0 vs. M1) 270 2.87 (0.29,27.92) 0.331
Survival status (alive vs. dead) 371 0.65 (0.42,0.99) 0.046
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We further focused on exploring the clinical significance and
potential function of USP39 in HCC. USP39 is a cysteine
deubiquitinating enzyme belonging to the USP family.
Overexpression of USP39 was observed in approximately half
of the pan-cancers in TCGA dataset, of which HCC displayed the
most differences between normal and tumor tissues. In addition,
combining analyses of multiple datasets and experimental
detection further confirmed the overexpression of USP39 in
Frontiers in Oncology | www.frontiersin.org 1351
HCC tissues. Interestingly, the expression of USP39 also
increased from pre-cancerous stage to HCC, which was
consistent with the observation above and further suggested
the implications of USP39 in hepatocarcinogenesis. Currently,
the clinical significance of USP39 has not been investigated in
HCC. Herein, we found that overexpression of USP39 was
significantly correlated with neoplasm stage, histological grade,
and tumor size. Through the co-concurrence analysis, we found
A B

D

E

C

FIGURE 10 | The potential function of USP39 in HCC. (A, B) The significantly positively- or negatively- correlated genes with USP39 in the TCGA LIHC cohort.
(C, D) The USP39-regulated functions and pathways were calculated by GSEA with GO analysis and KEGG analysis. (E) The correlation of USP39 with cell cycle
and proliferation-related genes in TCGA LIHC cohort were calculated by TIMER.
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that USP39 might be involved in cell cycle and DNA replication
pathways. As is known, the proteins such as Cyclin family,
CDKs, and checkpoint molecules are highly important to
ensure proper proliferation, while deregulation of these
proteins can result in various types of tumors. As expected,
according to the analysis in TIMER, USP39 was significantly
correlated with cell cycle- and proliferation- related genes.
Accordantly, a previous study suggested the tumor-promotive
role of USP39 in HCC cell lines. USP39 knockdown has been
found to inhibit the proliferation and colony formation through
downregulating the transcription factor Forkhead Box M1 (29).
The observation above suggested that USP39 might be a
potential molecular target for HCC treatment.

Despite of the encouraging performance of the USPs-based
signature, there were certain limitations for the current study. The
establishment and validation of the signature were based on the
public sequence data. Further validation, such as prospective
studies and clinical trials of HCC patients in multi-centers,
might make the signature more convincing. In addition, the
current study preliminarily predicted the functions and
pathways modulated by USPs. The exact biological roles and
mechanisms of UPSs in HCC remained to be investigated by
more experimental assays.
CONCLUSION

In conclusion, the current study investigated the expression
features and potential functions of USPs in HCC. An 8-USPs-
formed signature could robustly predict the prognosis of HCC
patients in TCGA LIHC cohort and ICGC (LIRI-JP) cohort. In
addition, USP39, one of the eight signature genes, might be a
potential molecular target for hepatocarcinogenesis and HCC
progression. Our study provided evidence for the future
investigation into USP family in the prognostic significance
and targeted value for HCC treatment.
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of Hepatitis B Virus X Protein
and Inhibits HBV-Associated
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Tao Wan, Zhao Lei , Biao Tu, Tianyin Wang, Jiale Wang and Feizhou Huang*

Department of Hepatobiliary Surgery, The Third Xiangya Hospital of Central South University, Changsha, China

Neural precursor cell expressed developmentally downregulated gene 4 (NEDD4) plays
two opposite roles in carcinogenesis. It has been reported that NEDD4 inhibits
hepatocellular carcinoma (HCC) progression; however, little is known about its potential
function and molecular mechanism in HCC in the context of hepatitis B virus (HBV)
infection. In this study, we analyzed NEDD4 expression in 199 HCC specimens with or
without HBV infection and observed that NEDD4 expression was unrelated to HBV
exposure in HCC tumor tissue but that high NEDD4 expression conferred better overall
survival (OS) and progression-free survival (PFS) than low NEDD4 expression in patients
with HBV-associated HCC. Upregulation of NEDD4 inhibited proliferation, migration and
invasion in HBV-related HCC cell lines. We demonstrated that NEDD4 interacts with HBV
X protein (HBx) and that HBx upregulation could reverse the suppression of proliferation
and mobility induced by NEDD4 overexpression. Furthermore, we confirmed that NEDD4
induced the degradation of HBx in a ubiquitin/proteasome-dependent manner via K48-
linked ubiquitination. Our findings suggest that NEDD4 exerts a tumor-suppressive effect
in HBV-associated HCC by acting as an E3 ubiquitin ligase for HBx degradation and
provide new insights into the function of NEDD4.

Keywords: NEDD4, hepatocellular carcinoma, HBx, HBV-associated HCC, ubiquitin-proteasome pathway
INTRODUCTION

Hepatocellular carcinoma (HCC) is the major subtype of primary liver cancer (1). With the
characteristics of insidious onset, rapid progression, and frequent recurrence, HCC ranks third in
terms of cancer-related death worldwide (1, 2). Extensive investigations have provided
overwhelming evidence that the development of HCC is closely related to metabolic syndrome,
alcohol abuse, aflatoxin B1 exposure, and chronic hepatitis B or C virus (HBV or HCV) infection
(1). Chronic HBV infection represents the most common pathogenic factor, accounting for up to
54% of HCC cases (3). In the early stage of HBV infection, HBV DNA integrates into the host
genome, which results in genomic instability and direct insertional mutagenesis of various
oncogenes (4). Persistent expression of HBV regulatory proteins can facilitate the oncogenic
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transformation of liver cells (3). The HBV X protein (HBx), an
HBV-genome-encoded multifunctional regulator, has been
proven to be involved in several cellular processes leading to
HCC (5). For instance, HBx interferes with the nucleotide
excision repair pathway (6); HBx exerts antiapoptotic effects
through the PI3K/Akt pathway and p38/MAPK pathway (7, 8);
HBx acts as an epigenetic deregulation agent to modulate
the transcription of DNA methyltransferase (DNMT) 1 and
DNMT3 (9); HBx promotes telomerase activity by increasing
the expression of TERT (10). In addition, it has been reported
that anti-HBV drugs, such as telbivudine, entecavir, and
interferon-a2b, suppress the growth of HBV-related HCC via
downregulation of HBx (11).

Ubiquitination, a posttranslational modification, is responsible
for numerous complex cellular processes, including protein
degradation, protein-protein interactions, and cellular pathway
regulation. During the ubiquitination process, ubiquitin (Ub) is
covalently attached to lysine residues on the protein substrate
through sequential enzymatic reactions accomplished by
ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2,
and ubiquitin-protein ligase E3 (12). Neural precursor cell expressed
developmentally downregulated gene 4 (NEDD4) is one of E3 Ub
ligases that has been identified to exert numerous vital cellular
processes, such as proteasomal degradation, membrane protein
endocytosis, endosomal trafficking and autophagy regulation (13).
Recently, NEDD4 has been reported to play either oncogenic or
suppressive roles in multiple human cancers. For example, p21 is
the substrate of NEDD4 as well as a key regulator of tumor
proliferation in colorectal cancer. NEDD4 could target p21
protein for degradation by increasing the ubiquitylation of p21,
and promote cell proliferation. N-myc downstream-regulated gene
1 (NDRG1) inhibits colorectal cancer cell proliferation through
emulatively antagonizing NEDD4-mediated ubiquitylation of p21,
which suggests an oncogenic role of NEDD4 in colorectal cancer
(14). In malignant glioma, researchers found that NEDD4 directly
promotes cell migration and invasion, but does not affect the
proliferation and apoptosis. Besides, NEDD4 could interact with
cyclic nucleotide Ras guanine nucleotide exchange facto
(CNrasGEF), increase CNrasGEF polyubiquitination and target
CNrasGEF for degradation. Downregulated CNrasGEF promotes
cell migration and invasion, and facilitates the effect of NEDD4-
induced cell motility, which indicates that NEDD4 exerts an
oncogenic function in glioma cell motility through ubiquitination
of CNrasGEF (15). However, previous study has reported that
NEDD4 interacts with Myc oncoproteins, and targets Myc
oncoproteins for ubiquitination and degradation by the ubiquitin
conjugating enzymes (E2) UbcH5a and UbcH5b. The histone
deacetylase Sirtuin 2 (SIRT2) reduces ubiquitin-proteasome
pathway-induced N-Myc protein degradation in neuroblastoma
and C-Myc protein degradation in pancreatic cancer through
repressing NEDD4 gene transcription by directly binding to
NEDD4 gene promoter, which contributes to upregulation of
Myc oncoproteins and results in cancer cell proliferation (16).
From this perspective, NEDD4 exercises a tumor suppressive
function. Recent studies have also found that negative regulation
of LATS1 and PTEN might be the mechanisms by which NEDD4
Frontiers in Oncology | www.frontiersin.org 255
promotes HCC progression (17, 18). However, here we described
the opposite function of NEDD4 in HBV-associated HCC.

In this study, we first found that HBV-infected HCC patients
with high tumor NEDD4 expression experienced superior
cumulative survival over those with low tumor NEDD4
expression and that high NEDD4 expression in HBV-positive cell
lines inhibited proliferation, migration, and invasion. Second, we
identified 245 proteins that may interact with NEDD4 in
HepG2.215 cell lines and found that NEDD4 and HBx interact
with each other. Finally, our study demonstrated that NEDD4
induced the degradation of HBx in an ubiquitin-proteasome-
dependent manner via K48-linked ubiquitination, which
suppressed tumor progression in HBV-positive HCC.
METHODS AND MATERIALS

Patients and Specimens
Samples from a total of 199 HCC patients who underwent surgery
were obtained from Department of Hepatobiliary Surgery, The
Third Xiangya Hospital, Central South University. The clinical
characteristics of the patients were collected and are shown in
Supplementary Table S1. We divided the patients into two groups:
HBV-positive patients (N = 104) and HBV-negative patients (N =
95). For RNA extraction, the tissues were immediately stored in
liquid nitrogen until further investigation. All experiments were
conducted with the approval of the Ethical Committee of The Third
Xiangya Hospital, Central South University.

Cell Culture
HEK293T and HBV-related HCC cell lines, including
HepG2.215, HepG3B, SNU182, SNU387, PLC/PRF/5, and
MHCC97H, were obtained from the Chinese Academy of
Sciences (Shanghai, China). Cells were maintained in
Dulbecco’s modified Eagle’s medium (DMEM) (Gibco, USA)
supplemented with 10% fetal bovine serum (FBS) (Gibco, USA)
and 1% penicillin/streptomycin (Gibco, USA) at 37°C with
5% CO2.

Quantitative Reverse Transcription
Polymerase Chain Reaction (qRT-PCR)
Total RNA was extracted from liver samples or HCC cells
with TRIzol Reagent (Takara, Japan). We then separated and
purified total RNA with chloroform, isopropanol, and ethanol.
One microgram of RNA was reverse-transcribed into cDNA by
the PrimeScript RT reagent Kit (Takara, Japan) according
to the manufacturer’s instructions, and qRT-PCR analysis
was performed using SYBR® Green Master Mix (Takara,
Japan). The relative expression of target genes was analyzed
and shown as the fold change (2-DDCt). The primer sequences of
the target genes were as follows: NEDD4, 5′-GGAGT
TGCCAGAGAATGGTT-3′ (forward); 5′-TTGCCATGATAA
ACTGCCAT-3′ (reverse). HBX, 5’- TGTCAACAACCGAC
CTTGAG-3’ (forward); 5’-AAAGTTGCATGGTGCTGGTG-3’
(reverse). GAPDH, 5’-GGACCTGACCTGCCGTCTAG-3’
(forward); 5’-GTAGCCCAGGATGCCCTTGA-3’ (reverse).
March 2021 | Volume 11 | Article 625169
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Plasmid Construction and Transfection
Expression plasmid constructs, including full-length pcDNA3.1
(+)-Flag-HBx, full-length pcDNA3.1(+)-Myc-NEDD4 (Homo
sapiens), pcDNA3.1(+)-Myc-NEDD4 catalytic inactive mutant
(cysteine 1197 to alanine, Homo sapiens), full-length pcDNA3.1
(+)-HA-Ubiquitin (ubiquitin B, UBB, Homo sapiens), full-length
pcDNA3.1(+)-HA-K48-Ubiquitin (ubiquitin B, UBB, Homo
sapiens), pcDNA3.1(+)-HA-K63-Ubiquitin (ubiquitin B, UBB,
Homo sapiens) were all constructed by and purchased from Obio
Technology (Shanghai) Corp, Ltd. NEDD4 small-interfering
RNA (siRNA) was designed and synthesized by GenePharma
(Shanghai, China). A Lipofectamine 3000 Transfection Kit
(Invitrogen, L3000-015) was used for transfection. Transfection
was performed according to the manufacturer’s instructions with
minor modifications. Briefly, 293T cells were seeded in 6-well
plates at a density of 3 × 105 cells/well. The use of each plasmid
was 2.5 µg/well with 5 µl Lipo3000 and 5 µl P3000 according to
the manufacturer’s instructions. The total amount of transfected
plasmids in each well was equalized by adding empty
pcDNA3.1(+)-vector.

MTT Assay
We used a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) kit (Abcam, ab211091) to evaluate cell viability.
Cells were inoculated in 96-well plates (1,500 cells per well) for
48 h, and then 20 ml of MTT solution was added to each well and
incubated at 37°C for 4 h. After removing the supernatants,
150 ml of DMSO was added to each well, and the absorbance was
measured at 570 nm with an automated microplate reader
(Thermo Fisher Scientific, USA).

EdU Proliferation Assay
HepG2.215 cells were seeded into 24-well plates and treated for
48 h. Subsequently, according to the instructions of BeyoClick™

EdU Cell Proliferation Kit with Alexa Fluor 488 (Beyotime,
Jiangsu, China), EdU solution was added into each well and
the cells were incubated for a further 2 h. Then, the cells were
washed by PBS and fixed with 4% paraformaldehyde for 20 min.
After that, 0.5% Triton X-100 was added to increase the
permeability of the cells. Subsequently, the cells were incubated
with Click Reaction Mixture for 30 min and stained with
Hoechst (1:1000) for 2 min. Finally, the cells were observed
using a fluorescence microscope. Edu positive cell rate = number
of green fluorescence-labeled cells/number of blue fluorescence-
labeled cells × 100%.

Transwell Assay
We used the serum-free DMEM cell suspension at a density of 1 ×
105/ml.

Fibronectin and BD™Matrigel (BD, USA) were precoated on
Transwell inserts for the migration assays and invasion
assays, respectively.

We added 100 ml of the cell suspension to the upper chamber
of the Transwell inserts and 600 ml of DMEM with 10% FBS to
the lower chamber. Cells were incubated at 37°C for 24 h for the
migration assay and 48 h for the invasion assay. Then, we fixed
Frontiers in Oncology | www.frontiersin.org 356
the cells on the lower insert surface with 4% paraformaldehyde
and stained them with 1% crystal violet. Six different microscopic
fields of three independent inserts were captured to count
the cells.

Western Blotting
Cells were harvested and lysed in RIPA buffer containing protease
and phosphatase inhibitors for 30 min on ice. After centrifugating
lysates at 14,000 rpm at 4°C for 15 min, we collected the
supernatants and determined protein concentrations using the
BCA protein assay (Thermo Scientific). Equal amounts of each
sample diluted in 5x SDS loading buffer were subjected to SDS-
polyacrylamide gel electrophoresis and then transferred to
polyvinylidene fluoride (PVDF) membranes (Millipore) for 2 h.
Five percent nonfat dry milk dissolved in TBST (150 mM NaCl,
50 mM Tris-HCl, pH 7.5, and 0.05% Tween-20) was used to block
the membranes for 2 h, and then the membranes were incubated
with primary antibodies overnight at 4°C. The primary antibodies
used in this study were GAPDH (1:1000, Abcam, ab8245), NEDD4
(1:1000, Cell Signaling Technology, 2740), HBX (1:1000, Abcam,
ab235), and Ki-67 (1:1000, Abcam, ab16667). Then, we washed the
membranes three times in TBST and incubated the membranes
with the appropriate HRP-conjugated secondary antibodies (1:3000,
Beyotime Institute of Biotechnology, A0216, A0208, A0192) for
1.5 h at room temperature. Then, the membranes were washed an
additional three times with TBST. The bands on membranes were
visualized using an ECL western blotting kit (Millipore).
Coimmunoprecipitation and LC-MS/MS
HepG2.215 cell lines were harvested on ice in modified RIPA
buffer containing 50 mM Tris•HCl (pH 7.5), 150 mM NaCl, 0.1%
(vol/vol) Triton X-100, 0.5% (wt/vol) sodium deoxycholate, 0.1%
(wt/vol) SDS, 1 mM EDTA, 50 mM N-ethylmaleimide, 1 mM
NaF, 1 mMNa3VO4, 1 mM PMSF, and 1 mg/ml each of aprotinin,
leupeptin, and pepstatin. The cell lysates (approximately 400 mg of
total protein) were incubated with an antibody against NEDD4
(4 µl, Cell Signaling Technology, 3607), HBX (4 µl, Abcam,
ab2741), Flag-Tag (4 µl, Cell Signaling Technology, 14793) or
their IgG control (Cell Signaling Technology, 3452 or 37988) at
4°C overnight. Then, protein-G agarose beads (40 L, Beyotime
Biotechnology) were added, and the mixture was incubated at 4°C
for another 3 h. The agarose beads were collected, washed, and
resuspended in 60 ml of sample buffer containing 50 mM
Tris•HCl, pH 7.6, 2% (wt/vol) SDS, 10% (vol/vol) glycerol, 10
mM DTT, and 0.2% bromophenol blue. Afterward, the samples
were boiled for 10 min. Liquid chromatography with tandemmass
spectrometry (LC-MS/MS) was used to analyze the interacting
proteins of NEDD4 in HepG2.215 cell lines. The entire LC-MS/
MS procedure was performed by Applied Protein Technology
(ATP) Company. The western blotting protocols were reported
above. A special secondary antibody (1:1000, Abcam, ab131366),
which only recognizes native (nonreduced) antibodies to highly
minimize the detection of heavy and light chains, was used to test
the IP samples to avoid the influence of the IP antibodies in the
IP samples.
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Immunofluorescence Staining
HepG2.215 cell lines were seeded on sterile glass coverslips.
When cells reached approximately 60% confluence, the growth
medium was aspirated. Cells were washed with ice-cold PBS
three times before fixing in 4% paraformaldehyde for 30 min. To
permeabilize the cells, 0.1% Triton X-100 was added for 15 min
at room temperature, and 5% normal goat serum was used to
block cells for 30 min. A primary antibody against NEDD4
(1:100, Cell Signaling Technology, 2740) and HBX (1:100,
Abcam, ab235) was added, and the cells were incubated
overnight at 4°C. After the cells were washed with PBS three
times, anti-rabbit IgG (1:500, Cell Signaling Technology, 4413)
and anti-mouse IgG (1:500, Cell Signaling Technology, 4408)
were added, and the cells were incubated for another 1 h at room
temperature. 4’,6-diamidino-2-phenylindole (DAPI) was used to
counterstain the nuclei. Thereafter, the coverslips were mounted
on glass slides with antifade mounting medium (Beyotime,
P0126). Thereafter, the samples were viewed under a laser
scanning confocal microscope at different wavelengths of 488
nm, 555 nm, and 405 nm. Images were observed under a
confocal microscope (Carl Zeiss LSM710, Jena, Germany).

Flag-HBX Degradation Assay
HepG2.215 cell lines were seeded in 6-well plates at a density of
3 × 105 cells/well and transfected with Flag-HBX+empty vector
plasmids or Flag-HBX+Myc-NEDD4 plasmids for 72 h. Protein
lysates were prepared at the indicated time points after the
addition of cycloheximide (CHX) (10 mM). Equal amounts of
protein were separated by SDS-PAGE. The levels of Flag-HBX
were determined by immunoblotting and quantified at the
indicated time points. HepG2.215 cells were seeded in 6-well
plates at a density of 3 × 105 cells/well and transfected with
Flag-HBX and Myc-NEDD4 plasmids for 72 h. Cells were treated
with chloroquine (CQ, 50 µM, Cell Signaling Technology, 14774)
or MG132 (20 µM, Selleck, S2619) for another 12 h to block the
autophagy-lysosome or ubiquitin-proteasome pathway,
respectively. Protein lysates were harvested after that, and the
protein level of Flag-HBX was evaluated by western blotting.

In Vivo Ubiquitination Assay
To prepare cell lysates, HepG2.215 cell lines were solubilized in
ice-cold modified lysis buffer (50 mM Tris, pH 7.4, 150 mM
NaCl, 10% glycerol, 1 mM EDTA, 1 mM EGTA, 1% SDS, 1 mM
Na3VO4, 1 mM DTT and 10 mM NaF) supplemented with a
protease inhibitor cocktail after transfection with different
combinations of plasmids for 72 h. The cell lysate was
incubated at 60°C for 10 min. The lysate was then diluted 10
times with modified lysis buffer without SDS. The lysate was
incubated with Flag-Tag primary antibody (1:100, Cell Signaling
Technology, 14793) for 3 h at 4°C. Protein-G agarose beads
(40 L, Beyotime Biotechnology) were added, and the lysate was
rotated gently for 8 h at 4°C. The immunoprecipitates were
washed at least three times in wash buffer (50 mM Tris, pH 7.4,
150 mM NaCl, 10% glycerol, 1 mM EDTA, 1 mM EGTA, 0.1%
SDS, 1 mM DTT and 10 mM NaF). Proteins were recovered by
boiling the beads in 5X SDS sample buffer and analyzed by
Frontiers in Oncology | www.frontiersin.org 457
western blotting using the HA-Tag primary antibody (1:1000,
Cell Signaling Technology, 3724).

In Vivo Experiments
We used HepG2.215 cells and NEDD4-overexpressing
HepG2.215 cells to further verify the function of NEDD4 in
vivo. Cells suspensions at a concentration of 1 × 107 cells per 100
ml serum-free medium were prepared. In vivo experiments were
performed in the Animal Laboratory Center, and ethics approval
was obtained from the Committee for Experimental Animal
Studies of Central South University. Four- to six-week-old
male nude (BALB/c nu/nu) mice were subcutaneously injected
with 100 ml of cell suspension in the left armpits. Tumor volumes
were measured and recorded each week. The mice were sacrificed
one month after injection. The tumors were excised,
photographed, and weighed.

Immunohistochemistry
Xenograft tumor tissues were fixed in formalin for 48 h and were
prepared into paraformaldehyde-fixed, paraffin-embedded sections.
The sections were deparaffinized in xylene, rehydrated in ethanol
and rinsed in PBS before being treated with TE (10 mM Tris/1 mM
EDTA, [pH 9.0]). Then, sections were incubated with 3% hydrogen
peroxide. After blocking with 200 ml of normal goat serum (ZSGB-
BIO, China) for 1 h at 37°C, sections were incubated with 200 ml Ki-
67 primary antibody (1:200, Abcam, ab16667) overnight at 4°C.
Then, the sections were washed with PBS three times and incubated
with diluted streptavidin-peroxidase HRP conjugates. After that,
immunohistochemical staining was performed with hematoxylin
before analysis under a microscope. The numbers of Ki-67 positive
cells were counted in three random fields of view per slide, and the
percentage of Ki-67 positive cells was calculated.

Statistical Analysis
All results were determined from three independent experiments
under the same conditions. All data are expressed as the mean ±
standard deviation (SD). Differences among groups were
compared by Student’s t-tests and one-way ANOVA. The
Kaplan-Meier test was used to evaluate overall survival (OS) and
progression-free survival (PFS). Differences were considered
statistically significant when p values were less than 0.05 (p < 0.05).
RESULTS

NEDD4 Overexpression Is Associated With
Increased OS and PFS in HBV-Positive
HCC Patients
Previous studies have revealed that the role of NEDD4 in human
cancers remains controversial. Although it has been proven that
NEDD4 acts as a proto-oncogene in HCC, studies have not made
a distinction between HBV-positive and HBV-negative HCC.
Therefore, we first investigated the correlation between NEDD4
expression and HBV exposure through analyzing tumor samples
from 104 patients with HBV-positive HCC and 95 patients with
HBV-negative HCC using qRT-PCR. We found that there was
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no significant difference in NEDD4 expression between HBV-
positive and -negative HCC (Figure 1A). However, Kaplan-
Meier analysis revealed that HBV-positive HCC patients with
high NEDD4 expression had significantly longer OS and PFS
times (p = 0.0009 and p = 0.017, Figures 1B, C). There was no
relationship between NEDD4 expression and OS and PFS for
patients with HBV-negative HCC (Figures 1D, E). These results
indicated that NEDD4 might play a tumor-suppressive role in
HBV-associated HCC.

NEDD4 Overexpression Inhibits
Proliferation and Mobility in HBV-
Associated HCC Cell Lines
The role of NEDD4 in HBV-associated HCC remains unclear.
Therefore, we first detected basic NEDD4 expression levels in
HBV-associated HCC cell lines, including HepG2.215,
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HepG3B, SNU182, SNU387, PLC/PRF/5, and MHCC97H
(Figures 1F, G). Next, we selected PLC/PRF/5 cells (high
NEDD4 expression) and HepG2.215 cells (low NEDD4
expression) to investigate the regulatory effect of NEDD4 in
HBV-associated HCC. We generated NEDD4 knockdown
PLC/PRF/5 cells and NEDD4 overexpression HepG2.215
cells (si-NEDD4 and OE-NEDD4) as well as their negative
controls (si-Vector; OE-Vector). The expression of NEDD4 in
these cells was identified at the mRNA level (Figure 2A). The
EdU assays were performed to determine the regulatory effect
of NEDD4 on proliferation. The results demonstrated that si-
NEDD4 significantly increase the ratio of proliferating cells to
36.3% compared with the control (21.1%) in PLC/PRF/5 cells.
Conversely, over-expression of NEDD4 markedly decreased
the proliferation ability in HepG2.215 cells (Figure 2B). In
addition, the MTT assay implied that NEDD4 knockdown
A B C

D E

F G

FIGURE 1 | NEDD4 expression in HCC tissues and cell lines. (A) NEDD4 expression in HCC specimens with or without HBV infection was evaluated through qRT-
PCR. There was no correlation between NEDD4 expression and HBV exposure in HCC tissue. (B) and (C) High NEDD4 expression was related to better OS and
PFS than low NEDD4 expression in patients with HBV-associated HCC. (D) NEDD4 expression was unrelated to OS for patients with HBV-negative HCC.
(E) NEDD4 expression was unrelated to PFS for patients with HBV-negative HCC. (F) NEDD4 mRNA expression in HBV-associated cell lines. (G) NEDD4 protein
expression in HBV-associated cell lines. (Data are presented as the mean ± SD. NS, no significance (p < 0.05).
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promoted the proliferation of HBV-associated HCC cells,
while NEDD4 overexpression inhibited their growth in a
time-dependent manner (Figures 2C, D).

We further conducted a Transwell assay to detect cell
migration and invasion in vitro. We found that the expression
of NEDD4 inhibited both migration and invasion in HBV-
associated HCC cells (Figures 2E, F). Surprisingly, our results
were completely opposite to those of previous studies showing
that NEDD4 promotes the proliferation and mobility of HBV-
negative HCC cells, including SMMC-7721, QGY-7703, and
Huh-7 cells (17, 18). These results suggested that molecular
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interactions between NEDD4 and HBV-associated proteins
might exist.

NEDD4 Interacts With HBx in HBV-
Associated HCC Cell Lines
To validate the interplay of NEDD4 and proteins relative to HBV
infection, we performed coimmunoprecipitation (Co-IP) and
LC-MS/MS experiments in HBV-associated hepatocellular
cells. We identified 245 proteins that may interact with
NEDD4 in HepG2.215 cell lines (Supplementary document
1). Surprisingly, we noticed that HBx was involved in the
A B

C E

D F

FIGURE 2 | Regulatory effect of NEDD4 in HBV-associated HCC cell lines. (A) NEDD4 mRNA expression in NEDD4 knockdown PLC/PRF/5 cells and NEDD4
overexpression HepG2.215 cells as well as their negative controls. (B) Edu assay was performed to compare the cell growth ability in NEDD4 knockdown PLC/PRF/
5 cells and NEDD4 overexpression HepG2.215 cells with their negative controls (Green fluorescence: EdU, Blue fluorescence: Hoechst). (C) Downregulated NEDD4
in PLC/PRF/5 cells promoted proliferation. (D) NEDD4 overexpression in HepG2.215 cells inhibited proliferation. (E) Downregulated NEDD4 promoted migration in
PLC/PRF/5 cells, while upregulated NEDD4 inhibited migration in HepG2.215 cells. (F) NEDD4 depletion promoted invasion in PLC/PRF/5 cells, whereas NEDD4
overexpression inhibited invasion in HepG2.215 cells. Data are presented as the mean ± SD. *p < 0.05. (si-NEDD4 represents NEDD4 knockdown PLC/PRF/5 cells,
and si-Vector represents the negative control; OE-NEDD4 represents NEDD4 overexpression HepG2.215 cells, and OE-Vector represents the negative control) (n =
3 independently replicated experiments; white scale bars: 100 mm, black scale bars: 50 mm).
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Co-IP complex (Supplementary document 1). HBx is a 17-kDa
transcriptional coactivator produced by HBV virus that plays a
significant role in HBV-associated hepatocarcinogenesis.
Therefore, we further conducted reciprocal Co-IP/western blot
assays to confirm again that endogenous NEDD4 and HBx
interact with each other in the HepG2.215 cell line (Figures
3A, B). Moreover, immunofluorescence assays showed NEDD4
and HBx colocalization in the HepG2.215 cell line (Figure 3C).

NEDD4 Diminishes the Expression of HBx
at the Protein Level but Not at the mRNA
Level
As mentioned above, NEDD4 mostly acts as an E3 ubiquitin
ligase that interacts with other proteins to play a role in certain
physiological and pathological conditions. Therefore, we
conducted qRT-PCR and western blotting assays to investigate
HBx expression in NEDD4-overexpressing cells. The results
showed that NEDD4 upregulation did not affect the mRNA
level of HBx (Figure 4A). However, the protein level of HBx was
downregulated after NEDD4 overexpressed (Figure 4B). These
results indicated that NEDD4 negatively regulates HBx in the
process of posttranslational modification.

HBx Overexpression Reverses the
Suppression of Proliferation and Mobility
Induced by NEDD4 Overexpression in
HBV-Associated HCC Cells
To determine whether the interplay of NEDD4 and HBx attenuates
HBV-associated HCC progression, we upregulated HBx expression
in NEDD4-overexpressing cells (OE-HBx+OE-NEDD4) and
generated HBx-overexpressing cells (OE-HBx) as a control group
(Figure 4C). Our results showed that upon upregulation of HBx,
NEDD4-induced proliferation suppression was recovered (Figure
4D). Similar results were also found for cell metastatic capacity. HBx
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upregulation compensated for NEDD4-induced migration and
invasion inhibition (Figures 4E, F). These results suggested that
NEDD4 might attenuate the expression of HBx protein to suppress
HBV-associated HCC progression.

NEDD4 Induces the Degradation of HBx in
a Ubiquitin/Proteasome-Dependent
Manner via K48-Linked Ubiquitination
Since NEDD4 suppresses the expression of HBx at the protein
level and mostly acts as an E3 ubiquitin ligase, we speculated that
NEDD4 might affect the degradation of HBx protein. We then
evaluated the degradation kinetics of Flag-HBx coexpressed with
Myc-NEDD4 or NEDD4 knockdown in 293T cells, and we
demonstrated that the Flag-HBx degradation rate was
significantly higher when coexpressed with Myc-NEDD4 while
significantly lower when knocking down NEDD4 simultaneously
(Figures 5A, B). The degradation of proteins occurs mainly
through the autophagy-lysosome or ubiquitin-proteasome
pathway. Thus, we added chloroquine (CQ, 50 µM) or MG132
(10 µM) to block the autophagy-lysosome pathway or ubiquitin-
proteasome pathway, respectively. We demonstrated that
MG132 reversed the degradation of Flag-HBx mediated by
Myc-NEDD4, while CQ had little effect (Figure 5C). This
result indicated that NEDD4 degraded HBx through the
ubiquitin-proteasome pathway instead of the autophagy-
lysosome pathway. We further coexpressed HA-ubiquitin,
Myc-NEDD4 and Flag-HBx in 293T cells and found that Myc-
NEDD4 significantly induced the ubiquitination of Flag-HBx
(Figure 5D), and the type of HBx ubiquitination modulated by
NEDD4 was K48-linked instead of K63-linked (Figures 5E, F).
Finally, we constructed a plasmid with a catalytically inactive
mutant NEDD4 (cysteine 1197 to alanine). The results
demonstrated that the catalytically inactive NEDD4 mutant did
not induce the ubiquitination of HBx (Figure 5G). In summary,
A B C

FIGURE 3 | NEDD4 interacts with HBx in HBV-associated hepatocellular cells. (A) and (B) Coimmunoprecipitation was conducted with NEDD4 and HBx antibodies.
The coimmunoprecipitated mixture was separated by SDS-PAGE and evaluated by immunoblotting. NEDD4 and HBx interact with each other in HepG2.215 cells.
(C) Immunofluorescence assay demonstrated the colocalization of NEDD4 and HBx in HepG2.215 cells (green NEDD4, red HBx, blue, DAPI) (n = 3 independently
replicated experiments; white scale bars: 10 mm). IP, Immunoprecipitation; IB, immunoblot; WCL, whole cells lysate.
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NEDD4 might act as an E3 ubiquitin ligase to ubiquitinate HBx
through the K48 ubiquitin chain and thus degrade HBx.

NEDD4 Overexpression Inhibits HBV-
Associated HCC Progression In Vivo
To verify whether NEDD4 upregulation could attenuate the
malignant features of HBV-associated HCC in vivo, xenograft
tumor models were established in nude mice. We noticed that
NEDD4 overexpression sharply decreased tumor size compared to
that in the control group (Figure 6A). Both tumor volume and
tumor weight in the OE-NEDD4 group were significantly smaller
than those of the control group (Figures 6B, C). Subsequently, we
measured the expression of Ki-67 (a protein related to proliferation)
in xenograft tumors through immunohistochemistry and western
blotting. We found that the expression of Ki-67 was diminished in
NEDD4-overexpressing xenograft tumors compared to control
tumors (Figures 6D, E). Taken together, these results further
confirmed that NEDD4 upregulation inhibited HBV-associated
HCC progression.
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DISCUSSION

Here, we used HBV-associated HCC cells to further explore the
potential function of NEDD4 in the context of HBV infection.
We have clearly described that NEDD4 contributes to inhibiting
HBV-associated HCC progression via the NEDD4-HBx
interaction, which results from the K48-linked ubiquitination
and degradation of HBx by NEDD4.

NEDD4 is frequently overexpressed in many different human
malignancies and can act as either an oncogene or a tumor
suppressor (19). Recently, several studies revealed that NEDD4 is
highly expressed in HCC and participates in HCC progression (17,
18). However, few studies have focused on the correlation between
NEDD4 and HBV-associated HCC. In this study, we compared
NEDD4 expression between HBV-positive and HBV-negative
HCC tumor tissues. Although there was no correlation between
NEDD4 expression and HBV exposure, we noticed that HBV-
associated HCC patients with high NEDD4 expression had better
survival than those with low NEDD4 expression. This result was
A B C
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FIGURE 4 | HBx upregulation reverses the suppression of proliferation and mobility induced by NEDD4 overexpression in HBV-associated HCC cells in HepG2.215
cell line. (A) NEDD4 upregulation did not affect the mRNA level of HBx. (B) The protein level of HBx was downregulated after NEDD4 overexpressed. (C) HBx mRNA
expression in HBx-overexpressing cells, NEDD4-overexpressing cells, cells overexpressing both HBx and NEDD4, and negative control cells. (D) Upon upregulation
of HBx, NEDD4-induced proliferation suppression was recovered. (E) HBx upregulation compensated for NEDD4-induced migration inhibition. (F) NEDD4-induced
invasion suppression was reversed after HBx upregulation. Data are presented as the mean ± SD. *p < 0.05, NS, no significance (p > 0.05). (OE-HBx+OE-NEDD4
represents upregulated HBx in NEDD4 overexpression HepG2.215 cells; OE-HBx represents HBx overexpression HepG2.215 cells; OE-NEDD4 represents NEDD4
overexpression HepG2.215 cells and OE-Vector represents the negative control) (n = 3 independently replicated experiments; scale bars: 50 mm).
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quite different from that of Xiaofeng Hang et al., who analyzed 219
HCC patients and demonstrated that NEDD4 overexpression is
associatedwith decreased overall survival (18). Therefore, our focus
was to investigate whether the function of NEDD4 was different in
HBV-associated HCC. Our findings indicated that NEDD4
upregulation in HBV-associated HCC cell lines inhibited
proliferation, migration, and invasion. Although these results
were completely opposite to those of previous studies using HBV-
negative cell lines, they were not incomprehensible because the
regulatory effect of NEDD4 in cancer remains elusive. It has been
reported that NEDD4 could negatively regulate the tumor
suppressor PTEN via polyubiquitination for degradation or
Frontiers in Oncology | www.frontiersin.org 962
positively modulate PTEN nuclear transport through
monoubiquitination (20, 21). However, there may be no
correlations between NEDD4 and PTEN (22, 23). In breast
cancer, Jia Liu et al. found that depletion of b-TRCP or
inactivation of CKId increased NEDD4 abundance, leading to the
downregulation of PTEN, which activated the oncogenic mTOR/
Akt pathway and promoted cell proliferation (24). In contrast,
NEDD4 reduced thePIP5Ka-dependentPIP2pool to inhibit breast
cancer cell proliferation through the PI3K/Akt pathway (25).
NEDD4 downregulation in breast cancer cells elevated HER3
expression and enhance AKT and ERK signaling, resulting in cell
proliferation and invasion (26). In gastric carcinoma, the role of
A
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FIGURE 5 | NEDD4 induced the degradation of HBx in a ubiquitin/proteasome-dependent manner via K48-linked ubiquitination. (A) Flag-HBx was transfected into
293T cells with Myc-NEDD4 or empty vectors. After transfection of plasmids for 48 h, protein lysates were prepared at the indicated time points after treatment with
10 mM cycloheximide, and the Flag-HBx protein levels were evaluated by western blotting. The results demonstrated that the Flag-HBx degradation rate was
significantly higher when HBx was coexpressed with Myc-NEDD4. (B) Flag-HBx was transfected into 293T cells with Si-Vector or Si-NEDD4. After transfection for 48
h, protein lysates were prepared at the indicated time points after treatment with 10 mM cycloheximide, and the Flag-HBx protein levels were evaluated by western
blotting. The results demonstrated that the Flag-HBx degradation rate was significantly lower with NEDD4 knockdown. (C) Flag-HBx and Myc-NEDD4 expression
vectors were cotransfected into 293T cells for 48 h, after which 293T cells were treated with chloroquine (CQ, 50 µM) or MG132 (10 µM) for another 12 h. Western
blotting demonstrated that MG132 reversed the degradation of Flag-HBx induced by Myc-NEDD4, while CQ had little effect. (D) Flag-HBx and HA-Ubiquitin was
transfected into 293T cells with Myc-NEDD4 or empty vectors. After transfection of plasmids for 48 h, protein lysates were harvested and Flag-HBx was
immunoprecipitated with anti-Flag antibody. Western blotting demonstrated that Myc-NEDD4 significantly induced the ubiquitination of Flag-HBx. (E) Flag-HBx and
HA-K48-Ubiquitin was transfected into 293T cells with Myc-NEDD4 or empty vectors. After transfection of plasmids for 48 h, protein lysates were harvested and
Flag-HBx was immunoprecipitated with anti-Flag antibody. Western blotting demonstrated that Myc-NEDD4 significantly induced the K48-linked ubiquitination of
Flag-HBx. (F) Flag-HBx and HA-K63 -Ubiquitin was transfected into 293T cells with Myc-NEDD4 or empty vectors. After transfection of plasmids for 48 h, protein
lysates were harvested and Flag-HBx was immunoprecipitated with anti-Flag antibody. Western blotting demonstrated that Myc-NEDD4 did not induce the K63-
linked ubiquitination of Flag-HBx. (G) Flag-HBx and HA-Ubiquitin was transfected into 293T cells with Myc-NEDD4 or Myc-NEDD4 catalytically inactive mutant
(cysteine 1197 to alanine). After transfection of plasmids for 48 h, protein lysates were harvested and Flag-HBx was immunoprecipitated with anti-Flag antibody.
Western blotting demonstrated that Myc-NEDD4 catalytically inactive mutant did not induce the ubiquitination of Flag-HBx. Data in A and B are presented as the
mean ± SD. *p < 0.05, NS, no significance (p > 0.05). (n = 3 independently replicated experiments). HA-UB, full-length pcDNA3.1(+)-HA tagged-Ubiquitin (ubiquitin
B, UBB, Homo sapiens); HA-K48-UB, full-length pcDNA3.1(+)-HA tagged-Lys48 Ubiquitin (ubiquitin B, UBB, Homo sapiens); HA-K63-UB, pcDNA3.1(+)-HA tagged-
Lys63-Ubiquitin (ubiquitin B, UBB, Homo sapiens).
March 2021 | Volume 11 | Article 625169

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wan et al. NEDD4 Inhibits HBV-Associated HCC Progression
NEDD4 is equally controversial. Kim et al. found that NEDD4 was
expressed in the majority of gastric cancer tissue, while Zhen Yang
et al. observed no significant difference in NEDD4 expression
between primary gastric tumors and tumor adjacent tissues (23,
27). The expression level of NEDD4 was decreased from gastric
dysplasia to gastric carcinoma (23). Based on the ambiguous
function of NEDD4 in human cancers and our discrepant
discovery in HBV-associated HCC, we speculated that NEDD4
might participate in favorable regulation during the process of
hepatocarcinogenesis induced by HBV infection.

To further explore the mechanism of NEDD4 in HBV-
associated HCC, we screened 245 proteins interacting with
NEDD4 and noticed that HBx was a downstream target in this
process. HBx is one of the proteins encoded by the HBV genome,
which participates in viral replication and infection, the
transactivation of cellular promoters and enhancers through
protein-protein interaction, and the regulation of host cellular
genes and signal transduction cascades (5). There is growing
evidence that Hbx is responsible for the pathogenesis of HBV-
related liver diseases, and downregulation of HBx is one of the
therapeutic mechanisms for HBV-related HCC (11). In this study,
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we observed that NEDD4 interacted with HBx and negatively
controlled the protein expression of HBx. HBx upregulation could
reverse the suppression of proliferation and mobility induced by
NEDD4 overexpression. These findings indicate that the different
regulatory effects of NEDD4 in HBV-associated HCC cells might be
attributed to the NEDD4-HBx interaction.

Thus, the question remains regarding how NEDD4 regulates
HBx. NEDD4 is a member of the E3 ubiquitin ligase family and
exerts its functions to some extent through degradative
ubiquitination of its downstream substrates in both physiological
and pathological conditions (13, 19–21, 28). However, only a few
previous studies have concentrated on the role of the E3 ubiquitin
ligase in HCC. Susie A. Lee et al. found that upregulated NEDD4
was correlatedwith low Spry2 protein levels inHCC and confirmed
that depletion of NEDD4 decreased ubiquitinated levels of Spry2,
which suggested a possible role of NEDD4 in Spry2 degradation
(29). Another study indicated that NEDD4 regulated the
degradation of GUCD1, whose function is to regulate normal and
abnormal cell growth in the liver, through the ubiquitin-
proteasome system (30). Neither study directly explained the
association between NEDD4-induced degradative ubiquitination
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FIGURE 6 | The tumor suppressor role of NEDD4 in HBV-associated HCC in vivo. (A) A representative photograph of xenograft tumors from mice injected with
NEDD4-overexpressing HepG2.215 cells and negative control cells. (B) A tumor size curve shows the volume variation of the xenografts from mice injected with
NEDD4-overexpressing HepG2.215 cells and control cells. (C) Weight of the tumors from mice injected with NEDD4-overexpressing HepG2.215 cells and control
cells were measured after the mice were killed. (D) Representative images of immunohistochemical staining patterns and western blotting bands for Ki-67 in
xenograft tumors in the NEDD4 overexpression group and control group. (E) Western blot results showed that over-expression of NEDD4 could markedly inhibit the
expression of HBX and Ki-67 in xenograft tumors. Data are presented as the mean ± SD. *p < 0.05 (OE-NEDD4 represents the NEDD4 overexpression group, and
OE-Vector represents the control group.) (n = 3 independently replicated experiments; scale bars: 50 mm).
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and hepatocarcinogenesis. On the other hand, previous studies
demonstrated that HBx could be recognized as a substrate by E3
ubiquitin ligases for degradation (31). For example, TRIM5g could
recruit TRIM31 and form a TRIM5g-TRIM31-HBx complex that
promotes proteasomal degradation of HBx (32). These findings
indicated that Hbx may be a downstream substrate of NEDD4 and
regulated through ubiquitination-dependent degradation. In
addition, protein degradation can be mediated by the ubiquitin-
proteasome pathway or the autophagy-lysosome pathway (33, 34).
The type of ubiquitin chain linkage determines the fate of the
target substrate. Lys48-linked polyubiquitin chains often label
proteins for degradation, while K63-linked ubiquitination usually
regulates protein functions or degradation through the lysosomal
pathway (28). In this study, for the first time, we verified that
NEDD4promotes the degradation ofHBx.Weused chloroquine or
MG132 to block the autophagy-lysosome pathway or ubiquitin-
proteasome pathway, respectively, and confirmed that NEDD4
degrades HBx through the ubiquitin-proteasome pathway. Our
in-depth analysis indicated thatNEDD4ubiquitinates anddegrades
HBx via a K48 ubiquitin chain. These findings suggested that Hbx
may be an unveiled substrate of NEDD4 and could explain the
discrepant function of NEDD4 in HBV-associated HCC.

In summary, our study first demonstrated that NEDD4 expression
was irrelevant to HBV exposure in HCC tumor tissue but that high
NEDD4 expression was related to a better OS and PFS than low
expression in patients with HBV-associated HCC. Second, we found
that NEDD4 inhibited proliferation, migration, and invasion in
HBV-related HCC cell lines. Moreover, we identified that NEDD4
interacts with HBx and negatively controls HBx expression at the
protein level but not at themRNA level. HBx upregulation reversed the
suppression of proliferation and mobility induced by NEDD4
overexpression. Furthermore, we confirmed that NEDD4 induced
the degradation of HBx in a ubiquitin/proteasome-dependent
manner via K48-linked ubiquitination. Finally, the tumor suppressor
role of NEDD4 in HBV-associated HCC was observed in vivo. Our
research provides new insight into the function of NEDD4 in HCC.
However, there are still some limitations to this study. First, evaluating
the upstream and/or downstream signal transduction pathways
associated with the NEDD4-HBx complex is of great importance.
Second, the discrepant role of NEDD4 in human cancers is
attributed to the dual regulation of PTEN, but the regulatory effect of
NEDD4 on PTEN in HBV-associated HCC remains unclear. These
limitations will be the focus of our future study.
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Exploring the Roles of HERC2 and
the NEDD4L HECT E3 Ubiquitin
Ligase Subfamily in p53 Signaling
and the DNA Damage Response
Nicholas A. Mathieu, Rafael H. Levin and Donald E. Spratt*

Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States

Cellular homeostasis is governed by the precise expression of genes that control the
translation, localization, and termination of proteins. Oftentimes, environmental and
biological factors can introduce mutations into the genetic framework of cells during
their growth and division, and these genetic abnormalities can result in malignant
transformations caused by protein malfunction. For example, p53 is a prominent tumor
suppressor protein that is capable of undergoing more than 300 posttranslational
modifications (PTMs) and is involved with controlling apoptotic signaling, transcription,
and the DNA damage response (DDR). In this review, we focus on the molecular
mechanisms and interactions that occur between p53, the HECT E3 ubiquitin ligases
WWP1, SMURF1, HECW1 and HERC2, and other oncogenic proteins in the cell to
explore how irregular HECT-p53 interactions can induce tumorigenesis.

Keywords: HECT E3 ubiquitin ligases, WWP1, HERC2, HECW1, SMURF1, p53, DNA damage response
INTRODUCTION

Cell growth and division is controlled by the regulated synthesis and degradation of proteins that
signal for and carry out the replication of DNA. This requires the timely expression and removal of
proteins at specific checkpoints during the cell cycle to ensure proper cell division and homeostasis
(1). When this delicate cellular equilibrium becomes imbalanced, unregulated cell division can
occur and lead to the development of cancer. To protect against the formation of cancers, the cell
has evolved an intricate network of proteins that work to recognize, target, and repair genetic
abnormalities prior to its division. If significant cellular stress is recognized by these surveillance
proteins, they will initiate a caspase cascade that activates lethal regulatory cell death (RCD)
pathways, thereby preventing that cell from undergoing replication (2–9). Perhaps the most
important protein involved in regulating these vital cellular activities is the tumor suppressor
protein p53. Generally considered the “guardian of the genome”, p53 is a 43.7 kDa protein capable
of undergoing more than 300 unique post translational modifications (i.e. phosphorylation (10),
acetylation (11), methylation (12), SUMOylation (13), O-GlcNAcylation (14)) and interacts with a
variety of proteins to dictate cellular fate following S-phase DNA duplication (15–20). One
prominent PTM involved with regulating p53 activity under genotoxic and carcinogenic
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environments is ubiquitylation—a catalytic process that is
carried out on p53 by select members of the homologous to
E6AP C-terminus (HECT) E3 ubiquitin ligase family (21–24).

Over the past two decades, HECT-related cancer research has
focused on the founding member of the HECT E3 ligase family,
E6 associate protein (E6AP) (25–30). There are many studies
that have cemented E6AP as a critical regulator of biochemical
processes involved in the development of cervical and prostate
cancer. For example, E6AP has been shown to interact with the
human papilloma virus (HPV) protein E6 to target p53 for
cellular degradation to produce unregulated cell division in the
female cervical tissues (25). In vivo studies have also linked E6AP
to metastatic forms of prostate cancer by acting to reduce tumor
suppressor protein p27 expression levels in prostate gland cells
(26, 30). Recent studies have also found that the members of the
NEDD4L subfamily of the HECT E3 ubiquitin ligases—
specifically WWP1, SMURF1, and HECW1—as well as the
large HECT E3 ubiquitin ligase HERC2, are linked to the
pathogenesis of prostate (31), lung (32–34), colon (35–38),
breast (39, 40), thyroid (41), gastric (42), liver (43), oral (44),
and ovarian cancers (45, 46).

This review aims to consolidate and examine the mounting
literature on how additional members of the HECT E3 ubiquitin
ligase family play integral roles in regulating DNA repair and p53
cellular activities. Here we explore and summarize the specific
pathways, structures, and catalytic mechanisms used by WWP1,
SMURF1, HECW1 and HERC2, and how their malfunction can
Abbreviations: APC, Anaphase promoting complex; ATM, Ataxia telangiectasia
mutated kinase; ATR, Ataxia telangiectasia and Rad3 related kinase; BARD1,
BRCA1 associated RING domain protein 1; Bax, Bcl-2 associated X protein; Bcl2 -
B-cell lymphoma 2; BRCA1, Breast cancer gene 1; ChIP, Chromatin
immunoprecipitation assays; CPH, Cullin-7-PARC-HERC2 domain; Cyt-b5,
Cytochrome-b5 like domain; DDR, DNA damage response; DOC,
Downregulated in ovarian cancer domain; DSB, Double strand break; E1,
Ubiquitin activating enzyme; E2, Ubiquitin conjugating enzyme; E3, Ubiquitin
ligase; H2AX, Histone 2A family member X; HECT, Homologous to E6AP C-
terminus; HECW1, HECT, C2, and WW-domain containing protein 1; HECW2,
HECT, C2, and WW-domain containing protein 2; HERC, HECT and RLD
containing; HERC2 - HECT and RLD containing protein 2; LATS1, Large tumor
suppressor kinase 1; MAPK8, Mitogen activated protein kinase 8; MDC1,
Mediator of DNA damage checkpoint 1; MDM2, Mouse double minute 2;
MDMX, Mouse double minute 4 (aka MDM4); MIB, Mind bomb domain;
MMP2, Matrix metallopeptidase 2; MMP9, Matrix metallopeptidase 9; MRE11,
Meiotic recombination 11; NBS1, Nijmegen breakage syndrome 1; NEDD4,
Neuronal precursor cell-expressed developmentally downregulated 4; NEURL4,
Neuralized E3 ubiquitin protein ligase 4; p53, Tumor suppressor protein p53;
PIKK, Phosphatidylinositol 3-kinase-like protein kinase; PPxY or PY, proline-rich
motif; PTM, Post translational modification; RAD50, Radiation sensitive protein
50; RAP80, Receptor associated protein 80; RBR, RING-between-RING, RING-
BRcat-Rcat; RCD, Regulatory cell death; RING, Really interesting new gene; RLD,
Regulator of chromosome condensation 1-like domain; RNF11, RING finger
protein 11; RNF8, RING finger protein 8; RUNX2, Runt-related transcription
factor 2; Smad2, Mothers against decapentplegic homolog 2; Smad7, Mothers
against decapentplegic homolog 7; SMURF1, SMAD ubiquitylation regulatory
factor 1; SMURF2, SMAD ubiquitylation regulatory factor 2; TGF-b,
Transforming growth factor beta; TRAIL, TNR-related apoptosis-inducing
ligand; TbR-I, TGF-b receptor I; UBE2N, Ubiquitin conjugating E2 enzyme
UBE2N (aka Ubc13); WW, Tryptophan-tryptophan domain; WWP1, WW-
domain containing protein 1; WWP2, WW-domain containing protein 2; ZF,
Zinc finger.

Frontiers in Oncology | www.frontiersin.org 267
result in oncogenesis. We also discuss developing a framework
for future HECT-based cancer research that builds toward an
improved overall understanding of oncogenic processes in the
cell. Research on the interplay between these important protein
networks will provide the necessary knowledge for developing
novel treatment methods that can slow or even prevent the
progression of HECT-dependent p53-related cancers.
UBIQUITYLATION—A BRIEF OVERVIEW

Ubiquitylation involves the post-translational attachment of
ubiquitin, a small 8.6 kDa protein, on to a substrate protein by
an E1-E2-E3 enzymatic cascade (47–49). The human genome
codes for two ubiquitin specific E1 enzymes (i.e. UBE1 and
UBE1L2), 38 distinct E2 enzymes (ex. UBE2D3, UBE2L3,
UBE2C, etc.) and over 1,000 unique E3 ligases (50). As
ubiquitin is passed along the ubiquitylation signaling enzyme
cascade (E1 to E2 to E3), the attachment of ubiquitin becomes
more specific to ensure that the precise target protein is modified.
This specificity from the ubiquitylation-signaling pathway can
regulate various intracellular processes including protein
turnover, cell cycle progression (51), apoptosis (52), cell
differentiation and development (51), immune response and
inflammation (53), intracellular trafficking (54), signal
transduction (23), DNA transcription and repair (55), viral
infection (53) and more. For the cell to carry out these
processes, ubiquitin is first activated by an ubiquitin activating
enzyme (E1; EC 6.2.1.45) through an ATP-dependent
mechanism to form a thioester bond between the C-terminal
carboxyl of ubiquitin and the catalytic cysteine of the E1. The
ubiquitin is then transferred to an ubiquitin conjugating enzyme
(E2; EC 2.3.2.23) via a trans-thiolation reaction to form a
thioester bond between the C-terminus of ubiquitin and the
conserved catalytic cysteine residue of the E2 (47, 56–58). The
E2~ubiquitin complex next interacts with an ubiquitin ligase
(E3) to properly coordinate the transfer of ubiquitin on to a
specific lysine of the target substrate protein. Recent studies have
also demonstrated that under specific cellular conditions the E3
ligases are able to catalyze the attachment of ubiquitin on to
cysteine, threonine and N-terminal methionine residues of select
target proteins (59–61). While the specific function of these
alternative ubiquitin substrate attachments is not fully
understood and requires further examination, they do add a
further dimension to the permutations that can occur with the
cellular ubiquitin machinery.

There are several different classes of E3 ubiquitin ligases
found in humans that include the really interesting new gene
finger domain-containing (RING; EC 2.3.2.27) (62), U-box (63),
RING-between-RING (RBR; also known as RING-BRcat-Rcat;
EC 2.3.2.31) (64) and HECT (E.C. 2.3.2.26) E3 ubiquitin ligases.
The RING E3 ubiquitin ligases are the largest and most widely
studied family of E3 ligases with over 600 members identified in
the human genome (65). During ubiquitylation, these enzymes
act as protein scaffolds that orient the E2~ubiquitin thiolester
complex and target substrate to allow for efficient ubiquitin
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transfer (62, 66). In contrast, the RBRs catalyze substrate
ubiquitylation by using a RING-like mechanism to coordinate
an ubiquitin charged E2 cognate enzyme, followed by the
formation of a HECT-like thiolester intermediate between
ubiquitin and the enzyme’s Rcat domain to complete the
ubiquitin cargo transfer onto the substrate (64, 67–69). Lastly,
the HECT E3 ubiquitin ligases play a catalytic role in the final
attachment of ubiquitin by forming a thiolester intermediate
with its conserved catalytic cysteine prior to transferring the
ubiquitin to a substrate protein (70–74).

In the context of p53 ubiquitylation, several HECT E3 ubiquitin
ligases have been shown to play a role in the final attachment of
ubiquitin to p53. The specific HECT E3 ubiquitin ligase that
attaches ubiquitin onto p53 decides the isopeptide linkages
formed in a mono-, multi mono- or polyubiquitin chain (i.e.,
linear via N-terminal M1, or K6, K11, K27, K29, K33, K48, and/
or K63) to modulate p53 activity and dictate its cellular function
(47–49). For example, a K48-linked polyubiquitin chain attached to
p53 signals for p53 turnover by the 26S proteasome (47–49), while
K63-linked polyubiquitin chains control p53 intracellular trafficking
(75) and transcriptional regulation of the complex between p53 and
the RINGE3 ubiquitin ligase mouse doubleminute 2 (MDM2) (76).
Recent studies have also demonstrated that the HECT E3 ubiquitin
ligases SMURF1 and HERC2 can regulate the activity of p53
independent of their ubiquitylation activities (i.e., no ubiquitin
transfer or chain formation) (77, 78).
HECT E3 UBIQUITIN LIGASES—
IMPORTANT ENZYMES IN ONCOGENESIS

The HECT E3 ubiquitin ligase family is comprised of 28 enzymes
that contain a characteristic ~350 residue catalytic HECT domain
found near their C-termini (70, 79, 80). The HECT domain is bi-
lobal, where the N-lobe (~250 residues) is responsible for recruiting
and binding the E2~ubiquitin complex, while the C-lobe contains
the absolutely conserved catalytic cysteine responsible for the
ubiquitin transfer onto a target substrate (81, 82). Structures of
the isolated HECT domains from different HECT family members
have revealed unique conformational orientations for the C-lobe,
with some showing the C-lobe in close proximity to the N-lobe
while others showing a large distance of separation. These findings
suggest that a flexible linker exists between theN-lobe and C-lobe of
the HECT domain that allows for the free rotation of the C-lobe for
accepting ubiquitin from the E2 and subsequently transferring it to
a target substrate.

Apart from the highly conserved HECT domain, there is
remarkable diversity in the protein-protein interaction domains
found at the N-termini of members in the HECT family. Through
the biochemical and structural distinction of these N-terminal
domains, the family of 28 enzymes has been classified into three
different HECT subfamilies i) neuronal precursor cell-expressed
developmentally downregulated 4 (NEDD4), ii) HECT and RLD
containing (HERC), and iii) “Other” (70, 83). Focusing specifically
on the NEDD4 subfamily, each of the nine members have been
shown to contain an N-terminal C2 calcium binding domain
Frontiers in Oncology | www.frontiersin.org 368
involved with binding phospholipids through a calcium
dependent mechanism (84), and two, three or four tryptophan-
tryptophan (WW) domains involved in recognition of substrates
with proline-rich motifs (i.e., PPxY or PY) (85) (Figure 1).
Additionally, NEDD4 family members HECT, C2 and WW-
domain containing protein 1 (HECW1) and HECW2 contain a
unique HECW1/2 N-terminal domain thought to be involved in
substrate recognition but has yet to be documented in the literature.
Another HECT E3 ubiquitin ligase member belonging to the HERC
subfamily, HECT and RLD containing protein 2 (HERC2),
illustrates the vast diversity in N-terminal interaction domains
(Figure 1). The HERC2 N-terminal protein-protein interaction
domains include three regulator of chromosome condensation 1-
like domains (RLDs) that are suggested to be involved in chromatin
binding, centrosome assembly and guanine nucleotide exchange
(101, 102), a zinc finger (ZF) domain that is required for protein/
DNA binding (103), a unique Cullin-7-PARC-HERC2 (CPH)
domain predicted to be involved in binding to tetramerized p53
(104, 105), and a cytochrome-b5 like domain (cyt-b5) that binds to
heme and acts as a redox potential interaction domain with electron
transport like properties (106). HERC2 also contains a mind bomb
(MIB) domain that is thought to be involved in regulating the Notch
signaling pathway to ensure proper intercellular communication
during embryonic stem cell differentiation (107) and a
downregulated in ovarian cancer (DOC) domain, which is similar
to the anaphase promoting complex (APC) and may have a role in
in the ubiquitylation activity of HERC2 (108).

The variability at the N-terminal protein-protein interaction
domains in members of the NEDD4 subfamily and HERC2
suggest that these enzymes bind and recognize a broad range of
substrate proteins in the context of oncogenesis (70) (Table 1). For
example, it has been shown that HECW1 (aka NEDL1), SMAD
ubiquitylation regulatory factor 1 (SMURF1), WW-domain
containing protein 1 (WWP1) and HERC2 each carryout unique
interactions with p53 that involve either the direct K63 ubiquitylation
of p53, as in the case of WWP1 (75) (89), and/or the formation of
multiprotein enzymatic complexes that act to modulate p53 activity
independent from HECT-dependent ubiquitylation (149).
Collectively, these HECT-dependent interactions have been
identified as critical regulators of p53 activity that impact apoptotic
signaling (149), the transcription of p53 related genes (75),
equilibrium of the MDM2-p53 feedback loop (105, 150), ataxia
telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3
related (ATR) dependent DNA double strand break responses (151),
and other oncological-related cellular responses.
THE NEDD4 HECT E3 UBIQUITIN LIGASES
PLAY DIVERSE ROLES IN P53
MODULATION

The NEDD4 subfamily has become increasingly important in the
field of oncology, as various members have been found to
upregulate and interact with important tumor suppressor network
proteins such as p53. Here we describe how WWP1, HECW1 and
SMURF1 regulate p53-dependent cellular functions.
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WWP1 Facilitates p53 Aggregation in the
Cytoplasm in Response to p53
Overexpression
WWP1 is a member of the NEDD4 subfamily that has been
linked to colon, breast and oral cancers (31, 35, 39, 44, 152).
WWP1 contains two WW domains that have been shown to
recruit and modulate the activity of cancer related proteins like
Frontiers in Oncology | www.frontiersin.org 469
Runt-related transcription factor 2 (RUNX2) (153, 154), RING
finger protein 11 (RNF11) (155, 156) and large tumor suppressor
kinase 1 (LATS1) (157) via their proline-rich (PY) motifs
(Figure 1). In addition to the interplay that occurs between
WWP1 and these cancer-associated proteins, the enzyme can
also interact with and regulate the activity of p53. Although p53
does contain a PY motif in its sequence (aa 68-91), WWP1 was
FIGURE 1 | Domain architecture and catalogue of three-dimensional structures of domains for members for the NEDD4L subfamily and HERC2. Domain
architecture schematics are based upon annotated boundaries on Uniprot. All of the published or publicly available 3D structures were visualized using PyMol.
NEDD4 – C2 domain bound to calcium (purple and silver spheres; PDB 3B7Y), WW domain 1 (PDB 2N8S) (86), WW domain 2 (cyan) in complex with
phosphorylated Cx43CT (red; PBD 2N8T) (86), WW domain 3 (cyan) in complex with COMM (red; PDB 2EZ5) (87), WW domain 4 (cyan) in complex with NOTCH
(red; PDB 2JMF) (88), and HECT domain (grey; PDB 2XBF) (89). NEDD4-2 – C2 domain (purple; PDB 2NSQ), WW domain 2 (cyan) in complex with Smad7 (red;
PDB 2LTY) (90), WW domain 3 in complex with phosphorylated Smad3 (PDB 2LAJ) (91) HECT domain in complex with ubiquitin (PDB 5HPK) (92). ITCH – C2
domain (purple; PDB 2NQ3), proline-rich region (green) with bPix SH3 domains (reds; PDB 5SXP) (93), WW domain 1 (cyan; PDB 2DMV), WW domain 2 (cyan; PDB
2KYK), WW domains 3 and 4 (cyan) in complex with TXNIP peptide (red; PDB 5CQ2) (94), and HECT domain (grey; PDB 3TUG). WWP1 – WW domain 4 (cyan;
PDB 2OP7), and WW domains 2, 3 and 4 (cyan) with HECT domain (grey; PDB 6J1X) (95). WWP2 – WW domain 4 (cyan; PDB 6RSS) (96), and WW domains 2, 3
and 4 (cyan) with HECT domain (grey; PDB 6J1Z) (95). SMURF1 – C2 domain (purple; PDB 3PYC), WW domain 1 (cyan) in complex with phosphorylated Smad1
(red; PDB 2LAZ) (91), and WW domain 2 (cyan) in complex with Smad7 (red; PDB 2LTX) (90). SMURF2 – C2 domain (purple; PDB 2JQZ) (97), WW domains 2 and 3
(cyan) in complex with Smad7 (red; PDB 2KXQ) (98), and HECT domain (grey; PDB 1ZVD) (99). HECW1 – Helical box (orange) with WW domain 2 (cyan; PDB
3L4H). HECW2 – HECWN domain (pink; PDB 2LFE). HERC2 – RLD domain 1 (green; PDB 4L1M), Cyt-b5 domain (orange; PDB 2KEO), ZZ domain bound to zinc
ions (purple and grey spheres) in complex with Histone H3 tail (red; PDB 6WW4) (100), RLD domain 3 (green; PDB 3KCI).
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observed to bind to p53’s DNA binding domain and not with its
WW domains (Figure 2). Intriguingly, this association was
abolished when the PY motif of p53 was deleted, suggesting
that the conformation p53 adopts in the presence of its PY motif
is required for proper WWP1-p53 complex formation (75). This
unusual interaction was also found to increase the stability of
p53, in contrast to the destructive effects mediated by binding of
other ubiquitin ligases such as the RING E3 ubiquitin ligase
MDM2 (158). The ubiquitylation activity of WWP1 was required
for p53 stabilization, as an inactive version of WWP1 with its
catalytic cysteine substituted with an alanine reduced p53
stability in a dominant negative fashion (75). Surprisingly, the
WWP1-dependent stability of p53 was inversely proportional to
the transcriptional activities of p53, which can attributed to the
WWP1-p53 complex translocation from the nucleus to the
cytoplasm and its subsequent aggregation (75).

The observation that WWP1 interacts with p53 suggests that
WWP1 might be involved in tumor suppressor networks. For
example, WWP1 silencing in two osteosarcoma cell lines
promoted apoptosis and reduced cell invasion (159). This
suppression also resulted in decreased expression of B-cell
lymphoma 2 (Bcl2), matrix metallopeptidase 2 (MMP2),
matrix metallopeptidase 9 (MMP9) and b-catenin, while pro-
apoptotic proteins Bcl-2 associated X protein (Bax) and E-
cadherin expression levels increased indicating that WWP1
may play a role in pro-apoptotic pathways (159). Studies have
also demonstrated that WWP1 contributes to extrinsic
Frontiers in Oncology | www.frontiersin.org 570
apoptosis. For instance, the inhibition of WWP1 correlated
with elevated levels of apoptosis initiator caspases 8 and 9,
mitogen activated protein kinase 8 (MAPK8), as well as
executioner caspase 7 via the TNR-related apoptosis-inducing
ligand (TRAIL) death receptor (160). This change in phenotype
was shown to be reversible with the overexpression of wild-type
WWP1 but could not be rescued with an inactive version of the
protein (160). Taken together, these results show that the
ubiquitylation activity of WWP1 is required to inhibit
apoptosis and promote the progression of particular colon and
thyroidal cancers.

Studies have also demonstrated that WWP1 is involved in
prostate cancer. For example, WWP1 overexpression caused by
chromosomal duplication events was observed in prostate
xenografts (31). Knockout studies also revealed that the loss of
WWP1 resulted in increased transforming growth factor beta
(TGF-b ) receptor 1 (TbR-I) and mothers aga inst
decapentaplegic homolog 2 (Smad2) protein levels, which in
turn enhanced the inhibitory effect of TGF-b (31). These results
are consistent with previous studies highlighting the role of
WWP1 as a negative regulator of TGF-b. In this regulatory
pathway, WWP1 binds to Smad7 via a WW/PY interaction,
independent of its ubiquitylation activity (161). This binding and
regulation of Smad7 has also been observed with other members
of the NEDD4 family (i.e. SMURF1 and SMURF2) (162–165).
Co-immunoprecipitation experiments revealed that Smad7,
WWP1 and TbR-I are in close proximity within the cell and
TABLE 1 | Examples of experimentally observed protein-protein interaction of oncogenic proteins with HECT E3 ubiquitin ligases.

Oncogenic Protein HECT E3 ubiquitin
ligase

Experimental detection method Region of
interaction

References

Cellular tumor antigen p53
(p53, TP53)

E6AP 2H, 3H, CE, CL, IF, IP, ITC, MS, PD, SPR, UbA,
X-ray

280-781 aa (71, 79, 109–
130)

HECW1 IP (77)
WWP1 IP, PD, UbA (75)
HERC2 IP, PD CPH (2547-2640

aa)
(105)

Cellular tumor antigen p63
(p63, TP63)

WWP1 IP, UbA (131)
ITCH IF, IP, NMR WW domains 1&2 (132–136)
NEDD4 2H, IP, UbA (137)

Cellular tumor antigen p73
(p73, TP73)

HECW2 IP, PD, UbA WW domains 1&2 (138)
ITCH IP, TAP, UbA (139)

Apoptosis-stimulating of p53 protein 2
(TP53BP2)

E6AP 2H, 3H, IP (115)
ITCH IF, IP, MS, PD, TAP WW domains 1-4 (140, 141)

Melanoma-associated antigen 12 (MAGE12) E6AP 2H, 3H (115)
Promyelocytic leukemia protein
(PML, MYL TRIM19)

E6AP IF, IP, UbA (142)

Mouse double minute 2 homolog (MDM2) NEDD4 MS, PD, UbA (143)
Breast cancer type 1 susceptibility protein
(BRCA1)

HERC2 IP, MS, UbA HECT domain
(4252-4834 aa)

(144)

BCL-2-antagonist/killer (BAK) HERC1 IF, PLISA BH3 domain (145)
Large tumor suppressor 1 (LATS1) ITCH IP, MS, PD, UbA WW domains 1-4 (146, 147)
Protein Kinase B (AKT) ITCH MS Phosphorylation

@ S257
(148)
Mar
ch 2021 | Volume 11
Detection methods: 2H, yeast or mammalian-two hybrid; 3H, yeast or mammalian-three hybrid; CE, co-elution during chromatography purification; CL, chemical crosslinking; IF,
immunofluorescence; IP, immunoprecipitation; ITC, isothermal titration calorimetry; MS, liquid chromatography or MALDI MS/MS; NMR, nuclear magnetic resonance; PD, pulldown using
GST, His or MBP tag; PLISA, proximity ligation in situ assay; SPR, surface plasmon resonance; TAP, tandem affinity purification; UbA, ubiquitylation assay; X-ray, X-ray crystallography.
Given the HECT family’s diverse regulation of p53 coupled with the well-established role of p53 in maintaining proper cell division and DNA integrity, members of the HECT E3 ubiquitin
ligase family are promising oncological drug targets where their structural and mechanistic interactions with p53 can potentially be directed to modulate p53 activity and elicit precise
HECT-p53 dependent anti-cancer cellular responses.
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may form a complex that allows forWWP1 to ubiquitylate TbR-1
and target it for proteasomal degradation (161).

These cumulative studies demonstrate that WWP1 is an
important enzyme in the regulation p53 mediated gene
transcription and apoptosis. With research that implicates
WWP1 in prostate and osteosarcoma, it is critical that
additional studies be conducted to investigate possibilities of
modulating the activity of WWP1 to elicit specific anti-cancer
responses in the cell. For example, by using structural techniques
to determine how p53 is bound and stabilized by an active form
of WWP1 in the cytoplasm, it will become possible to elucidate
the biochemical and biophysical properties of the WWP1-p53
complex as well as the mechanism of ubiquitin transfer. This
newfound knowledge will aid in the design of artificial molecular
machinery that acts to repress WWP1 interactions with p53 and
hence regain normal p53 anti-tumor activity in active cancer
cells. Additionally, by expanding our knowledge of other
important WWP1-substrate interactions, including the
recognition and binding of WWP1 to TGF-b receptors, the
successful elucidation and categorization of the WWP1
interactome can be achieved to provide a clearer map of the
pathological role(s) of WWP1.

HECW1 Positively Regulates p53 to Induce
Apoptotic Pathway Activation
Recent biochemical studies have demonstrated that HECW1
possesses tumor suppressive activity by interacting with the C-
terminus of p53 to upregulate the activation of p53-cisplatin
dependent apoptotic cellular pathways (77, 149). This study also
found that both the wild-type and isolated HECT constructs of
HECW1 interact with p53, suggesting that the HECW1-
dependent pro-apoptotic activation of p53 is independent of
Frontiers in Oncology | www.frontiersin.org 671
its ubiquitylation activity (77). Additionally, chromatin
immunoprecipitation assays (ChIP) have demonstrated that
HECW1 directs p53 to the p21wafi promoter region to induce
the transcriptional activation of p53-related genes in response to
carcinogenic cellular signals (149). There are currently no
structural or mechanistic studies to explain how HECW1
forms a complex with p53 to regulate apoptotic anticancer
activities within the cell. Taken together, these findings
demonstrate the need for new structural and interactor-based
studies on HECW1 to begin elucidating the exact mechanisms
used by the enzyme to catalyze the activation of p53-induced
apoptosis in cancerous cell lines. It will be important to
determine the specific domains that HECW1 uses to recognize
p53, define the conformational changes that HECW1 and p53
undergo to modulate p53 cellular activity, and decipher how the
HECW1-p53 complex signals for the upregulation of p53
apoptotic signaling. Studies are also needed to examine how
the HECW1-p53 interaction directs the migration of HECW1 to
the nucleus where it promotes p53 activation of apoptotic related
genes. By addressing these unknowns about the interplay
between HECW1 and p53 cellular interplay, we may be able to
fine tune the design of small molecule drugs that stimulate,
activate, and enhance the HECW1-dependent activation of p53-
induced apoptotic pathways in malignant cells.

SMURF1-Dependent MDM2/MDMX
Heterodimerization Negatively Regulates
p53 Activity
SMURF1 is another member of the NEDD4 subfamily that acts
to negatively regulate p53 activity during breast (40), ovarian
(46), gastric (42), and glioblastoma (166) tumorigenesis by
augmenting the ubiquitylation activity of MDM2 – a RING E3
FIGURE 2 | Experimentally identified p53 protein-protein interaction sites of certain NEDD4L and HERC subfamily HECT E3 ligases linked to oncogenesis. The WW
domains of WWP1 are required to recruit p53 and induce its cytoplasmic aggregation (75). HECW1 uses an unknown domain to interact with p53 and upregulate
apoptotic cellular activity (149). SMURF1 coordinates the heterodimerization of MDM2 and MDMX via its second WW domain and the N-lobe of its HECT domain to
increase the MDM2-dependent K48 polyubiquitylation and subsequent degradation of p53 (78). ITCH is a NEDD4L subfamily E3 ligase that stimulates apoptotic
pathways by the WW1-4 domain-dependent activation of Tumor protein p53-binding protein 2 (TP53BP2) (140, 141). HERC2 interacts with p53 through its CPH
domain to monitor the p53-MDM2 feedback loop in NEURL4 DDR pathways (105).
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ligase that specifically targets p53 for proteasomal degradation
(76, 158, 167, 168). Previous findings have demonstrated that
SMURF1 uses its WW domains to recognize and bind target
substrates before carrying out their HECT-dependent
ubiquitylation (169–171). Contrary to this traditional HECT
E3 function, recent studies have discovered a unique function
of SMURF1 whereby it promotes the cellular stability of MDM2
substrates by facilitating the heterodimerization of MDM2 and
its homolog mouse double minute 4 protein (MDMX, aka
MDM4) (78). The ability of SMURF1 to mediate MDM2-
MDMX heterodimerization is thought to rely on the
coordination of MDM2 with its second WW domain while
MDMX interacts with the HECT N-lobe of SMURF1 (78)
(Figure 2). A consequence of these multiprotein interactions is
the structural inhibition of the MDM2 auto degradation pathway
by MDMX. Not surprisingly, this interaction has been shown to
result in the prolonged stability of MDM2 in vivo with an
increase in the K48-polyubiquitylation activity of MDM2 on
p53 (78).

To date, MDM2 andMDMX are the only substrates known to
interact with the second WW domain and HECT domain of
SMURF1 and not be targeted for ubiquitylation. It remains
unresolved how the unusual stabilization effects that SMURF1
provides for MDM2 and MDMX occur on the mechanistic and
molecular level. Of interesting note is that MDM2 and MDMX
are bound by SMURF1 at its second WW domain and HECT
domain, the same enzymatic regions used by the SMURF1 to
carry out the ubiquitylation of its target substrates (76, 78, 158,
167, 168). These findings make it conceivable that SMURF1
might bind MDMX in an analogous fashion to an E2 cognate
enzyme at the N-lobe of its HECT domain. Likewise, with
MDM2 bound by SMURF1 by its second WW domain, it is
possible that the coordination of MDM2 to MDMX is facilitated
by conformational shifts in the SMURF1 domain architecture
that are similar to the mechanisms used by the SMURF1 to carry
out the ubiquitylation of its target substrates.

Recent studies have determined that MDM2 and MDMX
form a ternary complex with SMURF1 to promote MDM2/
MDMX heterodimerization, which subsequently can recruit p53
to the complex with MDM2 serving as the bridging molecule
within the MDMX-SMURF1-MDM2-p53 multiprotein complex
(76, 78). While the exact function of this ternary intermediate
remains unclear in the context of p53 signaling, biochemical
pull-down assays have shown that p53 does not associate with
the MDMX-SMURF1-MDM2 heterotrimer if the N-terminus of
MDM2 is truncated (a.a. 1-76) (78), and that SMURF1 does not
interact with p53 in the absence from MDM2 (78). These
findings suggest that the N-terminus of MDM2 functions to
recognize and bind p53 in addition to being the point of
interaction for the second WW domain of SMURF1. It is
critical that follow up structural studies be performed to
examine if the N-terminal domain of MDM2 causes any
conformational changes within the MDMX-SMURF1-MDM2
ternary complex and how these conformational changes may
play a role in MDM2-MDMX heterodimerization and p53
regulation. Likewise, it will be important to examine how the
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unique structural interactions that occur between SMURF1,
MDM2, and MDMX impact the ability of SMURF1 to stabilize
MDM2, and how the subsequent regulation of MDM2 activity by
SMURF1 plays a role in p53-dependent cancer development.

SMURF1’s tight regulation of MDM2-dependent p53
ubiquitylation makes it a promising candidate for oncological
drug development. An improved understanding of the
mechanisms used by SMURF1 to promote MDM2-MDMX
heterodimerization at the molecular level can be applied
pharmacologically to regulate MDM2 p53 ubiquitylation
activity in cancer cells, and therefore serve as a powerful tool
to activate pro-apoptotic pathways and interrupt cell division.
HERC2—A NOVEL HECT E3 UBIQUITIN
LIGASE LINKED TO CANCER
DEVELOPMENT

Recent biochemical studies have identified HECT E3 ligases
outside of the NEDD4 subfamily that regulate p53 activity.
Here we describe how new research is beginning to reveal that
HERC2 is a major player in mediating DNA repair by regulating
p53 activity.

HERC2 Mediates p53 Activity Through the
Formation of a Multiprotein Ternary
Complex in Response to DNA Damage
HERC2 is a large 500 kDa multidomain E3 ubiquitin ligase that
interacts with neuralized E3 ubiquitin protein ligase 4 (NEURL4)
and MDM2 to modulate p53-dependent gene expression during
the ATM and ATR induced DNA double strand break (DSB)
repair response (105, 150). The HERC2-dependent activation of
p53 is initiated by HERC2-NEURL4 complex formation that
induces an allosteric conformational shift in the unique CPH
domain of HERC2 (105, 150) (Figure 3). This change in
conformation allows HERC2 to recruit oligomerized p53 with
its CPH domain to form a NEURL4-HERC2-p53 ternary
complex (105, 150). The NEURL4-HERC2-p53 complex then
coordinates with the RING E3 ubiquitin ligase MDM2 that is
usually responsible for targeting p53 for cytosolic trafficking via
monoubiquitylation (172) and/or proteasomal degradation via
K48-polyubiquitylation (57, 63, 64) under normal cellular
conditions. However, during the ATM and ATR-activated DSB
repair process, HERC2 is phosphorylated at T4827 on its C-
terminal tail by phosphatidylinositol 3-kinase-like protein kinase
(PIKK) to recruit the kinases ataxia telangiectasia mutated
(ATM) and ataxia telangiectasia and Rad3 related (ATR) to the
higher order NEURL4-HERC2-p53 complex where they catalyze
the phosphorylation of oligomerized p53 and MDM2 (105, 150,
173). Following phosphorylation, MDM2 releases itself from the
complex and carries out auto-polyubiquitylation to signal for its
proteasomal degradation. Simultaneously, p53 is further
stabilized by the CPH domain of HERC2 following its ATM
and ATR-mediated phosphorylation and is no longer a target of
MDM2 for polyubiquitylation (105, 150). The activated p53
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oligomers are then transported by the HERC2-NEURL4 complex
to the nucleus and bind to p53 promoter regions where p53-
regulated genes including p53, p21 and MDM2 become
upregulated to aid in cellular DNA repair (105, 150). Once the
cell’s DNA damage response (DDR) is complete, ATM and ATR
become targets of E3 ligases for proteasomal degradation and the
HERC2-NEURL4 complex coordinates the MDM2-dependent
degradation of p53 (167). Taken together, HERC2 acts as a
master regulator of p53 transcriptional activation by selectively
recruiting ATM and ATR kinases to modulate MDM2 and p53
stability throughout the DDR cycle. It remains unclear what
specific structural conformations and mechanisms are used by
HERC2 to control p53 stabilization by ATM and ATR dependent
phosphorylation, or how p53 is targeted for degradation by
MDM2-dependent ubiquitylation following its recruitment by
the CPH domain of HERC2. Future studies are needed to clarify
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how the unique domains of HERC2 direct the ATM and ATR-
dependent phosphorylation of p53 and p53-MDM2 regulation.
An improved understanding of these mechanisms can
potentially be exploited in novel oncological therapies that
specifically target the p53-MDM2 feedback loop as a regulator
of DNA replication and repair.
HERC2 Is a Novel Oncogenic Suppresser
That Regulates the DNA Damage
Responses and Screens the Genome
Prior to Replication
In addition to regulating the MDM2-p53 transcriptional feedback
loop, HERC2 can also prevent potentially oncogenic mutations
from being passed into daughter cells by coordinating DNA
double strand break (DSB) repair responses during the S and
FIGURE 3 | HERC2 serves as a master regulator of p53 gene transcription in response to DNA damage. HERC2 recruits oligomerized p53 with its CPH domain to
form a NEURL4-HERC2-p53 ternary complex and is phosphorylated at T4827 on its C-terminal tail by phosphatidylinositol 3-kinase-like protein kinase (PIKK). The
HERC2-NEURL4-p53 ternary complex coordinates with the RING E3 ubiquitin ligase MDM2. The kinases Ataxia telangiectasia mutated (ATM) and Ataxia
telangiectasia and Rad3 related (ATR) are also recruited to the multiprotein structure. ATR and ATM carry out the phosphorylation of MDM2 and oligomerized p53.
Phosphorylated MDM2 becomes unstable and dissociates from the HERC2 scaffolding to allow for its K48 auto-polyubiquitylation and the cytoplasmic stability of
the HERC2-NEURL4-p53 ternary complex. The HERC2-NEURL4-p53 ternary complex migrates to the nucleus where it releases oligomerized p53. p53 binds to
the p53 promoter regions where it initiates the upregulation of genes to aid in cellular DNA repair and the DNA damage response. This figure was created with
BioRender.com.
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G2-M phases of mitosis (174–179). The HERC2-DSB repair
pathway is initiated when a double strand break is sensed by the
MRN complex – meiotic recombination 11 (MRE11), Nijmegen
breakage syndrome 1 (NBS1), and radiation sensitive protein 50
(RAD50) (151). After recognizing the DSB, NBS1 recruits ATM
kinases to the damage site where they phosphorylate Histone 2A
Family Member X (H2AX) and Mediator of DNA Damage
Checkpoint 1 (MDC1) (151). These phosphorylation events
promote H2AX and MDC1 complexation and signal for the
recruitment of HERC2 and RNF8, a RING E3 ubiquitin ligase,
to the DSB (176, 180). Once arriving to the damage site, HERC2’s
C-terminal tail is phosphorylated by PIKK at T4827 to promote its
complexation with RING finger protein 8 (RNF8), an E3 ubiquitin
ligase (Figure 4). Following RNF8 recruitment, HERC2 uses its C-
terminal tail to stimulate the oligomerization of RNF8 and
facilitates the formation of the HERC2-MDC1-RNF8 ternary
complex. Phosphorylation signal cascades are used by these
ternary complexes to carry out RNF8 mediated recruitment of
RNF168, another RING E3 ubiquitin ligase, and its cognate E2
cognate enzyme UBE2N (aka Ubc13), to the DNA damage site
(181). This multiprotein complex then works cooperatively to
attach K63-polyubiquitin chains on to chromosomal histone
proteins H2A and H2Ax. The K63 polyubiquitin linkages made
on these histone sites are in close proximity to the DSB and serve
as biochemical markers that recruit homologous DNA repair
factors. These include breast cancer gene 1 (BRCA1), BRCA1
associated RING domain protein 1 (BARD1), receptor associated
protein 80 (RAP80), and the non-homologous end joining repair
Frontiers in Oncology | www.frontiersin.org 974
factor 53BP1, all of which are required to carry out the full DDR
response (176, 182, 183).

Recent studies indicate that HERC2 continues to play a role in
the DSB repair pathway after the recruitment of these DNA
repair factors. For example, it is suggested that HERC2 uses its
phosphorylated C-terminal tail to help stabilize BRCA1, BARD1,
and RAP80 by binding onto their degrons sites during the G2-M
phase transition of cell replication thereby protecting these DDR
proteins from proteasomal degradation while they carry out their
DNA repair activities (176). This HERC2-dependent activity is
critical to the prevention of cellular oncogenesis by acting to
screen and repair the cell’s genetic material at potentially
carcinogenic mutation sites that were overlooked during S-
phase DNA replication.

Collectively, studies on the onco-suppressive activities of
HERC2 suggest it as a promising drug target for future
immunotherapeutic treatments, particularly in cases of breast
cancer development and pathogenesis. While HERC2 has been
extensively characterized in a biochemical context, the
mechanistic and structural basis for the involvement of HERC2
in the NEURL4-p53-MDM2 mediated DSB and DDR pathways
remain largely unexplored. Intriguingly, in both pathways
HERC2 serves as a scaffold that recruits and orchestrates the
timely activities of regulatory proteins that are key to regulating
p53-MDM2 intracellular concentration and/or DNA integrity. It
is conceivable that HERC2 targeted drug development needs to
be focused on enhancing the onco-suppressive activities of
HERC2 to control the progression of cancer. As a prerequisite
to developing these treatments, it will be paramount that
structural studies be conducted to learn how HERC2 uses its
different protein-protein interaction domains, including its
catalytic HECT domain, to carry out specific molecular
mechanisms that regulate p53 activity and the DDR response.
For example, there are many unanswered questions on how the
N-terminal variable domains of HERC2 contribute to substrate
recognition and HERC2-dependent ubiquitylation. The
mechanisms used by HERC2 in DNA maintenance/repair and
p53-MDM2 modulation in the cell are also unknown.
Additionally, studies on the role of conformationally flexible in
the acidic C-terminal tail of HERC2 for building polyubiquitin
chains during DDR and p53 oligomerization and clarifying how
HERC2 recognizes and targets proteins to the p53 promoter
region to regulate p53-related gene expression and/or a damaged
DNA site to facilitate DNA repair are needed. Expanded studies
on HERC2 could prove to be pivotal in the development of new
immunotherapeutic treatments that target specific HECT E3
protein-protein interactions in the cell to elicit a specific
intracellular immunological response against cancers.
HECT E3 UBIQUITIN LIGASES AS
CANCER DRUG TARGETS—MOVING
FORWARD

Recent advances in the biochemical and structural
characterization of HECT E3 ubiquitin ligases have revealed
FIGURE 4 | HERC2 serves as a scaffold to facilitate H2A ubiquitylation in
response to DNA double strand breaks. HERC2 initiates the repair response
for DSBs by using its catalytic HECT domain as a binding scaffold for RING
finger protein 8 (RNF8), a RING E3 ubiquitin ligase, to bring RNF8 into close
proximity to a site of DNA damage. After binding RNF8 to its HECT domain,
HERC2 coordinates the formation of a complex between UBE2N (aka
Ubc13), an E2 ubiquitin conjugating enzyme, and RNF168 to catalyze the
attachment of K63-polyubiquitin chains onto histones at the site of damaged
DNA. This HERC2-mediated K63-polyubiquitylation activity then signals for
the recruitment of healing factors like breast cancer gene 1 (BRCA1), receptor
associate protein 80 (RAP80), and 53BP1 to elicit an effective DDR response.
This figure was created with BioRender.com.
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these enzymes are critical regulators of the p53-MDM2 and DDR
pathways. To date, only one HECT E3 ubiquitin ligase specific
cancer drug, Bortezomib, has been reported to effectively
modulate the activity of the NEDD4L and HERC subfamily
ligases discussed in this review (184). Intriguingly, a recent 2019
study used phage library analysis to identify a class of bicyclic
peptides that demonstrate a general inhibitory effect on the
HECT E3 ligases ITCH, WWP1, SMURF1 and HECW1 by
competitively binding to the E2 interaction site on the N-lobe
of the HECT domain (185). However, the activity of these small
molecule competitive inhibitors provided no specific anticancer
effects when tested in tumorigenic cell lines (185). Perhaps one of
the largest obstacles for developing HECT specific anticancer
therapeutics is the diversity of mechanisms and structures
associated within each HECT subfamily and the reality that
many of these mechanisms, structures, and their functional roles
in cancer pathogenesis remain largely unknown. Concurrently,
the amount of knowledge that remains to be uncovered on the
NEDD4L subgroup, as well as other members of the broader
HECT family, provide many opportunities for the generation of
novel therapeutics to treat a broad range of cancers. As new
discoveries continue to be made on this fascinating group of
proteins, our knowledge into the scope of molecular
mechanisms, protein-protein interactions, and identified
substrates engaged by HECT E3 ubiquitin ligases in
oncogenesis will continue to expand.

It will become increasingly important that new structural and
biophysical studies be conducted on members of the HECT E3
ubiquitin ligases to clarify how the HECT domain architecture
contributes to HECT catalytic dysfunction in p53 and related
cellular pathways. For example, further examination of the
mechanisms used by SMURF1 to catalyze MDM2/MDMX
heterodimerization and increase the MDM2-dependent
ubiquitylation of p53 could allow for the synthesis of small
Frontiers in Oncology | www.frontiersin.org 1075
molecule inhibitors drugs that block MDMX-SMURF1
complex formation. Likewise, the development of therapies
that promote the upregulation of p53 pro-apoptotic cellular
signaling in SMURF1 overexpressed cells to disrupt tumor
growth is another avenue that needs to be studied. An
improved molecular understanding of how HERC2 uses its
multidomain structure to direct the ATM and ATR-dependent
phosphorylation of p53 and MDM2 will be pivotal to uncovering
the HERC2-dependent mechanisms involved with p53-MDM2
regulation. Expanded studies on HECW1 and WWP1 will also
be critical in the development of small molecule therapeutics to
target these enzymes and their roles in p53 regulation. With so
little known about the diverse structural, molecular, and
mechanistic bases used by HECT E3 ligases to regulate the
p53-MDM2, DDR, and other pathways implicated in
oncogenesis, now is an exciting time to be researching this
class of enzymes that are at the nexus for the development of
new onco-therapeutic treatments.
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Siah2 is an E3 ubiquitin ligase that targets androgen receptor (AR) and plays an important role
in the development of castration-resistant prostate cancer (CRPC). However, the regulation of
Siah2 in prostate cancer (PCa) is largely unknown. In this study, we used AR-dependent and
-independent cells lines to investigate the cellular roles of AR and androgen deprivation
therapy (ADT) on Siah2 protein levels and E3 ligase activity using Western blotting and co-
immunoprecipitation. We also validated our findings using patient samples taken before and
after ADT. Finally, we used xenograft tumor models to test the effects of ADT combined with
vitamin K3 (Vit K3) on tumor growth in vivo. Our results showed that AR stabilizes Siah2
protein by attenuating its self-ubiquitination and auto-degradation, likely by blocking its E3
ubiquitin ligase activity. Conversely, ADT decreased Siah2 protein expression but enhanced
its E3 ligase activity in PCa cells. Notably, the findings that ADT decreasing Siah2 protein
expressionwere verified in a series of paired PCa samples from the same patient. Additionally,
we found that ADT-induced Siah2 activation could be abolished by Vit K3. Strikingly, ADT
combined with Vit K3 treatment delayed the occurrence of CRPC and dramatically inhibited
the growth of tumor xenografts compared with ADT treatment alone. AR is an inhibitor of
Siah2 in PCa, and ADT leads to the continuous activation of Siah2, which may contribute to
CRPC. Finally, ADT+Vit K3 may be a potential approach to delay the occurrence of CRPC.

Keywords: castration-resistant prostate cancer, androgen receptor, androgen deprivation therapy, Siah2, E3
ubiquitin ligase
INTRODUCTION

Prostate cancer (PCa) is the most commonly diagnosed malignancy and the second leading cause of
cancer-related mortality in American men, with an estimated 174,650 new cases and 31,620 deaths
expected in 2020 (1). Notably, PCa has also become the most common male urogenital malignancy in
China (2). Androgen deprivation therapy (ADT) remains the first-line therapy for men with metastatic
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PCa; however, most patients ultimately relapse with castration-
resistant prostate cancer (CRPC), which is currently incurable and
accounts for most PCa-associated mortalities (3). Although the
mechanisms of CRPC remain unclear, accumulating evidence has
shown that androgen receptor (AR) signaling is central to CRPC
progression (4, 5). Several mechanisms have been suggested to
mediate androgen-independent AR signaling, including AR
mutations, AR gene amplifications or overexpression, expression
of specific AR splice variants, intratumoral androgen production,
and abnormal post-translation modification of AR, such as
phosphorylation, methylation, acetylation, ubiquitination, and
SUMOylation (6).

Siah2 is a RING finger type ubiquitin ligase comprising a catalytic
RING domain, two zinc fingers, and a C-terminal substrate-binding
domain (SBD) (7). Many proteins have been identified as substrates
of Siah2, including N-CoR, PHD, Sprouty2, b-catenin, and AR (8–
12). Several studies have shown that Siah2 has important roles in
tumorigenesis and metastasis in multiple cancers, including breast
cancer, lung cancer, pancreatic cancer, melanoma, and PCa (13).
Importantly, Siah2 has been identified as an E3 ubiquitin ligase of
AR that specifically targets a selective pool of NCOR1-bound,
repressed AR chromatin complexes for degradation. These
complexes are typically involved in lipid metabolism, cell motility,
and proliferation in PCa cells. Additionally, Siah2 is required for
CRPC tumor growth in mice, whereas Siah2 deletion increases the
castration sensitivity of TRAMP mice (12). Thus, Siah2 is a critical
player in CRPC development.

Given its role in CRPC, it is important to know how Siah2 is
regulated in PCa. We and others have previously reported that
Siah2 is regulated by proteins, such as DHX15 and AKR1C3 in
PCa (14, 15). However, the clinical relevance of these studies still
needs further verification. In this study, we show that AR is a
substrate of Siah2 that can inhibit Siah2 self-ubiquitination,
stabilize Siah2 expression, and decrease its E3 ubiquitin ligase
activity in PCa cells. Additionally, ADT significantly reduced
Siah2 expression and enhanced its ligase activity. Notably, these
findings are closely related to clinical PCa samples. Importantly,
treatment with the specific Siah2 inhibitor, vitamin K3 (Vit K3),
delayed LNCaP tumor progression to castration resistance in
LNCaP tumors. Therefore, Vit K3 might be an adjuvant that can
be combined with ADT to treat advanced PCa and delay CRPC.
MATERIALS AND METHODS

Plasmid Constructs
All plasmid constructs were created or obtained as previously
described (14).

Cell Culture and Transfection
The human PCa cell lines LNCaP, 22Rv1, and PC3, and HEK293
cells were obtained from American Type Culture Collection
(ATCC, Manassas, VA, USA). Cells were maintained in the
appropriate medium (RPMI-1640 for LNCaP, PC3, and 22Rv1
and DMEM for HEK293) supplied with 10% fetal bovine serum,
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5% antibiotics, and 1% L-glutamine at 37°C with 5% CO2. Cells
were verified as mycoplasma free using PCR. Cells were cultured
in phenol red-free medium supplied with 5% dextran-coated
charcoal-stripped fetal bovine serum (CS-FBS) for 24 h before
treatment with dihydrotestosterone (Sigma-Aldrich, St Louis,
MO, USA). In some experiments, cells were treated with the
protein synthesis inhibitor cycloheximide (Sigma-Aldrich) at 50
mg/ml and/or the proteasome inhibitor MG132 (Sigma-Aldrich)
at 5 mM for various times as described in the figure legends. Cell
transfection was separately performed with Lipofectamine 2000
(Invitrogen, Carlsbad, CA, USA) for constructs or siRNAs
according to the manufacturer’s protocols. The siRNA targeting
AR was purchased from Thermo Fisher Scientific (Waltham, MA,
USA). The siRNAs targeting Siah2 were as follows: Siah2-1, 5′-
UAUGACUUGCUUUCCUAGGCAAUCCAC-3′; Siah2-2, 5′-
CCUCCCAUUCCUAACACACUGAUCUAU-3′.

Western Blot Analysis
and Immunoprecipitation
Western blot and immunoprecipitation assays were performed
as previously described (14). Primary antibodies against Siah2
(NBP1-19648, Novus Biologicals, Littleton, CO, USA, 1:1000),
AR (sc-816, Santa Cruz Biotechnology, Dallas, TX, USA, 1:1000),
Sprouty2 (sc-30049, Santa Cruz Biotechnology, 1:1000), Flag M2
(F1804, Sigma-Aldrich, 1:2000), Myc (MMS-150, Covance,
Princeton, NJ, USA, 1:2000), HA (MMS-101P, Covance,
1:2000), and Tubulin (abs131993, Absin Bioscience, Shanghai,
China, 1:5000) were used in the study.

In Vivo Ubiquitination Assay
HEK293 cells were transfected with Flag-AR, GFP-AR, and HA-
ubiquitin as indicated for 24 h, and then were treated with 5 mM
MG132 for 16 h before harvest. Cells were lysed in 100 ml RIPA
buffer with 1% SDS to disrupt protein–protein interactions, and
then boiled for 10 min at 95°C. The lysates were diluted 10-fold
with RIPA buffer and immunoprecipitated with Flag M2 gel for
3 h followed by incubation with protein A/G Plus-Agarose for
3 h. After three washes, the immunoprecipitates were subjected
to Western blot analysis.

RT-PCR and Real-Time PCR
RT-PCR and real-time PCR were performed as described
previously (14). The primer sequences used were as follows:
AR, 5′-TGGATGGATAGCTACTCCGG-3′ and 5′-CCCAGA
AGCTTCATCTCCAC-3′; GAPDH, 5′-CGACCACTTTGT
CAAGCTCA-3′ and 5′-AGGGGAGATTCAGTGTGGTG-3′;
and Siah2, 5′-AGGTTGCCCTCTGCCGATA-3′ and 5′-
ACATAGGTGAGTGGCCAAATCTC-3′.

Immunohistochemistry
Formalin-fixed paraffin-embedded (FFPE) PCa specimens were
obtained from the surgical pathology archives of Shanghai General
Hospital. Use of these prostate tissues was approved by the Shanghai
General Hospital Review Board. Immunohistochemistry was
performed as previously described (14) using an anti-Siah2
antibody (NB110-88113 [24E6H3], Novus Biologicals, 1:500).
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Transwell Migration and BrdU
Incorporation Assays
The transwell migration and BrdU incorporation assays were
performed as previously described (14).

Animals and Xenograft Tumors
Male athymic BALB/c nude mice (5–6 weeks old) purchased
from the Animal Center of the Chinese Academy of Sciences
(Shanghai, China) were subcutaneously injected in one flank
with 300 ml of LNCaP cells (1 × 106) mixed 1:1 (v:v) with
Matrigel (Invitrogen). Tumors were measured with calipers twice
per week. Tumor volumes were calculated using the formula
length × width 2 × 0.52. Mice were randomized into three groups
once the tumor volume reached 0.6 mm3: the sham-operated
(n=5), castration (n=5), and castration+Vit K3(Sigma-Aldrich)
injection groups (n=5). For the latter, a dose of 10 mg/kg Vit K3
(dissolved in DMSO at a final concentration of 0.1%) was
administered via twice weekly intra-peritoneal injections.
Tumor growth was monitored twice per week for 7 weeks, at
which point the mice were sacrificed and tumors were harvested
for Western blot analyses. All animal studies were conducted in
accordance with the Shanghai Jiao Tong University Medical
School’s Animal Committee guidelines.

Statistical Analysis
Data are presented as mean ± standard error (SEM) or mean ±
standard deviation (SD). Statistical analyses were performed with
Student’s t-test or one-way ANOVA. P < 0.05 was considered
statistically significant.
RESULTS

Androgens Stabilized Siah2 Protein
in PCa Cells
Due to the pivotal role of Siah2 in the development of CRPC,
here we asked how Siah2 was regulated during ADT. Therefore,
we first assessed whether Siah2 expression was altered following
the treatment of PCa cells with androgens. Notably, treatment of
LNCaP cells with 10 nM dihydrotestosterone (DHT) for 24 h led
to a significant increase in Siah2 protein expression (Figure 1A).
We next determined the expression of Siah2 in response to DHT
in another AR-positive PCa cell line, 22Rv1. Treating 22Rv1 cells
with DHT also dramatically increased Siah2 expression
(Figure 1A). Furthermore, DHT effect on Siah2 showed a
dose-dependent manner (Figure S1A). Nevertheless, DHT did
not alter Siah2 mRNA levels in either LNCaP or 22Rv1 cells,
which suggests that DHT regulates Siah2 expression at the post-
transcriptional level (Figure 1B). To determine whether
androgens altered Siah2 stability, we monitored the half-life of
endogenous Siah2 in the presence of the protein synthesis
inhibitor cycloheximide; 10 nM DHT prolonged the half-life of
Siah2 from approximately 1.5 to 5 h in both LNCaP and 22Rv1
cells (Figures 1C, D). To further address the role of AR in DHT-
mediated Siah2 stabilization in PCa cells, siRNAs specifically
targeting AR or the antagonist flutamide were used to block AR.
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Both siRNAs and flutamide decreased Siah2 protein expression
(Figures 1E, F). Consistently, DHT treatment increases Siah2
protein level in AR-positive LNCaP cells but not in AR-negative
PC3 cells (Figure S1B). Additionally, co-transfection of HA-
Siah2 with different amounts of Flag-AR into HEK293 cells
showed that Siah2 protein levels increased with increasing
amount of exogenous AR expression (Figure 1G). Finally, we
found AR increased the expression of Wild-type Siah2 (Siah2-
WT) but not RING mutant Siah2 (Siah2-RM, which lacks
ubiquitin ligase activity), suggesting that AR stabilizes Siah2 by
inhibiting its ubiquitin ligase activity (Figure 1H). Together,
these findings demonstrate that AR stabilizes Siah2 protein in
PCa cells.

AR Inhibits Siah2 Self-Ubiquitination and
Decreases Its E3 Ligase Activity
Like other RING finger E3 ubiquitin ligases, Siah2 limits its own
expression by self-ubiquitination and auto-degradation, which is a
sign of its ubiquitin-ligase activity. To test the effect of AR
stabilization on Siah2 E3 ligase activity, we monitored Siah2-
mediated degradation of Sprouty2 (Spry2), one of the classic
substrates of Siah2 and a marker for Siah2 ligase activity.
Overexpressing wide-type Siah2 effectively reduced Spry2 half-
life from approximately 5 to 3 h, while co-expression of AR
prolonged Spry2 half-life to approximately 4 h (Figures 2A, B).
RING mutant Siah2 alone or co-expression with AR did not
change the half-life of Spry2 (Figure S2A), which indicated AR
inhibits Siah2 E3 ligase activity. We next assessed the effect of DHT
on endogenous Spy2 and PHD3, another classic substrate of Siah2.
Treatment with 10 nM DHT for 24 h resulted in significantly
increased Spry2 and Siah2 levels in both LNCaP and 22Rv1 cells
(Figure 2C). As expected, DHT treatment increased PHD3
expression as well (Figure 2D). These observations suggest that
Siah2 ligase activity was inhibited in the presence of AR.

We next determined whether AR stabilized Siah2 protein by
inhibiting its self-ubiquitination. Therefore, we co-expressed
Flag-Siah2-WT or Flag-Siah2-RM, HA-Ub, and GFP-AR in
PC3 cells and treated the cells with the proteasome inhibitor
MG132 for 6 h. We then immunoprecipitated Flag-Siah2 using
anti-Flag M2 beads and performed Western blot analysis with an
anti-HA antibody to detect Flag-Siah2 ubiquitination levels. As
expected, Siah2-WT ubiquitination was decreased in the
presence of AR, while ubiquitination of Siah2-RM was not
changed (Figure 2E). Siah2 comprises three different domains:
N-terminal domain, central RING domain/zinc finger domain,
and C-terminal SBD. To map the Siah2 domains required for this
AR interaction, we generated truncation mutants of Siah2 (14)
and co-transfected them individually with AR into HEK293 cells.
These co-immunoprecipitation assays revealed that both the
SBD and the central RING domain/zinc finger domains were
required for the interaction with AR (Figure 2F).

ADT Decreased Siah2 Expression and
Increased Its Ligase Activity
Given that AR stabilized Siah2 protein and inhibited its E3 ligase
activity, we hypothesized that ADTmay increase Siah2 activity in
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PCa. To test the effect of ADT on Siah2 in PCa cells, LNCaP or
22Rv1 cells were cultured in medium supplemented with 5% CS-
FBS (to mimic ADT conditions) or in complete medium. As
expected, both Siah2 and Spry2 expressions were significantly
decreased when the cells were cultured in CS-FBS medium
Frontiers in Oncology | www.frontiersin.org 484
compared with those in complete medium, which was
consistent with AR expression (Figure 3A). This result
suggested that ADT treatment decreased Siah2 expression
while enhancing its E3 ligase activity. To further confirm the
effect of ADT on Siah2 activity, we monitored endogenous Spry2
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FIGURE 1 | Androgens stabilized Siah2 protein levels. (A) LNCaP and 22Rv1 cells were cultured in CS-FBS medium for 24 h, and then treated with 10 nM DHT or
vehicle for 24 h. AR and Siah2 protein expression were detected using Western blotting. (B) LNCaP and 22Rv1 cells were treated as described in A, and then AR
and Siah2 mRNA expression were detected by qPCR. (C) LNCaP and 22Rv1 cells were treated as described in A, and then treated with cycloheximide (CHX, 50
mg/ml) for 1, 3, and 6 h, after which cell lysates were subjected to Western blotting. (D) Degradation curves of Siah2 by cycloheximide chase experiments in the
presence or absence of DHT. (E) LNCaP and 22Rv1 cells were treated as described in A, and then treated with flutamide (5 mM) for 24 h. AR and Siah2 protein
expression were detected using Western blotting. (F) LNCaP and 22Rv1 cells were transfected with two different siRNAs targeting Siah2 or control for 72 h, and
then subjected to Western blotting to detect Siah2 and AR expression. (G) HEK293 cells were transfected with HA-Siah2 and different doses of Flag-AR for 48 h.
Cell lysates then were subjected to Western blotting and probed with anti-Flag and anti-HA antibodies. (H) 293 cells were transfected with Flag-AR and HA-Siah2WT
or HA-Siah2RM for 48 h, cell lysates were subjected to Western blotting and probed with anti-Flag and anti-HA antibodies. NS, non-significant.
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and Siah2 expression in LNCaP cells using the cycloheximide
chase assay. The Spry2 half-life was reduced from approximately
4.5 h in cells cultured in complete medium to 3 h when cells
cultured in CS-FBS medium (Figures 3B, C), which suggests
increased Siah2 activity.

To assess the relevance of our findings in human PCa, we
evaluated Siah2 protein expression in 29 PCa patients who
underwent radical prostatectomy after ADT treatment for 6–9
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months. Siah2 was detected immunohistochemically both in
biopsy samples (before ADT) and in radical prostatectomy
samples (after ADT) from the same patient. Siah2 showed a
nuclear expression pattern as described previously (14). Notably,
Siah2 staining was significantly reduced in all patients after ADT
(Figures 3D, E), which was consistent with our in vitro findings.
These data suggest that ADT decreases Siah2 protein expression
and enhances its E3 ligase activity in PCa.
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FIGURE 2 | AR inhibited Siah2 auto-ubiquitination and decreased its E3 ligase activity. (A) HEK293 cells were transfected with Flag-Siah2, GFP-AR, and Myc-Spry2
as indicated for 48 h, and then treated with cycloheximide (CHX, 50 mg/ml) for 1, 3, and 6 h. Cell lysates were then subjected to Western blotting. (B) Degradation
curves of Spry2 by cycloheximide chase experiments in the presence or absence of Siah2 or AR. (C) LNCaP and 22Rv1 cells were cultured in CS-FBS medium for
24 h, and subsequently treated with 10 nM DHT or vehicle for 24 h. Spry2, Siah2, and AR protein expression were detected by Western blotting. (D) LNCaP cells
were cultured in CS for 24 h, subsequently treated with 10 nM DHT or vehicle for 24 h. Siah2and PHD3 protein expression were detected by Western blotting.
(E) PC3 cells were transfected with Flag-Siah2-WT or Flag-Siah2-RM, GFP-AR and HA-Ub as indicated for 24 h, and treated with 5 mM MG132 for 16 h. Cell lysates
were immunoprecipitated with Flag antibody and subjected to Western blotting with HA and Flag antibody. (F) GFP-AR was co-transfected with Flag-Siah2
fragments (N, N-terminal region; M-middle region; C, C-terminal region) into HEK293 cells. Cell lysates were immunoprecipitated with Flag antibody and subjected to
Western blotting with Flag and GFP antibodies.
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Vit K3 Attenuated the Effects of ADT on
Siah2 and Inhibited the Growth and
Motility of PCa Cells
Given that Siah2 plays a key role in the development of CRPC (12)
and that ADT triggers its ligase activation, we next asked whether
Siah2 could be blocked when PCa cells were treated by ADT. The
only Siah2-targeting drug described so far is Vit K3 (also known as
menadione), which was identified as a specific inhibitor of Siah2
ubiquitin ligase activity in a screen of U.S. Food and Drug
Administration-approved therapeutic drugs (16). We next verified
whether Vit K3 could attenuate the effect of ADT on Siah2. As shown
in Figure 4A, Siah2 and Spry2 expression were decreased in LNCaP
and 22Rv1 cells cultured in CS-FBS medium compared with those in
complete medium, as described previously. Significantly, Vit K3
treatment increased Siah2 and Spry2 expression in CS-FBS medium
(Figure 4A), which indicates that Vit K3 inhibited Siah2 activity.

We next evaluated the physiologic significance of Vit K3 on PCa
cells. Treatment with 20 mM Vit K3 for 24 h significantly reduced
proliferation of AR-positive LNCaP and 22Rv1 cells, but not of AR-
negative PC3 cells (Figure 4B). Given that the effect of Siah2 on PCa
cell proliferation was AR-dependent, we argue that the inhibitory
effect of Vit K3 on PCa cell growth is Siah2- and AR-dependent. To
further verify the role of Siah2, siRNAs targeting Siah2 were
transfected into LNCaP and 22Rv1 cells. Silencing Siah2 and Vit
K3 treatment independently resulted in reduced PCa cell proliferation,
but Vit K3 treatment in Siah2-knockdown cells did not further reduce
cell proliferation (Figures 4C, D). Similarly, LNCaP cell motility was
inhibited following Vit K3 treatment or Siah2 silencing, but no further
changes were observed in Siah2-knockdown cells treated with Vit K3
(Figures 4E, F). Collectively, these data support a model in which Vit
Frontiers in Oncology | www.frontiersin.org 686
K3 inhibits the growth andmotility of PCa cells through amechanism
that involves inhibition of Siah2 activity.

ADT Combined With Vit K3 Therapy
Delayed the Formation of CRPC
Having established that Vit K3 abolished the Siah2 activation
triggered by ADT in PCa cells in vitro, we next sought to
determine whether this mechanism was active in vivo. Therefore,
we subcutaneously injected LNCaP cells into nude mice and
monitored tumor development. Both castration and castration+Vit
K3 treatment significantly reduced tumor volumes compared with
the sham-treatment group. However, in the castration alone group,
tumor volumes started to increase 3 weeks after castration and grew
extremely fast 4 weeks later, which suggests the formation of CRPC.
Strikingly, tumors treated with castration+Vit K3 only grew very
slowly 4 weeks after treatment and still did not show fast growth after
8 weeks (Figures 5A, B). Consistently, tumors derived from the Vit
K3 treatment group were much smaller than those from the other
two groups. Analysis of these tumors revealed significantly decreased
Siah2 expression in response to castration, whereas Vit K3 treatment
dramatically reversed expression Siah2, which was consistent with
our in vitro findings (Figure 5C). These results strongly suggest that
ADT+Vit K3 treatment may delay CRPC formation.
DISCUSSION

It is well established that the androgen-AR signaling axis plays a
central role in CRPC.Most of the new drugs for CRPC approved by
the FDA in recent years target AR signaling, including Abiraterone
A B
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FIGURE 3 | ADT decreased Siah2 expression and increased its ligase activity. (A) LNCaP and 22Rv1 cells were cultured in complete medium for 24 h, and then
maintained in CS-FBS medium for another 24 h. Spry2, Siah2, and AR protein expression were detected by Western blotting. (B) LNCaP cells were treated as described in
(A), and then treated with cycloheximide (CHX, 50mg/ml) for 1, 3, and 6 h, after which cell lysates were subjected to Western blotting. (C) Degradation curves of Siah2 by
cycloheximide chase experiments. (D) Representative images of Siah2 immunohistochemistry staining in PCa specimens from the same patient. (E) Quantification of Siah2
immunohistochemistry staining in PCa samples from 29 patients who underwent radical prostatectomy after between 6 and 9 months of ADT treatment. ***P < 0.001.
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Acetate, an androgen synthesis inhibitor, and Enzalutamide and
Apalutamide, second-generation AR antagonists. Although these
second-generation antiandrogens show an overall survival benefit
for advanced PCa, 20% to 40% of patients still do not respond to
these therapies, and among the patients that do respond, resistance
will eventually occur (17–19). Thus, the mechanisms of castration
resistance need to be fully elucidated, as this will identify additional
targets to treat and/or prevent CRPC.

Siah2 is an E3 ubiquitin ligase that targets AR and is thought to
play an important role in the development of CRPC by targeting a
select pool of chromatin-bound ARs that control the growth,
survival, and tumorigenic capacity of PCa cells, especially under
conditions of androgen deprivation (12). Interestingly, only small
sets of metastatic PCa or CRPC showed a moderate 1.5- to 2-fold
increase in Siah2 mRNA (12) These observations suggest that
Frontiers in Oncology | www.frontiersin.org 787
increased Siah2 transcription may not be the primary mechanism
underlying the increased Siah2 activity observed in PCa tissues
(15). Siah2 is very unstable because of self-ubiquitination and
auto-degradation. Like other Ring finger E3 ubiquitin ligases, the
ligase activity of Siah2 is reflected by its protein stability. Several
factors, including the deubiquitinating enzymes USP13, AKR1C3,
and DHX15 have been reported to stabilize Siah2 expression, by
inhibiting its E3 ligase activity (14, 15, 20).

Here, we report that AR significantly stabilizes Siah2 protein
expression and decreases its ligase activity in PCa cells. Notably,
androgens extended the half-life of endogenous Siah2 to 5 h, which
is much longer than the half-life in the presence of any of the other
factors that have been reported to stabilize Siah2 (15, 20). These
findings suggest that AR is a strong inhibitor of Siah2 ligase activity
in PCa cells. As expected, ADT decreased Siah2 expression and
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FIGURE 4 | Vit K3 attenuated the effects of ADT on Siah2. (A) LNCaP and 22Rv1 cells were cultured in CS-FBS medium for 24 h, and then treated with Vit K3
(20 mM) for 24 h. Spry2, Siah2, and AR protein expression were detected by Western blotting. (B) LNCaP, 22Rv1, and PC3 cells were treated with Vit K3 (20 mM)
for 24 h, and then treated with 10 mM BrdU for 5 h (LNCaP) or 2 h (22Rv1, PC3, and DU145). The BrdU assay was performed as described in the Materials and
Methods. (C) LNCaP and 22Rv1 cells were transfected with siRNAs targeting Siah2 or control as indicated for 72 h, and then treated with Vit K3 (20 mM) or vehicle
as indicated for 24 h. BrdU assays were performed as described in (B). (D) The expression of Siah2 protein from cells treated as described for C was detected by
Western blotting. (E) LNCaP cells were transfected with si-Siah2 or si-control as indicated, and then cultured in transwell chambers, as described in the Materials
and Methods. Cells were then treated with Vit K3 (20 mM) or vehicle for 24 h, and subsequently were stained with crystal violet, after which the number of cells per
field was quantified. (F) The expression of Siah2 protein from cells treated as described for E was detected by Western blotting. *P < 0.05; **P < 0.01.
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enhanced its ligase activity. Importantly, we tested Siah2 expression
in clinical PCa samples from the same patients before and after
ADT, and found remarkably reduced Siah2 expression in response
to ADT. These data indicate that during ADT, Siah2 is continuously
activated in PCa. Based on these findings, we conclude that AR and
Siah2 potentially form a positive regulatory loop in PCa, in which
Siah2 mediates the ubiquitination-proteasomal degradation of a
select pool of AR, whereas AR inhibits Siah2 ligase activity. ADT
breaks the balance of these two proteins, which results in
continuous Siah2 activation, which subsequently leads to CRPC.

Siah2 has three likely sites for intervention—interfering with its
E3 ubiquitin ligase activity, the SBD domain, and the Siah–Siah
dimerization domain (13). We demonstrated that AR reduced
Siah2 auto-ubiquitination and increased Spry2 expression, a
classic Siah2 substrate, which indicates that the mechanism
through which AR stabilizes Siah2 is by blocking its E3 ligase
activity. Co-immunoprecipitation studies revealed two domains of
Siah2—the SBD and central RING domain/zinc finger domains—
interacted with AR, consistent with the results of Qi et al. (12). We
hypothesize that AR binding to the SBD is degraded as substrate,
whereas AR binding to the central domain blocks the E3 ubiquitin
ligase activity of Siah2. However, future structural studies will
enable better assessment of the precise effects of AR on Siah2.

Vit K3 is a quinone used with cancer chemotherapeutics. Vit
K3 and its analogs have been showed anticancer activities in
several types of cancer including prostate cancer, breast cancer,
melanoma and liver cancer in vitro and in vivo (16, 21, 22).
Although the main biological effects on cancers are attributed to its
role in the redox cycle and arylating nucleophilic substrates, Vit K3
has been identified as a specific inhibitor of Siah2 that inhibits
both arms of the Siah2 downstream signaling network, the Ras/
Frontiers in Oncology | www.frontiersin.org 888
MAPK pathway and the hypoxic response pathway independent
of reactive oxygen species. In this study, we showed that Vit K3
could abolish ADT-triggered Siah2 activation in PCa cells.
Interestingly, we found that Vit K3 inhibited the growth of AR-
positive LNCaP and 22Rv1 cells, but not AR-negative PC3 cells,
which is consistent with its role of inhibiting Siah2 on PCa cells
(12). Additionally, Vit K3 did not inhibit the growth or migration
of Siah2-KD cells. Thus, we conclude that Vit K3 blocks PCa cell
proliferation and motility at least partially by inhibiting Siah2.

Given that Siah2 plays a pivotal role in CRPC and that ADT
triggers Siah2 activation in PCa cells, we hypothesized that ADT
combined with a Siah2 inhibitor could block or delay the
occurrence of CRPC. Strikingly, we demonstrated in vivo that
ADT+Vit K3 treatment delayed the formation of CRPC and
dramatically inhibited the growth of tumor xenografts compared
with ADT alone. Importantly, analyses of these tumors suggested
that Vit K3 delayed CRPC by inhibiting Siah2 activation.

In summary, this study provides new insights into the regulation
of Siah2 in PCa. AR was identified as an inhibitor of Siah2. Because
Siah2 is an E3 ubiquitin ligase for AR, we conclude that AR and
Siah2 form a positive regulatory loop in PCa. ADT inhibits AR
signaling, resulting in continuous Siah2 activation, which
contributes to CRPC. Thus, ADT combined with Vit K3 may be
a potential novel approach to delay the occurrence of CRPC.
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FIGURE 5 | ADT combined with Vit K3 therapy delayed the formation of CRPC. (A) LNCaP cells were subcutaneously injected into BALB/c nude mice, and the
animals were treated as described in the Materials and Methods. The tumor xenografts with different treatments are shown as indicated. (B) The growth curve of
tumor xenografts. (C) Xenograft tumor tissue lysates were analyzed by Western blotting to detect AR and Siah2 expression in the sham-operated, castration, and
castration+Vit K3 groups. *P < 0.05, ****P < 0.0001.
April 2021 | Volume 11 | Article 637040

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yan et al. Androgen Deprivation Therapy Activates Siah2
AUTHOR CONTRIBUTIONS

YJ: conceptualization, investigation, supervision, writing the
original draft, reviewing, and editing the manuscript. WG:
methodology, investigation, reviewing, and editing the
manuscript. TY: methodology, software, investigation, and
writing the original draft. DZ: formal analysis, software,
investigation, reviewing, and editing the manuscript. YS, DC,
JJ, BH, HL, and SX: formal analysis, reviewing, and editing the
manuscript. ZW: reviewing and editing the manuscript.
All authors contributed to the article and approved the
submitted version.
FUNDING

This work was supported by the National Natural Science
Foundation of China (81872098), the National Natural Science
Foundation of China (81502212), and the Science and
Technology Commission of Shanghai Municipality,
China (18ZR1430600).
Frontiers in Oncology | www.frontiersin.org 989
ACKNOWLEDGMENTS

We thank James P. Mahaffey, PhD, from Liwen Bianji, Edanz
Editing China (www.liwenbianji.cn/ac), for editing the English
text of a draft of this manuscript.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2021.
637040/full#supplementary-material

Supplementary Figure 1 | Androgens stabilize Siah2 protein. (A) LNCaP cells
were cultured in CS for 24 h, subsequently treated with different dose of DHT or
flutamide (5mM) as indicated for another 24 h, and AR and Siah2 protein expression
were detected by Western blotting. (B) LNCaP and PC3 cells were cultured in CS
for 24 h, subsequently treated with 10 nM DHT or vehicle for 24 h. AR and Siah2
protein expression were detected by Western blotting.

Supplementary Figure 2 | AR inhibits Siah2 self-ubiquitination and decreases its
E3 ligase activity. (A) 293 cells were transfected with Flag-Siah2, GFP-AR and Myc-
Spry2 as indicated for 48 h and then treated with cycloheximide (CHX, 50 mg/ml) for
1, 3, 6 h and cell lysates were subjected to Western blotting.
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Deregulated MYC overexpression and activation contributes to tumor growth and
progression. Given the short half-life and unstable nature of the MYC protein, it is not
surprising that the oncoprotein is highly regulated via diverse posttranslational
mechanisms. Among them, ubiquitination dynamically controls the levels and activity of
MYC during normal cell growth and homeostasis, whereas the disturbance of the
ubiquitination/deubiquitination balance enables unwanted MYC stabilization and
activation. In addition, MYC is also regulated by SUMOylation which crosstalks with the
ubiquitination pathway and controls MYC protein stability and activity. In this mini-review,
we will summarize current updates regarding MYC ubiquitination and provide
perspectives about these MYC regulators as potential therapeutic targets in cancer.

Keywords: MYC, protein stability, ubiquitination, deubiquitination, ubiquitin ligase, deubiquitinating enzyme,
SUMOylation, SUMO-specific protease
INTRODUCTION

The c-Myc oncoprotein (MYC thereafter) is a basic helix-loop-helix and leucine zipper (bHLH-LZ)
transcription factor that regulates almost all aspects of cell biology by regulating gene transcription,
including cell growth and proliferation, apoptosis and senescence, angiogenesis, metabolism, ribosome
biogenesis, and stem cell homeostasis (1–4). MYC heterodimerizes with its partner protein MAX via its
C-terminal bHLH-LZ domain and binds to the E-box element (CACGTG) at target gene promoters (5–
7). The N-terminal transcription activation domain (TAD) recruits key transcription co-activators,
chromatin modifiers, and mediators to promote the transcription-initiating complex formation and
initiate transcription initiation (8, 9). MYC also promotes RNA polymerase II (RNAPII) pause-release
upon recruiting the pTEF phosphorylation complex to phosphorylate Serine 2 of the C-terminal domain
(CTD) of RNAPII (10). Early individual gene and profiling studies have identified a large number of
MYC target genes (4, 11). Recent genome wide studies suggest that MYC might also be a global gene
amplifier, promoting the transcription of most, if not all, actively transcribed genes (12–15). Currently,
there are several models demonstrating the different modes of MYC transactivation function, including
specific-gene regulation, global gene activation, and gene-specific affinity models (1, 3). New studies also
suggest that MYC supports genome integrity by clearing stalled RNAPII and resolving transcription-
replication conflicts (1, 16).

Since deregulated MYC overexpression contributes significantly to human cancers by regulating
the expression of genes involved in almost all aspects of the cancer hallmarks (4, 17, 18), MYC levels
and activity must be tightly controlled during normal homeostasis. Under normal physiological
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condition, MYC is an unstable protein with a half-life less than
15–30 min whereas in growth stimulated cells, MYC is
transiently stabilized by shutting down proteasome degradation
of MYC. This is controlled by a phosphorylation cascade
involving two residues at the TAD: Thr (T) 58 and Ser (S) 62
(19–21). Upon growth stimulation, MYC is phosphorylated by
RAS-induced kinases and cyclin-dependent kinases such as
CDK2 at S62. Upon reduction in the growth signals, GSK3 is
activated to phosphorylate T58, which requires prior S62
phosphorylation. Then, T58 phosphorylation promotes the
recruitment of the proline isomerase PIN1 to catalyze the cis-
to-trans isomerization of MYC at Pro (P) 63, followed by the
recruitment of the phosphatase PP2A to dephosphorylate MYC
at S62. T58 phosphorylated MYC is then targeted by the Fbw7
ubiquitin (Ub) E3 ligase for proteasome degradation (22–25).
During the past two decades, more than a dozen ubiquitin ligases
have been reported to regulate MYC stability and/or activity. In
this mini-review, we briefly describe recent progress in
understanding MYC control by the ubiquitin proteasome
system including novel ubiquitin ligases and deubiquitinating
enzymes and then focus on the perspectives of targeting these
molecules for cancer therapy.
MYC UBIQUITIN LIGASES

To date, at least 18 Ub ligases have been discovered to mediate
MYC ubiquitination, which regulates MYC protein stability and/
or activity (Figure 1). While most of the Ub ligases, such as
SCFFbw7, target MYC protein for degradation resulting in the
inhibition of MYC activity, several other Ub ligases stabilize
MYC. This can be done by antagonizing SCFFbw7-mediated MYC
degradation, as in the case for SCFb-TRCP, which ubiquitinates
MYC via K33/K63/K48 mixed linkage, counteracting SCFFbw7-
mediated K48-linked MYC ubiquitination and degradation (26).
In another example, RNF4, a SUMO-targeted ubiquitin ligase
(StubL), mediates K11- and K33-linked ubiquitination of MYC
independently of SUMOylation, resulting in MYC stabilization
(27). Also, HUWE1 mediates MYC ubiquitination by enhancing
the recruitment of p300 and promoting MYC activity without
targeting MYC for degradation (28). Yet, HUWE1 ubiquitinates
and degrades Miz1, a protein that binds to MYC and
accumulates at MYC-bound chromatin associated with
repressed transcription (29). Thus, depletion of HUWE1
switches MYC from activating to repressive and suppresses
MYC activity (29). On the other hand, SCFSkp2-mediated
ubiquitination promotes MYC activity, but in this case it is
coupled with targeting MYC for proteasome degradation (30,
31). We have reviewed most of the MYC Ub ligases, and the
reader can refer to our previous publications (32, 33). Here, we
describe newly identified MYC regulators and briefly discuss the
role for the MYC ubiquitin ligases in the context of cell cycle and
chromatin association.

Recently, the Westermarck group (34) showed that UBR5
ubiquitinates MYC and prevents cells from accumulating excess
MYC protein. Interestingly, UBR5 suppresses MYC-dependent
Frontiers in Oncology | www.frontiersin.org 291
priming to therapy-induced apoptosis in cancer cells as it resets
MYC to levels that are not enough to induce apoptosis, whereas
in normal cells accumulated MYC triggers apoptosis. Indeed,
MYC and UBR5 are often co-amplified in MYC-driven human
cancers. Yet, UBR5 high expression (UBR5-high) cells dominate
MYC-high cells at the single cell level in basal type breast cancers.
This study suggests that UBR5-mediated MYC ubiquitination
and degradation prevents the accumulation of too much MYC
and thus benefits cancer cell survival (34). Therefore, UBR5 may
promote tumor cell resistance to cancer therapy. It would be
interesting to consider how UBR5 and other regulators of MYC
that control MYC ubiquitination levels can tune MYC
oncogenic potential.

The leucine-rich repeats (LRR) containing F-box protein
FBXL16 has recently been shown to regulate MYC stability by
antagonizing SCFFbw7. Interestingly, FBXL16 binds to Skp1 and
PP2A but not Cul1, indicating that it may not form a SCF E3 ligase
complex (35). FBXL16 binds to wild-type MYC and the T58A or
S62A mutant with equal efficiency and does not compete with
FBW7 for binding to MYC, but inhibits FBW7-mediated MYC
ubiquitination in cells and in vitro. As both F-box and the LRR
domains are required for FBXL16’s activity to counteract FBW7, it
is possible that FBXL16 may form a complex with FBW7 and MYC
where it directly suppresses FBW7 ligase activity. On another note,
as FBXL16 also binds to PP2A and negatively affects its phosphatase
activity (36), it would be interesting to test whether FBXL16
stabilizes MYC partially via inhibiting PP2A, thus suppressing
MYC S62 dephosphorylation. Nevertheless, this less studied F-box
protein functions to promote cancer cell growth and potentiates
MYC oncogenic activity.
MYC UBIQUITINATION DYNAMICS

The identification of increasing numbers of Ub ligases targeting
MYC suggests that these Ub ligases may control MYC levels and
activity dynamically and coordinately and act in a cell context-
dependent fashion. For example, FBXO32 is uniquely reported to
function under starvation conditions and cell cycle exit, where it
catalyzes K48-linked polyubiquitination of MYC at K326 leading
to MYC degradation (37, 38). Several other MYC Ub ligases have
been reported to function at specific cell cycle phases. TRUSS
targets MYC for proteasomal degradation in G1 phase (39, 40).
SKP2 expression is high at the G1/S transition and peaks at S
phase, and SKP2 promotes S phase entry of MYC containing rat-
1 cells, but not MYC null cells (30). In addition, overexpression
of SKP2 correlates with the reduction of TRUSS in human
cancers (40), suggesting an interplay of MYC Ub ligases in
tightly controlling MYC stability during the cell cycle. Also,
acting later in the cell cycle, FBXO28 is subjected to regulation by
S- and G2/M-phase kinases, cyclin A-CDK2, and cyclin B-CDK1
that mediate phosphorylation of FBXO28 at S344 (41). This
activates the Ub ligase activity of FBXO28 to ubiquitinate
MYC at C-terminal lysines and recruit p300 co-activator for
transactivation of a subset of target genes important for S- and
G2/M-phases.
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Genome-wide studies revealed wide-spread chromatin
binding of MYC, including at high-affinity sites (E-box and
CG island regions in the promoter and enhancer regions) bound
by endogenous low levels of MYC and at low-affinity sites that
are bound by overexpressed and deregulated levels of MYC
through a mechanism called “invasion” (13–15, 42). In some
experimental conditions, MYC is considered as a transcription
amplifier to upregulate most, if not all, active transcribed genes.
However, the DNA binding of MYC often does not match its
transcription activity (3, 43). Also, MYC binding in certain
binding sites with high-affinity promoters, such as ribosome
biogenesis genes, can be saturated, and not increase with
increasing MYC levels (44). These observations suggest
additional control mechanisms between MYC DNA binding
and transcriptional regulation.

Emerging evidences suggest that proper chromatin turnover
of MYC is critical for its transactivation activity. This is initially
observed by two studies showing that SKP2-mediated MYC
ubiquitination and proteasome degradation increase MYC
activity (30, 31). SKP2 binds to the MYC Box (MB) II which is
also the binding motif for the TRAPP co-activator and is
essential for MYC transactivation activity. The proteasome can
be recruited by MYC and SKP2 to MYC target gene promoters
such as the cyclin D2 promoter (31, 45). FBXO28 also binds to
Frontiers in Oncology | www.frontiersin.org 392
MB II and increases MYC activity by non-proteolytic
ubiquitination of MYC (41). The role for MYC turnover
in target gene transcription activation is further highlighted
by a recent study (46) showing that MYC associates
with the elongation factor complex PAF1 at promoters and
ubiquitination and degradation releases this association. Upon
MYC ubiquitination and degradation, the PAF1 complex can
then be transferred to and bound to RNA Pol II to promote
transcription elongation. Interestingly, PAF1C, a component of
the PAF1 complex, interacts with the MBI and phosphorylation
at T58 and S62 in MBI promotes PAF1C binding to MYC.
Therefore, it would be interesting to examine whether and how
MBI phosphorylation coordinates the recruitment of the PAF1
complex with Fbw7-mediated ubiquitination and degradation of
MYC, and the role of other E3 ligases such as SKP2 that activate
MYC transactivation in this dynamic process controlling
transcription. The study also agrees with a recent work by
Chen et al. (47) showing that depletion of PAF1 results in an
increased release of paused Pol II and transcription elongation of
many genes by recruiting the super elongation complex (SEC).
Adding to the complexity is that ELL, a component of SEC that
promotes transcription elongation, has recently been identified
as a MYC Ub ligase. ELL ubiquitinates MYC and targets it for
degradation and suppresses MYC-driven tumorigenesis (48).
FIGURE 1 | Regulation of MYC by Ub ligases, deubiquitinating enzymes (DUBs), and SUMO protease. Shown are the known Ub ligases (left) mediating MYC
ubiquitination, DUBs (upper right) for MYC deubiquitination and SENP1 (lower right) that deSUMOylates and stabilizes MYC. The arrows indicate positive regulation
of MYC activity whereas the bars indicate the inhibition. Small molecule inhibitors targeting the indicated Ub ligases, DUBs, and SENP1 are indicated.
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Whether this occurs at the chromatin and how ELL suppresses
MYC activity remains to be addressed. Together, these
observations are consistent with our studies indicating that
MYC DNA binding and turnover are cyclic at promoters
together with the cyclic binding of general transcription
factors, mediators, and chromatin modifying enzymes as in the
case of ERa turnover at promoters (49, 50).
MYC DEUBIQUITINATING ENZYMES
(DUBS)

MYC ubiquitination can be removed by deubiquitination.
Several deubiquitinating enzymes have been shown to
deubiquitinate MYC and regulate its levels and activity. For
example, USP28 deubiquitinates MYC via counteracting Fbw7a
(51, 52), whereas USP36 deubiquitinates MYC in the nucleolus
by counteracting Fbw7g (33, 53). The role of USP36 in regulating
MYC ubiquitination and stabilization was also reported in
Drosophila, showing that the nucleolar isoform of Drosophila
USP36 (dUSP36) deubiquitinates dMYC and regulates dMYC-
dependent cell growth (54). USP22 and USP37 have been shown
to deubiquitinate and stabilize MYC (55, 56). USP7 has been
shown to deubiquitinate N-Myc (57) and antagonize TRIM32-
mediated MYC ubiquitination (58). USP13 can antagonize
FBXL14 by removing FBXL14-mediated MYC ubiquitination
(59). The Otub6B isoform can regulate MYC levels but not its
transcription, although it is unclear whether the isoform can
directly mediate MYC deubiquitination (60). While USP36
regulates MYC deubiquitination in the nucleolus, many of the
DUBs act on MYC in the nucleoplasm. It is interesting to know
whether these DUBs counteract MYC ubiquitin ligases on
chromatin to control MYC turnover during transcription and
whether they crosstalk with other chromatin modifications,
given that USP36 also deubiquitinates H2B (61).
CROSSTALK OF MYC SUMOYLATION
WITH UBIQUITINATION

Recent studies have shown that MYC is also subject to
SUMOylation (62–65). A unique feature about MYC
SUMOylation is that it acts promiscuously with respect to the
accepting lysines as mutating up to 10 lysines identified by mass
spectrometry analysis still failed to abolishMYC SUMOylation (62).
This might explain the early observations documenting MYC
SUMOylation without a clear effect on MYC stability and activity
(63, 65). We recently showed that the SUMO-specific protease
SENP1 deSUMOylates MYC (66). Interestingly, SENP1-mediated
deSUMOylation stabilizes and activates MYC, likely due to the
indirect deubiquitination of MYC as MYC can be co-modified by
both Ub and SUMO (66). This is also strongly supported by
multiple recent proteomic studies showing ubiquitination of
SUMO as well as SUMO-conjugation to multiple lysines of
ubiquitin (67, 68). Similar regulation has been observed for
HIF1a SUMOylation in that SENP1 deSUMOylation of HIF1a
Frontiers in Oncology | www.frontiersin.org 493
results in HIF1a stabilization as well (69). It is likely that
SUMOylation actually regulates the stability of a large number of
proteins via crosstalk with the Ub system. Nevertheless, the SUMO
regulation of MYC adds another layer of complexity to the
regulation of MYC protein stability and activity and provides
another target in MYC-driven cancer cell growth. Given that
SUMOylation plays a key role in transcription regulation (70, 71),
it is interesting to understand how MYC SUMOylation/
deSUMOylation plays a role in MYC turnover at the chromatin.
TARGETING MYC UBIQUITINATION
PATHWAY

MYC is commonly considered “undruggable” and direct targeting
of MYC is very challenging because of its nucleus localization and
the absence of active sites amendable to conventional small
molecule ligand-binding (72–74), although this concept has
evolved (75, 76). Recently, Omomyc, a peptide that
competitively binds to E-box elements as a heterodimer with
MAX or as a homodimer and suppresses the binding of MYC
to E-boxes (77–79), has been shown to have therapeutic potential
in vivo in various cancer models (77, 79, 80). Targeting MYC
regulatory pathways, such as MYC ubiquitination and
deubiquitination whose deregulation contributes to MYC
stabilization in cancer, is another highly desirable approach.
Several MYC Ub ligases, such as SKP2, HUWE1, and b-TRCP,
promoteMYC function and thus are promising therapeutic targets
(Figure 1, Table 1). In particular, therapeutically targeting SKP2,
which is overexpressed in a variety of cancers, has exciting
potential to capitalize on MYC’s pro-apoptotic function. N-
terminal ubiquitination of MYC by SKP2 increases MYC’s
transactivation of pro-proliferative target genes while loss of
SKP2 can not only lead to increased MYC levels but also
increased apoptotic activity (30, 31, 107, 108). Inhibitors of
SKP2 with anti-tumor properties include several natural
products and recently identified small molecule compounds (83,
109). Small molecule compound A was found to inhibit SKP2
incorporation into the SCF complex, thus suppressing its ubiquitin
ligase activity (81). SMIP0001 and SMIP0004 (82) have been
shown to reduce SKP2 levels and thus induce p27 accumulation.
Compound 25 and its analogs (83) disrupt the SKP2-SKP1
interaction in the SCF complex and inhibit the ligase activity
and have been shown to suppress cancer cell growth. Chemical
library screens identified a novel compound, designated as DT204,
that reduces SKP2 binding to Cullin-1 and Commd1, and
synergistically enhances BTZ-induced apoptosis (84).
NSC689857 and NSC681152 disrupt the SKP2-Cks1 interaction
(85), thus inhibiting p27 ubiquitination. It is interesting to
examine whether these compounds that specifically inhibit p27
degradation also suppress MYC activity. A selenonucleoside called
LJ-2618 downregulates the expression of SKP2 by promoting its
degradation and induces G2/M cell cycle arrest in prostate cancer
cells and xenograft tumor in vivo (86). Likewise, all-trans retinoic
acid (ATRA) stimulates the ubiquitin-mediated degradation of
SKP2 (87). This finding is intriguing because of the known effects
June 2021 | Volume 11 | Article 679445
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of ATRA in stimulating cell differentiation, a consequence ofMYC
inhibition in some settings (110).

Targeting positive ubiquitination mediated by HUWE1 could
also suppress MYC’s oncogenic activity. A recent high-
throughput screening (HTS) has identified small molecule
inhibitors of HUWE1, BI8622 and BI8626, that suppress
transactivation of MYC target genes while increasing
transrepression and the induction of apoptosis in colorectal
cancer cells (29). Treatment of these compounds inhibits
MYC-dependent transactivation in colorectal cancer cells but
not in stem cells or normal colon epithelial cells, and this effect is
associated with the role of HUWE1 inhibition in stabilizing Miz1
and Miz1-mediated suppression of MYC target genes (29). Also,
HUWE1 is frequently deregulated in multiple myeloma (MM)
and targeting HUWE1 with the small molecule inhibitors in
combination with lenalidomide results in synergistic growth
inhibition in MM cells in vitro and in vivo (111).

Many of the MYC DUBs positively regulate MYC stability and
activity and could emerge as important cancer therapeutic targets as
well. Studies have clearly indicated that different thresholds of MYC
elicit different activities and that specific levels of MYC are required
to maintain tumorigenesis (112, 113), supporting the idea of
dropping MYC levels below these thresholds by strategies like
inhibiting DUBs, such as USP28 or USP36 that antagonize FBW7-
mediated MYC ubiquitination (52, 53) and USP7 that
deubiquitinates N-MYC (57). Indeed, emerging studies have
discovered a number of small molecule inhibitors for USP7 (114,
115) (Table 1). These USP7 inhibitors include trisubstituted
thiophene P5091 (88) and its analogs P22077 (89) and P50429
(90), the acridine derivatives HBX19818 and HBX28258 (91), 2-
Amino-4-ethylpyridine derivatives GNE-6640 and GNE-6776 (92),
pyrazolo[3,4-d]pyrimidin-4-one-piperidine compounds FT671 and
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FT827 (93) and the derivative compound L55 (94), a Quinazolin-4-
one derivative XL 188 (95), and recently reported novel chemical
series including compounds USP7-055 and USP7-797 (96),
compound 4 (97), and compound 46 (98). These USP7 inhibitors
showed anti-proliferative effect in cancer cell lines and mouse
xenograft models. For example, P5091 treatment induced multiple
myeloma (MM) cell death, overcomes the resistance to Bortezomib,
and inhibits MM xenograft tumor growth (88). Both P22077 and
P50429 showed anti-proliferative effect in HCT116 cancer cells and
mouse xenograft models (88, 116, 117). Treatment with GNE-6640
and GNE-6776 induced cancer cell death and increases cytotoxicity
with chemotherapeutic agents (92). Most of these above studies
focused on the role of USP7 in degradingMDM2 to induce p53 and
p53-dependent anti-proliferative effects. Yet, effects on p53 mutant
cancers are also evident (96). It would be beneficial to understand
whether such a role also involves USP7 activity to deubiquitinate N-
MYC especially in neuroblastoma with N-MYC amplification or
antagonize TRIM32-mediated MYC ubiquitination (58) and
whether USP7 deubiquitinates c-MYC as well.

Recently, a high throughput screening (HTS) identified the first
set of benzylaminoethanol compounds AZ1, AZ2, and AZ4 that
specifically inhibit USP28 (99). By inhibiting USP28, these
compounds indeed reduce cellular MYC levels, induce apoptosis,
and inhibit cell proliferation in a dose-dependent manner (99). AZ1
was also recently shown to markedly inhibit tumor cell growth and
reduce tumor burden in an orthotopically transplanted lung tumor
model inmicewithwell tolerance at doses up to 375mg/kg (118). Liu
et al. (100) reported a new compound 19, a [1,2,3]triazolo[4,5-d]
pyrimidine derivative, that specifically inhibits USP28 and reduces
gastric cancer cell proliferation and EMTwith a better IC50 than that
ofAZ1. These effects are likely due to binding toUSP28 and inducing
USP28 degradation through ubiquitin-proteasome system (100).
TABLE 1 | Inhibitors targeting the MYC degradation pathway.

Name Mode of action Clinical trial References

Compound A Inhibits SKP2 incorporation into the SCF complex No 81
SMIP0001, SMIP0004 Reduce SKP2 levels No 82
Compound 25 disrupts the SKP2-SKP1 interaction No 83
DT204 Reduces SKP2 binding to Cullin-1 and Commd1 No 84
NSC689857 NSC681152 Disrupt the SKP2-Cks1 interaction No 85
LJ-2618 Promotes SKP2 degradation No 86
ATRA Promotes SKP2 degradation FDA approved 87
BI8622, BI8626 Inhibit HUWE1 No 29
P5091, P22077, P50429 Covalent USP7 inhibitor No 88, 89, 115
HBX19818, HBX28258 Covalent USP7 inhibitors No 90
GNE-6640, GNE-6776 Non-covalent USP7 inhibitors No 91
FT671 Non-covalent USP7 inhibitor No 92
FT827, L55 Covalent USP7 inhibitors 93
XL188 Non-covalent USP7 inhibitor No 94
USP7-055, USP7-797 Non-covalent USP7 inhibitors No 95
Compound 4 Non-competitive USP7 inhibitor No 96
Compound 46 USP7 inhibitor No 97
AZ1, AZ2, AZ4 USP28 inhibitors No 117
Compound 19 USP28 inhibitor No 118
Vismodegib Binds to and inhibits USP28 FDA approved 100
lanatoside C Inhibits USP28-MYC binding No 101
Streptonigrin SENP1 inhibitor No 102
Triptolide (Minnelide) SENP1 inhibitor Phase I and II clinical trials 103, 104
Momordin Ic SENP1 inhibitor No 119
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Vismodegib, a sonic hedgehog inhibitor used for the treatment of
basal cell carcinoma, was recently shown to bind to USP28 and
inhibit its DUB activity (101). Vismodegib exhibits selectivity
towards USP28 and its evolutionally related USP25. Treatment of
cancer cells withVismodegib reduces the levels of c-Myc andNotch1
and suppresses cell growth (101). In addition, lanatoside C, a cardiac
glycoside, has been shown to reduceMYC levels and suppress gastric
cancer cell proliferation by inhibiting USP28 binding to MYC,
thereby destabilizing MYC, although it remains to be determined
whether lanatoside C directly targets USP28 (102).

Given that SENP1 positively regulates MYC levels and activity,
SENP1 is an interesting cancer therapeutic target. Several SENP1
inhibitors have been reported (103–105). Streptonigrin (SN), a
natural product isolated from Streptomyces flocculus, has been
shown to inhibit SENP1 activity (IC50 = 0.518 µM towards
SENP1, IC50 = 6.919 µM towards SENP2) (103). Triptolide, a
small natural compound extracted from a Chinese herb
Tripterygium wilfordii, has been shown to inhibit SENP1
expression (with IC50 = 0.0203 µM in PC-3 cells) (105) and
destabilize MYC (104), yet the underlying mechanism is
unknown. A water-soluble prodrug of Triptolide called Minnelide
has been shown to exhibit promising anti-tumor effects in pancreatic
and liver cancers (119). A phase II trial of Minnelide in patients with
refractory pancreatic cancer (NCT03117920) was just completed
with results pending. Also, a phase I clinical trial of Minnelide
(NCT03129139) is ongoing in patients with advanced solid tumors.
Also, Momordin Ic (Mc), a natural pentacyclic triterpenic
compound, was shown to inhibit SENP1 activity with an IC50 of
15.37 µM in vitro (106). It is conceivable that by inhibiting MYC
deSUMOylation, these SENP1 inhibitors could indirectly suppress
MYC deubiquitination, thereby destabilizing MYC and exhibiting
anti-proliferative effect in cancer cells.
CONCLUSION AND PERSPECTIVES

Emerging evidence supports the dynamic MYC turnover by
proteasome-mediated degradation and the complex crosstalk
among different posttranslational modifications (PTMs) of MYC
(ubiquitination, phosphorylation, acetylation, SUMOylation, and
their reverse processes), resulting in the tight control of MYC
Frontiers in Oncology | www.frontiersin.org 695
transactivation activity, thus emphasizing the importance of MYC
in the multi-step regulation of gene transcription and its
deregulation in cancer. While several MYC Ub ligases such as the
above mentioned SKP2 and HUWE1 have been actively explored as
therapeutic targets, small molecule inhibitors suppressing other
MYC ligases remain to be identified. This therapeutic strategy
holds promise as, for example, knockdown of FBW7 is
synthetically lethal to MYC-overexpressing cancer cells (120).
Conversely, targeting UBR5 to accumulate MYC beyond the
threshold levels that trigger cancer cell apoptosis in MYC-high
cancers (34) is another example of inducing MYC synthetic
lethality. Together, targeting these MYC posttranslational
modifiers could yield potential cancer therapeutics, and additional
research understanding the dynamic control processes and the
effects of perturbing MYC levels in cancer will be important for
their application. Future work would also be needed to further
understand the crosstalk between MYC PTMs and the combined
intervention of targeting multiple MYC PTMs. Further structure-
biology studies and medicinal chemistry optimization could aid in
improving target specificity and developing novel compounds. It is
hopeful that certain compounds targeting the MYC ubiquitination-
proteasome degradation pathways could ultimately move to clinic
trials for treating MYC-dependent cancers. If successful,
combinational therapies with other targeted therapies could also
be desirable to treat advanced cancers, given thatMYCcrosstalkwith
many other oncogenic pathways such as RAS,mTOR,HIF signaling,
and others.
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Pancreatic ductal adenocarcinoma (PDAC) is a growing cause of cancer-related mortality
worldwide. Kallikrein-related peptidase 8 (KLK8) has potential clinical values in many
cancers. However, the clinicopathological significances of KLK8 in PDAC remain
unknown. We explored the relationship of KLK8 to clinicopathological features of PDAC
based on public databases. KLK8 expression was examined in human PDAC tissues. Cell
proliferation and apoptosis were evaluated in KLK8-overexpressed human pancreatic
cancer cell lines Mia-paca-2 and Panc-1. The related signaling pathways of KLK8 involved
in pancreatic cancer progression were analyzed by gene set enrichment analysis (GSEA)
and further verified in in vitro studies. We found that KLK8 was up-regulated in tumor
tissues in the TCGA-PAAD cohort, and was an independent prognostic factor for both
overall survival and disease-free survival of PDAC. KLK8 mRNA and protein expressions
were increased in PDAC tissues compared with para-cancerous pancreas. KLK8
overexpression exerted pro-proliferation and anti-apoptotic functions in Mia-paca-2 and
Panc-1 cells. GSEA analysis showed that KLK8 was positively associated with PI3K-Akt-
mTOR and Notch pathways. KLK8-induced pro-proliferation and anti-apoptotic effects in
Mia-paca-2 and Panc-1 cells were attenuated by inhibitors for PI3K, Akt, and mTOR, but
not by inhibitor for Notch. Furthermore, overexpression of KLK8 in Mia-paca-2 and Panc-
1 cells significantly increased epidermal growth factor (EGF) levels in the culture media.
EGF receptor (EGFR) inhibitor could block KLK8-induced activation of PI3K/Akt/mTOR
pathway and attenuate pro-proliferation and anti-apoptotic of KLK8 in Mia-paca-2 and
Panc-1 cells. In conclusion, KLK8 overexpression exerts pro-proliferation and anti-
apoptotic functions in pancreatic cancer cells via EGF signaling-dependent activation of
PI3K/Akt/mTOR pathway. Upregulated KLK8 in PDAC predicts poor prognosis and may
be a potential therapeutic target for PDAC.

Keywords: apoptosis, kallikrein-related peptidase 8, pancreatic ductal adenocarcinoma, PI3K-Akt-mTOR
pathway, proliferation
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BACKGROUND

Pancreatic cancer is one of the most leading causes of cancer
death in both males and females because of its poor prognosis,
with almost as many deaths (n = 432,000) as cases (n = 459,000)
(1). According to 2020 cancer statistics, approximately 57,600
new cases of pancreatic cancer will be diagnosed, killing almost
47,050 people in the United States in 2020, making it the fourth
leading cause of cancer-associated death (2). Despite the
advanced therapeutic approaches, the 5-year relative survival
rate of pancreatic cancer remains poor, estimated at 9% (3–5). To
further improve the survival rates, it is critical to identify a more
sensitive and effective biomarker associated with the
tumorigenesis and progression for early detection, which will
improve the prognosis for pancreatic cancer.

Tissue kallikrein-related peptidases (KLKs) are a group of
serine proteases encoded by 15 highly conserved genes (KLK1-
KLK15) arranged in a tandem cluster (~300 kb) on chromosome
19q13.3–13.4 (6–9). KLK8, an important member of the KLKs
family, is a synaptic, plasticity-modulating extracellular serine
protease and has been found in many tissues and biological
fluids, involved in a variety of biological activities, for instance,
epidermal proliferation and differentiation, terminal
differentiation of keratinocytes and so on (10, 11). Abnormal
KLK8 expression has been found in several malignancies,
including ovarian, cervical, gland and lung cancers (12–15).
Meanwhile, accumulating evidence support the clinical utility
of KLK8 as a biomarker for cancer survival and prognosis.
However, the expression pattern and role of KLK8 in
pancreatic cancer remains unknown.

In this study, we explored the expression of KLK8 in the
pancreatic cancer at both the mRNA and protein levels and
investigated the correlation between KLK8 expression and
prognosis of pancreatic cancer patients. We also investigated
whether and how KLK8 affected the proliferation and apoptosis
of pancreatic cancer cells. Our findings demonstrated that
upregulation of KLK8 was related to a poor prognosis in
pancreatic cancer. Overexpression of KLK8 might promote
proliferation and inhibit apoptosis via epidermal growth factor
(EGF) signaling-dependent activation of PI3K/Akt/mTOR
pathway in pancreatic cancer cells.
METHODS

Patients and Specimens
Thirty pancreatic cancer tissue samples and their matched para-
cancerous pancreas from pancreatic cancer patients who
underwent surgery in Fudan University Shanghai Cancer
Abbreviations: PDAC, Pancreatic ductaladenocarcinoma; KLK8, Kallikrein-
re lated peptidase 8; GSEA, gene set enrichment analysis ; PI3K,
Phosphatidylinositide 3 kinases; mTOR, mammalian target of rapamycin; KLKs,
kallikrein-related peptidases; PAAD, Pancreatic Cancer; OSCC, Oral squamous
cell carcinoma; CRC, Colorectal cancer; H/R, Hypoxia/Reoxygenation; EMT,
epithelial-mesenchymal transition; EGF, epidermal growth factor; EGFR,
epidermal growth factor Receptor.
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Center (Fudan Center) between June 2016 and April 2018
were obtained during operations. All diagnoses were confirmed
by two pathologists. All specimens were acquired after written
informed consent following procedures approved by the Ethics
Committee of Fudan University Shanghai Cancer Center.

The Cancer Genome Atlas Analysis
and GSEA
The GEPIA database provided differential gene expression analysis
of 31 kinds of cancers based on integrated analysis of the TCGA
and GTEx databases. TCGA Pancreatic Cancer (PAAD) cohort
consisted of 178 primary pancreatic cancer and 4 normal samples.
And gene expression of 167 normal pancreatic tissue was also
downloaded from GTEx (http://commonfund.nih.gov/GTEx/) to
explore the differential expressed genes between tumors and
normal tissues. All data on expression and clinical features were
obtained from the USUC Xena Cancer Genomics Browser
(https://xenabrowser.net/datapages/?dataset=TCGA). The
differentially expressed genes with |log2foldchange|≥1 and P <
0.05 were selected based on 178 pancreatic cancer samples and 171
normal pancreas samples. X-tile program (www.tissuearray.org/
rimmlab/) was used to determine the optimum cutoff value of
KLK8 with minimum p value defined by Kaplan–Meier survival
analysis and log-rank test. To elucidate the mechanisms behind
KLK8 in pancreatic cancer, Gene set enrichment analysis (GSEA)
was performed on the Broad Institute Platform, and statistical
significance (false discovery rate, FDR) was set at 0.25. Hallmark
gene set collection was used to find relative signaling pathways of
KLK8 from control and KLK8 overexpression group according to
the genes presenting the strongest enrichment scores.

RNA Extraction and Real-Time
Quantitative Polymerase Chain Reaction
(RT-qPCR)
Total RNA from 30 random pairs of fresh pancreatic cancer
tissue and adjacent normal mucosa were isolated using the Trizol
reagent (TaKaRa, Japan) according to the manufacturer’s
instruction. Primers for RT-qPCR were designed using Primer
Express v2.0 software (Applied BioSystems). The primer
sequences for KLK8 were as follows: forward 5’- AAG
TGCACC GTC TCA GGC-3’ and reverse 5’- TCC TCA CAC
TTC TTC TGG GG-3’. b-actin was used as an internal control,
and the primer sequences were as follows: forward 5’-CTA CGT
CGC CCT GGA CTT CGA GC -3’ and reverse 5’- GAT GGA
GCC GCC GAT CCA CAC GG -3’. Real-time PCR was carried
out using SYBR Green I (Applied BioSystems) and the relative
expression was calculated using the 2 -DDCT method and
normalized to b-actin (human) as the internal control gene.

Immunohistochemical (IHC) Staining
The immunohistochemistry (IHC) was performed on formalin
fixation and paraffin embedding (FFPE) samples to study the
protein expression in the clinical specimens. Immunohistochemistry
staining of KLK8 was performed using a primary antibody
against KLK8 (1:100 dilution; ab150395; Abcam, Cambridge,
UK) according to the manufacturer’s instructions. Briefly, FFPE
pancreatic cancer tissues and paired adjacent noncancerous
July 2021 | Volume 11 | Article 624837

http://commonfund.nih.gov/GTEx/
https://xenabrowser.net/datapages/?dataset=TCGA
http://www.tissuearray.org/rimmlab/
http://www.tissuearray.org/rimmlab/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hua et al. KLK8 in Pancreatic Cancer
tissues were sectioned to a thickness of 4 mm. After routine
deparaffinization, rehydration, antigen retrieval, and blocking
with 3% hydrogen peroxide, the sections were then incubated
with primary antibody which is specific for KLK8 (1:100 dilution;
ab150395; Abcam, Cambridge, UK) overnight at 4°C and then
with HRP-labeled secondary antibody. Finally, the sections were
stained with diaminobenzidine and counterstained with
hematoxylin. Staining was independently examined by two
experienced investigators blinded to the clinical characteristics
of the patients. The score for KLK8 staining was based on the
integrated staining intensity and the percentage of positive cells.
Staining intensity was scored as follows (16): 0 = no color; 1 =
yellow; 2 = light brown; and 3 = dark brown. The proportion of
immune-positive tumor cells (number of positively labeled
tumor cells/number of total tumor cells) was scored as follows
(17): 0, positive cells <5%; 1, 6%- 25% positive cells;2, 26%- 50%
positive cells; 3, positive cells 51%- 75%; and 4>76%.). The
comprehensive score was the product of staining intensity and
average proportion of positive cells and expressed as follows (18):
negative staining (0-2); weak expression (3-5); moderate
expression (6-9); and strong expression (10-12).

Cell Culture and Stable Transfection
The human pancreatic cancer cell line Mia-paca-2, Panc-1 and
human embryonic kidney cell line 293T (293T) were obtained
from Type Culture Collection of the Chinese Academy of
Sciences (Shanghai, China). Mia-paca-2 and Panc-1 cells were
cultured in DMEM (Invitrogen). All medium was supplemented
with 10% fetal bovine serum (Gibco, USA) and 1% penicillin/
streptomycin (Invitrogen). KLK8 overexpression was performed
using a lentiviral packaging system. To construct overexpressing
exogenous KLK8 cell lines, full-length KLK8 (NM_144505) was
cloned into the expression vector Ubi-MCS-3FLAG-CBh-
gcGFP-IRES-puromycin (Shanghai Genechem Co. Shanghai,
China) and transfected into Mia-paca-2 and Panc-1 cell lines
according to the manufacturer’s instructions. Briefly, Mia-paca-2
and Panc-1 cells were placed in 6-well plates at a density of 1 ×
10^5cells/well the day before infection. The next day lentivirus
were added in cell culture medium. Viruses were removed 24 h
after infection and fresh cell culture medium was added. 72h
after transfection, puromycin (2 µg/ml; Roche, USA) was added
into the cell culture medium to generate stable KLK8-
overexpression cell line four weeks later. Antibiotic-resistant
cells were pooled for subsequent analysis.

Western Blot Analysis
The cells were lysed, and proteins were extracted through
standard protocols. The proteins were separated by SDS-
polyacrylamide gel electrophoresis and subjected to western
blot analyses . Protein bands were detected by the
chemiluminescence method. Specific primary antibodies against
KLK8(1:1000 dilution; ab150395; Abcam, Cambridge, UK),PI3K
(1:1000 dilution; #4257; Cell Signaling Technology, Danvers, MA,
USA), Akt (1:1000 dilution; ab8805; Abcam, Cambridge, UK),
mTOR (1:1000 dilution; ab32028; Abcam, Cambridge, UK), p-
PI3K(1:1000 dilution,P85 Tyr458; #17366; Cell Signaling
Technology, Danvers, MA, USA), p-Akt(1:5000 dilution,
Frontiers in Oncology | www.frontiersin.org 3101
Ser473; ab81283; Abcam, Cambridge, UK), p-mTOR (1:1000
dilution, Ser2448; ab109268; Abcam, Cambridge, UK), p-4EBP1
(1:1000 dilution, Ser65; #9451; Cell Signaling Technology,
Danvers, MA, USA), p-S6P-p70S6K (1:1000 dilution, Thr389;
#9234; Cell Signaling Technology, Danvers, MA, USA),
Notch1 (1:1000 dilution; ab52627; Abcam, Cambridge, UK),
c-myc (1:1000 dilution; ab32072; Abcam, Cambridge, UK), cyclin
D1 (1:1000 dilution; #2922; Cell Signaling Technology, Danvers,
MA, USA), cleaved caspase-3 (1:500 dilution; #9664; Cell Signaling
Technology, Danvers, MA, USA), cleaved caspase-9 (1:1000
dilution; #52873; Cell Signaling Technology, Danvers, MA,
USA), Bax (1:1000 dilution; ab32503; Abcam, Cambridge, UK)
were used. b-Actin (1:5000 dilution; sc-47778; Santa, Cruz, CA,
USA) was used as a loading control. The chemiluminescent signals
were detected with the chemiluminescence imaging system and
quantified by Image J software (v1.37).

Cell Counting Kit-8 (CCK8) Assay
The density of 1000 pretreated cells/well were seeded into a 96-
well plate. The cells were incubated with CCK8 reagent
(DOJINDO, Japan) at 37°C for 1 h and absorbance at 450 nm
were measured using a microplate reader (BioTek, Vermont,
USA) for the appropriate time.

Colony Formation
Log phase Mia-paca-2 and Panc-1 cells were collected. The 500
cells were planted in each well of the 6-well plate and incubated
at 37°C exposed to 5% CO2. After 14 days, the cells were fixed by
4% paraformaldehyde and stained by 0.1% crystal violet and the
colonies were counted visually, with >100 cells/colony
considered a clone.

Apoptosis Assessment
Following transfected with KLK8 and vector plasmid, cells were
washed with PBS 3 times and then stained using the Annexin V-
FITC Apoptosis Detection Kit (BD Biosciences) according to the
instruction. Then cells were analyzed with a FACS flow
cytometer (BD Biosciences).

Enzyme‐Linked Immunosorbent Assay
Mia-paca-2 and Panc-1 cells were plated in 12‐well plates and
Enzyme‐linked immunosorbent assay (ELISA) was performed to
detected the EGF levels in the supernatants after cultured for 48
hours using the Human EGF Quantikine ELISA Kit (#DEG00,
R&D Systems, Minneapolis, MN, USA) according to
manufacturer’s instructions

Statistical Analysis
Data were expressed as means ± standard error of the mean
(SEM) from at least three experiments. All statistical analyses
were performed using SPSS 13.0 (SPSS Inc.). Independent
samples t-test was used to compare control and treatment
groups and one-way ANOVA was performed to compare the
data of multiple groups. The Kaplan Meier estimation method
was used for overall survival analysis, and a log-rank test was
used to compare differences. P < 0.05 was considered to be
statistically significant.
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RESULTS

KLK8 Was Associated With Pancreatic
Cancer Progression and Patients’ Outcome
Based on the indicated role of KLK8 in malignant disease found in
GEPIA (http://gepia.cancer-pku.cn/detail.php?gene=KLK8)
(Figure 1A), we analyzed the expression of KLK8 in the
independent public dataset from Oncomine (https://www.
oncomine.org/resource/main.html) and found that KLK8
expression was elevated in the pancreatic cancer tissue samples
in comparison to the normal pancreas (Figure 1B, P<0.0001). To
further examine the potential relationship between KLK8 and
PAAD, we analyzed data from the TCGA-PAAD cohort which
was replenished by GTEX database, and found that KLK8 was
significantly upregulated in tumor tissues compared to normal
tissues (Figure 1C, P<0.0001). Then we evaluated the relationship
between KLK8 expression and patients’ outcomes. The Kaplan–
Meier curve analysis of the TCGA-PAAD database indicated that
higher KLK8 expression in PAAD was correlated with shorter OS
and DFS rates (P<0.01, Figure 1D). Notably, there are 8 pancreatic
neuroendocrine tumor (NET) samples in the TCGA-PAAD
database, which exhibit low KLK8 expression. NET is known to
have a very different prognosis as compared to PDAC (19).
Therefore, we deleted these 8 NETs, and the remaining cohort
consisted of 170 primary PDACs samples were used for
performing the survival analysis. As shown in Figure 1E, we
found that higher KLK8 expression in PDAC was correlated with
shorter OS (P < 0.05) and DFS (P < 0.01) rates. These results
suggest that KLK8 is highly expressed in pancreatic cancer and is
correlated with the prognosis of patients with pancreatic cancer.

KLK8 Was Elevated in Pancreatic Cancer
Tissues at Both the mRNA and
Protein Levels
To further investigate the expression of KLK8 in pancreatic cancers,
KLK8 protein expression was assessed in 20 pancreatic cancer
tissues and para-cancerous pancreas by IHC staining. Compared
with normal tissues, the level of KLK8 were significantly increased
in pancreatic cancer tissues (Figures 2A–C, P<0.01). We also
performed H&E staining of sequential sections of those used for
IHC staining. As shown in Supplemental Figures S1A, B, it was
found that the tumor tissues exhibited typical pancreatic ductal
adenocarcinoma. There were full of exocrine portions, plenty of
infiltrating lymphocytes and some epithelioid cells in the para-
cancerous tissues. Then, KLK8 mRNA expression was determined
in 30 paired PDAC tissues andmatched para-cancerous pancreas. It
was found that KLK8 mRNA levels were significantly increased in
pancreatic cancer tissue samples as comparison to the adjacent non-
tumor tissues (Figure 2D, p < 0.01). These findings were consistent
with the data obtained from the public datasets (Figure 1).

KLK8 Exerted Pro-Proliferation and Anti-
Apoptotic Functions in Pancreatic Cancer
Cells
Abnormal cell proliferation and apoptosis are characteristics of
human malignant tumor (20). We then determined whether
Frontiers in Oncology | www.frontiersin.org 4102
elevated KLK8 expression could influence the proliferation and
apoptosis of pancreatic cancer cells by using KLK8-
overexpressed Mia-paca-2 and Panc-1 cell lines. The efficacy of
KLK8 overexpression in two cell lines was confirmed by western
blot analysis (Figure 3A). We performed CCK-8 and colony
formation assay to assess the effects of KLK8 in pancreatic cell
proliferation. As shown in Figures 3B, C, a significant
promotion of cell proliferation was observed in the KLK8-
overexpression group in comparison to the control group. In
addition, the number of cell colonies were significantly increased
in both Mia-paca-2 and Panc-1 pancreatic cancer cells
overexpressed with KLK8 (Figures 3D, E).

We then clarified the effect of KLK8 overexpression on
pancreatic cancer apoptosis. As shown in Figures 4A–D,
compared with control group, the percentage of apoptosis cells
was significantly reduced in KLK8 overexpressed pancreatic
cancer cells. In addition, western blot assay showed that
compared with control group, pro-apoptotic markers cleaved
caspase-3, cleaved caspase-9 and Bax significantly declined in
KLK8-overexpression Mia-paca-2 and Panc-1 cells (Figure 4E).

KLK8 Accelerated Cell Growth and
Inhibited Apoptosis via PI3K-Akt-mTOR
Signaling Pathway in Pancreatic
Cancer Cells
To gain an insight into the mechanisms by which KLK8
promoted PDAC progression, the gene expression in PDAC
tissues with high expression of KLK8 and those with low
expression of KLK8 was analyzed by gene set enrichment
analysis (GSEA) based on the TCGA database. GSEA results
showed that 14 enriched pathways were differentially expressed
according to diverse KLK8 expression levels (Figure 5A, p<0.05).
Notably, KLK8 was positively associated with PI3K-AKT-mTOR
and Notch signaling pathways, both of which are known to play
critical roles in cell proliferation and apoptosis (Figures 5B, C).
We observed significantly enhanced phosphorylated PI3K,
phosphorylated Akt and phosphorylated mTOR expression in
Mia-paca-2 and Panc-1 cells overexpressed with KLK8. KLK8
overexpression also led to significant increases in phosphorylated
4EBP1 and phosphorylated S6P-p70S6K, two of the most
distinctive downstream targets of mTOR, in pancreatic cancer
cell lines (Figure 5D). In addition, KLK8 overexpression also led
to significant increases in Notch-1 protein expression. C-myc
and Cyclin D1, two downstream targets of Notch signaling, were
increased in pancreatic cancer cells overexpressed with KLK8
(Figure 5D). These findings suggest that KLK8 overexpression
activates PI3K-Akt-mTOR and Notch pathways (Figure 5D).

Next, we explored whether activation of PI3K-Akt-mTOR and
Notch signaling pathways contributed to the pro-proliferation and
anti-apoptotic functions of KLK8 in pancreatic cancer cells. Both
CCK8 assay and colony formation assay showed that the pro-
proliferation effects of KLK8 on pancreatic cells were counteracted
by PI3K inhibitor LY294002 (75 mM), Akt inhibitor Deguelin (500
nM), and mTOR inhibitor Rapamycin (100 nM) (Figure 6).
However, Notch inhibitor RO4929097 (10 mM) had no
significant effect on KLK8-induced pro-proliferation in pancreatic
July 2021 | Volume 11 | Article 624837

http://gepia.cancer-pku.cn/detail.php?gene=KLK8
https://www.oncomine.org/resource/main.html
https://www.oncomine.org/resource/main.html
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


C

expression in different cancers and their paired normal tissues in the GEPIA. The height of bar
s and pancreatic carcinoma from an independent pancreatic dataset in the Oncomine database.
cancer patients (n=178) than in normal controls (n =171). (D) The TCGA-PAAD database has 178
anel) and Disease-free survival (DFS, right panel) were compared between patients with low and
consisted of 170 primary PDACs samples (TCGA-PAAD cohort without NETs, n=170) were used
and high KLK8 expression. ****p < 0.0001 vs normal.

H
ua

et
al.

K
LK

8
in

P
ancreatic

C
ancer

Frontiers
in

O
ncology

|
w
w
w
.frontiersin.org

July
2021

|
Volum

e
11

|
A
rticle

624837
5

A B

D E

FIGURE 1 | KLK8 was associated with PDAC tumorigenesis and prognosis in the TCGA-PAAD cohort. (A) KLK8
represents the median expression of certain tumor type or normal tissue. (B) KLK8 expression of normal specimen
The expression fold-change was 2.332. (C) In the TCGA-PAAD cohort, KLK8 was more significantly expressed in
pancreatic cancer samples, including 8 pancreatic neuroendocrine tumor (NET) samples. Overall survival (OS, left p
high KLK8 expression in the TCGA-PAAD cohort (n=178). (E) We deleted these 8 NETs, and the remaining cohort
for performing the survival analysis. OS (left panel) and DFS (right panel) was compared between patients with low
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A B

DC

FIGURE 2 | KLK8 expression in pancreatic cancer tissues and para-cancerous pancreas. (A, B) Representative immunohistochemistry staining of KLK8 in
pancreatic cancer tissues and para-cancerous pancreas (n=20). (A) showed negative KLK8 staining in para-cancerous pancreas. (B) showed strong positive KLK8
staining in PDAC tissues. (C) Quantified data of the score for KLK8 staining. (D) Quantitative real-time PCR detection of KLK8 mRNA expression in paired human
PDAC tissue samples and para-cancerous pancreas (n=30). Data were presented as the mean ± SEM. **p < 0.01 vs Non-tumor tissue.
A B

D E

C

FIGURE 3 | KLK8 overexpression promoted the proliferation of PDAC cells. KLK8 overexpression was induced with recombinant Lentivirus infection (Lv-KLK8) in
human pancreatic cancer cell lines Mia-paca-2 and Panc-1, and an empty adenovirus served as control (Lv-Control). (A) Mia-paca-2 and Panc-1 cells transfected
with KLK8 overexpression vectors were validated at protein level by western blot analysis. (B, C) Cell proliferation was detected by CCK8 Assay in Mia-paca-2 (B)
and Panc-1 (C) cells. (D, E) Colony formation was detected in Mia-paca-2 (D) and Panc-1 (E) cells. Data were presented as the mean ± SEM (n=3). **p < 0.01 vs
Lv-control.
Frontiers in Oncology | www.frontiersin.org July 2021 | Volume 11 | Article 6248376104

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hua et al. KLK8 in Pancreatic Cancer
cells (Figure 6). We also measured the effects of the specific
inhibitors on cell proliferation in Lv-control treated cells. As
shown in Supplemental Figures S2A, B, it was found that only
PI3K inhibitor LY294002 at the dose of 75 mM significantly
inhibited cell proliferation in both Mia-paca-2 and Panc-1 cells
treated with Lv-control. However, Akt inhibitor Deguelin (500
nM), mTOR inhibitor Rapamycin (100 nM), and Notch inhibitor
RO4929097 (10 mM) had no significant effect on cell proliferation
in Lv-control treated pancreatic cancer cells.

We then examined the effects of the specific inhibitors on cell
apoptosis. As shown in Figures 7, 8, PI3K inhibitor LY294002 at
the dose of 75 mM significantly promoted cell apoptosis in both
Mia-paca-2 and Panc-1 cells treated with Lv-control. In Lv-KLK8
Frontiers in Oncology | www.frontiersin.org 7105
treated pancreatic cancer cells, we found that LY294002 reversed
the anti-apoptotic effect of KLK8 overexpression. Moreover,
KLK8-overexpressed pancreatic cancer cells treated by
LY294002 showed higher levels of apoptosis than Lv-control
treated cells (Figures 7A, B, 8A).

Both Deguelin (500 nM) and Rapamycin (100 nM) had no
significant effect on cell apoptosis in Lv-control treated pancreatic
cancer cells (Figures 7C, D, 8B). In Lv-KLK8 treated pancreatic
cancer cells, we found that Deguelin and Rapamycin reversed
the anti-apoptotic effect of KLK8 overexpression (Figures 7A, B,
8A). Moreover, KLK8-overexpressed pancreatic cancer cells
treated by Deguelin showed higher levels of apoptosis than
Lv-control treated Mia-paca-2 and Panc-1 cells (Figures 7A, B).
A B

D

E

C

FIGURE 4 | KLK8 overexpression inhibited apoptosis of PDAC cells. KLK8 overexpression was induced with recombinant Lentivirus infection (Lv-KLK8) in human
pancreatic cancer cell lines Mia-paca-2 (A, B) and Panc-1 (C, D), and an empty adenovirus served as control (Lv-Control). Cell apoptosis was determined by
Annexin V-FITC and PI double staining analysis performed by flow cytometry. Representative flow cytometry images were shown (A, C). (B, D) demonstrated the
quantified data of cell apoptosis. (E) pro-apoptotic markers cleaved caspase-3, cleaved caspase-9 and Bax assessed by western blot. Data are expressed as the
mean ± SEM (n=3). **p < 0.01 vs Lv-control.
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KLK8-overexpressed Panc-1 cells treated by Rapamycin also
showed higher levels of apoptosis than Lv-control treated cells
(Figures 7A, B).

However, Notch inhibitor RO4929097 (10 mM) had no
significant effect on cell apoptosis in Lv-control treated
pancreatic cancer cells (Figures 7C, D). In addition, RO4929097
had no significant effect on KLK8-induced anti-apoptotic function
in pancreatic cells (Figures 7A, B, 8A).

EGF Signaling Contributes to KLK8-
Induced Activation of PI3K-Akt-mTOR
Signaling Pathway and KLK8-Induced Pro-
Proliferation and Anti-Apoptotic Effects in
Pancreatic Cancer Cells
As a secreted serine protease, KLK8 is known to mediate the
proteolytic process of pro-EGF into mature EGF (21).EGF is
known to activate PI3K/Akt/mTOR pathway in a variety of
cancers (22–25). Thus, we further investigated whether EGF
signaling pathway contributes to KLK8-induced proliferation and
Frontiers in Oncology | www.frontiersin.org 8106
anti-apoptotic effects in pancreatic cancer cells. As shown in
Figure 9A, it was found that overexpression of KLK8 in Mia-
paca-2 and Panc-1 cells significantly increased EGF levels in the
culture media. Western blot results demonstrated that KLK8-
induced activation of PI3K/Akt/mTOR pathway was profoundly
blocked by AG1478, the specific EGF receptor (EGFR) antagonist
(Figure 9B). In addition, it was found that EGFR antagonist
AG1478 significantly attenuated the pro-proliferation and anti-
apoptotic effects of KLK8 overexpression in both Mia-paca-2 and
Panc-1 cells (Figures 9C–H). These findings indicate that EGF
signaling contributes to KLK8-induced activation of PI3K-Akt-
mTOR signaling pathway and KLK8-induced pro-proliferation
and anti-apoptotic effects in pancreatic cancer cells (Figure 10).
DISCUSSION

Pancreatic cancer continues to have a poor 5-year survival rate
despite its rising incidence (26, 27). By 2030, it is estimated to
A

B

D

C

FIGURE 5 | Significantly-altered pathways were predicted in PDAC and verified in KLK8-overexpressed pancreatic cancer cells. (A) Gene sets enriched in the
transcriptional profiles of tumors belonging to the top KLK8 high-expression group, compared with the bottom-expression group in the TCGA dataset. Shown are
the NES (normalized enrichment score) values for each pathway using the Hallmark gene sets. The functional annotations of KLK8 positive and negative expression
in PDAC was predicted. A nominal p value of <0.05 is considered statistically significant. (B, C) GSEA highlighted positive association of increased KLK8 expression
levels with PI3K-Akt-mTOR (B) and Notch (C) signal pathways. (D) levels of key proteins in PI3K-AKT-mTOR and Notch signaling pathways were examined in KLK8-
overexpressed Mia-paca-2 and Panc-1 cells using western blot. NES = normalized enrichment score. (n=3).
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become the second leading cause of cancer related deaths (5).
Pancreatic resection is still the only curative intent therapy for
PDAC patients. However, pancreatic resection is complex and
carries with it the risk of major morbidity and mortality (28).
Thus, there is a desperate need for investigating the pathogenesis
and identifying molecular biomarkers of PDAC to facilitate early
diagnosis, prognosis prediction, and the development of effective
therapeutic strategies for PDAC patients.

KLK8, also known as neuropsin, is a member of human
kallikrein-related peptidase (KLKs) family which has been
related to malignant behavior at multiple stages of tumor
progression, including proliferation, migration and angiogenesis
(29, 30). Previous studies have found that abnormal expression of
KLK8 was associated with several malignancies, including ovarian,
cervical, gland and lung cancers (12, 31–34).However, the
expression level and prognostic significance of KLK8 in PDAC
Frontiers in Oncology | www.frontiersin.org 9107
are still unknown. In this study, we identified up-regulated KLK8
expression in pancreatic cancer compared with adjacent tissues
through TCGA database, which was further confirmed by using
clinical samples. Furthermore, we found that high KLK8
expression predicts poorer OS and DFS in pancreatic cancer
patients. These results indicated that KLK8 could be a
prognostic marker for PDAC. Similar to our findings, several
studies have confirmed that the upregulation of KLK8 was related
to poorer cancer prognosis. For example, KLK8 has been
recognized as a poor prognostic marker for lung and breast
cancer (15, 31). But in other tumors, such as ovarian cancer, the
elevated expression of KLK8 is a favorable prognostic marker (35).
These results suggest that KLK8 may play different roles in
different cancers, and the aberrant expression of KLK8 may
serve as a potential clinical biomarker for cancer diagnosis
or prognosis.
A B

D

E F

C

FIGURE 6 | KLK8 promoted pancreatic cancer cells proliferation via the activation of the PI3K-Akt-mTOR pathway. Mia-paca-2 and Panc-1 cells in Lv-KLK8 group
were treated with PI3K inhibitor LY294002(75 mM), Akt inhibitor Deguelin (500 nM), mTOR inhibitor Rapamycin (100 nM) or Notch inhibitor RO4929097 (10 mM) in
Mia-paca-2 and Panc-1 cells. (A, B) Cell proliferation was detected by CCK8 Assay in Mia-paca-2 (A) and Panc-1 (B) cells. (C, D) Colony formation was detected in
Mia-paca-2 (C) and Panc-1 (D) cells. (E, F) demonstrated the quantified data of cell colonies. Data were presented as the mean ± SEM (n=3). **p < 0.01 vs Lv-
control; p < 0.05, ##p < 0.01 vs Lv-KLK8.
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KLK family members have been implicated in the
pathogenesis and progression of malignant tumor (36, 37). For
example, overexpression of KLK7 is found to stimulate colon
cancer cell proliferation both in vivo and in vitro (38). KLK13
enhances the invasiveness and motility of lung cancer via
increasing laminin degradation and N-cadherin expression
(39). KLK5 promotes metastatic dissemination of Oral
squamous cell carcinoma(OSCC) by promoting loss of
junctional integrity through cleavage of desmoglein 1 (40).
KLK14 acts at the cleavage site of PAR-2 to induce ERK1/2
activation, thus promoting colon cancer proliferation (41). As for
KLK8, it can facilitate colorectal cancer (CRC) cell proliferation,
migration and invasion in vitro (9). In this study, by using two
pancreatic cancer cell lines, we demonstrated for the first time
that overexpression of KLK8 significantly inhibited PDAC cell
apoptosis, meanwhile profoundly promoted PDAC cell
proliferation. These data suggest that KLK8 may promote
Frontiers in Oncology | www.frontiersin.org 10108
tumor growth and suppress tumor apoptosis, and may be a
potential molecular target in therapy for pancreatic cancer.

Notably, our recent study has shown that KLK8
overexpression in coronary artery endothelial cells cleaves VE-
cadherin, thus leading to endothelial cell damage and endothelial
hyperpermeability (42). In contrast, the present study showed
that KLK8 overexpression significantly increased cell viability of
pancreatic cancer cells. Previous studies also demonstrate that
KLK8 overexpression significantly increases cell viabilities in
neonatal cardiomyocytes and cardiac fibroblasts (21, 42).
Taken together, these findings suggest that KLK8 might
modulate cell functions in a cell type-dependent manner.

The activity of KLK family members is typically controlled by
itself or other proteases in the proteolytic activation cascade (43,
44). For example, KLK5 is thought to initiate the cascade reaction
through auto-activation, and is activated by other proteases
including the transmembrane serine protease matriptase and
A

B D

C

FIGURE 7 | KLK8 suppressed pancreatic cancer cells apoptosis through the activation of PI3K-Akt-mTOR pathway. Mia-paca-2 and Panc-1 cells in Lv-Control and
Lv-KLK8 were treated with PI3K inhibitor LY294002 (75 mM), Akt inhibitor Deguelin(500 nM), mTOR inhibitor Rapamycin (100 nM) or Notch inhibitor RO4929097 (10
mM). Cell apoptosis was determined by Annexin V-FITC and PI double staining analysis performed by flow cytometry. Representative flow cytometry images were
shown (A, C). (B, D) demonstrated the quantified data of cell apoptosis. Data are presented as means ± SEM (n = 3). **p < 0.01 vs Lv-control; p < 0.05, ##p < 0.01
vs Lv-KLK8.
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matrix metalloproteases (MMPs) (45). KLK5 activates other
KLKs, such as KLK7 and KLK14 (46).Pro-KLK8 has been
found to be activated by KLK5 and other proteases such as
lysyl endopeptidase and MMP9 (47). The present study found
that lentivirus-mediated KLK8 overexpression exhibited
significant pro-proliferation and anti-apoptotic effects in
pancreatic cancer cells, suggesting that the active form of
KLK8 is increased after KLK8 overexpression. Whether KLK8
is activated through auto-activation or by other proteases merits
further investigation.

Phosphatidylinositide 3 kinases (PI3Ks) and their downstream
mediators Akt and mammalian target of rapamycin (mTOR) are
well-known to regulate cell proliferation, apoptosis, homeostasis
and metabolism (48). Previous studies have demonstrated that
activation of PI3K/AKT/mTOR signaling pathway facilitates
pancreatic cancer cell proliferation. In contrast, blockade of
PI3K/AKT/mTOR signaling pathway promotes pancreatic
cancer cell death (49–51). Overexpression of KLK8 has been
Frontiers in Oncology | www.frontiersin.org 11109
found to induce Akt activation under Hypoxia/Reoxygenation
(H/R) stimulation in neonatal rat cardiomyocytes (8). In the
present study, GSEA analysis and western blot assay revealed
that KLK8 overexpression resulted in the activation of PI3K/AKT/
mTOR signaling pathway in pancreatic cancer cells. In addition,
the pro-proliferation and anti-apoptotic functions of KLK8 were
reversed by inhibitors targeting PI3K, Akt and mTOR. These
findings suggest that elevated KLK8 may exert the pro-
proliferation and anti-apoptotic effects in pancreatic cancer cells
through activating PI3K-Akt-mTOR signaling pathway.

In addition, we noticed that PI3K inhibitor LY294002 at the
dose of 75 mM significantly promoted cell apoptosis in both Mia-
paca-2 and Panc-1 cells treated with Lv-control. KLK8-
overexpressed pancreatic cancer cells treated by LY294002
showed higher levels of apoptosis than Lv-control treated cells.
These findings suggest that PI3K inhibitor LY294002 may
promote apoptosis independently from the signaling mediated
by KLK8. As for Akt inhibitor Deguelin and mTOR inhibitor
A

B

FIGURE 8 | KLK8 decreased protein levels of pro-apoptotic proteins through the activation of PI3K-Akt-mTOR pathway. Mia-paca-2 and Panc-1 cells in Lv-KLK8
(A) and Lv-Control (B) were treated with PI3K inhibitor LY294002(75 mM), Akt inhibitor Deguelin (500 nM), mTOR inhibitor Rapamycin (100 nM) or Notch inhibitor
RO4929097 (10 mM). (A, B) protein levels of pro-apoptotic markers cleaved caspase-3, cleaved caspase-9 and Bax were assessed by western blot.
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Rapamycin, both inhibitors had no significant effect on cell
apoptosis in Lv-control treated pancreatic cancer cells.
However, KLK8-overexpressed pancreatic cancer cells treated
by Deguelin showed higher levels of apoptosis than Lv-control
Frontiers in Oncology | www.frontiersin.org 12110
treated Mia-paca-2 and Panc-1 cells. KLK8-overexpressed Panc-
1 cells treated by Rapamycin also showed higher levels of
apoptosis than Lv-control treated cells. These findings suggest
that Deguelin and Rapamycin may cause KLK8 to functionally
A B
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C

FIGURE 9 | EGF signaling contributes to KLK8-induced activation of PI3K-Akt-mTOR signaling pathway and KLK8-induced pro-proliferation and anti-apoptotic
effects in pancreatic cancer cells. Mia-paca-2 and Panc-1 cells were treated with EGFR antagonist AG1478 (100 nM). Twenty-four hours later, cells were harvested
for measuring cell protein level, proliferation and apoptosis. (A) Expression level of EGF in Mia-paca-2 and Panc-1 cells were evaluated by ELISA assay. (B) Levels of
key proteins in PI3K-AKT-mTOR signaling pathways were examined in Mia-paca-2 and Panc-1 cells using western blot (C) Cell proliferation was detected by CCK8
assay in Mia-paca-2 and Panc-1 cells. (D) Colony formation was detected in Mia-paca-2 and Panc-1 cells. (E) Demonstrated the quantified data of cell colonies.
(F) Cell apoptosis was determined by Annexin V-FITC and PI double staining analysis performed by flow cytometry. Representative flow cytometry images were
shown. (G) Demonstrated the quantified data of cell apoptosis. (H) Pro-apoptotic markers cleaved caspase-3, cleaved caspase-9 and Bax assessed by western
blot. Data were presented as the mean ± SEM (n=3). **p <0.01 vs Lv-control; p < 0.05, ##p < 0.01 vs Lv-KLK8.
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FIGURE 10 | Molecular mechanisms of KLK8-induced pro-proliferation and anti-apoptotic effects in pancreatic cancer cells. KLK8-mediated release of mature EGF
contributes to the activation of PI3K-Akt-mTOR signaling pathway, thereby promoting the proliferation and inhibiting the apoptosis of pancreatic cancer cells.
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switch from being anti-apoptotic to pro-apoptotic in pancreatic
cancer cells, a possibility that merits further investigation.

As a secreted serine protease, KLK8 is known to cleave several
membrane proteins including protease-activated receptors
(PARs), neuregulin-1, synaptic adhesion molecule L1, Ephrin
type-B receptor 2, and VE-cadherin (10, 21, 42, 44). In addition,
the proteolytic process of pro-EGF into mature EGF can also be
mediated by KLK8. EGF/EGFR signaling pathway has been
known to promote the proliferation of pancreatic cancers via
activating PI3K/AKT pathway. In this study, we found that EGF
levels significantly increased in KLK8-overexpression Mia-paca-2
and Panc-1 cells. Inhibition of EGFR could block KLK8-induced
activation of PI3K/Akt/mTOR pathway and attenuated the pro-
proliferation and anti-apoptotic effects of KLK8 overexpression in
both Mia-paca-2 and Panc-1 cells. Taken together, these results
indicate that the effects of KLK8 on PI3K/Akt/mTOR activation,
pancreatic cell proliferation and apoptosis might be, at least partly,
due to KLK8-mediated release of mature EGF.

Notch signaling pathway also plays an important role in the
occurrence and progression of pancreatic cancer (52–54). In the
present study, GSEA analysis and western blot assay revealed that
Frontiers in Oncology | www.frontiersin.org 13111
KLK8 overexpression resulted in the activation of Notch signaling
pathway. However, Notch inhibitor didn’t influence the KLK8-
induced effects in pancreatic cancer cells. These results suggest that
the pro-proliferation and anti-apoptotic functions of KLK8 may
not be dependent on activation of Notch signaling pathway.
Notably, our GSEA analysis data showed that KLK8
overexpression might also lead to the activation of EMT
(epithelial-mesenchymal transition), glycolysis and KRAS
signaling pathway, which have been implicated in the
pathogenesis and progression of pancreatic cancers (17, 55–57).
Whether these processes and the related signaling pathways
contribute to the KLK8-induced pro-proliferation and anti-
apoptotic effects in pancreatic cancers merits further investigation.
CONCLUSIONS

In summary, our findings indicate that KLK8 overexpression
exerts pro-proliferation and anti-apoptotic functions in
pancreatic cancer cells via EGF signaling-dependent activation
of PI3K/Akt/mTOR pathway. Positive KLK8 staining is
July 2021 | Volume 11 | Article 624837
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associated with PDAC progression and predict poorer survival in
patients, thus providing additional evidence for patient-tailored
therapeutic strategies.
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to Sorafenib-Induced Ferroptosis
by Regulating Autophagy in
Hepatocellular Carcinoma
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and Jingang Liu*

Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China

Purpose: Sorafenib is a multi-kinase inhibitor that is used as a standard treatment for
advanced hepatocellular carcinoma (HCC). However, the mechanism of sorafenib
resistance in HCC is still unclear. It has been shown that CISD2 expression is related to
the progression and poor prognosis of HCC. Here, we show a new role for CISD2 in
sorafenib resistance in HCC.

Methods: Bioinformatic analysis was used to detect the expression of negative regulatory
genes of ferroptosis in sorafenib-resistant samples. The concentration gradient method
was used to establish sorafenib-resistant HCC cells. Western blot was used to detect the
protein expression of CISD2, LC3, ERK, PI3K, AKT, mTOR, and Beclin1 in HCC samples.
Quantitative real-time PCR (qPCR) was used to detect gene expression. CISD2 shRNA
and Beclin1 shRNA were transfected to knock down the expression of the corresponding
genes. Cell viability was detected by a CCK-8 assay. ROS were detected by DCFH-DA
staining, and MDA and GSH were detected with a Lipid Peroxidation MDA Assay Kit and
Micro Reduced Glutathione (GSH) Assay Kit, respectively. Flow cytometry was used to
detect apoptosis and the levels of ROS and iron ions.

Results: CISD2 was highly expressed in HCC cells compared with normal cells and was
associated with poor prognosis in patients. Knockdown of CISD2 promoted a decrease in
the viability of drug-resistant HCC cells. CISD2 knockdown promoted sorafenib-induced
ferroptosis in resistant HCC cells. The levels of ROS, MDA, and iron ions increased, but
the change in GSH was not obvious. Knockdown of CISD2 promoted uncontrolled
autophagy in resistant HCC cells. Inhibition of autophagy attenuated CISD2 knockdown-
induced ferroptosis. The autophagy promoted by CISD2 knockdown was related to
Beclin1. When CISD2 and Beclin1 were inhibited, the effect on ferroptosis was
correspondingly weakened.

Conclusion: Inhibition of CISD2 promoted sorafenib-induced ferroptosis in resistant
cells, and this process promoted excessive iron ion accumulation through autophagy,
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leading to ferroptosis. The combination of CISD2 inhibition and sorafenib treatment is an
effective therapeutic strategy for resistant HCC.
Keywords: hepatocellular carcinoma, sorafenib resistance, ferroptosis, CISD2, autophagy, Beclin1
INTRODUCTION

Hepatocellular carcinoma (HCC) is the second leading cause of
cancer death worldwide (1). Due to the late presentation of
symptoms, fewer than 20% of patients presenting with HCC are
candidates for potentially curative treatment, such as surgical
resection, ablation, or radioactive embolization (2). Once HCC
becomes advanced, there are few systemic therapeutic options
for its management.

Sorafenib is the only targeted drug for the treatment of
advanced HCC approved by the US Food and Drug
Administration, but its efficacy as a monotherapy remains
unsatisfactory, with a median overall prolonged survival benefit
of only 3 months compared to placebo (3). Furthermore, primary
and acquired drug resistance makes the number of HCC patients
with complete response to sorafenib very low (4). In view of the
emerging crisis of sorafenib resistance in HCC, further research
to develop a new therapeutic strategy is urgently needed.

The redox status of cancer cells usually differs from that of
normal cells (5), and the increases in antioxidant factors induce
the initiation and progression of HCC (6). Ferroptosis, defined as
a new programmed oxidative cell death discovered in recent
years, is characterized increased ROS production via the Fenton
reaction and the accumulation of lipid peroxidation products (7).
Sorafenib can induce HCC cell ferroptosis resulting from
inhibition of system X−

C followed by cellular GSH depletion
(8, 9), and the induction of ferroptosis is a promising strategy
to combat apoptosis-resistant HCC (10). It was previously
reported that capecitabine (an anti-metabolic fluorouracil
deoxynucleoside carbamate drug) can induce ferroptosis in
metastatic breast cancer (11), and relatedly, capecitabine was
reported to be safe and effective in HCC patients experiencing
sorafenib failure (12–14).

NEET proteins are conserved proteins that retain the CDGSH
iron sulfur domain (CISD) and are encoded by three genes:
CISD1 encodes mitoNEET (mNT), CISD2 encodes nutrient-
deprivation autophagy factor-1 (NAF-1), and CISD3 encodes
MiNT (Miner2) (15). These recently discovered proteins play key
roles in many processes involved in iron, iron-sulfur, and
reactive oxygen homoeostasis and autophagy regulation in cells
(16). The Fe-S cluster is redox active, and its biochemical
properties are regulated by its redox state (17, 18).
Moreover, CISD2 was shown to mediate longevity (19, 20) and
to promote the development of breast cancer, cervical cancer,
lung adenocarcinoma, pancreatic cancer, and prostate cancer
(21–25). However, CISD2 is infrequently reported in research of
liver cancer. CISD2 is a regulator of autophagy initiation under
conditions of nutrient deprivation (26). Nevertheless, it is not
clear whether CISD2 regulates autophagy in drug-resistant cells.
More biochemical studies are needed to describe precisely how
2116
CISD2 can regulate autophagy pathways and what effects it
produces in cancers.

In this study, we aimed to explore the role of CISD2 in
ferroptosis in sorafenib-resistant HCC and to investigate how it
affects ferroptosis by regulating autophagy. Our research
provides a new strategy for targeted therapy of sorafenib-
resistant HCC.
MATERIALS AND METHODS

Cell Culture and Reagents
A normal hepatocyte line (L02) and HCC cell lines (Hep3B,
HepG2, Huh7, and PLC) were purchased from Shanghai
Institute of Cell Bank (Shanghai, China). Huh7 cells were
cultured in Dulbecco’s modified Eagle’s medium (Gibco,
Grand Island, USA) supplemented with NaHCO3 (1.5 g/L).
HepG2 and PLC cells were grown in minimum essential
medium (Gibco, Grand Island, USA) with NaHCO3 (1.5 g/L)
and sodium pyruvate. Cells were cultured with 10% fetal bovine
serum (Pansera ES, Pan biotech GmbH, Germany), penicillin
(U/ml), and streptomycin (0.1 mg/ml) at 37°C in a humidified
atmosphere containing 5% CO2. Cells were exposed to sorafenib
(Solarbio, Beijing, China) for the indicated time and at the
indicated concentration. Drug-resistant cell lines were
established by stepwise selection of cells cultured in growth
media with increasing concentrations of the drug over a period
of 6 months. Erastin, staurosporine (STS), ferrostatin-1 (Fer-1),
deferoxamine (DFO), ZVAD-FMK, and necrosulfonamide
(NSA) were purchased from MedChemExpress (New Jersey,
USA). Sorafenib and pioglitazone (Pg) were purchased from
Solarbio Biotechnology Company (Beijing, China).

HCC Patients
Human HCC tissues and adjacent normal tissues (ANTs) were
collected from patients with hepatocellular carcinoma at the
Fourth Affiliated Hospital of China Medical University and
Liaoning Cancer Hospital, and all patients were diagnosed by
pathological examination. Sample collection was approved by the
research ethics committee of the Fourth Affiliated Hospital of
China Medical University. Each patient provided informed
consent to participate in the study. The patients had not
undergone preoperative chemotherapy or radiotherapy. All
collected samples were immediately frozen in liquid nitrogen
and stored until subsequent analysis.

Bioinformatics Technology
The expression levels of genes in sorafenib-resistant HCC
samples from the Gene Expression Omnibus (GEO) database
were obtained. Differential gene expression analysis was
August 2021 | Volume 11 | Article 657723
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performed with R-based open-source software. Kaplan–Meier
survival analysis was performed on patients stratified by CISD2
expression (high expression vs low expression) with the R
“ggplot2” package. For Gene set enrichment analysis (GSEA),
the RNA sequencing data for 374 samples of HCC and 50
samples of normal tissues were extracted from the Cancer
Genome Atlas (TCGA) program database. In brief, the 374
patients were divided into the CISD2 high expression group
and the CISD2 low expression group. We used GSEA v2.0
software for GSEA (http://software.broadinstitute.org/gsea/
index.jsp). Statistical significance was evaluated by comparing
the enrichment fractions from the enrichment results to obtain
P values.

Cell Viability Assays
Cell viability was assessed using a cell counting kit-8 (CCK-8)
(Yeasen, Shanghai, China). Cells were seeded in 96-well plates at
5 × 103 cells/well and transfected with CISD2 shRNA, Beclin1
shRNA, or the corresponding negative control shRNA (Ctrl
shRNA) for 48 h. Then added with different concentrations of
sorafenib or indicated concentration of erastin, STS, Fer-1, DFO,
ZVAD-FMK, NSA cultured for 24 h at 37°C. After that, CCK-8
reagent was added and incubated for 2 h at 37°C. Thereafter, the
absorbance was measured at 490 nm using a SpectraMax M2
microplate reader (Molecular Devices, Sunnyvale, CA, USA).

Apoptosis Analysis
Apoptosis was detected using an FITC Annexin V/Dead Cell
Apoptosis Kit (Thermo Fisher Scientific, Waltham, MA, USA).
After transfected with CISD2 shRNA or Ctrl shRNA for 48 h,
cells were treated with sorafenib (10 mmol) for 24 h and washed
with PBS three times. Determine the cell density and dilute in 1×
annexin-binding buffer to 1 × 106 cells/ml, and 5 ml of FITC
annexin V, 1 ml of 1× propidium iodide (PI, 100 mg/ml) were
added to the suspension for 15 min in the dark. Finally, 400 µl of
1× binding buffer was added to each tube. Flow cytometry (BD
LSRFortessa, Becton Dickinson, USA) was used to detect
apoptosis in each group.

Cell Proliferation Assay
Cell proliferation was evaluated by 5-ethynyl-2’-deoxyuridine
(EdU) incorporation or colony formation assays. The EdU
incorporation assay was performed with a Cell-Light™ EdU
Apollo567 In Vitro Kit (RIBOBIO, Guangzhou, China). Cells in
the logarithmic growth phase were seeded into 96-well plates
with 1×105 cells/well and cultured for 24 h. After 48 h of
transfection with CISD2 shRNA and the corresponding Ctrl
shRNA, cells were treated with sorafenib and cultured for 24 h.
After that, 50 mmol/L EdU-containing medium was prepared,
and the cells were incubated for 2 h. Then, the cells were fixed
with 4% paraformaldehyde for 30 min room temperature and
added 100 ml 0.5% TritonX-100. After that, cells were stained
with 1×Apollo® solution for 30 min room temperature and kept
in the dark. Finally, DNA was stained with 1× Hoechst33342 and
incubated at room temperature for 30 min. Images were acquired
under an inverted fluorescence microscope. For the colony
formation assay, 1×103 cells were seeded per well. After 24 h,
Frontiers in Oncology | www.frontiersin.org 3117
the HCC cells were treated with different concentrations. After
another 2 weeks, the cells were washed with PBS and stained with
0.1% Crystal Violet Stain Solution (Yeasen, Shanghai, China).

Quantitative Real-Time Polymerase Chain
Reaction (qPCR)
After transfection with CISD2 shRNA, Beclin1 shRNA, or the
corresponding Ctrl shRNA for 48 h, total RNA was extracted
with TRIzol (Invitrogen, Thermo Fisher Scientific, USA). Then, a
1/5 volume of chloroform was added for extraction and
centrifugation to obtain the upper clear liquid phase, and the
same volume of isopropanol was then added and stored at −20°C
overnight. cDNA was obtained by reverse transcription with a
PrimeScript™ RT Reagent Kit (Promega, USA) in the Promega
GoScript reverse transcription system (A5000). Real-time PCR
analysis was performed using Promega GoTaq® qPCR Master
Mix in an ABI 7500 Fast Real-Time PCR System (Applied
Biosystems, USA). With 18S rRNA as the internal reference,
qPCR was carried out in a 20 ml reaction system. The 2−DDCt

method was used to analyze the data. Three complex wells were
set up for all reactions, and the experiment was repeated
three times.

Western Blot Assay
Cells were transfected with CISD2 shRNA, Beclin1 shRNA, or
the corresponding Ctrl shRNA for 48 h. Then, cells were treated
with sorafenib (10 mmol) for 24 h. RIPA buffer was used to
extract the lysate from hepatocellular carcinoma cells, and the
protein concentration was determined with a BCA protein assay
kit (Beyotime, Shanghai). Then, buffer was added for
denaturation of the proteins in the lysate. Total protein was
separated by 7–15% SDS-PAGE. Electrophoresis was carried out
at 80 V for 20 min and 100 V for 1 h and 30 min. Then, proteins
were transferred to a polyvinylidene difluoride (PVDF)
membrane at 50 V for 2 h. Then, 5% bovine serum albumin
(BSA; Biosharp, Beijing, China) was used to block the membrane
for 2 h. The membrane was incubated with antibodies specific for
CISD2 (Proteintech, 1:2,000 dilution), LC3, ERK, p-ERK, PI3K,
p-PI3K, AKT, p-AKT, mTOR, p-mTOR, Beclin1, and b-actin
(all from Cell Signaling Technology, 1:1,000 dilution) overnight
at 4°C. The next day, the membrane was washed three times with
PBS for 10 min each. A horseradish peroxidase (HRP)-labeled
goat anti-mouse antibody (Cell Signaling Technology, 1:5,000
dilution) was added and incubated at room temperature for 1 h.
Then, the membrane was washed with PBS for 10 min each.
Finally, immunoreactions were detected with an ECL Substrate
Kit (Tanon 5200, Shanghai, China), and the experiment was
repeated three times.

RNA Interference and Gene Transfection
All plasmids were purchased from GeneChem (Shanghai,
China). Cells were seeded in six-well plates at a density of
5×105 cells/well. Cells were seeded, and after 24 h, when the
cell density reached 50–70%, they were transfected with CISD2
shRNA, Beclin1 shRNA, or the corresponding Ctrl shRNA with
Lipofectamine 3000 (Thermo Fisher Scientific, Waltham, MA,
USA). The medium was changed after 6 h.
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ROS Level Assay
Reactive oxygen species (ROS) generation in HCC cells was
assessed with 2’,7’-dichlorofluorescein diacetate (DCFH-DA)
(Beyotime, Shanghai, China). Cells were seeded into six-well
plates with 5×105 cells/well, and CISD2 shRNA or Ctrl shRNA
was transfected for 48 h. Then cells were treated with sorafenib
or erastin for 24 h. DCFH-DA was diluted with serum-free
medium at a ratio of 1:1,000, and the final concentration was
10 mmol/L. The cell culture medium was removed, and DCFH-
DA was added. The cells were incubated at 37°C for 20 min. The
cells were washed three times with serum-free medium. ROS
levels were analyzed by flow cytometry (BD LSRFortessa, Becton
Dickinson, USA) or immunofluorescence assays.

Lipid Peroxidation Assay
Intracellular lipid peroxidation was evaluated by measuring the
concentration of malondialdehyde (MDA) with a Lipid
Peroxidation MDA Assay Kit (Beyotime, Shanghai, China).
After transfection with CISD2 shRNA, Beclin1 shRNA, or the
corresponding Ctrl shRNA for 48 h, cells were treated with
sorafenib or erastin for 24 h. Then, a certain number of cells was
collected, and the lysate was incubated at 4°C for 2 h and
centrifuged at 12,000 × r for 10 min to obtain the supernatant
for subsequent analysis. Then, 0.2 ml of MDA detection working
solution was added. After mixing, the mixture was heated to 100°C
or boiled in a water bath for 15 min. The absorbance was
measured at 532 nm with a microplate reader. After the MDA
content in the sample solution was calculated, it was normalized to
theMDA content in the parental cell sample as the protein content
per unit weight.

Measurement of Iron Content
The intracellular iron content was measured by using calcein-
acetoxymethyl ester (Ca-AM; AnaSpec, Campus Drive Fremont,
USA). Cells were seeded into six-well plates with 5×105 cells/well
and cultured for 24 h. Then cells were transfected with CISD2
shRNA or the corresponding Ctrl shRNA for 48 h. After that, the
cells were treated with sorafenib or erastin for 24 h. The cells
were collected and cultured at 37°C at a density of 1×106 cells/ml
in 0.05 mmol Ca-AM for 15 min. After that, the cells were washed
twice with 0.5 ml of PBS and used for flow cytometric analysis or
immunofluorescence assays. Calcein was excited at 488 nm, and
fluorescence was measured at 525 nm. The difference in the
average fluorescence intensity reflected the iron content. A
Prussian Blue Iron Stain Kit (Solarbio, Beijing, China) was
used to detect trivalent iron.

GSH Assay
Cellular GSH in HCC cell lysates was evaluated with a Micro
Reduced Glutathione (GSH) Assay Kit (Solarbio, Beijing, China).
Cells were seeded into six-well plates and cultured for 24 h. Then
cells were transfected with CISD2 shRNA, Beclin1 shRNA, or the
corresponding Ctrl shRNA for 48 h. After that, the cells were
treated with sorafenib or erastin for 24 h. Approximately
1×106 cells/ml of each sample was collected. First, the cells
were washed twice with PBS (cells were resuspended in PBS
Frontiers in Oncology | www.frontiersin.org 4118
and centrifuged at 600 × r for 10 min). A three-fold volume of the
cell precipitation reagent was added to resuspend the cells, and
the cells were subjected to two to three freeze-thaw cycles and
centrifuged at 8,000 × r for 10 min. The supernatant was
collected at 4°C for testing. Then, 20 ml of the sample, 140 ml
of Reagent II, and 40 ml of Reagent III were added sequentially.
After mixing, the mixture was allowed to stand for 2 min, and the
absorbance (A2) was measured at 412 nm: DA= A2 - A1.

Immunofluorescence Staining
Cells were seeded on the prepared cover glasses in six-well plates
for 24 h and were reached to 30%. Then, Ctrl shRNA or CISD2
shRNA plasmid was transfected and cultured for 48 h. After that,
cells were treated with sorafenib for 24 h. After cells were washed
three times with PBS for 5 min each, cells were fixed with 4%
polyoxymethylene for 15 min at room temperature and washed
with PBS three times again. The cells were incubated with 1%
Triton X-100 for 20 min at room temperature and washed three
times with PBS for 5 min each. Then, the cells were incubated
with bovine serum albumin (BSA) for 1 h in 37°C and washed
with PBS three times, after which LC3-labeled goat anti-mouse
antibody was added and incubated at 37°C for 2 h. Finally, DAPI
was used to stain nuclei, and the cells were incubated in the dark
for 5 min. PBS was used to wash the cells three times for 5 min
each. The number and distribution of LC3 were observed under a
fluorescence microscope.

Transmission Electron Microscopy
By transfected CISD2 shRNA or the corresponding Ctrl shRNA
for 48 h, and cells were treated with sorafenib for 24 h. The
collected cells were treated with 5% glutaraldehyde and stored at
4°C overnight. Then samples went through ultracryomicrotomy
to generate slices of 70 nm in thickness and staining with 20 m 2%
phosphotungstic acid for 10 min. All samples were analyzed by a
H-7650 electron microscope at 100KV.

Co-immunoprecipitation
Drug-resistant HCC cells were collected and incubated on ice for
40 min in 300 ml of lysis buffer containing a protease inhibitor.
Then, the supernatant was collected, and 2 mg of the anti-CISD2
antibody, anti-Beclin1 antibody, or immunoglobulin G
(Proteintech) was added and incubated overnight at 4°C. Then,
20 ml of protein A/G-agarose beads (Santa Cruz Biotechnology,
Shanghai, China) was added and incubated at 4°C for 3 h with
shaking. The beads were collected and washed with lysis buffer
three times. Finally, 40 ml of loading buffer was added and boiled
for 5 min, and western blot analysis was performed.

Immunohistochemistry
The expression of CISD2 in human HCC tissues was observed in
paraffin sections. Antigen was retrieved with citrate, and the sections
were dehydrated and cleared through an alcohol gradient. The
sections were stained with an immunohistochemical kit (Invitrogen,
Thermo Fisher Scientific, USA) according to the manufacturer’s
instructions. The sections were incubated with an anti-CISD2
primary antibody (Proteintech, 1:100) and were then restained
with hematoxylin. Each slide was observed under a microscope.
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Statistical Analysis
Data are presented as the mean ± standard deviation (SD) or
standard error of the mean values. The statistical significance of
differences between treatment groups was assessed by using the
Mann–Whitney U-test or analysis of variance (ANOVA) with
the Bonferroni post hoc test. The statistical software IBM® SPSS®

Statistics version 24.0 for Windows (IBM, Armonk, NY, USA)
was used. Statistical significance was defined as a two-sided
P value <0.05.
RESULTS

CISD2 Is Upregulated in HCC Cell Lines
and Related to Poor Prognosis
To explore the relationship between ferroptosis and drug
resistance, we identified 49 negative regulators of ferroptosis in
Frontiers in Oncology | www.frontiersin.org 5119
the ferroptosis database (http://www.zhounan.org/ferrdb/).
Then, we analyzed the expression levels of genes in samples of
sorafenib-resistant HCC tissue in the Gene Expression Omnibus
(GEO) database (GSE73571, GSE93595, GSE94550). CISD2 was
more highly expressed than the other investigated genes
(Figure 1A). By comparing the HCC RNA-seq data of 371
tumor tissues with that of 50 adjacent normal tissues from
TCGA, we found that CISD2 was upregulated in HCC
(Figure 1B). In addition, Kaplan-Meier survival analysis
indicated that the survival rate of patients with relatively high
CISD2 expression was lower than that of patients with low
CISD2 expression (Figure 1C). Next, we aimed to study the
potential function of CISD2 in HCC cell lines by qPCR
(Figure 1D). The expression of CISD2 in HCC cells (Huh7,
HepG2, Hep3B, and PLC) was higher than that in normal liver
cells. Western blot analysis showed that the expression level in
PLC cells was relatively low and that the expression level in Huh7
cells was relatively high (Figure 1E). We selected these two cell
A

B C

D E

FIGURE 1 | CISD2 is upregulated in HCC cell lines and related to poor prognosis. (A) Bioinformatics was used to detect the expression level of ferroptosis genes in
gene expression omnibus (GEO) database from GSE73571, GSE93595, GSE94550. (B) TCGA database was used to analyze the HCC RNA-seq data of 371 tumor
tissues against 50 adjacent normal tissues. (C) GEPIA database was used to detect the Kaplan-Meier survival analysis. (D, E) qPCR and western blot were used to
detect the expression level of normal hepatic epithelial cell (L02) and HCC cell lines (Huh7, HepG2, Hep3B, PLC) (n=3, *P < 0.05, **P < 0.01 versus L02).
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lines for subsequent research. These data suggested that CISD2
was highly expressed in HCC and correlated with the poor
prognosis of HCC patients.

Knockdown of CISD2 Reverses
Sorafenib Resistance
We used Huh7 and PLC cells to establish sorafenib-resistant cell
lines using the concentration gradient method (from 1 to
5 mmol) over a 6-month period (Figure 2A). A CCK-8 assay
was used to detect the changes in cell viability under sorafenib
treatment (Figure 2B). The IC50 in Huh7 cells was 5.31 ± 0.428
mmol, while that in resistant Huh7 cells was 11.71 ± 1.775 mmol;
the IC50 in PLC cells was 7.449 ± 0.336 mmol, while that in
resistant PLC cells was 13.532 ± 1.009 mmol (Supplemental
Figure S1A). After sorafenib treatment at 10 mmol, the level of
p-ERK in drug-resistant cells was not reduced, while the level of
p-ERK in non-drug-resistant cells was reduced (Figure 2C),
indicating that the drug-resistant cell lines we cultured were
clearly resistant. To detect the effect of CISD2 on drug-resistant
cells, we transfected CISD2 shRNA to knockdown CISD2,
and qPCR was used to detect the transfection efficiency
(Supplemental Figure S1B). After that, we selected the cells
exhibiting the highest transfection efficiency for western blot
analysis (Figure 2D). CISD2 knockdown resulted in some loss of
cell viability without sorafenib treatment, but there was no
significant difference compared with Ctrl shRNA (Huh7-R,
P=0.0686; PLC-R, P=0.0547), and CISD2 knockdown
aggravated the toxicity of sorafenib treatment at different
concentrations (Figure 2E). We further detected the effect of
CISD2 on the proliferation of resistant HCC cells. We used an
EdU incorporation assay and found that CISD2 knockdown
inhibited cell division (Figures 2F, G). The colony formation
assay showed that CISD2 knockdown inhibited cell proliferation
(Supplemental Figure S1C).

Knockdown of CISD2 Promotes
Ferroptosis in Sorafenib-Resistant Cells
Inducing ferroptosis is one of the best ways to prevent cancer
drug resistance, and this method is used to treat refractory high-
risk neuroblastoma (27). Current studies suggest that sorafenib
can induce ferroptosis in hepatocellular carcinoma cells (8). We
also found that the effect of sorafenib on apoptosis was not
obvious; however, the apoptosis rate was increased after STS (an
apoptosis inducer) treatment (Supplemental Figure S2A), and
sorafenib-induced cell death was restored by co-treatment with
Fer-1 or DFO (ferroptosis inhibitors) (Supplemental Figure
S2B) . In the above study, we confirmed that CISD2
knockdown reversed sorafenib resistance. We then explored
whether CISD2 knockdown can reverse sorafenib resistance by
inducing ferroptosis. We used sorafenib at a higher
concentration (10 mmol) to treat resistant cells. A CCK-8 assay
was used to detect cell viability. The results showed that Fer-1
and DFO weakened the effects of both sorafenib and erastin in
both Ctrl shRNA- and CISD2 shRNA-transfected cells. However,
ZVAD-FMK (an apoptosis inhibitor) and NSA (a necroptosis
inhibitor) exerted no influence on sorafenib- or erastin-induced
Frontiers in Oncology | www.frontiersin.org 6120
growth inhibition (Figures 3A, B). Flow cytometric analysis
showed that the apoptosis induced by CISD2 knockdown was
not obvious under sorafenib treatment (Figures 3C, D). This
finding suggests that CISD2 knockdown promotes sorafenib-
induced ferroptosis in resistant HCC cells.

Iron accumulation and lipid peroxidation are related to the
process of ferroptosis. Thus, we detected ferrous ions, ROS, and
malondialdehyde (MDA, a lipid peroxidation product). The level
of ROS in the CISD2 shRNA group was higher than that in the
Ctrl shRNA group under sorafenib treatment as determined by
flow cytometry in Huh7-R cell (**P=0.0028) and PLC-R cell
(**P=0.0019) (Figure 4A), and the fluorescence detection also
showed that knockdown of CISD2 enhanced ROS fluorescence
expression (Figures 4C, D). The level of MDA was increased in
CISD2 shRNA group under treatment with sorafenib in Huh7-R
cell (**P=0.0069) and PLC-R cell (**P=0.0016) (Figure 4B). In
addition, the content of iron ions was increased in CISD2 shRNA
group under treatment with sorafenib, as shown by flow
cytometry in Huh7-R cell (**P=0.0035) and PLC-R cell
(**P=0.0026) (Figure 4E), and fluorescence detection was also
consistent with it (Figures 4G, H). CISD2 shRNA group was
highly enriched in iron ions compared with Ctrl shRNA group,
as determined by high magnification fluorescence detection and
Perls staining (Supplemental Figure S3). However, the decrease
in the GSH level induced by sorafenib appeared to not be affected
by inhibition of CISD2 (Figure 4F). This finding implies that
inhibition of GSH itself might be less effective in the context of
ferroptosis induction without iron accumulation. These results
suggest that CISD2 knockdown can promote the sensitivity of
drug-resistant cells to sorafenib and lead to ferroptosis.

Knockdown of CISD2 Promotes
Autophagy in Sorafenib-Resistant Cells
To understand the possible mechanism of CISD2, we conducted
GSEA on database data for liver cancer samples. The results
showed that the correlation between CISD2 and autophagy was
the second highest and that there was a negative regulatory
relationship between CISD2 and autophagy (Figure 5A). After
that, we found that the autophagy level was increased when
CISD2 was knocked down. Western blot analysis showed that the
LC3 I converted to LC3 II and the expression level of p62
decreased gradually (Figures 5B, C). Immunofluorescence
staining showed that the number of LC3 spots was increased
after CISD2 knockdown (Figures 5D, E). And transmission
electron microscopy showed that CISD2 knockdown promoted
the increase of autophagosomes (Figure 5F). Studies have shown
that the mTOR pathway plays an important role in the formation
of autophagosomes and that the mTOR pathway is the
convergence point of upstream AMPK and PI3K/Akt signal
transduction (28). When the mTOR pathway is inhibited,
autophagy can be activated. We used western blot to evaluate
the expression of key proteins in the classic autophagy mTOR
pathway. However, the levels of p-PI3K, p-AKT, and p-mTOR
did not change after CISD2 knockdown (Figures 5G–I). The
results showed that CISD2 knockdown had no effect on the
mTOR pathway.
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FIGURE 2 | Knockdown of CISD2 reverses sorafenib resistance. (A) Sorafenib-resistant cells were cultured for 6 months by the concentration gradient increasing
method, and the morphology of resistant cancer cells was detected. (B) CCK-8 method was used to detect the cell viability under treatment with different
concentrations of sorafenib (n = 3, ****P < 0.0001 versus No resistance). (C) Western blot was used to detect the expression level of ERK and p-ERK protein on
treatment with sorafenib (SR, 10 mmol). (D) Western blot was used to detect the expression level of CISD2 under transfected CISD2 shRNA or Ctrl shRNA in Huh7-
resistant cell (Huh7-R) and PLC-resistant cell (PLC-R). (E) CCK-8 method was used to detect the cell viability with different concentrations of sorafenib under
transfected CISD2 shRNA or Ctrl shRNA (n = 3, ****P < 0.0001 versus Ctrl shRNA). (F, G) EdU method was used to detect cell proliferation under treatment with
sorafenib (10 mmol) or transfected CISD2 shRNA in resistant cells (n = 3, **P < 0.01, ***P < 0.001 versus Ctrl shRNA+SR).
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Inhibiting Autophagy Alleviates Ferroptosis
in Sorafenib-Resistant Cells With
CISD2 Knockdown
Studies have shown that autophagy plays an important role in the
occurrence of ferroptosis (29–31). We thus sought to further
verify whether autophagy is involved in the ferroptosis induced by
CISD2 knockdown. We used the autophagy inhibitors
bafilomycin A1 (BafA1) and 3-methyladenine (3-MA)
separately as an autophagy initiation inhibitor and a lysosomal
inhibitor, respectively, to detect autophagy. We then used CCK-8
to evaluate cell viability after 12 or 24 h of treatment. The results
showed that both 3-MA and BafA1 inhibited cell death. In
addition, 3-MA played a stronger role in the setting of CISD2
Frontiers in Oncology | www.frontiersin.org 8122
knockdown, and we chose it for the next experiment (Figure 6A).
Western blot analysis showed that after treatment with 3-MA, the
change from LC3 I to LC3 II was partially decreased (Figure 6B),
and the number of fluorescent LC3 puncta was reduced
(Figure 6C). The expression levels of MDA and ROS in drug-
resistant cells in the 3-MA treatment group were decreased
(Figures 6D, E) and that iron ions were also decreased under
co-treatment with 3-MA (Figure 6F). The GSH level in sorafenib-
resistant cells was not affected by treatment with 3-MA
(Figure 6G). These results suggest that inhibiting autophagy
alleviates ferroptosis partially in the setting of CISD2
knockdown. In summary, CISD2 mediates cellular resistance to
sorafenib-induced ferroptosis by regulating autophagy.
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FIGURE 3 | Knockdown of CISD2 mainly promotes ferroptosis and not apoptosis in sorafenib-resistant cells. (A, B) CCK-8 method was used to detect the cell
viability under different treatment with sorafenib (10 mmol) or transfected CISD2 shRNA, and erastin (10 mmol) as positive control, with or without cell death inhibitors
(Fer-1, 1 mmol; DFO, 200 mmol; ZVAD-FMK, 10 mmol) (n = 3, ****P < 0.0001 versus sorafenib/erastin group). (C, D) Cell apoptosis was detected by flow cytometry
under treatment with sorafenib (10 mmol) or transfected CISD2 shRNA (horizontal axis label FITC Annexin V and vertical axis label PI).
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Inhibition of CISD2 Promotes
Ferroptosis Regulated by Beclin1 in
Sorafenib-Resistant Cells
To explore the regulatory target of CISD2 in autophagy, we
evaluated the expression of the autophagy-related genes Beclin1,
ATG3, ATG4, ATG5, ATG7, ATG9, ATG10, and ATG12 after
Frontiers in Oncology | www.frontiersin.org 9123
knockdown of CISD2. The results showed that among these
genes, Beclin1 was the most upregulated (Figure 7A). After that,
we used western blot to confirm that CISD2 knockdown
promoted Beclin1 expression (Figure 7B). Therefore, we
explored whether CISD2 affects ferroptosis by regulating
Beclin1. We transfected resistant cells with Beclin1 shRNA to
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FIGURE 4 | Knockdown of CISD2 promotes ferroptosis in sorafenib-resistant cells. (A) Flow cytometry was used to detect the expression level of ROS under
treatment with sorafenib (10 mmol) or transfected CISD2 shRNA, and erastin (10 mmol) as positive control. (B) MDA kit was used to detect the expression level of
MDA under treatment with sorafenib (10 mmol) or transfected CISD2 shRNA, and erastin (10 mmol) as positive control. (C, D) Immunofluorescence was used to
detect the expression of ROS by adding DCFH-DA under treatment with sorafenib (10 mmol) or transfected CISD2 shRNA. (E) Flow cytometry was used to detect
the expression level of iron ions under treatment with sorafenib (10 mmol) or transfected CISD2 shRNA, and erastin (10 mmol) as positive control. (F) GSH kit was
used to detect the expression level of GSH under treatment with sorafenib (10 mmol) or transfected CISD2 shRNA, and erastin (10 mmol) as positive control.
(G, H) Immunofluorescence was used to detect the expression level of iron ions under treatment with sorafenib (10 mmol) or transfected CISD2 shRNA. (n = 3,
*P < 0.05, **P < 0.01, ***P < 0.001 versus Ctrl shRNA, N.S. means no significance).
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knockdown Beclin1, and the knockdown efficiency was
determined by qPCR and western blot analysis (Figures 7C, D).
In order to further explore, we used Pg as a CISD2 inhibitor
to treat resistant HCC cells. After co-treatment with sorafenib
Frontiers in Oncology | www.frontiersin.org 10124
and Pg, the level of LC3 was increased but was decreased by
co-treatment with Beclin1 shRNA (Figure 7E) . The
immunofluorescence results showed that LC3 spots increased
after sorafenib and Pg co-treatment but decreased after Beclin1
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FIGURE 5 | Knockdown of CISD2 promotes autophagy in sorafenib-resistant cells. (A) GSEA was used to detect the function of CISD2. (B, C) Western blot was used
to detect the expression level of LC3 and p62 under treatment with sorafenib (10 mmol) or transfected CISD2 shRNA in resistant cells. (D, E) Immunofluorescence was
used to detect the expression of LC3 under treatment with sorafenib (10 mmol) or transfected CISD2 shRNA. (F) Transmission electron microscopy was used to detect
the number of autophagosomes under treatment with sorafenib (10 mmol) or transfected CISD2 shRNA. (G–I) Western blot was used to detect the expression level of
PI3K, p-PI3K, AKT, p-AKT, mTOR, p-mTOR under treatment with sorafenib (10 mmol) or transfected CISD2 shRNA.
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knockdown (Figure 7F). These results showed that Beclin1
knockdown partially inhibited autophagy. After that, we
evaluated cell viability by CCK-8. The results showed that
Beclin1 knockdown increased cell viability in sorafenib and Pg
co-treatment group (Figure 7G). We further examined the
Frontiers in Oncology | www.frontiersin.org 11125
changes in MDA, the key indicator of ferroptosis. The results
showed that knockdown of Beclin1 decreased the MDA level in
sorafenib and Pg co-treatment group (Figure 7H). After that, we
found by co-immunoprecipitation experiments that CISD2 can
bind Beclin1 (Figure 8A). In conclusion, CISD2 promotes
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FIGURE 6 | Inhibiting autophagy alleviates ferroptosis in sorafenib-resistant cells with CISD2 knockdown. (A) CCK-8 was used to detect the cell viability under treatment
with sorafenib (10 mmol), 3-MA (1 mmol), BafA1 (20 nmol), or transfected CISD2 shRNA (n = 3, *P < 0.05, **P < 0.01, ***P < 0.001 versus 3-MA treatment or BafA1).
(B) Western blot was used to detect the expression level of LC3, p62 under treatment with sorafenib (10 mmol), 3-MA (1 mmol), or transfected CISD2 shRNA in resistant
cells. (C) Immunofluorescence was used to detect the expression level of LC3 under treatment with sorafenib (10 mmol), 3-MA (1 mmol), or transfected CISD2 shRNA.
(D) MDA kit was used to detect the expression level of MDA under treatment with sorafenib (10 mmol), 3-MA (1 mmol), or transfected CISD2 shRNA (n = 3, *P < 0.05,
**P < 0.01 versus 3-MA treatment). (E) Flow cytometry was used to detect the expression level of ROS under treatment with sorafenib (10 mmol), 3-MA (1 mmol), or
transfected CISD2 shRNA (n = 3, *P < 0.05 versus 3-MA treatment). (F) Flow cytometry was used to detect the expression level of iron ions under treatment with
sorafenib (10 mmol), 3-MA (1 mmol), or transfected CISD2 shRNA (n = 3, *P < 0.05, **P < 0.01 versus 3-MA treatment). (G) GSH kit was used to detect the expression
level of GSH under treatment with sorafenib (10 mmol), 3-MA (1 mmol), or transfected CISD2 shRNA (n=3, N.S. means no significance).
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FIGURE 7 | Inhibition of CISD2 promotes ferroptosis regulated by Beclin1 in sorafenib-resistant cells. (A) qPCR was used to detect the autophagy-related gene
expression under transfected CISD2 shRNA (n = 3, *P < 0.05, **P < 0.01 versus Ctrl shRNA). (B) Western blot was used to detect the expression level of Beclin1
under transfected CISD2 shRNA. (C, D) qPCR and western blot were used to detect the Beclin1 expression under transfected Beclin1 shRNA (n = 3, *P < 0.05
versus Ctrl shRNA). (E) Western blot was used to detect the expression level of LC3, p62 under treatment with sorafenib (10 mmol), Pg (10 µmol), or transfected
Beclin1 shRNA. (F) Immunofluorescence was used to detect the expression of LC3 under different treatment with sorafenib (10 mmol), Pg (10 µmol), or transfected
Beclin1 shRNA. (G) CCK-8 was used to detect the cell viability under treatment with sorafenib (10 mmol), Pg (10 µmol), or transfected Beclin1 shRNA (n = 3,
*P < 0.05 versus Ctrl shRNA). (H) MDA kit was used to detect the expression of MDA under treatment with sorafenib (10 µmol), Pg (10 µmol), or transfected Beclin1
shRNA (n = 3, *P < 0.05 versus Ctrl shRNA).
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resistance to sorafenib-induced ferroptosis by regulating Beclin1
in HCC cells.

Correlation Between CISD2 Expression
and the Survival of HCC Patients
We then sought to evaluate the correlation between CISD2
expression and the survival prognosis of HCC patients. We
divided patients into high and low CISD2 expression groups
and found that the survival time of patients with high CISD2
expression was lower than that of patients with low CISD2
expression (P=0.023) (Figure 8B). Western blot analysis
showed that CISD2 expression in HCC tissue was higher than
that in ad jacent normal t i s sue (Figure 8C) . The
immunohistochemical results showed that CISD2 was more
highly expressed in HCC tissues than in adjacent normal
Frontiers in Oncology | www.frontiersin.org 13127
tissues and was mainly localized in the cytoplasm (Figure 8D).
In summary, CISD2 is highly expressed in HCC patients and is
associated with poor prognosis.
DISCUSSION

In the past few decades, although a large number of studies have
been carried out to improve the efficacy of anticancer drugs by
overcoming chemotherapeutic resistance, it is still a major
clinical challenge in the treatment of HCC (32). Sorafenib, as
the first-line drug for the treatment of advanced liver cancer, is
often due to the drug resistance of liver cancer, with low response
rate and poor survival and prognosis effect of patients (33). It is
A

C

D

B

FIGURE 8 | Correlation between CISD2 expression and the survival of HCC patients. (A) Co-immunoprecipitation of endogenous CISD2 and Beclin1 in HCC
resistant cells. (B) Correlation between CISD2 expression and survival analysis of HCC patients (G1=CISD2 low expression group, G2=CISD2 high expression
group). (C) Western blot was used to detect the expression level of CISD2 in HCC tissues (T) and adjacent normal tissues (ANT). (D) Immunohistochemistry was
used to detect the expression level of CISD2 in HCC tissues and adjacent normal tissues.
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necessary to study the mechanism of resistance and
further therapy.

The main mechanism of drug therapy is induction of
apoptosis. However, cancer cells can usually develop
mechanisms to prevent apoptosis by acquiring a drug
resistance phenotype and upregulating pro-survival signals
(34). It is necessary to explore other forms of cell death to
solve the problem of drug resistance. In recent years, studies have
shown that the induction of ferroptosis in cancer cells has
Frontiers in Oncology | www.frontiersin.org 14128
become a new treatment strategy, and its clinical application in
cancer treatment is anticipated to be promoted (35).

Currently, some clinical drugs, such as sorafenib, sulfasalazine,
lanperisone, acetaminophen, and cisplatin, can induce ferroptosis
in several types of cancer cells, supporting the feasibility of
exploiting ferroptosis for the treatment of drug-resistant cancers
(36, 37). Genetic silencing of cystine/glutamate-induced
ferroptosis in resistant head and neck cancer (HNC) cells
enhanced sensitivity to cisplatin (38). Furthermore, ferroptosis
FIGURE 9 | Cartoon diagram of CISD2 promotes resistance to sorafenib-induced ferroptosis by regulating autophagy in hepatocellular carcinoma. Inhibition of
CISD2 restored sorafenib-induced ferroptosis and reversed drug resistance, and these effects were related to the inhibition of CISD2-promoted autophagy. Through
this process, the excessive activation of autophagy promoted the release of iron ions and induced lipid peroxidation to promote ferroptosis.
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inducers (FINs) were able to sensitize zero-valent iron
nanoparticle (ZVI NP)-resistant cancer cells to become
treatable without damaging non-malignant cells (39). However,
tumor cells can also resist ferroptosis through the regulation of
internal antioxidant factors, thus promoting drug resistance (40).
Activation of the nuclear factor erythroid-2-related factor 2
(NRF2)-antioxidant response element (ARE) pathway
contributes to artesunate (a ferroptosis inducer) resistance in
cisplatin-resistant head and neck cancer cells, but genetic
silencing of NRF2 or trigonelline reverses artesunate resistance
in cisplatin-resistant HNC cells in vitro and in vivo (41).
Metallothionein (MT)-1G, a protein transcribed from NRF2,
can also inhibit ferroptosis and promote sorafenib resistance in
HCC (42). Therefore, understanding homoeostasis and utilizing
the iron dependence of ROS may be a new anticancer treatment
strategy for drug resistance in human liver cancer. Our study
confirmed that sorafenib induced the HCC cell ferroptosis,
further supporting the research of sorafenib-induced ferroptosis
in other studies (8, 9). Therefore, it may be an effective strategy for
the treatment of HCC by inducing ferroptosis.

NEET proteins are involved in regulating iron and reactive
oxygen species in cancer cells (15, 43) and promote the
proliferation of breast cancer cells (21). CISD2, a member of
the NEET family, can promote the invasion and migration of
pancreatic cancer cells and promote the tumorigenesis and poor
prognosis of lung cancer (23, 24). Regarding drug resistance,
CISD2 has been identified as a novel biomarker of sulfasalazine
resistance, and its inhibition promotes the sensitivity of head and
neck cancer cells to sulfasalazine-induced ferroptosis by
increasing the accumulation of iron oxide and lipid ROS in
mitochondria (44). However, the specific mechanism of CISD2
in drug resistance of HCC has not been reported. Our study
revealed the mechanism of resistance to sorafenib-induced
ferroptosis related to CISD2 expression. Silencing CISD2
sensitized resistant HCC cells to sorafenib-induced ferroptosis.
Therefore, CISD2 was identified as a new biomarker for resistance
to sorafenib-induced ferroptosis for the first time. Our results
highlight CISD2 as a candidate target for modulating ferroptosis
in HCC cells.

At present, the researches on ferroptosis-antagonizing tumor
resistance mainly focus on the inhibition of ferroptosis defense
system, such as GPX4. However, it has been reported that the
core negative regulatory genes of ferroptosis include not only
GPX4 but also ferroptosis suppressor protein 1 (FSP1),
dihydroorotate dehydrogenase (DHODH), and others (45–47).
It is a challenge to antagonize tumor resistance. However,
regulating iron ions to promote ferroptosis can avoid this
problem. Its purpose is more unified, that is, to promote the
increase of iron ion expression in tumor cells. And to explore the
regulation of iron ions to promote ferroptosis is expected to
become an effective strategy for the treatment of tumor resistance
(48). Autophagy, as a metabolic process invoked to cope with
environmental stress and maintain homoeostasis, is of great
importance for the development of tumor cells. However, there
are different views on the role of autophagy in tumor cells.
Currently, it is generally believed that autophagy has dual effects
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in the early stage of tumor occurrence and after tumor
formation. On the one hand, autophagy can control the
proliferation of tumor cells and inhibit angiogenesis to exert an
anticancer effect (49); on the other hand, autophagy can improve
the stress resistance ability of tumor cells to facilitate their
survival and therapeutic resistance (50, 51). With the improved
understanding of autophagy in tumor research, clinical adjuvant
therapies targeting autophagy have been evaluated (52).
However, the therapeutic effect and the selection of the target
are still controversial.

In addition, autophagy plays an important role in the
induction of ferroptosis by ferritin degradation and leads to an
increase in the cellular labile iron pool, which induces oxidative
stress during the occurrence of ferroptosis (29, 30). In this
process, inhibition of system X−

C by ferroptotic agents (e.g.,
erastin and sorafenib) induces the endoplasmic reticulum (ER)
stress response (9). A sustained ER stress-activated unfolded
protein response (UPR) can ultimately promote cytotoxic
autophagy in cancer cells (53). However, only when autophagy
reaches a certain intensity does it trigger ferroptosis. Disruption
of intracellular redox homoeostasis during the ferroptosis
process causes mitochondrial damage and may promote the
subsequent initiation of autophagy, and these events may act
as a feedback loop to further induce ferroptosis until cell death
occurs. Formosanin C (FC) has chemotherapeutic potential
against apoptosis-resistant HCC with higher NCOA4
expression via ferritinophagy (10). Inhibition of autophagy and
ferritinophagy reduces HCC sensitivity to sorafenib or erastin by
inactivating ferroptosis (54). Carbonic anhydrase 9 (CA9)
confers resistance to ferroptosis/apoptosis in malignant
mesothelioma cells, and inhibition of CA9 promotes
mitochondrial fission and autophagy with increased levels of
catalytic Fe2+, peroxides, mitochondrial O−

2 , and lipid
peroxidation (55). Since many studies have shown that
autophagy can induce ferroptosis, the level of autophagic
activity may play an important role in determining the target
of anticancer drugs in tumor cells. In our study, we found that
CISD2 inhibition promoted autophagy in sorafenib-resistant
HCC cells and increased the iron content. However, ferroptosis
was reduced obviously after early inhibition of autophagy.
Therefore, our study showed that ferroptosis promoted by
CISD2 inhibition is mainly regulated by autophagy.

In further exploration of autophagy, we found that the
expression of Beclin1 was increased after autophagy was
promoted by inhibiting CISD2. Studies have shown that CISD2
can bind Beclin1 in the endoplasmic reticulum and play a
regulatory role in autophagy initiation (26). CISD2 interacts
with BCL-2 at the ER and affects its interaction with the tumor
suppressor Beclin1 (56). Beclin1 plays an important role in the
regulation of autophagy and apoptosis. For example, Beclin1
interacts with class III PI3Ks to promote the induction of
autophagy (57). In addition, Beclin1 directly blocks the activity
of system X−

C by binding with its core component solute carrier
family 7 member 11 (SLC7A11) and plays an unprecedented role
in promoting ferroptosis (58). While autophagy inhibition by 3-
MA or Beclin1 knockdown was partially protective against CISD2
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loss of function mediated cell death, these treatments did not
completely inhibit autophagy. Interestingly, sorafenib seems to
override the effect of autophagy inhibition by 3-MA or Beclin1
knockdown in the absence of CISD2 function. In our study, we
found that inhibition of CISD2 induces ferroptosis, which can be
suppressed by silencing Beclin1, and further experiments verified
that CISD2 can bind Beclin1 (Figure 9). Our study revealed for
the first time that autophagy promotes ferroptosis in drug-
resistant cells and reverses the phenomenon of drug resistance.
Our findings can provide a reference for targeted therapy of drug-
resistant cancers. However, autophagy also exerts its antitumor
effect through a previously unknown mechanism, and we suggest
that controlling the intensity of autophagy to induce ferroptosis
may be a potential treatment strategy for resistant cancers.
CONCLUSIONS

In conclusion, the results of this study showed that CISD2 was
highly expressed and related to sorafenib resistance. Inhibition of
CISD2 restored sorafenib-induced ferroptosis and reversed drug
resistance, and these effects were related to the inhibition of
CISD2-promoted autophagy. Through this process, the excessive
activation of autophagy promoted the release of iron ions and
induced lipid peroxidation to promote ferroptosis. Our study
provides a reference for targeted therapy of drug-resistant
tumors with ferroptosis.
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Supplementary Figure 1 | (A) The IC50 of sorafenib resistant HCC. (B) qPCR
was used to detected the expression level of CISD2 under transfected CISD2
shRNA. (C) Clone formation assay was used to detect the proliferation of resistant
cells under treatment with sorafenib (10 mmol) or transfected CISD2 shRNA.

Supplementary Figure 2 | (A) Flow cytometry was used to detect the apoptosis
level of HCC cells under treatment with sorafenib (5 mmol) or STS (0.5 mmol).
(B) CCK-8 method was used to detect the cell viability under treatment with
sorafenib (5 mmol), erastin (5 mmol) with or without cell death inhibitors (Fer-1, 1 mmol;

DFO, 200 mmol; ZVAD-FMK, 10 mmol) for 24 h (n=3, *P<0.05 versus NC group).

Supplementary Figure 3 | Inverted fluorescence and Perls stain were used to
detect the expression level of iron ions under treatment with sorafenib (10 mmol),
erastin (10 mmol), or transfected CISD2 shRNA.
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